Science.gov

Sample records for sulfur dioxide dimethyl

  1. Attribution of atmospheric sulfur dioxide over the English Channel to dimethyl sulfide and changing ship emissions

    NASA Astrophysics Data System (ADS)

    Yang, Mingxi; Bell, Thomas G.; Hopkins, Frances E.; Smyth, Timothy J.

    2016-04-01

    Atmospheric sulfur dioxide (SO2) was measured continuously from the Penlee Point Atmospheric Observatory (PPAO) near Plymouth, United Kingdom, between May 2014 and November 2015. This coastal site is exposed to marine air across a wide wind sector. The predominant southwesterly winds carry relatively clean background Atlantic air. In contrast, air from the southeast is heavily influenced by exhaust plumes from ships in the English Channel as well as near Plymouth Sound. A new International Maritime Organization (IMO) regulation came into force in January 2015 to reduce the maximum allowed sulfur content in ships' fuel 10-fold in sulfur emission control areas such as the English Channel. Our observations suggest a 3-fold reduction in ship-emitted SO2 from 2014 to 2015. Apparent fuel sulfur content calculated from coincidental SO2 and carbon dioxide (CO2) peaks from local ship plumes show a high level of compliance to the IMO regulation (> 95 %) in both years (˜ 70 % of ships in 2014 were already emitting at levels below the 2015 cap). Dimethyl sulfide (DMS) is an important source of atmospheric SO2 even in this semi-polluted region. The relative contribution of DMS oxidation to the SO2 burden over the English Channel increased from about one-third in 2014 to about one-half in 2015 due to the reduction in ship sulfur emissions. Our diel analysis suggests that SO2 is removed from the marine atmospheric boundary layer in about half a day, with dry deposition to the ocean accounting for a quarter of the total loss.

  2. Airborne measurements of sulfur dioxide, dimethyl sulfide, carbon disulfide, and carbonyl sulfide by isotope dilution gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Bandy, Alan R.; Thornton, Donald C.; Driedger, Arthur R., III

    1993-01-01

    A gas chromatograph/mass spectrometer is described for determining atmospheric sulfur dioxide, carbon disulfide, dimethyl sulfide, and carbonyl sulfide from aircraft and ship platforms. Isotopically labelled variants of each analyte were used as internal standards to achieve high precision. The lower limit of detection for each species for an integration time of 3 min was 1 pptv for sulfur dioxide and dimethyl sulfide and 0.2 pptv for carbon disulfide and carbonyl sulfide. All four species were simultaneously determined with a sample frequency of one sample per 6 min or greater. When only one or two species were determined, a frequency of one sample per 4 min was achieved. Because a calibration is included in each sample, no separate calibration sequence was needed. Instrument warmup was only a few minutes. The instrument was very robust in field deployments, requiring little maintenance.

  3. Monte Carlo predictions of phase equilibria and structure for dimethyl ether + sulfur dioxide and dimethyl ether + carbon dioxide.

    PubMed

    Kamath, Ganesh; Ketko, MaryBeth; Baker, Gary A; Potoff, Jeffrey J

    2012-01-28

    A new force field for dimethyl ether (DME) based on the Lennard-Jones (LJ) 12-6 plus point charge functional form is presented in this work. This force field reproduces experimental saturated liquid and vapor densities, vapor pressures, heats of vaporization, and critical properties to within the statistical uncertainty of the combined experimental and simulation measurements for temperatures between the normal boiling and critical point. Critical parameters and normal boiling point are predicted to within 0.1% of experiment. This force field is used in grand canonical histogram reweighting Monte Carlo simulations to predict the pressure composition diagrams for the binary mixtures DME + SO(2) at 363.15 K and DME + CO(2) at 335.15 and 308.15 K. For the DME + SO(2) mixture, simulation is able to qualitatively reproduce the minimum pressure azeotropy observed experimentally for this mixture, but quantitative errors exist, suggesting that multibody effects may be important in this system. For the DME + CO(2) mixture, simulation is able to predict the pressure-composition behavior within 1% of experimental data. Simulations in the isobaric-isothermal ensemble are used to determine the microstructure of DME + SO(2) and DME + CO(2) mixtures. The DME + SO(2) shows weak pairing between DME and SO(2) molecules, while no specific pairing or aggregation is observed for mixtures of DME + CO(2).

  4. Homogeneous graft copolymerization of styrene onto cellulose in a sulfur dioxide-diethylamine-dimethyl sulfoxide cellulose solvent

    SciTech Connect

    Tsuzuki, M.; Hagiwara, I.; Shiraishi, N.; Yokota, T.

    1980-12-01

    Graft copolymerization of styrene onto cellulose was studied in a homogeneous system (SO/sub 2/(liquid)- diethylamine (DEA)-dimethyl sulfoxide (DMSO) medium)) by ..gamma..-ray mutual irradiation technique. At the same time, homopolymerization of styrene was also examined separately in DMSO, SO/sub 2/-DMSO, DEA-DMSO, and SO/sub 2/-DEA-DMSO media by the same technique. Polymerization of styrene hardly occurs on concentrations above 10 mole SO/sub 2/-DEA complex per mole glucose unit. Maximum percent grafting was obtained in concentrations of 4 mole, after which it decreased rapidly. Total conversion and percent grafting increased with the irradiation time. The value (=0.55) of the slope of the total conversion rate plotted against the dose was only a little higher than the 1/2 which was expected from normal kinetics. No retardation in homopolymerization of styrene in DMSO, SO/sub 2/-DMSO, and DEA-DMSO was evident, while the retardation of homopolymerization in the SO/sub 2/-DEA-DMSO medium was measurable. Sulfur atoms were detected in the polymers obtained in both of SO/sub 2/-DMSO and SO/sub 2/-DEA-DMSO solutions. All of the molecular weights of polymers obtained in the present experiment were very low (3.9 x 10/sup 3/-1.75 x 10/sup 4/).

  5. Sulfur Dioxide Designations

    EPA Pesticide Factsheets

    This area provides information on the process EPA, the states, and the tribes follow to designate areas as attainment (meeting) or nonattainment (not meeting) the sulfur dioxide air quality standards.

  6. Sulfur Dioxide Pollution Monitor.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC.

    The sulfur dioxide pollution monitor described in this document is a government-owed invention that is available for licensing. The background of the invention is outlined, and drawings of the monitor together with a detailed description of its function are provided. A sample stream of air, smokestack gas or the like is flowed through a…

  7. Solubility of Sulfur Dioxide in Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Chang, K. K.; Compton, L. E.; Lawson, D. D.

    1982-01-01

    The solubility of sulfur dioxide in 50% (wt./wt.) sulfuric acid was evaluated by regular solution theory, and the results verified by experimental measurements in the temperature range of 25 C to 70 C at pressures of 60 to 200 PSIA. The percent (wt./wt.) of sulfur dioxide in 50% (wt./wt.) sulfuric acid is given by the equation %SO2 = 2.2350 + 0.0903P - 0.00026P 10 to the 2nd power with P in PSIA.

  8. Operational overview of the NASA GTE/CITE 3 airborne instrument intercomparisons for sulfur dioxide, hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, and carbon disulfide

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.; Davis, Douglas D.; Gregory, Gerald L.; Mcneal, Robert J.; Bendura, Richard J.; Drewry, Joseph W.; Barrick, John D.; Kirchhoff, Volker W. J. H.; Motta, Adauto G.; Navarro, Roger L.

    1993-01-01

    This paper reports the overall experimental design and gives a brief overview of results from the third airborne Chemical Instrumentation Test and Evaluation (CITE 3) mission conducted as part of the National Aeronautics and Space Administration's Global Tropospheric Experiment. The primary objective of CITE 3 was to evaluate the capability of instrumentation for airborne measurements of ambient concentrations of SO2, H2S, CS, dimethyl sulfide, and carbonyl sulfide. Ancillary measurements augmented the intercomparison data in order to address the secondary objective of CITE 3 which was to address specific issues related to the budget and photochemistry of tropospheric sulfur species. The CITE 3 mission was conducted on NASA's Wallops Flight Center Electra aircraft and included a ground-based intercomparison of sulfur standards and intercomparison/sulfur science flights conducted from the NASA Wallops Flight Facility, Wallops Island, Virginia, followed by flights from Natal, Brazil. Including the transit flights, CITE 3 included 16 flights encompassing approximately 96 flight hours.

  9. 21 CFR 182.3862 - Sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sulfur dioxide. 182.3862 Section 182.3862 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3862 Sulfur dioxide. (a) Product. Sulfur dioxide. (b) (c) Limitations, restrictions, or explanation. This substance...

  10. 21 CFR 182.3862 - Sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sulfur dioxide. 182.3862 Section 182.3862 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3862 Sulfur dioxide. (a) Product. Sulfur dioxide. (b) (c) Limitations, restrictions, or explanation. This substance...

  11. 21 CFR 582.3862 - Sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sulfur dioxide. 582.3862 Section 582.3862 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sulfur dioxide. (a) Product. Sulfur dioxide. (b) (c) Limitations, restrictions, or explanation....

  12. 21 CFR 582.3862 - Sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sulfur dioxide. 582.3862 Section 582.3862 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sulfur dioxide. (a) Product. Sulfur dioxide. (b) (c) Limitations, restrictions, or explanation....

  13. 21 CFR 582.3862 - Sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sulfur dioxide. 582.3862 Section 582.3862 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sulfur dioxide. (a) Product. Sulfur dioxide. (b) (c) Limitations, restrictions, or explanation....

  14. 21 CFR 582.3862 - Sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sulfur dioxide. 582.3862 Section 582.3862 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sulfur dioxide. (a) Product. Sulfur dioxide. (b) (c) Limitations, restrictions, or explanation....

  15. 21 CFR 582.3862 - Sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfur dioxide. 582.3862 Section 582.3862 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sulfur dioxide. (a) Product. Sulfur dioxide. (b) (c) Limitations, restrictions, or explanation....

  16. 21 CFR 182.3862 - Sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sulfur dioxide. 182.3862 Section 182.3862 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3862 Sulfur dioxide. (a) Product. Sulfur dioxide. (b) (c) Limitations, restrictions, or explanation. This substance...

  17. 21 CFR 182.3862 - Sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sulfur dioxide. 182.3862 Section 182.3862 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3862 Sulfur dioxide. (a) Product. Sulfur dioxide. (b) (c) Limitations, restrictions, or explanation. This substance...

  18. Sulfur Dioxide and Material Damage

    ERIC Educational Resources Information Center

    Gillette, Donald G.

    1975-01-01

    This study relates sulfur dioxide levels with material damage in heavily populated or polluted areas. Estimates of loss were determined from increased maintenance and replacement costs. The data indicate a decrease in losses during the past five years probably due to decline in pollution levels established by air quality standards. (MR)

  19. 21 CFR 182.3862 - Sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sulfur dioxide. 182.3862 Section 182.3862 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3862 Sulfur dioxide. (a) Product. Sulfur...

  20. Inactivation of different strains of Escherichia coli O157:H7 in various apple ciders treated with dimethyl dicarbonate (DMDC) and sulfur dioxide (SO2) as an alternative method.

    PubMed

    Basaran-Akgul, N; Churey, J J; Basaran, P; Worobo, R W

    2009-02-01

    Escherichia coli has been identified as the causative agent in numerous foodborne illness outbreaks associated with the consumption of fresh apple cider. Apple cider has a pH which is normally below 4.0 and would not be considered a medium capable of supporting the growth of foodborne pathogens. The association of unpasteurized apple cider with foodborne illness due to E. coli O157:H7 has however, led to increased interest in potential alternative methods to produce pathogen free cider. Apple cider was prepared from eight different apple cultivars, inoculated with approximately 10(6)-10(7) CFU of three strains of E. coli O157:H7 per ml (933, ATCC 43889, and ATCC 43895) and tested to determine the effectiveness of sulfur dioxide (SO(2)) and dimethyl dicarbonate (DMDC). Bacterial populations for treated and untreated samples were then enumerated by using non-selective media. Eight different ciders were treated with DMDC (125 and 250 ppm) and SO(2) (25, 50, 75, 100 ppm). Greater than a 5-log reduction was achieved at room temperature with 250 ppm of DMDC and 50 ppm of SO(2) after the incubation time of 6h and 24h, respectively. Addition of DMDC and/or SO(2) may offer an inexpensive alternative to thermal pasteurization for the production of safe apple cider for small apple cider producers.

  1. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOEpatents

    Jin, Yun; Yu, Qiquan; Chang, Shih-Ger

    1996-01-01

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h.sup.-1. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications.

  2. Production of sulfur from sulfur dioxide obtained from flue gas

    SciTech Connect

    Miller, R.

    1989-06-06

    This patent describes a regenerable process for recovery of elemental sulfur from a gas containing sulfur dioxide comprising the steps of: contacting the gas with an aqueous, alkaline reaction medium containing sodium sulfite in concentration sufficient so that a slurry containing solid sodium sulfide is formed to react sulfur dioxide with sodium sulfite to form a solution containing dissolved sodium pyrosulfite and sodium sulfite; separating sulfur dioxide from the solution produced to leave a residual mixture containing water, sodium sulfite and a sodium pyrosulfite, the amount of sulfur dioxide separated being equal to about one-third the amount of sulfur dioxide which reacted with sodium sulfite; adding, in substantial absence of air, sufficient water and sodium bicarbonate to the residual mixture to react with the dissolved sodium pyrsulfide and form a slurry of solid sodium sulfite suspended in the resulting aqueous, alkaline reaction medium and gaseous carbon dioxide; separating the gaseous carbon dioxide; separating the solid sodium sulfite from the aqueous alkaline reaction medium and recycling the separated reaction medium; reducing the separated sodium sulfite to sodium sulfide; adding the sodium sulfide to an aqueous reaction medium containing sodium bicarbonate and, in the substantial absence of air, carbonating the resulting mixture with the gaseous carbon dioxide to form a slurry of solid particles of sodium bicarbonate dispersed in an aqueous reactor medium containing sodium bicarbonate, along with a gas composed primarily of hydrogen sulfide.

  3. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference...

  4. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference...

  5. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference...

  6. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference...

  7. Primary Sulfur Dioxide NAAQS Implementation Schedule

    EPA Pesticide Factsheets

    The effective date for the primary sulfur dioxide (SO2) National Ambient Air Quality Standard (NAAQS) established in 2012, is followed by designations of nonattainment areas and subsequently required state implementation plans (SIPs).

  8. Copper mercaptides as sulfur dioxide indicators

    DOEpatents

    Eller, Phillip G.; Kubas, Gregory J.

    1979-01-01

    Organophosphine copper(I) mercaptide complexes are useful as convenient and semiquantitative visual sulfur dioxide gas indicators. The air-stable complexes form 1:1 adducts in the presence of low concentrations of sulfur dioxide gas, with an associated color change from nearly colorless to yellow-orange. The mercaptides are made by mixing stoichiometric amounts of the appropriate copper(I) mercaptide and phosphine in an inert organic solvent.

  9. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOEpatents

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  10. 46 CFR 151.50-84 - Sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Sulfur dioxide. 151.50-84 Section 151.50-84 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-84 Sulfur dioxide. (a) Sulfur... respiratory protective device that protects the wearer against sulfur dioxide vapors and provides...

  11. 46 CFR 151.50-84 - Sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Sulfur dioxide. 151.50-84 Section 151.50-84 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-84 Sulfur dioxide. (a) Sulfur... respiratory protective device that protects the wearer against sulfur dioxide vapors and provides...

  12. 46 CFR 151.50-84 - Sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfur dioxide. 151.50-84 Section 151.50-84 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-84 Sulfur dioxide. (a) Sulfur... respiratory protective device that protects the wearer against sulfur dioxide vapors and provides...

  13. 46 CFR 151.50-84 - Sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Sulfur dioxide. 151.50-84 Section 151.50-84 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-84 Sulfur dioxide. (a) Sulfur... respiratory protective device that protects the wearer against sulfur dioxide vapors and provides...

  14. 46 CFR 151.50-84 - Sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Sulfur dioxide. 151.50-84 Section 151.50-84 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-84 Sulfur dioxide. (a) Sulfur... respiratory protective device that protects the wearer against sulfur dioxide vapors and provides...

  15. Advanced Rechargeable Lithium Sulfur Dioxide Cell

    DTIC Science & Technology

    1991-11-01

    3SO 2 electrolyte. Surface treatments were carried out at 240"C using water (Cell 15) and thionyl chloride (Cell 16). Cathodes were placed in a Parr... LITHIUM SULFUR DIOXIDE CELL R.C. McDonald R. Vierra P. Harris M. Guentert F. Goebel C. Todino S. Hossain Yardney Technical Products, Inc. 82 Mechanic...61" INK rYPOT I AM 9al covmw 4 November 1991 Final Rpt: Sep 88 to Feb 91 ADVANCED RECHARGEABLE LITHIUM SULFUR DIOXIDE CELL C: DAAL01-88-C-0849 R C

  16. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  17. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75...

  18. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  19. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75...

  20. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  1. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). Link to an... to or greater than 0.005 ppm shall be rounded up). (c) Sulfur oxides shall be measured in the...

  2. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  3. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75...

  4. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75...

  5. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  6. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75...

  7. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Sulfur dioxide; tolerances for... § 180.444 Sulfur dioxide; tolerances for residues. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following raw...

  8. 40 CFR 60.163 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for sulfur dioxide. 60.163... Smelters § 60.163 Standard for sulfur dioxide. (a) On and after the date on which the performance test... converter any gases which contain sulfur dioxide in excess of 0.065 percent by volume, except as provided...

  9. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Sulfur dioxide; tolerances for... § 180.444 Sulfur dioxide; tolerances for residues. (a) General. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following...

  10. 40 CFR 60.333 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for sulfur dioxide. 60.333... Turbines § 60.333 Standard for sulfur dioxide. On and after the date on which the performance test required... stationary gas turbine any gases which contain sulfur dioxide in excess of 0.015 percent by volume at...

  11. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Sulfur dioxide; tolerances for... § 180.444 Sulfur dioxide; tolerances for residues. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following raw...

  12. 40 CFR 60.183 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for sulfur dioxide. 60.183... Smelters § 60.183 Standard for sulfur dioxide. (a) On and after the date on which the performance test... furnace, or converter gases which contain sulfur dioxide in excess of 0.065 percent by volume. (b)...

  13. 40 CFR 60.333 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for sulfur dioxide. 60.333... Turbines § 60.333 Standard for sulfur dioxide. On and after the date on which the performance test required... stationary gas turbine any gases which contain sulfur dioxide in excess of 0.015 percent by volume at...

  14. 40 CFR 52.2575 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Control strategy: Sulfur dioxide. 52... strategy: Sulfur dioxide. (a) Part D—Approval—With the exceptions set forth in this subpart, the Administrator approved the Wisconsin sulfur dioxide control plan. (1) Part D—No action—USEPA takes no action...

  15. 40 CFR 60.163 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for sulfur dioxide. 60.163... Smelters § 60.163 Standard for sulfur dioxide. (a) On and after the date on which the performance test... converter any gases which contain sulfur dioxide in excess of 0.065 percent by volume, except as provided...

  16. 40 CFR 60.183 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for sulfur dioxide. 60.183... Smelters § 60.183 Standard for sulfur dioxide. (a) On and after the date on which the performance test... furnace, or converter gases which contain sulfur dioxide in excess of 0.065 percent by volume. (b)...

  17. 40 CFR 60.163 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for sulfur dioxide. 60.163... Smelters § 60.163 Standard for sulfur dioxide. (a) On and after the date on which the performance test... converter any gases which contain sulfur dioxide in excess of 0.065 percent by volume, except as provided...

  18. 40 CFR 60.163 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for sulfur dioxide. 60.163... Smelters § 60.163 Standard for sulfur dioxide. (a) On and after the date on which the performance test... converter any gases which contain sulfur dioxide in excess of 0.065 percent by volume, except as provided...

  19. 40 CFR 52.2575 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Control strategy: Sulfur dioxide. 52... strategy: Sulfur dioxide. (a) Part D—Approval—With the exceptions set forth in this subpart, the Administrator approved the Wisconsin sulfur dioxide control plan. (1) Part D—No action—USEPA takes no action...

  20. 40 CFR 52.2575 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Sulfur dioxide. 52... strategy: Sulfur dioxide. (a) Part D—Approval—With the exceptions set forth in this subpart, the Administrator approved the Wisconsin sulfur dioxide control plan. (1) Part D—No action—USEPA takes no action...

  1. 40 CFR 60.183 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for sulfur dioxide. 60.183... Smelters § 60.183 Standard for sulfur dioxide. (a) On and after the date on which the performance test... furnace, or converter gases which contain sulfur dioxide in excess of 0.065 percent by volume. (b)...

  2. 40 CFR 60.333 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for sulfur dioxide. 60.333... Turbines § 60.333 Standard for sulfur dioxide. On and after the date on which the performance test required... stationary gas turbine any gases which contain sulfur dioxide in excess of 0.015 percent by volume at...

  3. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Sulfur dioxide; tolerances for... § 180.444 Sulfur dioxide; tolerances for residues. (a) General. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following...

  4. 40 CFR 60.183 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for sulfur dioxide. 60.183... Smelters § 60.183 Standard for sulfur dioxide. (a) On and after the date on which the performance test... furnace, or converter gases which contain sulfur dioxide in excess of 0.065 percent by volume. (b)...

  5. 40 CFR 60.333 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for sulfur dioxide. 60.333... Turbines § 60.333 Standard for sulfur dioxide. On and after the date on which the performance test required... stationary gas turbine any gases which contain sulfur dioxide in excess of 0.015 percent by volume at...

  6. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Sulfur dioxide; tolerances for... § 180.444 Sulfur dioxide; tolerances for residues. (a) General. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following...

  7. 40 CFR 60.333 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for sulfur dioxide. 60.333... Turbines § 60.333 Standard for sulfur dioxide. On and after the date on which the performance test required... stationary gas turbine any gases which contain sulfur dioxide in excess of 0.015 percent by volume at...

  8. 40 CFR 60.163 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for sulfur dioxide. 60.163... Smelters § 60.163 Standard for sulfur dioxide. (a) On and after the date on which the performance test... converter any gases which contain sulfur dioxide in excess of 0.065 percent by volume, except as provided...

  9. 40 CFR 52.2575 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Sulfur dioxide. 52... strategy: Sulfur dioxide. (a) Part D—Approval—With the exceptions set forth in this subpart, the Administrator approved the Wisconsin sulfur dioxide control plan. (1) Part D—No action—USEPA takes no action...

  10. 40 CFR 52.2575 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Control strategy: Sulfur dioxide. 52... strategy: Sulfur dioxide. (a) Part D—Approval—With the exceptions set forth in this subpart, the Administrator approved the Wisconsin sulfur dioxide control plan. (1) Part D—No action—USEPA takes no action...

  11. 40 CFR 60.183 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for sulfur dioxide. 60.183... Smelters § 60.183 Standard for sulfur dioxide. (a) On and after the date on which the performance test... furnace, or converter gases which contain sulfur dioxide in excess of 0.065 percent by volume. (b)...

  12. RETENTION OF SULFUR DIOXIDE BY NYLON FILTERS

    EPA Science Inventory

    Based on laboratory studies, recovery efficiencies of sulfur dioxide (SO2) were determined for nylon filters. The nylon filters used in these experiments were found to retain SO2. A relatively uniform amount (1.7%) was recoverable from each nylon filter, independent of relative...

  13. Distribution of Sulfur Dioxide Frost on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Sulfur dioxide, normally a gas at room temperatures, is known to exist on Io's surface as a frost, condensing there from the hot gases emanating from the Io volcanoes. However, the deposition patterns and relation of the frost distribution to the volcanic activity is unknown, since prior measurements lacked the spatial resolution to accurately map the surface frost.

    The Galileo Near Infrared Mapping Spectrometer (NIMS) obtained relatively high spatial and spectral resolution images during the C3 orbit, and the characteristic infrared absorptions of sulfur dioxide frost appearing in the spectra were used to produce the SO2 frost map shown on the right. The comparison image on the left (from 1979 Voyager measurements) shows the same view and indicates the surface brightness as seen in visible light.

    The frost map shows maximum SO2 concentration as white, lesser amounts as blue coloration, and areas with little or no SO2 as black. The resolution of this map is about 120 km (75 miles), which spans the latitude range 120 W to 270 W.

    It is interesting to compare this frost distribution with regions of volcanic activity. Volcanic hotspots identified from NIMS and SSI images occur in many of the dark - low SO2 - areas, a reasonable finding since sulfur dioxide would not condense on such hot regions. The Pele region (to the lower left), N. Colchis hot spots (upper center) and S. Volund (upper right) are good examples of hot spot areas depleted in sulfur dioxide. Much of the rest of this hemisphere of Io has varying amounts of sulfur dioxide present. The most sulfur dioxide-rich area is Colchis Regio, the white area to the right of center.

    Of particular interest is the dark area to the south of Colchis Regio. From the study of other NIMS images, it is seen that this region does not have any large, obvious hotspots. However, it is depleted in sulfur dioxide.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science

  14. Anthropogenic sulfur dioxide emissions: 1850-2005

    SciTech Connect

    Smith, S. J.; Van Aardenne, J.; Klimont, Z.; Andres, Robert Joseph; Volke, A.; Delgado Arias, S

    2011-01-01

    Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850 2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5 grid by sector for use in coordinated climate model experiments.

  15. Anthropogenic Sulfur Dioxide Emissions: 1850-2005

    SciTech Connect

    Smith, Steven J.; van Aardenne, John; Klimont, Z.; Andres, Robert; Volke, April C.; Delgado Arias, Sabrina

    2011-01-02

    Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850 - 2005. A combination of mass balance and best available inventory data was used in order to achieve the most accurate estimate possible. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties of up to 30% were found. The largest contributors to uncertainty at present are emissions from China and international shipping.

  16. Anthropogenic sulfur dioxide emissions: 1850-2005

    NASA Astrophysics Data System (ADS)

    Smith, S. J.; van Aardenne, J.; Klimont, Z.; Andres, R.; Volke, A.; Delgado Arias, S.

    2010-06-01

    Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850-2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5° grid by sector for use in coordinated climate model experiments.

  17. Anthropogenic sulfur dioxide emissions: 1850-2005

    NASA Astrophysics Data System (ADS)

    Smith, S. J.; van Aardenne, J.; Klimont, Z.; Andres, R. J.; Volke, A.; Delgado Arias, S.

    2011-02-01

    Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850-2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5° grid by sector for use in coordinated climate model experiments.

  18. Sulfur Dioxide Emissions from Congo Volcanoes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Earth Probe Total Ozone Mapping Spectrometer (TOMS) detected a sulfur dioxide cloud associated with the January 2002 eruption of Nyiragongo as it flew over the region at around 11 a.m. local time (0900 UTC) on January 17. The sensor detected no significant amounts of ash in the eruption cloud. At the time of the TOMS overpass the cloud extended up to roughly 200 km (124 miles) northwest of Nyiragongo and was still attached to the volcano. This observation is consistent with nearly coincident MODIS imagery which shows an opaque cloud of gas and steam in the same location. The TOMS measurements show that the amount of sulfur dioxide in the Nyiragongo's plume range from about 10 to 30 kilotons. Please note that TOMS mass retrievals are dependent on the altitude of the cloud and may be adjusted as more information becomes available. Since the cloud may still have been developing at the time of the TOMS overpass, the final sulfur dioxide burden may have been greater. Wind trajectory data (courtesy of Leslie Lait, SSAI) suggest that part of the cloud may have reached at least mid- to upper-tropospheric altitudes of up to 12 km (7 miles), but scientists suspect no significant stratospheric injection of sulfur dioxide as a result of this eruption since the gas was not visible over the Democratic Republic of the Congo region in subsequent TOMS data acquired on January 18. Production of sulfur dioxide without a significant ash cloud is commonly observed during effusive eruptions such as the Nyiragongo event. Although dense low-level ash may be produced during such eruptions, these particulates usually fall out fairly quickly and elude detection by satellite. The size of the January 17 Nyiragongo cloud and the estimated sulfur dioxide tonnage are fairly modest, and at least an order of magnitude smaller than values typically measured by TOMS during eruptions of nearby Nyamuragira during its frequent outbursts (e.g., on February 6, 2001). Sulfur dioxide column amounts

  19. Analyzing Sulfur Dioxide Emissions of Nyamuragira Volcano

    NASA Astrophysics Data System (ADS)

    Guth, A. L.; Bluth, G. J.; Carn, S. A.

    2002-05-01

    Nyamuragira volcano, located in the Democratic Republic of Congo, is Africa's most active volcano, having erupted 13 times (every 1-3 years) since 1980. The eruption frequency, and the large amounts of sulfur dioxide emitted by this rift volcano, may produce a significant impact on the global sulfur budget. In this project we are attempting to quantify the sulfur dioxide emissions from this volcano over the past 20+ years using satellite data. Since 1978, satellites carrying NASA's Total Ozone Mapping Spectrometer (TOMS) instruments have been orbiting the earth collecting atmospheric data. These instruments use six wavelength bands located within the ultraviolet spectrum to measure solar irradiance and the energy reflected and backscattered by the Earth's surface and atmosphere. Sunlit planetary coverage is provided once per day by TOMS data. The spatial resolution of these satellites varies from 24 km (Earth Probe, 1996-1997, but raised to 39 km from 1997 to present) to 62 km (Meteor-3, 1991-1994). Nimbus-7, the satellite operating for the longest span of time (1978-1993), had a nadir footprint of 50 km. The (instantaneous) mass retrievals of sulfur dioxide cloud masses are derived using several different image processing schemes and net tonnages are calculated using a background correction. Volcanic activity associated with this volcano typically consists of long term (weeks to months), and often continuous, effusive emissions. Work to date has discovered over 120 days in which sulfur dioxide plumes were observed from the 13 eruptions (ranging from a minimum of one day to a maximum of 32 days). Most (82%) of the sulfur dioxide clouds measured are relatively low-level, below 100 kilotonnes (kt); 16% of the emissions are between 100 and 1000 kt, and 1.5% were measured to have more than 1000 kt. Current work is focusing on deriving net emission fluxes, integrating the TOMS instantaneous measurements of relatively continuous emission activity. The eruptive activity

  20. 40 CFR 60.642 - Standards for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for sulfur dioxide. 60.642... Gas Processing: SO2 Emissions § 60.642 Standards for sulfur dioxide. (a) During the initial... reduction efficiency (Zi) to be determined from table 1 based on the sulfur feed rate (X) and the...

  1. 40 CFR 52.724 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Illinois> § 52.724 Control strategy: Sulfur... Board necessary to insure attainment and maintenance of the sulfur dioxide standard, and...

  2. 40 CFR 52.724 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Illinois> § 52.724 Control strategy: Sulfur... Board necessary to insure attainment and maintenance of the sulfur dioxide standard, and...

  3. 40 CFR 60.642 - Standards for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for sulfur dioxide. 60.642... After January 20, 1984, and on or Before August 23, 2011 § 60.642 Standards for sulfur dioxide. (a... minimum, an SO2 emission reduction efficiency (Zi) to be determined from table 1 based on the sulfur...

  4. 40 CFR 52.795 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.795 Control strategy: Sulfur... (sulfur dioxide emission limitation) is disapproved insofar as the provisions identified below...

  5. 40 CFR 52.724 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Illinois> § 52.724 Control strategy: Sulfur... Board necessary to insure attainment and maintenance of the sulfur dioxide standard, and...

  6. 40 CFR 60.642 - Standards for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for sulfur dioxide. 60.642... Gas Processing: SO2 Emissions § 60.642 Standards for sulfur dioxide. (a) During the initial... reduction efficiency (Zi) to be determined from table 1 based on the sulfur feed rate (X) and the...

  7. 40 CFR 52.724 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Illinois> § 52.724 Control strategy: Sulfur... Board necessary to insure attainment and maintenance of the sulfur dioxide standard, and...

  8. 40 CFR 60.642 - Standards for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for sulfur dioxide. 60.642... Gas Processing: SO2 Emissions § 60.642 Standards for sulfur dioxide. (a) During the initial... reduction efficiency (Zi) to be determined from table 1 based on the sulfur feed rate (X) and the...

  9. 40 CFR 52.724 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Illinois> § 52.724 Control strategy: Sulfur... Board necessary to insure attainment and maintenance of the sulfur dioxide standard, and...

  10. 40 CFR 52.795 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.795 Control strategy: Sulfur... (sulfur dioxide emission limitation) is disapproved insofar as the provisions identified below...

  11. 40 CFR 60.642 - Standards for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for sulfur dioxide. 60.642... After January 20, 1984, and on or Before August 23, 2011 § 60.642 Standards for sulfur dioxide. (a... minimum, an SO2 emission reduction efficiency (Zi) to be determined from table 1 based on the sulfur...

  12. 40 CFR 52.795 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.795 Control strategy: Sulfur... (sulfur dioxide emission limitation) is disapproved insofar as the provisions identified below...

  13. 40 CFR 52.795 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.795 Control strategy: Sulfur... (sulfur dioxide emission limitation) is disapproved insofar as the provisions identified below...

  14. 40 CFR 52.795 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.795 Control strategy: Sulfur... (sulfur dioxide emission limitation) is disapproved insofar as the provisions identified below...

  15. 40 CFR 60.82 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Sulfuric Acid... contain sulfur dioxide in excess of 2 kg per metric ton of acid produced (4 lb per ton), the...

  16. 40 CFR 60.82 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Sulfuric Acid... contain sulfur dioxide in excess of 2 kg per metric ton of acid produced (4 lb per ton), the...

  17. 40 CFR 60.82 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Sulfuric Acid... contain sulfur dioxide in excess of 2 kg per metric ton of acid produced (4 lb per ton), the...

  18. 40 CFR 60.82 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Sulfuric Acid... contain sulfur dioxide in excess of 2 kg per metric ton of acid produced (4 lb per ton), the...

  19. 40 CFR 60.82 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Sulfuric Acid... contain sulfur dioxide in excess of 2 kg per metric ton of acid produced (4 lb per ton), the...

  20. Sensitivity of ginseng to ozone and sulfur dioxide

    SciTech Connect

    Proctor, J.T.A.; Ormrod, D.P.

    1981-10-01

    American ginseng (Panax quinquefolius L.), was injured by exposure to 20 pphm ozone and/or 50 pphm (v/v) sulfur dioxide for 6 hr daily for 4 days. Ozone induced upper surface leaflet stippling along the veins and interveinally, and sulfur dioxide induced mild chlorosis to irregular necrotic areas. Ginseng was less sensitive to ozone and as sensitive to sulfur dioxide as 'Cherry Belle' radish (Raphanus sativus L.) and 'Bel W-3' tobacco (Nicotiana tabacum L.).

  1. Sulfur dioxide contributions to the atmosphere by volcanoes.

    PubMed

    Stoiber, R E; Jepsen, A

    1973-11-09

    The first extensive measurements by remote-sensing correlation spectrometry of the sulfur dioxide emitted by volcanic plumes indicate that on the order of 10(3) metric tons of sulfur dioxide gas enter the atmosphere daily from Central American volcanoes. Extrapolation gives a minimum estimate of the annual amount of sulfur dioxide emitted from the world's volcanoes of about 10(7) metric tons.

  2. Modeling sulfur dioxide absorption by fine water spray

    SciTech Connect

    Cheng-Hsiung Huang

    2005-07-01

    A novel theoretical model was developed to determine the removal efficiency of sulfur dioxide using fine water spray. The droplet pH, diameter, S(IV) concentration, sulfur dioxide concentration, and liquid-to-gas ratio are found to influence the absorption of sulfur dioxide by the fine water spray. The results demonstrate that the absorption of sulfur dioxide by the fine water spray increases as the droplet diameter falls. The concentration gradient between the interface of the gaseous and liquid phases causes the absorption of sulfur dioxide by the droplets to increase as the initial S(IV) concentration decreases or the sulfur dioxide concentration increases. The results indicate that the performance of the fine water spray in removing sulfur dioxide is generally improved by reducing the droplet diameter or the initial S(IV) concentration, or by increasing the sulfur dioxide concentration, the droplet pH or the liquid-to-gas ratio. The proposed model reveals the parameters that should be controlled in using a fine water spray device and a method for improving its performance in removing sulfur dioxide.

  3. Sulfur dioxide removal from gas streams

    SciTech Connect

    Urban, P.; Ginger, E.A.

    1986-11-11

    A process is described for removal of sulfur dioxide pollutant gas from gas stream which comprises contacting the gas stream with pretreated shale in the form of an aqueous solution of aluminum sulfate including from about 0.1 to about 2.0% by weight of the pretreated shale. The pretreatment of the shale comprises the heating of the shale in the presence of a gas unable to support combustion at a temperature in a range of from about 340/sup 0/C. to about 480/sup 0/C.

  4. Advanced Rechargeable Lithium Sulfur Dioxide Cell

    DTIC Science & Technology

    1991-11-01

    electrolyte. Surface treatments were carried out at 2406C using water (Cell 15) and thionyl chloride (Cell 16). 3 Cathodes were placed in a Parr Bomb...Pawcatuck, CT 06379 94-02298 1425 Best Available Copy I ADVANCED RECHARGEABLE LITHIUM SULFUR DIOXIDE CELL I R.C. McDonald, P. Harris, F. Goebel, S. Hossain...Test Group 3 13 Test Group 4 22 Test Group 5 22 Test Group 6 24 Test Group 7 46 Test Group 8 52 Test Group 9 65 I CHEMICAL ANALYSIS 65 LITHIUM CYCLING

  5. Heterogeneous interactions of calcite aerosol with sulfur dioxide and sulfur dioxide-nitric acid mixtures.

    PubMed

    Prince, A Preszler; Kleiber, P; Grassian, V H; Young, M A

    2007-07-14

    The heterogeneous chemistry of sulfur dioxide with CaCO(3) (calcite) aerosol as a function of relative humidity (RH) has been studied under isolated particle conditions in an atmospheric reaction chamber using infrared absorption spectroscopy. The reaction of SO(2) with calcite produced gas phase CO(2) as a product in addition to the conversion of the particulate carbonate to sulfite. The reaction extent was found to increase with elevated RH, as has been observed for the similar reaction with HNO(3), but much higher relative humidities were needed to significantly enhance the reaction. Mixed experiments in which calcite aerosol was exposed to both HNO(3) and SO(2) were also performed. The overall reaction extent at a given relative humidity did not appear to be increased by having both reactant gases present. The role of carbonate aerosol as an atmospheric sink for sulfur dioxide and particulate nitrogen and sulfur correlations are discussed.

  6. Sulfur dioxide distribution over the Pacific Ocean 1991-1996

    NASA Astrophysics Data System (ADS)

    Thornton, D. C.; Bandy, A. R.; Blomquist, B. W.; Driedger, A. R.; Wade, T. P.

    1999-03-01

    In this study we combined the sulfur dioxide (SO2) data from the NASA Pacific Exploratory Missions (PEM) and the First Aerosol Characterization Experiment (ACE 1) to create a data set containing 4679 observations of SO2 in the troposphere of the Pacific Ocean during the period 1991-1996. These data have exceptionally high precision due to the use of isotopically labeled SO2 as an internal standard in each sample. The lower limit of detection was less than 2 pptv. The spatial extent of the data ranged from 60°N to 72°S, 110°E to 80°W, and from 50 m to 12 km above the ocean surface. A significant zonal gradient was observed between the northern and southern hemispheres. The western North Pacific was particularly well characterized during the NASA PEM-West A and B missions that focused on that region. Our data show that anthropogenic sources in eastern Asia dominated the sulfur chemistry in the lower troposphere of the western North Pacific eastward from the Asian continent for more than 1500 km and substantially farther in the mid and upper troposphere. The impact of Asian sources far from the continent was due primarily to transported SO2 with a substantially smaller impact from transported sulfate. Dimethyl sulfide was a significant source of SO2 only in the tropical boundary layer. In the southern hemisphere, anthropogenic sources had much less impact with very little SO2 detected in biomass burning plumes. Sulfur dioxide in the middle and upper troposphere of both hemispheres was strongly influenced by volcanic sources. Sulfur dioxide from the eruption of Mount Pinatubo dominated the SO2 distribution in the upper troposphere in the northern hemisphere in the second half of 1991. A significant fraction of the SO2 in the upper free troposphere in the northern hemisphere was attributed to SO2 transported from the stratosphere to the upper troposphere. Evidence for the transport of SO2 from the stratosphere to troposphere existed as far south as 30°N, but it was

  7. 40 CFR 77.5 - Deduction of allowances to offset excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... excess emissions of sulfur dioxide. 77.5 Section 77.5 Protection of Environment ENVIRONMENTAL PROTECTION... excess emissions of sulfur dioxide. (a) The Administrator will deduct allowances to offset excess... emissions of sulfur dioxide....

  8. 40 CFR 77.5 - Deduction of allowances to offset excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... excess emissions of sulfur dioxide. 77.5 Section 77.5 Protection of Environment ENVIRONMENTAL PROTECTION... excess emissions of sulfur dioxide. (a) The Administrator will deduct allowances to offset excess... emissions of sulfur dioxide....

  9. 40 CFR 77.5 - Deduction of allowances to offset excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... excess emissions of sulfur dioxide. 77.5 Section 77.5 Protection of Environment ENVIRONMENTAL PROTECTION... excess emissions of sulfur dioxide. (a) The Administrator will deduct allowances to offset excess... emissions of sulfur dioxide....

  10. 40 CFR 77.5 - Deduction of allowances to offset excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... excess emissions of sulfur dioxide. 77.5 Section 77.5 Protection of Environment ENVIRONMENTAL PROTECTION... excess emissions of sulfur dioxide. (a) The Administrator will deduct allowances to offset excess... emissions of sulfur dioxide....

  11. 40 CFR 77.5 - Deduction of allowances to offset excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... excess emissions of sulfur dioxide. 77.5 Section 77.5 Protection of Environment ENVIRONMENTAL PROTECTION... excess emissions of sulfur dioxide. (a) The Administrator will deduct allowances to offset excess... emissions of sulfur dioxide....

  12. Thermo Scientific Sulfur Dioxide Analyzer Instrument Handbook

    SciTech Connect

    Springston, S. R.

    2016-03-01

    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. BNL has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.

  13. Cyclic process for the removal of sulfur dioxide and the recovery of sulfur from gases

    SciTech Connect

    Lo, C.L.

    1991-11-19

    This patent describes a process for the removal of sulfur dioxide from a gas containing sulfur dioxide. It comprises contacting a gas containing sulfur dioxide with an aqueous solution comprising water, ferric chloride and a salt selected from the group consisting of barium chloride and calcium chloride to form ferrous chloride, hydrochloric acid and a precipitate selected from the group consisting of barium sulfate and calcium sulfate; and treating the aqueous solution with an oxidizing agent to convert ferrous chloride to ferric chloride.

  14. 40 CFR 52.2525 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Sulfur dioxide. 52.2525 Section 52.2525 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... strategy: Sulfur dioxide. (a) The provisions of § 51.112(a) are not met because the State did...

  15. 40 CFR 60.173 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for sulfur dioxide. 60.173... Smelters § 60.173 Standard for sulfur dioxide. (a) On and after the date on which the performance test... subpart shall cause to be discharged into the atmosphere from any roaster any gases which contain...

  16. 40 CFR 52.2525 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Control strategy: Sulfur dioxide. 52.2525 Section 52.2525 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... strategy: Sulfur dioxide. (a) The provisions of § 51.112(a) are not met because the State did...

  17. 40 CFR 52.2525 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Control strategy: Sulfur dioxide. 52.2525 Section 52.2525 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... strategy: Sulfur dioxide. (a) (b) EPA approves the attainment demonstration State Implementation Plan...

  18. 40 CFR 60.173 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for sulfur dioxide. 60.173... Smelters § 60.173 Standard for sulfur dioxide. (a) On and after the date on which the performance test... subpart shall cause to be discharged into the atmosphere from any roaster any gases which contain...

  19. 40 CFR 52.2525 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Control strategy: Sulfur dioxide. 52.2525 Section 52.2525 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... strategy: Sulfur dioxide. (a) The provisions of § 51.112(a) are not met because the State did...

  20. The Significance of the Bond Angle in Sulfur Dioxide.

    ERIC Educational Resources Information Center

    Purser, Gordon H.

    1989-01-01

    Examined are the illustrations and descriptions of the molecular structure of sulfur dioxide found in selected chemistry textbooks. Inconsistencies and incorrect information are indicated. It is suggested that molecules other than sulfur dioxide be used as examples of molecules for which resonance is important. (CW)

  1. 40 CFR 52.2525 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Sulfur dioxide. 52.2525 Section 52.2525 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... strategy: Sulfur dioxide. (a) The provisions of § 51.112(a) are not met because the State did...

  2. 40 CFR 60.173 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for sulfur dioxide. 60.173... Smelters § 60.173 Standard for sulfur dioxide. (a) On and after the date on which the performance test... subpart shall cause to be discharged into the atmosphere from any roaster any gases which contain...

  3. 40 CFR 60.173 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for sulfur dioxide. 60.173... Smelters § 60.173 Standard for sulfur dioxide. (a) On and after the date on which the performance test... subpart shall cause to be discharged into the atmosphere from any roaster any gases which contain...

  4. 40 CFR 60.173 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for sulfur dioxide. 60.173... Smelters § 60.173 Standard for sulfur dioxide. (a) On and after the date on which the performance test... subpart shall cause to be discharged into the atmosphere from any roaster any gases which contain...

  5. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOEpatents

    Johnson, R.; Steinberg, M.

    This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  6. Using broadband absorption spectroscopy to measure concentration of sulfur dioxide

    NASA Astrophysics Data System (ADS)

    Wang, H. S.; Zhang, Y. G.; Wu, S. H.; Lou, X. T.; Zhang, Z. G.; Qin, Y. K.

    2010-09-01

    A linear relationship between concentration of sulfur dioxide (SO2) and optical parameter (OP) is established using the Beer-Lambert law. The SO2 measuring system is set up to measure the concentration of sulfur dioxide in the wavelength range 275-315 nm. Experimental results indicate that the detection limit of the sulfur dioxide measuring system is below 0.2 ppm per meter of path length, and the measurement precision is better than ±1%. The proposed SO2 measuring method features limited interference from other gases and dust, and high stability and short response time.

  7. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOEpatents

    Johnson, Richard; Steinberg, Meyer

    1981-01-01

    This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  8. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected... under paragraph (a)(1) of this section for any increase in excess emissions of sulfur dioxide...

  9. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected... under paragraph (a)(1) of this section for any increase in excess emissions of sulfur dioxide...

  10. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected... under paragraph (a)(1) of this section for any increase in excess emissions of sulfur dioxide...

  11. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected... under paragraph (a)(1) of this section for any increase in excess emissions of sulfur dioxide...

  12. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected... under paragraph (a)(1) of this section for any increase in excess emissions of sulfur dioxide...

  13. 40 CFR 49.129 - Rule for limiting emissions of sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Rule for limiting emissions of sulfur... sulfur dioxide. (a) What is the purpose of this section? This section limits the amount of sulfur dioxide...) per hour, and mobile sources. (d) What are the sulfur dioxide limits for sources? (1) Sulfur...

  14. Sulfur Dioxide State Implementation Plan (SIP) Checklist Guide

    EPA Pesticide Factsheets

    Tools, guidance, and examples to assist air quality agencies of non-attainment areas in developing plans to implement national ambient air quality standards (NAAQS), including the sulfur dioxide (SO2) air emissions standard.

  15. A Conductivity Device for Measuring Sulfur Dioxide in the Air

    ERIC Educational Resources Information Center

    Craig, James C.

    1972-01-01

    Described is a general electroconductivity device enabling students to determine sulfur dioxide concentration in a particular location, hopefully leading to a deeper understanding of the problem of air pollution. (DF)

  16. Integrated Science Assessment (ISA) for Sulfur Dioxide (Health Criteria)

    EPA Pesticide Factsheets

    Information, history and background on the development and maintenance of sulfur dioxide (health criteria) assessments. There is a separate site that has combined NOx/SOx ecological criteria assessment.

  17. Sensing Free Sulfur Dioxide in Wine

    PubMed Central

    Monro, Tanya M.; Moore, Rachel L.; Nguyen, Mai-Chi; Ebendorff-Heidepriem, Heike; Skouroumounis, George K.; Elsey, Gordon M.; Taylor, Dennis K.

    2012-01-01

    Sulfur dioxide (SO2) is important in the winemaking process as it aids in preventing microbial growth and the oxidation of wine. These processes and others consume the SO2 over time, resulting in wines with little SO2 protection. Furthermore, SO2 and sulfiting agents are known to be allergens to many individuals and for that reason their levels need to be monitored and regulated in final wine products. Many of the current techniques for monitoring SO2 in wine require the SO2 to be separated from the wine prior to analysis. This investigation demonstrates a technique capable of measuring free sulfite concentrations in low volume liquid samples in white wine. This approach adapts a known colorimetric reaction to a suspended core optical fiber sensing platform, and exploits the interaction between guided light located within the fiber voids and a mixture of the wine sample and a colorimetric analyte. We have shown that this technique enables measurements to be made without dilution of the wine samples, thus paving the way towards real time in situ wine monitoring. PMID:23112627

  18. 40 CFR 52.834 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control strategy: Sulfur dioxide. 52.834 Section 52.834 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Iowa § 52.834 Control strategy: Sulfur...

  19. 40 CFR 52.834 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control strategy: Sulfur dioxide. 52.834 Section 52.834 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Iowa § 52.834 Control strategy: Sulfur...

  20. 40 CFR 52.834 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy: Sulfur dioxide. 52.834 Section 52.834 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Iowa § 52.834 Control strategy: Sulfur...

  1. 40 CFR 52.834 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control strategy: Sulfur dioxide. 52.834 Section 52.834 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Iowa § 52.834 Control strategy: Sulfur...

  2. 40 CFR 52.834 - Control strategy: Sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Sulfur dioxide. 52.834 Section 52.834 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Iowa § 52.834 Control strategy: Sulfur...

  3. Fixation of carbon dioxide into dimethyl carbonate over titanium-based zeolitic thiophene-benzimidazolate framework

    EPA Science Inventory

    A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide. The developed catalyst activates carbon dioxide and delivers over 16% yield of DMC without the use of any dehydra...

