Sample records for sulfuryl fluoride so2f2

  1. Quantum cascade laser-based photoacoustic sulfuryl fluoride sensing

    NASA Astrophysics Data System (ADS)

    Minini, Kariza Mayra Silva; Bueno, Sâmylla Cristina Espécie; da Silva, Marcelo Gomes; Sthel, Marcelo Silva; Vargas, Helion; Angster, Judit; Miklós, András

    2017-02-01

    Although sulfuryl fluoride (SO2F2) is an efficient fumigant that does not react with the surface of indoor materials and does not reduce the stratospheric ozone shield, there are some concerns about its use. It is a toxic gas that attacks the central nervous system, and its global warming potential (GWP) value is 4780 for 100 years' time. Therefore, it is a clear necessity of implementing detection methods for tracing such a molecule. In this work a sensitive photoacoustic setup was built to detect SO2F2 at concentrations of parts per billion by volume (ppbv). The symmetric S-O stretching mode was excited by a continuous-wave quantum cascade laser with radiation wavenumber ranging from 1275.7 to 1269.3 cm-1. The photoacoustic signal was generated by modulating the laser wavenumber at the first longitudinal mode of the photoacoustic cell with amplitude depth of 5 × 10-3 cm-1. The detection of a minimum SO2F2 concentration of 20 ppbv was achieved.

  2. Phasing-out of methyl bromide (CH3Br) and usage of sulfuryl fluoride (SO2F2) for pest control in Europe

    NASA Astrophysics Data System (ADS)

    Reimann, S.; Brunner, D.; Vollmer, M. K.; Henne, S.; Maione, M.; Arduini, I.

    2011-12-01

    Methyl bromide (CH3Br) has been widely used for fumigation in agriculture, in food mills and for transport applications. Due to its high ozone-depleting potential, its use has been banned within the Montreal Protocol and its amendments, except for quarantine/pre-shipment uses. This led to a decline of global atmospheric background concentrations and of world-wide emissions. In Europe, emissions have declined concurrently and a generally good compliance with legislation is suggested based on emission estimates using inverse modelling of continuous measurements from the European high-altitude sites Jungfraujoch (Switzerland) and Monte Cimone (Italy). However, episodic pollution events of CH3Br show a violation of international legislation, as this substance has been banned in Europe from 2007 onwards in agriculture and from 2010 in quarantine/pre-shipment uses. Sulfuryl fluoride (SO2F2) is one of the replacement compounds for CH3Br in food processing structures. SO2F2 does not affect the ozone layer but is a potent greenhouse gas (100-year GWP: 4740) with a lifetime of 36 years. European emissions of SO2F2 are estimated by using measurements at Jungfraujoch. Large pollution events are very sporadic but consistently linked to emissions during long weekends and public holidays, presumably a preferable time to fumi-gate food processing structures.

  3. Real-World Verification of Methyl Bromide (CH3Br) Phase-Out in Europe and its Partial Replacement with Sulfuryl Fluoride (SO2F2)

    NASA Astrophysics Data System (ADS)

    Reimann, S.; Vollmer, M. K.; Brunner, D.; Henne, S.; Maione, M.; Arduini, I.

    2014-12-01

    In the last decades methyl bromide (CH3Br) has been widely used for pest control in agriculture, during transport and in susceptible environments such as grain elevators, flour mills. Due to its ozone-depleting properties most applications, except for quarantine-preshipment uses, are practically forbidden within the Montreal Protocol and its amendments. This led to a decline of both world-wide emissions and of global background concentrations. In Europe, emissions have declined concurrently, as CH3Br has not been allowed to be used in Europe from 2007 onwards in agriculture and from 2010 in quarantine/preshipment uses. Continuous measurements from the European high-altitude sites Jungfraujoch (Switzerland) and Monte Cimone (Italy) are used to verify this phase-out in different parts of Europe. Pollution events were still detected at these sites until around 2012, potentially indicating forbidden small scale usage of CH3Br in Europe. However, within the last 2 years the abundance and the height of these events have become very small - showing an overall good acceptance of the CH3Br ban in Europe. On the other hand, sulfuryl fluoride (SO2F2) is used as a partial replacement of CH3Br in the fumigation of food processing structures. It shows very distinct, sporadic peak events at the Jungfraujoch measurement site. SO2F2 does not affect the ozone layer but is a potent greenhouse gas (100-year GWP: 4740) with a lifetime of 36 years. European sources of SO2F2 were estimated by using measurements at Jungfraujoch.

  4. 7 CFR 305.8 - Sulfuryl fluoride treatment schedules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Sulfuryl fluoride treatment schedules. 305.8 Section 305.8 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... fluoride treatment schedules. Treatment schedule Pressure Temperature ( °F) Dosage rate(lb/1000 cubic feet...

  5. Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry.

    PubMed

    Dong, Jiajia; Krasnova, Larissa; Finn, M G; Sharpless, K Barry

    2014-09-01

    Aryl sulfonyl chlorides (e.g. Ts-Cl) are beloved of organic chemists as the most commonly used S(VI) electrophiles, and the parent sulfuryl chloride, O2 S(VI) Cl2 , has also been relied on to create sulfates and sulfamides. However, the desired halide substitution event is often defeated by destruction of the sulfur electrophile because the S(VI) Cl bond is exceedingly sensitive to reductive collapse yielding S(IV) species and Cl(-) . Fortunately, the use of sulfur(VI) fluorides (e.g., R-SO2 -F and SO2 F2 ) leaves only the substitution pathway open. As with most of click chemistry, many essential features of sulfur(VI) fluoride reactivity were discovered long ago in Germany.6a Surprisingly, this extraordinary work faded from view rather abruptly in the mid-20th century. Here we seek to revive it, along with John Hyatt's unnoticed 1979 full paper exposition on CH2 CH-SO2 -F, the most perfect Michael acceptor ever found.98 To this history we add several new observations, including that the otherwise very stable gas SO2 F2 has excellent reactivity under the right circumstances. We also show that proton or silicon centers can activate the exchange of SF bonds for SO bonds to make functional products, and that the sulfate connector is surprisingly stable toward hydrolysis. Applications of this controllable ligation chemistry to small molecules, polymers, and biomolecules are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Optimal Estimation of Sulfuryl Fluoride Emissions on Regional and Global Scales Using Advanced 3D Inverse Modeling and AGAGE Observations

    NASA Astrophysics Data System (ADS)

    Gressent, A.; Muhle, J.; Rigby, M. L.; Lunt, M. F.; Ganesan, A.; Prinn, R. G.; Krummel, P. B.; Fraser, P. J.; Steele, P.; Weiss, R. F.; Harth, C. M.; O'Doherty, S.; Young, D.; Park, S.; Li, S.; Yao, B.; Reimann, S.; Vollmer, M. K.; Maione, M.; Arduini, I.; Lunder, C. R.

    2016-12-01

    Sulfuryl fluoride (SO2F2) is used increasingly as a fumigant to replace methyl bromide (CH3Br), which was regulated under the Montreal Protocol (1986). Mühle et al., J. Geophys. Res., 2009) showed that SO2F2 had been accumulating in the global atmosphere with a growth rate of 5±1% per year from 1978 to 2007. They also determined, using the 2D AGAGE box model, that SO2F2 has a total atmospheric lifetime of 36±11 years mainly driven by the oceanic uptake. In addition, the global warming potential of SO2F2 has been estimated to be ≈4780 for a 100-year time horizon (Papadimitriou et al., J. Phys. Chem., 2008), which is similar to the CFC-11 (CCl3F) GWP. Thus it is a potent greenhouse gas and its emissions are expected to continue to increase in the future. Here we report the first estimations of the SO2F2 emissions and its ocean sink from January 2006 to the end of 2015 on both the global scale using a 3D Eulerian chemical transport model (MOZART-4) solving a Main Chain Monte Carlo (MCMC) inversion, and on the regional scale using a 3D Lagrangian dispersion model (NAME) via the reversible-jump trans-dimensional MCMC approach (Lunt et al., Geosci. Model Dev., 2016). The mole fractions calculated on the global scale are used as boundary conditions for emission calculations over the NAME regions in North America, Europe, East Asia and Australia. For this 10-year inversion we use observations from the AGAGE (Advanced Global Atmospheric Gases Experiment) starting with six stations in 2006, which are La Jolla (California), Mace Head (Ireland), Cape Grim (Australia), Ragged Point (Barbados), Trinidad Head (California) and Cape Matatula (Samoa). We then add observations from Gosan (South Korea) in 2007, Jungfraujoch (Switzerland) in 2008, Shandiangzi (China) and Ny-Alesund (Norway) in 2010, and Monte Cimone (Italy) in 2011, reducing the uncertainty associated with the regions located close to these stations. Results are compared to (i) the total global SO2F2 emissions estimated by the 2D AGAGE box model (Mühle et al, in prep) and (ii) the global industrial estimates. This work provides a unique quantitative understanding of the SO2F2 industrial emissions and its oceanic and photochemical sinks over the last decade.

  7. Sulfuryl fluoride fumigation of red oak logs eradicates the oak wilt fungus

    Treesearch

    Elmer L. Schmidt; Jennifer Juzwik; Brian Schneider

    1997-01-01

    Preliminary field trials using red oak logs from trees dying from oak wilt disease were successful in eliminating oak wilt fungus from sapwood after fumigation with sulfuryl fluoride for 72 h under tarp. These results support earlier laboratory data on the fungitoxicity of sulfuryl fluoride as a potential replacement for methyl bromide of exported red oak veneer logs....

  8. 77 FR 25661 - Sulfuryl Fluoride; Second Request for Comment on Proposed Order Granting Objections to Tolerances...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... Fluoride; Second Request for Comment on Proposed Order Granting Objections to Tolerances and Denying... on EPA's proposed resolution of objections and a stay request with regard to sulfuryl fluoride and fluoride tolerances promulgated in 2004 and 2005 under section 408(d) of the Federal Food, Drug, and...

  9. 77 FR 29341 - Protection of Stratospheric Ozone: Request for Methyl Bromide Critical Use Exemption Applications...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ...: Sulfuryl fluoride, propylene oxide (PPO), phosphine, and/or controlled atmosphere/temperature treatment... alternatives. Alternatives for which such information is needed include: Sulfuryl fluoride, micro-sanitation...

  10. Study of SF6 gas decomposition products based on spectroscopy technology

    NASA Astrophysics Data System (ADS)

    Cai, Ji-xing; Na, Yan-xiang; Ni, Wei-yuan; Li, Guo-wei; Feng, Ke-cheng; Song, Gui-cai

    2011-08-01

    With the rapid development of power industry, the number of SF6 electrical equipment are increasing, it has gradually replaced the traditional insulating oil material as insulation and arc media in the high-voltage electrical equipment. Pure SF6 gas has excellent insulating properties and arc characteristics; however, under the effect of the strong arc, SF6 gas will decompose and generate toxic substances, then corroding electrical equipment, thereby affecting the insulation and arc ability of electrical equipment. If excessive levels of impurities in the gas that will seriously affect the mechanical properties, breaking performance and electrical performance of electrical equipment, it will cause many serious consequences, even threaten the safe operation of the grid. This paper main analyzes the basic properties of SF6 gas and the basic situation of decomposition in the discharge conditions, in order to simulate the actual high-voltage electrical equipment, designed and produced a simulation device that can simulate the decomposition of SF6 gas under a high voltage discharge, and using fourier transform infrared spectroscopy to analyze the sample that produced by the simulation device. The result show that the main discharge decomposition product is SO2F2 (sulfuryl fluoride), the substance can react with water and generate corrosive H2SO4(sulfuric acid) and HF (hydrogen fluoride), also found that the increase in the number with the discharge, SO2F2concentration levels are on the rise. Therefore, the material can be used as one of the main characteristic gases to determine the SF6 electrical equipment failure, and to monitor their concentration levels.

  11. 40 CFR 180.575 - Sulfuryl fluoride; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., postharvest 0.1 Barley, pearled barley, postharvest 0.05 Cacao bean, roasted bean, postharvest 0.2 Cattle, meat, dried 0.01 Cheese 2.0 Coconut, postharvest 1.0 Coffee, bean, roasted bean, postharvest 1.0 Corn...

  12. 40 CFR 180.575 - Sulfuryl fluoride; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., postharvest 0.1 Barley, pearled barley, postharvest 0.05 Cacao bean, roasted bean, postharvest 0.2 Cattle, meat, dried 0.01 Cheese 2.0 Coconut, postharvest 1.0 Coffee, bean, roasted bean, postharvest 1.0 Corn...

  13. 40 CFR 180.575 - Sulfuryl fluoride; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., postharvest 0.1 Barley, pearled barley, postharvest 0.05 Cacao bean, roasted bean, postharvest 0.2 Cattle, meat, dried 0.01 Cheese 2.0 Coconut, postharvest 1.0 Coffee, bean, roasted bean, postharvest 1.0 Corn...

  14. 40 CFR 180.575 - Sulfuryl fluoride; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., postharvest 0.1 Barley, pearled barley, postharvest 0.05 Cacao bean, roasted bean, postharvest 0.2 Cattle, meat, dried 0.01 Cheese 2.0 Coconut, postharvest 1.0 Coffee, bean, roasted bean, postharvest 1.0 Corn...

  15. 40 CFR 180.575 - Sulfuryl fluoride; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., postharvest 0.1 Barley, pearled barley, postharvest 0.05 Cacao bean, roasted bean, postharvest 0.2 Cattle, meat, dried 0.01 Cheese 2.0 Coconut, postharvest 1.0 Coffee, bean, roasted bean, postharvest 1.0 Corn...

  16. NIOSH Manual of Analytical Methods (third edition). Fourth supplement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-08-15

    The NIOSH Manual of Analytical Methods, 3rd edition, was updated for the following chemicals: allyl-glycidyl-ether, 2-aminopyridine, aspartame, bromine, chlorine, n-butylamine, n-butyl-glycidyl-ether, carbon-dioxide, carbon-monoxide, chlorinated-camphene, chloroacetaldehyde, p-chlorophenol, crotonaldehyde, 1,1-dimethylhydrazine, dinitro-o-cresol, ethyl-acetate, ethyl-formate, ethylenimine, sodium-fluoride, hydrogen-fluoride, cryolite, sodium-hexafluoroaluminate, formic-acid, hexachlorobutadiene, hydrogen-cyanide, hydrogen-sulfide, isopropyl-acetate, isopropyl-ether, isopropyl-glycidyl-ether, lead, lead-oxide, maleic-anhydride, methyl-acetate, methyl-acrylate, methyl-tert-butyl ether, methyl-cellosolve-acetate, methylcyclohexanol, 4,4'-methylenedianiline, monomethylaniline, monomethylhydrazine, nitric-oxide, p-nitroaniline, phenyl-ether, phenyl-ether-biphenyl mixture, phenyl-glycidyl-ether, phenylhydrazine, phosphine, ronnel, sulfuryl-fluoride, talc, tributyl-phosphate, 1,1,2-trichloro-1,2,2-trifluoroethane, trimellitic-anhydride, triorthocresyl-phosphate, triphenyl-phosphate, and vinyl-acetate.

  17. Exposure of Brown Recluse and Brown Widow Spiders (Araneae: Sicariidae, Theridiidae) to a Commercial Sulfuryl Fluoride Fumigation.

    PubMed

    Vetter, Richard S; Hoddle, Mark S; Choe, Dong-Hwan; Thoms, Ellen

    2014-10-01

    The body of pesticide research on spiders is sparse with most studies using topical or residual applications to assess efficacy. Data on the effects of fumigation on spider survivorship are scarce in the scientific literature. In this study, we exposed adult male and female brown recluse spiders, Loxosceles reclusa Gertsch & Mulaik, and female brown widow spiders, Latrodectus geometricus C. L. Koch, to a commercial fumigation event using sulfuryl fluoride directed at termite control. General consensus from the pest control industry is that fumigation is not always effective for control of spiders for a variety of reasons, including insufficient fumigant dosage, particularly, for contents of egg sacs that require a higher fumigant dosage for control. We demonstrated that a sulfuryl fluoride fumigation with an accumulated dosage of 162 oz-h per 1,000 ft(3) at 21°C over 25 h (≈1.7 × the drywood termite dosage) directed at termites was sufficient to kill adult brown recluse and brown widow spiders. The effectiveness of commercial fumigation practices to control spiders, and particularly their egg sacs, warrants further study. © 2014 Entomological Society of America.

  18. Phosphine resistance does not confer cross-resistance to sulfuryl fluoride in four major stored grain insect pests.

    PubMed

    Jagadeesan, Rajeswaran; Nayak, Manoj K

    2017-07-01

    Susceptibility to phosphine (PH 3 ) and sulfuryl fluoride (SF) and cross-resistance to SF were evaluated in two life stages (eggs and adults) of key grain insect pests, Rhyzopertha dominca (F.), Sitophilus oryzae (L.), Cryptolestes ferrugineus (Stephens), and Tribolium castaneum (Herbst). This study was performed with an aim to integrate SF into phosphine resistance management programmes in Australia. Characterisation of susceptibility and resistance to phosphine in eggs and adults showed that C. ferrugineus was the most tolerant as well as resistant species. Mortality responses of eggs and adults to SF at 25 °C revealed T. castaneum to be the most tolerant species followed by S. oryzae, C. ferrugineus and R. dominica. A high dose range of SF, 50.8-62.2 mg L -1 over 48 h, representing c (concentration) × t (time) products of 2438-2985 gh m -3 , was required for complete control of eggs of T. castaneum, whereas eggs of the least tolerant R. dominca required only 630 gh m -3 for 48 h (13.13 mg L -1 ). Mortality response of eggs and adults of phosphine-resistant strains to SF in all four species confirmed the lack of cross-resistance to SF. Our research concludes that phosphine resistance does not confer cross-resistance to SF in grain insect pests irrespective of the variation in levels of tolerance to SF itself or resistance to phosphine in their egg and adult stages. While our study confirms that SF has potential as a 'phosphine resistance breaker', the observed higher tolerance in eggs stresses the importance of developing SF fumigation protocols with longer exposure periods. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Methoprene and control of stored-product insects

    USDA-ARS?s Scientific Manuscript database

    Estimated direct and indirect losses of grains and grain-based products caused by stored-product insects range from about 10% in temperate regions to almost 50% in humid tropical areas. Pest management strategies in bulk grains include the use of fumigants such as phosphine and sulfuryl fluoride, an...

  20. Effect of sulfuryl fluoride on the pinewood nematode in pine wood

    Treesearch

    L. David Dwinell; E. Thoms; S. Prabhakaran

    2003-01-01

    The pinewood nematode (PUTN) (Bursaphelenchus xylophilus), the causal agent of pine wilt disease, has been intercepted in pine chips, unseasoned pine lumber, and wood packing material (WPM). Likewise, the PWN's insect vectors, Monochamus spp. (pine sawyers), have been found in pallets, crates and dunnage. The PWN, which is...

  1. 76 FR 19001 - Sulfuryl Fluoride; Addendum to Proposed Order Granting Objections to Tolerances and Denying...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... consumer. Potentially affected entities may include, but are not limited to: Food manufacturing (NAICS code 311), e.g., grain and oilseed milling; animal food manufacturing; flour milling; bread and bakery product manufacturing; cookie, cracker, and pasta manufacturing; snack food manufacturing. Pesticide...

  2. Behaviorial and Toxicological Studies of the Drywood Termite, Cryptotermes brevis (Walker) (Kalotermitidae: Isoptera).

    DTIC Science & Technology

    the insecticides dieldrin, silica aerogel , dichlorovos and sulfuryl fluoride in control of drywood termite Cryptotermes brevis (Walker). Preference...concentrations were as low as 0.25%. Effective control concentrations should be at least or above 1%. Silica aerogel acts as an effective barrier against C. brevis

  3. Sulfuryl fluoride as a quarantine treatment for Chlorophorus annularis (Coleoptera: Cerambycidae) in Chinese bamboo poles.

    PubMed

    Yu, Daojian; Barak, Alan V; Jiao, Yi; Chen, Zhinan; Zhang, Guiming; Chen, Zhilin; Kang, Lin; Yang, Weidong

    2010-04-01

    Bamboo (genera Bambusa and Phyllstachys) is one of the fastest growing and economically important plants in the world, and it is cultivated widely throughout southern China. China annually exports to the United States significant quantities of bamboo garden stakes (Bambusa spp.). In recent years, Plant Protection and Quarantine officers of the U.S. Department of Agriculture-Animal and Plant Health Inspection Service have made numerous interceptions of the bamboo borer, Chlorophorus annularis Fairmaire (Coleoptera: Cerambycidae), in bamboo products from China. This species is considered to have high pest risk potential in the trade of bamboo products. As a fumigant, sulfuryl fluoride (SF) would be a practical alternative to methyl bromide (MeBr) fumigation. Here, we report the results of SF fumigation tests for C. annularis in bamboo poles at three doses--96 g/m3 at 15.9 degrees C, 80 g/m3 at 21.5 degrees C, and 64 g/m3 at 26.0 degrees C--in glass test chambers. Commercial standard fumigations were also conducted in a standard 6.1-m-long, 33.2-m3 (standard height, 20-feet) marine general cargo container loaded to 80% (vol:vol) with similar bamboo poles, and sufficient levels of SF were obtained during the 24-h fumigations. During the course of these tests, 2424 larvae, 90 pupae, and 23 adults in total were killed, with no survivors. A treatment schedule using SF is proposed for bamboo as an alternative to MeBr at several temperatures tested.

  4. Sodium fluoride and sulfur dioxide affected male reproduction by disturbing blood-testis barrier in mice.

    PubMed

    Zhang, Jianhai; Li, Zhihui; Qie, Mingli; Zheng, Ruibo; Shetty, Jagathpala; Wang, Jundong

    2016-08-01

    Fluoride and sulfur dioxide (SO2), two well-known environmental toxicants, have been implicated to have adverse effects on male reproductive health in humans and animals. The objective of this study to investigate if the BTB is one of the pathways that lead to reproductive toxicity of sodium fluoride and sulfur dioxide alone or in combination, in view of the key role of blood testis barrier (BTB) in testis. The results showed that a marked decrease in sperm quality, and altered morphology and ultrastructure of BTB in testis of mice exposure to fluoride (100 mg NaF/L in drinking water) or/and sulfur dioxide (28 mg SO2/m(3), 3 h/day). Meanwhile, the mRNA expression levels of some vital BTB-associated proteins, including occluding, claudin-11, ZO-1, Ncadherin, α-catenin, and connexin-43 were all strikingly reduced after NaF exposure, although only the reduction of DSG-2 was statistically significant in all treatment groups. Moreover, the proteins expressions also decreased significantly in claudin-11, N-cadherin, α-catenin, connexin-43 and desmoglein-2 in mice treated with fluoride and/or SO2. These changes in BTB structure and constitutive proteins may therefore be connected with the low sperm quality in these mice. The role of fluoride should deserves more attention in this process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. 76 FR 3421 - Sulfuryl Fluoride; Proposed Order Granting Objections to Tolerances and Denying Request for a Stay

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... Observed Adverse Effect Level NPDWR--National Public Drinking Water Regulations NRC--National Research... filed by the Objectors in June, 2006, following release of a report by the National Research Council... potential pre- and post-natal toxicity and completeness of the data with respect to exposure and toxicity to...

  6. Hydrogeochemical characterization of fluoride rich groundwater of Wailpalli watershed, Nalgonda District, Andhra Pradesh, India.

    PubMed

    Reddy, A G S; Reddy, D V; Rao, P N; Prasad, K Maruthy

    2010-12-01

    The groundwater of Nalgonda district is well known for its very high fluoride content for the past five decades. Many researchers have contributed their scientific knowledge to unravel causes for fluoride enrichment of groundwater. In the present paper, an attempt has been made to relate the high fluoride content in the groundwater to hydrogeochemical characterization of the water in a fracture hard rock terrain--the Wailpally watershed. Groundwater samples collected from all the major geomorphic units in pre- and post-monsoon seasons were analyzed for its major ion constituents such as Ca(2+), Mg(2+), Na(+), K(+), CO3-, HCO3-, Cl(-), SO4(-2), NO3-, and F(-). The groundwaters in the watershed have the average fluoride content of 2.79 mg/l in pre-monsoon and 2.83 mg/l in post-monsoon. Fluoride concentration in groundwater does not show perceptible change neither with time nor in space. The ionic dominance pattern is in the order of Na(+) > Ca(2+) > Mg(2+) > K(-) among cations and HCO3- Cl(-) > SO4(-2) NO3- F(-) among anions in pre-monsoon. In post-monsoon, Mg replaces Ca(2+) and NO3- takes the place of SO4(-2). The Modified Piper diagram reflect that the water belong to Ca(+2)-Mg(+2)-HCO3- to Na(+)-HCO3- facies. Negative chloralkali indices in both the seasons prove that ion exchange between Na(+) and K(+) in aquatic solution took place with Ca(+2) and Mg(+2) of host rock. The interpretation of plots for different major ions and molar ratios suggest that weathering of silicate rocks and water-rock interaction is responsible for major ion chemistry of groundwater in Wailpally watershed. Chemical characteristics and evolution of this fluoride-contaminated groundwater is akin to normal waters of other hard rock terrain; hence, it can be concluded that aquifer material play an important role in the contribution of fluoride in to the accompanying water. High fluoride content in groundwater can be attributed to the continuous water-rock interaction during the process of percolation with fluoride-bearing country rocks under arid, low precipitation, and high evapotranspiration conditions.

  7. Evaluation of structural treatment efficacy against Tribolium castaneum and Tribolium confusum (Coleoptera: Tenebrionidae) using meta-analysis of multiple studies conducted in food facilities

    USDA-ARS?s Scientific Manuscript database

    The phase out of methyl bromide for the treatment of structures where grain is milled and processed has triggered a need to evaluate the effectiveness of alternative structural treatments such as sulfuryl fluoride and heat. The red flour beetle (Tribolium castaneum (Herbst)) (RFB) and confused flour...

  8. Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin, northern China

    NASA Astrophysics Data System (ADS)

    Gao, Xubo; Wang, Yanxin; Li, Yilian; Guo, Qinghai

    2007-12-01

    Long-term intake of high-fluoride groundwater causes endemic fluorosis. This study, for the first time, discovered that the salt lake water intrusion into neighboring shallow aquifers might result in elevation of fluoride content of the groundwater. Two cross-sections along the groundwater flow paths were selected to study the geochemical processes controlling fluoride concentration in Yuncheng basin, northern China. There are two major reasons for the observed elevation of fluoride content: one is the direct contribution of the saline water; the other is the undersaturation of the groundwater with respect to fluorite due to salt water intrusion, which appears to be more important reason. The processes of the fluorine activity reduction and the change of Na/Ca ratio in groundwater induced by the intrusion of saline water favor further dissolution of fluorine-bearing mineral, and it was modeled using PHREEQC. With the increase in Na concentration (by adding NaCl or Na2SO4 as Na source, calcium content kept invariable), the increase of NaF concentration was rapid at first and then became slower; and the concentrations of HF, HF{2/-}, CaF+, and MgF+ were continuously decreasing. The geochemical conditions in the study area are advantageous to the complexation of F- with Na+ and the decline of saturation index of CaF2, regardless of the water type (Cl-Na or SO4-Na type water).

  9. The occurrence and hydrochemistry of fluoride and boron in carbonate aquifer system, central and western Estonia.

    PubMed

    Karro, Enn; Uppin, Marge

    2013-05-01

    Silurian-Ordovician (S-O) aquifer system is an important drinking water source of central and western Estonia. The fluoride and boron contents of groundwater in aquifer system vary considerably. The fluoride concentration in 60 collected groundwater samples ranged from 0.1 to 6.1 mg/l with a mean of 1.95 mg/l in the study area. Boron content in groundwater varied from 0.05 mg/l to 2.1 mg/l with a mean value of 0.66 mg/l. Considering the requirements of EU Directive 98/83/EC and the Estonian requirements for drinking water quality, the limit value for fluoride (1.5 mg/l) and for boron (1.0 mg/l) is exceeded in 47 and 28 % of wells, respectively. Groundwater with high fluoride and boron concentrations is found mainly in western Estonia and deeper portion of aquifer system, where groundwater chemical type is HCO3-Cl-Na-Mg-Ca, water is alkaline, and its Ca(2+) content is low. Groundwater of the study area is undersaturated with respect to fluorite and near to equilibrium phase with respect to calcite. The comparison of TDS versus Na/(Na + Ca) and Cl/(Cl + HCO3) points to the dominance of rock weathering as the main process, which promotes the availability of fluoride and boron in the groundwater. The geological sources of B in S-O aquifer system have not been studied so far, but the dissolution of fluorides from carbonate rocks (F = 100-400 mg/kg) and K-bentonites (F = 2,800-4,500 mg/kg) contributes to the formation of F-rich groundwater.

  10. Feasibility Study on a Process for Electroless Metal Deposition in Pits and Fissures of Teeth for Use in Preventive Dentistry.

    DTIC Science & Technology

    1980-08-01

    been used in topical fluoride solutions applied to prevent caries . The use of SnF 2 . and similar chemical compounds, in the plating process appears to...Methods Tin fluoride solutions are prepared by dissolving SnF 2 in demineralized water at concentrations of 1, 5, 5.7, and 10%. The pH ranges from...saturated FeSO4 with or without 1 gpl thiourea a. .4 34 REFERENCES 1. P. Gron, "Chemistry of Topical Fluorides ", Caries Res. 11 (Suppl. 1): 172-204

  11. Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources.

    PubMed

    Farooqi, Abida; Masuda, Harue; Firdous, Nousheen

    2007-02-01

    The present study is the first attempt to put forward possible sources of As, F- and SO4(2-) contaminated groundwater in the Kalalanwala area, Punjab, Pakistan. Five rainwater and 24 groundwater samples from three different depths were analyzed. Shallow groundwater from 24 to 27 m depth contained high F- (2.47-21.1mg/L), while the groundwater samples from the deeper depth were free from fluoride contamination. All groundwater samples contained high As (32-1900 microg/L), in excess of WHO drinking water standards. The SO4(2-) ranges from 110 to 1550 mg/L. Delta34S data indicate three sources for SO4(2-) air pollutants (5.5-5.7 per thousand), fertilizers (4.8 per thousand), and household waste (7.0 per thousand). Our important finding is the presence of SO4(2-), As and F- in rainwater, indicating the contribution of these elements from air pollution. We propose that pollutants originate, in part, from coal combusted at brick factories and were mobilized promotionally by the alkaline nature of the local groundwater.

  12. Geochemical and geostatistical appraisal of fluoride contamination: An insight into the Quaternary aquifer.

    PubMed

    Thapa, Raju; Gupta, Srimanta; Gupta, Arindam; Reddy, Dontireddy Venkat; Kaur, Harjeet

    2018-06-01

    Fluoride (F - ) in groundwater poses a severe public health threat in the Dwarka River Basin (DRB) of West Bengal, India, where many cases of fluorosis have been reported. This research evaluates the spatial distribution patterns of major cations and anions, delineates zones of high F - concentrations within alluvial sediments of the DRB, and identifies both the sources and the geochemical processes responsible for the release of F - to groundwater. A total of 607 groundwater samples were collected from shallow and deep tube wells located within the DRB, encompassing an area of 435 km 2 and including 211 villages. Fluoride levels range from 0.01 to 10.6 mg/L, and high concentrations (>1.5 mg/L) are restricted to isolated areas within the basin (occurring within nine of the villages and comprising 4.3% of the samples collected). The high-fluoride areas are characterized by mostly Na-HCO 3 type groundwater, where the abundance of cations and anions are Na +  > Ca 2+  > Mg 2+  > K + and HCO 3 -  > Cl -  > SO 4 2-  > F -  > NO 3 -  > Br - , respectively. Analyses of the groundwater geochemistry and sediment mineralogy suggest that fluoride is released to groundwater primarily through the hydrolysis of albite and biotite; however, the resulting alkaline conditions are also favorable for release of fluoride from weathered biotite and clay minerals through anion exchange (OH - in groundwater replacing F - within the mineral structure). Multiple linear regression models show that fluoride concentrations can be predicted from the measures of other dissolved constituents with a high degree of accuracy (R 2  = 0.96 for high fluoride samples and R 2  = 0.8 for low fluoride samples). Copyright © 2018. Published by Elsevier B.V.

