Sample records for sulfoxides

  1. Synthesis of enyne and aryl vinyl sulfoxides: functionalization via Pummerer rearrangement.

    PubMed

    Souza, Frederico B; Shamim, Anwar; Argomedo, Luiz M Z; Pimenta, Daniel C; Stefani, Hélio A

    2015-11-01

    An efficient methodology for the synthesis of aryl-substituted vinyl sulfoxides through direct substitution of aryl-substituted alkynyl grignard reagents on menthyl-p-toluenesulfinate followed by Suzuki-Miyaura cross-coupling reaction has been developed. It has also been described that the reaction of alkyl-substituted and cycloalkyl-substituted alkynyl grignard reagents with menthyl-p-toluenesulfinate led to two products, i.e., alkynyl sulfoxide derivatives, as a result of substitution, and enyne sulfoxide derivatives, which resulted from substitution followed by Michael type addition. It was possible to selectively synthesize the enyne sulfoxide derivatives by changing the concentration of the grignard reagent. These alkenyl sulfoxides were transformed into the corresponding [Formula: see text]-thio aldehydes in high yields via additive Pummerer rearrangement.

  2. Tandem rhodium catalysis:Exploiting sulfoxides for asymmetric transition-metal catalysis

    PubMed Central

    Kou, K. G. M.

    2015-01-01

    Sulfoxides are uncommon substrates for transition-metal catalysis due to their propensity to inhibit catalyst turnover. In a collaborative effort with Ken Houk, we developed the first dynamic kinetic resolution (DKR) of allylic sulfoxides using asymmetric rhodium-catalyzed hydrogenation. Detailed mechanistic analysis of this transformation using both experimental and theoretical methods revealed rhodium to be a tandem catalyst that promoted both hydrogenation of the alkene and racemization of the allylic sulfoxide. Using a combination of deuterium labelling and DFT studies, a novel mode of allylic sulfoxide racemization via a Rh(III)-π-allyl intermediate was identified. PMID:25940066

  3. Tandem rhodium catalysis: exploiting sulfoxides for asymmetric transition-metal catalysis.

    PubMed

    Kou, K G M; Dong, V M

    2015-06-07

    Sulfoxides are uncommon substrates for transition-metal catalysis due to their propensity to inhibit catalyst turnover. In a collaborative effort with Ken Houk, we developed the first dynamic kinetic resolution (DKR) of allylic sulfoxides using asymmetric rhodium-catalyzed hydrogenation. A detailed mechanistic analysis of this transformation using both experimental and theoretical methods revealed rhodium to be a tandem catalyst that promoted both hydrogenation of the alkene and racemization of the allylic sulfoxide. Using a combination of deuterium labelling and DFT studies, a novel mode of allylic sulfoxide racemization via a Rh(III)-π-allyl intermediate was identified.

  4. Enantiomeric behaviour of albendazole and fenbendazole sulfoxides in domestic animals: pharmacological implications.

    PubMed

    Capece, Bettencourt P S; Virkel, Guillermo L; Lanusse, Carlos E

    2009-09-01

    Albendazole and fenbendazole are methylcarbamate benzimidazole anthelmintics extensively used to control gastrointestinal parasites in domestic animals. These parent compounds are metabolised to albendazole sulfoxide and fenbendazole sulfoxide (oxfendazole), respectively. Both sulfoxide derivatives are anthelmintically active and are manufactured for use in animals. They metabolites have an asymmetric centre on their chemical structures and two enantiomeric forms of each sulfoxide have been identified in plasma, tissues of parasite location and within target helminths. Both the flavin-monooxygenase and cytochrome P450 systems are involved in the enantioselective biotransformation of these anthelmintic compounds in ruminant species. A relevant progress on the understanding of the relationship among enantioselective metabolism and systemic availability of each enantiomeric form has been achieved. This article reviews the current knowledge on the pharmacological implications of the enantiomeric behaviour of albendazole sulfoxide and oxfendazole in domestic animals.

  5. Synthesis of Cyclic α-Diazo-β-keto Sulfoxides in Batch and Continuous Flow.

    PubMed

    McCaw, Patrick G; Buckley, Naomi M; Eccles, Kevin S; Lawrence, Simon E; Maguire, Anita R; Collins, Stuart G

    2017-04-07

    Diazo transfer to β-keto sulfoxides to form stable isolable α-diazo-β-keto sulfoxides has been achieved for the first time. Both monocyclic and benzofused ketone derived β-keto sulfoxides were successfully explored as substrates for diazo transfer. Use of continuous flow leads to isolation of the desired compounds in enhanced yields relative to standard batch conditions, with short reaction times, increased safety profile, and potential to scale up.

  6. Mechanisms of fenthion activation in rainbow trout (Oncorhynchus mykiss) acclimated to hypersaline environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavado, Ramon; Rimoldi, John M.; Schlenk, Daniel

    2009-03-01

    Previous studies in rainbow trout have shown that acclimation to hypersaline environments enhances the toxicity to thioether organophosphate and carbamate pesticides. In order to determine the role of biotransformation in this process, the metabolism of the thioether organophosphate biocide, fenthion was evaluated in microsomes from gills, liver and olfactory tissues in rainbow trout (Oncorhynchus mykiss) acclimated to freshwater and 17 per mille salinity. Hypersalinity acclimation increased the formation of fenoxon and fenoxon sulfoxide from fenthion in liver microsomes from rainbow trout, but not in gills or in olfactory tissues. NADPH-dependent and independent hydrolysis was observed in all tissues, but onlymore » NADPH-dependent fenthion cleavage was differentially modulated by hypersalinity in liver (inhibited) and gills (induced). Enantiomers of fenthion sulfoxide (65% and 35% R- and S-fenthion sulfoxide, respectively) were formed in liver and gills. The predominant pathway of fenthion activation in freshwater appears to be initiated through initial formation of fenoxon which may be subsequently converted to the most toxic metabolite fenoxon R-sulfoxide. However, in hypersaline conditions both fenoxon and fenthion sulfoxide formation may precede fenoxon sulfoxide formation. Stereochemical evaluation of sulfoxide formation, cytochrome P450 inhibition studies with ketoconazole and immunoblots indicated that CYP3A27 was primarily involved in the enhancement of fenthion activation in hypersaline-acclimated fish with limited contribution of FMO to initial sulfoxidation.« less

  7. Decryptification of Acid Phosphatase in Arthrospores of Geotrichum Species Treated with Dimethyl Sulfoxide and Acetone

    PubMed Central

    Cotter, David A.; Martel, Anita J.; MacDonald, Paul

    1975-01-01

    Decryptification of acid phosphatase in Geotrichum sp. arthrospores was accomplished using acetone or dimethyl sulfoxide treatment. Both dimethyl sulfoxide and acetone irreversibly destroyed the integrity of the spore membranes without solubilizing acid phosphatase. PMID:1167386

  8. Use of albendazole sulfoxide, albendazole sulfone, and combined solutions as scolicidal agents on hydatid cysts (in vitro study)

    PubMed Central

    Adas, Gokhan; Arikan, Soykan; Kemik, Ozgur; Oner, Ali; Sahip, Nilgun; Karatepe, Oguzhan

    2009-01-01

    AIM: To establish which scolicidal agents are superior and more suitable for regular use. METHODS: Echinococcus granulosus protoscoleces were obtained from 25 patients with liver hydatid cysts. Various concentrations of albendazole sulfone, albendazole sulfoxide, and albendazole sulfone and albendazole sulfoxide mixed together in concentrations of 50 μg/mL, and H2O2 in a concentration of 4%, NaCl 20%, and 1.5% cetrimide-0.15% chlorhexidine (10% Savlon-Turkey) were used to determine the scolicidal effects. Albendazole (ABZ) derivatives and other scolicidal agents were applied to a minimum of 100 scoleces for 5 and 10 min. The degree of viability was calculated according to the number of living scolices per field from a total of 100 scolices observed under the microscope. RESULTS: After 5 min, ABZ sulfone was 97.3% effective, ABZ sulfoxide was 98.4% effective, and the combined solution was 98.6% effective. When sulfone, sulfoxide and the combined solutions were compared, the combined solution seemed more effective than sulfone. However, there was no difference when the combined solution was compared with sulfoxide. After 10 min, hypertonic salt water, sulfone, sulfoxide, and the combined solution compared to other solutions looked more effective and this was statistically significant on an advanced level. When sulfone, sulfoxide, and the combined solutions were compared with each other, the combined solution appeared more effective than sulfone. When the combined solution was compared with sulfoxide, there was no difference. CONCLUSION: Despite being active, ABZ metabolites did not provide a marked advantage over 20% hypertonic saline. According to these results, we think creating a newly improved and more active preparation is necessary for hydatid cyst treatment. PMID:19115476

  9. SWELLING OF PEATS IN LIQUID METHYL, TETRAMETHYLENE AND PROPYL SULFOXIDES AND IN LIQUID PROPYL SULFONE

    EPA Science Inventory

    The interactions of methyl, tetramethylene, and propyl sulfoxides and propyl sulfone during sorption onto four de-waxed, acid-form peats have been studied by means of swelling measurements. The results for sulfoxides are displayed as het-eromolecular sorption isotherms, which plo...

  10. Models for liquid-liquid partition in the system dimethyl sulfoxide-organic solvent and their use for estimating descriptors for organic compounds.

    PubMed

    Karunasekara, Thushara; Poole, Colin F

    2011-07-15

    Partition coefficients for varied compounds were determined for the organic solvent-dimethyl sulfoxide biphasic partition system where the organic solvent is n-heptane or isopentyl ether. These partition coefficient databases are analyzed using the solvation parameter model facilitating a quantitative comparison of the dimethyl sulfoxide-based partition systems with other totally organic partition systems. Dimethyl sulfoxide is a moderately cohesive solvent, reasonably dipolar/polarizable and strongly hydrogen-bond basic. Although generally considered to be non-hydrogen-bond acidic, analysis of the partition coefficient database strongly supports reclassification as a weak hydrogen-bond acid in agreement with recent literature. The system constants for the n-heptane-dimethyl sulfoxide biphasic system provide an explanation of the mechanism for the selective isolation of polycyclic aromatic compounds from mixtures containing low-polarity hydrocarbons based on the capability of the polar interactions (dipolarity/polarizability and hydrogen-bonding) to overcome the opposing cohesive forces in dimethyl sulfoxide that are absent for the interactions with hydrocarbons of low polarity. In addition, dimethyl sulfoxide-organic solvent systems afford a complementary approach to other totally organic biphasic partition systems for descriptor measurements of compounds virtually insoluble in water. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. FT-IR SOLUTION SPECTRA OF PROPYL SULFIDE, PROPYL SULFOXIDE, AND PROPYL SULFONE

    EPA Science Inventory

    FT-IR spectra were obtained of 0.5% volumetric solutions of propyl sulfide, propyl sulfoxide, and propyl sulfone in hexane, CCl4, CS2, and CHCl3 to assist in the assignment of FT-IR-PAS spectra of propyl sulfoxide sorbed within the structure of several peats and onto cellulose. T...

  12. Antioxidant properties of dimethyl sulfoxide and its viability as a solvent in the evaluation of neuroprotective antioxidants.

    PubMed

    Sanmartín-Suárez, Carolina; Soto-Otero, Ramón; Sánchez-Sellero, Inés; Méndez-Álvarez, Estefanía

    2011-01-01

    Dimethyl sulfoxide is an amphiphilic compound whose miscibility with water and its ability to dissolve lipophilic compounds make it an appreciated solvent in biomedical research. However, its reported antioxidant properties raise doubts about its use as a solvent in evaluating new antioxidants. The goal of this investigation was to evaluate its antioxidant properties and carry out a comparative study on the antioxidant properties of some known neuroprotective antioxidants in the presence and absence of dimethyl sulfoxide. The antioxidant properties of dimethyl sulfoxide were studied in rat brain homogenates by determining its ability to reduce both lipid peroxidation (TBARS formation) and protein oxidation (increase in protein carbonyl content and decrease in free thiol content) induced by ferrous chloride/hydrogen peroxide. Its ability to reduce the production of hydroxyl radicals by 6-hydroxydopamine autoxidation was also estimated. The same study was also performed with three known antioxidants (α-phenyl-N-tert-butylnitrone; 2-methyl-2-nitrosopropane; 5,5-dimethyl-1-pyrroline N-oxide) in the presence and absence of dimethyl sulfoxide. Our results showed that dimethyl sulfoxide is able to reduce both lipid peroxidation and protein carbonyl formation induced by ferrous chloride/hydrogen peroxide in rat brain homogenates. It can also reduce the production of hydroxyl radicals during 6-hydroxydopamine autoxidation. However, it increases the oxidation of protein thiol groups caused by ferrous chloride/hydrogen peroxide in rat brain homogenate. Despite the here reported antioxidant and pro-oxidant properties of dimethyl sulfoxide, the results obtained with α-phenyl-N-tert-butylnitrone, 2-methyl-2-nitrosopropane, and 5,5-dimethyl-1-pyrroline N-oxide corroborate the antioxidant properties attributed to these compounds and support the potential use of dimethyl sulfoxide as a solvent in the study of the antioxidant properties of lipophilic compounds. Dimethyl sulfoxide is a very useful solvent that may be used at relatively low concentrations in the development of new antioxidants with neuroprotective properties. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Effect of sulfoxides on the thermal denaturation of hen lysozyme: A calorimetric and Raman study

    NASA Astrophysics Data System (ADS)

    Torreggiani, A.; Di Foggia, M.; Manco, I.; De Maio, A.; Markarian, S. A.; Bonora, S.

    2008-11-01

    A multidisciplinary study of the thermal denaturation of lysozyme in the presence of three sulfoxides with different length in hydrocarbon chain (DMSO, DESO, and DPSO) was carried out by means of DSC, Raman spectroscopy, and SDS-PAGE techniques. In particular, the Td and Δ H values obtained from the calorimetric measurements showed that lysozyme is partially unfolded by sulfoxides but most of the conformation holds native state. The sulfoxide denaturing ability increases in the order DPSO > DESO > DMSO. Moreover, only DMSO and DESO have a real effect in preventing the heat-induced inactivation of the protein and their maximum heat-protective ability is reached when the DMSO and DESO amount is ⩾25% w/w. The sulfoxide ability to act as effective protective agents against the heat-induced inactivation was confirmed by the protein analysis. The enzymatic activity, as well as the SDS-PAGE analysis, suggested that DESO, having a low hydrophobic character and a great ability to stabilise the three-dimensional water structure, is the most heat-protective sulfoxide. An accurate evaluation of the heat-induced conformational changes of the lysozyme structure before and after sulfoxide addition was obtained by the analysis of the Raman spectra. The addition of DMSO or DESO in low concentration resulted to sensitively decrease the heat-induced structural modifications of the protein.

  14. N.m.r. studies of the conformation of analogues of methyl beta-lactoside in methyl sulfoxide-d6.

    PubMed

    Rivera-Sagredo, A; Jiménez-Barbero, J; Martín-Lomas, M

    1991-12-16

    The 1H- and 13C-n.m.r. spectra of solutions of methyl beta-lactoside (1), all of its monodeoxy derivatives (2, 3, 6-10), the 3-O-methyl derivative (4), and methyl 4-O-beta-D-galactopyranosyl-D-xylopyranoside (5) in methyl sulfoxide-d6 have been analysed. The n.O.e.'s and specific desheildings indicate similar distributions of low-energy conformers, comparable to those in aqueous solution. The major conformer has torsion angles phi H and psi H of 49 degrees and 5 degrees, respectively, with contributions of conformers with phi/psi 24 degrees/-59 degrees, 22 degrees/32 degrees, and 6 degrees/44 degrees.

  15. Synthesis and spectroscopic behavior of highly luminescent Eu 3+-dibenzoylmethanate (DBM) complexes with sulfoxide ligands

    NASA Astrophysics Data System (ADS)

    Niyama, E.; Brito, H. F.; Cremona, M.; Teotonio, E. E. S.; Reyes, R.; Brito, G. E. S.; Felinto, M. C. F. C.

    2005-09-01

    In this paper the synthesis, characterization and photoluminescent behavior of the [RE(DBM) 3L 2] complexes (RE = Gd and Eu) with a variety of sulfoxide ligands; L = benzyl sulfoxide (DBSO), methyl sulfoxide (DMSO), phenyl sulfoxide (DPSO) and p-tolyl sulfoxide (PTSO) have been investigated in solid state. The emission spectra of the Eu 3+-β-diketonate complexes show characteristics narrow bands arising from the 5D 0 → 7F J ( J = 0-4) transitions, which are split according to the selection rule for C n, C nv or C s site symmetries. The experimental Judd-Ofelt intensity parameters ( Ω2 and Ω4), radiative ( Arad) and non-radiative ( Anrad) decay rates, and R02 for the europium complexes have been determined and compared. The highest value of Ω2 (61.9 × 10 -20 cm 2) was obtained to the complex with PTSO ligand, indicating that Eu 3+ ion is in the highly polarizable chemical environment. The higher values of the experimental quantum yield ( q) and emission quantum efficiency of the emitter 5D 0 level ( η) for the Eu-complexes with DMSO, DBSO and PTSO sulfoxides suggest that these complexes are promising Light Conversion Molecular Devices (LCMDs). The lower value of quantum yield ( q = 1%), for the hydrated complex [Eu(DBM) 3(H 2O)], indicates that the luminescence quenching occurs via multiphonon relaxation by coupling with the OH-oscillators from water molecule coordinated to rare earth ion. The pure red emission of the Eu-complexes has been confirmed by ( x, y) color coordinates.

  16. Sulfoxidation Regulation of Musa acuminata Calmodulin (MaCaM) Influences the Functions of MaCaM-Binding Proteins.

    PubMed

    Jiang, Guoxiang; Wu, Fuwang; Li, Zhiwei; Li, Taotao; Gupta, Vijai Kumar; Duan, Xuewu; Jiang, Yueming

    2018-06-01

    Sulfoxidation of methionine in proteins by reactive oxygen species can cause conformational alteration or functional impairment, and can be reversed by methionine sulfoxide reductase (Msr). Currently, only a few potential Msr substrates have been confirmed in higher plants. Here, we investigated Msr-mediated sulfoxidation regulation of calmodulin (CaM) and its underlying biological significance in relation to banana fruit ripening and senescence. Expression of MaCaM1 and MaMsrA7 was up-regulated with increased ripening and senescence. We verified that MaCaM1 interacts with MaMsrA7 in vitro and in vivo, and sulfoxidated MaCaM1 could be partly repaired by MaMsrA7 (MaMsrA7 reduces oxidized residues Met77 and Met110 in MaCaM1). Furthermore, we investigated two known CaM-binding proteins, catalase (MaCAT1) and MaHY5-1. MaHY5-1 acts as a transcriptional repressor of carotenoid biosynthesis-related genes (MaPSY1, MaPSY2 and MaPSY3) in banana fruit. MaCaM1 could enhance the catalytic activity of MaCAT1 and the transcriptional repression activity of MaHY5-1 toward MaPSY2. Mimicked sulfoxidation in MaCaM1 did not affect the physical interactions of the protein with MaHY5-1 and MaCAT1, but reduced the catalytic activity of MaCAT1 and the transcriptional repression activity of MaHY5-1. Our data suggest that sulfoxidation modification in MaCaM1 by MaMsrA7 regulates antioxidant response and gene transcription, thereby being involved in regulation of ripening and senescence of banana fruit.

  17. Mutant form C115H of Clostridium sporogenes methionine γ-lyase efficiently cleaves S-Alk(en)yl-l-cysteine sulfoxides to antibacterial thiosulfinates.

    PubMed

    Kulikova, Vitalia V; Anufrieva, Natalya V; Revtovich, Svetlana V; Chernov, Alexander S; Telegin, Georgii B; Morozova, Elena A; Demidkina, Tatyana V

    2016-10-01

    Pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) catalyzes the β-elimination reaction of S-alk(en)yl-l-cysteine sulfoxides to thiosulfinates, which possess antimicrobial activity. Partial inactivation of the enzyme in the course of the reaction occurs due to oxidation of active site cysteine 115 conserved in bacterial MGLs. In this work, the C115H mutant form of Clostridium sporogenes MGL was prepared and the steady-state kinetic parameters of the enzyme were determined. The substitution results in an increase in the catalytic efficiency of the mutant form towards S-substituted l-cysteine sulfoxides compared to the wild type enzyme. We used a sulfoxide/enzyme system to generate antibacterial activity in situ. Two-component systems composed of the mutant enzyme and three S-substituted l-cysteine sulfoxides were demonstrated to be effective against Gram-positive and Gram-negative bacteria and three clinical isolates from mice. © 2016 IUBMB Life, 68(10):830-835, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  18. Dynamic Kinetic Resolution of Allylic Sulfoxides by Rh-Catalyzed Hydrogenation: A Combined Theoretical and Experimental Mechanistic Study

    PubMed Central

    Dornan, Peter K.; Kou, Kevin G. M.; Houk, K. N.; Dong, Vy M.

    2014-01-01

    A dynamic kinetic resolution (DKR) of allylic sulfoxides has been demonstrated by combining the Mislow [2,3]-sigmatropic rearrangement with catalytic asymmetric hydrogenation. The efficiency of our DKR was optimized by using low pressures of hydrogen gas to decrease the rate of hydrogenation relative to the rate of sigmatropic rearrangement. Kinetic studies reveal that the rhodium complex acts as a dual-role catalyst and accelerates the substrate racemization while catalyzing olefin hydrogenation. Scrambling experiments and theoretical modeling support a novel mode of sulfoxide racemization which occurs via a rhodium π-allyl intermediate in polar solvents. In non-polar solvents, however, the substrate racemization is primarily uncatalyzed. Computational studies suggest that the sulfoxide binds to rhodium via O–coordination throughout the catalytic cycle for hydrogenation. PMID:24350903

  19. Problem Definition Studies on Potential Environmental Pollutants. 4. Physical, Chemical, Toxicological, and Biological Properties of Benzene; Toluene; Xylenes; and para-Chlorophenyl Methyl Sulfide, Sulfoxide, and Sulfone

    DTIC Science & Technology

    1976-06-01

    ecological hazards of benzene, toluene, xylenes,* and p-chlorophenyl methyl sulfide, sulfoxide, and sulfone at Rocky Mountain Arsenal (RMA). That assessment...recently reviewed the occupational hazard associated with the use of benzene, toluene, and xylene and has recomiended the folcwln !.ImitS In workroom air...Toxicology and Ecological Hazards of "Venzene; Toluene; Xylenes; and p-Chlorophenyl Methyl Sulfide, Sulfoxide, and Sulfone at Rocky tc-cntain Arsenal

  20. Mechanistic Investigations into the Application of Sulfoxides in Carbohydrate Synthesis

    PubMed Central

    Brabham, Robin

    2016-01-01

    Abstract The utility of sulfoxides in a diverse range of transformations in the field of carbohydrate chemistry has seen rapid growth since the first introduction of a sulfoxide as a glycosyl donor in 1989. Sulfoxides have since developed into more than just anomeric leaving groups, and today have multiple roles in glycosylation reactions. These include as activators for thioglycosides, hemiacetals, and glycals, and as precursors to glycosyl triflates, which are essential for stereoselective β‐mannoside synthesis, and bicyclic sulfonium ions that facilitate the stereoselective synthesis of α‐glycosides. In this review we highlight the mechanistic investigations undertaken in this area, often outlining strategies employed to differentiate between multiple proposed reaction pathways, and how the conclusions of these investigations have and continue to inform upon the development of more efficient transformations in sulfoxide‐based carbohydrate synthesis. PMID:26744250

  1. Vinyl sulfoxides as stereochemical controllers in intermolecular Pauson-Khand reactions: applications to the enantioselective synthesis of natural cyclopentanoids.

    PubMed

    Rodríguez Rivero, Marta; Alonso, Inés; Carretero, Juan C

    2004-10-25

    The use of sulfoxides as chiral auxiliaries in asymmetric intermolecular Pauson-Khand reactions is described. After screening a wide variety of substituents on the sulfur atom in alpha,beta-unsaturated sulfoxides, the readily available o-(N,N-dimethylamino)phenyl vinyl sulfoxide (1 i) has proved to be highly reactive with substituted terminal alkynes under N-oxide-promoted conditions (CH3CN, 0 degrees C). In addition, these Pauson-Khand reactions occurred with complete regioselectivity and very high diastereoselectivity (de=86->96 %, (S,R(S)) diastereomer). Experimental studies suggest that the high reactivity exhibited by the vinyl sulfoxide 1 i relies on the ability of the amine group to act as a soft ligand on the alkyne dicobalt complex prior to the generation of the cobaltacycle intermediate. On the other hand, both theoretical and experimental studies show that the high stereoselectivity of the process is due to the easy thermodynamic epimerization at the C5 center in the resulting 5-sulfinyl-2-cyclopentenone adducts. When it is taken into account that the known asymmetric intermolecular Pauson-Khand reactions are limited to the use of highly reactive bicyclic alkenes, mainly norbornene and norbornadiene, this novel procedure constitutes the first asymmetric version with unstrained acyclic alkenes. As a demonstration of the synthetic interest of this sulfoxide-based methodology in the enantioselective preparation of stereochemically complex cyclopentanoids, we have developed very short and efficient syntheses of the antibiotic (-)-pentenomycin I and the (-)-aminocyclopentitol moiety of a hopane triterpenoid.

  2. Performance of the SMD and SM8 models for predicting solvation free energy of neutral solutes in methanol, dimethyl sulfoxide and acetonitrile.

    PubMed

    Zanith, Caroline C; Pliego, Josefredo R

    2015-03-01

    The continuum solvation models SMD and SM8 were developed using 2,346 solvation free energy values for 318 neutral molecules in 91 solvents as reference. However, no solvation data of neutral solutes in methanol was used in the parametrization, while only few solvation free energy values of solutes in dimethyl sulfoxide and acetonitrile were used. In this report, we have tested the performance of the models for these important solvents. Taking data from literature, we have generated solvation free energy, enthalpy and entropy values for 37 solutes in methanol, 21 solutes in dimethyl sulfoxide and 19 solutes in acetonitrile. Both SMD and SM8 models have presented a good performance in methanol and acetonitrile, with mean unsigned error equal or less than 0.66 and 0.55 kcal mol(-1) in methanol and acetonitrile, respectively. However, the correlation is worse in dimethyl sulfoxide, where the SMD and SM8 methods present mean unsigned error of 1.02 and 0.95 kcal mol(-1), respectively. Our results point out the SMx family of models need be improved for dimethyl sulfoxide solvent.

  3. Performance of the SMD and SM8 models for predicting solvation free energy of neutral solutes in methanol, dimethyl sulfoxide and acetonitrile

    NASA Astrophysics Data System (ADS)

    Zanith, Caroline C.; Pliego, Josefredo R.

    2015-03-01

    The continuum solvation models SMD and SM8 were developed using 2,346 solvation free energy values for 318 neutral molecules in 91 solvents as reference. However, no solvation data of neutral solutes in methanol was used in the parametrization, while only few solvation free energy values of solutes in dimethyl sulfoxide and acetonitrile were used. In this report, we have tested the performance of the models for these important solvents. Taking data from literature, we have generated solvation free energy, enthalpy and entropy values for 37 solutes in methanol, 21 solutes in dimethyl sulfoxide and 19 solutes in acetonitrile. Both SMD and SM8 models have presented a good performance in methanol and acetonitrile, with mean unsigned error equal or less than 0.66 and 0.55 kcal mol-1 in methanol and acetonitrile, respectively. However, the correlation is worse in dimethyl sulfoxide, where the SMD and SM8 methods present mean unsigned error of 1.02 and 0.95 kcal mol-1, respectively. Our results point out the SMx family of models need be improved for dimethyl sulfoxide solvent.

  4. Determination of sulfur compounds in hydrotreated transformer base oil by potentiometric titration.

    PubMed

    Chao, Qiu; Sheng, Han; Cheng, Xingguo; Ren, Tianhui

    2005-06-01

    A method was developed to analyze the distribution of sulfur compounds in model sulfur compounds by potentiometric titration, and applied to analyze hydrotreated transformer base oil. Model thioethers were oxidized to corresponding sulfoxides by tetrabutylammonium periodate and sodium metaperiodate, respectively, and the sulfoxides were titrated by perchloric acid titrant in acetic anhydride. The contents of aliphatic thioethers and total thioethers were then determined from that of sulfoxides in solution. The method was applied to determine the organic sulfur compounds in hydrotreated transformer base oil.

  5. In situ generation of sulfoxides with predetermined chirality via a structural template with a chiral-at-metal ruthenium complex.

    PubMed

    Li, Zheng-Zheng; Yao, Su-Yang; Wu, Jin-Ji; Ye, Bao-Hui

    2014-05-30

    The reaction of Δ/Λ-[Ru(bpy)2(py)2](2+) with a prochiral sulfide ligand, and then in situ oxidation, provide the corresponding Δ-[Ru(bpy)2{(R)-OSO-iPr}](+) and Λ-[Ru(bpy)2{(S)-OSO-iPr}](+) (OSO-iPr = 2-isopropylsulfonylbenzonate) enantiomers in a yield of 83% with 98% ee. The chiral sulfoxides were obtained by treatment of the sulfoxide complexes with TFA in a yield of 90% with 88-91% ee.

  6. A luminescent europium complex for the selective detection of trace amounts of aldicarb sulfoxide and prometryne

    NASA Astrophysics Data System (ADS)

    Anwar, Zeinab M.; Ibrahim, Ibrahim A.; Abdel-Salam, Enas T.; Kamel, Rasha M.; El-Asfoury, Mahmoud H.

    2017-05-01

    The interaction between luminescent Eu(TAN)2(Phen) ternary complex (where TAN = 4,4,4-Trifluoro-1-(2-naphthyl)-1,3-butanedione and Phen = 1,10 phenanthroline) with prometryne and aldicarb sulfoxide was studied by fluorescence spectroscopic technique. The results showed that the luminescence of europium complex was strongly quenched at λ = 614 nm by prometryne and aldicarb sulfoxide at pH 7.4 using PIPES buffer solution. The quenching mechanism was discussed to be a static quenching procedure, which was proved by the Stern Volmer (KSV) constants at different temperatures where the detection limits are 0.33 and 0.18 μmol L-1 for prometryne and aldicarb sulfoxide, respectively. According to Lineweaver-Burk equation at different temperatures, the thermodynamic parameters, ΔH, ΔS and ΔG associated with the interaction of the complex with the two pesticides were calculated.

  7. Determination of albendazole sulfoxide in human plasma by using liquid chromatography-tandem mass spectrometry.

    PubMed

    Saraner, Nihal; Özkan, Güler Yağmur; Güney, Berrak; Alkan, Erkin; Burul-Bozkurt, Nihan; Sağlam, Onursal; Fikirdeşici, Ezgi; Yıldırım, Mevlüt

    2016-06-01

    A rapid, simple and sensitive method was developed and validated using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for determination of albendazole sulfoxide (ABZOX) in human plasma. The plasma samples were extracted by protein precipitation using albendazole sulfoxide-d3 as internal standard (IS). The chromatographic separation was performed on Waters Xbridge C18Column (100×4.6mm, 3.5μm) with a mobile phase consisting of ammonia solution, water and methanol at a flow rate of 0.70mL/min. ABZOX was detected and identified by mass spectrometry with electrospray ionization (ESI) in positive ion and multiple-reaction monitoring (MRM) mode. The method was linear in the range of 3-1500ng/mL for ABZOX. This method was successfully applied to the bioequivalence study in human plasma samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. p-Chlorophenyl methyl sulfoxide

    Integrated Risk Information System (IRIS)

    p - Chlorophenyl methyl sulfoxide ; CASRN 934 - 73 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  9. A Bifunctional Dimethylsulfoxide Substitute Enhances the Aqueous Solubility of Small Organic Molecules

    PubMed Central

    Sprachman, Melissa M.

    2012-01-01

    Abstract An oxetane-substituted sulfoxide has demonstrated potential as a dimethylsulfoxide substitute for enhancing the dissolution of organic compounds with poor aqueous solubilities. This sulfoxide may find utility in applications of library storage and biological assays. For the model compounds studied, significant solubility enhancements were observed using the sulfoxide as a cosolvent in aqueous media. Brine shrimp, breast cancer (MDA-MB-231), and liver cell line (HepG2) toxicity data for the new additive are also presented, in addition to comparative IC50 values for a series of PKD1 inhibitors. PMID:22192308

  10. Development of a standard accelerated weathering test for aggregates using dimethyl sulfoxide (DMSO) : final report.

    DOT National Transportation Integrated Search

    1986-09-01

    A standard accelerated weathering test using Dimethyl Sulfoxide (DMSO) was developed to simulate the chemical degradation of basaltic rocks. After a thorough study of the parameters affecting the current procedure, such as container geometry, aggrega...

  11. Does dimethyl sulfoxide increase protein immunomarking efficiency for dispersal and predation studies?

    USDA-ARS?s Scientific Manuscript database

    Marking biological control agents facilitates studies of dispersal and predation. This study examines the effect of a biological solvent, dimethyl sulfoxide (DMSO), on retention of immunoglobulin G (IgG) protein solutions applied to Diorhabda carinulata (Desbrochers) (Coleoptera: Chrysomelidae) eit...

  12. The participation of human hepatic P450 isoforms, flavin-containing monooxygenases and aldehyde oxidase in the biotransformation of the insecticide fenthion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leoni, Claudia; Buratti, Franca M.; Testai, Emanuela

    Although fenthion (FEN) is widely used as a broad spectrum insecticide on various crops in many countries, very scant data are available on its biotransformation in humans. In this study the in vitro human hepatic FEN biotransformation was characterized, identifying the relative contributions of cytochrome P450 (CYPs) and/or flavin-containing monooxygenase (FMOs) by using single c-DNA expressed human enzymes, human liver microsomes and cytosol and CYP/FMO-specific inhibitors. Two major metabolites, FEN-sulfoxide and FEN-oxon (FOX), are formed by some CYPs although at very different levels, depending on the relative CYP hepatic content. Formation of further oxidation products and the reduction of FEN-sulfoxidemore » back to FEN by the cytosolic aldehyde oxidase enzyme were ruled out. Comparing intrinsic clearance values, FOX formation seemed to be favored and at low FEN concentrations CYP2B6 and 1A2 are mainly involved in its formation. At higher levels, a more widespread CYP involvement was evident, as in the case of FEN-sulfoxide, although a higher efficiency of CYP2C family was suggested. Hepatic FMOs were able to catalyze only sulfoxide formation, but at low FEN concentrations hepatic FEN sulfoxidation is predominantly P450-driven. Indeed, the contribution of the hepatic isoforms FMO{sub 3} and FMO{sub 5} was generally negligible, although at high FEN concentrations FMO's showed activities comparable to the active CYPs, accounting for up to 30% of total sulfoxidation. Recombinant FMO{sub 1} showed the highest efficiency with respect to CYPs and the other FMOs, but it is not expressed in the adult human liver. This suggests that FMO{sub 1}-catalysed sulfoxidation may represent the major extra-hepatic pathway of FEN biotransformation.« less

  13. In vivo evaluation of the efficacy of albendazole sulfoxide and albendazole sulfoxide loaded solid lipid nanoparticles against hydatid cyst.

    PubMed

    Ahmadnia, Sara; Moazeni, Mohammad; Mohammadi-Samani, Soliman; Oryan, Ahmad

    2013-10-01

    Cystic echinococcosis (CE) is caused by the larval stage of Echinococcus granulosus, which in this disease the metacestode develop in visceral organs especially liver and lungs. The disease is present worldwide and affects humans as well as herbivores including cattle, sheep, camels, horses and others. Benzimidazole carbamate derivatives, such as mebendazole and albendazole, are currently used for chemotherapeutic treatment of CE in inoperable patients and have to be applied in high doses for extended periods of time, and therefore adverse side effects are frequently observed. This study was designed to evaluate and compare the in vivo effects of 0.5 mg/kg, BID, albendazole sulfoxide (ricobendazole) and two different therapeutic regimens of 0.5 mg/kg BID and 2 mg/kg every 48 h of albendazole sulfoxide loaded solid lipid nanoparticles. Albendazole sulfoxide loaded solid lipid nanoparticles was prepared by solvent diffusion-evaporation method. Fifty Balb/c mice were infected by intraperitoneal injection of protoscoleces and 8 months post infection, the infected mice were treated for 15 days with the above mentioned regimens. They were then euthanized and the size and weight of the cysts as well as their ultrastructural changes were investigated. Although the cysts showed reduced size and weight in the treated animals but these reductions were not statistically significant. The cysts in the animals which received albendazole sulfoxide loaded SLN every 48 h showed more ultrastructural modification. However, these ultrastructural changes should be supported by further biochemical and molecular studies before introducing it as an efficient therapeutic regimen for treatment of human and animal hydatid disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Simultaneous gauche and anomeric effects in α-substituted sulfoxides.

    PubMed

    Freitas, Matheus P

    2012-09-07

    α-Substituted sulfoxides can experience both gauche and anomeric effects, since these compounds have the geometric requirements and strong electron donor and acceptor orbitals which are essential to make operative the hyperconjugative nature of these effects. Indeed, the title effects were calculated to take place for 1,3-oxathiane 3-oxide in polar solution, where dipolar effects are absent or at least minimized, while only the gauche effect is present in 2-fluorothiane 1-oxide. Since the fluorine atom is a suitable probe for structural analysis using NMR, the (1)J(CF) dependence on the rotation around the F-C-S═O dihedral angle of (fluoromethyl)methyl sulfoxide was evaluated; differently from 1,2-difluoroethane and fluoro(methoxy)methane, this coupling constant is at least not exclusively dependent on dipolar interactions (or on hyperconjugation). Because of the nonmonotonic behavior of the (1)J(CF) rotational profile, this coupling constant does not appear to be of significant diagnostic value for probing the conformations of α-fluoro sulfoxides.

  15. A QSPR study on the solvent-induced frequency shifts of acetone and dimethyl sulfoxide in organic solvents.

    PubMed

    Ou, Yu Heng; Chang, Chia Ming; Chen, Ying Shao

    2016-06-05

    In this study, solvent-induced frequency shifts (SIFS) in the infrared spectrum of acetone and dimethyl sulfoxide in organic solvents were investigated by using four types of quantum-chemical reactivity descriptors. The results showed that the SIFS of acetone is mainly affected by the electron-acceptance chemical potential and the maximum nucleophilic condensed local softness of organic solvents, which represent the electron flow and the polarization between acetone and solvent molecules. On the other hand, the SIFS of dimethyl sulfoxide changes with the maximum positive charge of hydrogen atom and the inverse of apolar surface area of solvent molecules, showing that the electrostatic and hydrophilic interactions are main mechanisms between dimethyl sulfoxide and solvent molecules. The introduction of the four-element theory model-based quantitative structure-property relationship approach improved the assessing quality and provided a basis for interpreting the solute-solvent interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Biosynthesis of S-Methylcysteine in Radish Leaves1

    PubMed Central

    Thompson, John F.; Gering, Rose K.

    1966-01-01

    Investigation on the biosynthesis of S-methyl-L-cysteine in radish leaves has shown that it is formed by the methylation of cysteine. This conclusion is based on: A) the relatively high recovery of radioactivity in methylcysteine sulfoxide after the administration of cysteine or methyl-labeled methionine to radish leaves; B) the nearly complete recovery of label from methyl-labeled methionine in the methyl group of methylcysteine sulfoxide; and C) the similarity in the ratio of tritium to 14C in methylcysteine sulfoxide and in its methyl group to this ratio in the methyl group of methionine given to radish leaves. Direct evidence for the synthesis of methylcysteine in radishes was obtained for the first time. Conclusive evidence against the formation of methylcysteine from serine and a thiomethyl group from methionine as suggested for garlic was the more efficient incorporation of the methyl group of methionine as compared to the sulfur atom into methylcysteine sulfoxide. Images Fig. 1 PMID:16656400

  17. Protection against UVB-induced oxidative stress in human skin cells and skin models by methionine sulfoxide reductase A.

    PubMed

    Pelle, Edward; Maes, Daniel; Huang, Xi; Frenkel, Krystyna; Pernodet, Nadine; Yarosh, Daniel B; Zhang, Qi

    2012-01-01

    Environmental trauma to human skin can lead to oxidative damage of proteins and affect their activity and structure. When methionine becomes oxidized to its sulfoxide form, methionine sulfoxide reductase A (MSRA) reduces it back to methionine. We report here the increase in MSRA in normal human epidermal keratinocytes (NHEK) after ultraviolet B (UVB) radiation, as well as the reduction in hydrogen peroxide levels in NHEK pre-treated with MSRA after exposure. Further, when NHEK were pre-treated with a non-cytotoxic pentapeptide containing methionine sulfoxide (metSO), MSRA expression increased by 18.2%. Additionally, when the media of skin models were supplemented with the metSO pentapeptide and then exposed to UVB, a 31.1% reduction in sunburn cells was evident. We conclude that the presence of MSRA or an externally applied peptide reduces oxidative damage in NHEK and skin models and that MSRA contributes to the protection of proteins against UVB-induced damage in skin.

  18. Chiral Sulfoxide-Induced Single Turn Peptide α-Helicity

    PubMed Central

    Zhang, Qingzhou; Jiang, Fan; Zhao, Bingchuan; Lin, Huacan; Tian, Yuan; Xie, Mingsheng; Bai, Guoyun; Gilbert, Adam M.; Goetz, Gilles H.; Liras, Spiros; Mathiowetz, Alan A.; Price, David A.; Song, Kun; Tu, Meihua; Wu, Yujie; Wang, Tao; Flanagan, Mark E.; Wu, Yun-Dong; Li, Zigang

    2016-01-01

    Inducing α-helicity through side-chain cross-linking is a strategy that has been pursued to improve peptide conformational rigidity and bio-availability. Here we describe the preparation of small peptides tethered to chiral sulfoxide-containing macrocyclic rings. Furthermore, a study of structure-activity relationships (SARs) disclosed properties with respect to ring size, sulfur position, oxidation state, and stereochemistry that show a propensity to induce α-helicity. Supporting data include circular dichroism spectroscopy (CD), NMR spectroscopy, and a single crystal X-ray structure for one such stabilized peptide. Finally, theoretical studies are presented to elucidate the effect of chiral sulfoxides in inducing backbone α-helicity. PMID:27934919

  19. Matrix-assisted laser desorption ionization time-of-flight mass spectrometric analysis of degradation products after treatment of methylene blue aqueous solution with three-dimensionally integrated microsolution plasma

    NASA Astrophysics Data System (ADS)

    Shirafuji, Tatsuru; Nomura, Ayano; Hayashi, Yui; Tanaka, Kenji; Goto, Motonobu

    2016-01-01

    Methylene blue can be degraded in three-dimensionally integrated microsolution plasma. The degradation products have been analyzed by matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry to understand the degradation mechanisms. The results of MALDI TOF mass spectrometry have shown that sulfoxide is formed at the first stage of the oxidation. Then, partial oxidation proceeds on the methyl groups left on the sulfoxide. The sulfoxide is subsequently separated to two benzene derivatives. Finally, weak functional groups are removed from the benzene derivatives.

  20. 21 CFR 524.981e - Fluocinolone acetonide, dimethyl sulfoxide otic solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.981e Fluocinolone acetonide, dimethyl sulfoxide otic solution. (a... sensitivity testing, and the use of the appropriate antimicrobial agent. As with any corticosteroid, animals...

  1. 21 CFR 524.981e - Fluocinolone acetonide, dimethyl sulfoxide otic solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.981e Fluocinolone acetonide, dimethyl sulfoxide otic solution. (a... sensitivity testing, and the use of the appropriate antimicrobial agent. As with any corticosteroid, animals...

  2. 21 CFR 524.981e - Fluocinolone acetonide, dimethyl sulfoxide otic solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.981e Fluocinolone acetonide, dimethyl sulfoxide otic solution. (a... sensitivity testing, and the use of the appropriate antimicrobial agent. As with any corticosteroid, animals...

  3. 21 CFR 524.981e - Fluocinolone acetonide, dimethyl sulfoxide otic solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.981e Fluocinolone acetonide, dimethyl sulfoxide otic solution. (a... sensitivity testing, and the use of the appropriate antimicrobial agent. As with any corticosteroid, animals...

  4. Federal and State Water Quality Standards/Guidelines for Selected Parameters.

    DTIC Science & Technology

    1979-02-01

    isopropyl methylphosphonate) Dioctyl adipate Dioctyl azelate Diphenyl sulfoxide 1,4-Dithiane DNT (Dinitrotoluene) DNT (All isomers) Endr in Fluoride...dye (1-Methylaminoanthraquinone) Silver Sodium Sodium styphnate Strontium nitrate Strontium oxalate Strontium peroxide Sulfate Tetrachlorobenzene...Cyclohexanol Cyclohexanone Cyclopentanone Diethyl amine Diphenyl sulfoxide 1,4-Dithiane DNT (Dinitrotoluene) Fluoride Hardness, total

  5. A DFT-D study on the electronic and photophysical properties of ruthenium (II) complex with a chelating sulfoxide group

    NASA Astrophysics Data System (ADS)

    Li, Huifang; Zhang, Lisheng; Lin, Hui; Fan, Xiaolin

    2014-06-01

    Electronic and photophysical properties of [Ru(bpy)2(OSO)]+ (bpy = 2,2‧-bipyridine; OSO = methylsulfinylbenzoate) were examined theoretically to better understand the differences between S- and O-linked ruthenium sulfoxide complexes. It is found that the strength of Ru-O1 linkage is significantly larger than that of Ru-S linkage, which makes the charge transfer amount from surrounding ligands to central Ru decreased. The energy gap is closed due to the highest occupied molecular orbital energy increases to a larger extent than the lowest unoccupied molecular orbital energy. Thereby, red shifted absorption and emission maxima in such photochromic ruthenium sulfoxide complexes can be explained.

  6. N-Boc amines to oxazolidinones via Pd(II)/bis-sulfoxide/Brønsted acid co-catalyzed allylic C-H oxidation.

    PubMed

    Osberger, Thomas J; White, M Christina

    2014-08-06

    A Pd(II)/bis-sulfoxide/Brønsted acid catalyzed allylic C-H oxidation reaction for the synthesis of oxazolidinones from simple N-Boc amines is reported. A range of oxazolidinones are furnished in good yields (avg 63%) and excellent diastereoselectivities (avg 15:1) to furnish products regioisomeric from those previously obtained using allylic C-H amination reactions. Mechanistic studies suggest the role of the phosphoric acid is to furnish a Pd(II)bis-sulfoxide phosphate catalyst that promotes allylic C-H cleavage and π-allylPd functionalization with a weak, aprotic oxygen nucleophile and to assist in catalyst regeneration.

  7. N-Boc Amines to Oxazolidinones via Pd(II)/Bis-sulfoxide/Brønsted Acid Co-Catalyzed Allylic C–H Oxidation

    PubMed Central

    2015-01-01

    A Pd(II)/bis-sulfoxide/Brønsted acid catalyzed allylic C–H oxidation reaction for the synthesis of oxazolidinones from simple N-Boc amines is reported. A range of oxazolidinones are furnished in good yields (avg 63%) and excellent diastereoselectivities (avg 15:1) to furnish products regioisomeric from those previously obtained using allylic C–H amination reactions. Mechanistic studies suggest the role of the phosphoric acid is to furnish a Pd(II)bis-sulfoxide phosphate catalyst that promotes allylic C–H cleavage and π-allylPd functionalization with a weak, aprotic oxygen nucleophile and to assist in catalyst regeneration. PMID:24999765

  8. 1H, 15N and 13C NMR Assignments of Mouse Methionine Sulfoxide Reductase B2

    PubMed Central

    Breivik, Åshild S.; Aachmann, Finn L.; Sal, Lena S.; Kim, Hwa-Young; Del Conte, Rebecca; Gladyshev, Vadim N.; Dikiy, Alexander

    2011-01-01

    A recombinant mouse methionine-r-sulfoxide reductase 2 (MsrB2ΔS) isotopically labeled with 15N and 15N/13C was generated. We report here the 1H, 15N and 13C NMR assignments of the reduced form of this protein. PMID:19636904

  9. Rate and Selectivity Control in Thioether and Alkene Oxidation with H 2 O 2 over Phosphonate-Modified Niobium(V)-Silica Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornburg, Nicholas E.; Notestein, Justin M.

    Supported metal oxide catalysts are versatile materials for liquid-phase oxidations, including alkene epoxidation and thioether sulfoxidation with H2O2. Periodic trends in H2O2 activation was recently demonstrated for alkene epoxidation, highlighting Nb-SiO2 as a more active and selective catalyst than Ti-SiO2. Three representative catalysts are studied consisting of NbV, TiIV, and ZrIV on silica, each made through a molecular precursor approach that yields highly dispersed oxide sites, for thioanisole oxidation by H2O2. Initial rates trend Nb>Ti>>Zr, as for epoxidation, and Nb outperforms Ti for a number of other thioethers. In contrast, selectivity to sulfoxide vs. sulfone trends Ti>Nb>>Zr at all conversions.more » Modifying the Nb-SiO2 catalyst with phenylphosphonic acid does not completely remove sulfoxidation reactivity, as it did for photooxidation and epoxidation, and results in an unusual material active for sulfoxidation but neither epoxidation nor overoxidation to the sulfone.« less

  10. Time-course proteomics dataset to monitor protein-bound methionine oxidation in Bacillus cereus ATCC 14579.

    PubMed

    Madeira, Jean-Paul; Alpha-Bazin, Béatrice; Armengaud, Jean; Duport, Catherine

    2018-06-01

    Aerobic respiratory growth generates endogenous reactive oxygen species (ROS). ROS oxidize protein-bound methionine residues into methionine sulfoxide. Methionine sulfoxide reductases catalyze the reduction of methionine sulfoxide to methionine in proteins. Here, we use high-throughput nanoLC-MS/MS methodology to establish detailed maps of oxidized proteins from Bacillus cereus ATCC 14579 ΔpBClin15 and its mutant for which the methionine sulfoxide reductase AB gene ( msrAB ) has been inactivated (Madeira et al., 2017) [1]. Lists of oxidized peptides and proteins identified at early exponential, late exponential and stationary growth phases are supplied in this article as data files. Raw data are deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers, PXD006169 and PDX006205 (http://www.ebi.ac/uk). Given the importance of methionine oxidation in several key cellular processes and its impact in the field of medical and food microbiology, this paper should be useful for further insightful redox studies in B. cereus and its numerous relatives.

  11. Regulation of Selenoproteins and Methionine Sulfoxide Reductases A and B1 by Age, Calorie Restriction, and Dietary Selenium in Mice

    PubMed Central

    Novoselov, Sergey V.; Kim, Hwa-Young; Hua, Deame; Lee, Byung Cheon; Astle, Clinton M.; Harrison, David E.; Friguet, Bertrand; Moustafa, Mohamed E.; Carlson, Bradley A.; Hatfield, Dolph L.

    2010-01-01

    Abstract Methionine residues are susceptible to oxidation, but this damage may be reversed by methionine sulfoxide reductases MsrA and MsrB. Mammals contain one MsrA and three MsrBs, including a selenoprotein MsrB1. Here, we show that MsrB1 is the major methionine sulfoxide reductase in liver of mice and it is among the proteins that are most easily regulated by dietary selenium. MsrB1, but not MsrA activities, were reduced with age, and the selenium regulation of MsrB1 was preserved in the aging liver, suggesting that MsrB1 could account for the impaired methionine sulfoxide reduction in aging animals. We also examined regulation of Msr and selenoprotein expression by a combination of dietary selenium and calorie restriction and found that, under calorie restriction conditions, selenium regulation was preserved. In addition, mice overexpressing a mutant form of selenocysteine tRNA reduced MsrB1 activity to the level observed in selenium deficiency, whereas MsrA activity was elevated in these animals. Finally, we show that selenium regulation in inbred mouse strains is preserved in an outbred aging model. Taken together, these findings better define dietary regulation of methionine sulfoxide reduction and selenoprotein expression in mice with regard to age, calorie restriction, dietary Se, and a combination of these factors. Antioxid. Redox Signal. 12, 829–838. PMID:19769460

  12. Molecular dynamics study of unfolding of lysozyme in water and its mixtures with dimethyl sulfoxide.

    PubMed

    Sedov, Igor A; Magsumov, Timur I

    2017-09-01

    All-atom explicit solvent molecular dynamics was used to study the process of unfolding of hen egg white lysozyme in water and mixtures of water with dimethyl sulfoxide at different compositions. We have determined the kinetic parameters of unfolding at a constant temperature 450K. For each run, the time of disruption of the tertiary structure of lysozyme t u was defined as the moment when a certain structural criterion computed from the trajectory reaches its critical value. A good agreement is observed between the results obtained using several different criteria. The secondary structure according to DSSP calculations is found to be partially unfolded to the moment of disruption of tertiary structure, but some of its elements keep for a long time after that. The values of t u averaged over ten 30ns-long trajectories for each solvent composition are shown to decrease very rapidly with addition of dimethyl sulfoxide, and rather small amounts of dimethyl sulfoxide are found to change the pathway of unfolding. In pure water, despite the loss of tertiary contacts and disruption of secondary structure elements, the protein preserves its compact globular state at least over 130ns of simulation, while even at 5mol percents of dimethyl sulfoxide it loses its compactness within 30ns. The proposed methodology is a generally applicable tool to quantify the rate of protein unfolding in simulation studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Cryopreservation of veliger larvae of trumpet shell, Charonia sauliae: an essential preparation to artificial propagation

    NASA Astrophysics Data System (ADS)

    Kang, Kyoung Ho; Zhang, Zhifeng; Bao, Zhenmin; Shao, Mingyu

    2009-09-01

    Trumpet shell, Charonia sauliae, is an endangered and valuable species, but its artificial propagation protocol has not been successfully established. To estimate the possibility of cryopreservation for larvae of C. sauliae, which is a potential preparation for its artificial reproduction and further research, in this study a protocol for the cryopreservation of veliger larvae of trumpet shell was optimized. Through a two-step cryopreservation procedure, four kinds of cryoprotectants (ethylene glycol, 1, 2-propanediol, dimethyl sulfoxide and glycerol) were employed at three concentrations (1.0, 1.5 and 2.0 molL-1) respectively and survival rates of larvae were determined after a storage of 1h. The larvae frozen with these four cryoprotectants after 1 h storage were cultured, and then survival rates were determined at 24, 72 and 120 h after thawing. Dimethyl sulfoxide at a concentration of 1.5 molL-1 showed the best protective effect in all experiments ( p<0.05). And survival rates of larvae frozen with dimethyl sulfoxide were determined after 1, 7 and 15 d of storage. The survival rates of larvae frozen with 1.5 molL-1 dimethyl sulfoxide after 1 h, 1 d, 7 d and 15 d of storage were 80.77% ±7.51%, 80.34% ±11.28%, 83.10% ±9.14% and 77.23% ±6.22% respectively. No significant differences in survival rates of larvae frozen with dimethyl sulfoxide were observed after various storage periods ( p>0.05).

  14. Simultaneous densitometric determination of anthelmintic drug albendazole and its metabolite albendazole sulfoxide by HPTLC in human plasma and pharmaceutical formulations.

    PubMed

    Pandya, Jui J; Sanyal, Mallika; Shrivastav, Pranav S

    2017-09-01

    A new, simple, accurate and precise high-performance thin-layer chromatographic method has been developed and validated for simultaneous determination of an anthelmintic drug, albendazole, and its active metabolite albendazole, sulfoxide. Planar chromatographic separation was performed on aluminum-backed layer of silica gel 60G F 254 using a mixture of toluene-acetonitrile-glacial acetic acid (7.0:2.9:0.1, v/v/v) as the mobile phase. For quantitation, the separated spots were scanned densitometrically at 225 nm. The retention factors (R f ) obtained under the established conditions were 0.76 ± 0.01 and 0.50 ± 0.01 and the regression plots were linear (r 2  ≥ 0.9997) in the concentration ranges 50-350 and 100-700 ng/band for albendazole and albendazole sulfoxide, respectively. The method was validated for linearity, specificity, accuracy (recovery) and precision, repeatability, stability and robustness. The limit of detection and limit of quantitation found were 9.84 and 29.81 ng/band for albendazole and 21.60 and 65.45 ng/band for albendazole sulfoxide, respectively. For plasma samples, solid-phase extraction of analytes yielded mean extraction recoveries of 87.59 and 87.13% for albendazole and albendazole sulfoxide, respectively. The method was successfully applied for the analysis of albendazole in pharmaceutical formulations with accuracy ≥99.32%. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Oral Administration of (S)-Allyl-l-Cysteine and Aged Garlic Extract to Rats: Determination of Metabolites and Their Pharmacokinetics.

    PubMed

    Park, Taehoon; Oh, Ju-Hee; Lee, Joo Hyun; Park, Sang Cheol; Jang, Young Pyo; Lee, Young-Joo

    2017-11-01

    ( S )-Allyl-l-cysteine is the major bioactive compound in garlic. ( S )-Allyl-l-cysteine is metabolized to ( S )-allyl-l-cysteine sulfoxide, N -acetyl-( S )-allyl-l-cysteine, and N -acetyl-( S )-allyl-l-cysteine sulfoxide after oral administration. An accurate LC-MS/MS method was developed and validated for the simultaneous quantification of ( S )-allyl-l-cysteine and its metabolites in rat plasma, and the feasibility of using it in pharmacokinetic studies was tested. The analytes were quantified by multiple reaction monitoring using an atmospheric pressure ionization mass spectrometer. Because significant quantitative interference was observed between ( S )-allyl-l-cysteine and N -acetyl-( S )-allyl-l-cysteine as a result of the decomposition of N -acetyl-( S )-allyl-l-cysteine at the detector source, chromatographic separation was required to discriminate ( S )-allyl-l-cysteine and its metabolites on a reversed-phase C 18 analytical column with a gradient mobile phase consisting of 0.1% formic acid and acetonitrile. The calibration curves of ( S )-allyl-l-cysteine, ( S )-allyl-l-cysteine sulfoxide, N -acetyl-( S )-allyl-l-cysteine, and N -acetyl-( S )-allyl-l-cysteine sulfoxide were linear over each concentration range, and the lower limits of quantification were 0.1 µg/mL [( S )-allyl-l-cysteine and N -acetyl-( S )-allyl-l-cysteine] and 0.25 µg/mL [( S )-allyl-l-cysteine sulfoxide and N -acetyl-( S )-allyl-l-cysteine sulfoxide]. Acceptable intraday and inter-day precisions and accuracies were obtained at three concentration levels. The method satisfied the regulatory requirements for matrix effects, recovery, and stability. The validated LC-MS/MS method was successfully used to determine the concentration of ( S )-allyl-l-cysteine and its metabolites in rat plasma samples after the administration of ( S )-allyl-l-cysteine or aged garlic extract. Georg Thieme Verlag KG Stuttgart · New York.

  16. Metallosulfoxides and -sulfones: Sulfur oxygenates of [1,5-Bis(2-mercaptoethyl)-1,5-diazacyclooctanato]palladium (II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuntulani, T.; Musie, G.; Reibenspies, J.H.

    1995-12-06

    Successive sulfur-site oxygenation of the dithiolate complex [1,5-bis(mercaptoethyl)-1,5 diazacyclooctanato]-palladium(II), Pd-1, using H{sub 2}O{sub 2} as an O atom source produced all but one member of the series of palladium(II) complexes containing sulfinate (metallosulfone) and sulfinate (metallosulfoxide) S-donor ligands: the monosulfoxide, PdS(=O)R or Pd-4; bis(sulfoxide), Pd(S(=O)R){sub 2} or Pd-5; sulfone/sulfoxide, Pd((SO{sub 2}R)S(=))R or Pd-6; and the bis(sulfone) Pd(SO{sub 2}R){sub 2} or Pd-3 complex. A unique site selectivity for the addition of a second O atom from H{sub 2}O{sub 2} to thiolate sulfur of Pd-4 producing the bis(sulfoxide), Pd-5, exclusively, precluded the preparation of the monosulfone complex, Pd(SO{sub 2}R)SR or Pd-2, viamore » that route. However, the dithiolate Pd-1 reacts with O{sub 2} photochemically in aprotic solvents, giving access to this last member of the series, Pd-2. Further reaction of Pd-2 with O{sub 2} under UV photolysis gives the bis(sulfone) complex, Pd-3. The oxygenates were characterized by various spectroscopies, electrochemistry, and X-ray crystallography. Mass spectrometry delineated a single O atom loss pathway for the sulfoxide species, while SO{sub 2} and O{sub 2} loss is found in sulfone cases. Electrochemical studies show that the addition of an O atom to a thiolate sulfur to create a sulfoxide S-donor results in a stabilization of the Pd{sup I} oxidation state in the range 50-70 mV, while the addition of an O atom to a sulfoxide sulfur to create a sulfone S-donor results in greater stabilization of the Pd{sup I} oxidation state in the range 190-220 mV.« less

  17. Thiol-ene/oxidation tandem reaction under visible light photocatalysis: synthesis of alkyl sulfoxides.

    PubMed

    Guerrero-Corella, Andrea; María Martinez-Gualda, Ana; Ahmadi, Fereshteh; Ming, Enrique; Fraile, Alberto; Alemán, José

    2017-09-19

    The photocatalyzed synthesis of sulfoxides from alkenes and thiols has been carried out using Eosin Y. This is a metal-free method which uses a low catalyst loading, atmospheric oxygen as the oxidant, and visible light conditions (green light). A mechanism has been proposed that is consistent with the experimental results.

  18. Methionine sulfoxidation of the chloroplast small heat shock protein and conformational changes in the oligomer.

    PubMed Central

    Gustavsson, N.; Härndahl, U.; Emanuelsson, A.; Roepstorff, P.; Sundby, C.

    1999-01-01

    The small heat shock proteins (sHsps), which counteract heat and oxidative stress in an unknown way, belong to a protein family of sHsps and alpha-crystallins whose members form large oligomeric complexes. The chloroplast-localized sHsp, Hsp21, contains a conserved methionine-rich sequence, predicted to form an amphipatic helix with the methionines situated along one of its sides. Here, we report how methionine sulfoxidation was detected by mass spectrometry in proteolytically cleaved peptides that were produced from recombinant Arabidopsis thaliana Hsp21, which had been treated with varying concentrations of hydrogen peroxide. Sulfoxidation of the methionine residues in the conserved amphipatic helix coincided with a significant conformational change in the Hsp21 protein oligomer. PMID:10595556

  19. 1,1′:4′,1′′-Terphenyl-2′,5′-dicarb­oxy­lic acid dimethyl sulfoxide-d 6 disolvate

    PubMed Central

    Pop, Lucian C.; Preite, Marcelo; Manriquez, Juan Manuel; Vega, Andrés; Chavez, Ivonne

    2012-01-01

    The asymmetric unit of the title solvate, C20H14O4·2C2D6OS, contains half of the substituted terephthalic acid mol­ecule and one solvent mol­ecule. The centroid of the central benzene ring in the acid mol­ecule is coincident with a crystallographic inversion center. Neither the carboxyl nor the phenyl substituents are coplanar with the central aromatic ring, showing dihedral angles of 53.18 (11) and 47.83 (11)°, respectively. The dimethyl sulfoxide solvent mol­ecules are hydrogen bonded to the carb­oxy­lic acid groups. PMID:22606132

  20. Hypersalinity Acclimation Increases the Toxicity of the Insecticide Phorate in Coho Salmon (Oncorhynchus kisutch)

    PubMed Central

    Lavado, Ramon; Maryoung, Lindley A.; Schlenk, Daniel

    2012-01-01

    Previous studies in euryhaline fish have shown that acclimation to hypersaline environments enhances the toxicity of thioether organophosphate and carbamate pesticides. To better understand the potential mechanism of enhanced toxicity, the effects of the organophosphate insecticide phorate were evaluated in coho salmon (Oncorhynchus kisutch) maintained in freshwater (<0.5 g/L salinity) and 32 g/L salinity. The observed 96-h LC50 in freshwater fish (67.34 ± 3.41 μg/L) was significantly reduced to 2.07 ± 0.16 μg/L in hypersaline-acclimated fish. Because organophosphates often require bioactivation to elicit toxicity through acetylcholinesterase (AChE) inhibition, the in vitro biotransformation of phorate was evaluated in coho salmon maintained in different salinities in liver, gills, and olfactory tissues. Phorate sulfoxide was the predominant metabolite in each tissue but rates of formation diminished in a salinity-dependent manner. In contrast, formation of phorate-oxon (gill; olfactory tissues), phorate sulfone (liver), and phorate-oxon sulfoxide (liver; olfactory tissues) was significantly enhanced in fish acclimated to higher salinities. From previous studies, it was expected that phorate and phorate sulfoxide would be less potent AChE inhibitors than phorate-oxon, with phorate-oxon sulfoxide being the most potent of the compounds tested. This trend was confirmed in this study. In summary, these results suggest that differential expression and/or catalytic activities of Phase I enzymes may be involved to enhance phorate oxidative metabolism and subsequent toxicity of phorate to coho salmon under hypersaline conditions. The outcome may be enhanced fish susceptibility to anticholineterase oxon sulfoxides. PMID:21488666

  1. Dimethyl sulfoxide but not indomethacin is efficient for healing in hydrofluoric acid eye burns.

    PubMed

    Altan, Semih; Oğurtan, Zeki

    2017-02-01

    In this study, we aimed to investigate the effect of indomethacin and dimethyl sulfoxide (DMSO), well-known antioxidant and anti-inflammatory agents, to heal eye burns induced with hydrofluoric acid in rabbits. After general anesthesia, the right eye of 72 male New Zealand rabbits were burned by instillation of 2% hydrofluoric acid for 60s. Following this, the eyes were irrigated with 500 cc normal saline. The rabbits were then divided into four groups of 18 rabbits each. Group D was instilled dimethyl sulfoxide 40%, Group I indomethacin 0.1%, and Group DI dimethyl sulfoxide together with indomethacin for 2, 7, and 14 treatment days, respectively. Group C received no instilled drug as control. Treatment efficacies were evaluated as clinical (corneal haziness, conjunctival status, conjunctivitis, corneal erosion area, and intraocular pressure) and histopathological (inflammatory cell infiltration, vascularization, stromal thickness, reepithelization, proliferating cell nuclear antigen [PCNA], apoptosis, and inducible nitric oxide synthases [iNOS]). In terms of corneal haziness and erosion area at days 7 and 14, group D showed the best result statistically as compared to the other groups. This group also showed the best result statistically for reepithelization rate, stromal thickness, and inflammatory cell end at day 14 as compared to the other groups. Dimethyl sulfoxide (40%) was efficient to induce reepithelization on mild hydrofluoric acid eye burns, whereas 0.1% indomethacin both alone and along with DMSO poorly induced reepithelization and exacerbated inflammation. Thus, 40% DMSO could be used for the treatment of corneal disorders. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  2. Metal- and Additive-Free Oxidation of Sulfides into Sulfoxides by Fullerene-Modified Carbon Nitride with Visible-Light Illumination.

    PubMed

    Chen, Xi; Deng, Kejian; Zhou, Peng; Zhang, Zehui

    2018-05-24

    Photocatalytic selective oxidation has attracted considerable attention as an environmentally friendly strategy for organic transformations. Some methods have been reported for the photocatalytic oxidation of sulfides into sulfoxides in recent years. However, the practical application of these processes is undermined by several challenges, such as low selectivity, sluggish reaction rates, the requirement of UV-light irradiation, the use of additives, and the instability of the photocatalyst. Herein, a metal-free C 60 /graphitic carbon nitride (g-C 3 N 4 ) composite photocatalyst was fabricated by a facile method, and well characterized by TEM, SEM, FTIR spectroscopy, XRD, X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy, and photoluminescence spectroscopy. The C 60 /g-C 3 N 4 catalyst exhibited a high photocatalytic activity at room temperature for the selective oxidation of sulfides into the corresponding sulfoxides in the presence of other functional groups, due to the synergetic roles of C 60 and g-C 3 N 4 . Several important parameters have been screened, and this method afforded good to excellent yields of sulfoxides under optimal conditions. The superoxide radical ( . O 2 - ) and singlet oxygen ( 1 O 2 ) were identified as the oxidative species for the oxidation of sulfides into sulfoxides by exploring EPR experiments, and hence, a plausible mechanism for this oxidation was proposed. Moreover, the C 60 /g-C 3 N 4 catalyst can be easily recovered by filtration and then reused at least four times without loss in activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ruthenium nanocatalysis on redox reactions.

    PubMed

    Veerakumar, Pitchaimani; Ramdass, Arumugam; Rajagopal, Seenivasan

    2013-07-01

    Nanoparticles have generated intense interest over the past 20 years due to their high potential applications in different areas such as catalysis, sensors, nanoscale electronics, fuel and solar cells and optoelectronics. As the large fractions of metal atoms are exposed to the surface, the use of metal nanoparticles as nanocatalysts allows mild reaction conditions and high catalytic efficiency in a large number of chemical transformations. They have emerged as sustainable heterogeneous catalysts and catalyst supports alternative to conventional materials. This review focuses on the synthesis, characterization and catalytic role of ruthenium nanoparticles (RuNPs) on the redox reactions of heteroatom containing organic compounds with the green reagent H2O2, a field that has attracted immense interest among the chemical, materials and industrial communities. We intend to present a broad overview of Ru nanocatalysts for redox reactions with an emphasis on their performance, stability and reusability. The growth in the chemistry of organic sulfoxides and N-oxides during last decade was due to their importance as synthetic intermediates for the production of a wide range of chemically and biologically active molecules. Thus design of efficient methods for the synthesis of sulfoxides and N-oxides becomes important. This review concentrates on the catalysis of RuNPs on the H2O2 oxidation of organic sulfides to sulfoxides and amines to N-oxides. The deoxygenation reactions of sulfoxides to sulfides and reduction of nitro compounds to amines are fundamental reactions in both chemistry and biology. Here, we also highlight the catalysis of metal nanoparticles on the deoxygenation of sulfoxides and sulfones and reduction of nitro compounds with particular emphasis on the mechanistic aspects.

  4. Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons.

    PubMed

    Gennaris, Alexandra; Ezraty, Benjamin; Henry, Camille; Agrebi, Rym; Vergnes, Alexandra; Oheix, Emmanuel; Bos, Julia; Leverrier, Pauline; Espinosa, Leon; Szewczyk, Joanna; Vertommen, Didier; Iranzo, Olga; Collet, Jean-François; Barras, Frédéric

    2015-12-17

    The reactive species of oxygen and chlorine damage cellular components, potentially leading to cell death. In proteins, the sulfur-containing amino acid methionine is converted to methionine sulfoxide, which can cause a loss of biological activity. To rescue proteins with methionine sulfoxide residues, living cells express methionine sulfoxide reductases (Msrs) in most subcellular compartments, including the cytosol, mitochondria and chloroplasts. Here we report the identification of an enzymatic system, MsrPQ, repairing proteins containing methionine sulfoxide in the bacterial cell envelope, a compartment particularly exposed to the reactive species of oxygen and chlorine generated by the host defence mechanisms. MsrP, a molybdo-enzyme, and MsrQ, a haem-binding membrane protein, are widely conserved throughout Gram-negative bacteria, including major human pathogens. MsrPQ synthesis is induced by hypochlorous acid, a powerful antimicrobial released by neutrophils. Consistently, MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation, including the primary periplasmic chaperone SurA. For this activity, MsrPQ uses electrons from the respiratory chain, which represents a novel mechanism to import reducing equivalents into the bacterial cell envelope. A remarkable feature of MsrPQ is its capacity to reduce both rectus (R-) and sinister (S-) diastereoisomers of methionine sulfoxide, making this oxidoreductase complex functionally different from previously identified Msrs. The discovery that a large class of bacteria contain a single, non-stereospecific enzymatic complex fully protecting methionine residues from oxidation should prompt a search for similar systems in eukaryotic subcellular oxidizing compartments, including the endoplasmic reticulum.

  5. Do trehalose and dimethyl sulfoxide affect intermembrane forces?

    PubMed

    Pincet, F; Perez, E; Wolfe, J

    1994-12-01

    The sugar trehalose is produced in some organisms that survive dehydration and desiccation, and it preserves the integrity of membranes in model systems exposed to dehydration and freezing. Dimethyl sulfoxide, a solute which permeates membranes, is added to cell suspensions in many protocols for cryopreservation. Using a surface forces apparatus, we measured the very large, short-range repulsion between phosphatidylcholine bilayers in water and in solutions of trehalose, sorbitol, and dimethyl-sulfoxide. To the resolution of the technique, the force-distance curves between bilayers are unchanged by the addition of trehalose or sorbitol in concentrations exceeding 1 kmol.m-3. A relatively small increase in adhesion in the presence of trehalose and sorbitol solutions may be explained by their osmotic effects. The partitioning of trehalose between aqueous solutions and lamellar phases of dioleylphosphatidylcholine was measured gravimetrically. The amount of trehalose that preferentially adsorbs near membrane surfaces is at most small. The presence of dimethyl sulfoxide in water (1:2 by volume) makes very little difference to the short-range interaction between deposited bilayers, but it sometimes perturbs them in ways that vary among experiments: free bilayers and/or fusion of the deposited bilayers were each observed in about one-third of the experiments.

  6. Methionine Sulfoxide Reductase A (MsrA) and Its Function in Ubiquitin-Like Protein Modification in Archaea

    DOE PAGES

    Fu, Xian; Adams, Zachary; Liu, Rui; ...

    2017-09-05

    Methionine sulfoxide reductase A (MsrA) is an antioxidant enzyme found in all domains of life that catalyzes the reduction of methionine-S-sulfoxide (MSO) to methionine in proteins and free amino acids. We demonstrate that archaeal MsrA has a ubiquitin-like (Ubl) protein modification activity that is distinct from its stereospecific reduction of MSO residues. MsrA catalyzes this Ubl modification activity, with the Ubl-activating E1 UbaA, in the presence of the mild oxidant dimethyl sulfoxide (DMSO) and in the absence of reductant. In contrast, the MSO reductase activity of MsrA is inhibited by DMSO and requires reductant. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysismore » reveals that MsrA-dependent Ubl conjugates are associated with DNA replication, protein remodeling, and oxidative stress and include the Ubl-modified MsrA, Orc3 (Orc1/Cdc6), and Cdc48d (Cdc48/p97 AAA+ ATPase). Overall, we found archaeal MsrA to have opposing MSO reductase and Ubl modifying activities that are associated with oxidative stress responses and controlled by exposure to mild oxidant.« less

  7. Methionine Sulfoxide Reductase A (MsrA) and Its Function in Ubiquitin-Like Protein Modification in Archaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Xian; Adams, Zachary; Liu, Rui

    Methionine sulfoxide reductase A (MsrA) is an antioxidant enzyme found in all domains of life that catalyzes the reduction of methionine-S-sulfoxide (MSO) to methionine in proteins and free amino acids. We demonstrate that archaeal MsrA has a ubiquitin-like (Ubl) protein modification activity that is distinct from its stereospecific reduction of MSO residues. MsrA catalyzes this Ubl modification activity, with the Ubl-activating E1 UbaA, in the presence of the mild oxidant dimethyl sulfoxide (DMSO) and in the absence of reductant. In contrast, the MSO reductase activity of MsrA is inhibited by DMSO and requires reductant. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysismore » reveals that MsrA-dependent Ubl conjugates are associated with DNA replication, protein remodeling, and oxidative stress and include the Ubl-modified MsrA, Orc3 (Orc1/Cdc6), and Cdc48d (Cdc48/p97 AAA+ ATPase). Overall, we found archaeal MsrA to have opposing MSO reductase and Ubl modifying activities that are associated with oxidative stress responses and controlled by exposure to mild oxidant.« less

  8. Characterization of Bacillus thuringiensis l-Isoleucine Dioxygenase for Production of Useful Amino Acids▿†

    PubMed Central

    Hibi, Makoto; Kawashima, Takashi; Kodera, Tomohiro; Smirnov, Sergey V.; Sokolov, Pavel M.; Sugiyama, Masakazu; Shimizu, Sakayu; Yokozeki, Kenzo; Ogawa, Jun

    2011-01-01

    We determined the enzymatic characteristics of an industrially important biocatalyst, α-ketoglutarate-dependent l-isoleucine dioxygenase (IDO), which was found to be the enzyme responsible for the generation of (2S,3R,4S)-4-hydroxyisoleucine in Bacillus thuringiensis 2e2. Depending on the amino acid used as the substrate, IDO catalyzed three different types of oxidation reactions: hydroxylation, dehydrogenation, and sulfoxidation. IDO stereoselectively hydroxylated several hydrophobic aliphatic l-amino acids, as well as l-isoleucine, and produced (S)-3-hydroxy-l-allo-isoleucine, 4-hydroxy-l-leucine, (S)-4-hydroxy-l-norvaline, 4-hydroxy-l-norleucine, and 5-hydroxy-l-norleucine. The IDO reaction product of l-isoleucine, (2S,3R,4S)-4-hydroxyisoleucine, was again reacted with IDO and dehydrogenated into (2S,3R)-2-amino-3-methyl-4-ketopentanoate, which is also a metabolite found in B. thuringiensis 2e2. Interestingly, IDO catalyzed the sulfoxidation of some sulfur-containing l-amino acids and generated l-methionine sulfoxide and l-ethionine sulfoxide. Consequently, the effective production of various modified amino acids would be possible using IDO as the biocatalyst. PMID:21821743

  9. Exploring the Use of a Guanine-Rich Catalytic DNA for Sulfoxide Preparation

    PubMed Central

    Dellafiore, María A.; Montserrat, Javier M.; Iribarren, Adolfo M.

    2015-01-01

    A guanine-rich DNA oligonucleotide complexed with hemin was used to catalyze controlled oxygen transfer reactions to different sulfides for sulfoxide preparation in the presence of H2O2. Comparable activities were obtained when using fully modified L-DNA. In addition, oligonucleotide immobilization led to an active catalyst which could be successfully recovered and reused without loss of activity. PMID:26066510

  10. In Vitro and In Vivo Drug Interaction Study of Two Lead Combinations, Oxantel Pamoate plus Albendazole and Albendazole plus Mebendazole, for the Treatment of Soil-Transmitted Helminthiasis.