  4. Volatile Organic Sulfur Compounds of Environmental Interest: Dimethyl Sulfide and Methanethiol

    ERIC Educational Resources Information Center

    Chasteen, Thomas G.; Bentley, Ronald

    2004-01-01

    Volatile organic sulfur compounds (VOSCs) have been assigned environmental roles in global warming, acid precipitation, and cloud formation where two important members dimethyl sulfide (CH3)2 S, DMS, and methanethiol, CH3SH, MT, of VOSC group are involved.

  5. LED optrode for detecting sulfur dioxide in air

    NASA Astrophysics Data System (ADS)

    Buzanovskii, V. A.

    2016-11-01

    Scheme of an LED optrode for detecting sulfur dioxide in the air is considered. The components of the device are (1) a glass plate coated with a copolymer film of n-decylmethacrylate and styrene sulfonate with ion-coupled cation of the brilliant green dye, (2) an LED emitting at a wavelength of 655 nm, and (3) a metal housing. The nominal static conversion function of the device and its sensitivity are analyzed on the basis of mathematical modeling. It is established that the maximum sensitivity in determining the sulfur dioxide concentration in the air is achieved in the case in which the glass plate of the optrode is covered with a polymer film characterized by a specific value of the optical density in pure air containing no sulfur dioxide. For example, for a sulfur dioxide concentration close to zero, the film optical density should be close to one. The presented results allow one to make an optrode suitable for ensuring environmental and sanitaryhygienic safety. The device provides the ability to create analyzers for the measurement of sulfur dioxide in air that have small overall dimensions, power consumption, and cost.

  6. Photoreduction of Sulfur Dioxide by Spinach Leaves and Isolated Spinach Chloroplasts

    PubMed Central

    Silvius, John E.; Baer, Charles H.; Dodrill, Sherman; Patrick, Homer

    1976-01-01

    Labeled sulfur dioxide was found to be extensively absorbed by spinach (Spinacea oleracea L.) leaves. Labeled sulfides detected in leaf blades following fumigations with sulfur dioxide in light indicated that photoreduction of sulfur dioxide had occurred. Measurable proportions of this labeled sulfur was localized within the chloroplast fraction. Suspensions of isolated chloroplasts supplied with labeled sulfur dioxide contained labeled sulfides following a 30-minute illumination period in water-cooled reaction vessels. With reference to recent studies of the chloroplast sulfur reduction pathway, probable points of entry for sulfur dioxide and the subsequent release of hydrogen sulfide are discussed. PMID:16659572

  7. Sulfur dioxide removal from gases using a modified lime

    SciTech Connect

    Lee, Y.J.; Benson, L.B.

    1992-01-21

    This patent describes improvement in a process for removing sulfur dioxide from combustion gases by contacting the gases in a wet scrubbing unit with an aqueous scrubbing slurry, containing calcium components, for the removal of the sulfur dioxide, the calcium components provided in the slurry by adding aqueous slaked lime thereto, and a portion of the effluent from the scrubbing unit, containing calcium sulfite solids, is clarified to remove calcium sulfite solids therefrom as an aqueous sludge. The improvement comprises: the aqueous slaked lime added to the scrubbing slurry is formed by mixing lime and water, with the water containing a calcium sulfur-oxide salt in an amount sufficient to provide between about 0.3 to 5.0 percent by weight of the calcium sulfur-oxide salt based on the lime, whereby the average particle size of calcium sulfite solids in the aqueous sludge is increased to provide improved separation of water of the aqueous sludge therefrom.

  8. Process for sequestering carbon dioxide and sulfur dioxide

    DOEpatents

    Maroto-Valer, M. Mercedes; Zhang, Yinzhi; Kuchta, Matthew E.; Andresen, John M.; Fauth, Dan J.

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  9. Low Energy, Low Emissions: Sulfur Dioxide; Nitrogen Oxides, and Carbon Dioxide in Western Europe.

    ERIC Educational Resources Information Center

    Alcamo, Joseph; De Vries, Bert

    1992-01-01

    Links proposed low-energy scenarios for different Western European countries with the amount of pollutants that may result from these scenarios. Sulfur dioxide, nitrogen oxide, and carbon dioxide emissions are calculated for the 10 countries for which low-energy scenarios are available, resulting in reductions of 54%, 37%, and 40%, respectively.…

  10. Responses of Hawaiian plants to volcanic sulfur dioxide: stomatal behavior and foliar injury

    SciTech Connect

    Not Available

    1980-11-14

    Hawaiian plants exposed to volcanic sulfur dioxide showed interspecific differences in leaf injury that are related to sulfur dioxide-induced changes in stomatal conductance. Species with leaves that did not close stomata developed either chlorosis or necrosis, whereas leaves of Metrosideros collina closed stomata and showed no visual symptoms of sulfur dioxide stress.

  11. 40 CFR 77.3 - Offset plans for excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfur dioxide. 77.3 Section 77.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) EXCESS EMISSIONS § 77.3 Offset plans for excess emissions of sulfur dioxide... sulfur dioxide in any calendar year shall be liable to offset the amount of such excess emissions by...

  12. 40 CFR 77.3 - Offset plans for excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sulfur dioxide. 77.3 Section 77.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) EXCESS EMISSIONS § 77.3 Offset plans for excess emissions of sulfur dioxide... sulfur dioxide in any calendar year shall be liable to offset the amount of such excess emissions by...

  13. 40 CFR 77.3 - Offset plans for excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfur dioxide. 77.3 Section 77.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) EXCESS EMISSIONS § 77.3 Offset plans for excess emissions of sulfur dioxide... sulfur dioxide in any calendar year shall be liable to offset the amount of such excess emissions by...

  14. 40 CFR 60.45b - Compliance and performance test methods and procedures for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and procedures for sulfur dioxide. 60.45b Section 60.45b Protection of Environment ENVIRONMENTAL... and performance test methods and procedures for sulfur dioxide. (a) The SO2 emission standards in § 60...)(2) of this section; and (ii) Sulfur dioxide emissions (Es) are considered to be in compliance...

  15. 40 CFR 60.45b - Compliance and performance test methods and procedures for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and procedures for sulfur dioxide. 60.45b Section 60.45b Protection of Environment ENVIRONMENTAL... and performance test methods and procedures for sulfur dioxide. (a) The SO2 emission standards in § 60...)(2) of this section; and (ii) Sulfur dioxide emissions (Es) are considered to be in compliance...

  16. 40 CFR 60.43Da - Standards for sulfur dioxide (SO2).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for sulfur dioxide (SO2). 60... Steam Generating Units § 60.43Da Standards for sulfur dioxide (SO2). (a) On and after the date on which... the percent reduction requirement is determined on a 24-hour basis. (d) Sulfur dioxide emissions...

  17. 40 CFR 60.43Da - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for sulfur dioxide (SO2). 60... for sulfur dioxide (SO2). (a) On and after the date on which the initial performance test is completed... reduction requirement is determined on a 24-hour basis. (d) Sulfur dioxide emissions are limited to 520...

  18. 40 CFR 77.3 - Offset plans for excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfur dioxide. 77.3 Section 77.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) EXCESS EMISSIONS § 77.3 Offset plans for excess emissions of sulfur dioxide... sulfur dioxide in any calendar year shall be liable to offset the amount of such excess emissions by...

  19. 40 CFR 60.45b - Compliance and performance test methods and procedures for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and procedures for sulfur dioxide. 60.45b Section 60.45b Protection of Environment ENVIRONMENTAL... and performance test methods and procedures for sulfur dioxide. (a) The SO2 emission standards in § 60... paragraph (c)(2) of this section; and (ii) Sulfur dioxide emissions (Es) are considered to be in...

  20. 40 CFR 60.45b - Compliance and performance test methods and procedures for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and procedures for sulfur dioxide. 60.45b Section 60.45b Protection of Environment ENVIRONMENTAL... and performance test methods and procedures for sulfur dioxide. (a) The SO2 emission standards in § 60...)(2) of this section; and (ii) Sulfur dioxide emissions (Es) are considered to be in compliance...

  1. 40 CFR 60.45b - Compliance and performance test methods and procedures for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and procedures for sulfur dioxide. 60.45b Section 60.45b Protection of Environment ENVIRONMENTAL... and performance test methods and procedures for sulfur dioxide. (a) The SO2 emission standards in § 60...)(2) of this section; and (ii) Sulfur dioxide emissions (Es) are considered to be in compliance...

  2. 40 CFR 77.3 - Offset plans for excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfur dioxide. 77.3 Section 77.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) EXCESS EMISSIONS § 77.3 Offset plans for excess emissions of sulfur dioxide... sulfur dioxide in any calendar year shall be liable to offset the amount of such excess emissions by...

  3. 40 CFR 60.43Da - Standards for sulfur dioxide (SO2).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for sulfur dioxide (SO2). 60... Steam Generating Units § 60.43Da Standards for sulfur dioxide (SO2). (a) On and after the date on which... the percent reduction requirement is determined on a 24-hour basis. (d) Sulfur dioxide emissions...

  4. Effect of sulfur dioxide on Swiss albino mice

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Machado, A. M.

    1977-01-01

    Times to incapacitation and death and LC50 values were determined for male Swiss albino mice exposed to different concentrations of sulfur dioxide in a 4.2 liter hemispherical chamber. The LC50 for a 30 minute exposure was about 3000 ppm SO2.

  5. Alternative Strategies for Control of Sulfur Dioxide Emissions

    ERIC Educational Resources Information Center

    MacDonald, Bryce I.

    1975-01-01

    Achievement of air quality goals requires careful consideration of alternative control strategies in view of national concerns with energy and the economy. Three strategies which might be used by coal fired steam electric plants to achieve ambient air quality standards for sulfur dioxide have been compared and the analysis presented. (Author/BT)

  6. Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results

    SciTech Connect

    Smith, Steven J.; Andres, Robert; Conception , Elvira; Lurz, Joshua

    2004-01-25

    A global, self-consistent estimate of sulfur dioxide emissions over the last one and a half century were estimated by using a combination of bottom-up and best available inventory methods including all anthropogenic sources. We find that global sulfur dioxide emissions peaked about 1980 and have generally declined since this time. Emissions were extrapolated to a 1{sup o} x 1{sup o} grid for the time period 1850-2000 at annual resolution with two emission height levels and by season. Emissions are somewhat higher in the recent past in this new work as compared with some comprehensive estimates. This difference is largely due to our use of emissions factors that vary with time to account for sulfur removals from fossil fuels and industrial smelting processes.

  7. Method for removing sulfur dioxide from a gas stream

    SciTech Connect

    Martinez, R.I.; Herron, J.T.

    1981-01-01

    The combustion of sulfur-containing fuels generates significant amounts of sulfur dioxide (SO/sub 2/). Oxides of nitrogen (NOx) are also often generated in the course of the combustion of various fuels. Without appropriate treatment of the exhaust gases of combustion, large amounts of sulfur and nitrogen oxides would be injected into the atmosphere, causing a variety of ecological problems. A method is provided for removing SO/sub 2/ from gas streams by its gas-phase reaction with a stabilized Criegee intermediate under conditions where a very large excess of water vapor is avoided, resulting in efficient scavenging of SO2 by the Criegee intermediate to form an adduct. The adduct reacts with water vapor to convert it directly to sulfuric acid, which is then separated from the gas stream. The Criegee intermediate may be generated in a variety of ways.

  8. The removal of sulfur dioxide from flue gases

    PubMed Central

    Kettner, Helmut

    1965-01-01

    The growth of industrialization makes it imperative to reduce the amounts of sulfur dioxide emitted into the atmosphere. This article describes various processes for cleaning flue gases, and gives details of new methods being investigated. Wet scrubbing with water, though widely practised, has many disadvantages. Scrubbing with zinc oxide, feasible in zinc works, is more satisfactory. Dry methods use a solid absorbent; they have the advantage of a high emission temperature. Other methods are based on the addition to the fuel or the flue gases of substances such as activated metal oxides, which react with the sulfur to form compounds less harmful than sulfur dioxide. Also being investigated are a two-stage combustion system, in which the sulfur dioxide is removed in the first stage, and the injection of activated powdered dolomite into burning fuel; the resulting sulfates being removed by electrostatic precipitation. A wet catalysis process has recently been developed. Most of the cleaning processes are not yet technically mature, but first results show good efficiency and relatively low cost. PMID:14315714

  9. THE REMOVAL OF SULFUR DIOXIDE FROM FLUE GASES.

    PubMed

    KETTNER, H

    1965-01-01

    The growth of industrialization makes it imperative to reduce the amounts of sulfur dioxide emitted into the atmosphere. This article describes various processes for cleaning flue gases, and gives details of new methods being investigated.Wet scrubbing with water, though widely practised, has many disadvantages. Scrubbing with zinc oxide, feasible in zinc works, is more satisfactory.Dry methods use a solid absorbent; they have the advantage of a high emission temperature.Other methods are based on the addition to the fuel or the flue gases of substances such as activated metal oxides, which react with the sulfur to form compounds less harmful than sulfur dioxide. Also being investigated are a two-stage combustion system, in which the sulfur dioxide is removed in the first stage, and the injection of activated powdered dolomite into burning fuel; the resulting sulfates being removed by electrostatic precipitation.A wet catalysis process has recently been developed.Most of the cleaning processes are not yet technically mature, but first results show good efficiency and relatively low cost.

  10. A Computational Re-examination of the Criegee Intermediate-Sulfur Dioxide Reaction.

    PubMed

    Kuwata, Keith T; Guinn, Emily J; Hermes, Matthew R; Fernandez, Jenna A; Mathison, Jon M; Huang, Ke

    2015-10-15

    The atmospheric oxidation of sulfur dioxide by the parent and dimethyl Criegee intermediates (CIs) may be an important source of sulfuric acid aerosol, which has a large impact on radiative forcing and therefore upon climate. A number of computational studies have considered how the CH2OOS(O)O heteroozonide (HOZ) adduct formed in the CI + SO2 reaction converts SO2 to SO3. In this work we use the CBS-QB3 quantum chemical method along with equation-of-motion spin-flip CCSD(dT) and MCG3 theories to reveal new details regarding the formation and decomposition of the endo and exo conformers of the HOZ. Although ∼75% of the parent CI + SO2 reaction is initiated by formation of the exo HOZ, hyperconjugation preferentially stabilizes many of the endo intermediates and transition structures by 1-5 kcal mol(-1). Our quantum chemical calculations, in conjunction with statistical rate theory models, predict a rate coefficient for the parent CI + SO2 reaction of 3.68 × 10(-11) cm(3) molecule(-1) s(-1), in good agreement with recent experimental measurements. RRKM/master equation simulations based on our quantum chemical data predict a prompt carbonyl + SO3 yield of >95% for the reaction of both the parent and dimethyl CI with SO2. The existence of concerted cycloreversion transition structures 10-15 kcal mol(-1) higher in energy than the HOZ accounts for most of the predicted SO3 formation.

  11. Fact Sheets and Additional Information Regarding the 2012 Decision to Retain the Secondary NAAQS for Nitrogen Dioxide and Sulfur Dioxide

    EPA Pesticide Factsheets

    On April 3, 2012, EPA sdecided to retain the current secondary national ambient air quality standard (NAAQS) for nitrogen dioxide (NO2) and sulfur dioxide (SO2).This page contains a fact sheet describing that action.

  12. Sulfur dioxide converter and pollution arrester system

    SciTech Connect

    Montalvo, V.H.

    1983-12-06

    A sulphur dioxide converter and pollution arrester system are disclosed which involves the treatment of smoke and/or contaminated air emanating from a combustion area by passage through a zone achieving turbulence into a water spray contained first treating chamber. The turbulence zone, into which an atomized catalyst is introduced, serves to create a longer path for cooling as well as increased centrifugal motion to the solid particles in the contaminated air and also the formation of sulphur trioxide. In other words, the arrangement is such that pollution arresting action is provided in the form of ''slinging'' resulting from tangential directional movement and, when combining with the water spray in the first treating chamber, the ultimate formation of sulphuric acid. Subsequently, the contaminated air, containing amounts of sulphurous and sulphuric acids, passes through a second treating chamber, where airflow throughout the system is occasioned by action at the outlet end, such as the vacuum created by a flue and not by independent mechanical means. The arrangement serves to a twofold purpose, i.e. to minimize or arrest pollution and to convert sulphur dioxide, a component of high sulphur coal, into commercially valuable sulphuric acid.

  13. Coralline algae as a globally significant pool of marine dimethylated sulfur

    NASA Astrophysics Data System (ADS)

    Burdett, Heidi L.; Hatton, Angela D.; Kamenos, Nicholas A.

    2015-10-01

    Marine algae are key sources of the biogenic sulfur compound dimethylsulphoniopropionate (DMSP), a vital component of the marine sulfur cycle. Autotrophic ecosystem engineers such as red coralline algae support highly diverse and biogeochemically active ecosystems and are known to be high DMSP producers, but their importance in the global marine sulfur cycle has not yet been appreciated. Using a global sampling approach, we show that red coralline algae are a globally significant pool of DMSP in the oceans, estimated to be ~110 × 1012 moles worldwide during the summer months. Latitude was a major driver of observed regional-scale variations, with peaks in polar and tropical climate regimes, reflecting the varied cellular functions for DMSP (e.g., as a cryoprotectant and antioxidant). A temperate coralline algal bed was investigated in more detail to also identify local-scale temporal variations. Here, water column DMSP was driven by water temperature, and to a lesser extent, cloud cover; two factors which are also vital in controlling coralline algal growth. This study demonstrates that coralline algae harbor a large pool of dimethylated sulfur, thereby playing a significant role in both the sulfur and carbon marine biogeochemical cycles. However, coralline algal habitats are severely threatened by projected climate change; a loss of this habitat may thus detrimentally impact oceanic sulfur and carbon biogeochemical cycling.

  14. Resistance to injury by sulfur dioxide

    SciTech Connect

    Sekiya, J.; Wilson, L.G.; Filner, P.

    1982-08-01

    In Cucurbitaceae young leaves are resistant to injury from acute exposure to SO/sub 2/, whereas mature leaves are sensitive. After exposure of cucumber (Cucumis sativus L.) plants to SO/sub 2/ at injurious concentrations, illuminated leaves emit volatile sulfur, which is solely H/sub 2/S. Young leaves emit H/sub 2/S many times more rapidly than do mature leaves. Young leaves convert approximately 10% of absorbed (/sup 35/S)SO/sub 2/ to emitted (/sup 35/S)H/sub 2/S, but mature leaves convert less than 2%. These results suggest that a high capability for the reduction of SO/sub 2/ to H/sub 2/S and emission of the H/sub 2/S is a part of the biochemical basis of the resistance of young leaves to SO/sub 2/.

  15. Airborne sulfur trace species intercomparison campaign: Sulfur dioxide, dimethylsulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Hoell, James M., Jr.; Davis, Douglas D.

    1991-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of sulfur trace gases are presented. The intercomparison was part of the NASA Global Tropospheric Experiment (GTE) and was conducted during the summer of 1989. The intercomparisons were conducted on the Wallops Electra aircraft during flights from Wallops Island, Virginia, and Natal, Brazil. Sulfur measurements intercompared included sulfur dioxide (SO2), dimethylsulfide (DMS), hydrogen sulfide (H2S), carbon disulfide (CS2), and carbonyl sulfide (OCS). Measurement techniques ranged from filter collection systems with post-flight analyses to mass spectrometer and gas chromatograph systems employing various methods for measuring and identifying the sulfur gases during flight. Sampling schedules for the techniques ranged from integrated collections over periods as long as 50 minutes to one- to three-minute samples every ten or fifteen minutes. Several of the techniques provided measurements of more than one sulfur gas. Instruments employing different detection principles were involved in each of the sulfur intercomparisons. Also included in the intercomparison measurement scenario were a host of supporting measurements (i.e., ozone, nitrogen oxides, carbon monoxide, total sulfur, aerosols, etc.) for purposes of: (1) interpreting results (i.e., correlation of any noted instrument disagreement with the chemical composition of the measurement environment); and (2) providing supporting chemical data to meet CITE-3 science objectives of studying ozone/sulfur photochemistry, diurnal cycles, etc. The results of the intercomparison study are briefly discussed.

  16. Regional sulfur dioxide emissions: shall we achieve the goal?

    NASA Astrophysics Data System (ADS)

    Tan, X.; Shi, L.; Wang, M.; Wang, JY

    2017-01-01

    Although economic growth is slowing down in the new normal period, air pollution is still a very serious problem in China. The 15% binding goal of sulfur dioxide emission reduction from 2016 to 2020, as stipulated in the 13th Five-Year Plan, has been an ambitious target for the Chinese government. This paper studies the synthetic evaluation and forecasting analysis of sulfur dioxide in China by means of a “grey model” approach combined with the grey relational analysis methods, with the panel data of 31 provinces from 2005 to 2015. Grey analysis used to analyse a system with imperfect information, such that a variety of available solutions is reviewed, and the optimal solution is identified. Some encouraging results show that national emissions and a majority of provinces will achieve the target. Over time, the gap of regional differences is rapidly closing. According to the results of grey relational analysis, we find industrial structure and energy consumption have a more significant impact on sulfur dioxide emissions than GDP. Atmospheric treatment investment and environmental protection manpower play a more important role in emissions variation. Based on the findings, we should distinguish different factors and take different measures to protect the environment.

  17. Sulfur dioxide - Episodic injection shows evidence for active Venus volcanism

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.

    1984-03-01

    Pioneer Venus ultraviolet spectra from the first 5 years of operation show a decline (by more than a factor of 10) in sulfur dioxide abundance at the cloud tops and in the amount of submicron haze above the clouds. At the time of the Pioneer Venus encounter, the values for both parameters greatly exceeded earlier upper limits. However, Venus had a similar appearance in the late 1950's, implying the episodic injection of sulfur dioxide possibly caused by episodic volcanism. The amount of haze in the Venus middle atmosphere is about ten times that found in earth's stratosphere after the most recent major volcanic eruptions, and the thermal energy required for this injection on Venus is greater by about an order of magnitude than the largest of these recent earth eruptions and about as large as the Krakatoa eruption of 1883. The episodic behavior of sulfur dioxide implies that steady-state models of the chemistry and dynamics of cloud-top regions may be of limited use.

  18. Sulfur dioxide - Episodic injection shows evidence for active Venus volcanism

    NASA Technical Reports Server (NTRS)

    Esposito, L. W.

    1984-01-01

    Pioneer Venus ultraviolet spectra from the first 5 years of operation show a decline (by more than a factor of 10) in sulfur dioxide abundance at the cloud tops and in the amount of submicron haze above the clouds. At the time of the Pioneer Venus encounter, the values for both parameters greatly exceeded earlier upper limits. However, Venus had a similar appearance in the late 1950's, implying the episodic injection of sulfur dioxide possibly caused by episodic volcanism. The amount of haze in the Venus middle atmosphere is about ten times that found in earth's stratosphere after the most recent major volcanic eruptions, and the thermal energy required for this injection on Venus is greater by about an order of magnitude than the largest of these recent earth eruptions and about as large as the Krakatoa eruption of 1883. The episodic behavior of sulfur dioxide implies that steady-state models of the chemistry and dynamics of cloud-top regions may be of limited use.

  19. International comparison CCQM-K76: Sulfur dioxide in nitrogen

    NASA Astrophysics Data System (ADS)

    Guenther, Franklin R.; Kelley, Michael E.; Mitchell, Gerald D.; de Jesús Avila Salas, Manuel; Koelliker Delgado, Jorge; Rangel Murillo, Francisco; Serrano Caballero, Victor M.; Pérez Castorena, Alejandro; Shinji, Uehara; Ciecior, Dariusz; Smarçaro da Cunha, Valnei; Rodrigues Augusto, Cristiane; Cipriano Ribeiro, Claudia; de Lima Fioravante, Andreia; Dias, Florbela; Sang-Hyub, Oh; Macé, Tatiana; Sutour, Christophe; Büki, Tamás; Qiao, Han; Botha, Angelique; Mogale, David M.; Tshilongo, James; Ntsasa, Napo; Mphamo, Tshepiso; Uprichard, Ian; Milton, Martin; Vargha, Gergely; Brookes, Chris; Johri, Prabha; Valkova, Miroslava; Konopelko, Leonid; Kustikov, Yury; Pankratov, V. V.; Rumyantsev, D. V.; Pavlov, M. V.; Gromova, E. V.; van der Veen, Adriaan; van Otterloo, Peter; Wessel, Rob M.

    2011-01-01

    The key comparison CCQM-K76 was designed to test the capabilities of the participants to measure and certify sulfur dioxide in nitrogen, and to provide supporting evidence for the CMCs of these institutes for sulfur dioxide. Also, as sulfur dioxide is designated a core compound, and the 100 µmol/mol concentration is within the designated core compound concentration range, this comparison was also designed to demonstrate core capabilities of institutes which qualify under the rules of the Gas Analysis Working Group. The results of all 16 participants in this key comparison, except for three, are consistent with their key comparisons reference values. The three participants which are outside the KCRV interval are NIM, SMU and NPLI. This comparison may be used to demonstrate core analytical capabilities in accordance with the rules and procedures of the CCQM Gas Analysis Working group. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  20. 40 CFR 60.46c - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according...

  1. 40 CFR 60.44c - Compliance and performance test methods and procedures for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and procedures for sulfur dioxide. 60.44c Section 60.44c Protection of Environment ENVIRONMENTAL... Compliance and performance test methods and procedures for sulfur dioxide. (a) Except as provided in... operator seeks to demonstrate compliance with the fuel oil sulfur limits under § 60.42c based on...

  2. 40 CFR 60.46c - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according...

  3. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfur dioxide (SO2)? 60.4330 Section 60.4330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you must comply with either... contains total potential sulfur emissions in excess of 26 ng SO2/J (0.060 lb SO2/MMBtu) heat input. If...

  4. 40 CFR 60.46c - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according...

  5. 40 CFR 60.47b - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.47b Emission monitoring for sulfur dioxide... generating unit and analyzing them for sulfur and heat content according to Method 19 of appendix A of...

  6. 40 CFR 49.129 - Rule for limiting emissions of sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Rule for limiting emissions of sulfur... emissions of sulfur dioxide. (a) What is the purpose of this section? This section limits the amount of sulfur dioxide (SO2) that may be emitted from certain air pollution sources operating within the...

  7. 40 CFR 60.47b - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.47b Emission monitoring for sulfur dioxide... generating unit and analyzing them for sulfur and heat content according to Method 19 of appendix A of...

  8. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfur dioxide (SO2)? 60.4330 Section 60.4330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you must comply with either... contains total potential sulfur emissions in excess of 26 ng SO2/J (0.060 lb SO2/MMBtu) heat input. If...

  9. 40 CFR 60.47b - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.47b Emission monitoring for sulfur dioxide... generating unit and analyzing them for sulfur and heat content according to Method 19 of appendix A of...

  10. 40 CFR 49.129 - Rule for limiting emissions of sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Rule for limiting emissions of sulfur... emissions of sulfur dioxide. (a) What is the purpose of this section? This section limits the amount of sulfur dioxide (SO2) that may be emitted from certain air pollution sources operating within the...

  11. 40 CFR 60.46c - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according...

  12. 40 CFR 60.47b - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.47b Emission monitoring for sulfur dioxide... generating unit and analyzing them for sulfur and heat content according to Method 19 of appendix A of...

  13. 40 CFR 60.44c - Compliance and performance test methods and procedures for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and procedures for sulfur dioxide. 60.44c Section 60.44c Protection of Environment ENVIRONMENTAL... Compliance and performance test methods and procedures for sulfur dioxide. (a) Except as provided in... operator seeks to demonstrate compliance with the fuel oil sulfur limits under § 60.42c based on...

  14. 40 CFR 49.129 - Rule for limiting emissions of sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Rule for limiting emissions of sulfur... emissions of sulfur dioxide. (a) What is the purpose of this section? This section limits the amount of sulfur dioxide (SO2) that may be emitted from certain air pollution sources operating within the...

  15. 40 CFR 60.44c - Compliance and performance test methods and procedures for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and procedures for sulfur dioxide. 60.44c Section 60.44c Protection of Environment ENVIRONMENTAL... Compliance and performance test methods and procedures for sulfur dioxide. (a) Except as provided in... operator seeks to demonstrate compliance with the fuel oil sulfur limits under § 60.42c based on...

  16. 40 CFR 60.44c - Compliance and performance test methods and procedures for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and procedures for sulfur dioxide. 60.44c Section 60.44c Protection of Environment ENVIRONMENTAL... Compliance and performance test methods and procedures for sulfur dioxide. (a) Except as provided in... operator seeks to demonstrate compliance with the fuel oil sulfur limits under § 60.42c based on...

  17. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sulfur dioxide (SO2)? 60.4330 Section 60.4330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you must comply with either... contains total potential sulfur emissions in excess of 26 ng SO2/J (0.060 lb SO2/MMBtu) heat input. If...

  18. 40 CFR 60.47b - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.47b Emission monitoring for sulfur dioxide... generating unit and analyzing them for sulfur and heat content according to Method 19 of appendix A of...

  19. 40 CFR 49.129 - Rule for limiting emissions of sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Rule for limiting emissions of sulfur... emissions of sulfur dioxide. (a) What is the purpose of this section? This section limits the amount of sulfur dioxide (SO2) that may be emitted from certain air pollution sources operating within the...

  20. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfur dioxide (SO2)? 60.4330 Section 60.4330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you must comply with either... contains total potential sulfur emissions in excess of 26 ng SO2/J (0.060 lb SO2/MMBtu) heat input. If...

  1. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfur dioxide (SO2)? 60.4330 Section 60.4330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you must comply with either... contains total potential sulfur emissions in excess of 26 ng SO2/J (0.060 lb SO2/MMBtu) heat input. If...

  2. 40 CFR 60.46c - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according...

  3. 40 CFR 60.44c - Compliance and performance test methods and procedures for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and procedures for sulfur dioxide. 60.44c Section 60.44c Protection of Environment ENVIRONMENTAL... Compliance and performance test methods and procedures for sulfur dioxide. (a) Except as provided in... operator seeks to demonstrate compliance with the fuel oil sulfur limits under § 60.42c based on...

  4. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for sulfur dioxide (SO2). 60...-Commercial-Institutional Steam Generating Units § 60.42c Standard for sulfur dioxide (SO2). (a) Except as... sulfur. The percent reduction requirements are not applicable to affected facilities under this...

  5. SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS

    SciTech Connect

    Robert C. Brown; Maohong Fan

    2001-12-01

    We propose a process that uses sulfur dioxide from coal combustion as a raw material to synthesize polymeric ferric sulfate (PFS), a water treatment agent. The process uses sodium chlorate as an oxidant and ferrous sulfate as an absorbent. The major chemical mechanisms in this reaction system include oxidation, hydrolysis, and polymerization. Oxidation determines sulfur conversion efficiency while hydrolysis and polymerization control the quality of product. Many factors, including SO{sub 2} inlet concentration, flow rate of simulated flue gas, reaction temperature, addition rate of oxidant and stirring rate, may affect the efficiencies of SO{sub 2} removal. Currently, the effects of SO{sub 2} inlet concentration, the flow rate of simulated flue gas and addition rate of flue gas on removal efficiencies of SO{sub 2}, are being investigated. Experiments shown in this report have demonstrated that the conversion efficiencies of sulfur dioxide with ferrous sulfate as an absorbent are in the range of 60-80% under the adopted process conditions. However, the conversion efficiency of sulfur dioxide may be improved by optimizing reaction conditions to be investigated. Partial quality indices of the synthesized products, including Fe{sup 2+} concentration and total iron concentration, have been evaluated.

  6. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions

    PubMed Central

    Perraud, Véronique; Horne, Jeremy R.; Martinez, Andrew S.; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L.; Wingen, Lisa M.; Dabdub, Donald; Blake, Donald R.; Gerber, R. Benny; Finlayson-Pitts, Barbara J.

    2015-01-01

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine–California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs. PMID:26483454

  7. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions.

    PubMed

    Perraud, Véronique; Horne, Jeremy R; Martinez, Andrew S; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L; Wingen, Lisa M; Dabdub, Donald; Blake, Donald R; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-11-03

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.

  8. Chemistry of sulfur-containing molecules on Au( 1 1 1 ): thiophene, sulfur dioxide, and methanethiol adsorption

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Rodriguez, José A.; Dvorak, Joseph; Hrbek, Jan; Jirsak, Tomas

    2002-05-01

    The interactions of three sulfur-containing molecules (C 4H 4S, SO 2, CH 3SH) with a clean Au(1 1 1) surface have been studied with a combination of thermal desorption spectroscopy (TDS) and synchrotron-based high-resolution soft X-ray photoelectron spectroscopy. The adsorption and reactivity of the three molecules on Au(1 1 1) are very different. Thiophene adsorbs molecularly on Au(1 1 1) at 100 K and desorbs completely below 330 K without further decomposition. In the submonolayer range, three different adsorption states for chemisorbed thiophene are identified in TDS. It is suggested that thiophene preferably adsorbs on the defect sites at the lowest exposure. After the defect sites are saturated, the change from a flat-lying geometry to a tilted adsorption configuration follows as the exposure increases. Sulfur dioxide also does not decompose on Au(1 1 1). For SO 2 adsorption at 100 K, in addition to the multilayer desorption feature (˜130 K), only one distinct monolayer peak with a tail extending to higher temperature appears in TDS. The desorption temperature difference between the SO 2 monolayer and multilayer is only 15 K, indicating a weak binding between SO 2 and Au. For methanethiol adsorption on Au(1 1 1) at 100 K, three desorption states appear in the submonolayer range for the parent thiol. All of them appear below 300 K. The only desorption products at higher temperature are methane or methyl radicals (˜540 K), and dimethyl disulfide (˜470 K). Apart from the intact methyl thiol molecule, which exists at low temperatures (⩽150 K), two inequivalent intermediate thiolates, are seen to coexist on Au(1 1 1) in the 150-400 K temperature range, with one of them existing as low as 100 K. Atomic sulfur is present on the surface from 200 to 950 K.

  9. Volatile Organic Sulfur Compounds of Environmental Interest: Dimethyl Sulfide and Methanethiol. An Introductory Overview

    NASA Astrophysics Data System (ADS)

    Chasteen, Thomas G.; Bentley, Ronald

    2004-10-01

    Volatile organic sulfur compounds and their degradation products play important environmental roles in global warming, acid precipitation, and cloud formation. Two important members of this group, dimethyl sulfide, DMS, and methanethiol, MT, are formed by living organisms as well as by abiotic processes. DMS is synthesized by various organisms in the marine environment and large quantities of it are released to the atmosphere. One key precursor for DMS synthesis is the sulfonium salt, dimethylsulfoniopropionate. MT, also formed in marine environments, can be further converted to DMS. The chemical reactions responsible for the biosynthesis of DMS and MT are emphasized here, as well as means for their degradation. Since sulfur compounds are often ignored in normal course work, this article provides a basic foundation for an understanding of these interesting and environmentally significant compounds.

  10. Sulfur dioxide emissions from la soufriere volcano, st. Vincent, west indies.

    PubMed

    Hoff, R M; Gallant, A J

    1980-08-22

    During the steady-state period of activity of La Soufriere Volcano in 1979, the mass emissions of sulfur dioxide into the troposphere amounted to a mean value of 339 +/- 126 metric tons per day. This value is similar to the sulfur dioxide emissions of other Central American volcanoes but less than those measured at Mount Etna, an exceptionally strong volcanic source of sulfur dioxide.

  11. Sulfur dioxide emissions from La Soufriere Volcano, St. Vincent, West Indies

    SciTech Connect

    Hoff, R.M.; Gallant, A.J.

    1980-08-22

    During the steady-state period of activity of La Soufriere Volcano in 1979, the mass emissions of sulfur dioxide into the troposphere amounted to a mean value of 339 +- 126 metric tons per day. This value is similar to the sulfur dioxide emissions of other Central American volcanoes but less than those measured at Mount Etna, an exceptionally strong volcanic source of sulfur dioxide.

  12. Simple spectrophotometric and titrimetric methods for the determination of sulfur dioxide.

    PubMed

    Yogendra Kumar, M S; Gowtham, M D; Mahadevaiah; Agendrappa, G

    2006-05-01

    The proposed work describes a simple spectrophotmetric as well as a titrimetric method to determine sulfur dioxide. The spectrophotometric method is based on a redox reaction between sulfur dioxide and iodine monochloride obtained from iodine with chloramine-T in acetic acid. The reagent iodine monochloride oxidizes sulfur dioxide to sulfate, thereby reducing itself to iodine. Thus liberated iodine will also oxidize sulfur dioxide and reduce itself to iodide. The obtained iodide is expected to combine with iodine to form a brown-colored homoatomictriiodide anion (460 nm), which forms an ion-pair with the sulfonamide cation, providing exceptional color stability to the system under an acidic condition, and is quantitatively relatd to sulfur dioxide. The system obeys Beer's law in the range 5 - 100 microg of sulfur dioxide in a final volume of 10 ml. The molar absorptivity is 5.03 x 10(3) l mol(-1)cm(-1), with a relative standard deviation of 3.2% for 50 microg of sulfur dioxide (n = 10). In the titrimetric method, the reagent iodine monochloride was reduced with potassium iodide (10%) to iodine, which oxidized sulfur dioxide to sulfate, and excess iodine was determined with a thiosulfate solution. The volume difference of thiosulfate with the reagent and with the sulfur dioxide determined the sulfur dioxide. Reproducible and accurate results were obtained in the range of 0.1 - 1.5 mg of sulfur dioxide with a relative standard deviation of 1.2% for 0.8 mg of sulfur dioxide (n = 10).

  13. Photochemical oxidants potentiate yield losses in snap beans attributable to sulfur dioxide

    SciTech Connect

    Heggestad, H.E.; Bennett, J.H.

    1981-08-28

    Field-grown snap beans (Phaseolus vulgaris) were given recurring midday exposures to sulfur dioxide in open-top field chambers containing ambient photochemical oxidants. There was a linear correlation (correlation coefficient = -.99) between increasing concentrations of sulfur dioxide and the yields of snap beans. Synergism was indicated for the mixtures of ambient ozone plus sulfur dioxide, leading to threefold greater yield losses in nonfiltered air than in charcoal-filtered air (to remove the ozone). Even the lowest sulfur dioxide dose in nonfiltered air reduced the yields of Astro, a cultivar that exhibited no visible pollutant-induced foliar injury. 16 referances, 1 figure, 1 table.

  14. Lithium-sulfur dioxide batteries on Mars rovers

    NASA Technical Reports Server (NTRS)

    Ratnakumar, Bugga V.; Smart, M. C.; Ewell, R. C.; Whitcanack, L. D.; Kindler, A.; Narayanan, S. R.; Surampudi, S.

    2004-01-01

    NASA's 2003 Mars Exploration Rover (MER) missions, Spirit and Opportunity, have been performing exciting surface exploration studies for the past six months. These two robotic missions were aimed at examining the presence of water and, thus, any evidence of life, and at understanding the geological conditions of Mars, These rovers have been successfully assisted by primary lithium-sulfur dioxide batteries during the critical entry, descent, and landing (EDL) maneuvers. These batteries were located on the petals of the lander, which, unlike in the Mars Pathfinder mission, was designed only to carry the rover. The selection of the lithium-sulfur dioxide battery system for this application was based on its high specific energy and high rate discharge capability, combined with low heat evolution, as dictated by this application. Lithium-sulfur dioxide batteries exhibit voltage delay, which tends to increase at low discharge temperatures, especially after extended storage at warm temperatures, In the absence of a depassivation circuit, as provided on earlier missions, e.g., Galileo, we were required to depassivate the lander primary batteries in a unique manner. The batteries were brought onto a shunt-regulated bus set at pre-selected discharge voltages, thus affecting depassivation during constant discharge voltages. Several ground tests were preformed, on cells, cell strings and battery assembly with five parallel strings, to identify optimum shunt voltages and durations of depassivation. We also examined the repassivation of lithium anodes, subsequent to depassivation. In this paper, we will describe these studies, in detail, as well as the depassivation of the lander flight batteries on both Spirit and Opportunity rover prior to the EDL sequence and their performance during landing on Mars.

  15. Absolute integrated intensity for the nu-1 sulfur dioxide band

    NASA Technical Reports Server (NTRS)

    Pilon, P. J.; Young, C.

    1976-01-01

    The absolute integrated intensity of the IR vibration-rotation nu-1 SO2 band was measured using the linear portion of the curve of growth. Infrared spectroscopic-absorption cell measurements were performed on sulfur dioxide at partial pressures less than 0.15 torr with nitrogen added to give a total pressure of 705 torr, the path length being 4 mm. The absolute integrated intensity was determined to be 112.0 plus or minus 2.6/cm/sq (atm cm) at 296 K at the 95% confidence level.

  16. Auction design and the market for sulfur dioxide emissions

    SciTech Connect

    Joskow, P.L.; Schmalensee, R.; Bailey, E.M.

    1997-12-31

    Title IV of the Clean Air Act Amendments of 1990 created a market for electric utility emissions of sulfur dioxide (SO{sub 2}). Recent papers have argued that flaws in the design of the auctions that are part of this market have adversely affected its performance. These papers incorrectly assume that trade can only occur at auctions, however. Our empirical analysis of the SO{sub 2} emissions market shows that the auctions have become a small part of a relatively efficient market and that the auction design problems that have attracted the most attention have had no effect on actual market prices.

  17. Effects of acid rain and sulfur dioxide on marble dissolution

    USGS Publications Warehouse

    Schuster, Paul F.; Reddy, Michael M.; Sherwood, Susan I.

    1994-01-01

    Acid precipitation and the dry deposition of sulfur dioxide (SO2) accelerate damage to carbonate-stone monuments and building materials. This study identified and quantified environmental damage to a sample of Vermont marble during storms and their preceding dry periods. Results from field experiments indicated the deposition of SO2 gas to the stone surface during dry periods and a twofold increase in marble dissolution during coincident episodes of low rain rate and decreased rainfall pH. The study is widely applicable to the analysis of carbonate-stone damage at locations affected by acid rain and air pollution.

  18. Enhanced monitoring of sulfur dioxide sources with hyperspectral UV sensors

    NASA Astrophysics Data System (ADS)

    Krueger, Arlin; Yang, Kai; Krotkov, Nickolay

    2009-09-01

    Sulfur dioxide, a short-lived atmospheric constituent, is oxidized to sulfate aerosols, a climate agent. Main sources are volcanoes, smelters, and fossil fuel combustion. Satellite monitoring of SO2 began with TOMS data in 1978 that detected volcanic eruption clouds. Hyperspectral instruments, like OMI and GOME, have a twenty-fold improvement in sensitivity. Degassing volcanoes, smelters, and large power plants are now monitored for a database of SO2 emission to the atmosphere. SO2 is a distinctive marker for volcanic ash clouds, a hazard to aircraft.

  19. Lithium/sulfur dioxide cell and battery safety

    NASA Technical Reports Server (NTRS)

    Halpert, G.; Anderson, A.

    1982-01-01

    The new high-energy lithium/sulfur dioxide primary electrochemical cell, having a number of advantages, has received considerable attention as a power source in the past few years. With greater experience and improved design by the manufacturers, this system can be used in a safe manner provided the guidelines for use and safety precautions described herein are followed. In addition to a description of cell design and appropriate definitions, there is a safety precautions checklist provided to guide the user. Specific safety procedures for marking, handling, transportation, and disposal are also given, as is a suggested series of tests, to assure manufacturer conformance to requirements.

  20. Low level atmospheric sulfur dioxide pollution and childhood asthma

    SciTech Connect

    Tseng, R.Y.; Li, C.K. )

    1990-11-01

    Quarterly analysis (1983-1987) of childhood asthma in Hong Kong from 13,620 hospitalization episodes in relation to levels of pollutants (SO{sub 2}, NO{sub 2}, NO, O{sub 3}, TSP, and RSP) revealed a seasonal pattern of attack rates that correlates inversely with exposure to sulfur dioxide (r = -.52, P less than .05). The same cannot be found with other pollutants. Many factors may contribute to the seasonal variation of asthma attacks. We speculate that prolonged exposure (in terms of months) to low level SO{sub 2} is one factor that might induce airway inflammation and bronchial hyperreactivity and predispose to episodes of asthma.

  1. Effects of acid rain and sulfur dioxide on marble dissolution

    SciTech Connect

    Schuster, P.F.; Reddy, M.M. ); Sherwood, S.I. )

    1994-01-01

    Acid precipitation and the dry deposition of sulfur dioxide (SO[sub 2]) accelerate damage to carbonate-stone monuments and building materials. This study identified and quantified environmental damage to a sample of Vermont marble during storms and their preceding dry periods. Results from field experiments indicated the deposition of SO[sub 2] gas to the stone surface during dry periods and a twofold increase in marble dissolution during coincident episodes of low rain rate and decreased rainfall pH. The study is widely applicable to the analysis of carbonate-stone damage at locations affected by acid rain and air pollution.

  2. Environment and productivities in developed and developing countries: the case of carbon dioxide and sulfur dioxide.

    PubMed

    Kumar, Surender; Managi, Shunsuke

    2010-07-01

    We propose a productivity index for undesirable outputs such as carbon dioxide (CO(2)) and sulfur dioxide (SO(2)) emissions and measure it using data from 51 developed and developing countries over the period 1971-2000. About half of the countries exhibit the productivity growth. The changes in the productivity index are linked with their respective per capita income using a semi-parametric model. Our results show technological catch up of low-income countries. However, overall productivities both of SO(2) and CO(2) show somewhat different results.

  3. Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework series.

    PubMed

    Rodríguez-Albelo, L Marleny; López-Maya, Elena; Hamad, Said; Ruiz-Salvador, A Rabdel; Calero, Sofia; Navarro, Jorge A R

    2017-02-15

    The widespread emissions of toxic gases from fossil fuel combustion represent major welfare risks. Here we report the improvement of the selective sulfur dioxide capture from flue gas emissions of isoreticular nickel pyrazolate metal organic frameworks through the sequential introduction of missing-linker defects and extra-framework barium cations. The results and feasibility of the defect pore engineering carried out are quantified through a combination of dynamic adsorption experiments, X-ray diffraction, electron microscopy and density functional theory calculations. The increased sulfur dioxide adsorption capacities and energies as well as the sulfur dioxide/carbon dioxide partition coefficients values of defective materials compared to original non-defective ones are related to the missing linkers enhanced pore accessibility and to the specificity of sulfur dioxide interactions with crystal defect sites. The selective sulfur dioxide adsorption on defects indicates the potential of fine-tuning the functional properties of metal organic frameworks through the deliberate creation of defects.

  4. Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework series

    NASA Astrophysics Data System (ADS)

    Rodríguez-Albelo, L. Marleny; López-Maya, Elena; Hamad, Said; Ruiz-Salvador, A. Rabdel; Calero, Sofia; Navarro, Jorge A. R.

    2017-02-01

    The widespread emissions of toxic gases from fossil fuel combustion represent major welfare risks. Here we report the improvement of the selective sulfur dioxide capture from flue gas emissions of isoreticular nickel pyrazolate metal organic frameworks through the sequential introduction of missing-linker defects and extra-framework barium cations. The results and feasibility of the defect pore engineering carried out are quantified through a combination of dynamic adsorption experiments, X-ray diffraction, electron microscopy and density functional theory calculations. The increased sulfur dioxide adsorption capacities and energies as well as the sulfur dioxide/carbon dioxide partition coefficients values of defective materials compared to original non-defective ones are related to the missing linkers enhanced pore accessibility and to the specificity of sulfur dioxide interactions with crystal defect sites. The selective sulfur dioxide adsorption on defects indicates the potential of fine-tuning the functional properties of metal organic frameworks through the deliberate creation of defects.

  5. Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework series

    PubMed Central

    Rodríguez-Albelo, L. Marleny; López-Maya, Elena; Hamad, Said; Ruiz-Salvador, A. Rabdel; Calero, Sofia; Navarro, Jorge A.R.

    2017-01-01

    The widespread emissions of toxic gases from fossil fuel combustion represent major welfare risks. Here we report the improvement of the selective sulfur dioxide capture from flue gas emissions of isoreticular nickel pyrazolate metal organic frameworks through the sequential introduction of missing-linker defects and extra-framework barium cations. The results and feasibility of the defect pore engineering carried out are quantified through a combination of dynamic adsorption experiments, X-ray diffraction, electron microscopy and density functional theory calculations. The increased sulfur dioxide adsorption capacities and energies as well as the sulfur dioxide/carbon dioxide partition coefficients values of defective materials compared to original non-defective ones are related to the missing linkers enhanced pore accessibility and to the specificity of sulfur dioxide interactions with crystal defect sites. The selective sulfur dioxide adsorption on defects indicates the potential of fine-tuning the functional properties of metal organic frameworks through the deliberate creation of defects. PMID:28198376

  6. 75 FR 29534 - Inorganic Nitrates-Nitrite, Carbon and Carbon Dioxide, and Sulfur Registration Review; Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... Nitrates-Nitrite, Carbon and Carbon Dioxide, and Sulfur Registration Review; Draft Ecological Risk... ecological risk assessment for the registration review of inorganic nitrates - nitrites, carbon and carbon... inorganic nitrates- nitrites, carbon and carbon dioxide uses, as well as gas cartridge uses of sulfur....

  7. 40 CFR 52.2679 - Control strategy and regulations: Sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy and regulations: Sulfur dioxide. 52.2679 Section 52.2679 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....2679 Control strategy and regulations: Sulfur dioxide. (a) Approvals of the following rules are...

  8. 40 CFR 52.2679 - Control strategy and regulations: Sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy and regulations: Sulfur dioxide. 52.2679 Section 52.2679 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....2679 Control strategy and regulations: Sulfur dioxide. (a) Approvals of the following rules are...

  9. 40 CFR 52.2679 - Control strategy and regulations: Sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Control strategy and regulations: Sulfur dioxide. 52.2679 Section 52.2679 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....2679 Control strategy and regulations: Sulfur dioxide. (a) Approvals of the following rules are...

  10. 78 FR 11124 - EPA Responses to State and Tribal 2010 Sulfur Dioxide Designation Recommendations: Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 81 EPA Responses to State and Tribal 2010 Sulfur Dioxide Designation Recommendations... its responses to certain state and tribal designation recommendations for the 2010 Sulfur Dioxide...

  11. 40 CFR 52.2679 - Control strategy and regulations: Sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Control strategy and regulations: Sulfur dioxide. 52.2679 Section 52.2679 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....2679 Control strategy and regulations: Sulfur dioxide. (a) Approvals of the following rules are...