  13. Enhancement of luminescence in white emitting strontium fluoride core @ calcium fluoride shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumam, Nandini; Singh, Ningthoujam Premananda; Singh, Laishram Priyobarta; Srivastava, Sri Krishna

    2015-09-01

    Synthesis of lanthanide-doped fluoride SrF2:3Dy and SrF2:3Dy@CaF2 nanoparticles with different ratios of core to shell (1:0.5, 1:1 and 1:2) has been carried out by employing ethylene glycol route. X-ray diffraction (XRD) patterns reveal that the structure of the prepared nanoparticles was of cubical shape, which is also evident in TEM images. The size of the nanoparticles for core (SrF2:3Dy) is found to increase when core is covered by shell (CaF2). It is also evident from Fourier transform infrared spectroscopy (FTIR) that ethylene glycol successfully controls the growth and acts as a shape modifier by regulating growth rate. In the photoluminescence investigation, emission spectra of SrF2:3Dy is found to be highly enhanced when SrF2:3Dy is covered by CaF2 due to the decrease of cross relaxation amongst the Dy3+-Dy3+ ions. Such type of enhancement of luminescence in homonanostructure SrF2:3Dy@CaF2 (core@shell) has not been studied so far, to the best of the authors' knowledge. This luminescent material exhibits prominently white light emitting properties as shown by the Commission Internationale d'Eclairage (CIE) chromaticity diagram. The calculated correlate colour temperature (CCT) values for SrF2:3Dy, SrF2:3Dy@CaF2 (1:0.05), SrF2:3Dy@CaF2 (1:1) and SrF2:3Dy@CaF2 (1:2) are 5475, 5476, 5384 and 5525 K, respectively, which lie in the cold white region.

  14. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE)

    NASA Astrophysics Data System (ADS)

    Prinn, Ronald G.; Weiss, Ray F.; Arduini, Jgor; Arnold, Tim; Langley DeWitt, H.; Fraser, Paul J.; Ganesan, Anita L.; Gasore, Jimmy; Harth, Christina M.; Hermansen, Ove; Kim, Jooil; Krummel, Paul B.; Li, Shanlan; Loh, Zoë M.; Lunder, Chris R.; Maione, Michela; Manning, Alistair J.; Miller, Ben R.; Mitrevski, Blagoj; Mühle, Jens; O'Doherty, Simon; Park, Sunyoung; Reimann, Stefan; Rigby, Matt; Saito, Takuya; Salameh, Peter K.; Schmidt, Roland; Simmonds, Peter G.; Steele, L. Paul; Vollmer, Martin K.; Wang, Ray H.; Yao, Bo; Yokouchi, Yoko; Young, Dickon; Zhou, Lingxi

    2018-06-01

    We present the organization, instrumentation, datasets, data interpretation, modeling, and accomplishments of the multinational global atmospheric measurement program AGAGE (Advanced Global Atmospheric Gases Experiment). AGAGE is distinguished by its capability to measure globally, at high frequency, and at multiple sites all the important species in the Montreal Protocol and all the important non-carbon-dioxide (non-CO2) gases assessed by the Intergovernmental Panel on Climate Change (CO2 is also measured at several sites). The scientific objectives of AGAGE are important in furthering our understanding of global chemical and climatic phenomena. They are the following: (1) to accurately measure the temporal and spatial distributions of anthropogenic gases that contribute the majority of reactive halogen to the stratosphere and/or are strong infrared absorbers (chlorocarbons, chlorofluorocarbons - CFCs, bromocarbons, hydrochlorofluorocarbons - HCFCs, hydrofluorocarbons - HFCs and polyfluorinated compounds (perfluorocarbons - PFCs), nitrogen trifluoride - NF3, sulfuryl fluoride - SO2F2, and sulfur hexafluoride - SF6) and use these measurements to determine the global rates of their emission and/or destruction (i.e., lifetimes); (2) to accurately measure the global distributions and temporal behaviors and determine the sources and sinks of non-CO2 biogenic-anthropogenic gases important to climate change and/or ozone depletion (methane - CH4, nitrous oxide - N2O, carbon monoxide - CO, molecular hydrogen - H2, methyl chloride - CH3Cl, and methyl bromide - CH3Br); (3) to identify new long-lived greenhouse and ozone-depleting gases (e.g., SO2F2, NF3, heavy PFCs (C4F10, C5F12, C6F14, C7F16, and C8F18) and hydrofluoroolefins (HFOs; e.g., CH2 = CFCF3) have been identified in AGAGE), initiate the real-time monitoring of these new gases, and reconstruct their past histories from AGAGE, air archive, and firn air measurements; (4) to determine the average concentrations and trends of tropospheric hydroxyl radicals (OH) from the rates of destruction of atmospheric trichloroethane (CH3CCl3), HFCs, and HCFCs and estimates of their emissions; (5) to determine from atmospheric observations and estimates of their destruction rates the magnitudes and distributions by region of surface sources and sinks of all measured gases; (6) to provide accurate data on the global accumulation of many of these trace gases that are used to test the synoptic-, regional-, and global-scale circulations predicted by three-dimensional models; and (7) to provide global and regional measurements of methane, carbon monoxide, and molecular hydrogen and estimates of hydroxyl levels to test primary atmospheric oxidation pathways at midlatitudes and the tropics. Network Information and Data Repository: http://agage.mit.edu/data or http://cdiac.ess-dive.lbl.gov/ndps/alegage.html (https://doi.org/10.3334/CDIAC/atg.db1001).

  15. Preparation of high density heavy metal fluoride glasses with extended ultraviolet and infra red ranges, and such high density heavy metal fluoride glasses

    NASA Technical Reports Server (NTRS)

    Martin, Steven W. (Inventor); Huebsch, Jesse (Inventor)

    2001-01-01

    A heavy metal fluoride glass composition range (in mol percent) consisting essentially of: (16-30)BaF.sub.2.(8-26)HfF.sub.4.(6-24)InF.sub.3 or GaF.sub.3.(4-16)CdF.sub.2.(6-24)YbF.sub.3.(4-22)ZnF.sub.2. In an alternative embodiment, a heavy metal fluoride glass composition range (in mol percent) comprises (16-30)BaF.sub.2.(8-26)HfF.sub.4.(6-24) of (0-24)InF.sub.3, (0-24)GaF.sub.3 and (0-19)AlF.sub.3.(1-16)CdF.sub.2.(6-24)YbF.sub.3.(4-26)ZnF.sub.2. A preferred heavy metal fluoride glass produced in accordance with the present invention comprises a composition (in mol %) and comprises about 26BaF.sub.2.18HfF.sub.4.7InF.sub.3.5GaF.sub.3.10CdF.sub.2.18YbF.sub.3. 16ZnF.sub.2. A preferred heavy metal fluoride glass has maximum thickness of most preferably about 3 mm. Another preferred heavy metal fluoride glass comprises a composition (in mol %) and comprises about 26BaF.sub.2.18HfF.sub.4.12AlF.sub.3.10CdF.sub.2.18YbF.sub.3.16ZnF.sub.2.

  16. Theoretical studies of the nucleophilic substitution of halides and amine at a sulfonyl center.

    PubMed

    Sung, Dae Dong; Kim, Tae Joon; Lee, Ikchoon

    2009-06-25

    Gas-phase nucleophilic substitution reactions, F(-) + CH(3)SO(2)F, Cl(-) + CH(3)SO(2)Cl, Cl(-) + CH(3)SO(2)F, and NH(3) + CH(3)SO(2)Cl, have been investigated at the B3LYP/6-311+G** and MP2/6-31+G* levels of theory. A very shallow well for the reaction intermediate in a triple-well potential energy surface (PES) was observed for the identity fluoride exchange, but double well PESs were obtained for the other three reactions with three different PES profiles. NBO analyses of the transition states showed substantial charge transfer interactions in all cases which provided a much larger amount of stabilization energy compared with the corresponding species at the carbon center of methyl halides. This difference is primarily caused by the strong electropositive nature of the sulfur center. The F-S-F axial linkage in the distorted TBP type intermediate in the identity fluoride exchange reaction exhibited a weak three-center, four-electron omega-bonding, which is considered to provide stability of the intermediate. All the reactant (RC) and product complexes (PC) have Cs symmetry. The symmetry plane bisects angles HCH (of methyl group), OSO (of sulfonyl group), and HNH (of ammonia). Vicinal charge transfer interactions between the two out-of-plane C-H, S-O, and N-H bonds provide extra stabilization to the ion-dipole complexes together with H-bond formation of in-plane H atom with the nucleophile and/or leaving group.

  17. Chromium chains as polydentate fluoride ligands for actinides and group IV metals.

    PubMed

    Leng, Ji-Dong; Kostopoulos, Andreas K; Isherwood, Liam H; Ariciu, Ana-Maria; Tuna, Floriana; Vitórica-Yrezábal, Iñigo J; Pritchard, Robin G; Whitehead, George F S; Timco, Grigore A; Mills, David P; Winpenny, Richard E P

    2018-05-08

    The reactions of {Cr6} horseshoe chains {[nPr2NH2]3[Cr6F11(O2CtBu)10]}2, 1 and precursors of actinides and group IV metals led to a series of ring complexes [nPr2NH2][Cr7TiF6O2(O2CtBu)16], 2, [nPr2NH2][Cr6Ti2F5O3(O2CtBu)16], 3, [Cr6ThF7(O2CtBu)15 (Me2SO)], 4, [(nPr2NH2)2(Cr6Th2F12(O2CtBu)16)], 5 and [nPr2NH2][Cr6U2O2F8(O2CtBu)16(Me2SO)], 6. X-ray structure studies indicate that the {Cr6} chains maintain their structures in these complexes, acting as polydentate fluoride ligands. Their static magnetic properties were measured and fitted by isotropic exchange Hamiltonian. In accordance with 1, the magnetic exchanges between CrIII are antiferromagnetic, while the exchange interactions can be modified by the tetravalent metals. For compound 6, ferromagnetic exchanges JCr-U and JU-U are obtained. EPR spectra of compounds 2-5 were measured at Q band and were simulated. The spectrum of 2 has the same profile as {Cr7Cd} and {Cr7Zn} rings with a ground state S = 3/2. 3, 4 and 5 give similar EPR spectra with S = 0 ground states.

  18. Fluoride geochemistry of thermal waters in Yellowstone National Park: I. Aqueous fluoride speciation

    USGS Publications Warehouse

    Deng, Y.; Nordstrom, D. Kirk; McCleskey, R. Blaine

    2011-01-01

    Thermal water samples from Yellowstone National Park (YNP) have a wide range of pH (1–10), temperature, and high concentrations of fluoride (up to 50 mg/l). High fluoride concentrations are found in waters with field pH higher than 6 (except those in Crater Hills) and temperatures higher than 50 °C based on data from more than 750 water samples covering most thermal areas in YNP from 1975 to 2008. In this study, more than 140 water samples from YNP collected in 2006–2009 were analyzed for free-fluoride activity by ion-selective electrode (ISE) method as an independent check on the reliability of fluoride speciation calculations. The free to total fluoride concentration ratio ranged from <1% at low pH values to >99% at high pH. The wide range in fluoride activity can be explained by strong complexing with H+ and Al3+ under acidic conditions and lack of complexing under basic conditions. Differences between the free-fluoride activities calculated with the WATEQ4F code and those measured by ISE were within 0.3–30% for more than 90% of samples at or above 10−6 molar, providing corroboration for chemical speciation models for a wide range of pH and chemistry of YNP thermal waters. Calculated speciation results show that free fluoride, F−, and major complexes (HF(aq)0">HF(aq)0, AlF2+, AlF2+">AlF2+and AlF30">AlF30) account for more than 95% of total fluoride. Occasionally, some complex species like AlF4-">AlF4-, FeF2+, FeF2+">FeF2+, MgF+ and BF2(OH)2-">BF2(OH)2- may comprise 1–10% when the concentrations of the appropriate components are high. According to the simulation results by PHREEQC and calculated results, the ratio of main fluoride species to total fluoride varies as a function of pH and the concentrations and ratios of F and Al.

  19. Efficacy of sulfuryl fluoride against the pinewood nematode, Bursaphelenchus xylophilus (Nematoda: Aphelenchidae), in Pinus pinaster boards.

    PubMed

    Bonifácio, Luís F; Sousa, Edmundo; Naves, Pedro; Inácio, Maria L; Henriques, Joana; Mota, Manuel; Barbosa, Pedro; Drinkall, Mike J; Buckley, Stanislas

    2014-01-01

    The pinewood nematode (PWN) Bursaphelenchus xylophilus is an important conifer disease worldwide. It is the direct cause of the death of millions of pines in south-east Asia (mainly Japan, China and Korea) and has been established in Portugal since 1999. The phasing out of methyl bromide has created an urgent need for alternative treatment of wood packaging materials. The effect of sulfuryl fluoride (SF), a broad-spectrum fumigant used to control insects, was tested in Pinus pinaster boards naturally infested by PWN. Boards were fumigated for 24 h at three different temperatures (15, 20 and 30 °C) with dosage ranges of 3169-4407, 1901-4051 and 1385-2141 gh m(-3) respectively. Treated wood was sampled for nematode identification and counting, before treatment and after 24 h, 72 h and 21 days. No survival was found in the 15 °C and 30 °C treatments, while at 20 °C the mortality ranged from 94.06 to 100%. Some reasons for the survival at 20 °C are presented. Results confirm SF to be an effective quarantine treatment for PWN at 15 and 30 °C. Further studies are needed to obtain the most effective dosage at 20 °C, and to determine the toxicity of SF fumigation on B. xylophilus at other temperatures, especially at 25 °C. © 2013 Society of Chemical Industry.

  20. No calcium-fluoride-like deposits detected in plaque shortly after a sodium fluoride mouthrinse.

    PubMed

    Vogel, G L; Tenuta, L M A; Schumacher, G E; Chow, L C

    2010-01-01

    Plaque 'calcium-fluoride-like' (CaF(2)-like) and fluoride deposits held by biological/bacterial calcium fluoride (Ca-F) bonds appear to be the source of cariostatic concentrations of fluoride in plaque fluid. The aim of this study was to quantify the amounts of plaque fluoride held in these reservoirs after a sodium fluoride rinse. 30 and 60 min after a 228 microg/g fluoride rinse, plaque samples were collected from 11 volunteers. Each sample was homogenized, split into 2 aliquots (aliquots 1 and 2), centrifuged, and the recovered plaque fluid combined and analyzed using microelectrodes. The plaque mass from aliquot 1 was retained. The plaque mass from aliquot 2 was extracted several times with a solution having the same fluoride, calcium and pH as the plaque fluid in order to extract the plaque CaF(2)-like deposits. The total fluoride in both aliquots was then determined. In a second experiment, the extraction completeness was examined by applying the above procedure to in vitro precipitates containing known amounts of CaF(2)-like deposits. Nearly identical fluoride concentrations were found in both plaque aliquots. The extraction of the CaF(2)-like precipitates formed in vitro removed more than 80% of these deposits. The results suggest that either CaF(2)-like deposits were not formed in plaque or, if these deposits had been formed, they were rapidly lost. The inability to form persistent amounts of CaF(2)-like deposits in plaque may account for the relatively rapid loss of plaque fluid fluoride after the use of conventional fluoride dentifrices or rinses. (c) 2010 S. Karger AG, Basel.

  1. No Calcium-Fluoride-Like Deposits Detected in Plaque Shortly after a Sodium Fluoride Mouthrinse

    PubMed Central

    Vogel, G.L.; Tenuta, L.M.A.; Schumacher, G.E.; Chow, L.C.

    2010-01-01

    Plaque ‘calcium-fluoride-like’ (CaF2-like) and fluoride deposits held by biological/bacterial calcium fluoride (Ca-F) bonds appear to be the source of cariostatic concentrations of fluoride in plaque fluid. The aim of this study was to quantify the amounts of plaque fluoride held in these reservoirs after a sodium fluoride rinse. 30 and 60 min after a 228 μg/g fluoride rinse, plaque samples were collected from 11 volunteers. Each sample was homogenized, split into 2 aliquots (aliquots 1 and 2), centrifuged, and the recovered plaque fluid combined and analyzed using microelectrodes. The plaque mass from aliquot 1 was retained. The plaque mass from aliquot 2 was extracted several times with a solution having the same fluoride, calcium and pH as the plaque fluid in order to extract the plaque CaF2-like deposits. The total fluoride in both aliquots was then determined. In a second experiment, the extraction completeness was examined by applying the above procedure to in vitro precipitates containing known amounts of CaF2-like deposits. Nearly identical fluoride concentrations were found in both plaque aliquots. The extraction of the CaF2-like precipitates formed in vitro removed more than 80% of these deposits. The results suggest that either CaF2-like deposits were not formed in plaque or, if these deposits had been formed, they were rapidly lost. The inability to form persistent amounts of CaF2-like deposits in plaque may account for the relatively rapid loss of plaque fluid fluoride after the use of conventional fluoride dentifrices or rinses. PMID:20185917

  2. Comparison of the toxicity of fluoridation compounds in the nematode Caenorhabditis elegans.

    PubMed

    Rice, Julie R; Boyd, Windy A; Chandra, Dave; Smith, Marjolein V; Den Besten, Pamela K; Freedman, Jonathan H

    2014-01-01

    Fluorides are commonly added to drinking water in the United States to decrease the incidence of dental caries. Silicofluorides, such as sodium hexafluorosilicate (Na2 SiF6 ) and fluorosilicic acid (H2 SiF6 ), are mainly used for fluoridation, although fluoride salts such as sodium fluoride (NaF) are also used. Interestingly, only the toxicity of NaF has been examined and not that of the more often used silicofluorides. In the present study, the toxicities of NaF, Na2 SiF6 , and H2 SiF6 were compared. The toxicity of these fluorides on the growth, feeding, and reproduction in the alternative toxicological testing organism Caenorhabditis elegans was examined. Exposure to these compounds produced classic concentration-response toxicity profiles. Although the effects of the fluoride compounds varied among the 3 biological endpoints, no differences were found between the 3 compounds, relative to the fluoride ion concentration, in any of the assays. This suggests that silicofluorides have similar toxicity to NaF. © 2013 SETAC.

  3. Chemical Ignition of Flame Throwers

    DTIC Science & Technology

    1944-04-20

    fluorinating agents such as fluorine, antimony penta- fluoride, oxygen fluoride or bromine and chlorine trifluoride mixtures be evaluated. The use...0F2), and bromine and chlorine trifluoride mixtures (BrF3-ClF3). Oxygen fluoride, a gas boiling at -l67°C., has the interesting property of being...ShFc), oxygen fluoride (0F2), and bromine and chlorine fluoride mixtures (BrF3-ClFsJ. Oxygen fluoride Is stable In the presence of moisture. 4

  4. Fluoride Binding to Dental Biofilm Bacteria: Synergistic Effect with Calcium Questioned.

    PubMed

    Nóbrega, Diego Figueiredo; Leitão, Tarcísio Jorge; Cury, Jaime Aparecido; Tenuta, Livia Maria Andaló

    2018-06-06

    It has been suggested that fluoride binding to dental biofilm is enhanced when more bacterial calcium binding sites are available. However, this was only observed at high calcium and fluoride concentrations (i.e., when CaF2 precipitation may have occurred). We assessed fluoride binding to Streptococcus mutans pellets treated with calcium and fluoride at concentrations allowing CaF2 precipitation or not. Increasing calcium concentration resulted in a linear increase (p < 0.01) in fluoride concentration only in the pellets in which CaF2 precipitated. The results suggest that CaF2 precipitation, rather than bacterially bound fluoride, is responsible for the increase in fluoride binding to dental biofilm with the increase in calcium availability. © 2018 S. Karger AG, Basel.

  5. Fluoride glass compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Bayoumi, O.

    1983-08-09

    This invention relates to Fluoride-based glasses that exhibit a high degree of transparency throughout the near ultraviolet visible and mid infrared portions of the spectrum. The glasses are composed of MgF2 and ZnF2 as essential compositional ingredients together with at least two other metallic fluorides from the group of YbF3, ThF4, PbF2, A1F3 and MnF2.

  6. Fluoride rinse effect on retention of CaF2 formed on enamel/dentine by fluoride application.

    PubMed

    Falcão, Amanda; Masson, Nadia; Leitão, Tarcísio Jorge; Botelho, Juliana Nunes; Ferreira-Nóbilo, Naiara de Paula; Tabchoury, Cínthia Pereira Machado; Tenuta, Livia Maria Andaló; Cury, Jaime Aparecido

    2016-01-01

    Calcium fluoride-like materials ("CaF2") formed on dental surfaces after professional fluoride application are unstable in the oral environment but can be retained longer with a daily NaF mouthrinse. We tested the effect of twice daily 0.05% NaF rinses on the retention of "CaF2" formed on enamel and dentine after applying acidulated phosphate fluoride (APF). "CaF2" formed on enamel/dentine by APF application significantly decreased after exposure to artificial saliva and the 0.05% NaF rinse was ineffective to avoid this reduction. These findings suggest that the combination of APF and 0.05% NaF is not clinically relevant, either for caries or dental hypersensitivity.

  7. Investigation of magnesium fluoride crystals for imaging acousto-optic tunable filter applications.

    PubMed

    Voloshinov, Vitaly B; Gupta, Neelam

    2006-05-01

    Results of an investigation of acousto-optic (AO) cells using single crystals of magnesium fluoride (MgF2) are presented. Two acousto-optic tunable filter (AOTF) cells for imaging application have been designed and tested in the visible and ultraviolet (UV) regions of the spectrum from 190 to 490 nm. The two imaging filters were developed by using the wide-angle AO interaction geometry in the (010) and (11 0) planes of the crystal. These filters were used to obtain spectral images at the shortest wavelengths achieved so far. Advantages and drawbacks of this crystal are discussed and photoelastic, acoustic, and AO properties of MgF2 are examined. The investigation confirmed that MgF2-based AOTF cells can be used in the deep UV region up to 110 nm.

  8. Particle Morphology Effects on Flow Characteristics of PS304 Plasma Spray Coating Feedstock Powder Blend

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; DellaCorte, Christopher; Eylon, Daniel

    2002-01-01

    The effects of BaF2-CaF 2 particle morphology on PS304 feedstock powder flow ability have been investigated. BaF2-CaF2 eutectic powders were fabricated by comminution (angular) and by gas atomization (spherical). The fluoride powders were added incrementally to the other powder constituents of the PS304 feedstock: nichrome, chromia, and silver powders. A linear relationship between flow time and concentration of BaF2-CaF2 powder was found. Flow of the powder blend with spherical BaF2-CaF2 was better than the angular BaF2-CaF2. Flow ability of the powder blend with angular fluorides decreased linearly with increasing fluoride concentration. Flow of the powder blend with spherical fluorides was independent of fluoride concentration. Results suggest that for this material blend, particle morphology plays a significant role in powder blend flow behavior, offering potential methods to improve powder flow ability and enhance the commercial potential. These findings may have applicability to other difficult-to-flow powders such as cohesive ceramics.

  9. Fluoride varnishes containing calcium glycerophosphate: fluoride uptake and the effect on in vitro enamel erosion.

    PubMed

    Carvalho, Thiago S; Bönecker, Marcelo; Altenburger, Markus J; Buzalaf, Marília A R; Sampaio, Fabio C; Lussi, Adrian

    2015-07-01

    Calcium glycerophosphate (CaGP) was added to fluoride varnishes to analyze their preventive effect on initial enamel erosion and fluoride uptake: potassium hydroxide (KOH)-soluble and KOH-insoluble fluoride bound to enamel. This study was carried out in two parts. Part 1: 108 enamel samples were randomly distributed into six varnish groups: base varnish (no active ingredients); Duraphat® (2.26%NaF); Duofluorid® (5.63%NaF/CaF2); experimental varnish 1 (1%CaGP/5.63 NaF/CaF2); experimental varnish 2 (5%CaGP/5.63%NaF/CaF2); and no varnish. Cyclic demineralization (90 s; citric acid, pH = 3.6) and remineralization (4 h) was made once a day, for 3 days. Change in surface microhardness (SMH) was measured. Part 2: 60 enamel samples were cut in half and received no varnish (control) or a layer of varnish: Duraphat®, Duofluorid®, experimental varnishes 1 and 2. Then, KOH-soluble and KOH-insoluble fluoride were analyzed using an electrode. After cyclic demineralization, SMH decreased in all samples, but Duraphat® caused less hardness loss. No difference was observed between varnishes containing CaGP and the other varnishes. Similar amounts of KOH-soluble and insoluble fluoride was found in experimental varnish 1 and Duofluorid®, while lower values were found for experimental varnish 2 and Duraphat®. The addition of CaGP to fluoride varnishes did not increase fluoride bound to enamel and did not enhance their protection against initial enamel erosion. We observe that the fluoride varnishes containing CaGP do not promote greater amounts of fluoride bound to enamel and that fluoride bound to enamel may not be closely related to erosion prevention.

  10. Hydrometallurgical Separation of Niobium and Tantalum: A Fundamental Approach

    NASA Astrophysics Data System (ADS)

    Nete, Motlalepula; Purcell, Walter; Nel, Johann T.

    2016-02-01

    A mixture of pure Ta2O5 and Nb2O5 was dissolved using two different fluxes, namely NH4F·HF and Na2HPO4/NaH2PO4·H2O. Selective precipitation and ion exchange were used as separation techniques. Selective precipitation using p-phenylediamine in a fluoride matrix resulted in the isolation of 73(3)% tantalum accompanied by 23(5)% niobium. A separation factor of 11(4) was obtained. A single solvent extraction step using methyl-isobutyl ketone at a 4 M H2SO4 yielded excellent Ta and Nb separation in the fluoride solution with 80% of the Ta and only 2% Nb recovered in the organic layer. A two-step extraction recovered 100% Ta at 0.5-4 M H2SO4 with a separation factor of ~2000. A study of the extraction mechanism indicated that the stability of the protonated compounds such as H2TaF7/H2NbOF5 is in the extraction and separation determining steps in this process. A K' (double de-protonated constant) of approximately 0.2 was calculated for H2TaF7. Only 91.7% Nb and 73.4% Ta were recovered from anion separation using strong Amberlite resin and 96.1% Nb and 52.3% using the weak Dowex Marathon resin from fluoride dissolution.

  11. Possible Roles of Fluoride and Carbonate in Biochemical Carbonated Apatite Formation

    NASA Astrophysics Data System (ADS)

    Meouch, Orysia; Omelon, Sidney

    2016-04-01

    Marine phosphorites are predominantly composed of carbonated fluorapatite (CFA = Ca10-a-b-cNaaMgb(PO4)6-x(CO3)x-y-z(CO3.F)y(SO4)zF2, where x=y+a+2c, and c represents the number of Ca vacancies, with a P2O5 content that ranges from 18-40 %. Sulphur-oxidizing bacteria of the Beggiatoa genus concentration phosphorous as intracellular polyphosphate ((PO3-)n) which is depolymerized into inorganic orthophosphate (Pi). Consequently, an increase in pore water Pi concentration favours carbonated apatite precipitation. The carbonate and fluoride that is characteristic of phosphorite CFA is also located in the vertebrate skeleton. This similarity suggests a biochemical pathway for CFA precipitation. Preliminary Raman spectroscopy and powder x-ray diffraction results that suggest a role for fluoride, and possibly carbonate, in the biochemical depolymerisation of polyphosphates with alkaline phosphatase will be presented.

  12. Safety Testing of Lithium (Sulfur Dioxide) Battery for Expendable, Mobile, ASW Training Target (EMATT)

    DTIC Science & Technology

    1988-12-01

    Projict (0704.0115), YlissiengtOn, DC ;(1503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REOTTYPE AN) DATES COVERED 4. TITLE AND SUBTITLE 1...EXPENDABLE, MOBILE, ASW TRAINING TARGET (EMATT) 1-1 NSWC TR 88-254 The EMATT unit was first designed to use a lithium/sulfuryl chloride (Li/SO2 CI 2 ) "DD...in Table 3-1. Short Circuit Test The battery was shorted by the use of a remotely controlled relay. The relay, rated at 100 amp 250V, was employed

  13. Fluoride gastrointestinal absorption from Na2FPO3/CaCO3- and NaF/SiO2-based toothpastes.

    PubMed

    Falcão, A; Tenuta, L M A; Cury, J A

    2013-01-01

    Depending on toothpaste formulation, part of the fluoride is insoluble and would not be totally absorbable in the gastrointestinal tract, thus changing dental fluorosis risk estimation. This hypothesis was tested with formulations with either all fluoride in a soluble form (NaF/SiO2-based toothpaste, 1,100 µg F/g as labeled, 1,129.7 ± 49.4 µg F/g soluble fluoride as analyzed) or with around 20% of insoluble fluoride (Na2FPO3/CaCO3-based toothpaste, 1,450 µg F/g as labeled, 1,122.4 ± 76.4 µg F/g soluble fluoride as analyzed). Toothpastes were evaluated either fresh or after accelerated aging, which increased insoluble fluoride to 40% in the Na2FPO3/CaCO3-based toothpaste. In a blind, crossover clinical trial conducted in five legs, 20 adult volunteers ingested 49.5 µg of total fluoride/kg body weight from each formulation or purified water (control). Whole saliva and urine were collected as bioavailability indicators, and pharmacokinetics parameters calculated showed significantly (p < 0.05) lower fluoride bioavailability for Na2FPO3/CaCO3 toothpaste, which was reduced further after aging. A significant correlation between the amount of soluble fluoride ingested, but not total fluoride, and fluoride bioavailability was found (r = 0.57, p < 0.0001). The findings suggest that the estimated fluorosis risk as a result of ingestion of Na2FPO3/CaCO3-based toothpastes should be calculated based on the toothpaste's soluble rather than total fluoride concentration. Copyright © 2012 S. Karger AG, Basel.

  14. FLUORIDATION CHEMISTRY: EQUILIBRIA AND KINETICS OF FLUORIDE AND FLUORO-COMPLEXES

    EPA Science Inventory

    The most common fluoridating agents used by major American waterworks are hexafluorosilicic acid (H2SiF6) and sodium hexxafluorosilicate (Na2SiF6). According to the 1992 Water Fluoridation Census where 10,002 utilities responded affirmatively to fluoridating their water, 59
    % ...

  15. Influence of the Relative Enamel Abrasivity (REA) of Toothpastes on the Uptake of KOH-soluble and Structurally Bound Fluoride.

    PubMed

    Elmazi, Valbona; Sener, Beatrice; Attin, Thomas; Imfeld, Thomas; Wegehaupt, Florian J

    2015-01-01

    To determine the influence of the relative enamel abrasivity (REA) of fluoridated toothpaste on the uptake of KOH-soluble and structurally bound fluoride into enamel. Bovine enamel samples were randomly allocated to 6 groups (n=36 per group). Groups A to C were treated with sodium fluoride (NaF) toothpastes and groups D to F with amine fluoride (AmF) toothpastes (1500 ppm F each). The REA in groups A and D was 2, in groups B and E it was 6 and in groups C and F it was 9. Twice a day, 18 samples of each group were immersed for 2 min in a slurry (toothpaste:artificial saliva=1:3), while the remaining samples were brushed with the respective slurry (2.5 N force; 60 strokes/min; 2 min). All samples were stored at 37°C and 100% humidity. After five days, the amount of KOH-soluble and structurally bound fluoride was determined and statistically compared by Scheffe's post-hoc tests. REA value and mode of application (immersion or brushing) had no significant influence on the amount of either kind of fluoride from NaF toothpastes. Only for the NaF toothpaste with REA 6 was the amount of KOH-soluble fluoride significantly higher after brushing. With AmF toothpastes, KOH-soluble and structurally bound fluoride concentrations were significantly higher when the samples were brushed. Furthermore, in the REA-2 group, the amounts of KOH-soluble fluoride (brushed or immersed) and structurally bound fluoride (brushed) were significantly higher than in the other groups. The REA dependency of KOH-soluble and structurally bound fluoride was found only for the AmF toothpastes. Using AmF toothpaste, the mode of application influenced the uptake of KOH-soluble and structurally bound fluoride into enamel.