    PubMed

    Cowan, Noemi; Vargas, Mireille; Keiser, Jennifer

    2016-10-01

    The current treatments against Trichuris trichiura, albendazole and mebendazole, are only poorly efficacious. Therefore, combination chemotherapy was recommended for treating soil-transmitted helminthiasis. Albendazole-mebendazole and albendazole-oxantel pamoate have shown promising results in clinical trials. However, in vitro and in vivo drug interaction studies should be performed before their simultaneous treatment can be recommended. Inhibition of human recombinant cytochromes P450 (CYPs) CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 was tested by exposure to albendazole, albendazole sulfoxide, mebendazole, and oxantel pamoate, as well as albendazole-mebendazole, albendazole sulfoxide-mebendazole, albendazole-oxantel pamoate, and albendazole sulfoxide-oxantel pamoate. A high-pressure liquid chromatography (HPLC)-UV/visible spectroscopy method was developed and validated for simultaneous quantification of albendazole sulfoxide, albendazole sulfone, mebendazole, and oxantel pamoate in plasma. Albendazole, mebendazole, oxantel pamoate, albendazole-mebendazole, and albendazole-oxantel pamoate were orally applied to rats (100 mg/kg) and pharmacokinetic parameters calculated. CYP1A2 showed a 2.6-fold increased inhibition by albendazole-oxantel pamoate (50% inhibitory concentration [IC50] = 3.1 μM) and a 3.9-fold increased inhibition by albendazole sulfoxide-mebendazole (IC50 = 3.8 μM) compared to the single drugs. In rats, mebendazole's area under the concentration-time curve (AUC) and maximal plasma concentration (Cmax) were augmented 3.5- and 2.8-fold, respectively (P = 0.02 for both) when coadministered with albendazole compared to mebendazole alone. Albendazole sulfone was slightly affected by albendazole-mebendazole, displaying a 1.3-fold-elevated AUC compared to albendazole alone. Oxantel pamoate could not be quantified, translating to a bioavailability below 0.025% in rats. Elevated plasma levels of albendazole sulfoxide, albendazole sulfone, and mebendazole in coadministrations are probably not mediated by CYP-based drug-drug interaction. Even though this study indicates that it is safe to coadminister albendazole-oxantel pamoate and albendazole-mebendazole, human pharmacokinetic studies are recommended. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. In Vitro and In Vivo Drug Interaction Study of Two Lead Combinations, Oxantel Pamoate plus Albendazole and Albendazole plus Mebendazole, for the Treatment of Soil-Transmitted Helminthiasis

    PubMed Central

    Cowan, Noemi; Vargas, Mireille

    2016-01-01

    The current treatments against Trichuris trichiura, albendazole and mebendazole, are only poorly efficacious. Therefore, combination chemotherapy was recommended for treating soil-transmitted helminthiasis. Albendazole-mebendazole and albendazole-oxantel pamoate have shown promising results in clinical trials. However, in vitro and in vivo drug interaction studies should be performed before their simultaneous treatment can be recommended. Inhibition of human recombinant cytochromes P450 (CYPs) CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 was tested by exposure to albendazole, albendazole sulfoxide, mebendazole, and oxantel pamoate, as well as albendazole-mebendazole, albendazole sulfoxide-mebendazole, albendazole-oxantel pamoate, and albendazole sulfoxide-oxantel pamoate. A high-pressure liquid chromatography (HPLC)-UV/visible spectroscopy method was developed and validated for simultaneous quantification of albendazole sulfoxide, albendazole sulfone, mebendazole, and oxantel pamoate in plasma. Albendazole, mebendazole, oxantel pamoate, albendazole-mebendazole, and albendazole-oxantel pamoate were orally applied to rats (100 mg/kg) and pharmacokinetic parameters calculated. CYP1A2 showed a 2.6-fold increased inhibition by albendazole-oxantel pamoate (50% inhibitory concentration [IC50] = 3.1 μM) and a 3.9-fold increased inhibition by albendazole sulfoxide-mebendazole (IC50 = 3.8 μM) compared to the single drugs. In rats, mebendazole's area under the concentration-time curve (AUC) and maximal plasma concentration (Cmax) were augmented 3.5- and 2.8-fold, respectively (P = 0.02 for both) when coadministered with albendazole compared to mebendazole alone. Albendazole sulfone was slightly affected by albendazole-mebendazole, displaying a 1.3-fold-elevated AUC compared to albendazole alone. Oxantel pamoate could not be quantified, translating to a bioavailability below 0.025% in rats. Elevated plasma levels of albendazole sulfoxide, albendazole sulfone, and mebendazole in coadministrations are probably not mediated by CYP-based drug-drug interaction. Even though this study indicates that it is safe to coadminister albendazole-oxantel pamoate and albendazole-mebendazole, human pharmacokinetic studies are recommended. PMID:27480864

  12. Environmental fate and effect assessment of thioridazine and its transformation products formed by photodegradation.

    PubMed

    Wilde, Marcelo L; Menz, Jakob; Trautwein, Christoph; Leder, Christoph; Kümmerer, Klaus

    2016-06-01

    An experimental and in silico quantitative structure-activity relationship (QSAR) approach was applied to assess the environmental fate and effects of the antipsychotic drug Thioridazine (THI). The sunlight-driven attenuation of THI was simulated using a Xenon arc lamp. The photodegradation reached the complete primary elimination, whereas 97% of primary elimination and 11% of mineralization was achieved after 256 min of irradiation for the initial concentrations of 500 μg L(-1) and 50 mg L(-1), respectively. A non-target approach for the identification and monitoring of transformation products (TPs) was adopted. The structure of the TPs was further elucidated using liquid chromatography-high resolution mass spectrometry (LC-HRMS). The proposed photodegradation pathway included sulfoxidation, hydroxylation, dehydroxylation, and S- and N-dealkylation, taking into account direct and indirect photolysis through a self-sensitizing process in the higher concentration studied. The biodegradability of THI and photolytic samples of THI was tested according to OECD 301D and 301F, showing that THI and the mixture of TPs were not readily biodegradable. Furthermore, THI was shown to be highly toxic to environmental bacteria using a modified luminescent bacteria test with Vibrio fischeri. This bacteriotoxic activity of THI was significantly reduced by phototransformation and individual concentration-response analysis confirmed a lowered bacterial toxicity for the sulfoxidation products Thioridazine-2-sulfoxide and Thioridazine-5-sulfoxide. Additionally, the applied QSAR models predicted statistical and rule-based positive alerts of mutagenic activities for carbazole derivative TPs (TP 355 and TP 339) formed through sulfoxide elimination, which would require further confirmatory in vitro validation tests. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Optimizing human hepatocyte models for metabolic phenotype and function: effects of treatment with dimethyl sulfoxide (DMSO).

    PubMed

    Nikolaou, Nikolaos; Green, Charlotte J; Gunn, Pippa J; Hodson, Leanne; Tomlinson, Jeremy W

    2016-11-01

    Primary human hepatocytes are considered to be the "gold standard" cellular model for studying hepatic fatty acid and glucose metabolism; however, they come with limitations. Although the HepG2 cell line retains many of the primary hepatocyte metabolic functions they have a malignant origin and low rates of triglyceride secretion. The aim of this study was to investigate whether dimethyl sulfoxide supplementation in the media of HepG2 cells would enhance metabolic functionality leading to the development of an improved in vitro cell model that closely recapitulates primary human hepatocyte metabolism. HepG2 cells were cultured in media containing 1% dimethyl sulfoxide for 2, 4, 7, 14, and 21 days. Gene expression, protein levels, intracellular triglyceride, and media concentrations of triglyceride, urea, and 3-hydroxybutyrate concentrations were measured. Dimethyl sulfoxide treatment altered the expression of genes involved in lipid (FAS, ACC1, ACC2, DGAT1, DGAT2, SCD) and glucose (PEPCK, G6Pase) metabolism as well as liver functionality (albumin, alpha-1-antitrypsin, AFP). mRNA changes were paralleled by alterations at the protein level. DMSO treatment decreased intracellular triglyceride content and lactate production and increased triglyceride and 3-hydroxybutyrate concentrations in the media in a time-dependent manner. We have demonstrated that the addition of 1% dimethyl sulfoxide to culture media changes the metabolic phenotype of HepG2 cells toward a more primary human hepatocyte phenotype. This will enhance the currently available in vitro model systems for the study of hepatocyte biology related to pathological processes that contribute to disease and their response to specific therapeutic interventions. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  14. Function of the evolutionarily conserved plant methionine-S-sulfoxide reductase without the catalytic residue.

    PubMed

    Le, Dung Tien; Nguyen, Kim-Lien; Chu, Ha Duc; Vu, Nam Tuan; Pham, Thu Thi Ly; Tran, Lam-Son Phan

    2018-05-28

    In plants, two types of methionine sulfoxide reductase (MSR) exist, namely methionine-S-sulfoxide reductase (MSRA) and methionine-R-sulfoxide reductase (MSRB). These enzymes catalyze the reduction of methionine sulfoxides (MetO) back to methionine (Met) by a catalytic cysteine (Cys) and one or two resolving Cys residues. Interestingly, a group of MSRA encoded by plant genomes does not have a catalytic residue. We asked that if this group of MSRA did not have any function (as fitness), why it was not lost during the evolutionary process. To challenge this question, we analyzed the gene family encoding MSRA in soybean (GmMSRAs). We found seven genes encoding GmMSRAs, which included three segmental duplicated pairs. Among them, a pair of duplicated genes, namely GmMSRA1 and GmMSRA6, was without a catalytic Cys residue. Pseudogenes were ruled out as their transcripts were detected in various tissues and their Ka/Ks ratio indicated a negative selection pressure. In vivo analysis in Δ3MSR yeast strain indicated that the GmMSRA6 did not have activity toward MetO, contrasting to GmMSRA3 which had catalytic Cys and had activity. When exposed to H 2 O 2 -induced oxidative stress, GmMSRA6 did not confer any protection to the Δ3MSR yeast strain. Overexpression of GmMSRA6 in Arabidopsis thaliana did not alter the plant's phenotype under physiological conditions. However, the transgenic plants exhibited slightly higher sensitivity toward salinity-induced stress. Taken together, this data suggested that the plant MSRAs without the catalytic Cys are not enzymatically active and their existence may be explained by a role in regulating plant MSR activity via dominant-negative substrate competition mechanism.

  15. Kinetics and thermodynamics of oxidation mediated reaction in L-cysteine and its methyl and ethyl esters in dimethyl sulfoxide-d6 by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Dougherty, Ryan J.; Singh, Jaideep; Krishnan, V. V.

    2017-03-01

    L-Cysteine (L-Cys), L-Cysteine methyl ester (L-CysME) or L-Cysteine ethyl ester (L-CysEE), when dissolved in dimethyl sulfoxide, undergoes an oxidation process. This process is slow enough and leads to nuclear magnetic resonance (NMR) spectral changes that could be monitored in real time. The oxidation mediated transition is modeled as a pseudo-first order kinetics and the thermodynamic parameters are estimated using the Eyring's formulation. L-Cysteine and their esters are often used as biological models due to the remarkable thiol group that can be found in different oxidation states. This oxidation mediated transition is due to the combination of thiol oxidation to a disulfide followed by solvent-induced effects may be relevant in designing cysteine-based molecular models.

  16. Dibenzyl sulfide metabolism by white rot fungi.

    PubMed

    Van Hamme, Jonathan D; Wong, Eddie T; Dettman, Heather; Gray, Murray R; Pickard, Michael A

    2003-02-01

    Microbial metabolism of organosulfur compounds is of interest in the petroleum industry for in-field viscosity reduction and desulfurization. Here, dibenzyl sulfide (DBS) metabolism in white rot fungi was studied. Trametes trogii UAMH 8156, Trametes hirsuta UAMH 8165, Phanerochaete chrysosporium ATCC 24725, Trametes versicolor IFO 30340 (formerly Coriolus sp.), and Tyromyces palustris IFO 30339 all oxidized DBS to dibenzyl sulfoxide prior to oxidation to dibenzyl sulfone. The cytochrome P-450 inhibitor 1-aminobenzotriazole eliminated dibenzyl sulfoxide oxidation. Laccase activity (0.15 U/ml) was detected in the Trametes cultures, and concentrated culture supernatant and pure laccase catalyzed DBS oxidation to dibenzyl sulfoxide more efficiently in the presence of 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) than in its absence. These data suggest that the first oxidation step is catalyzed by extracellular enzymes but that subsequent metabolism is cytochrome P-450 mediated.

  17. A novel reduction of diketones with i-RMgBr catalyzed by Cp2TiCl2 and deoxygenation of sulfoxides by Cp2TiCl2/Al system*

    PubMed Central

    Zhang, Yong-min; Lin, Mao-qin; Yu, Yong-ping

    2004-01-01

    α-diketones and β-diketones react with Grignard reagents in the presence of a catalytic amount of Cp2TiCl2 to yield α-ketols and corresponding ketones respectively. Sulfoxides can be deoxygenated by Cp2TiCl2/Al system. The possible mechanisms are also discussed. PMID:15362186

  18. The Effect of Diazoxide and Dimethyl Sulfoxide on Behavioral Outcomes and Markers of Pathology Following Controlled Cortical Impact

    DTIC Science & Technology

    2012-07-16

    Over the last 30 years, preclinical research focused on evaluating potential pharmacologic therapeutic agents has produced multiple promising... potential therapeutic targets are being identified at a staggering rate as technology advances and our understanding of the pathology behind brain injury... potential therapeutic windows for interventional therapy. VI THE EFFECT OF DIAZOXIDE AND DIMETHYL SULFOXIDE ON BEHAVIORAL OUTCOMES AND MARKERS OF

  19. A novel cysteine desulfurase influencing organosulfur compounds in Lentinula edodes

    PubMed Central

    Liu, Ying; Lei, Xiao-Yu; Chen, Lian-Fu; Bian, Yin-Bing; Yang, Hong; Ibrahim, Salam A.; Huang, Wen

    2015-01-01

    Organosulfur compounds are the basis for the unique aroma of Lentinula edodes, and cysteine sulfoxide lyase (C-S lyase) is the key enzyme in this trait. The enzyme from Alliium sativum has been crystallized and well-characterized; however, there have been no reports of the characterization of fungi C-S lyase at the molecular level. We identified a L. edodes C-S lyase (Lecsl), cloned a gene of Csl encoded Lecsl and then combined modeling, simulations, and experiments to understand the molecular basis of the function of Lecsl. Our analysis revealed Lecsl to be a novel cysteine desulfurase and not a type of cysteine sulfoxide lyase. The pyridoxal-5-phosphate (PLP) molecule bonded tightly to Lecsl to form a Lecsl-PLP complex. Moreover, the Lecsl had one active center that served to bind two kinds of substrates, S-methyl-L-cysteine sulfoxide and L-cysteine, and had both cysteine sulfoxide lyase and cysteine desulfurase activity. We found that the amino acid residue Asn393 was essential for the catalytic activity of Lecsl and that the gene Csl encoded a novel cysteine desulfurase to influence organosulfur compounds in L. edodes. Our results provide a new insight into understanding the formation of the unique aroma of L. edodes. PMID:26054293

  20. A novel cysteine desulfurase influencing organosulfur compounds in Lentinula edodes.

    PubMed

    Liu, Ying; Lei, Xiao-Yu; Chen, Lian-Fu; Bian, Yin-Bing; Yang, Hong; Ibrahim, Salam A; Huang, Wen

    2015-06-09

    Organosulfur compounds are the basis for the unique aroma of Lentinula edodes, and cysteine sulfoxide lyase (C-S lyase) is the key enzyme in this trait. The enzyme from Alliium sativum has been crystallized and well-characterized; however, there have been no reports of the characterization of fungi C-S lyase at the molecular level. We identified a L. edodes C-S lyase (Lecsl), cloned a gene of Csl encoded Lecsl and then combined modeling, simulations, and experiments to understand the molecular basis of the function of Lecsl. Our analysis revealed Lecsl to be a novel cysteine desulfurase and not a type of cysteine sulfoxide lyase. The pyridoxal-5-phosphate (PLP) molecule bonded tightly to Lecsl to form a Lecsl-PLP complex. Moreover, the Lecsl had one active center that served to bind two kinds of substrates, S-methyl-L-cysteine sulfoxide and L-cysteine, and had both cysteine sulfoxide lyase and cysteine desulfurase activity. We found that the amino acid residue Asn393 was essential for the catalytic activity of Lecsl and that the gene Csl encoded a novel cysteine desulfurase to influence organosulfur compounds in L. edodes. Our results provide a new insight into understanding the formation of the unique aroma of L. edodes.

  1. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  2. Application of the fiber-optic perfusion fluorometer to absorption and exsorption studies in hairless mouse skin.

    PubMed

    Shackleford, J M; Yielding, K L

    1987-09-01

    This study was undertaken to test the fiber-optic perfusion fluorometer as a direct means of evaluating skin absorption and exsorption in hairless mice. Skin-barrier compromise was accomplished in the absorption experiments by application of dimethyl sulfoxide to the skin surface or by partial removal of the stratum corneum with sticky tape. Absorbed fluorescein was measured easily in unanesthetized control (skin-barrier intact) and experimental mice. Unabsorbed chemical did not fluoresce 15 minutes after application, although it was present on the surface of the skin as a dry powder. The time course of fluorescein elimination from the skin was related to a rapid phase (vascular removal) and a slow phase (reservoir entrapment). In the exsorption experiments the fluorescein was injected intraperitoneally. Back skin on the right side was swabbed with either dimethyl sulfoxide or 1% capsaicin in alcohol prior to the injections, and differences in skin fluorescence on the left (control) and right sides were recorded. One application of dimethyl sulfoxide or capsaicin increased the level of skin exsorption. Three applications of dimethyl sulfoxide almost doubled the amount of exsorbed dye, whereas three applications of the capsaicin inhibited the exsorption process. It was concluded that the fiber-optic perfusion fluorometer provides an excellent technique in support of other methods of investigating the skin.

  3. Studies on Biological Actions of Dimethyl Sulfoxide in Familial Amyloidosis,

    DTIC Science & Technology

    Dimethyl sulfoxide (DMSO) had not been regarded as a therapeutic drug against amyloidosis until 1974 when Osserman and Isobe administered it for the...first time in six cases of primary amyloidosis . In 1973, we described an outline of the second largest concentration of familial amyloid...DMSO administration to patients with primary and familial amyloidosis from both clinical and biochemical viewpoints and in vitro effects of DMSO on extracted amyloid fibril proteins.

  4. In Vitro Susceptibilities of the Microsporidia Encephalitozoon cuniculi, Encephalitozoon hellem, and Encephalitozoon intestinalis to Albendazole and Its Sulfoxide and Sulfone Metabolites

    PubMed Central

    Ridoux, Olivier; Drancourt, Michel

    1998-01-01

    In vitro comparisons demonstrated that the efficacy of albendazole, albendazole-sulfoxide, and albendazole-sulfone against pathogenic Encephalitozoon species was proportional to the degree of oxidation at a concentration of >10−3 μg/ml. Furthermore, at a concentration of <10−2 μg/ml, benzimidazoles were more effective against Encephalitozoon cuniculi and Encephalitozoon hellem than against Encephalitozoon intestinalis. PMID:9835533

  5. Up-regulation of Jun/AP-1 during differentiation of N1E-115 neuroblastoma cells.

    PubMed

    de Groot, R P; Kruijer, W

    1991-12-01

    Neuroblastoma cell lines isolated from neuroblastoma tumors can be induced to differentiate into neuronal cell types by treatment with chemical agents, such as dimethyl sulfoxide and retinoic acid. The molecular mechanisms underlying this differentiation process, however, are completely obscure. In this paper, we show that neuronal differentiation of mouse N1E-115 neuroblastoma cells by dimethyl sulfoxide is accompanied by a prolonged rise in c-jun, junB, and junD expression and AP-1 activity. Multiple sequence elements in the Jun promoters are involved in this process. Furthermore, we show that c-jun and junD, but not junB, are expressed at high levels in the neuronal cell types obtained after dimethyl sulfoxide treatment. These results suggest an important role for c-jun and junD in neuronal differentiation of N1E-115 cells.

  6. Dibenzyl Sulfide Metabolism by White Rot Fungi

    PubMed Central

    Van Hamme, Jonathan D.; Wong, Eddie T.; Dettman, Heather; Gray, Murray R.; Pickard, Michael A.

    2003-01-01

    Microbial metabolism of organosulfur compounds is of interest in the petroleum industry for in-field viscosity reduction and desulfurization. Here, dibenzyl sulfide (DBS) metabolism in white rot fungi was studied. Trametes trogii UAMH 8156, Trametes hirsuta UAMH 8165, Phanerochaete chrysosporium ATCC 24725, Trametes versicolor IFO 30340 (formerly Coriolus sp.), and Tyromyces palustris IFO 30339 all oxidized DBS to dibenzyl sulfoxide prior to oxidation to dibenzyl sulfone. The cytochrome P-450 inhibitor 1-aminobenzotriazole eliminated dibenzyl sulfoxide oxidation. Laccase activity (0.15 U/ml) was detected in the Trametes cultures, and concentrated culture supernatant and pure laccase catalyzed DBS oxidation to dibenzyl sulfoxide more efficiently in the presence of 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) than in its absence. These data suggest that the first oxidation step is catalyzed by extracellular enzymes but that subsequent metabolism is cytochrome P-450 mediated. PMID:12571066

  7. Photofunctional Eu3+/Tb3+ hybrids through sulfoxide linkages: coordination bonds construction, characterization and luminescence.

    PubMed

    Guo, Lei; Yan, Bing; Liu, Jin-Liang

    2011-05-14

    New kinds of organic-inorganic hybrid materials consisting of rare earth (Eu(3+), Tb(3+)) complexes covalently bonded to a silica-based network have been obtained by a sol-gel approach. Three novel versatile molecular building blocks containing sulfoxide organic units have been synthesized by methylene modification reaction, which are used as the ligands of rare earth ions and also as siloxane network precursors. The obtained hybrids are characterized by chemical analysis and spectroscopic methods such as FTIR and UV; XRD and SEM. Photoluminescence measurements on the prepared hybrids were performed showing the intra-4f(n) emission in the visible (Eu(3+), Tb(3+)) region and in all the cases being sensitized by the sulfoxide ligands. The emission quantum efficiency and the Judd-Ofelt intensity parameters of Eu(3+) hybrid materials were also investigated in detail.

  8. Redox Proteomics of Protein-bound Methionine Oxidation*

    PubMed Central

    Ghesquière, Bart; Jonckheere, Veronique; Colaert, Niklaas; Van Durme, Joost; Timmerman, Evy; Goethals, Marc; Schymkowitz, Joost; Rousseau, Frederic; Vandekerckhove, Joël; Gevaert, Kris

    2011-01-01

    We here present a new method to measure the degree of protein-bound methionine sulfoxide formation at a proteome-wide scale. In human Jurkat cells that were stressed with hydrogen peroxide, over 2000 oxidation-sensitive methionines in more than 1600 different proteins were mapped and their extent of oxidation was quantified. Meta-analysis of the sequences surrounding the oxidized methionine residues revealed a high preference for neighboring polar residues. Using synthetic methionine sulfoxide containing peptides designed according to the observed sequence preferences in the oxidized Jurkat proteome, we discovered that the substrate specificity of the cellular methionine sulfoxide reductases is a major determinant for the steady-state of methionine oxidation. This was supported by a structural modeling of the MsrA catalytic center. Finally, we applied our method onto a serum proteome from a mouse sepsis model and identified 35 in vivo methionine oxidation events in 27 different proteins. PMID:21406390

  9. A new class of sulfoxide surfactants derived from Tris. Synthesis and preliminary assessments of their properties.

    PubMed

    Barthélémy, P; Maurizis, J C; Lacombe, J M; Pucci, B

    1998-06-16

    A new class of non-ionic amphiphilic molecules suitable for biological purposes, especially extraction of membrane proteins, is reported. Such surfactants were prepared in two steps: addition of alkyl or fluoroalkyl mercaptan on Tris(hydroxymethyl)acrylamidomethane (THAM) derivatives, followed by the oxydation of sulfide group in sulfoxide moiety in order to provide water solubility to the molecule. The detergent efficiency of these new surfactants were assayed on rat liver cells.

  10. Light-induced racemization: artifacts in the analysis of the diastereoisomeric pairs of thioridazine 5-sulfoxide in the plasma and urine of patients treated with thioridazine.

    PubMed

    Eap, C B; Souche, A; Koeb, L; Baumann, P

    1991-07-01

    The ring sulfoxidation of thioridazine (THD), a widely used neuroleptic agent, yields two diastereoisomeric pairs, fast- and slow-eluting (FE and SE) thioridazine 5-sulfoxide (THD 5-SO). Until now, studies in which concentrations of these metabolites were measured in THD-treated patients have revealed no significant differences in their concentrations. Preliminary experiments in our laboratory had shown that sunlight and, to a lesser extent, dim daylight led to racemization and probably also to photolysis of the diastereoisomeric pairs as measured by high-performance liquid chromatography. Similar results were also obtained with direct UV light (UV lamp). In appropriate light-protected conditions, THD, northioridazine, mesoridazine, sulforidazine, and FE and SE THD 5-SO were measured in 11 patients treated with various doses of THD for at least 1 week. Significantly higher concentrations of the FE stereoisomeric pair were found. The concentration ratios THD 5-SO (FE)/THD 5-SO (SE) ranged from 0.89 to 1.75 in plasma and from 1.15 to 2.05 in urine. Because it is known that the ring sulfoxide contributes to the cardiotoxicity of the drug even more potently than the parent compound does, these results justify further studies to determine whether there is stereoselectivity in the cardiotoxicity of THD 5-SO.

  11. Methionine sulfoxide profiling of milk proteins to assess the influence of lipids on protein oxidation in milk.

    PubMed

    Wüst, Johannes; Pischetsrieder, Monika

    2016-06-15

    Thermal treatment of milk and milk products leads to protein oxidation, mainly the formation of methionine sulfoxide. Reactive oxygen species, responsible for the oxidation, can be generated by Maillard reaction, autoxidation of sugars, or lipid peroxidation. The present study investigated the influence of milk fat on methionine oxidation in milk. For this purpose, quantitative methionine sulfoxide profiling of all ten methionine residues of β-lactoglobulin, α-lactalbumin, and αs1-casein was carried out by ultrahigh-performance liquid chromatography-electrospray ionization tandem mass spectrometry with scheduled multiple reaction monitoring (UHPLC-ESI-MS/MS-sMRM). Analysis of defatted and regular raw milk samples after heating for up to 8 min at 120 °C and analysis of ultrahigh-temperature milk samples with 0.1%, 1.5%, and 3.5% fat revealed that methionine oxidation of the five residues of the whey proteins and of residues M 123, M 135, and M 196 of αs1-casein was not affected or even suppressed in the presence of milk fat. Only the oxidation of residues M 54 and M 60 of αs1-casein was promoted by lipids. In evaporated milk samples, formation of methionine sulfoxide was hardly influenced by the fat content of the samples. Thus, it can be concluded that lipid oxidation products are not the major cause of methionine oxidation in milk.

  12. Corynebacterium diphtheriae methionine sulfoxide reductase a exploits a unique mycothiol redox relay mechanism.

    PubMed

    Tossounian, Maria-Armineh; Pedre, Brandán; Wahni, Khadija; Erdogan, Huriye; Vertommen, Didier; Van Molle, Inge; Messens, Joris

    2015-05-01

    Methionine sulfoxide reductases are conserved enzymes that reduce oxidized methionines in proteins and play a pivotal role in cellular redox signaling. We have unraveled the redox relay mechanisms of methionine sulfoxide reductase A of the pathogen Corynebacterium diphtheriae (Cd-MsrA) and shown that this enzyme is coupled to two independent redox relay pathways. Steady-state kinetics combined with mass spectrometry of Cd-MsrA mutants give a view of the essential cysteine residues for catalysis. Cd-MsrA combines a nucleophilic cysteine sulfenylation reaction with an intramolecular disulfide bond cascade linked to the thioredoxin pathway. Within this cascade, the oxidative equivalents are transferred to the surface of the protein while releasing the reduced substrate. Alternatively, MsrA catalyzes methionine sulfoxide reduction linked to the mycothiol/mycoredoxin-1 pathway. After the nucleophilic cysteine sulfenylation reaction, MsrA forms a mixed disulfide with mycothiol, which is transferred via a thiol disulfide relay mechanism to a second cysteine for reduction by mycoredoxin-1. With x-ray crystallography, we visualize two essential intermediates of the thioredoxin relay mechanism and a cacodylate molecule mimicking the substrate interactions in the active site. The interplay of both redox pathways in redox signaling regulation forms the basis for further research into the oxidative stress response of this pathogen. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The oxidation of alkylaryl sulfides and benzo[b]thiophenes by Escherichia coli cells expressing wild-type and engineered styrene monooxygenase from Pseudomonas putida CA-3.

    PubMed

    Nikodinovic-Runic, Jasmina; Coulombel, Lydie; Francuski, Djordje; Sharma, Narain D; Boyd, Derek R; Ferrall, Rory Moore O; O'Connor, Kevin E

    2013-06-01

    Nine different sulfur-containing compounds were biotransformed to the corresponding sulfoxides by Escherichia coli Bl21(DE3) cells expressing styrene monooxygenase (SMO) from Pseudomonas putida CA-3. Thioanisole was consumed at 83.3 μmoles min(-1) g cell dry weight(-1) resulting mainly in the formation of R-thioanisole sulfoxide with an enantiomeric excess (ee) value of 45 %. The rate of 2-methyl-, 2-chloro- and 2-bromo-thioanisole consumption was 2-fold lower than that of thioanisole. Surprisingly, the 2-methylthioanisole sulfoxide product had the opposite (S) configuration to that of the other 2-substituted thioanisole derivatives and had a higher ee value (84 %). The rate of oxidation of 4-substituted thioanisoles was higher than the corresponding 2-substituted substrates but the ee values of the products were consistently lower (10-23 %). The rate of benzo[b]thiophene and 2-methylbenzo[b]thiophene sulfoxidation was approximately 10-fold lower than that of thioanisole. The ee value of the benzo[b]thiophene sulfoxide could not be determined as the product racemized rapidly. E. coli cells expressing an engineered SMO (SMOeng R3-11) oxidised 2-substituted thioanisoles between 1.8- and 2.8-fold faster compared to cells expressing the wild-type enzyme. SMOeng R3-11 oxidised benzo[b]thiophene and 2-methylbenzo[b]thiophene 10.1 and 5.6 times faster that the wild-type enzyme. The stereospecificity of the reaction catalysed by SMOeng was unchanged from that of the wild type. Using the X-ray crystal structure of the P. putida S12 SMO, it was evident that the entrance of substrates into the SMO active site is limited by the binding pocket bottleneck formed by the side chains of Val-211 and Asn-46 carboxyamide group.

  14. Phosphine/Sulfoxide-Supported Carbon(0) Complex.

    PubMed

    Lozano González, Mariana; Bousquet, Laura; Hameury, Sophie; Alvarez Toledano, Cecilio; Saffon-Merceron, Nathalie; Branchadell, Vicenç; Maerten, Eddy; Baceiredo, Antoine

    2018-02-21

    A new carbon(0) complex 2 with two different L ligands, a phosphine and a sulfoxide, was synthesized and fully characterized. This new type of carbone exhibits excellent coordination ability, in contrast to the related phosphine/sulfide-supported carbon(0) complexes. Several organometallic complexes were isolated and, of special interest, the ν av (CO) value of Rh I -dicarbonyl complex indicates that 2 has a donor capability superior to classical NHCs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Composition and particle size of electrolytic copper powders prepared in water-containing dimethyl sulfoxide electrolytes

    NASA Astrophysics Data System (ADS)

    Mamyrbekova, Aigul'; Abzhalov, B. S.; Mamyrbekova, Aizhan

    2017-07-01

    The possibility of the electroprecipitation of copper powder via the cathodic reduction of an electrolyte solution containing copper(II) nitrate trihydrate and dimethyl sulfoxide (DMSO) is shown. The effect electrolysis conditions (current density, concentration and temperature of electrolyte) have on the dimensional characteristics of copper powder is studied. The size and shape of the particles of the powders were determined by means of electron microscopy; the qualitative composition of the powders, with X-ray diffraction.

  16. Dimethyl Sulfoxide Protects Escherichia coli from Rapid Antimicrobial-Mediated Killing

    PubMed Central

    Mi, Hongfei; Wang, Dai; Xue, Yunxin; Zhang, Zhi; Hong, Yuzhi; Drlica, Karl

    2016-01-01

    The contribution of reactive oxygen species (ROS) to antimicrobial lethality was examined by treating Escherichia coli with dimethyl sulfoxide (DMSO), an antioxidant solvent frequently used in antimicrobial studies. DMSO inhibited killing by ampicillin, kanamycin, and two quinolones and had little effect on MICs. DMSO-mediated protection correlated with decreased ROS accumulation and provided evidence for ROS-mediated programmed cell death. These data support the contribution of ROS to antimicrobial lethality and suggest caution when using DMSO-dissolved antimicrobials for short-time killing assays. PMID:27246776

  17. Comparison of MICs of Fluconazole and Flucytosine When Dissolved in Dimethyl Sulfoxide or Water

    PubMed Central

    Fothergill, Annette W.; Sanders, Carmita

    2013-01-01

    A total of 145 clinical strains of Candida species were tested by the Clinical and Laboratory Standards Institute M27-A3 methodology to determine if replacing water with dimethyl sulfoxide as the solvent for fluconazole and flucytosine impacted the in vitro potency. No significant differences in MIC values were observed with either antifungal between the two solvents against any Candida species, and the essential agreement for each agent between the two solvents was greater than 99%. PMID:23576540

  18. Regulation of cell function by methionine oxidation and reduction

    PubMed Central

    Hoshi, Toshinori; Heinemann, Stefan H

    2001-01-01

    Reactive oxygen species (ROS) are generated during normal cellular activity and may exist in excess in some pathophysiological conditions, such as inflammation or reperfusion injury. These molecules oxidize a variety of cellular constituents, but sulfur-containing amino acid residues are especially susceptible. While reversible cysteine oxidation and reduction is part of well-established signalling systems, the oxidation and the enzymatically catalysed reduction of methionine is just emerging as a novel molecular mechanism for cellular regulation. Here we discuss how the oxidation of methionine to methionine sulfoxide in signalling proteins such as ion channels affects the function of these target proteins. Methionine sulfoxide reductase, which reduces methionine sulfoxide to methionine in a thioredoxin-dependent manner, is therefore not only an enzyme important for the repair of age- or degenerative disease-related protein modifications. It is also a potential missing link in the post-translational modification cycle involved in the specific oxidation and reduction of methionine residues in cellular signalling proteins, which may give rise to activity-dependent plastic changes in cellular excitability. PMID:11179387

  19. Preparation and reactions of enantiomerically pure α-functionalized Grignard reagents.

    PubMed

    Rayner, Peter J; O'Brien, Peter; Horan, Richard A J

    2013-05-29

    A strategy for the generation of enantiomerically pure α-functionalized chiral Grignard reagents is presented. The approach involves the synthesis of α-alkoxy and α-amino sulfoxides in ≥99:1 dr and ≥99:1 er via asymmetric deprotonation (s-BuLi/chiral diamine) and trapping with Andersen's sulfinate (menthol derived). Subsequent sulfoxide → Mg exchange (room temperature, 1 min) and electrophilic trapping delivers a range of enantiomerically pure α-alkoxy and α-amino substituted products. Using this approach, either enantiomer of products can be accessed in 99:1 er from asymmetric deprotonation protocols without the use of (-)-sparteine as the chiral ligand. Two additional discoveries are noteworthy: (i) for the deprotonation and trapping with Andersen's sulfinate, there is a lack of stereospecificity at sulfur due to attack of a lithiated intermediate onto the α-alkoxy and α-amino sulfoxides as they form, and (ii) the α-alkoxy-substituted Grignard reagent is configurationally stable at room temperature for 30 min.

  20. Identification of human drug-metabolizing enzymes involved in the metabolism of SNI-2011.

    PubMed

    Washio, T; Arisawa, H; Kohsaka, K; Yasuda, H

    2001-11-01

    In vitro studies were conducted to identify human drug-metabolizing enzymes involved in the metabolism of SNI-2011 ((+/-)-cis-2-methylspiro [1,3-oxathiolane-5,3'-quinuclidine] monohydrochloride hemihydrate, cevimeline hydrochloride hydrate). When 14C-SNI-2011 was incubated with human liver microsomes, SNI-2011 trans-sulfoxide and cis-sulfoxide were detected as major metabolites. These oxidations required NADPH, and were markedly inhibited by SKF-525A, indicating that cytochrome P450 (CYP) was involved. In a chemical inhibition study, metabolism of SNI-2011 in liver microsomes was inhibited (35-65%) by CYP3A4 inhibitors (ketoconazole and troleandomycin) and CYP2D6 inhibitors (quinidine and chlorpromazine). Furthermore, using microsomes containing cDNA-expressed CYPs, it was found that high rates of sulfoxidation activities were observed with CYP2D6 and CYP3A4. On the other hand, when 14C-SNI-2011 was incubated with human kidney microsomes, SNI-2011 N-oxide was identified as a major metabolite. This N-oxidation required NADPH, and was completely inhibited by thiourea, indicating that flavin-containing monooxygenase (FMO) was involved. In addition, microsomes containing cDNA-expressed FMO1, a major isoform in human kidney, mainly catalyzed N-oxidation of SNI-2011, but microsomes containing FMO3, a major isoform in adult human liver, did not. These results suggest that SNI-2011 is mainly catalyzed to sulfoxides and N-oxide by CYP2D6/3A4 in liver and FMOI in kidney, respectively.

  1. Mild Deoxygenation of Sulfoxides over Plasmonic Molybdenum Oxide Hybrid with Dramatic Activity Enhancement under Visible Light.

    PubMed

    Kuwahara, Yasutaka; Yoshimura, Yukihiro; Haematsu, Kohei; Yamashita, Hiromi

    2018-06-17

    Harvesting solar light to boost commercially important organic synthesis still remains a challenge. Coupling of conventional noble metal catalysts with plasmonic oxide materials which exhibit intense plasmon absorption in the visible light region is a promising option for efficient solar energy utilization in catalysis. Herein we for the first time demonstrate that plasmonic hydrogen molybdenum bronze coupled with Pt nanoparticles (Pt/H x MoO 3-y ) shows a high catalytic performance in the deoxygenation of sulfoxides with 1 atm H 2 at room temperature, with dramatic activity enhancement under visible light irradiation relative to dark condition. The plasmonic molybdenum oxide hybrids with strong plasmon resonance peaks pinning at around 556 nm are obtained via a facile H-spillover process. Pt/H x MoO 3-y hybrid provides excellent selectivity for the deoxygenation of various sulfoxides as well as pyridine N-oxides, in which drastically improved catalytic efficiencies are obtained under the irradiation of visible light. Comprehensive analyses reveal that oxygen vacancies massively introduced via a H-spillover process are the main active sites, and reversible redox property of Mo atoms and strong plasmonic absorption play key roles in this reaction. The catalytic system works under extremely mild conditions and can boost the reaction by the assist of visible light, offering an ultimately greener protocol to produce sulfides from sulfoxides. Our findings may open up a new strategy for designing plasmon-based catalytic systems that can harness visible light efficiently.

  2. Sequential picosecond isomerizations in a photochromic ruthenium sulfoxide complex triggered by pump-repump-probe spectroscopy.

    PubMed

    King, Albert W; Jin, Yuhuan; Engle, James T; Ziegler, Christopher J; Rack, Jeffrey J

    2013-02-18

    The complex [Ru(bpy)(2)(bpSO)](PF(6))(2), where bpy is 2,2'-bipydine and bpSO is 1,2-bis(phenylsulfinyl)ethane, exhibits three distinct isomers which are accessible upon metal-to-ligand charge-transfer (MLCT) irradiation. This complex and its parent, [Ru(bpy)(2)(bpte)](PF(6))(2), where bpte is 1,2-bis(phenylthio)ethane, have been synthesized and characterized by UV-visible spectroscopy, NMR, X-ray crystallography, and femtosecond transient absorption spectroscopy. A novel method of 2-color Pump-Repump-Probe spectroscopy has been employed to investigate all three isomers of the bis-sulfoxide complex. This method allows for observation of the isomerization dynamics of sequential isomerizations of each sulfoxide from MLCT irradiation of the S,S-bonded complex to ultimately form the O,O-bonded metastable complex. One-dimensional (1-D) and two-dimensional (2-D) (COSY, NOESY, and TOCSY) (1)H NMR data show the thioether and ground state S,S-bonded sulfoxide complexes to be rigorously C(2) symmetric and are consistent with the crystal structures. Transient absorption spectroscopy reveals that the S,S to S,O isomerization occurs with an observed time constant of 56.8 (±7.4) ps. The S,O to O,O isomerization time constant was found to be 59 (±4) ps by pump-repump-probe spectroscopy. The composite S,S- to O,O-isomer quantum yield is 0.42.

  3. Kinetically controlled synthesis of Au102(SPh)44 nanoclusters and catalytic application

    NASA Astrophysics Data System (ADS)

    Chen, Yongdong; Wang, Jin; Liu, Chao; Li, Zhimin; Li, Gao

    2016-05-01

    We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent thiophenol ligands, evidenced by the analyses of UV-vis and MALDI mass spectrometry. Finally, the TiO2-supported Au102(SPh)44 nanocluster catalyst is investigated in the selective oxidation of sulfides into sulfoxides by the PhIO oxidant and gives rise to high catalytic activity (e.g., 80-99% conversion of R-S-R' sulfides with 96-99% selectivity for R-S(&z.dbd;O)-R' sulfoxides). The Au102(SPh)44/TiO2 catalyst also shows excellent recyclability in the sulfoxidation process.We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent thiophenol ligands, evidenced by the analyses of UV-vis and MALDI mass spectrometry. Finally, the TiO2-supported Au102(SPh)44 nanocluster catalyst is investigated in the selective oxidation of sulfides into sulfoxides by the PhIO oxidant and gives rise to high catalytic activity (e.g., 80-99% conversion of R-S-R' sulfides with 96-99% selectivity for R-S(&z.dbd;O)-R' sulfoxides). The Au102(SPh)44/TiO2 catalyst also shows excellent recyclability in the sulfoxidation process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08338a

  4. Self-association and base pairing of guanosine, cytidine, adenosine, and uridine in dimethyl sulfoxide solution measured by 15N nuclear magnetic resonance spectroscopy.

    PubMed Central

    Dyllick-Brenzinger, C; Sullivan, G R; Pang, P P; Roberts, J D

    1980-01-01

    The self-association of guanosine, cytidine, and adenosine and base pairing between guanosine, cytidine, adenosine, and uridine in dimethyl sulfoxide have been investigated by the variation of their 15N NMR chemical shifts with concentration and temperature. Guanosine, cytidine, and adenosine all showed evidence of self-association by hydrogen bonding. In guanosine/cytidine mixtures, a hydrogen-bonded dimer is formed; however, no base pairing could be detected with adenosine/cytidine or adenosine/uridine mixtures. PMID:6932658

  5. Dimethyl Sulfoxide Protects Escherichia coli from Rapid Antimicrobial-Mediated Killing.

    PubMed

    Mi, Hongfei; Wang, Dai; Xue, Yunxin; Zhang, Zhi; Niu, Jianjun; Hong, Yuzhi; Drlica, Karl; Zhao, Xilin

    2016-08-01

    The contribution of reactive oxygen species (ROS) to antimicrobial lethality was examined by treating Escherichia coli with dimethyl sulfoxide (DMSO), an antioxidant solvent frequently used in antimicrobial studies. DMSO inhibited killing by ampicillin, kanamycin, and two quinolones and had little effect on MICs. DMSO-mediated protection correlated with decreased ROS accumulation and provided evidence for ROS-mediated programmed cell death. These data support the contribution of ROS to antimicrobial lethality and suggest caution when using DMSO-dissolved antimicrobials for short-time killing assays. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. The influence of reaction conditions on the Diels-Alder cycloadditions of 2-thio-3-chloroacrylamides; investigation of thermal, catalytic and microwave conditions.

    PubMed

    Kissane, Marie; Lynch, Denis; Chopra, Jay; Lawrence, Simon E; Maguire, Anita R

    2010-12-21

    The Diels-Alder cycloadditions of cyclopentadiene and 2,3-dimethyl-1,3-butadiene to a range of 2-thio-3-chloroacrylamides under thermal, catalytic and microwave conditions is described. The influence of reaction conditions on the outcome of the cycloadditions, in particular the stereoselectivity and reaction efficiency, is discussed. While the cycloadditions have been attempted at the sulfide, sulfoxide and sulfone levels of oxidation, use of the sulfoxide derivatives is clearly beneficial for stereoselective construction of Diels-Alder cycloadducts.

  7. Toward the development of the direct and selective detection of nitrates by a bioinspired Mo-Cu system.

    PubMed

    Marom, Hanit; Popowski, Yanay; Antonov, Svetlana; Gozin, Michael

    2011-10-21

    The development of a new platform for the direct and selective detection of nitrates is described. Two thioether-based chemosensors and the corresponding sulfoxides and sulfones were prepared, and their photophysical properties were evaluated. Upon selective sulfoxidation of these thioethers with nitrates via an oxygen-transfer reaction promoted by a bioinspired Mo-Cu system, significant fluorescence shifts were measured. A selective response of these systems, discriminating between nitrate salts and H(2)O(2), was also shown. © 2011 American Chemical Society

  8. Experimental and theoretical evaluation on the microenvironmental effect of dimethyl sulfoxide on adrenaline in acid aqueous solution

    NASA Astrophysics Data System (ADS)

    Yu, Zhang-Yu; Liu, Tao; Guo, Dao-Jun; Liu, Yong-Jun; Liu, Cheng-Bu

    2010-12-01

    The microenvironmental effect of dimethyl sulfoxide (DMSO) on adrenaline was studied by several approaches including the cyclic voltammetry (CV) of adrenaline at a platinum electrode in acid aqueous solution, the chemical shift of 1H nuclear magnetic resonance ( 1H NMR) of adrenaline, and the change of diffusion coefficient of adrenaline. The experimental results demonstrated that DMSO has significant microenvironmental effect on adrenaline, which was confirmed by the density functional theory (DFT) study on the hydrogen bond (H-bond) complexes of adrenaline with water and DMSO.

  9. Energetics and dynamics of the fragmentation reactions of protonated peptides containing methionine sulfoxide or aspartic acid via energy- and time-resolved surface induced dissociation.

    PubMed

    Lioe, Hadi; Laskin, Julia; Reid, Gavin E; O'Hair, Richard A J

    2007-10-25

    The surface-induced dissociation (SID) of six model peptides containing either methionine sulfoxide or aspartic acid (GAILM(O)GAILR, GAILM(O)GAILK, GAILM(O)GAILA, GAILDGAILR, GAILDGAILK, and GAILDGAILA) have been studied using a specially configured Fourier transform ion-cyclotron resonance mass spectrometer (FT-ICR MS). In particular, we have investigated the energetics and dynamics associated with (i) preferential cleavage of the methionine sulfoxide side chain via the loss of CH3SOH (64 Da), and (ii) preferential cleavage of the amide bond C-terminal to aspartic acid. The role of proton mobility in these selective bond cleavage reactions was examined by changing the C-terminal residue of the peptide from arginine (nonmobile proton conditions) to lysine (partially mobile proton conditions) to alanine (mobile proton conditions). Time- and energy-resolved fragmentation efficiency curves (TFECs) reveal that selective cleavages due to the methionine sulfoxide and aspartic acid residues are characterized by slow fragmentation kinetics. RRKM modeling of the experimental data suggests that the slow kinetics is associated with large negative entropy effects and these may be due to the presence of rearrangements prior to fragmentation. It was found that the Arrhenius pre-exponential factor (A) for peptide fragmentations occurring via selective bond cleavages are 1-2 orders of magnitude lower than nonselective peptide fragmentation reactions, while the dissociation threshold (E0) is relatively invariant. This means that selective bond cleavage is kinetically disfavored compared to nonselective amide bond cleavage. It was also found that the energetics and dynamics for the preferential loss of CH3SOH from peptide ions containing methionine sulfoxide are very similar to selective C-terminal amide bond cleavage at the aspartic acid residue. These results suggest that while preferential cleavage can compete with amide bond cleavage energetically, dynamically, these processes are much slower compared to amide bond cleavage, explaining why these selective bond cleavages are not observed if fragmentation is performed under mobile proton conditions. This study further affirms that fragmentation of peptide ions in the gas phase are predominantly governed by entropic effects.

  10. Synergistic Roles of Helicobacter pylori Methionine Sulfoxide Reductase and GroEL in Repairing Oxidant-damaged Catalase*

    PubMed Central

    Mahawar, Manish; Tran, ViLinh; Sharp, Joshua S.; Maier, Robert J.

    2011-01-01

    Hypochlorous acid (HOCl) produced via the enzyme myeloperoxidase is a major antibacterial oxidant produced by neutrophils, and Met residues are considered primary amino acid targets of HOCl damage via conversion to Met sulfoxide. Met sulfoxide can be repaired back to Met by methionine sulfoxide reductase (Msr). Catalase is an important antioxidant enzyme; we show it constitutes 4–5% of the total Helicobacter pylori protein levels. msr and katA strains were about 14- and 4-fold, respectively, more susceptible than the parent to killing by the neutrophil cell line HL-60 cells. Catalase activity of an msr strain was much more reduced by HOCl exposure than for the parental strain. Treatment of pure catalase with HOCl caused oxidation of specific MS-identified Met residues, as well as structural changes and activity loss depending on the oxidant dose. Treatment of catalase with HOCl at a level to limit structural perturbation (at a catalase/HOCl molar ratio of 1:60) resulted in oxidation of six identified Met residues. Msr repaired these residues in an in vitro reconstituted system, but no enzyme activity could be recovered. However, addition of GroEL to the Msr repair mixture significantly enhanced catalase activity recovery. Neutrophils produce large amounts of HOCl at inflammation sites, and bacterial catalase may be a prime target of the host inflammatory response; at high concentrations of HOCl (1:100), we observed loss of catalase secondary structure, oligomerization, and carbonylation. The same HOCl-sensitive Met residue oxidation targets in catalase were detected using chloramine-T as a milder oxidant. PMID:21460217

  11. The oxidation of methionine-54 of epoetinum alfa does not affect molecular structure or stability, but does decrease biological activity.

    PubMed

    Labrenz, Steven R; Calmann, Melissa A; Heavner, George A; Tolman, Glen

    2008-01-01

    Erythropoietin therapy is used to treat severe anemia in renal failure and chemotherapy patients. One of these therapies based on recombinant human erythropoietin is marketed under the trade name of EPREX and utilizes epoetinum alfa as the active pharmaceutical ingredient. The effect of oxidation of methionine-54 on the structure and stability of the erythropoietin molecule has not been directly tested. We have observed partial and full chemical oxidation of methionine-54 to methionine-54 sulfoxide, accomplished using tert-Butylhydroperoxide and hydrogen peroxide, respectively. A blue shift in the fluorescence center of spectral mass wavelength was observed as a linear response to the level of methionine sulfoxide in the epoetinum alfa molecule, presumably arising from a local change in the environment near tryptophan-51, as supported by potassium iodide quenching studies. Circular dichroism studies demonstrated no change in the folded structure of the molecule with methionine oxidation. The thermal unfolding profiles of partial and completely oxidized epoetinum alfa overlap, with a T(m) of 49.5 degrees C across all levels of methionine sulfoxide content. When the protein was tested for activity, a decrease in biological activity was observed, correlating with methionine sulfoxide levels. An allosteric effect between Met54, Trp51, and residues involved in receptor binding is proposed. These results indicate that methionine oxidation has no effect on the folded structure and global thermodynamic stability of the recombinant human erythropoietin molecule. Oxidation can affect potency, but only at levels significantly in excess of those seen in EPREX.

  12. Controlled oxidation of organic sulfides to sulfoxides under ambient conditions by a series of titanium isopropoxide complexes using environmentally benign H2O2 as an oxidant.

    PubMed

    Panda, Manas K; Shaikh, Mobin M; Ghosh, Prasenjit

    2010-03-07

    Controlled oxidation of organic sulfides to sulfoxides under ambient conditions has been achieved by a series of titanium isopropoxide complexes that use environmentally benign H(2)O(2) as a primary oxidant. Specifically, the [N,N'-bis(2-oxo-3-R(1)-5-R(2)-phenylmethyl)-N,N'-bis(methylene-R(3))-ethylenediamine]Ti(O(i)Pr)(2) [R(1) = t-Bu, R(2) = Me, R(3) = C(7)H(5)O(2) (1b); R(1) = R(2) = t-Bu, R(3) = C(7)H(5)O(2) (2b); R(1) = R(2) = Cl, R(3) = C(7)H(5)O(2) (3b) and R(1) = R(2) = Cl, R(3) = C(6)H(5) (4b)] complexes efficiently catalyzed the sulfoxidation reactions of organic sulfides to sulfoxides at room temperature within 30 min of the reaction time using aqueous H(2)O(2) as an oxidant. A mechanistic pathway, modeled using density functional theory for a representative thioanisole substrate catalyzed by 4b, suggested that the reaction proceeds via a titanium peroxo intermediate 4c', which displays an activation barrier of 22.5 kcal mol(-1) (DeltaG(++)) for the overall catalytic cycle in undergoing an attack by the S atom of the thioanisole substrate at its sigma*-orbital of the peroxo moiety. The formation of the titanium peroxo intermediate was experimentally corroborated by a mild ionization atmospheric pressure chemical ionization (APCI) mass spectrometric technique.

  13. Sulfur species behavior in soil organic matter during decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Graham, M.; Kaste, J.M.; Mitchell, M.J.; Friedland, A.J.

    2007-01-01

    Soil organic matter (SOM) is a primary re??servoir of terrestrial sulfur (S), but its role in the global S cycle remains poorly understood. We examine S speciation by X-ray absorption near-edge structure (XANES) spectroscopy to describe S species behavior during SOM decomposition. Sulfur species in SOM were best represented by organic sulfide, sulfoxide, sulfonate, and sulfate. The highest fraction of S in litter was organic sulfide, but as decomposition progressed, relative fractions of sulfonate and sulfate generally increased. Over 6-month laboratory incubations, organic sulfide was most reactive, suggesting that a fraction of this species was associated with a highly labile pool of SOM. During humification, relative concentrations of sulfoxide consistently decreased, demonstrating the importance of sulfoxide as a reactive S phase in soil. Sulfonate fractional abundance increased during humification irrespective of litter type, illustrating its relative stability in soils. The proportion of S species did not differ systematically by litter type, but organic sulfide became less abundant in conifer SOM during decomposition, while sulfate fractional abundance increased. Conversely, deciduous SOM exhibited lesser or nonexistent shifts in organic sulfide and sulfate fractions during decomposition, possibly suggesting that S reactivity in deciduous litter is coupled to rapid C mineralization and independent of S speciation. All trends were consistent in soils across study sites. We conclude that S reactivity is related to spqciation in SOM, particularly in conifer forests, and S species fractions in SOM change, during decomposition. Our data highlight the importance of intermediate valence species (sulfoxide and sulfonate) in the pedochemical cycling of organic bound S. Copyright 2007 by the American Geophysical Union.

  14. Cytochrome P450 2C8 and flavin-containing monooxygenases are involved in the metabolism of tazarotenic acid in humans.

    PubMed

    Attar, Mayssa; Dong, Dahai; Ling, Kah-Hiing John; Tang-Liu, Diane D-S

    2003-04-01

    Upon oral administration, tazarotene is rapidly converted to tazarotenic acid by esterases. The main circulating agent, tazarotenic acid is subsequently oxidized to the inactive sulfoxide metabolite. Therefore, alterations in the metabolic clearance of tazarotenic acid may have significant effects on its systemic exposure. The objective of this study was to identify the human liver microsomal enzymes responsible for the in vitro metabolism of tazarotenic acid. Tazarotenic acid was incubated with 1 mg/ml pooled human liver microsomes, in 100 mM potassium phosphate buffer (pH 7.4), at 37 degrees C, over a period of 30 min. The microsomal enzymes that may be involved in tazarotenic acid metabolism were identified through incubation with microsomes containing cDNA-expressed human microsomal isozymes. Chemical inhibition studies were then conducted to confirm the identity of the enzymes potentially involved in tazarotenic acid metabolism. Reversed-phase high performance liquid chromatography was used to quantify the sulfoxide metabolite, the major metabolite of tazarotenic acid. Upon incubation of tazarotenic acid with microsomes expressing CYP2C8, flavin-containing monooxygenase 1 (FMO1), or FMO3, marked formation of the sulfoxide metabolite was observed. The involvement of these isozymes in tazarotenic acid metabolism was further confirmed by inhibition of metabolite formation in pooled human liver microsomes by specific inhibitors of CYP2C8 or FMO. In conclusion, the in vitro metabolism of tazarotenic acid to its sulfoxide metabolite in human liver microsomes is mediated by CYP2C8 and FMO.

  15. Microscopic diffusion in hydrated encysted eggs of brine shrimp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamontov, Eugene

    We have studied microscopic diffusion of water in fully hydrated encysted eggs of brine shrimp (Artemia). We utilized quasielastic neutron scattering. Dry eggs of brine shrimp were rehydrated using (1) water without additives, (2) eutectic mixture of water and dimethyl sulfoxide, and (3) a concentrated aqueous solution of lithium chloride. Despite the complexity of the hydrated multicellular organism, measurable microscopic diffusivity of water is rather well defined. Pure hydration water in eggs exhibits freezing temperature depression, whereas hydration water in eggs mixed with dimethyl sulfoxide or lithium chloride does not crystallize at all. The characteristic size of the voids occupiedmore » by water or aqueous solvents in hydrated brine shrimp eggs is between 2 and 10 nm. Those voids are accessible to co-solvents such as dimethyl sulfoxide and lithium chloride. There is no evidence of intracellular water in the hydrated eggs. The lack of intracellular water in the fully hydrated (but still under arrested development) state must be linked to the unique resilience against adverse environmental factors documented not only for the anhydrous, but also hydrated encysted eggs of brine shrimp.« less

  16. Oxidation of selected organophosphate pesticides during chlorination of simulated drinking water.

    PubMed

    Kamel, Alaa; Byrne, Christian; Vigo, Craig; Ferrario, Joseph; Stafford, Charles; Verdin, Gregory; Siegelman, Frederic; Knizner, Steven; Hetrick, James

    2009-02-01

    Ten organophosphate (OP) pesticides: phorate, disulfoton, terbufos, methidathion, bensulide, chlorethoxyfos, phosmet, methyl parathion, phostebupirim, and temephos were evaluated for their potential to undergo oxidation to their respective oxons and/or other oxidation analogues in laboratory water. Samples were collected at time intervals up to 72h of chlorination and analyzed by both gas chromatography-mass selective detection (GC-MSD) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results show that methidathion and methyl parathion were stable in unchlorinated water, while all other OP pesticides were not stable over the 72h exposure period. In chlorinated water, phorate and disulfoton formed stable sulfone oxons. Temephos formed stable dioxon sulfoxide and dioxon sulfone. Methidathion, bensulide, chlorethyoxyfos, methyl parathion, and phostebupirim formed stable oxons over the 72h exposure period. Terbufos, phorate, disulfoton and temephos oxon sulfoxides; temephos sulfoxide; and phosmet oxon were initially formed but were not detected after 24h. The data illustrate that organothiophosphate pesticides may form oxons and/or other oxidation analogues during chlorination in water treatment plants, which are persistent for at least 72h.

  17. Revisiting the Aqueous Solutions of Dimethyl Sulfoxide by Spectroscopy in the Mid- and Near-Infrared: Experiments and Car-Parrinello Simulations.

    PubMed

    Wallace, Victoria M; Dhumal, Nilesh R; Zehentbauer, Florian M; Kim, Hyung J; Kiefer, Johannes

    2015-11-19

    The infrared and near-infrared spectra of the aqueous solutions of dimethyl sulfoxide are revisited. Experimental and computational vibrational spectra are analyzed and compared. The latter are determined as the Fourier transformation of the velocity autocorrelation function of data obtained from Car-Parrinello molecular dynamics simulations. The experimental absorption spectra are deconvolved, and the excess spectra are determined. The two-dimensional excess contour plot provides a means of visualizing and identifying spectral regions and concentration ranges exhibiting nonideal behavior. In the binary mixtures, the analysis of the SO stretching band provides a semiquantitative picture of the formation and dissociation of hydrogen-bonded DMSO-water complexes. A maximum concentration of these clusters is found in the equimolar mixture. At high DMSO concentration, the formation of rather stable 3DMSO:1water complexes is suggested. The formation of 1DMSO:2water clusters, in which the water oxygen atoms interact with the sulfoxide methyl groups, is proposed as a possible reason for the marked depression of the freezing temperature at the eutectic point.

  18. Microscopic diffusion in hydrated encysted eggs of brine shrimp

    DOE PAGES

    Mamontov, Eugene

    2017-05-24

    We have studied microscopic diffusion of water in fully hydrated encysted eggs of brine shrimp (Artemia). We utilized quasielastic neutron scattering. Dry eggs of brine shrimp were rehydrated using (1) water without additives, (2) eutectic mixture of water and dimethyl sulfoxide, and (3) a concentrated aqueous solution of lithium chloride. Despite the complexity of the hydrated multicellular organism, measurable microscopic diffusivity of water is rather well defined. Pure hydration water in eggs exhibits freezing temperature depression, whereas hydration water in eggs mixed with dimethyl sulfoxide or lithium chloride does not crystallize at all. The characteristic size of the voids occupiedmore » by water or aqueous solvents in hydrated brine shrimp eggs is between 2 and 10 nm. Those voids are accessible to co-solvents such as dimethyl sulfoxide and lithium chloride. There is no evidence of intracellular water in the hydrated eggs. The lack of intracellular water in the fully hydrated (but still under arrested development) state must be linked to the unique resilience against adverse environmental factors documented not only for the anhydrous, but also hydrated encysted eggs of brine shrimp.« less

  19. Preparation and physicochemical characterization of 5 niclosamide solvates and 1 hemisolvate.

    PubMed

    van Tonder, Elsa C; Mahlatji, Mabatane D; Malan, Sarel F; Liebenberg, Wilna; Caira, Mino R; Song, Mingna; de Villiers, Melgardt M

    2004-02-23

    The purpose of the study was to characterize the physicochemical, structural, and spectral properties of the 1:1 niclosamide and methanol, diethyl ether, dimethyl sulfoxide, N,N' dimethylformamide, and tetrahydrofuran solvates and the 2:1 niclosamide and tetraethylene glycol hemisolvate prepared by recrystallization from these organic solvents. Structural, spectral, and thermal analysis results confirmed the presence of the solvents and differences in the structural properties of these solvates. In addition, differences in the activation energy of desolvation, batch solution calorimetry, and the aqueous solubility at 25 degrees C, 24 hours, showed the stability of the solvates to be in the order: anhydrate > diethyl ether solvate > tetraethylene glycol hemisolvate > methanol solvate > dimethyl sulfoxide solvate > N,N' dimethylformamide solvate. The intrinsic and powder dissolution rates of the solvates were in the order: anhydrate > diethyl ether solvate > tetraethylene glycol hemisolvate > N,N' dimethylformamide solvate > methanol solvate > dimethyl sulfoxide solvate. Although these nonaqueous solvates had higher solubility and dissolution rates than the monohydrous forms, they were unstable in aqueous media and rapidly transformed to one of the monohydrous forms.

  20. Dramatic Influence of Ionic Liquid and Ultrasound Irradiation on the Electrophilic Sulfinylation of Aromatic Compounds by Sulfinic Esters.

    PubMed

    Nguyen, Ngoc-Lan Thi; Vo, Hong-Thom; Duus, Fritz; Luu, Thi Xuan Thi

    2017-09-04

    The sulfinylation reaction of aromatic and hetero-aromatic compounds with sulfinic esters as electrophiles has been investigated in different ionic liquids and by means of different Lewis acid salts in order to get moderate to good yields of asymmetrical sulfoxides. Mixtures of 1-butyl-3-methylimidazolium chloride and aluminum chloride were found to be the most efficient and recyclable reaction framework. Ultrasound sonication appeared to be the most useful and green activation method to afford the sulfoxides in yields better than or equivalent to those obtained under the longer-lasting conventional stirring conditions.

  1. Comparison of Dimethyl Sulfoxide and Water as Solvents for Echinocandin Susceptibility Testing by the EUCAST Methodology

    PubMed Central

    Alastruey-Izquierdo, Ana; Gómez-López, Alicia; Arendrup, Maiken C.; Lass-Florl, Cornelia; Hope, William W.; Perlin, David S.; Rodriguez-Tudela, Juan L.

    2012-01-01

    Ninety-six strains of Candida, including 29 resistant and 67 susceptible isolates with mutations in the FKS1 and FKS2 genes were tested by the European Committee on Antibiotic Susceptibility Testing EDef 7.1 and 7.2 methodologies to determine the impact on the MIC when water was replaced with dimethyl sulfoxide (DMSO) as the solvent for caspofungin and micafungin. The MICs were significantly lower and the MIC ranges were narrower when DMSO was used as the solvent. The use of DMSO may help to better discriminate between susceptible and resistant populations. PMID:22535988

  2. Comparison of dimethyl sulfoxide and water as solvents for echinocandin susceptibility testing by the EUCAST methodology.

    PubMed

    Alastruey-Izquierdo, Ana; Gómez-López, Alicia; Arendrup, Maiken C; Lass-Florl, Cornelia; Hope, William W; Perlin, David S; Rodriguez-Tudela, Juan L; Cuenca-Estrella, Manuel

    2012-07-01

    Ninety-six strains of Candida, including 29 resistant and 67 susceptible isolates with mutations in the FKS1 and FKS2 genes were tested by the European Committee on Antibiotic Susceptibility Testing EDef 7.1 and 7.2 methodologies to determine the impact on the MIC when water was replaced with dimethyl sulfoxide (DMSO) as the solvent for caspofungin and micafungin. The MICs were significantly lower and the MIC ranges were narrower when DMSO was used as the solvent. The use of DMSO may help to better discriminate between susceptible and resistant populations.

  3. Conformations of 2-carboxy-1,4-butanedioic acid as a function of ionization state in dimethyl sulfoxide.

    PubMed

    Nair, Gautham; Roberts, John D

    2003-10-02

    [reaction: see text] The conformational equilibria of 2-carboxy-1,4-butanedioic acid and its mono-, di-, and trianions were estimated by NMR couplings in dimethyl sulfoxide (DMSO). Intramolecular hydrogen bonding was inferred for the mono- and dianions, but not for the triacid. For the di- and trianions, the (3)J(HH) couplings were consistent with the negative carboxylate groups being much closer together than might be expected from electrostatic repulsion considerations. The successive triacid pK(a) values were estimated as 7.0, 13.4, and approximately 20(?) on the Bordwell scale.

  4. Studies on the Low-Temp Oxidation of Coal Containing Organic Sulfur and the Corresponding Model Compounds.

    PubMed

    Zhang, Lanjun; Li, Zenghua; Li, Jinhu; Zhou, Yinbo; Yang, Yongliang; Tang, Yibo

    2015-12-11

    This paper selects two typical compounds containing organic sulfur as model compounds. Then, by analyzing the chromatograms of gaseous low-temp oxidation products and GC/MS of the extractable matter of the oxidation residue, we summarizing the mechanism of low-temp sulfur model compound oxidation. The results show that between 30°C to 80°C, the interaction between diphenyl sulfide and oxygen is mainly one of physical adsorption. After 80°C, chemical adsorption and chemical reactions begin. The main reaction mechanism in the low-temp oxidation of the model compound diphenyl sulfide is diphenyl sulfide generates diphenyl sulfoxide, and then this sulfoxide is further oxidized to diphenyl sulphone. A small amount of free radicals is generated in the process. The model compound cysteine behaves differently from diphenyl sulfide. The main reaction low-temp oxidation mechanism involves the thiol being oxidized into a disulphide and finally evolving to sulfonic acid, along with SO₂ being released at 130°C and also a small amount of free radicals. We also conducted an experiment on coal from Xingcheng using X-ray photoelectron spectroscopy (XPS). The results show that the major forms of organic sulfur in the original coal sample are thiophene and sulfone. Therefore, it can be inferred that there is none or little mercaptan and thiophenol in the original coal. After low-temp oxidation, the form of organic sulfur changes. The sulfide sulfur is oxidized to the sulfoxide, and then the sulfoxide is further oxidized to a sulfone, and these steps can be easily carried out under experimental conditions. What's more, the results illustrate that oxidation promotes sulfur element enrichment on the surface of coal.

  5. Characterization of the chemical reactivity and nephrotoxicity of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide, a potential reactive metabolite of trichloroethylene

    PubMed Central

    Irving, Roy M.; Pinkerton, Marie E.; Elfarra, Adnan A.

    2012-01-01

    N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NA-DCVC) has been detected in the urine of humans exposed to trichloroethylene and its related sulfoxide, N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (NA-DCVCS), has been detected as hemoglobin adducts in blood of rats dosed with S-(1,2-dichlorovinyl)-L-cysteine (DCVC) or S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (DCVCS). Because the in vivo nephrotoxicity of NA-DCVCS was unknown, in this study, male Sprague-Dawley rats were dosed (i.p.) with 230 µmol/kg b.w. NA-DCVCS or its potential precursors, DCVCS or NA-DCVC. At 24 h post treatment, rats given NA-DCVC or NA-DCVCS exhibited kidney lesions and effects on renal function distinct from those caused by DCVCS. NA-DCVC and NA-DCVCS primarily affected the cortico-medullary proximal tubules (S2–S3 segments) while DCVCS primarily affected the outer cortical proximal tubules (S1–S2 segments). When NA-DCVCS or DCVCS was incubated with GSH in phosphate buffer pH 7.4 at 37°C, the corresponding glutathione conjugates were detected, but NA-DCVC was not reactive with GSH. Because NA-DCVCS exhibited a longer half-life than DCVCS and addition of rat liver cytosol enhanced GSH conjugate formation, catalysis of GSH conjugate formation by the liver could explain the lower toxicity of NA-DCVCS in comparison with DCVCS. Collectively, these results provide clear evidence that NA-DCVCS formation could play a significant role in DCVC, NA-DCVC, and trichloroethylene nephrotoxicity. They also suggest a role for hepatic metabolism in the mechanism of NA-DCVC nephrotoxicity. PMID:23253325

  6. Characterization of the chemical reactivity and nephrotoxicity of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide, a potential reactive metabolite of trichloroethylene.

    PubMed

    Irving, Roy M; Pinkerton, Marie E; Elfarra, Adnan A

    2013-02-15

    N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NA-DCVC) has been detected in the urine of humans exposed to trichloroethylene and its related sulfoxide, N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (NA-DCVCS), has been detected as hemoglobin adducts in blood of rats dosed with S-(1,2-dichlorovinyl)-L-cysteine (DCVC) or S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (DCVCS). Because the in vivo nephrotoxicity of NA-DCVCS was unknown, in this study, male Sprague-Dawley rats were dosed (i.p.) with 230 μmol/kg b.w. NA-DCVCS or its potential precursors, DCVCS or NA-DCVC. At 24 h post treatment, rats given NA-DCVC or NA-DCVCS exhibited kidney lesions and effects on renal function distinct from those caused by DCVCS. NA-DCVC and NA-DCVCS primarily affected the cortico-medullary proximal tubules (S(2)-S(3) segments) while DCVCS primarily affected the outer cortical proximal tubules (S(1)-S(2) segments). When NA-DCVCS or DCVCS was incubated with GSH in phosphate buffer pH 7.4 at 37°C, the corresponding glutathione conjugates were detected, but NA-DCVC was not reactive with GSH. Because NA-DCVCS exhibited a longer half-life than DCVCS and addition of rat liver cytosol enhanced GSH conjugate formation, catalysis of GSH conjugate formation by the liver could explain the lower toxicity of NA-DCVCS in comparison with DCVCS. Collectively, these results provide clear evidence that NA-DCVCS formation could play a significant role in DCVC, NA-DCVC, and trichloroethylene nephrotoxicity. They also suggest a role for hepatic metabolism in the mechanism of NA-DCVC nephrotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Inhibition of Biofilm Formation, Quorum Sensing and Infection in Pseudomonas aeruginosa by Natural Products-Inspired Organosulfur Compounds

    PubMed Central

    Cady, Nathaniel C.; McKean, Kurt A.; Behnke, Jason; Kubec, Roman; Mosier, Aaron P.; Kasper, Stephen H.; Burz, David S.; Musah, Rabi A.

    2012-01-01

    Using a microplate-based screening assay, the effects on Pseudomonas aeruginosa PAO1 biofilm formation of several S-substituted cysteine sulfoxides and their corresponding disulfide derivatives were evaluated. From our library of compounds, S-phenyl-L-cysteine sulfoxide and its breakdown product, diphenyl disulfide, significantly reduced the amount of biofilm formation by P. aeruginosa at levels equivalent to the active concentration of 4-nitropyridine-N-oxide (NPO) (1 mM). Unlike NPO, which is an established inhibitor of bacterial biofilms, our active compounds did not reduce planktonic cell growth and only affected biofilm formation. When used in a Drosophila-based infection model, both S-phenyl-L-cysteine sulfoxide and diphenyl disulfide significantly reduced the P. aeruginosa recovered 18 h post infection (relative to the control), and were non-lethal to the fly hosts. The possibility that the observed biofilm inhibitory effects were related to quorum sensing inhibition (QSI) was investigated using Escherichia coli-based reporters expressing P. aeruginosa lasR or rhIR response proteins, as well as an endogenous P. aeruginosa reporter from the lasI/lasR QS system. Inhibition of quorum sensing by S-phenyl-L-cysteine sulfoxide was observed in all of the reporter systems tested, whereas diphenyl disulfide did not exhibit QSI in either of the E. coli reporters, and showed very limited inhibition in the P. aeruginosa reporter. Since both compounds inhibit biofilm formation but do not show similar QSI activity, it is concluded that they may be functioning by different pathways. The hypothesis that biofilm inhibition by the two active compounds discovered in this work occurs through QSI is discussed. PMID:22715388

  8. Identification of a flavin-containing S-oxygenating monooxygenase involved in alliin biosynthesis in garlic.

    PubMed

    Yoshimoto, Naoko; Onuma, Misato; Mizuno, Shinya; Sugino, Yuka; Nakabayashi, Ryo; Imai, Shinsuke; Tsuneyoshi, Tadamitsu; Sumi, Shin-ichiro; Saito, Kazuki

    2015-09-01

    S-Alk(en)yl-l-cysteine sulfoxides are cysteine-derived secondary metabolites highly accumulated in the genus Allium. Despite pharmaceutical importance, the enzymes that contribute to the biosynthesis of S-alk-(en)yl-l-cysteine sulfoxides in Allium plants remain largely unknown. Here, we report the identification of a flavin-containing monooxygenase, AsFMO1, in garlic (Allium sativum), which is responsible for the S-oxygenation reaction in the biosynthesis of S-allyl-l-cysteine sulfoxide (alliin). Recombinant AsFMO1 protein catalyzed the stereoselective S-oxygenation of S-allyl-l-cysteine to nearly exclusively yield (RC SS )-S-allylcysteine sulfoxide, which has identical stereochemistry to the major natural form of alliin in garlic. The S-oxygenation reaction catalyzed by AsFMO1 was dependent on the presence of nicotinamide adenine dinucleotide phosphate (NADPH) and flavin adenine dinucleotide (FAD), consistent with other known flavin-containing monooxygenases. AsFMO1 preferred S-allyl-l-cysteine to γ-glutamyl-S-allyl-l-cysteine as the S-oxygenation substrate, suggesting that in garlic, the S-oxygenation of alliin biosynthetic intermediates primarily occurs after deglutamylation. The transient expression of green fluorescent protein (GFP) fusion proteins indicated that AsFMO1 is localized in the cytosol. AsFMO1 mRNA was accumulated in storage leaves of pre-emergent nearly sprouting bulbs, and in various tissues of sprouted bulbs with green foliage leaves. Taken together, our results suggest that AsFMO1 functions as an S-allyl-l-cysteine S-oxygenase, and contributes to the production of alliin both through the conversion of stored γ-glutamyl-S-allyl-l-cysteine to alliin in storage leaves during sprouting and through the de novo biosynthesis of alliin in green foliage leaves. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  9. Cryobiology of coral fragments.

    PubMed

    Hagedorn, Mary; Farrell, Ann; Carter, Virginia L

    2013-02-01

    Around the world, coral reefs are dying due to human influences, and saving habitat alone may not stop this destruction. This investigation focused on the biological processes that will provide the first steps in understanding the cryobiology of whole coral fragments. Coral fragments are a partnership of coral tissue and endosymbiotic algae, Symbiodinium sp., commonly called zooxanthellae. These data reflected their separate sensitivities to chilling and a cryoprotectant (dimethyl sulfoxide) for the coral Pocillopora damicornis, as measured by tissue loss and Pulse Amplitude Modulated fluorometry 3weeks post-treatment. Five cryoprotectant treatments maintained the viability of the coral tissue and zooxanthellae at control values (1M dimethyl sulfoxide at 1.0, 1.5 and 2.0h exposures, and 1.5M dimethyl sulfoxide at 1.0 and 1.5h exposures, P>0.05, ANOVA), whereas 2M concentrations did not (P<0.05, ANOVA). A seasonal response to chilling was observed in the coral tissue, but not in the zooxanthellae. During the winter when the fragments were chilled, the coral tissue remained relatively intact (∼25% loss) post-treatment, but the zooxanthellae numbers in the tissue declined after 5min of chilling (P<0.05, ANOVA). However, in the late spring, coral tissue (∼75% loss) and zooxanthellae numbers declined in response to chilling alone (P<0.05, ANOVA). When a cryoprotectant (1M dimethyl sulfoxide) was used in concert with chilling it protected the coral against tissue loss after 45min of cryoprotectant exposure (P>0.05, ANOVA), but it did not protect against the loss of zooxanthellae (P<0.05, ANOVA). The zooxanthellae are the most sensitive element in the coral fragment complex and future cryopreservation protocols must be guided by their greater sensitivity. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Range of therapeutic prothipendyl and prothipendyl sulfoxide concentrations in clinical blood samples.

    PubMed

    Krämer, Michael; Heese, Peter; Banger, Markus; Madea, Burkhard; Hess, Cornelius

    2018-06-01

    Due to a lack of reference blood concentrations in the literature, the forensic evaluation of prothipendyl findings in blood samples is difficult. Interpretations with regard to the assessment of blood concentrations as well as an estimation of the ingested prothipendyl amounts were often vague. To describe a concentration range in clinical samples, prothipendyl and prothipendyl sulfoxide concentrations were determined in serum samples of 50 psychiatric patients receiving 40 mg, 80 mg, or 160 mg doses of prothipendyl. The analyses of prothipendyl and prothipendyl sulfoxide were carried out using validated methods of high performance liquid chromatography coupled to triple quadrupole mass spectrometry (LC-QQQ-MS), respectively. 40 mg doses caused average prothipendyl serum concentrations of 18.0 ng/mL (1 hour after intake) and 7.9 ng/mL (10.5 hours after intake), while 80 mg doses caused averages of 42.6 ng/mL and 15.2 ng/mL at the mentioned times of sampling. Irrespective of the given dose, prothipendyl concentrations below 30 ng/mL were observed in 80% of the patient samples taken 1 hour after ingestion as well as in 90% of the samples collected 10.5 hours after administration. Serum concentrations of the Phase I metabolite prothipendyl sulfoxide averaged 4.3 ng/mL (1 hour after intake) and 3.6 ng/mL (10.5 hours after intake). Possible drug-drug interactions regarding absorption and metabolism of prothipendyl are discussed. Results of the herein presented study are useful for the interpretation of analytical prothipendyl findings in forensic toxicology. The utility of the described concentration range is demonstrated by discussing two death cases involving prothipendyl findings. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Neurotoxicity Associated With Dimethyl Sulfoxide Used in Allogeneic Stem Cell Transplantation.

    PubMed

    Ataseven, Eda; Tüfekçi, Özlem; Yilmaz, Şebnem; Güleryüz, Handan; Ören, Hale

    2017-07-01

    Dimethyl sulfoxide (DMSO) is a cryoprotective agent used in storage of frozen stem cells in stem cell transplantation. Central nervous system side effects of DMSO such as epileptic seizures, stroke, transient global amnesia, and temporary leucoencephalopathy are rarely seen. Here, we report a pediatric patient who developed seizures after DMSO-cryopreserved stem cell infusion and whose magnetic resonance imaging of the brain demonstrated parietal and occipital focal cortical T2-signal intensity increase. DMSO toxicity should be kept in mind in patients who received cryopreserved stem cell infusion and magnetic resonance imaging may be helpful in differential diagnosis of central nervous system involvement.