  12. 40 CFR 52.2679 - Control strategy and regulations: Sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Control strategy and regulations: Sulfur dioxide. 52.2679 Section 52.2679 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....2679 Control strategy and regulations: Sulfur dioxide. (a) Approvals of the following rules are...

  13. Differing response of asthmatics to sulfur dioxide exposure with continuous and intermittent exercise

    SciTech Connect

    Kehrl, H.R.; Roger, L.J.; Hazucha, M.J.; Horstman, D.H.

    1986-08-29

    Ten mild asthmatics were initially exposed in an environmental chamber (26 C, 70% RH) to clean air and 1.0 ppm sulfur dioxide while performing three sets of 10 minutes treadmill exercise (ventilation = 41 1/min) and 15 minutes rest. To evaluate the effects of the pattern and duration of exercise on the response to sulfur dioxide exposure, the subjects were then exposed to the same environmental conditions, while exercising continuously for 30 minutes. Specific airways resistance (SRaw) was measured by body plethysmography prior to exposures and after each exercise. All SRaw responses with sulfur dioxide exposure were significantly different than the clean air responses. It appears that asthmatics show an attenuated response to repetitive exercise in a 1.00 ppm sulfur dioxide atmosphere and that the response to sulfur dioxide exposure develops rapidly and is maintained during 30 minutes continuous exercise.

  14. Effect of oil mists on the irritancy of sulfur dioxide. II. Motor oil.

    PubMed

    Costa, D L; Amdur, M O

    1979-09-01

    This study examines the effect of sub-micrometer aerosols of motor oil on the irritant potency of sulfur dioxide. The increase in pulmonary flow resistance in guinea pigs was used as the bioassay of irritant response. When administered simultaneously, both unused and used motor oil protected against the irritant response to sulfur dioxide. This protective effect was lost when the oils had been previously reacted with sulfur dioxide. The additives used in the motor oil provided an equivalent protection when dissolved in a mineral oil which alone did not protect. Pre-exposure to motor oil did not provide protection. Sulfur dioxide and motor oil given together as a pre-exposure provided protection against further exposure to sulfur dioxide.

  15. 40 CFR 721.9672 - Amides, tall-oil fatty, N-[2-[2-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1-piperazineethanamine and sulfur dioxide; fatty acids, tall-oil reaction products with sulfur dioxide and... dioxide; fatty acids, tall-oil, reaction products with 1-piperazineethanamine and sulfur dioxide;...

  16. 40 CFR 721.9672 - Amides, tall-oil fatty, N-[2-[2-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1-piperazineethanamine and sulfur dioxide; fatty acids, tall-oil reaction products with sulfur dioxide and... dioxide; fatty acids, tall-oil, reaction products with 1-piperazineethanamine and sulfur dioxide;...

  17. 40 CFR 721.9672 - Amides, tall-oil fatty, N-[2-[2-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1-piperazineethanamine and sulfur dioxide; fatty acids, tall-oil reaction products with sulfur dioxide and... dioxide; fatty acids, tall-oil, reaction products with 1-piperazineethanamine and sulfur dioxide;...

  18. 40 CFR 721.9672 - Amides, tall-oil fatty, N-[2-[2-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1-piperazineethanamine and sulfur dioxide; fatty acids, tall-oil reaction products with sulfur dioxide and... dioxide; fatty acids, tall-oil, reaction products with 1-piperazineethanamine and sulfur dioxide;...

  19. 40 CFR 721.9672 - Amides, tall-oil fatty, N-[2-[2-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1-piperazineethanamine and sulfur dioxide; fatty acids, tall-oil reaction products with sulfur dioxide and... dioxide; fatty acids, tall-oil, reaction products with 1-piperazineethanamine and sulfur dioxide;...

  20. 75 FR 35519 - Primary National Ambient Air Quality Standard for Sulfur Dioxide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ...Based on its review of the air quality criteria for oxides of sulfur and the primary national ambient air quality standard (NAAQS) for oxides of sulfur as measured by sulfur dioxide (SO2), EPA is revising the primary SO2 NAAQS to provide requisite protection of public health with an adequate margin of safety. Specifically, EPA is establishing a new 1-hour SO2......

  1. Satellite Mapping of the Earth's Ozone and Sulfur Dioxide

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin; Bhartia, P. K.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Total Ozone Mapping Spectrometer (TOMS) instruments are spatially-scanning UV spectrometers that have produced daily global images of total ozone over the last 21 years since the launch of the Nimbus 7 satellite. The instruments use a total ozone retrieval algorithm pioneered by J.V. Dave and C. L. Mateer for the Nimbus 4 Backscatter Ultraviolet (BUV) instrument, designed by D.F. Heath. The TOMS ozone maps have revealed the relations between total ozone and atmospheric dynamics, and shown the dramatic losses of ozone in the Antarctic ozone hole and the Northern hemisphere. The accepted long-term trends in global, regional, and local ozone are derived from data from the Nimbus 7 TOMS and three successive TOMS flights on Russian, Japanese, and American satellites. The next TOMS flight will be launched in 2000. The contiguous mapping design and fortuitous choice of TOMS wavelengths bands also permitted imaging of a second atmospheric gas, sulfur dioxide, which is transient due to its short lifetime. The importance of this measurement was first realized after the eruption of El Chichon volcano in 1982. The extreme range of sizes of volcanic eruptions and the associated danger require observations from a distant observing platform. The first quantitative time series of the input of sulfur dioxide by explosive volcanic eruptions into the atmosphere thus was developed from the TOMS missions. Finally, the Rayleigh and aerosol scattering spectral characteristic and reflectivity complete the four dominant pieces of information in the near UV albedo of the Earth. The four parameters are derived with a linear algorithm, the absorption coefficients of the gases, and effective paths computed from radiative transfer tables. Absorbing aerosol clouds (smoke, dust, volcanic ash) are readily identified by their deviation from a Rayleigh signature. The greatest shortcoming of the TOMS dataset is the 24 hour time resolution that is produced by the polar orbit of the satellite

  2. Satellite Mapping of the Earth's Ozone and Sulfur Dioxide

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin; Bhartia, P. K.

    2000-01-01

    The Total Ozone Mapping Spectrometer (TOMS) instruments are spatially-scanning UV spectrometers that have produced daily global images of total ozone over the last 21 years since the launch of the Nimbus 7 satellite. The instruments use a total ozone retrieval algorithm pioneered by J.V. Dave and C. L. Mateer for the Nimbus 4 Backscatter Ultraviolet (BUV) instrument, designed by D.F. Heath. The TOMS ozone maps have revealed the relations between total ozone and atmospheric dynamics, and shown the dramatic losses of ozone in the Antarctic ozone hole and the Northern hemisphere. The accepted long-term trends in global, regional, and local ozone are derived from data from the Nimbus 7 TOMS and three successive TOMS flights on Russian, Japanese, and American satellites. The next TOMS flight will be launched in 2000. The contiguous mapping design and fortuitous choice of TOMS wavelengths bands also permitted imaging of a second atmospheric gas, sulfur dioxide, which is transient due to its short lifetime. The importance of this measurement was first realized after the eruption of El Chichon volcano in 1982. The extreme range of sizes of volcanic eruptions and the 'associated danger require observations from a distant observing platform. The first quantitative time series of the input of sulfur dioxide by explosive volcanic eruptions into the atmosphere thus was developed from the TOMS missions. Finally, the Rayleigh and aerosol scattering spectral characteristic and reflectivity complete the four dominant pieces of information in the near UV albedo of the Earth. The four parameters are derived with a linear algorithm, the absorption coefficients of the gases, and effective paths computed from radiative transfer tables. Absorbing aerosol clouds (smoke, dust, volcanic ash) are readily identified by their deviation from a Rayleigh signature. The greatest shortcoming of the TOMS dataset is the 24 hour time resolution that is produced by the polar orbit of the satellite

  3. Response of radish to nitrogen dioxide, sulfur dioxide, and ozone, alone and in combination

    SciTech Connect

    Reinert, R.A.; Gray, T.N.

    1981-04-01

    Effects on radish (Raphanus sativus L.) cv. Cherry Belle of nitrogen dioxide (NO/sub 2/), sulfur dioxide (SO/sub 2/), and ozone (O/sub 3/) alone and in combination at 0.2 and 0.4 ppM of each pollutant were studied. There was no difference in foilage or root weight of radish between exposure durations of 3 to 6 hours, and no significant interaction of hours with air pollutant and concentration. Ozone reduced root dry weight more at 0.4 ppM than at 0.2 ppM. Sulfur dioxide depressed the root/shoot ratio at both 0.2 and 0.4 ppM; however, when NO/sub 2/ and SO/sub 2/ were both present there was synergistic depression of the root/shoot ratio at 0.4 ppM. The average O/sub 3/-induced reduction in root weight of radish (1.75 g fresh and 101 mg dry, per plant) was additive in the presence of NO/sub 2/ and SO/sub 2/. The weight of the root was reduced even though the foilage was the direct receptor of the pollutant stress.

  4. Combined effect of sulfur dioxide and cold in exercising asthmatics.

    PubMed

    Linn, W S; Shamoo, D A; Vinet, T G; Spier, C E; Valencia, L M; Anzar, U T; Hackney, J D

    1984-01-01

    Twenty-four asthmatic volunteers were exposed to 0, 0.3, and 0.6 ppm sulfur dioxide (SO2) in purified background air at each of three temperatures--21 degrees, 7 degrees, and -6 degrees C--in a controlled-environment chamber. Relative humidity was approximately 80%. Exposures consisted of 5 min heavy exercise periods plus brief warmup and cooldown periods. Airway resistance, thoracic gas volume, and symptoms were measured immediately before and after exposure. For the group, increasing SO2 concentration and decreasing temperature were associated with statistically significant unfavorable effects on airway resistance and respiratory symptoms, as expected from previous findings. Effects of SO2 and cold usually appeared to combine in an additive or less-than-additive fashion; there was little evidence of synergism. Individuals' response patterns were variable: a few suggested synergism, but others suggested a mitigating effect of cold on the bronchoconstrictive response to SO2.

  5. Selective insertion of sulfur dioxide reduction intermediates on graphene oxide.

    PubMed

    Humeres, Eduardo; Debacher, Nito A; Smaniotto, Alessandra; de Castro, Karen M; Benetoli, Luís O B; de Souza, Eduardo P; Moreira, Regina de F P M; Lopes, Cristiane N; Schreiner, Wido H; Canle, Moisés; Santaballa, J Arturo

    2014-04-22

    Graphite microparticles (d50 6.20 μm) were oxidized by strong acids, and the resultant graphite oxide was thermally exfoliated to graphene oxide sheets (MPGO, C/O 1.53). Graphene oxide was treated with nonthermal plasma under a SO2 atmosphere at room temperature. The XPS spectrum showed that SO2 was inserted only as the oxidized intermediate at 168.7 eV in the S 2p region. Short thermal shocks at 600 and 400 °C, under an Ar atmosphere, produced reduced sulfur and carbon dioxide as shown by the XPS spectrum and TGA analysis coupled to FTIR. MPGO was also submitted to thermal reaction with SO2 at 630 °C, and the XPS spectrum in the S 2p region at 164.0 eV showed that this time only the nonoxidized episulfide intermediate was inserted. Plasma and thermal treatment produced a partial reduction of MPGO. The sequence of thermal reaction followed by plasma treatment inserted both sulfur intermediates. Because oxidized and nonoxidized intermediates have different reactivities, this selective insertion would allow the addition of selective types of organic fragments to the surface of graphene oxide.

  6. Carbon fixation efficiency of plants influenced by sulfur dioxide.

    PubMed

    Chung, Chung-Yi; Chung, Pei-Ling; Liao, Shao-Wei

    2011-02-01

    In the land ecosystem, the forest can absorb the carbon dioxide (CO2) in the atmosphere and turn the CO2 into organic carbon to store it in the plant body. About 2×10(11) tons of CO2 changes through photosynthesis into organic matter by plant annually. In this research, ten kinds of woody plants were selected for assessing the carbon fixation ability influenced by sulfur dioxide (SO2). The tested trees were put into a fumigation chamber for 210 days in a 40-ppb SO2 environment. The results of this study showed that there was no clear symptom of tested trees under a 40-ppb SO2 environment. The tested trees could tolerate this polluted environment, but it will impact their CO2 absorption ability. The carbon fixation ability will reduce as the polluted period lengthens. The carbon fixation potential of tested trees ranged from 2.1 to 15.5 g·CO2/m2·d with an average of 7.7 g·CO2/m2·d. The changes in CO2 absorption volume for Messerschmidia argentea were more stable during the fumigation period with a variation of 102%. Among the tested trees, Diospyros morrisiana had the best carbon fixation potential of 9.19 g·CO2/m2·d and M. argentea had the least with 2.54 g·CO2/m2·d.

  7. Novel cellulose derivative, process for preparing the same and sulfur dioxide gas permselective membrane comprising the same

    SciTech Connect

    Imai, K.; Shiomi, T.; Tezuka, Y.

    1987-09-15

    This patent relates to a novel cellulose derivative and a sulfur dioxide gas permselective membrane comprising the same, and particularly to hydrocarbylsulfinylethyl cellulose, a process for preparing the same and the sulfur dioxide gas permselective membrane comprising the same. An object of the present invention is to provide hydrocarbylsulfinylethyl cellulose which is a novel cellulose derivative and useful as a material for the sulfur dioxide gas permselective membrane and a process for preparing the same. Another object of the present invention is to supply a novel sulfur dioxide gas permselective membrane having an excellent sulfur dioxide gas permselectivity. The present invention provides hydrocarbylsulfinylethyl cellulose. The novel hydrocarbylsulfinylethyl cellulose of the present invention indicates markedly high sulfur dioxide gas permselectivity compared with the conventional cellulose derivatives, for example, cellulose acetate, ethyl cellulose, etc. Accordingly, the sulfur dioxide gas permselective membrane of the present invention can be utilized for separation, purification of sulfur dioxide gas from a gas mixture such as air or for concentration of sulfur dioxide gas in a gas mixture, and is highly practical in industrial use. More specifically, the sulfur dioxide gas permselective membrane is useful for, for example, removal of harmful sulfur dioxide gas from discharged gases from the viewpoint of environmental protection and purification of starting gases for synthesis, etc. from the viewpoint of industrial production. Further, the hydrocarbylsulfinylethyl cellulose of the present invention is useful for a thickening agent, binder, protective colloidal agent, etc.

  8. Effects of vine water status on dimethyl sulfur potential, ammonium, and amino acid contents in Grenache Noir grapes (Vitis vinifera).

    PubMed

    De Royer Dupré, N; Schneider, R; Payan, J C; Salançon, E; Razungles, A

    2014-04-02

    We studied the effect of vine water status on the dimethyl sulfur potential (DMSP), ammonium, and amino acid contents of the berry during the maturation of Grenache Noir grapes. Water deficit increased the accumulation of amino acids in berries and favored yeast assimilable amino nitrogen. Similarly, ammonium content was higher in berries from vines subjected to moderate water deficit. DMSP content followed the same trend as yeast assimilable amino acid content, with higher concentrations observed in the berries of vines subjected to water deficit. The high DMSP and yeast assimilable nitrogen contents of musts from vines subjected to water deficit resulted in a better preservation of DMSP during winemaking. The wines produced from these musts had a higher DMSP level and would therefore probably have a higher aroma shelf life, because the DMSP determines the rate of release of dimethyl sulfur during wine storage, and this compound enhances fruity notes.

  9. Guidance for 1-Hour Sulfur Dioxide (SO2) Nonattainment Area State Implementation Plans (SIP) Submissions

    EPA Pesticide Factsheets

    The document is intended to provide guidance and recommendations to state, local and tribal governments for the development of SIPs and tribal implementation plans (TIPs) under the 2010 1-hour primary NAAQS for Sulfur Dioxide (SO2).

  10. Impact of sulfur dioxide oxidation by Stabilized Criegee Intermediate on sulfate

    EPA Science Inventory

    We revise the Carbon Bond chemical mechanism to explicitly represent three Stabilized Criegee Intermediates (SCIs) and their subsequent reactions with sulfur dioxide, water monomer, and water dimer, and incorporate the reactions into the Community Multiscale Air Quality model. Th...

  11. Table of Historical Sulfur Dioxide National Ambient Air Quality Standards (NAAQS)

    EPA Pesticide Factsheets

    See the history of limits to the level of sulfur dioxide (SO2) in ambient air, set through the NAAQS review and rulemaking process under the Clean Air Act. This includes both primary and secondary standards.

  12. Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector

    NASA Technical Reports Server (NTRS)

    Johnson, James E.; Bates, Timothy S.

    1993-01-01

    Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

  13. Ambient air concentration of sulfur dioxide affects flight activity in bees

    SciTech Connect

    Ginevan, M.E.; Lane, D.D.; Greenberg, L.

    1980-10-01

    Three long-term (16 to 29 days) low-level (0.14 to 0.28 ppM) sulfur dioxide fumigations showed that exposure tothis gas has deleterious effects on male sweat bees (Lasioglossum zephrum). Although effects on mortality were equivocal, flight activity was definitely reduced. Because flight is necessary for successful mating behavior, the results suggest that sulfur dioxide air pollution could adversely affect this and doubtless other terrestrial insects.

  14. Sulfur dioxide control (excludes coal burning sources). (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning air pollution control technology and removal of sulfur dioxide from waste streams and atmospheres. Removal methods include flue gas desulfurization by wet or dry sorbents, electron beam processes, corona discharge, reductive gases, microbial processes, and burner injection systems. Applications to utilities, oil refineries, and the metallurgical and chemical industries are described. Control of sulfur dioxide produced from coal burning is discussed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  15. Sulfur dioxide control (excludes coal burning sources). (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning air pollution control technology and removal of sulfur dioxide from waste streams and atmospheres. Removal methods include flue gas desulfurization by wet or dry sorbents, electron beam processes, corona discharge, reductive gases, microbial processes, and burner injection systems. Applications to utilities, oil refineries, and the metallurgical and chemical industries are described. Control of sulfur dioxide produced from coal burning is discussed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  16. Sulfur dioxide control (excludes coal burning sources). (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-09-01

    The bibliography contains citations concerning air pollution control technology and removal of sulfur dioxide from waste streams and atmospheres. Removal methods include flue gas desulfurization by wet or dry sorbents, electron beam processes, corona discharge, reductive gases, microbial processes, and burner injection systems. Applications to utilities, oil refineries, and the metallurgical and chemical industries are described. Control of sulfur dioxide produced from coal burning is discussed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  17. Adsorption of sulfur dioxide from coal combustion gases on natural zeolite

    SciTech Connect

    Demirbas, A.

    2006-10-15

    In this study, better efficiency of SO{sub 2} removal in flue gas from lignite coal combustion by adding of NZ in the gas phase was achieved. Natural zeolite was exposed to flue gas containing sulfur dioxide at varying conditions of relative humidity and temperature. It was found that the amount of sulfate on the zeolite increased with increasing relative humidity and temperature. The percents of adsorbed sulfur dioxide were 86, 74, 56, and 35, while the values of relative humidity (RH) were 75, 60, 45, and 30% for 40 minutes, respectively. The percents of adsorbed sulfur dioxide sharply increased within the first 40 min for the values of RH were 75 and 60, and after 40 min, slightly increased, then reached a plateau. In general, as increasing the RH increased the amount of sulfur dioxide adsorbed by natural zeolite. The amounts of adsorbed sulfur dioxide increased with exposure time. It increased and reached 30.2 mg/g for 40 min. After 40 min, it slightly increased and then reached a plateau. The NZ adsorbs 35.1 mg SO{sub 2} per gram adsorbent with 75% RH at 298 K from a simulated coal combustion flue gas. The amounts of adsorbed sulfur dioxide increased with increasing temperature. The NZ adsorbs 71.5 mg SO{sub 2} per gram adsorbent with 75% RH for 100 min exposure time from the flue gas mixture.

  18. Unique pioneer microbial communities exposed to volcanic sulfur dioxide.

    PubMed

    Fujimura, Reiko; Kim, Seok-Won; Sato, Yoshinori; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2016-01-21

    Newly exposed volcanic substrates contain negligible amounts of organic materials. Heterotrophic organisms in newly formed ecosystems require bioavailable carbon and nitrogen that are provided from CO2 and N2 fixation by pioneer microbes. However, the knowledge of initial ecosystem developmental mechanisms, especially the association between microbial succession and environmental change, is still limited. This study reports the unique process of microbial succession in fresh basaltic ash, which was affected by long-term exposure to volcanic sulfur dioxide (SO2). Here we compared the microbial ecosystems among deposits affected by SO2 exposure at different levels. The results of metagenomic analysis suggested the importance of autotrophic iron-oxidizing bacteria, particularly those involved in CO2 and N2 fixation, in the heavily SO2 affected site. Changes in the chemical properties of the deposits after the decline of the SO2 impact led to an apparent decrease in the iron-oxidizer abundance and a possible shift in the microbial community structure. Furthermore, the community structure of the deposits that had experienced lower SO2 gas levels showed higher similarity with that of the control forest soil. Our results implied that the effect of SO2 exposure exerted a selective pressure on the pioneer community structure by changing the surrounding environment of the microbes.

  19. Ripper procedure for determining sulfur dioxide in wine: collaborative study.

    PubMed

    Vahl, J M; Converse, J E

    1980-03-01

    Twenty-three laboratories analyzed 5 replicate wine samples according to a specified version of the Ripper direct iodometric titration for sulfur dioxide. Each sample was analyzed for (A) free SO2, (B) total SO2, and (C) iodine-reactive substances other than SO2. Although variation of A with temperature and of A and B with time of analysis were anticipated, analysis of covariance showed no significant reduction in error when these variables were taken into account. Error did vary with SO2 level and wine type, red vs white. Pooled estimates of precision (within-laboratory error) in mg SO2/L wine were, for white wine: (A) 3.3, (B) 10.4, (C) 1.9; for red wine: (A) 3.8, (B) 7.3, (C) 1.9. Pooled estimates of systematic (between-laboratory) error in mgSO2/L wine were, for white wine: (A) 2.7, (B) 16.6, (C) 2.1; for red wine: (A) 4.3, (B) 15.1, (C) 3.0. Although rapid and convenient, the Ripper method is severely limited by poor precision and large systematic error. The Ripper method is not recommended for adoption by the AOAC.

  20. Sulfur dioxide removal process with gypsum and magnesium hydroxide production

    SciTech Connect

    College, J.W.; Benson, L.B.

    1992-01-28

    This patent describes improvement in a method for removing sulfur dioxide from flue gases wherein the flue gases are contacted in a wet scrubbing unit, in the absence of any substantial amount of calcium components, with an aqueous solution of magnesium components and magnesium sulfite produced, with aqueous solution, following the contact, collected and recycled to the wet scrubber for further contact with flue gases, and subjecting a portion of the aqueous discharge from the scrubbing unit, containing magnesium sulfite, to oxidation in an oxidation unit. The improvement comprises: adding calcium sulfate to the portion of aqueous discharge containing magnesium sulfite prior to oxidation in the oxidation unit to form an oxidized aqueous effluent containing calcium sulfate solids and dissolved magnesium sulfate; passing the oxidized aqueous effluent to a regeneration tank; adding lime to the regeneration tank to precipitate gypsum from and form an aqueous magnesium hydroxide suspension in the oxidized aqueous effluent; separating the precipitated gypsum from the aqueous magnesium hydroxide suspension; and returning at least a portion of the separated precipitated gypsum to the oxidizing unit as the added calcium sulfate.

  1. Unique pioneer microbial communities exposed to volcanic sulfur dioxide

    PubMed Central

    Fujimura, Reiko; Kim, Seok-Won; Sato, Yoshinori; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2016-01-01

    Newly exposed volcanic substrates contain negligible amounts of organic materials. Heterotrophic organisms in newly formed ecosystems require bioavailable carbon and nitrogen that are provided from CO2 and N2 fixation by pioneer microbes. However, the knowledge of initial ecosystem developmental mechanisms, especially the association between microbial succession and environmental change, is still limited. This study reports the unique process of microbial succession in fresh basaltic ash, which was affected by long-term exposure to volcanic sulfur dioxide (SO2). Here we compared the microbial ecosystems among deposits affected by SO2 exposure at different levels. The results of metagenomic analysis suggested the importance of autotrophic iron-oxidizing bacteria, particularly those involved in CO2 and N2 fixation, in the heavily SO2 affected site. Changes in the chemical properties of the deposits after the decline of the SO2 impact led to an apparent decrease in the iron-oxidizer abundance and a possible shift in the microbial community structure. Furthermore, the community structure of the deposits that had experienced lower SO2 gas levels showed higher similarity with that of the control forest soil. Our results implied that the effect of SO2 exposure exerted a selective pressure on the pioneer community structure by changing the surrounding environment of the microbes. PMID:26791101

  2. Sulfur dioxide induced programmed cell death in Vicia guard cells.

    PubMed

    Yi, Huilan; Yin, Jingjing; Liu, Xin; Jing, Xiuqing; Fan, Sanhong; Zhang, Hufang

    2012-04-01

    Sulfur dioxide (SO(2)) induced nuclear condensation and nuclear fragmentation and rapid loss of guard cell viability in detached epidermis of Vicia leaves at concentrations of 1 mM and higher (3 h exposure). Caspase inhibitors Z-Asp-CH(2)-DCB (0.1 mM) and TLCK (0.1 mM) markedly suppressed SO(2)-induced cell death. The typical nuclear morphological changes and the inhibition effects of caspase inhibitors suggest the activation of a programmed cell death (PCD) pathway. SO(2)-induced cell death can be blocked by either antioxidants (0.1 mM AsA or 200 U/mL CAT) or Ca(2+) antagonists (0.1mM EGTA or LaCl(3)). AsA and CAT also blocked SO(2)-induced ROS production and [Ca(2+)](cyt) increase. However, EGTA and LaCl(3) can inhibit SO(2)-induced [Ca(2+)](cyt) increase, but cannot suppress SO(2)-induced ROS production. Our results indicate that high concentrations of SO(2) induce guard cell death via a PCD pathway through ROS mediating [Ca(2+)](cyt) elevation, which causes harmful effects to plants.

  3. Unique pioneer microbial communities exposed to volcanic sulfur dioxide

    NASA Astrophysics Data System (ADS)

    Fujimura, Reiko; Kim, Seok-Won; Sato, Yoshinori; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2016-01-01

    Newly exposed volcanic substrates contain negligible amounts of organic materials. Heterotrophic organisms in newly formed ecosystems require bioavailable carbon and nitrogen that are provided from CO2 and N2 fixation by pioneer microbes. However, the knowledge of initial ecosystem developmental mechanisms, especially the association between microbial succession and environmental change, is still limited. This study reports the unique process of microbial succession in fresh basaltic ash, which was affected by long-term exposure to volcanic sulfur dioxide (SO2). Here we compared the microbial ecosystems among deposits affected by SO2 exposure at different levels. The results of metagenomic analysis suggested the importance of autotrophic iron-oxidizing bacteria, particularly those involved in CO2 and N2 fixation, in the heavily SO2 affected site. Changes in the chemical properties of the deposits after the decline of the SO2 impact led to an apparent decrease in the iron-oxidizer abundance and a possible shift in the microbial community structure. Furthermore, the community structure of the deposits that had experienced lower SO2 gas levels showed higher similarity with that of the control forest soil. Our results implied that the effect of SO2 exposure exerted a selective pressure on the pioneer community structure by changing the surrounding environment of the microbes.

  4. Sulfur dioxide-induced chronic bronchitis in beagle dogs

    SciTech Connect

    Greene, S.A.; Wolff, R.K.; Hahn, F.F.; Henderson, R.F.; Mauderly, J.L.; Lundgren, D.L.

    1984-01-01

    This study was done to produce a model of chronic bronchitis. Twelve beagle dogs were exposed to 500 ppm sulfur dioxide (SO/sub 2/) for 2 h/d, 5d/wk for 21 wk and 4 dogs were sham-exposed to filtered ambient air for the same period. Exposure effects were evaluated by periodically examining the dogs using chest radiographs, pulmonary function, tracheal mucous clearance, and the cellular and soluble components of bronchopulmonary lavage fluids. Dogs were serially sacrificed after 13 and 21 wk of exposure and after 6 and 14 wk of recovery. Clinical signs produced in the SO/sub 2/-exposed dogs included mucoid nasal discharge, productive cough, moist rales on auscultation, tonsilitis, and conjunctivitis. Chest radiographs revealed mild peribronchiolar thickening. Histopathology, tracheal mucous clearance measurements, and lavage cytology were consistent with a diagnosis of chronic bronchitis. It is concluded that repeated exposure to 500 ppm SO/sub 2/ for 21 wk produced chronic bronchitis in the beagle dog. Complete recovery occurred within 5 wk following cessation of SO/sub 2/ exposure. 43 references, 2 figures, 2 tables.

  5. Smart battery controller for lithium sulfur dioxide batteries

    NASA Astrophysics Data System (ADS)

    Atwater, Terrill; Bard, Arnold; Testa, Bruce; Shader, William

    1992-08-01

    Each year, the U.S. Army purchases millions of lithium sulfur dioxide batteries for use in portable electronics equipment. Because of their superior rate capability and service life over a wide variety of conditions, lithium batteries are the power source of choice for military equipment. There is no convenient method of determining the available energy remaining in partially used lithium batteries; hence, users do not take full advantage of all the available battery energy. Currently, users replace batteries before each mission, which leads to premature disposal, and results in the waste of millions of dollars in battery energy every year. Another problem of the lithium battery is that it is necessary to ensure complete discharge of the cells when the useful life of the battery has been expended, or when a hazardous condition exists; a hazardous condition may result in one or more of the cells venting. The Electronics Technology and Devices Laboratory has developed a working prototype of a smart battery controller (SBC) that addresses these problems.

  6. Risk management for sulfur dioxide abatement under multiple uncertainties

    NASA Astrophysics Data System (ADS)

    Dai, C.; Sun, W.; Tan, Q.; Liu, Y.; Lu, W. T.; Guo, H. C.

    2016-03-01

    In this study, interval-parameter programming, two-stage stochastic programming (TSP), and conditional value-at-risk (CVaR) were incorporated into a general optimization framework, leading to an interval-parameter CVaR-based two-stage programming (ICTP) method. The ICTP method had several advantages: (i) its objective function simultaneously took expected cost and risk cost into consideration, and also used discrete random variables and discrete intervals to reflect uncertain properties; (ii) it quantitatively evaluated the right tail of distributions of random variables which could better calculate the risk of violated environmental standards; (iii) it was useful for helping decision makers to analyze the trade-offs between cost and risk; and (iv) it was effective to penalize the second-stage costs, as well as to capture the notion of risk in stochastic programming. The developed model was applied to sulfur dioxide abatement in an air quality management system. The results indicated that the ICTP method could be used for generating a series of air quality management schemes under different risk-aversion levels, for identifying desired air quality management strategies for decision makers, and for considering a proper balance between system economy and environmental quality.

  7. The abundance of sulfur dioxide below the clouds of Venus

    NASA Technical Reports Server (NTRS)

    Bezard, Bruno; De Bergh, Catherine; Fegley, Bruce; Maillard, Jean-Pierre; Crisp, David; Owen, Tobias; Pollack, James B.; Grinspoon, David

    1993-01-01

    We present a new method for determining the abundance of sulfur dioxide below the clouds of Venus. Absorption by the 3nu3 band of SO2 near 2.45 microns has been detected in high-resolution spectra of the night side of Venus recorded at the Canada-France Hawaii telescope in 1989 and 1991. The inferred SO2 abundance is 130 +/- 40 ppm at all observed locations and pertains to the 35-45 km region. These values are comparable to those measured by the Pioneer Venus and Venera 11/12 entry probes in 1978. This stability stands in contrast to the apparent massive decrease in SO2 observed at the cloud tops since these space missions. These results are consistent with laboratory and modeling studies of the SO2 destruction rates in the lower atmosphere of Venus. The new spectroscopic technique presented here allows a remote monitoring of the SO2 abundance below the clouds, a likely tracer of Venusian volcanism.

  8. 77 FR 46295 - Extension of Deadline for Promulgating Designations for the 2010 Primary Sulfur Dioxide National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 81 Extension of Deadline for Promulgating Designations for the 2010 Primary Sulfur... designations for the primary sulfur dioxide (SO 2 ) national ambient air quality standard (NAAQS) that...

  9. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices.

    PubMed

    Tangerman, Albert

    2009-10-15

    This review deals with the measurement of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices of rats and humans (blood, serum, tissues, urine, breath, feces and flatus). Hydrogen sulfide and methanethiol both contain the active thiol (-SH) group and appear in the free gaseous form, in the acid-labile form and in the dithiothreitol-labile form. Dimethyl sulfide is a neutral molecule and exists only in the free form. The foul odor of these sulfur volatiles is a striking characteristic and plays a major role in bad breath, feces and flatus. Because sulfur is a biologically active element, the biological significance of the sulfur volatiles are also highlighted. Despite its highly toxic properties, hydrogen sulfide has been lately recommended to become the third gasotransmitter, next to nitric oxide and carbon monoxide, based on high concentration found in healthy tissues, such as blood and brain. However, there is much doubt about the reliability of the assay methods used. Many artifacts in the sulfide assays exist. The methods to detect the various forms of hydrogen sulfide are critically reviewed and compared with findings of our group. Recent findings that free gaseous hydrogen sulfide is absent in whole blood urged the need to revisit its role as a blood-borne signaling molecule.

  10. 78 FR 28173 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Sulfur Dioxide and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Indiana; Sulfur Dioxide and Nitrogen Dioxide Ambient Air Quality Standards AGENCY: Environmental Protection Agency (EPA... national ambient air quality standards (NAAQS) for NO 2 and SO 2 to be consistent with the NAAQS that...

  11. 78 FR 28143 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Sulfur Dioxide and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Indiana; Sulfur Dioxide and Nitrogen Dioxide Ambient Air Quality Standards AGENCY: Environmental Protection Agency (EPA... amend the national ambient air quality standards (NAAQS) for NO 2 and SO 2 to be consistent with...

  12. Distribution of Hydrogen Peroxide, Carbon Dioxide, and Sulfuric Acid in Europa's Icy Crust

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.

    2004-01-01

    Galileo's Near Infrared Mapping Spectrometer (NIMS) detected hydrogen peroxide, carbon dioxide and a hydrated material on Europa's surface, the latter interpreted as hydrated sulfuric acid (H2SO4*nH2O) or hydrated salts. Related compounds are molecular oxygen, sulfur dioxide, and two chromophores, one that is dark in the ultraviolet(UV) and concentrated on the trailing side, the other brighter in the UV and preferentially distributed in the leading hemisphere. The UV-dark material has been suggested to be sulfur.

  13. Growth of radish and marigold following repeated exposure to nitrogen dioxide, sulfur dioxide, and ozone

    SciTech Connect

    Reinert, R.A.; Sanders, J.S.

    1982-02-01

    Radish and marigold plants were exposed to 0.3 ppM of nitrogen dioxide (NO/sub 2/), sulfur dioxide (SO/sub 2/), and /or ozone (O/sub 3/) nine times during a 3-wk period. No interactions among NO/sub 2/, SO/sub 2/, and O/sub 3/ were detected in measurement of radish foliage and root dry weight. Treatments containing O/sub 3/ reduced radish foliage and root (hypocotyl) dry weight 356 and 531 mg/plant, respectively. Interactions among NO/sub 2/, SO/sub 2/ and O/sub 3/ occurred in shoots and roots of marigold. SO/sub 2/ alone reduced marigold shoot and root dry weight, but this effect was reversed in the presence of O/sub 3/. The suppressive effect of SO/sub 2/ on root weight was also reversed by NO/sub 2/. Treatments containing SO/sub 2/ reduced dry flower weight 0.17 g/plant, but effects of the pollutant interactions observed in shoots and roots were not present. 8 references, 2 tables.

  14. Growth of radish and marigold following repeated exposure to nitrogen dioxide, sulfur dioxide, and ozone

    SciTech Connect

    Reinert, R.A.; Sanders, J.S.

    1982-02-01

    Radish and marigold plants were exposed to 0.3 ppm of nitrogen dioxide (NO/sub 2/), sulfur dioxide (SO/sub 2/), and/or ozone (O/sub 3/) nine times during a 3-wk period. No interactions among NO/sub 2/, SO/sub 2/, and O/sub 3/ were detected in measurement of radish foliage and root dry weight. Treatments containing O/sub 3/ reduced radish foliage and root (hypocotyl) dry weight 356 and 531 mg/plant, respectively. Interactions among NO/sub 2/, SO/sub 2/, and O/sub 3/ occurred in shoots and roots of marigold. SO/sub 2/ alone reduced marigold shoot and root dry weight, but this effect was reversed in the presence of O/sub 3/. The suppressive effect of SO/sub 2/ on root weight was also reversed by NO/sub 3/. Treatments containing SO/sub 2/ reduced dry flower weight 0.17 g/plant, but effects of the pollutant interactions observed in shoots and roots were not present.

  15. Airway responsiveness to sulfur dioxide in an adult population sample.

    PubMed

    Nowak, D; Jörres, R; Berger, J; Claussen, M; Magnussen, H

    1997-10-01

    We determined the prevalence of airway hyperresponsiveness to sulfur dioxide (SO2) in an adult population sample of 790 subjects 20 to 44 yr of age. Subjects were drawn randomly from the population of Hamburg, Northern Germany, within the framework of the European Community Respiratory Health Survey. In addition, we analyzed the relationship between SO2 responsiveness and a number of risk factors, such as a history of respiratory symptoms, methacholine responsiveness, and atopy derived from skin-prick test results. SO2 inhalation challenges were performed during isocapnic hyperventilation at constant rate (40 L x min(-1), for 3 min) with doubling concentrations of SO2 up to a maximum concentration of 2.0 ppm. If subjects achieved a 20% decrease in FEV1 from baseline during the challenge, they were considered to be hyperresponsive to SO2. The raw prevalence of SO2 hyperresponsiveness within the population sample studied was 3.4% (95% confidence interval [CI]: 2.3 to 5.0%). Adjustment for nonparticipation led to an estimated prevalence of SO2 hyperresponsiveness of 5.4%. Among subjects with hyperresponsiveness to methacholine, 22.4% (95% CI: 20.1 to 25.3) demonstrated hyperresponsiveness to SO2. There was no significant correlation between the degrees of hyperresponsiveness to methacholine and SO2. Predictors of a positive SO2 response were hyperresponsiveness to methacholine (p < 0.0001), a positive history of respiratory symptoms (p < 0.05), and a positive skin-prick test to at least one common allergen (p < 0.05). We conclude from these data that airway hyperresponsiveness to SO2 can be found in about 20 to 25% of subjects within the 20- to 44-yr age range who are hyperresponsive to methacholine.

  16. The 1982 El Chichon Eruption: The Birth of Volcanic Sulfur Dioxide Monitoring From Space

    NASA Astrophysics Data System (ADS)

    Krueger, A. J.; Krotkov, N.; Carn, S.

    2007-05-01

    The 1982 eruption of El Chichon inspired a new technique for monitoring volcanic clouds using satellites. Data from the Total Ozone Mapping Spectrometer (TOMS) instrument on the Nimbus-7 satellite were used to identify sulfur dioxide in the volcanic cloud and to map the extent of the cloud. For the first time the sulfur dioxide mass in even the largest explosive eruption plumes could be determined. The sizes of eruptions could be measured over 4 orders of magnitude. The position and area of volcanic clouds was determined as the clouds drifted globally with the winds over weeks of time after the eruption. The loss of sulfur dioxide by conversion to sulfate was observed. In addition, volcanic ash clouds were mapped using the TOMS aerosol data. Using sulfur dioxide as a tracer, magmatic eruptions could be discriminated from steam-driven, phreatic eruptions. The data from the El Chichon eruption are reanalyzed using the latest version of the TOMS instrument calibration (V8). They show the shearing of the eruption clouds in three weeks into a globe-circling band while still anchored over Mexico. The measured sulfur dioxide mass in the initial March 28 eruption was 1.6 Tg; a second eruption on April 3 produced 0.3 Tg more, and the climactic April 4 eruption added 5.6 Tg, for a cumulative total of 7.5 Tg, in substantial agreement with estimates from prior TOMS data versions. The TOMS derived sulfur dioxide mass is an order of magnitude higher than the petrologic estimate that is based on the lost sulfur in glass phases of the tephra. This "excess sulfur" brought rise to a reevaluation of the pre-eruptive magmatic processes in volcanoes and a better understanding of eruptions.

  17. SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS

    SciTech Connect

    Robert C. Brown; Maohong Fan; Adrienne Cooper

    2002-10-01

    Absorption of sulfur dioxide from a simulated flue gas was investigated for the production of polymeric ferric sulfate (PFS), a highly effective coagulant useful in treatment of drinking water and wastewater. The reaction for PFS synthesis took place near atmospheric pressure and at temperatures of 30-80 C. SO{sub 2} removal efficiencies greater than 90% were achieved, with ferrous iron concentrations in the product less than 0.1%. A factorial analysis of the effect of temperature, oxidant dosage, SO{sub 2} concentration, and gas flow rate on SO{sub 2} removal efficiency was carried out, and statistical analyses are conducted. The solid PFS was also characterized with different methods. Characterization results have shown that PFS possesses both crystalline and non-crystalline structure. The kinetics of reactions among FeSO{sub 4} {center_dot} 7H{sub 2}O, NaHSO{sub 3} and NaClO{sub 3} was investigated. The PFS product was used in pilot-scale tests at a municipal water treatment facility and gave good results in removal of turbidity and superior results in removal of disinfection byproduct precursors (TOC, DOC, UV-254) when compared with equal doses of ferric chloride.

  18. SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS

    SciTech Connect

    Robert C. Brown; Maohong Fan; Adrienne Cooper

    2004-11-01

    Absorption of sulfur dioxide from a simulated flue gas was investigated for the production of polymeric ferric sulfate (PFS), a highly effective coagulant useful in treatment of drinking water and wastewater. The reaction for PFS synthesis took place near atmospheric pressure and at temperatures of 30-80 C. SO{sub 2} removal efficiencies greater than 90% were achieved, with ferrous iron concentrations in the product less than 0.1%. A factorial analysis of the effect of temperature, oxidant dosage, SO{sub 2} concentration, and gas flow rate on SO{sub 2} removal efficiency was carried out, and statistical analyses are conducted. The solid PFS was also characterized with different methods. Characterization results have shown that PFS possesses both crystalline and non-crystalline structure. The kinetics of reactions among FeSO{sub 4} {center_dot} 7H{sub 2}O, NaHSO{sub 3} and NaClO{sub 3} was investigated. Characterizations of dry PFS synthesized from SO{sub 2} show the PFS possesses amorphous structure, which is desired for it to be a good coagulant in water and wastewater treatment. A series of lab-scale experiments were conducted to evaluate the performance of PFS synthesized from waste sulfur dioxide, ferrous sulfate and sodium chlorate. The performance assessments were based on the comparison of PFS and other conventional and new coagulants for the removal of turbidity and arsenic under different laboratory coagulant conditions. Pilot plant studies were conducted at Des Moines Water Works in Iowa and at the City of Savannah Industrial and Domestic (I&D) Water Treatment Plant in Port Wentworth, Georgia. PFS performances were compared with those of conventional coagulants. The tests in both water treatment plants have shown that PFS is, in general, comparable or better than other coagulants in removal of turbidity and organic substances. The corrosion behavior of polymeric ferric sulfate (PFS) prepared from SO{sub 2} and ferric chloride (FC) were compared. Results

  19. Heterogeneous uptake and oxidation of sulfur dioxide on volcanic ash particles

    NASA Astrophysics Data System (ADS)

    Delmelle, P.; Rossi, M.

    2013-12-01

    The heterogeneous reaction of sulfur dioxide on volcanic ash is investigated at room temperatures using a Knudsen cell operated in a steady state. The ash specimens correspond to Eyjafjallajokull (2010), Tungrahua (2012), Pinatubo (1991) and Chaiten (2008) eruptions. The initial uptake coefficient of sulfur dioxide on the ash studied is found to be in the order of 0.001-0.01. Eyjafjallajokull ash exhibits the highest reactivity. The adsorption of sulfur dioxide on the ash surface is irreversible and is accompanied by an oxidation reaction into sulfate, presumably driven by oxidizing agents already present on the ash surface. The presence of adsorbed water does not seem to influence sulfur dioxide adsorption. There is no evidence for a significant dependence of sulfur dioxide uptake on ash composition. The high reactivity of Eyjafjallajokull ash is tentatively attributed to abundant free hydroxyl groups formed on the surface of the ash particles during their transit through the vertical eruption plume. The atmospheric implications of our study will be presented.

  20. Statistical summary and trend evaluation of air quality data for Cleveland, Ohio in 1967 to 1971: Total suspended particulate, nitrogen dioxide, and sulfur dioxide

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.; Sidik, S. M.; Burr, J. C., Jr.

    1972-01-01

    Air quality data for Cleveland, Ohio, for the period of 1967 to 1971 were collated and subjected to statistical analysis. The total suspended particulate component is lognormally distributed; while sulfur dioxide and nitrogen dioxide are reasonably approximated by lognormal distributions. Only sulfur dioxide, in some residential neighborhoods, meets Ohio air quality standards. Air quality has definitely improved in the industrial valley, while in the rest of the city, only sulfur dioxide has shown consistent improvement. A pollution index is introduced which displays directly the degree to which the environmental air conforms to mandated standards.

  1. Infrared detection of Criegee intermediates formed during the ozonolysis of β-pinene and their reactivity towards sulfur dioxide.

    PubMed

    Ahrens, Jennifer; Carlsson, Philip T M; Hertl, Nils; Olzmann, Matthias; Pfeifle, Mark; Wolf, J Lennard; Zeuch, Thomas

    2014-01-13

    Recently, direct kinetic experiments have shown that the oxidation of sulfur dioxide to sulfur trioxide by reaction with stabilized Criegee intermediates (CIs) is an important source of sulfuric acid in the atmosphere. So far, only small CIs, generated in photolysis experiments, have been directly detected. Herein, it is shown that large, stabilized CIs can be detected in the gas phase by FTIR spectroscopy during the ozonolysis of β-pinene. Their transient absorption bands between 930 and 830 cm(-1) appear only in the initial phase of the ozonolysis reaction when the scavenging of stabilized CIs by the reaction products is slow. The large CIs react with sulfur dioxide to give sulfur trioxide and nopinone with a yield exceeding 80%. Reactant consumption and product formation in time-resolved β-pinene ozonolysis experiments in the presence of sulfur dioxide have been kinetically modeled. The results suggest a fast reaction of sulfur dioxide with CIs arising from β-pinene ozonolysis.

  2. Absorption of sulfur dioxide from gases by ferrous sulfate

    SciTech Connect

    Hansen, B.J.; Zambrano, A.R.

    1980-12-09

    This application is directed to the use of ferrous sulfate for absorption of sulfur from gases containing the same. The invention is predicated on the reaction of the sulfur oxides with ferrous sulfate in the presence of oxygen to form principally ferric sulfate.

  3. Sighting of el chichon sulfur dioxide clouds with the nimbus 7 total ozone mapping spectrometer.

    PubMed

    Krueger, A J

    1983-06-24

    The eruptions of El Chichón volcano on 28 March and 3 and 4 April 1982 were observed by the Nimbus 7 total ozone mapping spectrometer due to strong absorption by volcanic gases at the shortest wavelengths of the spectrometer (312.5 and 317.5 nanometers). These ultraviolet pictures permit a measurement of the volume, dispersion, and drift of volcanic gas clouds. The tropospheric clouds were rapidly dispersed in westerly winds while persistent stratospheric clouds drifted in easterly winds at speeds up to 13 meters per second. The spectral reflectance is consistent with sulfur dioxide absorption and rules out carbon disulfide as a major constituent. A preliminary estimate of the mass of sulfur dioxide deposited in the stratosphere by the large eruptions on 3 and 4 April is 3.3 x 10(6) tons. Prior estimates of volcanic cloud volume were based on extrapolation of locally measured sulfur dioxide concentrations.

  4. Sighting of El Chichon sulfur dioxide clouds with the Nimbus 7 total ozone mapping spectrometer

    NASA Technical Reports Server (NTRS)

    Krueger, A. J.

    1983-01-01

    The eruptions of El Chichon volcano on March 28 and April 3 and 4, 1982 were observed by the Nimbus 7 total ozone mapping spectrometer due to strong absorption by volcanic gases at the shortest wavelengths of the spectrometer (312.5 and 317.5 nm). These ultraviolet pictures permit a measurement of the volume, dispersion, and drift of volcanic gas clouds. The tropospheric clouds were rapidly dispersed in westerly winds while persistent stratospheric clouds drifted in easterly winds at speeds up to 13 m/sec. The spectral reflectance is consistent with sulfur dioxide absorption and rules out carbon disulfide as a major constituent. A preliminary estimate of the mass of sulfur dioxide deposited in the stratosphere by the large eruptions on April 3 and 4 is 3.3 million tons. Prior estimates of volcanic cloud volume were based on extrapolation of locally measured sulfur dioxide concentrations.

  5. Sighting of El Chichon sulfur dioxide clouds with the Nimbus 7 total ozone mapping spectrometer

    SciTech Connect

    Krueger, A.J.

    1983-06-24

    The eruptions of El Chichon volcano on 28 March and 3 and 4 April 1982 were observed by the Nimbus 7 total ozone mapping spectrometer due to strong adsorption by volcanic gases at the shortest wavelenghts of the spectrometer (312.5 and 317.5 nanometers). These ultraviolet pictures permit a measurement of the volume, dispersion, and drift of volcanic gas clouds. The tropospheric clouds were rapidly dispersed in westerly winds while persistent stratospheric clouds drifted in easterly winds at speeds up to 13 meters per second. The spectral reflectance is consistent with sulfur dioxide adsorption and rules out carbon disulfide as a major constituent. A preliminary estimate of the mass of sulfur dioxide deposited in the stratosphere by the large eruptions on 3 and 4 April is 3.3 x 10/sup 6/ tons. Prior estimates of volcanic cloud volume were based on extrapolation of locally measured sulfur dioxide concentrations.

  6. Sighting of El Chichon sulfur dioxide clouds with the Nimbus 7 total ozone mapping spectrometer

    SciTech Connect

    Krueger, A.J.