  16. Sol-Gel-Synthesis of Nanoscopic Complex Metal Fluorides

    PubMed Central

    Rehmer, Alexander; Scheurell, Kerstin; Scholz, Gudrun; Kemnitz, Erhard

    2017-01-01

    The fluorolytic sol-gel synthesis for binary metal fluorides (AlF3, CaF2, MgF2) has been extended to ternary and quaternary alkaline earth metal fluorides (CaAlF5, Ca2AlF7, LiMgAlF6). The formation and crystallization of nanoscopic ternary CaAlF5 and Ca2AlF7 sols in ethanol were studied by 19F liquid and solid state NMR (nuclear magnetic resonance) spectroscopy, as well as transmission electron microscopy (TEM). The crystalline phases of the annealed CaAlF5, Ca2AlF7, and LiMgAlF6 xerogels between 500 and 700 °C could be determined by X-ray powder diffraction (XRD) and 19F solid state NMR spectroscopy. The thermal behavior of un-annealed nanoscopic ternary and quaternary metal fluoride xerogels was ascertained by thermal analysis (TG/DTA). The obtained crystalline phases of CaAlF5 and Ca2AlF7 derived from non-aqueous sol-gel process were compared to crystalline phases from the literature. The corresponding nanoscopic complex metal fluoride could provide a new approach in ceramic and luminescence applications. PMID:29099086

  17. The effects of sodium fluoride and stannous fluoride on the surface roughness of intraoral magnet systems.

    PubMed

    Obatake, R M; Collard, S M; Martin, J; Ladd, G D

    1991-10-01

    Four types of intraoral magnets used for retention of overdentures and maxillofacial prostheses were exposed in vitro to SnF2 and NaF to determine the effects of fluoride rinses on surface roughness. The surface roughness (Ra) was measured, after simulated 1, 2, and 5 years' clinical exposure to fluoride (31, 62, and 155 hours). The mean change in Ra was calculated for each period of simulated exposure to fluoride for each magnet type. Two-way ANOVA was used to compare mean change in Ra between magnets within fluorides, and between fluorides within magnets. Paired t tests were used to compare mean change in Ra within fluorides within magnets. The mean change in Ra increased for all magnets after simulated 1, 2, and 5 years of exposure to SnF2 and NaF (p less than 0.03). Using the change in Ra as an indicator for corrosion, PdCo encapsulated SmCo5 magnets and their keepers demonstrated the least corrosion with either fluoride.

  18. Effect of various rinsing protocols after use of amine fluoride/stannous fluoride toothpaste on the bacterial composition of dental plaque.

    PubMed

    van Loveren, C; Gerardu, V A M; Sissons, C H; van Bekkum, M; ten Cate, J M

    2009-01-01

    This clinical study evaluated the effect of different oral hygiene protocols on the bacterial composition of dental plaque. After a 2-week period of using fluoride-free toothpaste, 30 participants followed three 1-week experimental protocols, each followed by 2-week fluoride-free washout periods in a randomized crossover examiner-blind controlled trial. The 1-week experimental protocols comprised the use of AmF/SnF(2) toothpaste twice daily, after which participants either (1) rinsed with tap water, (2) did not rinse but only spat out the toothpaste, or (3) rinsed with an AmF/SnF(2) mouthwash. In the fluoride-free washout periods, the participants brushed their teeth with fluoride-free toothpaste without further instructions. Six hours after the last brushing (+/- rinsing) of each period, buccal plaque samples in the upper molar region were taken. The microbiota composition of the plaque samples was analyzed by checkerboard DNA:DNA hybridization. A statistically significant reduction was found in the total amount of DNA of the 39 major plaque species measured, and in the proportions of some acid-producing bacterial strains after the period having used the AmF/SnF(2) toothpaste + AmF/SnF(2) mouthrinsing. The results indicate that using the AmF/SnF(2) toothpaste and rinse combination could result in plaque of lower cariogenicity. Copyright 2009 S. Karger AG, Basel.

  19. Synthesis of Actinide Fluoride Complexes Using Trimethyltin Fluoride as a Mild and Selective Fluorinating Reagent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, Benjamin D.; Lichtscheidl, Alejandro G.; Erickson, Karla A.

    Trimethyltin fluoride (Me₃SnF) is a mild and selective reagent for the installation of actinide fluoride bonds as demonstrated by the room temperature synthesis of a variety of organometallic and inorganic thorium(IV), uranium(IV), and uranium(V) fluoride complexes ((1,2,4-tBu₃C₅H₂)₂ThF₂, (C₅Me₅)₂U(F)(O-2,6-iPr₂C₆H₃), U(F)(O-2,6-tBu₂C₆H₃)₃, U(F)[N(SiMe₃)₂]₃ (C₅Me₅)₂UF₂(L) (L = O=PMe₃, O=PPh₃, O=PCy₃), and (C₅Me₅)₂U(F)(=N-2,6-iPr₂C₆H₃)) from their corresponding chloride, bromide, and iodide analogues. From these reactions, the new (C₅Me₅)₂UF₂(L) (L = O=PPh₃, O=PCy₃) uranium fluoride complexes were isolated and characterized by NMR spectroscopy and X-ray crystallography.

  20. Synthesis of Actinide Fluoride Complexes Using Trimethyltin Fluoride as a Mild and Selective Fluorinating Reagent

    DOE PAGES

    Kagan, Benjamin D.; Lichtscheidl, Alejandro G.; Erickson, Karla A.; ...

    2017-11-07

    Trimethyltin fluoride (Me₃SnF) is a mild and selective reagent for the installation of actinide fluoride bonds as demonstrated by the room temperature synthesis of a variety of organometallic and inorganic thorium(IV), uranium(IV), and uranium(V) fluoride complexes ((1,2,4-tBu₃C₅H₂)₂ThF₂, (C₅Me₅)₂U(F)(O-2,6-iPr₂C₆H₃), U(F)(O-2,6-tBu₂C₆H₃)₃, U(F)[N(SiMe₃)₂]₃ (C₅Me₅)₂UF₂(L) (L = O=PMe₃, O=PPh₃, O=PCy₃), and (C₅Me₅)₂U(F)(=N-2,6-iPr₂C₆H₃)) from their corresponding chloride, bromide, and iodide analogues. From these reactions, the new (C₅Me₅)₂UF₂(L) (L = O=PPh₃, O=PCy₃) uranium fluoride complexes were isolated and characterized by NMR spectroscopy and X-ray crystallography.

  1. Synthesis and thermoluminescence characteristics of γ-irradiated K3Ca2(SO4)3F:Eu or Ce fluoride

    NASA Astrophysics Data System (ADS)

    Poddar, Anuradha; Gedam, S. C.; Dhoble, S. J.

    2015-05-01

    New halophosphor K3Ca2(SO4)3F activated by Eu and Ce has been synthesized by a co-precipitation method and characterized according to its thermoluminescence. The formation of traps in rare earth doped K3Ca2(SO4)3F and the effects of γ-radiation dose on the glow curve are discussed. The glow curve of K3Ca2(SO4)3F:Ce shows a prominent single peak at 150°C, whereas K3Ca2(SO4)3F:Eu and K3Ca2(SO4)3F:Ce,Eu at 142°C and 192°C, respectively. A single glow peak indicates that there is only one set of trap being activated within the particular temperature range. The presented phosphors are also studied because of its fading, reusability and trapping parameters. There was just 2% fading during a period of 10 days, indicating no serious fading problem. Trapping parameters such as order of kinetics (b), activation energy (E) and frequency factor (S) were calculated by using Chen's half-width method. The observations presented in this paper are good for lamp phosphors as well as solid-state dosimeter.

  2. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    DOEpatents

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  3. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties

    NASA Astrophysics Data System (ADS)

    Liu, Fanfan; Zhou, Aiguo; Chen, Jinfeng; Jia, Jin; Zhou, Weijia; Wang, Libo; Hu, Qianku

    2017-09-01

    Here we reported the preparation of Ti3C2 MXene and Ti2C MXene by etching Ti3AlC2 and Ti2AlC with various fluoride salts in hydrochloric acid (HCl), including lithium fluoride (LiF), sodium fluoride (NaF), potassium fluoride (KF), and ammonium fluoride (NH4F). As-prepared Ti2C was further delaminated by urea, dimethylsulfoxide or ammonium hydroxide. Based on theoretical calculation and XPS results, the type of positive ions (Li+, Na+, K+, or NH4+) in etchant solution affect the surface structure of prepared MXene, which, in turn, affects the methane adsorption properties of MXene. The highest methane adsorption capacity is 8.5 cm3/g for Ti3C2 and 11.6 cm3/g for Ti2C. MXenes made from LiF and NH4F can absorb methane under high pressure and can keep methane under normal pressure, these MXenes may have important application on capturing methane or other hazardous gas molecules. MXenes made from NaF and KF can absorb methane under high pressure and release methane under low pressure. They can have important application in the adsorb storage of nature gas.

  4. Risk Assessment Study of Fluoride Salts: Probability-Impact Matrix of Renal and Hepatic Toxicity Markers.

    PubMed

    Usuda, Kan; Ueno, Takaaki; Ito, Yuichi; Dote, Tomotaro; Yokoyama, Hirotaka; Kono, Koichi; Tamaki, Junko

    2016-09-01

    The present risk assessment study of fluoride salts was conducted by oral administration of three different doses of sodium and potassium fluorides (NaF, KF) and zinc fluoride tetrahydrate (ZnF2 •4H2O) to male Wistar rats. The rats were divided into control and nine experimental groups, to which oral injections of 0.5 mL distilled water and 0.5 mL of fluoride solutions, respectively, were given. The dosage of fluoride compounds was adjusted to contain 2.1 mg (low-dose group, LG), 4.3 mg (mid-dose group, MG), and 5.4 mg fluoride per 200 g rat body weight (high-dose group, HG) corresponding to 5, 10, and 12.5 % of LD50 values for NaF. The 24-h urine volume, N-acetyl-β-D-glucosaminidase (NAG) and creatinine clearance (Ccr) were measured as markers of possible acute renal impact. The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined in serum samples as markers of acute hepatic impact. The levels of serum and urinary fluoride were determined to evaluate fluoride bioavailability. The results reveal that higher doses of NaF, KF, and ZnF2 induced renal damage as indicated by higher urinary NAG (p < 0.05 with ≥90th percentile of control). High doses of ZnF2 also induced a significant Ccr decrease (p < 0.05 with ≤10th percentile of control). Low doses of NaF and mid-doses of ZnF2 induced polyuria (p < 0.05 with ≥90th percentile of control) while medium doses of NaF and low doses of KF also induced liver damage, as indicated by a high level of AST (p < 0.05 with ≥90th percentile of control). These findings suggest that oral administration of fluoride is a potential, dose-dependent risk factor of renal tubular damage.

  5. Mechanochemical synthesis, structure and properties of lead containing alkaline earth metal fluoride solid solutions MxPb1-xF2 (M = Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Heise, M.; Scholz, G.; Düvel, A.; Heitjans, P.; Kemnitz, E.

    2018-03-01

    The paper deals with the mechanochemical synthesis of lead containing alkaline earth metal fluoride solid solutions MxPb1-xF2 (M = Ca, Sr, Ba) by high-energy ball milling. Several metal precursors and fluorinating agents were tested for synthesizing M0.5Pb0.5F2. Metal acetates and ammonium fluoride as precursors show the most promising results and were therefore used for the formation of MxPb1-xF2 with different metal cationic ratios. The characterization of the local fluorine coordination and the crystal structure was performed by 19F MAS NMR spectroscopy and X-ray diffraction. Additional calculations of 19F chemical shifts using the superposition model allow a deeper insight into the local structure of the compounds. The fluoride ion conductivity was followed by temperature dependent DC conductivity measurements. Significantly higher conductivities were found in comparison with those of the corresponding binary fluorides. The highest values were observed for samples with high lead content M0.25Pb0.75F2, bearing in mind the much higher conductivity of PbF2 compared to MF2.

  6. Groundwater arsenic and fluoride in Rajnandgaon District, Chhattisgarh, northeastern India

    NASA Astrophysics Data System (ADS)

    Patel, Khageshwar Singh; Sahu, Bharat Lal; Dahariya, Nohar Singh; Bhatia, Amarpreet; Patel, Raj Kishore; Matini, Laurent; Sracek, Ondra; Bhattacharya, Prosun

    2017-07-01

    The groundwater of Ambagarh Chouki, Rajnandgaon, India, shows elevated levels of As and F-, frequently above the WHO guidelines. In this work, the concentrations of As, F-, Na+, Mg2+, Ca2+, Cl-, SO4 2-, HCO3 -, Fe, dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the groundwater of Ambagarh Chouki are described. The sources of dissolved components in the groundwater are investigated using the cluster and factor analysis. Five factors have been identified and linked to processes responsible for the formation of groundwater chemistry. High concentrations of dissolved As seems to be linked to high concentrations of DOC, suggesting reductive dissolution of ferric oxyhydroxides as arsenic mobilization process. Fluoride is found in shallow depth water, presumably as a consequence of evaporation of water and removal of Ca2+ by precipitation of carbonates.

  7. Sodium fluoride mouthrinse used twice daily increased incipient caries lesion remineralization in an in situ model.

    PubMed

    Songsiripradubboon, Siriporn; Hamba, Hidenori; Trairatvorakul, Chutima; Tagami, Junji

    2014-03-01

    To investigate the remineralizing effects of fluoride mouthrinses used at different times and frequency in addition to fluoride toothpaste. A randomized crossover single blinded study comprised 4 experimental phases of 21 days each. Twelve orthodontic volunteers were fixed with an orthodontic bracket containing an artificial carious enamel slab, which was from the same tooth in all 4 phases, and were randomly assigned to the following groups: (1) brushing with F toothpaste 2× per day (F- brush), (2) F- brush+rinsing with 0.05% NaF (F- rinse) after lunch, (3) F- brush+F-rinse before bedtime, and (4) F- brush+F- rinse 2× per day. Mean mineral gain after each phase was determined from mineral density profiles obtained using Micro-CT. The mean mineral gain in all treatments with F- brush and F-rinse were significantly greater than those in F- brush (p<0.05). Moreover F- rinse 2× per day increased lesion remineralization more than F- rinse once a day. The twice-daily use of 0.05% NaF mouthrinse combined with twice-daily regular use of fluoride toothpaste resulted in the greatest remineralization of incipient caries. These data indicate that rinsing frequency is a factor affecting the effectiveness of fluoride mouthrinse. The rinsing frequency of NaF mouthrinse, when used with fluoride toothpaste, also affects the remineralization. This finding, if confirmed by a clinical study, would lead to a new recommendation for fluoride mouthrinse used in high caries risk patients who could benefit from using it twice a day. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Historical greenhouse gas concentrations for climate modelling (CMIP6)

    NASA Astrophysics Data System (ADS)

    Meinshausen, Malte; Vogel, Elisabeth; Nauels, Alexander; Lorbacher, Katja; Meinshausen, Nicolai; Etheridge, David M.; Fraser, Paul J.; Montzka, Stephen A.; Rayner, Peter J.; Trudinger, Cathy M.; Krummel, Paul B.; Beyerle, Urs; Canadell, Josep G.; Daniel, John S.; Enting, Ian G.; Law, Rachel M.; Lunder, Chris R.; O'Doherty, Simon; Prinn, Ron G.; Reimann, Stefan; Rubino, Mauro; Velders, Guus J. M.; Vollmer, Martin K.; Wang, Ray H. J.; Weiss, Ray

    2017-05-01

    Atmospheric greenhouse gas (GHG) concentrations are at unprecedented, record-high levels compared to the last 800 000 years. Those elevated GHG concentrations warm the planet and - partially offset by net cooling effects by aerosols - are largely responsible for the observed warming over the past 150 years. An accurate representation of GHG concentrations is hence important to understand and model recent climate change. So far, community efforts to create composite datasets of GHG concentrations with seasonal and latitudinal information have focused on marine boundary layer conditions and recent trends since the 1980s. Here, we provide consolidated datasets of historical atmospheric concentrations (mole fractions) of 43 GHGs to be used in the Climate Model Intercomparison Project - Phase 6 (CMIP6) experiments. The presented datasets are based on AGAGE and NOAA networks, firn and ice core data, and archived air data, and a large set of published studies. In contrast to previous intercomparisons, the new datasets are latitudinally resolved and include seasonality. We focus on the period 1850-2014 for historical CMIP6 runs, but data are also provided for the last 2000 years. We provide consolidated datasets in various spatiotemporal resolutions for carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), as well as 40 other GHGs, namely 17 ozone-depleting substances, 11 hydrofluorocarbons (HFCs), 9 perfluorocarbons (PFCs), sulfur hexafluoride (SF6), nitrogen trifluoride (NF3) and sulfuryl fluoride (SO2F2). In addition, we provide three equivalence species that aggregate concentrations of GHGs other than CO2, CH4 and N2O, weighted by their radiative forcing efficiencies. For the year 1850, which is used for pre-industrial control runs, we estimate annual global-mean surface concentrations of CO2 at 284.3 ppm, CH4 at 808.2 ppb and N2O at 273.0 ppb. The data are available at https://esgf-node.llnl.gov/search/input4mips/ and http://www.climatecollege.unimelb.edu.au/cmip6. While the minimum CMIP6 recommendation is to use the global- and annual-mean time series, modelling groups can also choose our monthly and latitudinally resolved concentrations, which imply a stronger radiative forcing in the Northern Hemisphere winter (due to the latitudinal gradient and seasonality).

  9. Combined Raman and SEM study on CaF2 formed on/in enamel by APF treatments.

    PubMed

    Tsuda, H; Jongebloed, W L; Stokroos, I; Arends, J

    1993-01-01

    Raman spectra containing the distinct band at 322 cm-1 due to CaF2 or CaF2-like material formed in/on fluoridated bovine enamel were recorded using a micro-Raman spectrograph. Due to increasing levels of background fluorescence with increasing thickness of enamel, the Raman measurements were carried out on thin regions of wedged enamel sections. The distribution of the CaF2 or CaF2-like material was estimated using a simple model. The results indicate that 1/3 of the total CaF2 was concentrated within the narrow depth < 2 microns with high CaF2 concentrations (> 10 wt%), and that the majority of the CaF2 was distributed over the depths up to 26 microns (1 wt% CaF2). SEM observations on fractured fluoridated enamel confirmed that morphological changes were present in the depth range comparable to that of the high CaF2 concentration region expected from the Raman analysis. In deeper regions where lower concentration (< 10%) but a large amount of CaF2 was still expected, the SEM images failed to distinguish between the normal and fluoridated enamel. After KOH treatment, the Raman spectra did not show evidence of the CaF2 peak and the SEM micrographs also confirmed the removal of globules. The peak position of the Raman band of the CaF2 formed by the fluoridation was identical to that of pure CaF2. However, the linewidth was 23 cm-1 (FWHM) and a factor of 2 broader than that of pure CaF2 (12 cm-1). This implies that the lattice dynamics of the CaF2 formed by fluoridation is different from of pure CaF2, and that the material formed is 'CaF2-like' or 'disordered CaF2'.

  10. Ion release and in vitro enamel fluoride uptake associated with pit and fissure sealants containing microencapsulated remineralizing agents.

    PubMed

    Burbank, Brant D; Cooper, Ryan L; Kava, Alyssa; Hartjes, Jennifer M; McHale, William A; Latta, Mark A; Gross, Stephen M

    2017-04-01

    To determine if pit-and-fissure sealants with microencapsulated remineralizing agents with sustained release of fluoride, calcium and phosphate ions could promote enamel fluoride uptake by demineralized tooth structure. Sealants that contained 5 w/w% microcapsules with aqueous solutions of 5M Ca(NO3)2 or 0.8M NaF or 6.0M K2HPO4 or a mixture of all three were prepared. Ion release profiles were measured as a function of time. Enamel fluoride uptake by demineralized tooth structure was determined. Sustained release of fluoride, calcium and phosphate ions from a sealant was demonstrated. Fluoride uptake by demineralized enamel was significantly increased compared to a control sealant manufactured without microcapsules (P< 0.01). Bovine enamel that contained 2.2±2.1 µg F/g of enamel prior to exposure to a sealant without microcapsules had 2.3±0.5 after 90 days. Enamel exposed to sealant with 5w/% NaF microcapsules went from 3.5±3.5 µg F/g of enamel prior to exposure to 148±76 after 90 days. Enamel exposed to sealant with 2 w/w% NaF, 2 w/w% Ca(NO3)2 and 1 w/w% K2HPO4 microcapsules went from 1.7±0.7 µg F/g of enamel prior to exposure to 190±137 after 90 days. Sealants with encapsulated remineralizing agents were capable of releasing biologically available fluoride, calcium, and phosphate ions. Incorporation of these microcapsules in pit and fissure sealants is a promising method for remineralization determined by enamel fluoride uptake measurements.

  11. Epitaxial growth of lithium fluoride on the (1 1 1) surface of CaF 2

    NASA Astrophysics Data System (ADS)

    Klumpp, St; Dabringhaus, H.

    1999-08-01

    Growth of lithium fluoride by molecular beam epitaxy on the (1 1 1) surface of calcium fluoride crystals was studied by TEM and LEED for crystal temperatures from 400 to 773 K and impinging lithium fluoride fluxes from 3×10 11 to 3×10 14 cm -2 s -1. Growth starts, usually, at the <1 1 0> steps on the (1 1 1) surface of CaF 2. For larger step distances and at later growth stages also growth on the terraces between the steps is found. Preferably, longish, roof-like crystallites are formed, which can be interpreted by growth of LiF(2 0 1¯)[0 1 0] parallel to CaF 2(1 1 1)[ 1¯ 0 1]. To a lesser extent square crystallites, i.e. growth with LiF(0 0 1), and, rarely, three-folded pyramidal crystallites, i.e. growth with LiF(1 1 1) parallel to CaF 2(1 1 1), are observed. While the pyramidal crystallites show strict epitaxial orientation with LiF[ 1¯ 0 1]‖CaF 2[ 1¯ 0 1] and LiF[ 1¯ 0 1]‖CaF 2[1 2¯ 1], only about 80% of the square crystallites exhibit an epitaxial alignment, where LiF[1 0 0]‖CaF 2[ 1¯ 0 1] is preferred to LiF[1 1 0]‖CaF 2[ 1¯ 0 1]. The epitaxial relationships are discussed on the basis of theoretically calculated adsorption positions of the lithium fluoride monomer and dimer on the terrace and at the steps of the CaF 2(1 1 1) surface.

  12. F+ and F⁻ affinities of simple N(x)F(y) and O(x)F(y) compounds.

    PubMed

    Grant, Daniel J; Wang, Tsang-Hsiu; Vasiliu, Monica; Dixon, David A; Christe, Karl O

    2011-03-07

    Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for the neutral and ionic N(x)F(y) and O(x)F(y) systems using coupled cluster theory with single and double excitations and including a perturbative triples correction (CCSD(T)) method with correlation consistent basis sets extrapolated to the complete basis set (CBS) limit. To achieve near chemical accuracy (±1 kcal/mol), three corrections to the electronic energy were added to the frozen core CCSD(T)/CBS binding energies: corrections for core-valence, scalar relativistic, and first order atomic spin-orbit effects. Vibrational zero point energies were computed at the CCSD(T) level of theory where possible. The calculated heats of formation are in good agreement with the available experimental values, except for FOOF because of the neglect of higher order correlation corrections. The F(+) affinity in the N(x)F(y) series increases from N(2) to N(2)F(4) by 63 kcal/mol, while that in the O(2)F(y) series decreases by 18 kcal/mol from O(2) to O(2)F(2). Neither N(2) nor N(2)F(4) is predicted to bind F(-), and N(2)F(2) is a very weak Lewis acid with an F(-) affinity of about 10 kcal/mol for either the cis or trans isomer. The low F(-) affinities of the nitrogen fluorides explain why, in spite of the fact that many stable nitrogen fluoride cations are known, no nitrogen fluoride anions have been isolated so far. For example, the F(-) affinity of NF is predicted to be only 12.5 kcal/mol which explains the numerous experimental failures to prepare NF(2)(-) salts from the well-known strong acid HNF(2). The F(-) affinity of O(2) is predicted to have a small positive value and increases for O(2)F(2) by 23 kcal/mol, indicating that the O(2)F(3)(-) anion might be marginally stable at subambient temperatures. The calculated adiabatic ionization potentials and electron affinities are in good agreement with experiment considering that many of the experimental values are for vertical processes. © 2011 American Chemical Society

  13. Combined Tin-Containing Fluoride Solution and CO2 Laser Treatment Reduces Enamel Erosion in vitro.

    PubMed

    Esteves-Oliveira, Marcella; Witulski, Nadine; Hilgers, Ralf-Dieter; Apel, Christian; Meyer-Lueckel, Hendrik; Eduardo, Carlos de Paula

    2015-01-01

    The aim of this in vitro study was to evaluate the effect of combined CO2 laser and tin-containing fluoride treatment on the formation and progression of enamel erosive lesions. Ninety-six human enamel samples were obtained, stored in thymol solution and, after surface polishing, randomly divided into 6 different surface treatment groups (n = 16 in each group) as follows: no treatment, control (C); one CO2 laser irradiation (L1); two CO2 laser irradiations (L2); daily application of fluoride solution (F); combined daily fluoride solution + one CO2 laser irradiation (L1F), and combined daily fluoride solution + two CO2 laser irradiations (L2F). Laser irradiation was performed at 0.3 J/cm2 (5 µs/226 Hz/10.6 µm) on day 1 (L1) and day 6 (L2). The fluoride solution contained AmF/NaF (500 ppm F), and SnCl2 (800 ppm Sn) at pH 4.5. After surface treatment the samples were submitted to an erosive cycling over 10 days, including immersion in citric acid (2 min/0.05 M/pH = 2.3) 6 times daily and storage in remineralization solution (≥1 h) between erosive attacks. At the end of each cycling day, the enamel surface loss (micrometers) was measured using a 3D laser profilometer. Data were statistically analyzed by means of a 2-level mixed effects model and linear contrasts (α = 0.05). Group F (-3.3 ± 2.0 µm) showed significantly lower enamel surface loss than groups C (-27.22 ± 4.1 µm), L1 (-18.3 ± 4.4 µm) and L2 (-16.3 ± 5.3 µm) but higher than L1F (-1.0 ± 4.4 µm) and L2F (1.4 ± 3.2 µm, p < 0.05). Under the conditions of this in vitro study, the tin-containing fluoride solution caused 88% reduction of enamel surface loss, while its combination with CO2 laser irradiation at 0.3 J/cm2 hampered erosive loss almost completely. © 2015 S. Karger AG, Basel.

  14. Mössbauer effect of 151Eu in europium oxalate and fluorides

    NASA Astrophysics Data System (ADS)

    Wynter, C. I.; Oliver, F. W.; Davis, Alfred; Spijkerman, J. J.; Stadelmaier, H.; Wolfe, E. A.

    1993-04-01

    In a short communication [C.I. Wynter et al., Radiochimica Acta 55 (1991) 111.] we reported "relative broadening factors" of europium fluoride (EuF 3), europium oxide (Eu 2O 3), europium oxalate decahydrate (Eu 2(C 2O 4) 3.10H 2O and europium benzoate tetrahydrate Eu(C 6H 5COO) 3.4H 2O. Indications of the "relative broadening factor" of the oxalate compared to the fluoride suggested that the oxalate may indeed be a better host for the 21.6-keV gamma ray transition than the fluoride. In a continuing search for a better host matrix for this Mössbauer transition, we have prepared additionally a systematic series of fluorides, namely. EuF 3, NaEuF 4, Na 3EuF 6, and K 3EuF 6 to measure the linewidths and compute the "true" broadening factor using the natural linewidth of 151Eu as 1.31 {mm}/{s}.

  15. Plaque fluoride concentrations in a community without water fluoridation: effects of calcium and use of a fluoride or placebo dentifrice.

    PubMed

    Whitford, G M; Buzalaf, M A R; Bijella, M F B; Waller, J L

    2005-01-01

    The results of a recent study by Whitford et al. [Caries Res 2002;36:256-265] with subjects whose drinking water was fluoridated led to two major conclusions: (1) Compared to the use of a placebo dentifrice, plaque fluoride concentrations ([F]) throughout much of the day are not significantly increased by the use of an F dentifrice but (2) they are positively related to plaque [Ca] (p = 0.0001). The present double-blind, double-crossover study with 16 subjects used the same protocol and was done to: (1) determine the effects of the use of an F dentifrice on salivary and plaque [F] in a community without water fluoridation and (2) further examine the relationship between plaque [Ca] and [F]. Following the use of an F dentifrice or placebo for one week, whole saliva and plaque were collected 1.0 and 12 h after the last use of the products. The study was repeated to include rinsing with a 20 mmol/l CaCl(2) solution immediately before the use of the dentifrices. The CaCl(2) rinse had only minor effects on salivary [Ca] and [F] and none on the plaque concentrations. Unlike the results found in the fluoridated community, all salivary and plaque [F] associated with the use of the F dentifrice were significantly higher than those associated with the use of the placebo. The results suggest that the cariostatic effectiveness of an F dentifrice should be greater in areas without water fluoridation. As noted previously, plaque [F] were positively related to plaque [Ca] (p = 0.0001). Copyright (c) 2005 S. Karger AG, Basel.

  16. [Fluoride release and recharge properties of six restorative materials].

    PubMed

    Gui, Yajie; Zhao, Xinyi; Li, Shibao; Tang, Lihui; Gong, Xu

    2015-01-01

    To evaluate the F(-) releasing and recharging properties of six dental restorative materials. Disc specimens 10 mm in diameter and 1 mm in thickness were prepared from 6 different dental restorative materials: Fuji VII [glass ionomer cement (GIC)], Fuji II LC (light-curing, GIC), Beautifil (giomer), Compoglass F (compomer), Charisma (composite) and Experimental I (a fluoride releasing composite), with 10 discs for each material. Specimens were dipped in 5 ml deionized water and F(-) release was detected using a fluoride-specific ion electrode every day from 1-7 days and every three days from 8-28 days. On day 28, specimens were exposed to a fluoride foam for 4 min and then dipped in water, then the F(-) concentration was detected every day for a week. The specimens were exposed to fluoride foam and fluoride release was detected repeatedly for three times. All materials presented the highest F(-) release on the first day after dipping and the F(-) release sharply decreased after 24 h and slowly decreased after 3 days. On the first day, Fuji VII presented the highest F(-) release[(99.68±15.21) µg×cm(-2)×d(-1)], followed by Fuji II LC [(37.12±1.67) µg×cm(-2)×d(-1)], Experimental I [(22.93±1.53) µg×cm(-2)×d(-1)], Compoglass F[(15.28±0.70) µg×cm(-2)×d(-1)], Beautifil[(2.40±0.52) µg×cm(-2)×d(-1)] and Charisma[(0.11±0.02) µg×cm(-2)×d(-1)]. Within 28 days of dipping, both Fuji VII and Fuji II LC released more F(-) than other materials did(P < 0.05), followed by Compoglass F and Experimental I, and Beautifil and Charisma released the least F(-)(P < 0.01). After F(-) uptake, all materials released the highest F- on the first day and presented sharply decrease after 24 h and slowly decrease after 2 days. On the first day after F(-) uptake, Fuji VII presented the highest F(-) release (>40 µg×cm(-2) ×d(-1)), much more than other materials(P < 0.01), followed by Fuji II LC(>25 µg×cm(-2) ×d(-1)). Beautifil, Compoglass F and Experimental I were close in F(-) release value(15- 20 µg × cm(-2) × d(-1)), and Charisma showed the lowest F(-) release. Two glass ionomers were shown to have highest capacity in F(-) release and uptake, followed by compomer and fluoride releasing composite. Composite demonstrated the lowest F(-) release and uptake and Giomer was comparable to composite in F(-) release and to compomer and fluoride releasing composite in F(-) uptake.