  12. Biological and nonbiological modifications of carbamates

    PubMed Central

    Knaak, James B.

    1971-01-01

    Methylcarbamate insecticides undergo hydrolysis, oxidation, dealkylation, and conjugation in animals, plants, and insects to form similar or identical products. Carbaryl is hydroxylated in biological systems to form hydroxy, dihydro-dihydroxy, and N-hydroxymethyl carbaryl and is hydrolysed to form 1-naphthol. The products are conjugated, stored, or excreted. Carbofuran is hydroxylated at the 3 position and propoxur at the 5 position to form hydroxylated derivatives. N-hydroxymethyl derivatives of these two carbamates may also be formed. Hydrolysis appears to be the major metabolic pathway of carbofuran in the animal. Aldicarb is oxidized to its sulfoxide and then hydrolysed to the oxime sulfoxide in animals and plants. Plants hydrolyse the oxime sulfoxide to form the corresponding aldehyde, which is an intermediate in the formation of 2-methyl-2-(methyl-sulfinyl)propanol. Methomyl, which is structurally similar to aldicarb, is metabolized in plants to acetonitrile, carbon dioxide, and methylamine. Bux and Meobal undergo hydrolysis and hydroxylation to form N-hydroxy methylcarbamates, as well as hydroxybutylphenyl and hydroxymethylphenyl methylcarbamates. Zectran, which contains a dimethylamino group, is converted to the methylamino, amino, and methylformamido derivatives by insects and plants. In soil and water, methylcarbamate insecticides are hydrolysed to their respective phenols or oximes. PMID:4999481

  13. Mitochondrial targeting of the human peptide methionine sulfoxide reductase (MSRA), an enzyme involved in the repair of oxidized proteins.

    PubMed

    Hansel, Alfred; Kuschel, Lioba; Hehl, Solveig; Lemke, Cornelius; Agricola, Hans-Jürgen; Hoshi, Toshinori; Heinemann, Stefan H

    2002-06-01

    Peptide methionine sulfoxide reductase (MSRA) catalyzes the reduction of methionine sulfoxide to methionine. This widely expressed enzyme constitutes an important repair mechanism for oxidatively damaged proteins, which accumulate during the manifestation of certain degenerative diseases and aging processes. In addition, it is discussed to be involved in regulatory processes. Here we address the question of how the enzyme's diverse functions are reflected in its subcellular localization. Using fusions of the human version of MSRA with the enhanced green fluorescence protein expressed in various mammalian cell lines, we show a distinct localization at mitochondria. The N-terminal 23 amino acid residues contain the signal for this mitochondrial targeting. Activity tests showed that they are not required for enzyme function. Mitochondrial localization of native MSRA in mouse and rat liver slices was verified with an MSRA-specific antibody by using immunohistochemical methods. The protein was located in the mitochondrial matrix, as demonstrated by using pre-embedding immunostaining and electron microscopy. Mitochondria are the major source of reactive oxygen species (ROS). Therefore, MSRA has to be considered an important means for the general reduction of ROS release from mitochondria.

  14. Hepatic microsomal metabolism of montelukast, a potent leukotriene D4 receptor antagonist, in humans.

    PubMed

    Chiba, M; Xu, X; Nishime, J A; Balani, S K; Lin, J H

    1997-09-01

    Montelukast (L-706,631, MK-0476, SINGULAIR), a potent and selective leukotriene D4 (CysLT1) receptor antagonist, is currently under development for the treatment of asthma. In vitro studies were conducted using human liver microsomes to evaluate: 1) the difference in the metabolic kinetics of montelukast between adult and pediatric subjects; 2) the relative contribution of flavin-containing monooxygenase and cytochrome P450 (P450) to the sulfoxidation; and 3) the P450 isoforms responsible for montelukast oxidation. No statistically significant difference was observed in the in vitro kinetics for acyl glucuronidation and oxidative metabolism between the two age groups. Results from studies on heat inactivation of flavin-containing monooxygenase and immunochemical inhibition by an anti-rat NADPH P450 reductase antibody on montelukast oxidation indicated that all oxidative metabolism of montelukast-including diastereomeric sulfoxidations, as well as 21- and methyl-hydroxylations-are catalyzed exclusively by P450. Five in vitro approaches have been used to identify the P450 isoforms responsible for the human liver microsomal oxidation of montelukast. The experimental results consistently indicated that CYP3A4 catalyzes sulfoxidation and 21-hydroxylation, whereas CYP2C9 selectively mediates methyl-hydroxylation.

  15. High level transient expression of a chloramphenicol acetyl transferase gene by DEAE-dextran mediated DNA transfection coupled with a dimethyl sulfoxide or glycerol shock treatment.

    PubMed Central

    Lopata, M A; Cleveland, D W; Sollner-Webb, B

    1984-01-01

    Using a plasmid containing the bacterial chloramphenicol acetyl transferase gene, we have assayed for transient expression of DNA introduced into mouse L cells by a variety of transfection conditions. High efficiency uptake and expression of this foreign DNA have been achieved by modifying the DEAE dextran mediated transfection procedure of McCutchan and Pagano (1) to include a shock with either dimethyl sulfoxide or glycerol. Inclusion of the shock step can increase expression of the transfected gene a surprising approximately 50 fold. With plasmid constructs that do not replicate after transfection, we can readily detect CAT activity in an overnight autoradiographic exposure from less than 0.1% of an extract from a 60 mm dish of transfected cells. We have determined the amounts of DNA, the amount and time course of DEAE-dextran and dimethyl sulfoxide treatments, the effects of additional DNA, and the time after transfection which yield maximal expression. Overall, this transfection protocol using DEAE-dextran coupled to a shock treatment is simple, straightforward, and gives consistently high levels of expression of the input DNA. Images PMID:6589587

  16. Photochromic ruthenium sulfoxide complexes: evidence for isomerization through a conical intersection.

    PubMed

    McClure, Beth Anne; Mockus, Nicholas V; Butcher, Dennis P; Lutterman, Daniel A; Turro, Claudia; Petersen, Jeffrey L; Rack, Jeffrey J

    2009-09-07

    The complexes [Ru(bpy)(2)(OS)](PF(6)) and [Ru(bpy)(2)(OSO)](PF(6)), where bpy is 2,2'-bipyridine, OS is 2-methylthiobenzoate, and OSO is 2-methylsulfinylbenzoate, have been studied. The electrochemical and photochemical reactivity of [Ru(bpy)(2)(OSO)](+) is consistent with an isomerization of the bound sulfoxide from S-bonded (S-) to O-bonded (O-) following irradiation or electrochemical oxidation. Charge transfer excitation of [Ru(bpy)(2)(OSO)](+) in MeOH results in the appearance of two new metal-to-ligand charge transfer (MLCT) maxima at 355 and 496 nm, while the peak at 396 nm diminishes in intensity. The isomerization is reversible at room temperature in alcohol or propylene carbonate solution. In the absence of light, solutions of O-[Ru(bpy)(2)(OSO)](+) revert to S-[Ru(bpy)(2)(OSO)](+). Kinetic analysis reveals a biexponential decay with rate constants of 5.66(3) x 10(-4) s(-1) and 3.1(1) x 10(-5) s(-1). Cyclic voltammograms of S-[Ru(bpy)(2)(OSO)](+) are consistent with electron-transfer-triggered isomerization of the sulfoxide. Analysis of these voltammograms reveal E(S)(o)' = 0.86 V and E(O)(o)' = 0.49 V versus Ag/Ag(+) for the S- and O-bonded Ru(3+/2+) couples, respectively, in propylene carbonate. We found k(S-->O) = 0.090(15) s(-1) in propylene carbonate and k(S-->O) = 0.11(3) s(-1) in acetonitrile on Ru(III), which is considerably slower than has been reported for other sulfoxide isomerizations on ruthenium polypyridyl complexes following oxidation. The photoisomerization quantum yield (Phi(S-->O) = 0.45, methanol) is quite large, indicating a rapid excited state isomerization rate constant. The kinetic trace at 500 nm is monoexponential with tau = 150 ps, which is assigned to the excited S-->O isomerization rate. There is no spectroscopic or kinetic evidence for an O-bonded (3)MLCT excited state in the spectral evolution of S-[Ru(bpy)(2)(OSO)](+) to O-[Ru(bpy)(2)(OSO)](+). Thus, isomerization occurs nonadiabatically from an S-bonded (or eta(2)-sulfoxide) (3)MLCT excited state to an O-bonded ground state. Density functional theory calculations support the assigned spectroscopy and provide insight into ruthenium ligand bonding.

  17. Additives for High Temperature Hydraulic Fluids.

    DTIC Science & Technology

    HYDRAULIC FLUIDS, ADDITIVES, TRIAZINES, FERROCENES , PHOSPHINE , SULFOXIDES, SYNTHESIS(CHEMISTRY), SCIENTIFIC RESEARCH, FLUORINE COMPOUNDS, PHOSPHINE OXIDES, ORGANIC PHOSPHORUS COMPOUNDS, AMINES, HEAT RESISTANT MATERIALS.

  18. A novel method for the rapid detection of benzo(a)pyrene in liquid milk by dimethyl sulfoxide selectively enhanced synchronous fluorescence spectrometry.

    PubMed

    Lin, Li-Rong; Luo, He-Dong; Li, Xiu-Ying; Li, Na; Zhou, Na; Jia, Yu-Zhu; Liu, Yi-Hong; Li, Yao-Qun

    2014-01-01

    Based on the high solubility efficiency and strong fluorescence response of benzo(a)pyrene (BaP) in dimethyl sulfoxide in combination with the high-performance derivative constant-energy synchronous fluorescence spectroscopic (DCESFS) technique, a simple, sensitive and economic method was developed for the determination of BaP in liquid milk. This method comprises ultrasound-assisted solvent extraction, solvent replacement and DCESFS detection. No saponification or other tedious clean-up procedures were needed. The recoveries of BaP in different milk samples were greater than 82%. Detection limits in full- and low-fat milk were 0.03 and 0.04 μg kg(-1), respectively.

  19. Electrical conductivity of solutions of copper(II) nitrate crystalohydrate in dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Mamyrbekova, Aigul K.; Mamitova, A. D.; Mamyrbekova, Aizhan K.

    2016-06-01

    Conductometry is used to investigate the electric conductivity of Cu(NO3)2 ṡ 3H2O solutions in dimethyl sulfoxide in the 0.01-2.82 M range of concentrations and at temperatures of 288-318 K. The limiting molar conductivity of the electrolyte and the mobility of Cu2+ and NO 3 - ions, the effective coefficients of diffusion of copper(II) ions and nitrate ions, and the degree and constant of electrolytic dissociation are calculated for different temperatures from the experimental results. It is established that solutions containing 0.1-0.6 M copper nitrate trihydrate in DMSO having low viscosity and high electrical conductivity can be used in electrochemical deposition.

  20. Cryopreservation of umbilical cord blood-derived mesenchymal stem cells without dimethyl sulfoxide.

    PubMed

    Wang, Hai-Yan; Lun, Zhao-Rong; Lu, Shu-Shen

    2011-01-01

    Cryopreservation of umbilical cord blood-derived mesenchymal stem cells (UCB-derived MSCs) is crucial step for its clinical applications in cell transplantation therapy. In the cryopreservation of MSCs, dimethyl sulfoxide has been widely used as a cryoprotectant (CPA). However, it has been proved that DMSO has toxic side effects to human body. In this study, DMSO-free CPA solutions which contained ethylene glycol (EG), 1, 2-propylene glycol (PG) and sucrose as basic CPAs, supplemented with polyvinyl alcohol (PVA) as an additive, were developed for the cryopreservation of UCB-derived MSCs. The cryopreservation of UCB-derived MSCs was achieved by vitrification via plunging into liquid nitrogen and by programmed freezing via an optical-DSC system respectively. The viability of thawed UCB-derived MSCs was tested by trypan blue exclusion assay. Results showed that the viability of thawed UCB-derived MSCs was enhanced from 71.2% to 95.4% in the presence of PVA for vitrification, but only < 10% to 45% of viability was found for programmed freezing. These results indicate that PVA exerts a beneficial effect on the cryopreservation of UCB-derived MSCs and suggest the vitrification in combination with the dimethyl sulfoxide free CPA solutions supplemented with PVA would be an efficient protocol for the cryopreservation of UCB-derived MSCs.

  1. Effect of the water content on the retention and enantioselectivity of albendazole and fenbendazole sulfoxides using amylose-based chiral stationary phases in organic-aqueous conditions.

    PubMed

    Materazzo, Sabrina; Carradori, Simone; Ferretti, Rosella; Gallinella, Bruno; Secci, Daniela; Cirilli, Roberto

    2014-01-31

    Four commercially available immobilized amylose-derived CSPs (Chiralpak IA-3, Chiralpak ID-3, Chiralpak IE-3 and Chiralpak IF-3) were used in the HPLC analysis of the chiral sulfoxides albendazole (ABZ-SO) and fenbendazole (FBZ-SO) and their in vivo sulfide precursor (ABZ and FBZ) and sulfone metabolite (ABZ-SO2 and FBZ-SO2) under organic-aqueous mode. U-shape retention maps, established by varying the water content in the acetonitrile- and ethanol-water mobile phases, were indicative of two retention mechanisms operating on the same CSP. The dual retention behavior of polysaccharide-based CSPs was exploited to design greener enantioselective and chemoselective separations in a short time frame. The enantiomers of ABZ-SO and FBZ-SO were baseline resolved with water-rich mobile phases (with the main component usually being 50-65% water in acetonitrile) on the IF-3 CSP and ethanol-water 100:5 mixture on the IA-3 and IE-3 CSPs. A simultaneous separation of ABZ (or FBZ), enantiomers of the corresponding sulfoxide and sulfone was achieved on the IA-3 using ethanol-water 100:60 (acetonitrile-water 100:100 for FBZ) as a mobile phase. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Apratoxin H and Apratoxin A Sulfoxide from the Red Sea Cyanobacterium Moorea producens

    PubMed Central

    Thornburg, Christopher C.; Cowley, Elise S.; Sikorska, Justyna; Shaala, Lamiaa A.; Ishmael, Jane E.; Youssef, Diaa T.A.; McPhail, Kerry L.

    2014-01-01

    Cultivation of the marine cyanobacterium Moorea producens, collected from the Nabq Mangroves in the Gulf of Aqaba (Red Sea), led to the isolation of new apratoxin analogues, apratoxin H (1) and apratoxin A sulfoxide (2), together with the known apratoxins A-C, lyngbyabellin B and hectochlorin. The absolute configuration of these new potent cytotoxins was determined by chemical degradation, MS, NMR, and CD spectroscopy. Apratoxin H (1) contains pipecolic acid in place of the proline residue present in apratoxin A, expanding the known suite of naturally occurring analogues that display amino acid substitutions within the final module of the apratoxin biosynthetic pathway. The oxidation site of apratoxin A sulfoxide (2) was deduced from MS fragmentation patterns and IR data, and 2 could not be generated experimentally by oxidation of apratoxin A. The cytotoxicity of 1 and 2 to human NCI-H460 lung cancer cells (IC50 = 3.4 and 89.9 nM, respectively) provides further insight into the structure–activity relationships in the apratoxin series. Phylogenetic analysis of the apratoxin-producing cyanobacterial strains belonging to the genus Moorea, coupled with the recently annotated apratoxin biosynthetic pathway, supports the notion that apratoxin production and structural diversity may be specific to their geographical niche. PMID:24016099

  3. Dimethyl sulfoxide reductase activity by anaerobically grown Escherichia coli HB101.

    PubMed Central

    Bilous, P T; Weiner, J H

    1985-01-01

    Escherichia coli grew anaerobically on a minimal medium with glycerol as the carbon and energy source and dimethyl sulfoxide (DMSO) as the terminal electron acceptor. DMSO reductase activity, measured with an artificial electron donor (reduced benzyl viologen), was preferentially associated with the membrane fraction (77 +/- 10% total cellular activity). A Km for DMSO reduction of 170 +/- 60 microM was determined for the membrane-bound activity. Methyl viologen, reduced flavin mononucleotide, and reduced flavin adenine dinucleotide also served as electron donors for DMSO reduction. Methionine sulfoxide, a DMSO analog, could substitute for DMSO in both the growth medium and in the benzyl viologen assay. DMSO reductase activity was present in cells grown anaerobically on DMSO but was repressed by the presence of nitrate or by aerobic growth. Anaerobic growth on DMSO coinduced nitrate, fumarate, and and trimethylamine-N-oxide reductase activities. The requirement of a molybdenum cofactor for DMSO reduction was suggested by the inhibition of growth and a 60% reduction in DMSO reductase activity in the presence of 10 mM sodium tungstate. Furthermore, chlorate-resistant mutants chlA, chlB, chlE, and chlG were unable to grow anaerobically on DMSO. DMSO reduction appears to be under the control of the fnr gene. PMID:3888958

  4. Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity

    PubMed Central

    Châtelain, Emilie; Satour, Pascale; Laugier, Edith; Ly Vu, Benoit; Payet, Nicole; Rey, Pascal; Montrichard, Françoise

    2013-01-01

    Seeds are in a natural oxidative context leading to protein oxidation. Although inevitable for proper progression from maturation to germination, protein oxidation at high levels is detrimental and associated with seed aging. Oxidation of methionine to methionine sulfoxide is a common form of damage observed during aging in all organisms. This damage is reversible through the action of methionine sulfoxide reductases (MSRs), which play key roles in lifespan control in yeast and animal cells. To investigate the relationship between MSR capacity and longevity in plant seeds, we first used two Medicago truncatula genotypes with contrasting seed quality. After characterizing the MSR family in this species, we analyzed gene expression and enzymatic activity in immature and mature seeds exhibiting distinct quality levels. We found a very strong correlation between the initial MSR capacities in different lots of mature seeds of the two genotypes and the time to a drop in viability to 50% after controlled deterioration. We then analyzed seed longevity in Arabidopsis thaliana lines, in which MSR gene expression has been genetically altered, and observed a positive correlation between MSR capacity and longevity in these seeds as well. Based on our data, we propose that the MSR repair system plays a decisive role in the establishment and preservation of longevity in plant seeds. PMID:23401556

  5. Amine-functionalized Zn(ii) MOF as an efficient multifunctional catalyst for CO2 utilization and sulfoxidation reaction.

    PubMed

    Patel, Parth; Parmar, Bhavesh; Kureshy, Rukhsana I; Khan, Noor-Ul H; Suresh, Eringathodi

    2018-06-19

    Herein, a zinc(ii)-based 3D mixed ligand metal organic framework (MOF) was synthesized via versatile routes including green mechanochemical synthesis. The MOF {[Zn(ATA)(L)·H2O]}n (ZnMOF-1-NH2) has been characterized by various physico-chemical techniques, including SCXRD, and composed of the bipyridyl-based Schiff base (E)-N'-(pyridin-4-ylmethylene)isonicotinohydrazide (L) and 2-aminoterephthalic acid (H2ATA) ligands as linkers. The MOF material has been explored as a multifunctional heterogeneous catalyst for the cycloaddition of alkyl and aryl epoxides with CO2 and sulfoxidation reactions of aryl sulfides. The influence of various reaction parameters is examined to optimize the performance of the catalytic reactions. It is found that solvent-free catalytic reaction conditions offer good catalytic conversion in the case of cyclic carbonates, and for sulfoxide, good conversion and selectivity are achieved in the presence of DCM as a solvent medium under ambient reaction conditions. The chemical and thermal stability of the catalyst are excellent and it is active for up to four catalytic cycles without significant loss in activity. Furthermore, based on the catalytic activity and structural evidence, a plausible mechanism for both catalytic reactions is proposed.

  6. Kinetically controlled synthesis of Au102(SPh)44 nanoclusters and catalytic application.

    PubMed

    Chen, Yongdong; Wang, Jin; Liu, Chao; Li, Zhimin; Li, Gao

    2016-05-21

    We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent thiophenol ligands, evidenced by the analyses of UV-vis and MALDI mass spectrometry. Finally, the TiO2-supported Au102(SPh)44 nanocluster catalyst is investigated in the selective oxidation of sulfides into sulfoxides by the PhIO oxidant and gives rise to high catalytic activity (e.g., 80-99% conversion of R-S-R' sulfides with 96-99% selectivity for R-S([double bond, length as m-dash]O)-R' sulfoxides). The Au102(SPh)44/TiO2 catalyst also shows excellent recyclability in the sulfoxidation process.

  7. Evaluation of cell wall damage by dimethyl sulfoxide in Candida species.

    PubMed

    León-García, María Cristina; Ríos-Castro, Emmanuel; López-Romero, Everardo; Cuéllar-Cruz, Mayra

    2017-10-01

    Studies dealing with the response of microorganisms to oxidative stress require the dissolution of oxidant agents in an appropriate solvent. A commonly used medium is dimethyl sulfoxide, which has been considered as an innocuous polar solvent. However, we have observed significant differences between control, untreated cells and those receiving increasing amounts of the oxidant and hence increasing amounts of DMSO, to the maximum allowed of 1%. Here we show that, while this solvent does not influence yeast cell viability, it does affect expression of cell wall proteins as well as catalase activity. Therefore, its use in future studies of oxidative stress as an innocuous solvent should be reconsidered. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Hypochlorous Acid Reacts with the N-Terminal Methionines of Proteins to Give Dehydromethionine, a Potential Biomarker for Neutrophil-Induced Oxidative Stress†

    PubMed Central

    Beal, Jennifer L.; Foster, Steven B.; Ashby, Michael T.

    2009-01-01

    Electrophilic halogenating agents, including hypohalous acids and haloamines, oxidize free methionine and the N-terminal methionines of peptides and proteins (e.g., Met-1 of anti-inflammatory peptide 1 and ubiquitin) to produce dehydromethionine (a five-membered isothiazolidinium heterocycle). Amide derivatives of methionine are oxidized to the corresponding sulfoxide derivatives under the same reaction conditions (e.g., Met-3 of anti-inflammatory peptide 1). Other biological oxidants, including hydrogen peroxide and peroxynitrite, also only produce the corresponding sulfoxides. Hypothiocyanite does not react with methionine residues. It is suggested that dehydromethionine may be a useful biomarker for the myeloperoxidase-induced oxidative stress associated with many inflammatory diseases. PMID:19839600

  9. Asymmetric allylation of α-ketoester-derived N-benzoylhydrazones promoted by chiral sulfoxides/N-oxides Lewis bases: highly enantioselective synthesis of quaternary α-substituted α-allyl-α-amino acids.

    PubMed

    Reyes-Rangel, Gloria; Bandala, Yamir; García-Flores, Fred; Juaristi, Eusebio

    2013-09-01

    Chiral sulfoxides/N-oxides (R)-1 and (R,R)-2 are effective chiral promoters in the enantioselective allylation of α-keto ester N-benzoylhydrazone derivatives 3a-g to generate the corresponding N-benzoylhydrazine derivatives 4a-g, with enantiomeric excesses as high as 98%. Representative hydrazine derivatives 4a-b were subsequently treated with SmI2, and the resulting amino esters 5a-b with LiOH to obtain quaternary α-substituted α-allyl α-amino acids 6a-b, whose absolute configuration was assigned as (S), with fundament on chemical correlation and electronic circular dichroism (ECD) data. © 2013 Wiley Periodicals, Inc.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tostar, Sandra, E-mail: sandra.tostar@chalmers.se; Stenvall, Erik; Boldizar, Antal

    Highlights: • We have proposed a method to recover antimony from electronic plastics. • The most efficient acid solution was sodium hydrogen tartrate in dimethyl sulfoxide. • Gamma irradiation did not influence the antimony leaching ability. - Abstract: There has been a recent interest in antimony since the availability in readily mined areas is decreasing compared to the amounts used. It is important in many applications such as flame retardants and in the production of polyester, which can trigger an investigation of the leachability of antimony from plastics using different acids. In this paper, different types of acids are testedmore » for their ability to leach antimony from a discarded computer housing, made of poly(acrylonitrile butadiene styrene), which is a common plastic type used in electrical and electronic equipment. The acid solutions included sodium hydrogen tartrate (0.5 M) dissolved in either dimethyl sulfoxide or water (at ca. 23 °C and heated to ca. 105 °C). The metal content after leaching was determined by inductively coupled plasma optical emission spectroscopy. The most efficient leaching medium was the heated solution of sodium hydrogen tartrate in dimethyl sulfoxide, which leached almost half of the antimony from the poly(acrylonitrile butadiene styrene). Gamma irradiation, which is proposed to improve the mechanical properties in plastics, was used here to investigate the influence of antimony leaching ability. No significant change in the amount of leached antimony could be observed.« less

  11. Methionine sulfoxide reductase A deficiency exacerbates acute liver injury induced by acetaminophen.

    PubMed

    Singh, Mahendra Pratap; Kim, Ki Young; Kim, Hwa-Young

    2017-02-26

    Acetaminophen (APAP) overdose induces acute liver injury via enhanced oxidative stress and glutathione (GSH) depletion. Methionine sulfoxide reductase A (MsrA) acts as a reactive oxygen species scavenger by catalyzing the cyclic reduction of methionine-S-sulfoxide. Herein, we investigated the protective role of MsrA against APAP-induced liver damage using MsrA gene-deleted mice (MsrA -/- ). We found that MsrA -/- mice were more susceptible to APAP-induced acute liver injury than wild-type mice (MsrA +/+ ). The central lobule area of the MsrA -/- liver was more impaired with necrotic lesions. Serum alanine transaminase, aspartate transaminase, and lactate dehydrogenase levels were significantly higher in MsrA -/- than in MsrA +/+ mice after APAP challenge. Deletion of MsrA enhanced APAP-induced hepatic GSH depletion and oxidative stress, leading to increased susceptibility to APAP-induced liver injury in MsrA-deficient mice. APAP challenge increased Nrf2 activation more profoundly in MsrA -/- than in MsrA +/+ livers. Expression and nuclear accumulation of Nrf2 and its target gene expression were significantly elevated in MsrA -/- than in MsrA +/+ livers after APAP challenge. Taken together, our results demonstrate that MsrA protects the liver from APAP-induced toxicity. The data provided herein constitute the first in vivo evidence of the involvement of MsrA in hepatic function under APAP challenge. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Treatment of extravasation of both doxorubicin and vincristine administration in a Y-site infusion.

    PubMed

    Comas, D; Mateu, J

    1996-03-01

    To describe a patient treated with vincristine, doxorubicin, and dexamethasone who experienced extravasation of both doxorubicin and vincristine during a Y-site infusion. A 74-year-old white woman was diagnosed with multiple myeloma IgA kappa in stage IIA. One year after a complete remission she relapsed. Her treatment included daily doxorubicin 16 mg in 500 mL of dextrose 5% and vincristine 0.4 mg in 500 mL of dextrose 5% administered in a Y-site continuous infusion into a peripheral vein of her left forearm. Extravasation occurred during administration of these drugs. Immediately, chondroitinsulfatase, a mucopolysaccharidase similar to hyaluronidase, was administered subcutaneously around the extravasation area and repeated 24 hours later. Furthermore, dimethyl sulfoxide 90% v/v was applied topically on the area four times daily for 2 weeks. All inflammatory signs resolved and no necrosis developed. Ths is the first report of an extravasation of two cytotoxic drugs. Doxorubicin and vincristine have different antidotes and opposite physical treatments for their extravasation. The antidotes dimethyl sulfoxide and chondroitinsulfatase have different mechanisms of action, but both cause uptake of the cytotoxic agent from the tissue and are likely to be administered together. No warming or cooling was performed. Topical dimethyl sulfoxide four times daily for 14 days plus subcutaneous chondroitinsulfatase in one or two applications effectively treated an extravasation of both doxorubicin and vincristine in our patient.

  13. Characterisation, solubility and intrinsic dissolution behaviour of benzamide: dibenzyl sulfoxide cocrystal.

    PubMed

    Grossjohann, Christine; Eccles, Kevin S; Maguire, Anita R; Lawrence, Simon E; Tajber, Lidia; Corrigan, Owen I; Healy, Anne Marie

    2012-01-17

    This study examined the 1:1 cocrystal benzamide:dibenzyl sulfoxide, comprising the poorly water soluble dibenzyl sulfoxide (DBSO) and the more soluble benzamide (BA), to establish if this cocrystal shows advantages in terms of solubility and dissolution in comparison to its pure components and to a physical mixture. Solubility studies were performed by measuring DBSO solubility as a function of BA concentration, and a ternary phase diagram was constructed. Dissolution was examined through intrinsic dissolution studies. Solid-state characterisation was carried out by powder X-ray diffraction (PXRD), energy-dispersive X-ray diffraction (EDX), infra-red spectroscopy (ATR-FTIR) and thermal analysis. DBSO solubility was increased by means of complexation with BA. For the cocrystal, the solubility of both components was decreased in comparison to pure components. The cocrystal was identified as metastable and incongruently saturating. Dissolution studies revealed that dissolution of DBSO from the cocrystal was not enhanced in comparison to the pure compound or a physical mix, while BA release was retarded and followed square root of time kinetics. At the disk surface a layer of DBSO was found. The extent of complexation in solution can change the stability of the complex substantially. Incongruent solubility and dissolution behaviour of a cocrystal can result in no enhancement in the dissolution of the less soluble component and retardation of release of the more soluble component. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Coordination chemistry of highly hemilabile bidentate sulfoxide N-heterocyclic carbenes with palladium(II).

    PubMed

    Yu, Kuo-Hsuan; Wang, Chia-Ching; Chang, I-Hsin; Liu, Yi-Hung; Wang, Yu; Elsevier, Cornelis J; Liu, Shiuh-Tzung; Chen, Jwu-Ting

    2014-12-01

    Imidazolium salts, [RS(O)-CH2 (C3 H3 N2 )Mes]Cl (R=Me (L1a), Ph (L1b)); Mes=mesityl), make convenient carbene precursors. Palladation of L1a affords the monodentate dinuclear complex, [(PdCl2 {MeS(O)CH2 (C3 H2 N2 )Mes})2 ] (2a), which is converted into trans-[PdCl2 (NHC)2] (trans-4a; N-heterocyclic carbene) with two rotamers in anti and syn configurations. Complex trans-4a can isomerize into cis-4a(anti) at reflux in acetonitrile. Abstraction of chlorides from 4a or 4b leads to the formation of a new dication: trans-[Pd{RS(O)CH2(C3H2N2)Mes}2](PF6)2 (R=Me (5a), Ph (5b)). The X-ray structure of 5a provides evidence that the two bidentate SO-NHC ligands at palladium(II) are in square-planar geometry. Two sulfoxides are sulfur- and oxygen-bound, and constitute five- and six-membered chelate rings with the metal center, respectively. In acetonitrile, complexes 5a or 5b spontaneously transform into cis-[Pd(NHC)2(NCMe)2](PF6)2. Similar studies of thioether-NHCs have also been examined for comparison. The results indicate that sulfoxides are more labile than thioethers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Pulsed losses and degradation of aldicarb in a South Florida agricultural watershed.

    PubMed

    Wilson, P Chris; Foos, Jane Ferguson; Jones, Russell L

    2005-01-01

    The objectives of these studies were to characterize patterns of movement of aldicarb, aldicarb sulfoxide, and aldicarb sulfone from a typical canalized South Florida watershed and to evaluate aldicarb dissipation in surface water in situ within a citrus grove. Surface water samples were collected daily or every other day from the discharge point for the watershed beginning May 15, 2001, through August 15, 2002. Of 457 samples collected, aldicarb, aldicarb sulfoxide, and aldicarb sulfone were detected in 6, 1, and 13, respectively. Aldicarb was detected from February through May 2002, corresponding to the legal application season of January 1 through April 30 in Florida. Aldicarb concentrations ranged from <0.16 to 4.97 ng ml(-1). A single detection (0.99 ng ml(-1)) of aldicarb sulfoxide occurred in March 2001. The majority of aldicarb sulfone detections occurred during June and July, 2001, after the application season, and ranged from <0.22 to 0.89 ng ml(-1). The half-life for aldicarb in fortified, native surface water ranged from 1.86 to 3.64 days depending on the source of water and the presence of sediments. These results demonstrated the utility of sampling on a frequent basis (compared with monthly or quarterly) for better characterizing pesticide discharges, especially in flashy systems such as canal-drained watersheds within South Florida.

  16. [Effective dimethyl sulfoxide (DMSO) occlusive dressing technique for amyloidosis of the urinary bladder].

    PubMed

    Hasegawa, Yoshihiro; Kanda, Hideki; Miki, Manabu; Masui, Satoru; Yoshio, Yuko; Yamada, Yasushi; Soga, Norihito; Arima, Kiminobu; Sugimura, Yoshiki

    2013-10-01

    A 48-year-old married woman complaining of macroscopic hematuria and cystitis symptom was admitted to our institute. Flexible cystoscopy revealed many yellowish, nodular masses at the paries posterior of the urinary bladder, and cold-punch biopsy proved it to be amyloidosis. Serum amyloid protein A (SAA) was high, and suggested systemic amyloidosis. Renal biopsy and colon fiberscopy did not reveal any abnormalities. We therefore diagnosed a primary localized amyloidosis of the urinary bladder. Transurethral resection and dimethyl sulfoxide (DMSO) infusion therapy are used to treat amyloidosis of the urinary bladder. However there is no definite cure for amyloidosis of the urinary bladder. Therefore we selected DMSO occlusive dressing technique therapy. After 5 years of therapy, there was no evidence of a recurrence of amyloidosis.

  17. A highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film with the solvent bath treatment by dimethyl sulfoxide as cathode for polymer tantalum capacitor

    NASA Astrophysics Data System (ADS)

    Ma, Xiaopin; Wang, Xiuyu; Li, Mingxiu; Chen, Tongning; Zhang, Hao; Chen, Qiang; Ding, Bonan; Liu, Yanpeng

    2016-06-01

    The highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films were prepared on porous tantalum pentoxide surface as cathode for polymer tantalum capacitors (PTC). The electrical performances of PTC with PEDOT:PSS films as cathode were optimized by dimethyl sulfoxide (DMSO) bath treatment. With the DMSO-bath treatment of PTC, the equivalent series resistance (ESR) of PTC decreased from 25 mΩ to 9 mΩ. The ultralow ESR led to better capacitance-frequency performance. The device reliability investigation revealed the enhanced environmental stability of PTC. The enhanced performances were attributed to the conductivity improvement of PEDOT:PSS cathode films and the removal of excess PSS from PEDOT:PSS films.

  18. The OH-initiated atmospheric oxidation of divinyl sulfoxide: A theoretical investigation on the reaction mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Weichao; Zhang, Dongju

    2012-08-01

    The potential energy surfaces for the OH + divinyl sulfoxide reaction in the presence of O2/NO are theoretically characterized at the CCSD(T)/6-311+G(d,p)//BH&HLYP/6-311++G(d,p)+ZPE level of theory. Various possible pathways including the direct hydrogen abstraction channels and the addition-elimination channels are considered. The calculations show that the exclusive feasible entrance channel is the formation of adduct CH2(OH)CHS(O)CHdbnd CH2 (IM1) in the initial reaction pathways. In the atmosphere, the newly formed adduct IM1 can further react with O2/NO to form the dominant products HCHO + C(O)HS(O)CHdbnd CH2 (P9). The calculated results confirm the experimental studies.

  19. Catalyst–Controlled C–O versus C–N Allylic Functionalization of Terminal Olefins

    PubMed Central

    Strambeanu, Iulia I.; White, M. Christina

    2014-01-01

    The divergent synthesis of syn-1, 2-aminoalcohol or syn-1,2-diamine precursors from a common terminal olefin has been accomplished using a combination of palladium(II) catalysis with Lewis acid co-catalysis. Palladium(II)/bis-sulfoxide catalysis with a silver triflate co-catalyst leads for the first time to anti-2-aminooxazolines (C—O) in good to excellent yields. Simple removal of the bis-sulfoxide ligand from this reaction results in a complete switch in reactivity to afford anti-imidazolidinone products (C—N) in good yields and excellent diastereoselectivities. Mechanistic studies suggest the divergent C—O versus C—N reactivity from a common ambident nucleophile arises due to a switch in mechanism from allylic C—H cleavage/functionalization to olefin isomerization/oxidative amination. PMID:23855956

  20. Effect of ionic strength on the thermodynamic characteristics of complexation between Fe(III) ion and nicotinamide in water-ethanol and water-dimethyl sulfoxide mixtures

    NASA Astrophysics Data System (ADS)

    Gamov, G. A.; Grazhdan, K. V.; Gavrilova, M. A.; Dushina, S. V.; Sharnin, V. A.; Baranski, A.

    2013-06-01

    Solutions of iron(III) perchlorate in water, water-ethanol, and water-dimethyl sulfoxide solvents (x_{H_2 O} = 0.7 and 0.25 mole fractions) at ionic strength values I = 0.1, 0.25, and 0.5 are studied by IR spectroscopy. Analysis of the absorption bands of perchlorate ion shows that it does not participate in association processes. It is demonstrated that in the range of ionic strength values between 0 and 0.5 (NaClO4), it affects neither the results from potentiometric titration to determine the stability constants of the iron(III)-nicotinamide complex nor the thermal effects of complexation determined via direct calorimetry in a binary solvent containing 0.3 mole fractions (m.f.) of a non-aqueous component.

  1. Induction of sister chromatid exchange in the presence of gadolinium-DTPA and its reduction by dimethyl sulfoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamazaki, Etsuo; Fukuda, Hozumi; Shibuya, Hitoshi

    The authors investigate the frequency of sister chromatid exchange (SCE) after the addition of gadolinium (Gd)-DTPA to venous blood samples. Venous blood was obtained from nonsmokers. Samples were incubated with Gd-DTPA alone or in combination with mitomycin C, cytarabine, and dimethyl sulfoxide (DMSO), and then evaluated for SCEs. The frequency of SCE increased with the concentration of Gd-DTPA and as each chemotherapeutic agent was added. Sister chromatid exchange frequencies were lower when the blood was treated with a combination of Gd-DTPA and DMSO compared with Gd-DTPA alone. The increase in frequency of SCE seen after the addition of Gd-DTPA wasmore » decreased by the addition of DMSO, indicating the production of hydroxyl radicals. The effect likely is dissociation-related. 14 refs., 6 tabs.« less

  2. Solvent dependent frequency shift and Raman noncoincidence effect of S=O stretching mode of Dimethyl sulfoxide in liquid binary mixtures.

    PubMed

    Upadhyay, Ganesh; Devi, Th Gomti; Singh, Ranjan K; Singh, A; Alapati, P R

    2013-05-15

    The isotropic and anisotropic Raman peak frequencies of S=O stretching mode of Dimethyl sulfoxide (DMSO) have been discussed in different chemical and isotopic solvent molecules using different mechanisms. The shifting of peak frequency in further dilution of DMSO with solvent molecule is observed for all solvents. Transition dipole - transition dipole interaction and hydrogen bonding may play a major role in shifting of peak frequencies. The non-coincidence effect (NCE) of DMSO was determined for all the solvents and compared with four theoretical models such as McHale's model, Mirone's modification of McHale's model, Logan's model and Onsager-Fröhlich dielectric continuum model respectively. Most of the theoretical models are largely consistent with our experimental data. Copyright © 2013. Published by Elsevier B.V.

  3. Model studies on precursor system generating blue pigment in onion and garlic.

    PubMed

    Imai, Shinsuke; Akita, Kaori; Tomotake, Muneaki; Sawada, Hiroshi

    2006-02-08

    Reactions involved in blue-green discoloration in a mixture of onion (Allium cepa L.) and garlic (Allium sativum L.) were investigated. Vivid-blue color was successfully reproduced by using a defined model reaction system comprising only trans-(+)-S-(1-propenyl)-L-cysteine sulfoxide (1-PeCSO) from onion, S-allyl-L-cysteine sulfoxide (2-PeCSO) from garlic, purified alliinase (EC 4.4.1.4), and glycine (or some other amino acids). Four reaction steps identified and factors affecting the blue color formation were in good agreement with those suggested by earlier investigators. When crude onion alliinase was used in place of garlic alliinase, less pigment was formed. This result was explained by a difference in the amount of thiosulfinates, colorless intermediates termed color developers, yielded from 1-PeCSO by these enzymes.

  4. A dielectric barrier discharge terminally inactivates RNase A by oxidizing sulfur-containing amino acids and breaking structural disulfide bonds

    NASA Astrophysics Data System (ADS)

    Lackmann, J.-W.; Baldus, S.; Steinborn, E.; Edengeiser, E.; Kogelheide, F.; Langklotz, S.; Schneider, S.; Leichert, L. I. O.; Benedikt, J.; Awakowicz, P.; Bandow, J. E.

    2015-12-01

    RNases are among the most stable proteins in nature. They even refold spontaneously after heat inactivation, regaining full activity. Due to their stability and universal presence, they often pose a problem when experimenting with RNA. We investigated the capabilities of nonthermal atmospheric-pressure plasmas to inactivate RNase A and studied the inactivation mechanism on a molecular level. While prolonged heating above 90 °C is required for heat inactivating RNase A, direct plasma treatment with a dielectric barrier discharge (DBD) source caused permanent inactivation within minutes. Circular dichroism spectroscopy showed that DBD-treated RNase A unfolds rapidly. Raman spectroscopy indicated methionine modifications and formation of sulfonic acid. A mass spectrometry-based analysis of the protein modifications that occur during plasma treatment over time revealed that methionine sulfoxide formation coincides with protein inactivation. Chemical reduction of methionine sulfoxides partially restored RNase A activity confirming that sulfoxidation is causal and sufficient for RNase A inactivation. Continued plasma exposure led to over-oxidation of structural disulfide bonds. Using antibodies, disulfide bond over-oxidation was shown to be a general protein inactivation mechanism of the DBD. The antibody’s heavy and light chains linked by disulfide bonds dissociated after plasma exposure. Based on their ability to inactivate proteins by oxidation of sulfur-containing amino acids and over-oxidation of disulfide bonds, DBD devices present a viable option for inactivating undesired or hazardous proteins on heat or solvent-sensitive surfaces.

  5. Methionine sulfoxide reductase A protects hepatocytes against acetaminophen-induced toxicity via regulation of thioredoxin reductase 1 expression.

    PubMed

    Singh, Mahendra Pratap; Kwak, Geun-Hee; Kim, Ki Young; Kim, Hwa-Young

    2017-06-03

    Thioredoxin reductase 1 (TXNRD1) is associated with susceptibility to acetaminophen (APAP)-induced liver damage. Methionine sulfoxide reductase A (MsrA) is an antioxidant and protein repair enzyme that specifically catalyzes the reduction of methionine S-sulfoxide residues. We have previously shown that MsrA deficiency exacerbates acute liver injury induced by APAP. In this study, we used primary hepatocytes to investigate the underlying mechanism of the protective effect of MsrA against APAP-induced hepatotoxicity. MsrA gene-deleted (MsrA -/- ) hepatocytes showed higher susceptibility to APAP-induced cytotoxicity than wild-type (MsrA +/+ ) cells, consistent with our previous in vivo results. MsrA deficiency increased APAP-induced glutathione depletion and reactive oxygen species production. APAP treatment increased Nrf2 activation more profoundly in MsrA -/- than in MsrA +/+ hepatocytes. Basal TXNRD1 levels were significantly higher in MsrA -/- than in MsrA +/+ hepatocytes, while TXNRD1 depletion in both MsrA -/- and MsrA +/+ cells resulted in increased resistance to APAP-induced cytotoxicity. In addition, APAP treatment significantly increased TXNRD1 expression in MsrA -/- hepatocytes, while no significant change was observed in MsrA +/+ cells. Overexpression of MsrA reduced APAP-induced cytotoxicity and TXNRD1 expression levels in APAP-treated MsrA -/- hepatocytes. Collectively, our results suggest that MsrA protects hepatocytes from APAP-induced cytotoxicity through the modulation of TXNRD1 expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Methionine sulfoxide reductase A protects against lipopolysaccharide-induced septic shock via negative regulation of the proinflammatory responses.

    PubMed

    Singh, Mahendra Pratap; Kim, Ki Young; Kwak, Geun-Hee; Baek, Suk-Hwan; Kim, Hwa-Young

    2017-10-01

    Methionine sulfoxide reductase A (MsrA) is a major antioxidant enzyme that specifically catalyzes the reduction of methionine S-sulfoxide. In this study, we used MsrA gene-knockout (MsrA -/- ) mice and bone marrow-derived macrophages (BMDMs) to investigate the role of MsrA in the regulation of inflammatory responses induced by lipopolysaccharide (LPS). MsrA -/- mice were more susceptible to LPS-induced lethal shock than wild-type (MsrA +/+ ) mice. Serum levels of the proinflammatory cytokines IL-6 and TNF-α induced by LPS were higher in MsrA -/- than in MsrA +/+ mice. MsrA deficiency in the BMDMs also increased the LPS-induced cytotoxicity as well as TNF-α level. Basal and LPS-induced reactive oxygen species (ROS) levels were higher in MsrA -/- than in MsrA +/+ BMDMs. Phosphorylation levels of p38, JNK, and ERK were higher in MsrA -/- than in MsrA +/+ BMDMs in response to LPS, suggesting that MsrA deficiency increases MAPK activation. Furthermore, MsrA deficiency increased the expression and nuclear translocation of NF-κB and the expression of inducible nitric oxide synthase, a target gene of NF-κB, in response to LPS. Taken together, our results suggest that MsrA protects against LPS-induced septic shock, and negatively regulates proinflammatory responses via inhibition of the ROS-MAPK-NF-κB signaling pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Abundant Rodent Furan-Derived Urinary Metabolites Are Associated with Tobacco Smoke Exposure in Humans.

    PubMed

    Grill, Alex E; Schmitt, Thaddeus; Gates, Leah A; Lu, Ding; Bandyopadhyay, Dipankar; Yuan, Jian-Min; Murphy, Sharon E; Peterson, Lisa A

    2015-07-20

    Furan, a possible human carcinogen, is found in heat treated foods and tobacco smoke. Previous studies have shown that humans are capable of converting furan to its reactive metabolite, cis-2-butene-1,4-dial (BDA), and therefore may be susceptible to furan toxicity. Human risk assessment of furan exposure has been stymied because of the lack of mechanism-based exposure biomarkers. Therefore, a sensitive LC-MS/MS assay for six furan metabolites was applied to measure their levels in urine from furan-exposed rodents as well as in human urine from smokers and nonsmokers. The metabolites that result from direct reaction of BDA with lysine (BDA-N(α)-acetyllysine) and from cysteine-BDA-lysine cross-links (N-acetylcysteine-BDA-lysine, N-acetylcysteine-BDA-N(α)-acetyllysine, and their sulfoxides) were targeted in this study. Five of the six metabolites were identified in urine from rodents treated with furan by gavage. BDA-N(α)-acetyllysine, N-acetylcysteine-BDA-lysine, and its sulfoxide were detected in most human urine samples from three different groups. The levels of N-acetylcysteine-BDA-lysine sulfoxide were more than 10 times higher than that of the corresponding sulfide in many samples. The amount of this metabolite was higher in smokers relative to that in nonsmokers and was significantly reduced following smoking cessation. Our results indicate a strong relationship between BDA-derived metabolites and smoking. Future studies will determine if levels of these biomarkers are associated with adverse health effects in humans.

  8. 21 CFR 524.660a - Dimethyl sulfoxide solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... days. (2) Not for use in horses and dogs intended for breeding purposes nor in horses slaughtered for... per day. Total duration of therapy should not exceed 30 days. (ii) In dogs administered 3 or 4 times...

  9. 21 CFR 524.660a - Dimethyl sulfoxide solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... days. (2) Not for use in horses and dogs intended for breeding purposes nor in horses slaughtered for... per day. Total duration of therapy should not exceed 30 days. (ii) In dogs administered 3 or 4 times...

  10. 21 CFR 524.660a - Dimethyl sulfoxide solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... days. (2) Not for use in horses and dogs intended for breeding purposes nor in horses slaughtered for... per day. Total duration of therapy should not exceed 30 days. (ii) In dogs administered 3 or 4 times...

  11. 21 CFR 524.660a - Dimethyl sulfoxide solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... days. (2) Not for use in horses and dogs intended for breeding purposes nor in horses slaughtered for... per day. Total duration of therapy should not exceed 30 days. (ii) In dogs administered 3 or 4 times...

  12. Crystal structures of hibiscus acid and hibiscus acid dimethyl ester isolated from Hibiscus sabdariffa (Malvaceae).

    PubMed

    Zheoat, Ahmed M; Gray, Alexander I; Igoli, John O; Kennedy, Alan R; Ferro, Valerie A

    2017-09-01

    The biologically active title compounds have been isolated from Hibiscus sabdariffa plants, hibiscus acid as a dimethyl sulfoxide monosolvate [systematic name: (2 S ,3 R )-3-hy-droxy-5-oxo-2,3,4,5-tetra-hydro-furan-2,3-di-carb-oxy-lic acid dimethyl sulfoxide monosolvate], C 6 H 6 O 7 ·C 2 H 6 OS, (I), and hibiscus acid dimethyl ester [systematic name: dimethyl (2 S ,3 R )-3-hy-droxy-5-oxo-2,3,4,5-tetra-hydro-furan-2,3-di-carboxyl-ate], C 8 H 10 O 7 , (II). Compound (I) forms a layered structure with alternating layers of lactone and solvent mol-ecules, that include a two-dimensional hydrogen-bonding construct. Compound (II) has two crystallographically independent and conformationally similar mol-ecules per asymmetric unit and forms a one-dimensional hydrogen-bonding construct. The known absolute configuration for both compounds has been confirmed.

  13. Preferential solvation of lysozyme in dimethyl sulfoxide/water binary mixture probed by terahertz spectroscopy.

    PubMed

    Das, Dipak Kumar; Patra, Animesh; Mitra, Rajib Kumar

    2016-09-01

    We report the changes in the hydration dynamics around a model protein hen egg white lysozyme (HEWL) in water-dimethyl sulfoxide (DMSO) binary mixture using THz time domain spectroscopy (TTDS) technique. DMSO molecules get preferentially solvated at the protein surface, as indicated by circular dichroism (CD) and Fourier transform infrared (FTIR) study in the mid-infrared region, resulting in a conformational change in the protein, which consequently modifies the associated hydration dynamics. As a control we also study the collective hydration dynamics of water-DMSO binary mixture and it is found that it follows a non-ideal behavior owing to the formation of DMSO-water clusters. It is observed that the cooperative dynamics of water at the protein surface does follow the DMSO-mediated conformational modulation of the protein. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Raman bandshape analysis on CH and CSC stretching modes of dimethyl sulfoxide in liquid binary mixture: comparative study with quantum-chemical calculations.

    PubMed

    Upadhyay, Ganesh; Gomti Devi, Th

    2014-12-10

    The interacting nature of dimethyl sulfoxide (DMSO) in binary mixtures has been carried out on CH and CSC stretching modes of vibration using chloroform (CLF), chloroform-d (CLFd), acetonitrile (ACN) and acetonitrile-d3 (ACNd) solvents. Peak frequencies of both the stretching modes show blue shift with the increase in solvent concentration. Variation of Raman bandwidth with the solvent concentration was discussed using different mechanisms. Ab initio calculation for geometry optimization and vibrational wavenumber calculation have been performed on monomer and dimer structures of DMSO to explain the experimentally observed Raman spectra. Theoretically calculated values are found in good agreement with the experimental results. Vibrational and reorientational relaxation times have been studied corresponding to solvent concentrations to elucidate the interacting mechanisms of binary mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Dimethyl sulfoxide reduction by a hyperhermophilic archaeon Thermococcus onnurineus NA1 via a cysteine-cystine redox shuttle.

    PubMed

    Choi, Ae Ran; Kim, Min-Sik; Kang, Sung Gyun; Lee, Hyun Sook

    2016-01-01

    A variety of microbes grow by respiration with dimethyl sulfoxide (DMSO) as an electron acceptor, and several distinct DMSO respiratory systems, consisting of electron carriers and a terminal DMSO reductase, have been characterized. The heterotrophic growth of a hyperthermophilic archaeon Thermococcus onnurineus NA1 was enhanced by the addition of DMSO, but the archaeon was not capable of reducing DMSO to DMS directly using a DMSO reductase. Instead, the archaeon reduced DMSO via a cysteine-cystine redox shuttle through a mechanism whereby cystine is microbially reduced to cysteine, which is then reoxidized by DMSO reduction. A thioredoxin reductase-protein disulfide oxidoreductase redox couple was identified to have intracellular cystine-reducing activity, permitting recycle of cysteine. This study presents the first example of DMSO reduction via an electron shuttle. Several Thermococcales species also exhibited enhanced growth coupled with DMSO reduction, probably by disposing of excess reducing power rather than conserving energy.

  16. Dimethyl Sulfoxide Enhances Effectiveness of Skin Antiseptics and Reduces Contamination Rates of Blood Cultures

    PubMed Central

    LaSala, Paul R.; Han, Xiang-Yang; Rolston, Kenneth V.; Kontoyiannis, Dimitrios P.

    2012-01-01

    Effective skin antisepsis is of central importance in the prevention of wound infections, colonization of medical devices, and nosocomial transmission of microorganisms. Current antiseptics have a suboptimal efficacy resulting in substantial infectious morbidity, mortality, and increased health care costs. Here, we introduce an in vitro method for antiseptic testing and a novel alcohol-based antiseptic containing 4 to 5% of the polar aprotic solvent dimethyl sulfoxide (DMSO). The DMSO-containing antiseptic resulted in a 1- to 2-log enhanced killing of Staphylococcus epidermidis and other microbes in vitro compared to the same antiseptic without DMSO. In a prospective clinical validation, blood culture contamination rates were reduced from 3.04% for 70% isopropanol–1% iodine (control antiseptic) to 1.04% for 70% isopropanol–1% iodine–5% DMSO (P < 0.01). Our results predict that improved skin antisepsis is possible using new formulations of antiseptics containing strongly polarized but nonionizing (polar aprotic) solvents. PMID:22378911

  17. The effect of structural properties on rheological behaviour of starches in binary dimethyl sulfoxide-water solutions.

    PubMed

    Ptaszek, Anna; Ptaszek, Paweł; Dziubiński, Marek; Grzesik, N Mirosław; Liszka-Skoczylas, Marta

    2017-01-01

    This research study analysed the rheological properties of potato amylose and potato amylopectin in binary solutions of the following water and dimethyl sulfoxide concentrations: 90% DMSO (1), 80% DMSO (2) and 50% DMSO (3), with preparation methodology involving the dissolution at the temperature of 98°C. The studies of dynamic light scattering on the biopolymer coils and the determination of main relaxation times of the solutions were carried out. For the amylose solutions, the fast relaxation phenomena are predominant. The results of the quality tests of the hysteresis loop showed, that the amylose solutions in the solvents (1) and (2) are rheologically stable and shear-thickened. The amylose solutions in solvents (3) reveal oscillatory alterations of viscosity in the time. Amylopectin solutions are characterized by 80% share of slow relaxation phenomena, very low diffusion coefficients and hydrodynamic radii in the range of 2000 nm. The amylopectin solutions are rheologically unstable.

  18. Glass transition behavior of the vitrification solutions containing propanediol, dimethyl sulfoxide and polyvinyl alcohol.

    PubMed

    Wang, Hai-Yan; Lu, Shu-Shen; Lun, Zhao-Rong

    2009-02-01

    Knowledge of the glass transition behavior of vitrification solutions is important for research and planning of the cryopreservation of biological materials by vitrification. This brief communication shows the analysis for the glass transition and glass stability of the multi-component vitrification solutions containing propanediol (PE), dimethyl sulfoxide (Me2SO) and polyvinyl alcohol (PVA) by using differential scanning calorimetry (DSC) during the cooling and subsequent warming between 25 and -150 degrees C. The glass formation of the solutions was enhanced by introduction of PVA. Partial glass formed during cooling and the fractions of free water in the partial glass matrix increased with the increasing of PVA concentration, which caused slight decline of glass transition temperature, T(g). Exothermic peaks of devitrification were delayed and broadened, which may result from the inhibition of ice nucleation or recrystallization of PVA.

  19. 3-[1-(3-Hy­droxy­benz­yl)-1H-benzimid­azol-2-yl]phenol dimethyl sulfoxide monosolvate

    PubMed Central

    Quezada-Miriel, Magdalena; Avila-Sorrosa, Alcives; German-Acacio, Juan Manuel; Reyes-Martínez, Reyna; Morales-Morales, David

    2012-01-01

    Crystals of the title compound were obtained as a 1:1 dimethyl sulfoxide solvate, C20H16N2O2·C2H6O. The mol­ecular conformation of the organic mol­ecule is similar to that in the previously reported unsolvated structure [Eltayeb et al. (2009 ▶). Acta Cryst. E65, o1374–o1375]. Thus, the dihedral angles formed by the benzimidazole moiety with the two benzene rings are 57.54 (4) and 76.22 (5)°, and the dihedral angle between the benzene rings is 89.23 (5)°. In the crystal, a three-dimensional network features O—H⋯O, O—H⋯N and O—H⋯S hydrogen bonds, as well as C—H⋯O and C—H⋯π inter­actions. PMID:23125815

  20. Effect of glycerol and dimethyl sulfoxide on the phase behavior of lysozyme: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Gögelein, Christoph; Wagner, Dana; Cardinaux, Frédéric; Nägele, Gerhard; Egelhaaf, Stefan U.

    2012-01-01

    Salt, glycerol, and dimethyl sulfoxide (DMSO) are used to modify the properties of protein solutions. We experimentally determined the effect of these additives on the phase behavior of lysozyme solutions. Upon the addition of glycerol and DMSO, the fluid-solid transition and the gas-liquid coexistence curve (binodal) shift to lower temperatures and the gap between them increases. The experimentally observed trends are consistent with our theoretical predictions based on the thermodynamic perturbation theory and the Derjaguin-Landau-Verwey-Overbeek model for the lysozyme-lysozyme pair interactions. The values of the parameters describing the interactions, namely the refractive indices, dielectric constants, Hamaker constant and cut-off length, are extracted from literature or are experimentally determined by independent experiments, including static light scattering, to determine the second virial coefficient. We observe that both, glycerol and DMSO, render the potential more repulsive, while sodium chloride reduces the repulsion.

  1. A Pepper MSRB2 Gene Confers Drought Tolerance in Rice through the Protection of Chloroplast-Targeted Genes

    PubMed Central

    Chae, Songhwa; Lee, Tae-Ho; Hwang, Duk-Ju; Oh, Sung-Dug; Park, Jong-Sug; Song, Dae-Geun; Pan, Cheol-Ho; Choi, Doil; Kim, Yul-Ho; Nahm, Baek Hie; Kim, Yeon-Ki

    2014-01-01

    Background The perturbation of the steady state of reactive oxygen species (ROS) due to biotic and abiotic stresses in a plant could lead to protein denaturation through the modification of amino acid residues, including the oxidation of methionine residues. Methionine sulfoxide reductases (MSRs) catalyze the reduction of methionine sulfoxide back to the methionine residue. To assess the role of this enzyme, we generated transgenic rice using a pepper CaMSRB2 gene under the control of the rice Rab21 (responsive to ABA protein 21) promoter with/without a selection marker, the bar gene. Results A drought resistance test on transgenic plants showed that CaMSRB2 confers drought tolerance to rice, as evidenced by less oxidative stress symptoms and a strengthened PSII quantum yield under stress conditions, and increased survival rate and chlorophyll index after the re-watering. The results from immunoblotting using a methionine sulfoxide antibody and nano-LC-MS/MS spectrometry suggest that porphobilinogen deaminase (PBGD), which is involved in chlorophyll synthesis, is a putative target of CaMSRB2. The oxidized methionine content of PBGD expressed in E. coli increased in the presence of H2O2, and the Met-95 and Met-227 residues of PBGD were reduced by CaMSRB2 in the presence of dithiothreitol (DTT). An expression profiling analysis of the overexpression lines also suggested that photosystems are less severely affected by drought stress. Conclusions Our results indicate that CaMSRB2 might play an important functional role in chloroplasts for conferring drought stress tolerance in rice. PMID:24614245

  2. Gender differences in methionine accumulation and metabolism in freshly isolated mouse hepatocytes: Potential roles in toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dever, Joseph T.; Elfarra, Adnan A.

    L-Methionine (Met) is hepatotoxic at high concentrations. Because Met toxicity in freshly isolated mouse hepatocytes is gender-dependent, the goal of this study was to assess the roles of Met accumulation and metabolism in the increased sensitivity of male hepatocytes to Met toxicity compared with female hepatocytes. Male hepatocytes incubated with Met (30 mM) at 37 {sup o}C exhibited higher levels of intracellular Met at 0.5, 1.0, and 1.5 h, respectively, compared to female hepatocytes. Conversely, female hepatocytes had higher levels of S-adenosyl-L-methionine compared to male hepatocytes. Female hepatocytes also exhibited higher L-methionine-L-sulfoxide levels relative to control hepatocytes, whereas the increasesmore » in L-methionine-D-sulfoxide (Met-D-O) levels were similar in hepatocytes of both genders. Addition of aminooxyacetic acid (AOAA), an inhibitor of Met transamination, significantly increased Met levels at 1.5 h and increased Met-D-O levels at 1.0 and 1.5 h only in Met-exposed male hepatocytes. No gender differences in cytosolic Met transamination activity by glutamine transaminase K were detected. However, female mouse liver cytosol exhibited higher methionine-DL-sulfoxide (MetO) reductase activity than male mouse liver cytosol at low (0.25 and 0.5 mM) MetO concentrations. Collectively, these results suggest that increased cellular Met accumulation, decreased Met transmethylation, and increased Met and MetO transamination in male mouse hepatocytes may be contributing to the higher sensitivity of the male mouse hepatocytes to Met toxicity in comparison with female mouse hepatocytes.« less

  3. Quantity and quality of guinea pig (cavia porcellus) spermatozoa after administration of methanol extract of bitter melon (momordica charantia) seed and depot medroxy progesterone acetate (DMPA)

    NASA Astrophysics Data System (ADS)

    Ilyas, Syafruddin; Hutahaean, Salomo; Nursal

    2018-03-01

    The discovery of male contraceptive drugs continues to be pursued, due to the few participation of men associated with the lack of contraceptive options for men. The combination of bitter melon seed methanol extract and DMPA are the options that currently apply to men. Therefore, the use of guinea pigs as experimental animals conducted research using experimental methods with complete randomized design (CRD). There are 4 control groups and 4 treatment groups. The first group, control group of dimethyl sulphoxide (DMSO) for 0 week (K0), The second one, bitter melon seed extract of 50 mg/100g Body Weight/day for 0 week (P0), the third one, control group of dimethyl sulfoxide (DMSO) for 4 weeks (K1), the fourth one, bitter melon seed extract of 50 mg/100g BW/day for 4 weeks + Depot medroxy Progesterone Acetate (P1), the fifth one, control group of dimethyl sulfoxide (DMSO) for 8 weeks (K2), the sixth one, bitter melon seed extract of 50 mg/100g BW/day for 8 weeks + DMPA (P2), the seventh one, control group of dimethyl sulfoxide (DMSO) for 12 weeks (K3), the eighth one, bitter melon seed extract of 50 mg/100g BW/day for 12 weeks + DMPA (P3). Methanol extract of bitter melon seed to decrease the quantity and quality of guinea pig spermatozoa decreased significantly, i.e. viability and normal morphology of spermatozoa (p<0.05).

  4. 21 CFR 178.3910 - Surface lubricants used in the manufacture of metallic articles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 10 minutes. (The reaction between the sulfoxide and the acid is exothermic. Release pressure after...,” above) until siphon action occurs and then refill the tube body. Supply heat to the boiling flask and...

  5. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase

    DOE PAGES

    Melnyk, Ryan A.; Youngblut, Matthew D.; Clark, Iain C.; ...

    2015-05-12

    Reactive chlorine species (RCS) defense mechanisms are important for bacterial fitness in diverse environments. In addition to the anthropogenic use of RCS in the form of bleach, these compounds are also produced naturally through photochemical reactions of natural organic matter and in vivo by the mammalian immune system in response to invading microorganisms. To gain insight into bacterial RCS defense mechanisms, we investigated Azospira suillum strain PS, which produces periplasmic RCS as an intermediate of perchlorate respiration. Our studies identified an RCS response involving an RCS stress-sensing sigma/anti-sigma factor system (SigF/NrsF), a soluble hypochlorite-scavenging methionine-rich periplasmic protein (MrpX), and amore » putative periplasmic methionine sulfoxide reductase (YedY1). We investigated the underlying mechanism by phenotypic characterization of appropriate gene deletions, chemogenomic profiling of barcoded transposon pools, transcriptome sequencing, and biochemical assessment of methionine oxidation. Our results demonstrated that SigF was specifically activated by RCS and initiated the transcription of a small regulon centering around yedY1 and mrpX. A yedY1 paralog ( yedY2) was found to have a similar fitness to yedY1 despite not being regulated by SigF. Markerless deletions of yedY2 confirmed its synergy with the SigF regulon. MrpX was strongly induced and rapidly oxidized by RCS, especially hypochlorite. Our results suggest a mechanism involving hypochlorite scavenging by sacrificial oxidation of the MrpX in the periplasm. Reduced MrpX is regenerated by the YedY methionine sulfoxide reductase activity. The phylogenomic distribution of this system revealed conservation in several Proteobacteria of clinical importance, including uropathogenic Escherichia coli and Brucella spp., implying a putative role in immune response evasion in vivo. In addition, bacteria are often stressed in the environment by reactive chlorine species (RCS) of either anthropogenic or natural origin, but little is known of the defense mechanisms they have evolved. Using a microorganism that generates RCS internally as part of its respiratory process allowed us to uncover a novel defense mechanism based on RCS scavenging by reductive reaction with a sacrificial methionine-rich peptide and redox recycling through a methionine sulfoxide reductase. As a result, this system is conserved in a broad diversity of organisms, including some of clinical importance, invoking a possible important role in innate immune system evasion.« less

  6. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melnyk, Ryan A.; Youngblut, Matthew D.; Clark, Iain C.

    Reactive chlorine species (RCS) defense mechanisms are important for bacterial fitness in diverse environments. In addition to the anthropogenic use of RCS in the form of bleach, these compounds are also produced naturally through photochemical reactions of natural organic matter and in vivo by the mammalian immune system in response to invading microorganisms. To gain insight into bacterial RCS defense mechanisms, we investigated Azospira suillum strain PS, which produces periplasmic RCS as an intermediate of perchlorate respiration. Our studies identified an RCS response involving an RCS stress-sensing sigma/anti-sigma factor system (SigF/NrsF), a soluble hypochlorite-scavenging methionine-rich periplasmic protein (MrpX), and amore » putative periplasmic methionine sulfoxide reductase (YedY1). We investigated the underlying mechanism by phenotypic characterization of appropriate gene deletions, chemogenomic profiling of barcoded transposon pools, transcriptome sequencing, and biochemical assessment of methionine oxidation. Our results demonstrated that SigF was specifically activated by RCS and initiated the transcription of a small regulon centering around yedY1 and mrpX. A yedY1 paralog ( yedY2) was found to have a similar fitness to yedY1 despite not being regulated by SigF. Markerless deletions of yedY2 confirmed its synergy with the SigF regulon. MrpX was strongly induced and rapidly oxidized by RCS, especially hypochlorite. Our results suggest a mechanism involving hypochlorite scavenging by sacrificial oxidation of the MrpX in the periplasm. Reduced MrpX is regenerated by the YedY methionine sulfoxide reductase activity. The phylogenomic distribution of this system revealed conservation in several Proteobacteria of clinical importance, including uropathogenic Escherichia coli and Brucella spp., implying a putative role in immune response evasion in vivo. In addition, bacteria are often stressed in the environment by reactive chlorine species (RCS) of either anthropogenic or natural origin, but little is known of the defense mechanisms they have evolved. Using a microorganism that generates RCS internally as part of its respiratory process allowed us to uncover a novel defense mechanism based on RCS scavenging by reductive reaction with a sacrificial methionine-rich peptide and redox recycling through a methionine sulfoxide reductase. As a result, this system is conserved in a broad diversity of organisms, including some of clinical importance, invoking a possible important role in innate immune system evasion.« less

  7. MONITORING THE AIR FOR TOXIC AND GENOTOXIC COMPOUNDS

    EPA Science Inventory

    A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor p...

  8. Modified Antifreeze Liquids for Use on Surfaces

    NASA Technical Reports Server (NTRS)

    Lynn, R. O.

    1983-01-01

    Report presents results of evaluation of two antifreeze liquids, dimethyl sulfoxide and ethylene glycol and five viscosity modifiers: gelatin, gum tragacanth, starch, agarose powder and citrus pectin. Purpose of evaluation to find best way of dealing with frost formation on Space Shuttle.

  9. Sugar Pine Seedlings not protected from blister rust by chemotherapeutants

    Treesearch

    George M. Harvey

    1975-01-01

    None of several types of chemotherapeutants applied before inoculation (antibiotics, metallic salts, systemic fungicides) prevented infection of sugar pine seedlings by white pine blister rust. DMSO (dimethyl sulfoxide) did not enhance the action of any material with which it was applied.

  10. Novel Mechanism for Scavenging of Hypochlorite Involving a Periplasmic Methionine-Rich Peptide and Methionine Sulfoxide Reductase

    PubMed Central

    Melnyk, Ryan A.; Youngblut, Matthew D.; Clark, Iain C.; Carlson, Hans K.; Wetmore, Kelly M.; Price, Morgan N.; Iavarone, Anthony T.; Deutschbauer, Adam M.; Arkin, Adam P.

    2015-01-01

    ABSTRACT Reactive chlorine species (RCS) defense mechanisms are important for bacterial fitness in diverse environments. In addition to the anthropogenic use of RCS in the form of bleach, these compounds are also produced naturally through photochemical reactions of natural organic matter and in vivo by the mammalian immune system in response to invading microorganisms. To gain insight into bacterial RCS defense mechanisms, we investigated Azospira suillum strain PS, which produces periplasmic RCS as an intermediate of perchlorate respiration. Our studies identified an RCS response involving an RCS stress-sensing sigma/anti-sigma factor system (SigF/NrsF), a soluble hypochlorite-scavenging methionine-rich periplasmic protein (MrpX), and a putative periplasmic methionine sulfoxide reductase (YedY1). We investigated the underlying mechanism by phenotypic characterization of appropriate gene deletions, chemogenomic profiling of barcoded transposon pools, transcriptome sequencing, and biochemical assessment of methionine oxidation. Our results demonstrated that SigF was specifically activated by RCS and initiated the transcription of a small regulon centering around yedY1 and mrpX. A yedY1 paralog (yedY2) was found to have a similar fitness to yedY1 despite not being regulated by SigF. Markerless deletions of yedY2 confirmed its synergy with the SigF regulon. MrpX was strongly induced and rapidly oxidized by RCS, especially hypochlorite. Our results suggest a mechanism involving hypochlorite scavenging by sacrificial oxidation of the MrpX in the periplasm. Reduced MrpX is regenerated by the YedY methionine sulfoxide reductase activity. The phylogenomic distribution of this system revealed conservation in several Proteobacteria of clinical importance, including uropathogenic Escherichia coli and Brucella spp., implying a putative role in immune response evasion in vivo. PMID:25968643

  11. Should the standard dimethyl sulfoxide concentration be reduced? Results of a European Group for Blood and Marrow Transplantation prospective noninterventional study on usage and side effects of dimethyl sulfoxide.

    PubMed

    Morris, Curly; de Wreede, Liesbeth; Scholten, Marijke; Brand, Ronald; van Biezen, Anja; Sureda, Anna; Dickmeiss, Ebbe; Trneny, Marek; Apperley, Jane; Chiusolo, Patrizia; van Imhoff, Gustaaf W; Lenhoff, Stig; Martinelli, Giovanni; Hentrich, Marcus; Pabst, Thomas; Onida, Francesco; Quinn, Michael; Kroger, Nicolaus; de Witte, Theo; Ruutu, Tapani

    2014-10-01

    Dimethyl sulfoxide (DMSO) is essential for the preservation of liquid nitrogen-frozen stem cells, but is associated with toxicity in the transplant recipient. In this prospective noninterventional study, we describe the use of DMSO in 64 European Blood and Marrow Transplant Group centers undertaking autologous transplantation on patients with myeloma and lymphoma and analyze side effects after return of DMSO-preserved stem cells. While the majority of centers continue to use 10% DMSO, a significant proportion either use lower concentrations, mostly 5 or 7.5%, or wash cells before infusion (some for selected patients only). In contrast, the median dose of DMSO given (20 mL) was much less than the upper limit set by the same institutions (70 mL). In an accompanying statistical analysis of side effects noted after return of DMSO-preserved stem cells, we show that patients in the highest quartile receiving DMSO (mL and mL/kg body weight) had significantly more side effects attributed to DMSO, although this effect was not observed if DMSO was calculated as mL/min. Dividing the myeloma and lymphoma patients each into two equal groups by age we were able to confirm this result in all but young myeloma patients in whom an inversion of the odds ratio was seen, possibly related to the higher dose of melphalan received by young myeloma patients. We suggest better standardization of preservation method with reduced DMSO concentration and attention to the dose of DMSO received by patients could help reduce the toxicity and morbidity of the transplant procedure. © 2014 AABB.

  12. Membrane permeability of the human granulocyte to water, dimethyl sulfoxide, glycerol, propylene glycol and ethylene glycol.

    PubMed

    Vian, Alex M; Higgins, Adam Z

    2014-02-01

    Granulocytes are currently transfused as soon as possible after collection because they rapidly deteriorate after being removed from the body. This short shelf life complicates the logistics of granulocyte collection, banking, and safety testing. Cryopreservation has the potential to significantly increase shelf life; however, cryopreservation of granulocytes has proven to be difficult. In this study, we investigate the membrane permeability properties of human granulocytes, with the ultimate goal of using membrane transport modeling to facilitate development of improved cryopreservation methods. We first measured the equilibrium volume of human granulocytes in a range of hypo- and hypertonic solutions and fit the resulting data using a Boyle-van't Hoff model. This yielded an isotonic cell volume of 378 μm(3) and an osmotically inactive volume of 165 μm(3). To determine the permeability of the granulocyte membrane to water and cryoprotectant (CPA), cells were injected into well-mixed CPA solution while collecting volume measurements using a Coulter Counter. These experiments were performed at temperatures ranging from 4 to 37°C for exposure to dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol. The best-fit water permeability was similar in the presence of all of the CPAs, with an average value at 21°C of 0.18 μmatm(-1)min(-1). The activation energy for water transport ranged from 41 to 61 kJ/mol. The CPA permeability at 21°C was 6.4, 1.0, 8.4, and 4.0 μm/min for dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol, respectively, and the activation energy for CPA transport ranged between 59 and 68 kJ/mol. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Chemical Inhibition of Kynureninase Reduces Pseudomonas aeruginosa Quorum Sensing and Virulence Factor Expression.

    PubMed

    Kasper, Stephen H; Bonocora, Richard P; Wade, Joseph T; Musah, Rabi Ann; Cady, Nathaniel C

    2016-04-15

    The opportunistic pathogen Pseudomonas aeruginosa utilizes multiple quorum sensing (QS) pathways to coordinate an arsenal of virulence factors. We previously identified several cysteine-based compounds inspired by natural products from the plant Petiveria alliacea which are capable of antagonizing multiple QS circuits as well as reducing P. aeruginosa biofilm formation. To understand the global effects of such compounds on virulence factor production and elucidate their mechanism of action, RNA-seq transcriptomic analysis was performed on P. aeruginosa PAO1 exposed to S-phenyl-l-cysteine sulfoxide, the most potent inhibitor from the prior study. Exposure to this inhibitor down-regulated expression of several QS-regulated virulence operons (e.g., phenazine biosynthesis, type VI secretion systems). Interestingly, many genes that were differentially regulated pertain to the related metabolic pathways that yield precursors of pyochelin, tricarboxylic acid cycle intermediates, phenazines, and Pseudomonas quinolone signal (PQS). Activation of the MexT-regulon was also indicated, including the multidrug efflux pump encoded by mexEF-oprN, which has previously been shown to inhibit QS and pathogenicity. Deeper investigation of the metabolites involved in these systems revealed that S-phenyl-l-cysteine sulfoxide has structural similarity to kynurenine, a precursor of anthranilate, which is critical for P. aeruginosa virulence. By supplementing exogenous anthranilate, the QS-inhibitory effect was reversed. Finally, it was shown that S-phenyl-l-cysteine sulfoxide competitively inhibits P. aeruginosa kynureninase (KynU) activity in vitro and reduces PQS production in vivo. The kynurenine pathway has been implicated in P. aeruginosa QS and virulence factor expression; however, this is the first study to show that targeted inhibition of KynU affects P. aeruginosa gene expression and QS, suggesting a potential antivirulence strategy.

  14. VAPOR SAMPLING DEVICE FOR INTERFACE WITH MICROTOX ASSAY FOR SCREENING TOXIC INDUSTRIAL CHEMICALS

    EPA Science Inventory

    A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  15. Enzyme-triggered cargo release from methionine sulfoxide containing copolypeptide vesicles.

    PubMed

    Rodriguez, April R; Kramer, Jessica R; Deming, Timothy J

    2013-10-14

    We have developed a facile, scalable method for preparation of enzyme-responsive copolypeptide vesicles that requires no protecting groups or expensive components. We designed amphiphilic copolypeptides containing segments of water-soluble methionine sulfoxide, M(O), residues that were prepared by synthesis of a fully hydrophobic precursor diblock copolypeptide, poly(l-methionine)65-b-poly(L-leucine0.5-stat-L-phenylalanine0.5)20, M65(L0.5/F0.5)20, followed by its direct oxidation in water to give the amphiphilic M(O) derivative, M(O)65(L0.5/F0.5)20. Assembly of M(O)65(L0.5/F0.5)20 in water gave vesicles with average diameters of a few micrometers that could then be extruded to nanoscale diameters. The M(O) segments in the vesicles were found to be substrates for reductase enzymes, which regenerated hydrophobic M segments and resulted in a change in supramolecular morphology that caused vesicle disruption and release of cargos.

  16. Competitive immunochromatographic assay for the detection of thiodiglycol sulfoxide, a degradation product of sulfur mustard.

    PubMed

    Sathe, Manisha; Srivastava, Shruti; Merwyn, S; Agarwal, G S; Kaushik, M P

    2014-10-21

    An immunochromatographic assay (ICA) based on the competitive antigen-coated format using colloidal gold as the label was developed for the detection of thiodiglycol sulfoxide (TDGO), an important metabolite and degradation compound of sulphur mustard (SM). The ICA test strip consisted of a membrane with a detection zone, a sample pad and an absorbent pad. The membrane was separately coated with hapten-OVA conjugate (test line) and anti-rabbit mouse IgG (control line). The visual detection limit for TDGO by ICA detection was found to be 10 μg mL(-1). For validation, the ICA results obtained for spiked water samples were in good agreement with those obtained by indirect competitive inhibition enzyme-linked immunosorbent assay (ELISA) for TDGO. The assay time for detection was less than 10 min. The developed ICA has the potential to be a useful on-site screening tool for the retrospective detection of SM in environmental samples.