    1983-06-24

    The eruptions of El Chichon volcano on 28 March and 3 and 4 April 1982 were observed by the Nimbus 7 total ozone mapping spectrometer due to strong absorption by volcanic gases at the shortest wavelengths of the spectrometer (312.5 and 317.5 nanometers). These ultraviolet pictures permit a measurement of the volume, dispersion, and drift of volcanic gas clouds. The tropospheric clouds were rapidly dispersed in westerly winds while persistent stratospheric clouds drifted in easterly winds at speeds up to 13 meters per second. The spectral reflectance is consistent with sulfur dioxide absorption and rules out carbon disulfide as a major constituent. A preliminary estimate of the mass of sulfur dioxide deposited in the stratosphere by the large eruptions on 3 and 4 April is 3.3x10/sup 6/ tons. Prior estimates of volcanic cloud volume were based on extrapolation of locally measured sulfur dioxide concentrations.

  7. Modelling and Remote Sensing of Ash and Sulfur Dioxide from the 2008 Kasatochi Volcano Eruption

    NASA Astrophysics Data System (ADS)

    Egan, S.; Stuefer, M.

    2013-12-01

    We simulated the formation, evolution and transport of volcanic ash and sulfur dioxide (SO2) from the 2008 eruption of Kasatochi volcano using the Weather Research Forecasting (WRF) with inline Chemistry (WRF-Chem). The volcano is located at the western Aleutian arc, and the ash and SO2 plume dispersed well over the North American continent. Using the Regional Acid Deposition Model, version 2 (RADM2) within WRF-Chem, we describe the conversion of sulfur dioxide to sulfate aerosols. WRF-Chem was further set up to use the GOCART aerosol module for predicting the fate of the sulfate aerosol downwind from the volcano. We validated model output with temporal and spatial comparisons to data available from various satellite borne sensors, including OMI, AIRS and MODIS. Temporal and special agreement between WRF and sensor data is discussed and the feasibility of using WRF-Chem as a tool for volcanic sulfur dioxide and ash prediction is assessed.

  8. Testing of an improved lithium-sulfur dioxide battery for aircrew life support equipment

    NASA Astrophysics Data System (ADS)

    Cloyd, J. S.

    1982-05-01

    This report presents the results of in-house testing of lithium-sulfur dioxide cells. The report includes performance testing of an engineering prototype design of lithium-sulfur dioxide cells and the performance characterization, storage evaluations and abuse test behavior of the pilot production cell design. Several design modifications occurred during the development of this lithium-sulfur dioxide cell technology which significantly changed their performance. Testing of the pilot production cells included: (1) Performance evaluations at rates of 50MA, 100MA, 200MA, and 400 MA at temperatures from -65 F to +140 F; (2) Room temperature discharge tests at high rates of current; (3) Capacity retention capability as a function of storage time at temperatures of 32 F, 70 F and 160 F; (4) Evaluation of intermittent storage capability at 205 F; and (5) Abuse testing. Abuse testing included short circuit, nail penetration, and forced overdischarge conditions.

  9. Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000.

    SciTech Connect

    Lu, Z.; Streets, D. G.; Zhang, Q.; Wang, S.; Carmichael, G. R.; Cheng, Y. F.; Wei, C.; Chin, M.; Diehl, T.; Tan, Q.; Decision and Information Sciences; Tsinghua Univ.; Univ. of Iowa; NASA Goddard Space Flight Center

    2010-01-01

    With the rapid development of the economy, the sulfur dioxide (SO{sub 2}) emission from China since 2000 is of increasing concern. In this study, we estimate the annual SO{sub 2} emission in China after 2000 using a technology-based methodology specifically for China. From 2000 to 2006, total SO{sub 2} emission in China increased by 53%, from 21.7 Tg to 33.2 Tg, at an annual growth rate of 7.3%. Emissions from power plants are the main sources of SO{sub 2} in China and they increased from 10.6 Tg to 18.6 Tg in the same period. Geographically, emission from north China increased by 85%, whereas that from the south increased by only 28%. The emission growth rate slowed around 2005, and emissions began to decrease after 2006 mainly due to the wide application of flue-gas desulfurization (FGD) devices in power plants in response to a new policy of China's government. This paper shows that the trend of estimated SO{sub 2} emission in China is consistent with the trends of SO{sub 2} concentration and acid rain pH and frequency in China, as well as with the increasing trends of background SO{sub 2} and sulfate concentration in East Asia. A longitudinal gradient in the percentage change of urban SO{sub 2} concentration in Japan is found during 2000-2007, indicating that the decrease of urban SO{sub 2} is lower in areas close to the Asian continent. This implies that the transport of increasing SO{sub 2} from the Asian continent partially counteracts the local reduction of SO{sub 2} emission downwind. The aerosol optical depth (AOD) products of Moderate Resolution Imaging Spectroradiometer (MODIS) are found to be highly correlated with the surface solar radiation (SSR) measurements in East Asia. Using MODIS AOD data as a surrogate of SSR, we found that China and East Asia excluding Japan underwent a continuous dimming after 2000, which is in line with the dramatic increase in SO{sub 2} emission in East Asia. The trends of AOD from both satellite retrievals and model over

  10. Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control

    DOEpatents

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2011-03-15

    Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

  11. Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium-sulfur battery

    NASA Astrophysics Data System (ADS)

    Chang, Duck-Rye; Lee, Suck-Hyun; Kim, Sun-Wook; Kim, Hee-Tak

    An electrolyte based on a mixture of tetra(ethylene glycol) dimethyl ether (TEGDME) and 1,3-dioxolane (DOXL) is studied for a use in lithium-sulfur battery. The maximum ionic conductivity is found at the intermediate mixing ratio of TEGDME:DOXL=30:70, because TEGDME readily solvates LiCF 3SO 3 and DOXL effectively reduces the viscosity of the electrolyte medium. The lithium-sulfur battery based on the binary electrolyte shows two discernable voltage plateaux at around 2.4 and 2.1 V, which correspond to the formation of soluble polysulfides and of solid reduction products, respectively. The UV spectral analysis for TEGDME-based and DOXL-based electrolytes suggests that the shorter polysulfide is favourably formed for DOXL-based electrolyte in the upper voltage plateau at around 2.4 V. The lower voltage plateau at around 2.1 V is highly dependent on the TEGDME:DOXL ratio. The sulfur utilization in the lower voltage plateau region can be correlated with the viscosity of the electrolyte, but with the ionic conductivity. The low polysulfide diffusion for the electrolyte with high viscosity causes significant passivation at the surface of the positive electrode and results in low sulfur utilization.

  12. Ion-molecule reactions of O,S-dimethyl methylphosphonothioate: evidence for intramolecular sulfur oxidation during VX perhydrolysis.

    PubMed

    McAnoy, Andrew M; Williams, Jilliarne; Paine, Martin R L; Rogers, Michael L; Blanksby, Stephen J

    2009-12-18

    The alkaline perhydrolysis of the nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) was investigated by studying the ion-molecule reactions of HOO(-) with O,S-dimethyl methylphosphonothioate in a modified linear ion-trap mass spectrometer. In addition to simple proton transfer, two other abundant product ions are observed at m/z 125 and 109 corresponding to the S-methyl methylphosphonothioate and methyl methylphosphonate anions, respectively. The structure of these product ions is demonstrated by a combination of collision-induced dissociation and isotope-labeling experiments that also provide evidence for their formation by nucleophilic reaction pathways, namely, (i) S(N)2 at carbon to yield the S-methyl methylphosphonothioate anion and (ii) nucleophilic addition at phosphorus affording a reactive pentavalent intermediate that readily undergoes internal sulfur oxidation and concomitant elimination of CH(3)SOH to yield the methyl methylphosphonate anion. Consistent with previous solution phase observations of VX perhydrolysis, the toxic P-O cleavage product is not observed in this VX model system and theoretical calculations identify P-O cleavage to be energetically uncompetitive. Conversely, intramolecular sulfur oxidation is calculated to be extremely exothermic and kinetically accessible explaining its competitiveness with the facile gas phase proton transfer process. Elimination of a sulfur moiety deactivates the nerve agent VX and thus the intramolecular sulfur oxidation process reported here is also able to explain the selective perhydrolysis of the nerve agent to relatively nontoxic products.

  13. 40 CFR Appendix D to Part 52 - Determination of Sulfur Dioxide Emissions From Stationary Sources by Continuous Monitors

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emissions From Stationary Sources by Continuous Monitors D Appendix D to Part 52 Protection of Environment... PLANS (CONTINUED) Pt. 52, App. D Appendix D to Part 52—Determination of Sulfur Dioxide Emissions From... sulfur dioxide by the Reference method and record the results on the example sheet shown in Figure...

  14. Statistical summary of air quality data for metropolitian Cleveland, Ohio, 1967 - 1972: Total suspended particulates, nitrogen dioxide, and sulfur dioxide

    NASA Technical Reports Server (NTRS)

    King, R. B.; Neustadter, H. E.; Fordyce, J. S.; Burr, J. C., Jr.; Cornett, C. L.

    1974-01-01

    Air-quality data for metropolitan Cleveland, Ohio, from 1967 through 1972 were collated and statistically analyzed. Total suspended particulates (TSP) departed from lognormal distribution in 1972. Nitrogen dioxide and sulfur dioxide, departed significantly from lognormal distributions in 1972. In Cleveland the Ohio standards were not met. However, the data indicate a general improvement in air quality. Unusually high precipitation (43% above the average in 1972) may be responsible in lowering these values from the 1971 levels. The mean values of TSP, NO2, and SO2 are 104, 191, and 83 microgram/cu m respectively.

  15. Simple spectrophotometry method for the determination of sulfur dioxide in an alcohol-thionyl chloride reaction.

    PubMed

    Zheng, Jinjian; Tan, Feng; Hartman, Robert

    2015-09-03

    Thionyl chloride is often used to convert alcohols into more reactive alkyl chloride, which can be easily converted to many compounds that are not possible from alcohols directly. One important reaction of alkyl chloride is nucleophilic substitution, which is typically conducted under basic conditions. Sulfur dioxide, the by-product from alcohol-thionyl chloride reactions, often reacts with alkyl chloride to form a sulfonyl acid impurity, resulting in yield loss. Therefore, the alkyl chloride is typically isolated to remove the by-products including sulfur dioxide. However, in our laboratory, the alkyl chloride formed from alcohol and thionyl chloride was found to be a potential mutagenic impurity, and isolation of this compound would require extensive safety measures. As a result, a flow-through process was developed, and the sulfur dioxide was purged using a combination of vacuum degassing and nitrogen gas sweeping. An analytical method that can quickly and accurately quantitate residual levels of sulfur dioxide in the reaction mixture is desired for in-process monitoring. We report here a simple ultraviolet (UV) spectrophotometry method for this measurement. This method takes advantage of the dramatic change in the UV absorbance of sulfur dioxide with respect to pH, which allows for accurate quantitation of sulfur dioxide in the presence of the strong UV-absorbing matrix. Each sample solution was prepared using 2 different diluents: 1) 50 mM ammonium acetate in methanol +1% v/v hydrochloric acid, pH 1.3, and 2) 50 mM ammonium acetate in methanol +1% glacial acetic acid, pH 4.0. The buffer solutions were carefully selected so that the UV absorbance of the sample matrix (excluding sulfur dioxide) at 276 nm remains constant. In the pH 1.3 buffer system, sulfur dioxide shows strong UV absorbance at 276 nm. Therefore, the UV absorbance of sample solution is the sum of sulfur dioxide and sample matrix. While in the pH 4.0 buffer system, sulfur dioxide has

  16. Accurate prototype remote sensing of correlated carbon dioxide and sulfur dioxide emissions at Mt.Etna

    NASA Astrophysics Data System (ADS)

    Solvejg Dinger, Anna; Bobrowski, Nicole; Butz, André; Fischerkeller, Marie-Constanze; Giudice, Gaetano; Giuffrida, Giovanni; Klappenbach, Friedrich; Kostinek, Julian; Kuhn, Jonas; Liuzzo, Marco; Lübcke, Peter; Tirpitz, Lukas; Platt, Ulrich

    2016-04-01

    Volcanic carbon dioxide (CO2) and sulfur dioxide (SO2) emissions have a direct as well as indirect impact on climate and air quality. Moreover these two gases, and in particular their ratio, are tracers for dynamic processes inside volcanoes. Hence they can give direct information about volcanic activity. Semi-continuous in-situ measurements of CO2 and SO2 have been conducted for only a decade, demonstrating the great potential of such data. More than once it could be shown that the CO2/SO2 ratio increases and then drops before an eruption. However, in-situ measurements are linked with great effort and risk due to the difficult environment, which might also result in sheer impossibility. Remote sensing of volcanic emissions allows for monitoring a volcano's activity from a safe distance to the volcano and thus generally under less difficult ambient conditions. This means in turn less effort and cost, even employing a more cost intense instrument. Further, remote sensing enables sampling of cross sections of the entire plume thus, suffering less from representativeness errors than the in-situ technique. Remote sensing of SO2 is already well developed, whereas the measurement of CO2 is challenged by the high background concentration and therefore required high accuracy in order to measure little concentration enhancements in the volcanic plume. To overcome this challenge, we employed combined direct sunlight spectroscopy for SO2 and CO2. Two spectrometers (a UV-spectrometer for SO2 and a FTIR-spectrometer for CO2) were coupled into the beam of a common sun tracker. The whole setup was installed on a mobile platform, which allowed for sampling plume cross sections in a stop-and-go pattern. Measurements were conducted during a three-week campaign at Mt.Etna, Sicily. We measured enhancements of the averaged CO2 mixing ratio up to 0.5-1 ppm (2.5x1019 molec cm-2 CO2 column enhancement) and SO2 column enhancements up to 4x1018 molec cm-2. CO2 and SO2 emissions showed a

  17. The Sulfur Dioxide Plume from the February 26, 2000 Eruption of Mt. Hekla, Iceland

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.; Krotkov, N. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The February 2000 fissure eruption of Mt. Hekla, Iceland was captured in sulfur dioxide data from the Earth Probe TOMS. A special algorithm is used to discriminate sulfur dioxide from ozone. The eruption began at 18:19 GMT on February 26, 2000 and was first viewed by TOMS at 09:55 GMT on February 27. The volcanic cloud at that time appeared as a very long and narrow arc extending west from the volcano in southern Iceland, then north across Greenland, and finally east towards Norway. The cloud altitude was reported from aircraft sightings and data to be above 10 km. The circulation of a ridge located north of Iceland produced the large arc shaped cloud. As the eruption is non-explosive the high altitude cloud contains little ash. Almost all the ash from the eruption fell out locally across Iceland. By February 29, the sulfur dioxide cloud had drifted eastward in a band along the Barents Sea coast of Norway and Russia. The analysis includes an assessment of the initial sulfur dioxide content and its rate of conversion to sulfate.

  18. Remotely Sensed Density Measurements of Volcanic Sulfur Dioxide Plumes Using a Spectral Long Wave Infrared Imager

    DTIC Science & Technology

    2002-09-01

    sulfur dioxide flux from volcanoes: A case study from Mount Etna , Sicily, July 29, 1986,” Journal of Geophysical Research, vol. 99, no. B1, pp. 481-488......may be best. This presentation will focus on the ground mobile technique. Using the ground mobile technique, COSPEC is typically mounted in a

  19. Sulfur dioxide prodrugs: triggered release of SO2via a click reaction.

    PubMed

    Wang, Wenyi; Ji, Xingyue; Du, Zhenming; Wang, Binghe

    2017-01-24

    Sulfur dioxide (SO2) is being recognized as a possible endogenous gasotransmitter with importance on par with that of NO, CO, and H2S. Herein we describe a series of SO2 prodrugs that are activated for SO2 release via a bioorthogonal click reaction. The release rate can be tuned by adjusting the substituents on the prodrug.

  20. REGIONAL TRENDS IN RURAL SULFUR DIOXIDE CONCENTRATIONS OVER THE EASTERN U.S.

    EPA Science Inventory

    Emission reductions were mandated in the Clean Air Art Amendments of 1990 with the expectation that they would result in corresponding reductions in air pollution. The 1990 amendments include new requirements that appreciably reduced sulfur dioxide (SO2) emissions in two phases o...

  1. ENHANCEMENT OF REACTIVITY IN SURFACTANT-MODIFIED SORBENTS FOR SULFUR DIOXIDE CONTROL

    EPA Science Inventory

    Injection of calcium-based sorbents into the postflame zone of utility boilers is capable of achieving sulfur dioxide (SO2) captures of 50-60% at a stoichiometry of 2. Calcium hydroxide [Ca(OH)2] appears to be the most effective commercially available sorbent. Recent attempts to ...

  2. Catalytic carbon for oxidation of carbon monoxide in the presence of sulfur dioxide

    SciTech Connect

    Sinha, R.K.

    1980-01-22

    A carbon supported catalyst used for carbon monoxide oxidation is chemically modified by treating the activated carbon support with an oxidizing agent and/or a hydrophobic compound prior to impregnation with the catalyst mixture. The thus treated catalytic carbon is capable of oxidizing carbon monoxide in an air stream containing sulfur dioxide over an extended period of time.

  3. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Commercial-Institutional Steam Generating Units § 60.42c Standard for sulfur dioxide (SO2). (a) Except as... bed combustion steam generating unit shall neither: (i) Cause to be discharged into the atmosphere... part of a combined cycle system where 30 percent (0.30) or less of the heat entering the...

  4. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Commercial-Institutional Steam Generating Units § 60.42b Standard for sulfur dioxide (SO2). (a) Except as... from exhaust gases from other sources, such as gas turbines, internal combustion engines, kilns, etc... in a fluidized bed combustion steam generating unit shall cause to be discharged into the...

  5. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Commercial-Institutional Steam Generating Units § 60.42b Standard for sulfur dioxide (SO2). (a) Except as... from exhaust gases from other sources, such as gas turbines, internal combustion engines, kilns, etc... in a fluidized bed combustion steam generating unit shall cause to be discharged into the...

  6. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Commercial-Institutional Steam Generating Units § 60.42c Standard for sulfur dioxide (SO2). (a) Except as... bed combustion steam generating unit shall neither: (i) Cause to be discharged into the atmosphere... part of a combined cycle system where 30 percent (0.30) or less of the heat entering the...

  7. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-Commercial-Institutional Steam Generating Units § 60.42c Standard for sulfur dioxide (SO2). (a) Except as... bed combustion steam generating unit shall neither: (i) Cause to be discharged into the atmosphere... part of a combined cycle system where 30 percent (0.30) or less of the heat entering the...

  8. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Commercial-Institutional Steam Generating Units § 60.42c Standard for sulfur dioxide (SO2). (a) Except as... bed combustion steam generating unit shall neither: (i) Cause to be discharged into the atmosphere... part of a combined cycle system where 30 percent (0.30) or less of the heat entering the...

  9. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Commercial-Institutional Steam Generating Units § 60.42b Standard for sulfur dioxide (SO2). (a) Except as... from exhaust gases from other sources, such as gas turbines, internal combustion engines, kilns, etc... in a fluidized bed combustion steam generating unit shall cause to be discharged into the...

  10. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-Commercial-Institutional Steam Generating Units § 60.42b Standard for sulfur dioxide (SO2). (a) Except as... from exhaust gases from other sources, such as gas turbines, internal combustion engines, kilns, etc... in a fluidized bed combustion steam generating unit shall cause to be discharged into the...

  11. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Commercial-Institutional Steam Generating Units § 60.42b Standard for sulfur dioxide (SO2). (a) Except as... from exhaust gases from other sources, such as gas turbines, internal combustion engines, kilns, etc... in a fluidized bed combustion steam generating unit shall cause to be discharged into the...

  12. 78 FR 17915 - EPA Responses to State and Tribal 2010 Sulfur Dioxide Designation Recommendations: Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 81 EPA Responses to State and Tribal 2010 Sulfur Dioxide Designation Recommendations... comment period for the EPA's responses to state and tribal designation recommendations for the 2010...

  13. Atmospheric Sulfur Dioxide in the United States: Can the Standards be Justified or Afforded?

    ERIC Educational Resources Information Center

    Megonnell, William H.

    1975-01-01

    Recent reviews have concluded that there is no basis for changing the standards set by the EPA in 1971, even though the data base was insufficient then for a quantifiable, scientific definition of clean air. Examination of data shows that the United States does not have a sulfur dioxide problem. (Author/BT)

  14. The creation of pollution mapping and measurement of ambient concentration of sulfur dioxide and nitrogen dioxide with passive sampler

    PubMed Central

    2014-01-01

    Background Measurements of nitrogen and sulfur dioxide using passive sampler over 12 months in Samsun, Turkey, are compared with SO2 and NO2 concentrations obtained from a co-located chemiluminescence analyzer. The concentrations of Sulfur and nitrogen dioxide in the ambient air during the period from November 2009 to September 2010 are analyzed. Results The highest value for annual NO2 and SO2 averages of passive sampler was 29.65 μg/m3 and 21.01 μg/m3 for exposures of 2-weeks at an industrial site. The maximum monthly concentration for SO2 was observed at the 10th measurement station with 44.19 μg/m3 for August. The maximum monthly concentration for NO2 was observed on the 3rd measurement station with 42.83 μg/m3 for November. A negative correlation between nitrogen dioxide concentrations and temperature (R2 = −0.5489) was estimated. A positive correlation between nitrogen dioxide measurement with passive sampler and continuous measurement (R2 = 0.6571) was estimated. PMID:25136451

  15. THE CARBON DIOXIDE LEAKAGE FROM CHAMBERS MEASURED USING SULFUR HEXAFLUORIDE

    EPA Science Inventory

    In plant chamber studies, if Co2 leaking from a chamber is not quantified, it can lead to an overestimate of assimilation rates and an underestimate of respiration rates: consequently, it is critical that Co2 leakage be determined. Sulfur Hexafluoride (SF6) was introduced into t...

  16. Sulfur Dioxide Plume from Mt. Etna Eruption 2002 as Detected with AIRS Data

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Mt. Etna, a volcano on the island of Sicily, erupted on October 26, 2002. Preliminary analysis of data taken by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite on October 28 shows the instrument can provide an excellent means to study the evolution and structure of the sulfur dioxide plume emitted from volcanoes. These data also demonstrate that AIRS can be used to obtain the total mass of sulfur dioxide injected into the atmosphere during a volcanic event, information that may help us to better understand these dangerous natural occurrences in the future.

    The image clearly shows the sulfur dioxide plume. This image was created by comparing data taken at two different frequencies, or channels, and creating one image that highlights the differences between these two channels. Both channels are sensitive to water vapor, but one of the channels is also sensitive to sulfur dioxide. By subtracting out the common water vapor signal in both channels, the sulfur dioxide feature remains and shows up as an enhancement in the difference image.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  17. Identification of the algal dimethyl sulfide-releasing enzyme: A missing link in the marine sulfur cycle

    NASA Astrophysics Data System (ADS)

    Alcolombri, Uria; Ben-Dor, Shifra; Feldmesser, Ester; Levin, Yishai; Tawfik, Dan S.; Vardi, Assaf

    2015-06-01

    Algal blooms produce large amounts of dimethyl sulfide (DMS), a volatile with a diverse signaling role in marine food webs that is emitted to the atmosphere, where it can affect cloud formation. The algal enzymes responsible for forming DMS from dimethylsulfoniopropionate (DMSP) remain unidentified despite their critical role in the global sulfur cycle. We identified and characterized Alma1, a DMSP lyase from the bloom-forming algae Emiliania huxleyi. Alma1 is a tetrameric, redox-sensitive enzyme of the aspartate racemase superfamily. Recombinant Alma1 exhibits biochemical features identical to the DMSP lyase in E. huxleyi, and DMS released by various E. huxleyi isolates correlates with their Alma1 levels. Sequence homology searches suggest that Alma1 represents a gene family present in major, globally distributed phytoplankton taxa and in other marine organisms.

  18. Method for removing sulfur dioxide from a gas stream

    SciTech Connect

    Herron, J.T.; Martinez, R.I.

    1982-09-28

    A method is provided for removing SO2 from gas streams by its gas-phase reaction with a stabilized Criegee intermediate under conditions where a very large excess of water vapor is avoided, resulting in efficient scavenging of SO2 by the Criegee intermediate to form an adduct. The adduct reacts with water vapor to convert it directly to sulfuric acid, which is then separated from the gas stream. The Criegee intermediate may be generated in a variety of ways.

  19. Modified dry limestone process for control of sulfur dioxide emissions

    DOEpatents

    Shale, Correll C.; Cross, William G.

    1976-08-24

    A method and apparatus for removing sulfur oxides from flue gas comprise cooling and conditioning the hot flue gas to increase the degree of water vapor saturation prior to passage through a bed of substantially dry carbonate chips or lumps, e.g., crushed limestone. The reaction products form as a thick layer of sulfites and sulfates on the surface of the chips which is easily removed by agitation to restore the reactive surface of the chips.

  20. Hydrolysis of Sulfur Dioxide in Small Clusters of Sulfuric Acid: Mechanistic and Kinetic Study.

    PubMed

    Liu, Jingjing; Fang, Sheng; Wang, Zhixiu; Yi, Wencai; Tao, Fu-Ming; Liu, Jing-Yao

    2015-11-17

    The deposition and hydrolysis reaction of SO2 + H2O in small clusters of sulfuric acid and water are studied by theoretical calculations of the molecular clusters SO2-(H2SO4)n-(H2O)m (m = 1,2; n = 1,2). Sulfuric acid exhibits a dramatic catalytic effect on the hydrolysis reaction of SO2 as it lowers the energy barrier by over 20 kcal/mol. The reaction with monohydrated sulfuric acid (SO2 + H2O + H2SO4 - H2O) has the lowest energy barrier of 3.83 kcal/mol, in which the cluster H2SO4-(H2O)2 forms initially at the entrance channel. The energy barriers for the three hydrolysis reactions are in the order SO2 + (H2SO4)-H2O > SO2 + (H2SO4)2-H2O > SO2 + H2SO4-H2O. Furthermore, sulfurous acid is more strongly bonded to the hydrated sulfuric acid (or dimer) clusters than the corresponding reactant (monohydrated SO2). Consequently, sulfuric acid promotes the hydrolysis of SO2 both kinetically and thermodynamically. Kinetics simulations have been performed to study the importance of these reactions in the reduction of atmospheric SO2. The results will give a new insight on how the pre-existing aerosols catalyze the hydrolysis of SO2, leading to the formation and growth of new particles.

  1. Direct linkage between dimethyl sulfide production and microzooplankton grazing, resulting from prey composition change under high partial pressure of carbon dioxide conditions.

    PubMed

    Park, Ki-Tae; Lee, Kitack; Shin, Kyoungsoon; Yang, Eun Jin; Hyun, Bonggil; Kim, Ja-Myung; Noh, Jae Hoon; Kim, Miok; Kong, Bokyung; Choi, Dong Han; Choi, Su-Jin; Jang, Pung-Guk; Jeong, Hae Jin

    2014-05-06

    Oceanic dimethyl sulfide (DMS) is the enzymatic cleavage product of the algal metabolite dimethylsulfoniopropionate (DMSP) and is the most abundant form of sulfur released into the atmosphere. To investigate the effects of two emerging environmental threats (ocean acidification and warming) on marine DMS production, we performed a large-scale perturbation experiment in a coastal environment. At both ambient temperature and ∼ 2 °C warmer, an increase in partial pressure of carbon dioxide (pCO2) in seawater (160-830 ppmv pCO2) favored the growth of large diatoms, which outcompeted other phytoplankton species in a natural phytoplankton assemblage and reduced the growth rate of smaller, DMSP-rich phototrophic dinoflagellates. This decreased the grazing rate of heterotrophic dinoflagellates (ubiquitous micrograzers), resulting in reduced DMS production via grazing activity. Both the magnitude and sign of the effect of pCO2 on possible future oceanic DMS production were strongly linked to pCO2-induced alterations to the phytoplankton community and the cellular DMSP content of the dominant species and its association with micrograzers.

  2. Thiol activated prodrugs of sulfur dioxide (SO2) as MRSA inhibitors.

    PubMed

    Pardeshi, Kundansingh A; Malwal, Satish R; Banerjee, Ankita; Lahiri, Surobhi; Rangarajan, Radha; Chakrapani, Harinath

    2015-07-01

    Drug resistant infections are becoming common worldwide and new strategies for drug development are necessary. Here, we report the synthesis and evaluation of 2,4-dinitrophenylsulfonamides, which are donors of sulfur dioxide (SO2), a reactive sulfur species, as methicillin-resistant Staphylococcus aureus (MRSA) inhibitors. N-(3-Methoxyphenyl)-2,4-dinitro-N-(prop-2-yn-1-yl)benzenesulfonamide (5e) was found to have excellent in vitro MRSA inhibitory potency. This compound is cell permeable and treatment of MRSA cells with 5e depleted intracellular thiols and enhanced oxidative species both results consistent with a mechanism involving thiol activation to produce SO2.

  3. Advection of sulfur dioxide over the western Atlantic Ocean during CITE 3

    NASA Technical Reports Server (NTRS)

    Thornton, D. C.; Bandy, A. R.; Beltz, N.; Driedger, A. R., III; Ferek, R.

    1993-01-01

    During the NASA Chemical Instrumentation Test and Evaluation 3 sulfur intercomparison over the western Atlantic Ocean, five techniques for the determination of sulfur dioxide were evaluated. The response times of the techniques varied from 3 to 30 min. Based on the ensemble of measurements reported, it was clear that advection of SO2 from the North American continent occurred in the boundary layer (altitude less than 1 km) with only one exception. The vertical distribution of SO2 above the boundary layer for the northern and southern Atlantic Ocean was remarkably similar duing this experiment.

  4. Using Demonstrations Involving Combustion and Acid-Base Chemistry to Show Hydration of Carbon Dioxide, Sulfur Dioxide, and Magnesium Oxide and Their Relevance for Environmental Climate Science

    ERIC Educational Resources Information Center

    Shaw, C. Frank, III; Webb, James W.; Rothenberger, Otis

    2016-01-01

    The nature of acidic and basic (alkaline) oxides can be easily illustrated via a series of three straightforward classroom demonstrations for high school and general chemistry courses. Properties of carbon dioxide, sulfur dioxide, and magnesium oxide are revealed inexpensively and safely. Additionally, the very different kinetics of hydration of…

  5. Emission rates of sulfur dioxide and carbon dioxide from Redoubt Volcano, Alaska during the 1989-1990 eruptions

    USGS Publications Warehouse

    Casadevall, T.J.; Doukas, M.P.; Neal, C.A.; McGimsey, R.G.; Gardner, C.A.

    1994-01-01

    Airborne measurements of sulfur dioxide emission rates in the gas plume emitted from fumaroles in the summit crater of Redoubt Volcano were started on March 20, 1990 using the COSPEC method. During the latter half of the period of intermittent dome growth and destruction, between March 20 and mid-June 1990, sulfur dioxide emission rates ranged from approximately 1250 to 5850 t/d, rates notably higher than for other convergent-plate boundary volcanoes during periods of active dome growth. Emission rates following the end of dome growth from late June 1990 through May 1991 decreased steadily to less than 75 t/d. The largest mass of sulfur dioxide was released during the period of explosive vent clearing when explosive degassing on December 14-15 injected at least 175,000 ?? 50,000 tonnes of SO2 into the atmosphere. Following the explosive eruptions of December 1989, Redoubt Volcano entered a period of intermittent dome growth from late December 1989 to mid-June 1990 during which Redoubt emitted a total mass of SO2 ranging from 572,000 ?? 90,000 tonnes to 680,000 ?? 90,000 tonnes. From mid-June 1990 through May 1991, the volcano was in a state of posteruption degassing into the troposphere, producing approximately 183,000 ?? 50,000 tonnes of SO2. We estimate that Redoubt Volcano released a minimum mass of sulfur dioxide of approximately 930,000 tonnes. While COSPEC data were not obtained frequently enough to enable their use in eruption prediction, SO2 emission rates clearly indicated a consistent decline in emission rates between March through October 1990 and a continued low level of emission rates through the first half of 1991. Values from consecutive daily measurements of sulfur dioxide emission rates spanning the March 23, 1990 eruption decreased in the three days prior to eruption. That decrease was coincident with a several-fold increase in the frequency of shallow seismic events, suggesting partial sealing of the magma conduit to gas loss that resulted in

  6. Lithium-Sulfur Dioxide (Li/SO2) Battery Safety Hazards - Thermal Studies.

    DTIC Science & Technology

    1982-03-01

    Dioxide and Lithium - Thionyl Chloride Cells," J. Electrochem. Soc., 128, 508 (1981). 6. Bro, P., "Heat Generation in Li/S0 2 Cells During Low Rate...ElMER. K Y KIM. H V VENKATASETTT M60921-S1-C-006 U7CLASSIFIED NLfl3hmhmhhhhhil momhmhhohhohl LITHIUM -SULFUR DIOXIDE (Li/SO2) BATTERY SAFETY HAZARDS...icro-calorime~ter studies ruiN the heat of reaction for the lithium / acetintileiieIT-rnto be -54 .6 -F1.0 kcal/mole*-Li. Lithium /aluminum alloy A was

  7. EFFECT OF SULFUR DIOXIDE ON THE FORMATION MECHANISM OF POLYCHLORINATED DIBENZODIOXIN AND DIBENZOFURAN IN MUNICIPAL WASTE COMBUSTORS

    EPA Science Inventory

    The effect of sulfur dioxide on the formation mechanism of polychlorinated dibenzodioxin (PCDD) and polychlorinated dibenzofuran (PCDF) in the postcombustion, downstream region (500-300 °C) of a municipal waste combustor (MWC) was investigated. Laboratory experiments simulating t...

  8. Regulatory Impact Analysis (RIA) for the Proposed Revisions to the Sulfur Dioxide National Ambient Air Quality Standards (NAAQS)

    EPA Pesticide Factsheets

    This Regulatory Impact Analysis (RIA) provides estimates of the incremental costs and monetized human health benefits of attaining a revised short‐term Sulfur Dioxide (SO2) NAAQS within the current monitoring network.

  9. 40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose...

  10. 40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose...

  11. Sulfur dioxide emission rates from Kīlauea Volcano, Hawai‘i, 2007–2010

    USGS Publications Warehouse

    Elias, T.; Sutton, A.J.

    2012-01-01

    Kīlauea Volcano has one of the longest running volcanic sulfur dioxide (SO2) emission rate databases on record. Sulfur dioxide emission rates from Kīlauea Volcano were first measured by Stoiber and Malone (1975) and have been measured on a regular basis since 1979 (Elias and Sutton, 2007, and references within). Compilations of SO2 emission-rate and wind-vector data from 1979 through 2006 are available on the USGS Web site (Elias and others, 1998; Elias and Sutton, 2002; Elias and Sutton, 2007). This report updates the database, documents the changes in data collection and processing methods, and highlights how SO2 emissions have varied with eruptive activity at Kīlauea Volcano for the interval 2007–2010.

  12. Synthesis of cyclic sulfites from epoxides and sulfur dioxide with silica-immobilized homogeneous catalysts.

    PubMed

    Takenaka, Yasumasa; Kiyosu, Takahiro; Mori, Goro; Choi, Jun-Chul; Fukaya, Norihisa; Sakakura, Toshiyasu; Yasuda, Hiroyuki

    2012-01-09

    Quaternary ammonium- and amino-functionalized silica catalysts have been prepared for the selective synthesis of cyclic sulfites from epoxides and sulfur dioxide, demonstrating the effects of immobilizing the homogeneous catalysts on silica. The cycloaddition of sulfur dioxide to various epoxides was conducted under solvent-free conditions at 100 °C. The quaternary ammonium- and amino-functionalized silica catalysts produced cyclic sulfites in high yields (79-96 %) that are comparable to those produced by the homogeneous catalysts. The functionalized silica catalysts could be separated from the product solution by filtration, thereby avoiding the catalytic decomposition of the cyclic sulfite products upon distillation of the product solution. Heterogenization of a homogeneous catalyst by immobilization can, therefore, improve the efficiency of the purification of crude reaction products. Despite a decrease in catalytic activity after each recycling step, the heterogeneous pyridine-functionalized silica catalyst provided high yields after as many as five recycling processes.

  13. Effect of hydroxytyrosol on quality of sulfur dioxide-free red wine.

    PubMed

    Raposo, R; Ruiz-Moreno, M J; Garde-Cerdán, T; Puertas, B; Moreno-Rojas, J M; Gonzalo-Diago, A; Guerrero, R F; Ortiz, V; Cantos-Villar, E

    2016-02-01

    In this work, the feasibility of two commercial products enriched in hydroxytyrosol (HT) as alternative to sulfur dioxide in Syrah red wines was evaluated. The HT enriched products came from synthesis and from olive waste. Wines treated with HT were compared with wines treated with sulfur dioxide at two winemaking stages: bottling and after 6 months of storage in bottle. Minor differences were found in enological parameters and volatile composition (esters, alcohols and acids). Significant differences were observed in color related parameters and sensory analysis. HT wines improved color parameters as well as scents and tasting at bottling. However, after 6 months of storage in bottle HT wines were more oxidized than SO2 wines. The olfactometry profile of HT wines supported sensory analysis. HT wines showed new odorant zones from both the added product and oxidation.

  14. Sulfur dioxide control (excludes coal-burning sources). (Latest citations from the NTIS data base). Published Search

    SciTech Connect

    Not Available

    1992-04-01

    The bibliography contains citations concerning air pollution control technology and removal of sulfur dioxide from waste streams and atmospheres. Removal methods include flue gas desulfurization by wet or dry sorbents, electron beam processes, corona discharge, reductive gases, microbial processes, and burner injection systems. Applications to utilities, oil refineries, and the metallurgical and chemical industries are described. Control of sulfur dioxide produced from coal burning is discussed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  15. Effects of sulfur dioxide on resistance to bacterial infection in mice

    SciTech Connect

    Azoulay-Dupuis, E.; Bouley, G.; Blayo, M.C.

    1982-12-01

    Continuous exposure to approximately a 10-ppm concentration of sulfur dioxide for periods of up to 3 weeks reduced the resistance of female mice to infection by aerosol inoculation with Klebsiella pneumoniae. The mortality rate rose and survival time shortened in SO/sub 2/-exposed animals compared to controls. Insofar as these results can be extrapolated to humans, the SO/sub 2/ concentration used in this work is only found on certain industrial premises.

  16. Unsteady absorption of sulfur dioxide by an atmospheric water droplet with internal circulation

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Hsin

    Unsteady absorption characteristics of sulfur dioxide by an atmospheric water droplet in motion are predicted numerically and analyzed theoretically to recognize the physical mass transport processes inside an aerosol droplet, which is frequently encountered in the atmosphere. Considering the absorption of sulfur dioxide by a droplet in cloud or fog with various velocities, three different Reynolds numbers, viz., Reg=0.643, 1.287, and 12.87 are studied and compared with each other. The results indicate that for the Reynolds number of 0.643, sulfur dioxide always penetrates toward the droplet centerline throughout the entire absorption period. This is due to the mass transfer dominated by diffusion along the radial direction. In contrast, when the Reynolds number is 12.87, the strength of the vortex motion inside the droplet is strong enough. It results in that, most of the time the concentration contours parallel the streamlines and the lowest SO 2 concentration is located at the vortex center. As a consequence, the diffusion distance is reduced by a factor of three and the absorption time for the droplet reaching the saturated state is shortened in a significant way. With regard to an intermediate Reynolds number such as 1.287, a two-stage mass transfer process can be clearly identified. In the first stage, it is dominated by one-dimensional diffusion, in which over 50% sulfur dioxide is absorbed before the saturated state is reached. In the second stage, the vortex motion mainly controls the mass transfer. However, the contour core is inconsistent with the vortex center. This is because the characteristic time of mass diffusion is in a comparable state with that of droplet internal circulation. The present study elucidates that the strength of a droplet's internal motion plays a vital role in determining SO 2 absorption process.

  17. Biological Effects of Short, High-Level Exposure to Gases: Sulfur Dioxide.

    DTIC Science & Technology

    1980-05-01

    This project was one of four under the same contract; the others covered were ammonia, carbon monoxide, and the nitrogen oxides. I! V It. KEY WORDS...biologic responses to short, high-level exposures to four gases (ammonia, carbon monoxide, sulfur dioxide, and the nitrogen oxides) that may be...associated with certain Army weapons systems and troop field training activities . Thisreport analyzes and synthesizes the available literature on possible

  18. Accurate thermochemistry and spectroscopy of the oxygen-protonated sulfur dioxide isomers.

    PubMed

    Puzzarini, Cristina

    2011-12-28

    Despite the promising relevance of protonated sulfur dioxide in astrophysical and atmospheric fields, its thermochemical and spectroscopic characterization is very limited. High-level quantum-chemical calculations have shown that the most stable isomer is the cis oxygen-protonated sulfur dioxide, HOSO(+), while the trans form is about 2 kcal mol(-1) less stable; even less stable (by about 42 kcal mol(-1)) is the S-protonated isomer [V. Lattanzi et al., J. Chem. Phys., 2010, 133, 194305]. The enthalpy of formation for the cis- and trans-HOSO(+) is presented, based on the well tested HEAT protocol [A. Tajti et al., J. Chem. Phys., 2004, 121, 11599]. Systematically extrapolated ab initio energies, accounting for electron correlation through coupled cluster theory, including up to single, double, triple and quadruple excitations, have been corrected for core-electron correlation, anharmonic zero-point vibrational energy, diagonal Born-Oppenheimer and scalar relativistic effects. As a byproduct, proton affinity of sulfur dioxide and atomization energies have also been obtained at the same levels of theory. Vibrational and rotational spectroscopic properties have been investigated by means of composite schemes that allow us to account for truncation of basis set as well as core correlation. Where available, for both thermochemistry and spectroscopy, very good agreement with experimental data has been observed.

  19. El Chichon: The genesis of volcanic sulfur dioxide monitoring from space

    NASA Astrophysics Data System (ADS)

    Krueger, Arlin; Krotkov, Nickolay; Carn, Simon

    2008-08-01

    The 1982 eruption of El Chichon inspired a new technique for monitoring volcanic clouds. Data from the Total Ozone Mapping Spectrometer (TOMS) instrument on the Nimbus-7 satellite were used to measure sulfur dioxide in addition to ozone. For the first time precise data on the sulfur dioxide mass in even the largest explosive eruption plumes could be determined. The plumes could be tracked globally as they are carried by winds. Magmatic eruptions could be discriminated from phreatic eruptions. The data from El Chichon are reanalyzed in this paper using the latest version of the TOMS instrument calibration (V8). They show the shearing of the eruption cloud into a globe-circling band while still anchored over Mexico in three weeks. The measured sulfur dioxide mass in the initial March 28 eruption was 1.6 Tg; the April 3 eruption produced 0.3 Tg more, and the April 4 eruptions added 5.6 Tg, for a cumulative total of 7.5 Tg, in substantial agreement with estimates from prior data versions. TOMS Aerosol Index (absorbing aerosol) data show rapid fallout of dense ash east and south of the volcano in agreement with Advanced Very High Resolution Radiometer (AVHRR) ash cloud positions.

  20. SOA FORMATION FROM THE IRRADIATION OF A-PINENE-NOX IN THE ABSENCE AND PRESENCE OF SULFUR DIOXIDE

    EPA Science Inventory

    Sulfur dioxide (SO2) is an important constituent in the polluted atmosphere. It is emitted from combustion sources using fuels that contain sulfur. Emissions of SO2 in the United States were reportedly 17 Tg in 1996 with most coming from coal and petroleum combustion. The pr...

  1. U.S. sulfur dioxide emission reductions: Shifting factors and a carbon dioxide penalty

    DOE PAGES

    Brown, Marilyn Ann; Li, Yufei; Massetti, Emanuele; ...

    2017-01-18

    For more than 20 years, the large-scale application of flue gas desulfurization technology has been a dominant cause of SO2 emission reductions. From 1994–2004, electricity generation from coal increased, but the shift to low-sulfur coal eclipsed this. From 2004–2014, electricity generation from coal decreased, but a shift to higher-sulfur subbituminous and lignite coal overshadowed this. Here, the shift in coal quality has also created a CO2 emissions penalty, representing 2% of the sector’s total emissions in 2014.

  2. The Mystery of Sulfur in Dense Environments: EXES Spectroscopy of Sulfur Dioxide toward Massive Protostars

    NASA Astrophysics Data System (ADS)

    Boogert, Adwin

    2015-10-01

    The sulfur element in dense clouds and the envelopes and disks of Young Stellar Objects (YSOs) is surrounded by mystery. Only 4% of the cosmic sulfur budget is accounted for in known molecules, i.e., 96% is missing! Also, the chemical origin of the detected molecules (their progenitors) is unclear. The warm SO2 gas seen toward massive YSOs by ro-vibrational spectroscopy at 7.35 micron with the Infrared Space Observatory (ISO) is two orders of magnitude more abundant than the widespread SO2 emission seen by pure rotational transitions at (sub-)millimeter wavelengths. It likely originates close to the star, and is picked up along the pencil absorption beam at 7.35 micron. We propose to observe the nu_3 S-O stretching mode of SO2 toward three massive YSOs at high (R=50,000, 6 km/s) resolving power with EXES/SOFIA. Many ro-vibrational transitions are expected to be resolved, as opposed to the R~2,000 observations by ISO/SWS. The proposed observations are unique. The 7.35 micron band of SO2 is an order of magnitude stronger than other vibrational modes, and (sub-)millimeter facilities lack sensitivity at the small spatial scales. We will compare the SO2 line profiles over a range of energy levels with those of available VLT and Keck CO isotopologue spectra and with proposed EXES observations of H2O. The stable CO molecule is present everywhere along the sight-line, while H2O sublimates from the grains and is formed in the gas phase at higher temperatures. The observed SO2 may originate from gas phase oxidation of atomic sulfur, but only at temperature below ~230 K as at higher temperatures the oxygen is rapidly driven into H2O. The observations will shed light on S-containing progenitor species: a yet unidentifed ice or grain species?

  3. Contribution of isotopologue self-shielding to sulfur mass-independent fractionation during sulfur dioxide photolysis

    NASA Astrophysics Data System (ADS)

    Ono, S.; Whitehill, A. R.; Lyons, J. R.

    2013-03-01

    Signatures of sulfur mass-independent fractionation (S-MIF) are observed for sulfur minerals in Archean rocks, and for modern stratospheric sulfate aerosols (SSA) deposited in polar ice. Ultraviolet light photolysis of SO2 is thought to be the most likely source for these S-MIF signatures, although several hypotheses have been proposed for the underlying mechanism(s) of S-MIF production. Laboratory SO2 photolysis experiments are carried out with a flow-through photochemical reactor with a broadband (Xe arc lamp) light source at 0.1 to 5 mbar SO2 in 0.25 to 1 bar N2 bath gas, in order to test the effect of SO2 pressure on the production of S-MIF. Elemental sulfur products yield high δ34S values up to 140 ‰, with δ33S/δ34S of 0.59 ± 0.04 and Δ36S/Δ33S ratios of -4.6 ± 1.3 with respect to initial SO2. The magnitude of the isotope effect strongly depends on SO2 partial pressure, with larger fractionations at higher SO2 pressures, but saturates at an SO2 column density of 1018 molecules cm-2. The observed pressure dependence and δ33S/δ34S and Δ36S/Δ33S ratios are consistent with model calculations based on synthesized SO2 isotopologue cross sections, suggesting a significant contribution of isotopologue self-shielding to S-MIF for high SO2 pressure (>0.1 mbar) experiments. Results of dual-cell experiments further support this conclusion. The measured isotopic patterns, in particular the Δ36S/Δ33S relationships, closely match those measured for modern SSA from explosive volcanic eruptions. These isotope systematics could be used to trace the chemistry of SSA after large Plinian volcanic eruptions.

  4. Selective catalytic reduction of sulfur dioxide to elemental sulfur. Final report

    SciTech Connect

    Liu, W.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1995-06-01

    This project has investigated new metal oxide catalysts for the single stage selective reduction of SO{sub 2} to elemental sulfur by a reductant, such as CO. Significant progress in catalyst development has been made during the course of the project. We have found that fluorite oxides, CeO{sub 2} and ZrO{sub 2}, and rare earth zirconates such as Gd{sub 2}Zr{sub 2}O{sub 7} are active and stable catalysts for reduction Of SO{sub 2} by CO. More than 95% sulfur yield was achieved at reaction temperatures about 450{degrees}C or higher with the feed gas of stoichiometric composition. Reaction of SO{sub 2} and CO over these catalysts demonstrated a strong correlation of catalytic activity with the catalyst oxygen mobility. Furthermore, the catalytic activity and resistance to H{sub 2}O and CO{sub 2} poisoning of these catalysts were significantly enhanced by adding small amounts of transition metals, such as Co, Ni, Co, etc. The resulting transition metal-fluorite oxide composite catalyst has superior activity and stability, and shows promise in long use for the development of a greatly simplified single-step sulfur recovery process to treat variable and dilute SO{sub 2} concentration gas streams. Among various active composite catalyst systems the Cu-CeO{sub 2} system has been extensively studied. XRD, XPS, and STEM analyses of the used Cu-CeO{sub 2} catalyst found that the fluorite crystal structure of ceria was stable at the present reaction conditions, small amounts of copper was dispersed and stabilized on the ceria matrix, and excess copper oxide particles formed copper sulfide crystals of little contribution to catalytic activity. A working catalyst consisted of partially sulfated cerium oxide surface and partially sulfided copper clusters. The overall reaction kinetics were approximately represented by a first order equation.

  5. Metabolic responses to sulfur dioxide in grapevine (Vitis vinifera L.): photosynthetic tissues and berries

    PubMed Central

    Considine, Michael J.; Foyer, Christine H.