  17. Tuning the surface properties of novel ternary iron(III) fluoride-based catalysts using the template effect of the matrix.

    PubMed

    Guo, Ying; Lippitz, Andreas; Saftien, Paul; Unger, Wolfgang E S; Kemnitz, Erhard

    2015-03-21

    Sol-gel prepared ternary FeF3-MgF2 materials have become promising heterogeneous catalysts due to their porosity and surface Lewis/Brønsted acidity (bi-acidity). Despite the good catalytic performance, nanoscopic characterisations of this type of material are still missing and the key factors controlling the surface properties have not yet been identified, impeding both a better understanding and further development of ternary fluoride catalysts. In this study, we characterised the interaction between the bi-acidic component (FeF3) and the matrix (MgF2) on the nano-scale. For the first time, the formation pathway of FeF3-MgF2 was profiled and the template effect of MgF2 during the synthesis process was discovered. Based on these new insights two novel materials, FeF3-CaF2 and FeF3-SrF2, were established, revealing that with decreasing the atomic numbers (from Sr to Mg), the ternary fluorides exhibited increasing surface acidity and surface area but decreasing pore size. These systematic changes gave rise to a panel of catalysts with tuneable surface and bulk properties either by changing the matrix alkaline earth metal fluoride or by adjusting their ratios to Fe or both. The template effect of the alkaline earth metal fluoride matrix was identified as the most probable key factor determining the surface properties and further influencing the catalytic performance in ternary fluoride based catalysts, and paves the way to targeted design of next-generation catalysts with tunable properties.

  18. Water Atomization of Barium Fluoride: Calcium Fluoride for Enhanced Flow Characteristics of PS304 Feedstock Powder Blend

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; DellaCorte, Christopher

    2003-01-01

    PS304 is a plasma spray deposited solid lubricant coating with feedstock composed of NiCr, Cr2O3, Ag, and BaF2-CaF2 powders. The effects of rounded BaF2-CaF2 particles on the gravity-fed flow characteristics of PS304 feedstock have been investigated. The BaF2-CaF2 powder was fabricated by water atomization using four sets of process parameters. Each of these powders was then characterized by microscopy and classified by screening to obtain 45 to 106 micron particles and added incrementally from 0 to 10 wt% to the other constituents of the PS304 feedstock, namely nichrome, chromia, and silver powders. The relationship between feedstock flow rate, measured with the Hall flowmeter, and concentration of fluorides was found to be linear in each case. The slopes of the lines were between those of the linear relationships previously reported using angular and spherical fluorides and were closer to the relationship predicted using the rule of mixtures. The results offer a fluoride fabrication technique potentially more cost-effective than gas atomization processes or traditional comminution processes.

  19. Comparative uptake of ¹⁸F-FEN-DPAZn2, ¹⁸F-FECH, ¹⁸F-fluoride, and ¹⁸F-FDG in fibrosarcoma and aseptic inflammation.

    PubMed

    Liang, Xiang; Tang, Ganghua; Wang, Hongliang; Hu, Kongzhen; Tang, Xiaolan; Nie, Dahong; Sun, Ting; Huang, Tingting

    2014-08-01

    The aim of this study is to evaluate uptake of 2-(18)F-fluoroethyl-bis(zinc(II)-dipicolylamine) ((18)F-FEN-DPAZn2) as a promising cell death imaging agent, a choline analog (18)F-fluoroethylcholine ((18)F-FECH), (18)F-fluoride as a bone imaging agent, and a glucose analog 2-(18)F-fluoro-2-deoxy-d-glucose ((18)F-FDG) in the combined S180 fibrosarcoma and turpentine-induced inflammation mice models. The results showed that (18)F-FDG had the highest tumor-to-blood uptake ratio and tumor-to-muscle ratio, and high inflammation-to-blood ratio and inflammation-to-muscle ratio. (18)F -FECH showed moderate tumor-to-blood ratio and tumor-to-muscle ratio, and low inflammation-to-blood ratio and inflammation-to-muscle ratio. However, accumulation of (18)F FEN-DPAZn2 in tumor was similar to that in normal muscle. Also, (18)F-FEN-DPAZn2 and (18)F-fluoride exhibited the best selectivity to inflammation. (18)F-FECH positron emission tomography (PET) imaging demonstrates some advantages over (18)F-FDG PET for the differentiation of tumor from inflammation. (18)F FEN-DPAZn2 and (18)F-fluoride can be used for PET imaging of aseptic inflammation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Fatalities resulting from sulfuryl fluoride exposure after home fumigation-Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-10-16

    On September 25, 1986, an elderly Virginia couple had their home fumigated by a local pest extermination company for the control of wood-boring insects. Two hundred and fifty pounds of sulfurylfluoride (SF), a colorless, odorless fumigant gas commonly used for this purpose, was applied in the approximately 80,000-cubic-foot home that date. Within 1 week, both husband and wife were dead. Because both deaths occurred within a short period of time and the wife's illness was compatible with toxic gas inhalation, these deaths were then thought to be related to the home fumigation.

  1. Comparison of the incipient lesion enamel fluoride uptake from various prescription and OTC fluoride toothpastes and gels.

    PubMed

    Schemehorn, B R; DiMarino, J C; Movahed, N

    2014-01-01

    The objective of this in vitro study was to compare the fluoride uptake into incipient enamel lesions of a novel 970 ppm F- ion SnF2 over-the-counter (OTC) gel (Enamelon Preventive Treatment Gel) and a novel 1150 ppm F- ion OTC toothpaste (Enamelon), each delivering amorphous calcium phosphate (ACP), to the uptake from two different prescription strength, 5000 ppm F- ion dentifrices containing tri-calcium phosphate (TCP) and a prescription 900 ppm F- ion paste containing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP). The test procedure followed method #40 in the US-FDA Anticaries Drug Products for OTC Human Use, Final Monograph testing procedures. Eight sets of twelve incisor enamel cores were mounted in Plexiglas rods and the exposed surfaces were polished. The indigenous fluoride levels of each specimen were determined prior to treatment. The treatments were performed using slurries of a negative control (water) and the following products applied to a set of sound enamel cores: 5000 ppm F- ion, sodium fluoride (NaF) prescription (Rx) dentifrice "A" containing TCP; 5000 ppm F- ion, NaF Rx dentifrice "B" containing TCP; 900 ppm F- ion, NaF Rx paste with CPP-ACP; 1150 ppm F- ion, NaF OTC toothpaste; 1150 ppm F- ion, stannous fluoride (SnF2) OTC toothpaste delivering ACP (Enamelon); 1100 ppm F- ion, SnF2 OTC toothpaste; and 970 ppm F- ion, SnF2 OTC gel delivering ACP (Enamelon Preventive Treatment Gel). The twelve specimens of each group were immersed into 25 ml of their assigned slurry with constant stirring (350 rpm) for 30 minutes. Following treatment, one layer of enamel was removed from each specimen and analyzed for fluoride and calcium. The pre-treatment fluoride (indigenous) level of each specimen was subtracted from the post-treatment value to determine the change in enamel fluoride due to the test treatment. The increase in the average fluoride uptake for treated enamel cores was: 10,263 ± 295 ppm for the 970 ppm F- ion, Enamelon Preventive Treatment Gel; 7,016 ± 353 ppm for the 1150 ppm F- ion Enamelon Toothpaste; 4,138 ± 120 ppm for the 5000 ppm F- ion, NaF prescription dentifrice "A" with TCP; 3801 ± 121 ppm for the 5000 ppm F- ion, NaF prescription dentifrice "B" with TCP; 2,647 ± 57 ppm for the 1100 ppm F- ion, SnF2 OTC toothpaste; 1470 ± 40 ppm for the 1150 ppm F- ion, NaF OTC toothpaste; and 316 ± 9 ppm for the 900 ppm F- ion, NaF paste with CPP-ACP. The differences among all the products tested were statistically significant (p < 0.05), except for the two 5000 ppm F- ion products with TCP that were not statistically different from one another, and the 900 ppm F ion, NaF paste with CPP-ACP that was not statistically different from the negative water control. The Enamelon products (970 ppm and 150 ppm F ion, SnF2OTC dentifrices) delivering ACP provide statistically significantly more fluoride to incipient enamel lesions than two prescription strength 5000 ppm F- ion toothpastes containing TCP, the 900 ppm F- ion prescription paste containing CPP-ACP, and the other OTC toothpastes compared in this study.

  2. An alternate technique of care using silver fluoride followed by stannous fluoride in the management of root caries in aged care.

    PubMed

    Deutsch, Alan

    2016-01-01

    An alternate technique of care to prevent, arrest and manage root caries using aqueous silver fluoride followed by stannous fluoride (AgF+SnF2) in aged care is demonstrated by three case studies. With increasing age, the inability to maintain ones own oral care from dementia, illness or frailty and polypharmacy induced salivary gland hypofunction will result in dental caries becoming a progessively greater burden for the elderly. Future generations of elders will live longer and need to maintain many more teeth longer than earlier generations. Both silver diamine fluoride (SDF)and AgF+SnF2 arrest and prevent caries and are easy to use in residential aged care facilities. Clinical differences between SDF and AgF+SnF2 are discussed. However, in aged care, AgF+SnF2 may offer advantages over SDF. AgF+SnF2 used to arrest and prevent caries in children can be modified to provide effective but minimally invasive care for an ageing and frail population. These techniques are rapid, inexpensive and nonthreatening suited to treat frail elders, dementia patients exhibiting challenging behaviours and patients with multiple rapidly progressing decay. Silver fluoride, applied before placing glass-ionomer cement (GIC) restorations is an important adjunct to the atraumatic restorative technique and may retard caries reactivation more than GIC used alone. © 2015 Special Care Dentistry Association and Wiley Periodicals, Inc.

  3. Comparison of in vitro fluoride uptake from whitening toothpastes and a conventional toothpaste in demineralised enamel.

    PubMed

    Altenburger, Markus J; Bernhart, Jasmin; Schicha, Thurid D; Wrbas, Karl-Thomas; Hellwig, Elmar

    2010-01-01

    Studies on the compatibility of abrasives and fluoride compounds deal exclusively with fluoride uptake and remineralization after storing the enamel specimens in a toothpaste-saliva mixture. The influence of brushing on the fluoride uptake when highly abrasive toothpastes are used has hardly been investigated so far. The aim of the present study was to investigate fluoride uptake in initially demineralised dental enamel after storage in, or brushing with, whitening toothpaste slurries, compared to a conventional toothpaste. For this purpose two widely available whitening toothpastes with ionically bound fluoride (sodium fluoride NaF), two with covalently-bound fluoride toothpastes (sodium monofluorophosphate, NaMFP) and a conventional amine fluoride toothpaste (AmF) were compared. The fluoride uptake after use of the AmF toothpaste was shown to be statistically significantly higher than that after application of the NaF toothpastes, which in turn was statistically significantly higher than the uptake resulting from NaMFP application. The fluoride uptake was slightly higher when the enamel samples were brushed with NaF toothpaste, rather than just stored in the respective toothpaste slurry. Brushing with highly abrasive toothpastes did not negatively influence fluoride uptake in demineralised dental enamel. The ionic form of the fluoride in toothpastes appears to be critical for increased fluoride uptake. The acidic components of the AmF toothpaste improved fluoride uptake compared to alkaline NaF toothpastes.

  4. Characteristic of molten fluoride salt system LiF-BeF2 (Flibe) and LiF-NaF-KF (Flinak) as coolant and fuel carrier in molten salt reactor (MSR)

    NASA Astrophysics Data System (ADS)

    Bahri, Che Nor Aniza Che Zainul; Al-Areqi, Wadee'ah Mohd; Ruf, Mohd'Izzat Fahmi Mohd; Majid, Amran Ab.

    2017-01-01

    Interest of fluoride salts have recently revived due to the high temperature application in nuclear reactors. Molten Salt Reactor (MSR) was designed to operate at high temperature in range 700 - 800°C and its fuel is dissolved in a circulating molten fluoride salt mixture. Molten fluoride salts are stable at high temperature, have good heat transfer properties and can dissolve high concentration of actinides and fission product. The aim of this paper was to discuss the physical properties (melting temperature, density and heat capacity) of two systems fluoride salt mixtures i.e; LiF-BeF2 (Flibe) and LiF-NaF-KF (Flinak) in terms of their application as coolant and fuel solvent in MSR. Both of these salts showed almost same physical properties but different applications in MSR. The advantages and the disadvantages of these fluoride salt systems will be discussed in this paper.

  5. Fluoride varnishes with calcium glycerophosphate: fluoride release and effect on in vitro enamel demineralization.

    PubMed

    Carvalho, Thiago Saads; Peters, Bianca Glerean; Rios, Daniela; Magalhães, Ana Carolina; Sampaio, Fabio Correia; Buzalaf, Marília Afonso Rabelo; Bönecker, Marcelo José Strazzeri

    2015-01-01

    The aims of this study were (1) to assess the amount of fluoride (F) released from varnishes containing calcium glycerophosphate (CaGP) and (2) to assess the effect of the experimental varnishes on in vitro demineralization. Six test groups using 5 varnishes: base varnish (no active ingredients); Duraphat® (2.26% NaF); Duofluorid® (5.63% NaF/CaF2); experimental varnish 1 (1% CaGP/5.63% NaF/CaF2); experimental varnish 2 (5% CaGP/5.63% NaF/CaF2); and no varnish were set up. In stage 1, 60 acrylic blocks were randomly distributed into 6 groups (n = 10). Then 300 µg of each varnish was applied to each block. The blocks were immersed in deionized water, which was changed after 1, 8, 12, 24, 48 and 72 hours. Fluoride concentration in the water was analyzed using a fluoride electrode. In stage 2, 60 bovine enamel samples were distributed into 6 groups (n = 10), and treated with 300 µg of the respective varnish. After 6 h the varnish was removed and the samples were subjected to a 7-day in vitro pH cycle (6 h demineralization/18 h remineralization per day). The demineralization was measured using surface hardness. The results showed that both experimental varnishes released more fluoride than Duofluorid® and Duraphat® (p < 0.05), but Duraphat® showed the best preventive effect by decreasing enamel hardness loss (p < 0.05). Therefore, we conclude that even though (1) the experimental varnishes containing CaGP released greater amounts of F, (2) they did not increase in the preventive effect against enamel demineralization.

  6. Saturated Heterocyclic Aminosulfonyl Fluorides: New Scaffolds for Protecting-Group-Free Synthesis of Sulfonamides.

    PubMed

    Zhersh, Sergey A; Blahun, Oleksandr P; Sadkova, Iryna V; Tolmachev, Andrey A; Moroz, Yurii S; Mykhailiuk, Pavel K

    2018-06-12

    Cyclic saturated aminosulfonyl fluorides were synthesized as their HCl salts. The compounds were found to be stable upon storage and could be used for the protecting-group-free synthesis of sulfonamides. In the presence of the -SO 2 F group, the nitrogen atom could be modified by means of acylation, arylation, or reductive amination to give products that have high potential for the synthesis of bioactive compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A robust protocol for directed aryl sulfotransferase evolution toward the carbohydrate building block GlcNAc.

    PubMed

    Islam, Shohana; Mate, Diana M; Martínez, Ronny; Jakob, Felix; Schwaneberg, Ulrich

    2018-05-01

    Bacterial aryl sulfotransferases (AST) utilize p-nitrophenylsulfate (pNPS) as a phenolic donor to sulfurylate typically a phenolic acceptor. Interest in aryl sulfotransferases is growing because of their broad variety of acceptors and cost-effective sulfuryl-donors. For instance, aryl sulfotransferase A (ASTA) from Desulfitobacterium hafniense was recently reported to sulfurylate d-glucose. In this study, a directed evolution protocol was developed and validated for aryl sulfotransferase B (ASTB). Thereby the well-known pNPS quantification system was advanced to operate efficiently as a continuous screening system in 96-well MTP format with a true coefficient of variation of 14.3%. A random mutagenesis library (SeSaM library) of ASTB was screened (1,760 clones) to improve sulfurylation of the carbohydrate building block N-acetylglucosamine (GlcNAc). The beneficial variant ASTB-V1 (Val579Asp) showed an up to 3.4-fold increased specific activity toward GlcNAc when compared to ASTB-WT. HPLC- and MS-analysis confirmed ASTB-V1's increased GlcNAc monosulfurylation (2.4-fold increased product formation) representing the validation of the first successful directed evolution round of an AST for a saccharide substrate. © 2017 Wiley Periodicals, Inc.

  8. Solubility of uranium oxide in molten salt electrolysis bath of LiF-BaF2 with LaF3 additive

    NASA Astrophysics Data System (ADS)

    Alangi, Nagaraj; Mukherjee, Jaya; Gantayet, L. M.

    2016-03-01

    The solubility of UO2 in the molten mixtures of equimolar LiF-BaF2(1:1) with LaF3 as additive was studied in the range of 1423 K-1523 K. The molten fluoride salt mixture LiF-BaF2 LaF3 was equilibrated with a sintered uranium oxide pellet at 1423 K, 1473 K, 1523 K and the salt samples were collected after equilibration. Studies were conducted in the range of 10%-50% by weight additions of LaF3 in the equimolar LiF-BaF2(1:1) base fluoride salt bath. Solubility of UO2 increased with rise in LaF3 concentration in the molten fluoride in the temperature range of 1423 K-1523 K. At a given concentration of LaF3, the UO2 solubility increased monotonously with temperature. With mixed solvent, when UF4 was added as a replacement of part of LaF3 in LiF-BaF2(1:1)-10 wt% LaF3 and LiF-BaF2(1:1)-30 wt% LaF3, there was an enhancement of solubility of UO2.

  9. Unusual hydrogen bonding in L-cysteine hydrogen fluoride.

    PubMed

    Minkov, V S; Ghazaryan, V V; Boldyreva, E V; Petrosyan, A M

    2015-08-01

    L-Cysteine hydrogen fluoride, or bis(L-cysteinium) difluoride-L-cysteine-hydrogen fluoride (1/1/1), 2C3H8NO2S(+)·2F(-)·C3H7NO2S·HF or L-Cys(+)(L-Cys···L-Cys(+))F(-)(F(-)...H-F), provides the first example of a structure with cations of the 'triglycine sulfate' type, i.e. A(+)(A···A(+)) (where A and A(+) are the zwitterionic and cationic states of an amino acid, respectively), without a doubly charged counter-ion. The salt crystallizes in the monoclinic system with the space group P2(1). The dimeric (L-Cys···L-Cys(+)) cation and the dimeric (F(-)···H-F) anion are formed via strong O-H···O or F-H···F hydrogen bonds, respectively, with very short O···O [2.4438 (19) Å] and F···F distances [2.2676 (17) Å]. The F···F distance is significantly shorter than in solid hydrogen fluoride. Additionally, there is another very short hydrogen bond, of O-H···F type, formed by a L-cysteinium cation and a fluoride ion. The corresponding O···F distance of 2.3412 (19) Å seems to be the shortest among O-H···F and F-H···O hydrogen bonds known to date. The single-crystal X-ray diffraction study was complemented by IR spectroscopy. Of special interest was the spectral region of vibrations related to the above-mentioned hydrogen bonds.

  10. Sulfonyl fluoride-based prosthetic compounds as potential 18F labelling agents.

    PubMed

    Inkster, James A H; Liu, Kate; Ait-Mohand, Samia; Schaffer, Paul; Guérin, Brigitte; Ruth, Thomas J; Storr, Tim

    2012-08-27

    Nucleophilic incorporation of [(18)F]F(-) under aqueous conditions holds several advantages in radiopharmaceutical development, especially with the advent of complex biological pharmacophores. Sulfonyl fluorides can be prepared in water at room temperature, yet they have not been assayed as a potential means to (18)F-labelled biomarkers for PET chemistry. We developed a general route to prepare bifunctional 4-formyl-, 3-formyl-, 4-maleimido- and 4-oxylalkynl-arylsulfonyl [(18)F]fluorides from their sulfonyl chloride analogues in 1:1 mixtures of acetonitrile, THF, or tBuOH and Cs[(18)F]F/Cs(2)CO(3(aq.)) in a reaction time of 15 min at room temperature. With the exception of 4-N-maleimide-benzenesulfonyl fluoride (3), pyridine could be used to simplify radiotracer purification by selectively degrading the precursor without significantly affecting observed yields. The addition of pyridine at the start of [(18)F]fluorination (1:1:0.8 tBuOH/Cs(2)CO(3(aq.))/pyridine) did not negatively affect yields of 3-formyl-2,4,6-trimethylbenzenesulfonyl [(18)F]fluoride (2) and dramatically improved the yields of 4-(prop-2-ynyloxy)benzenesulfonyl [(18)F]fluoride (4). The N-arylsulfonyl-4-dimethylaminopyridinium derivative of 4 (14) can be prepared and incorporates (18)F efficiently in solutions of 100 % aqueous Cs(2)CO(3) (10 mg mL(-1)). As proof-of-principle, [(18)F]2 was synthesised in a preparative fashion [88(±8) % decay corrected (n=6) from start-of-synthesis] and used to radioactively label an oxyamino-modified bombesin(6-14) analogue [35(±6) % decay corrected (n=4) from start-of-synthesis]. Total preparation time was 105-109 min from start-of-synthesis. Although the (18)F-peptide exhibited evidence of proteolytic defluorination and modification, our study is the first step in developing an aqueous, room temperature (18)F labelling strategy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Structure and Electrochemistry of Copper Fluoride Nanocomposites Utilizing Mixed Conducting Matrices

    DTIC Science & Technology

    2007-01-01

    similar to the conversion reaction of the metal fluoride. Attractive materials such as V2O5 , MoS2, and MoO3-δ can be utilized. Examples of metal...fluorides enabled by these MCM matrices are nanocomposites of FeF3 ( V2O5 ),2 BiF3 (MoS2),15 and as discussed herein, CuF2 (MoO3). In all cases, the...filled dry box using Whatman GF/D glass fiber separators saturated with 1M LiPF6 in 1:1 vol/vol ethylene carbonate:dimethyl carbonate elec- trolyte

  12. Dental caries and dental fluorosis at varying water fluoride concentrations.

    PubMed

    Heller, K E; Eklund, S A; Burt, B A

    1997-01-01

    The purpose of this study was to investigate the relationships between caries experience and dental fluorosis at different fluoride concentrations in drinking water. The impact of other fluoride products also was assessed. This study used data from the 1986-87 National Survey of US School-children. Fluoride levels of school water were used as an indicator of the children's water fluoride exposure. The use of fluoride drops, tablets, professional fluoride treatments, and school fluoride rinses were ascertained from caregiver questionnaires. Only children with a single continuous residence (n = 18,755) were included in this analysis. The sharpest declines in dfs and DMFS were associated with increases in water fluoride levels between 0 and 0.7 ppm F, with little additional decline between 0.7 and 1.2 ppm F. Fluorosis prevalence was 13.5 percent, 21.7 percent, 29.9 percent, and 41.4 percent for children who consumed < 0.3, 0.3 to < 0.7, 0.7 to 1.2, and > 1.2 ppm F water. In addition to fluoridated water, the use of fluoride supplements was associated with both lower caries and increased fluorosis. A suitable trade-off between caries and fluorosis appears to occur around 0.7 ppm F. Data from this study suggest that a reconsideration of the policies concerning the most appropriate concentrations for water fluoridation might be appropriate for the United States.

  13. Structure, equilibrium and ligand exchange dynamics in the binary and ternary dioxouranium(VI)-ethylenediamine-N,N'-diacetic acid-fluoride system: A potentiometric, NMR and X-ray crystallographic study.

    PubMed

    Palladino, Giuseppe; Szabó, Zoltán; Fischer, Andreas; Grenthe, Ingmar

    2006-11-21

    The structure, thermodynamics and kinetics of the binary and ternary uranium(VI)-ethylenediamine-N,N'-diacetate (in the following denoted EDDA) fluoride systems have been studied using potentiometry, 1H, 19F NMR spectroscopy and X-ray diffraction. The UO2(2+)-EDDA system could be studied up to -log[H3O+] = 3.4 where the formation of two binary complexes UO2(EDDA)(aq) and UO2(H3EDDA)3+ were identified, with equilibrium constants logbeta(UO2EDDA) = 11.63 +/- 0.02 and logbeta(UO2H3EDDA3+) = 1.77 +/- 0.04, respectively. In the ternary system the complexes UO2(EDDA)F-, UO2(EDDA)(OH)- and (UO2)2(mu-OH)2(HEDDA)2F2(aq) were identified; the latter through 19F NMR. 1H NMR spectra indicate that the EDDA ligand is chelate bonded in UO2(EDDA)(aq), UO2(EDDA)F- and UO2(EDDA)(OH)- while only one carboxylate group is coordinated in UO2(H3EDDA)3+. The rate and mechanism of the fluoride exchange between UO2(EDDA)F- and free fluoride was studied by 19F NMR spectroscopy. Three reactions contribute to the exchange; (i) site exchange between UO2(EDDA)F- and free fluoride without any net chemical exchange, (ii) replacement of the coordinated fluoride with OH- and (iii) the self dissociation of the coordinated fluoride forming UO2(EDDA)(aq); these reactions seem to follow associative mechanisms. (1)H NMR spectra show that the exchange between the free and chelate bonded EDDA is slow and consists of several steps, protonation/deprotonation and chelate ring opening/ring closure, the mechanism cannot be elucidated from the available data. The structure (UO2)2(EDDA)2(mu-H2EDDA) was determined by single crystal X-ray diffraction and contains two UO2(EDDA) units with tetracoordinated EDDA linked by H2EDDA in the "zwitterion" form, coordinated through a single carboxylate oxygen from each end to the two uranium atoms. The geometry of the complexes indicates that there is no geometric constraint for an associative ligand substitution mechanism.

  14. Rates and mechanism of fluoride and water exchange in UO(2)F(5)(3-) and [UO(2)F(4)(H(2)O)](2-) studied by NMR spectroscopy and wave function based methods.

    PubMed

    Vallet, Valérie; Wahlgren, Ulf; Szabó, Zoltán; Grenthe, Ingmar

    2002-10-21

    The reaction mechanism for the exchange of fluoride in UO(2)F(5)(3-) and UO(2)F(4)(H(2)O)(2-) has been investigated experimentally using (19)F NMR spectroscopy at -5 degrees C, by studying the line broadening of the free fluoride, UO(2)F(4)(2-)(aq) and UO(2)F(5)(3-), and theoretically using quantum chemical methods to calculate the activation energy for different pathways. The new experimental data allowed us to make a more detailed study of chemical equilibria and exchange mechanisms than in previous studies. From the integrals of the different individual peaks in the new NMR spectra, we obtained the stepwise stability constant K(5) = 0.60 +/- 0.05 M(-1) for UO(2)F(5)(3-). The theoretical results indicate that the fluoride exchange pathway of lowest activation energy, 71 kJ/mol, in UO(2)F(5)(3-) is water assisted. The pure dissociative pathway has an activation energy of 75 kJ/mol, while the associative mechanism can be excluded as there is no stable UO(2)F(6)(4-) intermediate. The quantum chemical calculations have been made at the SCF/MP2 levels, using a conductor-like polarizable continuum model (CPCM) to describe the solvent. The effects of different model assumptions on the activation energy have been studied. The activation energy is not strongly dependent on the cavity size or on interactions between the complex and Na(+) counterions. However, the solvation of the complex and the leaving fluoride results in substantial changes in the activation energy. The mechanism for water exchange in UO(2)F(4)(H(2)O)(2-) has also been studied. We could eliminate the associative mechanism, the dissociative mechanism had the lowest activation energy, 39 kJ/mol, while the interchange mechanism has an activation energy that is approximately 50 kJ/mol higher.

  15. Fluoride adsorption properties of three modified forms of activated alumina in drinking water.

    PubMed

    Duan, Ying; Wang, Chenchen; Li, Xuede; Xu, Wei

    2014-12-01

    The study describes the removal of fluoride from drinking water using activated alumina (AA). AA was modified with H2SO4, FeCl3 and a combination of the two to enhance fluoride adsorption. The AA adsorbents were characterized using Brunauer-Emmett-Teller surface area analysis and X-ray fluorescence. The maximum adsorption capacity of H2SO4- and FeCl3-modified AA adsorbents was 4.98 mg/g, which is 3.4 times higher compared with that of normal AA. The results showed that the surface area of AA increased when modified with H2SO4. AA modified with FeCl3 enhanced fluoride adsorption ability through ion-exchange between chlorine ions and fluoride ions. The fluoride adsorption properties of AA modified with both H2SO4 and FeCl3 were consistent with the Langmuir model. The fluoride adsorption kinetics of the adsorbents were well described by the pseudo-second-order kinetic model.

  16. Water defluoridation by aluminium oxide-manganese oxide composite material.

    PubMed

    Alemu, Sheta; Mulugeta, Eyobel; Zewge, Feleke; Chandravanshi, Bhagwan Singh

    2014-08-01

    In this study, aluminium oxide-manganese oxide (AOMO) composite material was synthesized, characterized, and tested for fluoride removal in batch experiments. AOMO was prepared from manganese(II) chloride and aluminium hydroxide. The surface area of AOMO was found to be 30.7m2/g and its specific density was determined as 2.78 g/cm3. Detailed investigation of the adsorbent by inductively coupled plasma-optical emission spectrometry, inductively coupled plasma-mass spectrometry, and ion chromatography (for sulphate only) showed that it is composed of Al, Mn, SO4, and Na as major components and Fe, Si, Ca, and Mg as minor components. Thermogravimetric analysis was used to study the thermal behaviour of AOMO. X-ray diffraction analysis showed that the adsorbent is poorly crystalline. The point of zero charge was determined as 9.54. Batch experiments (by varying the proportion of MnO, adsorbent dose, contact time, initial F concentration, and raw water pH) showed that fluoride removal efficiency ofAOMO varied significantly with percentage of MnO with an optimum value of about I11% of manganese oxide in the adsorbent. The optimum dose of the adsorbent was 4 g/L which corresponds to the equilibrium adsorption capacity of 4.8 mg F-/g. Both the removal efficiency and adsorption capacity showed an increasing trend with an increase in initial fluoride concentration of the water. The pH for optimum fluoride removal was found to be in the range between 5 and 7. The adsorption data were analysed using the Freundlich, Langmuir, and Dubinirn-Radushkevich models. The minimum adsorption capacity obtained from the non-linear Freundlich isotherm model was 4.94 mg F-/g and the maximum capacity from the Langmuir isotherm method was 19.2mg F-/g. The experimental data of fluoride adsorption on AOMO fitted well to the Freundlich isotherm model. Kinetic studies showed that the adsorption is well described by a non-linear pseudo-second-order reaction model with an average rate constant of 3.1 x 10(-2) g/min mg. It is concluded that AOMO is a highly promising adsorbent for the removal of excess fluoride from drinking water.