  17. Snapshots of C-S Cleavage in Egt2 Reveals Substrate Specificity and Reaction Mechanism.

    PubMed

    Irani, Seema; Naowarojna, Nathchar; Tang, Yang; Kathuria, Karan R; Wang, Shu; Dhembi, Anxhela; Lee, Norman; Yan, Wupeng; Lyu, Huijue; Costello, Catherine E; Liu, Pinghua; Zhang, Yan Jessie

    2018-05-17

    Sulfur incorporation in the biosynthesis of ergothioneine, a histidine thiol derivative, differs from other well-characterized transsulfurations. A combination of a mononuclear non-heme iron enzyme-catalyzed oxidative C-S bond formation and a subsequent pyridoxal 5'-phosphate (PLP)-mediated C-S lyase reaction leads to the net transfer of a sulfur atom from a cysteine to a histidine. In this study, we structurally and mechanistically characterized a PLP-dependent C-S lyase Egt2, which mediates the sulfoxide C-S bond cleavage in ergothioneine biosynthesis. A cation-π interaction between substrate and enzyme accounts for Egt2's preference of sulfoxide over thioether as a substrate. Using mutagenesis and structural biology, we captured three distinct states of the Egt2 C-S lyase reaction cycle, including a labile sulfenic intermediate captured in Egt2 crystals. Chemical trapping and high-resolution mass spectrometry were used to confirm the involvement of the sulfenic acid intermediate in Egt2 catalysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Ion transport properties of magnesium bromide/dimethyl sulfoxide non-aqueous liquid electrolyte

    PubMed Central

    Sheha, E.

    2015-01-01

    Nonaqueous liquid electrolyte system based dimethyl sulfoxide DMSO and magnesium bromide (MgBr2) is synthesized via ‘Solvent-in-Salt’ method for the application in magnesium battery. Optimized composition of MgBr2/DMSO electrolyte exhibits high ionic conductivity of 10−2 S/cm at ambient temperature. This study discusses different concentrations from 0 to 5.4 M of magnesium salt, representing low, intermediate and high concentrations of magnesium salt which are examined in frequency dependence conductivity studies. The temperature dependent conductivity measurements have also been carried out to compute activation energy (Ea) by least square linear fitting of Arrhenius plot: ‘log σ − 1/T. The transport number of Mg2+ ion determined by means of a combination of d.c. and a.c. techniques is ∼0.7. A prototype cell was constructed using nonaqueous liquid electrolyte with Mg anode and graphite cathode. The Mg/graphite cell shows promising cycling. PMID:26843967

  19. Mechanism Responsible for Intercalation of Dimethyl Sulfoxide in Kaolinite: Molecular Dynamics Simulations.

    PubMed

    Zhang, Shuai; Liu, Qinfu; Cheng, Hongfei; Gao, Feng; Liu, Cun; Teppen, Brian J

    2018-01-01

    Intercalation is the promising strategy to expand the interlayer region of kaolinite for their further applications. Herein, the adaptive biasing force (ABF) accelerated molecular dynamics simulations were performed to calculate the free energies involved in the kaolinite intercalation by dimethyl sulfoxide (DMSO). Additionally, the classical all atom molecular dynamics simulations were carried out to calculate the interfacial interactions between kaolinite interlayer surfaces and DMSO with the aim at exploring the underlying force that drives the DMSO to enter the interlayer space. The results showed that the favorable interaction of DMSO with both kaolinite interlayer octahedral surface and tetrahedral surface can help in introducing DMSO enter kaolinite interlayer. The hydroxyl groups on octahedral surface functioned as H-donors attracting the S=O groups of DMSO through hydrogen bonding interaction. The tetrahedral surface featuring hydrophobic property attracted the methyl groups of DMSO through hydrophobic interaction. The results provided a detailed picture of the energetics and interlayer structure of kaolinite-DMSO intercalate.

  20. The transcriptional control machinery as well as the cell wall integrity and its regulation are involved in the detoxification of the organic solvent dimethyl sulfoxide in Saccharomyces cerevisiae.

    PubMed

    Zhang, Lilin; Liu, Ningning; Ma, Xiao; Jiang, Linghuo

    2013-03-01

    In the present study, we have identified 339 dimethyl sulfoxide (DMSO)-sensitive and nine DMSO-tolerant gene mutations in Saccharomyces cerevisiae through a functional genomics approach. Twelve of these identified DMSO-sensitive mutations are of genes involved in the general control of gene expression mediated by the SWR1 complex and the RNA polymerase II mediator complex, whereas 71 of them are of genes involved in the protein trafficking and vacuolar sorting processes. In addition, twelve of these DMSO-sensitive mutations are of genes involved in the cell wall integrity (CWI) and its regulation. DMSO-tolerant mutations are of genes mainly involved in the metabolism and the gene expression control. Therefore, the transcriptional control machinery, the CWI and its regulation as well as the protein trafficking and sorting process play critical roles in the DMSO detoxification in yeast cells. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Cryopreservation of Peruvian Paso horse spermatozoa: dimethylacetamide preserved an optimal sperm function compared to dimethyl sulfoxide, ethylene glycol and glycerol.

    PubMed

    Santiani, A; Evangelista-Vargas, S; Vargas, S; Gallo, S; Ruiz, L; Orozco, V; Rosemberg, M

    2017-08-01

    The objective was to evaluate the effect of different cryoprotectant agents in the cryopreservation of Peruvian Paso horse semen. Twenty semen samples were collected from five Peruvian Paso horse stallions. Each sample was divided into 12 parts to form the groups: dimethylacetamide (DMA), dimethyl sulfoxide (DMSO), ethylene glycol (EG) and glycerol (GLY), at 3%, 4% and 5%. Samples were frozen using a rate-controlled freezer. Sperm parameters evaluated were motility and viability/acrosomal status. After thawing, progressive motility in DMA group was higher (p < .05) than in DMSO, EG and GLY groups. Similarly, viable acrosome-intact spermatozoa were higher (p < .05) using DMA in comparison with DMSO. No differences were found when comparing concentrations for any of the cryoprotectant agents. In conclusion, DMA seems to be a good cryoprotectant agent for the cryopreservation of Peruvian Paso horse stallion semen. © 2016 Blackwell Verlag GmbH.

  2. The effect of structural properties on rheological behaviour of starches in binary dimethyl sulfoxide-water solutions

    PubMed Central

    Ptaszek, Paweł; Dziubiński, Marek; Grzesik, N. Mirosław; Liszka-Skoczylas, Marta

    2017-01-01

    This research study analysed the rheological properties of potato amylose and potato amylopectin in binary solutions of the following water and dimethyl sulfoxide concentrations: 90% DMSO (1), 80% DMSO (2) and 50% DMSO (3), with preparation methodology involving the dissolution at the temperature of 98°C. The studies of dynamic light scattering on the biopolymer coils and the determination of main relaxation times of the solutions were carried out. For the amylose solutions, the fast relaxation phenomena are predominant. The results of the quality tests of the hysteresis loop showed, that the amylose solutions in the solvents (1) and (2) are rheologically stable and shear-thickened. The amylose solutions in solvents (3) reveal oscillatory alterations of viscosity in the time. Amylopectin solutions are characterized by 80% share of slow relaxation phenomena, very low diffusion coefficients and hydrodynamic radii in the range of 2000 nm. The amylopectin solutions are rheologically unstable. PMID:28152071

  3. Dimethyl sulfoxide damages mitochondrial integrity and membrane potential in cultured astrocytes.

    PubMed

    Yuan, Chan; Gao, Junying; Guo, Jichao; Bai, Lei; Marshall, Charles; Cai, Zhiyou; Wang, Linmei; Xiao, Ming

    2014-01-01

    Dimethyl sulfoxide (DMSO) is a polar organic solvent that is used to dissolve neuroprotective or neurotoxic agents in neuroscience research. However, DMSO itself also has pharmacological and pathological effects on the nervous system. Astrocytes play a central role in maintaining brain homeostasis, but the effect and mechanism of DMSO on astrocytes has not been studied. The present study showed that exposure of astrocyte cultures to 1% DMSO for 24 h did not significantly affect cell survival, but decreased cell viability and glial glutamate transporter expression, and caused mitochondrial swelling, membrane potential impairment and reactive oxygen species production, and subsequent cytochrome c release and caspase-3 activation. DMSO at concentrations of 5% significantly inhibited cell variability and promoted apoptosis of astrocytes, accompanied with more severe mitochondrial damage. These results suggest that mitochondrial impairment is a primary event in DMSO-induced astrocyte toxicity. The potential cytotoxic effects on astrocytes need to be carefully considered during investigating neuroprotective or neurotoxic effects of hydrophobic agents dissolved by DMSO.

  4. Dimethyl Sulfoxide Damages Mitochondrial Integrity and Membrane Potential in Cultured Astrocytes

    PubMed Central

    Yuan, Chan; Gao, Junying; Guo, Jichao; Bai, Lei; Marshall, Charles; Cai, Zhiyou; Wang, Linmei; Xiao, Ming

    2014-01-01

    Dimethyl sulfoxide (DMSO) is a polar organic solvent that is used to dissolve neuroprotective or neurotoxic agents in neuroscience research. However, DMSO itself also has pharmacological and pathological effects on the nervous system. Astrocytes play a central role in maintaining brain homeostasis, but the effect and mechanism of DMSO on astrocytes has not been studied. The present study showed that exposure of astrocyte cultures to 1% DMSO for 24 h did not significantly affect cell survival, but decreased cell viability and glial glutamate transporter expression, and caused mitochondrial swelling, membrane potential impairment and reactive oxygen species production, and subsequent cytochrome c release and caspase-3 activation. DMSO at concentrations of 5% significantly inhibited cell variability and promoted apoptosis of astrocytes, accompanied with more severe mitochondrial damage. These results suggest that mitochondrial impairment is a primary event in DMSO-induced astrocyte toxicity. The potential cytotoxic effects on astrocytes need to be carefully considered during investigating neuroprotective or neurotoxic effects of hydrophobic agents dissolved by DMSO. PMID:25238609

  5. Free energy landscape for glucose condensation and dehydration reactions in dimethyl sulfoxide and the effects of solvent.

    PubMed

    Qian, Xianghong; Liu, Dajiang

    2014-03-31

    The mechanisms and free energy surfaces (FES) for the initial critical steps during proton-catalyzed glucose condensation and dehydration reactions were elucidated in dimethyl sulfoxide (DMSO) using Car-Parrinello molecular dynamics (CPMD) coupled with metadynamics (MTD) simulations. Glucose condensation reaction is initiated by protonation of C1--OH whereas dehydration reaction is initiated by protonation of C2--OH. The mechanisms in DMSO are similar to those in aqueous solution. The DMSO molecules closest to the C1--OH or C2--OH on glucose are directly involved in the reactions and act as proton acceptors during the process. However, the energy barriers are strongly solvent dependent. Moreover, polarization from the long-range electrostatic interaction affects the mechanisms and energetics of glucose reactions. Experimental measurements conducted in various DMSO/Water mixtures also show that energy barriers are solvent dependent in agreement with our theoretical results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Improved in situ saccharification of cellulose pretreated by dimethyl sulfoxide/ionic liquid using cellulase from a newly isolated Paenibacillus sp. LLZ1.

    PubMed

    Hu, Dongxue; Ju, Xin; Li, Liangzhi; Hu, Cuiying; Yan, Lishi; Wu, Tianyun; Fu, Jiaolong; Qin, Ming

    2016-02-01

    A cellulase producing strain was newly isolated from soil samples and identified as Paenibacillus sp. LLZ1. A novel aqueous-dimethyl sulfoxide (DMSO)/1-ethyl-3-methylimidazolium diethyl phosphate ([Emin]DEP)-cellulase system was designed and optimized. In the pretreatment, DMSO was found to be a low-cost substitute of up to 70% ionic liquid to enhance the cellulose dissolution. In the enzymatic saccharification, the optimum pH and temperature of the Paenibacillus sp. LLZ1 cellulase were identified as 6.0 and 40°C, respectively. Under the optimized reaction condition, the conversion of microcrystalline cellulose and bagasse cellulose increased by 39.3% and 37.6%, compared with unpretreated cellulose. Compared to current methods of saccharification, this new approach has several advantages including lower operating temperature, milder pH, and less usage of ionic liquid, indicating a marked progress in environmental friendly hydrolysis of biomass-based materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. An approach for prominent enhancement of the quality of konjac flour: dimethyl sulfoxide as medium.

    PubMed

    Ye, Ting; Wang, Ling; Xu, Wei; Liu, Jinjin; Wang, Yuntao; Zhu, Kunkun; Wang, Sujuan; Li, Bin; Wang, Chao

    2014-01-01

    In this paper, an approach to improve several konjac flour (KF) qualities by dimethyl sulfoxide (DMSO) addition using various concentrations at different temperature levels was proposed. Also, various properties of native and refined KF, including transparency, chemical composition and rheological properties have been investigated. The results showed that the KF refined by 75% DMSO achieved 27.7% improvement in transparency, 99.7% removal of starch, 99.4% removal of soluble sugar, and 98.2% removal of protein as well as more satisfactory viscosity stability. In addition, the morphology structure of refined KF showed a significant difference compared with the native one as observed using the SEM, which is promising for further industrial application. Furthermore, the rheological properties of both native and refined konjac sols were studied and the results showed that DMSO refinement is an effective and alternative approach to improve the qualities of KF in many aspects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Dimethyl Sulfoxide (DMSO) Produces Widespread Apoptosis in the Developing Central Nervous System

    PubMed Central

    Hanslick, Jennifer L.; Lau, Karen; Noguchi, Kevin K.; Olney, John W.; Zorumski, Charles F.; Mennerick, Steven; Farber, Nuri B.

    2009-01-01

    Dimethyl sulfoxide (DMSO) is a solvent that is routinely used as a cryopreservative in allogous bone marrow and organ transplantion. We exposed C57Bl/6 mice of varying postnatal ages (P0–P30) to DMSO in order to study whether DMSO could produce apoptotic degeneration in the developing CNS. DMSO produced widespread apoptosis in the developing mouse brain at all ages tested. Damage was greatest at P7. Significant elevations above the background rate of apoptosis occurred at the lowest dose tested, 0.3 ml/kg. In an in vitro rat hippocampal culture preparation, DMSO produced neuronal loss at concentrations of 0.5% and 1.0%. The ability of DMSO to damage neurons in dissociated cultures indicates that the toxicity likely results from a direct cellular effect. Because children, who undergo bone marrow transplantation, are routinely exposed to DMSO at doses higher than 0.3 ml/kg, there is concern that DMSO might be producing similar damage in human children. PMID:19100327

  9. Mechanistic studies of a novel C-S lyase in ergothioneine biosynthesis: the involvement of a sulfenic acid intermediate

    PubMed Central

    Song, Heng; Hu, Wen; Naowarojna, Nathchar; Her, Ampon Sae; Wang, Shu; Desai, Rushil; Qin, Li; Chen, Xiaoping; Liu, Pinghua

    2015-01-01

    Ergothioneine is a histidine thio-derivative isolated in 1909. In ergothioneine biosynthesis, the combination of a mononuclear non-heme iron enzyme catalyzed oxidative C-S bond formation reaction and a PLP-mediated C-S lyase (EgtE) reaction results in a net sulfur transfer from cysteine to histidine side-chain. This demonstrates a new sulfur transfer strategy in the biosynthesis of sulfur-containing natural products. Due to difficulties associated with the overexpression of Mycobacterium smegmatis EgtE protein, the proposed EgtE functionality remained to be verified biochemically. In this study, we have successfully overexpressed and purified M. smegmatis EgtE enzyme and evaluated its activities under different in vitro conditions: C-S lyase reaction using either thioether or sulfoxide as a substrate in the presence or absence of reductants. Results from our biochemical characterizations support the assignment of sulfoxide 4 as the native EgtE substrate and the involvement of a sulfenic acid intermediate in the ergothioneine C-S lyase reaction. PMID:26149121

  10. Thermodynamic study of dihydrogen phosphate dimerisation and complexation with novel urea- and thiourea-based receptors.

    PubMed

    Bregović, Nikola; Cindro, Nikola; Frkanec, Leo; Užarević, Krunoslav; Tomišić, Vladislav

    2014-11-24

    Complexation of dihydrogen phosphate by novel thiourea and urea receptors in acetonitrile and dimethyl sulfoxide was studied in detail by an integrated approach by using several methods (isothermal titration calorimetry, ESI-MS, and (1)H NMR and UV spectroscopy). Thermodynamic investigations into H2PO4(-) dimerisation, which is a process that has been frequently recognised, but rarely quantitatively described, were carried out as well. The corresponding equilibrium was taken into account in the anion-binding studies, which enabled reliable determination of the complexation thermodynamic quantities. In both solvents the thiourea derivatives exhibited considerably higher binding affinities with respect to those containing the urea moiety. In acetonitrile, 1:1 and 2:1 (anion/receptor) complexes formed, whereas in dimethyl sulfoxide only the significantly less stable complexes of 1:1 stoichiometry were detected. The solvent effects on the thermodynamic parameters of dihydrogen phosphate dimerisation and complexation reactions are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Allium discoloration: precursors involved in onion pinking and garlic greening.

    PubMed

    Kubec, Roman; Hrbácová, Marcela; Musah, Rabi A; Velísek, Jan

    2004-08-11

    Precursors involved in the formation of pink and green-blue pigments generated during onion and garlic processing, respectively, have been studied. It has been confirmed that the formations of both pigments are of very similar natures, with (E)-S-(1-propenyl)cysteine sulfoxide (isoalliin) serving as the primary precursor. Upon disruption of the tissue, isoalliin and other S-alk(en)ylcysteine sulfoxides are enzymatically cleaved, yielding 1-propenyl-containing thiosulfinates [CH3CH=CHS(O)SR; R = methyl, allyl, propyl, 1-propenyl] among others. The latter compounds have been shown to subsequently react with amino acids to produce the pigments. Whereas the propyl, 1-propenyl, and methyl derivatives form pink, pink-red, and magenta compounds, those containing the allyl group give rise to blue products after reacting with glycine at pH 5.0. The role of other thiosulfinates [RS(O)SR'] (R, R' = methyl, allyl, propyl) and (Z)-thiopropanal S-oxide (the onion lachrymatory principle) in the formation of the pigments is also discussed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahne, G.; Hoffmann, F.

    A serious problem in the technology of plant cell culture is that isolated protoplasts from many species are reluctant to divide. We have succeeded in inducing consecutive divisions in a naturally arrested system i.e., protoplasts from a hibiscus cell line, which do not divide under standard conditions and in an artificially arrested system i.e., colchicine-inhibited callus protoplasts of Nicotiana glutinosa, which do readily divide in the absence of colchicine. In both cases, the reinstallation of a net of cortical microtubules, which had been affected either by colchicine or by the protoplast isolation procedure, resulted in continuous divisions of the formerlymore » arrested protoplasts. Several compounds known to support microtubule assembly in vitro were tested for their ability to promote microtubule assembly in vivo. Best results were obtained by addition of dimethyl sulfoxide to the culture medium. Unlimited amounts of callus could be produced with the dimethyl sulfoxide method from protoplasts which never developed a single callus in control experiments. 30 references, 3 figures.« less

  13. Method for the addition of vulcanized waste rubber to virgin rubber products

    DOEpatents

    Romine, Robert A.; Snowden-Swan, Lesley J.

    1997-01-01

    The invention is a method of using enzymes from thiophyllic microbes for selectively breaking the sulfur rubber cross-link bonds in vulcanized rubber. The process is halted at the sulfoxide or sulfone step so that a devulcanized layer is reactive with virgin rubber.

  14. Toxicity Screening of Volatile Chemicals Using a Novel Air-Liquid Interface In Vitro Exposure System

    EPA Science Inventory

    Traditional in vitro dosing methods require, for example, the addition of particulate matter (PM), PM extracts, or chemicals in dimethyl sulfoxide (DMSO) or water into cell culture medium. However, about 10% of chemicals nominated for study in the U.S Environmental Protection Age...

  15. Convergent signaling pathways – interaction between methionine oxidation and serine/threonine/tyrosine O-phosphorylation

    USDA-ARS?s Scientific Manuscript database

    Oxidation of Methionine (Met) to Met sulfoxide (MetSO) is a frequently found reversible post-translational modification. It has been presumed that the major functional role for oxidation-labile Met residues is to protect proteins/cells from oxidative stress. However, Met oxidation has been establi...

  16. Method for the addition of vulcanized waste rubber to virgin rubber products

    DOEpatents

    Romine, R.A.; Snowden-Swan, L.J.

    1997-01-28

    The invention is a method of using enzymes from thiophyllic microbes for selectively breaking the sulfur rubber cross-link bonds in vulcanized rubber. The process is halted at the sulfoxide or sulfone step so that a devulcanized layer is reactive with virgin rubber. 8 figs.

  17. 21 CFR 172.886 - Petroleum wax.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register... it is very hygroscopic and will react with some metal containers in the presence of air. Phosphoric... high enough to keep the wax melted. (Note: In preheating the sulfoxide-acid mixture, remove the stopper...

  18. Relationship between sensory and chemical attributes of Vidalia onions

    USDA-ARS?s Scientific Manuscript database

    Flavor in fresh onions is dominated by sulfur containing volatiles that are released once tissues are disrupted and the S-alk(en)yl-L-cysteine sulfoxide (ACSOs) are hydrolyzed by the enzyme alliinase. Four intensities of flavor levels of Vidalia onions were induced by cultivating sweet (Num 1006) an...

  19. Melanin: The Effects of Dimethyl Sulfoxide on the Spectral Properties.

    DTIC Science & Technology

    1986-01-01

    the interpretation of the spectral data; Ms. Christine L. Noah-Cooper for stimulating and useful discussions; ’s. Lottie R. Applewhite for editorial...Photobiol 1978;28:75-81. 13. Gallas JP. Fluorescence of melanin. Dtiss Abstr Int 1982;43:1681. 14. Kozikowski SD, Wolfram LJ, Alfano RR. Fluorescence

  20. Modification of cellulose with succinic anhydride in TBAA/DMSO mixed solvent under catalyst-free conditions

    USDA-ARS?s Scientific Manuscript database

    Homogeneous modification of cellulose with succinic anhydride was performed in tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU) and TBAA dosage were investigated as paramete...

  1. The Two Faces of Sulfinates: Illustrating Umpolung Reactivity

    ERIC Educational Resources Information Center

    Tapia-Pineda, Adabelia; Perez-Arrieta, Carlos; Silva-Cuevas, Carolina; Paleo, Ehecatl; Lujan-Montelongo, J. Armando

    2016-01-01

    A simple, microscale experiment was developed with the aim of demonstrating the concept of umpolung in synthetic organic chemistry. Starting from a common alkyl sulfinate, students perform a polarity inversion by performing a Grignard-based sulfoxide synthesis and a Mannich-type formamide synthesis. The products are purified without chromatography…

  2. [Efficacy of albendazole chitosan microspheres against Echinococcus granulosus infection in mice].

    PubMed

    Liang, Wen; Wang, Xin-Chun; Wu, Xiang-Wei; Zhang, Shi-Jie; Sun, Hong; Ma, Xin; Peng, Xin-Yu

    2014-06-01

    To observe the therapeutic effect of albendazole chitosan microspheres (ABZ-CS-MPs) on cystic echinococcosis in mice. Two hundred male kunming mice were each infected by intraperitoneal inoculation of about 5 000 viable protoscoleces of Echinococcus granulosus. Another 20 mice were kept as blank control. After 12 weeks post infection, the mice were randomly divided into four groups named as infection control group (n = 20), ABZ-CS-MPs group, albendazole liposome (L-ABZ) group, and albendazole tablet group. The latter three treatment groups were then each divided into three subgroups (n = 20) by given the dose of 37.5, 75.0, and 150.0 mg/kg for three times per week, respectively. After 12 weeks of treatment, all mice were sacrificed. The weight of hydatid cysts was measured and the inhibition rate were calculated. Mouse liver was observed. The histopathological changes of E. granulosus were observed by microscopy. The concentration of albendazole sulfoxide in plasma and liver tissues was determined by high-performance liquid chromatography. Compared with the other treatment groups, the turbidity of contained fluid, the consolidation level and calcification level of hydatid cysts in ABZ-CS-MPs group were higher. The average weight of hydatid cysts in each treatment group was lower than that of infection control group [(3.19 +/- 2.94) g] (P < 0.05). The cyst weight in 37.5, 75.0, and 150.0 mg/kg ABZ-CS-MPs group [(0.28 +/- 0.28), (0.24 +/- 0.22), and (0.20 +/- 0.19) g, respectively] was lower than that of albendazole tablet groups [(0.77 +/- 0.74), (0.55 +/- 0.42), (0.76 +/- 0.35) g] (P < 0.05). Among the same dosage groups, the inhibition rate in ABZ-CS-MPs group (from low to high dosage sub-group: 91.1%, 92.6%, and 93.7%, respectively) was highest. In 75.0 mg/kg ABZ-CS-MPs group, there were 15 mice with class I (degeneration) and II (necrosis) pathological changes of E. granulosus hydatid. The number of mice with class I and II pathological changes in each dosage ABZ-CS-MPs sub-group and L-ABZ sub-group was more than that of albendazole tablet group (P<0.05). Plasma concentration of albendazole sulfoxide in 75.0 and 150.0 mg/kg ABZ-CS-MPs sub-groups [(0.83 +/- 0.39), (0.80 +/- 0.5) microg/ml] were higher than that of L-ABZ sub-groups [(0.34 +/- 0.03), (0.43 +/- 0.15) microg/ml] and albendazole tablet sub-groups [(0.31 +/- 0.02), (0.40 +/- 0.10) microg/ml] (P < 0.05). Compared with 37.5, 75.0, and 150.0 mg/kg albendazole tablet sub-groups [(0.04 +/- 0.02), (0.07 +/- 0.04), (0.04 +/- 0.0) microg/g], the albendazole sulfoxide concentration in liver tissue was higher in ABZ-CS-MPs sub-groups [(0.33 +/- 0.06), (0.45 +/- 0.31), (0.50 +/- 0.30) microg/g] (P < 0.05). In 37.5 mg/kg dosage sub-group, the albendazole sulfoxide concentration in liver tissue in ABZ-CS-MPs group was higher than that of L-ABZ group [(0.14 +/- 0.19) microg/g] (P < 0.05). ABZ-CS-MPs can reduce the weight of hydatid cyst and increase the concentration of al-bendazole sulfoxide in plasma and liver tissue of mice.

  3. 21 CFR 524.660b - Dimethyl sulfoxide gel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... (3) Limitations. Do not use in horses and dogs intended for breeding purposes or in horses... use—(1) Indications for use. For use on horses and dogs as a topical application to reduce acute... grams per day. Total duration of therapy should not exceed 30 days. (ii) Dogs. Administer 3 or 4 times...

  4. 21 CFR 524.660b - Dimethyl sulfoxide gel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... (3) Limitations. Do not use in horses and dogs intended for breeding purposes or in horses... use—(1) Indications for use. For use on horses and dogs as a topical application to reduce acute... grams per day. Total duration of therapy should not exceed 30 days. (ii) Dogs. Administer 3 or 4 times...

  5. 21 CFR 524.660b - Dimethyl sulfoxide gel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... (3) Limitations. Do not use in horses and dogs intended for breeding purposes or in horses... use—(1) Indications for use. For use on horses and dogs as a topical application to reduce acute... grams per day. Total duration of therapy should not exceed 30 days. (ii) Dogs. Administer 3 or 4 times...

  6. DMSO, Hobby Shops and the FDA: The Diffusion of a Health Policy Dilemma.

    ERIC Educational Resources Information Center

    Weinstock, Edward; Davis, Phillip

    1985-01-01

    Despite being banned by the FDA, DMSO (dimethyl sulfoxide) usage has spread rapidly among arthritic victims and weekend athletes. This study looked at current and past users to learn how they discovered DMSO, their reactions to buying an illegal drug, and possible implications for public health policy. (MT)

  7. Investigation of Unexpected Reaction Intermediates in the Alkaline Hydrolysis of Methyl 3,5-Dinitrobenzoate

    ERIC Educational Resources Information Center

    Silva, Clesia C.; Silva, Ricardo O.; Navarro, Daniela M. A. F.; Navarro, Marcelo

    2009-01-01

    An experimental project aimed at identifying stable reaction intermediates is described. Initially, the studied reaction appears to involve the simple hydrolysis, by aqueous sodium hydroxide, of methyl 3,5-dinitrobenzoate dissolved in dimethyl sulfoxide. On mixing the substrates, however, the reaction mixture unexpectedly turns an intense red in…

  8. Synthesis of an Albendazole Metabolite: Characterization and HPLC Determination

    ERIC Educational Resources Information Center

    Mahler, Graciela; Davyt, Danilo; Gordon, Sandra; Incerti, Marcelo; Nunez, Ivana; Pezaroglo, Horacio; Scarone, Laura; Serra, Gloria; Silvera, Mauricio; Manta, Eduardo

    2008-01-01

    In this laboratory activity, students are introduced to the synthesis of an albendazole metabolite obtained by a sulfide oxidation reaction. Albendazole as well as its metabolite, albendazole sulfoxide, are used as anthelmintic drugs. The oxidation reagent is H[subscript 2]O[subscript 2] in acetic acid. The reaction is environmental friendly,…

  9. Primary Eye Irritation Potential of the Holston Compounds: Virgin DMSO (Dimethyl Sulfoxide), DMSO Recycle Solvent, and DMSO Evaporator Sludge.

    DTIC Science & Technology

    1983-08-01

    slight deepening of the rugae or light hyperemia of circumeorneal blood vessels), or obvious swelling of the eyelids accompanied by severe...I Markedly deepened rugae , congestion, swelling, moderate circumcorneal hyperemia or injection, any of these or any combination thereof, iris still

  10. 21 CFR 524.660b - Dimethyl sulfoxide gel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... grams per day. Total duration of therapy should not exceed 30 days. (ii) Dogs. Administer 3 or 4 times daily in an amount not to exceed 20 grams per day. Total duration of therapy should not exceed 14 days. (3) Limitations. Do not use in horses and dogs intended for breeding purposes or in horses...

  11. 21 CFR 524.981d - Fluocinolone acetonide, dimethyl sulfoxide solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... apparently normal anal sacs, for the reversal of inflammatory changes associated with abnormal anal sacs, and to counteract the offensive odor of anal sac secretions. (2) It is administered by instillation of 1 to 2 milliliters into each anal sac following expression of anal sac contents. It may be necessary to...

  12. 21 CFR 524.981d - Fluocinolone acetonide, dimethyl sulfoxide solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... apparently normal anal sacs, for the reversal of inflammatory changes associated with abnormal anal sacs, and to counteract the offensive odor of anal sac secretions. (2) It is administered by instillation of 1 to 2 milliliters into each anal sac following expression of anal sac contents. It may be necessary to...

  13. 21 CFR 524.981d - Fluocinolone acetonide, dimethyl sulfoxide solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... apparently normal anal sacs, for the reversal of inflammatory changes associated with abnormal anal sacs, and to counteract the offensive odor of anal sac secretions. (2) It is administered by instillation of 1 to 2 milliliters into each anal sac following expression of anal sac contents. It may be necessary to...

  14. 21 CFR 524.981d - Fluocinolone acetonide, dimethyl sulfoxide solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... apparently normal anal sacs, for the reversal of inflammatory changes associated with abnormal anal sacs, and to counteract the offensive odor of anal sac secretions. (2) It is administered by instillation of 1 to 2 milliliters into each anal sac following expression of anal sac contents. It may be necessary to...

  15. 21 CFR 524.981d - Fluocinolone and dimethyl sulfoxide solution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 1 to 2 milliliters into each anal sac following expression of anal sac contents. (2) Indications for use. For the relief of impaction commonly present in apparently normal anal sacs, for the reversal of inflammatory changes associated with abnormal anal sacs, and to counteract the offensive odor of anal sac...

  16. Amelioration of radiation-induced pulmonary fibrosis by a water-soluble bifunctional sulfoxide radiation mitigator (MMS350).

    PubMed

    Kalash, Ronny; Epperly, Michael W; Goff, Julie; Dixon, Tracy; Sprachman, Melissa M; Zhang, Xichen; Shields, Donna; Cao, Shaonan; Franicola, Darcy; Wipf, Peter; Berhane, Hebist; Wang, Hong; Au, Jeremiah; Greenberger, Joel S

    2013-11-01

    A water-soluble ionizing radiation mitigator would have considerable advantages for the management of acute and chronic effects of ionizing radiation. We report that a novel oxetanyl sulfoxide (MMS350) is effective both as a protector and a mitigator of clonal mouse bone marrow stromal cell lines in vitro, and is an effective in vivo mitigator when administered 24 h after 9.5 Gy (LD100/30) total-body irradiation of C57BL/6NHsd mice, significantly improving survival (P = 0.0097). Furthermore, MMS350 (400 μM) added weekly to drinking water after 20 Gy thoracic irradiation significantly decreased: expression of pulmonary inflammatory and profibrotic gene transcripts and proteins; migration into the lungs of bone marrow origin luciferase+/GFP+ (luc+/GFP+) fibroblast progenitors (in both luc+ marrow chimeric and luc+ stromal cell line injected mouse models) and decreased radiation-induced pulmonary fibrosis (P < 0.0001). This nontoxic and orally administered small molecule may be an effective therapeutic in clinical radiotherapy and as a counter measure against the acute and chronic effects of ionizing radiation.

  17. MALDI-TOF to compare polysaccharide profiles from commercial health supplements of different mushroom species.

    PubMed

    López-García, Marta; García, María Sonia Dopico; Vilariño, José Manuel López; Rodríguez, María Victoria González

    2016-05-15

    In this work MALDI-TOF mass spectroscopy was investigated to characterise the β-glucan profiles of several commercial health supplements, without any derivatisation or purification pre-treatment. The effect of two solvents (water and dimethyl sulfoxide) and two MALDI matrices (2,5-dihydroxybenzoic acid and 2',4',6'-trihydroxyacetophenone) was first evaluated on dextran standards. MALDI-TOF was found as a useful and quick technique to obtain structural information of diverse food supplements based on mushroom extracts. The MALDI polysaccharide profiles of 5 supplements from different mushroom species were qualitatively similar showing [Glucan+Na](+) cations with a peak-to-peak mass difference of 16 Da consistent with the repeating unit of the β-(1→3)-glucan. The profiles strongly depended on the sample solvent used, with m/z values around 5000-8000 for water and 2000 for dimethyl sulfoxide; differences between samples were revealed in the molecular weight of the aqueous preparation, with the highest values for Maitake and Cordyceps species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Liquid structure of dibutyl sulfoxide

    DOE PAGES

    Lo Celso, Fabrizio; Aoun, Bachir; Triolo, Alessandro; ...

    2016-05-16

    We present experimental (x-ray diffraction) data on the structure of liquid dibutyl sulfoxide at 320 K and rationalize them by means of Molecular Dynamics simulations. Not unexpectedly, DBSO bearing a strong dipolar moiety and two medium length, apolar, butyl chains, this compound turns out to be characterised by a distinct degree of polar-vs-apolar structural differentiation at the nm spatial scale that is fingerprinted in a low Q peak in its x-ray diffraction pattern. Similarly to, but to a larger extent than its shorter chain family members (such as DMSO), DBSO is also characterised by an enhanced dipole-dipole correlation that ismore » responsible for the moderate Kirkwood correlation factor as well as for the self-association detected in this compound. In conclusion, we show however that the supposedly relevant hydrogen bonding correlations between oxygen and butyl chain hydrogens are of limited extent and only in the case of α-hydrogens appreciable indication of the existence of such an interaction is found, but it turns out to be a mere consequence of the strong dipole-dipole correlation.« less

  19. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.

    2008-09-01

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate ( I), bromo-(2-formylpyridinethiosemicarbazono)copper ( II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate ( III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I III at a concentration of 10-5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  20. (E)-3-(2-Alkyl-10H-phenothiazin-3-yl)-1-arylprop-2-en-1-ones: Preparative, IR, NMR and DFT study on their substituent-dependent reactivity in hydrazinolysis and sonication-assisted oxidation with copper(II)nitrate.

    PubMed

    Găină, Luiza; Csámpai, Antal; Túrós, György; Lovász, Tamás; Zsoldos-Mády, Virág; Silberg, Ioan A; Sohár, Pál

    2006-12-07

    A series of novel 3(5)-aryl/ferrocenyl-5(3)-phenothiazinylpyrazoles and pyrazolines were obtained by substituent-dependent regioselective condensation of the corresponding (E)-3-(2-alkyl-10H-phenothiazin-3-yl)-1-aryl/ferrocenylprop-2-en-1-one with hydrazine or methylhydrazine in acetic acid. The different propensity of the primary formed beta-hydrazino adducts to undergo competitive retro-Mannich reaction was interpreted in terms of tautomerisation equilibrium constants calculated by DFT using a solvent model. The regioselectivity of the cyclisation reactions with methylhydrazine and the substituent-dependent redox properties of pyrazolines were also rationalized by comparative DFT calculations performed for simplified model molecules. On the effect of ultrasound-promoted oxidation with copper(II)nitrate phenothiazine-containing pyrazolines, enones and oxo-compounds were selectively transformed into sulfoxides. Only one sulfoxide enone was partially converted into an oxirane derivative. The structure of the novel products was determined by IR and NMR spectroscopy including COSY, HSQC, HMBC and DNOE measurements.

  1. Amelioration of Radiation-Induced Pulmonary Fibrosis by a Water-Soluble Bifunctional Sulfoxide Radiation Mitigator (MMS350)

    PubMed Central

    Kalash, Ronny; Epperly, Michael W.; Goff, Julie; Dixon, Tracy; Sprachman, Melissa M.; Zhang, Xichen; Shields, Donna; Cao, Shaonan; Franicola, Darcy; Wipf, Peter; Berhane, Hebist; Wang, Hong; Au, Jeremiah; Greenberger, Joel S.

    2014-01-01

    A water-soluble ionizing radiation mitigator would have considerable advantages for the management of acute and chronic effects of ionizing radiation. We report that a novel oxetanyl sulfoxide (MMS350) is effective both as a protector and a mitigator of clonal mouse bone marrow stromal cell lines in vitro, and is an effective in vivo mitigator when administered 24 h after 9.5 Gy (LD100/30) total-body irradiation of C57BL/6NHsd mice, significantly improving survival (P =0.0097). Furthermore, MMS350 (400 μM) added weekly to drinking water after 20 Gy thoracic irradiation significantly decreased: expression of pulmonary inflammatory and profibrotic gene transcripts and proteins; migration into the lungs of bone marrow origin luciferase+/GFP+ (luc+/GFP+) fibroblast progenitors (in both luc+ marrow chimeric and luc+ stromal cell line injected mouse models) and decreased radiation-induced pulmonary fibrosis (P < 0.0001). This nontoxic and orally administered small molecule may be an effective therapeutic in clinical radiotherapy and as a counter measure against the acute and chronic effects of ionizing radiation. PMID:24125487

  2. Dimethyl sulfoxide inhibits NLRP3 inflammasome activation.

    PubMed

    Ahn, Huijeong; Kim, Jeeyoung; Jeung, Eui-Bae; Lee, Geun-Shik

    2014-04-01

    Dimethyl sulfoxide (DMSO) is an amphipathic molecule that is commonly/widely used as a solvent for biological compounds. In addition, DMSO has been studied as a medication for the treatment of inflammation, cystitis, and arthritis. Based on the anti-inflammatory characteristics of DMSO, we elucidated the effects of DMSO on activation of inflammasomes, which are cytoplasmic multi-protein complexes that mediate the maturation of interleukin (IL)-1β by activating caspase-1 (Casp1). In the present study, we prove that DMSO attenuated IL-1β maturation, Casp1 activity, and ASC pyroptosome formation via NLRP3 inflammasome activators. Further, NLRC4 and AIM2 inflammasome activity were not affected, suggesting that DMSO is a selective inhibitor of the NLRP3 inflammasomes. The anti-inflammatory effect of DMSO was further confirmed in animal, LPS-endotoxin sepsis and inflammatory bowel disease models. In addition, DMSO inhibited LPS-mediating IL-1s transcription. Taken together, DMSO shows anti-inflammatory characteristics, attenuates NLRP3 inflammasome activation, and mediates inhibition of IL-1s transcription. Crown Copyright © 2013. Published by Elsevier GmbH. All rights reserved.

  3. Acute dimethyl sulfoxide therapy in brain edema. Part 3: effect of a 3-hour infusion.

    PubMed

    Del Bigio, M; James, H E; Camp, P E; Werner, R; Marshall, L F; Tung, H

    1982-01-01

    Albino rabbits with experimental brain edema produced by a combined cryogenic left hemisphere lesion and metabolic 6-aminonicotinamide lesion were administered a 3-hour intravenous infusion of dimethyl sulfoxide (DMSO). Simultaneous recording of intracranial pressure (ICP), systolic arterial pressure (SAP), and central venous pressure (CVP) and electroencephalography were performed while the animals were being ventilated mechanically to produce a constant Pa CO2 value (38-42 torr). At the end of the infusion, the brain water and electrolyte contents were measured. There was a persistent and progressive reduction of ICP during the infusion, the nadir occurring at 3 hours (p less than 0.005 from zero time), with no change in SAP or CVP. There was a reduction of brain water in both hemispheres when compared to untreated controls, but this was significant for the right hemisphere only (p less than 0.005). There was a significant reduction of the brain sodium content for both hemispheres, but no significant change occurred in brain potassium content. The DMSO infusion was effective not only in reducing ICP, but also in sustaining this reduction for 3 hours.

  4. A Polyoxoniobate-Polyoxovanadate Double-Anion Catalyst for Simultaneous Oxidative and Hydrolytic Decontamination of Chemical Warfare Agent Simulants.

    PubMed

    Dong, Jing; Hu, Jufang; Chi, Yingnan; Lin, Zhengguo; Zou, Bo; Yang, Song; Hill, Craig L; Hu, Changwen

    2017-04-10

    A novel double-anion complex, H 13 [(CH 3 ) 4 N] 12 [PNb 12 O 40 (V V O) 2 ⋅(V IV 4 O 12 ) 2 ]⋅22 H 2 O (1), based on bicapped polyoxoniobate and tetranuclear polyoxovanadate was synthesized, characterized by routine techniques and used in the catalytic decontamination of chemical warfare agents. Under mild conditions, 1 catalyzes both hydrolysis of the nerve agent simulant, diethyl cyanophosphonate (DECP) and selective oxidation of the sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES). In the oxidative decontamination system 100 % CEES was transformed selectively to nontoxic 2-chloroethyl ethyl sulfoxide and vinyl ethyl sulfoxide using nearly stoichiometric 3 % aqueous H 2 O 2 with a turnover frequency (TOF) of 16 000 h -1 . Importantly, the catalytic activity is maintained even after ten recycles and CEES is completely decontaminated in 3 mins without formation of the highly toxic sulfone by-product. A three-step oxidative mechanism is proposed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mono- and bis-tolyl­terpyridine iridium(III) complexes

    PubMed Central

    Hinkle, Lindsay M.; Young, Victor G.; Mann, Kent R.

    2010-01-01

    The first structure report of trichlorido[4′-(p-tolyl)-2,2′:6′,2′′-terpyridine]iridium(III) dimethyl sulfoxide solvate, [IrCl3(C22H17N3)]·C2H6OS, (I), is presented, along with a higher-symmetry setting of previously reported bis­[4′-(p-tolyl)-2,2′:6′,2′′-terpyridine]iridium(III) tris­(hexa­fluorido­phosphate) acetonitrile disolvate, [Ir(C22H17N3)2](PF6)3·2C2H3N, (II) [Yoshikawa, Yamabe, Kanehisa, Kai, Takashima & Tsukahara (2007 ▶). Eur. J. Inorg. Chem. pp. 1911–1919]. For (I), the data were collected with synchrotron radiation and the dimethyl sulfoxide solvent mol­ecule is disordered over three positions, one of which is an inversion center. The previously reported structure of (II) is presented in the more appropriate C2/c space group. The iridium complex and one PF6 − anion lie on twofold axes in this structure, making half of the mol­ecule unique. PMID:20203396

  6. Gibbs energies of transferring triglycine from water into H2O-DMSO solvent

    NASA Astrophysics Data System (ADS)

    Usacheva, T. R.; Kuz'mina, K. I.; Lan, Pham Thi; Kuz'mina, I. A.; Sharnin, V. A.

    2014-08-01

    The Gibbs energies of transferring triglycine (3Gly, glycyl-glycyl-glycine) from water into mixtures of water with dimethyl sulfoxide (χDMSO = 0.05, 0.10, and 0.15 mole fractions) at 298.15 K are determined from the interphase distribution. An increased dimethyl sulfoxide (DMSO) concentration in the solvent slightly raises the positive values of Δtr G ○(3Gly), possibly indicating the formation of more stable 3Gly-H2O solvated complexes than ones of 3Gly-DMSO. It is shown that the change in the Gibbs energy of transfer of 3Gly is determined by the enthalpy component. The relationship of 3Gly and 18-crown-6 ether (18C6) solvation's contributions to the change in the Gibbs energy of [3Gly18C6] molecular complex formation in H2O-DMSO solvents is analyzed, and the key role of 3Gly solvation's contribution to the change in the stability of [3Gly18C6] upon moving from H2O to mixtures with DMSO is revealed.

  7. Mono- and bis-tolylterpyridine iridium(III) complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinkle, Lindsay M.; Young, Jr., Victor G.; Mann, Kent R.

    The first structure report of trichlorido[4'-(p-tolyl)-2,2':6',2{double_prime}-terpyridine]iridium(III) dimethyl sulfoxide solvate, [IrCl{sub 3}(C{sub 22}H{sub 17}N{sub 3})] {center_dot} C{sub 2}H{sub 6}OS, (I), is presented, along with a higher-symmetry setting of previously reported bis[4'-(p-tolyl)-2,2':6',2{double_prime}-terpyridine]iridium(III) tris(hexafluoridophosphate) acetonitrile disolvate, [Ir(C{sub 22}H{sub 17}N{sub 3})2](PF{sub 6}){sub 3} {center_dot} 2C{sub 2}H{sub 3}N, (II) [Yoshikawa, Yamabe, Kanehisa, Kai, Takashima & Tsukahara (2007). Eur. J. Inorg. Chem. pp. 1911-1919]. For (I), the data were collected with synchrotron radiation and the dimethyl sulfoxide solvent molecule is disordered over three positions, one of which is an inversion center. The previously reported structure of (II) is presented in the more appropriate C2/c space group.more » The iridium complex and one PF{sub 6}{sup -} anion lie on twofold axes in this structure, making half of the molecule unique.« less

  8. Conformational Change and Epimerization of Diketopiperazines Containing Proline Residue in Water.

    PubMed

    Ishizu, Takashi; Tsutsumi, Hiroyuki; Yokoyama, Emi; Kawamoto, Haruka; Yokota, Runa

    2017-01-01

    In water, diketopiperazines cyclo(L-Pro-L-Xxx) and cyclo(L-Pro-D-Xxx) (Xxx=Phe, Tyr) formed an intramolecular hydrophobic interaction between the main skeleton part and their benzene ring, and both cyclo(L-Pro-L-Xxx) and cyclo(L-Pro-D-Xxx) took a folded conformation. The conformational changes from folded to extended conformation by addition of several deuterated organic solvents (acetone-d 6 , metanol-d 4 , dimethyl sulfoxide-d 6 (DMSO-d 6 )) and the temperature rise were investigated using 1 H-NMR spectra. The results suggested that the intrarmolecular hydrophobic interaction of cyclo(L-Pro-D-Xxx) formed more strongtly than that of cyclo(L-Pro-L-Xxx). Under a basic condition of 1.0×10 -1  mol/L potassium deuteroxide, enolization of O 1 -C 1 -C 9 -H 9 moiety of cyclo(L-Pro-L-Xxx) occurred, while that of the O 4 -C 4 -C 3 -H 3 moiety did not. Cyclo(L-Pro-L-Xxx) epimerized to cyclo(D-Pro-L-Xxx), while cyclo(L-Pro-D-Xxx) did not change.

  9. Characteristics of Lithium Ions and Superoxide Anions in EMI-TFSI and Dimethyl Sulfoxide.

    PubMed

    Jung, Sun-ho; Federici Canova, Filippo; Akagi, Kazuto

    2016-01-28

    To clarify the microscopic effects of solvents on the formation of the Li(+)-O2(–) process of a Li–O2 battery, we studied the kinetics and thermodynamics of these ions in dimethyl sulfoxide (DMSO) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) using classical molecular dynamics simulation. The force field for ions–solvents interactions was parametrized by force matching first-principles calculations. Despite the solvation energies of the ions are similar in both solvents, their mobility is much higher in DMSO. The free-energy profiles also confirm that the formation and decomposition rates of Li(+)-O2(–) pairs are greater in DMSO than in EMI-TFSI. Our atomistic simulations point out that the strong structuring of EMI-TFSI around the ions is responsible for these differences, and it explains why the LiO2 clusters formed in DMSO during the battery discharge are larger than those in EMI-TFSI. Understanding the origin of such properties is crucial to aid the optimization of electrolytes for Li–O2 batteries.

  10. Storage stability of biodegradable polyethylene glycol microspheres

    NASA Astrophysics Data System (ADS)

    Jain, Era; Sheth, Saahil; Polito, Kristen; Sell, Scott A.; Zustiak, Silviya P.

    2017-10-01

    Degradable hydrogel microspheres are popular choices for multiple biomedical applications, including drug, protein, or cell carriers for minimally invasive delivery. Clinical transitioning of such new, sensitive pharmaceutical preparations requires investigation of storage methods that retain key properties for extended time. In this study, we sought to determine the influence of seven common storage conditions on the physical and mechanical properties of degradable polyethylene glycol (PEG) hydrogel microspheres: 25 °C, 4 °C, -80 °C, lyophilization/-20 °C, dimethyl sulfoxide/-80 °C, dimethyl sulfoxide/lyophilization/-20 °C, vacuum/-20 °C. We have outlined the storage conditions in detail and explained their effect on swelling ratio, stiffness and degradation rate post-storage. Additionally, we have implemented protein-loaded hydrogels to evaluate the effect of storage conditions on diffusivity as well as protein stability post-storage. We found that hydrogels could be stored short-term (1-4 d) under moist conditions (i.e. storage without drying) without a substantial loss of properties. For extended storage (7-28 d), they could be stored either at  -80 °C (moist condition) or vacuum drying (dry condition).

  11. Isolation and identification of Paenibacillus sp. FM-6, involved in the biotransformation of albendazole.

    PubMed

    Jin, Lei; Zhang, Xiaojun; Sun, Xiumei; Shi, Hui; Li, Tiejun

    2014-10-01

    A strain, designated as FM-6, was isolated from fish. Based on the results of phenotypic, physiological characteristics, genotypic and phylogenetic analysis, strain FM-6 was finally identified as Paenibacillus sp. When albendazole was provided as the sole carbon source, strain FM-6 could grow and transform albendazole. About 82.7 % albendazole (50 mg/L) was transformed by strain FM-6 after 5 days incubation at 30 °C, 160 rpm. With HPLC-MS method, the transforming product of albendazole was researched. Based on the molecular weight and the retention time, product was identified as albendazole sulfoxide and the transforming pathway of albendazole by strain FM-6 was proposed finally. The optimum temperature and pH for the bacterium growth and albendazole transformation by strain FM-6 were both 30 °C and 7.0. Moreover, the optimum concentration of albendazole for the bacterium growth was 50 mg/L. Coupled with practical production, 50 mg/L was the optimum concentration of albendazole transformation for strain FM-6. This study highlights an important potential use of strain FM-6 for producing albendazole sulfoxide.

  12. Solvent stimulated actuation of polyurethane-based shape memory polymer foams using dimethyl sulfoxide and ethanol

    NASA Astrophysics Data System (ADS)

    Boyle, A. J.; Weems, A. C.; Hasan, S. M.; Nash, L. D.; Monroe, M. B. B.; Maitland, D. J.

    2016-07-01

    Solvent exposure has been investigated to trigger actuation of shape memory polymers (SMPs) as an alternative to direct heating. This study aimed to investigate the feasibility of using dimethyl sulfoxide (DMSO) and ethanol (EtOH) to stimulate polyurethane-based SMP foam actuation and the required solvent concentrations in water for rapid actuation of hydrophobic SMP foams. SMP foams exhibited decreased T g when submerged in DMSO and EtOH when compared to water submersion. Kinetic DMA experiments showed minimal or no relaxation for all SMP foams in water within 30 min, while SMP foams submerged in EtOH exhibited rapid relaxation within 1 min of submersion. SMP foams expanded rapidly in high concentrations of DMSO and EtOH solutions, where complete recovery over 30 min was observed in DMSO concentrations greater than 90% and in EtOH concentrations greater than 20%. This study demonstrates that both DMSO and EtOH are effective at triggering volume recovery of polyurethane-based SMP foams, including in aqueous environments, and provides promise for use of this actuation technique in various applications.

  13. In vitro-in vivo correlation and translation to the clinical outcome for CJ-13,610, a novel inhibitor of 5-lipoxygenase.

    PubMed

    Matthew Hutzler, J; Linder, Collette D; Melton, Roger J; Vincent, John; Daniels, J Scott

    2010-07-01

    The metabolism of the 5-lipoxygenase inhibitor, 4-(3-(4-(2-methyl-1H-imidazol-1-yl)phenylthio)phenyl)-tetrahydro-2H-pyran-4-carboxamide (CJ-13,610), was investigated in liver microsomes from human and preclinical species in an effort to compare metabolite profiles and evaluate the in vitro-in vivo correlation for metabolic clearance. Overall, the metabolite profile of CJ-13,610 was comparable across the species tested with multiple oxidative metabolites observed, including sulfoxidation. The sulfoxidation kinetics characterized in rat, dog, and human liver microsomes (HLM) indicated a low apparent Michaelis-Menten constant (K(m, app)) of 4 to 5 microM. Results from cDNA-expressed cytochrome P450 (P450) studies indicated that the metabolism in HLM was primarily mediated by CYP3A4 and 3A5. A subsequent in vitro study using ketoconazole as an inhibitor of CJ-13,610 sulfoxidation corroborated the CYP3A4/5-mediated pathway (IC(50) = 7 nM). Assessment of multiple methods for predicting the human pharmacokinetic profile observed with CJ-13,610 after a 30-mg single oral dose indicated that clearance scaled from human liver microsomes yielded a better prediction when coupled with a Vd(ss) term that was scaled from dog [area under the concentration-time curve (AUC) and half-life within 1.3-fold of actual] versus a Vd(ss) term obtained from rat. Single-species allometric scaling of clearance and Vd(ss) from dog pharmacokinetic studies was equally predictive, whereas scaling from rat resulted in underpredictions of both AUC and maximal concentration (C(max)). Results from these studies support the strategy of predicting human pharmacokinetics using human liver microsomal intrinsic clearance data. More importantly, results from the present investigation enabled the selection of alternative drug candidates from the chemical series via in vitro screening, while subsequently eliminating costly routine preclinical in vivo studies.

  14. Dimeric molecular association of dimethyl sulfoxide in solutions of nonpolar liquids.

    PubMed

    Shikata, Toshiyuki; Sugimoto, Natsuki

    2012-01-26

    Although many vibrational spectroscopic studies using infrared (IR) absorption and Raman scattering (RS) techniques revealed that dimethyl sulfoxide (DMSO) forms intermolecular dimeric associations in the pure liquid state and in solutions, the results of a number of dielectric relaxation studies did not clearly show the presence of such dimers. Recently, we found the presence of dimeric DMSO associations in not only the pure liquid but also in solutions of nonpolar solvents, such as tetrachloromethane (CCl(4)) and benzene (Bz), using dielectric relaxation (DR) techniques, which ranged from 50 MHz to 50 GHz at 25 °C. The dimeric DMSO associations cause a slow dielectric relaxation process with a relaxation time of ca. 23 ps for solutions in CCl(4) (ca. 17 ps in Bz) due to the dissociation into monomeric DMSO molecules, while the other fast relaxation is caused by monomeric DMSO molecules with a relaxation time of ca. 5.0 ps (ca. 5.5 ps in Bz) at 25 °C. A comparison of DR and vibrational spectroscopic data for DMSO solutions demonstrated that the concentration dependence of the relative magnitude of the slow and fast DR strength corresponds well to the two IR and RS bands assigned to the vibrational stretching modes of the sulfoxide groups (S═O) of the dimeric associations and the monomeric DMSO molecules, respectively. Moreover, the concentrations of the dimeric associations ([DIM]) and monomeric DMSO molecules ([MON]) were governed by a chemical equilibrium and an equilibrium constant (K(d) = [DIM](2)[MON](-1)) that was markedly dependent on the concentration of DMSO and the solvent species (K(d) = 2.5 ± 0.5 M(-1) and 0.7 ± 0.1 M(-1) in dilute CCl(4) and Bz solutions, respectively, and dramatically increased to 20-40 M(-1) in pure DMSO at 25 °C).

  15. Differential solubility of curcuminoids in serum and albumin solutions: implications for analytical and therapeutic applications

    PubMed Central

    Quitschke, Wolfgang W

    2008-01-01

    Background Commercially available curcumin preparations contain a mixture of related polyphenols, collectively referred to as curcuminoids. These encompass the primary component curcumin along with its co-purified derivatives demethoxycurcumin and bisdemethoxycurcumin. Curcuminoids have numerous biological activities, including inhibition of cancer related cell proliferation and reduction of amyloid plaque formation associated with Alzheimer disease. Unfortunately, the solubility of curcuminoids in aqueous solutions is exceedingly low. This restricts their systemic availability in orally administered formulations and limits their therapeutic potential. Results Methods are described that achieve high concentrations of soluble curcuminoids in serum. Solid curcuminoids were either mixed directly with serum, or they were predissolved in dimethyl sulfoxide and added as aliquots to serum. Both methods resulted in high levels of curcuminoid-solubility in mammalian sera from different species. However, adding aliquots of dimethyl sulfoxide-dissolved curcuminoids to serum proved to be more efficient, producing soluble curcuminoid concentrations of at least 3 mM in human serum. The methods also resulted in the differential solubility of individual curcuminoids in serum. The addition of dimethyl sulfoxide-dissolved curcuminoids to serum preferentially solubilized curcumin, whereas adding solid curcuminoids predominantly solubilized bisdemethoxycurcumin. Either method of solubilization was equally effective in inhibiting dose-dependent HeLa cell proliferation in culture. The maximum concentration of curcuminoids achieved in serum was at least 100-fold higher than that required for inhibiting cell proliferation in culture and 1000-fold higher than the concentration that has been reported to prevent amyloid plaque formation associated with Alzheimer disease. Curcuminoids were also highly soluble in solutions of purified albumin, a major component of serum. Conclusion These results suggest the possibility of alternative therapeutic approaches by injection or infusion of relatively small amounts of curcuminoid-enriched serum. They also provide tools to reproducibly solubilize curcuminoids for analysis in cell culture applications. The differential solubility of curcuminoids achieved by different methods of solubilization offers convenient alternatives to assess the diverse biological effects contributed by curcumin and its derivatives. PMID:18990234

  16. Methionine sulfoxide reductase A deficiency exacerbates acute liver injury induced by acetaminophen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Mahendra Pratap; School of Bioengineering and Biosciences, Department of Zoology, Lovely Professional University, Phagwara, 144411, Punjab; Kim, Ki Young

    Acetaminophen (APAP) overdose induces acute liver injury via enhanced oxidative stress and glutathione (GSH) depletion. Methionine sulfoxide reductase A (MsrA) acts as a reactive oxygen species scavenger by catalyzing the cyclic reduction of methionine-S-sulfoxide. Herein, we investigated the protective role of MsrA against APAP-induced liver damage using MsrA gene-deleted mice (MsrA{sup −/−}). We found that MsrA{sup −/−} mice were more susceptible to APAP-induced acute liver injury than wild-type mice (MsrA{sup +/+}). The central lobule area of the MsrA{sup −/−} liver was more impaired with necrotic lesions. Serum alanine transaminase, aspartate transaminase, and lactate dehydrogenase levels were significantly higher in MsrA{supmore » −/−} than in MsrA{sup +/+} mice after APAP challenge. Deletion of MsrA enhanced APAP-induced hepatic GSH depletion and oxidative stress, leading to increased susceptibility to APAP-induced liver injury in MsrA-deficient mice. APAP challenge increased Nrf2 activation more profoundly in MsrA{sup −/−} than in MsrA{sup +/+} livers. Expression and nuclear accumulation of Nrf2 and its target gene expression were significantly elevated in MsrA{sup −/−} than in MsrA{sup +/+} livers after APAP challenge. Taken together, our results demonstrate that MsrA protects the liver from APAP-induced toxicity. The data provided herein constitute the first in vivo evidence of the involvement of MsrA in hepatic function under APAP challenge. - Highlights: • MsrA deficiency increases APAP-induced liver damage. • MsrA deletion enhances APAP-induced hepatic GSH depletion and oxidative stress. • MsrA deficiency induces more profound activation of Nrf2 in response to APAP. • MsrA protects the liver from APAP-induced toxicity.« less

  17. Supercritical antisolvent co-precipitation of rifampicin and ethyl cellulose.

    PubMed

    Djerafi, Rania; Swanepoel, Andri; Crampon, Christelle; Kalombo, Lonji; Labuschagne, Philip; Badens, Elisabeth; Masmoudi, Yasmine

    2017-05-01

    Rifampicin-loaded submicron-sized particles were prepared through supercritical anti-solvent process using ethyl cellulose as polymeric encapsulating excipient. Ethyl acetate and a mixture of ethyl acetate/dimethyl sulfoxide (70/30 and 85/15) were used as solvents for both drug and polymeric excipient. When ethyl acetate was used, rifampicin was crystallized separately without being embedded within the ethyl cellulose matrix while by using the ethyl acetate/dimethyl sulfoxide mixture, reduced crystallinity of the active ingredient was observed and a simultaneous precipitation of ethyl cellulose and drug was achieved. The effect of solvent/CO 2 molar ratio and polymer/drug mass ratio on the co-precipitates morphology and drug loading was investigated. Using the solvent mixture, co-precipitates with particle sizes ranging between 190 and 230nm were obtained with drug loading and drug precipitation yield from respectively 8.5 to 38.5 and 42.4 to 77.2% when decreasing the ethyl cellulose/rifampicin ratio. Results show that the solvent nature and the initial drug concentrations affect morphology and drug precipitation yield of the formulations. In vitro dissolution studies revealed that the release profile of rifampicin was sustained when co-precipitation was carried out with the solvent mixture. It was demonstrated that the drug to polymer ratio influenced amorphous content of the SAS co-precipitates. Differential scanning calorimetry thermograms and infrared spectra revealed that there is neither interaction between rifampicin and the polymer nor degradation of rifampicin during co-precipitation. In addition, stability stress tests on SAS co-precipitates were carried out at 75% relative humidity and room temperature in order to evaluate their physical stability. SAS co-precipitates were X-ray amorphous and remained stable after 6months of storage. The SAS co-precipitation process using a mixture of ethyl acetate/dimethyl sulfoxide demonstrates that this strategy can be successful for controlling rifampicin delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Oxidative desulfurization of dibenzothiophene with molecular oxygen using emulsion catalysis.

    PubMed

    Lü, Hongying; Gao, Jinbo; Jiang, Zongxuan; Yang, Yongxing; Song, Bo; Li, Can

    2007-01-14

    Dibenzothiophene (DBT) is oxidized to the corresponding sulfoxide and sulfone in an emulsion system (W/O) composed of polyoxometalate anion [C(18)H(37)N(CH(3))3](5)[PV(2)Mo(10)O(40)] as both the surfactant and catalyst, using molecular oxygen as the oxidant and aldehyde as the sacrificial agent under mild conditions.

  19. Fabrication of mesoporous polymer monolith: a template-free approach.

    PubMed

    Okada, Keisuke; Nandi, Mahasweta; Maruyama, Jun; Oka, Tatsuya; Tsujimoto, Takashi; Kondoh, Katsuyoshi; Uyama, Hiroshi

    2011-07-14

    Mesoporous polyacrylonitrile (PAN) monolith has been fabricated by a template-free approach using the unique affinity of PAN towards a water/dimethyl sulfoxide (DMSO) mixture. A newly developed Thermally Induced Phase Separation Technique (TIPS) has been used to obtain the polymer monoliths and their microstructures have been controlled by optimizing the concentration and cooling temperature.

  20. Modification of cellulose with succinic anhydride in TBAA/DMSO mixed solvent under catalyst-free conditions

    Treesearch

    Ping-Ping Xin; Yao-Bing Huang; Chung-Yun Hse; Huai N. Cheng; Chaobo Huang; Hui Pan

    2017-01-01

    Homogeneous modification of cellulose with succinic anhydride was performed using tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU), TBAA dosage, reaction temperature, and reaction time were investigated. The highest degree of substitution (DS)...

  1. Visible light catalyzed methylsulfoxidation of (het)aryl diazonium salts using DMSO.

    PubMed

    Pramanik, Mukund M D; Rastogi, Namrata

    2016-06-30

    The visible light catalyzed methylsulfoxidation of (het)aryl diazonium salts using DMSO is illustrated. This is the first example of DMSO being used as the source of the methylsulfinyl group. The procedure tolerates a wide range of functional groups on (het)aryl diazonium salts and provides aryl methyl sulfoxides in excellent yields under mild reaction conditions.

  2. Atypical Cyclic Sulfides, Garlicnins G, I, and J, Extracted from Allium sativum.

    PubMed

    Ono, Masateru; Fujiwara, Yukio; Ikeda, Tsuyoshi; Pan, Cheng; El-Aasr, Mona; Lee, Jong-Hyun; Nakano, Daisuke; Kinjo, Junei; Nohara, Toshihiro

    2017-01-01

    Newly characterized, atypical sulfides, garlicnins G (1), I (2), and J (3), were isolated from the acetone extracts of garlic bulbs, Allium sativum. Their production pathways are regarded as different from those of cyclic sulfoxides, 3,4-dimethyltetrahydrothiophene-S-oxide derivatives such as onionins A 1 -A 3 , garlicnins B 1 -B 4 and C 1 -C 3 .

  3. Development of a standardized methodology for quantifying total chlorophyll and carotenoids from foliage of hardwood and conifer tree species

    Treesearch

    Rakesh Minocha; Gabriela Martinez; Benjamin Lyons; Stephanie Long

    2009-01-01

    Despite the availability of several protocols for the extraction of chlorophylls and carotenoids from foliage of forest trees, information regarding their respective extraction efficiencies is scarce. We compared the efficiencies of acetone, ethanol, dimethyl sulfoxide (DMSO), and N, N-dimethylformamide (DMF) over a range of incubation times for the extraction of...

  4. Use of Glycerol as an Optical Clearing Agent for Enhancing Photonic Transference and Detection of Salmonella typhimurium through Porcine Skin

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate glycerol (GLY) and GLY + dimethyl sulfoxide (DMSO) to increase photonic detection of transformed Salmonella typhimurium (S. typh-lux) through porcine skin. Skin was placed on 96-well plates containing S. typh-lux, imaged (5 min) using a CCD camera, and the...

  5. Use of Glycerol as an Optical Clearing Agent for Enhancing Photonic Transference and Detection of Salmonella typhimurium Through Porcine Skin

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate glycerol (GLY) and GLY + dimethyl sulfoxide (DMSO) to increase photonic detection of transformed Salmonella typhimurium (S. typh-lux) through porcine skin. Skin was placed on 96-well plates containing S. typh-lux, imaged (5 min) using a CCD camera, and the...

  6. Photochemical induced growth and aggregation of metal nanoparticles in diode-array spectrophotometer via excited dimethyl-sulfoxide.

    PubMed

    Zidki, Tomer; Cohen, Haim; Meyerstein, Dan

    2010-10-21

    Ag(0) and Au(0) nanoparticles suspended in dilute aqueous solutions containing (CH(3))(2)SO are photochemically unstable. The light source of a diode-array spectrophotometer induces, within less than a minute, particle growth and aggregation. The results indicate that this process is triggered by UV light absorption by the (CH(3))(2)SO.

  7. New Drugs for Prevention of Breast Cancer Metastases

    DTIC Science & Technology

    1999-07-01

    the principal anticancer catechin, epigallocatechin gallate ( EGCg ). A 3-way mixture of epicatechin (EC), EGCg and glaucarubolone was more effective...DAPI, 4’,6-diamidino-2-phenylindole; DMSO, dimethyl sulfoxide; EGF, epidermal growth factor; EGCg , epigallocatechin gallate . ABSTRACT A drug...preferentially in HeLa and human and mouse mammary adenocarcinoma by the naturally-occurring catechin of green tea, epigallocatechin gallate ( EGCg ). With

  8. Improvement of operational stability of Ogataea minuta carbonyl reductase for chiral alcohol production.

    PubMed

    Honda, Kohsuke; Inoue, Mizuha; Ono, Tomohiro; Okano, Kenji; Dekishima, Yasumasa; Kawabata, Hiroshi

    2017-06-01

    Directed evolution of enantio-selective carbonyl reductase from Ogataea minuta was conducted to improve the operational stability of the enzyme. A mutant library was constructed by an error-prone PCR and screened using a newly developed colorimetric assay. The stability of a mutant with two amino acid substitutions was significantly higher than that of the wild type at 50°C in the presence of dimethyl sulfoxide. Site-directed mutagenesis analysis showed that the improved stability of the enzyme can be attributed to the amino acid substitution of V166A. The half-lives of the V166A mutant were 11- and 6.1-times longer than those of the wild type at 50°C in the presence and absence, respectively, of 20% (v/v) dimethyl sulfoxide. No significant differences in the substrate specificity and enantio-selectivity of the enzyme were observed. The mutant enzyme converted 60 mM 2,2,2-trifluoroacetophenone to (R)-(-)-α-(trifluoromethyl)benzyl alcohol in a molar yield of 71% whereas the conversion yield with an equivalent concentration of the wild-type enzyme was 27%. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Evaluation of specimen preservatives for DNA analyses of bees

    USGS Publications Warehouse

    Frampton, M.; Droege, S.; Conrad, T.; Prager, S.; Richards, M.H.

    2008-01-01

    Large-scale insect collecting efforts that are facilitated by the use of pan traps result in large numbers of specimens being collected. Storage of these specimens can be problematic if space and equipment are limited. In this study, we investigated the effects of various preservatives (alcohol solutions and DMSO) on the amount and quality of DNA extracted from bees (specifically Halictidae, Apidae, and Andrenidae). In addition, we examined the amount and quality of DNA obtained from bee specimens killed and stored at -80 degrees C and from specimens stored for up to 24 years in ethanol. DNA quality was measured in terms of how well it could be PCR-amplified using a set of mitochondrial primers that are commonly used in insect molecular systematics. Overall the best methods of preservation were ultra-cold freezing and dimethyl sulfoxide, but these are both expensive and in the case of ultra-cold freezing, somewhat impractical for field entomologists. Additionally, dimethyl sulfoxide was shown to have adverse effects on morphological characters that are typically used for identification to the level of species. We therefore recommend that the best alternative is 95% ethanol, as it preserves bee specimens well for both morphological and molecular studies.

  10. Single-Ion Solvation Free Energies and the Normal Hydrogen Electrode Potential in Methanol, Acetonitrile, and Dimethyl Sulfoxide

    PubMed Central

    Kelly, Casey P.; Cramer, Christopher J.; Truhlar, Donald G.

    2008-01-01

    The division of thermodynamic solvation free energies of electrolytes into ionic constituents is conventionally accomplished by using the single-ion solvation free energy of one reference ion, conventionally the proton, to set the single-ion scales. Thus the determination of the free energy of solvation of the proton in various solvents is a fundamental issue of central importance in solution chemistry. In the present article, relative solvation free energies of ions and ion-solvent clusters in methanol, acetonitrile, and dimethyl sulfoxide (DMSO) have been determined using a combination of experimental and theoretical gas-phase free energies of formation, solution-phase reduction potentials and acid dissociation constants, and gas-phase clustering free energies. Applying the cluster pair approximation to differences between these relative solvation free energies leads to values of −263.5, −260.2, and −273.3 kcal/mol for the absolute solvation free energy of the proton in methanol, acetonitrile, and DMSO, respectively. The final absolute proton solvation free energies are used to assign absolute values for the normal hydrogen electrode potential and the solvation free energies of other single ions in the above solvents. PMID:17214493

  11. Comparative study of protein unfolding in aqueous urea and dimethyl sulfoxide solutions: surface polarity, solvent specificity, and sequence of secondary structure melting.

    PubMed

    Roy, Susmita; Bagchi, Biman

    2014-05-29

    Elucidation of possible pathways between folded (native) and unfolded states of a protein is a challenging task, as the intermediates are often hard to detect. Here, we alter the solvent environment in a controlled manner by choosing two different cosolvents of water, urea, and dimethyl sulfoxide (DMSO) and study unfolding of four different proteins to understand the respective sequence of melting by computer simulation methods. We indeed find interesting differences in the sequence of melting of α helices and β sheets in these two solvents. For example, in 8 M urea solution, β-sheet parts of a protein are found to unfold preferentially, followed by the unfolding of α helices. In contrast, 8 M DMSO solution unfolds α helices first, followed by the separation of β sheets for the majority of proteins. Sequence of unfolding events in four different α/β proteins and also in chicken villin head piece (HP-36) both in urea and DMSO solutions demonstrate that the unfolding pathways are determined jointly by relative exposure of polar and nonpolar residues of a protein and the mode of molecular action of a solvent on that protein.

  12. Hydrogen-bonded complexes between dimethyl sulfoxide and monoprotic acids: molecular properties and IR spectroscopy.

    PubMed

    Belarmino, Márcia K D L; Cruz, Vanessa F; Lima, Nathália B D

    2014-11-01

    MP2/6-31++G(d,p) and DFT B3LYP/6-31++G(d,p) calculations were performed of the structure, binding energies, and vibrational modes of complexes between dimethyl sulfoxide (DMSO) as a proton acceptor and monoprotic linear acids HX (X = F, Cl, CN) as well as monoprotic carboxylic acids HOOCR (R = -H, -CH3, -C6H5) in 1:1 and 1:2 stoichiometric ratios. The results show that two different structures are possible in the 1:2 ratio: in the first, the DMSO molecule interacts with both acid molecules (leading to a "Y" structure); in the second, the DMSO interacts with only one monoprotic acid. The second structure shows a lower stability per hydrogen bond. The spontaneities of the reactions to form the 1:1 and 1:2 complexes are greatly influenced by the X group of the linear acid. With the exception of HCN, all the reactions are spontaneous. In the 1:2 complexes with Y structure, we observed that the hydrogen atoms of the linear acid are coupled in symmetric and asymmetric modes, while this type of coupling is absent from the other 1:2 complexes.

  13. Hydrothermal conversion of N-acetyl-d-glucosamine to 5-hydroxymethylfurfural using ionic liquid as a recycled catalyst in a water-dimethyl sulfoxide mixture.

    PubMed

    Zang, Hongjun; Yu, Songbai; Yu, Pengfei; Ding, Hongying; Du, Yannan; Yang, Yuchan; Zhang, Yiwen

    2017-04-10

    Here, N-acetyl-d-glucosamine (GlcNAc), the monomer composing the second most abundant biopolymer, chitin, was efficiently converted into 5-hydroxymethylfurfural (5-HMF) using ionic liquid (IL) catalysts in a water/dimethyl sulfoxide (DMSO) mixture solvent. Various reaction parameters, including reaction temperature and time, DMSO/water mass ratios and catalyst dosage were optimized. A series of ILs with different structures were analyzed to explore their impact on GlcNAc conversion. The substrate scope was expanded from GlcNAc to d-glucosamine, chitin, chitosan and monosaccharides, although 5-HMF yields obtained from polymers and other monosaccharides were generally lower than those from GlcNAc. Moreover, the IL N-methylimidazolium hydrogen sulfate ([Hmim][HSO 4 ]) exhibited the best catalyst performance (64.6% yield) when GlcNAc was dehydrated in a DMSO/water mixture at 180 °C for 6 h without the addition of extra catalysts. To summarize, these results could provide knowledge essential to the production of valuable chemicals that are derived from renewable marine resources and benefit biofuel-related applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Characterization of damaged skin by impedance spectroscopy: chemical damage by dimethyl sulfoxide.

    PubMed

    White, Erick A; Orazem, Mark E; Bunge, Annette L

    2013-10-01

    To relate changes in the electrochemical impedance spectra to the progression and mechanism of skin damage arising from exposure to dimethyl sulfoxide (DMSO). Electrochemical impedance spectra measured before and after human cadaver skin was treated with neat DMSO or phosphate buffered saline (control) for 1 h or less were compared with electrical circuit models representing two contrasting theories describing the progression of DMSO damage. Flux of a model lipophilic compound (p-chloronitrobenzene) was also measured. The impedance spectra collected before and after 1 h treatment with DMSO were consistent with a single circuit model; whereas, the spectra collected after DMSO exposure for 0.25 h were consistent with the model circuits observed before and after DMSO treatment for 1 h combined in series. DMSO treatments did not significantly change the flux of p-chloronitrobenzene compared to control. Impedance measurements of human skin exposed to DMSO for less than about 0.5 h were consistent with the presence of two layers: one damaged irreversibly and one unchanged. The thickness of the damaged layer increased proportional to the square-root of treatment time until about 0.5 h, when DMSO affected the entire stratum corneum. Irreversible DMSO damage altered the lipophilic permeation pathway minimally.

  15. Solvent shift method for anti-precipitant screening of poorly soluble drugs using biorelevant medium and dimethyl sulfoxide.

    PubMed

    Yamashita, Taro; Ozaki, Shunsuke; Kushida, Ikuo

    2011-10-31

    96-well plate based anti-precipitant screening using bio-relevant medium FaSSIF (fasted-state simulated small intestinal fluid) is a useful technique for discovering anti-precipitants that maintain supersaturation of poorly soluble drugs. In a previous report, two disadvantages of the solvent evaporation method (solvent casting method) were mentioned: precipitation during the evaporation process and the use of volatile solvents to dissolve compounds. In this report, we propose a solvent shift method using DMSO (dimethyl sulfoxide). Initially, the drug substance was dissolved in DMSO at a high concentration and diluted with FaSSIF that contained anti-precipitants. To evaluate the validity of the method, itraconazole (ITZ) was used as the poorly soluble model drug. The solvent shift method resolved the disadvantages of the evaporation method, and AQOAT (HPMC-AS) was found as the most appropriate anti-precipitant for ITZ in a facile and expeditious manner when compared with the solvent evaporation method. In the large scale JP paddle method, AQOAT-based solid dispersion maintained a higher concentration than Tc-5Ew (HPMC)-based formulation; this result corresponded well with the small scale of the solvent shift method. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Solute-solvent interactions in 2,4-dihydroxyacetophenone isonicotinoylhydrazone solutions in N, N-dimethylformamide and dimethyl sulfoxide at 298-313 K on ultrasonic and viscometric data

    NASA Astrophysics Data System (ADS)

    Dikkar, A. B.; Pethe, G. B.; Aswar, A. S.