    2015-01-01

    Research on sulfur metabolism in plants has historically been undertaken within the context of industrial pollution. Resolution of the problem of sulfur pollution has led to sulfur deficiency in many soils. Key questions remain concerning how different plant organs deal with reactive and potentially toxic sulfur metabolites. In this review, we discuss sulfur dioxide/sulfite assimilation in grape berries in relation to gene expression and quality traits, features that remain significant to the food industry. We consider the intrinsic metabolism of sulfite and its consequences for fruit biology and postharvest physiology, comparing the different responses in fruit and leaves. We also highlight inconsistencies in what is considered the “ambient” environmental or industrial exposures to SO2. We discuss these findings in relation to the persistent threat to the table grape industry that intergovernmental agencies will revoke the industry’s exemption to the worldwide ban on the use of SO2 for preservation of fresh foods. Transcriptome profiling studies on fruit suggest that added value may accrue from effects of SO2 fumigation on the expression of genes encoding components involved in processes that underpin traits related to customer satisfaction, particularly in table grapes, where SO2 fumigation may extend for several months. PMID:25750643

  6. Metabolic responses to sulfur dioxide in grapevine (Vitis vinifera L.): photosynthetic tissues and berries.

    PubMed

    Considine, Michael J; Foyer, Christine H

    2015-01-01

    Research on sulfur metabolism in plants has historically been undertaken within the context of industrial pollution. Resolution of the problem of sulfur pollution has led to sulfur deficiency in many soils. Key questions remain concerning how different plant organs deal with reactive and potentially toxic sulfur metabolites. In this review, we discuss sulfur dioxide/sulfite assimilation in grape berries in relation to gene expression and quality traits, features that remain significant to the food industry. We consider the intrinsic metabolism of sulfite and its consequences for fruit biology and postharvest physiology, comparing the different responses in fruit and leaves. We also highlight inconsistencies in what is considered the "ambient" environmental or industrial exposures to SO2. We discuss these findings in relation to the persistent threat to the table grape industry that intergovernmental agencies will revoke the industry's exemption to the worldwide ban on the use of SO2 for preservation of fresh foods. Transcriptome profiling studies on fruit suggest that added value may accrue from effects of SO2 fumigation on the expression of genes encoding components involved in processes that underpin traits related to customer satisfaction, particularly in table grapes, where SO2 fumigation may extend for several months.

  7. Study of a QCM Dimethyl Methylphosphonate Sensor Based on a ZnO-Modified Nanowire-Structured Manganese Dioxide Film

    PubMed Central

    Pei, Zhifu; Ma, Xingfa; Ding, Pengfei; Zhang, Wuming; Luo, Zhiyuan; Li, Guang

    2010-01-01

    Sensitive, selective and fast detection of chemical warfare agents is necessary for anti-terrorism purposes. In our search for functional materials sensitive to dimethyl methylphosphonate (DMMP), a simulant of sarin and other toxic organophosphorus compounds, we found that zinc oxide (ZnO) modification potentially enhances the absorption of DMMP on a manganese dioxide (MnO2) surface. The adsorption behavior of DMMP was evaluated through the detection of tiny organophosphonate compounds with quartz crystal microbalance (QCM) sensors coated with ZnO-modified MnO2 nanofibers and pure MnO2 nanofibers. Experimental results indicated that the QCM sensor coated with ZnO-modified nanostructured MnO2 film exhibited much higher sensitivity and better selectivity in comparison with the one coated with pure MnO2 nanofiber film. Therefore, the DMMP sensor developed with this composite nanostructured material should possess excellent selectivity and reasonable sensitivity towards the tiny gaseous DMMP species. PMID:22163653

  8. Space-Based Detection of Missing Sulfur Dioxide Sources of Global Air Pollution

    NASA Technical Reports Server (NTRS)

    McLinden, Chris A.; Fioletov, Vitali; Shephard, Mark W.; Krotkov, Nick; Li, Can; Martin, Randall V.; Moran, Michael D.; Joiner, Joanna

    2016-01-01

    Sulfur dioxide is designated a criteria air contaminant (or equivalent) by virtually all developed nations. When released into the atmosphere, sulfur dioxide forms sulfuric acid and fine particulate matter, secondary pollutants that have significant adverse effects on human health, the environment and the economy. The conventional, bottom-up emissions inventories used to assess impacts, however, are often incomplete or outdated, particularly for developing nations that lack comprehensive emission reporting requirements and infrastructure. Here we present a satellite-based, global emission inventory for SO2 that is derived through a simultaneous detection, mapping and emission-quantifying procedure, and thereby independent of conventional information sources. We find that of the 500 or so large sources in our inventory, nearly 40 are not captured in leading conventional inventories. These missing sources are scattered throughout the developing world-over a third are clustered around the Persian Gulf-and add up to 7 to 14 Tg of SO2 yr(exp -1), or roughly 6-12% of the global anthropogenic source. Our estimates of national total emissions are generally in line with conventional numbers, but for some regions, and for SO2 emissions from volcanoes, discrepancies can be as large as a factor of three or more. We anticipate that our inventory will help eliminate gaps in bottom-up inventories, independent of geopolitical borders and source types.

  9. Space-based detection of missing sulfur dioxide sources of global air pollution

    NASA Astrophysics Data System (ADS)

    McLinden, Chris A.; Fioletov, Vitali; Shephard, Mark W.; Krotkov, Nick; Li, Can; Martin, Randall V.; Moran, Michael D.; Joiner, Joanna

    2016-07-01

    Sulfur dioxide is designated a criteria air contaminant (or equivalent) by virtually all developed nations. When released into the atmosphere, sulfur dioxide forms sulfuric acid and fine particulate matter, secondary pollutants that have significant adverse effects on human health, the environment and the economy. The conventional, bottom-up emissions inventories used to assess impacts, however, are often incomplete or outdated, particularly for developing nations that lack comprehensive emission reporting requirements and infrastructure. Here we present a satellite-based, global emission inventory for SO2 that is derived through a simultaneous detection, mapping and emission-quantifying procedure, and thereby independent of conventional information sources. We find that of the 500 or so large sources in our inventory, nearly 40 are not captured in leading conventional inventories. These missing sources are scattered throughout the developing world--over a third are clustered around the Persian Gulf--and add up to 7 to 14 Tg of SO2 yr-1, or roughly 6-12% of the global anthropogenic source. Our estimates of national total emissions are generally in line with conventional numbers, but for some regions, and for SO2 emissions from volcanoes, discrepancies can be as large as a factor of three or more. We anticipate that our inventory will help eliminate gaps in bottom-up inventories, independent of geopolitical borders and source types.

  10. Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers

    USGS Publications Warehouse

    Mangun, C.L.; DeBarr, J.A.; Economy, J.

    2001-01-01

    A series of activated carbon fibers (ACFs) and ammonia-treated ACFs prepared from phenolic fiber precursors have been studied to elucidate the role of pore size, pore volume, and pore surface chemistry on adsorption of sulfur dioxide and its catalytic conversion to sulfuric acid. As expected, the incorporation of basic functional groups into the ACFs was shown as an effective method for increasing adsorption of sulfur dioxide. The adsorption capacity for dry SO2 did not follow specific trends; however the adsorption energies calculated from the DR equation were found to increase linearly with nitrogen content for each series of ACFs. Much higher adsorption capacities were achieved for SO2 in the presence of oxygen and water due to its catalytic conversion to H2SO4. The dominant factor for increasing adsorption of SO2 from simulated flue gas for each series of fibers studied was the weight percent of basic nitrogen groups present. In addition, the adsorption energies calculated for dry SO2 were shown to be linearly related to the adsorption capacity of H2SO4 from this flue gas for all fibers. It was shown that optimization of this parameter along with the pore volume results in higher adsorption capacities for removal of SO2 from flue gases. ?? 2001 Elsevier Science Ltd. All rights reserved.

  11. A study of the total atmospheric sulfur dioxide load using ground-based measurements and the satellite derived Sulfur Dioxide Index

    NASA Astrophysics Data System (ADS)

    Georgoulias, A. K.; Balis, D.; Koukouli, M. E.; Meleti, C.; Bais, A.; Zerefos, C.

    We present characteristics of the sulfur dioxide (SO 2) loading over Thessaloniki, Greece, and seven other selected sites around the world using SO 2 total column measurements from Brewer spectrophotometers together with satellite estimates of the Version 8 TOMS Sulfur Dioxide Index (SOI) over the same locations, retrieved from Nimbus 7 TOMS (1979-1993), Earth Probe TOMS (1996-2003) and OMI/Aura (2004-2006). Traditionally, the SOI has been used to quantify the SO 2 quantities emitted during great volcanic eruptions. Here, we investigate whether the SOI can give an indication of the total SO 2 load for areas and periods away from eruptive volcanic activity by studying its relative changes as a correlative measure to the SO 2 total column. We examined time series from Thessaloniki and another seven urban and non-urban stations, five in the European Union (Arosa, De Bilt, Hohenpeissenberg, Madrid, Rome) and two in India (Kodaikanal, New Delhi). Based on the Brewer data, Thessaloniki shows high SO 2 total columns for a European Union city but values are still low if compared to highly affected regions like those in India. For the time period 1983-2006 the SO 2 levels above Thessaloniki have generally decreased with a rate of 0.028 Dobson Units (DU) per annum, presumably due to the European Union's strict sulfur control policies. The seasonal variability of the SO 2 total column exhibits a double peak structure with two maxima, one during winter and the second during summer. The winter peak can be attributed to central heating while the summer peak is due to synoptic transport from sources west of the city and sources in the north of Greece. A moderate correlation was found between the seasonal levels of Brewer total SO 2 and SOI for Thessaloniki, Greece ( R = 0.710-0.763) and Madrid, Spain ( R = 0.691) which shows that under specific conditions the SOI might act as an indicator of the SO 2 total load.

  12. Stomatal Conductance and Sulfur Uptake of Five Clones of Populus tremuloides Exposed to Sulfur Dioxide 1

    PubMed Central

    Kimmerer, Thomas W.; Kozlowski, T. T.

    1981-01-01

    Plants of five clones of Populus tremuloides Michx. were exposed to 0, 0.2 or 0.5 microliter per liter SO2 for 8 hours in controlled environment chambers. In the absence of the pollutant, two pollution-resistant clones maintained consistently lower daytime diffusive conductance (LDC) than did a highly susceptible clone or two moderately resistant clones. Differences in LDC among the latter three clones were not significant. At 0.2 microliter per liter SO2, LDC decreased in the susceptible clone after 8 hours fumigation while the LDC of the other clones was not affected. Fumigation with 0.5 microliter per liter SO2 decreased LDC of all five clones during the fumigation. Rates of recovery following fumigation varied with the clone, but the LDC of all clones had returned to control values by the beginning of the night following fumigation. Night LDC was higher in the susceptible clone than in the other clones. Fumigation for 16 hours (14 hours day + 2 hours night) with 0.4 microliter per liter SO2 decreased night LDC by half. Sulfur uptake studies generally confirmed the results of the conductance measurements. The results show that stomatal conductance is important in determining relative susceptibility of the clones to pollution stress. PMID:16661807

  13. Evaluation of proton-conducting membranes for use in a sulfur dioxide depolarized electrolyzer

    NASA Astrophysics Data System (ADS)

    Elvington, Mark C.; Colón-Mercado, Héctor; McCatty, Steve; Stone, Simon G.; Hobbs, David T.

    The chemical stability, sulfur dioxide transport, ionic conductivity, and electrolyzer performance have been measured for several commercially available and experimental proton exchange membranes (PEMs) for use in a sulfur dioxide depolarized electrolyzer (SDE). The SDEs function is to produce hydrogen by using the Hybrid Sulfur (HyS) Process, a sulfur-based electrochemical/thermochemical hybrid cycle. Membrane stability was evaluated using a screening process where each candidate PEM was heated at 80 °C in 60 wt% H 2SO 4 for 24 h. Following acid exposure, chemical stability for each membrane was evaluated by FTIR using the ATR sampling technique. Membrane SO 2 transport was evaluated using a two-chamber permeation cell. SO 2 was introduced into one chamber whereupon SO 2 transported across the membrane into the other chamber and oxidized to H 2SO 4 at an anode positioned immediately adjacent to the membrane. The resulting current was used to determine the SO 2 flux and SO 2 transport. Additionally, membrane electrode assemblies (MEAs) were prepared from candidate membranes to evaluate ionic conductivity and selectivity (ionic conductivity vs. SO 2 transport) which can serve as a tool for selecting membranes. MEAs were also performance tested in a HyS electrolyzer measuring current density vs. a constant cell voltage (1 V, 80 °C in SO 2 saturated 30 wt% H 2SO 4). Finally, candidate membranes were evaluated considering all measured parameters including SO 2 flux, SO 2 transport, ionic conductivity, HyS electrolyzer performance, and membrane stability. Candidate membranes included both PFSA and non-PFSA polymers and polymer blends of which the non-PFSA polymers, BPVE-6F and PBI, showed the best selectivity.

  14. EVALUATION OF PROTON-CONDUCTING MEMBRANES FOR USE IN A SULFUR-DIOXIDE DEPOLARIZED ELECTROLYZER

    SciTech Connect

    Hobbs, D.; Elvington, M.; Colon-Mercado, H.

    2009-11-11

    The chemical stability, sulfur dioxide transport, ionic conductivity, and electrolyzer performance have been measured for several commercially available and experimental proton exchange membranes (PEMs) for use in a sulfur dioxide depolarized electrolyzer (SDE). The SDE's function is to produce hydrogen by using the Hybrid Sulfur (HyS) Process, a sulfur based electrochemical/thermochemical hybrid cycle. Membrane stability was evaluated using a screening process where each candidate PEM was heated at 80 C in 60 wt. % H{sub 2}SO{sub 4} for 24 hours. Following acid exposure, chemical stability for each membrane was evaluated by FTIR using the ATR sampling technique. Membrane SO{sub 2} transport was evaluated using a two-chamber permeation cell. SO{sub 2} was introduced into one chamber whereupon SO{sub 2} transported across the membrane into the other chamber and oxidized to H{sub 2}SO{sub 4} at an anode positioned immediately adjacent to the membrane. The resulting current was used to determine the SO{sub 2} flux and SO{sub 2} transport. Additionally, membrane electrode assemblies (MEAs) were prepared from candidate membranes to evaluate ionic conductivity and selectivity (ionic conductivity vs. SO{sub 2} transport) which can serve as a tool for selecting membranes. MEAs were also performance tested in a HyS electrolyzer measuring current density versus a constant cell voltage (1V, 80 C in SO{sub 2} saturated 30 wt% H2SO{sub 4}). Finally, candidate membranes were evaluated considering all measured parameters including SO{sub 2} flux, SO{sub 2} transport, ionic conductivity, HyS electrolyzer performance, and membrane stability. Candidate membranes included both PFSA and non-PFSA polymers and polymer blends of which the non-PFSA polymers, BPVE-6F and PBI, showed the best selectivity.

  15. Study of ozone and sulfur dioxide using Thailand based Brewer Spectrophotometers

    NASA Astrophysics Data System (ADS)

    Kumharn, Wilawan; Sudhibrabha, Sumrid

    2014-03-01

    Ozone (O3) and sulfur dioxide (SO2) in a vertical column of the atmosphere in Thailand were obtained from the Brewers#121 and #120. There are similarities between the O3 patterns obtained from the two sites, which are higher in the summer and rainy season compared with winter, although the magnitude of the change in Bangkok is greater than that in Songkhla. SO2 values showed the summer months provide the higher SO2 values in Bangkok, in contrast to Songkhla where the summer months give lower SO2 values.

  16. Safety hazards associated with the charging of lithium/sulfur dioxide cells

    NASA Technical Reports Server (NTRS)

    Frank, H.; Halpert, G.; Lawson, D. D.; Barnes, J. A.; Bis, R. F.

    1986-01-01

    A continuing research program to assess the responses of spirally wound, lithium/sulfur dioxide cells to charging as functions of charging current, temperature, and cell condition prior to charging is described. Partially discharged cells that are charged at currents greater than one ampere explode with the time to explosion inversely proportional to the charging current. Cells charged at currents of less than one ampere may fail in one of several modes. The data allows an empirical prediction of when certain cells will fail given a constant charging current.

  17. Reducing the sulfur-dioxide binding power of sweet white wines by solid-phase extraction.

    PubMed

    Saidane, Dorra; Barbe, Jean-Christophe; Birot, Marc; Deleuze, Hervé

    2013-11-01

    The high sulfur-dioxide binding power of sweet white wines may be reduced by extracting the naturally present carbonyl compounds from wine that are responsible for carbonyl bisulphites formation. The carbonyl compounds mainly responsible for trapping SO2 are acetaldehyde, pyruvic acid, and 2-oxoglutaric acid. The method employed was selective solid phase extraction, using phenylsulfonylhydrazine as a scavenging agent. The scavenging function was grafted onto a support prepared from raw materials derived from lignin. This approach is more acceptable to winemakers than the polymer media previously reported, as it reduces the possible contamination of wine to molecules already present in the wine making process.

  18. Oxaldihydroxamic acid as a new reagent for the fixation of atmospheric sulfur dioxide

    NASA Astrophysics Data System (ADS)

    Paul, Khana Rani; Gupta, V. K.

    In the present investigation 0.01 M aqueous oxaldihydroxamic acid has been used to stabilize the atmospheric sulfur dioxide. The collection efficiency of the reagent was found to be ~ 100% and the sulfite solution was stable for ⩾ 30 days at room temperature. The sulfite ion was estimated colorimetrically using acidified p-aminoazobenzene and formaldehyde. The pink coloured dye, λmax 505 nm, obeys Beer's law in the range of 0.1-1 ppm. The procedure has been optimized with respect to the acidity, time and reagent concentration. The method is simple, free from pH dependence and several commonly present air pollutants do not interfere.

  19. Design and construction of a simple, continuous flow sulfur dioxide exposure chamber

    SciTech Connect

    Leetham, J.W.; Ferguson, W.; Dodd, J.L.; Lauenroth, W.K.

    1982-02-01

    For experimental purposes, a reasonably large capacity, low cost, low maintenance chamber was needed to study the long-term (2-4 months) effects of sulfur dioxide on developmental rates of grasshoppers and decomposition rates of plant litter. Internal temperature, humidity, and light controls were not required since the chamber would be used in externally controlled environments. The controlled exposure chamber herein described has proved to be adequate for such studies and satisfied most of the conditions discussed by Heagle and Philbeck. Its utility could be increased by use within an environmentally controlled greenhouse. It is comparatively simple and inexpensive to contruct and maintain.

  20. Investigation of Lithium Sulfur Dioxide (Li/SO2) Battery Safety Hazards -- Chemical Studies.

    DTIC Science & Technology

    1982-04-01

    ID-Alla 363 EIC LAOS INC NEWTON MA F/B 10/3 INVESTIGATION OF LITHIUM SULFUR DIOXIDE ILI/SO2) BATTERY SAFETY-ETC(U) APR 82 K M ABRAHAM, H W RUPICH, L...Contract No. N60921-81-C-0084 0o Prepared by K. M. Abraham M. W. Rupich L. Pitts EIC Laboratories, Inc. 67 Chapel Street Newton , Massachusetts 02158...Chapel Street Newton , Massachusetts 02158 II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Naval Surface Weapons Center April 1982 Silver Spring

  1. Magmatic vapor source for sulfur dioxide released during volcanic eruptions: Evidence from Mount Pinatubo

    USGS Publications Warehouse

    Wallace, P.J.; Gerlach, T.M.

    1994-01-01

    Sulfur dioxide (SO2) released by the explosive eruption of Mount Pinatubo on 15 June 1991 had an impact on climate and stratospheric ozone. The total mass of SO2 released was much greater than the amount dissolved in the magma before the eruption, and thus an additional source for the excess SO2 is required. Infrared spectroscopic analyses of dissolved water and carbon dioxide in glass inclusions from quartz phenocrysts demonstrate that before eruption the magma contained a separate, SO2-bearing vapor phase. Data for gas emissions from other volcanoes in subduction-related arcs suggest that preeruptive magmatic vapor is a major source of the SO2 that is released during many volcanic eruptions.

  2. N-Heterocyclic Olefin-Carbon Dioxide and -Sulfur Dioxide Adducts: Structures and Interesting Reactivity Patterns.

    PubMed

    Finger, Lars H; Guschlbauer, Jannick; Harms, Klaus; Sundermeyer, Jörg

    2016-11-02

    Depending on the amount of methanol present in solution, CO2 adducts of N-heterocyclic carbenes (NHCs) and N-heterocyclic olefins (NHOs) have been found to be in fully reversible equilibrium with the corresponding methyl carbonate salts [EMIm][OCO2 Me] and [EMMIm][OCO2 Me]. The reactivity pattern of representative 1-ethyl-3-methyl-NHO-CO2 adduct 4 has been investigated and compared with the corresponding NHC-CO2 zwitterion: The protonation of 4 with HX led to the imidazolium salts [NHO-CO2 H][X], which underwent decarboxylation to [EMMIm][X] in the presence of nucleophilic catalysts. NHO-CO2 zwitterion 4 can act as an efficient carboxylating agent towards CH acids such as acetonitrile. The [EMMIm] cyanoacetate and [EMMIm]2 cyanomalonate salts formed exemplify the first C-C bond-forming carboxylation reactions with NHO-activated CO2 . The reaction of the free NHO with dimethyl carbonate selectively led to methoxycarbonylated NHO, which is a perfect precursor for the synthesis of functionalized ILs [NHO-CO2 Me][X]. The first NHO-SO2 adduct was synthesized and structurally characterized; it showed a similar reactivity pattern, which allowed the synthesis of imidazolium methyl sulfites upon reaction with methanol.

  3. Upper Water Column Dimethylated Sulfur Biogeochemical Cycling in the Sargasso Sea - Assessing the Oceanic DMS Source

    NASA Astrophysics Data System (ADS)

    Toole, D. A.; Dacey, J. W.; Bates, N. R.; Levine, N. M.; Neeley, A.

    2008-12-01

    Once ventilated to the atmosphere, the oxidation products of biologically produced DMS are non sea salt sulfate and methane sulfonate aerosols which potentially exert considerable control on the global climate via alterations in radiative properties, acid-base chemistry, halogen cycles, and aerosol iron availability. The most significant obstacle to assessing and quantifying any associated climate feedbacks, beyond uncertainties associated with flux parameterizations, is the lack of understanding of the mechanisms that regulate oceanic near surface DMS concentrations. To assess the seasonal variability in the oceanic DMS source, monthly vertical profiles of DMS and particulate and dissolved DMSP (DMSPp and DMSPd) concentrations and biogeochemical cycling rates were sampled in the Sargasso Sea commencing in September 2005 at the Bermuda Atlantic Time-series Study site (BATS). Clear seasonal cycles are evident for DMS and DMSPp concentrations, although they are poorly correlated to available biomass indicators. DMSPd was consistently low and did not exhibit a clear seasonality. Biological DMS consumption is characterized by seasonal minima and maxima observed above and below the mixed layer depth respectively during strong summertime stratification. No clear seasonal cycles are evident in microbial DMSPd consumption rates or DMS yield but they vary within a relatively narrow range. Modeled phytoplankton DMS production rates are extremely large, negatively correlated to phytoplankton biomass indicators, and peak in the summer confirming that DMS concentrations and turnover processes are also affected by the physical dynamics of the surface mixed layer and by meteorological forcing such as total solar radiation, UV radiation, and wind speed. This research provides the first time-series of open-ocean organic sulfur cycling rates which will not only refine our understanding of the controlling mechanisms but will also serve as a basis for future oceanic and atmospheric

  4. Indoor concentrations of nitrogen dioxide and sulfur dioxide from burning solid fuels for cooking and heating in Yunnan Province, China.

    PubMed

    Seow, W J; Downward, G S; Wei, H; Rothman, N; Reiss, B; Xu, J; Bassig, B A; Li, J; He, J; Hosgood, H D; Wu, G; Chapman, R S; Tian, L; Wei, F; Caporaso, N E; Vermeulen, R; Lan, Q

    2016-10-01

    The Chinese national pollution census has indicated that the domestic burning of solid fuels is an important contributor to nitrogen dioxide (NO2 ) and sulfur dioxide (SO2 ) emissions in China. To characterize indoor NO2 and SO2 air concentrations in relation to solid fuel use and stove ventilation in the rural counties of Xuanwei and Fuyuan, in Yunnan Province, China, which have among the highest lung cancer rates in the nation, a total of 163 participants in 30 selected villages were enrolled. Indoor 24-h NO2 and SO2 samples were collected in each household over two consecutive days. Compared to smoky coal, smokeless coal use was associated with higher NO2 concentrations [geometric mean (GM) = 132 μg/m(3) for smokeless coal and 111 μg/m(3) for smoky coal, P = 0.065] and SO2 [limit of detection = 24 μg/m(3) ; percentage detected (%Detect) = 86% for smokeless coal and 40% for smoky coal, P < 0.001]. Among smoky coal users, significant variation of NO2 and SO2 air concentrations was observed across different stove designs and smoky coal sources in both counties. Model construction indicated that the measurements of both pollutants were influenced by stove design. This exposure assessment study has identified high levels of NO2 and SO2 as a result of burning solid fuels for cooking and heating.

  5. Sulfur dioxide and nitrogen dioxide adsorption on zinc oxide and zirconium hydroxide nanoparticles and the effect on photoluminescence

    NASA Astrophysics Data System (ADS)

    Singh, Jagdeep; Mukherjee, Anupama; Sengupta, Sandip K.; Im, Jisun; Peterson, Gregory W.; Whitten, James E.

    2012-05-01

    Nanoparticulate zinc oxide and micron-size zirconium hydroxide powders have been exposed to sulfur dioxide and nitrogen dioxide by flowing the gases, diluted with nitrogen, over powder samples. X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and thermogravimetric analysis (TGA) indicate strongly bound, chemisorbed SO3 and NO3 surface species. Two pre-treatments of the nanoparticulate ZnO samples prior to gas exposure have been investigated: (1) drying overnight in a vacuum oven and (2) hydrating the samples by placing them overnight in water-saturated air. A dramatic difference in reactivity of ZnO is observed, with approximately two-fold and ten-fold greater uptake of NO2 and SO2, respectively, measured by XPS for the hydrated samples relative to the dried ones. Transmission electron microscopy (TEM) demonstrates that the greater uptake arises from a morphology change in the case of the hydrated samples. For zirconium hydroxide, no morphology change is observed for hydrated samples, and SO4 (ads), in addition to SO3 (ads), is indicated by XPS. ZnO and Zr(OH)4 both exhibit photoluminescence (PL) spectra, with peak intensities that change dramatically due to hydration and subsequent exposure to SO2 and NO2 gases. Dosing of the powders with these gases effectively reverts the PL spectra to those corresponding to less hydration.

  6. On the Decadal Variation of sulfur dioxide at the Cloud Top of Venus

    NASA Astrophysics Data System (ADS)

    Zhang, Xi

    Venus atmosphere is a natural laboratory of sulfur chemistry. As one of the parent species of sulfur, sulfur dioxide (SO_2) is generated in the lower atmosphere and transported upward to the middle atmosphere, where it is further oxidized and eventually produces sulfuric acid cloud. The 30-year observations from the Pioneer Venus (Esposito et al., 1988) and the Venus Express (Marcq et al., 2012) show a decadal variation of total column abundance of SO_2 above the cloud top. The amplitude varies in about two orders of magnitude and therefore poses a question on what causes such a dramatic change on the sulfur budget. Previous interpretations include episodic volcanic eruption (Esposito 1984) and long-time dynamical oscillations (Marcq et al., 2012) that supported by a recent general circulation model on Venus (Parish et al., 2011). Here we attempt to understand the secular variation of SO_2 using a one-dimensional (1D) time-evolving photochemistry-diffusion model which includes about 50 species and about 350 reactions (Zhang et al., 2010; 2011). Specifically for this study, we perturb the mean steady state of the middle atmosphere of Venus by adding forcings at the bottom layer (at about 58 km). Two types of forcing are considered here: (1) the volcanic eruption is simulated by a mass flux injected from the bottom layer; and (2) a wavy structure is provided on the eddy diffusion profile to approximate the dynamical perturbations. Important parameters such as the amplitude and timescale of the forcings are constrained by the observation secular patterns. Possible consequences are discussed and the variations for other species are predicted to guide the future observations. This research was supported by the Bisgrove scholar Program in the University of Arizona.

  7. Effect of Ethanol, Sulfur Dioxide and Glucose on the Growth of Wine Spoilage Yeasts Using Response Surface Methodology

    PubMed Central

    Chandra, Mahesh; Oro, Inês; Ferreira-Dias, Suzana; Malfeito-Ferreira, Manuel

    2015-01-01

    Response surface methodology (RSM) was used to study the effect of three factors, sulfur dioxide, ethanol and glucose, on the growth of wine spoilage yeast species, Zygosaccharomyces bailii, Schizosaccharomyces pombe, Saccharomycodes ludwigii and Saccharomyces cerevisiae. Seventeen central composite rotatable design (CCRD) trials were designed for each test yeast using realistic concentrations of the factors (variables) in premium red wine. Polynomial regression equations were fitted to experimental data points, and the growth inhibitory conditions of these three variables were determined. The overall results showed Sa. ludwigii as the most resistant species growing under high ethanol/free sulfur dioxide concentrations, i.e., 15% (v/v)/20 mg L-1, 14% (v/v)/32 mg L-1 and 12.5% (v/v)/40 mg L-1, whereas other yeasts did not survive under the same levels of ethanol/free sulfur dioxide concentrations. The inhibitory effect of ethanol was primarily observed during longer incubation periods, compared with sulfur dioxide, which showed an immediate effect. In some CCRD trials, Sa. ludwigii and S. cerevisiae showed growth recovery after a short death period under the exposure of 20–32 mg L-1 sulfur dioxide in the presence of 11% (v/v) or more ethanol. However, Sc. pombe and Z. bailii did not show such growth recovery under similar conditions. Up to 10 g L-1 of glucose did not prevent cell death under the sulfur dioxide or ethanol stress. This observation demonstrates that the sugar levels commonly used in wine to sweeten the mouthfeel do not increase wine susceptibility to spoilage yeasts, contrary to the anecdotal evidence. PMID:26107389

  8. Effect of Ethanol, Sulfur Dioxide and Glucose on the Growth of Wine Spoilage Yeasts Using Response Surface Methodology.

    PubMed

    Chandra, Mahesh; Oro, Inês; Ferreira-Dias, Suzana; Malfeito-Ferreira, Manuel

    2015-01-01

    Response surface methodology (RSM) was used to study the effect of three factors, sulfur dioxide, ethanol and glucose, on the growth of wine spoilage yeast species, Zygosaccharomyces bailii, Schizosaccharomyces pombe, Saccharomycodes ludwigii and Saccharomyces cerevisiae. Seventeen central composite rotatable design (CCRD) trials were designed for each test yeast using realistic concentrations of the factors (variables) in premium red wine. Polynomial regression equations were fitted to experimental data points, and the growth inhibitory conditions of these three variables were determined. The overall results showed Sa. ludwigii as the most resistant species growing under high ethanol/free sulfur dioxide concentrations, i.e., 15% (v/v)/20 mg L-1, 14% (v/v)/32 mg L-1 and 12.5% (v/v)/40 mg L-1, whereas other yeasts did not survive under the same levels of ethanol/free sulfur dioxide concentrations. The inhibitory effect of ethanol was primarily observed during longer incubation periods, compared with sulfur dioxide, which showed an immediate effect. In some CCRD trials, Sa. ludwigii and S. cerevisiae showed growth recovery after a short death period under the exposure of 20-32 mg L-1 sulfur dioxide in the presence of 11% (v/v) or more ethanol. However, Sc. pombe and Z. bailii did not show such growth recovery under similar conditions. Up to 10 g L-1 of glucose did not prevent cell death under the sulfur dioxide or ethanol stress. This observation demonstrates that the sugar levels commonly used in wine to sweeten the mouthfeel do not increase wine susceptibility to spoilage yeasts, contrary to the anecdotal evidence.

  9. Influence of sulfur dioxide on the selective catalytic reduction of NO by decane on Cu catalysts

    SciTech Connect

    Figueras, F.; Coq, B.; Tachon, D.

    1996-12-31

    The selective catalytic removal of NO in oxygen rich atmospheres has been investigated in the presence of sulfur dioxide on a series of Cu catalysts. The reactivities correlated with the reducibility of Cu species determined by temperature programmed reduction with hydrogen. Without sulfur dioxide in the feed, the activity is related to the reducibility of Cu species. The addition of SO{sub 2} to the solid shifts the TPR peaks to higher temperatures. The magnitude of this effect is lower for acid zeolites such as MFI and BEA. Sulfation results in a small inhibition of the reactivity for deNOx in the case of Cu/Al{sub 2}O{sub 3}, no or little change in the case of Cu/zeolites, and a promotion of activity in the case of Cu/TiO{sub 2} and Cu/ZrO{sub 2}. The oxidation of decane on Cu/TiO{sub 2} and Cu/ZrO{sub 2} is inhibited by SO{sub 2} at low temperatures, but remains close to 100% in presence or absence of SO{sub 2} on Cu/TiO{sub 2} above 600K. In the case of Cu/ZrO{sub 2} the addition Of SO{sub 2} increases the rate of oxidation above 640 K The positive effect of SO{sub 2} on deNOx is attributed to the promotion of a bifunctional mechanism in presence of strong acid sites.

  10. Assessment of the UV camera sulfur dioxide retrieval for point source plumes

    NASA Astrophysics Data System (ADS)

    Dalton, Marika P.; Watson, I. Matthew; Nadeau, Patricia A.; Werner, Cynthia; Morrow, William; Shannon, Jeremy M.

    2009-12-01

    Digital cameras, sensitive to specific regions of the ultra-violet (UV) spectrum, have been employed for quantifying sulfur dioxide (SO 2) emissions in recent years. The instruments make use of the selective absorption of UV light by SO 2 molecules to determine pathlength concentration. Many monitoring advantages are gained by using this technique, but the accuracy and limitations have not been thoroughly investigated. The effect of some user-controlled parameters, including image exposure duration, the diameter of the lens aperture, the frequency of calibration cell imaging, and the use of the single or paired bandpass filters, have not yet been addressed. In order to clarify methodological consequences and quantify accuracy, laboratory and field experiments were conducted. Images were collected of calibration cells under varying observational conditions, and our conclusions provide guidance for enhanced image collection. Results indicate that the calibration cell response is reliably linear below 1500 ppm m, but that the response is significantly affected by changing light conditions. Exposure durations that produced maximum image digital numbers above 32 500 counts can reduce noise in plume images. Sulfur dioxide retrieval results from a coal-fired power plant plume were compared to direct sampling measurements and the results indicate that the accuracy of the UV camera retrieval method is within the range of current spectrometric methods.

  11. New analytical reagents for the determination of sulfur dioxide and carbon monoxide

    SciTech Connect

    Trump, E.L.

    1987-01-01

    Four solid reagent methods were developed for the determination of sulfur dioxide in air, and one method was developed to measure carbon monoxide. When applied to filter paper with acetamide as the humectant and 4-phenylcyclohexanone as a bisulfite absorbent, oxohydroxybis(8-hydroxyquinolinyl-) vanadium (V) changes from yellow to black in the presence of sulfur dioxide. The three other methods, also on a filter paper support, utilized the reduction of bromate to bromine which then changed 3-,3'-, 5-,5'-tetramethylbenzidine from yellow to blue, phenothiazine from white to green, and 4-dimethylamino-4'-,4/double prime/-dimethoxytriphenylmethanol from colorless to red-purple. Quantitative measurements were made by reflectance spectroscopy. The method for carbon monoxide involved the use of tetrakis (acetamide-) Pd(II) ditetrafluoroborate, sodium iodate, and leuco crystal violet all together on a filter paper support. Carbon monoxide reduced the Pd(II)-acetamide complex to metallic palladium. The metallic palladium then reduced iodate to hypoiodous acid, HOI, which, in turn, oxidized leuco crystal violet to crystal violet. The crystal violet color was then measured by reflectance.

  12. Effect of metaproterenol sulfate on mild asthmatics' response to sulfur dioxide exposure and exercise

    SciTech Connect

    Linn, W.S.; Avol, E.L.; Shamoo, D.A.; Peng, R.C.; Spier, C.E.; Smith, M.N.; Hackney, J.D.

    1988-11-01

    Twenty asthmatic volunteers, most with mild disease, underwent dose-response studies with sulfur dioxide (SO2) under three pretreatment conditions: (1) drug (metaproterenol sulfate in aerosolized saline solution), (2) placebo (aerosolized saline only), and (3) no pretreatment. Sulfur dioxide exposure concentrations were 0.0, 0.3, and 0.6 ppm. Experimental conditions were presented in random order at 1-wk intervals. Exposures lasted 10 min with heavy continuous exercise. Lung function was measured at baseline, after pretreatment (immediately pre-exposure), immediately post-exposure, and during a 2-hr follow-up. Subjects could elect to take bronchodilators during follow-up. Symptoms were monitored before, during, and for 1 wk after exposure. With no pretreatment, subjects exhibited typical exercise-induced bronchospasm at 0.0 ppm, slightly increased responses at 0.3 ppm, and more marked increases at 0.6 ppm. Seven subjects took bronchodilator after 0.6-ppm exposures, compared to 2 at lower concentrations. Within 30 min post-exposure, most subjects' symptoms and lung function had returned to near pre-exposure levels. A similar sequence was observed when subjects received placebo. Drug pretreatment improved lung function relative to baseline, prevented bronchoconstrictive responses at 0.0 and 0.3 ppm, and greatly mitigated responses at 0.6 ppm. Thus, typical bronchodilator usage by asthmatics is likely to reduce their response to ambient SO2 pollution.

  13. Assessment of the UV camera sulfur dioxide retrieval for point source plumes

    USGS Publications Warehouse

    Dalton, M.P.; Watson, I.M.; Nadeau, P.A.; Werner, C.; Morrow, W.; Shannon, J.M.

    2009-01-01

    Digital cameras, sensitive to specific regions of the ultra-violet (UV) spectrum, have been employed for quantifying sulfur dioxide (SO2) emissions in recent years. The instruments make use of the selective absorption of UV light by SO2 molecules to determine pathlength concentration. Many monitoring advantages are gained by using this technique, but the accuracy and limitations have not been thoroughly investigated. The effect of some user-controlled parameters, including image exposure duration, the diameter of the lens aperture, the frequency of calibration cell imaging, and the use of the single or paired bandpass filters, have not yet been addressed. In order to clarify methodological consequences and quantify accuracy, laboratory and field experiments were conducted. Images were collected of calibration cells under varying observational conditions, and our conclusions provide guidance for enhanced image collection. Results indicate that the calibration cell response is reliably linear below 1500 ppm m, but that the response is significantly affected by changing light conditions. Exposure durations that produced maximum image digital numbers above 32 500 counts can reduce noise in plume images. Sulfur dioxide retrieval results from a coal-fired power plant plume were compared to direct sampling measurements and the results indicate that the accuracy of the UV camera retrieval method is within the range of current spectrometric methods. ?? 2009 Elsevier B.V.

  14. The distribution of sulfur dioxide and other infrared absorbers on the surface of Io

    USGS Publications Warehouse

    Carlson, R.W.; Smythe, W.D.; Lopes-Gautier, R. M. C.; Davies, A.G.; Kamp, L.W.; Mosher, J.A.; Soderblom, L.A.; Leader, F.E.; Mehlman, R.; Clark, R.N.; Fanale, F.P.

    1997-01-01

    The Galileo Near Infrared Mapping Spectrometer was used to investigate the distribution and properties of sulfur dioxide over the surface of Io, and qualitative results for the anti-Jove hemisphere are presented here. SO2, existing as a frost, is found almost everywhere, but with spatially variable concentration. The exceptions are volcanic hot spots, where high surface temperatures promote rapid vaporization and can produce SO2-free areas. The pervasive frost, if fully covering the cold surface, has characteristic grain sizes of 30 to 100 Urn, or greater. Regions of greater sulfur dioxide concentrations are found. The equatorial Colchis Regio area exhibits extensive snowfields with large particles (250 to 500 ??m diameter, or greater) beneath smaller particles. A weak feature at 3.15 ??m is observed and is perhaps due to hydroxides, hydrates, or water. A broad absorption in the 1 ??m region, which could be caused by iron-containing minerals, shows a concentration in Io'S southern polar region, with an absence in the Pele plume deposition ring. Copyright 1997 by the American Geophysical Union.

  15. [Spatial distribution of sulfur dioxide around a tobacco bulk-curing workshop cluster].

    PubMed

    He, Fan; Wang, Mei; Wang, Tao; Sun, Jian-Feng; Huang, Wu-Xing; Tian, Bin-Qiang; Gong, Chang-Rong

    2014-03-01

    In order to manifest lower energy consumption and less labor employment, and provide the theoretical basis for constructing environmentally friendly modem tobacco agriculture, this paper analyzed gas composition of the chimney from a bulk-curing barn and the dispersion of sulfur dioxide (SO2) around the workshop cluster using ecom-J2KN flue gas analyzer and air sampler. During curing, the concentrations of carbon dioxide (CO2) and SO2 in the chimney were both highest at 38 degrees C, while the concentration of nitrogen oxides (NOx) was highest at 42 degrees C. The emission concentration of SO2 from the chimney was 1327.60-2218.40 mg x m(-3). Average SO2 emission would decrease by 49.7% through adding 4.0% of a sulfur-fixed agent. The highest concentrations of SO2 in the surface soil appeared at the yellowing stage. SO2 concentration in horizontal direction localized at 43-80 m exceeded 0.5 mg x m(-3). The highest concentration of SO2 (0.57 mg x m(-3)) was observed at 50 m. At 50 m in the downstream wind direction of the workshop cluster, SO2 concentration in vertical direction localized at 0.9-1.8 m exceeded 0.5 mg x m(-3), and the highest concentration of SO2 in vertical direction was 0.65 mg x m(-3) at 1.6 m. During curing, the average concentration of SO2 was decreased by 0.43 mg x m(-3) by using the sulfur-fixed agent. The polluted boundary was localized at 120 m in the downstream wind direction of the workshop cluster.

  16. Sulfur Dioxide Emissions and Market Effects under the Clean Air Act Acid Rain Program.

    PubMed

    Zipper, Carl E; Gilroy, Leonard

    1998-09-01

    The Clean Air Act Amendments of 1990 (CAAA90) established a national program to control sulfur dioxide (SO2) emissions from electricity generation. CAAA90's market-based approach includes trading and banking of Soumissions allowances. We analyzed data describing electric utility SO2 emissions in 1995, the first year of the program's Phase I, and market effects over the 1990-1995 period. Fuel switching and flue-gas desulfurization were the dominant means used in 1995 by targeted generators to reduce emissions to 51% of 1990 levels. Flue-gas desulfur-ization costs, emissions allowance prices, low-sulfur coal prices, and average sulfur contents of coals shipped to electric utilities declined over the 1990-1995 period. Projections indicate that 13-15 million allowances will have been banked during the program's Phase I, which ends in 1999, a quantity expected to last through the first decade of the program's stricter Phase II controls. In 1995, both allowance prices and SO2 emissions were below pre-CAAA90 expectations. The reduction of SO2 emissions beyond pre-CAAA90 expectations, combined with lower-than-expected allowance prices and declining compliance costs, can be viewed as a success for market-based environmental controls.

  17. Sulfur dioxide from Nevado del Ruiz volcano, Colombia: total flux and isotopic constraints on its origin

    NASA Astrophysics Data System (ADS)

    Williams, Stanley N.; Sturchio, Neil C.; Calvache V., Marta Lucia; Mendez F., Ricardo; Londoño C., Adela; García P., Nestor

    1990-07-01

    Nevado del Ruiz volcano has been releasing extraordinarily large volumes of sulfur dioxide gas from its Arenas crater since September, 1985 and probably since the renewal of volcanic activity began in late 1984. The combined release from eruptive and passive flux has been approximately (3.4 ± 1.0) × 10 6 metric tons in the four years after November, 1984. This value combined with data of others on pre-eruption sulfur content of the magma, allows the calculation of a minimum required volume of magma of 0.92 km 3. Consideration of the continued high flux and typical ratios of erupted to degassed magma indicate that the true minimum volume of magma involved is probably at least 4.6-9.2 km 3. A systematic study of the various species of sulfur in the volcanic plume and the hydrothermal system has provided a characterization of the geochemistry and sulfur-isotopic variation. Consideration has been given to five potential sources of the sulfur dioxide: dissolution of subvolcanic evaporites; remobilization and oxidation of native sulfur within summit crater fumaroles; large-scale release from the hydrothermal system by reduction of sulfate or water-rock interaction; assimilation and oxidation of a pre-existing sulfide deposit; and magmatic volatiles. The data are most realistically explained by the passage of magmatic gas through the hydrothermal system, with some disproportionation of sulfur dioxide to produce the high sulfate content and low pH of the waters. This model is also most consistent with the distribution of acid-sulfate-chloride hot springs, high chloride and fluoride content of the hydrothermal waters, sulfide deposition within the volcanic pile, and the transient increase in sulfate content of the acid-sulfate-chloride hot springs that reached a maximum approximately one year after the November, 1985 eruption. The magmatic model is in apparent conflict with the absence of general deformation from the time that data began to be collected, about one week

  18. Ambient nitrogen dioxide and sulfur dioxide concentrations over a region of natural gas production, Northeastern British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Islam, S. M. Nazrul; Jackson, Peter L.; Aherne, Julian

    2016-10-01

    The Peace River district of Northeastern British Columbia, Canada is a region of natural gas production that has undergone rapid expansion since 2005. In order to assess air quality implications, Willems badge passive diffusive samplers were deployed for six two-week exposure periods between August and November 2013, at 24 sites across the region to assess the ambient concentration of nitrogen dioxide (NO2) and sulfur dioxide (SO2). The highest concentrations of both species (NO2: 9.1 ppb, SO2: 1.91 ppb) during the whole study period (except the 1st exposure period), were observed in Taylor (Site 14), which is consistent with its location near major industrial sources. Emissions from industrial activities, and their interaction with meteorology and topography, result in variations in atmospheric dispersion that can increase air pollution concentrations in Taylor. However, relatively high concentrations of NO2 were also observed near the center of Chetwynd (site F20), indicating the importance of urban emissions sources in the region as well. Observations of both species from the other study sites document the spatial variability and show relatively high concentrations near Fort St. John and Dawson Creek, where unconventional oil and gas development activities are quite high. Although a few sites in Northeastern British Columbia recorded elevated concentrations of NO2 and SO2 during this investigation, the concentrations over the three-month period were well below provincial annual ambient air quality objectives. Nonetheless, given the limited observations in the region, and the accelerated importance of unconventional oil and gas extraction in meeting energy demands, it is imperative that monitoring networks are established to further assess the potential for elevated ambient concentrations associated with industrial emissions sources in the Peace River region.

  19. Water, sulfur dioxide and nitric acid adsorption on calcium carbonate: a transmission and ATR-FTIR study.

    PubMed

    Al-Hosney, H A; Grassian, V H

    2005-03-21

    Calcium carbonate (CaCO3) is a reactive component of mineral dust aerosol as well as buildings, statues and monuments. In this study, attenuated total reflection (ATR) and transmission Fourier transform infrared spectroscopy (FTIR) have been used to study the uptake of water, sulfur dioxide and nitric acid on CaCO3 particles at 296 K. Under atmospheric conditions, CaCO3 particles are terminated by a Ca(OH)(CO3H) surface layer. In the presence of water vapor between 5 and 95% relative humidity (RH), water molecularly adsorbs on the Ca(OH)(CO3H) surface resulting in the formation of an adsorbed thin water film. The adsorbed water film assists in the enhanced uptake of sulfur dioxide and nitric acid on CaCO3 in several ways. Under dry conditions (near 0% RH), sulfur dioxide and nitric acid react with the Ca(OH)(CO3H) surface to form adsorbed carbonic acid (H2CO3) along with sulfite and nitrate, respectively. Adsorbed carbonic acid is stable on the surface under vacuum conditions. Once the surface saturates with a carbonic acid capping layer, there is no additional uptake of gas-phase sulfur dioxide and nitric acid. However, upon adsorption of water, carbonic acid dissociates to form gaseous carbon dioxide and there is further uptake of sulfur dioxide and nitric acid. In addition, adsorbed water increases the mobility of the ions at the surface and enhances uptake of SO2 and HNO3. In the presence of adsorbed water, CaSO3 forms islands of a crystalline hydrate whereas Ca(NO3)2 forms a deliquescent layer or micropuddles. Thus adsorbed water plays an important and multi-faceted role in the uptake of pollutant gases on CaCO3.

  20. Effect of pH on sulfite oxidation by Thiobacillus thiooxidans cells with sulfurous acid or sulfur dioxide as a possible substrate.

    PubMed Central

    Takeuchi, T L; Suzuki, I

    1994-01-01

    The oxidation of sulfite by Thiobacillus thiooxidans was studied at various pH values with changing concentrations of potassium sulfite. The optimal pH for sulfite oxidation by cells was a function of sulfite concentrations, rising with increasing substrate concentrations, while that by the cell extracts was unaffected. The sulfite oxidation by cells was inhibited at high sulfite concentrations, particularly at low pH values. The results from kinetic studies show that the fully protonated form of sulfite, sulfurous acid or sulfur dioxide, is the form which penetrates the cells for the oxidation. PMID:8300544

  1. 78 FR 47191 - Air Quality Designations for the 2010 Sulfur Dioxide (SO2) Primary National Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... AGENCY 40 CFR Part 81 RIN 2060-AR18 Air Quality Designations for the 2010 Sulfur Dioxide (SO ) Primary National Ambient Air Quality Standard AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: This rule establishes air quality designations for certain areas in the United States for...

  2. Evaluation of sulfur dioxide-generating pads and modified atmosphere packaging for control of postharvest diseases in blueberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Postharvest diseases are a limiting factor of storage and shelf life of blueberries. Gray mold caused by Botrytis cinerea is one of the most important postharvest diseases in blueberries grown in California. In this study, we evaluated the effects of sulfur dioxide (SO2)-generating pads (designated ...

  3. The Social Cost of Trading: Measuring the Increased Damages from Sulfur Dioxide Trading in the United States

    ERIC Educational Resources Information Center

    Henry, David D., III; Muller, Nicholas Z.; Mendelsohn, Robert O.

    2011-01-01

    The sulfur dioxide (SO[subscript 2]) cap and trade program established in the 1990 Clean Air Act Amendments is celebrated for reducing abatement costs ($0.7 to $2.1 billion per year) by allowing emissions allowances to be traded. Unfortunately, places with high marginal costs also tend to have high marginal damages. Ton-for-ton trading reduces…

  4. 40 CFR Appendix D to Part 52 - Determination of Sulfur Dioxide Emissions From Stationary Sources by Continuous Monitors

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measurement system data and reference method test data concentrations. If the bases are not consistent, apply... Stationary Sources by Continuous Monitors 1. Definitions. 1.1Concentration Measurement System. The total....2Span. The value of sulfur dioxide concentration at which the measurement system is set to produce...