  17. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 2. Light Lanthanides (Ce-Eu)

    NASA Astrophysics Data System (ADS)

    Mioduski, Tomasz; Gumiński, Cezary; Zeng, Dewen

    2015-03-01

    This is the second part of the volume devoted to the evaluation of experimental solubility data for rare earth metal (REM) fluorides in water as well as in aqueous ternary and multicomponent systems. Fluorides of Ce, Pr, Nd, Pm, Sm, and Eu (so-called light lanthanides), as the main solutes, are covered in the present part, which has thorough coverage of the experimental literature through the end of 2012. The experimentally unknown solubility value for PmF3 in water was predicted by an interpolation of the solubility values for NdF3 and SmF3 at 298 K. General features of the systems, such as the nature of the equilibrium solid phases, solubility as a function of temperature, influence of ionic strength, pH, mixed solvent medium on the solubility, quality of the solubility results, and solubility as a function of REM atomic number, have already been presented in Part 1 of the volume.

  18. Effect of the addition of MgF2 and NaF on the thermal, optical and magnetic properties of fluoride glasses for sensing applications

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Wang, Shuangbao; Deng, Saifu; Liu, Jianting; Zhang, Jiahui

    2017-10-01

    Optical glass was very important for the development of optical fiber sensor. In this paper, a new type fluoride glass of ZrF4-BaF2-AlF3-NaF-MgF2(ZBANM) was synthesized for sensing application which has low loss and high magneto-optical coefficient, and it was found that the glass system had at least 60% transmittance from 3.5 μm to 7 μm and smallest verdet constant of 4.628E-5/(rad A-1) at 632.8 nm. The relationship among the compositions of sample glass with its thermal property, optical absorptivity and magnetic-optical coefficients was respectively studied with Thermal Gravimetric-Differential Thermal Analyzer, Fourier Transform infrared spectroscopy and a home-made magneto optical bench. The study indicated that transmittance of fluoride glass structure had been obviously improved after moderate content of Mg2+ and Na+ was doped. Simultaneously, with the molar ratio of alkaline-earth ions Mg increased, the Verdet constant of fluoride glass was increased. And the glass structure with composition of 48%ZrF4-24%BaF2-6%AlF3-8%NaF-14%MgF2 exhibited a small molar absorptivity and the largest Verdet constant of 2.853E-4/(rad A-1).

  19. Fluoride induces apoptosis in H9c2 cardiomyocytes via the mitochondrial pathway.

    PubMed

    Yan, Xiaoyan; Wang, Lu; Yang, Xia; Qiu, Yulan; Tian, Xiaolin; Lv, Yi; Tian, Fengjie; Song, Guohua; Wang, Tong

    2017-09-01

    Numerous studies have shown that chronic excessive fluoride intake can adversely affect different organ systems. In particular, the cardiovascular system is susceptible to disruption by a high concentration of fluoride. The objectives of this study were to explore the mechanism of apoptosis by detecting the toxic effects of different concentrations of sodium fluoride (NaF) in H9c2 cells exposed for up to 96 h. NaF not only inhibited H9c2 cell proliferation but also induced apoptosis and morphological damage. With increasing NaF concentrations, early apoptosis of H9c2 cells was increased while the mitochondrial membrane potential was decreased. Compared with the control group, the mRNA levels of caspase-3, caspase-9, and cytochrome c all increased with increasing concentrations of NaF. In summary, these data suggest that apoptosis is involved in NaF-induced H9c2 cell toxicity and that activation of the mitochondrial pathway may occur. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Fluoride and sulfur dioxide indoor pollution situation and control in coal-burning endemic area in Zhaotong, Yunnan, China

    NASA Astrophysics Data System (ADS)

    Liu, Yonglin; Luo, Kunli; Li, Ling; Shahid, Muhammad Zeeshaan

    2013-10-01

    The presented study aims to investigate the gaseous fluoride and sulfur dioxide (SO2) pollution level in the kitchen, traditional flue-curing barn and outdoor environment and to find economically feasible method to reduce fluorine and sulfur release. The gaseous fluoride and SO2 concentrations in air of outdoor environment, kitchen and traditional flue-curing barn were determined in 56 households in coal-burning endemic fluorosis areas of Zhaotong. Among these, 21 households in Yujiawan Village, Zhenxiong County, Zhaotong City were chosen for this experiment to reduce gaseous fluoride and SO2 concentration in traditional flue-curing barn air by using calcined dolomitic siliceous limestone (CDSL) instead of clay mixed with coal. The result showed that: (1) gaseous fluoride and SO2 concentration in the outdoor air in Mangbu Township area was 0.51 μg dm-2ṡday and <0.05 mg m-3, respectively and in Xiaolongdong Township was 2.7 μg dm-2 day and <0.05 mg m-3, respectively while in Zhaotong City these concentration were lower than the ambient air standard (3 μg dm-2ṡday and 0.5 mg m-3, respectively). (2) The indoor gaseous fluoride concentration (3.7 μg m-3) in air of kitchen with the improved coal stove was within the reference value (10 μg m-3); SO2 concentration (0.94 mg m-3) in kitchen air had decline, but its concentration was still higher than indoor air quality standard (0.5 mg m-3). (3) Average concentration of gaseous fluoride and SO2 in air of traditional flue-curing barn of Xiaolongdong Township was 7.2 μg m-3 and 6.8 mg m-3 respectively, and in Yujiawan village were 10.1 μg m-3 and 14.4 mg m-3, respectively. (4) After using the calcined dolomitic siliceous limestone instead of clay mixed with coal, gaseous fluoride and SO2 concentration in the traditional flue-curing barn air decreased of 45% and 91%, respectively. The gaseous fluoride and SO2 pollution in the traditional flue-curing barn is very serious. The corn and chili baked by open stoves in traditional flue-curing barn (baking room) was also seriously polluted by fluoride and sulfur. After using the calcined dolomitic siliceous limestone instead of clay mixed with coal, gaseous fluoride and SO2 concentration in the traditional flue-curing barn air have declined markedly. The way of adding calcined dolomitic siliceous limestone instead of clay as a binder for briquette-making is an economically feasible way to control the indoor pollution of fluorine and sulfur in coal-burning endemic in Zhaotong, Yunnan.

  1. Matrix infrared spectroscopy and quantum-chemical calculations for the coinage-metal fluorides: comparisons of Ar-AuF, Ne-AuF, and Molecules MF2 and MF3.

    PubMed

    Wang, Xuefeng; Andrews, Lester; Brosi, Felix; Riedel, Sebastian

    2013-01-21

    The reactions of laser-ablated Au, Ag, and Cu atoms with F(2) in excess argon and neon gave new absorptions in the M-F stretching region of their IR spectra, which were assigned to metal-fluoride species. For gold, a Ng-AuF bond was identified in mixed neon/argon samples. However, this bonding was much weaker with AgF and CuF. Molecules MF(2) and MF(3) (M=Au, Ag, Cu) were identified from the isotopic distribution of the Cu and Ag atoms, comparison of the frequencies for three metal fluorides, and theoretical frequency calculations. The AuF(5) molecule was characterized by its strongest stretching mode and theoretical frequency calculations. Additional evidence was observed for the formation of the Au(2) F(6) molecule. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Study on fluoride emission from soils at high temperature related to brick-making process.

    PubMed

    Xie, Z M; Wu, W H; Xu, J M

    2003-02-01

    Characteristics of fluoride emission from 12 soils at temperatures of 400-1,100 degrees C related to the brick-making process were studied. The results obtained in this study indicate that fluoride emission as gaseous HF and SiF4 was related to the firing temperature, soil total fluoride content, soil composition and calcium compounds added to soils. Soils began to release fluoride at temperatures between 500 and 700 degrees C. Marked increases of the average fluoride mission rate from 57.2% to 85.4% of soil total fluoride were noticed as the heating temperature was increased from 700 to 1,100 degrees C. It was found that the major proportion (over 50%) of the soil total fluoride was emitted from soils at approximate 800 degrees C. The amount of fluoride released into the atmosphere when heated depended on the total fluoride contents in the soils. Correlation analysis showed that the soil composition, such as cation exchange capacity, exchangeable calcium and CaCO3, had some influence on fluoride emission below 900 degrees C, but had no influence at temperatures above 900 degrees C. Addition of four calcium compounds (CaO, CaCO3, Ca(OH)2, and CaSO4) at 1.5% by weight raised the temperature at which fluoride began to be released to 700 degrees C. The greatest decrease in fluoride emission among the four calcium compound treatments was found with CaCO3.

  3. An easy access to nanocrystalline alkaline earth metal fluorides - just by shaking

    NASA Astrophysics Data System (ADS)

    Dreger, M.; Scholz, G.; Kemnitz, E.

    2012-04-01

    High energy ball milling as fast, direct and solvent free method allows an easy access to nanocrystalline alkaline earth metal fluorides MF2 (M: Mg, Ca, Sr, Ba). Comparable metal sources (acetates, carbonates, hydroxides, alkoxides) were used for the reaction with NH4F as fluorinating agent. Even very simple manual shaking experiments between NH4F and the corresponding hydroxides in the stoichiometric ratio (M:F = 1:2, M: Ca, Sr, Ba) give phase pure fluorides. Moreover, comparable classical thermal reactions in closed crucibles at higher temperatures provide phase pure crystalline fluorides in nearly all cases as well.

  4. Solvothermal indium fluoride chemistry: Syntheses and crystal structures of K{sub 5}In{sub 3}F{sub 14}, beta-(NH{sub 4}){sub 3}InF{sub 6} and [NH{sub 4}]{sub 3}[C{sub 6}H{sub 21}N{sub 4}]{sub 2}[In{sub 4}F{sub 21}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayasundera, Anil C.A.; Goff, Richard J.; Li Yang

    2010-02-15

    The solvothermal syntheses and crystal structures of three indium fluorides are presented. K{sub 5}In{sub 3}F{sub 14} (1) and beta-(NH{sub 4}){sub 3}InF{sub 6} (2) are variants on known inorganic structure types chiolite and cryolite, respectively, with the latter exhibiting a complex and apparently novel structural distortion. [NH{sub 4}]{sub 3}[C{sub 6}H{sub 21}N{sub 4}]{sub 2}[In{sub 4}F{sub 21}] (3) represents a new hybrid composition displaying a unique trimeric metal fluoride building unit. - Graphical abstract: Solvothermal synthesis has been used to prepare three indium fluorides, including a novel hybrid material containing a unique [In{sub 3}F{sub 15}] trimer templated by tren.

  5. High-pressure synthesis and characterization of the first cerium fluoride borate CeB{sub 2}O{sub 4}F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinteregger, Ernst; Wurst, Klaus; Tribus, Martina

    2013-08-15

    CeB{sub 2}O{sub 4}F is the first cerium fluoride borate, which is exclusively built up of one-dimensional, infinite chains of condensed trigonal-planar [BO{sub 3}]{sup 3−} groups. This new cerium fluoride borate was synthesized under high-pressure/high-temperature conditions of 0.9 GPa and 1450 °C in a Walker-type multianvil apparatus. The compound crystallizes in the orthorhombic space group Pbca (No. 61) with eight formula units and the lattice parameters a=821.63(5), b=1257.50(9), c=726.71(6) pm, V=750.84(9) Å{sup 3}, R{sub 1}=0.0698, and wR{sub 2}=0.0682 (all data). The structure exhibits a 9+1 coordinated cerium ion, one three-fold coordinated fluoride ion and a one-dimensional chain of [BO{sub 3}]{sup 3−}more » groups. Furthermore, IR spectroscopy, Electron Micro Probe Analysis and temperature-dependent X-ray powder diffraction measurements were performed. - Graphical abstract: A new rare-earth fluoride borate CeB{sub 2}O{sub 4}F could be synthesized under high-pressure/high-temperature conditions of 0.9 °GPa and 1450 °Cin a Walker-type multianvil apparatus. The crystal structure represents a new structure type in the class of rare-earth fluoride borates. The structure exhibits a 9+1 coordinated cerium ion, one three-fold coordinated fluoride ion and a one-dimensional chain of [BO{sub 3}]{sup 3−} groups. A closer view on the ac-plane shows an interesting wave-like modulation of the borate chains. Highlights: • CeB{sub 2}O{sub 4}F is the first fluoride borate exclusively built up of one-dimensional, infinite chains of condensed trigonal-planar [BO{sub 3}]{sup 3−} groups. • CeB{sub 2}O{sub 4}F is the first cerium fluoride borate. • High-pressure conditions were necessary to synthesize CeB{sub 2}O{sub 4}F.« less

  6. Fluoride glass starting materials - Characterization and effects of thermal treatment

    NASA Technical Reports Server (NTRS)

    Chen, William; Dunn, Bruce; Shlichta, Paul; Neilson, George F.; Weinberg, Michael C.

    1987-01-01

    The production of heavy metal fluoride (HMF) glasses, and the effects of thermal treatments on the HMF glasses are investigated. ZrF4, BaF2, AlF3, LaF3, and NaF were utilized in the synthesis of zirconium-barium-lanthanum-aluminum-sodium fluoride glass. The purity of these starting materials, in particular ZrF4, is evaluated using XRD analysis. The data reveal that low temperature heating of ZrF4-H2O is effective in removing the water of hydration, but causes the production of ZrF4 and oxyfluorides; however, dehydration followed by sublimation results in the production of monoclinic ZrFe without water or oxyfluoride contaminants.

  7. Quantification of 18F-Fluoride Kinetics: Evaluation of Simplified Methods.

    PubMed

    Raijmakers, Pieter; Temmerman, Olivier P P; Saridin, Carrol P; Heyligers, Ide C; Becking, Alfred G; van Lingen, Arthur; Lammertsma, Adriaan A

    2014-07-01

    (18)F-fluoride PET is a promising noninvasive method for measuring bone metabolism and bone blood flow. The purpose of this study was to assess the performance of various clinically useful simplified methods by comparing them with full kinetic analysis. In addition, the validity of deriving bone blood flow from K1 of (18)F-fluoride was investigated using (15)O-H2O as a reference. Twenty-two adults (mean age ± SD, 44.8 ± 25.2 y), including 16 patients scheduled for bone surgery and 6 healthy volunteers, were studied. All patients underwent dynamic (15)O-H2O and (18)F-fluoride scans before surgery. Ten of these patients had serial PET measurements before and at 2 time points after local bone surgery. During all PET scans, arterial blood was monitored continuously. (18)F-fluoride data were analyzed using nonlinear regression (NLR) and several simplified methods (Patlak and standardized uptake value [SUV]). SUV was evaluated for different time intervals after injection and after normalizing to body weight, lean body mass, and body surface area, and simplified measurements were compared with NLR results. In addition, changes in SUV and Patlak-derived fluoride influx rate (Ki) after surgery were compared with corresponding changes in NLR-derived Ki. Finally, (18)F-fluoride K1 was compared with bone blood flow derived from (15)O-H2O data, using the standard single-tissue-compartment model. K1 of (18)F-fluoride correlated with measured blood flow, but the correlation coefficient was relatively low (r = 0.35, P < 0.001). NLR resulted in a mean Ki of 0.0160 ± 0.0122, whereas Patlak analysis, for the interval 10-60 min after injection, resulted in an almost-identical mean Ki of 0.0161 ± 0.0117. The Patlak-derived Ki, for 10-60 min after injection, showed a high correlation with the NLR-derived Ki (r = 0.976). The highest correlation between Ki and lean body mass-normalized SUV was found for the interval 50-60 min (r = 0.958). Finally, changes in SUV correlated significantly with those in Ki (r = 0.97). The present data support the use of both Patlak and SUV for assessing fluoride kinetics in humans. However, (18)F-fluoride PET has only limited accuracy in monitoring bone blood flow. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  8. Efficacy of calcium- and fluoride-containing materials for the remineralization of primary teeth with early enamel lesion.

    PubMed

    Memarpour, Mahtab; Soltanimehr, Elham; Sattarahmady, Naghmeh

    2015-09-01

    The aim of the study was to determine the efficacy of different products containing fluoride, calcium and phosphate for enamel remineralization in eroded primary teeth. A total of 90 sound primary canine teeth were randomly divided into 5 groups of 18 teeth each: 1) control (polished enamel), 2) 5% DuraShield sodium fluoride varnish, 3) 500 ppm fluoridated toothpaste, 4) casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) cream, and 5) Clinpro White varnish containing functionalized tri-calcium phosphate (fTCP). Enamel microhardness (EMH) was measured in all samples before and after demineralization and after 28 days of remineralization. Also 8 samples in groups 2 to 5 and four samples of sound and demineralized enamel were examined with atomic force microscopy (AFM). All data were analyzed with one-way ANOVA (p<0.05). Mean microhardness of demineralized enamel was significantly lower than in enamel at baseline (p<0.001). Remineralization significantly increased microharness in groups 2 to 5 compared to the control group (p<0.001). Percent EMH after remineralization with CPP-ACP was significantly higher than after fTCP (p=0.029), toothpaste (p< 0.001) or fluoride varnish (p<0.001); however, there was no significant difference between toothpaste and fluoride varnish (p=0.062). Microhardness increased more after fTCP treatment than after treatment with sodium fluoride varnish (p<0.001) or fluoridated toothpaste (p=0.045). AFM images showed that enamel roughness decreased most after treatment with fTCP, followed by CPP-ACP, toothpaste and fluoride varnish. The efficacy of CPP-ACP cream for remineralizing eroded enamel was greater than fluoride toothpaste, fluoride varnish or fTCP varnish. © 2015 Wiley Periodicals, Inc.

  9. Enamel-Caries Prevention Using Two Applications of Fluoride-Laser Sequence.

    PubMed

    Noureldin, Amal; Quintanilla, Ines; Kontogiorgos, Elias; Jones, Daniel

    2016-03-01

    Studies demonstrated a significant synergism between fluoride and laser in reduction of enamel solubility. However, minimal research has focused on testing the sequence of their application and no other research investigated the preventive effect of repeated applications of a combined treatment. This study investigated the effect of two applications of fluoride-laser sequence on the resistance of sound enamel to cariogenic challenge compared to one-time application. Sixty enamel slabs were cut from 10 human incisors, ground flat, polished and coated with nail varnish except a 2 x 2 mm window. Specimens were randomly assigned into five groups of 12 specimens; (CON-) negative-control received no treatment, (CON+) positive-control received pH challenge, (FV) treated with M fluoride varnish, (F-L1) one-application fluoride-varnish followed by CO2 laser-treatment (short-pulsed 10.6 µm, 2.4J/ cm2, 10HZ, 10sec), and (F-L2) two-applications of fluoride varnish-laser treatment. Specimens were left in distilled water for one day between applications. Except CON-, all groups were submitted to pH cycling for 9-days (8 demin/ remin + 1 day remineralisation bath) at 37°C. Enamel demineralization was quantitatively evaluated by measurement of Knoop surface-microhardness (SM H) (50-grams/10 seconds). Data were analyzed using one-way ANOVA (p ≤ 0.05) followed by Duncan's Multiple Range Test. Within the limitations of this study, it was found that one or two applications of fluoride-laser sequence significantly improved resistance of the sound enamel surface to acid attack compared to FV-treated group. Although the two applications of fluoride-laser sequence (F-L1 and F-L2) showed higher SMH values, significant resistance to demineralization was only obtained with repeated applications.

  10. Graphite intercalation with fluoroanions by chemical and electrochemical methods

    NASA Astrophysics Data System (ADS)

    Ozmen-Monkul, Bahar

    New acceptor-type graphite intercalation compounds (GICs) containing perfluoroalkyl anions have been synthesized by using both chemical and electrochemical methods and characterized by elemental and thermogravimetric analyses. Investigation into these graphite intercalation compounds can provide novel materials and a detailed understanding of their properties. GICs of composition Cx[FB(C2F 5)3]·deltaF are prepared for the first time by the intercalation of fluoro-tris(pentafluoroethyl)borate anion, [FB(C2F 5)3]-, under ambient conditions in aqueous (48%) hydrofluoric acid containing the oxidant K2[MnF6]. Powder-XRD data indicate that products are pure stage 2 and physical mixture of stage 2 and stage 3 after 1 h to 20 h reaction times. The calculated basal repeat distance, Ic, is 1.20 nm for stage 2 and 1.54-1.56 nm for stage 3 GICs, corresponding to gallery heights of di = 0.86-0.89 nm. In addition, stage 2 GIC of C x[FB(C2F5)3]·deltaCH 3NO2 having di = 0.84 nm is prepared by electrochemical oxidation of graphite in a nitromethane electrolyte. The elemental analyses of these complex GICs required that a new sample digestion protocol be developed. After digestion, the fluoride amounts in these GIC samples were analyzed by using ion-selective fluoride combination electrode. The method developed is able to provide fluoride anion content in GICs without interference from the decomposition products of [FB(C 2F5)3]- anion. For the boron analyses the same digestion procedure above is used and the B contents were determined by ICP-AES. For Cx[FB(C2F 5)3]·deltaF, both compositional parameters x and delta are obtained from the results of elemental B and F analyses. For the chemically prepared GICs at 1 h to 20 h, calculated x values were in the range of 51-56 and the calculated delta values increased with reaction time from approx. 0-2. Combining B analysis and TGA mass loss gives a composition of x = 44 and delta = 0.37 for the electrochemically prepared GIC of Cx[FB(C2F5)3]·deltaCH 3NO2. Energy minimized structure for the isolated borate anion and powder XRD data show that the borate anions adopt a "lying-down" orientation where the long axes of [FB(C2F5)3] - intercalate anions are parallel to the encasing graphene sheets. The same electrochemical synthesis strategy is also used for the preparation of a new acceptor-type GIC containing the cyclo-hexafluoropropane-1,3-bis(sulfonyl)amide anion, [CF2(CF2SO2)2N] -. The gallery heights of 0.85-0.86 nm are determined by powder X-ray diffraction for stage 2 and 3 products. These GICs are obtained by electrochemical oxidation of graphite in a nitromethane electrolyte. GICs containing the linear anion, [(CF3SO2)2N]- are also prepared in order to compare the gallery heights and the electron charge distributions that helps to understand the GIC stabilities within the graphene sheets. The compositions of GICs containing [CF2(CF 2SO2)2N]- are determined by thermogravimetric, fluorine and nitrogen elemental analyses. GICs of composition Cx[(C2F 5)3PF3] are prepared for the first time by the intercalation of tris(pentafluoroethyl)trifluorophosphate (FAP) anion, [(C 2F5)3PF3]- by electrochemical oxidation of graphite. Powder-XRD data indicate that products are of stages 2-4 with gallery heights of 0.82-0.86 nm. These GICs are characterized by the same methods using TGA and F ion-selective probe analyses.

  11. Absorption of Deuterium Fluoride Laser Radiation by the Atmosphere

    DTIC Science & Technology

    1976-04-01

    30 lines, and it would have been prohibitively costly in terms of time and money to measure the ab- sorption on all lines. McClatchey, et al.[3...linear molecule (N2O, CO2, CO) Herzberg [5] gives as an approximation 14 ^ Vi ~_ i’: (45) so that (47) qR(T) hcB V. (ln\\ 1.0 For asymmetric...top molecules (H20, 03) Herzberg [5] gives as an approximation (48) so that ABC \\hc; (49) ±-^f) For spherical top molecules (CH4) Herzberg [5

  12. Fluoride loaded polymeric nanoparticles for dental delivery.

    PubMed

    Nguyen, Sanko; Escudero, Carlos; Sediqi, Nadia; Smistad, Gro; Hiorth, Marianne

    2017-06-15

    The overall aim of the present paper was to develop fluoride loaded nanoparticles based on the biopolymers chitosan, pectin, and alginate, for use in dental delivery. First, the preparation of nanoparticles in the presence of sodium fluoride (NaF) as the active ingredient by ionic gelation was investigated followed by an evaluation of their drug entrapment and release properties. Chitosan formed stable, spherical, and monodisperse nanoparticles in the presence of NaF and tripolyphoshate as the crosslinker, whereas alginate and pectin were not able to form any definite nanostructures in similar conditions. The fluoride loading capacity was found to be 33-113ppm, and the entrapment efficiency 3.6-6.2% for chitosan nanoparticles prepared in 0.2-0.4% (w/w) NaF, respectively. A steady increase in the fluoride release was observed for chitosan nanoparticles prepared in 0.2% NaF both in pH5 and 7 until it reached a maximum at time point 4h and maintained at this level for at least 24h. Similar profiles were observed for formulations prepared in 0.4% NaF; however the fluoride was released at a higher level at pH5. The low concentration, but continuous delivery of fluoride from the chitosan nanoparticles, with possible expedited release in acidic environment, makes these formulations highly promising as dental delivery systems in the protection against caries development. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The protective effect of SnF2 containing toothpastes and solution on enamel surfaces subjected to erosion and abrasion in situ.

    PubMed

    Hove, L H; Stenhagen, K R; Holme, B; Tveit, A B

    2014-08-01

    Stannous fluoride solutions have shown promising protective effect against erosion/abrasion, but the effect of SnF2 toothpastes is uncertain. The aim of the study was to test the inhibiting effect of two SnF2 toothpastes and a SnF2 solution against erosive/abrasive wear in a single-blind, randomised in situ study, using a white light interferometer. Sixteen human molars were each divided into four specimens, mounted on mouth appliances and worn by 8 volunteers for 9 days. Specimens were brushed with toothpaste twice each day for 30 s either with fluoride-free toothpaste or toothpastes including SnF2. Toothpaste was left on the surface for 90 additional seconds. Group 1, fluoride-free toothpaste; Group 2, toothpaste A (0.4% SnF2, Solidox); Group 3, toothpaste B (0.454 % SnF2, Oral-B(®)); Group 4, brushed with fluoride-free toothpaste (30 s) and treated for 2 min with a 0.4 % SnF2 solution (1,000 ppm F). To mimic gastric reflux/vomit, specimens were etched for 2 min twice a day (0.01 M HCl). Procedures were performed extra-orally. The mean enamel wear (in μm) for the control specimens was: -29.2 ± SD 10.5; for group 2 -14.5 SD ± 9.3; for group 3 -33.3 SD ± 7.4, and for group 4 +0.4 SD ± 1.3. The specimens treated with SnF2 solution and toothpaste A showed significantly lower enamel wear than the control group. Toothpaste B gave no significant reduction in enamel wear. The SnF2 solution fully protected the enamel surface against erosive and abrasive challenges. The SnF2 toothpaste A (Solidox) showed less, but significant protection of the enamel, while no statistically significant protection was demonstrated by SnF2 toothpaste B (Oral-B(®) Pro-Expert).

  14. Solid-phase zirconium and fluoride species in alkaline zircaloy cladding waste at Hanford.

    PubMed

    Reynolds, Jacob G; Huber, Heinz J; Cooke, Gary A; Pestovich, John A

    2014-08-15

    The United States Department of Energy Hanford Site, near Richland, Washington, USA, processed plutonium between 1944 and 1987. Fifty-six million gallons of waste of various origins remain, including waste from removing zircaloy fuel cladding using the so-called Zirflex process. The speciation of zirconium and fluoride in this waste is important because of the corrosivity and reactivity of fluoride as well as the (potentially) high density of Zr-phases. This study evaluates the solid-phase speciation of zirconium and fluoride using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Two waste samples were analyzed: one waste sample that is relatively pure zirconium cladding waste from tank 241-AW-105 and another that is a blend of zirconium cladding wastes and other high-level wastes from tank 241-C-104. Villiaumite (NaF) was found to be the dominant fluoride species in the cladding waste and natrophosphate (Na7F[PO4]2 · 19H2O) was the dominant species in the blended waste. Most zirconium was present as a sub-micron amorphous Na-Zr-O phase in the cladding waste and a Na-Al-Zr-O phase in the blended waste. Some zirconium was present in both tanks as either rounded or elongated crystalline needles of Na-bearing ZrO2 that are up to 200 μm in length. These results provide waste process planners the speciation data needed to develop disposal processes for this waste. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Crystallographic nature of fluoride in enameloids of fish.

    PubMed

    LeGeros, R Z; Suga, S

    1980-01-01

    X-ray diffraction studies on calcified tissues (teeth and/or scales) of fish and of shark showed that the presence of fluoride affects the crystallite size and lattice parameters of the apatite phase. An inverse correlation between F contents (ranging from 0.2 to 3.8 wt% F) and alpha-axis dimensions (9.441 to 9.375 +/- 0.003 A) exists for both synthetic and enameloid apatites and is consistent with the F-for-OH substitution in the apatite, idealized as Ca10(PO4)6(OH)2 and Ca10(PO4)6F2, for fluoride-free and maximum fluoride-substituted apatite, respectively. In synthetic systems, the incorporation of F is found to be dependent on the F concentration of the media from which the apatite formed. This dependency is also observed between F content of the dentine apatites and the F concentration of the water from which the fish can (i.e., less than 0.08 ppmF in fresh water, about 1.3 ppm in seawater). However, no such dependency was observed between the F incorporation in fish enameloid apatite and the F concentration in the water of origin. In some cases, the F incorporated in the enameloid apatite is much in excess of what can be expected from the F concentration of water. These observations suggest that in some fish, a fluoride-concentrating mechanism is operative during the formation of the enameloid but not during the formation of the dentine, and this mechanism appears to be specie-related.

  16. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 2. Light Lanthanides (Ce–Eu)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mioduski, Tomasz; Gumiński, Cezary, E-mail: cegie@chem.uw.edu.pl; Zeng, Dewen, E-mail: dewen-zeng@hotmail.com

    This is the second part of the volume devoted to the evaluation of experimental solubility data for rare earth metal (REM) fluorides in water as well as in aqueous ternary and multicomponent systems. Fluorides of Ce, Pr, Nd, Pm, Sm, and Eu (so-called light lanthanides), as the main solutes, are covered in the present part, which has thorough coverage of the experimental literature through the end of 2012. The experimentally unknown solubility value for PmF{sub 3} in water was predicted by an interpolation of the solubility values for NdF{sub 3} and SmF{sub 3} at 298 K. General features of themore » systems, such as the nature of the equilibrium solid phases, solubility as a function of temperature, influence of ionic strength, pH, mixed solvent medium on the solubility, quality of the solubility results, and solubility as a function of REM atomic number, have already been presented in Part 1 of the volume.« less

  17. Lithium rechargeable cell with a polymer cathode

    NASA Astrophysics Data System (ADS)

    Walker, Charles W., Jr.

    1991-11-01

    Thin films of electropolymerized poly 3-methylthiophene (PMT) were used as a rechargeable cathode in Li(SO2)3AlCl4 electrolyte. Capacity was superior to porous carbon electrodes of like thickness. Pulse power levels of 2 W cm-2 were achieved, and high rate constant current pulses of four-second duration were reproducible over cycles. Cells could be recharged at potentials below 4.0 V, minimizing the formation of chlorine and thereby diminishing the capacity for corrosion. For a primary cell, greater discharge capacity was obtained with thionyl chloride and sulfuryl chloride electrolytes. Since PMT becomes electrically insulating in the reduced state, this could be used as a built-in safety feature to avert the hazards associated with abuse over-discharge.

  18. Fluoride in the diet of 2-years-old children.

    PubMed

    Martinez-Mier, E A; Spencer, Kathryn L; Sanders, Brian J; Jones, James E; Soto-Rojas, Armando E; Tomlin, Angela M; Vinson, LaQuia A; Weddell, James A; Eckert, George J

    2017-06-01

    This study aimed to calculate the fluoride concentrations of commonly consumed foods and beverages for 2-years-old children utilizing market basket information for the US Midwest region. Total Diet Study food lists were cross-referenced with National Health and Nutrition Examination Survey-What We Eat in America data to determine the foods and beverages to be included. Fluoride concentrations were determined using a modification of the hexamethyldisiloxane microdiffusion technique. Fluoride concentrations were summarized for each of the food categories. Daily dietary fluoride intake was estimated using a simulation analysis. Food and beverage fluoride concentrations varied widely, ranging from nondetectable for some oils and dairy products to more than 3.0 μgF/g food for some processed meats, fish and fruits. The estimated mean (±SD) daily dietary fluoride intake, excluding dentifrice and supplements, was 412±114 μgF/d. The estimated average ingestion for a 2-years-old weighing 12.24 kg was 0.034±0.009 mg/kg/d. A diet based on foods and beverages in the fifth percentile of fluoride intake distribution for an average child would result in 247 μgF/d or 0.020 mg/kg/d, while a diet with foods and beverages in the 95th percentile would result in a total intake of 622 μgF/d or 0.051 mg/kg/d. The fluoride concentrations of foods and beverages vary widely, and, if items in the 95th percentile of fluoride intake distribution are ingested, children could consume more fluoride than the recommended 0.05 mg/kg/d. Fluoride intake calculated in this study was higher than historically reported dietary levels. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Lead enhances fluoride influence on apoptotic processes in the HepG2 liver cell line.