    2016-02-01

    The speed of sound ( u), density (ρ), and viscosity (η) of 2,4-dihydroxyacetophenone isonicotinoylhydrazone (DHAIH) have been measured in N, N-dimethyl formamide and dimethyl sulfoxide at equidistance temperatures 298.15, 303.15, 308.15, and 313.15 K. These data were used to calculate some important ultrasonic and thermodynamic parameters such as apparent molar volume ( V ϕ s st ), apparent molar compressibility ( K ϕ), partial molar volume ( V ϕ 0 ) and partial molar compressibility ( K ϕ 0 ), were estimated by using the values of ( V ϕ 0 ) and ( K ϕ), at infinite dilution. Partial molar expansion at infinite dilution, (ϕ E 0 ) has also been calculated from temperature dependence of partial molar volume V ϕ 0 . The viscosity data have been analyzed using the Jones-Dole equation, and the viscosity, B coefficients are calculated. The activation free energy has been calculated from B coefficients and partial molar volume data. The results have been discussed in the term of solute-solvent interaction occurring in solutions and it was found that DHAIH acts as a structure maker in present systems.

  17. Regulation of thrombosis and vascular function by protein methionine oxidation

    PubMed Central

    Gu, Sean X.; Stevens, Jeff W.

    2015-01-01

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. PMID:25900980

  18. Carrier effects of dosing the h4iie cells with 3,3′,4,4tt´etrachlorobiphenyl (PCB77) in dimethyl sulfoxide or isooctane

    USGS Publications Warehouse

    Yu, Kyung O.; Fisher, Jeff W.; Burton, G. Allen; Tillitt, Donald E.

    1997-01-01

    A rat hepatoma cell line, H4IIE serves as a bioassay tool to assess the potential toxicity of dioxin-like chemicals, including polychlorinated biphenyls (PCB) in environmental samples. PCB exposure to these cells induces cytochrome (CYP) P4501A1 activity in a dose-dependent fashion, thus allowing assessment of mixtures. The objective of this study was to determine the effect of different carriers, dimethyl sulfoxide (DMSO) and isooctane on the concentrations of PCBs in the H411E cells and induction of CYPIA1 activity as measured by ethoxyresorufm O-deethylase (EROD) activity. H4IIE cells were dosed with three micrograms of UL-14C-PCB77/ plate dissolved in DMSO or isooctane, and were harvested at sequential time periods for 4 days. PCB77 concentration and EROD activity were measured in the cells. EROD activity was greater when using DMSO as compared to isooctane, while there was no difference in the distribution of PCB77-derived radioactivities within the cell culture system based upon the carrier solvent used to deliver PCB77.

  19. The change in hydrogen bond strength accompanying charge rearrangement: Implications for enzymatic catalysis

    PubMed Central

    Shan, Shu-ou; Herschlag, Daniel

    1996-01-01

    The equilibrium for formation of the intramolecular hydrogen bond (KHB) in a series of substituted salicylate monoanions was investigated as a function of ΔpKa, the difference between the pKa values of the hydrogen bond donor and acceptor, in both water and dimethyl sulfoxide. The dependence of log KHB upon ΔpKa is linear in both solvents, but is steeper in dimethyl sulfoxide (slope = 0.73) than in water (slope = 0.05). Thus, hydrogen bond strength can undergo substantially larger increases in nonaqueous media than aqueous solutions as the charge density on the donor or acceptor atom increases. These results support a general mechanism for enzymatic catalysis, in which hydrogen bonding to a substrate is strengthened as charge rearranges in going from the ground state to the transition state; the strengthening of the hydrogen bond would be greater in a nonaqueous enzymatic active site than in water, thus providing a rate enhancement for an enzymatic reaction relative to the solution reaction. We suggest that binding energy of an enzyme is used to fix the substrate in the low-dielectric active site, where the strengthening of the hydrogen bond in the course of a reaction is increased. PMID:8962076

  20. Anti-Obesity Effects of Onion Extract in Zucker Diabetic Fatty Rats

    PubMed Central

    Yoshinari, Orie; Shiojima, Yoshiaki; Igarashi, Kiharu

    2012-01-01

    Anti-obesity effects of onion extract were determined in obesity and diabetes-prone Zucker diabetic fatty rats by measuring the efficacy of markers concerned with diabetes and obesity. Body and adipose tissue weights in 5% of onion extract-fed group were found to be significantly lower than the control group without onion extract. Fasting blood glucose and HOMA-IR levels were also improved, although the serum insulin and leptin levels did not show any remarkable difference. Serum triglyceride and free fatty acid levels in both the 3% and 5%-fed group were found to be reduced compared to the control group. Additionally the feeding of the onion extract increased the glucose tolerance. These results suggest that dietary onion extract is beneficial for improving diabetes by decreasing lipid levels. We also examined differentiation ability of rat white preadipocyte cells using the onion extract and its sulfur-containing components. Cycloalliin, S-methyl-L-cysteine, S-propyl-L-cysteine sulfoxide, dimethyl trisulfide, especially S-methyl-L-cysteine sulfoxide were reported to be effective in inhibiting formation of oil drop in the cells, suggesting that these compounds may be involved in the anti-obesity effect of the onion extract. PMID:23201769

  1. Synthesis Of Labeled Metabolites

    DOEpatents

    Martinez, Rodolfo A.; Silks, III, Louis A.; Unkefer, Clifford J.; Atcher, Robert

    2004-03-23

    The present invention is directed to labeled compounds, for example, isotopically enriched mustard gas metabolites including: [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1,1'-sulfonylbis[2-(methylthio); [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1-[[2-(methylsulfinyl)ethyl]sulfonyl]-2-(methylthio); [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1,1'-sulfonylbis[2-(methylsulfinyl)]; and, 2,2'-sulfinylbis([1,2-.sup.13 C.sub.2 ]ethanol of the general formula ##STR1## where Q.sup.1 is selected from the group consisting of sulfide (--S--), sulfone (--S(O)--), sulfoxide (--S(O.sub.2)--) and oxide (--O--), at least one C* is .sup.13 C, X is selected from the group consisting of hydrogen and deuterium, and Z is selected from the group consisting of hydroxide (--OH), and --Q.sup.2 --R where Q.sup.2 is selected from the group consisting of sulfide (--S--), sulfone(--S(O)--), sulfoxide (--S(O.sub.2)--) and oxide (--O--), and R is selected from the group consisting of hydrogen, a C.sub.1 to C.sub.4 lower alkyl, and amino acid moieties, with the proviso that when Z is a hydroxide and Q.sup.1 is a sulfide, then at least one X is deuterium.

  2. Sulfur formation by steady-state continuous cultures of a sulfoxidizing consortium and Thiobacillus thioparus ATCC 23645.

    PubMed

    Alcántara, S; Velasco, A; Revah, S

    2004-10-01

    The elemental sulfur formation by the partial oxidation of thiosulfate by both a sulfoxidizing consortium and by Thiobacillus thioparus ATCC 23645 was studied under aerobic conditions in chemostat. Steady state was attained with essentially total conversion to sulfate when the dissolved oxygen concentration was 5 mgO2 l(-1) and below a dilution rate (D) of 3.0 d(-1)for the consortium and 0.9 d(-1) for T thioparus. The consortium formed elemental sulfur in steady state under oxygen limitation. Fifty percent of the theoretical elemental sulfur yield was obtained with a dissolved oxygen concentration of 0.2 mgO2 l(-1). Growth of T thioparus was negatively affected with a concentration below 1.9 mgO2 l(-1). Consortium yield from batch cultures was 2.1 g(-1) (protein) mol(-1) (thiosulfate), which was comparable with the values obtained in the chemostat at dilution rates of 0.4 d(-1) and 1.2 d(-1). The consortium showed a maximum degradation rate of 0.105 g(thiosulfate) g(-1) (protein) min(-1) and a saturation rate for S2O3(2-) of 1.9 mM.

  3. 11β-Hydroxylation of Cortexolone (Reichstein Compound S) to Hydrocortisone by Curvularia lunata Entrapped in Photo-Cross-Linked Resin Gels

    PubMed Central

    Sonomoto, Kenji; Hoq, M. Mozammel; Tanaka, Atsuo; Fukui, Saburo

    1983-01-01

    Spores of Curvularia lunata were immobilized by entrapment with photo-cross-linkable resin prepolymers and incubated to form mycelium in potato dextrose broth containing cortexolone (Reichstein compound S) as an inducer of steroid 11β-hydroxylase. In a buffer system containing 2.5% dimethyl sulfoxide, this immobilized mycelium hydroxylated cortexolone to hydrocortisone. The activity of this mycelium was comparable to the activity of free mycelium. Dimethyl sulfoxide did not inhibit hydroxylase activity at the concentration used and was effective in dissolving the product. Of the various photo-cross-linkable resin prepolymers examined, use of ENT-4000, whose main chain was polyethylene glycol 4000 (chain length, approximately 40 nm), resulted in maximum hydroxylation activity of the entrapped mycelium. The chain length of prepolymers affected markedly mycelial growth in the gels and, subsequently, the activity of the entrapped mycelium. The immobilized hydroxylation system was more stable than the system in free mycelium and could be reactivated by incubation of the entrapped mycelium in potato dextrose broth containing cortexolone. The system was tested 50 times during 100 days of operation and was found to carry out the desired transformation with overall yields of 60%. Images PMID:16346194

  4. Identification of hydrogen peroxide oxidation sites of alpha A- and alpha B-crystallins.

    PubMed

    Smith, J B; Jiang, X; Abraham, E C

    1997-02-01

    The alpha-crystallins are the most abundant structural proteins of the lens and, because of their chaperone activity, contribute to the solubility of the other crystallins. With aging, the lens crystallins undergo a variety of modifications which correlate with a loss of solubility and the development of cataract. A recent study demonstrating that alpha-crystallins exposed in vitro to FeCl3 and H2O2 exhibit decreased chaperone activity, implicates metal catalyzed oxidations of alpha-crystallins in this loss of solubility. The present study has determined that alpha-crystallins incubated with FeCl3 and H2O2 are modified by the nearly complete oxidation of all methionine residues to methionine sulfoxide, with no other detectable reaction products. The modifications were identified from the molecular weights of peptides formed by enzymatic digestion of the alpha-crystallins and located by tandem mass spectrometric analysis of the fragmentation pattern of the mass spectra of the fragments from peptides with oxidized methionine is loss of 64 Da, which corresponds to loss of CH3SOH from the methionine sulfoxide. These fragments are useful in identifying peptides that include oxidized methionine residues.

  5. Purifying contaminated water

    DOEpatents

    Daughton, Christian G.

    1983-01-01

    Process for removing biorefractory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic, acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

  6. Acute Oral Toxicity of DMSO (Dimethyl Sulfoxide) Process Stream Samples in Male and Female Mice.

    DTIC Science & Technology

    1983-12-01

    4 Lethal Dose Calculations ......... o............. o................. 6 Clinical Observations .................... o...8217 . -, . ,. - - . . . - . .. .. . . . . . ., . , . .. .. . . . . . . . . 1% L - u0 2 C 3 q m r " ,- White--7 Clinical Observations On the day of dosing, the animals were...kg, 2.8 ml/kg). The predominant clinical signs were depression, inactivity, excitation, and aggression, with mild to moderate loss of equilibrium. The

  7. Anti-microbial Activity of Tulsi {Ocimum Sanctum (Linn.)} Extract on a Periodontal Pathogen in Human Dental Plaque: An Invitro Study

    PubMed Central

    Devaraj, C.G.; Agarwal, Payal

    2016-01-01

    Introduction Tulsi is a popular healing herb in Ayurvedic medicine. It is widely used in the treatment of several systemic diseases because of its anti-microbial property. However, studies documenting the effect of Tulsi on oral disease causing organisms are rare. Hence, an attempt was made to determine the effect of Tulsi on a periodontal microorganism in human dental plaque. Aim To determine if Ocimum sanctum (Linn.) has an anti-microbial activity (Minimum Inhibitory Concentration and zone of inhibition) against Actinobacillus actinomycetemcomitans in human dental plaque and to compare the antimicrobial activity of Ocimum sanctum(Linn.) extract with 0.2% chlorhexidine as the positive control and dimethyl sulfoxide as the negative control. Materials and Methods A lab based invitro experimental study design was adopted. Ethanolic extract of Ocimum sanctum (Linn.) was prepared by the cold extraction method. The extract was diluted with an inert solvent, dimethyl sulfoxide, to obtain ten different concentrations (1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%) of extract. Plaque sample was collected from 05 subjects diagnosed with periodontal disease. Isolation of Actinobacillus actinomycetemcomitans from plaque samples was done using Tryptic Soy Serum Bacitracin Vancomycin agar (TSBV) medium. Identification of Actinobacillus actinomycetemcomitans was done based on cultural, microscopic, biochemical characterization and multiple drug resistance patterns. Anti-microbial activity of Ocimum sanctum (Linn.) extract was tested by agar well-diffusion method against 0.2% chlorhexidine as a positive control and dimethyl sulfoxide as a negative control. The zone of inhibition was measured in millimeters using Vernier callipers. Results At the 6% w/v concentration of Ocimum sanctum (Linn.) extract, a zone of inhibition of 22 mm was obtained. This was the widest zone of inhibition observed among all the 10 different concentrations tested. The zone of inhibition for positive control was 25mm and no zone of inhibition was observed around the negative control. Conclusion Ocimum sanctum (Linn.) extract demonstrated an antimicrobial activity against Actinobacillus actinomycetemcomitans. The maximum antimicrobial potential was observed at the 6% concentration level. PMID:27135002

  8. Evolution of sulfur speciation in bitumen through hydrous pyrolysis induced thermal maturation of Jordanian Ghareb Formation oil shale

    USGS Publications Warehouse

    Birdwell, Justin E.; Lewan, Michael; Bake, Kyle D.; Bolin, Trudy B.; Craddock, Paul R.; Forsythe, Julia C.; Pomerantz, Andrew E.

    2018-01-01

    Previous studies on the distribution of bulk sulfur species in bitumen before and after artificial thermal maturation using various pyrolysis methods have indicated that the quantities of reactive (sulfide, sulfoxide) and thermally stable (thiophene) sulfur moieties change following consistent trends under increasing thermal stress. These trends show that sulfur distributions change during maturation in ways that are similar to those of carbon, most clearly illustrated by the increase in aromatic sulfur (thiophenic) as a function of thermal maturity. In this study, we have examined the sulfur moiety distributions of retained bitumen from a set of pre- and post-pyrolysis rock samples in an organic sulfur-rich, calcareous oil shale from the Upper Cretaceous Ghareb Formation. Samples collected from outcrop in Jordan were subjected to hydrous pyrolysis (HP). Sulfur speciation in extracted bitumens was examined using K-edge X-ray absorption near-edge structure (XANES) spectroscopy. The most substantial changes in sulfur distribution occurred at temperatures up to the point of maximum bitumen generation (∼300 °C) as determined from comparison of the total organic carbon content for samples before and after extraction. Organic sulfide in bitumen decreased with increasing temperature at relatively low thermal stress (200–300 °C) and was not detected in extracts from rocks subjected to HP at temperatures above around 300 °C. Sulfoxide content increased between 200 and 280 °C, but decreased at higher temperatures. The concentration of thiophenic sulfur increased up to 300 °C, and remained essentially stable under increasing thermal stress (mg-S/g-bitumen basis). The ratio of stable-to-reactive+stable sulfur moieties ([thiophene/(sulfide+sulfoxide+thiophene)], T/SST) followed a sigmoidal trend with HP temperature, increasing slightly up to 240 °C, followed by a substantial increase between 240 and 320 °C, and approaching a constant value (∼0.95) at temperatures above 320 °C. This sulfur moiety ratio appears to provide complementary thermal maturity information to geochemical parameters derived from other analyses of extracted source rocks.

  9. Scolicidal and apoptotic activities of albendazole sulfoxide and albendazole sulfoxide-loaded PLGA-PEG as a novel nanopolymeric particle against Echinococcus granulosus protoscoleces.

    PubMed

    Naseri, Marziyeh; Akbarzadeh, Abolfazl; Spotin, Adel; Akbari, Nagibeh Asl Rahnemaii; Mahami-Oskouei, Mahmoud; Ahmadpour, Ehsan

    2016-12-01

    Treatment failures of human cystic echinococcosis (CE) with albendazole (ABZ) have attributed to its low solubility and poor drug absorption rate, resulting in low drug level in plasma. The scolicidal effects of ABZ-loaded liposome nanoparticles have recently evaluated; however, these particles have several challenges due to their low encapsulated load. This investigation was designed to evaluate and compare in vitro apoptotic activities of ABZ sulfoxide (ABZs) and ABZs-loaded poly(lactic-co-glycolic acid) (PLGA)-PEG against protoscoleces (PSCs). ABZs-loaded PLGA-PEG was prepared by a double-emulsion method (W1/O/W2). Various concentrations of ABZs and ABZs-loaded PLGA-PEG (50, 100, 150, and 200 μg/ml) were experimentally tested against PSC of CE at different exposure times (5, 10, 20, 30, and 60 min). ABZs-loaded PLGA-PEG at concentrations of 150 and 200 μg/ml was able to act at a 100 % scolicidal rate in all exposure times (5 to 60 min), while ABZs at a concentration of 200 μg/ml demonstrated 94, 100, and 100 % mortality rates following 20, 30, and 60 min of exposure times, respectively. The messenger RNA (mRNA) expression of caspase-3 was assessed by semi-quantitative RT-PCR after 15 h of exposure. Caspase-3 mRNA expression was higher in both PSC treated with ABZs and PSC treated with ABZs-loaded PLGA-PEG than that in control groups (P < 0.05). No significant difference was observed between the apoptotic intensity of PSC treated with ABZs and that of PSC treated with ABZs-loaded PLGA-PEG (P > 0.05). DNA fragmentation assay and ultrastructural changes revealed that ABZs and ABZs-loaded PLGA-PEG induced the apoptosis of PSC by activation of caspase-3. The higher permeability and scolicidal rate of ABZs-loaded PLGA-PEG can be addressed as an effectual alternative strategy to improve the treatment of human CE.

  10. Anti-microbial Activity of Tulsi {Ocimum Sanctum (Linn.)} Extract on a Periodontal Pathogen in Human Dental Plaque: An Invitro Study.

    PubMed

    Eswar, Pranati; Devaraj, C G; Agarwal, Payal

    2016-03-01

    Tulsi is a popular healing herb in Ayurvedic medicine. It is widely used in the treatment of several systemic diseases because of its anti-microbial property. However, studies documenting the effect of Tulsi on oral disease causing organisms are rare. Hence, an attempt was made to determine the effect of Tulsi on a periodontal microorganism in human dental plaque. To determine if Ocimum sanctum (Linn.) has an anti-microbial activity (Minimum Inhibitory Concentration and zone of inhibition) against Actinobacillus actinomycetemcomitans in human dental plaque and to compare the antimicrobial activity of Ocimum sanctum(Linn.) extract with 0.2% chlorhexidine as the positive control and dimethyl sulfoxide as the negative control. A lab based invitro experimental study design was adopted. Ethanolic extract of Ocimum sanctum (Linn.) was prepared by the cold extraction method. The extract was diluted with an inert solvent, dimethyl sulfoxide, to obtain ten different concentrations (1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%) of extract. Plaque sample was collected from 05 subjects diagnosed with periodontal disease. Isolation of Actinobacillus actinomycetemcomitans from plaque samples was done using Tryptic Soy Serum Bacitracin Vancomycin agar (TSBV) medium. Identification of Actinobacillus actinomycetemcomitans was done based on cultural, microscopic, biochemical characterization and multiple drug resistance patterns. Anti-microbial activity of Ocimum sanctum (Linn.) extract was tested by agar well-diffusion method against 0.2% chlorhexidine as a positive control and dimethyl sulfoxide as a negative control. The zone of inhibition was measured in millimeters using Vernier callipers. At the 6% w/v concentration of Ocimum sanctum (Linn.) extract, a zone of inhibition of 22 mm was obtained. This was the widest zone of inhibition observed among all the 10 different concentrations tested. The zone of inhibition for positive control was 25mm and no zone of inhibition was observed around the negative control. Ocimum sanctum (Linn.) extract demonstrated an antimicrobial activity against Actinobacillus actinomycetemcomitans. The maximum antimicrobial potential was observed at the 6% concentration level.

  11. Vapor Pressure Data and Analysis for Selected HD Decomposition Products: 1,4-Thioxane, Divinyl Sulfoxide, Chloroethyl Acetylsulfide, and 1,4-Dithiane

    DTIC Science & Technology

    2018-06-01

    decomposition products from bis-(2-chloroethyl) sulfide (HD). These data were measured using an ASTM International method that is based on differential...2.1 Materials and Method ........................................................................................2 2.2 Data Analysis...and Method The source and purity of the materials studied are listed in Table 1. Table 1. Sample Information for Title Compounds Compound

  12. Organic Inorganic Hybrid Solar Cell Efficiency Improvement By Employing Au Nanocluster

    DTIC Science & Technology

    2015-06-14

    ABSTRACT 16. SECURITY CLASSIFICATION OF: Poly( 3,4-ethyllenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS), a P-type organic polymer is frequently...Addition of small volume percentage of organic additives such as dimethyl sulfoxide (DMSO) has a positive effect on the conductivity of this polymer . In...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 hybrid solar cell, tunable conductivity, organic polymer , heterojunction, nanocluster

  13. Purifying contaminated water. [DOE patent application

    DOEpatents

    Daughton, C.G.

    1981-10-27

    Process is presented for removing biorefactory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

  14. Biomimetic Hydrogel Materials

    DOEpatents

    Bertozzi, Carolyn , Mukkamala, Ravindranath , Chen, Oing , Hu, Hopin , Baude, Dominique

    2003-04-22

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  15. Biomimetic hydrogel materials

    DOEpatents

    Bertozzi, Carolyn; Mukkamala, Ravindranath; Chen, Qing; Hu, Hopin; Baude, Dominique

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  16. Studying the Dependency of Interfacial Formation with Carbon Nanotube

    DTIC Science & Technology

    2014-08-27

    PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...duration of this project toward understanding the interfacial formation and dependency on SWNT and its relationship to the nanotube length. SECTION II...obtained from Kuraray America Inc. Dimethyl sulfoxide (DMSO) was purchased from Sigma -Aldrich Corporation (CAS# 67-68-5, lot# 472301). Methanol was

  17. Methionine Sulfoxide Reductase A Knockout Mice Show Progressive Hearing Loss and Sensitivity to Acoustic Trauma.

    PubMed

    Alqudah, Safa; Chertoff, Mark; Durham, Dianne; Moskovitz, Jackob; Staecker, Hinrich; Peppi, Marcello

    2018-06-21

    Methionine sulfoxide reductases (MsrA and MsrB) protect the biological activity of proteins from oxidative modifications to methionine residues and are important for protecting against the pathological effects of neurodegenerative diseases. In the current study, we characterized the auditory phenotype of the MsrA knockout mouse. Young MsrA knockout mice showed small high-frequency threshold elevations for auditory brainstem response and distortion product otoacoustic emission compared to those of wild-type mice, which progressively worsened in older MsrA knockout mice. MsrA knockout mice showed an increased sensitivity to noise at young and older ages, suggesting that MsrA is part of a mechanism that protects the cochlea from acoustic damage. MsrA mRNA in the cochlea was increased following acoustic stimulation. Finally, expression of mRNA MsrB1 was compromised at 6 months old, but not in younger MsrA knockout mice (compared to controls). The identification of MsrA in the cochlea as a protective mediator from both early onset hearing loss and acoustic trauma expands our understanding of the pathways that may induce protection from acoustic trauma and foster further studies on how to prevent the damaging effect of noise exposure through Msr-based therapy. © 2018 S. Karger AG, Basel.

  18. Effect of simulated rainfall on leaching and efficacy of fenamiphos.

    PubMed

    Johnson, A W; Wauchope, R D; Burgoa, B

    1995-12-01

    There is increasing concern in the United States about the pesticide movement in soil, groundwater contamination, and pesticide residue in food. The objective of this study was to determine the efficacy, degradation, and movement of fenamiphos (Nemacur 15G) in the soil and residues in squash fruit as influenced by four simulated rainfall treatments (2.5 or 5.0 cm each applied 1 or 3 days after nematicide application) under field conditions. In 1990, concentrations of fenamiphos were greater in the top 15 cm of soil in plots with no rainfall than in those treated with rainfall. Eighty to 95 % of the fenamiphos recovered from treated plots was found in the 0-15-cm soil layer. The concentration of fenamiphos recovered from the 0-15-cm soil layer in 1991 was approximately one-half the concentration recovered in 1990, but greater concentrations of fenamiphos sulfoxide (an oxidation product of fenamiphos) were recovered in 1991 than in 1990. Concentrations of fenamiphos, fenamiphos sulfoxide, and fenamiphos sulfone were near or below detectable levels (0.002 mg/kg soil) below the 0-15-cm soil layer. Rainfall treatments did not affect the efficacy of the nematicide against Meloidogyne incognita race 1. The concentration of fenamiphos in squash fruit in 1991 was below the detectable level (0.01 mg/kg).

  19. Enantioseparation of novel chiral sulfoxides on chlorinated polysaccharide stationary phases in supercritical fluid chromatography.

    PubMed

    West, Caroline; Konjaria, Mari-Luiza; Shashviashvili, Natia; Lemasson, Elise; Bonnet, Pascal; Kakava, Rusudan; Volonterio, Alessandro; Chankvetadze, Bezhan

    2017-05-26

    Asymmetric sulfoxides is a particular case of chirality that may be found in natural as well as synthetic products. Twenty-four original molecules containing a sulfur atom as a centre of chirality were analyzed in supercritical fluid chromatography on seven polysaccharide-based chiral stationary phases (CSP) with carbon dioxide - methanol mobile phases. While all the tested CSP provided enantioseparation for a large part of the racemates, chlorinated cellulosic phases proved to be both highly retentive and highly enantioselective towards these species. Favourable structural features were determined by careful comparison of the enantioseparation of the probe molecules. Molecular modelling studies indicate that U-shaped (folded) conformations were most favorable to achieve high enantioresolution on these CSP, while linear (extended) conformations were not so clearly discriminated. For a subset of these species adopting different conformations, a broad range of mobile phase compositions, ranging from 20 to 100% methanol in carbon dioxide, were investigated. While retention decreased continuously in this range, enantioseparation varied in a non-monotonous fashion. Abrupt changes in the tendency curves of retention and selectivity were observed when methanol proportion reaches about 60%, suggesting that a change in the conformation of the analytes and/or chiral selector is occurring at this point. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Dissolution of brominated epoxy resins by dimethyl sulfoxide to separate waste printed circuit boards.

    PubMed

    Zhu, Ping; Chen, Yan; Wang, Liangyou; Qian, Guangren; Zhang, Wei Jie; Zhou, Ming; Zhou, Jin

    2013-03-19

    Improved methods are required for the recycling of waste printed circuit boards (WPCBs). In this study, WPCBs (1-1.5 cm(2)) were separated into their components using dimethyl sulfoxide (DMSO) at 60 °C for 45 min and a metallographic microscope was used to verify their delamination. An increased incubation time of 210 min yielded a complete separation of WPCBs into their components, and copper foils and glass fibers were obtained. The separation time decreased with increasing temperature. When the WPCB size was increased to 2-3 cm(2), the temperature required for complete separation increased to 90 °C. When the temperature was increased to 135 °C, liquid photo solder resists could be removed from the copper foil surfaces. The DMSO was regenerated by rotary decompression evaporation, and residues were obtained. Fourier transform infrared spectroscopy (FT-IR), thermal analysis, nuclear magnetic resonance, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were used to verify that these residues were brominated epoxy resins. From FT-IR analysis after the dissolution of brominated epoxy resins in DMSO it was deduced that hydrogen bonding may play an important role in the dissolution mechanism. This novel technology offers a method for separating valuable materials and preventing environmental pollution from WPCBs.

  1. Enhancement of the Rate of Pyrophosphate Hydrolysis by Nonenzymatic Catalysts and by Inorganic Pyrophosphatase*

    PubMed Central

    Stockbridge, Randy B.; Wolfenden, Richard

    2011-01-01

    To estimate the proficiency of inorganic pyrophosphatase as a catalyst, 31P NMR was used to determine rate constants and thermodynamics of activation for the spontaneous hydrolysis of inorganic pyrophosphate (PPi) in the presence and absence of Mg2+ at elevated temperatures. These values were compared with rate constants and activation parameters determined for the reaction catalyzed by Escherichia coli inorganic pyrophosphatase using isothermal titration calorimetry. At 25 °C and pH 8.5, the hydrolysis of MgPPi2− proceeds with a rate constant of 2.8 × 10−10 s−1, whereas E. coli pyrophosphatase was found to have a turnover number of 570 s−1 under the same conditions. The resulting rate enhancement (2 × 1012-fold) is achieved entirely by reducing the enthalpy of activation (ΔΔH‡ = −16.6 kcal/mol). The presence of Mg2+ ions or the transfer of the substrate from bulk water to dimethyl sulfoxide was found to increase the rate of pyrophosphate hydrolysis by as much as ∼106-fold. Transfer to dimethyl sulfoxide accelerated PPi hydrolysis by reducing the enthalpy of activation. Mg2+ increased the rate of PPi hydrolysis by both increasing the entropy of activation and reducing the enthalpy of activation. PMID:21460215

  2. Bilirubin and its oxidation products damage brain white matter

    PubMed Central

    Lakovic, Katarina; Ai, Jinglu; D'Abbondanza, Josephine; Tariq, Asma; Sabri, Mohammed; Alarfaj, Abdullah K; Vasdev, Punarjot; Macdonald, Robert Loch

    2014-01-01

    Brain injury after intracerebral hemorrhage (ICH) occurs in cortex and white matter and may be mediated by blood breakdown products, including hemoglobin and heme. Effects of blood breakdown products, bilirubin and bilirubin oxidation products, have not been widely investigated in adult brain. Here, we first determined the effect of bilirubin and its oxidation products on the structure and function of white matter in vitro using brain slices. Subsequently, we determined whether these compounds have an effect on the structure and function of white matter in vivo. In all, 0.5 mmol/L bilirubin treatment significantly damaged both the function and the structure of myelinated axons but not the unmyelinated axons in brain slices. Toxicity of bilirubin in vitro was prevented by dimethyl sulfoxide. Bilirubin oxidation products (BOXes) may be responsible for the toxicity of bilirubin. In in vivo experiments, unmyelinated axons were found more susceptible to damage from bilirubin injection. These results suggest that unmyelinated axons may have a major role in white-matter damage in vivo. Since bilirubin and BOXes appear in a delayed manner after ICH, preventing their toxic effects may be worth investigating therapeutically. Dimethyl sulfoxide or its structurally related derivatives may have a potential therapeutic value at antagonizing axonal damage after hemorrhagic stroke. PMID:25160671

  3. Selective reduction of N-oxides to amines: application to drug metabolism.

    PubMed

    Kulanthaivel, Palaniappan; Barbuch, Robert J; Davidson, Rita S; Yi, Ping; Rener, Gregory A; Mattiuz, Edward L; Hadden, Chad E; Goodwin, Lawrence A; Ehlhardt, William J

    2004-09-01

    Phase I oxidative metabolism of nitrogen-containing drug molecules to their corresponding N-oxides is a common occurrence. There are instances where liquid chromatography/tandem mass spectometry techniques are inadequate to distinguish this pathway from other oxidation processes, including C-hydroxylations and other heteroatom oxidations, such as sulfur to sulfoxide. Therefore, the purpose of the present study was to develop and optimize an efficient and practical chemical method to selectively convert N-oxides to their corresponding amines suitable for drug metabolism applications. Our results indicated that efficient conversion of N-oxides to amines could be achieved with TiCl(3) and poly(methylhydrosiloxane). Among them, we found TiCl(3) to be a facile and easy-to-use reagent, specifically applicable to drug metabolism. There are a few reports describing the use of TiCl(3) to reduce N-O bonds in drug metabolism studies, but this methodology has not been widely used. Our results indicated that TiCl(3) is nearly as efficient when the reductions were carried out in the presence of biological matrices, including plasma and urine. Finally, we have shown a number of examples where TiCl(3) can be successfully used to selectively reduce N-oxides in the presence of sulfoxides and other labile groups.

  4. An electron spin resonance study for real-time detection of ascorbyl free radicals after addition of dimethyl sulfoxide in murine hippocampus or plasma during kainic acid-induced seizures.

    PubMed

    Matsumoto, Shigekiyo; Shingu, Chihiro; Koga, Hironori; Hagiwara, Satoshi; Iwasaka, Hideo; Noguchi, Takayuki; Yokoi, Isao

    2010-07-01

    Electron spin resonance (ESR)-silent ascorbate solutions generate a detectable, likely concentration-dependent signal of ascorbyl free radicals (AFR) immediately upon addition of a molar excess of dimethyl sulfoxide (DMSO). We aimed to perform quantitative ESR analysis of AFR in real time after addition of DMSO (AFR/DMSO) to evaluate ascorbate concentrations in fresh hippocampus or plasma following systemic administration of kainate in mice. Use of a special tissue-type quartz cell allowed immediate detection of AFR/DMSO ESR spectra in fresh tissues from mice. AFR/DMSO content was increased significantly in fresh hippocampus or plasma obtained during kainate-induced seizures of mice, reaching maximum levels at 90 min after intraperitoneal administration of 50 mg/kg kainic acid. This suggests that oxidative injury of the hippocampus resulted from the accumulation of large amounts of ascorbic acid in the brain after kainic acid administration. AFR/DMSO content measured on an ESR spectrometer can be used for real-time evaluation of ascorbate content in fresh tissue. Due to the simplicity, good performance, low cost and real-time monitoring of ascorbate, this method may be applied to clinical research and treatment in the future.

  5. Behavioural effects of dimethyl sulfoxide (DMSO): changes in sleep architecture in rats.

    PubMed

    Cavas, María; Beltrán, David; Navarro, José F

    2005-07-04

    Dimethyl sulfoxide (DMSO) is an efficient solvent for water-insoluble compounds, widely used in biological studies and as a vehicle for drug therapy, but few data on its neurotoxic or behavioural effects is available. The aim of this work is to explore DMSO's effects upon sleep/wake states. Twenty male rats were sterotaxically prepared for polysomnography. Four concentrations of DMSO (5%, 10%, 15%, and 20%, in saline) were examined. DMSO or saline were administered intraperitoneally at the beginning of the light period. Three hours of polygraphic recording were evaluated for stages of vigilance after treatment. Sleep/wake parameters and EEG power spectral analyses during sleep were investigated. Results show no significant effect after 5% or 10% DMSO treatment. DMSO 15% increased mean episode duration of light slow wave sleep (SWS), decreasing mean episode duration of deep SWS and of quiet wake (QW). DMSO 20% increased light SWS enhancing number of episodes, while decreased deep SWS mean episode duration. EEG power spectra of sigma and delta activity were also affected by DMSO. Therefore, DMSO at 15% and 20% affects sleep architecture in rats, increasing light SWS and reducing deep SWS. Being aware of DMSO behavioural effects seems important since experimental artefacts caused by DMSO can lead to the erroneous interpretation of results.

  6. Effect of rapid addition and dilution of dimethyl sulfoxide and 37 degrees C equilibration on viability of rabbit morulae thawed rapidly.

    PubMed

    Kojima, T; Soma, T; Oguri, N

    1987-06-01

    The aim of the present study was to examine the effects of various conditions of addition and dilution of dimethyl sulfoxide (Me2SO) and 37 degrees C equilibration, and also the effects of freezing in the solution which was prepared in advance and stored in plastic straws at -20 degrees C on the viability of rabbit morulae thawed rapidly. The embryos were cooled from room temperature to -30 degrees C at 1 degree C/min in the presence of 1.5 M Me2SO using a programmable liquid nitrogen vapor freezing machine with an automatic seeding device, then cooled rapidly, and stored in liquid nitrogen. The frozen straws were thawed rapidly (greater than 1000 degrees C/min). When Me2SO was added in a single step, equilibrated with embryos at 37 degrees C for 15 min and diluted out in a single step, a very high survival was obtained: transferable/recovered, 90%: developed/recovered, 96%. When embryos were pipetted into 1.5 M Me2SO that was prepared in advance, stocked in straws at -20 degrees C, and cooled, the proportions of transferable and developed embryos were equivalent to those of embryos frozen in the solution that was prepared immediately before use.

  7. Fullerenol C60(OH)24 nanoparticles decrease relaxing effects of dimethyl sulfoxide on rat uterus spontaneous contraction

    NASA Astrophysics Data System (ADS)

    Slavic, Marija; Djordjevic, Aleksandar; Radojicic, Ratko; Milovanovic, Slobodan; Orescanin-Dusic, Zorana; Rakocevic, Zlatko; Spasic, Mihajlo B.; Blagojevic, Dusko

    2013-05-01

    Dimethyl sulfoxide (DMSO) is a widely used solvent and cryoprotectant that can cause impaired blood flow, reduction in intracranial pressure, tissue edema, inflammatory reactions, inhibition of vascular smooth muscle cell migration and proliferation, processes which can lead to atherosclerosis of the coronary, peripheral and cerebral circulation. Although the adverse effects are rare when DMSO is administered in clinically established concentrations, there is no safe antagonist for an overdose. In this work, we treated isolated spontaneous and calcium-induced contractile active rat uteri (Wistar, virgo intacta), with DMSO and fullerenol C60(OH)24 nanoparticle (FNP) in DMSO. FNP is a water-soluble derivative of fullerene C60. Its size is a 1.1 nm in diameter and is a very promising candidate for a drug carrier in nanomedicine. FNP also displays free radical scavenging activity. DMSO decreased both spontaneous and calcium-induced contractions. In contrast, FNP only decreased spontaneous contraction. FNP decreased copper-zinc superoxide dismutase activity and prevented the DMSO-induced increase in glutathione reductase activity. Atomic force microscopy detected that FNP aggregated with calcium ions. Our results indicate that FNP has properties that make it a good candidate to be a modulator of DMSO activity which could minimize side effects of the latter.

  8. Capillary electrophoresis separation of peptide diastereomers that contain methionine sulfoxide by dual cyclodextrin-crown ether systems.

    PubMed

    Zhu, Qingfu; Heinemann, Stefan H; Schönherr, Roland; Scriba, Gerhard K E

    2014-12-01

    A dual-selector system employing achiral crown ethers in combination with cyclodextrins has been developed for the separation of peptide diastereomers that contain methionine sulfoxide. The combinations of the crown ethers 15-crown-5, 18-crown-6, Kryptofix® 21 and Kryptofix® 22 and β-cyclodextrin, carboxymethyl-β-cyclodextrin, and sulfated β-cyclodextrin were screened at pH 2.5 and pH 8.0 using a 40/50.2 cm, 50 μm id fused-silica capillary and a separation voltage of 25 kV. No diastereomer separation was observed in the sole presence of crown ethers, while only sulfated β-cyclodextrin was able to resolve some peptide diastereomers at pH 8.0. Depending on the amino acid sequence of the peptide and the applied cyclodextrin, the addition of crown ethers, especially the Krpytofix® diaza-crown ethers, resulted in significantly enhanced chiral recognition. Keeping one selector of the dual system constant, increasing concentrations of the second selector resulted in increased peak resolution and analyte migration time for peptide-crown ether-cyclodextrin combinations. The simultaneous diastereomer separation of three structurally related peptides was achieved using the dual selector system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Microwave heating modelling of a green smoothie: Effects on glucoraphanin, sulforaphane and S-methyl cysteine sulfoxide changes during storage.

    PubMed

    Castillejo, Noelia; Martínez-Hernández, Ginés Benito; Lozano-Guerrero, Antonio José; Pedreño-Molina, Juan Luis; Gómez, Perla A; Aguayo, Encarna; Artés, Francisco; Artés-Hernández, Francisco

    2018-03-01

    The heating of a green smoothie during an innovative semi-continuous microwave treatment (MW; 9 kW for 15 s) was modelled. Thermal and dielectric properties of the samples were previously determined. Furthermore, the heating effect on the main chemopreventive compounds of the smoothie and during its subsequent storage up to 30 days at 5 or 15 °C were studied. Such results were compared to conventional pasteurisation (CP; 90 °C for 45 s) while unheated fresh blended samples were used as the control. A procedure was developed to predict the temperature distribution in samples inside the MW oven with the help of numerical tools. MW-treated samples showed the highest sulforaphane formation after 20 days, regardless of the storage temperature, while its content was two-fold reduced in CP samples. Storage of the smoothie at 5 °C is crucial for maximising the levels of the bioactive compound S-methyl cysteine sulfoxide. The proposed MW treatment can be used by the food industry to obtain an excellent homogeneous heating of a green smoothie product retaining high levels of bioactive compounds during subsequent retail/domestic storage up to 1 month at 5 °C. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Thermodynamics of mixing water with dimethyl sulfoxide, as seen from computer simulations.

    PubMed

    Idrissi, Abdenacer; Marekha, Bogdan; Barj, Mohamed; Jedlovszky, Pál

    2014-07-24

    The Helmholtz free energy, energy, and entropy of mixing of eight different models of dimethyl sulfoxide (DMSO) with four widely used water models are calculated at 298 K over the entire composition range by means of thermodynamic integration along a suitably chosen thermodynamic path, and compared with experimental data. All 32 model combinations considered are able to reproduce the experimental values rather well, within RT (free energy and energy) and R (entropy) at any composition, and quite often the deviation from the experimental data is even smaller, being in the order of the uncertainty of the calculated free energy or energy, and entropy values of 0.1 kJ/mol and 0.1 J/(mol K), respectively. On the other hand, none of the model combinations considered can accurately reproduce all three experimental functions simultaneously. Furthermore, the fact that the entropy of mixing changes sign with increasing DMSO mole fraction is only reproduced by a handful of model pairs. Model combinations that (i) give the best reproduction of the experimental free energy, while still reasonably well reproducing the experimental energy and entropy of mixing, and (ii) that give the best reproduction of the experimental energy and entropy, while still reasonably well reproducing the experimental free energy of mixing, are identified.

  11. The Effect of Dimethyl Sulfoxide on Supercoiled DNA Relaxation Catalyzed by Type I Topoisomerases

    PubMed Central

    Lv, Bei; Dai, Yunjia; Liu, Ju; Zhuge, Qiang; Li, Dawei

    2015-01-01

    The effects of dimethyl sulfoxide (DMSO) on supercoiled plasmid DNA relaxation catalyzed by two typical type I topoisomerases were investigated in our studies. It is shown that DMSO in a low concentration (less than 20%, v/v) can induce a dose-related enhancement of the relaxation efficiency of Escherichia coli topoisomerase I (type IA). Conversely, obvious inhibitory effect on the activity of calf thymus topoisomerase I (type IB) was observed when the same concentration of DMSO is used. In addition, our studies demonstrate that 20% DMSO has an ability to reduce the inhibitory effect on EcTopo I, which was induced by double-stranded oligodeoxyribonucleotides while the same effect cannot be found in the case of CtTopo I. Moreover, our AFM examinations suggested that DMSO can change the conformation of negatively supercoiled plasmid by creating some locally loose regions in DNA molecules. Combining all the lines of evidence, we proposed that DMSO enhanced EcTopo I relaxation activity by (1) increasing the single-stranded DNA regions for the activities of EcTopo I in the early and middle stages of the reaction and (2) preventing the formation of double-stranded DNA-enzyme complex in the later stage, which can elevate the effective concentration of the topoisomerase in the reaction solution. PMID:26682217

  12. Endothelium-Dependent and -Independent Vasodilator Effects of Dimethyl Sulfoxide in Rat Aorta.

    PubMed

    Kaneda, Takeharu; Sasaki, Noriyasu; Urakawa, Norimoto; Shimizu, Kazumasa

    2016-01-01

    This study examined the mechanism of vasorelaxation induced by dimethyl sulfoxide (DMSO) in endothelium-intact and -denuded rat aorta. DMSO (0.1-3%) inhibited phenylephrine (PE, 1 μmol/l)-induced contraction in a dose-dependent manner. However, this relaxation was lower in the absence of the endothelium. Increase in DMSO-induced relaxation in the presence of the endothelium was attenuated by preincubation in L-NG-nitroarginine methyl ester (L-NAME, 100 μmol/l) and by the removal of the endothelium. In the aorta with endothelium, DMSO (3%) and CCh (3 μmol/l) increased cGMP contents, significantly and L-NAME (100 μmol/l) inhibited the DMSO-induced increases of cGMP. In fura 2-loaded endothelium-denuded aorta, cumulative application of DMSO (1-3%) inhibited PE-induced muscle tension; however, this application did not affect the [Ca2+]i level. In PE-precontracted endothelium-denuded aorta, relaxation responses to fasudil were significantly less in the presence of DMSO compared to the control. These results suggest that DMSO causes relaxation by increasing the cGMP content in correlation with the release of NO from endothelial cells and by decreasing the Ca2+ sensitivity of contractile elements partly via inhibiting Rho-kinase in rat aorta. © 2016 S. Karger AG, Basel.

  13. Dimethyl sulfoxide induces oxidative stress in the yeast Saccharomyces cerevisiae.

    PubMed

    Sadowska-Bartosz, Izabela; Pączka, Aleksandra; Mołoń, Mateusz; Bartosz, Grzegorz

    2013-12-01

    Dimethyl sulfoxide (DMSO) is used as a cryoprotectant for the preservation of cells, including yeast, and as a solvent for chemical compounds. We report that DMSO induces oxidative stress in the yeast. Saccharomyces cerevisiae wt strain EG-103 and its mutants Δsod1, Δsod2, and Δsod1 Δsod2 were used. Yeast were subjected to the action of 1-14% DMSO for 1 h at 28 °C. DMSO induced a concentration-dependent inhibition of yeast growth, the effect being more pronounced for mutants devoid of SOD (especially Δsod1 Δsod2). Cell viability was compromised. DMSO-concentration-dependent activity loss of succinate dehydrogenase, a FeS enzyme sensitive to oxidative stress, was observed. DMSO enhanced formation of reactive oxygen species, estimated with dihydroethidine in a concentration-dependent manner, the effect being again more pronounced in mutants devoid of superoxide dismutases. The content of cellular glutathione was increased with increasing DMSO concentrations, which may represent a compensatory response. Membrane fluidity, estimated by fluorescence polarization of DPH, was decreased by DMSO. These results demonstrate that DMSO, although generally considered to be antioxidant, induces oxidative stress in yeast cells. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Dimethyl sulfoxide and dimethyl formamide increase lifespan of C. elegans in liquid.

    PubMed

    Frankowski, Harald; Alavez, Silvestre; Spilman, Patricia; Mark, Karla A; Nelson, Joel D; Mollahan, Pamela; Rao, Rammohan V; Chen, Sylvia F; Lithgow, Gordon J; Ellerby, H Michael

    2013-03-01

    Lifespan extension through pharmacological intervention may provide valuable tools to understanding the mechanisms of aging and could uncover new therapeutic approaches for the treatment of age-related disease. Although the nematode Caenorhabditis elegans is well known as a particularly suitable model for genetic manipulations, it has been recently used in a number of pharmacological studies searching for compounds with anti-aging activity. These compound screens are regularly performed in amphipathic solvents like dimethyl sulfoxide (DMSO), the solvent of choice for high-throughput drug screening experiments performed throughout the world. In this work, we report that exposing C. elegans to DMSO in liquid extends lifespan up to 20%. Interestingly, another popular amphipathic solvent, dimethyl formamide (DMF), produces a robust 50% increase in lifespan. These compounds work through a mechanism independent of insulin-like signaling and dietary restriction (DR). Additionally, the mechanism does not involve an increased resistance to free radicals or heat shock suggesting that stress resistance does not play a major role in the lifespan extension elicited by these compounds. Interestingly, we found that DMSO and DMF are able to decrease the paralysis associated with amyloid-β3-42 aggregation, suggesting a role of protein homeostasis for the mechanism elicited by these molecules to increase lifespan. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Thermal Sensitivity and Dimethyl Sulfoxide (DMSO).

    PubMed

    Takeda, Kotaro; Pokorski, Mieczyslaw; Okada, Yasumasa

    2016-01-01

    Dimethyl sulfoxide (DMSO) is commonly used as a solvent for hydrophobic substances, but the compound's innate bioactivity is an area of limited understanding. In this investigation we seek to determine the analgesic potential of DMSO. We addressed the issue by assessing the perception of thermal pain stimulus, using a 55 °C hotplate design, in conscious mice. The latency of withdrawal behaviors over a range of incremental accumulative intraperitoneal DMSO doses (0.5-15.5 g/kg) in the same mouse was taken as a measure of thermal endurance. The findings were that the latency, on average, amounted to 15-30 s and it differed inappreciably between the sequential DMSO conditions. Nor was it different from the pre-DMSO control conditions. Thus, DMSO did not influence the cutaneous thermal pain perception. The findings do not lend support to those literature reports that point to the plausible antinociceptive potential of DMSO as one of a plethora of its innate bioactivities. However, the findings concern the mouse's footpad nociceptors which have specific morphology and stimulus transduction pathways, which cannot exclude DMSO's antinociceptive influence on other types of pain or in other types of skin. Complex and as yet unresolved neural mechanisms of perception of cutaneous noxious heat stimulus should be further explored with alternative experimental designs.

  16. Palliative treatment for advanced biliary adenocarcinomas with combination dimethyl sulfoxide-sodium bicarbonate infusion and S-adenosyl-L-methionine.

    PubMed

    Hoang, Ba X; Tran, Hung Q; Vu, Ut V; Pham, Quynh T; Shaw, D Graeme

    2014-09-01

    Adenocarcinoma of the gallbladder and cholangiocarcinoma account for 4% and 3%, respectively, of all gastrointestinal cancers. Advanced biliary tract carcinoma has a very poor prognosis with all current available modalities of treatment. In this pilot open-label study, the authors investigated the efficacy and safety of a combination of dimethyl sulfoxide-sodium bicarbonate (DMSO-SB) infusion and S-adenosyl-L-methionine (ademetionine) oral supplementation as palliative pharmacotherapy in nine patients with advanced nonresectable biliary tract carcinomas (ABTCs). Patients with evidence of biliary obstruction with a total serum bilirubin ≤300 μmol/L were allowed to join the study. The results of this 6-month study and follow-up of all nine patients with ABTC indicated that the investigated combination treatment improved pain control, blood biochemical parameters, and quality of life for the patients. Moreover, this method of treatment has led to a 6-month progression-free survival for all investigated patients. The treatment was well tolerated for all patients without major adverse reactions. Given that ABTC is a highly fatal malignancy with poor response to chemotherapy and targeted drugs, the authors consider that the combination of DMSO-SB and ademetionine deserves further research and application as a palliative care and survival-enhancing treatment for this group of patients.

  17. Comparative Developmental Toxicity and Stress Protein Responses of Dimethyl Sulfoxide to Rare Minnow and Zebrafish Embryos/Larvae.

    PubMed

    Xiong, Xiaoqin; Luo, Si; Wu, Benli; Wang, Jianwei

    2017-02-01

    Dimethyl sulfoxide (DMSO), a widely used carrier solvent, can be toxic to test organisms and has species-specific sensitivity. In this study, the developmental toxicity and stress protein responses of DMSO to rare minnow (Gobiocypris rarus) and zebrafish (Danio rerio) with two tests were compared in the early life stage. In the first test, fertilized eggs were exposed to 0%, 0.0001%, 0.001%, 0.01%, 0.1%, 1.0%, 1.5%, and 2.0% v/v of DMSO until 3 days post hatching. In the second test, larvae from 0 to 8 d were exposed to 2% DMSO until 4 days. Our results showed that DMSO was toxic to rare minnow and zebrafish on multiple indexes, and the no-observed-effect concentrations of DMSO in both species were 1.0% and 0.001% for developmental toxicity analysis and stress protein analysis, respectively. Furthermore, rare minnow larvae were more sensitive than zebrafish to DMSO for spinal malformation. The sensitive period for induction of spinal malformation by DMSO was 0-7 d after hatch (dah) for rare minnow and 0-4 dah for zebrafish. Together, these results will provide support to the use of DMSO in ecotoxicological studies using rare minnow and will contribute to a better understanding of the toxicity of DMSO.

  18. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease

    PubMed Central

    Fitzmaurice, Arthur G.; Rhodes, Shannon L.; Lulla, Aaron; Murphy, Niall P.; Lam, Hoa A.; O’Donnell, Kelley C.; Barnhill, Lisa; Casida, John E.; Cockburn, Myles; Sagasti, Alvaro; Stahl, Mark C.; Maidment, Nigel T.; Ritz, Beate; Bronstein, Jeff M.

    2013-01-01

    Parkinson disease (PD) is a neurodegenerative disorder particularly characterized by the loss of dopaminergic neurons in the substantia nigra. Pesticide exposure has been associated with PD occurrence, and we previously reported that the fungicide benomyl interferes with several cellular processes potentially relevant to PD pathogenesis. Here we propose that benomyl, via its bioactivated thiocarbamate sulfoxide metabolite, inhibits aldehyde dehydrogenase (ALDH), leading to accumulation of the reactive dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), preferential degeneration of dopaminergic neurons, and development of PD. This hypothesis is supported by multiple lines of evidence. (i) We previously showed in mice the metabolism of benomyl to S-methyl N-butylthiocarbamate sulfoxide, which inhibits ALDH at nanomolar levels. We report here that benomyl exposure in primary mesencephalic neurons (ii) inhibits ALDH and (iii) alters dopamine homeostasis. It induces selective dopaminergic neuronal damage (iv) in vitro in primary mesencephalic cultures and (v) in vivo in a zebrafish system. (vi) In vitro cell loss was attenuated by reducing DOPAL formation. (vii) In our epidemiology study, higher exposure to benomyl was associated with increased PD risk. This ALDH model for PD etiology may help explain the selective vulnerability of dopaminergic neurons in PD and provide a potential mechanism through which environmental toxicants contribute to PD pathogenesis. PMID:23267077

  19. Sulfur species in source rock bitumen before and after hydrous pyrolysis determined by X-ray absorption near-edge structure

    USGS Publications Warehouse

    Bolin, Trudy B.; Birdwell, Justin E.; Lewan, Michael; Hill, Ronald J.; Grayson, Michael B.; Mitra-Kirtley, Sudipa; Bake, Kyle D.; Craddock, Paul R.; Abdallah, Wael; Pomerantz, Andrew E.

    2016-01-01

    The sulfur speciation of source rock bitumen (chloroform-extractable organic matter in sedimentary rocks) was examined using sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy for a suite of 11 source rocks from around the world. Sulfur speciation was determined for both the native bitumen in thermally immature rocks and the bitumen produced by thermal maturation of kerogen via hydrous pyrolysis (360 °C for 72 h) and retained within the rock matrix. In this study, the immature bitumens had higher sulfur concentrations than those extracted from samples after hydrous pyrolysis. In addition, dramatic and systematic evolution of the bitumen sulfur moiety distributions following artificial thermal maturation was observed consistently for all samples. Specifically, sulfoxide sulfur (sulfur double bonded to oxygen) is abundant in all immature bitumen samples but decreases substantially following hydrous pyrolysis. The loss in sulfoxide sulfur is associated with a relative increase in the fraction of thiophene sulfur (sulfur bonded to aromatic carbon) to the extent that thiophene is the dominant sulfur form in all post-pyrolysis bitumen samples. This suggests that sulfur moiety distributions might be used for estimating thermal maturity in source rocks based on the character of the extractable organic matter.

  20. Antimony leaching in plastics from waste electrical and electronic equipment (WEEE) with various acids and gamma irradiation.

    PubMed

    Tostar, Sandra; Stenvall, Erik; Boldizar, Antal; Foreman, Mark R St J

    2013-06-01

    There has been a recent interest in antimony since the availability in readily mined areas is decreasing compared to the amounts used. It is important in many applications such as flame retardants and in the production of polyester, which can trigger an investigation of the leachability of antimony from plastics using different acids. In this paper, different types of acids are tested for their ability to leach antimony from a discarded computer housing, made of poly(acrylonitrile butadiene styrene), which is a common plastic type used in electrical and electronic equipment. The acid solutions included sodium hydrogen tartrate (0.5M) dissolved in either dimethyl sulfoxide or water (at ca. 23°C and heated to ca. 105°C). The metal content after leaching was determined by inductively coupled plasma optical emission spectroscopy. The most efficient leaching medium was the heated solution of sodium hydrogen tartrate in dimethyl sulfoxide, which leached almost half of the antimony from the poly(acrylonitrile butadiene styrene). Gamma irradiation, which is proposed to improve the mechanical properties in plastics, was used here to investigate the influence of antimony leaching ability. No significant change in the amount of leached antimony could be observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Role of Helicobacter pylori methionine sulfoxide reductase in urease maturation

    PubMed Central

    Kuhns, Lisa G.; Mahawar, Manish; Sharp, Joshua S.; Benoit, Stéphane; Maier, Robert J.

    2014-01-01

    The persistence of the gastric pathogen Helicobacter pylori is due in part to urease and Msr (methionine sulfoxide reductase). Upon exposure to relatively mild (21% partial pressure of O2) oxidative stress, a Δmsr mutant showed both decreased urease specific activity in cell-free extracts and decreased nickel associated with the partially purified urease fraction as compared with the parent strain, yet urease apoprotein levels were the same for the Δmsr and wild-type extracts. Urease activity of the Δmsr mutant was not significantly different from the wild-type upon non-stress microaerobic incubation of strains. Urease maturation occurs through nickel mobilization via a suite of known accessory proteins, one being the GTPase UreG. Treatment of UreG with H2O2 resulted in oxidation of MS-identified methionine residues and loss of up to 70% of its GTPase activity. Incubation of pure H2O2-treated UreG with Msr led to reductive repair of nine methionine residues and recovery of up to full enzyme activity. Binding of Msr to both oxidized and non-oxidized UreG was observed by cross-linking. Therefore we conclude Msr aids the survival of H. pylori in part by ensuring continual UreG-mediated urease maturation under stress conditions. PMID:23181726

  2. Effect of solvents on the fluorescence spectra of bacterial luciferase

    NASA Astrophysics Data System (ADS)

    Sukovataya, Irina E.; Tyulkova, Natalya A.; Kaykova, Elisaveta V.

    2006-08-01

    Bacteria luciferases catalyze the oxidation reaction of the long-chain aliphatic aldehyde and reduced flavinmononucleotide involving molecular oxygen to a respective fatty acid emitting light quanta in the visible spectrum. Fluorescence emission of luciferases from Photobacterium leiognathi dissolved in organic solvent-water mixtures was investigated. Methanol, acetone, dimethyl sulfoxide and formamide were used as organic solvents. As the methanol and acetone concentration is increased the emission maximum peak is decrease. In contrast, with dimethyl sulfoxide and formamide addition induced a increasing of the emission maximum intensity. The values of wavelength maximum (λ max) at the addition of this solvent can shows the spectra shifted to the red by about 12 nm. These increasing in the fluorescence intensity and in the λ max may be due to luciferase denaturation, resulting from the more intensive contact of chromospheres of luciferase with the solvent. At all used concentrations of methanol, acetone and formamide the shape of the fluorescence spectra was not changed. These studies demonstrate that the luciferase tryptophan fluorescence is sensitive to changes of physical-chemical property of enzyme environment. A comparison of activation/inactivation and fluorescence spectra of luciferase in methanol or acetone solutions shows that the extent of inactivation is larger than the extent of fluorescence changes at the same methanol or acetone concentration.

  3. Regulation of thrombosis and vascular function by protein methionine oxidation.

    PubMed

    Gu, Sean X; Stevens, Jeff W; Lentz, Steven R

    2015-06-18

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. © 2015 by The American Society of Hematology.

  4. Cloning, expression and characterisation of P450-Hal1 (CYP116B62) from Halomonas sp. NCIMB 172: A self-sufficient P450 with high expression and diverse substrate scope.

    PubMed

    Porter, Joanne L; Sabatini, Selina; Manning, Jack; Tavanti, Michele; Galman, James L; Turner, Nicholas J; Flitsch, Sabine L

    2018-06-01

    Cytochrome P450 monooxygenases are able to catalyse a range of synthetically challenging reactions ranging from hydroxylation and demethylation to sulfoxidation and epoxidation. As such they have great potential for biocatalytic applications but are underutilised due to often-poor expression, stability and solubility in recombinant bacterial hosts. The use of self-sufficient P450 s with fused haem and reductase domains has already contributed heavily to improving catalytic efficiency and simplifying an otherwise more complex multi-component system of P450 and redox partners. Herein, we present a new addition to the class VII family with the cloning, sequencing and characterisation of the self-sufficient CYP116B62 Hal1 from Halomonas sp. NCIMB 172, the genome of which has not yet been sequenced. Hal1 exhibits high levels of expression in a recombinant E. coli host and can be utilised from cell lysate or used in purified form. Hal1 favours NADPH as electron donor and displays a diverse range of activities including hydroxylation, demethylation and sulfoxidation. These properties make Hal1 suitable for future biocatalytic applications or as a template for optimisation through engineering. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Enhanced performance of ferroelectric-based all organic transistors and capacitors through choice of solvent

    NASA Astrophysics Data System (ADS)

    Knotts, Grant; Bhaumik, Anagh; Ghosh, Kartik; Guha, Suchismita

    2014-03-01

    We examine the role of solvents in the performance of pentacene devices using the ferroelectric copolymer poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFe) as a gate insulating layer. High dipole moment solvents such as dimethyl sulfoxide used to dissolve the copolymer for spin casting increase the charge carrier mobility in field-effect transistors by nearly an order of magnitude as compared to lower dipole moment solvents. The polarization in Al/PVDF-TrFe/Au metal-ferroelectric-metal devices is also investigated. An increase in remnant polarization of ~ 20% is observed in the sample using dimethyl sulfoxide as the ferroelectric solvent. Interestingly, at low applied electric fields of ~ 100 MV/m a remnant polarization is seen in the high dipole moment device that is nearly 3.5 times larger than the value observed in the lower dipole moment samples, suggesting that the degree of dipolar order is higher at low operating voltages for the high dipole moment device. Detailed analysis of the capacitance characteristics of metal-insulator-semiconductor structure is performed. The density of interface trap states is nearly an order of magnitude lower for the high dipole moment device. This work was supported by National Science Foundation under Grant No. ECCS-1305642.

  6. Antibiotics degradation in soil: A case of clindamycin, trimethoprim, sulfamethoxazole and their transformation products.

    PubMed

    Koba, Olga; Golovko, Oksana; Kodešová, Radka; Fér, Miroslav; Grabic, Roman

    2017-01-01

    Twelve different soil types that represent the soil compartments of the Czech Republic were fortified with three antibiotics (clindamycin (CLI), sulfamethoxazole (SUL), and trimethoprim (TRI)) to investigate their fate. Five metabolites (clindamycin sulfoxide (CSO), hydroxy clindamycin sulfoxide (HCSO), S-(SDC) and N-demethyl clindamycin (NDC), N 4 -acetyl sulfamethoxazole (N 4 AS), and hydroxy trimethoprim (HTR)) were detected and identified using HPLC/HRMS and HRPS in the soil matrix in this study. The identities of CSO and N 4 AS were confirmed using commercially available reference standards. The parent compounds degraded in all soils. Almost all of the metabolites have been shown to be persistent in soils, with the exception of N 4 AS, which was formed and degraded completely within 23 days of exposure. The rate of degradation mainly depended on the soil properties. The PCA results showed a high dependence between the soil type and behaviour of the pharmaceutical metabolites. The mentioned metabolites can be formed in soils, and the most persistent ones may be transported to the ground water and environmental water bodies. Because no information on the effects of those metabolites on living organism are available, more studies should be performed in the future to predict the risk to the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Acid-base equilibrium dynamics in methanol and dimethyl sulfoxide probed by two-dimensional infrared spectroscopy.

    PubMed

    Lee, Chiho; Son, Hyewon; Park, Sungnam

    2015-07-21

    Two-dimensional infrared (2DIR) spectroscopy, which has been proven to be an excellent experimental method for studying thermally-driven chemical processes, was successfully used to investigate the acid dissociation equilibrium of HN3 in methanol (CH3OH) and dimethyl sulfoxide (DMSO) for the first time. Our 2DIR experimental results indicate that the acid-base equilibrium occurs on picosecond timescales in CH3OH but that it occurs on much longer timescales in DMSO. Our results imply that the different timescales of the acid-base equilibrium originate from different proton transfer mechanisms between the acidic (HN3) and basic (N3(-)) species in CH3OH and DMSO. In CH3OH, the acid-base equilibrium is assisted by the surrounding CH3OH molecules which can directly donate H(+) to N3(-) and accept H(+) from HN3 and the proton migrates through the hydrogen-bonded chain of CH3OH. On the other hand, the acid-base equilibrium in DMSO occurs through the mutual diffusion of HN3 and N3(-) or direct proton transfer. Our 2DIR experimental results corroborate different proton transfer mechanisms in the acid-base equilibrium in protic (CH3OH) and aprotic (DMSO) solvents.

  8. Disposition and biotransformation of the acetylenic retinoid tazarotene in humans.

    PubMed

    Attar, Mayssa; Yu, Dale; Ni, Jinsong; Yu, Zhiling; Ling, Kah-Hiing John; Tang-Liu, Diane D-S

    2005-10-01

    Oral tazarotene, an acetylenic retinoid, is in clinical development for the treatment of psoriasis. The disposition and biotransformation of tazarotene were investigated in six healthy male volunteers, following a single oral administration of a 6 mg (100 microCi) dose of [14C]tazarotene, in a gelatin capsule. Blood levels of radioactivity peaked 2 h postdose and then rapidly declined. Total recovery of radioactivity was 89.2+/-8.0% of the administered dose, with 26.1+/-4.2% in urine and 63.0+/-7.0% in feces, within 7 days of dosing. Only tazarotenic acid, the principle active metabolite formed via esterase hydrolysis of tazarotene, was detected in blood. One major urinary oxidative metabolite, tazarotenic acid sulfoxide, accounted for 19.2+/-3.0% of the dose. The majority of radioactivity recovered in the feces was attributed to tazarotenic acid representing 46.9+/-9.9% of the dose and only 5.82+/-3.84% of dose was excreted as unchanged tazarotene. Thus following oral administration, tazarotene was rapidly absorbed and underwent extensive hydrolysis to tazarotenic acid, the major circulating species in the blood that was then excreted unchanged in feces. A smaller fraction of tazarotenic acid was further metabolized to an inactive sulfoxide that was excreted in the urine. Copyright (c) 2005 Wiley-Liss, Inc. and the American Pharmacists Association

  9. Chemical forms of sulfur in geological and archeological asphaltenes from Middle East, France, and Spain determined by sulfur K- and L-edge X-ray absorption near-edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarret, Géraldine; Connan, Jacques; Kasrai, Masoud; Bancroft, G. Michael; Charrié-Duhaut, Armelle; Lemoine, Sylvie; Adam, Pierre; Albrecht, Pierre; Eybert-Bérard, Laurent

    1999-11-01

    Asphaltene samples extracted from archeological and geological bitumens from the Middle East, France, and Spain were studied by sulfur K- and L-edge X-ray absorption near-edge structure (XANES) spectroscopy in combination with isotopic analyses (δ 13C and δD). Within each series, the samples were genetically related by their δ 13C values. The gross and elemental composition and the δD values were used to characterize the weathering state of the samples. Sulfur K- and L-edge XANES results show that in all the samples, dibenzothiophenes are the dominant forms of sulfur. In the least oxidized asphaltenes, minor species include disulfides, alkyl and aryl sulfides, and sulfoxides. With increasing alteration the proportion of oxidized sulfur (sulfoxides, sulfones, sulfonates and sulfates) increases, whereas the disulfide and sulfide content decreases. This evolution is observed in all the series, regardless of the origin of the asphaltenes. This work illustrates the advantages of XANES spectroscopy as a selective probe for determining sulfur speciation in natural samples. It also shows that S K- and L-edge XANES spectroscopy are complementary for identifying the oxidized and reduced forms of sulfur, respectively.

  10. Magnetic Field Effect in Conjugated Molecules-Based Devices

    DTIC Science & Technology

    2017-10-23

    triplet annihilation process (TTA) process in charge- balanced polymer light emitting diode (PLED) containing a super yellow poly-(phenylene vinylene...current density. Our results demonstrate a clear correlation between TTA process and current density as well as temperature in charge- balanced SY-PPV...dimethyl sulfoxide (DMSO) (7:3, v/v) at 60 °C for 12 h inside the nitrogen -filled glove box. The perovskite films were spin-cast by a consecutive two-step

  11. Report of the M16 Rifle Review Panel. Volume 10, Appendix 9. Audit Trail of Chief of Staff, Army Actions and Decisions Concerning the M16

    DTIC Science & Technology

    1968-06-01

    CHEMORECEPTORS CHEMOTAXIS CHEMOTHERAPEUTIC AGENTS CHEMOTHERAPY CHERRIES CHESAPEAKE BAY CHI SQUARE TEST CHICKENS CHIKUNGUNYA VIRUS CHILDREN CHILE...METHYL SULFOXIDE METHYLAL METHYLAMINE METHYLATION METHYLENE BLUE METHYLENES METRIC SYSTEM METROLOGY MEXICO MEXICO GULF MICA MICA CAPACITORS...NEUTRON TRANSPORT THEORY NEUTRONS NEVADA NEW BRUNSWICK NEW ENGLAND NEW GUINEA NEW HAMPSHIRE NEW JERSEY NEW MEXICO NEW YORK NEW YORK CITY

  12. Synthesis of Synthetic Hydrocarbons Via Alpha Olefins.

    DTIC Science & Technology

    1985-05-01

    THF complex, 0OC; (e) Pyridinium chlorochromate , dry CH2 CL29 room temperature; b (f) methyltriphenylphosphonium bromide, dimethyl sulfoxide, room...vigorously stirred solution of pyridinium chlorochromate (27.91 g, 0.13 mol) in dry methylene chloride (175 mL) was added all at once a solution of l... pyridinium chlorochroniate. 3 Our four-step synthesis of l-decene-2-1 3 C from 1-bromooctane is outlined in the Scheme. This synthetic sequence provides the

  13. Urokinase-Type Plasminogen Activator in a Human Sarcoma Cellular Model for Metastasis in Athymic Mice

    DTIC Science & Technology

    1990-05-01

    essential medium, used for tissue culture DMSO- Dimemthyl sulfoxide, an inhibitor of uPA production E-ACA- Epsilon aminocaproic acid , an inhibitor of uPA...inhibitors, such as E- aminocaproic acid (E-ACA), phenylmethanesulfonyl fluoride, diisopropyl-fluorophosphate, alpha tocopherol, metal ions (especially Zn...plasma was demonstrated approximately 25 years later (Astedt et al., 1978). The complete amino acid sequence of uPA was reported in 1982 (Gunzler et

  14. Mammalian Toxicological Evaluation of p-Chlorophenyl Methyl Sulfide, p-Chlorophenyl Methyl Sulfoxide, and p-Chlorophenyl Methyl Sulfone.

    DTIC Science & Technology

    1979-07-01

    albino guinea pigs (Charles River Breeding Laboratories, Wilmington, Massachusetts) weighing 300-500 grams were used in the skin sensitization tests...mice weighing 17-21 g used in the studies were supplied by Charles River Breeding Laboratories. Rats and mice were individually housed in...cornea, and conjunctivae (the anterior chamber). All rat eye exams were done by a trained and experienced veterinary ophthalmologist . Hematologr and

  15. First highly stereoselective synthesis of fungicide systhane.

    PubMed

    García Ruano, José L; Cifuentes García, Marta; Martín Castro, Ana M; Rodríguez Ramos, Jesús H

    2002-01-10

    [reaction: see text] Highly enantiopure (R)-2-p-chlorophenyl-2-(1H-1,2,4-triazol-1-ylmethyl)hexanenitrile 1 (myclobutanil or systhane) was obtained in six synthetic steps from commercially available 1-hexyne (35% yield, 92% ee). The sulfinyl group controls the two key steps of the synthetic sequence, the highly stereoselective hydrocyanation of vinyl sulfoxides with Et(2)AlCN and the further introduction of the proper functionality into the molecule.

  16. Thiol–ene/oxidation tandem reaction under visible light photocatalysis: synthesis of alkyl sulfoxides† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7cc05672a

    PubMed Central

    Guerrero-Corella, Andrea; María Martinez-Gualda, Ana; Ahmadi, Fereshteh; Ming, Enrique

    2017-01-01

    The photocatalyzed synthesis of sulfoxides from alkenes and thiols has been carried out using Eosin Y. This is a metal-free method which uses a low catalyst loading, atmospheric oxygen as the oxidant, and visible light conditions (green light). A mechanism has been proposed that is consistent with the experimental results. PMID:28890975

  17. Evaluation of anti-freeze viscosity modifier for potential external tank applications

    NASA Technical Reports Server (NTRS)

    Lynn, R. O. L.

    1981-01-01

    Viscosity modifiers and gelling agents were evaluated in combination with ethylene glycol and dimethyl sulfoxide water eutectics. Pectin and agarose are found to gel these eutectics effectively in low concentration, but the anti-freeze protection afforded by these compositions is found to be marginal in simulations of the intended applications. Oxygen vent shutters and vertical metallic surfaces were simulated, with water supplied as a spray, dropwise, and by condensation from the air.

  18. INF-γ Enhances Nox2 Activity by Upregulating phox Proteins When Applied to Differentiating PLB-985 Cells but Does Not Induce Nox2 Activity by Itself.

    PubMed

    Ellison, Michael A; Thurman, Gail; Gearheart, Christy M; Seewald, Ryan H; Porter, Christopher C; Ambruso, Daniel R

    2015-01-01

    The cytokine and drug interferon-γ enhances superoxide anion production by the antimicrobicidal Nox2 enzyme of neutrophils. Because mature neutrophils have a short lifespan, we hypothesized that the effects of interferon-γ on these cells might be mediated by its prolonged exposure to differentiating neutrophil precursors in the bone marrow rather than its brief exposure to mature circulating neutrophils. Effects of INF-Γ on NOX2 activity: To address this possibility we exposed the myeloid PLB-985 cell line to interferon-γ for 3 days in the presence of dimethyl sulfoxide which induces terminal differentiation of these cells. Interferon-γ was found to enhance superoxide production by Nox2 in a concentration dependent manner. In contrast, application of interferon-γ alone for 3 days failed to induce detectible Nox2 activity. Additionally, application of interferon-γ for 3 hours to pre-differentiated PLB-985 cells, which models studies using isolated neutrophils, was much less effective at enhancing superoxide anion production. Effects of INF-Γ on phox protein levels: Addition of interferon-γ during differentiation was found to upregulate the Nox2 proteins gp91phox and p47phox in concert with elevated transcription of their genes. The p22phox protein was upregulated in the absence of increased transcription presumably reflecting stabilization resulting from binding to the elevated gp91phox. Thus, increased levels of gp91phox, p47phox and p22phox likely account for the interferon-γ mediated enhancement of dimethyl sulfoxide-induced Nox2 activity. In contrast, although interferon-γ alone also increased various phox proteins and their mRNAs, the pattern was very different to that seen with interferon-γ plus dimethyl sulfoxide. In particular, p47phox was not induced thus explaining the inability of interferon -γ alone to enhance Nox2 activity. Short application of interferon-γ to already differentiated cells failed to increase any phox proteins. Our findings indicate that interferon-γ has complex effects on phox protein expression and that these are different in cells undergoing terminal differentiation. Understanding these changes may indicate additional therapeutic uses for this cytokine in human disorders.

  19. Pesticides and nitrate in groundwater underlying citrus croplands, Lake Wales Ridge, central Florida, 1999-2005.

    USGS Publications Warehouse

    Choquette, Anne F.

    2014-01-01

    This report summarizes pesticide and nitrate (as nitrogen) results from quarterly sampling of 31 surficial-aquifer wells in the Lake Wales Ridge Monitoring Network during April 1999 through January 2005. The wells, located adjacent to citrus orchards and used for monitoring only, were generally screened (sampled) within 5 to 40 feet of the water table. Of the 44 citrus pesticides and pesticide degradates analyzed, 17 were detected in groundwater samples. Parent pesticides and degradates detected in quarterly groundwater samples, ordered by frequency of detection, included norflurazon, demethyl norflurazon, simazine, diuron, bromacil, aldicarb sulfone, aldicarb sulfoxide, deisopropylatrazine (DIA), imidacloprid, metalaxyl, thiazopyr monoacid, oxamyl, and aldicarb. Reconnaissance sampling of five Network wells yielded detection of four additional pesticide degradates (hydroxysimazine, didealkylatrazine, deisopropylhydroxyatrazine, and hydroxyatrazine). The highest median concentration values per well, based on samples collected during the 1999–2005 period (n=14 to 24 samples per well), included 3.05 µg/L (micrograms per liter) (simazine), 3.90 µg/L (diuron), 6.30 µg/L (aldicarb sulfone), 6.85 µg/L (aldicarb sulfoxide), 22.0 µg/L (demethyl norflurazon), 25.0 µg/ (norflurazon), 89 µg/ (bromacil), and 25.5 mg/L (milligrams per liter) (nitrate). Nitrate concentrations exceeded the 10 mg/L (as nitrogen) drinking water standard in one or more groundwater samples from 28 of the wells, and the median nitrate concentration among these wells was 14 mg/L. Sampled groundwater pesticide concentrations exceeded Florida’s health-guidance benchmarks for aldicarb sulfoxide and aldicarb sulfone (4 wells), the sum of aldicarb and its degradates (6 wells), simazine (2 wells), the sum of simazine and DIA (3 wells), diuron (2 wells), bromacil (1 well), and the sum of norflurazon and demethyl norflurazon (1 well). The magnitude of fluctuations in groundwater pesticide concentrations varied between wells and between pesticide compounds. Of the 10 pesticide compounds detected at sufficient frequency to assess temporal variability in quarterly sampling records, median values of the relative interquartile range (ratio of the interquartile range to the median) among wells typically ranged from about 100 to 150 percent. The relative interquartile range of pesticide concentrations at individual wells could be much higher, sometimes exceeding 200 to 500 percent. No distinct spatial patterns were apparent among median pesticide concentrations in sampled wells; nitrate concentrations tended to be greater in samples from wells in the northern part of the study area.

  20. METAL PHTHALOCYANINES

    DOEpatents

    Frigerio, N.A.

    1962-03-27

    A process is given for preparing heavy metal phthalocyanines, sulfonated or not. The process comprises mixing an inorganic metal salt with dimethyl formamide or methyl sulfoxide; separating the metal complex formed from the solution; mixing the complex with an equimolar amount of sodium, potassium, lithium, magnesium, or beryllium sulfonated or unsulfonated phthalocyanine whereby heavy-metal phthalocyanine crystals are formed; and separating the crystals from the solution. Uranyl, thorium, lead, hafnium, and lanthanide rare earth phthalocyanines can be produced by the process. (AEC)

  1. Methods for the isolation and identification of polycyclic aromatic hydrocarbons found in complex mixtures and the determination of their possible toxicity by means of bioassay techniques. Progress report, August 1, 1978-August 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipsky, S.R.; McMurray, W.J.

    1979-08-01

    After electronic instrument difficulties, a computer controlled gas chromatography-mass spectrometer has been delivered, installed and is operational. Data gathering is commencing from adipose tissue obtained by needle biopsy. Materials under consideration include shale oil extracts, their dimethyl sulfoxide extracts and product waters. A chart of individual identified PAH's is given. (PCS)

  2. Part--Selenoproteins and Cardiovascular Stress

    PubMed Central

    Rose, Aaron H.; Hoffmann, Peter R.