  5. Limestone treatment for sulfur dioxide removal. (Latest citations from the EI compendex*plus database). Published Search

    SciTech Connect

    1998-02-01

    The bibliography contains citations concerning the use of limestone for the control of sulfur dioxide emmisions in flue gases. The various designs for flue gas desulfurization are discussed, including dry fluidized beds and wet scrubbers. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Developing an Alternative to Sulfur Dioxide for Maintaining Quality and Reducing Decay of Table Grapes during Storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Decay and rachis browning are major problems that limit the shelf life of fresh table grapes (Vitis vinifera L.) and are often controlled by the application of sulfur dioxide (SO2) to maintain quality. However, SO2 is dangerous to people who are allergic to sulfites and its application has been rest...

  7. Acute and chronic sulfur dioxide fumigation of Pi{tilde n}on pine seeds and seedlings: Data compilation

    SciTech Connect

    Trujillo, M.L.; Ferenbaugh, R.W.; Gladney, E.S.; Bowker, R.G.

    1993-09-01

    Pi{tilde n}on pine germinating seeds, emergent seedlings, and one-year-old seedlings were exposed to sulfur dioxide under both acute and chronic exposure conditions. These fumigations were conducted in order to determine the potential for damage to pi{tilde n}on pine in southwestern national parks and monuments where there is potential for exposure to elevated sulfur dioxide concentrations from smelters and power plants. Injury was apparent only in acute fumigations of one-year-old seedlings at ambient sulfur dioxide concentrations of greater than 3 ppm. Chronic fumigations were conducted only a ambient concentrations of 0.2 ppm. Pi{tilde n}on pine resistance was evidenced by lack of effect of fumigation on biomass and growth parameters. Growth rate data for both experimental and control seedlings were fit to a linear growth model with a correlation (r{sup 2} = 0.95). The results of this study agree with other data in the literature and indicate that damage from elevated sulfur dioxide concentrations in southwestern national parks and monuments is much more likely for other, more sensitive, species than for pi{tilde n}on pine.

  8. Controlled exposure of volunteers with chronic obstructive pulmonary disease to sulfur dioxide

    SciTech Connect

    Linn, W.S.; Fischer, D.A.; Shamoo, D.A.; Spier, C.E.; Valencia, L.M.; Anzar, U.T.; Hackney, J.D.

    1985-08-01

    Twenty-four volunteers with chronic obstructive pulmonary disease (COPD) were exposed to sulfur dioxide (SO/sub 2/) at 0, 0.4, and 0.8 ppm in an environmental control chamber. Exposures lasted 1 hr and included two 15-min exercise periods (mean exercise ventilation rate 18 liter/min). Pulmonary mechanical function was evaluated before exposures, after initial exercise, and at the end of exposure. Blood oxygenation was measured by ear oximetry before exposure and during the second exercise period. Symptoms were recorded throughout exposure periods and for 1 week afterward. No statistically significant changes in physiology or symptoms could be attributed to SO/sub 2/ exposure. Older adults with COPD seem less reactive to a given concentration of SO/sub 2/ than heavily exercising young adult asthmatics. This may be due to lower ventilation rates (i.e., lower SO/sub 2/ dose rates) and/or to lower airway reactivity in the COPD group.

  9. BCl3-mediated ene reaction of sulfur dioxide and unfunctionalized alkenes.

    PubMed

    Marković, Dean; Volla, Chandra M R; Vogel, Pierre; Varela-Alvarez, Adrián; Sordo, José A

    2010-05-25

    The first ene reactions of SO(2) and unfunctionalized alkenes are reported. Calculations suggest that the endergonic ene reactions of SO(2) with alkenes can be used to generate beta,gamma-unsaturated sulfinyl and sulfonyl compounds. Indeed, in the presence of one equivalent of BCl(3), the unstable sulfinic acid form stable sulfinic acid.BCl(3) complexes that can be reacted in situ with NCS to generate corresponding sulfonyl chlorides, or with a base to generate corresponding sulfinates. The latter can be reacted with electrophiles to generate sulfones, or with silyl chloride to form beta,gamma-unsaturated silyl sulfinates. The sulfinic acid.BCl(3) complexes can be reacted with ethers that act as oxygen nucleophiles to produce corresponding sulfinic esters. Thus one-pot, three-component synthesis of beta,gamma-unsaturated sulfonamides, sulfinyl esters and sulfones have been developed starting from alkenes and sulfur dioxide (reagent and solvent).

  10. Evaluation of high Ni-Cr-Mo alloys for the construction of sulfur dioxide scrubber plants

    NASA Astrophysics Data System (ADS)

    Rajendran, N.; Rajeswari, S.

    1996-02-01

    Corrosion in wet lime/limestone systems used for flue gas desulfurization in thermal power plants is of great concern. The frequent variations in acidity and in chloride and fluoride ion concentrations experienced by such systems pose a serious threat to the materials of construction. Currently used materials mostly type 316L stainless steel often fail to meet their life expectancy. The present study evaluates the performance of advanced Ni- Cr- Mo alloys 59 and C- 276 in a simulated sulfur dioxide scrubber environment. Accelerated tests showed that high Ni- Cr- Mo alloys have little tendency to leach metal ions such as chromium, nickel, and molybdenum at different impressed potentials. Scanning electron microscopy was used to examine the morphology of pitting attack.

  11. Monitoring of sulfur dioxide emission resulting from biogas utilization on commercial pig farms in Taiwan.

    PubMed

    Su, Jung-Jeng; Chen, Yen-Jung

    2015-01-01

    The objective of this work tends to promote methane content in biogas and evaluate sulfur dioxide emission from direct biogas combustion without desulfurization. Analytical results of biogas combustion showed that combustion of un-desulfurized biogas exhausted more than 92% of SO₂ (P < 0.01). In the meantime, more than 90% of hydrogen sulfide was removed during the combustion process using un-desulfurized biogas (P < 0.01). Those disappeared hydrogen sulfide may deposit on the surfaces of power generator's engines or burner heads of boilers. Some of them (4.6-9.1% of H₂S) were converted to SO₂ in exhaust gas. Considering the impacts to human health and living environment, it is better to desulfurize biogas before any applications.

  12. [Research on denoising fluorescence signal of sulfur dioxide by Boxcar filter].

    PubMed

    Wang, Yu-Tian; Jian, Xiong; Wang, Hui-Xin; Yan, Bing

    2012-12-01

    The fluorescence detection method is based on the linear relationship between fluorescence intensity emitted by the material and the concentration of material to make a quantitative analysis. When using the fluorescence detection of atmospheric sulfur dioxide and other harmful gases, photodetectors and other optoelectronic components without fluorescence will continue to produce the dark current noise, and the background signal has a direct impact on the measurement results. On the base of analysis Boxcar filtering algorithm, the research used three algorithms of wavelet filtering, EMD filter and Boxcar filter to extract and recover the fluorescence signal drowned in the noise floor. In comparison with the previous two filtering methods, Boxcar filter had a better effect on the suppression of the background noise. It also verified that the number of sampling affects the fluorescence signal to noise ratio improvement.

  13. Bacterial Synthesis of Unusual Sulfonamide and Sulfone Antibiotics by Flavoenzyme-Mediated Sulfur Dioxide Capture.

    PubMed

    Baunach, Martin; Ding, Ling; Willing, Karsten; Hertweck, Christian

    2015-11-02

    Sulfa drugs, such as sulfonilamide and dapsone, are classical antibiotics that have been in clinical use worldwide. Despite the relatively simple architectures, practically no natural products are known to feature such aromatic sulfonamide or diarylsulfone substructures. We report the unexpected discovery of three fully unprecedented, sulfonyl-bridged alkaloid dimers (sulfadixiamycins A-C) from recombinant Streptomyces species harboring the entire xiamycin biosynthesis gene cluster. Sulfadixiamycins exhibit moderate antimycobacterial activities and potent antibiotic activities even against multidrug-resistant bacteria. Gene inactivation, complementation, and biotransformation experiments revealed that a flavin-dependent enzyme (XiaH) plays a key role in sulfadixiamycin biosynthesis. XiaH mediates a radical-based, three-component reaction involving two equivalents of xiamycin and sulfur dioxide, which is reminiscent of radical styrene/SO2 copolymerization.

  14. Ab initio potential energy surface and vibration-rotation energy levels of sulfur dioxide.

    PubMed

    Koput, Jacek

    2017-05-05

    An accurate potential energy surface of sulfur dioxide, SO2 , in its ground electronic state X∼ 1A1 has been determined from ab initio calculations using the coupled-cluster approach in conjunction with the correlation-consistent basis sets up to septuple-zeta quality. The results obtained with the conventional and explicitly correlated coupled-cluster methods are compared. The role of the core-electron correlation, higher-order valence-electron correlation, scalar relativistic, and adiabatic effects in determining the structure and dynamics of the SO2 molecule is discussed. The vibration-rotation energy levels of the (32) SO2 and (34) SO2 isotopologues were predicted using a variational approach. It was shown that the inclusion of the aforementioned effects was mandatory to attain the "spectroscopic" accuracy. © 2017 Wiley Periodicals, Inc.

  15. The impact of sulfur dioxide on plant sexual reproduction: in vivo and in vitro effects compared

    SciTech Connect

    DuBay, D.T.; Murdy, W.H.

    1983-01-01

    In Lepidium virginicum L., exposure of pollen to 0.6 ppm sulfur dioxide (SO/sub 2/) for 4 h reduced pollen germination in vitro 94% from the control, whereas exposure to 0.6 ppm SO/sub 2/ for 2, 4, and 8 h during flowering reduced pollen germination in vivo 50% from the control, but did not affect seed set.An interaction between SO/sub 2/ and water may have caused the inhibition of pollen germination in a liquid culture medium, as well as on the moist surface of an intact stigma. However, the results suggest that the use of pollen germination and pollen tube elongation in vitro to asses the direct effects of SO/sub 2/ on plant sexual reproduction in vivo is not valid.

  16. Hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite positive electrode materials for rechargeable lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zegeye, Tilahun Awoke; Kuo, Chung-Feng Jeffrey; Wotango, Aselefech Sorsa; Pan, Chun-Jern; Chen, Hung-Ming; Haregewoin, Atetegeb Meazah; Cheng, Ju-Hsiang; Su, Wei-Nien; Hwang, Bing-Joe

    2016-08-01

    Herein, we design hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite (MC-Meso C-doped TiO2/S) as a positive electrode material for lithium-sulfur batteries. The hybrid MC-Meso C-doped TiO2 host material is produced by a low-cost, hydrothermal and annealing process. The resulting conductive material shows dual microporous and mesoporous behavior which enhances the effective trapping of sulfur and polysulfides. The hybrid MC-Meso C-doped TiO2/S composite material possesses rutile TiO2 nanotube structure with successful carbon doping while sulfur is uniformly distributed in the hybrid MC-Meso C-doped TiO2 composite materials after the melt-infusion process. The electrochemical measurement of the hybrid material also shows improved cycle stability and rate performance with high sulfur loading (61.04%). The material delivers an initial discharge capacity of 802 mAh g-1 and maintains it at 578 mAh g-1 with a columbic efficiency greater than 97.1% after 140 cycles at 0.1 C. This improvement is thought to be attributed to the unique hybrid nanostructure of the MC-Meso C-doped TiO2 host and the good dispersion of sulfur in the narrow pores of the MC spheres and the mesoporous C-doped TiO2 support.

  17. Constraining the Sulfur Dioxide Degassing Flux from Turrialba Volcano, Costa Rica Using Unmanned Aerial System Measurements

    NASA Technical Reports Server (NTRS)

    Xi, Xin; Johnson, Matthew S.; Jeong, Seongeun; Fladeland, Matthew; Pieri, David; Diaz, Jorge Andres; Bland, Geoffrey L.

    2016-01-01

    Observed sulfur dioxide (SO2)mixing ratios onboard unmanned aerial systems (UAS) duringMarch 11-13, 2013 are used to constrain the three-day averaged SO2 degassing flux fromTurrialba volcanowithin a Bayesian inverse modeling framework. A mesoscale model coupled with Lagrangian stochastic particle backward trajectories is used to quantify the source-receptor relationships at very high spatial resolutions (i.e., b1 km). The model shows better performance in reproducing the near-surface meteorological properties and observed SO2 variations when using a first-order closure non-local planetary boundary layer (PBL) scheme. The optimized SO2 degassing fluxes vary from 0.59 +/- 0.37 to 0.83 +/- 0.33 kt d-1 depending on the PBL scheme used. These fluxes are in good agreement with ground-based gas flux measurements, and correspond to corrective scale factors of 8-12 to the posteruptive SO2 degassing rate in the AeroCom emission inventory. The maximum a posteriori solution for the SO2 flux is highly sensitive to the specification of prior and observational errors, and relatively insensitive to the SO2 loss term and temporal averaging of observations. Our results indicate relatively low degassing activity but sustained sulfur emissions from Turrialba volcano to the troposphere during March 2013. This study demonstrates the utility of low-cost small UAS platforms for volcanic gas composition and flux analysis.

  18. Sulfate geoengineering: a review of the factors controlling the needed injection of sulfur dioxide

    NASA Astrophysics Data System (ADS)

    Visioni, Daniele; Pitari, Giovanni; Aquila, Valentina

    2017-03-01

    Sulfate geoengineering has been proposed as an affordable and climate-effective means to temporarily offset the warming produced by the increase of well-mixed greenhouse gases (WMGHGs). This technique would likely have to be applied while and after global intergovernmental measures on emissions of WMGHGs are implemented in order to achieve surface temperature stabilization. The direct radiative effects of sulfur injection in the tropical lower stratosphere can be summarized as increasing shortwave scattering with consequent tropospheric cooling and increasing longwave absorption with stratospheric warming. Indirect radiative effects are related to induced changes in the ozone distribution; stratospheric water vapor abundance,;formation and size of upper-tropospheric cirrus ice particles; and lifetime of long-lived species, namely CH4 in connection with OH changes through several photochemical mechanisms. Direct and indirect effects of sulfate geoengineering both concur to determine the atmospheric response. A review of previous studies on these effects is presented here, with an outline of the important factors that control the amount of sulfur dioxide to be injected in an eventual realization of the experiment. However, we need to take into account that atmospheric models used for these studies have shown a wide range of climate sensitivity and differences in the response to stratospheric volcanic aerosols. In addition, large uncertainties exist in the estimate of some of these aerosol effects.

  19. Constraining the sulfur dioxide degassing flux from Turrialba volcano, Costa Rica using unmanned aerial system measurements

    NASA Astrophysics Data System (ADS)

    Xi, Xin; Johnson, Matthew S.; Jeong, Seongeun; Fladeland, Matthew; Pieri, David; Diaz, Jorge Andres; Bland, Geoffrey L.

    2016-10-01

    Observed sulfur dioxide (SO2) mixing ratios onboard unmanned aerial systems (UAS) during March 11-13, 2013 are used to constrain the three-day averaged SO2 degassing flux from Turrialba volcano within a Bayesian inverse modeling framework. A mesoscale model coupled with Lagrangian stochastic particle backward trajectories is used to quantify the source-receptor relationships at very high spatial resolutions (i.e., < 1 km). The model shows better performance in reproducing the near-surface meteorological properties and observed SO2 variations when using a first-order closure non-local planetary boundary layer (PBL) scheme. The optimized SO2 degassing fluxes vary from 0.59 ± 0.37 to 0.83 ± 0.33 kt d- 1 depending on the PBL scheme used. These fluxes are in good agreement with ground-based gas flux measurements, and correspond to corrective scale factors of 8-12 to the posteruptive SO2 degassing rate in the AeroCom emission inventory. The maximum a posteriori solution for the SO2 flux is highly sensitive to the specification of prior and observational errors, and relatively insensitive to the SO2 loss term and temporal averaging of observations. Our results indicate relatively low degassing activity but sustained sulfur emissions from Turrialba volcano to the troposphere during March 2013. This study demonstrates the utility of low-cost small UAS platforms for volcanic gas composition and flux analysis.

  20. Sulfur dioxide in the atmosphere of Venus 1 sounding rocket observations

    NASA Technical Reports Server (NTRS)

    Mcclintock, William E.; Barth, Charles A.; Kohnert, Richard A.

    1994-01-01

    In this paper we present ultraviolet reflectance spectra obtained during two sounding rocket observations of Venus made during September 1988 and March 1991. We describe the sensitivity of the derived reflectance to instrument calibration and show that significant artifacts can appear in that spectrum as a result of using separate instruments to observe both the planetary radiance and the solar irradiance. We show that sulfur dioxide is the primary spectral absorber in the 190 - 230 nm region and that the range of altitudes probed by these wavelengths is very sensitive to incidence and emission angles. In a following paper Na et. al. (1994) show that sulfur monoxide features are also present in these data. Accurate identification and measurement of additional species require observations in which both the planetary radiance and the solar irradiance are measured with the same instrument. The instrument used for these observations is uniquely suited for obtaining large phase angle coverage and for studying transient atmospheric events on Venus because it can observe targets within 18 deg of the sun while earth orbiting instruments are restricted to solar elongation angles greater than or equal to 45 deg.

  1. Comparative Analyses of Physiological Responses of Cynodon dactylon Accessions from Southwest China to Sulfur Dioxide Toxicity

    PubMed Central

    Wang, Ling; Li, Yiqiao; Cai, Shizhen

    2014-01-01

    Sulfur dioxide (SO2), a major air pollutant in developing countries, is highly toxic to plants. To achieve better air quality and landscape, planting appropriate grass species in severe SO2 polluted areas is very critical. Cynodon dactylon, a widely used warm season turfgrass species, has good SO2-tolerant ability. In this study, we selected 9 out of 38 C. dactylon accessions from Southwest China as representatives of high, intermediate SO2-tolerant and SO2-sensitive accessions to comparatively analyze their physiological differences in leaves under SO2 untreated and treated conditions. Our results revealed that SO2-tolerant C. dactylon accessions showed higher soluble sugar, proline, and chlorophyll a contents under both SO2 treated and untreated conditions; higher chlorophyll b and carotenoid under SO2 treated condition; lower reactive oxygen species (ROS) level, oxidative damages, and superoxide dismutase (SOD) activities under SO2 treated condition; and higher peroxidase (POD) activities under SO2 untreated condition. Further results indicated that SO2-tolerant C. dactylon accessions had higher sulfur contents under both SO2 treated and untreated conditions, consistent with higher SO activities under both SO2 treated and untreated conditions, and higher SiR activities under SO2 treated condition. Taken together, our results indicated that SO2 tolerance of C. dactylon might be largely related to soluble sugar, proline and chlorophyll a contents, and SO enzyme activity. PMID:25097893

  2. Effects of sulfur dioxide, hydrogen peroxide and sulfuric acid on the de novo synthesis of PCDD/F and PCB under model laboratory conditions.

    PubMed

    Pekárek, V; Puncochár, M; Bures, M; Grabic, R; Fiserová, E

    2007-01-01

    In a laboratory model system consisting of fly ash from municipal waste incinerator, CuCl2 x 2H2O, NaCl and activated carbon in N2 + 10% O2 atmosphere, the de novo synthetic reactions of formation of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) were studied under laboratory conditions in the presence of sulfur dioxide, hydrogen peroxide, and sulfuric acid. It has been found that the formation of PCDD is suppressed by sulfur dioxide more efficiently than the formation of PCDF. A similar effect has also been observed in the presence of hydrogen peroxide. The formation of PCDF is strongly suppressed in the presence of sulfuric acid. On the basis of the experimental results and thermodynamic calculations, the following mechanisms are proposed and discussed: oxidative destruction of PCDD and PCDF oxygen rings, conversion of cupric chloride and possibly also cupric oxide into the non-reactive sulfate, and the Deacon oxychlorination processes catalyzed by cupric chloride.

  3. NiO/CeO2-ZnO nano-catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide.

    PubMed

    Kang, Ki Hyuk; Lee, Chang Hoon; Kim, Dong Baek; Jang, Boknam; Song, In Kyu

    2014-11-01

    XNiO/CeO2(0.7)-ZnO(0.3) (X = 0, 1, 5, 10, and 15) nano-catalysts were prepared by a wet impregnation method with a variation of NiO content (X, wt%). The prepared catalysts were then applied to the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Successful formation of XNiO/CeO2(0.7)-ZnO(0.3) nano-catalysts was confirmed by XRD and ICP-AES analyses. Acidity and basicity of XNiO/CeO2-ZnO were measured by NH3-TPD (temperature-programmed desorption) and CO2-TPD experiments, respectively, with an aim of elucidating the effect of acidity and basicity of the catalysts on the catalytic performance in the reaction. It was revealed that the catalytic activity of XNiO/CeO2(0.7)-ZnO(0.3) was closely related to both acidity and basicity of the catalysts. The amount of dimethyl carbonate produced over XNiO/CeO2(0.7)-ZnO(0.3) increased with increasing acidity and basicity of the catalysts. Thus, both acidity and basicity of the catalysts played important roles in determining the catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide.

  4. Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over CeO2(X)-ZnO(1-X) nano-catalysts.

    PubMed

    Kang, Ki Hyuk; Joe, Wangrae; Lee, Chang Hoon; Kim, Mieock; Kim, Dong Baek; Jang, Boknam; Song, In Kyu

    2013-12-01

    CeO2(X)-ZnO(1-X) (X = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0) nano-catalysts were prepared by a co-precipitation method with a variation of CeO2 content (X, mol%), and they were applied to the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Successful formation of CeO2(X)-ZnO(1-X) nano-catalysts was well confirmed by XRD analysis. The amount of DMC produced over CeO2(X)-ZnO(1-X) catalysts exhibited a volcano-shaped curve with respect to CeO2 content. Acidity and basicity of CeO2(X)-ZnO(1-X) nano-catalysts were measured by NH3-TPD and CO2-TPD experiments, respectively, to elucidate the effect of acidity and basicity on the catalytic performance in the reaction. It was revealed that the catalytic performance of CeO2(X)-ZnO(1-X) nano-catalysts was closely related to the acidity and basicity of the catalysts. Amount of dimethyl carbonate increased with increasing both acidity and basicity of the catalysts. Among the catalysts tested, CeO2(0.7)-ZnO(0.3) with the largest acidity and basicity showed the best catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide.

  5. Sulfur

    USGS Publications Warehouse

    Apodaca, L.E.

    2012-01-01

    In 2011, elemental sulfur and the byproduct sulfuric acid were produced at 109 operations in 29 states and the U.S. Virgin Islands. Total shipments were valued at about $1.6 billion. Elemental sulfur production was 8.2 Mt (9 million st); Louisiana and Texas accounted for about 53 percent of domestic production.

  6. Fact Sheets and Additional Information Regarding the 2010 Revision to the Primary National Ambient Air Quality Standards (NAAQS) for Sulfur Dioxide

    EPA Pesticide Factsheets

    Find tools for primary standards for Sulfur Dioxide, maps of nonattainment areas, an overview of the proposal, projected nonattainment areas for 2020, and a presentation on the 2011 SO2 primary NAAQS revision.

  7. Relating summer ambient particulate sulfur, sulfur dioxide, and light scattering to gaseous tracer emissions from the MOHAVE Power Project.

    PubMed

    Mirabella, V A; Farber, R J

    2000-05-01

    Project MOHAVE was initiated in 1992 to examine the role of emissions from the 1580 MW coal-fired MOHAVE Power Project (MPP) on haze at the Grand Canyon National Park (GCNP), located about 130 km north-north-east of the power plant. Statistical relationships were analyzed between summertime ambient concentrations of a gaseous perfluorocarbon tracer released from MPP and ambient SO2, particulate sulfur, and light scattering to evaluate whether MPP's emissions could be transported to the GCNP and then impact haze levels there. Spatial analyses indicated that particulate sulfur levels were strongly correlated across the monitoring network, regardless of whether the monitoring stations were upwind or downwind of MPP. This indicates that particulate sulfur levels in this region were influenced by distant regional emission sources. A significant particulate sulfur contribution from a point source such as MPP would result in a non-uniform pattern downwind. There was no suggestion of this in the data. Furthermore, correlations between the MPP tracer and ambient particulate sulfur and light scattering at locations in the park were virtually zero for averaging times ranging from 24 hr to 1 hr. Hour-by-hour MPP tracer levels and light scattering were individually examined, and still no positive correlations were detected. Finally, agreement between tracer and particulate sulfur did not improve as a function of meteorological regime, implying that, even during cloudy monsoon days when more rapid conversion of SO2 to particulate sulfur would be expected, there was no evidence for downwind particulate sulfur impacts. Despite the fact that MPP was a large source of SO2 and tracer, neither time series nor correlation analyses were able to detect any meaningful relationship between MPP's SO2 and tracer emission "signals" to particulate sulfur or light scattering.

  8. The hetero-Diels-Alder addition of sulfur dioxide: the pseudo-chair conformation of a 4,5-dialkylsultine.

    PubMed

    Markovic, Dean; Roversi, Elena; Scoppelliti, Rosario; Vogel, Pierre; Meana, Rubén; Sordo, José A

    2003-10-17

    Even unsubstituted butadiene adds to sulfur dioxide in the hetero-Diels-Alder mode more rapidly than in the chelotropic mode. The sultine can be observed in equilibrium with the diene and the sulfur dioxide only at low temperature and in the presence of CF(3)COOH. Crystals of 4,5-dialkyl-sultine resulting from the SO(2) addition to 1,2-dimethylidenecyclohexane have been obtained at -100 degrees C and analyzed by X-ray diffraction. Quantum chemical calculations have shown that hyperconjugative interactions within the sulfinyl moiety are responsible for the anomeric effects observed in sultines that prefer pseudo-chair conformations with pseudo-axial Sdbond;O bonds.

  9. Temporary Disturbance of Translocation of Assimilates in Douglas Firs Caused by Low Levels of Ozone and Sulfur Dioxide 1

    PubMed Central

    Gorissen, Antonie; van Veen, Johannes A.

    1988-01-01

    Douglas firs (Pseudotsuga menziesii [Mirb.] Franco) are suffering strongly from air pollution in western Europe. We studied the effect of low concentrations of ozone (200 micrograms per cubic meter during 3 days) and sulfur dioxide (53 micrograms per cubic meter during 28 days) on translocation of assimilates in 2 year old Douglas firs. The trees were exposed to the pollutants and afterward transferred to a growth chamber adapted to the use of 14CO2. Root/soil respiration was measured daily. The results showed a significant decrease of the 14CO2 root/soil respiration during the first 1 to 2 weeks after exposure to either ozone or sulfur dioxide. The ultimate level of 14CO2 root/soil respiration did not differ significantly, which suggests a recovery of the exposed trees during the first weeks after exposure. PMID:16666348

  10. Supplement to the Second Addendum (1986) to Air Quality Criteria for Particulate Matter and Sulfur Oxides (1982): Assessment of New Findings on Sulfur Dioxide and Acute Exposure Health Effects in Asthmatic Individuals (1994)

    EPA Science Inventory

    The present Supplement to the Second Addendum (1986) to the document Air Quality Criteria for Particulate Matter and Sulfur Oxides (1982) focuses on evaluation of newly available controlled human exposure studies of acute (a\\1h) sulfur dioxide (SO2) exposure effects on pulmonary ...

  11. Evaluation of the first phase of sulfur dioxide and nitrogen oxides provisions of the 1990 Clean Air Act: a plant-based approach.

    PubMed

    Freedman, Martin; Jaggi, Bikki

    2002-03-01

    Electric power generating plants that use coal were among the key targets of Title IV of the 1990 Clean Air Act. Under the first phase of the act, 110 coal-fired electric power plants were required to reduce their sulfur dioxide emissions by 1995 and nitrogen oxide emissions by 1996. Phase 2 of the act requires even greater reduction of sulfur dioxide emissions by 2000 and nitrogen oxide emissions by 2008. This study examines whether the 107 targeted plants (three plants went off-line) have achieved the desired sulfur dioxide and nitrogen oxide emission levels. The analysis of sulfur dioxide is based on data from 1990, 1995, and 1999. The findings show that although sulfur oxide increased by 3% from 1995 to 1999, it decreased by 45% over the 1990-1999 period at the firm level for the targeted firms. The findings also indicate that the overall reduction in sulfur dioxide was achieved by utilizing low sulfur coal and by purchasing emission allowances. So far as nitrogen oxides are concerned, there has been a reduction of 14% over the 1990-1999 period, of which 7% was achieved during the 1995-1999 period. An evaluation of emissions at the plant level indicates that several plants do not meet the emissions level for sulfur dioxide or nitrogen oxides. These results provide a mixed scorecard for reduction in emissions both for sulfur dioxide and nitrogen oxides. Even though there is reduction in the emissions on an overall basis at the firm level, several plants that have not been able to reduce emissions deserve special attention to meet the goals of the act in reducing emissions.

  12. Role of Endogenous Sulfur Dioxide in Regulating Vascular Structural Remodeling in Hypertension

    PubMed Central

    Chen, Selena; Tang, Chaoshu

    2016-01-01

    Sulfur dioxide (SO2), an emerging gasotransmitter, was discovered to be endogenously generated in the cardiovascular system. Recently, the physiological effects of endogenous SO2 were confirmed. Vascular structural remodeling (VSR), an important pathological change in many cardiovascular diseases, plays a crucial role in the pathogenesis of the diseases. Here, the authors reviewed the research progress of endogenous SO2 in regulating VSR by searching the relevant data from PubMed and Medline. In spontaneously hypertensive rats (SHRs) and pulmonary hypertensive rats, SO2/aspartate aminotransferase (AAT) pathway was significantly altered. SO2 inhibited vascular smooth muscle cell (VSMC) proliferation, promoted apoptosis, inhibited the synthesis of extracellular collagen but promoted its degradation, and enhanced antioxidative capacity, thereby playing a significant role in attenuating VSR. However, the detailed mechanisms needed to be further explored. Further studies in this field would be important for the better understanding of the pathogenesis of systemic hypertension and pulmonary hypertension. Also, clinical trials are needed to demonstrate if SO2 would be a potential therapeutic target in cardiovascular diseases. PMID:27721913

  13. Measurements of Rural Sulfur Dioxide and Particle Sulfate: Analysis of CASTNet Data, 1987 through 1996.

    PubMed

    Baumgardner, Ralph E; Isil, Selma S; Bowser, Jon J; Fitzgerald, Kelley M

    1999-11-01

    The Clean Air Status and Trends Network (CASTNet) was implemented by the U.S. Environmental Protection Agency (EPA) in 1991 in response to Title IX of the Clean Air Amendments of 1990, which mandated the deployment of a national ambient air monitoring network to track progress of the implementation of emission reduction programs in terms of deposition, air quality, and changes to affected ecosystems. CASTNet evolved from the National Dry Deposition Network (NDDN). CASTNet currently consists of 45 sites in the eastern United States and 28 sites in the West. Each site measures sulfur dioxide (SO2), nitric acid (HNO3), particle sulfate (SO4(=)), particle nitrate (NO3(-) ), and ozone. Nineteen sites collect precipitation samples. NDDN/CASTNet uses a uniform set of site-selection criteria which provides the data user with consistent measures to compare each site. These criteria also ensure that, to the extent possible, CASTNet sites are located away from local emission sources. This paper presents an analysis of SO2 and SO4(=) concentration data collected from 1987 through 1996 at rural NDDN/CASTNet sites. Annual and seasonal variability is examined. Gradients of SO2 and SO4(=) are discussed. The variability of the atmospheric mix of SO2 and SO4(=) is explored spatially and seasonally. Data from CASTNet are also compared to SO2 and SO4(=) data from concurrent monitoring studies in rural areas.

  14. Removal of sulfur dioxide from flue gas using the sludge sodium humate.

    PubMed

    Zhao, Yu; Hu, Guoxin

    2013-01-01

    This study shows the ability of sodium humate from alkaline treatment sludge on removing sulfur dioxide (SO2) in the simulated flue gas. Experiments were conducted to examine the effect of various operating parameters, like the inlet SO2 concentration or temperature or O2, on the SO2 absorption efficiency and desulfurization time in a lab-scale bubbling reactor. The sludge sodium humate in the supernatant after alkaline sludge treatment shows great performance in SO2 absorption, and such efficiency can be maintained above 98% with 100 mL of this absorption solution at 298 K (flue gas rate of 0.12 m(3)/h). The highest SO2 absorption by 1.63 g SHA-Na is 0.946 mmol in the process, which is translated to 0.037 g SO2 g(-1) SHA-Na. The experimental results indicate that the inlet SO2 concentration slightly influences the SO2 absorption efficiency and significantly influences the desulfurization time. The pH of the absorption solution should be above 3.5 in this process in order to make an effective desulfurization. The products of this process were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. It can be seen that the desulfurization products mainly contain sludge humic acid sediment, which can be used as fertilizer components.

  15. Smart battery controller for lithium/sulfur dioxide batteries. Technical report, Jan 89-Apr 91

    SciTech Connect

    Atwater, T.; Bard, A.; Testa, B.; Shader, W.

    1992-08-01

    Each year, the U.S. Army purchases millions of lithium sulfur dioxide batteries for use in portable electronics equipment. Because of their superior rate capability and service life over a wide variety of conditions, lithium batteries are the power source of choice for military equipment. There is no convenient method of determining the available energy remaining in partially used lithium batteries; hence, users do not take full advantage of all the available battery energy. Currently, users replace batteries before each mission, which leads to premature disposal, and results in the waste of millions of dollars in battery energy every year. Another problem of the lithium battery is that it is necessary to ensure complete discharge of the cells when the useful life of the battery has been expended, or when a hazardous condition exists; a hazardous condition may result in one or more of the cells venting. The Electronics Technology and Devices Laboratory has developed a working prototype of a smart battery controller (SBC) that addresses these problems.

  16. Sulfur dioxide and ammonium sulfate effects on pulmonary function and bronchial reactivity in human subjects.

    PubMed

    Kulle, T J; Sauder, L R; Shanty, F; Kerr, H D; Farrell, B P; Miller, W R; Milman, J H

    1984-03-01

    The effect of exposures to 1 ppm sulfur dioxide (SO2) and 500 micrograms/m3 respirable ammonium sulfate [(NH4)2SO4] was studied in 20 nonsmoking subjects to determine if a response can be measured at these atmospheric levels and if the response is additive or synergistic. Four-hour separate and combined exposures were employed. Each subject acted as his or her own control and performed two light-to-moderate exercise stints (612 kg-m/min) for 15 minutes on each day's confinement in the environmental chamber. Pulmonary function tests (body plethysmography and spirometry) and bronchial reactivity to methacholine were performed to assess the response of these exposures. No significant changes in pulmonary function or bronchial reactivity were observed in the individual exposures [(NH4)2SO4 or SO2], the combined exposure [(NH4)2SO4 and SO2], or 24 hours post-exposure. This study design and the observed results did not demonstrate any readily apparent risk to healthy subjects with these exposures. Since no significant changes were measured, it was not possible to conclude if these two pollutants in combination produce an additive or synergistic response.

  17. Removal of Sulfur Dioxide from Flue Gas Using the Sludge Sodium Humate

    PubMed Central

    Hu, Guoxin

    2013-01-01

    This study shows the ability of sodium humate from alkaline treatment sludge on removing sulfur dioxide (SO2) in the simulated flue gas. Experiments were conducted to examine the effect of various operating parameters, like the inlet SO2 concentration or temperature or O2, on the SO2 absorption efficiency and desulfurization time in a lab-scale bubbling reactor. The sludge sodium humate in the supernatant after alkaline sludge treatment shows great performance in SO2 absorption, and such efficiency can be maintained above 98% with 100 mL of this absorption solution at 298 K (flue gas rate of 0.12 m3/h). The highest SO2 absorption by 1.63 g SHA-Na is 0.946 mmol in the process, which is translated to 0.037 g SO2 g−1 SHA-Na. The experimental results indicate that the inlet SO2 concentration slightly influences the SO2 absorption efficiency and significantly influences the desulfurization time. The pH of the absorption solution should be above 3.5 in this process in order to make an effective desulfurization. The products of this process were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. It can be seen that the desulfurization products mainly contain sludge humic acid sediment, which can be used as fertilizer components. PMID:24453875

  18. Sulfur Dioxide Emission Rates from Kilauea Volcano, Hawai`i, an Update: 2002-2006

    USGS Publications Warehouse

    Elias, Tamar; Sutton, A.J.

    2007-01-01

    Introduction Sulfur dioxide (SO2) emission rates from Kilauea Volcano were first measured by Stoiber and Malone (1975) and have been measured on a regular basis since 1979 (Greenland and others, 1985; Casadevall and others, 1987; Elias and others, 1998; Sutton and others, 2001, Elias and Sutton, 2002, Sutton and others, 2003). Compilations of SO2 emission-rate and wind-vector data from 1979 through 2001 are available on the web. (Elias and others, 1998 and 2002). This report updates the database through 2006, and documents the changes in data collection and processing that have occurred during the interval 2002-2006. During the period covered by this report, Kilauea continued to release SO2 gas predominantly from its summit caldera and east rift zone (ERZ) (Elias and others, 1998; Sutton and others, 2001, Elias and others, 2002, Sutton and others, 2003). These two distinct sources are always measured independently (fig.1). Sulphur Banks is a minor source of SO2 and does not contribute significantly to the total emissions for Kilauea (Stoiber and Malone, 1975). From 1979 until 2003, summit and east rift zone emission rates were derived using vehicle- and tripod- based Correlation Spectrometry (COSPEC) measurements. In late 2003, we began to augment traditional COSPEC measurements with data from one of the new generation of miniature spectrometer systems, the FLYSPEC (Horton and others, 2006; Elias and others, 2006, Williams-Jones and others, 2006).

  19. The pollution status of sulfur dioxide in major urban areas of Korea between 1989 and 2010

    NASA Astrophysics Data System (ADS)

    Ray, Sharmila; Kim, Ki-Hyun

    2014-10-01

    The pollution status of sulfur dioxide was analyzed using the datasets collected from seven major cities in Korea for the period of 1989-2010. Although there were moderate differences in SO2 levels between the cities, the temporal trends were seen to be rather distinctive between seasons or across the years. The SO2 levels consistently exhibited relative dominance during winter due to the combined effects of domestic heating and meteorological conditions. In contrast, the annual datasets underwent an abrupt decrease until the late 90s. As such, if the data are divided into two periods I (1989-1999) and II (2000-2010), the mean values were reduced considerably from a few tens of ppb (period I) to a few ppb levels (period II). This notable change is suspected to reflect the effect of gradual shift in fuel consumption patterns (e.g., from conventional fuels to cleaner renewal sources of energy). The results of the principal component analysis (PCA) indicated that emissions of SO2 are affected by the incomplete combustion of fossil fuels. According to the health risk assessment, the SO2 exposure to infants and adults should have decreased significantly from period I to period II (e.g., by 5-7 times).

  20. Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 Precursor: algorithm theoretical basis

    NASA Astrophysics Data System (ADS)

    Theys, Nicolas; De Smedt, Isabelle; Yu, Huan; Danckaert, Thomas; van Gent, Jeroen; Hörmann, Christoph; Wagner, Thomas; Hedelt, Pascal; Bauer, Heiko; Romahn, Fabian; Pedergnana, Mattia; Loyola, Diego; Van Roozendael, Michel

    2017-01-01

    The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Copernicus Sentinel-5 Precursor (S-5P) platform will measure ultraviolet earthshine radiances at high spectral and improved spatial resolution (pixel size of 7 km × 3.5 km at nadir) compared to its predecessors OMI and GOME-2. This paper presents the sulfur dioxide (SO2) vertical column retrieval algorithm implemented in the S-5P operational processor UPAS (Universal Processor for UV/VIS Atmospheric Spectrometers) and comprehensively describes its various retrieval steps. The spectral fitting is performed using the differential optical absorption spectroscopy (DOAS) method including multiple fitting windows to cope with the large range of atmospheric SO2 columns encountered. It is followed by a slant column background correction scheme to reduce possible biases or across-track-dependent artifacts in the data. The SO2 vertical columns are obtained by applying air mass factors (AMFs) calculated for a set of representative a priori profiles and accounting for various parameters influencing the retrieval sensitivity to SO2. Finally, the algorithm includes an error analysis module which is fully described here. We also discuss verification results (as part of the algorithm development) and future validation needs of the TROPOMI SO2 algorithm.

  1. Extractive spectrophotometric determination of trace amounts of sulfur dioxide in air

    SciTech Connect

    Kumar, B.S.M.; Balasubramanian, N.

    1992-11-01

    A sensitive spectrophotometric method was developed for the determination of trace amounts of sulfur dioxide (SO{sub 2}) in air after SO{sub 2} has been fixed in a buffered formaldehyde solution. The reaction of iodate with the fixed SO{sub 2} in the presence of an acid an an excess of chloride leads to the formation of ICI{sub 2} ions. The resulting ICI{sub 2} species forms an ion-pair with pararosaniline cation; the product is extracted into isopentyl alcohol and measured spectrophotometrically at 560 nm. The color system obeys Beer`s law over the range 0-40 {mu}g SO{sub 2}. The color is stable for 72 h from the time of extraction. The molar absorption coefficient of the color system is 4.5 {times} 10{sup 3}Lmol{sup {minus}1}cm{sup {minus}1}. The coefficient of variation is 3.6% for 10 determinations at 20 {mu}g SO{sub 2}. The effect of interfering gases on the determination is discussed. The method was applied to the determination of SO{sub 2} at low concentrations, and the results obtained were compared with the widely used West and Gaeke method. The method can be used to determine as low as 2 {mu}g SO{sub 2}. 12 refs., 2 figs., 2 tabs.

  2. Interspecific differences in the effects of sulfur dioxide on angiosperm sexual reproduction

    SciTech Connect

    DuBay, D.T.

    1981-01-01

    The major objective of this study was to test the potential direct effects of SO/sub 2/ on sexual reproduction in several plant species with different reproductive structures and processes. In marked contrast to the sensitivity to SO/sub 2/ reported by other investigators for pollen germination and pollen tube growth in vitro, and recorded for Lepidium virginicum in this study, 4 of 5 species tested were tolerant with respect to fruit and seed set after exposure to 0.6 ppm SO/sub 2/ for 8 hours during flowering. Seed set in the one sensitive species, Geranium carolinianum, was reduced 40% from the control after exposure to SO/sub 2/, but only when relative humidity (RH) was at or above 90%. The effect of SO/sub 2/ on Lepidium pollen germination in vitro was greater than the effect of SO/sub 2/ on sexual reproduction in vivo. Sulfur dioxide reduced pollen germination in vitro 94% from the control. The same concentration of SO/sub 2/, at 90% Rh, reduced pollen germination in vivo 50% from the control, but had no effect on seed set. Predictions of effects of SO/sub 2/ on reproduction in vivo based on effects of SO/sub 2/ on pollen germination and pollen tube growth in vitro are not valid.

  3. Influence of relative humidity on direct sulfur dioxide damage to plant sexual reproduction

    SciTech Connect

    Murdy, W.H.; Ragsdale, H.L.

    1980-07-01

    Results of in vivo experiments with Geranium carolinianum L. showed that sulfur dioxide (SO/sub 2/) damaged sexual reproduction (in terms of decreased seed set) when relative humdity (RH) was 80% or above but not when RH was 70% or below. Relative humidity alone, if 80% or higher, damaged sexual reproduction; the addition of SO/sub 2/ increased the damage. A high SO/sub 2/ dosage of 1.5 ppM/7 hours at 50% RH caused leaf injury, but decreased percent seed set <5%, whereas a low SO/sub 2/ dosage of 0.2 ppM/7 hours at 90% RH decreased percent seed set by 32% without visible leaf injury. At an SO/sub 2/ dosage of 0.4 ppM/7 hours administered during anthesis, percent seed set was virtually identical with the control at 70% RH, 35% below the control at 80% RH, and 68% below the control at 90% RH.

  4. Compact, DC-electrical biased sulfur dioxide sensing elements for use at high temperatures

    SciTech Connect

    West, David L; Montgomery, Fred C; Armstrong, Beth L

    2012-01-01

    Fabrication and operation of sensing elements for the detection of sulfur dioxide (SO_2) at high temperature (800 900 ^oC) is reported. The sensing elements consisted of three (two oxide and one Pt) electrodes on yttria-stabilized zirconia substrates. To operate the elements, a DC current (typically about 0.1 mA) is driven between two of the electrodes and the voltage between one of these electrodes and the third electrode is used as the sensing signal. These sensing elements respond very strongly to SO_2, for example 2 ppm_V of SO_2 in a background of 7 vol% O_2, balance N_2 was found to produce a >10% change in the sensing signal, which could be easily detected. Sensing elements fabricated to be nominally identical were shown to yield qualitatively identical sensing behavior, and temperature, oxygen content, and flow were all found to strongly impact sensing performance. The impact of interferents, such as NO_x and CO, was evaluated and found to be relatively small in comparison to the SO_2 response. The sensing response, over a 1 month period, was very stable, with the ratio of the average change in sensing signal over one day to the average sensing signal magnitude being about 0.1%.

  5. Purification and properties of Escherichia coli dimethyl sulfoxide reductase, an iron-sulfur molybdoenzyme with broad substrate specificity.

    PubMed

    Weiner, J H; MacIsaac, D P; Bishop, R E; Bilous, P T

    1988-04-01

    Dimethyl sulfoxide reductase, a terminal electron transfer enzyme, was purified from anaerobically grown Escherichia coli harboring a plasmid which codes for dimethyl sulfoxide reductase. The enzyme was purified to greater than 90% homogeneity from cell envelopes by a three-step purification procedure involving extraction with the detergent Triton X-100, chromatofocusing, and DEAE ion-exchange chromatography. The purified enzyme was composed of three subunits with molecular weights of 82,600, 23,600, and 22,700 as identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native molecular weight was determined by gel electrophoresis to be 155,000. The purified enzyme contained 7.5 atoms of iron and 0.34 atom of molybdenum per mol of enzyme. The presence of molybdopterin cofactor in dimethyl sulfoxide reductase was identified by reconstitution of cofactor-deficient NADPH nitrate reductase activity from Neurospora crassa nit-I mutant and by UV absorption and fluorescence emission spectra. The enzyme displayed a very broad substrate specificity, reducing various N-oxide and sulfoxide compounds as well as chlorate and hydroxylamine.

  6. Dimethyl disulfide (DMDS) and dimethyl sulfide (DMS) emissions from biomass burning in Australia

    NASA Astrophysics Data System (ADS)

    Meinardi, Simone; Simpson, Isobel J.; Blake, Nicola J.; Blake, Donald R.; Rowland, F. Sherwood

    2003-05-01

    We identify dimethyl disulfide (DMDS) as the major reduced sulfur-containing gas emitted from bushfires in Australia's Northern Territory. Like dimethyl sulfide (DMS), DMDS is oxidized in the atmosphere to sulfur dioxide (SO2) and methane sulfonic acid (MSA), which are intermediates in the formation of sulfuric acid (H2SO4). The mixing ratios of DMDS and DMS were the highest we have ever detected, with maximum values of 113 and 35 ppbv, respectively, whereas background values were below the detection limit (10 pptv). Molar emission ratios relative to carbon monoxide (CO) were [1.6 +/- 0.1] × 10-5 and [6.2 +/- 0.3] × 10-6, for DMDS and DMS respectively, while molar emission ratios relative to carbon dioxide (CO2) were [4.7 +/- 0.4] × 10-6 and [1.4 +/- 0.4] × 10-7, respectively. Assuming these observations are representative of biomass burning, we estimate that biomass burning could yield up to 175 Gg/yr of DMDS (119 Gg S/yr) and 13 Gg/yr of DMS.

  7. Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions

    NASA Astrophysics Data System (ADS)

    Schmidt, Anja; Witham, Claire S.; Theys, Nicolas; Richards, Nigel A. D.; Thordarson, Thorvaldur; Szpek, Kate; Feng, Wuhu; Hort, Matthew C.; Woolley, Alan M.; Jones, Andrew R.; Redington, Alison L.; Johnson, Ben T.; Hayward, Chris L.; Carslaw, Kenneth S.

    2014-12-01

    Volcanic eruptions take place in Iceland about once every 3 to 5 years. Ash emissions from these eruptions can cause significant disruption to air traffic over Europe and the North Atlantic as is evident from the 2010 eruption of Eyjafjallajökull. Sulfur dioxide (SO2) is also emitted by volcanoes, but there are no criteria to define when airspace is considered hazardous or nonhazardous. However, SO2 is a well-known ground-level pollutant that can have detrimental effects on human health. We have used the United Kingdom Met Office's NAME (Numerical Atmospheric-dispersion Modelling Environment) model to simulate SO2 mass concentrations that could occur in European and North Atlantic airspace for a range of hypothetical explosive eruptions in Iceland with a probability to occur about once every 3 to 5 years. Model performance was evaluated for the 2010 Eyjafjallajökull summit eruption against SO2 vertical column density retrievals from the Ozone Monitoring Instrument and in situ measurements from the United Kingdom Facility for Airborne Atmospheric Measurements research aircraft. We show that at no time during the 2010 Eyjafjallajökull eruption did SO2 mass concentrations at flight altitudes violate European air quality standards. In contrast, during a hypothetical short-duration explosive eruption similar to Hekla in 2000 (emitting 0.2 Tg of SO2 within 2 h, or an average SO2 release rate 250 times that of Eyjafjallajökull 2010), simulated SO2 concentrations are greater than 1063 µg/m3 for about 48 h in a small area of European and North Atlantic airspace. By calculating the occurrence of aircraft encounters with the volcanic plume of a short-duration eruption, we show that a 15 min or longer exposure of aircraft and passengers to concentrations ≥500 µg/m3 has a probability of about 0.1%. Although exposure of humans to such concentrations may lead to irritations to the eyes, nose and, throat and cause increased airway resistance even in healthy individuals

  8. Lagrangian transport simulations of volcanic sulfur dioxide emissions: Impact of meteorological data products

    NASA Astrophysics Data System (ADS)

    Hoffmann, L.; Rößler, T.; Griessbach, S.; Heng, Y.; Stein, O.