    PubMed

    Gutowska, Izabela; Baranowska-Bosiacka, Irena; Siwiec, Ewa; Szczuko, Małgorzata; Kolasa, Agnieszka; Kondarewicz, Anna; Rybicka, Marta; Dunaj-Stańczyk, Małgorzata; Wiernicki, Ireneusz; Chlubek, Dariusz; Stachowska, Ewa

    2016-03-01

    Chronic long-term exposure to high levels of fluoride leads to fluorosis, manifested by skeletal fluorosis and damage to internal organs, including kidneys, liver, parathyroid glands, and brain. Excess fluoride can also cause DNA damage, trigger apoptosis, and change cell cycle. The effect of fluoride may be exacerbated by lead (Pb), a potent inhibitor of many enzymes and a factor causing apoptosis, still present in the environment in excessive amounts. Therefore, in this study, we investigated the effects of sodium fluoride (NaF) and/or lead acetate (PbAc) on development of apoptosis, cell vitality, and proliferation in the liver cell line HepG2. We examined hepatocytes from the liver cell line HepG2, incubated for 48 h with NaF, PbAc, and their mixture (NaF + PbAc), and used for measuring apoptosis, index of proliferation, and vitality of cells. Incubation of the hepatocytes with NaF or PbAc increased apoptosis, more when fluoride and Pb were used simultaneously. Vitality of the cells depended on the compound used and its concentration. Proliferation slightly increased and then decreased in a high fluoride environment; it decreased significantly after addition of Pb in a dose-dependent manner. When used together, fluoride inhibited the decreasing effect of Pb on cell proliferation. © The Author(s) 2013.

  20. Syntheses, Raman spectra, and X-ray crystal structures of [XeF(5)][mu-F(OsO(3)F(2))(2)] and [M][OsO(3)F(3)] (M = XeF(5)(+), Xe(2)F(11)(+)).

    PubMed

    Hughes, Michael J; Mercier, Hélène P A; Schrobilgen, Gary J

    2010-04-05

    Stoichiometric amounts of XeF(6) and (OsO(3)F(2))(infinity) react at 25-50 degrees C to form salts of the known XeF(5)(+) and Xe(2)F(11)(+) cations, namely, [XeF(5)][mu-F(OsO(3)F(2))(2)], [XeF(5)][OsO(3)F(3)], and [Xe(2)F(11)][OsO(3)F(3)]. Although XeF(6) is oxophilic toward a number of transition metal and main-group oxides and oxide fluorides, fluoride/oxide metathesis was not observed. The series provides the first examples of noble-gas cations that are stabilized by metal oxide fluoride anions and the first example of a mu-F(OsO(3)F(2))(2)(-) salt. Both [XeF(5)][mu-F(OsO(3)F(2))(2)] and [Xe(2)F(11)][OsO(3)F(3)] are orange solids at room temperature. The [XeF(5)][OsO(3)F(3)] salt is an orange liquid at room temperature that solidifies at 5-0 degrees C. When the salts are heated at 50 degrees C under 1 atm of N(2) for more than 2 h, significant XeF(6) loss occurs. The X-ray crystal structures (-173 degrees C) show that the salts exist as discrete ion pairs and that the osmium coordination spheres in OsO(3)F(3)(-) and mu-F(OsO(3)F(2))(2)(-) are pseudo-octahedral OsO(3)F(3)-units having facial arrangements of oxygen and fluorine atoms. The mu-F(OsO(3)F(2))(2)(-) anion is comprised of two symmetry-related OsO(3)F(2)-groups that are fluorine-bridged to one another. Ion pairing results from secondary bonding interactions between the fluorine/oxygen atoms of the anions and the xenon atom of the cation, with the Xe...F/O contacts occurring opposite the axial fluorine and from beneath the equatorial XeF(4)-planes of the XeF(5)(+) and Xe(2)F(11)(+) cations so as to avoid the free valence electron lone pairs of the xenon atoms. The xenon atoms of [XeF(5)][mu-F(OsO(3)F(2))(2)] and [Xe(2)F(11)][OsO(3)F(3)] are nine-coordinate and the xenon atom of [XeF(5)][OsO(3)F(3)] is eight-coordinate. Quantum-chemical calculations at SVWN and B3LYP levels of theory were used to obtain the gas-phase geometries, vibrational frequencies, and NBO bond orders, valencies, and NPA charges of the ion pairs, [Xe(2)F(11)][OsO(3)F(3)], [XeF(5)][OsO(3)F(3)], and [XeF(5)][mu-F(OsO(3)F(2))(2)], as well as those of the free ions, Xe(2)F(11)(+), XeF(5)(+), OsO(3)F(3)(-), and mu-F(OsO(3)F(2))(2)(-). The Raman spectra (-150 degrees C) of the salts have been assigned based on the ion pairs observed in the crystal structures and the calculated vibrational frequencies and intensities of the gas-phase ion pairs.

  1. Characterization of nanoscopic calcium fluoride films

    NASA Astrophysics Data System (ADS)

    Rehmer, A.; Kemnitz, E.

    2016-09-01

    Nano metal fluorides are appropriate materials for different applications e.g. heterogeneous catalysis, ceramic materials for laser applications and antireflective layers on glass, respectively. An easy way to synthesize such nano metal fluorides is the fluorolytic sol-gel synthesis which was developed some few years ago for HS-AlF3 [1] and MgF2.[2] CaF2 exhibits similar optical properties as MgF2, and thus, is a promising candidate for antireflective (AR) coatings. That means, CaF2 exhibits a lower refractive index (n500 = 1.44) as compared to common soda lime glass (n500 = 1.53). Hence, we present an easy synthesis approach toward nanoscaled CaF2 sols to fabricate finally AR-CaF2 films by dip coating. Irrespective of the choice of the calcium precursor, the CaF2 films are porous in comparison to thin dense CaF2 films which are generated by physical vapor deposition. The characterization of CaF2 films was performed by different analytical methods like HR-SEM, XPS, EDX, EP (ellipsometric porosimetry), DLS (dynamic light scattering) and CA (contact angle measurement). Beside the good optical and mechanical properties, we have investigated the surface properties of CaF2 films on glass and silicon wafer e.g. surface morphology with elemental composition, open porosity, zeta potentials at the surfaces as well as the free energy of interaction between water and the CaF2 film.

  2. Role of 18F-fluoride PET/CT in the assessment of multiple myeloma: initial experience.

    PubMed

    Nishiyama, Yuji; Tateishi, Ukihide; Shizukuishi, Kazuya; Shishikura, Ayako; Yamazaki, Etsuko; Shibata, Hiroto; Yoneyama, Tomohiro; Ishigatsubo, Yoshiaki; Inoue, Tomio

    2013-01-01

    The aim of this study was to report our early experience with (18)F-fluoride PET/CT for detecting lesions and evaluate the usefulness of this modality in the assessment of multiple myeloma (MM). (18)F-fluoride PET/CT and (99m)Tc-MDP bone scintigraphy (BS) studies from 7 myeloma patients (4 male and 3 female, mean age 55 years) diagnosed according to standard criteria were reviewed retrospectively. Two reviewers visually and quantitatively analyzed the images and recorded their findings after reaching a consensus. Diagnostic certainty regarding the presence or absence of myeloma lesions was evaluated according to the reference standard consisting of whole-body magnetic resonance imaging and whole-body X-ray. A total of 93 affected areas were definite according to the reference standard. Of these, 83 affected areas (89 %) were identified on (18)F-fluoride PET/CT, whereas 54 affected areas (58 %) were found on BS. Mean SUVmax in the affected areas was 9.8 ± 3.2 (standard deviation) ranging from 5.0 to 21.2. A total of s17 lesions with bone fracture were also detected by (18)F-fluoride PET/CT and 2 lesions (12 %) were negative on BS. Our result showed that (18)F-fluoride PET was a possible modality to detect areas of lesions in patients with MM.

  3. Mechanical Properties of Calcium Fluoride-Based Composite Materials

    PubMed Central

    Kleczewska, Joanna; Pryliński, Mariusz; Podlewska, Magdalena; Sokołowski, Jerzy; Łapińska, Barbara

    2016-01-01

    Aim of the study was to evaluate mechanical properties of light-curing composite materials modified with the addition of calcium fluoride. The study used one experimental light-curing composite material (ECM) and one commercially available flowable light-curing composite material (FA) that were modified with 0.5–5.0 wt% anhydrous calcium fluoride. Morphology of the samples and uniformity of CaF2 distribution were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). Mechanical properties were tested after 24-hour storage of specimens in dry or wet conditions. Stored dry ECM enriched with 0.5–1.0 wt% CaF2 showed higher tensile strength values, while water storage of all modified ECM specimens decreased their tensile strength. The highest Vickers hardness tested after dry storage was observed for 2.5 wt% CaF2 content in ECM. The addition of 2.0–5.0 wt% CaF2 to FA caused significant decrease in tensile strength after dry storage and overall tensile strength decrease of modified FA specimens after water storage. The content of 2.0 wt% CaF2 in FA resulted in the highest Vickers hardness tested after wet storage. Commercially available composite material (FA), unmodified with fluoride addition, demonstrated overall significantly higher mechanical properties. PMID:28004001

  4. Thermal, optical, and dielectric properties of fluoride Rb2TaF7

    NASA Astrophysics Data System (ADS)

    Pogorel'tsev, E. I.; Mel'nikova, S. V.; Kartashev, A. V.; Gorev, M. V.; Flerov, I. N.; Laptash, N. M.

    2017-05-01

    The thermal, optical, and dielectric properties of fluoride Rb2TaF7 were investigated. It was observed that the variation in chemical pressure in fluorides A 2 +TaF7 caused by the cation substitution of rubidium for ammonium does not affect the ferroelastic nature of structural distortions, but leads to stabilization of the high- and low-temperature phases and enhancement of birefringence. The entropy of the phase transition P4/nmm ↔ Cmma is typical of the shift transformations, which is consistent with a model of the initial and distorted phase structures. The anisotropy of chemical pressure causes the change of signs of the anomalous strain and baric coefficient dT/ dp of Rb2TaF7 as compared with the values for its ammonium analog.

  5. A Role of Fluoride on Free Radical Generation and Oxidative Stress in BV-2 Microglia Cells

    PubMed Central

    Shuhua, Xi; Ziyou, Liu; Ling, Yan; Fei, Wang; Sun, Guifan

    2012-01-01

    The generation of ROS and lipid peroxidation has been considered to play an important role in the pathogenesis of chronic fluoride toxicity. In the present study, we observed that fluoride activated BV-2 microglia cell line by observing OX-42 expression in immunocytochemistry. Intracellular superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), reactive oxygen species (ROS), superoxide anions (O2 ∙−), nitric oxide synthase (NOS), nitrotyrosine (NT) and nitric oxide (NO), NOS in cell medium were determined for oxidative stress assessment. Our study found that NaF of concentration from 5 to 20 mg/L can stimuli BV-2 cells to change into activated microglia displaying upregulated OX-42 expression. SOD activities significantly decreased in fluoride-treated BV-2 cells as compared with control, and MDA concentrations and contents of ROS and O2 ∙− increased in NaF-treated cells. Activities of NOS in cells and medium significantly increased with fluoride concentrations in a dose-dependent manner. NT concentrations also increased significantly in 10 and 50 mg/L NaF-treated cells compared with the control cells. Our present study demonstrated that toxic effects of fluoride on the central nervous system possibly partly ascribed to activiting of microglia, which enhanced oxidative stress induced by ROS and reactive nitrogen species. PMID:22933830

  6. Photoemission study of CaF2- and SrF2-GaAs(110) interfaces formed at room temperature

    NASA Astrophysics Data System (ADS)

    Mao, D.; Young, K.; Kahn, A.; Zanoni, R.; McKinley, J.; Margaritondo, G.

    1989-06-01

    Interfaces formed by evaporating CaF2 or SrF2 on room-temperature GaAs(110) are studied with synchrotron-radiation photoemission spectroscopy. The fluoride films grow uniformly on the GaAs surface. The deposition of CaF2 and SrF2 induces a large initial band bending on p-type GaAs (~0.9 eV) and a small initial band bending on n-type GaAs (~0.25 eV). The valence band is dominated by the F 2p peak which shifts toward high binding energies by ~1.5 eV after the deposition of >=16 Å fluoride. This shift reflects an increase in the valence-band offset between the two materials as the film forms. The final band offsets are estimated at 7.7 and 8.0 eV for CaF2 and SrF2, respectively, and are in qualitative agreement with those expected from the fluoride-Si data. Core-level measurements indicate that no reaction or decomposition of the MF2 molecule takes place at the interface. The F 2s core-level line shape and the increase in the binding-energy separation of F 2s and Ca 3p with increasing coverage suggest the presence of an interface F component. Contrary to the CaF2/Si case, no measurable Ca-substrate bonding effect is observed. The dissociative effect of uv irradiation on the CaF2 film is also investigated.

  7. Silicon oxidation in fluoride solutions

    NASA Technical Reports Server (NTRS)

    Sancier, K. M.; Kapur, V.

    1980-01-01

    Silicon is produced in a NaF, Na2SiF6, and Na matrix when SiF4 is reduced by metallic sodium. Hydrogen is evolved during acid leaching to separate the silicon from the accompanying reaction products, NaF and Na2SiF6. The hydrogen evolution reaction was studied under conditions simulating leaching conditions by making suspensions of the dry silicon powder in aqueous fluoride solutions. The mechanism for the hydrogen evolution is discussed in terms of spontaneous oxidation of silicon resulting from the cooperative effects of (1) elemental sodium in the silicon that reacts with water to remove a protective silica layer, leaving clean reactive silicon, and (2) fluoride in solution that complexes with the oxidized silicon in solution and retards formation of a protective hydrous oxide gel.

  8. A Theoretical Study of Structural, Electronic and Vibrational Properties of Small Fluoride Clusters

    NASA Astrophysics Data System (ADS)

    Waters, Kevin; Pandey, Ratnesh; Nigam, Sandeep; He, Haiying; Pingle, Subhash; Pandey, Avinash; Pandey, Ravindra

    2014-03-01

    Alkaline earth metal fluorides are an interesting family of ionic crystals having a wide range of applications in solid state lasers, luminescence, scintillators, to name just a few. In this work, small stoichiometric clusters of (MF2)n (M = Mg, Ca Sr, Ba, n =1-6) were studied for structural, vibrational and electronic properties using first-principles methods based on density functional theory. A clear trend of structural and electronic structure evolution was found for all the alkaline earth metal fluorides when the cluster size n increases from 1 to 6. Our study reveals that these fluoride clusters mimic the bulk-like behavior at the very small size. Among the four series of metal fluorides, however, (MgF2)n clusters stands out to be different in its preference of equilibrium structures owing to the much smaller ionic radius of Mg and the higher degree of covalency in the Mg-F bonding. The calculated binding energy, highest stretching frequency, ionization potential, and HOMO-LUMO gap decrease from MgF2 to BaF2 for the same cluster size. These variations are explained in terms of the change in the ionic radius and the basicity of the metal ions.

  9. Lubricating Properties of Some Bonded Fluoride and Oxide Coatings for Temperature to 1500 F

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1960-01-01

    The lubricating properties of some experimental ceramic coatings, diffusion-bonded fluoride coatings, and ceramic-bonded fluoride coatings were determined. The experiments were conducted in an air atmosphere at a sliding velocity of 430 feet per minute and at temperatures from 75 to 1500 F. Several ceramic coatings provided substantial reductions in friction coefficient and rider wear (compared with the unlubricated metals). For example, a cobaltous oxide (CoO) base coating gave friction coefficients of 0.24 to 0.36 within the temperature range of 75 to 1400 F; serious galling and welding of the metal surfaces were prevented. The friction coefficients were higher than the arbitrary maximum (0.2) usually considered for effective boundary lubrication. However, when a moderately high friction coefficient can be tolerated, this type of coating may be a useful antiwear composition. Diffusion-bonded calcium fluoride (CaF2) on Haynes Stellite 21 and on Inconel X gave friction coefficients of 0.1 to 0.2 at 1500 F. Endurance life was dependent on the thermal history of the coating; life improved with increased exposure time at elevated temperatures prior to running. Promising results were obtained with ceramic-bonded CaF2 on Inconel X. Effective lubrication and good adherence were obtained with a 3 to 1 ratio of CaF2 to ceramic. A very thin sintered and burnished film of CaF2 applied to the surface of this coating further improved lubrication, particularly above 1350 F. The friction coefficient was 0.2 at 500 F and decreased with increasing temperature to 0.06-at 1500 F. It was 0.25 at 75 F and 0.22 at 250 F.

  10. Superconducting Sr 2- xAxCuO 2F 2+ δ( A=Ca, Ba): Synthetic Pathways and Associated Structural Rearrangements

    NASA Astrophysics Data System (ADS)

    Francesconi, M. G.; Slater, P. R.; Hodges, J. P.; Greaves, C.; Edwards, P. P.; Al-Mamouri, M.; Slaski, M.

    1998-01-01

    The low-temperature fluorination of a range of insulating alkaline earth cuprates Sr2-xAxCuO3(A=Ca (0≤x≤2);A=Ba (0≤x≤0.6)) can result in superconducting oxide fluorides Sr2-xAxCuO2F2+δ. In contrast, conventional high-temperature solid-state reactions produce thermodynamically more stable mixtures of oxides and fluorides. Various soft-chemistry fluorination pathways (utilizing F2gas, NH4F,MF2[M=Cu, Zn, Ni, Ag]) are compared with respect to their efficacy and mechanisms. Attention is also focused on the structural features of the mixed-oxide precursor and the final-oxide fluorides to highlight the remarkable structural rearrangements that occur during the low-temperature fluorination. The effects of fluorination of other Sr-Cu-O systems are used to identify the structural requirements of the precursor oxide in order to achieve such transformations.

  11. Environmental evaluation of fluoride in drinking water at "Los Altos de Jalisco," in the central Mexico region.

    PubMed

    Hurtado, Roberto; Gardea-Torresdey, Jorge

    Naturally occurring fluoride has been detected and quantified in drinking water in several cities of the "Los Altos de Jalisco" (LAJ) region. LAJ is located in the northeastern part of the state of Jalisco-Mexico, covering an area of 16,410 km2 with a population of 696,318 in 20 municipalities. Drinking water comes mainly from groundwater aquifers, located in the Trans-Mexican Volcanic Belt, which is a volcanic region characterized by hydrothermal activity. Results indicated that water supply from 42% of the municipalities had a fluoride concentration over the Mexican standards of 1.5 mg/L. It is important to notice that there are three cities, Lagos de Moreno (1.66-5.88 mg/L F(-)), Teocaltiche (3.82-18.58 mg/L F(-)), and Encarnación de Díaz (2.58-4.40 mg/L F(-)) where all water samples resulted in fluoride concentration over the maximum contaminant level. The total population from these three cities is over 122,000 inhabitants. Another important city with high levels of fluoride in the water supply was Tepatitlán de Morelos (2 wells with 6.54 and 13.47 mg/L F(-)). In addition to water supply, 30 samples of brand-name bottled water were tested. Surprisingly, 8 samples (27%) demonstrated fluoride level over the standards, mainly Agua de Lagos with 5.27 mg/L. Fluoridated table salt (200-300 mg/kg F(-)) is another important source of fluoride. A large number of people living in the region, mainly school children, might be under adverse health risk because they are consuming contaminated drinking water. It is well known that long-term exposure to water with high levels of fluoride produces severe health problems.

  12. Recovery of valuable elements from spent Li-batteries.

    PubMed

    Paulino, Jéssica Frontino; Busnardo, Natália Giovanini; Afonso, Julio Carlos

    2008-02-11

    This work examines two recycling processes for spent Li/MnO(2) and Li-ion batteries. The anode, cathode and electrolyte (LiPF(6)) were submitted to one of the following procedures: (a) calcination at 500 degrees C (5h) followed by solvent extraction to recover lithium salts (fluoride, phosphate) in good yield (90 wt%). The residual solid was treated with H(2)SO(4) containing H(2)O(2) and on evaporation gave high purity grade cobalt or manganese sulfate; (b) fusion with KHSO(4) (500 degrees C, 5h). The resulting aqueous solution was added dropwise to a solution of NaOH, giving cobalt or manganese as impure precipitate. Addition of KF precipitated high purity grade LiF in moderate yield (50 wt%). The final aqueous solution on treatment with calcium sulfate precipitated the corresponding phosphate and fluoride salts.

  13. APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE AND CHLORIDE FROM LEGACY FISSILE MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.; Peters, T.

    2011-11-01

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and the Savannah River Site (SRS) HB-Line Facility designed, developed, tested, and successfully deployed a production-scale system for the distillation of sodium chloride (NaCl) and potassium chloride (KCl) from plutonium oxide (PuO{sub 2}). Subsequent efforts adapted the vacuum salt distillation (VSD) technology for the removal of chloride and fluoride from less-volatile halide salts at the same process temperature and vacuum. Calcium chloride (CaCl{sub 2}), calcium fluoride (CaF{sub 2}), and plutonium fluoride (PuF{sub 3}) were of particular concern. To enable the use of the same operating conditions for themore » distillation process, SRNL employed in situ exchange reactions to convert the less-volatile halide salts to compounds that facilitated the distillation of halide without removal of plutonium. SRNL demonstrated the removal of halide from CaCl{sub 2}, CaF{sub 2} and PuF{sub 3} below 1000 C using VSD technology.« less

  14. The Lewis superacid Al[N(C6F5)2]3 and its higher homolog Ga[N(C6F5)2]3 – structural features, theoretical investigation and reactions of a metal amide with higher fluoride ion affinity than SbF5† †Electronic supplementary information (ESI) available. CCDC 1557072–1557076. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc03988c

    PubMed Central

    Kögel, J. F.; Sorokin, D. A.; Khvorost, A.; Scott, M.; Harms, K.; Himmel, D.; Krossing, I.

    2017-01-01

    Herein we present the synthesis of the two Lewis acids Al[N(C6F5)2]3 (ALTA) and Ga[N(C6F5)2]3 (GATA) via salt elimination reactions. The metal complexes were characterized by NMR-spectroscopic methods and X-ray diffraction analysis revealing the stabilization of the highly Lewis acidic metal centers by secondary metal–fluorine contacts. The Lewis acidic properties of Al[N(C6F5)2]3 and Ga[N(C6F5)2]3 are demonstrated by reactions with Lewis bases resulting in the formation of metallates accompanied by crucial structural changes. The two metallates [Cs(Tol)3]+[FAl(N(C6F5)2)3]– and [AsPh4]+[ClGa(N(C6F5)2)3]– contain interesting weakly coordinating anions. The reaction of Al[N(C6F5)2]3 with trityl fluoride yielded [CPh3]+[FAl(N(C6F5)2)3]– which could find application in the activation of metallocene polymerization catalysts. The qualitative Lewis acidity of Al[N(C6F5)2]3 and Ga[N(C6F5)2]3 was investigated by means of competition experiments for chloride ions in solution. DFT calculations yielded fluoride ion affinities in the gas phase (FIA) of 555 kJ mol–1 for Al[N(C6F5)2]3 and 472 kJ mol–1 for Ga[N(C6F5)2]3. Thus, Al[N(C6F5)2]3 can be considered a Lewis superacid with a fluoride affinity higher than SbF5 (493 kJ mol–1) whereas the FIA of the corresponding gallium complex is slightly below the threshold to Lewis superacidity. PMID:29629094

  15. Orientational disorder in sodium cadmium trifluoride trihydrate, NaCdF{sub 3}.3H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Robert W.; Mar, Arthur; Liu Jianjun

    2006-03-09

    Attempts to synthesize the hypothetical anhydrous fluoroperovskite NaCdF{sub 3}, which has been predicted to be stable, resulted instead in a hydrated fluoride of nominal composition NaCdF{sub 3}.3H{sub 2}O. It decomposes to sodium fluoride, cadmium fluoride, and water at 60deg. C. Its structure has been determined by single-crystal X-ray diffraction. Na{sub 0.92(2)}Cd{sub 1.08}F{sub 3.08}.2.92H{sub 2}O crystallizes in the cubic space group Fm3-bar m with a=8.2369(4)A and Z=4. The structure is based on the NaSbF{sub 6}-type (an ordered variant of the ReO{sub 3}-type) and features tilted sodium- and cadmium-centred octahedra that are linked by shared vertices to form a three-dimensional network. Substitutionalmore » disorder occurs on the nonmetal site, which is occupied by both F and O atoms, and on one of the metal sites, which is occupied by 92% Na and 8% Cd. A four-fold orientational disorder of the tilted octahedra is manifested as partial occupancy (25%) of the nonmetal site. A scheme to synthesize the anhydrous fluoride is presented.« less

  16. Occurrence and hydrogeochemical characteristics of high-fluoride groundwater in Xiji County, southern part of Ningxia Province, China.

    PubMed

    Wei, Chao; Guo, Huaming; Zhang, Di; Wu, Yang; Han, Shuangbao; An, Yonghui; Zhang, Fucun

    2016-02-01

    High-F(-) groundwater is widely distributed in Xiji County, which endangers the safety of drinking water. In order to evaluate the key factors controlling the origin and geochemical mechanisms of F(-) enrichment in groundwater at Xiji County, one hundred and five groundwater samples and sixty-two sediment samples were collected. Fluoride concentration in the groundwater samples ranged from 0.2 to 3.01 mg/L (mean 1.13 mg/L), with 17 % exceeding the WHO drinking water guideline value of 1.5 mg/L and 48 % exceeding the Chinese drinking water guideline value of 1.0 mg/L. High-F(-) groundwaters were characterized by hydrochemical types of Na-HCO3 and Na-SO4·Cl, which were found in Quaternary sediment aquifer and in Tertiary clastic aquifer, respectively. Conditions favorable for F(-) enrichment in groundwater included weakly alkaline pH (7.2-8.9), low concentration of Ca(2+), and high concentrations of HCO3 (-) and Na(+). Calcite and fluorite were the main minerals controlling F(-) concentration in groundwaters. The hydrolysis of F-bearing minerals in aquifer sediments was the more important process for F(-) release in Tertiary clastic aquifer, which was facilitated by long residence time of groundwater, in comparison with Quaternary sediment aquifer. Cation exchange would also play important roles, which removed Ca(2+) and Mg(2+) and led to more free mobility of F(-) in groundwater and permitted dissolution of fluorite, especially in Tertiary clastic aquifer. However, evapotranspiration and competing adsorption of B and HCO3 (-) were the more important processes for F(-) enrichment in Quaternary groundwater. Groundwater in Lower Cretaceous aquifer had relatively low F(-) concentration, which was considered to be the potential drinking water resource.

  17. Uranium in granitic magmas: Part 2. Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H 2O-NaX (X = Cl, F) system at 770°C, 2 kbar

    NASA Astrophysics Data System (ADS)

    Peiffert, Chantal; nguyen-Trung, Chinh; Cuney, Michel

    1996-05-01

    The solubility of uranium oxide was investigated in both aqueous halide (Cl, F) fluid and granitic melt in equilibrium in the system uranium oxide-haplogranite-H 2O-NaCl (0.1-5.0 molal), NaF (0.1-0.5 molal) at 770°C, 2 kbar, and fO 2 conditions controlled by Ni-NiO, Fe 3O 4-Fe 2O 3, and Cu 2O- CuO buffers. Three distinct uranium oxides UO (2+ x) with x = 0.01 ± 0.01; 0.12 ± 0.02; and 0.28 ± 0.02, respec- tively, were obtained in both chloride and fluoride systems, under the three fO 2 conditions cited above. Changes in the composition of aqueous solutions and silicate melt were observed after the runs. These changes were more pronounced for the fluoride-bearing experiments. Quench pH decreased from 5.9 to 2.1 with increasing chloride molality from 0.085-4.38 molal. For fluoride solutions, the decrease of pH from 5.4 to 3.4 corresponded to the increase of fluoride molality from 0.02-0.23 molal. The U solubility in chloride solutions was in the range 10-967 ppm. For the same molality, fluoride solutions appeared to dissolve up to twenty times more uranium than chloride solutions. The increase of halide molality and oxidation led to increase the U solubility. The U solubility in silicate glasses was in the range 10-1.8 × 10 4 ppm and increased with increasing oxidation and halide concentration. In addition, increasing agpaicity also increased U solubility in the chloride system. This effect was not observed in the fluoride system. The chloride concentration in the silicate melt increased from 100-790 ppm with increasing initial aqueous chloride concentration from 0.1-5.0 m. The fluoride concentration in the silicate melt increased from 2.8 × 10 3 to 1.1 × 10 4 ppm with increasing initial fluoride concentra- tion from 0.1-0.5 m. In the chloride system, the partition coefficient of U (log D)(U) fluid/melt) increased from -1.2-0 with increasing agpaicity from 0.92-1.36, for increasing chloride concentration from 0.085-4.38 molal and for increasing fO 2 from 10 -15 to 10 -4 bar. In the fluoride system, a linear correlation was established between the partition coefficient of U and the log fO 2. In F-rich system, D(U) fluid/melt values was in the range 2.4 × 10 -2-4.2 × 10 -2 for increasing fluoride concentration from 0.02-0.22 molal and for the same increasing of fO 2. In the chloride system, the partition coefficients of Na ( D (Na) fluid/melt) and K ( D) (K) fluid/melt) are in good agreement up to 1.0 m NaCl with the two linear equations established by Holland (1972) : D (Na) fluid/melt = 0.46 × (Cl)(m) (1) and D(Na) fluid/melt = 0.34 × (Cl)(m) (2). However, in initial 5.0 m NaCl, slopes of Eqns. 1 and 2 decreased to 0.41 and 0.16, respectively. Data obtained in the present study provide useful information for the understanding of the behaviour of U in the fractionation processes of halide rich magmas. Fluid/melt partition coefficients higher than one, favorable for the genesis of magmatic U mineralization, can be reached for peraluminous leucogran- ites in equilibrium with chloride-rich solutions.

  18. Luminescence properties and warm white LED application of a ternary-alkaline fluoride red phosphor K2NaAlF6:Mn4+ .

    PubMed

    Wang, L Y; Song, E H; Deng, T T; Zhou, Y Y; Liao, Z F; Zhao, W R; Zhou, B; Zhang, Q Y

    2017-08-14

    Herein, a Mn 4+ ion doped complex ternary-alkaline fluoride red phosphor K 2 NaAlF 6 :Mn 4+ has been synthesized through a facile two-step co-precipitation method at room temperature. The crystal structure, morphological properties and influence of the dopant concentration, temperature and humidity on luminescence properties as well as the performance of the as-synthesized phosphor used in white light emitting diodes (WLEDs) were investigated carefully. Intense absorption in the blue region (∼460 nm) and bright narrow-band red emission (∼630 nm) with high color purity were observed from this resultant powder. Temperature-dependent investigation and reliability examination in a HTHH environment (85 °C high temperature and 85% high humidity) indicate that the obtained ternary-alkaline fluoride phosphor K 2 NaAlF 6 :Mn 4+ presents more exceptional thermal quenching behavior and longevity compared to some other binary-alkaline fluorides. Moreover, using K 2 NaAlF 6 :Mn 4+ as a red light component, a warm WLED with a preferable color rendering index (R a = 85.5) and luminous efficacy (LE = 91.2 lm W -1 ) as well as a low corresponding color temperature (CCT = 3650 K) is easily achieved, further revealing the great potential of the as-prepared ternary-alkaline fluoride red phosphor K 2 NaAlF 6 :Mn 4+ for WLED applications.