    2017-01-01

    Dietary selenium (Se) is an essential micronutrient that exerts its biological effects through its incorporation into selenoproteins. This family of proteins contains several antioxidant enzymes such as the glutathione peroxidases, redox-regulating enzymes such as thioredoxin reductases, a methionine sulfoxide reductase, and others. In this review, we summarize the current understanding of the roles these selenoproteins play in protecting the cardiovascular system from different types of stress including ischemia-reperfusion, homocysteine dysregulation, myocardial hypertrophy, doxirubicin toxicity, Keshan disease, and others. PMID:25354851

  3. A Catalytic, Brønsted Base Strategy for Intermolecular Allylic C—H Amination

    PubMed Central

    Reed, Sean A.; Mazzotti, Anthony R.; White, M. Christina

    2009-01-01

    A Brønsted base activation mode for oxidative, Pd(II)/sulfoxide catalyzed, intermolecular C—H allylic amination is reported. N,N-diisopropylethylamine was found to promote amination of unactivated terminal olefins, forming the corresponding linear allylic amine products with high levels of stereo-, regio-, and chemoselectivity. The predictable and high selectivity of this C—H oxidation method enables late-stage incorporation of nitrogen into advanced synthetic intermediates and natural products. PMID:19645492

  4. Protective effect of dimethyl sulfoxide on stricture formation in corrosive esophageal burns in rats.

    PubMed

    Kilincaslan, Huseyin; Karatepe, Hande Ozgun; Sarac, Fatma; Olgac, Vakur; Kemik, Ahu Sarbay; Gedik, Ahmet Hakan; Uysal, Omer

    2014-10-01

    The aim of this study was to investigate the effects of dimethyl sulfoxide (DMSO) on stricture formation in corrosive esophageal burns. A total of 21 male rats were divided equally into three groups. In Group 1 (burn) and Group 2 (burn + DMSO) burns were induced in the distal esophagi with a 30% NaOH solution. In Group 3 (control), a saline solution was applied to the esophageal lumen. In Group 2, DMSO was administered intraperitoneally (3 mg/kg) 15 minutes after the burn was induced and then every 24 hours for 7 days. All rats were humanely killed at the end of Day 22. Distal esophagi were harvested for analysis. The stenosis index (SI) and histopathologic damage score were evaluated in addition to malondialdehyde (MDA), myeloperoxidase (MPO), nitric oxide (NO), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) levels. DMSO significantly decreased the levels of MDA, NO, TNF-α, and IL-6 in the rats with burned esophagi. Furthermore, the SI and histopathologic scores decreased significantly in the burn + DMSO group relative to the burn group (p < 0.05). Our results suggest that DMSO can decrease the occurrence of stricture formation and could represent a beneficial alternative therapy for the treatment of corrosive esophagitis. Georg Thieme Verlag KG Stuttgart · New York.

  5. Homogeneous graft copolymerization of styrene onto cellulose in a sulfur dioxide-diethylamine-dimethyl sulfoxide cellulose solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuzuki, M.; Hagiwara, I.; Shiraishi, N.

    1980-12-01

    Graft copolymerization of styrene onto cellulose was studied in a homogeneous system (SO/sub 2/(liquid)- diethylamine (DEA)-dimethyl sulfoxide (DMSO) medium)) by ..gamma..-ray mutual irradiation technique. At the same time, homopolymerization of styrene was also examined separately in DMSO, SO/sub 2/-DMSO, DEA-DMSO, and SO/sub 2/-DEA-DMSO media by the same technique. Polymerization of styrene hardly occurs on concentrations above 10 mole SO/sub 2/-DEA complex per mole glucose unit. Maximum percent grafting was obtained in concentrations of 4 mole, after which it decreased rapidly. Total conversion and percent grafting increased with the irradiation time. The value (=0.55) of the slope of the total conversionmore » rate plotted against the dose was only a little higher than the 1/2 which was expected from normal kinetics. No retardation in homopolymerization of styrene in DMSO, SO/sub 2/-DMSO, and DEA-DMSO was evident, while the retardation of homopolymerization in the SO/sub 2/-DEA-DMSO medium was measurable. Sulfur atoms were detected in the polymers obtained in both of SO/sub 2/-DMSO and SO/sub 2/-DEA-DMSO solutions. All of the molecular weights of polymers obtained in the present experiment were very low (3.9 x 10/sup 3/-1.75 x 10/sup 4/).« less

  6. Pharmacokinetics and metabolism of the novel muscarinic receptor agonist SNI-2011 in rats and dogs.

    PubMed

    Washio, Takuo; Kohsaka, Kazuhiro; Arisawa, Hirohiko; Masunaga, Hiroaki

    2003-01-01

    In this study, the pharmacokinetics of SNI-2011 ((+/-)-cis-2-methylspiro[1,3-oxathiolane-5,3'-quinuclidine]monohydrochloride hemihydrate, cevimeline, CAS 153504-70-2), a novel muscarinic acetylcholine receptor agonist developed for the treatment of Sjögren's syndrome, in rats and dogs were determined following intravenous or oral administration using liquid chromatography/mass spectrometry (LC/MS). The in vitro metabolism of SNI-2011 was also evaluated with rat and dog liver microsomes. After oral administration, plasma concentrations of SNI-2011 reached to Cmax within 1 h in both species, suggesting that SNI-2011 was quickly absorbed, and then decreased with a t1/2 of 0.4-1.1 h. The bioavailability was approximately 50% and 30% in rats and dogs, respectively. Major metabolites in plasma were both S- and N-oxidized metabolites in rats and only N-oxidized metabolite in dogs, indicating that a large species difference was observed in the metabolism of SNI-2011. Sex difference was also observed in the pharmacokinetics of SNI-2011 in rats, but not in dogs. In the in vitro study, chemical inhibition and pH-dependent studies revealed that the sulf-oxidation and N-oxidation of SNI-2011 were mediated by cytochrome P450 (CYP) and flavin-containing monooxygenase (FMO), respectively, in both species. In addition, CYP2D and CYP3A were mainly responsible for the sulfoxidation in rat liver microsomes.

  7. Changes in Amino Acid Content of Excised Leaves During Incubation I. The Effect of Water Content of Leaves and Atmospheric Oxygen Level

    PubMed Central

    Thompson, John F.; Stewart, Cecil R.; Morris, Clayton J.

    1966-01-01

    Excised leaves were incubated at various water contents to determine the effect of water status on amino acid composition. Considerable proteolysis took place during incubation with a resultant increase in each amino acid in the non-protein fraction. However, serine, proline, γ-aminobutyric acid and methyleysteine sulfoxide were the only amino acids in which there was an accumulation (i.e., net synthesis). Serine showed a small but consistent accumulation lasting for 6 days. Proline showed a greater accumulation but this ceased after 2 days. To learn more about the control of the proline accumulation during wilting, turgid and wilted leaves were incubated under aerobic and anaerobic conditions. The amino acid analyses showed that turgid leaves did not accumulate proline and that proline and methylcysteine sulfoxide accumulation was abolished by anaerobiosis. With other amino acids, relative concentration changes between wilted and non-wilted leaves were less striking than the difference between aerobic and anaerobic conditions. Under anaerobic conditions there was an increase in alanine and a large increase in γ-aminobutyric acid which were not evident in air. Serine, aspartic acid, glutamic acid, and glutamine disappeared more rapidly and glycine disappeared less rapidly under anaerobic than under aerobic conditions. On the basis of these results, several pathways of amino acid degradation were suggested. PMID:16656443

  8. Gas-phase ion-molecule reactions for the identification of the sulfone functionality in protonated analytes in a linear quadrupole ion trap mass spectrometer.

    PubMed

    Tang, Weijuan; Sheng, Huaming; Kong, John Y; Yerabolu, Ravikiran; Zhu, Hanyu; Max, Joann; Zhang, Minli; Kenttämaa, Hilkka I

    2016-06-30

    The oxidation of sulfur atoms is an important biotransformation pathway for many sulfur-containing drugs. In order to rapidly identify the sulfone functionality in drug metabolites, a tandem mass spectrometric method based on ion-molecule reactions was developed. A phosphorus-containing reagent, trimethyl phosphite (TMP), was allowed to react with protonated analytes with various functionalities in a linear quadrupole ion trap mass spectrometer. The reaction products and reaction efficiencies were measured. Only protonated sulfone model compounds were found to react with TMP to form a characteristic [TMP adduct-MeOH] product ion. All other protonated compounds investigated, with functionalities such as sulfoxide, N-oxide, hydroxylamino, keto, carboxylic acid, and aliphatic and aromatic amino, only react with TMP via proton transfer and/or addition. The specificity of the reaction was further demonstrated by using a sulfoxide-containing anti-inflammatory drug, sulindac, as well as its metabolite sulindac sulfone. A method based on functional group-selective ion-molecule reactions in a linear quadrupole ion trap mass spectrometer has been demonstrated for the identification of the sulfone functionality in protonated analytes. A characteristic [TMP adduct-MeOH] product ion was only formed for the protonated sulfone analytes. The applicability of the TMP reagent in identifying sulfone functionalities in drug metabolites was also demonstrated. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Effects of dimethyl sulfoxide on asymmetric division and cytokinesis in mouse oocytes.

    PubMed

    Zhou, Dongjie; Shen, Xinghui; Gu, Yanli; Zhang, Na; Li, Tong; Wu, Xi; Lei, Lei

    2014-06-21

    Dimethyl sulfoxide (DMSO) is used extensively as a permeable cryoprotectant and is a common solvent utilized for several water-insoluble substances. DMSO has various biological and pharmacological activities; however, the effect of DMSO on mouse oocyte meiotic maturation remains unknown. In DMSO-treated oocytes, we observed abnormal MII oocytes that contained large polar bodies, including 2-cell-like MII oocytes, during in vitro maturation. Oocyte polarization did not occur, due to the absence of actin cap formation and spindle migration. These features are among the primary causes of abnormal symmetric division; however, analysis of the mRNA expression levels of genes related to asymmetric division revealed no significant difference in the expression of these factors between the 3% DMSO-treated group and the control group. After each "blastomere" of the 2-cell-like MII stage oocytes was injected by one sperm head respectively, the oocytes still possessed the ability to extrude the second polar body from each "blastomere" and to begin cleavage. However, MII oocytes with large polar bodies developed to the blastocyst stage after intracytoplasmic sperm injection (ICSI). Furthermore, other permeable cryoprotectants, such as ethylene glycol and glycerol, also caused asymmetric division failure. Permeable cryoprotectants, such as DMSO, ethylene glycol, and glycerol, affect asymmetric division. DMSO disrupts cytokinesis completion by inhibiting cortical reorganization and polarization. Oocytes that undergo symmetric division maintain the ability to begin cleavage after ICSI.

  10. Dimethyl sulfoxide attenuates hydrogen peroxide-induced injury in cardiomyocytes via heme oxygenase-1.

    PubMed

    Man, Wang; Ming, Ding; Fang, Du; Chao, Liang; Jing, Cang

    2014-06-01

    The antioxidant property of dimethyl sulfoxide (DMSO) was formerly attributed to its direct effects. Our former study showed that DMSO is able to induce heme oxygenase-1 (HO-1) expression in endothelial cells, which is a potent antioxidant enzyme. In this study, we hypothesized that the antioxidant effects of DMSO in cardiomyocytes are mediated or partially mediated by increased HO-1 expression. Therefore, we investigated whether DMSO exerts protective effects against H2 O2 -induced oxidative damage in cardiomyocytes, and whether HO-1 is involved in DMSO-imparted protective effects, and we also explore the underlying mechanism of DMSO-induced HO-1 expression. Our study demonstrated that DMSO pretreatment showed a cytoprotective effect against H2 O2 -induced oxidative damage (impaired cell viability, increased apopototic cells rate and caspase-3 level, and increased release of LDH and CK) and this process is partially mediated by HO-1 upregulation. Furthermore, our data showed that the activation of p38 MAPK and Nrf2 translocation are involved in the HO-1 upregulation induced by DMSO. This study reports for the first time that the cytoprotective effect of DMSO in cardiomyocytes is partially mediated by HO-1, which may further explain the mechanisms by which DMSO exerts cardioprotection on H2 O2 injury. J. Cell. Biochem. 115: 1159-1165, 2014. © 2013 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  11. Use of high concentrations of dimethyl sulfoxide for cryopreservation of HepG2 cells adhered to glass and polydimethylsiloxane matrices.

    PubMed

    Nagahara, Yukitoshi; Sekine, Hiroaki; Otaki, Mari; Hayashi, Masakazu; Murase, Norio

    2016-02-01

    Animal cells are generally cryopreserved in cryovials in a cell suspension state containing 5%-10% v/v dimethyl sulfoxide (DMSO) used as a cryoprotective agent. However, cryopreservation of cells in an attached state has not been intensively studied, and the effective freezing solution remains unknown. Here we determined the suitable DMSO concentration for the cryopreservation of human hepatoma HepG2 cells attached to glass and polydimethylsiloxane (PDMS) matrices coated with poly-l-lysine. With the use of the glass matrix, the rate of cell adhesion increased with the DMSO concentration up to 30% v/v in the freezing solution. In contrast, the cell-adhesion rate remained constant in the case of the PDMS matrix irrespective of the DMSO concentration between 10% v/v and 30% v/v. The viability of post-thawed cells attached to glass or PDMS matrix was also investigated. The viability was highest at the DMSO concentration of 20% v/v in the freezing solution. The DMSO concentration of 30% v/v, however, had a cytotoxic effect on the cell viability. Thus, the 20% v/v DMSO concentration was found to be most suitable for the cryopreservation of HepG2 cells in the attached state. This dose is high compared to the DMSO concentration used for the cryopreservation of cells in the suspended state. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Unscrambling micro-solvation of -COOH and -NH groups in neat dimethyl sulfoxide: insights from 1H-NMR spectroscopy and computational studies.

    PubMed

    Takis, Panteleimon G; Papavasileiou, Konstantinos D; Peristeras, Loukas D; Boulougouris, Georgios C; Melissas, Vasilios S; Troganis, Anastassios N

    2017-05-31

    Dimethyl sulfoxide (DMSO) has a significant, multi-faceted role in medicine, pharmacy, and biology as well as in biophysical chemistry and catalysis. Its physical properties and impact on biomolecular structures still attract major scientific interest, especially the interactions of DMSO with biomolecular functional groups. In the present study, we shed light on the "isolated" carboxylic (-COOH) and amide (-NH) interactions in neat DMSO via 1 H NMR studies along with extensive theoretical approaches, i.e. molecular dynamics (MD) simulations, density functional theory (DFT), and ab initio calculations, applied on model compounds (i.e. acetic and benzoic acid, ethyl acetamidocyanoacetate). Both experimental and theoretical results show excellent agreement, thereby permitting the calculation of the association constants between the studied compounds and DMSO molecules. Our coupled MD simulations, DFT and ab initio calculations, and NMR spectroscopy results indicated that complex formation is entropically driven and DMSO molecules undergo multiple strong interactions with the studied molecules, particularly with the -COOH groups. The combined experimental and theoretical techniques unraveled the interactions of DMSO with the most abundant functional groups of peptides (i.e. peptide bonds, side chain and terminal carboxyl groups) in high detail, providing significant insights on the underlying thermodynamics driving these interactions. Moreover, the developed methodology for the analysis of the simulation results could serve as a template for future thermodynamic and kinetic studies of similar systems.

  13. Respiratory Toxicity of Dimethyl Sulfoxide.

    PubMed

    Takeda, Kotaro; Pokorski, Mieczyslaw; Sato, Yutaka; Oyamada, Yoshitaka; Okada, Yasumasa

    2016-01-01

    Dimethyl sulfoxide (DMSO) is one of the most commonly used solvents for hydrophobic substances in biological experiments. In addition, the compound exhibits a plethora of bioactivities, which makes it of potential pharmacological use of its own. The influence on respiration, and thus on arterial blood oxygenation, of DMSO is unclear, contentious, and an area of limited study. Thus, in the present investigation we set out to determine the influence on lung ventilation of cumulated doses of DMSO in the amount of 0.5, 1.5, 3.5, 7.5, and 15.5 g/kg; each dose given intraperitoneally at 1 h interval in conscious mice. Ventilation and its responses to 7 % hypoxia (N(2) balanced) were recorded in a whole body plethsymograph. We demonstrate a dose-dependent inhibitory effect of DMSO on lung ventilation and its hypoxic responsiveness, driven mostly by changes in the tidal component. The maximum safe dose of DMSO devoid of meaningful consequences for respiratory function was 3.5 g/kg. The dose of 7.5 g/kg of DMSO significantly dampened respiration, with yet well preserved hyperventilatory response to hypoxia. The highest dose of 15.5 g/kg severely impaired ventilation and its responses. The study delineates the safety profile of DMSO regarding the respiratory function which is essential for maintaining proper tissue oxygenation. Caution should be exercised concerning dose concentration of DMSO.

  14. Cytotoxicity of dimethyl sulfoxide (DMSO) in direct contact with odontoblast-like cells.

    PubMed

    Hebling, J; Bianchi, L; Basso, F G; Scheffel, D L; Soares, D G; Carrilho, M R O; Pashley, D H; Tjäderhane, L; de Souza Costa, C A

    2015-04-01

    To evaluate the cytotoxicity of dimethyl sulfoxide (DMSO) on the repair-related activity of cultured odontoblast-like MDPC-23 cells. Solutions with different concentrations of DMSO (0.05, 0.1, 0.3, 0.5 and 1.0 mM), diluted in culture medium (DMEM), were placed in contact with MDPC-23 cells (5 × 104 cells/cm(2)) for 24 h. Eight replicates (n = 8) were prepared for each solutions for the following methods of analysis: violet crystal dye for cell adhesion (CA), quantification of total protein (TP), alizarin red for mineralization nodules formation (MN) and cell death by necrosis (flow cytometry); while twelve replicates (n = 12) were prepared for viable cell number (Trypan Blue) and cell viability (MTT assay). Data were analyzed by ANOVA and Tukey or Kruskal-Wallis and Mann-Whitney's tests (p < 0.05). Cell viability, adhesion and percentage of cell death by necrosis were not affected by DMSO at any concentration, with no statistical significant difference among the groups. A significant reduction in total protein production was observed for 0.5 and 1.0 mM of DMSO compared to the control while increased mineralized nodules formation was seen only for 1.0 mM DMSO. DMSO caused no or minor cytotoxic effects on the pulp tissue repair-related activity of odontoblast-like cells. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Potential Use of Dimethyl Sulfoxide in Treatment of Infections Caused by Pseudomonas aeruginosa

    PubMed Central

    Guo, Qiao; Wu, Qiaolian; Bai, Dangdang; Liu, Yang; Chen, Lin; Jin, Sheng; Wu, Yuting

    2016-01-01

    Dimethyl sulfoxide (DMSO) is commonly used as a solvent to dissolve water-insoluble drugs or other test samples in both in vivo and in vitro experiments. It was observed during our experiment that DMSO at noninhibitory concentrations could significantly inhibit pyocyanin production in the human pathogen Pseudomonas aeruginosa. Pyocyanin is an important pathogenic factor whose production is controlled by a cell density-dependent quorum-sensing (QS) system. Investigation of the effect of DMSO on QS showed that DMSO has significant QS antagonistic activities and concentrations of DMSO in the micromolar range attenuated a battery of QS-controlled virulence factors, including rhamnolipid, elastase, and LasA protease production and biofilm formation. Further study indicated that DMSO inhibition of biofilm formation and pyocyanin production was attained by reducing the level of production of an autoinducer molecule of the rhl QS system, N-butanoyl-l-homoserine lactone (C4-HSL). In a mouse model of a burn wound infection with P. aeruginosa, treatment with DMSO significantly decreased mouse mortality compared with that for mice in the control group. The capacity of DMSO to attenuate the pathogenicity of P. aeruginosa points to the potential use of DMSO as an antipathogenic agent for the treatment of P. aeruginosa infection. As a commonly used solvent, however, DMSO's impact on bacterial virulence calls for cautionary attention in its usage in biological, medicinal, and clinical studies. PMID:27645245

  16. Diapause Prevention Effect of Bombyx mori by Dimethyl Sulfoxide

    PubMed Central

    Yamamoto, Takayuki; Mase, Keisuke; Sawada, Hiroshi

    2013-01-01

    HCl treatment has been, for about 80 years, the primary method for the prevention of entry into embryonic diapauses of Bombyx mori. This is because no method is as effective as the HCl treatment. In this study, we discovered that dimethyl sulfoxide (DMSO) prevented entry into the diapause of the silkworm, Bombyx mori. The effect of diapause prevention was 78% as a result of treatment with 100% DMSO concentration, and the effect was comparable to that of the HCl treatment. In contrast, in the case of non-diapause eggs, hatchability was decreased by DMSO in a concentration-dependent manner. The effect of DMSO was restricted within 24 hours after oviposition of diapause eggs, and the critical period was slightly shorter than the effective period of the HCl treatment. DMSO analogs, such as dimethyl formamide (DMF) and dimethyl sulfide (DMS), did little preventive effect against the diapause. Furthermore, we also investigated the permeation effects of chemical compounds by DMSO. When treated with an inhibitor of protein kinase CK2 (CK2) dissolved in DMSO, the prevention rate of the diapause was less than 40%. This means that the inhibition effect by the CK2 inhibitor was the inhibition of embryonic development after diapause prevention by DMSO. These data suggest that DMSO has the effects of preventing from entering into the diapause and permeation of chemicals into diapause eggs. PMID:23675522

  17. Effects of intravenous dimethyl sulfoxide on ischemia evolution in a rat permanent occlusion model

    PubMed Central

    Bardutzky, Juergen; Meng, Xianjun; Bouley, James; Duong, Timothy Q; Ratan, Rajiv; Fisher, Marc

    2010-01-01

    Dimethyl sulfoxide (DMSO) has a variety of biological actions that suggest efficacy as a neuroprotectant. We (1) tested the neuroprotective potential of DMSO at different time windows on infarct size using 2,3,5-triphenyltetrazolium staining and (2) investigated the effects of DMSO on ischemia evolution using quantitative diffusion and perfusion imaging in a permanent middle cerebral artery occlusion (MCAO) model in rats. In experiment 1, DMSO treatment (1.5 g/kg intravenously over 3 h) reduced infarct volume 24 h after MCAO by 65% (P<0.00001) when initiated 20 h before MCAO, by 44% (P=0.0006) when initiated 1 h after MCAO, and by 17% (P=0.11) when started 2 h after MCAO. Significant infarct reduction was also observed after a 3-day survival in animals treated 1 h after MCAO (P=0.005). In experiment 2, treatment was initiated 1 h after MCAO and maps for cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) were acquired before treatment and then every 30 mins up to 4 h. Cerebral blood flow characteristics and CBF-derived lesion volumes did not differ between treated and untreated animals, whereas the ADC-derived lesion volume essentially stopped progressing during DMSO treatment, resulting in a persistent diffusion/perfusion mismatch. This effect was mainly observed in the cortex. Our data suggest that DMSO represents an interesting candidate for acute stroke treatment. PMID:15744247

  18. Dimethyl Sulfoxide Attenuates Acute Lung Injury Induced by Hemorrhagic Shock/Resuscitation in Rats.

    PubMed

    Tsung, Yu-Chi; Chung, Chih-Yang; Wan, Hung-Chieh; Chang, Ya-Ying; Shih, Ping-Cheng; Hsu, Han-Shui; Kao, Ming-Chang; Huang, Chun-Jen

    2017-04-01

    Inflammation following hemorrhagic shock/resuscitation (HS/RES) induces acute lung injury (ALI). Dimethyl sulfoxide (DMSO) possesses anti-inflammatory and antioxidative capacities. We sought to clarify whether DMSO could attenuate ALI induced by HS/RES. Male Sprague-Dawley rats were allocated to receive either a sham operation, sham plus DMSO, HS/RES, or HS/RES plus DMSO, and these were denoted as the Sham, Sham + DMSO, HS/RES, or HS/RES + DMSO group, respectively (n = 12 in each group). HS/RES was achieved by drawing blood to lower mean arterial pressure (40-45 mmHg for 60 min) followed by reinfusion with shed blood/saline mixtures. All rats received an intravenous injection of normal saline or DMSO immediately before resuscitation or at matching points relative to the sham groups. Arterial blood gas and histological assays (including histopathology, neutrophil infiltration, and lung water content) confirmed that HS/RES induced ALI. Significant increases in pulmonary expression of tumor necrosis factor-α (TNF-α), malondialdehyde, nuclear factor-kappa B (NF-κB), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2) confirmed that HS/RES induced pulmonary inflammation and oxidative stress. DMSO significantly attenuated the pulmonary inflammation and ALI induced by HS/RES. The mechanisms for this may involve reducing inflammation and oxidative stress through inhibition of pulmonary NF-κB, TNF-α, iNOS, and COX-2 expression.

  19. Dimethyl sulfoxide (DMSO) exacerbates cisplatin-induced sensory hair cell death in zebrafish (Danio rerio).

    PubMed

    Uribe, Phillip M; Mueller, Melissa A; Gleichman, Julia S; Kramer, Matthew D; Wang, Qi; Sibrian-Vazquez, Martha; Strongin, Robert M; Steyger, Peter S; Cotanche, Douglas A; Matsui, Jonathan I

    2013-01-01

    Inner ear sensory hair cells die following exposure to aminoglycoside antibiotics or chemotherapeutics like cisplatin, leading to permanent auditory and/or balance deficits in humans. Zebrafish (Danio rerio) are used to study drug-induced sensory hair cell death since their hair cells are similar in structure and function to those found in humans. We developed a cisplatin dose-response curve using a transgenic line of zebrafish that expresses membrane-targeted green fluorescent protein under the control of the Brn3c promoter/enhancer. Recently, several small molecule screens have been conducted using zebrafish to identify potential pharmacological agents that could be used to protect sensory hair cells in the presence of ototoxic drugs. Dimethyl sulfoxide (DMSO) is typically used as a solvent for many pharmacological agents in sensory hair cell cytotoxicity assays. Serendipitously, we found that DMSO potentiated the effects of cisplatin and killed more sensory hair cells than treatment with cisplatin alone. Yet, DMSO alone did not kill hair cells. We did not observe the synergistic effects of DMSO with the ototoxic aminoglycoside antibiotic neomycin. Cisplatin treatment with other commonly used organic solvents (i.e. ethanol, methanol, and polyethylene glycol 400) also did not result in increased cell death compared to cisplatin treatment alone. Thus, caution should be exercised when interpreting data generated from small molecule screens since many compounds are dissolved in DMSO.

  20. Dimethyl Sulfoxide (DMSO) Exacerbates Cisplatin-induced Sensory Hair Cell Death in Zebrafish (Danio rerio)

    PubMed Central

    Gleichman, Julia S.; Kramer, Matthew D.; Wang, Qi; Sibrian-Vazquez, Martha; Strongin, Robert M.; Steyger, Peter S.; Cotanche, Douglas A.; Matsui, Jonathan I.

    2013-01-01

    Inner ear sensory hair cells die following exposure to aminoglycoside antibiotics or chemotherapeutics like cisplatin, leading to permanent auditory and/or balance deficits in humans. Zebrafish (Danio rerio) are used to study drug-induced sensory hair cell death since their hair cells are similar in structure and function to those found in humans. We developed a cisplatin dose-response curve using a transgenic line of zebrafish that expresses membrane-targeted green fluorescent protein under the control of the Brn3c promoter/enhancer. Recently, several small molecule screens have been conducted using zebrafish to identify potential pharmacological agents that could be used to protect sensory hair cells in the presence of ototoxic drugs. Dimethyl sulfoxide (DMSO) is typically used as a solvent for many pharmacological agents in sensory hair cell cytotoxicity assays. Serendipitously, we found that DMSO potentiated the effects of cisplatin and killed more sensory hair cells than treatment with cisplatin alone. Yet, DMSO alone did not kill hair cells. We did not observe the synergistic effects of DMSO with the ototoxic aminoglycoside antibiotic neomycin. Cisplatin treatment with other commonly used organic solvents (i.e. ethanol, methanol, and polyethylene glycol 400) also did not result in increased cell death compared to cisplatin treatment alone. Thus, caution should be exercised when interpreting data generated from small molecule screens since many compounds are dissolved in DMSO. PMID:23383324

  1. Effects of dimethyl sulfoxide in cholesterol-containing lipid membranes: a comparative study of experiments in silico and with cells.

    PubMed

    de Ménorval, Marie-Amélie; Mir, Lluis M; Fernández, M Laura; Reigada, Ramon

    2012-01-01

    Dimethyl sulfoxide (DMSO) has been known to enhance cell membrane permeability of drugs or DNA. Molecular dynamics (MD) simulations with single-component lipid bilayers predicted the existence of three regimes of action of DMSO: membrane loosening, pore formation and bilayer collapse. We show here that these modes of action are also reproduced in the presence of cholesterol in the bilayer, and we provide a description at the atomic detail of the DMSO-mediated process of pore formation in cholesterol-containing lipid membranes. We also successfully explore the applicability of DMSO to promote plasma membrane permeability to water, calcium ions (Ca(2+)) and Yo-Pro-1 iodide (Yo-Pro-1) in living cell membranes. The experimental results on cells in culture can be easily explained according to the three expected regimes: in the presence of low doses of DMSO, the membrane of the cells exhibits undulations but no permeability increase can be detected, while at intermediate DMSO concentrations cells are permeabilized to water and calcium but not to larger molecules as Yo-Pro-1. These two behaviors can be associated to the MD-predicted consequences of the effects of the DMSO at low and intermediate DMSO concentrations. At larger DMSO concentrations, permeabilization is larger, as even Yo-Pro-1 can enter the cells as predicted by the DMSO-induced membrane-destructuring effects described in the MD simulations.

  2. Factors affecting degradation of dimethyl sulfoxide (DMSO) by fluidized-bed Fenton process.

    PubMed

    Bellotindos, Luzvisminda M; Lu, Meng-Hsuan; Methatham, Thanakorn; Lu, Ming-Chun

    2014-12-01

    In this study, the target compound is dimethyl sulfoxide (DMSO), which is used as a photoresist stripping solvent in the semiconductor and thin-film transistor liquid crystal display (TFT-LCD) manufacturing processes. The effects of the operating parameters (pH, Fe(2+) and H2O2 concentrations) on the degradation of DMSO in the fluidized-bed Fenton process were examined. This study used the Box-Behnken design (BBD) to investigate the optimum conditions of DMSO degradation. The highest DMSO removal was 98 % for pH 3, when the H2O2 to Fe(2+) molar ratio was 12. At pH 2 and 4, the highest DMSO removal was 82 %, when the H2O2 to Fe(2+) molar ratio was 6.5. The correlation of DMSO removal showed that the effect of the parameters on DMSO removal followed the order Fe(2+) > H2O2 > pH. From the BBD prediction, the optimum conditions were pH 3, 5 mM of Fe(2+), and 60 mM of H2O2. The difference between the experimental value (98 %) and the predicted value (96 %) was not significant. The removal efficiencies of DMSO, chemical oxygen demand (COD), total organic carbon (TOC), and iron in the fluidized-bed Fenton process were higher than those in the traditional Fenton process.

  3. Dimethyl sulfoxide could be a useful probe to evaluate unusual skin angioneurotic reaction and epidermal permeability.

    PubMed

    Chen, Shuang Y; Wang, Xue M; Liu, Yan Q; Gao, Yan R; Liu, Xiao P; Li, Shu Y; Dong, Ya Q

    2014-03-01

    Dimethyl sulfoxide (DMSO) has been suggested as a traditional chemical probe for assessing skin susceptibility and barrier function. The purpose of this study was to determine the role of DMSO test for the evaluation of unusual skin angioneurotic reaction and epidermal permeability. Thirty healthy volunteers were exposed to 98% DMSO on the flexor forearm skin for three exposure durations (5 min, 10 min and 15 min). Clinical visual score and biological physical parameters were obtained. The volunteers were divided into two groups according to the clinical visual scoring. The skin parameters were subsequently analyzed. There was a significant correlation between clinical visual score and biological physical parameters. The skin color parameters (a*, oxyhemoglobin, erythema and melanin index) and blood flow values were significant between two groups regardless of duration of DMSO exposure, and a significant difference between density values could also be detected if we regrouped the volunteers according to the sting-producing score. Our results also suggested there was no correlation between questionnaire score and clinical visual score or other parameters. Application of 98% DMSO for 10 min combined with a* (at 30 min) and blood flow (at 10 min) values could help us to identify persons with a hyper-angionerotic reaction to chemical stimulus. The penetrative activity of DMSO correlated with the thickness of the individual's skin.

  4. Age-dependent increase in ortho-tyrosine and methionine sulfoxide in human skin collagen is not accelerated in diabetes. Evidence against a generalized increase in oxidative stress in diabetes.

    PubMed Central

    Wells-Knecht, M C; Lyons, T J; McCance, D R; Thorpe, S R; Baynes, J W

    1997-01-01

    The glycoxidation products Nepsilon-(carboxymethyl)lysine and pentosidine increase in skin collagen with age and at an accelerated rate in diabetes. Their age-adjusted concentrations in skin collagen are correlated with the severity of diabetic complications. To determine the relative roles of increased glycation and/or oxidation in the accelerated formation of glycoxidation products in diabetes, we measured levels of amino acid oxidation products, distinct from glycoxidative modifications of amino acids, as independent indicators of oxidative stress and damage to collagen in aging and diabetes. We show that ortho-tyrosine and methionine sulfoxide are formed in concert with Nepsilon-(carboxymethyl)lysine and pentosidine during glycoxidation of collagen in vitro, and that they also increase with age in human skin collagen. The age-adjusted levels of these oxidized amino acids in collagen was the same in diabetic and nondiabetic subjects, arguing that diabetes per se does not cause an increase in oxidative stress or damage to extracellular matrix proteins. These results provide evidence for an age-dependent increase in oxidative damage to collagen and support previous conclusions that the increase in glycoxidation products in skin collagen in diabetes can be explained by the increase in glycemia alone, without invoking a generalized, diabetes-dependent increase in oxidative stress. PMID:9259583

  5. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Moser, D. P.; Saffarini, D. A.

    1995-01-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  6. Carbon nanotube (CNT) and nanofibrillated cellulose (NFC) reinforcement effect on thermoplastic polyurethane (TPU) scaffolds fabricated via phase separation using dimethyl sulfoxide (DMSO) as solvent.

    PubMed

    Mi, Hao-Yang; Jing, Xin; Salick, Max R; Cordie, Travis M; Turng, Lih-Sheng

    2016-09-01

    Although phase separation is a simple method of preparing tissue engineering scaffolds, it suffers from organic solvent residual in the scaffold. Searching for nontoxic solvents and developing effective solvent removal methods are current challenges in scaffold fabrication. In this study, thermoplastic polyurethane (TPU) scaffolds containing carbon nanotubes (CNTs) or nanofibrillated cellulose fibers (NFCs) were prepared using low toxicity dimethyl sulfoxide (DMSO) as a solvent. The effects of two solvent removal approaches on the final scaffold morphology were studied. The freeze drying method caused large pores, with small pores on the pore walls, which created connections between the pores. Meanwhile, the leaching and freeze drying method led to interconnected fine pores with smaller pore diameters. The nucleation effect of CNTs and the phase separation behavior of NFCs in the TPU solution resulted in significant differences in the microstructures of the resulting scaffolds. The mechanical performance of the nanocomposite scaffolds with different morphologies was investigated. Generally, the scaffolds with a fine pore structure showed higher compressive properties, and both the CNTs and NFCs improved the compressive properties of the scaffolds, with greater enhancement found in TPU/NFC nanocomposite scaffolds. In addition, all scaffolds showed good sustainability under cyclical load bearing, and the biocompatibility of the scaffolds was verified via 3T3 fibroblast cell culture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Pharmacologic modification of the cytotoxic effects of cadmium in LLC-PK sub 1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battaglia, D.R.; Kahan, B.S.; Niewenhuis, R.J.

    1989-02-09

    Recent results from our laboratories have shown that exposure to cadmium causes LLC-PK{sub 1} cells to shrink, detach and assume a spherical shape. The purpose of the present studies was to determine whether various pharmacologic agents can reduce or prevent these cytotoxic effects of Cd{sup 2+}. Confluent monolayers of LLC-PK{sub 1} cells were incubated with the drugs of interest (50 microM final concentration) for 2 hours. CadCl{sub 2} (final concentration = 75 microM) was then added and the cells were incubated for another 20 hours. Morphologic changes were assessed qualitatively by viewing the cells with a phase contrast microscope. Themore » extent of Cd{sup 2+}-induced cellular damage was also quantified by staining the cells that remained on the growing surface with methylene blue, solubilizing the stained cells, and determining the absorbance at 660 nm. The results showed that several drugs, particularly the calmodulin antagonists trifluoperazine chlorpromazine, and the calcium channel blocker verapamil, significant reduced the severity of Cd{sup 2+}-induced cytotoxicity. By contrast, a variety of other agents, such as chlorpromazine sulfoxide, trifluoperazine sulfoxide, phenytoin and zinc, had no such protective effect. These findings indicate that Ca{sup 2+} antagonists can attenuate the cytotoxic effects of Cd{sup 2+} and that Cd{sup 2+} may produce some of its effects by activating Ca{sup 2+} -dependent systems.« less

  8. Simultaneous quantification of methiocarb and its metabolites, methiocarb sulfoxide and methiocarb sulfone, in five food products of animal origin using tandem mass spectrometry.

    PubMed

    Rahman, Md Musfiqur; Abd El-Aty, A M; Na, Tae-Woong; Park, Joon-Seong; Kabir, Md Humayun; Chung, Hyung Suk; Lee, Han Sol; Shin, Ho-Chul; Shim, Jae-Han

    2017-08-15

    A simultaneous analytical method was developed for the determination of methiocarb and its metabolites, methiocarb sulfoxide and methiocarb sulfone, in five livestock products (chicken, pork, beef, table egg, and milk) using liquid chromatography-tandem mass spectrometry. Due to the rapid degradation of methiocarb and its metabolites, a quick sample preparation method was developed using acetonitrile and salts followed by purification via dispersive- solid phase extraction (d-SPE). Seven-point calibration curves were constructed separately in each matrix, and good linearity was observed in each matrix-matched calibration curve with a coefficient of determination (R 2 ) ≥ 0.991. The limits of detection and quantification were 0.0016 and 0.005mg/kg, respectively, for all tested analytes in various matrices. The method was validated in triplicate at three fortification levels (equivalent to 1, 2, and 10 times the limit of quantification) with a recovery rate ranging between 76.4-118.0% and a relative standard deviation≤10.0%. The developed method was successfully applied to market samples, and no residues of methiocarb and/or its metabolites were observed in the tested samples. In sum, this method can be applied for the routine analysis of methiocarb and its metabolites in foods of animal origins. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A highly sensitive fluorescent probe for fast recognization of DTT and its application in one- and two-photon imaging.

    PubMed

    Sun, Tong; Xia, Lili; Huang, Jinxin; Gu, Yueqing; Wang, Peng

    2018-09-01

    As a widely used reducing agent, 1, 4-dithiothreitol (DTT) plays important roles in the fields of biology, biochemistry, and biomedicine. The development of facile and fast methods for DTT detection is urgent and necessary. In this article, we rationally constructed a novel two-photon fluorescent probe 6-(methylsulfinyl)-2-phenyl-1H-benzo[de]isoquinoline-1,3(2 H)-dione (NC-DTT) for detecting DTT, which employed the 1,8-naphthalimide and sulfoxide as the fluorophore and receptor unit respectively. The sulfoxide group in probe NC-DTT can be reduced by DTT to compound 6-(methylthio)-2-phenyl-1H-benzo[de]isoquinoline-1,3(2 H)-dione (NC), which could emit strong fluorescence with large Stokes shift presumably due to the enhanced intramolecular charge transfer (ICT). This probe responded to DTT quickly (within 1000 s) and showed satisfactory selectivity. A good linearity between fluorescence intensity and the concentration of DTT in the range of 0 - 700 μM was observed, and the detection limit towards DTT was 1.4 × 10 -7 M. Furthermore, the probe was successfully employed in one- and two-photon imaging of DTT in HepG2 cells with low cytotoxicity. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Quantitation of promethazine and metabolites in urine samples using on-line solid-phase extraction and column-switching

    NASA Technical Reports Server (NTRS)

    Song, Q.; Putcha, L.; Harm, D. L. (Principal Investigator)

    2001-01-01

    A chromatographic method for the quantitation of promethazine (PMZ) and its three metabolites in urine employing on-line solid-phase extraction and column-switching has been developed. The column-switching system described here uses an extraction column for the purification of PMZ and its metabolites from a urine matrix. The extraneous matrix interference was removed by flushing the extraction column with a gradient elution. The analytes of interest were then eluted onto an analytical column for further chromatographic separation using a mobile phase of greater solvent strength. This method is specific and sensitive with a range of 3.75-1400 ng/ml for PMZ and 2.5-1400 ng/ml for the metabolites promethazine sulfoxide, monodesmethyl promethazine sulfoxide and monodesmethyl promethazine. The lower limits of quantitation (LLOQ) were 3.75 ng/ml with less than 6.2% C.V. for PMZ and 2.50 ng/ml with less than 11.5% C.V. for metabolites based on a signal-to-noise ratio of 10:1 or greater. The accuracy and precision were within +/- 11.8% in bias and not greater than 5.5% C.V. in intra- and inter-assay precision for PMZ and metabolites. Method robustness was investigated using a Plackett-Burman experimental design. The applicability of the analytical method for pharmacokinetic studies in humans is illustrated.

  11. Carboxymethyl Cellulose (CMC) from Oil Palm Empty Fruit Bunch (OPEFB) in the new solvent Dimethyl Sulfoxide (DMSO)/Tetrabutylammonium Fluoride (TBAF)

    NASA Astrophysics Data System (ADS)

    Eliza, M. Y.; Shahruddin, M.; Noormaziah, J.; Rosli, W. D. Wan

    2015-06-01

    The surplus of Oil Palm is the most galore wastes in Malaysia because it produced about half of the world palm oil production, which contributes a major disposal problem Synthesis from an empty fruit bunch produced products such as Carboxymethyl Cellulose (CMC), could apply in diverse application such as for paper coating, food packaging and most recently, the potential as biomaterials has been revealed. In this study, CMC was prepared by firstly dissolved the bleached pulp from OPEFB in mixture solution of dimethyl sulfoxide(DMSO)/tetrabutylammonium fluoride (TBAF) without any prior chemical modification. It took only 30 minutes to fully dissolve at temperature 60°C before sodium hydroxide (NaOH) were added for activation and monochloroacetateas terrifying agent. The final product is appeared in white powder, which is then will be analyzedby FTIR analysis. FTIR results show peaks appeared at wavenumber between 1609 cm-1 to 1614 cm-1 proved the existence of carboxymethyl groups which substitute OH groups at anhydroglucose(AGU) unit. As a conclusion, mixture solution of DMSO/TBAF is the suitable solvent used for dissolved cellulose before modifying it into CMC with higher Degree of Substitution (DS). Furthermore, the dissolution of the OPEFB bleached pulp was easy, simple and at a faster rate without prior chemical modification at temperature as low as 60°C.

  12. Dehydroacetic Acid Derivatives Bearing Amide or Urea Moieties as Effective Anion Receptors.

    PubMed

    Bregović, Nikola; Cindro, Nikola; Bertoša, Branimir; Barišić, Dajana; Frkanec, Leo; Užarević, Krunoslav; Tomišić, Vladislav

    2017-08-01

    Derivatives of dehydroacetic acid comprising amide or urea subunits have been synthesized and their anion-binding properties investigated. Among a series of halides and oxyanions, the studied compounds selectively bind acetate and dihydrogen phosphate in acetonitrile and dimethyl sulfoxide. The corresponding complexation processes were characterized by means of 1 H NMR titrations, which revealed a 1:1 complex stoichiometry in most cases, with the exception of dihydrogen phosphate, which formed 2:1 (anion/ligand) complexes in acetonitrile. The complex stability constants were determined and are discussed with respect to the structural properties of the receptors, the hydrogen-bond-forming potential of the anions, and the characteristics of the solvents used. Based on the spectroscopic data and results of Monte Carlo simulations, the amide or urea groups were affirmed as the primary binding sites in all cases. The results of the computational methods indicate that an array of both inter- and intramolecular hydrogen bonds can form in the studied systems, and these were shown to play an important role in defining the overall stability of the complexes. Solubility measurements were carried out in both solvents and the thermodynamics of transfer from acetonitrile to dimethyl sulfoxide were characterized on a quantitative level. This has afforded a detailed insight into the impact of the medium on the complexation reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effects of Dimethyl Sulfoxide in Cholesterol-Containing Lipid Membranes: A Comparative Study of Experiments In Silico and with Cells

    PubMed Central

    de Ménorval, Marie-Amélie; Mir, Lluis M.; Fernández, M. Laura; Reigada, Ramon

    2012-01-01

    Dimethyl sulfoxide (DMSO) has been known to enhance cell membrane permeability of drugs or DNA. Molecular dynamics (MD) simulations with single-component lipid bilayers predicted the existence of three regimes of action of DMSO: membrane loosening, pore formation and bilayer collapse. We show here that these modes of action are also reproduced in the presence of cholesterol in the bilayer, and we provide a description at the atomic detail of the DMSO-mediated process of pore formation in cholesterol-containing lipid membranes. We also successfully explore the applicability of DMSO to promote plasma membrane permeability to water, calcium ions (Ca2+) and Yo-Pro-1 iodide (Yo-Pro-1) in living cell membranes. The experimental results on cells in culture can be easily explained according to the three expected regimes: in the presence of low doses of DMSO, the membrane of the cells exhibits undulations but no permeability increase can be detected, while at intermediate DMSO concentrations cells are permeabilized to water and calcium but not to larger molecules as Yo-Pro-1. These two behaviors can be associated to the MD-predicted consequences of the effects of the DMSO at low and intermediate DMSO concentrations. At larger DMSO concentrations, permeabilization is larger, as even Yo-Pro-1 can enter the cells as predicted by the DMSO-induced membrane-destructuring effects described in the MD simulations. PMID:22848583

  14. Injectable polypeptide hydrogels via methionine modification for neural stem cell delivery.

    PubMed

    Wollenberg, A L; O'Shea, T M; Kim, J H; Czechanski, A; Reinholdt, L G; Sofroniew, M V; Deming, T J

    2018-04-05

    Injectable hydrogels with tunable physiochemical and biological properties are potential tools for improving neural stem/progenitor cell (NSPC) transplantation to treat central nervous system (CNS) injury and disease. Here, we developed injectable diblock copolypeptide hydrogels (DCH) for NSPC transplantation that contain hydrophilic segments of modified l-methionine (Met). Multiple Met-based DCH were fabricated by post-polymerization modification of Met to various functional derivatives, and incorporation of different amino acid comonomers into hydrophilic segments. Met-based DCH assembled into self-healing hydrogels with concentration and composition dependent mechanical properties. Mechanical properties of non-ionic Met-sulfoxide formulations (DCH MO ) were stable across diverse aqueous media while cationic formulations showed salt ion dependent stiffness reduction. Murine NSPC survival in DCH MO was equivalent to that of standard culture conditions, and sulfoxide functionality imparted cell non-fouling character. Within serum rich environments in vitro, DCH MO was superior at preserving NSPC stemness and multipotency compared to cell adhesive materials. NSPC in DCH MO injected into uninjured forebrain remained local and, after 4 weeks, exhibited an immature astroglial phenotype that integrated with host neural tissue and acted as cellular substrates that supported growth of host-derived axons. These findings demonstrate that Met-based DCH are suitable vehicles for further study of NSPC transplantation in CNS injury and disease models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Orange interventions for symptoms associated with dimethyl sulfoxide during stem cell reinfusions: a feasibility study.

    PubMed

    Potter, Pamela; Eisenberg, Seth; Cain, Kevin C; Berry, Donna L

    2011-01-01

    For over 2 decades, oncology nurses at a regional comprehensive cancer center offered sliced oranges to patients during the reinfusion of autologous hematopoietic progenitor cells (HPCs) to relieve symptoms associated with the preservative dimethyl sulfoxide (DMSO). This randomized pilot study examined feasibility and efficacy of sliced orange intervention (OI), orange aromatherapy intervention (OAI), or deep breathing (control) to address unpleasant adverse effects during HPC infusion. Orange intervention sniffed or tasted a quartered orange, OAI sniffed orange aromatherapy, and control took deep breaths. Perceived "symptom intensity" for tickle/cough urge, nausea, retching, and perceived "relief" were measured on 0- to 10-point numerical scales. Sixty of 72 eligible patients consented to participate and were randomized to OI (n = 19), OAI (n = 23), or control (n = 18). Study personnel successfully administered study procedures. Over the course of 2 bags of cells infused, the OI group reported significantly greater relief with the intervention (P = .032). Among participants less than 90 kg, OI group reported significantly lower symptom intensity (P = .012). Results suggest a feasible protocol and potential efficacy of sliced oranges for treating symptoms associated with DMSO-preserved stem cells. Study procedures provide a tested protocol for future studies. Follow-up study is warranted to confirm these findings and evaluate other treatment options. Oranges offer a simple, noninvasive intervention for relieving symptoms associated with DMSO preservative during autologous HPC infusion.

  16. A nonaqueous potentiometric titration study of the dissociation of t-butyl methacrylate-methacrylic acid copolymers.

    PubMed

    Nakatani, Kiyoharu; Yamashita, Jun; Sekine, Tomomi; Toriumi, Minoru; Itani, Toshiro

    2003-05-01

    The dissociation of t-butyl methacrylate-methacrylic acid copolymers in dimethyl sulfoxide was analyzed by a nonaqueous potentiometric titration technique. The negative logarithm of the dissociation constant of the monomer unit of a methacrylic acid (MAA) monotonously increased with the increasing degree of dissociation corresponding to the titrant/MAA amount ratio, and was highly influenced by the copolymerization ratio. The results are discussed in terms of the suppression of the dissociation of MAA by a neighboring charged methacrylate anion unit.

  17. Theoretical investigation of the electronic structure of a substituted nickel phthalocyanine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Prabhjot, E-mail: prabhphysics@gmail.com; Sachdeva, Ritika; Singh, Sukhwinder

    2016-05-23

    The optimized geometry and electronic structure of an organic compound nickel phthalocyanine tetrasulfonic acid tetra sodium salt have been investigated using density functional theory. We have also optimized the structure of nickel phthalocyanine tetrasulfonic acid tetra sodium salt in dimethyl sulfoxide to study effects of solvent on the electronic structure and transitions. Experimentally, the electronic transitions have been studied using UV-VIS spectroscopic technique. It is observed that the electronic transitions obtained from the theoretical studies generally agree with the experiment.

  18. An Essential Protein Repair Enzyme: Investigation of the Molecular Recognition Mechanism of Methionine Sulfoxide Reductase A

    DTIC Science & Technology

    2008-05-01

    4 ). The three-dimensional spatial orientation of the atoms for these resolved solution structures (Protein Data Bank accession codes: 2gt3...Crystal structure of the Escherichia coli peptide methionine sulphoxide reductase at 1.9 Å resolution . Struct. Fold. Des. 8: 1167 – 1178. 2 . Brot...sources (8). There is a 67% sequence identity between the E.coli and human MsrA ( 2 ). N-terminus C-terminus Figure 2 . Three-dimensional structure

  19. Conference on Biological Actions and Medical Applications of Dimethyl Sulfoxide (DMSO), 15-17 September 1982.

    DTIC Science & Technology

    1983-06-01

    Effects on Isolated Fat Cells. By PAUL B. WIESER ......... 135 Induction of Glohin Gene Expression During Erythroid Cell Differentiation. By RICHARD A...lipolysis and decreases insulin-stimulated glucose oxidation in free while fat cells of rat." It V also enhances heme synthesis in quail embryo yolk sac...metabolism of fat cells. Biochem. Pharma- col. 26: 775-778. 18. TERASAWA. T., Y. MIt RA & R. MASJDA. 1981. The mechanism of the action of DMSO on the

  20. Electrolyte for stable cycling of high-energy lithium sulfur redox flow batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Jie; Liu, Jun; Pan, Huilin

    A device comprising: a lithium sulfur redox flow battery comprising an electrolyte composition comprising: (i) a dissolved Li 2S x electroactive salt, wherein x.gtoreq.4; (ii) a solvent selected from dimethyl sulfoxide, tetrahydrofuran, or a mixture thereof; and (iii) a supporting salt at a concentration of at least 2 M, as measured by moles of supporting salt divided by the volume of the solvent without considering the volume change of the electrolyte after dissolving the supporting salt.

  1. Novel heterocyclic thiosemicarbazones derivatives as colorimetric and "turn on" fluorescent sensors for fluoride anion sensing employing hydrogen bonding.

    PubMed

    Ashok Kumar, S L; Saravana Kumar, M; Sreeja, P B; Sreekanth, A

    2013-09-01

    Two novel heterocyclic thiosemicarbazone derivatives have been synthesized, and characterized, by means of spectroscopic and single crystal X-ray diffraction methods. Their chromophoric-fluorogenic response towards anions in competing solvent dimethyl sulfoxide (DMSO) was studied. The receptor shows selective recognition towards fluoride anion. The binding affinity of the receptors with fluoride anion was calculated using UV-visible and fluorescence spectroscopic techniques. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Pt and Pd catalyzed oxidation of Li 2O 2 and DMSO during Li–O 2 battery charging

    DOE PAGES

    Gittleson, Forrest S.; Ryu, Won-Hee; Schwab, Mark; ...

    2016-01-01

    Rechargeable Li-O 2 and Li-air batteries require electrode and electrolyte materials that synergistcally promote long-term cell operation. We investigate the role of noble metals Pt and Pd as catalysts for the Li-O 2 oxidation process and their compatibility with a dimethyl sulfoxide (DMSO) based electrolyte. Lastly, we identify a basis for low potential Li 2O 2 evolution followed by oxidative decomposition of the electrolyte to form carbonate side products.

  3. [Flavonoid oxidation kinetics in aqueous and aqueous organic media in the presence of peroxidase, tyrosynase, and hemoglobin].

    PubMed

    Barsukova, M E; Tokareva, A I; Buslova, T S; Malinina, L I; Veselova, I A; Shekhovtsova, T N

    2017-01-01

    The kinetics of oxidation reactions of flavonoids, quercetin, dihydroquercetin, and epicatechin has been studied in the presence of biocatalysts of different natures: horseradish peroxidase, mushroom tyrosinase, and hemoglobin from bull blood. Comparison of the kinetic parameters of the oxidation reaction showed that peroxidase appeared to be the most effective biocatalyst in these processes. The specificity of the enzyme for quercetin increased with increasing the polarity of the solvent in a series of ethanol–acetonitrile–dimethyl sulfoxide.

  4. A New Solid/Liquid Hypergolic System: 3-amino-1,2,4-triazine and Nitric Acid

    DTIC Science & Technology

    2016-04-01

    PROGRAM ELEMENT NUMBER 6. AUTHOR(S) William M Sherrill, William M Sickels, Eric J Bukowski, Eric C Johnson, and Joseph E Banning 5d. PROJECT ...on an Anasazi Instruments 90 MHz NMR. Dimethyl sulfoxide (DMSO)-D6 was obtained from Sigma -Aldrich and used as received. All NMR chemical shifts...were obtained from Sigma -Aldrich and were used as received. Approved for public release; distribution is unlimited. 7 5.2 Synthesis of 3-amino

  5. Improvement of activity and stability of chloroperoxidase by chemical modification

    PubMed Central

    Liu, Jian-Zhong; Wang, Min

    2007-01-01

    Background Enzymes show relative instability in solvents or at elevated temperature and lower activity in organic solvent than in water. These limit the industrial applications of enzymes. Results In order to improve the activity and stability of chloroperoxidase, chloroperoxidase was modified by citraconic anhydride, maleic anhydride or phthalic anhydride. The catalytic activities, thermostabilities and organic solvent tolerances of native and modified enzymes were compared. In aqueous buffer, modified chloroperoxidases showed similar Km values and greater catalytic efficiencies kcat/Km for both sulfoxidation and oxidation of phenol compared to native chloroperoxidase. Of these modified chloroperoxidases, citraconic anhydride-modified chloroperoxidase showed the greatest catalytic efficiency in aqueous buffer. These modifications of chloroperoxidase increased their catalytic efficiencies for sulfoxidation by 12%~26% and catalytic efficiencies for phenol oxidation by 7%~53% in aqueous buffer. However, in organic solvent (DMF), modified chloroperoxidases had lower Km values and higher catalytic efficiencies kcat/Km than native chloroperoxidase. These modifications also improved their thermostabilities by 1~2-fold and solvent tolerances of DMF. CD studies show that these modifications did not change the secondary structure of chloroperoxidase. Fluorescence spectra proved that these modifications changed the environment of tryptophan. Conclusion Chemical modification of epsilon-amino groups of lysine residues of chloroperoxidase using citraconic anhydride, maleic anhydride or phthalic anhydride is a simple and powerful method to enhance catalytic properties of enzyme. The improvements of the activity and stability of chloroperoxidase are related to side chain reorientations of aromatics upon both modifications. PMID:17511866

  6. Methionine sulfoxide reductase A regulates cell growth through the p53-p21 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Seung Hee; Kim, Hwa-Young, E-mail: hykim@ynu.ac.kr

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Down-regulation of MsrA inhibits normal cell proliferation. Black-Right-Pointing-Pointer MsrA deficiency leads to an increase in p21 by enhanced p53 acetylation. Black-Right-Pointing-Pointer Down-regulation of MsrA causes cell cycle arrest at the G{sub 2}/M stage. Black-Right-Pointing-Pointer MsrA is a regulator of cell growth that mediates the p53-p21 pathway. -- Abstract: MsrA is an oxidoreductase that catalyzes the stereospecific reduction of methionine-S-sulfoxide to methionine. Although MsrA is well-characterized as an antioxidant and has been implicated in the aging process and cellular senescence, its roles in cell proliferation are poorly understood. Here, we report a critical role of MsrA in normal cellmore » proliferation and describe the regulation mechanism of cell growth by this protein. Down-regulation of MsrA inhibited cell proliferation, but MsrA overexpression did not promote it. MsrA deficiency led to an increase in p21, a major cyclin-dependent kinase inhibitor, thereby causing cell cycle arrest at the G{sub 2}/M stage. While protein levels of p53 were not altered upon MsrA deficiency, its acetylation level was significantly elevated, which subsequently activated p21 transcription. The data suggest that MsrA is a regulator of cell growth that mediates the p53-p21 pathway.« less

  7. A Comparative Metabolomic Evaluation of Behcet’s Disease with Arthritis and Seronegative Arthritis Using Synovial Fluid

    PubMed Central

    Kim, Jungyeon; Hwang, Jiwon; Kim, Kyoung Heon; Cha, Hoon-Suk

    2015-01-01

    Behcet’s disease (BD) with arthritis is often confused with seronegative arthritis (SNA) because of shared clinical symptoms and the lack of definitive biomarkers for BD. To investigate possible metabolic patterns and potential biomarkers of BD with arthritis, metabolomic profiling of synovial fluid (SF) from 6 patients with BD with arthritis and 18 patients with SNA was performed using gas chromatography/time-of-flight mass spectrometry in conjunction with univariate and multivariate statistical analyses. A total of 123 metabolites were identified from samples. Orthogonal partial least square-discriminant analysis showed clear discrimination between BD with arthritis and SNA. A set of 11 metabolites were identified as potential biomarkers for BD using variable importance for projection values and the Wilcoxon-Mann-Whitney test. Compared with SNA, BD with arthritis exhibited relatively high levels of glutamate, valine, citramalate, leucine, methionine sulfoxide, glycerate, phosphate, lysine, isoleucine, urea, and citrulline. There were two markers identified, elevated methionine sulfoxide and citrulline, that were associated with increased oxidative stress, providing a potential link to BD-associated neutrophil hyperactivity. Glutamate, citramalate, and valine were selected and validated as putative biomarkers for BD with arthritis (sensitivity, 100%; specificity, 61.1%). This is the first report to present potential biomarkers from SF for discriminating BD with arthritis from SNA. The metabolomics of SF may be helpful in searching for potential biomarkers and elucidating the clinicopathogenesis of BD with arthritis. PMID:26270538

  8. Pharmacokinetics and metabolism of radiolabelled SNI-2011, a novel muscarinic receptor agonist, in healthy volunteers. Comprehensive understanding of absorption, metabolism and excretion using radiolabelled SNI-2011.

    PubMed

    Washio, Takuo; Kohsaka, Kazuhiro; Arisawa, Hirohiko; Masunaga, Hiroaki; Nagatsuka, Shin-ichiro; Satoh, Yoshiaki

    2003-01-01

    The pharmacokinetics and metabolism of SNI-2011 ((+/-)-cis-2-methylspiro[1,3-oxathiolane-5,3'-quinuclidine]monohydrochloride hemihydrate, cevimeline, CAS 153504-70-2), a novel muscarinic acetylcholine receptor agonist developed for the treatment of Sjögen's syndrome, were investigated in six healthy volunteers after a single oral administration of 14C-SNI-2011. After administration, plasma concentrations of the radioactivity and SNI-2011 reached to Cmax at approximately 2 h, and then decreased with t 1/2 of 9 and 4 h, respectively. Cmax and AUC0-infinity of the radioactivity in plasma were 2.2 and 5.0 times higher than those of SNI-2011, respectively. The main excretion route of the radioactivity was urine, and 97.3% of the dose excreted in urine within 168 h, indicating that 14C-SNI-2011 was completely absorbed. The mean recoveries of the metabolites in urine at 24 h after administration were 16.0% for SNI-2011, 35.8% for SNI-2011 trans-sulfoxide (SNI-t-SO), 8.7% for SNI-2011 cis-sulfoxide, 4.1% for SNI-2011 N-oxide, furthermore, two unknown metabolites, UK-1 and UK-2, were detected 14.6% and 7.7%, respectively. LC/MS analysis and hydrolysis studies revealed that UK-1 and UK-2 were glucuronic acid conjugates of SNI-2011 and SNI-t-SO, respectively.

  9. Insecticidal components from field pea extracts: sequences of some variants of pea albumin 1b.

    PubMed

    Taylor, Wesley G; Sutherland, Daniel H; Olson, Douglas J H; Ross, Andrew R S; Fields, Paul G

    2004-12-15

    Methanol soluble insecticidal peptides with masses of 3752, 3757, and 3805 Da, isolated from crude extracts (C8 extracts) derived from the protein-enriched flour of commercial field peas [Pisum sativum (L.)], were purified by reversed phase chromatography and, after reduction and alkylation, were sequenced by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry with the aid of various peptidases. These major peptides were variants of pea albumin 1b (PA1b) with methionine sulfoxide rather than methionine at position 12. Peptide 3752 showed additional variations at positions 29 (valine for isoleucine) and 34 (histidine for asparagine). A minor, 37 amino acid peptide with a molecular mass of 3788 Da was also sequenced and differed from a known PA1b variant at positions 1, 25, and 31. Sequence variants of PA1b with their molecular masses were compiled, and variants that matched the accurate masses of the experimental peptides were used to narrow the search. MALDI postsource decay experiments on pronase fragments helped to confirm the sequences. Whole and dehulled field peas gave insecticidal C8 extracts in the laboratory that were enriched in peptides with masses of 3736, 3741, and 3789 Da, as determined by high-performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry. It was therefore concluded that oxidation of the methionine residues to methionine sulfoxide occurred primarily during the processing of dehulled peas in a mill.

  10. Dimethyl Sulfoxide Perturbs Cell Cycle Progression and Spindle Organization in Porcine Meiotic Oocytes

    PubMed Central

    Li, Xuan; Wang, Yan-Kui; Song, Zhi-Qiang; Du, Zhi-Qiang; Yang, Cai-Xia

    2016-01-01

    Meiotic maturation of mammalian oocytes is a precisely orchestrated and complex process. Dimethyl sulfoxide (DMSO), a widely used solvent, drug, and cryoprotectant, is capable of disturbing asymmetric cytokinesis of oocyte meiosis in mice. However, in pigs, DMSO’s effect on oocyte meiosis still remains unknown. We aimed to evaluate if DMSO treatment will affect porcine oocyte meiosis and the underlying molecular changes as well. Interestingly, we did not observe the formation of the large first polar body and symmetric division for porcine oocytes treated with DMSO, contrary to findings reported in mice. 3% DMSO treatment could inhibit cumulus expansion, increase nuclear abnormality, disturb spindle organization, decrease reactive oxygen species level, and elevate mitochondrial membrane potential of porcine oocytes. There was no effect on germinal vesicle breakdown rate regardless of DMSO concentration. 3% DMSO treatment did not affect expression of genes involved in spindle organization (Bub1 and Mad2) and apoptosis (NF-κB, Pten, Bcl2, Caspase3 and Caspase9), however, it significantly decreased expression levels of pluripotency genes (Oct4, Sox2 and Lin28) in mature oocytes. Therefore, we demonstrated that disturbed cumulus expansion, chromosome alignment, spindle organization and pluripotency gene expression could be responsible for DMSO-induced porcine oocyte meiotic arrest and the lower capacity of subsequent embryo development. Our results provide new insights on DMSO’s effect on porcine oocyte meiosis and raise safety concerns over DMSO’s usage on female reproduction in both farm animals and humans. PMID:27348312

  11. Potential Use of Dimethyl Sulfoxide in Treatment of Infections Caused by Pseudomonas aeruginosa.

    PubMed

    Guo, Qiao; Wu, Qiaolian; Bai, Dangdang; Liu, Yang; Chen, Lin; Jin, Sheng; Wu, Yuting; Duan, Kangmin

    2016-12-01

    Dimethyl sulfoxide (DMSO) is commonly used as a solvent to dissolve water-insoluble drugs or other test samples in both in vivo and in vitro experiments. It was observed during our experiment that DMSO at noninhibitory concentrations could significantly inhibit pyocyanin production in the human pathogen Pseudomonas aeruginosa Pyocyanin is an important pathogenic factor whose production is controlled by a cell density-dependent quorum-sensing (QS) system. Investigation of the effect of DMSO on QS showed that DMSO has significant QS antagonistic activities and concentrations of DMSO in the micromolar range attenuated a battery of QS-controlled virulence factors, including rhamnolipid, elastase, and LasA protease production and biofilm formation. Further study indicated that DMSO inhibition of biofilm formation and pyocyanin production was attained by reducing the level of production of an autoinducer molecule of the rhl QS system, N-butanoyl-l-homoserine lactone (C 4 -HSL). In a mouse model of a burn wound infection with P. aeruginosa, treatment with DMSO significantly decreased mouse mortality compared with that for mice in the control group. The capacity of DMSO to attenuate the pathogenicity of P. aeruginosa points to the potential use of DMSO as an antipathogenic agent for the treatment of P. aeruginosa infection. As a commonly used solvent, however, DMSO's impact on bacterial virulence calls for cautionary attention in its usage in biological, medicinal, and clinical studies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Marmoset induced pluripotent stem cells: Robust neural differentiation following pretreatment with dimethyl sulfoxide.

    PubMed

    Qiu, Zhifang; Mishra, Anuja; Li, Miao; Farnsworth, Steven L; Guerra, Bernadette; Lanford, Robert E; Hornsby, Peter J

    2015-07-01

    The marmoset is an important nonhuman primate model for regenerative medicine. For experimental autologous cell therapy based on induced pluripotent (iPS) cells in the marmoset, cells must be able to undergo robust and reliable directed differentiation that will not require customization for each specific iPS cell clone. When marmoset iPS cells were aggregated in a hanging drop format for 3 days, followed by exposure to dual SMAD inhibitors and retinoic acid in monolayer culture for 3 days, we found substantial variability in the response of different iPS cell clones. However, when clones were pretreated with 0.05-2% dimethyl sulfoxide (DMSO) for 24 hours, all clones showed a very similar maximal response to the directed differentiation scheme. Peak responses were observed at 0.5% DMSO in two clones and at 1% DMSO in a third clone. When patterns of gene expression were examined by microarray analysis, hierarchical clustering showed very similar responses in all 3 clones when they were pretreated with optimal DMSO concentrations. The change in phenotype following exposure to DMSO and the 6 day hanging drop/monolayer treatment was confirmed by immunocytochemistry. Analysis of DNA content in DMSO-exposed cells indicated that it is unlikely that DMSO acts by causing cells to exit from the cell cycle. This approach should be generally valuable in the directed neural differentiation of pluripotent cells for experimental cell therapy. Copyright © 2015. Published by Elsevier B.V.

  13. Dimethyl Sulfoxide Perturbs Cell Cycle Progression and Spindle Organization in Porcine Meiotic Oocytes.

    PubMed

    Li, Xuan; Wang, Yan-Kui; Song, Zhi-Qiang; Du, Zhi-Qiang; Yang, Cai-Xia

    2016-01-01

    Meiotic maturation of mammalian oocytes is a precisely orchestrated and complex process. Dimethyl sulfoxide (DMSO), a widely used solvent, drug, and cryoprotectant, is capable of disturbing asymmetric cytokinesis of oocyte meiosis in mice. However, in pigs, DMSO's effect on oocyte meiosis still remains unknown. We aimed to evaluate if DMSO treatment will affect porcine oocyte meiosis and the underlying molecular changes as well. Interestingly, we did not observe the formation of the large first polar body and symmetric division for porcine oocytes treated with DMSO, contrary to findings reported in mice. 3% DMSO treatment could inhibit cumulus expansion, increase nuclear abnormality, disturb spindle organization, decrease reactive oxygen species level, and elevate mitochondrial membrane potential of porcine oocytes. There was no effect on germinal vesicle breakdown rate regardless of DMSO concentration. 3% DMSO treatment did not affect expression of genes involved in spindle organization (Bub1 and Mad2) and apoptosis (NF-κB, Pten, Bcl2, Caspase3 and Caspase9), however, it significantly decreased expression levels of pluripotency genes (Oct4, Sox2 and Lin28) in mature oocytes. Therefore, we demonstrated that disturbed cumulus expansion, chromosome alignment, spindle organization and pluripotency gene expression could be responsible for DMSO-induced porcine oocyte meiotic arrest and the lower capacity of subsequent embryo development. Our results provide new insights on DMSO's effect on porcine oocyte meiosis and raise safety concerns over DMSO's usage on female reproduction in both farm animals and humans.

  14. Dimethyl sulfoxide inhibits spontaneous diabetes and autoimmune recurrence in non-obese diabetic mice by inducing differentiation of regulatory T cells.

    PubMed

    Lin, Gu-Jiun; Sytwu, Huey-Kang; Yu, Jyh-Cherng; Chen, Yuan-Wu; Kuo, Yu-Liang; Yu, Chiao-Chi; Chang, Hao-Ming; Chan, De-Chuan; Huang, Shing-Hwa

    2015-01-15

    Type 1 diabetes mellitus (T1D) is caused by the destruction of insulin-producing β cells in pancreatic islets by autoimmune T cells. Islet transplantation has been established as an effective therapeutic strategy for T1D. However, the survival of islet grafts can be disrupted by recurrent autoimmunity. Dimethyl sulfoxide (DMSO) is a solvent for organic and inorganic substances and an organ-conserving agent used in solid organ transplantations. DMSO also exerts anti-inflammatory, reactive oxygen species scavenger and immunomodulatory effects and therefore exhibits therapeutic potential for the treatment of several human inflammatory diseases. In this study, we investigated the therapeutic potential of DMSO in the inhibition of autoimmunity. We treated an animal model of islet transplantation (NOD mice) with DMSO. The survival of the syngeneic islet grafts was significantly prolonged. The population numbers of CD8, DC and Th1 cells were decreased, and regulatory T (Treg) cell numbers were increased in recipients. The expression levels of IFN-γ and proliferation of T cells were also reduced following DMSO treatment. Furthermore, the differentiation of Treg cells from naive CD4 T cells was significantly increased in the in vitro study. Our results demonstrate for the first time that in vivo DMSO treatment suppresses spontaneous diabetes and autoimmune recurrence in NOD mice by inhibiting the Th1 immune response and inducing the differentiation of Treg cells. Copyright © 2014. Published by Elsevier Inc.

  15. [Permeability of isolated rat hepatocyte plasma membranes for molecules of dimethyl sulfoxide].

    PubMed

    Kuleshova, L G; Gordienko, E A; Kovalenko, I F

    2014-01-01

    We have studied permeability of isolated rat hepatocyte membranes for molecules of dimethyl sulfoxide (DMSO) at different hypertonicity of a cryoprotective medium. The permeability coefficient of hepatocyte membranes κ1 for DMSO molecules was shown to be the differential function of osmotic pressure between a cell and an extracellular medium. Ten-fold augmentation of DMSO concentration in the cryoprotective medium causes the decrease of permeability coefficients κ1 probably associated with the increased viscosity in membrane-adjacent liquid layers as well as partial limitations appeared as a result of change in cell membrane shape after hepatocyte dehydration. We have found out that in aqueous solutions of NaCl (2246 mOsm/l) and DMSO (2250 mOsm/l) the filtration coefficient L(p) in the presence of a penetrating cryoprotectant (L(pDMSO) = (4.45 ± 0.04) x 10(-14) m3/Ns) is 3 orders lower compared to the case with electrolyte (L(pNaCl) = (2.25 ± 0.25) x 10(-11) m3/Ns). This phenomenon is stipulated by the cross impact of flows of a cryoprotectant and water at the stage of cell dehydration. Pronounced lipophilicity of DMSO, geometric parameters of its molecule as well as the presence of large aqueous pores in rat hepatocyte membranes allow of suggesting the availability of two ways of penetrating this cryoprotectant into the cells by non-specific diffusion through membrane lipid areas and hydrophilic channels.

  16. Effects of dimethyl sulfoxide on asymmetric division and cytokinesis in mouse oocytes

    PubMed Central

    2014-01-01

    Background Dimethyl sulfoxide (DMSO) is used extensively as a permeable cryoprotectant and is a common solvent utilized for several water-insoluble substances. DMSO has various biological and pharmacological activities; however, the effect of DMSO on mouse oocyte meiotic maturation remains unknown. Results In DMSO-treated oocytes, we observed abnormal MII oocytes that contained large polar bodies, including 2-cell–like MII oocytes, during in vitro maturation. Oocyte polarization did not occur, due to the absence of actin cap formation and spindle migration. These features are among the primary causes of abnormal symmetric division; however, analysis of the mRNA expression levels of genes related to asymmetric division revealed no significant difference in the expression of these factors between the 3% DMSO-treated group and the control group. After each “blastomere” of the 2-cell–like MII stage oocytes was injected by one sperm head respectively, the oocytes still possessed the ability to extrude the second polar body from each “blastomere” and to begin cleavage. However, MII oocytes with large polar bodies developed to the blastocyst stage after intracytoplasmic sperm injection (ICSI). Furthermore, other permeable cryoprotectants, such as ethylene glycol and glycerol, also caused asymmetric division failure. Conclusion Permeable cryoprotectants, such as DMSO, ethylene glycol, and glycerol, affect asymmetric division. DMSO disrupts cytokinesis completion by inhibiting cortical reorganization and polarization. Oocytes that undergo symmetric division maintain the ability to begin cleavage after ICSI. PMID:24953160

  17. Dimethyl Sulfoxide Induces Both Direct and Indirect Tau Hyperphosphorylation

    PubMed Central

    Julien, Carl; Marcouiller, François; Bretteville, Alexis; El Khoury, Noura B.; Baillargeon, Joanie; Hébert, Sébastien S.; Planel, Emmanuel

    2012-01-01

    Dimethyl sulfoxide (DMSO) is widely used as a solvent or vehicle for biological studies, and for treatment of specific disorders, including traumatic brain injury and several forms of amyloidosis. As Alzheimer’s disease (AD) brains are characterized by deposits of β-amyloid peptides, it has been suggested that DMSO could be used as a treatment for this devastating disease. AD brains are also characterized by aggregates of hyperphosphorylated tau protein, but the effect of DMSO on tau phosphorylation is unknown. We thus investigated the impact of DMSO on tau phosphorylation in vitro and in vivo. One hour following intraperitoneal administration of 1 or 2 ml/kg DMSO in mice, no change was observed in tau phosphorylation. However, at 4 ml/kg, tau was hyperphosphorylated at AT8 (Ser202/Thr205), PHF-1 (Ser396/Ser404) and AT180 (Thr231) epitopes. At this dose, we also noticed that the animals were hypothermic. When the mice were maintained normothermic, the effect of 4 ml/kg DMSO on tau hyperphosphorylation was prevented. On the other hand, in SH-SY5Y cells, 0.1% DMSO induced tau hyperphosphorylation at AT8 and AT180 phosphoepitopes in normothermic conditions. Globally, these findings demonstrate that DMSO can induce tau hyperphosphorylation indirectly via hypothermia in vivo, and directly in vitro. These data should caution researchers working with DMSO as it can induce artifactual results both in vivo and in vitro. PMID:22768202

  18. Effect of Calcium Chloride on the Permeation of the Cryoprotectant Dimethyl Sulfoxide to Japanese Whiting Sillago japonica Embryos

    NASA Astrophysics Data System (ADS)

    Rahman, Sk. Mustafizur; Majhi, Sullip Kumar; Suzuki, Toru; Strussmann, Carlos Augusto; Watanabe, Manabu

    Cryopreservation of fish eggs and embryos is a highly desired tool to promote aquaculture production and fisheries resource management, but it is still not technically feasible. The failure to develop successful cryopreservation protocols for fish embryos is largely attributed to poor cryoprotectant permeability. The purpose of this study was to test the effectiveness of CaCl2 to enhance cryoprotectant uptake by fish embryos. In this study, embryos (somites and tail elongation stages) of Japanese whiting Sillago japonica were exposed to 10 and 15% dimethyl sulfoxide (DMSO) in artificial sea water (ASW) or a solution of 0.125M CaCl2 in distilled water for 20 min at 24°C. The toxicity of all solutions was estimated from the hatching rates of the embryos and High Performance Liquid Chromatography was used to determine the amount of DMSO taken up during impregnation. The results showed that DMSO incorporation into the embryos was greatly (›50%) enhanced in the presence of CaCl2 compared to ASW. CaCl2 itself was not toxic to the embryos but, probably as a result of the enhanced DMSO uptake, caused decreases in survival of about 14-44% relative to ASW. Somites stage embryos were more tolerant than tail elongation ones to DMSO both as ASW and CaCl2 solutions. The use of CaCl2 as a vehicle for DMSO impregnation could be a promising aid for the successful cryopreservation of fish embryos.

  19. Permeation of dimethyl sulfoxide into articular cartilage at subzero temperatures.

    PubMed

    Zhang, Shao-Zhi; Yu, Xiao-Yi; Chen, Guang-Ming

    2012-03-01

    Osteochondral allografting has been proved to be a useful method to treat diseased or damaged areas of joint surfaces. Operational long-term stocks of grafts which supply a buffer between procurement and utilization would contribute to the commercialization or industrialization of this technology. Vitrification has been thought to be a promising method for successful preservation of articular cartilage (AC), but high concentration cryoprotectants (CPAs) are used which may cause high cellular toxicity. An effective way to reduce CPA toxicity is to increase CPA concentration gradually while the temperature is lowered. Understanding the mechanism of CPA permeation at subzero temperatures is important for designing the cryopreservation protocol. In this research, the permeation of dimethyl sulfoxide (Me(2)SO) in ovine AC at subzero temperatures was studied experimentally. Pretreated AC discs were exposed in Me(2)SO solutions for different time (0, 5, 15, 30, 50, 80, and 120 min) at three temperature levels (-10, -20, and -30 °C). The Me(2)SO concentration within the tissue was determined by ultraviolet (UV) spectrophotometry. The diffusion coefficients were estimated to be 0.85×10(-6), 0.48×10(-6), and 0.27×10(-6) cm(2)/s at -10, -20, and -30 °C, respectively, and the corresponding activation energy was 29.23 kJ/mol. Numerical simulation was performed to compare two Me(2)SO addition protocols, and the results demonstrated that the total loading duration could be effectively reduced with the knowledge of permeation kinetics.