    2016-05-01

    Sulfur dioxide (SO2) emissions from strong volcanic eruptions are an important natural cause for climate variations. We applied our new Lagrangian transport model Massive-Parallel Trajectory Calculations to perform simulations for three case studies of volcanic eruption events. The case studies cover the eruptions of Grímsvötn, Iceland, Puyehue-Cordón Caulle, Chile, and Nabro, Eritrea, in May and June 2011. We used SO2 observations of the Atmospheric Infrared Sounder (AIRS/Aqua) and a backward trajectory approach to initialize the simulations. Besides validation of the new model, the main goal of our study was a comparison of simulations with different meteorological data products. We considered three reanalyses, i.e., ERA-Interim, Modern-Era Retrospective Analysis for Research and Applications (MERRA), and National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) Reanalysis Project as well as the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis. Qualitatively, the SO2 distributions from the simulations compare well not only with the AIRS data but also with Cloud-Aerosol Lidar with Orthogonal Polarization and Michelson Interferometer for Passive Atmospheric Sounding aerosol observations. Transport deviations and the critical success index (CSI) are analyzed to evaluate the simulations quantitatively. During the first 5 or 10 days after the eruptions we found the best performance for the ECMWF analysis (CSI range of 0.25-0.31), followed by ERA-Interim (0.25-0.29), MERRA (0.23-0.27), and NCAR/NCEP (0.21-0.23). High temporal and spatial resolution of the meteorological data does lead to improved performance of Lagrangian transport simulations of volcanic emissions in the upper troposphere and lower stratosphere.

  9. Involvement of NO and ROS in sulfur dioxide induced guard cells apoptosis in Tagetes erecta.

    PubMed

    Wei, Aili; Fu, Baocun; Wang, Yunshan; Zhai, Xiaoyan; Xin, Xiaojing; Zhang, Chao; Cao, Dongmei; Zhang, Xiaobing

    2015-04-01

    Both nitric oxide (NO) and reactive oxygen species (ROS) are very important signal molecules, but the roles they play in signal transduction of sulfur dioxide (SO2) induced toxicities on ornamental plants is not clear. In this study, the functions of NO and ROS in SO2-induced death of lower epidermal guard cells in ornamental plant Tagetes erecta were investigated. The results showed that SO2 derivatives (0.4-4.0 mmol L(-1) of final concentrations) could reduce the guard cells' viability and increase their death rates in a dose-dependent manner. Meanwhile, the significant increase of cellular NO, ROS, and Ca(2+) levels (P<0.05) and typical apoptosis features including nucleus condensation, nucleus break and nucleus fragmentation were observed. However, exposure to 2.0 mmol L(-1) of SO2 derivatives combined with either NO antagonists (NO scavenger c-PTIO; nitrate reductase inhibitor NaN3; NO synthase inhibitor L-NAME), ROS scavenger (AsA or CAT) or Ca(2+) antagonists (Ca(2+) scavenger EGTA or plasma membrane Ca(2+) channel blocker LaCl3) can effectively block SO2-induced guard cells death and corresponding increase of NO, ROS and Ca(2+) levels. In addition, addition of L-NAME or AsA in 2.0 mmol L(-1) of SO2 derivatives led to significant decrease in the levels of NO, ROS and Ca(2+), whereas addition of LaCl3 in them just resulted in the decrease of Ca(2+) levels, hardly making effects on NO and ROS levels. It was concluded that NO and ROS were involved in the apoptosis induced by SO2 in T. erecta, which regulated the cell apoptosis at the upstream of Ca(2+).

  10. Effects of sulfur dioxide and nitric oxide on mercury oxidation and reduction under homogeneous conditions

    SciTech Connect

    Yongxin Zhao; Michael D. Mann; Edwin S. Olson; John H. Pavlish; Grant E. Dunham

    2006-05-15

    This paper is particularly related to elemental mercury (Hg{sup 0}) oxidation and divalent mercury (Hg{sup 2+} reduction under simulated flue gas conditions in the presence of nitric oxide (NO) and sulfur dioxide (SO{sub 2}). As a powerful oxidant and chlorinating reagent, Cl{sub 2} has the potential for Hg oxidation. However, the detailed mechanism for the interactions, especially among chlorine (Cl)-containing species, SO{sub 2}, NO, as well as H{sub 2}O, remains ambiguous. Research described in this paper therefore focused on the impacts of SO{sub 2} and NO on Hg{sup 0} oxidation and Hg{sup 2+} reduction with the intent of unraveling unrecognized interactions among Cl species, SO{sub 2}, and NO most importantly in the presence of H{sub 2}O. The experimental results demonstrated that SO{sub 2} and NO had pronounced inhibitory effects on Hg{sup 0} oxidation at high temperatures when H{sub 2}O was also present in the gas blend. Such a demonstration was further confirmed by the reduction of Hg{sup 2+} back into its elemental form. Data revealed that SO{sub 2} and NO were capable of promoting homogeneous reduction of Hg{sup 2+} to Hg{sup 0} with H{sub 2}O being present. However, the above inhibition or promotion disappeared under homogeneous conditions when H{sub 2}O was removed from the gas blend. 23 refs., 8 figs.

  11. Trends and effectiveness of emission control of sulfur dioxide in China: a satellite perspective

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Wang, S.; Martin, R. V.; He, K.; Richter, A.; Krotkov, N. A.; Philip, S.; Wang, T.

    2011-12-01

    The combination of two satellite instruments (OMI and SCIAMACHY) provides high quality space-borne measurements for the trend analysis of sulfur dioxide (SO2) column density. An improved product of SO2 retrievals from these two satellites was derived with the consistent local air mass factor (AMF) algorithm which converts the line-of-sight 'slant' columns to vertical columns for the period of 2003-2010. The local AMF was calculated using altitude-dependent scattering weights computed from a radiative transfer model (LIDORT) with state-of-art a priori parameters, weighted by relative vertical SO2 profiles (shape factor) determined locally with a global atmospheric chemical model (GEOS-Chem). The derived vertical columns and modeled vertical SO2 profiles were compared to measurements from aircraft campaigns in China. Trends of the long-term SO2 columns showed discrepancies between different regions in China: SO2 columns increased fast during 2003-2007 and then decreased by ~30% in 2010 in North China Plain; continuous increase of SO2 columns were found in Southwest of China with only a slight decrease in 2008 due to the global economic recession. The trends of SO2 columns were further compared to a unit-based power plant emission inventory to evaluate the effectiveness of power plant SO2 emission reductions related to the wide-spread installations of flue-gas desulfurization (FGD) devices since 2005 in China. The combinations of NO2 and SO2 measurements were used to examine the operation and efficiency of the FGD devices in power plants.

  12. Hydrogen peroxide maintains the heterogeneous reaction of sulfur dioxide on mineral dust proxy particles

    NASA Astrophysics Data System (ADS)

    Huang, Liubin; Zhao, Yue; Li, Huan; Chen, Zhongming

    2016-09-01

    The heterogeneous oxidation of sulfur dioxide (SO2) on α-Al2O3 particles was investigated using a flow reactor coupled with a transmission-Fourier transform infrared (T-FTIR) spectrometer at different relative humidities (RH) in the absence or presence of hydrogen peroxide (H2O2), with an emphasis on the saturation coverage of SO2 and the timescale on which the reaction reaches saturation. It is found that the saturation coverage of SO2 in the absence of H2O2 increases with rising RH due to the hydrolysis of SO2 by surface adsorbed water. However, the reaction ultimately reaches saturation since the produced sulfite/bisulfite cannot be further converted to sulfate/bisulfate in the absence of oxidants. In addition, the presence of H2O2 can significantly increase the saturation coverage of SO2 by efficiently oxidizing sulfite/bisulfite to sulfate/bisulfate. Under humid conditions, adsorbed water facilitates the hydrolysis of SO2 and mitigates the increase of surface acidity, which can inhibit the hydrolysis of SO2. Hence, in the presence of H2O2, the saturation coverage of SO2 as well as the time of reaction reaching saturation increases with rising RH and the surface is not saturated on the timescale of the experiments (40 h) at 60% RH. Furthermore, the increase of saturation coverage of SO2 in the presence of H2O2 was observed on chemically inactive SiO2 particles, indicating that the hydrolysis of SO2 and subsequent oxidation by H2O2 likely occurs on other types of particles. Our findings are of importance for understanding the role of water vapor and trace gases (e.g., H2O2) in the heterogeneous reaction of SO2 in the atmosphere.

  13. Imaging DOAS detection of primary formaldehyde and sulfur dioxide emissions from petrochemical flares

    NASA Astrophysics Data System (ADS)

    Pikelnaya, Olga; Flynn, James H.; Tsai, Catalina; Stutz, Jochen

    2013-08-01

    areas with a high number of petrochemical facilities are often struggling to meet current and future air quality standards. The Houston-Galveston area, for example, continues to be in noncompliance with the U.S. federal air quality standard of ozone, despite significant progress in mitigating air pollution. In recent years, the magnitude and role of primary emissions of ozone-forming chemicals, and in particular formaldehyde, from flares in petrochemical facilities have been discussed as a potential factor contributing to ozone formation. However, no direct observations of flare emissions of formaldehyde have thus far been reported. Here we present observations of formaldehyde and sulfur dioxide emissions from petrochemical flares in the Houston-Galveston area during the 2009 Formaldehyde and Olefin from Large Industrial Sources campaign using a new imaging differential optical absorption spectrometer (I-DOAS). Formaldehyde emissions from burning flares were observed directly above the flare stack and ranged from 0.2 to 8.5 kg/h. Unlit flares were found not to emit formaldehyde. SO2 emission rates from a burning acid gas flare ranged between 2 and 4 kg/h. None of the sampled flares coemitted HCHO and SO2. Comparison of the emission fluxes measured by the I-DOAS instrument with those from emission inventories and with fluxes calculated from plumes detected by the long-path DOAS over downtown Houston shows that the flares observed by the I-DOAS were relatively small. While burning flares clearly emit HCHO, a larger observational database is needed to assess the importance of flare emissions for ozone formation.

  14. Plume Tracker: Interactive mapping of volcanic sulfur dioxide emissions with high-performance radiative transfer modeling

    NASA Astrophysics Data System (ADS)

    Realmuto, Vincent J.; Berk, Alexander

    2016-11-01

    We describe the development of Plume Tracker, an interactive toolkit for the analysis of multispectral thermal infrared observations of volcanic plumes and clouds. Plume Tracker is the successor to MAP_SO2, and together these flexible and comprehensive tools have enabled investigators to map sulfur dioxide (SO2) emissions from a number of volcanoes with TIR data from a variety of airborne and satellite instruments. Our objective for the development of Plume Tracker was to improve the computational performance of the retrieval procedures while retaining the accuracy of the retrievals. We have achieved a 300 × improvement in the benchmark performance of the retrieval procedures through the introduction of innovative data binning and signal reconstruction strategies, and improved the accuracy of the retrievals with a new method for evaluating the misfit between model and observed radiance spectra. We evaluated the accuracy of Plume Tracker retrievals with case studies based on MODIS and AIRS data acquired over Sarychev Peak Volcano, and ASTER data acquired over Kilauea and Turrialba Volcanoes. In the Sarychev Peak study, the AIRS-based estimate of total SO2 mass was 40% lower than the MODIS-based estimate. This result was consistent with a 45% reduction in the AIRS-based estimate of plume area relative to the corresponding MODIS-based estimate. In addition, we found that our AIRS-based estimate agreed with an independent estimate, based on a competing retrieval technique, within a margin of ± 20%. In the Kilauea study, the ASTER-based concentration estimates from 21 May 2012 were within ± 50% of concurrent ground-level concentration measurements. In the Turrialba study, the ASTER-based concentration estimates on 21 January 2012 were in exact agreement with SO2 concentrations measured at plume altitude on 1 February 2012.

  15. On the Ratio of Sulfur Dioxide to Nitrogen Oxides as an Indicator of Air Pollution Sources.

    NASA Astrophysics Data System (ADS)

    Nirel, Ronit; Dayan, Uri

    2001-07-01

    The ratio of sulfur dioxide to nitrogen oxides (RSN = SO2/NOx) is one indicator of air pollution sources. The role of this ratio in source attribution is illustrated here for the Ashdod area, located in the southern coastal plain of Israel. The main sources of pollution in the area are the tall stacks of the Eshkol power plant, the stacks of oil refineries, and areal sources (stationary and mobile). The factors that affect RSN are studied using four regression models: a binary regression tree in original scale, a tree in logarithmic scale, a data partition produced by a combination of the two trees, and a linear regression model. All models have similar relative prediction error, with the combined partition best highlighting the sources of variability in RSN: (a) very low values (interquartile range of [0.12, 0.48]) are associated with traffic, (b) low values ([0.43, 1.00]) are attributed to the power plant and to daytime emissions of local industry, (c) medium values ([0.74, 1.90]) are associated with local industry emissions during cooler hours of the day and refinery emissions mainly on slow wind episodes, and (d) high values ([1.07, 4.30]) are attributed to refinery emissions during moderate to fast wind episodes. Analysis of the number of episodes of increased concentrations indicates that, during 1996 and 1997, about 42% of SO2 episodes are attributable to the power plant and 33% to the refineries. Increased-NOx episodes are mainly contributed by traffic (91%) and power plant (4.5%) emissions.

  16. Absorption removal of sulfur dioxide by falling water droplets in the presence of inert solid particles

    NASA Astrophysics Data System (ADS)

    Liu, I.-Hung; Chang, Ching-Yuan; Liu, Su-Chin; Chang, I.-Cheng; Shih, Shin-Min

    An experimental analysis of the absorption removal of sulfur dioxide by the free falling water droplets containing the inert solid particles is presented. The wheat flour powder is introduced as the inert solid particles. Tests with and without the flour powder in the water droplets are examined. The mass fluxes and mass transfer coefficients of SO 2 for the cases with and without the flour powder are compared to elucidate the effects of the inert solid particles contained in the water droplets on the gas absorption. The results indicate aignificant difference between the two cases for the concentrations of the flour powder in the absorbent droplets ( Cs) within the ranges of the experimental conditions, namely 0.1 to 10 wt% flour powder in the absorbent droplets. In general, the inert solid particles of the flour powder as the impurities in the water droplets tend to decrease the SO 2 absorption rate for the experimental absorption system under investigation. Various values of Cs cause various levels of the interfacial resistance and affect the gas absorption rate. The interfacial resistance is recognized by introducing an interfacial mass transfer coefficient ks with its reciprocal being proportional to the magnitude of the interfacial resistance. The values of 1/ ks may be computed by the use of the equation 1/ ks=(1/ KOLs-1/ KOL), where KOLs and KOL are the overall liquid-phase mass transfer coefficients with and without the inert solid particles, respectively. The values of ks with Cs of 0.1 to 10 wt% are about 0.295-0.032 cms -1 for absorbing 1000-3000 ppmv SO 2 with the water droplets. This kind of information is useful for the SO 2 removal and the information of acid rain that the impurities of the inert solid particles contaminate the water droplets.

  17. Endogenous sulfur dioxide is a novel adipocyte-derived inflammatory inhibitor

    PubMed Central

    Zhang, Heng; Huang, Yaqian; Bu, Dingfang; Chen, Selena; Tang, Chaoshu; Wang, Guang; Du, Junbao; Jin, Hongfang

    2016-01-01

    The present study was designed to determine whether sulfur dioxide (SO2) could be endogenously produced in adipocyte and served as a novel adipocyte-derived inflammatory inhibitor. SO2 was detected in adipose tissue using high-performance liquid chromatography with fluorescence detection. SO2 synthase aspartate aminotransferase (AAT1 and AAT2) mRNA and protein expressions in adipose tissues were measured. For in vitro study, 3T3-L1 adipocytes were cultured, infected with adenovirus carrying AAT1 gene or lentivirus carrying shRNA to AAT1, and then treated with tumor necrosis factor-α (TNF-α). We found that endogenous SO2/AAT pathway existed in adipose tissues including perivascular, perirenal, epididymal, subcutaneous and brown adipose tissue. AAT1 overexpression significantly increased SO2 production and inhibited TNF-α-induced inflammatory factors, monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8) secretion from 3T3-L1 adipocytes. By contrast, AAT1 knockdown decreased SO2 production and exacerbated TNF-α-stimulated MCP-1 and IL-8 secretion. Mechanistically, AAT1 overexpression attenuated TNF-α-induced IκBα phosphorylation and degradation, and nuclear factor-κB (NF-κB) p65 phosphorylation, while AAT1 knockdown aggravated TNF-α-activated NF-κB pathway, which was blocked by SO2. NF-κB inhibitors, PDTC or Bay 11-7082, abolished excessive p65 phosphorylation and adipocyte inflammation induced by AAT1 knockdown. This is the first report to suggest that endogenous SO2 is a novel adipocyte-derived inflammatory inhibitor. PMID:27246393

  18. Evaluation of GEOS-5 Sulfur Dioxide Simulations During the Frostburg, MD 2010 Field Campaign.

    NASA Technical Reports Server (NTRS)

    Buchard, V.; Da Silva, A. M.; Colarco, P.; Krotkov, N.; Dickerson, R. R.; Stehr, J. W.; Mount, G.; Spenei, E.; Arkinson, H. L.; He, H.

    2013-01-01

    Sulfur dioxide (SO2) is a major atmospheric pollutant with a strong anthropogenic component mostly produced by the combustion of fossil fuel and other industrial activities. As a precursor of sulfate aerosols that affect climate, air quality, and human health, this gas needs to be monitored on a global scale. Global climate and chemistry models including aerosol processes along with their radiative effects are important tools for climate and air quality research. Validation of these models against in-situ and satellite measurements is essential to ascertain the credibility of these models and to guide model improvements. In this study the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) module running on-line inside the Goddard Earth Observing System version 5 (GEOS-5) model is used to simulate aerosol and SO2 concentrations. Data taken in November 2010 over Frostburg, Maryland during an SO2 field campaign involving ground instrumentation and aircraft are used to evaluate GEOS-5 simulated SO2 concentrations. Preliminary data analysis indicated the model overestimated surface SO2 concentration, which motivated the examination of mixing processes in the model and the specification of SO2 anthropogenic emission rates. As a result of this analysis, a revision of anthropogenic emission inventories in GEOS-5 was implemented, and the vertical placement of SO2 sources was updated. Results show that these revisions improve the model agreement with observations locally and in regions outside the area of this field campaign. In particular, we use the ground-based measurements collected by the United States Environmental Protection Agency (US EPA) for the year 2010 to evaluate the revised model simulations over North America.

  19. Advances in the Validation of Satellite-Based Maps of Volcanic Sulfur Dioxide Plumes

    NASA Astrophysics Data System (ADS)

    Realmuto, V. J.; Berk, A.; Acharya, P. K.; Kennett, R.

    2013-12-01

    The monitoring of volcanic gas emissions with gas cameras, spectrometer arrays, tethersondes, and UAVs presents new opportunities for the validation of satellite-based retrievals of gas concentrations. Gas cameras and spectrometer arrays provide instantaneous observations of the gas burden, or concentration along an optical path, over broad sections of a plume, similar to the observations acquired by nadir-viewing satellites. Tethersondes and UAVs provide us with direct measurements of the vertical profiles of gas concentrations within plumes. This presentation will focus on our current efforts to validate ASTER-based maps of sulfur dioxide plumes at Turrialba and Kilauea Volcanoes (located in Costa Rica and Hawaii, respectively). These volcanoes, which are the subjects of comprehensive monitoring programs, are challenging targets for thermal infrared (TIR) remote sensing due the warm and humid atmospheric conditions. The high spatial resolution of ASTER in the TIR (90 meters) allows us to map the plumes back to their source vents, but also requires us to pay close attention to the temperature and emissivity of the surfaces beneath the plumes. Our knowledge of the surface and atmospheric conditions is never perfect, and we employ interactive mapping techniques that allow us to evaluate the impact of these uncertainties on our estimates of plume composition. To accomplish this interactive mapping we have developed the Plume Tracker tool kit, which integrates retrieval procedures, visualization tools, and a customized version of the MODTRAN radiative transfer (RT) model under a single graphics user interface (GUI). We are in the process of porting the RT calculations to graphics processing units (GPUs) with the goal of achieving a 100-fold increase in the speed of computation relative to conventional CPU-based processing. We will report on our progress with this evolution of Plume Tracker. Portions of this research were conducted at the Jet Propulsion Laboratory

  20. The vasorelaxant effect and its mechanisms of sodium bisulfite as a sulfur dioxide donor.

    PubMed

    Meng, Ziqiang; Yang, Zhenhua; Li, Junling; Zhang, Quanxi

    2012-10-01

    To study the biological role of bisulfite on vascular contractility and its underlying cellular and molecular mechanisms, to explore whether bisulfite can be used as a sulfur dioxide (SO(2)) donor in the biological experiments, the vasorelaxant effects of sodium bisulfite and sodium sulfite on isolated rat thoracic aortic rings were compared; and the signal transduction pathways and the ion channels involved in the vascular effects of bisulfite were investigated. The results show that: (1) Sodium bisulfite relaxed rat thoracic aortic rings in a concentration-dependent manner (from 100 to 4000 μM); however, sodium sulfite at 500 and 1000 μM caused vasoconstriction, and only at higher concentrations (from 2000 to 4000 μM) it caused vasorelaxation in a concentration-dependent manner. (2) The vasorelaxation caused by the bisulfite at low concentrations (≤500 μM) was endothelium-dependent, but at high concentrations (≥1000 μM) it was endothelium-independent. (3) The vasorelaxation by the bisulfite at the low concentrations was partially mediated by the cGMP pathway and the vasorelaxation was related to big-conductance Ca(2+)-activated K(+) (BK(Ca)) channel, but not due to prostaglandin, protein kinase C (PKC) and cAMP pathways. (4) The vasorelaxation by the bisulfite at high concentrations was partially inhibited by tetraethylammonium (TEA) and glibenclamide, suggesting that the vasorelaxation was related to ATP-sensitive K(+) channel (K(ATP)) and L-type calcium-channel. These results led to the conclusion that bisulfite (HSO(3)(-)) might be a vasoactive factor and sodium bisulfite can be used as a SO(2) donor for the study of SO(2) biology.

  1. Effects of ozone and sulfur dioxide on phyllosphere fungi from three tree species.

    PubMed

    Fenn, M E; Dunn, P H; Durall, D M

    1989-02-01

    Short-term effects of ozone (O(3)) on phyllosphere fungi were studied by examining fungal populations from leaves of giant sequoia (Sequoiadendron giganteum (Lindl.) Buchholz) and California black oak (Quercus kelloggii Newb.). Chronic effects of both O(3) and sulfur dioxide (SO(2)) were studied by isolating fungi from leaves of mature Valencia orange (Citrus sinensis L.) trees. In this chronic-exposure experiment, mature orange trees were fumigated in open-top chambers at the University of California, Riverside, for 4 years with filtered air, ambient air plus filtered air (1:1), ambient air, or filtered air plus SO(2) at 9.3 parts per hundred million. Populations of Alternaria alternata (Fr.) Keissler and Cladosporium cladosporioides (Fres.) de Vries, two of the four most common fungi isolated from orange leaves, were significantly reduced by chronic exposure to ambient air. In the short-term experiments, seedlings of giant sequoia or California black oak were fumigated in open-top chambers in Sequoia National Park for 9 to 11 weeks with filtered air, ambient air, or ambient air plus O(3). These short-term fumigations did not significantly affect the numbers of phyllosphere fungi. Exposure of Valencia orange trees to SO(2) at 9.3 parts per hundred million for 4 years reduced the number of phyllosphere fungi isolated by 75% compared with the number from the filtered-air treatment and reduced the Simpson diversity index value from 3.3 to 2.5. A significant chamber effect was evident since leaves of giant sequoia and California black oak located outside of chambers had more phyllosphere fungi than did seedlings within chambers. Results suggest that chronic exposure to ambient ozone or SO(2) in polluted areas can affect phyllosphere fungal communities, while short-term exposures may not significantly disturb phyllosphere fungi.

  2. Effects of Ozone and Sulfur Dioxide on Phyllosphere Fungi from Three Tree Species

    PubMed Central

    Fenn, Mark E.; Dunn, Paul H.; Durall, Daniel M.

    1989-01-01

    Short-term effects of ozone (O3) on phyllosphere fungi were studied by examining fungal populations from leaves of giant sequoia (Sequoiadendron giganteum (Lindl.) Buchholz) and California black oak (Quercus kelloggii Newb.). Chronic effects of both O3 and sulfur dioxide (SO2) were studied by isolating fungi from leaves of mature Valencia orange (Citrus sinensis L.) trees. In this chronic-exposure experiment, mature orange trees were fumigated in open-top chambers at the University of California, Riverside, for 4 years with filtered air, ambient air plus filtered air (1:1), ambient air, or filtered air plus SO2 at 9.3 parts per hundred million. Populations of Alternaria alternata (Fr.) Keissler and Cladosporium cladosporioides (Fres.) de Vries, two of the four most common fungi isolated from orange leaves, were significantly reduced by chronic exposure to ambient air. In the short-term experiments, seedlings of giant sequoia or California black oak were fumigated in open-top chambers in Sequoia National Park for 9 to 11 weeks with filtered air, ambient air, or ambient air plus O3. These short-term fumigations did not significantly affect the numbers of phyllosphere fungi. Exposure of Valencia orange trees to SO2 at 9.3 parts per hundred million for 4 years reduced the number of phyllosphere fungi isolated by 75% compared with the number from the filtered-air treatment and reduced the Simpson diversity index value from 3.3 to 2.5. A significant chamber effect was evident since leaves of giant sequoia and California black oak located outside of chambers had more phyllosphere fungi than did seedlings within chambers. Results suggest that chronic exposure to ambient ozone or SO2 in polluted areas can affect phyllosphere fungal communities, while short-term exposures may not significantly disturb phyllosphere fungi. PMID:16347849

  3. Combined nitrogen oxides/sulfur dioxide control in dry scrubber systems

    SciTech Connect

    Harkness, J. B.L.; Gorski, A. J.; Huang, H. S.

    1989-02-01

    Argonne National Laboratory (ANL) is investigating alternative control concepts that involve modifying existing SO{sub 2}-removal processes and sorbents, with the objective of achieving simultaneous removal of nitrogen oxides (NO{sub x}) and sulfur dioxide (SO{sub 2}). Laboratory-scale research conducted using a fixed-bed reactor and a spray-dryer/fabric-filter system has been paralleled by field tests at ANL's commercial-scale (20-MW electric equivalent) dry scrubber. In the fixed-bed experiments, a range of chemical reagents was surveyed, and the best-performing additives were studied in detail. Sodium chloride, sodium bisulfite, sodium hydroxide, and Fe(II)*EDTA were found to increase both NO{sub x} and SO{sub 2} removals; the additives did not appear to increase NO{sub x} removal directly, but they interacted strongly with the other primary variables to improve sorbent performance. The laboratory spray-dryer system was used to study the effects on combined NO{sub x}/SO{sub 2} removal of the best-performing fixed-bed additives and certain process modifications. The tests showed that sodium chloride increased NO{sub x} removal at all temperatures; sodium bisulfite was generally less effective, and calcium chloride was effective only at 65{degree}C. Up to 80{degree}C, all three additives significantly improved SO{sub 2} removal, but improvement ceased at higher temperatures. This report discusses the experimental results in terms of the effects the additives and principal process variables had on NO{sub x} and SO{sub 2} removals and the mechanistic implications. 14 refs., 74 figs., 33 tabs.

  4. Sulfur dioxide derivatives modulation of high-threshold calcium currents in rat dorsal root ganglion neurons.

    PubMed

    Du, Zhengqing; Meng, Ziqiang

    2006-09-11

    This study addressed the effect of sulfur dioxide (SO(2)) derivatives on high-voltage-activated calcium currents (HVA-I(Ca)) in somatic membrane of freshly isolated rat dorsal root ganglion (DRG) neurons by using the whole-cell configuration of patch-clamp technique. High-threshold Ca(2+) channels are highly expressed in small dorsal root ganglion neurons. SO(2) derivatives increased the amplitudes of calcium currents in a concentration-dependent and voltage-dependent manner. The 50% enhancement concentrations (EC(50)) of SO(2) derivatives on HVA-I(Ca) was about 0.4 microM. In addition, SO(2) derivatives significantly shifted the activation and inactivation curve in the depolarizing direction. Parameters for the fit of a Boltzmann equation to mean values for the activation were V(1/2)=-17.9+/-1.3 mV before and -12.5+/-1.1 mV after application 0.5 microM SO(2) derivatives 2 min (P<0.05). The half inactivation of HVA-I(Ca) was shifted 9.7 mV to positive direction (P<0.05). Furthermore, SO(2) derivatives significantly prolonged the slow constant of inactivation, slowed the fast recovery but markedly accelerated the slow recovery of HVA-I(Ca) from inactivation. From HP of -60 mV 0.5 microM SO(2) derivatives increased the amplitude of HVA-I(Ca) with a depolarizing voltage step to -10 mV about 54.0% in small DRG neurons but 33.3% in large DRG neurons. These results indicated a possible correlation between the change of calcium channels and SO(2) inhalation toxicity, which might cause periphery neurons abnormal regulation of nociceptive transmission via calcium channels.

  5. Sulfur Dioxide Plume During the Continuing Eruption of Mt. Etna, Italy

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The current eruption of Mt. Etna started on July 17, and has continued to the present. This ASTER image was acquired on Sunday, July 29 and shows the sulfur dioxide plume (in purple) originating form the summit, drifting over the city of Catania, and continuing over the Ionian Sea. ASTER's unique combination of multiple thermal infrared channels and high spatial resolution allows the determination of the thickness and position of the SO2 plume. The image covers an area of 24 x 30 km.

    The image is centered at 37.7 degrees north latitude, 15 degrees east longitude.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring

  6. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Zhang, Q.; Streets, D. G.

    2011-09-01

    China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2) and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC) emissions from these two countries for the period 1996-2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission factors are incorporated in the calculation. Year-specific monthly temporal distributions for major sectors and gridded emissions at a resolution of 0.1°×0.1° distributed by multiple year-by-year spatial proxies are also developed. In China, the interaction between economic development and environmental protection causes large temporal variations in the emission trends. From 1996 to 2000, emissions of all three species showed a decreasing trend (by 9 %-17 %) due to a slowdown in economic growth, a decline in coal use in non-power sectors, and the implementation of air pollution control measures. With the economic boom after 2000, emissions from China changed dramatically. BC and OC emissions increased by 46 % and 33 % to 1.85 Tg and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to 34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in 2010 due to the wide application of flue-gas desulfurization (FGD) equipment in power plants. Driven by the remarkable energy consumption growth and relatively lax emission controls, emissions from India increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 for SO2, BC, and OC, respectively. Monte Carlo simulations are used to quantify the emission uncertainties. The average 95 % confidence intervals (CIs) of SO2, BC, and OC emissions are estimated to be -16 %-17 %, -43 %-93 %, and -43 %-80 % for China, and -15 %-16 %, -41 %-87 %, and -44 %-92 % for India, respectively. Sulfur content, fuel use, and sulfur retention of hard coal and

  7. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Streets, D. G.

    2011-07-01

    China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2) and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC) emissions from these two countries for the period 1996-2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission factors are incorporated in the calculation. Year-specific monthly fractions for major sectors and gridded emissions at a resolution of 0.1° × 0.1° distributed by multiple year-by-year spatial proxies are also developed. In China, the interaction between economic development and environmental protection causes large temporal variations in the emission trends. From 1996 to 2000, emissions of all three species showed a decreasing trend (by 9 %-17 %) due to a slowdown in economic growth, a decline in coal use in non-power sectors, and the implementation of air pollution control measures. With the economic boom after 2000, emissions from China changed dramatically. BC and OC emissions increased by 46 % and 33 % to 1.85 Tg and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to 34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in 2010 due to the wide application of flue-gas desulfurization (FGD) equipment in power plants. Driven by the remarkable energy consumption growth and relatively lax emission controls, emissions from India increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 for SO2, BC, and OC, respectively. Monte Carlo simulations are used to quantify the emission uncertainties. The average 95 % confidence intervals (CIs) of SO2, BC, and OC emissions are estimated to be -16 %-17 %, -43 %-93 %, and -43 %-80 % for China, and -15 %-16 %, -41 %-87 %, and -44 %-92 % for India, respectively. Sulfur content, fuel use, and sulfur retention of hard coal and the actual

  8. On-line pervaporation-capillary electrophoresis for the determination of volatile acidity and free sulfur dioxide in wines.

    PubMed

    Ruiz-Jiménez, Jose; Luque de Castro, Maria D

    2005-06-01

    Pervaporation has been coupled on-line to capillary electrophoresis (CE) by a simple interface consisting of a modified CE vial. The approach allows volatile analytes to be removed and injected into the capillary meanwhile the sample matrix remains in the pervaporator. By this approach volatile acidity and free sulfur dioxide have been simultaneously determined in wines. The detection limits (LODs) are 1.25 and 5.00 microg/mL, the quantification limits 4.12 and 16.50 microg/mL, and the linear dynamic ranges between LOD and 50 microg/mL and between 0.1 and 0.9 g/L for free sulfur dioxide and volatile acidity, respectively. The repeatability and within laboratory reproducibility, expressed as relative standard deviation (RSD), are 1.61% and 3.00% for free sulfur, and 3.35% and 4.58% for volatile acidity, respectively. The optimal pervaporation time and the time necessary for the individual separation-detection of the target analytes are 6 and 5 min, respectively. The analysis frequency is 7 h(-1) and the sample amount necessary is less than 7 mL. The proposed method and official methods for the analytes were applied to 32 wine samples. A two-tailed t-test was used to compare the methods, which yielded similar results. The errors, expressed as RSD for the two parameters, ranged between 1.3 and 4.1%.

  9. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons.

    PubMed

    Olah, George A; Goeppert, Alain; Prakash, G K Surya

    2009-01-16

    Nature's photosynthesis uses the sun's energy with chlorophyll in plants as a catalyst to recycle carbon dioxide and water into new plant life. Only given sufficient geological time can new fossil fuels be formed naturally. In contrast, chemical recycling of carbon dioxide from natural and industrial sources as well as varied human activities or even from the air itself to methanol or dimethyl ether (DME) and their varied products can be achieved via its capture and subsequent reductive hydrogenative conversion. The present Perspective reviews this new approach and our research in the field over the last 15 years. Carbon recycling represents a significant aspect of our proposed Methanol Economy. Any available energy source (alternative energies such as solar, wind, geothermal, and atomic energy) can be used for the production of needed hydrogen and chemical conversion of CO(2). Improved new methods for the efficient reductive conversion of CO(2) to methanol and/or DME that we have developed include bireforming with methane and ways of catalytic or electrochemical conversions. Liquid methanol is preferable to highly volatile and potentially explosive hydrogen for energy storage and transportation. Together with the derived DME, they are excellent transportation fuels for internal combustion engines (ICE) and fuel cells as well as convenient starting materials for synthetic hydrocarbons and their varied products. Carbon dioxide thus can be chemically transformed from a detrimental greenhouse gas causing global warming into a valuable, renewable and inexhaustible carbon source of the future allowing environmentally neutral use of carbon fuels and derived hydrocarbon products.

  10. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Addition of Hydrogen Atoms.

    PubMed

    Lindquist, Beth A; Takeshita, Tyler Y; Dunning, Thom H

    2016-05-05

    Ozone (O3) and sulfur dioxide (SO2) are valence isoelectronic species, yet their properties and reactivities differ dramatically. In particular, O3 is highly reactive, whereas SO2 is chemically relatively stable. In this paper, we investigate serial addition of hydrogen atoms to both the terminal atoms of O3 and SO2 and to the central atom of these species. It is well-known that the terminal atoms of O3 are much more amenable to bond formation than those of SO2. We show that the differences in the electronic structure of the π systems in the parent triatomic species account for the differences in the addition of hydrogen atoms to the terminal atoms of O3 and SO2. Further, we find that the π system in SO2, which is a recoupled pair bond dyad, facilitates the addition of hydrogen atoms to the sulfur atom, resulting in stable HSO2 and H2SO2 species.

  11. The impact of particle size, relative humidity, and sulfur dioxide on iron solubility in simulated atmospheric marine aerosols.

    PubMed

    Cartledge, Benton T; Marcotte, Aurelie R; Herckes, Pierre; Anbar, Ariel D; Majestic, Brian J

    2015-06-16

    Iron is a limiting nutrient in about half of the world's oceans, and its most significant source is atmospheric deposition. To understand the pathways of iron solubilization during atmospheric transport, we exposed size segregated simulated marine aerosols to 5 ppm sulfur dioxide at arid (23 ± 1% relative humidity, RH) and marine (98 ± 1% RH) conditions. Relative iron solubility increased as the particle size decreased for goethite and hematite, while for magnetite, the relative solubility was similar for all of the fine size fractions (2.5-0.25 μm) investigated but higher than the coarse size fraction (10-2.5 μm). Goethite and hematite showed increased solubility at arid RH, but no difference (p > 0.05) was observed between the two humidity levels for magnetite. There was no correlation between iron solubility and exposure to SO2 in any mineral for any size fraction. X-ray absorption near edge structure (XANES) measurements showed no change in iron speciation [Fe(II) and Fe(III)] in any minerals following SO2 exposure. SEM-EDS measurements of SO2-exposed goethite revealed small amounts of sulfur uptake on the samples; however, the incorporated sulfur did not affect iron solubility. Our results show that although sulfur is incorporated into particles via gas-phase processes, changes in iron solubility also depend on other species in the aerosol.

  12. Sulfur dioxide oxidation induced mechanistic branching and particle formation during the ozonolysis of β-pinene and 2-butene.

    PubMed

    Carlsson, Philip T M; Keunecke, Claudia; Krüger, Bastian C; Maaß, Mona-C; Zeuch, Thomas

    2012-12-05

    Recent studies have suggested that the reaction of stabilised Criegee Intermediates (CIs) with sulfur dioxide (SO(2)), leading to the formation of a carbonyl compound and sulfur trioxide, is a relevant atmospheric source of sulfuric acid. Here, the significance of this pathway has been examined by studying the formation of gas phase products and aerosol during the ozonolysis of β-pinene and 2-butene in the presence of SO(2) in the pressure range of 10 to 1000 mbar. For β-pinene at atmospheric pressure, the addition of SO(2) suppresses the formation of the secondary ozonide and leads to highly increased nopinone yields. A complete consumption of SO(2) is observed at initial SO(2) concentrations below the yield of stabilised CIs. In experiments using 2-butene a significant consumption of SO(2) and additional formation of acetaldehyde are observed at 1 bar. A consistent kinetic simulation of the experimental findings is possible when a fast CI + SO(2) reaction rate in the range of recent direct measurements [Welz et al., Science, 2012, 335, 204] is used. For 2-butene the addition of SO(2) drastically increases the observed aerosol yields at higher pressures. Below 60 mbar the SO(2) oxidation induced particle formation becomes inefficient pointing to the critical role of collisional stabilisation for sulfuric acid controlled nucleation at low pressures.

  13. Evaluation of sulfur dioxide emissions from explosive volcanism: the 1982-1983 eruptions of Galunggung, Java, Indonesia

    USGS Publications Warehouse

    Bluth, G.J.S.; Casadevall, T.J.; Schnetzler, C.C.; Doiron, S.D.; Walter, Louis S.; Krueger, A.J.; Badruddin, M.

    1994-01-01

    Galunggung volcano, Java, awoke from a 63-year quiescence in April 1982, and erupted sporadically through January 1983. During its most violent period from April to October, the Cikasasah Volcano Observatory reported 32 large and 56 moderate to small eruptions. From April 5 through September 19 the Total Ozone Mapping Spectrometer (TOMS), carried on NASA's Nimbus-7 satellite, detected and measured 24 different sulfur dioxide clouds; an estimated 1730 kilotons (kt) of SO2 were outgassed by these explosive eruptions. The trajectories, and rapid dispersion rates, of the SO2 clouds were consistent with injection altitudes below the tropopause. An additional 300 kt of SO2 were estimated to have come from 64 smaller explosive eruptions, based on the detection limit of the TOMS instrument. For the first time, an extended period of volcanic activity was monitored by remote sensing techniques which enabled observations of both the entire SO2 clouds produced by large explosive eruptions (using TOMS), and the relatively lower levels of SO2 emissions during non-explosive outgassing (using the Correlation Spectrometer, or COSPEC). Based on COSPEC measurements from August 1982 to January 1983, and on the relationship between explosive and non-explosive degassing, approximately 400 kt of SO2 were emitted during non-explosive activity. The total sulfur dioxide outgassed from Galunggung volcano from April 1982 to January 1983 is calculated to be 2500 kt (?? 30%) from both explosive and non-explosive activity. While Galunggung added large quantities of sulfur dioxide to the atmosphere, its sporadic emissions occurred in relatively small events distributed over several months, and reached relatively low altitudes, and are unlikely to have significantly affected aerosol loading of the stratosphere in 1982 by volcanic activity. ?? 1994.

  14. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  15. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program`s Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  16. A new fluorescent probe for colorimetric and ratiometric detection of sulfur dioxide derivatives in liver cancer cells

    PubMed Central

    Li, Dong-Peng; Wang, Zhao-Yang; Cui, Jie; Wang, Xin; Miao, Jun-Ying; Zhao, Bao-Xiang

    2017-01-01

    A new ratiometric fluorescent probe was constructed with hemicyanine and 7-nitrobenzofurazan for detection of sulfur dioxide derivatives (HSO3−/SO32−). The ratiometric response mode could be attributed to the efficient FRET (Förster resonance energy transfer) platform. The probe exbihited some desirable properties including fast response (within 2 minutes), good selectivity and high sensitivity. Moreover, the probe could detect endogenous HSO3− in liver cancer cells rather than normal liver cells, implying the diagnosal potential of the probe. PMID:28349998

  17. Crystalline sulfur dioxide: Crystal field splittings, absolute band intensities and complex refractive indices derived from infrared spectra

    NASA Technical Reports Server (NTRS)

    Khanna, R. K.; Zhao, Guizhi

    1986-01-01

    The infrared absorption spectra of thin crystalline films of sulfur dioxide at 90 K are reported in the 2700 to 450/cm region. The observed multiplicity of the spectral features in the regions of fundamentals is attributed to factor group splittings of the modes in a biaxial crystal lattice and the naturally present minor S-34, S-36, and O-18 isotopic species. Complex refractive indices determined by an iterative Kramers-Kronig analysis of the extinction data, and absolute band strengths derived from them, are also reported in this region.

  18. Theoretical spectroscopic characterization at low temperatures of detectable sulfur-organic compounds: ethyl mercaptan and dimethyl sulfide.

    PubMed

    Senent, M L; Puzzarini, C; Domínguez-Gómez, R; Carvajal, M; Hochlaf, M

    2014-03-28

    Highly correlated ab initio methods are used for the spectroscopic characterization of ethyl mercaptan (CH3CH2 (32)SH, ETSH) and dimethyl sulfide (CH3 (32)SCH3, DMS), considering them on the vibrational ground and excited torsional states. Since both molecules show non-rigid properties, torsional energy barriers and splittings are provided. Equilibrium geometries and the corresponding rotational constants are calculated by means of a composite scheme based on CCSD(T) calculations that accounts for the extrapolation to the complete basis set limit and core-correlation effects. The ground and excited states rotational constants are then determined using vibrational corrections obtained from CCSD/cc-pVTZ force-field calculations, which are also employed to determine anharmonic frequencies for all vibrational modes. CCSD(T) and CCSD force fields are employed to predict quartic and sextic centrifugal-distortion constants, respectively. Equilibrium rotational constants are also calculated using CCSD(T)-F12. The full-dimensional anharmonic analysis does not predict displacements of the lowest torsional excited states due to Fermi resonances with the remaining vibrational modes. Thus, very accurate torsional transitions are calculated by solving variationally two-dimensional Hamiltonians depending on the CH3 and SH torsional coordinates of ethyl mercaptan or on the two methyl groups torsions of dimethyl-sulfide. For this purpose, vibrationally corrected potential energy surfaces are computed at the CCSD(T)/aug-cc-pVTZ level of theory. For ethyl mercaptan, calculations show large differences between the gauche (g) and trans (t) conformer spectral features. Interactions between rotating groups are responsible for the displacements of the g-bands with respect to the t-bands that cannot therefore be described with one-dimensional models. For DMS, the CCSD(T) potential energy surface has been semi-empirically adjusted to reproduce experimental data. New assignments are

  19. Sulfur dioxide (SO2) from MIPAS in the upper troposphere and lower stratosphere 2002-2012

    NASA Astrophysics Data System (ADS)

    Höpfner, M.; Boone, C. D.; Funke, B.; Glatthor, N.; Grabowski, U.; Günther, A.; Kellmann, S.; Kiefer, M.; Linden, A.; Lossow, S.; Pumphrey, H. C.; Read, W. G.; Roiger, A.; Stiller, G.; Schlager, H.; von Clarmann, T.; Wissmüller, K.

    2015-02-01

    Vertically resolved distributions of sulfur dioxide (SO2) with global coverage in the height region from the upper troposphere to ~ 20 km altitude have been derived from observations by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat for the period July 2002 to April 2012. Retrieved volume mixing ratio profiles representing single measurements are characterized by typical errors in the range of 70-100 pptv and by a vertical resolution ranging from 3-5 km. Comparison with ACE-FTS observations revealed a slightly varying bias with altitude of -20 to 50 pptv for the MIPAS dataset in case of volcanically enhanced concentrations. For background concentrations the comparison showed a systematic difference between the two major MIPAS observation periods. After debiasing, the difference could be reduced to biases within -10 to 20 pptv in the altitude range of 10-20 km with respect to ACE-FTS. Further comparisons of the debiased MIPAS dataset with in-situ measurements from various aircraft campaigns showed no obvious inconsistencies within a range of around ±50 pptv. The SO2 emissions of more than thirty volcanic eruptions could be identified in the upper troposphere and lower stratosphere (UTLS). Emitted SO2 masses and lifetimes within different altitude ranges in the UTLS have been derived for a large part of these eruptions. Masses are in most cases within estimations derived from other instruments. From three of the major eruptions within the MIPAS measurement period - Kasatochi in August 2008, Sarychev in June 2009 and Nabro in June 2011 - derived lifetimes of SO2 for the altitude ranges 10-14, 14-18, and 18-22 km are 13.3±2.1, 23.6±1.2, and 32.3±5.5 d, respectively. By omitting periods with obvious volcanic influence we have derived background mixing ratio distributions of SO2. At 10 km altitude these indicate an annual cycle at northern mid- and high latitudes with maximum values in summer and an amplitude of about 30 pptv. At

  20. Sulfur dioxide (SO2) from MIPAS in the upper troposphere and lower stratosphere 2002-2012

    NASA Astrophysics Data System (ADS)

    Höpfner, M.; Boone, C. D.; Funke, B.; Glatthor, N.; Grabowski, U.; Günther, A.; Kellmann, S.; Kiefer, M.; Linden, A.; Lossow, S.; Pumphrey, H. C.; Read, W. G.; Roiger, A.; Stiller, G.; Schlager, H.; von Clarmann, T.; Wissmüller, K.

    2015-06-01

    Vertically resolved distributions of sulfur dioxide (SO2) with global coverage in the height region from the upper troposphere to ~20 km altitude have been derived from observations by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat for the period July 2002 to April 2012. Retrieved volume mixing ratio profiles representing single measurements are characterized by typical errors in the range of 70-100 pptv and by a vertical resolution ranging from 3 to 5 km. Comparison with observations by the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) revealed a slightly varying bias with altitude of -20 to 50 pptv for the MIPAS data set in case of volcanically enhanced concentrations. For background concentrations the comparison showed a systematic difference between the two major MIPAS observation periods. After debiasing, the difference could be reduced to biases within -10 to 20 pptv in the altitude range of 10-20 km with respect to ACE-FTS. Further comparisons of the debiased MIPAS data set with in situ measurements from various aircraft campaigns showed no obvious inconsistencies within a range of around ±50 pptv. The SO2 emissions of more than 30 volcanic eruptions could be identified in the upper troposphere and lower stratosphere (UTLS). Emitted SO2 masses and lifetimes within different altitude ranges in the UTLS have been derived for a large part of these eruptions. Masses are in most cases within estimations derived from other instruments. From three of the major eruptions within the MIPAS measurement period - Kasatochi in August 2008, Sarychev in June 2009 and Nabro in June 2011 - derived lifetimes of SO2 for the altitude ranges 10-14, 14-18 and 18-22 km are 13.3 ± 2.1, 23.6 ± 1.2 and 32.3 ± 5.5 days respectively. By omitting periods with obvious volcanic influence we have derived background mixing ratio distributions of SO2. At 10 km altitude these indicate an annual cycle at northern mid- and high

  1. Inverse transport modeling of volcanic sulfur dioxide emissions using large-scale simulations

    NASA Astrophysics Data System (ADS)

    Heng, Yi; Hoffmann, Lars; Griessbach, Sabine; Rößler, Thomas; Stein, Olaf

    2016-05-01

    An inverse transport modeling approach based on the concepts of sequential importance resampling and parallel computing is presented to reconstruct altitude-resolved time series of volcanic emissions, which often cannot be obtained directly with current measurement techniques. A new inverse modeling and simulation system, which implements the inversion approach with the Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC) is developed to provide reliable transport simulations of volcanic sulfur dioxide (SO2). In the inverse modeling system MPTRAC is used to perform two types of simulations, i.e., unit simulations for the reconstruction of volcanic emissions and final forward simulations. Both types of transport simulations are based on wind fields of the ERA-Interim meteorological reanalysis of the European Centre for Medium Range Weather Forecasts. The reconstruction of altitude-dependent SO2 emission time series is also based on Atmospheric InfraRed Sounder (AIRS) satellite observations. A case study for the eruption of the Nabro volcano, Eritrea, in June 2011, with complex emission patterns, is considered for method validation. Meteosat Visible and InfraRed Imager (MVIRI) near-real-time imagery data are used to validate the temporal development of the reconstructed emissions. Furthermore, the altitude distributions of the emission time series are compared with top and bottom altitude measurements of aerosol layers obtained by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite instruments. The final forward simulations provide detailed spatial and temporal information on the SO2 distributions of the Nabro eruption. By using the critical success index (CSI), the simulation results are evaluated with the AIRS observations. Compared to the results with an assumption of a constant flux of SO2 emissions, our inversion approach leads to an improvement

  2. 75 FR 81555 - Approval and Promulgation of Air Quality Implementation Plans; Minnesota; Sulfur Dioxide SIP...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... Dioxide SIP Revision for Marathon Petroleum St. Paul Park AGENCY: Environmental Protection Agency (EPA... revision request for Marathon Petroleum in St. Paul Park, Minnesota. This submittal updates the...