  19. Mechanism of Action of TiF4 on Dental Enamel Surface: SEM/EDX, KOH-Soluble F, and X-Ray Diffraction Analysis.

    PubMed

    Comar, Lívia P; Souza, Beatriz M; Al-Ahj, Luana P; Martins, Jessica; Grizzo, Larissa T; Piasentim, Isabelle S; Rios, Daniela; Buzalaf, Marília Afonso Rabelo; Magalhães, Ana Carolina

    2017-10-12

    This in vitro study aimed to evaluate the action of TiF4 on sound and carious bovine and human enamel. Sound (S) and pre-demineralised (DE) bovine and human (primary and permanent) enamel samples were treated with TiF4 (pH 1.0) or NaF varnishes (pH 5.0), containing 0.95, 1.95, or 2.45% F for 12 h. The enamel surfaces were analysed using SEM-EDX (scanning electron microscopy/energy-dispersive X-ray spectroscopy) (n = 10, 5 S and 5 DE) and KOH-soluble fluoride was quantified (n = 20, 10 S and 10 DE). Hydroxyapatite powder produced by precipitation method was treated with the corresponding fluoride solutions for 1 min (n = 2). The formed compounds were detected using X-ray diffraction (XRD). All TiF4 varnishes produced a coating layer rich in Ti and F on all types of enamel surface, with micro-cracks in its extension. TiF4 (1.95 and 2.45% F) provided higher fluoride deposition than NaF, especially for bovine enamel (p < 0.0001). It also induced a higher fluoride deposition on DE samples compared to S samples (p < 0.0001), except for primary enamel. The Ti content was higher for bovine and human primary enamel than human permanent enamel, with some differences between S and DE. The XRD analysis showed that TiF4 induced the formation of new compounds such as CaF2, TiO2, and Ti(HPO4)2·H2O. In conclusion, TiF4 (>0.95% F) interacts better, when compared to NaF, with bovine and human primary enamel than with human permanent enamel. TiF4 provoked higher F deposition compared to NaF. Carious enamel showed higher F uptake than sound enamel by TiF4 application, while Ti uptake was dependent on the enamel condition and origin. © 2017 S. Karger AG, Basel.

  20. Atomic layer deposition of magnesium fluoride via bis(ethylcyclopentadienyl)magnesium and anhydrous hydrogen fluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hennessy, John, E-mail: hennessy@caltech.edu; Jewell, April D.; Greer, Frank

    2015-01-15

    A new process has been developed to deposit magnesium fluoride (MgF{sub 2}) thin films via atomic layer deposition (ALD) for use as optical coatings in the ultraviolet. MgF{sub 2} was deposited in a showerhead style ALD reactor using bis(ethylcyclopentadienyl)magnesium and anhydrous hydrogen fluoride (HF) as precursors at substrate temperatures from 100 to 250 °C. The use of HF was observed to result in improved morphology and reduced impurity content compared to other reported MgF{sub 2} ALD approaches that use metal fluoride precursors as the fluorine-containing chemistry. Characterization of these films has been performed using spectroscopic ellipsometry, atomic force microscopy, and x-raymore » photoelectron spectroscopy for material deposited on silicon substrates. Films at all substrate temperatures were transparent at wavelengths down to 190 nm and the low deposition temperature combined with low surface roughness makes these coatings good candidates for a variety of optical applications in the far ultraviolet.« less

  1. The erosion and abrasion-inhibiting effect of TiF(4) and NaF varnishes and solutions on enamel in vitro.

    PubMed

    Levy, Flávia Mauad; Magalhães, Ana Carolina; Gomes, Marina Franciscon; Comar, Livia Picchi; Rios, Daniela; Buzalaf, Marília Afonso Rabelo

    2012-01-01

    OBJECTIVE. Previous in vitro study has shown that TiF(4) varnish might reduce enamel erosion. No data regarding the effect of this experimental varnish on enamel erosion plus abrasion, however, are available so far. Thus, this in vitro study aimed to analyse the effect of TiF(4) compared with NaF varnishes and solutions, to protect against enamel erosion with or without abrasion. METHODS. Enamel specimens were pre-treated with experimental-TiF(4) (2.45% F), experimental-NaF (2.45% F), NaF-Duraphat (2.26% F), and placebo varnishes; NaF (2.26% F) and TiF(4) (2.45% F) solutions. Controls remained untreated. The erosive challenge was performed using a soft drink (pH 2.6) 4 × 90 s/day (ERO) and the toothbrushing abrasion (ERO+ABR) 2 × 10 s/day, for 5 days. Between the challenges, the specimens were exposed to artificial saliva. Enamel loss was measured profilometrically (μm). RESULTS. Kruskal-Wallis/Dunn tests showed that all fluoridated varnishes (TiF(4) -ERO:0.53 ± 0.20, ERO+ABR:0.65 ± 0.19/NaF-ERO:0.94 ± 0.18, ERO+ABR:1.74 ± 0.37/Duraphat-ERO:1.00 ± 0.37, ERO+ABR:1.72 ± 0.58) were able to significantly reduce enamel loss when compared with placebo varnish (ERO:3.45 ± 0.41/ERO+ABR:3.20 ± 0.66) (P < 0.0001). Placebo varnish, control (ERO:2.68 ± 0.53/ERO+ABR:3.01 ± 0.34), and fluoridated (NaF-ERO:2.84 ± 0.09/ERO+ABR:2.40 ± 0.21/TiF(4) -ERO:3.55 ± 0.59/ERO+ABR:4.10 ± 0.38) solutions did not significantly differ from each other. CONCLUSION. Based on the results, it can be concluded that the TiF(4) varnish seems to be a promising treatment to reduce enamel loss under mild erosive and abrasive conditions in vitro. © 2011 The Authors. International Journal of Paediatric Dentistry © 2011 BSPD, IAPD and Blackwell Publishing Ltd.

  2. URANIUM RECOVERY FROM COMPOSITE UF$sub 4$ REDUCTION BOMB WASTES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, E R; Doyle, R L; Coleman, J R

    1954-01-28

    A number of techniques have been investigated on a laboratory-scale for separating uranium from fluorides during the recovery of uranium from UF4 reduction bomb wastes (C-oxide) by an HCl leach - NH4OH precipitation process. Among these are included adsorption of fluorides from filtered leach liquors, fractional precipitation of fluorides and uranium, complexing of fluorides into forms soluble in slightly acid solutions, and fluoride volatilization from the uranium concentrate. Solubility studies of CaF2 and MgF2 in aqueous hydrochloric acid at various acidities and temperatures were also conducted. A description of the production-scale processing of C-oxide in the FMPC scrap plant hasmore » been included.« less

  3. The Effect of a Low Fluoride Delivery System on Bacterial Metabolism.

    DTIC Science & Technology

    1980-09-01

    Fluorides, an4 -Ique mechanisms, slow release delivery, temporary restora- tions, bacterial attachment, Streptococcus mutans , bacterial metabo’ilsm...concentrations of NaF, SnF 4 , Na2SnF6 , TiF 4 , and SnCI2 on altering plaque formation by Streptococcus mutans NCTC 10449. Specific tests were...preparation. Microorganisms, Growth Media, and Growth A streptomycin resistant mutant of Streptococcus mutans NCTC 10449 (Bratthall serotype c) has been

  4. An in vitro evaluation of a novel high fluoride daily mouthrinse using a combination of microindentation, 3D profilometry and DSIMS.

    PubMed

    Gracia, Louise H; Rees, Gareth D; Brown, Alan; Fowler, Christabel E

    2010-11-01

    Firstly, to evaluate the in vitro anti-erosion efficacy of a new mouthrinse formulation containing 450 ppm fluoride using profilometry and microindentation. Secondly, to compare fluoride uptake by erosive lesions from two mouthrinses containing different fluoride sources using dynamic secondary ion mass spectrometry (DSIMS). Sound human enamel was treated (60s) with mouthrinses containing different fluoride concentrations, then immersed in 1.0% citric acid pH 3.8 for either 300 s or 30 min (Studies 1 & 2 respectively). Surface roughness and erosion depth were determined profilometrically in Study 1, and surface microhardness monitored as a function of time in Study 2. Lesion rehardening was monitored following a 60 s rinse and immersion in artificial saliva for 48 h (Study 3), whilst Study 4 employed DSIMS to quantify fluoride uptake by lesions treated (60s) with rinses containing either sodium fluoride (NaF) or a NaF/Olaflur/stannous chloride combination. The test rinse (450 ppm fluoride) suppressed surface roughening and bulk tissue loss versus all comparators (p< 0.0001), except in the latter measure for the rinse containing 112 ppm fluoride. The test rinse significantly inhibited enamel surface softening versus the three rinses containing ≤112 ppm fluoride (as NaF) at 30 min (p<0.05), but was not statistically significantly different from the 225 ppm fluoride rinse. The test rinse conferred statistically superior lesion rehardening versus all comparators at both 24 and 48 h (p< 0.0001). DSIMS demonstrated statistically significantly higher fluoride uptake by incipient erosive lesions treated with the test rinse versus the NaF/Olaflur/stannous rinse. Anti-erosion efficacy was positively correlated with fluoride concentration. DSIMS showed significantly higher levels of fluoride uptake by incipient erosive lesions treated with the 450 ppm fluoride rinse versus the NaF/Olaflur/stannous rinse. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Urinary fluoride excretion in preschool children after intake of fluoridated milk and use of fluoride-containing toothpaste.

    PubMed

    Norman, M; Twetman, S; Hultgren Talvilahti, A; Granström, E; Stecksén-Blicks, C

    2017-03-01

    To assess the urinary fluoride excretion in preschool children after drinking fluoridated milk with 0.185 mg F and 0.375 mg F and to study the impact of use of fluoride toothpaste. Double-blind cross-over study. Nine healthy children, 2.5-4.5 years of age. In a randomized order, participants drank 1.5 dl milk once daily for 7 days with no fluoride added (control), 0.185 mg fluoride added and 0.375 mg fluoride added. The experiment was performed twice with (Part I) and without (Part II) parental tooth brushing with 1,000 ppm fluoride toothpaste. The fluoride content in the piped drinking water was 0.5 mg F/L. Urinary fluoride excretion. The 24-hour urinary fl uoride excretion/kg body weight varied from 0.014 mg F for the placebo intervention and non-fluoride toothpaste to 0.027 mg F for the 0.375 mg intervention with use of 1,000 ppm fluoride toothpaste. The difference compared with the placebo intervention was not statistically significant for any of the interventions when fluoride toothpaste was used (p⟩0.05) while it was statistically significantly different when non-fluoride toothpaste was used (p⟨0.05). All sources of fluoride must be considered when designing community programs. With 0.5 mg F/L in the drinking water and daily use of fluoride toothpaste, most children had a fluoride intake optimal for dental health. In this setting, additional intake of fluoride milk was within safe limits up to 0.185 mg/day while conclusions about the safety of 0.375 mg/day were uncertain. Copyright© 2017 Dennis Barber Ltd

  6. Fluoride Consumption and Its Impact on Oral Health

    PubMed Central

    Jiménez-Farfán, María Dolores; Hernández-Guerrero, Juan Carlos; Juárez-López, Lilia Adriana; Jacinto-Alemán, Luis Fernando; de la Fuente-Hernández, Javier

    2011-01-01

    Objective The purpose of this study was to evaluate caries and dental fluorosis among Mexican preschoolers and school-aged children in a non-endemic zone for fluorosis and to measure its biological indicators. Methods DMFT, DMFS, dmft, dmfs, and CDI indexes were applied. Fluoride urinary excretion and fluoride concentrations in home water, table salt, bottled water, bottled drinks, and toothpaste were determined. Results Schoolchildren presented fluorosis (CDI = 0.96) and dental caries (DMFT = 2.64 and DMFS = 3.97). Preschoolers presented dmft = 4.85 and dmfs = 8.80. DMFT and DMFS were lower in children with mild to moderate dental fluorosis (DF). Variable fluoride concentrations were found in the analyzed products (home water = 0.18–0.44 ppm F, table salt = 0–485 ppm F, bottled water = 0.18–0.47 ppm F, juices = 0.08–1.42 ppm F, nectars = 0.07–1.30 ppm F, bottled drinks = 0.10–1.70 ppm F, toothpaste = 0–2,053 ppm F). Mean daily fluoride excretion was 422 ± 176 μg/24 h for schoolchildren and 367 ± 150 μg/24 h for preschoolers. Conclusions Data from our study show that, despite values of excretion within an optimal fluoride intake range, the prevalence of caries was significant in both groups, and 60% of the 11- to 12-year-old children presented with dental fluorosis. In addition, variable fluoride concentrations in products frequently consumed by children were found. PMID:21318021

  7. Nucleophilic fluorination of aromatic compounds

    DOEpatents

    Satyamurthy, Nagichettiar; Barrio, Jorge R

    2014-03-18

    Iodylbenzene derivatives substituted with electron donating as well as electron withdrawing groups on the aromatic ring are used as precursors in aromatic nucleophilic substitution reactions. The iodyl group (IO.sub.2) is regiospecifically substituted by nucleophilic fluoride to provide the corresponding fluoroaryl derivatives. No-carrier-added [F-18]fluoride ion derived from anhydrous [F-18](F/Kryptofix, [F-18]CsF or a quaternary ammonium fluoride (e.g., Me.sub.4NF, Et.sub.4NF, n-Bu.sub.4NF, (PhCH.sub.2).sub.4NF) exclusively substitutes the iodyl moiety in these derivatives and provides high specific activity F-18 labeled fluoroaryl analogs. Iodyl derivatives of a benzothiazole analog and 6-iodyl-L-dopa derivatives have been synthesized as precursors and have been used in the preparation of no-carrier-added [F-18]fluorobenzothiazole as well as 6-[F-18]fluoro-L-dopa.

  8. Characterization of the Kinetics of NF3-Fluorination of NpO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casella, Andrew M.; Scheele, Randall D.; McNamara, Bruce K.

    2015-12-23

    The exploitation of selected actinide and fission product fluoride volatilities has long been considered as a potentially attractive compact method for recycling used nuclear fuels to avoid generating the large volumes of radioactive waste arising from aqueous reprocessing [1-7]. The most developed process uses the aggressive and hazardous fluorinating agents hydrogen fluoride (HF) and/or molecular fluorine (F2) at high temperatures to volatilize the greatest fraction of the used nuclear fuel into a single gas stream. The volatilized fluorides are subsequently separated using a series of fractionation and condensation columns to recover the valuable fuel constituents and fission products. In pursuitmore » of a safer and less complicated approach, we investigated an alternative fluoride volatility-based process using the less hazardous fluorinating agent nitrogen trifluoride (NF3) and leveraging its less aggressive nature to selectively evolve fission product and actinide fluorides from the solid phase based on their reaction temperatures into a single recycle stream [8-15]. In this approach, successive isothermal treatments using NF3 will first evolve the more thermally susceptible used nuclear fuel constituents leaving the other constituents in the residual solids until subsequent isothermal temperature treatments cause these others to volatilize. During investigation of this process, individual neat used fuel components were treated with isothermal NF3 in an attempt to characterize the kinetics of each fluorination reaction to provide input into the design of a new volatile fluoride separations approach. In these directed investigations, complex behavior was observed between NF3 and certain solid reactants such as the actinide oxides of uranium, plutonium, and neptunium. Given the similar thermal reaction susceptibilities of neptunium oxide (NpO2) and uranium dioxide (UO2) and the importance of Np and U, we initially focused our efforts on determining the reaction kinetic parameters for NpO2. Characterizing the NF3 fluorination of NpO2 using established models for gas-solid reactions [16] proved unsuccessful so we developed a series of successive fundamental reaction mechanisms to characterize the observed successive fluorination reactions leading to production of the volatile neptunium hexafluoride (NpF6).« less

  9. [Influence of different concentrations of fluoride in the water on epidemiologic indicators of oral health/disease].

    PubMed

    de Carvalho, Raquel Baroni; Medeiros, Urubatan Vieira de; dos Santos, Karina Tonini; Pacheco Filho, Antônio Carlos

    2011-08-01

    The scope of this study was to evaluate access to fluoride sources and oral health hygiene of 237 schoolchildren aged nine to sixteen, from three locations with different fluoride concentrations in the water. The fluoride level in the water of each area was analyzed by the selective electrode technique for the fluoride ion and the prevalence of dental caries and fluorosis were evaluated, respectively, by the DMFT and TSIF index, revealing a statistically significant difference (ANOVA; p <0,05) in the three locations: area without artificial fluoridation (DMTF 5.32 ± 3.49) and 16% of dental fluorosis; area with artificial fluoridation of 0.8 ppmF (DMTF 1.88 ± 2.22) and 94% of dental fluorosis; area with natural fluoridation of 2.54 ppmF (DMTF 3.96 ± 2.38) and 100% of dental fluorosis. The findings suggest that the epidemiologic indicators of oral health/disease are influenced by the presence of fluoride in the water supply and that supervision and orientation are fundamental in the correct use of fluoridated compositions, taking advantage of the maximum benefit in the control of dental caries with minimum risk of the occurrence of dental fluorosis.

  10. Characterization and corrosion property of nano-rod-like HA on fluoride coating supported on Mg-Zn-Ca alloy.

    PubMed

    Feng, Yashan; Zhu, Shijie; Wang, Liguo; Chang, Lei; Yan, Bingbing; Song, Xiaozhe; Guan, Shaokang

    2017-06-01

    The poor corrosion resistance of biodegradable magnesium alloys is the dominant factor that limits their clinical application. In this study, to deal with this challenge, fluoride coating was prepared on Mg-Zn-Ca alloy as the inner coating and then hydroxyapatite (HA) coating as the outer coating was deposited on fluoride coating by pulse reverse current electrodeposition (PRC-HA/MgF 2 ). As a comparative study, the microstructure and corrosion properties of the composite coating with the outer coating fabricated by traditional constant current electrodeposition (TED-HA/MgF 2 ) were also investigated. Scanning electron microscopy (SEM) images of the coatings show that the morphology of PRC-HA/MgF 2 coating is dense and uniform, and presents nano-rod-like structure. Compared with that of TED-HA/MgF 2 , the corrosion current density of Mg alloy coated with PRC-HA/MgF 2 coatings decreases from 5.72 × 10 -5 A/cm 2 to 4.32 × 10 -7 A/cm 2 , and the corrosion resistance increases by almost two orders of magnitude. In immersion tests, samples coated with PRC-HA/MgF 2 coating always show the lowest hydrogen evolution amount, and could induce deposition of the hexagonal structure-apatite on the surface rapidly. The results show that the corrosion resistance and the bioactivity of the coatings have been improved by adopting double-pulse current mode in the process of preparing HA on fluoride coating, and the PRC-HA/MgF 2 coating is worth of further investigation.

  11. The cariostatic mechanisms of fluoride.

    PubMed

    Rošin-Grget, Kata; Peroš, Kristina; Sutej, Ivana; Bašić, Krešimir

    2013-11-01

    This article discusses the possible cariostatic mechanisms of the action of fluoride. In the past, fluoride inhibition of caries was ascribed to reduced solubility of enamel due to incorporation of fluoride (F-) into the enamel minerals. The present evidence from clinical and laboratory studies suggests that the caries-preventive mode of action of fluoride is mainly topical. There is convincing evidence that fluoride has a major effect on demineralisation and remineralisation of dental hard tissue. The source of this fluoride could either be fluorapatite (formed due to the incorporation of fluoride into enamel) or calcium fluoride (CaF2)-like precipitates, which are formed on the enamel and in the plaque after application of topical fluoride. Calcium fluoride deposits are protected from rapid dissolution by a phosphate -protein coating of salivary origin. At lower pH, the coating is lost and an increased dissolution rate of calcium fluoride occurs. The CaF2, therefore, act as an efficient source of free fluoride ions during the cariogenic challenge. The current evidence indicates that fluoride has a direct and indirect effect on bacterial cells, although the in vivo implications of this are still not clear. A better understanding of the mechanisms of the action of fluoride is very important for caries prevention and control. The effectiveness of fluoride as a cariostatic agent depends on the availability of free fluoride in plaque during cariogenic challenge, i.e. during acid production. Thus, a constant supply of low levels of fluoride in biofilm/saliva/dental interference is considered the most beneficial in preventing dental caries. Copyright © 2013 by Academy of Sciences and Arts of Bosnia and Herzegovina.

  12. Truxene-cored π-expanded triarylborane dyes as single- and two-photon fluorescent probes for fluoride.

    PubMed

    Yuan, Mao-Sen; Wang, Qi; Wang, Wenji; Wang, Dong-En; Wang, Junru; Wang, Jinyi

    2014-03-21

    Fluoride anion (F(-)) significantly affects chemical, biological, and environmental processes. Fluoride recognition and detection have received increasing attention. Convenient, effective, and sensitive fluorescent probes for F(-) should urgently be designed and synthesized. In this study, we describe a strategy for constructing two triarylborane-based fluoride fluorescent probes: 2,7,12-tri(2-(5-(dimesitylboryl)thiophen-2-yl)ethynyl)-5,5',10,10',15,15'-hexaethyltruxene (C3B3) with π-3A (acceptor) configuration and 2,7-di(N,N-diphenylamino)-12-(5-(dimesitylboryl)thiophen-2-yl)-5,5',10,10',15,15'-hexaethyltruxene (N2SB) with 2D (donor)-π-A configuration. The loss of color of the tetrahydrofuran solution of these probes from greenish yellow suggests that they can conveniently monitor F(-) at a low concentration (10 μM) free of apparatus. The different structural features of these probes varied their fluorescent responses to F(-). The single-photon fluorescence intensity of C3B3 declined to 90% upon the addition of 4.5 equivalents of F(-) to its tetrahydrofuran solution. However, the single-photon fluorescence intensity of N2SB was enhanced six-fold upon addition of 2.5 equivalents of the F(-). Under the experimental conditions, the detection limits of the two probes for F(-) can reach 12-13 μM (C3B3) and 3-5 μM (N2SB). The ability of the two probes in detecting F(-) in their toluene solutions in the two-photon mode was also investigated. The sensitive two-photon fluorescence responses of both probes make them excellent two-photon fluorescence probes.

  13. Fluoride contamination and fluorosis in rural community in the vicinity of a phosphate fertilizer factory in India.

    PubMed

    Pandey, J; Pandey, U

    2011-09-01

    We studied chronic fluoride intoxication in 10 villages of Udaipur receiving F emissions from phosphate fertilizer factories. Although fluoride remained below permissible limit in most of the drinking water samples, the incidence of fluorosis in adults as well as in children was surprisingly high. Khemli appeared to be the most affected village (with >48% cases) where, about 93% of 2 h air samples contained fluoride above 2.0 μg m(-3) and crops and vegetable F ranged from 27.5 to 143.4 μg g(-1). Concentrations of fluoride and inorganic P in urine showed asynchrony and were well linked with prevalence of fluorosis. The study indicated that air-borne fluoride was the major factor for higher prevalence of fluorosis in these rural areas.

  14. Corrosion behavior and cytocompatibility of fluoride-incorporated plasma electrolytic oxidation coating on biodegradable AZ31 alloy

    PubMed Central

    Tian, Peng; Peng, Feng; Wang, Donghui; Liu, Xuanyong

    2017-01-01

    Fluoride-incorporated plasma electrolytic oxidation (PEO) coating was fabricated on biodegradable AZ31 alloy. The surface morphologies and phases were investigated by scanning electron microscopy and X-ray diffraction. The effect of fluoride incorporation in coatings on corrosion behaviour was investigated in simulated body fluid and in vitro cytocompatibility of the coatings was also studied by evaluating cytotoxicity, adhesion, proliferation and live–dead stain of osteoblast cells (MC3T3-E1). Furthermore, the corrosion morphologies in vivo were examined. The results showed that the fluoride could be incorporated into the coating to form MgF2 phase. In vitro and in vivo degradation tests revealed that the corrosion resistance of the coating could be improved by the incorporation of fluoride, which may attribute to the chemical stability of MgF2 phase. Moreover, good cytocompatibility of fluoride-incorporated coating was confirmed with no obvious cytotoxicity, enhanced cell adhesion and proliferation. However, when the fluoride content was high, a slight inhibition of cell growth was observed. The results indicate that although fluoride incorporation can enhance the corrosion resistance of the coatings, thus resulting a more suitable environment for cells, the high content of fluoride in the coating also kill cells ascribed to the high released of fluorine. If the content of fluoride is well controlled, the PEO coating with MgF2 phase is a promising surface modification of Mg alloys. PMID:28149524

  15. Corrosion behavior and cytocompatibility of fluoride-incorporated plasma electrolytic oxidation coating on biodegradable AZ31 alloy.

    PubMed

    Tian, Peng; Peng, Feng; Wang, Donghui; Liu, Xuanyong

    2017-02-01

    Fluoride-incorporated plasma electrolytic oxidation (PEO) coating was fabricated on biodegradable AZ31 alloy. The surface morphologies and phases were investigated by scanning electron microscopy and X-ray diffraction. The effect of fluoride incorporation in coatings on corrosion behaviour was investigated in simulated body fluid and in vitro cytocompatibility of the coatings was also studied by evaluating cytotoxicity, adhesion, proliferation and live-dead stain of osteoblast cells (MC3T3-E1). Furthermore, the corrosion morphologies in vivo were examined. The results showed that the fluoride could be incorporated into the coating to form MgF 2 phase. In vitro and in vivo degradation tests revealed that the corrosion resistance of the coating could be improved by the incorporation of fluoride, which may attribute to the chemical stability of MgF 2 phase. Moreover, good cytocompatibility of fluoride-incorporated coating was confirmed with no obvious cytotoxicity, enhanced cell adhesion and proliferation. However, when the fluoride content was high, a slight inhibition of cell growth was observed. The results indicate that although fluoride incorporation can enhance the corrosion resistance of the coatings, thus resulting a more suitable environment for cells, the high content of fluoride in the coating also kill cells ascribed to the high released of fluorine. If the content of fluoride is well controlled, the PEO coating with MgF 2 phase is a promising surface modification of Mg alloys.

  16. Chronologic Trends in Studies on Fluoride Mechanisms of Action.

    PubMed

    Oh, H J; Oh, H W; Lee, D W; Kim, C H; Ahn, J Y; Kim, Y; Shin, H B; Kim, C Y; Park, S H; Jeon, J G

    2017-11-01

    Fluoride has been widely used for the prevention of dental caries since the mid-20th century. The aim of this study was to investigate the chronologic trends in studies on fluoride mechanisms of action against dental caries during the years 1950 to 2015. To this aim, queries such as "fluoride," "fluoride and demineralization," "fluoride and remineralization," "fluoride and (plaque or biofilms)," and "fluoride and (bacteria or microbials)" were submitted to PubMed to collect research article information, including titles, abstracts, publication dates, author affiliations, and publication journals. The article information that PubMed produced was then collected by an automatic web crawler and examined through informetrics and linguistic analyses. We found that the number of articles concerned with fluoride mechanisms of action against dental caries was 6,903 and gradually increased over time during the years 1950 to 2015. They were published by 1,136 journals-most notably, Caries Research and Journal of Dental Research. Of the articles published, those related to bacteria/microbials had a higher percentage (44%) than those dealing with plaque/biofilms, demineralization, and remineralization. With regard to the geographic distribution of authors, Europe and North America accounted for 65% of the articles during the years 1987 to 2015, although the number of authors in Asia sharply increased in recent years. Among the fluoride compounds, NaF was mentioned more frequently than SnF 2 , Na 2 PO 3 F, amine fluoride, and acidulated phosphate fluoride during the years 1986 to 2015. Water fluoridation received the most attention among the various fluoride application methods (toothpastes, mouthwashes, fluoride varnishes, and fluoride gels) during the same period. These results, obtained from employing informetrics and linguistic analyses, suggest that in studies on fluoride mechanisms of action, 1) the unbalanced geographic distribution of articles and 2) the heavy concentration of articles on particular fluoride compounds and application methods should be overcome in future research.

  17. The cytotoxic effect of TiF4 and NaF on fibroblasts is influenced by the experimental model, fluoride concentration and exposure time

    PubMed Central

    Salomão, Priscila Maria Aranda; de Oliveira, Flávia Amadeu; Rodrigues, Paula Danielle; Al-Ahj, Luana Polioni; Gasque, Kellen Cristina da Silva; Jeggle, Pia; Buzalaf, Marilia Afonso Rabelo; de Oliveira, Rodrigo Cardoso; Edwardson, John Michael

    2017-01-01

    Objective Titanium tetrafluoride (TiF4) has shown promising effect in preventing tooth lesions. Therefore, we compared the cytotoxicity of TiF4 with sodium fluoride (NaF) (already applied in Dentistry) considering different fluoride concentrations, pH values and experimental models. Materials and methods Step 1) NIH/3T3 fibroblasts were exposed to mediums containing NaF or TiF4 (from 0.15 to 2.45% F), both at native and adjusted pH, for 6 h. Step 2) NIH/3T3 were exposed to NaF or TiF4 varnishes with 0.95, 1.95 or 2.45% F (native pH), for 6, 12 or 24 h. We applied MTT (1st and 2nd steps) and Hoescht/PI stain (2nd step) assays. Step 3) NIH/3T3 were exposed to NaF or TiF4 varnish (2.45% F), at native pH, for 6 or 12 h. The cell stiffness was measured by atomic force microscopy (AFM). Results Step 1) All cells exposed to NaF or TiF4 mediums died, regardless of the F concentration and pH. Step 2) Both varnishes, at 1.90 and 2.45% F, reduced cell viability by similar extents (33–86% at 6 h, 35–93% at 12 h, and 87–98% at 24 h) compared with control, regardless of the type of fluoride. Varnishes with 0.95% F did not differ from control. Step 3) TiF4 and NaF reduced cell stiffness to a similar extent, but only TiF4 differed from control at 6 h. Conclusions Based on the results of the 3 experimental steps, we conclude that TiF4 and NaF have similar cytotoxicity. The cytotoxicity was dependent on F concentration and exposure time. This result gives support for testing the effect of TiF4 varnish in vivo. PMID:28614381

  18. Effect of Fluoride-Containing Toothpastes on Enamel Demineralization and Streptococcus mutans Biofilm Architecture.

    PubMed

    Fernández, Constanza E; Fontana, Margherita; Samarian, Derek; Cury, Jaime A; Rickard, Alexander H; González-Cabezas, Carlos

    This study aimed to explore the effect of fluoridated toothpastes on biofilm architecture and enamel demineralization in an in vitro biofilm model. Streptococcus mutans was grown on enamel and treated with slurries of commercial toothpastes, containing SnF2 or NaF. Water and chlorhexidine were used as negative and positive controls, respectively. The developed biofilms were imaged and enamel demineralization was measured. SnF2 and NaF toothpaste treatments significantly reduced enamel demineralization, but SnF2 toothpaste was more effective. Only SnF2 toothpaste and chlorhexidine treatments caused reductions on biofilm mass and thickness. In conclusion, this biofilm model was able to differentiate the effects of the SnF2 and NaF toothpastes on biofilm architecture and enamel demineralization. © 2016 S. Karger AG, Basel.