  20. Dependence of erythroid differentiation on cell replication in dimethyl sulfoxide-treated friend leukemia-virus-infected cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiens, A.W.; McClintock, P.R.; Papaconstantinou, J.

    1976-01-01

    The dimethyl sulfoxide (Me/sub 2/SO)-mediated induction of hemoglobin synthesis in Friend leukemia cells (a murine erythroblastoid cell line) is coupled with the number of cell replications occurring in the presence of inducer. Varying concentrations of proflavine increase the generation time of these cells from 24 hours to over 50 hours, and in each case the induction of hemoglobin synthesis follows the completion of two cell doublings. Once the induction is initiated, the rate of hemoglobin accumulation is not affected by proflavine. These data indicate that proflavine does not affect the transcription or translation of globin mRNA and that the delaymore » in induction of hemoglobin synthesis is due to its effect on the rate of cellular replication. In experiments using high concentrations of thymidine to block replication, hemoglobin accumulation is prevented only if the cells are blocked prior to 36 hours after Me/sub 2/SO addition. If the cells have completed two generations in the presence of Me/sub 2/SO, there is no effect upon their ability to synthesize hemoglobin even though their growth is arrested. Thus, the inhibition of hemoglobin synthesis by proflavine is not merely the result of a toxic effect on newly subcultured cells but is due to its effect on cellular replication. These experiments confirm that, after addition of Me/sub 2/SO, Friend leukemia cells require more than one complete cell cycle in order to synthesize hemoglobin.« less

  1. Multiclass pesticide determination in olives and their processing factors in olive oil: comparison of different olive oil extraction systems.

    PubMed

    Amvrazi, Elpiniki G; Albanis, Triantafyllos A

    2008-07-23

    The processing factors (pesticide concentration found in olive oil/pesticide concentration found in olives) of azinphos methyl, chlorpyrifos, lambda-cyhalothrin, deltamethrin, diazinon, dimethoate, endosulfan, and fenthion were determined in olive oil production process in various laboratory-scale olive oil extractions based on three- or two-phase centrifugation systems in comparison with samples collected during olive oil extractions in conventional olive mills located at different olive oil production areas in Greece. Pesticide analyses were performed using a multiresidue method developed in our laboratory for the determination of different insecticides and herbicides in olive oil by solid-phase extraction techniques coupled to gas chromatography detection (electron capture detection and nitrogen phosphorus detection), optimized, and validated for olive fruits sample preparation. Processing factors were found to vary among the different pesticides studied. Water addition in the oil extraction procedure (as in a three-phase centrifugation system) was found to decrease the processing factors of dimethoate, alpha-endosulfan, diazinon, and chlorpyrifos, whereas those of fenthion, azinphos methyl, beta-endosulfan, lambda-cyhalothrin, and deltamethrin residues were not affected. The water content of olives processed was found to proportionally affect pesticide processing factors. Fenthion sulfoxide and endosulfan sulfate were the major metabolites of fenthion and endosulfan, respectively, that were detected in laboratory-produced olive oils, but only the concentration of fenthion sulfoxide was found to increase with the increase of water addition in the olive oil extraction process.

  2. Influence of hydroxyapatite nanoparticles on the viscosity of dimethyl sulfoxide-H2O-NaCl and glycerol-H2O-NaCl ternary systems at subzero temperatures.

    PubMed

    Yi, Jingru; Tang, Heyu; Zhao, Gang

    2014-10-01

    The viscosity, at subzero temperatures, of ternary solutions commonly used in cryopreservation is tremendously important for understanding ice formation and molecular diffusion in biopreservation. However, this information is scarce in the literature. In addition, to the best of our knowledge, the effect of nanoparticles on the viscosity of these solutions has not previously been reported. The objectives of this study were thus: (i) to systematically measure the subzero viscosity of two such systems, dimethyl sulfoxide (Me2SO)-H2O-NaCl and glycerol-H2O-NaCl; (ii) to explore the effect of hydroxyapatite (HA) nanoparticles on the viscosity; and (iii) to provide models that precisely predict viscosity at multiple concentrations of cryoprotective agent (CPA) in saline solutions at subzero temperatures. Our experiments were performed in two parts. We first measured the viscosity at multiple CPA concentrations [0.3-0.75 (w/w)] in saline solution with and without nanoparticles at subzero temperatures (0 to -30°C). The data exhibited a good fit to the Williams-Landel-Ferry (WLF) equation. We then measured the viscosity of residual unfrozen ternary solutions with and without nanoparticles during equilibrium freezing. HA nanoparticles made the solution more viscous, suggesting applications for these nanoparticles in preventing cell dehydration, ice nucleation, and ice growth during freezing and thawing in cryopreservation. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Effects of dimethyl sulfoxide, temperature, and sodium chloride on the activity of human matrix metalloproteinase 7 (matrilysin).

    PubMed

    Oneda, H; Inouye, K

    2000-11-01

    Effects of dimethyl sulfoxide (DMSO), temperature, and sodium chloride on the matrilysin-catalyzed hydrolysis of (7-methoxycoumarin-4-yl)acetyl-L-Pro-L-Leu-Gly-L-Leu-[N(3)-(2, 4-dinitrophenyl)-L-2,3-diamino-propionyl]-L-Ala-L-Arg-NH(2) [MOCAc-PLGL(Dpa)AR] were examined. DMSO inhibited the matrilysin activity competitively with the inhibitor constant (K(i)) of 0. 59+/-0.04 M, and the binding between them was endothermic and entropy-driven. The binding of matrilysin with MOCAc-PLGL(Dpa)AR was also found to be entropy-driven. The matrilysin activity was increased in a biphasic exponential fashion with increasing concentration of NaCl, and was 5.3 times higher in the presence of 4 M NaCl than that in its absence. The first and second phases were separated at 0.5 M NaCl, and the activation at x M NaCl compared with the activity in the absence of NaCl was expressed as 2.1(x) at [NaCl] < 0.5 M and 1.4(x) at [NaCl] > 0.5 M. The activation was brought about solely through a decrease in the Michaelis constant (K(m)), and the catalytic constant (k(cat)) was not much altered. This suggests that the decrease in the electrostatic interaction and the increase in the hydrophobic interaction between matrilysin and the substrate might enhance the enzyme activity by reducing the K(m) value.

  4. The reduction of CrVI to CrIII by the alpha and beta anomers of D-glucose in dimethyl sulfoxide. A comparative kinetic and mechanistic study.

    PubMed

    Signorella, S; Lafarga, R; Daier, V; Sala, L F

    2000-02-11

    The reduction of CrVI by alpha-D-glucose and beta-D-glucose was studied in dimethyl sulfoxide in the presence of pyridinium p-toluensulfonate, a medium where mutarotation is slower than the redox reaction. The two anomers reduce CrVI by formation of an intermediate CrVI ester precursor of the slow redox step. The equilibrium constant for the formation of the intermediate chromic ester and the rate of the redox steps are different for each anomer. alpha-D-Glucose forms the CrVI-Glc ester with a higher equilibrium constant than beta-D-glucose, but the electron transfer within this complex is slower than for the beta anomer. The difference is attributed to the better chelating ability of the 1,2-cis-diolate moiety of the alpha anomer. The CrV species, generated in the reaction mixture, reacts with the two anomers at a rate comparable with that of CrVI. The EPR spectra show that the alpha anomer forms several linkage isomers of the five-coordinate CrV bis-chelate, while beta-D-glucose affords a mixture of six-coordinate CrV monochelate and five-coordinate CrV bis-chelate. The conversion of the CrV mono- to bis-chelate is discussed in terms of the ability of the 1,2-cis- versus 1,2-trans-diolate moieties of the glucose anomers to bind CrV.

  5. An alternative mechanism for radioprotection by dimethyl sulfoxide; possible facilitation of DNA double-strand break repair.

    PubMed

    Kashino, Genro; Liu, Yong; Suzuki, Minoru; Masunaga, Shin-ichiro; Kinashi, Yuko; Ono, Koji; Tano, Keizo; Watanabe, Masami

    2010-01-01

    The radioprotective effects of dimethyl sulfoxide (DMSO) have been known for many years, and the suppression of hydroxyl (OH) radicals induced by ionizing radiation has been thought to be the main cause of this effect. However, the DMSO concentration used was very high, and might be toxic, in earlier studies. In the present study, we administered a lower, non-toxic concentration (0.5%, i.e., 64 mM) of DMSO before irradiation and examined its radioprotective effects. Colony formation assay and micronucleus assay showed significant radioprotective effects in CHO, but not in xrs5, which is defective in the repair function of DNA double-strand breaks. The levels of phosphorylated H2AX and the formation of 53BP1 foci 15 minutes after irradiation, which might reflect initial DNA double-strand breaks, in DMSO-treated CHO cells were similar to those in non-treated cells, suggesting that the radioprotective effects were not attributable to the suppression of general indirect action in the lower concentration of DMSO. On the other hand, 2 hours after irradiation, the average number of 53BP1 foci, which might reflect residual DNA double-strand breaks, was significantly decreased in DMSO-treated CHO cells compared to non-treated cells. The results indicated that low concentration of DMSO exerts radioprotective effects through the facilitation of DNA double-strand break repair rather than through the suppression of indirect action.

  6. A simple assay for the simultaneous determination of human plasma albendazole and albendazole sulfoxide levels by high performance liquid chromatography in tandem mass spectrometry with solid-phase extraction.

    PubMed

    Wojnicz, Aneta; Cabaleiro-Ocampo, Teresa; Román-Martínez, Manuel; Ochoa-Mazarro, Dolores; Abad-Santos, Francisco; Ruiz-Nuño, Ana

    2013-11-15

    A simple, reproducible and fast (4 min chromatogram) method of liquid chromatography in tandem with mass spectrometry (LC/MS-MS) was developed to determine simultaneously the plasma levels of albendazole (ABZ) and its metabolite albendazole sulfoxide (ABZOX) for pharmacokinetic and clinical analysis. Each plasma sample was extracted by solid phase extraction (SPE) using phenacetin as internal standard (IS). The extracted sample was eluted with a Zorbax XDB-CN column using an isocratic method. The mobile phase consisting of water with 1% acetic acid (40%, A) and MeOH (60%, B), was used at a flow rate of 1 mL/min. ABZ and ABZOX were detected and identified by mass spectrometry with electrospray ionization (ESI) in the positive ion and multiple-reaction monitoring (MRM) mode. The method was linear in the range of 5-1000 ng/mL for ABZ and 10-1500 ng/mL (full validation) or 10-5000 ng/mL (partial validation) for ABZOX, with 5 and 10 ng/mL lower limit of quantification (LLOQ) for ABZ and ABZOX, respectively. The tests of accuracy and precision, matrix effect, extraction recovery and stability of the samples for both ABZ and ABZOX did not deviate more than 20% for the LLOQ and no more than 15% for other quality controls (QCs), according to regulatory agencies. © 2013.

  7. Topical versus systemic diclofenac in the treatment of temporo-mandibular joint dysfunction symptoms.

    PubMed

    Di Rienzo Businco, L; Di Rienzo Businco, A; D'Emilia, M; Lauriello, M; Coen Tirelli, G

    2004-10-01

    The most frequent symptom of craniomandibular dysfunction is pain in the preauricular area or in the temporo-mandibular joint, usually localized at the level of the masticatory musculature. Patients sometimes also complain of reflect otalgia, headaches and facial pain. Osteoarthrosis is a frequent degenerative debilitating chronic disorder that can affect the temporomandibular joint. It causes pain and articular rigidity, a reduction in mobility, and radiological alterations are visible in stratigraphy. The aim of this study was to compare the efficacy of a topically applied non-steroid anti-inflammatory drug that has recently become commercially available (diclofenac sodium in a patented carrier containing dimethyl sulfoxide, that favours transcutaneous absorption) which is commonly used to alleviate pain in knee or elbow joints, versus oral diclofenac, in the treatment of symptoms of temporomandibular joint dysfunction. Dysfunction of the temporomandibular joint was diagnosed in 36 adult patients. The patients were randomized in two age- and gender -matched groups. Group A (18 patients) received oral diclofenac sodium administered after a meal in 50-mg tablets twice a day for 14 days. Group B (18 patients) received 16 mg/ml topical diclofenac (diclofenac topical solution, 10 drops 4 times a day for 14 days). All patients completed a questionnaire at the start and end of therapy. Patients were asked to quantify on a graded visual analogue scale and to reply to questions about the pain and tenderness of the temporomandibular joint and the functional limitation of mouth opening. Patients were also requested to report side-effects of the treatment. All patients showed relief from pain after treatment: the difference between the two groups was not significant (p > 0.05). Post-treatment, 16 patients of group A had epigastralgic symptoms. Three patients treated with topical diclofenac showed a modest irritation of the temporomandibular joint region, and disappeared spontaneously. Our results demonstrate that topically applied diclofenac and oral diclofenac are equally effective in the treatment of temporomandibular joint dysfunction symptoms. Topical diclofenac has the advantage that it does not have adverse systemic effects, whereas oral diclofenac had untoward effects on the gastric apparatus. The efficacy of diclofenac topically applied on the temporomandibular joint region observed in group B is explained by the association of diclofenac with dimethyl-sulfoxide, which enables a rapid effective penetration into the joint tissues. It is noteworthy that dimethyl-sulfoxide favours transuctaneous absorption when used in a multi-dose regime as in our study with 4 doses a day. Thus, single, "as required", applications should be avoided because this practice results in scarce absorption of diclofenac.

  8. Deep-Sea Bacterium Shewanella piezotolerans WP3 Has Two Dimethyl Sulfoxide Reductases in Distinct Subcellular Locations

    PubMed Central

    Xiong, Lei; Jian, Huahua

    2017-01-01

    ABSTRACT Dimethyl sulfoxide (DMSO) acts as a substantial sink for dimethyl sulfide (DMS) in deep waters and is therefore considered a potential electron acceptor supporting abyssal ecosystems. Shewanella piezotolerans WP3 was isolated from west Pacific deep-sea sediments, and two functional DMSO respiratory subsystems are essential for maximum growth of WP3 under in situ conditions (4°C/20 MPa). However, the relationship between these two subsystems and the electron transport pathway underlying DMSO reduction by WP3 remain unknown. In this study, both DMSO reductases (type I and type VI) in WP3 were found to be functionally independent despite their close evolutionary relationship. Moreover, immunogold labeling of DMSO reductase subunits revealed that the type I DMSO reductase was localized on the outer leaflet of the outer membrane, whereas the type VI DMSO reductase was located within the periplasmic space. CymA, a cytoplasmic membrane-bound tetraheme c-type cytochrome, served as a preferential electron transport protein for the type I and type VI DMSO reductases, in which type VI accepted electrons from CymA in a DmsE- and DmsF-independent manner. Based on these results, we proposed a core electron transport model of DMSO reduction in the deep-sea bacterium S. piezotolerans WP3. These results collectively suggest that the possession of two sets of DMSO reductases with distinct subcellular localizations may be an adaptive strategy for WP3 to achieve maximum DMSO utilization in deep-sea environments. IMPORTANCE As the dominant methylated sulfur compound in deep oceanic water, dimethyl sulfoxide (DMSO) has been suggested to play an important role in the marine biogeochemical cycle of the volatile anti-greenhouse gas dimethyl sulfide (DMS). Two sets of DMSO respiratory systems in the deep-sea bacterium Shewanella piezotolerans WP3 have previously been identified to mediate DMSO reduction under in situ conditions (4°C/20 MPa). Here, we report that the two DMSO reductases (type I and type VI) in WP3 have distinct subcellular localizations, in which type I DMSO reductase is localized to the exterior surface of the outer membrane and type VI DMSO reductase resides in the periplasmic space. A core electron transport model of DMSO reduction in WP3 was constructed based on genetic and physiological data. These results will contribute to a comprehensive understanding of the adaptation mechanisms of anaerobic respiratory systems in benthic microorganisms. PMID:28687647

  9. Water-Quality Data for Selected Wells in New Jersey and New York, 1996-98

    DTIC Science & Technology

    2003-01-01

    Thiobencarb 28249-77-6 .002 Triallate 2303-17-5 .001 Trifluralin 1582-09-8 0.002 Insecticides Azinphos-methyl 86-50-0 .001 Carbaryl 63-25-2 .003 Carbofuran...3 Aldicarb sulfoxide .021 38711 25057-89-0 Bentazon .014 04029 314-40-9 Bromacil .035 49311 1689-84-5 Bromoxynil .035 49310 63-25-2 Carbaryl .008...Norflurazon .024 49292 19044-88-3 Oryzalin .019 38866 23135-22-0 Oxamyl .018 49291 1918-02-1 Picloram .05 49236 122-42-9 Propham .035 38538 114-26-1 Propoxur

  10. The photostability of the commonly used biotin-4-fluorescein probe.

    PubMed

    Haack, Richard A; Swift, Kerry M; Ruan, Qiaoqiao; Himmelsbach, Richard J; Tetin, Sergey Y

    2017-08-15

    Biotin-4-fluorescein (B4F) is a commonly used fluorescent probe for studying biotin-(strept)avidin interactions. During a characterization study of an anti-biotin antibody, using B4F as the probe, we noticed a discrepancy in the expected and experimentally determined number of biotin binding sites. Analytical testing showed that the biotin moiety in the probe undergoes a photosensitized oxidation to produce a mixture of biotin sulfoxides which has the potential to impact the quantitation of binding sites using this fluorescent probe. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. 2-Phenyl-4,5-di-2-pyridyl-1H-imidazole

    PubMed Central

    Felsmann, Marika; Schindler, Diana; Weber, Edwin

    2010-01-01

    In the title compound, C19H14N4, which was crystallized from dimethyl sulfoxide, the arene and heterocyclic rings of the lophine analogue framework differ only slightly from coplanarity (dihedral angles range from 8.8 to 20.2°), and intramolecular N—H⋯N and C—H⋯N interactions help to establish the conformation. The crystal packing features a number of weak C—H⋯N, N—H⋯N hydrogen-bond type contacts, and C—H⋯π interactions, leading to the formation of a herringbone structure. PMID:21580039

  12. Cryopreservation of American kestrel semen with dimethylsulfoxide

    USGS Publications Warehouse

    Gee, G.F.; Morrell, C.A.; Franson, J. Christian; Pattee, Oliver H.

    1993-01-01

    Semen samples from 15 male American Kestrels (Falco sparverius) were frozen in dimethyl sulfoxide (DMSO). The semen was thawed 1-14 mo later and used to inseminate six females during three breeding seasons. Kestrels inseminated with thawed semen containing 4% DMSO produced only infertile eggs (N = 14). Kestrels inseminated with thawed semen containing 6%, 8%, or 10% DMSO produced fertile eggs (N = 14) and live chicks (N = 6). Progressive motility of spermatozoa in thawed semen containing 10% DMSO was less (44 ? 6%) than in thawed semen containing 6% (62 ? 10%) or 8% (61 ? 1%) DMSO.

  13. Research in Energetic Compounds.

    DTIC Science & Technology

    1988-02-09

    39 T i Ie 3. Synthesis of - t- Lu yl- - rethr I y f ri Izc Ljdin c . . ... . 40 Ta 1 ) 1 4. Synt, hsis f 1 -tI - t..y.-3-nil roaz t idir...4 1 ) 1Tabe 5. Synthesis of I -t-Butyl-3,3-diriitroazot.i(diti. ..... ......... 42 ’I" iftle G. Nitooly.i. t) TNAZ...163 g, 10.4 uol) in 12.5 L of dimethyl sulfoxide. After 15 min, 2-berizyloxy- 1 -brorno-3- chloropropane 29 (1237 g, 4.70 neol) was added sowly arid the

  14. Self Assembled Semiconductor Quantum Dots for Spin Based All Optical and Electronic Quantum Computing

    DTIC Science & Technology

    2008-04-17

    resolution TEM images (see Fig. 10) also show that ZnO nanocrystals nucleate on Fig. 9 SEM images of ZnO nanorods grown on (a) Si(001) and b) GaN/Al2O3... electrodeposition in a non-aqueous solution. The solution consisted of ZnClO4 (10.5 gm), LiClO4 (2.5 gm) and dimethyl sulfoxide (250 ml). The porous...valent Zn atoms which were selectively electrodeposited within the pores since they offered the least impedance path for the ac current

  15. Glycogen synthase kinase-3β inhibition of 6-(methylsulfinyl)hexyl isothiocyanate derived from wasabi (Wasabia japonica Matsum).

    PubMed

    Yoshida, Jun; Nomura, Satomi; Nishizawa, Naoyuki; Ito, Yoshiaki; Kimura, Ken-ichi

    2011-01-01

    A new biological activity of 6-(methylsulfinyl)hexyl isothiocyanate derived from Wasabia japonica was discovered as an inhibitor of glycogen synthase kinase-3β. The most potent isothiocyanate, 9-(methylsulfinyl)hexyl isothiocyanate, inhibited glycogen synthase kinase-3β at a K(i) value of 10.5 µM and showed ATP competitive inhibition. The structure-activity relationship revealed an inhibitory potency of methylsulfinyl isothiocyanate dependent on the alkyl chain length and the sulfoxide, sulfone, and/or the isothiocyanate moiety.

  16. Influence of vehicles used for oral dosing of test molecules on the progression of Mycobacterium tuberculosis infection in mice.

    PubMed

    Singh, Shubhra; Dwivedi, Richa; Chaturvedi, Vinita

    2012-11-01

    Preclinical evaluation of drug-like molecules requires their oral administration to experimental animals using suitable vehicles. We studied the effect of oral dosing with corn oil, carboxymethyl cellulose, dimethyl sulfoxide, and polysorbate-80 on the progression of Mycobacterium tuberculosis infection in mice. Infection was monitored by physical (survival time and body weight) and bacteriological (viable counts in lungs) parameters. Compared with water, corn oil significantly improved both sets of parameters, whereas the other vehicles affected only physical parameters.

  17. Influence of Vehicles Used for Oral Dosing of Test Molecules on the Progression of Mycobacterium tuberculosis Infection in Mice

    PubMed Central

    Singh, Shubhra; Dwivedi, Richa

    2012-01-01

    Preclinical evaluation of drug-like molecules requires their oral administration to experimental animals using suitable vehicles. We studied the effect of oral dosing with corn oil, carboxymethyl cellulose, dimethyl sulfoxide, and polysorbate-80 on the progression of Mycobacterium tuberculosis infection in mice. Infection was monitored by physical (survival time and body weight) and bacteriological (viable counts in lungs) parameters. Compared with water, corn oil significantly improved both sets of parameters, whereas the other vehicles affected only physical parameters. PMID:22926571

  18. Asymmetric intermolecular Pauson-Khand reactions of unstrained olefins: the (o-dimethylamino)phenylsulfinyl group as an efficient chiral auxiliary.

    PubMed

    Rodríguez Rivero, Marta; De La Rosa, Juan Carlos; Carretero, Juan Carlos

    2003-12-10

    The first asymmetric version of intermolecular Pauson-Khand reactions of unstrained alkenes is described. Generally simple acyclic alkenes exhibit low reactivity and regioselectivity in intermolecular Pauson-Khand reactions; however, o-(dimethylamino)phenyl vinyl sulfoxide reacts under very mild conditions with a wide variety of terminal alkynes in a completely regioselective and highly stereoselective manner. The utility of the resulting 5-sulfinyl-2-cyclopentenones in asymmetric synthesis is illustrated by a very short enantioselective synthesis of the antibiotic (-)-pentenomycin I.

  19. Redox Pioneer: Professor Vadim N. Gladyshev.

    PubMed

    Hatfield, Dolph L

    2016-07-01

    Professor Vadim N. Gladyshev is recognized here as a Redox Pioneer, because he has published an article on antioxidant/redox biology that has been cited more than 1000 times and 29 articles that have been cited more than 100 times. Gladyshev is world renowned for his characterization of the human selenoproteome encoded by 25 genes, identification of the majority of known selenoprotein genes in the three domains of life, and discoveries related to thiol oxidoreductases and mechanisms of redox control. Gladyshev's first faculty position was in the Department of Biochemistry, the University of Nebraska. There, he was a Charles Bessey Professor and Director of the Redox Biology Center. He then moved to the Department of Medicine at Brigham and Women's Hospital, Harvard Medical School, where he is Professor of Medicine and Director of the Center for Redox Medicine. His discoveries in redox biology relate to selenoenzymes, such as methionine sulfoxide reductases and thioredoxin reductases, and various thiol oxidoreductases. He is responsible for the genome-wide identification of catalytic redox-active cysteines and for advancing our understanding of the general use of cysteines by proteins. In addition, Gladyshev has characterized hydrogen peroxide metabolism and signaling and regulation of protein function by methionine-R-sulfoxidation. He has also made important contributions in the areas of aging and lifespan control and pioneered applications of comparative genomics in redox biology, selenium biology, and aging. Gladyshev's discoveries have had a profound impact on redox biology and the role of redox control in health and disease. He is a true Redox Pioneer. Antioxid. Redox Signal. 25, 1-9.

  20. Dysfunction of methionine sulfoxide reductases to repair damaged proteins by nickel nanoparticles.

    PubMed

    Feng, Po-Hao; Huang, Ya-Li; Chuang, Kai-Jen; Chen, Kuan-Yuan; Lee, Kang-Yun; Ho, Shu-Chuan; Bien, Mauo-Ying; Yang, You-Lan; Chuang, Hsiao-Chi

    2015-07-05

    Protein oxidation is considered to be one of the main causes of cell death, and methionine is one of the primary targets of reactive oxygen species (ROS). However, the mechanisms by which nickel nanoparticles (NiNPs) cause oxidative damage to proteins remain unclear. The objective of this study is to investigate the effects of NiNPs on the methionine sulfoxide reductases (MSR) protein repairing system. Two physically similar nickel-based nanoparticles, NiNPs and carbon-coated NiNP (C-NiNPs; control particles), were exposed to human epithelial A549 cells. Cell viability, benzo(a)pyrene diolepoxide (BPDE) protein adducts, methionine oxidation, MSRA and B3, microtubule-associated protein 1A/1B-light chain 3 (LC3) and extracellular signal-regulated kinase (ERK) phosphorylation were investigated. Exposure to NiNPs led to a dose-dependent reduction in cell viability and increased BPDE protein adduct production and methionine oxidation. The methionine repairing enzymatic MSRA and MSRB3 production were suppressed in response to NiNP exposure, suggesting the oxidation of methionine to MetO by NiNP was not reversed back to methionine. Additionally, LC3, an autophagy marker, was down-regulated by NiNPs. Both NiNP and C-NiNP caused ERK phosphorylation. LC3 was positively correlated with MSRA (r = 0.929, p < 0.05) and MSRB3 (r = 0.893, p < 0.05). MSR was made aberrant by NiNP, which could lead to the dysfunction of autophagy and ERK phosphorylation. The toxicological consequences may be dependent on the chemical characteristics of the nanoparticles. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. [Local application of dimethyl sulfoxide at different concentrations to the prevention of radiation-induced damages in patient with cancer of the cervix uteri].

    PubMed

    Neklasova, N Iu; Sharinov, G M; Vinokurov, V L; Skrynditsa, G M

    2006-01-01

    to study the efficacy of dimethyl sulfoxide ((DMSO) at different concentrations in preventing radiation-induced rectal and urinary bladder damages in patients with cervix uteri cancer (CUC). combined radiation therapy (RT) was performed in 807 patients with CUC. In the control group (n = 221), RT was made, without applying radio-modified agents. An hour prior to a session of intracavitary irradiation, 10% DMSO solution was instilled into the rectum and urinary bladder in 113 patients and applications of metronidazole (MN) dissolved in 100% DSMO were made in 473 patients. Teleradiotherapy was performed, by using megavolt irradiation sources in the conventional fractionation mode; the total focal dose (TFD) was increased up to 40-46 Gy. Intracavitary irradiation was carried out on "AGAT-V" and "AGAT-VU" devices once weekly; the single focal dose in point A was 7 Gy; TFD was 49-56 Gy. 10% DMSO instillations reduced the incidence of late radiation-induced damages to the rectum and urinary bladder. In the control group, the incidence of these conditions was 19.0 and 9.5%, respectively; with the use of 10% DMSO, that was 8.8 and 7.1%. Applications of MN dissolved in 100% DMSO reduced the incidence of late radiation-induced damages to 1.7%. Local application of DMSO is a method for preventing late radiation-induced damages to the rectum and urinary bladder in patients with CUC. When the concentration of DMSO is increased, its preventive effect increases.

  2. Stability of extemporaneously prepared preservative-free prochlorperazine nasal spray.

    PubMed

    Yellepeddi, Venkata K

    2018-01-01

    The stability of an extemporaneously prepared preservative-free prochlorperazine 5-mg/mL nasal spray was evaluated. The preservative-free prochlorperazine nasal spray was prepared by adding 250 mg of prochlorperazine edisylate to 50 mL of citrate buffer in a low-density polyethylene nasal spray bottle. A stability-indicating high-performance liquid chromatography (HPLC) method was developed and validated using the major degradant prochlorperazine sulfoxide and by performing forced-degradation studies. For chemical stability studies, 3 100-μL samples of the preservative-free prochlorperazine from 5 nasal spray bottles stored at room temperature were collected at days 0, 20, 30, 45, and 60 and were assayed in triplicate using the stability-indicating HPLC method. Microbiological testing involved antimicrobial effectiveness testing based on United States Pharmacopeia ( USP ) chapter 51 and quantitative microbiological enumeration of aerobic bacteria, yeasts, and mold based on USP chapter 61. Samples for microbiological testing were collected at days 0, 30, and 60. The stability-indicating HPLC method clearly identified the degradation product prochlorperazine sulfoxide without interference from prochlorperazine. All tested solutions retained over 90% of the initial prochlorperazine concentration for the 60-day study period. There were no detectable changes in color, pH, and viscosity in any sample. There was no growth of bacteria, yeast, and mold for 60 days in all samples tested. An extemporaneously prepared preservative-free nasal spray solution of prochlorperazine edisylate 5 mg/mL was physically, chemically, and microbiologically stable for 60 days when stored at room temperature in low-density polyethylene bottles. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  3. Controllable Synthesis of Lindqvist Alkoxopolyoxovanadate Clusters as Heterogeneous Catalysts for Sulfoxidation of Sulfides.

    PubMed

    Li, Ji-Kun; Dong, Jing; Wei, Chuan-Ping; Yang, Song; Chi, Ying-Nan; Xu, Yan-Qing; Hu, Chang-Wen

    2017-05-15

    Six alkoxohexavanadate-based Cu- or Co-POVs [Cu(dpa)(acac)(H 2 O)] 2 [V 6 O 13 (OMe) 6 ] (1), [Cu(phen)(acac)(MeOH)] 2 [V 6 O 13 (OMe) 6 ] (2), [Co(dpa)(acac) 2 ] 2 [V 6 O 13 (OMe) 6 ]·2MeOH (3), [Co(phen)(acac) 2 ] 2 [V 6 O 13 (OMe) 6 ] (4), [Cu(dpa)(acac)] 2 [V IV 2 V V 4 O 12 (OMe) 7 ] (5), and [Cu(dpa)(acac)(MeOH)] 2 [V IV 2 V V 4 O 11 (OMe) 8 ] (6) (POV = polyoxovanadate; dpa = 2,2'-dipyridine amine; phen = 1,10-phenanthroline; acac = acetylacetone anion) have been synthesized by controlling the reaction conditions and characterized by single-crystal X-ray diffraction and powder X-ray diffraction analyses, FT-IR spectroscopy, element analyses, and X-ray photoelectron spectroscopy. In compounds 1-4 and 6, Cu or Co complexes and alkoxohexavanadate anions are assembled through electrostatic interactions. Differently, in compound 5, seven-methoxo-substituted Lindqvist-type [V 6 O 12 (OMe) 7 ] 2- are bridged to Cu complex via terminal O atoms by coordination bonds. All compounds 1-6 exhibit excellent heterogeneous catalytic performance in oxidative desulfurization and CEES ((2-chloroethyl) ethyl sulfide, a sulfur mustard simulant) abatement with H 2 O 2 as oxidant. Among them, the catalytic activity of 6 [conv. of DBT (dibenzothiophene) up to 100% in 6 h; conv. of CEES reached 100% and selectivity of CEESO ((2-chloroethyl) ethyl sulfoxide) up to 85% after 4 h] outperforms others and can be reused without losing its activity.

  4. Redox Pioneer: Professor Vadim N. Gladyshev

    PubMed Central

    2016-01-01

    Abstract Professor Vadim N. Gladyshev is recognized here as a Redox Pioneer, because he has published an article on antioxidant/redox biology that has been cited more than 1000 times and 29 articles that have been cited more than 100 times. Gladyshev is world renowned for his characterization of the human selenoproteome encoded by 25 genes, identification of the majority of known selenoprotein genes in the three domains of life, and discoveries related to thiol oxidoreductases and mechanisms of redox control. Gladyshev's first faculty position was in the Department of Biochemistry, the University of Nebraska. There, he was a Charles Bessey Professor and Director of the Redox Biology Center. He then moved to the Department of Medicine at Brigham and Women's Hospital, Harvard Medical School, where he is Professor of Medicine and Director of the Center for Redox Medicine. His discoveries in redox biology relate to selenoenzymes, such as methionine sulfoxide reductases and thioredoxin reductases, and various thiol oxidoreductases. He is responsible for the genome-wide identification of catalytic redox-active cysteines and for advancing our understanding of the general use of cysteines by proteins. In addition, Gladyshev has characterized hydrogen peroxide metabolism and signaling and regulation of protein function by methionine-R-sulfoxidation. He has also made important contributions in the areas of aging and lifespan control and pioneered applications of comparative genomics in redox biology, selenium biology, and aging. Gladyshev's discoveries have had a profound impact on redox biology and the role of redox control in health and disease. He is a true Redox Pioneer. Antioxid. Redox Signal. 25, 1–9. PMID:26984707

  5. Investigations of structure and metabolism within Shewanella oneidensis MR-1 biofilms.

    PubMed

    McLean, Jeffrey S; Majors, Paul D; Reardon, Catherine L; Bilskis, Christina L; Reed, Samantha B; Romine, Margaret F; Fredrickson, James K

    2008-07-01

    Biofilms possess spatially and temporally varying metabolite concentration profiles at the macroscopic and microscopic scales. This results in varying growth environments that may ultimately drive species diversity, determine biofilm structure and the spatial distribution of the community members. Using non-invasive nuclear magnetic resonance (NMR) microscopic imaging/spectroscopy and confocal imaging, we investigated the kinetics and stratification of anaerobic metabolism within live biofilms of the dissimilatory metal-reducing bacterium Shewanella oneidensis strain MR-1. Biofilms were pre-grown using a defined minimal medium in a constant-depth film bioreactor and subsequently transferred to an in-magnet sample chamber under laminar flow for NMR measurements. Biofilms generated in this manner were subjected to changing substrate/electron acceptor combinations (fumarate, dimethyl sulfoxide, and nitrate) and the metabolic responses measured. Localized NMR spectroscopy was used to non-invasively measure hydrogen-containing metabolites at high temporal resolution (4.5 min) under O(2)-limited conditions. Reduction of electron acceptor under anaerobic conditions was immediately observed upon switching feed solutions indicating that no gene induction (transcriptional response) was needed for MR-1 to switch metabolism from O(2) to fumarate, dimethyl sulfoxide or nitrate. In parallel experiments, confocal microscopy was used with constitutively expressed fluorescent reporters to independently investigate changes in population response to the availability of electron acceptor and to probe metabolic competition under O(2)-limited conditions. A clearer understanding of the metabolic diversity and plasticity of the biofilm mode of growth as well as how these factors relate to environmental fitness is made possible through the use of non-invasive and non-destructive techniques such as described herein.

  6. Inhibition of differentiation and function of osteoclasts by dimethyl sulfoxide (DMSO).

    PubMed

    Yang, Chunxi; Madhu, Vedavathi; Thomas, Candace; Yang, Xinlin; Du, Xeujun; Dighe, Abhijit S; Cui, Quanjun

    2015-12-01

    Dimethyl sulfoxide (DMSO) is an FDA-approved organosulfur solvent that is reported to have therapeutic value in osteoarthritis and osteopenia. DMSO is used as a cryoprotectant for the cryopreservation of bone grafts and mesenchymal stem cells which are later used for bone repair. It is also used as a solvent in the preparation of various scaffolds used for bone tissue engineering purposes. DMSO has been reported to inhibit osteoclast formation in vitro but the mechanism involved has remained elusive. We investigated the effect of DMSO on osteoclast differentiation and function using a conventional model system of RAW 264.7 cells. The differentiation of RAW 264.7 cells was induced by adding 50 ng/ml RANKL and the effect of DMSO (0.01 and 1% v/v) on RANKL-induced osteoclastogenesis was investigated. Addition of 1% DMSO significantly inhibited RANKL-induced formation of TRAP+, multinucleated, mature osteoclasts and osteoclast late-stage precursors (c-Kit(-) c-Fms(+) Mac-1(+) RANK(+)). While DMSO did not inhibit proliferation per se, it did inhibit the effect of RANKL on proliferation of RAW 264.7 cells. Key genes related to osteoclast function (TRAP, Integrin αVβ3, Cathepsin K and MMP9) were significantly down-regulated by DMSO. RANKL-induced expression of RANK gene was significantly reduced in the presence of DMSO. Our data, and reports from other investigators, that DMSO enhances osteoblastic differentiation of mesenchymal stem cells and also prevents bone loss in ovarietcomized rats, suggest that DMSO has tremendous potential in the treatment of osteoporosis and bone diseases arising from uncontrolled activities of the osteoclasts.

  7. Combination of retinoic acid, dimethyl sulfoxide and 5-azacytidine promotes cardiac differentiation of human fetal liver-derived mesenchymal stem cells.

    PubMed

    Deng, Fuxue; Lei, Han; Hu, Yunfeng; He, Linjing; Fu, Hang; Feng, Rui; Feng, Panpan; Huang, Wei; Wang, Xi; Chang, Jing

    2016-03-01

    There are controversial reports about cardiac differentiation potential of mesenchymal stem cells (MSCs), and there is still no well-defined protocol for the induction of cardiac differentiation. The effects of retinoic acid (RA) and dimethyl sulfoxide (DMSO) on the proliferation and differentiation of human fetal liver-derived MSCs (HFMSCs) as well as the pluripotent state induced by 5-azacytidine (5-aza) in vitro were investigated. MSCs were isolated from fetal livers and cultured in accordance with previous reports. Cells were plated and were treated for 24 h by the combination of 5-aza, RA and DMSO in different doses. Different culture conditions were tested in our study, including temperature, oxygen content and medium. Three weeks later, cells were harvested for the certification of cardiac differentiation as well as the pluripotency, which indicated by cardiac markers and Oct4. It was found that the cardiac differentiation was only induced when HFMSCs were treated in the following conditions: in high-dose combination (5-aza 50 μM + RA 10(-1) μM + DMSO 1 %) in cardiac differentiation medium at 37 °C and 20 % O2. The results of immunohistochemistry and quantitative RT-PCR showed that about 40 % of the cells positively expressed Nkx2.5, desmin and cardiac troponin I, as well as Oct4. No beating cells were observed during the period. The combined treatment with RA, DMSO and 5-aza in high-dose could promote HFMSCs to differentiate into cardiomyocyte-like cells and possibly through the change of their pluripotent state.

  8. Morphological study of rat skin flaps treated with subcutaneous dimethyl sulfoxide combined with hyperbaric oxygen therapy.

    PubMed

    Almeida, K G; Oliveira, R J; Dourado, D M; Filho, E A; Fernandes, W S; Souza, A S; Araújo, F H S

    2015-12-28

    This study investigated the effects of hyperbaric oxygen therapy (HBOT) and dimethyl sulfoxide (DMSO) in tissue necrosis, genotoxicity, and cell apoptosis. Random skin flaps were made in 50 male Wistar rats, randomly divided into the following groups. Control group (CT), wherein a rectangular skin section (2 x 8 cm) was dissected from the dorsal muscle layer, preserving the cranial vessels, lifted, and refixed to the bed; distilled water (DW) group, in which DW was injected into the distal half of the skin flap; DMSO group, wherein 5% DMSO was injected; HBOT group, comprising animals treated only with HBOT; and HBOT + DMSO group, comprising animals treated with 100% oxygen at 2.5 atmospheres absolute for 1 h, 2 h after the experiment, daily for 10 consecutive days. A skinflap specimen investigated by microscopy. The percentage of necrosis was not significantly different between groups. The cell viability index was significantly different between groups (P < 0.001): 87.40% (CT), 86.20% (DW), 84.60% (DMSO), 86.60% (DMSO + HBO), and 91% (HBO) (P < 0.001), as was the cell apoptosis index of 12.60 (CT), 12.00 (DW), 15.40 (DMSO), 9.00 (HBO), and 12.00 (DMSO + HBO) (P < 0.001). The genotoxicity test revealed the percentage of cells with DNA damage to be 22.80 (CT), 22.60 (DW), 26.00 (DMSO), 8.80 (DMSO + HBO), and 7.20 (HBO) (P < 0.001). Although the necrotic area was not different between groups, there was a significant reduction in the cellular DNA damage and apoptosis index in the HBOT group.

  9. Dimethyl sulfoxide attenuates nitric oxide generation via modulation of cationic amino acid transporter-1 in human umbilical vein endothelial cells.

    PubMed

    Bentur, Ohad S; Chernichovski, Tamara; Ingbir, Merav; Weinstein, Talia; Schwartz, Idit F

    2016-10-01

    Dimethyl sulfoxide (DMSO) is a solvent that is commonly used in medicine. Conflicting data exist as to its effects on endothelial function. Endothelial cell dysfunction (ECD) is characterized by decreased endothelial nitric oxide synthase (eNOS) activity. Cationic amino acid transporter-1 (CAT-1), the specific arginine transporter for eNOS, has been shown to modulate eNOS activity. We hypothesize that DMSO inhibits eNOS activity through modulation of its selective arginine supplier CAT-1. We studied the effect of DMSO on arginine transport, NO2/NO3 generation as an index of NO production, as well as CAT-1 and Protein Kinase C alpha (PKC-α) (CAT-1 inhibitor) protein expression in human umbilical vein endothelial cell cultures (HUVECs). DMSO 2.5% and 3.5% (v/v) significantly attenuated arginine transport, a phenomenon which was prevented by co-incubation with l-arginine (1 mM). The aforementioned findings were accompanied by a decrease in NO2/NO3 generation. DMSO significantly increased the abundance of phosphorylated CAT-1 (the inactive form) and phosphorylated PKC-α protein, an effect that was attenuated by l-arginine. GO 6976 (PKC-α antagonist) prevented the decrease in arginine transport caused by DMSO. DMSO also induced profound transient morphological changes in HUVECs' structure but these were not related to its effect on arginine transport. In conclusion, DMSO inhibits NO generation by endothelial cells through modulation of CAT-1 activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Bis(3,5-dimeth­oxy-2-{[2-(pyridin-2-yl)ethyl­imino-κN]­meth­yl}phenolato-κO)bis­(dimethyl sulfoxide)­manganese(III) perchlorate methanol 0.774-solvate

    PubMed Central

    Egekenze, Rita; Gultneh, Yilma

    2017-01-01

    The title compound, [Mn(C16H17N2O3)2(C2H6OS)2]ClO4·0.774CH3OH, comprises a central octa­hedrally coordinated MnIII cation, with two bidentate Schiff base ligands occupying the equatorial positions and two dimethyl sulfoxide (DMSO) ligands occupying the axial positions. There are two independant cations in the asymmetric unit, with the MnIII atoms of both cations being positioned on crystallographic centers of inversion. The perchlorate anion is disordered over two equivalent conformations, with occupancies of 0.744 (3) and 0.226 (3). In addition, there is a methanol solvent mol­ecule in the crystal lattice that is too close to the minor component of the perchlorate anion to be present simultaneously and thus it was refined to have the same occupancy as the major component of this anion. There is a Jahn–Teller distortion which results in Mn—ODMSO axial bond lengths of 2.2365 (12) and 2.2368 (12) Å in the two cations. In the crystal, inter­molecular π–π stacking between the non-coordinating pyridine rings of each cation is observed. This π–π stacking, along with extensive O—H⋯O hydrogen bonding and C—H⋯O inter­actions, link the components into a complex three-dimensional array. PMID:29250362

  11. Water-Soluble Ruthenium(III)-Dimethyl Sulfoxide Complexes: Chemical Behaviour and Pharmaceutical Properties

    PubMed Central

    Mestroni, G.; Alessio, E.; Sava, G.; Pacor, S.; Coluccia, M.; Boccarelli, A.

    1994-01-01

    In this paper we report a review of the results obtained in the last few years by our group in the development of ruthenium(III) complexes characterized by the presence of sulfoxide ligands and endowed with antitumor properties. In particular, we will focus on ruthenates of general formula Na[trans-RuCl4(R1R2SO)(L)], where R1R2SO = dimethylsulfoxide (DMSO) or tetramethylenesulfoxide (TMSO) and L = nitrogen donor ligand. The chemical behavior of these complexes has been studied by means of spectroscopic techniques both in slightly acidic distilled water and in phosphate buffered solution at physiological pH. The influence of biological reductants on the chemical behavior is also described. The antitumor properties have been investigated on a number of experimental tumors. Out of the effects observed, notheworthy appears the capability of the tested ruthenates to control the metastatic dissemination of solid metastasizing tumors. The analysis of the antimetastatic action, made in particular on the MCa mammary carcinoma of CBA mouse, has demonstrated a therapeutic value for these complexes which are able to significantly prolong the survival time of the treated animals. The antimetastatic effect is not attributable to a specific cytotoxicity for metastatic tumor cells although in vitro experiments on pBR322 double stranded DNA has shown that the test ruthenates bind to the macromolecule, causing breaks corresponding to almost all bases, except than thymine, and are able to cause interstrand bonds, depending on the nature of the complex being tested, some of which results active as cisplatin itself. PMID:18476216

  12. Permeation of dimethyl sulfoxide into articular cartilage at subzero temperatures*

    PubMed Central

    Zhang, Shao-zhi; Yu, Xiao-yi; Chen, Guang-ming

    2012-01-01

    Osteochondral allografting has been proved to be a useful method to treat diseased or damaged areas of joint surfaces. Operational long-term stocks of grafts which supply a buffer between procurement and utilization would contribute to the commercialization or industrialization of this technology. Vitrification has been thought to be a promising method for successful preservation of articular cartilage (AC), but high concentration cryoprotectants (CPAs) are used which may cause high cellular toxicity. An effective way to reduce CPA toxicity is to increase CPA concentration gradually while the temperature is lowered. Understanding the mechanism of CPA permeation at subzero temperatures is important for designing the cryopreservation protocol. In this research, the permeation of dimethyl sulfoxide (Me2SO) in ovine AC at subzero temperatures was studied experimentally. Pretreated AC discs were exposed in Me2SO solutions for different time (0, 5, 15, 30, 50, 80, and 120 min) at three temperature levels (−10, −20, and −30 °C). The Me2SO concentration within the tissue was determined by ultraviolet (UV) spectrophotometry. The diffusion coefficients were estimated to be 0.85×10−6, 0.48×10−6, and 0.27×10−6 cm2/s at −10, −20, and −30 °C, respectively, and the corresponding activation energy was 29.23 kJ/mol. Numerical simulation was performed to compare two Me2SO addition protocols, and the results demonstrated that the total loading duration could be effectively reduced with the knowledge of permeation kinetics. PMID:22374614

  13. Second-harmonic generation microscopy used to evaluate the effect of the dimethyl sulfoxide in the cryopreservation process in collagen fibers of differentiated chondrocytes

    NASA Astrophysics Data System (ADS)

    Andreoli-Risso, M. F.; Duarte, A. S. S.; Ribeiro, T. B.; Bordeaux-Rego, P.; Luzo, A.; Baratti, M. O.; Adur, J.; de Thomaz, A. A.; Pelegati, V. B.; Carvalho, H. F.; Cesar, C. L.; Kharmadayan, P.; Costa, F. F.; Olalla-Saad, S. T.

    2012-03-01

    Cartilaginous lesions are a significant public health problem and the use of adult stem cells represents a promising therapy for this condition. Cryopreservation confers many advantages for practitioners engaged in cell-based therapies. However, conventional slow freezing has always been associated with damage and mortality due to intracellular ice formation, cryoprotectant toxicity, and dehydration. The aim of this work is to observe the effect of the usual Dimethyl Sulfoxide (DMSO) cryopreservation process on the architecture of the collagen fiber network of chondrogenic cells from mesenchymal stem cells by Second Harmonic Generation (SHG) microscopy. To perform this study we used Mesenchymal Stem Cells (MSC) derived from adipose tissue which presents the capacity to differentiate into other lineages such as osteogenic, adipogenic and chondrogenic lineages. Mesenchymal stem cells obtained after liposuction were isolated digested by collagenase type I and characterization was carried out by differentiation of mesodermic lineages, and flow cytometry using specific markers. The isolated MSCs were cryopreserved by the DMSO technique and the chondrogenic differentiation was carried out using the micromass technique. We then compared the cryopreserved vs non-cryopreserved collagen fibers which are naturally formed during the differentiation process. We observed that noncryopreserved MSCs presented a directional trend in the collagen fibers formed which was absent in the cryopreserved MSCs. We confirmed this trend quantitatively by the aspect ratio obtained by Fast Fourier Transform which was 0.76 for cryopreserved and 0.52 for non-cryopreserved MSCs, a statistical significant difference.

  14. Genetic analysis of the dsz promoter and associated regulatory regions of Rhodococcus erythropolis IGTS8.

    PubMed Central

    Li, M Z; Squires, C H; Monticello, D J; Childs, J D

    1996-01-01

    The dsz gene cluster of Rhodococcus erythropolis IGTS8 comprises three genes, dszA, dszB, and dszC, whose products are involved in the conversion of dibenzothiophene (DBT) to 2-hydroxybiphenyl and sulfite. This organism can use DBT as the sole sulfur source but not as a carbon source. Dsz activity is repressed by methionine, cysteine, Casamino Acids, and sulfate but not by DBT or dimethyl sulfoxide. We cloned 385 bp of the DNA immediately 5' to dszA in front of the reporter gene lacZ of Escherichia coli. We showed that this region contains a Rhodococcus promoter and at least three dsz regulatory regions. After hydrazine mutagenesis of this DNA, colonies that were able to express beta-galactosidase in the presence of Casamino Acids were isolated. Sequencing of these mutants revealed two possible regulatory regions. One is at -263 to -244, and the other is at -93 to -38, where -1 is the base preceding the A of the initiation codon ATG of dszA. An S1 nuclease protection assay showed that the start of the dsz promoter is the G at -46 and that transcription is repressed by sulfate and cysteine but not by dimethyl sulfoxide. The promoter encompasses a region of potential diad symmetry that may contain an operator. Immediately upstream of the promoter is a protein-binding domain between -146 and -121. Deletion of this region did not affect repression, but promoter activity appeared to be reduced by threefold. Thus, it could be an activator binding site or an enhancer region. PMID:8932295

  15. Stereoselective pharmacokinetics of moguisteine metabolites in healthy subjects.

    PubMed

    Bernareggi, A; Crema, A; Carlesi, R M; Castoldi, D; Ratti, E; Renoldi, M I; Ratti, D; Ceserani, R; Tognella, S

    1995-01-01

    We studied the pharmacokinetics of moguisteine, a racemic non-narcotic peripheral antitussive drug, in 12 healthy male subjects after a single oral administration of 200 mg. The unchanged drug was absent in plasma and urine of all subjects. Moguisteine was immediately and completely hydrolyzed to its main active metabolite, the free carboxylic acid M1. Therefore, we evaluated the kinetic profiles of M1, of its enantiomers R(+)-M1 and S(-)-M1, and of M1 sulfoxide optical isomers M2/I and M2/II by conventional and stereospecific HPLC. Maximum plasma concentrations for M1 (2.83 mg/l), M2/I (0.26 mg/l) and M2/II (0.40 mg/l), were respectively reached at 1.3, 1.6 and 1.5 h after moguisteine administration. Plasma concentrations declined after the peak with mean apparent terminal half-lives of 0.65 h (M1), 0.88 h (M2/I) and 0.84 h (M2/II). Most of the administered dose was recovered in urine within 6 h from moguisteine treatment. The systemic and renal clearance values indicated high renal extraction ratio for all moguisteine metabolites, and particularly for M1 sulfoxide optical isomers. Plasma concentration-time profiles and urinary excretion patterns for M1 enantiomers R(+)-M1 and S(-)-M1 were quite similar. Thus, for later moguisteine pharmacokinetic evaluations the investigation of the plasma concentration-time curve and the urinary excretion of the sole racemic M1 through non-stereospecific analytical methods may suffice in most cases.

  16. Pharmacokinetics of combined treatment with praziquantel and albendazole in neurocysticercosis

    PubMed Central

    Garcia, Hector H; Lescano, Andres G; Lanchote, Vera L; Pretell, E Javier; Gonzales, Isidro; Bustos, Javier A; Takayanagui, Osvaldo M; Bonato, Pierina S; Horton, John; Saavedra, Herbert; Gonzalez, Armando E; Gilman, Robert H

    2011-01-01

    AIMS Neurocysticercosis is the most common cause of acquired epilepsy in the world. Antiparasitic treatment of viable brain cysts is of clinical benefit, but current antiparasitic regimes provide incomplete parasiticidal efficacy. Combined use of two antiparasitic drugs may improve clearance of brain parasites. Albendazole (ABZ) has been used together with praziquantel (PZQ) before for geohelminths, echinococcosis and cysticercosis, but their combined use is not yet formally recommended and only scarce, discrepant data exist on their pharmacokinetics when given together. We assessed the pharmacokinetics of their combined use for the treatment of neurocysticercosis. METHODS A randomized, double-blind, placebo-controlled phase II evaluation of the pharmacokinetics of ABZ and PZQ in 32 patients with neurocysticercosis was carried out. Patients received their usual concomitant medications including an antiepileptic drug, dexamethasone, and ranitidine. Randomization was stratified by antiepileptic drug (phenytoin or carbamazepine). Subjects had sequential blood samples taken after the first dose of antiparasitic drugs and again after 9 days of treatment, and were followed for 3 months after dosing. RESULTS Twenty-one men and 11 women, aged 16 to 55 (mean age 28) years were included. Albendazole sulfoxide concentrations were increased in the combination group compared with the ABZ alone group, both in patients taking phenytoin and patients taking carbamazepine. PZQ concentrations were also increased by the end of therapy. There were no significant side effects in this study group. CONCLUSIONS Combined ABZ + PZQ is associated with increased albendazole sulfoxide plasma concentrations. These increased concentrations could independently contribute to increased cysticidal efficacy by themselves or in addition to a possible synergistic effect. PMID:21332573

  17. Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons

    PubMed Central

    Henry, Camille; Agrebi, Rym; Vergnes, Alexandra; Oheix, Emmanuel; Bos, Julia; Leverrier, Pauline; Espinosa, Leon; Szewczyk, Joanna; Vertommen, Didier; Iranzo, Olga; Collet, Jean-François; Barras, Frédéric

    2015-01-01

    The reactive species of oxygen (ROS) and chlorine (RCS) damage cellular components, potentially leading to cell death. In proteins, the sulfur-containing amino acid methionine (Met) is converted to methionine sulfoxide (Met-O), which can cause a loss of biological activity. To rescue proteins with Met-O residues, living cells express methionine sulfoxide reductases (Msrs) in most subcellular compartments, including the cytosol, mitochondria and chloroplasts 1-3. Here, we report the identification of an enzymatic system, MsrPQ, repairing Met-O containing proteins in the bacterial cell envelope, a compartment particularly exposed to the ROS and RCS generated by the host defense mechanisms. MsrP, a molybdo-enzyme, and MsrQ, a heme-binding membrane protein, are widely conserved throughout Gram-negative bacteria, including major human pathogens. MsrPQ synthesis is induced by hypochlorous acid (HOCl), a powerful antimicrobial released by neutrophils. Consistently, MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from Met oxidation, including the primary periplasmic chaperone SurA. For this activity, MsrPQ uses electrons from the respiratory chain, which represents a novel mechanism to import reducing equivalents into the bacterial cell envelope. A remarkable feature of MsrPQ is its capacity to reduce both R- and S- diastereoisomers of Met-O, making this oxidoreductase complex functionally different from previously identified Msrs. The discovery that a large class of bacteria contain a single, non-stereospecific enzymatic complex fully protecting Met residues from oxidation should prompt search for similar systems in eukaryotic subcellular oxidizing compartments, including the endoplasmic reticulum (ER). PMID:26641313

  18. Freezing tolerance of sea urchin embryonic cells: Differentiation commitment and cytoskeletal disturbances in culture.

    PubMed

    Odintsova, Nelly A; Ageenko, Natalya V; Kipryushina, Yulia O; Maiorova, Mariia A; Boroda, Andrey V

    2015-08-01

    This study focuses on the freezing tolerance of sea urchin embryonic cells. To significantly reduce the loss of physiological activity of these cells that occurs after cryopreservation and to study the effects of ultra-low temperatures on sea urchin embryonic cells, we tested the ability of the cells to differentiate into spiculogenic or pigment directions in culture, including an evaluation of the expression of some genes involved in pigment differentiation. A morphological analysis of cytoskeletal disturbances after freezing in a combination of penetrating (dimethyl sulfoxide and ethylene glycol) and non-penetrating (trehalose and polyvinylpyrrolidone) cryoprotectants revealed that the distribution pattern of filamentous actin and tubulin was similar to that in the control cultures. In contrast, very rare spreading cells and a small number of cells with filamentous actin and tubulin were detected after freezing in the presence of only non-penetrating cryoprotectants. The largest number of pigment cells was found in cultures frozen with trehalose or trehalose and dimethyl sulfoxide. The ability to induce the spicule formation was lost in the cells frozen only with non-penetrating cryoprotectants, while it was maximal in cultures frozen in a cryoprotective mixture containing both non-penetrating and penetrating cryoprotectants (particularly, when ethylene glycol was present). Using different markers for cell state assessment, an effective cryopreservation protocol for sea urchin cells was developed: three-step freezing with a low cooling rate (1-2°C/min) and a combination of non-penetrating and penetrating cryoprotectants made it possible to obtain a high level of cell viability (up to 65-80%). Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Aflatoxin and dimethyl sulfoxide influence on radiomanganese distribution and retention in neonate mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, J.S.; Llewellyn, G.C.

    The LD50 (7 d) for aflatoxin B/sub 1/ (AFB/sub 1/) in CD-1 neonate mice (3.1 g; 5 d of age) was determined to be 13.3 mg/kg. The vehicle was dimethyl sulfoxide (DMSO), given intraperitoneally, at 0.01 ml/animal (7 mg/kg). The solvent was nontoxic and caused no significant change in body weight in animals during an 11-d experimental period (17 d of age). Aflatoxin B/sub 1/ at 5.0 mg/kg and above caused reduced body weight gain. DMSO animals had a mean loss of more than 17% of the radiolabel over a 9-d period. Aflatoxin treatments reversed the DMSO loss of /supmore » 54/Mn in a concentration-related fashion, and generally, AFB/sub 1/ caused a conservation of the radioisotope. The radiolabel was redistributed into the following organs/tissues: liver > brain > bone > muscle = lungs > blood. Aflatoxin-treated animals showed a twofold increase of radiolabel in the liver as compared to controls. The DMSO itself failed to influence /sup 54/Mn influx into the liver. In general, control neonate mice, by 17 d of age, were retaining and redistributing the /sup 54/MnCl/sub 2/ and had not reached the time for sudden emergence of excretion common in rodents. DMSO was found not to be the most satisfactory solvent to use in the administration of aflatoxins, especially when manganese metabolism is being studied. Generally, both DMSO and AFB/sub 1/ influenced radiomanganese distribution, DMSO having a substantial influence. 27 references, 3 figures, 2 tables.« less

  20. Role of precursors on greening in crushed garlic (Allium sativum) bulbs, and its control with freeze-dried onion powder.

    PubMed

    Cho, Jungeun; Lee, Eun Jin; Yoo, Kil Sun; Lee, Seung Koo

    2012-01-30

    Lachrymatory factor (LF) synthase in onion bulbs reacts with S-1-propenyl-L-cysteine sulfoxide (1-PeCSO), a key compound in garlic greening. In this study, freeze-dried onion powder containing LF synthase was used in treatments to control garlic greening. Prior to the use of freeze-dried onion powder to treat greening garlic bulbs, model reactions were conducted to confirm the reactivity of 1-PeCSO in onion bulbs to garlic greening. While pink pigments were generated from 1-PeCSO, green pigments were produced from the combination of 1-PeCSO and S-2-propenyl-L-cysteine sulfoxide (2-PeCSO). However, pigments were formed in the systems containing 1-PeCSO, amino acid and alliinase. Even non-greening garlic bulbs stored at 20 °C turned green with the reaction of 200 g L(-1) 1-PeCSO; therefore 1-PeCSO isolated from onion bulbs had the same role as 1-PeCSO in garlic bulbs in terms of greening. Onion bulbs turned green after the addition of 600 g L(-1) 2-PeCSO. The addition of freeze-dried onion powder inhibited garlic greening, and treatment with 15 g kg(-1) onion powder gave the best storage stability of crushed garlic bulbs. The addition of freeze-dried onion powder inhibited the greening in crushed garlic bulbs, and treatment with 15 g kg(-1) onion powder gave the best storage stability of crushed garlic bulbs. Copyright © 2011 Society of Chemical Industry.

  1. Foetal and adult human CYP3A isoforms in the bioactivation of organophosphorothionate insecticides.

    PubMed

    Buratti, Franca M; Leoni, Claudia; Testai, Emanuela

    2006-12-15

    In humans organophosphorothionate pesticides (OPT) prenatal exposure has been demonstrated. Since OPT-induced neurodevelopmental effects may be due to in situ bioactivation by foetal enzymes, the catalytic activity of the foetal CYP3A7 toward chlorpyrifos (CPF), parathion (PAR), malathion (MAL) and fenthion (FEN) has been assessed by using recombinant enzymes. A comparison with the adult isoforms CYP3A4 and CYP3A5 has been also carried out. CYP3A7 was able to produce significant levels of oxon or sulfoxide from the four OPTs in the range of tested concentrations (0.05-200 microM). When the efficiencies of CYP3A isoforms were compared, the ranking, expressed as CLi values, were: CPF=3A4>3A5>3A7; PAR=3A4>3A7>3A5; MAL=3A4>3A7>3A5; FEN (sulfoxide formation)=3A4>3A5>3A7. The CYP3A5 efficiency appeared to be more dependent on the single insecticide than its related isozyme CYP3A4. Our results indicate that the levels of toxic metabolite formed in situ by CYP3A7 from CPF, MAL and PAR but not from FEN have the chance to inhibit acetylcholinesterase, following prenatal exposure to OPTs. However, due to the smaller weight of foetal liver, the contribution to total OPT biotransformation is relatively low. On the other hand, our results clearly indicate that at low CPF concentrations, the formation of the non-toxic metabolites is highly favoured in the foetus.

  2. Human variation and CYP enzyme contribution in benfuracarb metabolism in human in vitro hepatic models.

    PubMed

    Abass, Khaled; Reponen, Petri; Mattila, Sampo; Rautio, Arja; Pelkonen, Olavi

    2014-01-13

    Human responses to the toxicological effects of chemicals are often complicated by a substantial interindividual variability in toxicokinetics, of which metabolism is often the most important factor. Therefore, we investigated human variation and the contributions of human-CYP isoforms to in vitro metabolism of benfuracarb. The primary metabolic pathways were the initial sulfur oxidation to benfuracarb-sulfoxide and the nitrogen-sulfur bond cleavage to carbofuran (activation). The Km, Vmax, and CL(int) values of carbofuran production in ten individual hepatic samples varied 7.3-, 3.4-, and 5.4-fold, respectively. CYP2C9 and CYP2C19 catalyzed benfuracarb sulphur oxidation. Carbofuran formation, representing from 79% to 98% of the total metabolism, was catalyzed predominantly by CYP3A4. The calculated relative contribution of CYP3A4 to carbofuran formation was 93%, while it was 4.4% for CYP2C9. The major contribution of CYP3A4 in benfuracarb metabolism was further substantiated by showing a strong correlation with CYP3A4-selective markers midazolam-1'-hydroxylation and omeprazole-sulfoxidation (r=0.885 and 0.772, respectively). Carbofuran formation was highly inhibited by the CYP3A inhibitor ketoconazole. Moreover, CYP3A4 marker activities were relatively inhibited by benfuracarb. These results confirm that human CYP3A4 is the major enzyme involved in the in vitro activation of benfuracarb and that CYP3A4-catalyzed metabolism is the primary source of interindividual differences. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. New Photochrome Probe Allows Simultaneous pH and Microviscosity Sensing.

    PubMed

    Wu, Yuanyuan; Papper, Vladislav; Pokholenko, Oleksandr; Kharlanov, Vladimir; Zhou, Yubin; Steele, Terry W J; Marks, Robert S

    2015-07-01

    4-N,N'-dimethylamino-4'-N'-stilbenemaleamic acid (DASMA), a unique molecular photochrome probe that exhibits solubility and retains trans-cis photoisomerisation in a wide range of organic solvents and aqueous pH environments, was prepared, purified and chemically characterised. Absorption, fluorescence excitation and emission spectra and constant-illumination fluorescence decay were measured in acetonitrile, dimethyl sulfoxide, ethanol, propylene carbonate, and aqueous glycerol mixtures. The pseudo-first-order fluorescence decay rates were found to be strongly dependent on the medium viscosity. In addition, the molecule exhibited the pH-dependent fluorescence and photoisomerisation kinetics.

  4. Theoretical and Experimental Studies of N,N-Dimethyl-N'-Picryl-4,4'-Stilbenediamine.

    PubMed

    Papper, Vladislav; Wu, Yuanyuan; Kharlanov, Vladimir; Sukharaharja, Ayrine; Steele, Terry W J; Marks, Robert S

    2018-01-01

    N,N-dimethyl-N'-picryl-4,4'-stilbenediamine (DMPSDA) was prepared, purified and crystallised in a form of black lustrous crystals, and its absorption and fluorescence spectra were recorded in cyclohexane, acetonitrile and dimethyl sulfoxide. Non-emissive intramolecular charge transfer state (ICT) was clearly observed in this molecule in all three solvents. Theoretical calculations demonstrating a betaine electronic structure of the trinitrophenyl group in the ground state of the molecule and a charge transfer nature of the long wavelength transition S 0  → S 1 supported the experimental observations of the ICT formation in the molecule.

  5. Highly Efficient and Selective Photooxidation of Sulfur Mustard Simulant by a Triazolobenzothiadiazole-Moiety-Functionalized Metal-Organic Framework in Air.

    PubMed

    Zhang, Wen-Qiang; Cheng, Ke; Zhang, He; Li, Qiu-Yan; Ma, Zheng; Wang, Zixuan; Sheng, Jialing; Li, Yinwei; Zhao, Xinsheng; Wang, Xiao-Jun

    2018-04-16

    A photoactive triazolobenzothiadiazole (TBTD)-conjugated terphenyldicarboxylate (TPDC) linker was introduced into a porous and robust UiO-68 isoreticular zirconium metal-organic framework (denoted as UiO-68-TBTD) by the de novo synthetic approach of mixed TPDC struts. Under blue-light-emitting-diode irradiation, UiO-68-TBTD can serve as a heterogeneous photocatalyst for the highly efficient and selective oxidation of a sulfur mustard simulant (2-chloroethyl ethyl sulfide) to the corresponding much less toxic sulfoxide product, with a half-life of only 3 min in the open air atmosphere.

  6. Contact angle studies on anodic porous alumina.

    PubMed

    Redón, Rocío; Vázquez-Olmos, A; Mata-Zamora, M E; Ordóñez-Medrano, A; Rivera-Torres, F; Saniger, J M

    2005-07-15

    The preparation of nanostructures using porous anodic aluminum oxide (AAO) as templates involves the introduction of dissolved materials into the pores of the membranes; one way to determine which materials are preferred to fill the pores involves the measurement of the contact angles (theta) of different solvents or test liquids on the AAOs. Thus, we present measurements of contact angles of nine solvents on four different AAO sheets by tensiometric and goniometric methods. From the solvents tested, we found dimethyl sulfoxide (DMSO) and N,N(')-dimethylformamide (DMF) to interact with the AAOs, the polarity of the solvents and the surfaces being the driving force.

  7. New data on the use of dimethyl sulfoxide in experimental and clinical dermatology. Survey of the literature (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datskovskii, B.M.; Zaks, A.S.; Mitryukovskii, L.S.

    1973-01-01

    A review of 241 reports published in recent years dealing with various aspects of the effect of dimethylsulphoxide (DMSO) on the skin is presented. Properties of DMSO such as penetrability, transporting capacity, and radioprotective effect are discussed as well as the prospects of the use of the drug in experimental oncology and allergology (in dermatological aspect). Materials on the effect of DMSO on the skin and the results of its use in clinical practice for treatment of sclerodermia, psoriasis, eczema, mycoses, and other diseases are presented. (auth)

  8. A low-threshold, high-efficiency microfluidic waveguide laser.

    PubMed

    Vezenov, Dmitri V; Mayers, Brian T; Conroy, Richard S; Whitesides, George M; Snee, Preston T; Chan, Yinthai; Nocera, Daniel G; Bawendi, Moungi G

    2005-06-29

    This communication describes a long (1 cm), laser-pumped, liquid core-liquid cladding (L2) waveguide laser. This device provides a simple, high intensity, tunable light source for microfludic applications. Using a core solution of 2 mM rhodamine 640 perchlorate, optically pumped by a frequency-doubled Nd:YAG laser, we found that the threshold for lasing was as low as 22 muJ (16-ns pulse length) and had a slope efficiency up to 20%. The output wavelength was tunable over a 20-nm range by changing the ratio of solvent components (dimethyl sulfoxide and methanol) in the liquid core.

  9. Brain Damage from Soman-Induced Seizures Is Greatly Exacerbated by Dimethyl sulfoxide (DMSO): Modest Neuroprotection by 2-Aminoethyl diphenylborinate (2- APB), a Transient Receptor Potential Channel Inhibitor and Inositol 1,4,5-triphosphate Receptor Antagonist

    DTIC Science & Technology

    2008-03-04

    whereby the depletion of calcium from intracellular stores (e.g., via IP3 or ryanodine receptor activation ) signals the opening of calcium permeable TRP...system and allowed at least 30 min to acclimate. Baseline ECoG activity and behavior were monitored for at least 15 min. Following baseline recordings...used because the former does not cross the blood-brain-barrier and will not diminish seizure activity or interfere with central effects of the

  10. Synthesis and anion recognition studies of novel bis (4-hydroxycoumarin) methane azo dyes

    NASA Astrophysics Data System (ADS)

    Panitsiri, Amorn; Tongkhan, Sukanya; Radchatawedchakoon, Widchaya; Sakee, Uthai

    2016-03-01

    Four new bis (4-hydroxycoumarin) methane azo dyes were synthesized by the condensation of 4-hydroxycoumarin with four different azo salicylaldehydes and their structures were characterized by FT-IR, 1H NMR, 13C NMR, HRMS. Anion binding ability in dimethyl sulfoxide (DMSO) solutions with tetrabutylammonium (TBA) salts (F-, Cl-, Br-, I-, AcO- and H2PO4-) was investigated by the naked eye, as well as UV-visible spectroscopy. The sensor shows selective recognition towards fluoride and acetate. The binding affinity of the sensors with fluoride and acetate was calculated using UV-visible spectroscopic technique.

  11. A theoretical NMR study of selected benzazoles: Comparison of GIPAW and GIAO-PCM (DMSO) calculations.

    PubMed

    Marín-Luna, Marta; Alkorta, Ibon; Elguero, José

    2018-03-01

    This paper compares the absolute shieldings obtained by gauge-including-projected-augmented-wave (GIPAW) to those obtained by gauge-invariant atomic orbital/Becke, 3-parameter, Lee-Yang-Parr (GIAO/B3LYP)/6-311++G(d,p)-polarizable continuum model (PCM, dimethyl sulfoxide) for nine benzazoles (benzimidazoles, indazoles, and benzotriazoles) recorded in the solid-state. Three nuclei were explored, 13 C, 15 N, and 19 F, and the gauge-including-projected-augmented-wave approach only proved better for 15 N MAS NMR. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Monitoring of drugs and metabolites in body fluids by capillary electrophoresis with XeHg lamp-based and laser-induced fluorescence detection.

    PubMed

    Caslavska, Jitka; Thormann, Wolfgang

    2004-06-01

    Commercial capillary electrophoresis instrumentation with XeHg lamp-based and laser induced fluorescence (LIF) detection is employed for analysis of urinary 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) and its major metabolites, urinary metabolites of acetylsalicylic acid, urinary benzoylecgonine in an immunoassay format, and albendazole sulfoxide and albendazole sulfone in plasma. For the examples studied, the data suggest that the lamp-based detector can be employed for the monitoring of pharmacological and toxicological relevant solute concentrations, and thus represents an attractive alternative to LIF detection.

  13. Relation between secondary doping and phase separation in PEDOT:PSS films

    NASA Astrophysics Data System (ADS)

    Donoval, Martin; Micjan, Michal; Novota, Miroslav; Nevrela, Juraj; Kovacova, Sona; Pavuk, Milan; Juhasz, Peter; Jagelka, Martin; Kovac, Jaroslav; Jakabovic, Jan; Cigan, Marek; Weis, Martin

    2017-02-01

    Conductive copolymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative to transparent conductive oxides because of its flexibility, transparency, and low-cost production. Four different secondary dopants, namely N,N-dimethylformamide, ethyleneglycol, sorbitol, and dimethyl sulfoxide, have been used to improve the conductivity. The relation between the structure changes and conductivity enhancement is studied in detail. Atomic force microscopy study of the thin film surface reveals the phase separation of PEDOT and PSS. We demonstrate that secondary doping induces the phase separation as well as the conductivity enhancement.

  14. Ivermectin toxicosis in a dog.

    PubMed

    Hopkins, K D; Marcella, K L; Strecker, A E

    1990-07-01

    A 5-year-old male Doberman Pinscher was examined after ingesting an equine paste dewormer containing approximately 115 mg of ivermectin. Clinical signs consisted of profound hypothermia, mild dehydration, dilated unresponsive pupils, localized muscle group fasciculations around the face and hind limbs, and no response to any external stimuli. Twelve days after parenteral administration of isotonic fluids and IV administration of dexamethasone and dimethyl sulfoxide, the dog returned to a clinically normal neurologic state. Ivermectin toxicosis has been reported frequently in Collies; however, other breeds may have idiosyncratic reactions to low doses. Patients with severe toxicosis should eventually recover completely if given appropriate intensive care.

  15. Resistance switching in polyvinylidene fluoride (PVDF) thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pramod, K.; Sahu, Binaya Kumar; Gangineni, R. B., E-mail: rameshg.phy@pondiuni.edu.in

    2015-06-24

    Polyvinylidene fluoride (PDVF), one of the best electrically active polymer material & an interesting candidate to address the electrical control of its functional properties like ferroelectricity, piezoelectricity, pyroelectricity etc. In the current work, with the help of spin coater and DC magnetron sputtering techniques, semi-crystallized PVDF thin films prominent in alpha phase is prepared in capacitor like structure and their electrical characterization is emphasized. In current-voltage (I-V) and resistance-voltage (R-V) measurements, clear nonlinearity and resistance switching has been observed for films prepared using 7 wt% 2-butanone and 7 wt% Dimethyl Sulfoxide (DMSO) solvents.

  16. X-ray diffraction and infrared spectroscopy of N,N-dimethylformamide and dimethyl sulfoxide solvatomorphs of betulonic acid.

    PubMed

    Boryczka, Stanisław; Jastrzebska, Maria; Bębenek, Ewa; Kusz, Joachim; Zubko, Maciej; Kadela, Monika; Michalik, Ewa

    2012-12-01

    X-ray diffraction and infrared spectroscopy measurements for the N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) solvatomorphs of betulonic acid (BA) were investigated. BA [3-oxolup-20(29)-en-28-oic acid, C(30)H(46)O(3)] exhibits a wide spectrum of biological activities and is considered to be a promising natural agent for the treatment of various cancer diseases. BA as a noncrystalline substance was obtained by oxidation of betulin. Crystal structures and the spectral data allowed analysis of hydrogen bonding (H-bonding), molecular conformation, and crystal packing differences in the solvatomorphs. Crystals of BA solvates were grown from the DMF-acetone (1:10, v/v) and DMSO-water (9:1, v/v) solutions. BA-DMF (1:1) solvate crystallizes in the monoclinic P2(1) space group, Z = 2. The unit cell parameters are as follows: cell lengths a = 13.2458(5) Å, b = 6.6501(2) Å, c = 17.9766(7) Å, and β = 110.513(4)°. BA-DMSO (1:1) solvate crystallizes in the orthorhombic P2(1)2(1)2(1) (Z = 4) space group with the following unit cell parameters: a = 6.6484(4) Å, b = 13.3279(8) Å, and c = 32.6821(19) Å. Conformational analysis of the six-membered rings, cyclopentane ring, and isopropenyl group showed differences in comparison with other betulin derivatives examined earlier. For both solvates, the intermolecular packing arrangement was governed mainly by H-bonds. The shortest H-bonds with D···A distances of 2.604 and 2.657 Å, and almost linear DH···A connection occurred between OH of carboxylic group of BA and oxygen atoms from O=C and O=S groups of DMF and DMSO, respectively. Copyright © 2012 Wiley Periodicals, Inc.

  17. A Two-component NADPH Oxidase (NOX)-like System in Bacteria Is Involved in the Electron Transfer Chain to the Methionine Sulfoxide Reductase MsrP*

    PubMed Central

    Juillan-Binard, Céline; Picciocchi, Antoine; Andrieu, Jean-Pierre; Petit-Hartlein, Isabelle; Caux-Thang, Christelle; Vivès, Corinne; Nivière, Vincent

    2017-01-01

    MsrPQ is a newly identified methionine sulfoxide reductase system found in bacteria, which appears to be specifically involved in the repair of periplasmic proteins oxidized by hypochlorous acid. It involves two proteins: a periplasmic one, MsrP, previously named YedY, carrying out the Msr activity, and MsrQ, an integral b-type heme membrane-spanning protein, which acts as the specific electron donor to MsrP. MsrQ, previously named YedZ, was mainly characterized by bioinformatics as a member of the FRD superfamily of heme-containing membrane proteins, which include the NADPH oxidase proteins (NOX/DUOX). Here we report a detailed biochemical characterization of the MsrQ protein from Escherichia coli. We optimized conditions for the overexpression and membrane solubilization of an MsrQ-GFP fusion and set up a purification scheme allowing the production of pure MsrQ. Combining UV-visible spectroscopy, heme quantification, and site-directed mutagenesis of histidine residues, we demonstrated that MsrQ is able to bind two b-type hemes through the histidine residues conserved between the MsrQ and NOX protein families. In addition, we identify the E. coli flavin reductase Fre, which is related to the dehydrogenase domain of eukaryotic NOX enzymes, as an efficient cytosolic electron donor to the MsrQ heme moieties. Cross-linking experiments as well as surface Plasmon resonance showed that Fre interacts with MsrQ to form a specific complex. Taken together, these data support the identification of the first prokaryotic two-component protein system related to the eukaryotic NOX family and involved in the reduction of periplasmic oxidized proteins. PMID:28028176

  18. A clinical scalable cryopreservation method of adipose tissue for reconstructive surgery assessed by stromal vascular fraction and mice studies.