  3. Thermodynamic analysis of low-temperature carbon dioxide and sulfur dioxide capture from coal-burning power plants.

    PubMed

    Swanson, Charles E; Elzey, John W; Hershberger, Robert E; Donnelly, Russell J; Pfotenhauer, John

    2012-07-01

    We discuss the possibility of capturing carbon dioxide from the flue gas of a coal-fired electrical power plant by cryogenically desublimating the carbon dioxide and then preparing it for transport in a pipeline to a sequestration site. Various other means have been proposed to accomplish the same goal. The problem discussed here is to estimate the "energy penalty" or "parasitic energy loss,' defined as the fraction of electrical output that will be needed to provide the refrigeration and that will then not be deliverable. We compute the energy loss (7.9-9.2% at 1 atm) based on perfect Carnot efficiency and estimate the achievable parasitic energy loss (22-26% at 1 atm) by incorporating the published coefficient of performance values for appropriately sized refrigeration or liquefaction cycles at the relevant temperatures. The analyses at 1 atm represent a starting point for future analyses using elevated pressures.

  4. Knudsen cell and smog chamber study of the heterogeneous uptake of sulfur dioxide on Chinese mineral dust.

    PubMed

    Zhou, Li; Wang, Weigang; Gai, Yanbo; Ge, Maofa

    2014-12-01

    The heterogeneous uptake processes of sulfur dioxide on two types of Chinese mineral dust (Inner Mongolia desert dust and Xinjiang sierozem) were investigated using both Knudsen cell and smog chamber system. The temperature dependence of the uptake coefficients was studied over a range from 253 to 313 K using the Knudsen cell reactor, the initial uptake coefficients decreased with the increasing of temperature for these two mineral dust samples, whereas the steady state uptake coefficients of the Xinjiang sierozem increased with the temperature increasing, and these temperature dependence functions were obtained for the first time. In the smog chamber experiments at room temperature, the steady state uptake coefficients of SO2 decreased evidently with the increasing of sulfur dioxide initial concentration from 1.72 × 10¹² to 6.15 × 10¹² mol/cm³. Humid air had effect on the steady state uptake coefficients of SO₂onto Inner Mongolia desert dust. Consequences about the understanding of the uptake processes onto mineral dust samples and the environmental implication were also discussed.

  5. Alteration of extracellular enzymes in pinto bean leaves upon exposure to air pollutants, ozone and sulfur dioxide

    SciTech Connect

    Peters, J.L.; Castillo, F.J.; Heath, R.L. )

    1989-01-01

    Diamine oxidase and peroxidase, associated with the wall in pinto bean (Phaseolus vulgaris L. var Pinto) leaves, can be washed out by vacuum infiltration and assayed without grinding the leaf. The diamine oxidase activity is inhibited in vivo by exposure of the plants to ozone (dose of 0.6 microliters per liter {times} hour), whereas the peroxidase activity associated with the wall space is stimulated. This dose does not cause obvious necrosis or chlorosis of the leaf. These alterations are greater when the dose of ozone exposure is given as a triangular pulse (a slow rise to a peak of 0.24 microliters per liter followed by a slow fall) compared to that given as a constant square wave pulse of 0.15 microliters per liter for the same 4 hour period. Exposure of the plants to sulfur dioxide (at a concentration of 0.4 microliters per liter for 4 hours) does not result in any change in the diamine oxidase or peroxidase activities, yet the total sulfhydryl content of the leaf is increased, demonstrating the entry of sulfur dioxide. These two pollutants, with different chemical reactivities, affect the activities of the extracellular enzymes in different manners. In the case of ozone exposure, the inhibition of extracellular diamine oxidase could profoundly alter the movements of polyamines from cell to cell.

  6. Dimethyl disulfide produced by the naturally associated bacterium bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition.

    PubMed

    Meldau, Dorothea G; Meldau, Stefan; Hoang, Long H; Underberg, Stefanie; Wünsche, Hendrik; Baldwin, Ian T

    2013-07-01

    Bacillus sp B55, a bacterium naturally associated with Nicotiana attenuata roots, promotes growth and survival of wild-type and, particularly, ethylene (ET)-insensitive (35)S-ethylene response1 (etr1) N. attenuata plants, which heterologously express the mutant Arabidopsis thaliana receptor ETR1-1. We found that the volatile organic compound (VOC) blend emitted by B55 promotes seedling growth, which is dominated by the S-containing compound dimethyl disulfide (DMDS). DMDS was depleted from the headspace during cocultivation with seedlings in bipartite Petri dishes, and (35)S was assimilated from the bacterial VOC bouquet and incorporated into plant proteins. In wild-type and (35)S-etr1 seedlings grown under different sulfate (SO(4)(-2)) supply conditions, exposure to synthetic DMDS led to genotype-dependent plant growth promotion effects. For the wild type, only S-starved seedlings benefited from DMDS exposure. By contrast, growth of (35)S-etr1 seedlings, which we demonstrate to have an unregulated S metabolism, increased at all SO(4)(-2) supply rates. Exposure to B55 VOCs and DMDS rescued many of the growth phenotypes exhibited by ET-insensitive plants, including the lack of root hairs, poor lateral root growth, and low chlorophyll content. DMDS supplementation significantly reduced the expression of S assimilation genes, as well as Met biosynthesis and recycling. We conclude that DMDS by B55 production is a plant growth promotion mechanism that likely enhances the availability of reduced S, which is particularly beneficial for wild-type plants growing in S-deficient soils and for (35)S-etr1 plants due to their impaired S uptake/assimilation/metabolism.

  7. 75 FR 81471 - Approval and Promulgation of Air Quality Implementation Plans; Minnesota; Sulfur Dioxide SIP...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... Dioxide SIP Revision for Marathon Petroleum St. Paul Park AGENCY: Environmental Protection Agency (EPA... dioxide State Implementation Plan revision for Marathon Petroleum in St. Paul Park. This submittal updates... (SO 2 ) State Implementation Plan (SIP) revision request for Marathon Petroleum Co, LLC, (Marathon)...

  8. A Demonstration of Acid Rain and Lake Acidification: Wet Deposition of Sulfur Dioxide.

    ERIC Educational Resources Information Center

    Goss, Lisa M.

    2003-01-01

    Introduces a science demonstration on the dissolution of sulfuric oxide emphasizing the concept of acid rain which is an environmental problem. Demonstrates the acidification from acid rain on two lake environments, limestone and granite. Includes safety information. (YDS)

  9. The Impact of Climate, Sulfur Dioxide, and Industrial Dust on δ(18)O and δ(13)C in Glucose from Pine Tree Rings Growing in an Industrialized Area in the Southern Part of Poland.

    PubMed

    Sensuła, Barbara M

    The mass spectrometric analysis of the impact of sulfur dioxide and dust emission on carbon and oxygen stable isotopic compositions of glucose hydrolysed from α-cellulose samples extracted from Scots pine growing in the vicinity of "Huta Katowice" steelworks was the main aim of this study. The annual rings covered the time span from 1975 to 2012 AD. The relationships between climatic conditions, sulfur dioxide, and industrial dust emission and oxygen and carbon isotopic compositions were analyzed using correlation function methods. This study shows the first analysis of carbon and oxygen stable isotopes in glucose as the bio-indicators of CO2, sulfur dioxide, and industrial dust emission. The anticoincidence trend of δ(18)O and δ(13)C and dust and sulfur dioxide confirms that the decreases of dust and sulfur dioxide industrial emission increase δ(18)O and δ(13)C values in glucose.

  10. Sulfur dioxide estimations in the planetary boundary layer using dispersion models and satellite retrievals

    NASA Astrophysics Data System (ADS)

    Zarauz, Jorge V.

    The health and environmental conditions in the Central Andes city La Oroya, Peru, have been seriously damaged by the heavy metal mining activities in the region. The situation has been exacerbated by the complex topography, which prevents proper mixing and dissolution of particles and gases released into the atmosphere. Understanding how pollutants are dispersed in populated regions, especially in complex terrain, would help to create mitigation strategies. The present study uses CALPUFF and HYSPLIT dispersion/deposition models to estimate sulfur dioxide (SO2) dispersion from the main stack of the La Oroya metallurgical plant. Due to the lack of meteorological data in the area, the Weather Research and Forecasting model (WRF) is used with observational nudging for temperature, relative humidity, and wind fields of three surface meteorological stations specifically installed for the study. The pollutant dispersion models are sensitive to a precise estimation of the turbulent vertical transport of mass, energy and moisture in the low atmosphere; therefore, two planetary boundary layer (PBL) schemes are tested, the Mellor-Yamada-Janjic and Yonsei University models. The dispersion models are run and results compared with field measurements at La Oroya, and Huancayo. The observation-nudging and YSU scheme considerably improved the prognostic variables. CALPUFF and HYSPLIT models showed similar patterns; however, HYSPLIT overestimated SO2 concentrations for low PBLs. Moreover, recent enhancements on spectral, spatial and temporal resolution of atmospheric scanning sensors of chemical constituents from the space, have led to detecting trace gases of anthropogenic origin in the lower troposphere. This contribution also explores the SO2 level 2 dataset from Ozone Mapping Instrument (OMI), in conjunction with atmospheric optical depth and Angstrom coefficient data products, extracted from MODerate Resolution Imaging Spectroradiometer (MODIS) to estimate SO2 loads in the PBL

  11. [Significance of endogenous sulfur dioxide in the regulation of cardiovascular system].

    PubMed

    Jin, Hong Fang; DU, Shu Xu; Zhao, Xia; Zhang, Su Qing; Tian, Yue; Bu, Ding Fang; Tang, Chao Shu; DU, Jun Bao

    2007-08-18

    Since the 1980's nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H(2)S), the endogenous gas molecules produced from metabolic pathway, have been realized as signal molecules to be involved in the regulation of body homeostasis and to play important roles under physiological and pathophysiological conditions. The researches on these endogenous gas signal molecules opened a new avenue in life science. To explore the new member of gasotransmitter family, other endogenous gas molecules which have been regarded as metabolic waste up to date, and their biological regulatory effects have been paid close attention to in the current fields of life science and medicine. Sulfur dioxide (SO(2)) can be produced endogenously from normal metabolism of sulfur-containing amino acids. L-cysteine is oxidized via cysteine dioxygenase to L-cysteinesulfinate, and the latter can proceed through transamination by glutamate oxaloacetate transaminase (GOT) to beta-sulfinyl pyruvate which decomposes spontaneously to pyruvate and SO(2). In mammals, activated neutrophils by oxidative stress can convert H(2)S to sulfite through a reduced form of nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase-dependent process. The authors detected endogenous production of SO(2) in all cardiovascular tissues, including in heart, aorta, pulmonary artery, mesenteric artery, renal artery, tail artery and the plasma SO(2) content. As the key enzyme producing SO(2), GOT mRNA in cardiovascular system was detected and found to be located enriched in endothelial cells and vascular smooth muscle cells near the endothelial layer. When the normal rats were treated with hydroxamate(HDX), a GOT inhibitor, at a dose of 3.7 mg/kg body weight, the blood pressure (BP) went high markedly, the ratio of wall thickness to lumen radius was increased by 18.34%, and smooth muscle cell proliferation was enhanced. The plasma SO(2) level in the rats injected with 125 micromol/kg body weight SO(2) donor was

  12. Formation of Secondary Organic Aerosol from Irradiated a-Pinene/Tolueme/NOx Mixtures and the Effect of Isoprene and Sulfur Dioxide

    EPA Science Inventory

    Secondary organic aerosol (SOA) was generated by irradiating a series of a-pinene/toluene/NOx mixtures in the absence and presence of isoprene or sulfur dioxide. The purpose of the experiment was to evaluate the extent to which chemical perturbations to this base-case (a-pinene/...

  13. The Interaction of Complexes Mn(PPhMe2)Br2 and Mn(PEt3)Br2 with Sulfur Dioxide.

    DTIC Science & Technology

    2014-09-26

    RD-Ai57 164 THE INTERACTION OF COMPLEXES NN(PPHNE2)BR2 AND i/I NN(PET3)BR2 WITH SULFUR DIOXIDE(U) AUBURN UNIV AL DEPT OF CHEMISTRY W E HILL ET AL. is...JUL 85 UNCLASSIFIED NS@i4-83-K-8637 F/G 7/4 NL EhEEEEEE J~ ( a A z Tge Interaction of Complexes ift(PWie2)Sr2 mud M(flt3)3r2 with Sulfur R. ill~ S. D...by block number) FIELD GROUP SUB. GR. Infrared Spectroscopy, Manganese Complexes, Sulfur Dioxide 13. ABSTRACT (Contiaue on reiwee itimR7 and ideatafy

  14. Communication: Theoretical prediction of the importance of the (3)B2 state in the dynamics of sulfur dioxide.

    PubMed

    Lévêque, Camille; Taïeb, Richard; Köppel, Horst

    2014-03-07

    Even though the sulfur dioxide molecule has been extensively studied over the last decades, its photo-excitation dynamics is still unclear, due to its complexity, combining conical intersections, and spin-orbit coupling between a manifold of states. We present a comprehensive ab initio study of the intersystem crossing of the molecule in the low energy domain, based on a wave-packet propagation on the manifold of the lowest singlet and triplet states. Furthermore, spin-orbit couplings are evaluated on a geometry-dependent grid, and diabatized along with the different conical intersections. Our results show for the first time the primordial role of the triplet (3)B2 state and furthermore predict novel interference patterns due to the different intersystem crossing channels induced by the spin-orbit couplings and the shapes of the different potential energy surfaces. These give new insight into the coupled singlet-triplet dynamics of SO2.

  15. Determination of gaseous sulfur dioxide and its derivatives via fluorescence enhancement based on cyanine dye functionalized carbon nanodots.

    PubMed

    Sun, Mingtai; Yu, Huan; Zhang, Kui; Zhang, Yajiao; Yan, Yehan; Huang, Dejian; Wang, Suhua

    2014-10-07

    The development of convenient methods for sulfur dioxide and its derivatives analysis is critically important because SO2 causes worldwide serious environmental problems and human diseases. In this work, we show an unprecedented example of an energy-transfer-based fluorescence nanoprobe for selective and quantitative detection of SO2, through molecular engineering of the fluorescent carbon nanodots by a cyanine dye which have a unique reactivity to bisulfite, achieving a detection limit of 1.8 μM with a linear relationship (R(2) = 0.9987). The specific detection was not interfered with other potential coexisted species. In addition, the probe is demonstrated for the determination of SO2 gas in aqueous solution as well as for visually monitoring of SO2 gas in air. This nanomaterial based probe is easily prepared, fast responding, and thus potentially attractive for extensive application for the determination of SO2 and other similar air pollutants.

  16. Simulation of the nonequilibrium chemical decomposition of carbon dioxide in the presence of sulfur in a plasma

    SciTech Connect

    Zhivotov, V.K.; Levitskii, A.A.; Macheret, S.O.; Polak, L.S.

    1986-05-01

    The authors carry out a model calculation of the kinetics of the decomposition of carbon dioxide in the presence of sulfur in a moderate-pressure nonequilibrium discharge. The process is stimulated by the vibrational excitation of CO/sub 2/. Kinetic curves and the time variation of the vibrational and translational temperatures are calculated. The dependence of the energy efficiency on the specific energy input has been obtained. The optimal energy input is 4 J/cm/sup 3/. The minimal energy comsumption per CO molecule is 2.7-3.5 eV. The results of the calculations are consistent with the experimental results in the case of a nonequilibrium UHF discharge. The mechanism of the process, which accounts for the results, particularly the higher efficiency of the process in comparison to the dissociation of pure CO/sub 2/, has been ascertained.

  17. [Determination of Total Sulfur Dioxide in Chinese Herbal Medicines via Triple Quadrupole Inductively Coupled Plasma Mass Spectrometry].

    PubMed

    Wang, Xiao-wei; Liu, Jing-fu; Guan, Hong; Wang, Xiao-yan; Shag, Bing; Zhang, Jing; Liu, Li-ping; Zhang, Ni-na

    2016-02-01

    As an important treatment method, sulfur fumigation plays an essential role in the production and preservation of traditional Chinese herbal medicines. Although there is strict regulation on the use of sulfur dioxide, the abuse of sulfur dioxide still occurred from time to time. And the public faces a high risk of exposure. Because of the poor precision and tedious preparation procedures of traditional recommended titration, the accurate and convenient determination of sulfur dioxide in Chinese herbal medicines is still a critical analytical task for medicines safety and the public health. In this study, an accurate, high-throughput, and convenient method for the absolute determination of SO₂ in Chinese herbal medicines based on triple quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS) technique is developed. The study compared the quantitative ability for sulfur when the ICP-MS operated under traditional single quadrupole (QMS) mode and novel triple quadrupole (MS/MS) mode with three Reaction/Collision cell condition (no gas, helium, and oxygen). The result indicated that when the concentration of sulfate ranging from 0.5 to 100 mg · L⁻¹, isotopic ³⁴S can be selected as quantitative ion either the ICP-MS operated under the QMS mode or MS/MS mode. The use of helium in the Reaction/Collision cell decreased the single intensity of background ions. Better than QMS mode, the MS/MS mode can effectively reduced background interference. But there are no significant differences about the linear range and limit of detection. However, when the ICP-MS operated under MS/MS mode and oxygen was used as reaction gas in the Reaction/Collision cell, the ICP-MS/MS provided an interference-free performance, the linear range and limit of detection improved significantly. Either ³²S or ³⁴S exhibits an excellent linearity (r > 0.999) over the concentration range of 0.02-100 mg · L⁻¹, with a limit of detection of 5.48 and 9.76 µg · L⁻¹ for

  18. Simultaneous removal of sulfur dioxide and polycyclic aromatic hydrocarbons from incineration flue gas using activated carbon fibers.

    PubMed

    Liu, Zhen-Shu; Li, Wen-Kai; Hung, Ming-Jui

    2014-09-01

    Incineration flue gas contains polycyclic aromatic hydrocarbons (PAHs) and sulfur dioxide (SO2). The effects of SO2 concentration (0, 350, 750, and 1000 ppm), reaction temperature (160, 200, and 280 degrees C), and the type of activated carbon fibers (ACFs) on the removal of SO2 and PAHs by ACFs were examined in this study. A fluidized bed incinerator was used to simulate practical incineration flue gas. It was found that the presence of SO2 in the incineration flue gas could drastically decrease removal of PAHs because of competitive adsorption. The effect of rise in the reaction temperature from 160 to 280 degrees C on removal of PAHs was greater than that on SO2 removal at an SO2 concentration of 750 ppm. Among the three ACFs studied, ACF-B, with the highest microporous volume, highest O content, and the tightest structure, was the best adsorbent for removing SO2 and PAHs when these gases coexisted in the incineration flue gas. Implications: Simultaneous adsorption of sulfur dioxide (SO2) and polycyclic aromatic hydrocarbons (PAHs) emitted from incineration flue gas onto activated carbon fibers (ACFs) meant to devise a new technique showed that the presence of SO2 in the incineration flue gas leads to a drastic decrease in removal of PAHs because of competitive adsorption. Reaction temperature had a greater influence on PAHs removal than on SO2 removal. ACF-B, with the highest microporous volume, highest O content, and tightest structure among the three studied ACFs, was found to be the best adsorbent for removing SO2 and PAHs.

  19. Catalysts for cleaner combustion of coal, wood and briquettes sulfur dioxide reduction options for low emission sources

    SciTech Connect

    Smith, P.V.

    1995-12-31

    Coal fired, low emission sources are a major factor in the air quality problems facing eastern European cities. These sources include: stoker-fired boilers which feed district heating systems and also meet local industrial steam demand, hand-fired boilers which provide heat for one building or a small group of buildings, and masonary tile stoves which heat individual rooms. Global Environmental Systems is marketing through Global Environmental Systems of Polane, Inc. catalysts to improve the combustion of coal, wood or fuel oils in these combustion systems. PCCL-II Combustion Catalysts promotes more complete combustion, reduces or eliminates slag formations, soot, corrosion and some air pollution emissions and is especially effective on high sulfur-high vanadium residual oils. Glo-Klen is a semi-dry powder continuous acting catalyst that is injected directly into the furnace of boilers by operating personnel. It is a multi-purpose catalyst that is a furnace combustion catalyst that saves fuel by increasing combustion efficiency, a cleaner of heat transfer surfaces that saves additional fuel by increasing the absorption of heat, a corrosion-inhibiting catalyst that reduces costly corrosion damage and an air pollution reducing catalyst that reduces air pollution type stack emissions. The reduction of sulfur dioxides from coal or oil-fired boilers of the hand fired stoker design and larger, can be controlled by the induction of the Glo-Klen combustion catalyst and either hydrated lime or pulverized limestone.

  20. Effects of sulfur dioxide concentration on organic acids and β-carotene in dried apricots during storage.

    PubMed

    Salur-Can, Ayşenur; Türkyılmaz, Meltem; Özkan, Mehmet

    2017-04-15

    The effects of various sulfur dioxide (SO2) concentrations (0, 451, 832, 1594, 2112 and 3241mg/kg) on the profiles and contents of organic acids (OAs) and β-carotene in sulfured dried apricots (SDAs) were investigated during storage at 4, 20 and 30°C for 379days. In all samples, four OAs [malic acid (MA), citric acid (CA), succinic acid (SA) and oxalic acid (OXA)] were identified. SA (13.9-31.8g/kgdw) was the major OA in SDAs containing SO2 at lower than 1594mgSO2/kg, while MA (11.7-11.7g/kgdw) was the major OA in SDAs containing SO2 at higher than 1594mgSO2/kg. As SO2 concentration increased, CA and OXA contents increased whereas MA contents decreased. Moreover, the highest stabilities of β-carotene, MA and SO2 were determined in SDAs containing 1594mgSO2/kg at 4°C. Therefore, we suggest using 1594mgSO2/kg and storing SDAs at 4°C to protect OAs and β-carotene.

  1. Microporous activated carbons prepared from palm shell by thermal activation and their application to sulfur dioxide adsorption.

    PubMed

    Guo, Jia; Lua, Aik Chong

    2002-07-15

    Textural characterization of activated carbons prepared from palm shell by thermal activation with carbon dioxide (CO(2)) gas is reported in this paper. Palm shell (endocarp) is an abundant agricultural solid waste from palm-oil processing mills in many tropical countries such as Malaysia, Indonesia, and Thailand. The effects of activation temperature on the textural properties of the palm-shell activated carbons, namely specific surface area (BET method), porosity, and microporosity, were investigated. The activated carbons prepared from palm shell possessed well-developed porosity, predominantly microporosity, leading to potential applications in gas-phase adsorption for air pollution control. Static and dynamic adsorption tests for sulfur dioxide (SO(2)), a common gaseous pollutant, were carried out in a thermogravimetric analyzer and a packed column configuration respectively. The effects of adsorption temperature, adsorbate inlet concentration, and adsorbate superficial velocity on the adsorptive performance of the prepared activated carbons were studied. The palm-shell activated carbon was found to have substantial capability for the adsorption of SO(2), comparable to those of some commercial products and an adsorbent derived from another biomass.

  2. Laboratory Measurement of the Temperature Dependence of Gaseous Sulfur Dioxide (SO2) Microwave Absorption with Application to the Venus Atmosphere

    NASA Technical Reports Server (NTRS)

    Suleiman, Shady H.; Kolodner, Marc A.; Steffes, Paul G.

    1996-01-01

    High-accuracy laboratory measurements of the temperature dependence of the opacity from gaseous sulfur dioxide (SO2) in a carbon dioxide (CO2) atmosphere at temperatures from 290 to 505 K and at pressures from 1 to 4 atm have been conducted at frequencies of 2.25 GHz (13.3 cm), 8.5 GHz (3.5 cm), and 21.7 GHz (1.4 cm). Based on these absorptivity measurements, a Ben-Reuven (BR) line shape model has been developed that provides a more accurate characterization of the microwave absorption of gaseous S02 in the Venus atmosphere as compared with other formalisms. The developed BR formalism is incorporated into a radiative transfer model. The resulting microwave emission spectrum of Venus is then used to set an upper limit on the disk-averaged abundance of gaseous S02 below the main cloud layer. It is found that gaseous S02 has an upper limit of 150 ppm, which compares well with previous spacecraft in situ measurements and Earth-based radio astronomical observations.

  3. Decadal emission estimates of carbon dioxide, sulfur dioxide, and nitric oxide emissions from coal burning in electric power generation plants in India.

    PubMed

    Mittal, Moti L; Sharma, Chhemendra; Singh, Richa

    2014-10-01

    This study aims to estimate the emissions of carbon dioxide (CO₂), sulfur dioxide (SO₂), and nitric oxide (NO) for coal combustion in thermal power plants in India using plant-specific emission factors during the period of 2001/02 to 2009/10. The mass emission factors have been theoretically calculated using the basic principles of combustion under representative prevailing operating conditions in the plants and fuel composition. The results show that from 2001/02 to 2009/10 period, total CO₂ emissions have increased from 324 to 499 Mt/year; SO₂ emissions have increased from 2,519 to 3,840 kt/year; and NO emissions have increased from 948 to 1,539 kt/year from the Indian coal-fired power plants. National average emissions per unit of electricity from the power plants do not show a noticeable improvement during this period. Emission efficiencies for new plants that use improved technology are found to be better than those of old plants. As per these estimates, the national average of CO₂ emissions per unit of electricity varies between 0.91 and 0.95 kg/kWh while SO₂ and NO emissions vary in the range of 6.9 to 7.3 and 2.8 to 2.9 g/kWh, respectively. Yamunagar plant in Haryana state showed the highest emission efficiencies with CO₂ emissions as 0.58 kg/kWh, SO₂ emissions as 3.87 g/kWh, and NO emissions as 1.78 g/kWh, while the Faridabad plant has the lowest emission efficiencies with CO₂ emissions as 1.5 kg/kWh, SO₂ emissions as 10.56 g/kWh, and NO emissions as 4.85 g/kWh. Emission values at other plants vary between the values of these two plants.

  4. Source-receptor relationships between East Asian sulfur dioxide emissions and Northern Hemisphere sulfate concentrations

    NASA Astrophysics Data System (ADS)

    Liu, J.; Mauzerall, D. L.; Horowitz, L. W.

    2008-03-01

    We analyze the effect of varying East Asian (EA) sulfur emissions on sulfate concentrations in the Northern Hemisphere, using a global coupled oxidant-aerosol model (MOZART-2). We conduct a base and five sensitivity simulations, in which sulfur emissions from each continent are tagged, to establish the source-receptor (S-R) relationship between EA sulfur emissions and sulfate concentrations over source and downwind regions. We find that from west to east across the North Pacific, EA sulfate contributes approximately 80%-20% of sulfate at the surface, but at least 50% at 500 hPa. In addition, EA SO2 emissions account for approximately 30%-50% and 10%-20% of North American background sulfate over the western and eastern US, respectively. The contribution of EA sulfate to the western US at the surface is highest in MAM and JJA, but is lowest in DJF. Reducing EA SO2 emissions will significantly decrease the spatial extent of the EA sulfate influence over the North Pacific both at the surface and at 500 mb in all seasons, but the extent of influence is insensitive to emission increases, particularly in DJF and JJA. We find that EA sulfate concentrations over most downwind regions respond nearly linearly to changes in EA SO2 emissions, but sulfate concentrations over the EA source region increase more slowly than SO2 emissions, particularly at the surface and in winter, due to limited availability of oxidants (mostly H2O2). We find that similar estimates of the S-R relationship for trans-Pacific transport of EA sulfate would be obtained using either sensitivity or tagging techniques. Our findings suggest that future changes in EA sulfur emissions may cause little change in the sulfate induced health impact over downwind continents but SO2 emission reductions may significantly reduce the sulfate related climate cooling over the North Pacific and the United States.

  5. Fast-regenerable sulfur dioxide absorbents for lean-burn diesel engine emission control

    SciTech Connect

    Li, Liyu; King, David L.

    2010-01-23

    It is known that sulfur oxides contribute significantly and deleteriously to the overall performance of lean-burn diesel engine aftertreatment systems, especially in the case of NOx traps. A Ag-based, fast regenerable SO2 absorbent has been developed and will be described. Over a temperature range of 300oC to 550oC, it absorbs almost all of the SO2 in the simulated exhaust gases during the lean cycles and can be fully regenerated by the short rich cycles at the same temperature. Its composition has been optimized as 1 wt% Pt-5wt%Ag-SiO2, and the preferred silica source for the supporting material has been identified as inert Cabosil fumed silica. The thermal instability of Ag2O under fuel-lean conditions at 230oC and above makes it possible to fast regenerate the sulfur-loaded absorbent during the following fuel-rich cycles. Pt catalyst helps reducing Ag2SO4 during rich cycles at low temperatures. And the chemically inert fumed SiO2 support gives the absorbent long term stability. This absorbent shows great potential to work under the same lean-rich cycling conditions as those imposed on the NOx traps, and thus, can protect the downstream particulate filter and the NOx trap from sulfur poisoning.

  6. Source-Receptor Relationships for East Asian Sulfur Dioxide Emissions and Northern Hemisphere Sulfate Concentrations

    NASA Astrophysics Data System (ADS)

    Liu, J.; Mauzerall, D. L.; Horowitz, L. W.

    2007-12-01

    We analyze the effect of varying East Asian (EA) sulfur emissions on sulfate concentrations in the northern hemisphere based on a global coupled oxidant-aerosol model (MOZART-2) driven with NCEP reanalysis meteorology for 1991. We conduct a base and several sensitivity simulations, in which sulfur emissions from each continent are tagged, to establish the source-receptor (S-R) relationship between EA sulfur emissions and sulfate concentrations over the source and downwind regions. We find that reducing EA SO2 emissions will significantly decrease the spatial extent of the EA sulfate influence over the North Pacific, but raising EA SO2 emissions will not significantly increase the spatial extent of influence. We define a linearity index and find the S-R relationship between EA SO2 emissions and EA sulfate concentrations to be nearly linear over most downwind regions, but to be non-linear over the EA source region, particularly at the surface and in winter. In addition, we find that besides the direct transport of EA sulfate to North America (NA) and Europe (EU), the indirect response of locally-produced NA or EU sulfate to changes in EA SO2 emissions is negative (i.e., offsetting the direct effect) in winter, spring and fall, but becomes positive in summer. In summer the indirect response is as important as direct transport of EA sulfate over the southeastern U.S. and southern EU. This summertime positive indirect effect largely results from induced changes in H2O2 oxidant concentrations over these regions.

  7. Source-receptor relationships between East Asian sulfur dioxide emissions and Northern Hemisphere sulfate concentrations

    NASA Astrophysics Data System (ADS)

    Liu, J.; Mauzerall, D. L.; Horowitz, L. W.

    2008-07-01

    We analyze the effect of varying East Asian (EA) sulfur emissions on sulfate concentrations in the Northern Hemisphere, using a global coupled oxidant-aerosol model (MOZART-2). We conduct a base and five sensitivity simulations, in which sulfur emissions from each continent are tagged, to establish the source-receptor (S-R) relationship between EA sulfur emissions and sulfate concentrations over source and downwind regions. We find that from west to east across the North Pacific, EA sulfate contributes approximately 80% 20% of sulfate at the surface, but at least 50% at 500 hPa. Surface sulfate concentrations are dominated by local anthropogenic sources. Of the sulfate produced from sources other than local anthropogenic emissions (defined here as "background" sulfate), EA sources account for approximately 30% 50% (over the Western US) and 10% 20% (over the Eastern US). The surface concentrations of sulfate from EA sources over the Western US are highest in MAM (up to 0.15 μg/m3), and lowest in DJF (less than 0.06 μg/m3). Reducing EA SO2 emissions will significantly decrease the spatial extent of the EA sulfate influence (represented by the areas where at least 0.1 μg m-3 of sulfate originates from EA) over the North Pacific both at the surface and at 500 hPa in all seasons, but the extent of influence is insensitive to emission increases, particularly in DJF and JJA. We find that EA sulfate concentrations over most downwind regions respond nearly linearly to changes in EA SO2 emissions, but sulfate concentrations over the EA source region increase more slowly than SO2 emissions, particularly at the surface and in winter, due to limited availability of oxidants (in particular of H2O2, which oxidizes SO2 to sulfate in the aqueous phase). We find that similar estimates of the S-R relationship for trans-Pacific transport of EA sulfate would be obtained using either sensitivity (i.e., varying emissions from a region to examine the effects on downwind concentrations

  8. Investigation of the Safety Related Chemistry of the Lithium Sulfur Dioxide (Li/SO2) Battery

    DTIC Science & Technology

    1983-08-01

    inorganic sulfur-oxy compounds which give rise to .IF absorptions in the 1200-1250 cn- region are the alkali metal thionates , Sn06-2 70 NSWC TR 83-478 F u... thionate (s), and possibly Li 2 SO4 . An ESCA spectrum of the sample had peaks due to three types of S with the S (2p) binding energies at 163.6, 166.8 and...the components in Lhe anode product is a thionate . Since none of these except Li 2 S2 04 is found on the cathode, it seems that reactions involving

  9. Vertical distribution of dimethylsulfide, sulfur dioxide, aerosol ions, and radon over the northeast Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Andreae, M. O.; Berresheim, H.; Andreae, T. W.; Kritz, M. A.; Bates, T. S.

    1988-01-01

    The vertical distributions, in temperate latitudes, of dimethylsulfide (DMS), SO2, radon, methanesulfonate (MSA), nonsea-salt sulfate (nss-sulfate), and aerosol Na(+), NH4(+), and NO(-) ions were determined in samples collected by an aircraft over the northeast Pacific Ocean during May 3-12, 1985. DMS was also determined in surface seawater. It was found that DMS concentrations, both in seawater and in the atmospheric boundary layer, were significantly lower than the values reported previously for subtropical and tropical regions, reflecting the seasonal variability in the temperate North Pacific. The vertical profiles of DMS, MSA, SO2, and nss-sulfate were found to be strongly dependent on the convective stability of the atmosphere and on air mass origin. Biogenic sulfur emissions could account for most of the sulfur budget in the boundary layer, while the long-range transport of continentally derived air masses was mainly responsible for the elevated levels of both SO2 and nss-sulfate in the free troposphere.

  10. The production of sulfate particles through the radiolytic oxidation of sulfur dioxide

    SciTech Connect

    Karpen-Hayes, K.

    1991-09-13

    The production of hydroxyl radicals by the radiolytic decomposition of water vapor following alpha decay of {sup 222}Rn can be used to produce an ultrafine sulfuric acid aerosol in the presence of SO{sub 2}. In the past, the production of this aerosol appeared to have a limiting threshold in as much as sufficient conversion of SO{sub 2} to SO{sub 4} must be attained to achieve the concentration required for nucleation. This appeared to occur when the bulk average acidity reached an adequately high value. The threshold curve for the onset of the sulfuric acid aerosol formation is a function of the H{sub 2}O, SO{sub 2} and Rn concentrations. The hydroxyl radical formation is dependent on the H{sub 2}O and Rn concentrations. The mass conversion rate of SO{sub 2} to H{sub 2}SO{sub 4} has been studied by measuring the airborne H{sub 2}SO{sub 4} concentration by ion chromatography after it has been collected on a filter and leached into solution. 39 refs., 9 figs.

  11. Electrophoresis pattern of serum from mice exposed to different concentrations of sulfur dioxide

    NASA Technical Reports Server (NTRS)

    Singh, J.

    1977-01-01

    Three day old mice were continuously exposed to sulphur dioxide concentrations at 0ppm, 0.05ppm, 0.15ppm and 1ppm for eight weeks. At the end of the experiment, blood samples were collected and centrifuged for electrophoresis studies of the serum in 5 percent acrylamide gel. The length of bands of different serum proteins from the SO2 exposed mice was at a variance as compared with the length of bands from the control exposed mice and alpha-1 band seems to be missing from the serum of SO2 exposed mice.

  12. Reaction of stabilized Criegee intermediates from ozonolysis of limonene with sulfur dioxide: ab initio and DFT study.

    PubMed

    Jiang, Lei; Xu, Yi-sheng; Ding, Ai-zhong

    2010-12-02

    The mechanism of the reaction of the sulfur dioxide (SO(2)) with four stabilized Criegee intermediates (stabCI-CH(3)-OO, stabCI-OO, stabCIx-OO, and stabCH(2)OO) produced via the ozonolysis of limonene have been investigated using ab initio and DFT (density functional theory) methods. It has been shown that the intermediate adduct formed by the initiation of these reactions may be followed by two different reaction pathways such as H migration reaction to form carboxylic acids and rearrangement of oxygen to produce the sulfur trioxide (SO(3)) from the terminal oxygen of the COO group and SO(2). We found that the reaction of stabCI-OO and stabCH(2)OO with SO(2) can occur via both the aforementioned scenarios, whereas that of stabCI-CH(3)-OO and stabCIx-OO with SO(2) is limited to the second pathway only due to the absence of migrating H atoms. It has been shown that at the CCSD(T)/6-31G(d) + CF level of theory the activation energies of six reaction pathways are in the range of 14.18-22.59 kcal mol(-1), with the reaction between stabCIx-OO and SO(2) as the most favorable pathway of 14.18 kcal mol(-1) activation energy and that the reaction of stabCI-OO and stabCH(2)OO with SO(2) occurs mainly via the second reaction path. The thermochemical analysis of the reaction between SO(2) and stabilized Criegee intermediates indicates that the reaction of SO(2) and stabilized Criegee intermediates formed from the exocyclic primary ozonide decomposition is the main pathway of the SO(3) formation. This is likely to explain the large (~100%) difference in the production rate in the favor of the exocyclic compounds observed in recent experiments on the formation of H(2)SO(4) from exocyclic and endocyclic compounds.

  13. Retrieval of Vertical Columns of Sulfur Dioxide From SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation

    NASA Astrophysics Data System (ADS)

    Lee, C.; Martin, R. V.; Donkelaar, A. V.; O'Byrne, G.; Krotkov, N.; Richter, A.; Huey, G.; Holloway, J. S.

    2009-05-01

    Sulfur dioxide (SO2) is released into the atmosphere as a result of both anthropogenic activities and natural phenomena. SO2 oxidizes rapidly in the atmosphere, leading to aerosol formation and acid deposition. Outstanding questions exist about SO2 emissions and its atmospheric chemistry. Global mapping of atmospheric SO2 concentrations can provide critical information on its emissions and transport and generally improve scientific understanding of its atmospheric chemistry. Here, we present an improved retrieval of sulfur dioxide (SO2) vertical columns from satellite instruments (SCIAMACHY and OMI) that measure solar backscattered UV radiance. Particular attention is devoted to development of a local air mass factor (AMF) algorithm to convert slant columns to vertical columns. For each SCIAMACHY and OMI observation, we calculate an AMF from the relative vertical SO2 distribution (shape factor) determined locally with a 3-D global model of atmospheric chemistry (GEOS-Chem), weighted by altitude-dependent scattering weights computed with a radiative transfer model (LIDORT). Seasonal mean instrument sensitivity to SO2 (AMF) is generally twice as high over ocean than land. Mineral dust can reduce seasonal mean instrument sensitivity by 50%. Mean relative vertical profiles of SO2 simulated with GEOS-Chem and used in the AMF calculation are highly consistent with airborne in situ measurements (INTEX-A and INTEX-B); differences would affect the retrieved SO2 columns by 10%. The retrieved vertical columns are validated (r = 0.9) with coincident airborne in-situ measurements (INTEX-A, INTEX-B, and a campaign over East China). A global uniform AMF would reduce the correlation with aircraft measurements by 0.1 - 0.2. The overall error assessment leads to 45 - 80% errors for yearly averages over the polluted regions. Seasonal mean SO2 columns retrieved from SCIAMACHY and OMI for 2006 are significantly spatially correlated with those from GEOS-Chem, in particular over the

  14. Polyphenols content, phenolics profile and antioxidant activity of organic red wines produced without sulfur dioxide/sulfites addition in comparison to conventional red wines.

    PubMed

    Garaguso, Ivana; Nardini, Mirella

    2015-07-15

    Wine exerts beneficial effects on human health when it is drunk with moderation. Nevertheless, wine may also contain components negatively affecting human health. Among these, sulfites may induce adverse effects after ingestion. We examined total polyphenols and flavonoids content, phenolics profile and antioxidant activity of eight organic red wines produced without sulfur dioxide/sulfites addition in comparison to those of eight conventional red wines. Polyphenols and flavonoids content were slightly higher in organic wines in respect to conventional wines, however differences did not reach statistical significance. The phenolic acids profile was quite similar in both groups of wines. Antioxidant activity was higher in organic wines compared to conventional wines, although differences were not statistically significant. Our results indicate that organic red wines produced without sulfur dioxide/sulfites addition are comparable to conventional red wines with regard to the total polyphenols and flavonoids content, the phenolics profile and the antioxidant activity.

  15. Assessment of corrosion in a sulfur dioxide vapor emission reduction system for a pulp mill

    SciTech Connect

    Dreisig, R.C.; Beavers, J.A.; Caudill, D.L.

    1996-08-01

    This paper reviews efforts to mitigate corrosion with pulp mill vent odorous gases as they are conveyed to a boiler for thermal oxidation. These moisture laden gases emanate from a sulfite batch operated pulp mill and are sent to a neighboring spent sulfite fueled boiler to comply with the 1990 Clean Air Act. It was recognized early during project definition that sulfuric acid dew point corrosion was a major concern with carbon steel (CS) tubular air heaters. Corrosion studies were conducted in the field prior to and after project startup to determine if heat exchange surfaces were at risk of wastage. Various types of measurements were used such as polarization resistance, weight loss coupons, solution resistance, and electrical resistance to monitor corrosion of CS and 316L stainless steel (SS).

  16. Laboratory measurements of the 3.7-20 cm wavelength opacity of sulfur dioxide and carbon dioxide under simulated conditions for the deep atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Steffes, Paul G.; Shahan, Patrick; Christopher Barisich, G.; Bellotti, Amadeo

    2015-01-01

    In the past two decades, multiple observations of Venus have been made at X-Band (3.6 cm) using the Jansky Very Large Array (VLA), and maps have been created of the 3.6 cm emission from Venus (see, e.g., Devaraj, K. [2011]. The Centimeter- and Millimeter-Wavelength Ammonia Absorption Spectra under Jovian Conditions. PhD Thesis, Georgia Institute of Technology, Atlanta, GA). Since the emission morphology is related both to surface features and to deep atmospheric absorption from CO2 and SO2 (see, e.g., Butler, B.J., Steffes, P.G., Suleiman, S.H., Kolodner, M.A., Jenkins, J.M. [2001]. Icarus 154, 226-238), knowledge of the microwave absorption properties of sulfur dioxide in a carbon dioxide atmosphere under conditions for the deep atmosphere of Venus is required for proper interpretation. Except for a single measurement campaign conducted at a single wavelength (3.2 cm) over 40 years ago (Ho, W., Kaufman, I.A., Thaddeus, P. [1966]. J. Geophys. Res. 71, 5091-5108), no measurements of the centimeter-wavelength properties of any Venus atmospheric constituent have been conducted under conditions characteristic of the deep atmosphere (pressures from 10 to 92 bars and temperatures from 400 to 700 K). New measurements of the microwave properties of SO2 and CO2 at wavelengths from 3.7 to 20 cm have been conducted under simulated conditions for the deep atmosphere of Venus, using a new high-pressure system. Results from this measurement campaign conducted at temperatures from 430 K to 560 K and at pressures up to 92 bars are presented. Results indicate that the model for the centimeter-wavelength opacity from pure CO2 (Ho, W., Kaufman, I.A., Thaddeus, P. [1966]. J. Geophys. Res. 71, 5091-5108), is valid over the entire centimeter-wavelength range under simulated conditions for the deep atmosphere of Venus. Additionally, the laboratory results indicate that both of the models for the centimeter-wavelength opacity of SO2 in a CO2 atmosphere from Suleiman et al. (Suleiman, S

  17. Protective effect of ipratropium bromide on bronchoconstriction induced by sulfur dioxide exposure during apricot sufurization processes that causes asthma-like syndrome in agricultural environment.

    PubMed

    Yildirim, Zeki; Kilic, Talat; Koksal, Nurhan; Kotuk, Mahir

    2005-05-01

    We previously showed that apricot sulfurization workers are exposed to high concentrations of sulfur dioxide (SO2), resulting in an asthma-like syndrome. The aim of this study was to investigate whether pre-treatment of ipratropium bromide protects bronchoconstriction induced by SO2 exposure during apricot sulfurization processes that causes asthma-like syndrome. Firstly, pulmonary function tests were measured before and immediately after SO2 exposure due to processes of apricot sulfurization in 21 healthy volunteer apricot sulfurization workers who did not use any medication in apricot farms. One week later, same measurements were repeated in the same workers when they were working in same farm but they were administered two puffs of ipratropium bromide (20 microg per dose) before 30 min second SO2 exposure for protection of SO2-induced bronchoconstriction. Occupational SO2 exposure caused significant decrement in forced vital capacity (FVC), forced expiratory volume (FEV1) and forced mid-expiratory flow rate (FEF25-75%) in the worker and these decrements were prevented by ipratropium bromide given 30 min before SO2 exposure. This result suggests that pre-treatment of ipratropium bromide protects SO2-induced bronchoconstriction in healthy worker during apricot sulfurization processes that causes asthma-like syndrome in agricultural environment.

  18. Eddy covariance flux of sulfur dioxide to the sea surface: Air-side resistance to deposition of a highly soluble gas

    NASA Astrophysics Data System (ADS)

    Porter, J.; De Bruyn, W. J.; Miller, S. D.; Saltzman, E. S.

    2014-12-01

    Deposition to the sea surface represents a major atmospheric removal mechanism for sulfur dioxide and many other highly soluble products of tropospheric photochemistry. Such gases include nitric acid, ammonia, organic acids, sulfur dioxide, and highly soluble organic compounds such as methanol and acetone. The deposition of highly soluble gases is controlled by turbulent and diffusive transport on the air side of the air/sea interface. In this study, air/sea fluxes of the soluble gas sulfur dioxide (SO2 ), sensible and latent heat, and momentum were measured using eddy covariance. This was a pilot study carried out in April 2014 on Scripps pier in La Jolla, California, that was designed to assess the potential for measuring SO2 fluxes over the ocean. SO2 was detected using chemical ion mass spectrometry in negative ion mode with a sensitivity of roughly 100 Hz/ppt. The ionization scheme involved addition of ozone to a dried air stream and subsequent conversion of SO2 to the SO5 - ion. The results demonstrate the feasibility of seagoing SO2 flux measurements. Such measurements can be used to constrain the depositional velocities of soluble gases and test models for air-side resistance to air/sea gas transfer.

  19. Comparison of titania nanotubes and titanium dioxide as supports of low-temperature selective catalytic reduction catalysts under sulfur dioxide poisoning.

    PubMed

    Lee, TsungYu; Liou, Sihyu; Bai, Hsunling

    2017-03-01

    A series of iron-manganese oxide catalysts supported on TiO2 and titanium nanotubes (TNTs) were studied for low temperature selective catalytic reduction (SCR) of NO with NH3 in the presence of SO2. The results showed that the specific surface area and the amount of Brønsted acid sites were highly correlated. The results also demonstrated that higher Mn(4+)/Mn(3+) ratios and larger specific surface areas might be the main reasons for the excellent performance of MnFe-TNTs catalyst after SO2 poisoning. The SO2 poisoning effect could be minimized by reducing the GHSV, increasing the reaction temperature, or increasing the [NH3]/[NO] molar ratio. The results also indicated that the formation of ammonium sulfate had a stronger effect on the NO conversion efficiency as compared to the formation of metal sulfate. Thus operating the low temperature SCR at above 230 (o)C to avoid the formation of ammonium sulfate would be the priority choice when SO2 poisoning is a concerned issue. Implications: Low-temperature selective catalytic reduction (SCR) has attracted increasing attention due to that it can reduce the energy consumption for the SCR process employed in industries such as steel plants and glass manufacturing plants. However, it also suffers from the sulfur dioxide (SO2) poisoning problem. This study investigates the possibility of using titania nanotubes (TNTs) as the support of Mn/Fe bimetal oxide catalysts for low-temperature SCR to reduce the SO2 poisoning. The results indicated that the MnFe-TNT catalyst can tolerate SO2 for a longer time as compared with the MnFe-TiO2 catalyst.

  20. Endogenous sulfur dioxide alleviates collagen remodeling via inhibiting TGF-β/Smad pathway in vascular smooth muscle cells.

    PubMed

    Huang, Yaqian; Shen, Zhizhou; Chen, Qinghua; Huang, Pan; Zhang, Heng; Du, Shuxu; Geng, Bin; Zhang, Chunyu; Li, Kun; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-14

    The study was designed to investigate the role of endogenous sulfur dioxide (SO2) in collagen remodeling and its mechanisms in vascular smooth muscle cells (VSMCs). Overexpression of endogenous SO2 synthase aspartate aminotransferase (AAT) 1 or 2 increased SO2 levels and inhibited collagen I and III expressions induced by transforming growth factor (TGF)-β1 in VSMCs. In contrast, AAT1 or AAT2 knockdown induced a severe collagen deposition in TGF-β1-treated VSMCs. Furthermore, AAT1 or AAT2 overexpression suppressed procollagen I and III mRNA, upregulated matrix metalloproteinase (MMP)-13 expression, downregulated tissue inhibitors of MMP-1 level, and vice versa. Mechanistically, AAT1 or AAT2 overexpression inhibited phosphorylation of type I TGF-β receptor (TβRI) and Smad2/3 in TGF-β1-stimulated VSMCs. Whereas SB431542, an inhibitor of TGF-β1/Smad signaling pathway, attenuated excessive collagen deposition induced by AAT knockdown. Most importantly, ectopically expressing AAT or exogenous addition of 100 μM SO2 blocked AAT deficiency-aggravated collagen accumulation in TGF-β1-stimulatd VSMCs, while no inhibition was observed at 100 μM ethyl pyruvate. These findings indicated that endogenous SO2 alleviated collagen remodeling by controlling TGF-β1/TβRI/Smad2/3-mediated modulation of collagen synthesis and degradation.