    PubMed

    Chaput, Benoit; Orio, Julie; Garrido, Ignacio; De Bonnecaze, Guillaume; Espagnolle, Nicolas; Gadelorge, Melanie; Chavoin, Jean-Pierre; Grolleau-Raoux, Jean-Louis; Casteilla, Louis; Planat, Valérie; Bourin, Philippe

    2014-04-01

    Adipose tissue is widely used in plastic surgery. The main obstacle is that it can be used only immediately after liposuction, while reconstruction often requires several procedures to achieve optimal results. This study aimed to develop a cryopreservation protocol directly applicable to clinical situations, allowing repetitive procedures without multiple tissue harvests. The authors first tested scalable bags suitable for therapeutic uses. All subsequent experiments were performed in those bags. The authors evaluated in vitro, on the basis of cell viability, cell number, phenotype, and stromal cell proliferation, the efficacy of six cryopreservation media composed of an external cryoprotectant (human albumin or hydroxylethyl starch) with or without an internal cryoprotectant (dimethyl sulfoxide). Two storage temperatures (-196°C and -80°C) were tested in vitro and in vivo (subcutaneous graft in 30 nude mice) with the selected medium. The combination of 5% dimethyl sulfoxide and 95% hydroxylethyl yielded in vitro results that were good and the most consistent. With this cryoprotective solution, the authors observed no significant difference in vitro for a storage period of 7 days. When the storage was extended to 1 month, the cell viability was decreased by 10 percent for both storage temperatures. The in vivo experiments assessed the superiority of cryopreservation at -80°C with less graft resorption (60 percent and 70 percent, respectively, for -80°C and -196°C) and less fibrosis. The study's protocol with a chemically defined cryoprotective solution, specific scalable bags constrained in an aluminum holder, and a storage temperature of -80°C is promising for long-term adipose tissue cryopreservation.

  19. Production, purification, and properties of a lipase from a bacterium (Pseudomonas aeruginosa YS-7) capable of growing in water-restricted environments.

    PubMed Central

    Shabtai, Y; Daya-Mishne, N

    1992-01-01

    An extracellular lipase from the low-water-tolerant bacterium P. aeruginosa YS-7 was produced, purified, and characterized with respect to its functional properties in aqueous solutions and organic solvents. The enzyme was partially released from the cells during fermentation in defined medium with 5% (wt/vol) soybean oil. Approximately one-half of the total culture activity remained in solution after removal of cells. More than 95% of the activity was found in culture supernatant after mild detergent treatment (10 mM sodium deoxycholate) or after shifting the carbon source during the fermentation from triglyceride to a free fatty acid. The enzyme was recovered from an acetone precipitate of the whole culture and purified by hydrophobic interaction chromatography, yielding a preparation having a specific activity of about 1,300 mumol of fatty acid mg-1 h-1. The lipase (molecular size, approximately 40 kDa) hydrolyzes a variety of fatty acid esters and has an optimum pH of about 7. The enzyme retained its full activity at 20 to 55 degrees C, even after prolonged exposure (more than 30 days) to different concentrations of water-miscible organic solvents such as alcohols, glycols, pyridine, acetonitrile, dimethyl formamide, and dimethyl sulfoxide. The hydrolysis of 4-nitrophenyl laurate ester and of triglyceride emulsified in water was slightly accelerated with increasing concentrations of alcohols and glycols up to about 20% but was abolished with a further increase in alcohol concentration or in the presence of acetonitrile. In contrast, the rate of hydrolysis of these substrates in concentrated solutions of dimethyl formamide or dimethyl sulfoxide was markedly increased, by more than twofold and more than fivefold, respectively.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:1539972

  20. Fluorescence and Nonlinear Optical Properties of Alizarin Red S in Solvents and Droplet.

    PubMed

    Sangsefedi, Seyed Ahmad; Sharifi, Soheil; Rezaion, Hadi Rastegar Moghaddam; Azarpour, Afshin

    2018-05-28

    The enhancement of the nonlinear properties of materials is an interesting topic since it has many applications in optical devices and medicines. The Z-scan technique was used to study the values of the two-photon absorption (β), second-order molecular hyperpolarizability (γ R ), third-order susceptibility (χ R ), and nonlinear refractive index (n 2 ) of Alizarin Red S in different media using a continuous-wave diode-pump laser radiation at 532 nm. For Alizarin Red S in a droplet, the β, n 2 , χ R, and γ R were estimated at the order of 10 -7  cm 2 /W and 10 -12  cm/W, 10 -3  m 3  W -1  s -1 and 10 -24  m 6  W -1  s -1 , respectively. The results indicated that the values of β and n 2 reduced, whereas the values of χ R and γ R were enhanced when the solvent was changed from droplet to water, DMF, and dimethyl sulfoxide due to the change in the solvent's dielectric constant (ε). Moreover, the values of β were enhanced by an increase in the concentration of the surfactant in the aqueous solution. The absorption spectra of Alizarin Red S in the aqueous solution was observed at 428 nm, and a few red shifts in the absorption spectra were observed with a reduction in the dielectric constant of the medium. The same effect was observed in the absorption spectra of Alizarin Red S in the droplet when the bulk dielectric constant reduced. The dielectric constant can affect the fluorescence spectra of Alizarin Red S when the solution is changed from water to dimethyl sulfoxide. The dipole moments of Alizarin Red S in the different media were studied using the quantum perturbation theory.

  1. Transformation products of clindamycin in moving bed biofilm reactor (MBBR).

    PubMed

    Ooi, Gordon T H; Escola Casas, Monica; Andersen, Henrik R; Bester, Kai

    2017-04-15

    Clindamycin is widely prescribed for its ability to treat a number of common bacterial infections. Thus, clindamycin enters wastewater via human excretion or disposal of unused medication and widespread detection of pharmaceuticals in rivers proves the insufficiency of conventional wastewater treatment plants in removing clindamycin. Recently, it has been discovered that attached biofilm reactors, e.g., moving bed biofilm reactors (MBBRs) obtain a higher removal of pharmaceuticals than conventional sludge wastewater treatment plants. Therefore, this study investigated the capability of MBBRs applied in the effluent of conventional wastewater treatment plants to remove clindamycin. First, a batch experiment was executed with a high initial concentration of clindamycin to identify the transformation products. It was shown that clindamycin can be removed from wastewater by MBBR and the treatment process converts clindamycin into the, possibly persistent, products clindamycin sulfoxide and N-desmethyl clindamycin as well as 3 other mono-oxygenated products. Subsequently, the removal kinetics of clindamycin and the formation of the two identified products were investigated in batch experiments using MBBR carriers from polishing and nitrifying reactors. Additionally, the presence of these two metabolites in biofilm-free wastewater effluent was studied. The nitrifying biofilm reactor had a higher biological activity with k-value of 0.1813 h -1 than the reactor with polishing biofilm (k = 0.0161 h -1 ) which again has a much higher biological activity for removal of clindamycin than of the suspended bacteria (biofilm-free control). Clindamycin sulfoxide was the main transformation product which was found in concentrations exceeding 10% of the initial clindamycin concentration after 1 day of MBBR treatment. Thus, MBBRs should not necessarily be considered as reactors mineralizing clindamycin as they perform transformation reactions at least to some extent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The role of dimethyl sulfoxide (DMSO) in ex-vivo examination of human skin burn injury treatment

    NASA Astrophysics Data System (ADS)

    Pielesz, Anna; Gawłowski, Andrzej; Biniaś, Dorota; Bobiński, Rafał; Kawecki, Marek; Klama-Baryła, Agnieszka; Kitala, Diana; Łabuś, Wojciech; Glik, Justyna; Paluch, Jadwiga

    2018-05-01

    Dimethyl sulfoxide (DMSO) is one of the most versatile solvents in biological science, therefore it is frequently used as a solvent in biological studies and as a vehicle for drug therapy. DMSO readily penetrates, diffuses through biological membranes and ipso facto increases fluidity of liposomal membranes modelling stratum corneum. Thermal injury is associated with the appearance of lipid peroxidation products in the burned skin. The influence of DMSO on protein structure and stability is concentration and temperature dependant. The aim of this study was to assess the impact of DMSO on human burn wounds and examine the interactions between DMSO and skin surface. The real problem in burn treatment is hypoalbuminemia. At the level of the laboratory studies there was an attempt at answering the question of whether the DMSO will modify the standard serum solution. In the case of the incubation of skin fragments in 1%-100% DMSO, the following findings were reported: modification of the serum, appearance of low molecular weight oligomer bands, disappearance of albumin bands or reconstruction of native serum bands during incubation in antioxidant solutions. The result of the modification is also the exposure of FTIR 1603 and 1046 cm-1 bands observed in frozen serum solutions. In the case of modification of the burned skin by DMSO solutions or antioxidants - frequency shifts, an increase in the intensity of amide I band as well as the appearance of the 1601 cm-1 band can be specific biomarkers of the tissue regeneration process. In this study the areas 1780-1580 cm-1 and 1418-1250 cm-1 on the Raman spectra are particularly rich in spectral information.

  3. The Thioredoxin Domain of Neisseria Gonorrhoeae PilB can use Electrons from DsbD to Reduce Downstream Methionine Sulfoxide Reductases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brot,N.; Collet, J.; Johnson, L.

    2006-01-01

    The PilB protein from Neisseria gonorrhoeae is located in the periplasm and made up of three domains. The N-terminal, thioredoxin-like domain (NT domain) is fused to tandem methionine sulfoxide reductase A and B domains (MsrA/B). We show that the {alpha} domain of Escherichia coli DsbD is able to reduce the oxidized NT domain, which suggests that DsbD in Neisseria can transfer electrons from the cytoplasmic thioredoxin to the periplasm for the reduction of the MsrA/B domains. An analysis of the available complete genomes provides further evidence for this proposition in other bacteria where DsbD/CcdA, Trx, MsrA, and MsrB gene homologsmore » are all located in a gene cluster with a common transcriptional direction. An examination of wild-type PilB and a panel of Cys to Ser mutants of the full-length protein and the individually expressed domains have also shown that the NT domain more efficiently reduces the MsrA/B domains when in the polyprotein context. Within this framework there does not appear to be a preference for the NT domain to reduce the proximal MsrA domain over MsrB domain. Finally, we report the 1.6 {angstrom} crystal structure of the NT domain. This structure confirms the presence of a surface loop that makes it different from other membrane-tethered, Trx-like molecules including TlpA, CcmG and ResA. Subtle differences are observed in this loop when compared to the N. meningitidis NT domain structure. The data taken together supports the formation of specific NT domain interactions with the MsrA/B domains and its in vivo recycling partner, DsbD.« less

  4. Effect of trehalose as an additive to dimethyl sulfoxide solutions on ice formation, cellular viability, and metabolism.

    PubMed

    Solocinski, Jason; Osgood, Quinn; Wang, Mian; Connolly, Aaron; Menze, Michael A; Chakraborty, Nilay

    2017-04-01

    Cryopreservation is the only established method for long-term preservation of cells and cellular material. This technique involves preservation of cells and cellular components in the presence of cryoprotective agents (CPAs) at liquid nitrogen temperatures (-196 °C). The organic solvent dimethyl sulfoxide (Me 2 SO) is one of the most commonly utilized CPAs and has been used with various levels of success depending on the type of cells. In recent years, to improve cryogenic outcomes, the non-reducing disaccharide trehalose has been used as an additive to Me 2 SO-based freezing solutions. Trehalose is a naturally occurring non-toxic compound found in bacteria, fungi, plants, and invertebrates which has been shown to provide cellular protection during water-limited states. The mechanism by which trehalose improves cryopreservation outcomes remains not fully understood. Raman microspectroscopy is a powerful tool to provide valuable insight into the nature of interactions among water, trehalose, and Me 2 SO during cryopreservation. We found that the addition of trehalose to Me 2 SO based CPA solutions dramatically reduces the area per ice crystals while increasing the number of ice crystals formed when cooled to -40 or -80 °C. Differences in ice-formation patterns were found to have a direct impact on cellular viability. Despite the osmotic stress caused by addition of 100 mM trehalose, improvement in cellular viability was observed. However, the substantial increase in osmotic pressure caused by trehalose concentrations above 100 mM may offset the beneficial effects of changing the morphology of the ice crystals achieved by addition of this sugar. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Dual-component system dimethyl sulfoxide/LiCl as a solvent and catalyst for homogeneous ring-opening grafted polymerization of ε-caprolactone onto xylan.

    PubMed

    Zhang, Xue-Qin; Chen, Ming-Jie; Liu, Chuan-Fu; Sun, Run-Cang

    2014-01-22

    The preparation of xylan-graft-poly(ε-caprolactone) (xylan-g-PCL) copolymers was investigated by homogeneous ring-opening polymerization (ROP) in a dual-component system containing Lewis base LiCl and strong polar aprotic solvent dimethyl sulfoxide (DMSO). DMSO/LiCl acted as solvent, base, and catalyst for the ROP reaction. The effects of the parameters, including the reaction temperature, molar ratio of ε-caprolactone (ε-CL) to anhydroxylose units (AXU) in xylan, and reaction time, on the degree of substitution (DS) and weight percent of PCL side chain (WPCL) were investigated. The results showed that xylan-g-PCL copolymers with low DS in the range of 0.03-0.39 were obtained under the given conditions. The Fourier transform infrared spectroscopy (FTIR), (1)H nuclear magnetic resonance (NMR), (13)C NMR, (1)H-(1)H correlation spectroscopy (COSY), and (1)H-(13)C correlation two-dimensional (2D) NMR [heteronuclear single-quantum coherence (HSQC)] characterization provided more evidence of the attachment of side chains onto xylan. Only one ε-CL was confirmed to be attached onto xylan with each side chain. Integration of resonances assigned to the substituted C2 and C3 in the HSQC spectrum also indicated 69.23 and 30.77% of PCL side chains attached to AXU at C3 and C2 positions, respectively. Although the attachment of PCL onto xylan led to the decreased thermal stability of xylan, the loss of unrecovered xylan fractions with low molecular weight because of the high solubility of xylan in DMSO/LiCl resulted in the increased thermal stability of the samples. This kind of xylan derivative has potential application in environmentally friendly and biodegradable materials considering the good biodegradability of xylan and PCL.

  6. Effects of dimethyl sulfoxide on the morphology and viability of primary cultured neurons and astrocytes.

    PubMed

    Zhang, Chen; Deng, Yuanying; Dai, Hongmei; Zhou, Wenjuan; Tian, Jing; Bing, Guoying; Zhao, Lingling

    2017-01-01

    Dimethyl sulfoxide (DMSO) is a widely used solvent and vehicle for in vivo and in vitro administration of test compounds. Effects of DMSO independent of the test compound, such as in studies examining morphological plasticity or neurotoxic responses, may lead to spurious results. To investigate effects of DMSO concentration ([DMSO]) on morphology and survival of primary cultured neurons and astrocytes. Primary cultured neurons and astrocytes were treated with 0.25%-10.00% [DMSO] for 12-48h. Viable cell number and morphology were compared to untreated cultures using the CCK-8 assay and phase-contrast microscopy. Expression levels of the neuronal marker NeuN and astrocyte marker glial fibrillary acidic protein (GFAP) were determined by immunofluorescence and western blotting. A [DMSO]≤0.50% had no effect on neuronal number or NeuN expression up to 24h, while ≥1.00% induced a progressive and dramatic loss of both viability and NeuN expression even after 12h. Brief (12h) exposure to ≤1.00% DMSO had no effect on astrocytes survival or GFAP expression, while ≥5.00% significantly reduced both at all exposure durations. In contrast to neurons, exposure to 0.50% and 1.00% DMSO for 24 or 48h enhanced astrocytes proliferation and GFAP expression. Astrocytic processes were maintained at 0.50% and 1.00% DMSO, while neurons exhibited marked neurite retraction at ≥0.50%. A [DMSO]≥0.5% markedly disrupts neuronal morphology and reduces viability, even after brief exposure. In astrocytes, 0.50% and 1.00% DMSO appear to induce reactive gliosis. For treatment of neural cells, [DMSO] should be ≤0.25% to obviate spurious vehicle effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Flexibility at a glycosidic linkage revealed by molecular dynamics, stochastic modeling, and (13)C NMR spin relaxation: conformational preferences of α-L-Rhap-α-(1 → 2)-α-L-Rhap-OMe in water and dimethyl sulfoxide solutions.

    PubMed

    Pendrill, Robert; Engström, Olof; Volpato, Andrea; Zerbetto, Mirco; Polimeno, Antonino; Widmalm, Göran

    2016-01-28

    The monosaccharide L-rhamnose is common in bacterial polysaccharides and the disaccharide α-L-Rhap-α-(1 → 2)-α-L-Rhap-OMe represents a structural model for a part of Shigella flexneri O-antigen polysaccharides. Utilization of [1'-(13)C]-site-specific labeling in the anomeric position at the glycosidic linkage between the two sugar residues facilitated the determination of transglycosidic NMR (3)JCH and (3)JCC coupling constants. Based on these spin-spin couplings the major state and the conformational distribution could be determined with respect to the ψ torsion angle, which changed between water and dimethyl sulfoxide (DMSO) as solvents, a finding mirrored by molecular dynamics (MD) simulations with explicit solvent molecules. The (13)C NMR spin relaxation parameters T1, T2, and heteronuclear NOE of the probe were measured for the disaccharide in DMSO-d6 at two magnetic field strengths, with standard deviations ≤1%. The combination of MD simulation and a stochastic description based on the diffusive chain model resulted in excellent agreement between calculated and experimentally observed (13)C relaxation parameters, with an average error of <2%. The coupling between the global reorientation of the molecule and the local motion of the spin probe is deemed essential if reproduction of NMR relaxation parameters should succeed, since decoupling of the two modes of motion results in significantly worse agreement. Calculation of (13)C relaxation parameters based on the correlation functions obtained directly from the MD simulation of the solute molecule in DMSO as solvent showed satisfactory agreement with errors on the order of 10% or less.

  8. Effects of Dimethyl Sulfoxide on Surface Water near Phospholipid Bilayers.

    PubMed

    Lee, Yuno; Pincus, Philip A; Hyeon, Changbong

    2016-12-06

    Despite much effort to probe the properties of dimethyl sulfoxide (DMSO) solution, the effects of DMSO on water, especially near plasma membrane surfaces, still remain elusive. By performing molecular dynamics simulations at varying DMSO concentrations (X DMSO ), we study how DMSO affects structural and dynamical properties of water in the vicinity of phospholipid bilayers. As proposed by a number of experiments, our simulations confirm that DMSO induces dehydration from bilayer surfaces and disrupts the H-bond structure of water. However, DMSO-enhanced water diffusivity at solvent-bilayer interfaces, an intriguing discovery reported by a spin-label measurement, is not confirmed in our simulations. To resolve this discrepancy, we examine the location of the spin label (Tempo) relative to the solvent-bilayer interface. In accord with the evidence in the literature, our simulations, which explicitly model Tempo-phosphatidylcholine, find that the Tempo moiety is equilibrated at ∼8-10 Å below the bilayer surface. Furthermore, the DMSO-enhanced surface-water diffusion is confirmed only when water diffusion is analyzed around the Tempo moiety that is immersed below the bilayer surface, which implies that the experimentally detected signal of water using Tempo stems from the interior of bilayers, not from the interface. Our analysis finds that the increase of water diffusion below the bilayer surface is coupled to the increase of area per lipid with an increasing X DMSO (≲10mol%). Underscoring the hydrophobic nature of the Tempo moiety, our study calls for careful re-evaluation of the use of Tempo in measurements on lipid bilayer surfaces. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Dimethyl sulfoxide (DMSO) as a potential contrast agent for brain tumors.

    PubMed

    Delgado-Goñi, T; Martín-Sitjar, J; Simões, R V; Acosta, M; Lope-Piedrafita, S; Arús, C

    2013-02-01

    Dimethyl sulfoxide (DMSO) is commonly used in preclinical studies of animal models of high-grade glioma as a solvent for chemotherapeutic agents. A strong DMSO signal was detected by single-voxel MRS in the brain of three C57BL/6 control mice during a pilot study of DMSO tolerance after intragastric administration. This led us to investigate the accumulation and wash-out kinetics of DMSO in both normal brain parenchyma (n=3 control mice) by single-voxel MRS, and in 12 GL261 glioblastomas (GBMs) by single-voxel MRS (n=3) and MRSI (n=9). DMSO accumulated differently in each tissue type, reaching its highest concentration in tumors: 6.18 ± 0.85 µmol/g water, 1.5-fold higher than in control mouse brain (p<0.05). A faster wash-out was detected in normal brain parenchyma with respect to GBM tissue: half-lives of 2.06 ± 0.58 and 4.57 ± 1.15 h, respectively. MRSI maps of time-course DMSO changes revealed clear hotspots of differential spatial accumulation in GL261 tumors. Additional MRSI studies with four mice bearing oligodendrogliomas (ODs) revealed similar results as in GBM tumors. The lack of T(1) contrast enhancement post-gadolinium (gadopentetate dimeglumine, Gd-DTPA) in control mouse brain and mice with ODs suggested that DMSO was fully able to cross the intact blood-brain barrier in both normal brain parenchyma and in low-grade tumors. Our results indicate a potential role for DMSO as a contrast agent for brain tumor detection, even in those tumors 'invisible' to standard gadolinium-enhanced MRI, and possibly for monitoring heterogeneities associated with progression or with therapeutic response. Copyright © 2012 John Wiley & Sons, Ltd.

  10. The role of dimethyl sulfoxide (DMSO) in ex-vivo examination of human skin burn injury treatment.

    PubMed

    Pielesz, Anna; Gawłowski, Andrzej; Biniaś, Dorota; Bobiński, Rafał; Kawecki, Marek; Klama-Baryła, Agnieszka; Kitala, Diana; Łabuś, Wojciech; Glik, Justyna; Paluch, Jadwiga

    2018-05-05

    Dimethyl sulfoxide (DMSO) is one of the most versatile solvents in biological science, therefore it is frequently used as a solvent in biological studies and as a vehicle for drug therapy. DMSO readily penetrates, diffuses through biological membranes and ipso facto increases fluidity of liposomal membranes modelling stratum corneum. Thermal injury is associated with the appearance of lipid peroxidation products in the burned skin. The influence of DMSO on protein structure and stability is concentration and temperature dependant. The aim of this study was to assess the impact of DMSO on human burn wounds and examine the interactions between DMSO and skin surface. The real problem in burn treatment is hypoalbuminemia. At the level of the laboratory studies there was an attempt at answering the question of whether the DMSO will modify the standard serum solution. In the case of the incubation of skin fragments in 1%-100% DMSO, the following findings were reported: modification of the serum, appearance of low molecular weight oligomer bands, disappearance of albumin bands or reconstruction of native serum bands during incubation in antioxidant solutions. The result of the modification is also the exposure of FTIR 1603 and 1046cm -1 bands observed in frozen serum solutions. In the case of modification of the burned skin by DMSO solutions or antioxidants - frequency shifts, an increase in the intensity of amide I band as well as the appearance of the 1601cm -1 band can be specific biomarkers of the tissue regeneration process. In this study the areas 1780-1580cm -1 and 1418-1250cm -1 on the Raman spectra are particularly rich in spectral information. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. The assessment of electrophysiological activity in human-induced pluripotent stem cell-derived cardiomyocytes exposed to dimethyl sulfoxide and ethanol by manual patch clamp and multi-electrode array system.

    PubMed

    Hyun, Soo-Wang; Kim, Bo-Ram; Hyun, Sung-Ae; Seo, Joung-Wook

    2017-09-01

    Recently, electrophysiological activity has been effectively measured in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to predict drug-induced arrhythmia. Dimethyl sulfoxide (DMSO) and ethanol have been used as diluting agents in many experiments. However, the maximum DMSO and ethanol concentrations that can be effectively used in the measurement of electrophysiological parameters in hiPSC-CMs-based patch clamp and multi-electrode array (MEA) have not been fully elucidated. We investigated the effects of varying concentrations of DMSO and ethanol used as diluting agents on several electrophysiological parameters in hiPSC-CMs using patch clamp and MEA. Both DMSO and ethanol at concentrations>1% in external solution resulted in osmolality >400mOsmol/kg, but pH was not affected by either agent. Neither DMSO nor ethanol led to cell death at the concentrations examined. However, resting membrane potential, action potential amplitude, action potential duration at 90% and 40%, and corrected field potential duration were decreased significantly at 1% ethanol concentration. DMSO at 1% also significantly decreased the sodium spike amplitude. In addition, the waveform of action potential and field potential was recorded as irregular at 3% concentrations of both DMSO and ethanol. Concentrations of up to 0.3% of either agent did not affect osmolality, pH, cell death, or electrophysiological parameters in hiPSC-CMs. Our findings suggest that 0.3% is the maximum concentration at which DMSO or ethanol should be used for dilution purposes in hiPSC-CMs-based patch clamp and MEA. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Dimethyl Sulfoxide (DMSO) Increases Percentage of CXCR4(+) Hematopoietic Stem/Progenitor Cells, Their Responsiveness to an SDF-1 Gradient, Homing Capacities, and Survival.

    PubMed

    Jarocha, Danuta; Zuba-Surma, Ewa; Majka, Marcin

    2016-01-01

    Cryopreservation of bone marrow (BM), mobilized peripheral blood (mPB), and cord blood (CB) hematopoietic stem/progenitor cells (HSPCs) is a routine procedure before transplantation. The most commonly used cryoprotectant for HSPCs is dimethyl sulfoxide (DMSO). The objective of this study was to evaluate the influence of DMSO on surface receptor expression and chemotactic activities of HSPCs. We found that 10 min of incubation of human mononuclear cells (MNCs) with 10% DMSO significantly increases the percentage of CXCR4(+), CD38(+), and CD34(+) cells, resulting in an increase of CD34(+), CD34(+)CXCR4(+), and CD34(+)CXCR4(+)CD38(-) subpopulations. Furthermore, DMSO significantly increased chemotactic responsiveness of MNCs and CXCR4(+) human hematopoietic Jurkat cell line to a stromal cell-derived factor-1 (SDF-1) gradient. Furthermore, we demonstrated enhanced chemotaxis of human clonogenic progenitor cells to an SDF-1 gradient, which suggests that DMSO directly enhances the chemotactic responsiveness of early human progenitors. DMSO preincubation also caused lower internalization of the CXCR4 receptor. In parallel experiments, we found that approximately 30% more of DMSO-preincubated human CD45(+) and CD45(+)CD34(+) cells homed to the mouse BM 24 h after transplantation in comparison to control cells. Finally, we demonstrated considerably higher (25 days) survival of mice transplanted with DMSO-exposed MNCs than those transplanted with the control cells. We show in this study an unexpected beneficial influence of DMSO on HSPC homing and suggest that a short priming with DMSO before transplantation could be considered a new strategy to enhance cell homing and engraftment.

  13. Dentin bond optimization using the dimethyl sulfoxide-wet bonding strategy: A 2-year in vitro study.

    PubMed

    Stape, Thiago Henrique Scarabello; Tjäderhane, Leo; Tezvergil-Mutluay, Arzu; Yanikian, Cristiane Rumi Fujiwara; Szesz, Anna Luiza; Loguercio, Alessandro Dourado; Martins, Luís Roberto Marcondes

    2016-12-01

    This study evaluated a new approach, named dimethyl sulfoxide (DMSO)-wet bonding, to produce more desirable long-term prospects for the ultrafine interactions between synthetic polymeric biomaterials and the inherently hydrated dentin substrate. Sound third molars were randomly restored with/without DMSO pretreatment using a total-etch (Scocthbond Multipurpose: SBMP) and a self-etch (Clearfil SE Bond: CF) adhesive systems. Restored teeth (n=10)/group were sectioned into sticks and submitted to different analyses: micro-Raman determined the degree of conversion inside the hybrid layer (DC); resin-dentin microtensile bond strength and fracture pattern analysis at 24h, 1year and 2 years of aging; and nanoleakage evaluation at 24h and 2 years. DMSO-wet bonding produced significantly higher 24h bond strengths for SBMP that were sustained over the two-year period, with significantly less adhesive failures. Similarly, DMSO-treated CF samples presented significantly higher bond strength than untreated samples at two years. Both adhesives had significant less adhesive failures at 2 years with DMSO. DMSO had no effect on DC of SBMP, but significantly increased the DC of CF. DMSO-treated SBMP samples presented reduced silver uptake compared to untreated samples after aging. Biomodification of the dentin substrate by the proposed strategy using DMSO is a suitable approach to produce more durable hybrid layers with superior ability to withstand hydrolytic degradation over time. Although the active role of DMSO on dentin bond improvement may vary according to monomer composition, its use seems to be effective on both self-etch and etch-and-rinse bonding mechanisms. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Dimethyl Sulfoxide Promotes the Multiple Functions of the Tumor Suppressor HLJ1 through Activator Protein-1 Activation in NSCLC Cells

    PubMed Central

    Wang, Chi-Chung; Lin, Sheng-Yi; Lai, Yi-Hua; Liu, Ya-Jung; Hsu, Yuan-Lin; Chen, Jeremy J. W.

    2012-01-01

    Background Dimethyl sulfoxide (DMSO) is an amphipathic molecule that displays a diversity of antitumor activities. Previous studies have demonstrated that DMSO can modulate AP-1 activity and lead to cell cycle arrest at the G1 phase. HLJ1 is a newly identified tumor and invasion suppressor that inhibits tumorigenesis and cancer metastasis. Its transcriptional activity is regulated by the transcription factor AP-1. However, the effects of DMSO on HLJ1 are still unknown. In the present study, we investigate the antitumor effects of DMSO through HLJ1 induction and demonstrate the mechanisms involved. Methods and Findings Low-HLJ1-expressing highly invasive CL1–5 lung adenocarcinoma cells were treated with various concentrations of DMSO. We found that DMSO can significantly inhibit cancer cell invasion, migration, proliferation, and colony formation capabilities through upregulation of HLJ1 in a concentration-dependent manner, whereas ethanol has no effect. In addition, the HLJ1 promoter and enhancer reporter assay revealed that DMSO transcriptionally upregulates HLJ1 expression through an AP-1 site within the HLJ1 enhancer. The AP-1 subfamily members JunD and JunB were significantly upregulated by DMSO in a concentration-dependent manner. Furthermore, pretreatment with DMSO led to a significant increase in the percentage of UV-induced apoptotic cells. Conclusions Our results suggest that DMSO may be an important stimulator of the tumor suppressor protein HLJ1 through AP-1 activation in highly invasive lung adenocarcinoma cells. Targeted induction of HLJ1 represents a promising approach for cancer therapy, which also implied that DMSO may serve as a potential lead compound or coordinated ligand for the development of novel anticancer drugs. PMID:22529897

  15. Diverse effects of dimethyl sulfoxide (DMSO) on the differentiation potential of human embryonic stem cells.

    PubMed

    Pal, Rajarshi; Mamidi, Murali Krishna; Das, Anjan Kumar; Bhonde, Ramesh

    2012-04-01

    In vitro disease modeling using pluripotent stem cells can be a fast track screening tool for toxicological testing of candidate drug molecules. Dimethyl sulfoxide (DMSO) is one of the most commonly used solvents in drug screening. In the present investigation, we exposed 14- to 21-day-old embryoid bodies (EBs) to three different concentrations of DMSO [0.01% (low dose), 0.1% (medium dose) and 1.0% (high dose)] to identify the safest dose that could effectively be used as solvent. We found that DMSO treatment substantially altered the morphology and attachment of cells in concurrence with a significant reduction in cell viability in a dose-dependent manner. Gene expression studies revealed a selective downregulation of key markers associated with stemness (Oct-4, Sox-2, Nanog and Rex-1); ectoderm (Nestin, TuJ1, NEFH and Keratin-15); mesoderm (HAND-1, MEF-2C, GATA-4 and cardiac-actin); and endoderm (SOX-17, HNF-3β, GATA-6 and albumin), indicating an aberrant and untimely differentiation trajectory. Furthermore, immunocytochemistry, flow cytometry and histological analyses demonstrated substantial decrease in the levels of albumin and CK-18 proteins coupled with a massive reduction in the number of cells positive for PAS staining, implicating reduced deposits of glycogen. Our study advocates for the first time that DMSO exposure not only affects the phenotypic characteristics but also induces significant alteration in gene expression, protein content and functionality of the differentiated hepatic cells. Overall, our experiments warrant that hESC-based assays can provide timely alerts about the outcome of widespread applications of DMSO as drug solvent, cryoprotectant and differentiating agent.

  16. Effect of dimethyl sulfoxide on dentin collagen.

    PubMed

    Mehtälä, P; Pashley, D H; Tjäderhane, L

    2017-08-01

    Infiltration of adhesive on dentin matrix depends on interaction of surface and adhesive. Interaction depends on dentin wettability, which can be enhanced either by increasing dentin surface energy or lowering the surface energy of adhesive. The objective was to examine the effect of dimethyl sulfoxide (DMSO) on demineralized dentin wettability and dentin organic matrix expansion. Acid-etched human dentin was used for sessile drop contact angle measurement to test surface wetting on 1-5% DMSO-treated demineralized dentin surface, and linear variable differential transformer (LVDT) to measure expansion/shrinkage of dentinal matrix. DMSO-water binary liquids were examined for surface tension changes through concentrations from 0 to 100% DMSO. Kruskal-Wallis and Mann-Whitney tests were used to test the differences in dentin wettability, expansion and shrinkage, and Spearman test to test the correlation between DMSO concentration and water surface tension. The level of significance was p<0.05. Pretreatment with 1-5% DMSO caused statistically significant concentration-dependent increase in wetting: the immediate contact angles decreased by 11.8% and 46.6% and 60s contact angles by 9.5% and 47.4% with 1% and 5% DMSO, respectively. DMSO-water mixtures concentration-dependently expanded demineralized dentin samples less than pure water, except with high (≥80%) DMSO concentrations which expanded demineralized dentin more than water. Drying times of LVDT samples increased significantly with the use of DMSO. Increased dentin wettability may explain the previously demonstrated increase in adhesive penetration with DMSO-treated dentin, and together with the expansion of collagen matrix after drying may also explain previously observed increase in dentin adhesive bonding. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Chemical unfolding of chicken villin headpiece in aqueous dimethyl sulfoxide solution: cosolvent concentration dependence, pathway, and microscopic mechanism.

    PubMed

    Roy, Susmita; Bagchi, Biman

    2013-04-25

    Unfolding of a protein often proceeds through partial unfolded intermediate states (PUIS). PUIS have been detected in several experimental and simulation studies. However, complete analyses of transitions between different PUIS and the unfolding trajectory are sparse. To understand such dynamical processes, we study chemical unfolding of a small protein, chicken villin head piece (HP-36), in aqueous dimethyl sulfoxide (DMSO) solution. We carry out molecular dynamics simulations at various solution compositions under ambient conditions. In each concentration, the initial step of unfolding involves separation of two adjacent native contacts, between phenyl alanine residues (11-18 and 7-18). This first step induces, under appropriate conditions, subsequent separation among other hydrophobic contacts, signifying a high degree of cooperativity in the unfolding process. The observed sequence of structural changes in HP-36 on increasing DMSO concentration and the observed sequence of PUIS, are in approximate agreement with earlier simulation results (in pure water) and experimental observations on unfolding of HP-36. Peculiar to water-DMSO mixture, an intervening structural transformation (around 15% of DMSO) in the binary mixture solvent retards the progression of unfolding as composition is increased. This is reflected in a remarkable nonmonotonic composition dependence of RMSD, radius of gyration and the fraction of native contacts. At 30% mole fraction of DMSO, we find the extended randomly coiled structure of the unfolded protein. The molecular mechanism of DMSO induced unfolding process is attributed to the initial preferential solvation of the hydrophobic side chain atoms through the methyl groups of DMSO, followed by the hydrogen bonding of the oxygen atom of DMSO to the exposed backbone NH groups of HP-36.

  18. The effect of dimethyl sulfoxide (DMSO) on dentin bonding and nanoleakage of etch-and-rinse adhesives.

    PubMed

    Tjäderhane, Leo; Mehtälä, Pekka; Scaffa, Polliana; Vidal, Cristina; Pääkkönen, Virve; Breschi, Lorenzo; Hebling, Josimeri; Tay, Franklin R; Nascimento, Fabio D; Pashley, David H; Carrilho, Marcela R

    2013-10-01

    The objective was to examine the effect of a solvent dimethyl sulfoxide (DMSO) on resin-dentin bond durability, as well as potential functional mechanisms behind the effect. Microtensile bond strength (μTBS) was evaluated in extracted human teeth in two separate experiments. Dentin specimens were acid-etched and assigned to pre-treatment with 0.5mM (0.004%) DMSO as additional primer for 30s and to controls with water pre-treatment. Two-step etch-and-rinse adhesive (Scotchbond 1XT, 3M ESPE) was applied and resin composite build-ups were created. Specimens were immediately tested for μTBS or stored in artificial saliva for 6 and 12 months prior to testing. Additional immediate and 6-month specimens were examined for interfacial nanoleakage analysis under SEM. Matrix metalloproteinase (MMP) inhibition by DMSO was examined with gelatin zymography. Demineralized dentin disks were incubated in 100% DMSO to observe the optical clearing effect. The use of 0.5mM DMSO had no effect on immediate bond strength or nanoleakage. In controls, μTBS decreased significantly after storage, but increased significantly in DMSO-treated group. The control group had significantly lower μTBS than DMSO-group after 6 and 12 months. DMSO also eliminated the increase in nanoleakage seen in controls. 5% and higher DMSO concentrations significantly inhibited the gelatinases. DMSO induced optical clearing effect demonstrating collagen dissociation. DMSO as a solvent may be useful in improving the preservation of long-term dentin-adhesive bond strength. The effect may relate to dentinal enzyme inhibition or improved wetting of collagen by adhesives. The collagen dissociation required much higher DMSO concentrations than the 0.5mM DMSO used for bonding. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Low-molecular-weight carbohydrate Pentaisomaltose may replace dimethyl sulfoxide as a safer cryoprotectant for cryopreservation of peripheral blood stem cells.

    PubMed

    Svalgaard, Jesper Dyrendom; Haastrup, Eva Kannik; Reckzeh, Kristian; Holst, Bjørn; Glovinski, Peter Viktor; Gørløv, Jette Sønderskov; Hansen, Morten Bagge; Moench, Kim Theilgaard; Clausen, Christian; Fischer-Nielsen, Anne

    2016-05-01

    Cryopreserved hematopoietic stem cell products are widely used for certain hematologic malignancies. Dimethyl sulfoxide (DMSO) is the most widely used cryoprotective agent (CPA) today, but due to indications of cellular toxicity, changes of the cellular epigenetic state, and patient-related side effects, there is an increasing demand for DMSO-free alternatives. We therefore investigated whether Pentaisomaltose (PIM), a low-molecular-weight carbohydrate (1 kDa), can be used for cryopreservation of peripheral blood stem cells, more specifically hematopoietic progenitor cell apheresis (HPC(A)) product. We cryopreserved patient or donor HPC(A) products using 10% DMSO or 16% PIM and quantified the recovery of CD34+ cells and CD34+ subpopulations by multicolor flow cytometry. In addition, we compared the frequency of HPCs after DMSO and PIM cryopreservation using the colony-forming cells (CFCs) assay. The mean CD34+ cell recovery was 56.3 ± 23.7% (11.4%-97.3%) and 58.2 ± 10.0% (45.7%-76.9%) for 10% DMSO and 16% PIM, respectively. The distribution of CD34+ cell subpopulations was similar when comparing DMSO or PIM as CPA. CFC assay showed mean colony numbers of 70.7 ± 25.4 (range, 37.8-115.5) and 67.7 ± 15.7 (range, 48-86) for 10% DMSO and 16% PIM, respectively. Our findings demonstrate that PIM cryopreservation of HPC(A) products provides recovery of CD34+ cells, CD34+ subpopulations, and CFCs similar to that of DMSO cryopreservation and therefore may have the potential to be used for cryopreservation of peripheral blood stem cells. © 2016 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  20. Stereochemistry and solvent role in protein folding: nuclear magnetic resonance and molecular dynamics studies of poly-L and alternating-L,D homopolypeptides in dimethyl sulfoxide.

    PubMed

    Srivastava, Kinshuk Raj; Kumar, Anil; Goyal, Bhupesh; Durani, Susheel

    2011-05-26

    The competing interactions folding and unfolding protein structure remain obscure. Using homopolypeptides, we ask if poly-L structure may have a role. We mutate the structure to alternating-L,D stereochemistry and substitute water as the fold-promoting solvent with methanol and dimethyl sulfoxide (DMSO) as the fold-denaturing solvents. Circular dichroism and molecular dynamics established previously that, while both isomers were folded in water, the poly-L isomer was unfolded and alternating-L,D isomer folded in methanol. Nuclear magnetic resonance and molecular dynamics establish now that both isomers are unfolded in DMSO. We calculated energetics of folding-unfolding equilibrium with water and methanol as solvents. We have now calculated interactions of unfolded polypeptide structures with DMSO as solvent. Methanol was found to unfold and water fold poly-L structure as a dielectric. DMSO has now been found to unfold both poly-L and alternating-L,D structures by strong solvation of peptides to disrupt their hydrogen bonds. Accordingly, we propose that while linked peptides fold protein structure with hydrogen bonds they unfold the structure electrostatically due to the stereochemical effect of the poly-L structure. Protein folding to ordering of peptide hydrogen bonds with water as canonical solvent may thus involve two specific and independent solvent effects-one, strong screening of electrostatics of poly-L linked peptides, and two, weak dipolar solvation of peptides. Correspondingly, protein denaturation may involve two independent solvent effects-one, weak dielectric to unfold poly-L structure electrostatically, and two, strong polarity to disrupt peptide hydrogen bonds by solvation of peptides.

  1. Effect of dimethyl sulfoxide on inhibition of post-ovariectomy osteopenia in rats.

    PubMed

    Tamjidipoor, Ahmad; Tavafi, Majid; Ahmadvand, Hasan

    2013-01-01

    There is increasing evidence that oxidative stress, due to estrogen deficiency, leads to osteopenia. In this study, dimethyl sulfoxide (DMSO), an antioxidant solvent, was used against post-ovariectomy osteopenia (PO) in rats. Forty female rats were divided into 5 groups randomly as follows: Sham, control group; OVX, ovariectomized group; DMSO1, ovariectomized injected DMSO (0.5 ml/kg/d ip); DMSO2, ovariectomized injected DMSO (1 ml/kg/day ip) and DMSO3, ovariectomized injected DMSO (2 ml/kg/d ip). DMSO therapy started 1 week after ovariectomy and continued for 13 weeks. After 13th weeks, sera were prepared, and then L4 vertebrae and right tibial bones rinsed in fixative. Serum bone alkaline phosphatase (BALP), osteocalcin, pyridinoline, malondialdehyde (MDA) and glutathione (GSH) were measured. Trabecular volume density, trabecular and cortex thickness were estimated. Osteoclast and osteoblast numbers were counted morphometrically. The data were analyzed by ANOVA and then post hoc Tukey test at p < 0.05. The increase of pyridinoline and decrease of BALP in DMSO injected groups were inhibited compared with OVX group (p < 0.05). In DMSO injected groups, decrease of bone density, trabecular volume density, thickness of trabecular and tibial cortex were inhibited compared with OVX group (p < 0.05). MDA decreased significantly in DMSO injected groups compared with OVX group. Osteoclast number decreased in DMSO injected groups compared with OVX group (p < 0.05). Osteoblast number did not show significant change in DMSO groups compared with OVX group. In conclusion, DMSO ameliorates PO through decrease of osteoclast number, osteoclast inhibition and osteoblast activation. These effects may probably be mediated via antioxidant property of DMSO.

  2. A simple and highly effective method for slow-freezing human pluripotent stem cells using dimethyl sulfoxide, hydroxyethyl starch and ethylene glycol.

    PubMed

    Imaizumi, Keitaro; Nishishita, Naoki; Muramatsu, Marie; Yamamoto, Takako; Takenaka, Chiemi; Kawamata, Shin; Kobayashi, Kenichiro; Nishikawa, Shin-Ichi; Akuta, Teruo

    2014-01-01

    Vitrification and slow-freezing methods have been used for the cryopreservation of human pluripotent stem cells (hPSCs). Vitrification requires considerable skill and post-thaw recovery is low. Furthermore, it is not suitable for cryopreservation of large numbers of hPSCs. While slow-freezing methods for hPSCs are easy to perform, they are usually preceded by a complicated cell dissociation process that yields poor post-thaw survival. To develop a robust and easy slow-freezing method for hPSCs, several different cryopreservation cocktails were prepared by modifying a commercially available freezing medium (CP-1™) containing hydroxyethyl starch (HES), and dimethyl sulfoxide (DMSO) in saline. The new freezing media were examined for their cryopreservation efficacy in combination with several different cell detachment methods. hPSCs in cryopreservation medium were slowly cooled in a conventional -80°C freezer and thawed rapidly. hPSC colonies were dissociated with several proteases. Ten percent of the colonies were passaged without cryopreservation and another 10% were cryopreserved, and then the recovery ratio was determined by comparing the number of Alkaline Phosphatase-positive colonies after thawing at day 5 with those passaged without cryopreservation at day 5. We found that cell detachment with Pronase/EDTA followed by cryopreservation using 6% HES, 5% DMSO, and 5% ethylene glycol (EG) in saline (termed CP-5E) achieved post-thaw recoveries over 80%. In summary, we have developed a new cryopreservation medium free of animal products for slow-freezing. This easy and robust cryopreservation method could be used widely for basic research and for clinical application.

  3. A Simple and Highly Effective Method for Slow-Freezing Human Pluripotent Stem Cells Using Dimethyl Sulfoxide, Hydroxyethyl Starch and Ethylene Glycol

    PubMed Central

    Imaizumi, Keitaro; Nishishita, Naoki; Muramatsu, Marie; Yamamoto, Takako; Takenaka, Chiemi; Kawamata, Shin; Kobayashi, Kenichiro; Nishikawa, Shin-ichi; Akuta, Teruo

    2014-01-01

    Vitrification and slow-freezing methods have been used for the cryopreservation of human pluripotent stem cells (hPSCs). Vitrification requires considerable skill and post-thaw recovery is low. Furthermore, it is not suitable for cryopreservation of large numbers of hPSCs. While slow-freezing methods for hPSCs are easy to perform, they are usually preceded by a complicated cell dissociation process that yields poor post-thaw survival. To develop a robust and easy slow-freezing method for hPSCs, several different cryopreservation cocktails were prepared by modifying a commercially available freezing medium (CP-1™) containing hydroxyethyl starch (HES), and dimethyl sulfoxide (DMSO) in saline. The new freezing media were examined for their cryopreservation efficacy in combination with several different cell detachment methods. hPSCs in cryopreservation medium were slowly cooled in a conventional −80°C freezer and thawed rapidly. hPSC colonies were dissociated with several proteases. Ten percent of the colonies were passaged without cryopreservation and another 10% were cryopreserved, and then the recovery ratio was determined by comparing the number of Alkaline Phosphatase-positive colonies after thawing at day 5 with those passaged without cryopreservation at day 5. We found that cell detachment with Pronase/EDTA followed by cryopreservation using 6% HES, 5% DMSO, and 5% ethylene glycol (EG) in saline (termed CP-5E) achieved post-thaw recoveries over 80%. In summary, we have developed a new cryopreservation medium free of animal products for slow-freezing. This easy and robust cryopreservation method could be used widely for basic research and for clinical application. PMID:24533137

  4. Comparison of the effects of glycerol, dimethyl sulfoxide, and hydroxyethyl starch solutions for cryopreservation of avian red blood cells.

    PubMed

    Graham, Jennifer E; Meola, Dawn M; Kini, Nisha R; Hoffman, Andrew M

    2015-06-01

    To compare effectiveness of glycerol, dimethyl sulfoxide (DMSO), and hydroxyethyl starch (HES) solutions for cryopreservation of avian RBCs. RBCs from 12 healthy Ameraucana hens (Gallus gallus domesticus). RBCs were stored in 20% (wt/vol) glycerol, 10% (wt/vol) DMSO freezing medium, or various concentrations of HES solution (7.5%, 11.5%, and 20% [wt/vol]) and frozen for 2 months in liquid nitrogen. Cells were then thawed and evaluated by use of cell recovery and saline stability tests, cell staining (7-aminoactinomycin D and annexin V) and flow cytometry, and scanning electron microscopy. Percentage of RBCs recovered was highest for 20% glycerol solution (mean ± SE, 99.71 ± 0.04%) and did not differ significantly from the value for 7.5% HES solution (99.57 ± 0.04%). Mean saline stability of RBCs was highest for 10% DMSO (96.11 ± 0.25%) and did not differ significantly from the value for 20% HES solution (95.74 ± 0.25%). Percentages of cells with 7-aminoactinomycin D staining but without annexin V staining (indicating necrosis or late apoptosis) were lowest for 10% DMSO freezing medium (3%) and 20% glycerol solution (1%) and highest for all HES concentrations (60% to 80%). Scanning electron microscopy revealed severe membrane changes in RBCs cryopreserved in 20% HES solution, compared with membrane appearance in freshly harvested RBCs and RBCs cryopreserved in 10% DMSO freezing medium. Cryopreservation of avian RBCs with HES solution, regardless of HES concentration, resulted in greater degrees of apoptosis and cell death than did cryopreservation with other media. Transfusion with RBCs cryopreserved in HES solution may result in posttransfusion hemolysis in birds.

  5. Asystole During Onyx Embolization of a Pediatric Arteriovenous Malformation: A Severe Case of the Trigeminocardiac Reflex.

    PubMed

    Khatibi, Kasra; Choudhri, Omar; Connolly, Ian D; McTaggart, Ryan A; Do, Huy M

    2017-02-01

    Trigeminal-cardiac reflex (TCR) from the stimulation of sensory branches of trigeminal nerve can lead to hemodynamic instability. This phenomenon has been described during ophthalmologic, craniofacial, and skull base surgeries. TCR has been reported rarely with endovascular onyx embolization of dural arteriovenous fistulas. We report a case of TCR during endovascular Onyx embolization of an arteriovenous malformation (AVM). A 16-year-old boy presented with a large cerebellar AVM with arterial feeders from the external carotid artery and posterior cerebral artery branches. The middle meningeal artery was catheterized, through which dimethyl sulfoxide was injected, followed by Onyx, into the nidus and the feeders. Near the completion of embolization, patient became bradycardic and proceeded to asystole; he was resuscitated with chest compression, atropine, and vasopressors. We used PubMed to identify the reported cases of Onyx and other endovascular embolizations complicated by hemodynamic instability. We found 16 cases of endovascular onyx embolization complicated by clinically significant hemodynamic changes in the treatment of dural arteriovenous fistula, cavernous carotid fistula, and juvenile nasopharygeal angiofibroma but not with AVMs. In these cases, arterial supply to the nidus involved the sensory receptive field of trigeminal nerve. Hemodynamic changes have been reported during the injection of dimethyl sulfoxide before the introduction of Onyx, as well as Onyx injection and cast formation. TCR can lead to significant hemodynamic changes during endovascular Onyx embolization of vascular malformations (both pial AVM and dural arteriovenous fistulas) involving receptive field of trigeminal nerve. Therefore, the anesthesiologist should be made aware of treatment approach before intervention and appropriate precautions taken. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Comparison of effects of albendazole sulfoxide on in vitro produced bovine embryos and rat embryos.

    PubMed

    Piscopo, S E; Smoak, I W

    1997-09-01

    To evaluate and compare effects of albendazole sulfoxide (ABZSO) on rat embryos and bovine embryos produced in vitro. In vitro produced bovine embryos. Rat embryos recovered from naturally bred Sprague-Dawley rats. 4- and 8-cell bovine embryos were randomly allocated to ABZSO or vehicle control groups. After 48 hours, embryos were evaluated for cell number and blastomere morphology. Rat embryos of similar stages, flushed from the uterine tube on gestational day 2-5, were randomly allocated to treatment or control groups. After 24 hours, embryos were evaluated as described previously. 44% of control bovine embryos divided in culture (> or = 16-cell stage). Fifteen percent of the controls had morphologic abnormalities, including disparity in blastomere size and cytoplasmic vacuoles and stippling. Treated (> or = 1 microgram of ABZSO/ml) bovine embryos differed (P < 0.0001) from controls, with 4% development and 93% abnormal morphology. Forty-five percent of control rat embryos divided in culture. Treated (> or = 500 ng of ABZSO/ml) rat embryos differed (P < 0.0003) from controls with regard to ability to divide. There were no consistent morphologic abnormalities in rat embryos. In vitro produced bovine embryos were susceptible to ABZSO at a concentration > or = 1 microgram/ ml, resulting in decreased ability to divide and presence of gross morphologic abnormalities. Rat embryos produced in vivo and exposed in vitro to ABZSO at a concentration > or = 500 ng/ml had decreased ability to divide in culture. Despite severe effects of ABZSO (> or = 1 microgram/ml) on bovine embryo development in vitro, it is beyond the scope of this study to speculate whether a therapeutic dosage of albendazole (10 mg/kg of body weight) would result in necessary concentrations of ABZSO in vivo to disrupt embryogenesis.

  7. Regulatory effect of Dimethyl Sulfoxide (DMSO) on astrocytic reactivity in a murine model of cerebral infarction by arterial embolization

    PubMed Central

    Rengifo Valbuena, Carlos Augusto; Ávila Rodríguez, Marco Fidel; Céspedes Rubio, Angel

    2013-01-01

    Introduction: The pathophysiology of cerebral ischemia is essential for early diagnosis, neurologic recovery, the early onset of drug treatment and the prognosis of ischemic events. Experimental models of cerebral ischemia can be used to evaluate the cellular response phenomena and possible neurological protection by drugs. Objective: To characterize the cellular changes in the neuronal population and astrocytic response by the effect of Dimethyl Sulfoxide (DMSO) on a model of ischemia caused by cerebral embolism. Methods: Twenty Wistar rats were divided into four groups (n= 5). The infarct was induced with α-bovine thrombin (40 NIH/Unit.). The treated group received 90 mg (100 μL) of DMSO in saline (1:1 v/v) intraperitoneally for 5 days; ischemic controls received only NaCl (placebo) and two non-ischemic groups (simulated) received NaCl and DMSO respectively. We evaluated the neuronal (anti-NeuN) and astrocytic immune-reactivity (anti-GFAP). The results were analyzed by densitometry (NIH Image J-Fiji 1.45 software) and analysis of variance (ANOVA) with the Graph pad software (Prism 5). Results: Cerebral embolism induced reproducible and reliable lesions in the cortex and hippocampus (CA1)., similar to those of focal models. DMSO did not reverse the loss of post-ischemia neuronal immune-reactivity, but prevented the morphological damage of neurons, and significantly reduced astrocytic hyperactivity in the somato-sensory cortex and CA1 (p <0.001). Conclusions: The regulatory effect of DMSO on astrocyte hyperreactivity and neuronal-astroglial cytoarchitecture , gives it potential neuroprotective properties for the treatment of thromboembolic cerebral ischemia in the acute phase. PMID:24892319

  8. 5,8-Bis[bis­(pyridin-2-yl)amino]-1,3,4,6,7,9,9b-hepta­aza­phenalen-2(1H)-one dimethyl sulfoxide monosolvate dihydrate

    PubMed Central

    Schwarzer, Anke; Kroke, Edwin

    2014-01-01

    In the asymmetric unit of the title compound, C26H17N13O·C2H6OS·2H2O, there is one independent hepta­zine-based main mol­ecule, one dimethyl sulfoxide mol­ecule and two water mol­ecules as solvents. The tri-s-triazine unit is substituted with two dipyridyl amine moieties and a carbonylic O atom. As indicated by the bond lengths in this acid unit of the hepta­zine derivative [C=O = 1.213 (2) Å, while the adjacent C—N(H) bond = 1.405 (2) Å] it is best described by the keto form. The cyameluric nucleus is close to planar (r.m.s. deviation = 0.061 Å) and the pyridine rings are inclined to its mean plane by dihedral angles varying from 47.47 (5) to 70.22 (5)°. The host and guest mol­ecules are connected via N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds, forming a four-membered inversion dimer-like arrangement enclosing an R 4 4(24) ring motif. These arrangements stack along [1-10] with a weak π–π inter­action [inter-centroid distance = 3.8721 (12) Å] involving adjacent pyridine rings. There are also C—H⋯N and C—H⋯O hydrogen bonds and C—H⋯π inter­actions present within the host mol­ecule and linking inversion-related mol­ecules, forming a three-dimensional structure. PMID:24826156

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Geun-Hee; Kim, Ki Young; Kim, Hwa-Young, E-mail: hykim@ynu.ac.kr

    Methionine sulfoxide reductase B3 (MsrB3), which is primarily found in the endoplasmic reticulum (ER), is an important protein repair enzyme that stereospecifically reduces methionine-R-sulfoxide residues. We previously found that MsrB3 deficiency arrests the cell cycle at the G{sub 1}/S stage through up-regulation of p21 and p27. In this study, we report a critical role of MsrB3 in gene expression of heme oxygenase-1 (HO-1), which has an anti-proliferative effect associated with p21 up-regulation. Depletion of MsrB3 elevated HO-1 expression in mammalian cells, whereas MsrB3 overexpression had no effect. MsrB3 deficiency increased cellular reactive oxygen species (ROS), particularly in the mitochondria. ERmore » stress, which is associated with up-regulation of HO-1, was also induced by depletion of MsrB3. Treatment with N-acetylcysteine as an ROS scavenger reduced augmented HO-1 levels in MsrB3-depleted cells. MsrB3 deficiency activated Nrf2 transcription factor by enhancing its expression and nuclear import. The activation of Nrf2 induced by MsrB3 depletion was confirmed by increased expression levels of its other target genes, such as γ-glutamylcysteine ligase. Taken together, these data suggest that MsrB3 attenuates HO-1 induction by inhibiting ROS production, ER stress, and Nrf2 activation. -- Highlights: •MsrB3 depletion induces HO-1 expression. •MsrB3 deficiency increases cellular ROS and ER stress. •MsrB3 deficiency activates Nrf2 by increasing its expression and nuclear import. •MsrB3 attenuates HO-1 induction by inhibiting ROS production and Nrf2 activation.« less

  10. Nanostructuring of Biosensing Electrodes with Nanodiamonds for Antibody Immobilization

    PubMed Central

    2015-01-01

    While chemical vapor deposition of diamond films is currently cost prohibitive for biosensor construction, in this paper, we show that sonication-assisted nanostructuring of biosensing electrodes with nanodiamonds (NDs) allows harnessing the hydrolytic stability of the diamond biofunctionalization chemistry for real-time continuous sensing, while improving the detector sensitivity and stability. We find that the higher surface coverages were important for improved bacterial capture and can be achieved through proper choice of solvent, ND concentration, and seeding time. A mixture of methanol and dimethyl sulfoxide provides the highest surface coverage (33.6 ± 3.4%) for the NDs with positive zeta-potential, compared to dilutions of dimethyl sulfoxide with acetone, ethanol, isopropyl alcohol, or water. Through impedance spectroscopy of ND-seeded interdigitated electrodes (IDEs), we found that the ND seeds serve as electrically conductive islands only a few nanometers apart. Also we show that the seeded NDs are amply hydrogenated to be decorated with antibodies using the UV-alkene chemistry, and higher bacterial captures can be obtained compared to our previously reported work with diamond films. When sensing bacteria from 106 cfu/mL E. coliO157:H7, the resistance to charge transfer at the IDEs decreased by ∼38.8%, which is nearly 1.5 times better than that reported previously using redox probes. Further in the case of 108 cfu/mL E. coliO157:H7, the charge transfer resistance changed by ∼46%, which is similar to the magnitude of improvement reported using magnetic nanoparticle-based sample enrichment prior to impedance detection. Thus ND seeding allows impedance biosensing in low conductivity solutions with competitive sensitivity. PMID:24397797

  11. Evaluation of dimethyl sulfoxide and dexamethasone on pulmonary contusion in experimental blunt thoracic trauma.

    PubMed

    Boybeyi, Ozlem; Bakar, Bulent; Aslan, Mustafa Kemal; Atasoy, Pinar; Kisa, Ucler; Soyer, Tutku

    2014-12-01

    A thoracic trauma model was designed to evaluate the effect of dimethyl sulfoxide (DMSO) and dexamethasone (DX) on histopathologic and oxidative changes in lung parenchyma seen after pulmonary contusion. Twenty-four Wistar albino rats were included in the study. They were allocated into control (CG, n=6), sham (SG, n=6), DX (DXG, n=6), and DMSO (DMG, n=6) groups. Only a lung biopsy was performed in CG. In the experimental groups, blunt thoracic trauma was induced by dropping a cylindrical metal weight (0.5 kg) through a stainless steel tube onto the right hemithorax from a height of 0.4 m (E=1.96 J). In the SG, 1 mL of physiologic saline was injected intraperitoneally, in the DXG 10 mg/kg of DX was injected intraperitoneally, and in the DMG 1.2 g/mL of DMSO was injected intraperitoneally 15 minutes after trauma. After 6 hours, lung biopsy was performed for histopathologic and oxidative injury markers. Histopathologically, congestion, hemorrhage, neutrophil infiltration, endothelial-nitric oxide synthase (E-NoS), and total pathologic score were significantly higher in SG, DXG, and DMG when compared with CG (p<0.05). Neutrophil infiltration, total pathologic score, and E-NoS were significantly decreased in DMG when compared with SG and DXG (p<0.05). Biochemically, superoxide dismutase (SOD) level was significantly higher in SG, DXG, and DMG than in CG. SOD level was significantly lower in DXG and DMG than in SG (p<0.05). DMSO prevents further injury by decreasing neutrophil infiltration and endothelial injury in lung contusions. DX may have a role in the progression of inflammation but not in preventing the pathologic disruption of pulmonary parenchyma. Georg Thieme Verlag KG Stuttgart · New York.

  12. Oxygen-atom transfer reactivity of axially ligated Mn(V)-oxo complexes: evidence for enhanced electrophilic and nucleophilic pathways.

    PubMed

    Neu, Heather M; Yang, Tzuhsiung; Baglia, Regina A; Yosca, Timothy H; Green, Michael T; Quesne, Matthew G; de Visser, Sam P; Goldberg, David P

    2014-10-01

    Addition of anionic donors to the manganese(V)-oxo corrolazine complex Mn(V)(O)(TBP8Cz) has a dramatic influence on oxygen-atom transfer (OAT) reactivity with thioether substrates. The six-coordinate anionic [Mn(V)(O)(TBP8Cz)(X)](-) complexes (X = F(-), N3(-), OCN(-)) exhibit a ∼5 cm(-1) downshift of the Mn-O vibrational mode relative to the parent Mn(V)(O)(TBP8Cz) complex as seen by resonance Raman spectroscopy. Product analysis shows that the oxidation of thioether substrates gives sulfoxide product, consistent with single OAT. A wide range of OAT reactivity is seen for the different axial ligands, with the following trend determined from a comparison of their second-order rate constants for sulfoxidation: five-coordinate ≈ thiocyanate ≈ nitrate < cyanate < azide < fluoride ≪ cyanide. This trend correlates with DFT calculations on the binding of the axial donors to the parent Mn(V)(O)(TBP8Cz) complex. A Hammett study was performed with p-X-C6H4SCH3 derivatives and [Mn(V)(O)(TBP8Cz)(X)](-) (X = CN(-) or F(-)) as the oxidant, and unusual "V-shaped" Hammett plots were obtained. These results are rationalized based upon a change in mechanism that hinges on the ability of the [Mn(V)(O)(TBP8Cz)(X)](-) complexes to function as either an electrophilic or weak nucleophilic oxidant depending upon the nature of the para-X substituents. For comparison, the one-electron-oxidized cationic Mn(V)(O)(TBP8Cz(•+)) complex yielded a linear Hammett relationship for all substrates (ρ = -1.40), consistent with a straightforward electrophilic mechanism. This study provides new, fundamental insights regarding the influence of axial donors on high-valent Mn(V)(O) porphyrinoid complexes.

  13. Determination of low-level agricultural residues in soft drinks and sports drinks by liquid chromatography/tandem mass spectrometry: single-laboratory validation.

    PubMed

    Paske, Nathan; Berry, Bryan; Schmitz, John; Sullivan, Darryl

    2007-01-01

    In this study, sponsored by PepsiCo Inc., a method was validated for measurement of 11 pesticide residues in soft drinks and sports drinks. The pesticide residues determined in this validation were alachlor, atrazine, butachlor, isoproturon, malaoxon, monocrotophos, paraoxon-methyl, phorate, phorate sulfone, phorate sulfoxide, and 2,4-dichlorophenoxyacetic acid (2,4-D) when spiked at 0.100 microg/L (1.00 microg/L for phorate). Samples were filtered (if particulate matter was present), degassed (if carbonated), and analyzed using liquid chromatography with tandem mass spectrometry. Quantitation was performed with matrix-matched external standard calibration solutions. The standard curve range for this assay was 0.0750 to 10.0 microg/L. The calibration curves for all agricultural residues had coefficient of determination (r2) values greater than or equal to 0.9900 with the exception of 2 values that were 0.9285 and 0.8514. Fortification spikes at 0.100 microg/L (1.00 microg/L for phorate) over the course of 2 days (n=8 each day) for 3 matrixes (7UP, Gatorade, and Diet Pepsi) yielded average percent recoveries (and percent relative standard deviations) as follows (n=48): 94.4 (15.2) for alachlor, 98.2 (13.5) for atrazine, 83.1 (41.6) for butachlor, 89.6 (24.5) for isoproturon, 87.9 (24.4) for malaoxon, 96.1 (9.26) for monocrotophos, 101 (25.7) for paraoxon-methyl, 86.6 (20.4) for phorate, 101 (16.5) for phorate sulfone, 93.6 (25.5) for phorate sulfoxide, and 98.2 (6.02) for 2,4-D.

  14. Antitrypanosomal Activity of Fexinidazole Metabolites, Potential New Drug Candidates for Chagas Disease

    PubMed Central

    Nascimento, Alvaro F. S.; Mazzeti, Ana Lia; Marques, Luiz F.; Gonçalves, Karolina R.; Mota, Ludmilla W. R.; Diniz, Lívia de F.; Caldas, Ivo S.; Talvani, André; Shackleford, David M.; Koltun, Maria; Saunders, Jessica; White, Karen L.; Scandale, Ivan; Charman, Susan A.; Chatelain, Eric

    2014-01-01

    This study was designed to verify the in vivo efficacy of sulfoxide and sulfone fexinidazole metabolites following oral administration in a murine model of Chagas disease. Female Swiss mice infected with the Y strain of Trypanosoma cruzi were treated orally once per day with each metabolite at doses of 10 to 100 mg/kg of body weight for a period of 20 days. Parasitemia was monitored throughout, and cures were detected by parasitological and PCR assays. The results were compared with those achieved with benznidazole treatment at the same doses. Fexinidazole metabolites were effective in reducing the numbers of circulating parasites and protecting mice against death, compared with untreated mice, but without providing cures at daily doses of 10 and 25 mg/kg. Both metabolites were effective in curing mice at 50 mg/kg/day (30% to 40%) and 100 mg/kg/day (100%). In the benznidazole-treated group, parasitological cure was detected only in animals treated with the higher dose of 100 mg/kg/day (80%). Single-dose pharmacokinetic parameters for each metabolite were obtained from a parallel group of uninfected mice and were used to estimate the profiles following repeated doses. Pharmacokinetic data suggested that biological efficacy most likely resides with the sulfone metabolite (or subsequent reactive metabolites formed following reduction of the nitro group) following administration of either the sulfoxide or the sulfone and that prolonged plasma exposure over the 24-h dosing window is required to achieve high cure rates. Fexinidazole metabolites were effective in treating T. cruzi in a mouse model of acute infection, with cure rates superior to those achieved with either fexinidazole itself or benznidazole. PMID:24841257

  15. Dimethyl sulfoxide in a 10% concentration has no effect on oxidation stress induced by ovalbumin-sensitization in a guinea-pig model of allergic asthma.

    PubMed

    Mikolka, P; Mokra, D; Drgova, A; Petras, M; Mokry, J

    2012-04-01

    In allergic asthma, activated cells produce various substances including reactive oxygen species (ROS). As heterogenic pathophysiology of asthma results to different response to the therapy, testing novel interventions continues. Because of water-insolubility of some potentially beneficial drugs, dimethyl sulfoxide (DMSO) is often used as a solvent. Based on its antioxidant properties, this study evaluated effects of DMSO on mobilization of leukocytes into the lungs, and oxidation processes induced by ovalbumin (OVA)-sensitization in a guinea-pig model of allergic asthma. Guinea-pigs were divided into OVA-sensitized and naive animals. One group of OVA-sensitized animals and one group of naive animals were pretreated with 10% DMSO, the other two groups were given saline. After sacrificing animals, blood samples were taken and total antioxidant status (TAS) in the plasma was determined. Left lungs were saline-lavaged and differential leukocyte count in bronchoalveolar lavage fluid (BAL) was made. Right lung tissue was homogenized, TAS and products of lipid and protein oxidation were determined in the lung homogenate and in isolated mitochondria. OVA-sensitization increased total number of cells and percentages of eosinophils and neutrophils in BAL fluid; increased lipid and protein oxidation in the lung homogenate and mitochondria, and decreased TAS in the lungs and plasma compared with naive animals. However, no differences were observed in DMSO-instilled animals compared to controls. In conclusion, OVA-sensitization increased mobilization of leukocytes into the lungs and elevated production of ROS, accompanied by decrease in TAS. 10% DMSO had no effect on lipid and protein oxidation in a guinea-pig model of allergic asthma.

  16. Can ferric-superoxide act as a potential oxidant in P450(cam)? QM/MM investigation of hydroxylation, epoxidation, and sulfoxidation.

    PubMed

    Lai, Wenzhen; Shaik, Sason

    2011-04-13

    In view of recent reports of high reactivity of ferric-superoxide species in heme and nonheme systems (Morokuma et al. J. Am. Chem. Soc. 2010, 132, 11993-12005; Que et al. Inorg. Chem. 2010, 49, 3618-3628; Nam et al. J. Am. Chem. Soc. 2010, 132, 5958-5959; J. Am. Chem. Soc. 2010, 132, 10668-10670), we use herein combined quantum mechanics/molecular mechanics (QM/MM) methods to explore the potential reactivity of P450(cam) ferric-superoxide toward hydroxylation, epoxidation, and sulfoxidation. The calculations demonstrate that P450 ferric-superoxide is a sluggish oxidant compared with the high-valent oxoiron porphyrin cation-radical species. As such, unlike heme enzymes with a histidine axial ligand, the P450 superoxo species does not function as an oxidant in P450(cam). The origin of this different behavior of the superoxo species of P450 vis-à-vis other heme enzymes like tryptophan 2, 3-dioxygenase (TDO) is traced to the ability of the latter superoxo species to make a stronger FeOO-X (X = H,C) bond and to stabilize the corresponding bond-activation transition states by resonance with charge-transfer configurations. By contrast, the negatively charged thiolate ligand in the P450 superoxo species minimizes the mixing of charge transfer configurations in the transition state and raises the reaction barrier. However, as we demonstrate, an external electric field oriented along the Fe-O axis with a direction pointing from Fe toward O will quench Cpd I formation by slowing the reduction of ferric-superoxide and will simultaneously lower the barriers for oxidation by the latter species, thereby enabling observation of superoxo chemistry in P450. Other options for nascent superoxo reactivity in P450 are discussed. © 2011 American Chemical Society

  17. Improving viability of cryopreserved honey bee (Apis mellifera L.) sperm with selected diluents, cryoprotectants, and semen dilution ratios.

    PubMed

    Taylor, M A; Guzmán-Novoa, E; Morfin, N; Buhr, M M

    2009-07-15

    This is the first study where the systematic application of theories and techniques used in mammalian sperm cryopreservation have been applied to honey bee (Apis mellifera L.) semen as a means to improve postthaw viability of cryopreserved sperm. Six newly designed diluents, three cryoprotectants (dimethyl sulfoxide, DMA, glycerol), and five diluent:semen ratios (1:1, 3:1, 6:1, 9:1, and 12:1) were tested. In addition, the sperm freezing tolerance of three honey bee strains was evaluated. Specific protocols were designed to control semen freezing and thawing rates. Sperm motility was assessed visually, whereas sperm viability was assessed using SYBR-14 and propidium iodide fluorescent stains. Diluent treatments did not affect fresh (nonfrozen) sperm viability yet affected fresh sperm motility (P<0.05). Based on these assessments, two diluents were chosen and used in all successive cryopreservation experiments. Using the selected diluents, semen was collected at various diluent:semen ratios, along with one of the three cryoprotectants. Semen collected at high dilution ratios, using a hypotonic antioxidant diluent containing catalase, in combination with dimethyl sulfoxide, provided higher postthaw sperm viability than that of all other combinations tested (68.3+/-5.4%; P<0.05). Using this combination of dilution ratio, diluent, and cryoprotectant, there were no differences among honey bee strains for postthaw sperm viability (P=0.805). Nevertheless, these new semen dilution and freezing methods improved postthaw viability of sperm to levels that could theoretically sustain worker populations in colonies, thus providing potential for further optimization of cryopreservation techniques for the genetic preservation and improvement of honey bee genotypes.

  18. Dimethyl sulfoxide inhibits spontaneous diabetes and autoimmune recurrence in non-obese diabetic mice by inducing differentiation of regulatory T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Gu-Jiun; Sytwu, Huey-Kang; Yu, Jyh-Cherng

    Type 1 diabetes mellitus (T1D) is caused by the destruction of insulin-producing β cells in pancreatic islets by autoimmune T cells. Islet transplantation has been established as an effective therapeutic strategy for T1D. However, the survival of islet grafts can be disrupted by recurrent autoimmunity. Dimethyl sulfoxide (DMSO) is a solvent for organic and inorganic substances and an organ-conserving agent used in solid organ transplantations. DMSO also exerts anti-inflammatory, reactive oxygen species scavenger and immunomodulatory effects and therefore exhibits therapeutic potential for the treatment of several human inflammatory diseases. In this study, we investigated the therapeutic potential of DMSO inmore » the inhibition of autoimmunity. We treated an animal model of islet transplantation (NOD mice) with DMSO. The survival of the syngeneic islet grafts was significantly prolonged. The population numbers of CD8, DC and Th1 cells were decreased, and regulatory T (Treg) cell numbers were increased in recipients. The expression levels of IFN-γ and proliferation of T cells were also reduced following DMSO treatment. Furthermore, the differentiation of Treg cells from naive CD4 T cells was significantly increased in the in vitro study. Our results demonstrate for the first time that in vivo DMSO treatment suppresses spontaneous diabetes and autoimmune recurrence in NOD mice by inhibiting the Th1 immune response and inducing the differentiation of Treg cells. - Highlights: • We report a therapeutic potential of DMSO in autoimmune diabetes. • DMSO exhibits an immune modulatory effect. • DMSO treatment increases regulatory T cell differentiation. • The increase in STAT5 signaling pathway explains the effect of DMSO in Tregs.« less

  19. Electrochemical and spectroelectrochemical studies on UO(2)(saloph)L (saloph = N,N'-disalicylidene-o-phenylenediaminate, L=dimethyl sulfoxide or N,N-dimethylformamide).

    PubMed

    Mizuoka, Koichiro; Kim, Seong-Yun; Hasegawa, Miki; Hoshi, Toshihiko; Uchiyama, Gunzo; Ikeda, Yasuhisa

    2003-02-24

    To examine properties of pentavalent uranium, U(V), we have carried out electrochemical and spectroelectrochemical studies on UO(2)(saloph)L [saloph = N,N'-disalicylidene-o-phenylenediaminate, L = dimethyl sulfoxide (DMSO) or N,N-dimethylformamide (DMF)]. The electrochemical reactions of UO(2)(saloph)L complexes in L were found to occur quasireversibly. The reduction processes of UO(2)(saloph)L complexes were followed spectroelectrochemically by using an optical transparent thin layer electrode cell. It was found that the absorption spectra measured at the applied potentials from 0 to -1.650 V versus ferrocene/ferrocenium ion redox couple (Fc/Fc(+)) for UO(2)(saloph)DMSO in DMSO have clear isosbestic points and that the evaluated electron stoichiometry equals 1.08. These results indicate that the reduction product of UO(2)(saloph)DMSO is [U(V)O(2)(saloph)DMSO](-), which is considerably stable in DMSO. Furthermore, it was clarified that the absorption spectrum of the [U(V)O(2)(saloph)DMSO](-) complex has a very small molar absorptivity in the visible region and characteristic absorption bands due to the 5f(1) orbital at around 750 and 900 nm. For UO(2)(saloph)DMF in DMF, the clear isosbestic points were not observed in the similar spectral changes. It is proposed that the UO(2)(saloph)DMF complex is reduced to [U(V)O(2)(saloph)DMF](-) accompanied by the dissociation of DMF as a successive reaction. The formal redox potentials of UO(2)(saloph)L in L (E(0), vs Fc/Fc(+)) for U(VI)/U(V) couple were determined to be -1.550 V for L = DMSO and -1.626 V for L = DMF.

  20. Use of ethylene-vinyl alcohol copolymer as a liquid embolic agent to treat a peripheral arteriovenous malformation in a dog

    PubMed Central

    Culp, William T. N.; Glaiberman, Craig B.; Pollard, Rachel E.; Wisner, Erik R.

    2015-01-01

    Case Description An 11-year-old castrated male Tibetan Mastiff was evaluated because of a visibly enlarged blood vessel and progressively worsening swelling of the right hind limb. Clinical Findings On physical examination, the right hind limb was markedly larger than the left hind limb and the dog was minimally weight bearing on the affected limb. A bruit was auscultated over the affected region. Ultrasonography of the tarsal region of the right hind limb revealed an artery with turbulent flow that communicated with venous drainage. A CT scan confirmed the presence of an arteriovenous malformation (AVM). Treatment and Outcome Embolization of the AVM with a liquid embolic agent (ethylene-vinyl alcohol copolymer dissolved in dimethyl sulfoxide) was elected. An arteriogram was performed prior to treatment and delineated the vessels that were targeted for embolization. The embolic agent was infused into the AVM, and a postinjection arteriogram confirmed complete occlusion of the AVM nidus and normal arterial flow to the paw with subsequent normal venous drainage. The circumference of the abnormal paw was 51 cm before the procedure and 22.9 cm at 4 weeks after the procedure. Additionally, the gait of the dog dramatically improved. No complications associated with the procedure developed. Clinical Relevance Peripheral AVMs in dogs are uncommon, and described treatment options are limited and generally associated with serious morbidity. A liquid embolic agent, ethylene-vinyl alcohol copolymer dissolved in dimethyl sulfoxide, was successfully administered in this case, and no morbidity was observed secondary to the procedure. Clinical success was characterized by substantial improvement in limb swelling and marked improvement in the gait of the dog. PMID:24984133

Top