  19. Effect of NaF and TiF(4) varnish and solution on bovine dentin erosion plus abrasion in vitro.

    PubMed

    Magalhães, Ana Carolina; Levy, Flávia Mauad; Rizzante, Fábio A; Rios, Daniela; Buzalaf, Marília Afonso Rabelo

    2012-03-01

    This in vitro study aimed to analyze the effect of TiF(4) compared to NaF varnishes and solutions, to protect against dentin erosion associated with abrasion. Bovine dentin specimens were pre-treated with NaF-Duraphat (2.26% F), NaF/CaF(2)-Duofluorid (5.63% F), experimental-NaF (2.45% F), experimental-TiF(4) (2.45% F) and placebo varnishes; NaF (2.26% F) and TiF(4) (2.45% F) solutions. Controls remained untreated. The erosive pH cycling was performed using a soft drink (pH 2.6) 4 × 90 s/day and the toothbrushing-abrasion 2 × 10 s/day, in vitro for 5 days. Between the challenges, the specimens were exposed to artificial saliva. Dentin tissue loss was measured profilometrically (μm). ANOVA/Tukey's test showed that all fluoridated varnishes (Duraphat, 7.5 ± 1.1; Duofluorid, 6.8 ± 1.1; NaF, 7.2 ± 1.9; TiF(4), 6.5 ± 1.0) were able to significantly reduce dentin tissue loss (40.7% reduction compared to control) when compared to placebo varnish (11.2 ± 1.3), control (11.8 ± 1.7) and fluoridated (NaF, 9.9 ± 1.8; TiF(4), 10.3 ± 2.1) solutions (p < 0.0001), which in turn did not significantly differ from each other. All fluoridated varnishes, but not the solutions, had a similar performance and a good potential to reduce dentin tissue loss under mild erosive and abrasive conditions in vitro. Risk patients for erosion and abrasion, especially those with exposed dentin, should benefit from this clinical preventive measure. Further research has to confirm this promising result in the clinical situation.

  20. Influence of Surfactants and Fluoride against Enamel Erosion.

    PubMed

    Zanatta, Rayssa Ferreira; Ávila, Daniele Mara da Silva; Miyamoto, Karen Mayumi; Torres, Carlos Rocha Gomes; Borges, Alessandra Bühler

    2018-06-06

    This study investigated the effect of surfactants associated with sodium fluoride (NaF) on enamel erosion prevention, using an erosion-remineralization in vitro model. Sodium lauryl sulfate (SLS), polysorbate 20 (P20), and cocoamidopropyl betaine (CAPB) were tested, at concentrations of 1.0 and 1.5%, and associated or not with NaF (275 ppm). The control groups were distilled water and the NaF solution. Bovine enamel samples (n = 12) were prepared and submitted to a 5-day cycling model: acid challenge (0.3% citric acid, pH 2.6, 4×/day), human saliva (2 h, 4×/day), and the treatment solutions (2 min, 2×/day). The protective potential of the agents against initial erosion was assessed by microhardness and the surface loss by profilometry. Enamel surface wettability was determined by goniometry, protein adsorption was measured by spectroscopy (FTIR), and the KOH-soluble fluoride was quantified. Goniometry showed that SLS and CAPB increased enamel wettability. No differences were found among the surfactants regarding protein adsorption. Microhardness showed that SLS reduced NaF protection. P20 (1 and 1.5%) and CAPB 1.5% presented a protective effect, but lower than the NaF solution. Profilometry showed that CAPB protected enamel, but no agent associated with NaF promoted a higher protection than the NaF solution alone. KOH-soluble fluoride analysis showed that all surfactants reduced the fluoride adsorption on the enamel surface. Therefore, the surfactants tested (except for P20) changed the enamel surface energy. The SLS decreased the protective potential of NaF on initial erosion, but no tested agent interfered with the protective effect of NaF on enamel erosive wear. © 2018 S. Karger AG, Basel.

  1. The effects of fluoride on neuronal function occurs via cytoskeleton damage and decreased signal transmission.

    PubMed

    Chen, Lingli; Ning, Hongmei; Yin, Zhihong; Song, Xiaochao; Feng, Yongchao; Qin, Hao; Li, Yi; Wang, Jundong; Ge, Yaming; Wang, Wenkui

    2017-10-01

    It has been reported that fluoride exposure may cause serious public health problems, particularly neurotoxicity. However, the underlying mechanisms remain unclear. This study used Neuro-2A cells to investigate the effects of fluoride on the cytoskeleton. The Neuro-2A cells were exposed to 0, 1, 2, 4 and 6 mM sodium fluoride (NaF) for 24 h. Cell viability and lactate dehydrogenase (LDH) release were examined. It was observed that exposure to NaF reduced cell viability, disrupted cellular membrane integrity, and high levels of LDH were released. The observed changes occurred in a dose response manner. Morphologic observations showed that cell became rounded and were loosely adherent following exposure to NaF. Axon spines and normal features disappeared with high dose NaF treatment. The expression of MAP2 and synaptophysin decreased, particularly at 4 mM and 6 mM (P < 0.05) for MAP2. These results corroborate the morphologic observations. The content of glutamate and NMDAR (glutamate receptor) protein were assessed to help understand the relationship between synapses and neurotransmitter release using ELISA and Western-blot. Compared with the control, glutamate and NMDAR expression declined significantly at 4 mM and 6 mM (P < 0.05) group. Finally, the ultrastructural changes observed with increasing doses of NaF were: disappearance of synapses, mitochondrial agglutination, vacuole formation, and cellular edema. Taken together, NaF exposure disrupted cellular integrity and suppressed the release of neurotransmitters, thus effecting neuronal function. These findings provide deeper insights into roles of NaF in neuron damage, which could contribute to a better understanding of fluoride-induced neurotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Adsorption of fluoride to UiO-66-NH2 in water: Stability, kinetic, isotherm and thermodynamic studies.

    PubMed

    Lin, Kun-Yi Andrew; Liu, Yu-Ting; Chen, Shen-Yi

    2016-01-01

    To provide safe drinking water, fluoride in water must be removed and adsorption processes appear to be the most widely used method. Metal organic frameworks (MOFs) represent a new class of adsorbents that have been used in various adsorption applications. To study the adsorption mechanism of fluoride to MOFs in water and obtain related adsorption parameters, we synthesized a zirconium-based MOF with a primary amine group on its ligand, named UiO-66-NH2. The kinetics, adsorption isotherm and thermodynamics of fluoride adsorption to UiO-66-NH2 were investigated. The crystalline structure of UiO-66-NH2 remained intact and the local structure of zirconium in UiO-66-NH2 did not change significantly after being exposed to fluoride. The kinetics of the fluoride adsorption in UiO-66-NH2 could be well represented by the pseudo second order rate law. The enthalpy of the adsorption indicates that the F(-) adsorption to UiO-66-NH2 was classified as a physical adsorption. However, the comparison between the adsorption capacities of UiO-66-NH2 and UiO-66 suggests that the fluoride adsorption to UiO-66-NH2 might primarily involve a strong interaction between F(-) and the metal site. The fluoride adsorption capacity of UiO-66-NH2 was found to decrease when pH>7. While the presence of chloride/bromide ions did not noticeably change the adsorption capacity of UiO-66-NH2, the ionic surfactants slightly affected the adsorption capacity of UiO-66-NH2. These findings provide insights to further optimize the adsorption process for removal of fluoride using zirconium-based MOFs. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Antireflection coatings based on fluoride formulations for organic solar cells

    NASA Astrophysics Data System (ADS)

    Suleimanov, S. Kh.; Berger, P.; Dyskin, V. G.; Dzhanklych, M. U.; Bugakov, A. G.; Dudko, O. A.; Kulagina, N. A.; Kim, M.

    2016-04-01

    An alloy of a mixture of fluorides MgF2 and AlF3 with CaF2 has been obtained in a 3-kW solar furnace. It was supposed that a minor CaF2 additive compensates for the tensile stresses appearing in thin MgF2 and AlF3 films, with their mechanical properties being thereby improved. The results of X-ray phase analysis demonstrated that both components of the mixture are present in the alloy, while the complex oxide CaAl4O7, the formation of which is attributed to the melting in air, is only identified in AlF3: CaF2 = 95: 5 (wt %). The increase in the transmittance of glass and polyethylene terephthalate upon deposition onto their surface of a thin film of the material synthesized in the study is due to the optical properties of AlF3 and MgF2.

  4. Soil fluoride fractions and their bioavailability to tea plants (Camellia sinensis L.).

    PubMed

    Yi, Xiaoyun; Qiao, Sha; Ma, Lifeng; Wang, Jie; Ruan, Jianyun

    2017-10-01

    Drinking teas containing high fluoride (F) imposes fluorosis risk. The soil F bioavailability is an important factor influencing its uptake and contents in teas. The present work was conducted to investigate F fractions in soil and their bioavailability to tea plants. Tea seedlings were cultivated on 6 typical soils treated with a mixture consisting of dolomite, lime, peat and KCl at variable rates in the pot experiment. Soils and young shoots were collected in pairs from 63 sites of 21 plantations in a field experiment. Soil fluoride was sequentially separated into hot water soluble [Formula: see text], exchangeable [Formula: see text] (by 1 mol L -1 MgCl 2 , pH = 7.0), F bound to Mn and Fe hydroxides [F (oxides,s) ], and organic matter [F (OM,s) ] or extracted independently by water [Formula: see text] or 0.01 mol L -1 CaCl 2 solution [Formula: see text]. Averaged [Formula: see text], [Formula: see text], F (oxides,s) and F (OM,s) accounted for 51, 14, 5 and 30 % of the total sequential extracts, respectively. There were significant correlations among [Formula: see text], [Formula: see text] and F (OM,s) . Fluoride contents in leaves correlated with [Formula: see text] (r = 0.71, p < 0.001), [Formula: see text] (r = 0.93, p < 0.001) and F (OM,s) (r = 0.69, p < 0.01) but not other fractions in the pot experiment and with [Formula: see text] (r = 0.43-0.57, p < 0.001) and [Formula: see text] (r = 0.42-0.79, p < 0.001) in the field experiment. It was concluded that 0.01 M CaCl 2 extractable fluoride can be a good indicator of soil F bioavailability to tea plants. The significant correlations among some of the F fractions suggested that F in solution, AlF complexes (AlF 2 + , AlF 2+ ) and those bound to organic matter likely represent the available pools to tea plants.

  5. Azocalix[4]arene strapped calix[4]pyrrole: a confirmable fluoride sensor.

    PubMed

    Thiampanya, Preecha; Muangsin, Nongnuj; Pulpoka, Buncha

    2012-08-17

    A new chromogenic fluoride sensor based on 1,3-di-p-nitrophenylazocalix[4]arene-calix[4]pyrrole (1) was designed and synthesized. The color of the solution of probe 1 changed upon the addition of any F(-), CH(3)CO(2)(-), PhCO(2)(-), and H(2)PO(4)(-) ions. However, from these ions the highly specific sensing of F(-) is achieved by the addition of Ca(2+) which leads to a color change from light sky blue (of 1·F(-)) back to the original light orange color of 1.

  6. DRY FLUORINE SEPARATION METHOD

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1959-05-19

    Preparation and separation of U/sup 233/ by irradiation of ThF/sub 4/ is described. During the neutron irradiation to produce Pa/sup 233/ a fluorinating agent such as HF, F/sub 2/, or HF + F/sub 2/ is passed through the ThF/sub 4/ powder to produce PaF/sub 5/. The PaF/sub 5/, being more volatile, is removed as a gas and allowed to decay radioactively to U/sup 233/ fluoride. A batch procedure in which ThO/sub 2/ or Th metal is irradiated and fluorinated is suggested. Some Pa and U fluoride volatilizes away. Then the remainder is fluorinated with F/sub 2/ to produce very volatile UF/sub 6/ which is recovered. (T.R.H.)

  7. Exploiting the Reactivity of Actinide Fluoride Bonds for the Synthesis of a New Class of Bis(azide) Uranium Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Karla A.; Lichtscheidl, Alejandro G.; Monreal, Marisa Jennifer

    The terminal actinide fluoride bonds in (C 5Me 5) 2ThF 2(py) (py = pyridine) and (C 5Me 5) 2UF 2(O=PR 3) (R = Me, Ph) react with two equivalents of Me 3SiN 3 in toluene to form the polymeric thorium bis(azide), [(C 5Me 5) 2Th(N 3)2] ∞, and a new class of monometallic uranium bis(azide) complexes, (C 5Me 5) 2U(N 3)2(O=PR 3), respectively. Full characterization of the novel complexes (C 5Me 5) 2ThF 2(py) and (C 5Me 5) 2UF 2(O=PR 3) are reported, including the solid-state structures of (C 5Me 5) 2ThF 2(py) and (C 5Me 5) 2U(N 3) 2(O=PPhmore » 3). Lastly, electronic absorption spectral data are also reported for (C 5Me 5) 2AnF 2(py) (An = Th, U) and (C 5Me 5) 2U(N 3) 2(O=PR 3) to confirm metal oxidation state and enable elucidation of the fluoride and azide ligand bonding in these complexes.« less

  8. Exploiting the Reactivity of Actinide Fluoride Bonds for the Synthesis of a New Class of Bis(azide) Uranium Complexes

    DOE PAGES

    Erickson, Karla A.; Lichtscheidl, Alejandro G.; Monreal, Marisa Jennifer; ...

    2017-11-04

    The terminal actinide fluoride bonds in (C 5Me 5) 2ThF 2(py) (py = pyridine) and (C 5Me 5) 2UF 2(O=PR 3) (R = Me, Ph) react with two equivalents of Me 3SiN 3 in toluene to form the polymeric thorium bis(azide), [(C 5Me 5) 2Th(N 3)2] ∞, and a new class of monometallic uranium bis(azide) complexes, (C 5Me 5) 2U(N 3)2(O=PR 3), respectively. Full characterization of the novel complexes (C 5Me 5) 2ThF 2(py) and (C 5Me 5) 2UF 2(O=PR 3) are reported, including the solid-state structures of (C 5Me 5) 2ThF 2(py) and (C 5Me 5) 2U(N 3) 2(O=PPhmore » 3). Lastly, electronic absorption spectral data are also reported for (C 5Me 5) 2AnF 2(py) (An = Th, U) and (C 5Me 5) 2U(N 3) 2(O=PR 3) to confirm metal oxidation state and enable elucidation of the fluoride and azide ligand bonding in these complexes.« less

  9. Factors associated with surface-level caries incidence in children aged 9 to 13: the Iowa Fluoride Study

    PubMed Central

    Broffitt, Barbara; Levy, Steven M.; Warren, John; Cavanaugh, Joseph E.

    2017-01-01

    Objective Since dental caries can progress throughout a person’s lifetime, understanding caries risk factors unique to specific life phases is important. This study aims to assess caries incidence and risk factors for young adolescents. Methods Participants in the longitudinal Iowa Fluoride Study were assessed for dental caries at approximately age 9 and again at age 13. These participants also filled out questionnaires concerning water sources, oral health habits, beverage intakes, parent education and family income. Caries progression (D2+F) was analyzed at the surface level. Mixed effects logistic regression was used to assess associations between surface-specific first molar occlusal caries incidence and risk factors. Results Caries incidence was quite low except on the first molar occlusal surfaces. In initial models of specific risk factors, incidence was positively associated with the surface having a D1 lesion at baseline, low family income, having untreated decay or fillings on other teeth at baseline, lower home water fluoride level, and higher soda pop consumption. In the final multiple variable model, significant interactions were found between tooth brushing frequency and initial D1 status, and also between family income and home tap water fluoride level. Conclusions D2+F incidence on first molar occlusal surfaces in these young adolescents was associated with prior caries experience on other teeth as well as prior evidence of a D1 lesion on the occlusal surface. More frequent tooth brushing was protective of sound surfaces, and fluoride in home tap water was also protective, but significantly more so for adolescents in low income families. PMID:23889610

  10. Specificity of pyrometamorphic minerals of the ellestadite group

    NASA Astrophysics Data System (ADS)

    Zateeva, S. N.; Sokol, E. V.; Sharygin, V. V.

    2007-12-01

    Numerous rare and new mineral species are synthesized during the process of pyrometamorphism (Gross, 1977; Chesnokov et al., 1987; Chesnokov and Shcherbakova, 1991; Chesnokov, 1999), including silicooxides, chloride-, fluoride, and sulfate-silicates, carbonate-sulfides, chloride-oxides, etc. Having made sense of numerous findings of compounds of this type, Chesnokov (1999) set forth the concept of the crystallochemical transition at extreme temperatures attaining 1200-1450°C in pyrogenic systems. First of all, intertype transitions (oxygen-bearing-oxygen-free) and interclass transitions (chloride-silicate, carbonate-sulfide, chlorideoxide) are realized. The specificity of pyrometamorphic mineral assemblages consists in the abundance of silicates with additional anions (F-, Cl-, (CO3)2-) (Sokol et al., 2005). Minerals of the ellestadite group Ca10(SiO4)3 - x (SO4)3 - x (PO4)2 x (OH,F,Cl)2 are a spectacular example of these features. In the general case, they are silicate-sulfate-phosphate-hydroxide-chlorides-fluorides. The detailed description of these minerals based on the study of the original collection of pyrometamorphic minerals is presented in this paper.

  11. Casting of Halide and Fluoride Alloys for Laser Windows

    DTIC Science & Technology

    1974-07-15

    mechanism leads to an inverse square root dependence of fracture strength on grain size. Since CaF2, SrFp and BaFp all exhibit at least microplastic ...flaws or microplasticity is the strength limiting factor is not known. 4.2.2 Solid-solution strengthening 4.2.2. 1 General If fracture in these...Temperature Microplasticity in SrF2 Single Crystals, " J. Appl. Phys. 41_(4) 1871 (1970). 12. T.S. Liu and C.H. Li, " Plasticity of Barium Fluoride

  12. Methyl fluoride-13C in nematic liquid crystals: Anisotropy of the indirect 13C-19F spin-spin coupling and of the 1H, 13C, and 19F chemical shieldings

    NASA Astrophysics Data System (ADS)

    Jokisaari, J.; Hiltunen, Y.; Lounila, J.

    1986-09-01

    The anisotropy of the indirect 13C-19F spin-spin coupling tensor of methyl fluoride-13C in the liquid crystals ZLI 1167, EBBA, their mixtures, phase IV, and phase 1221 was studied by applying 1H and 19F NMR spectroscopy. The relative anisotropy ΔJCF/JCF gets values between -4.3 (in ZLI 1167) and +30.7 (in EBBA) when determined in the conventional way from the experimental dipolar coupling constants taking into account only harmonic vibrational corrections. The inclusion of the deformational corrections in both the direct and indirect C-F coupling tensors leads to a constant, solvent independent relative anisotropy of -2.5±0.2. This result is also obtained when a mixture of the liquid crystals ZLI 1167 and EBBA is used which mixture gives an undistorted geometry for methyl fluoride. The chemical shielding anisotropies ΔσH, ΔσC, and ΔσF for methyl fluoride were determined by applying the method of mixing two thermotropic nematogens (ZLI 1167 and EBBA) with opposite anisotropies of diamagnetic susceptibility. The results ΔσH =+5.2±0.2 ppm, ΔσC =+87±4 ppm, and ΔσF =-90±4 ppm are in fair agreement with theoretical calculations.

  13. Intergranular fracture of lithium fluoride-22 percent calcium fluoride hypereutectic salt at 800 K

    NASA Technical Reports Server (NTRS)

    Raj, Subramanium V.; Whittenberger, J. Daniel

    1990-01-01

    Substantial strain-hardening was noted during the initial stages of deformation in constant-velocity compression tests conducted on as-cast samples of the LiF-22 mol pct CaF2 hypereutectic salt at 800 K. The deformed specimens exhibited extensive grain-boundary cracking and cavitation, suggesting that such cracking, in conjunction with interfacial sliding, is important for cavity nucleation at grain boundaries and at the LiF-CaF2 interfaces. Cavity growth and interlinkage occur through the preferential failure of the weaker LiF phase.

  14. Separation of High Order Harmonics with Fluoride Windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, Tom; van Tilborg, Jeroen; Wright, Travis

    2010-08-02

    The lower orders produced in high order harmonic generation can be effciently temporally separated into monochromatic pulses by propagation in a Fluoride window while still preserving their femtosecond pulse duration. We present calculations for MgF2, CaF2, and LiF windows for the third, fifth, and seventh harmonics of 800 nm. We demonstrate the use of this simple and inexpensive technique in a femtosecond pump/probe experiment using the fifth harmonic.

  15. Excimer-monomer switch: a reaction-based approach for selective detection of fluoride.

    PubMed

    Song, Qiao; Bamesberger, Angela; Yang, Lingyun; Houtwed, Haley; Cao, Haishi

    2014-07-21

    A N-aryl-1,8-naphthalimide based sensor (ES-1) bearing a trimethylsilyl ether has been synthesized by a two-step reaction for quantitative detection of fluoride (F(-)). ES-1 exhibited monomer/excimer emissions at 410 and 524 nm respectively in CH2Cl2. In the presence of F(-), the desilylation of trimethylsilyl ether caused decay of the excimer emission as well as enhancement of the monomer emission to give a ratiometric signal. The fluoride-triggered desilylation showed a high reaction rate and high affinity to F(-) over nine other interfering anions. ES-1 provided a novel fluorescence assay based on excimer-monomer switch of N-aryl-1,8-naphthalimide to quantitatively measure F(-) with a detection limit of 0.133 ppm.

  16. Selective separation of phosphate and fluoride from semiconductor wastewater.

    PubMed

    Warmadewanthi, B; Liu, J C

    2009-01-01

    Hydrofluoric acid (HF) and phosphoric acid (H(3)PO(4)) are widely used in semiconductor industry for etching and rinsing purposes. Consequently, significant amount of wastewater containing phosphate and fluoride is generated. Selective separation of phosphate and fluoride from the semiconductor wastewater, containing 936 mg/L of fluoride, 118 mg/L of phosphate, 640 mg/L of sulfate, and 26.7 mg/L of ammonia, was studied. Chemical precipitation and flotation reactions were utilized in the two-stage treatment processes. The first-stage reaction involved the addition of magnesium chloride (MgCl(2)) to induce selective precipitation of magnesium phosphate. The optimal condition was pH 10 and molar ratio, [Mg(2 + )]/[(PO(4) (3-))], of 3:1, and 66.2% of phosphate was removed and recovered as bobierrite (Mg(3)(PO(4))(2).8H(2)O). No reaction was found between MgCl(2) and fluoride. Calcium chloride (CaCl(2)) was used in the second-stage reaction to induce precipitation of calcium fluoride and calcium phosphate. The optimum molar ratio, [Ca(2 + )]/[F(-)], was 0.7 at pH 10, and residual fluoride concentration of 10.7 mg/L and phosphate concentration of lower than 0.5 mg/L was obtained. Thermodynamic equilibrium was modeled with PHREEQC and compared with experimental results. Sodium dodecylsulfate (SDS) was an effective collector for subsequent solid-liquid removal via dispersed air flotation (DiAF). The study demonstrated that phosphate can be selectively recovered from the wastewater. Potential benefits include recovery of phosphate for reuse, lower required dosage of calcium for fluoride removal, and less amount of CaF(2) sludge.

  17. Synthesis, characterization, and potential application of Mn2+-intercalated bentonite in fluoride removal: adsorption modeling and mechanism evaluation

    NASA Astrophysics Data System (ADS)

    Mudzielwana, Rabelani; Gitari, Wilson M.; Akinyemi, Segun A.; Msagati, Titus A. M.

    2017-12-01

    The study synthesizes a low-cost adsorbent made from Mn2+-modified bentonite clay for groundwater defluoridation. The clays were characterized using X-ray diffraction, X-ray fluorescence, scanning electron microscopy, and Fourier transform infrared techniques. The fluoride adsorption capacity of the modified clay was evaluated using batch experiments. The adsorption kinetics results showed that the optimum fluoride (F-) uptake was achieved within the 30 min' contact time. The data fitted well to pseudo-second-order of reaction kinetics indicating that adsorption of F- occurred via chemisorption. In addition, the adsorption isotherm data fitted well to Langmuir isotherm model indicating that adsorption occurred on a mono-layered surface. Maximum F- removal of 57% was achieved from groundwater with an initial F- concentration of 5.4 mg L-1 and natural pH of 8.6 using adsorbent dosage of 1 g/100 mL. Fluoride adsorption occurred through ligands and ion exchange mechanisms. The synthesized adsorbent was successfully regenerated for up to five times. The study shows that Mn2+-intercalated bentonite clay has potential for application in defluoridation of groundwater.

  18. Method for fluorination of actinide fluorides and oxyfluorides using O/sub 2/F/sub 2/

    DOEpatents

    Eller, P.G.; Malm, J.G.; Penneman, R.A.

    1984-08-01

    The present invention relates generally to methods of fluorination and more particularly to the use of O/sub 2/F/sub 2/ for the preparation of actinide hexafluorides, and for the extraction of deposited actinides and fluorides and oxyfluorides thereof from reaction vessels. The experiments set forth hereinabove demonstrate that the room temperature or below use of O/sub 2/F/sub 2/ will be highly beneficial for the preparation of pure actinide hexafluorides from their respective tetrafluorides without traces of HF being present as occurs using other fluorinating agents: and decontamination of equipment previously exposed to actinides: e.g., walls, feed lines, etc.

  19. Protective Effect of Whole and Fat-Free Fluoridated Milk, Applied before or after Acid Challenge, against Dental Erosion.

    PubMed

    Cassiano, Luiza P S; Charone, Senda; Souza, Juliana G; Leizico, Ligia C; Pessan, Juliano P; Magalhães, Ana Carolina; Buzalaf, Marília Afonso Rabelo

    2016-01-01

    This study analysed in vitro the effect of milk against dental erosion, considering three factors: the type of milk (bovine whole/fat-free), the presence of different fluoride concentrations and the time of application (before/after erosive challenge). Bovine enamel (n = 15/group) and root dentine (n = 12/group) specimens were submitted to the following treatments: after the first erosive challenge - 0.9% NaCl solution (negative control), whole milk with 0, 2.5, 5.0 and 10.0 ppm F, fat-free milk with 0, 2.5, 5.0 and 10.0 ppm F, and 0.05% NaF solution (positive control); before the first erosive challenge - whole milk with 0, 2.5, 5.0 and 10.0 ppm F, fat-free milk with 0, 2.5, 5.0 and 10.0 ppm F, and 0.05% NaF solution (positive control). Specimens were submitted to demineralisation-remineralisation regimes 4 times/day for 5 days. The response variables were enamel and dentine loss (in micrometres). Data were analysed using Kruskal-Wallis/Dunn's test (p < 0.05). For enamel, whole milk containing 10 ppm F, applied before the erosive challenge, was the most protective treatment, but with no significant difference compared with the same treatment carried out after the erosive challenge. For dentine, whole fluoridated milk (all concentrations, after), fat-free 10 ppm F milk (after, before) and whole milk with or without F (except 2.5 ppm F, all before) significantly reduced dentine erosion. It seems that the presence of fluoride, especially at 10 ppm, is the most important factor in reducing dental erosion. © 2016 S. Karger AG, Basel.

  20. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 3. Heavy Lanthanides (Gd–Lu)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mioduski, Tomasz; Gumiński, Cezary, E-mail: cegie@chem.uw.edu.pl; Zeng, Dewen, E-mail: dewen-zeng@hotmail.com

    This is the third part of the volume devoted to solubility data for the rare earth metal (REM) fluorides in water and in aqueous ternary and multicomponent systems. It covers experimental results of trivalent fluorides of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu (so-called heavy lanthanides), since no quantitative data on solubilities of TbF{sub 4} and YbF{sub 2} (the most stable compounds at these valencies) are available. The related literature has been covered through the end of 2014. Compilations of all available papers with the solubility data are introduced for each REM fluoride with a corresponding critical evaluation.more » Every such assessment contains a collection of all solubility results in aqueous solution, a selection of suggested solubility data, a solubility equation, and a brief discussion of the multicomponent systems. Only simple fluorides (no complexes or double salts) are treated as the input substances in this report. General features of the systems, such as nature of the equilibrium solid phases, solubility as a function of temperature, influence of ionic strength, solution pH, mixed solvent medium on the solubility, quality of the solubility results, and the solubility as a function of REM atomic number, have already been presented in Part 1 of the volume.« less

  1. High pressure synthesis and properties of ternary titanium (III) fluorides in the system KF-TiF 3 containing regular pentagonal bipyramids [TiF 7

    NASA Astrophysics Data System (ADS)

    Yamanaka, Shoji; Yasuda, Akira; Miyata, Hajime

    2010-01-01

    Titanium trifluoride TiF 3 has the distorted ReO 3 structure composed of corner sharing TiF 6 octahedra linked with Ti-F-Ti bridges. Potassium fluoride KF was inserted into the bridges using high-pressure and high-temperature conditions (5 GPa, 1000-1200 °C). When the molar ratio KF/TiF 3≥1, a few low dimensional compounds were obtained forming non-bridged F ions. At the composition KF/TiF 3=1/2, a new compound KTi 2F 7 was formed, which crystallizes with the space group Cmmm and the lattice parameters of a=6.371(3), b=10.448(6), c=3.958(2) Å, consisting of edge-sharing pentagonal bipyramids [TiF 7] forming ribbons running along the a axis. The ribbons are linked by corners to construct a three-dimensional framework without forming non-bridged F ions. The compound is antiferromagnetic with the Néel temperature T N=75 K, and the optical band gap was 6.4 eV. A new fluoride K 2TiF 5 (KF/TiF 3=2) with the space group Pbcn and the lattice parameters of a=7.4626(2), b=12.9544(4) and c=20.6906(7) Å was also obtained by the high pressure and high temperature treatment (5 GPa at 1000 °C) of a molar mixture of 2 KF+TiF 3. The compound contains one-dimensional chains of corner-sharing TiF 6 octahedra.

  2. Fluoride exposure changed the structure and the expressions of Y chromosome related genes in testes of mice.

    PubMed

    Cao, Jinling; Chen, Yan; Chen, Jianjie; Yan, Hanghang; Li, Meiyan; Wang, Jundong

    2016-10-01

    It is known that during spermatogenesis, pluripotent germ cells differentiate to become efficient delivery vehicles to the oocyte of paternal DNA, and the process is easily damaged by external poison. In this study, the effects of fluoride on the body weight, fluoride content in femur, testosterone levels in serum and testis, sperm quality, and the expressions of Y chromosome microdeletion genes and protein levels were examined in testes of Kunming male mice treated with different concentrations of 0, 25, 50, 100 mg/L of NaF in drinking water for 11 weeks, respectively. The results showed that compared with the control group, fluoride contents in three treatment groups were significantly increased and the structure of testes was seriously injured. The testosterone contents and the sperm count were decreased. Sperm malformation ratio was distinctly elevated. The expressions of Sly and HSF2 mRNA were markedly reduced in 100 mg/L NaF group and Ssty2 mRNA expression was dramatically decreased in 50 and 100 mg/L NaF groups. Meanwhile, the protein levels of Ssty2 and Sly were significantly reduced in 50 and 100 mg/L NaF groups and HSF2 protein levels were significantly decreased in 100 mg/L NaF group. These studies indicated that fluoride had toxic effects on male reproductive system by reducing the testosterone and sperm count, and increasing the sperm malformation ratio, supported by the damage of testicular structure, as a consequence of depressed HSF2 level, which resulted in the down-regulation of Ssty2 and Sly mRNA and protein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Quantitative studies of bone using (18)F-fluoride and (99m)Tc-methylene diphosphonate: evaluation of renal and whole-blood kinetics.

    PubMed

    Park-Holohan, S J; Blake, G M; Fogelman, I

    2001-09-01

    We report a study of the renal and whole-blood kinetics of (18)F-fluoride and (99m)Tc-methylene diphosphonate ((99m)Tc-MDP) and their effect on the evaluation of the skeletal kinetics of the two bone tracers. Data were obtained during an investigation of postmenopausal women taking hormone replacement therapy who were compared with untreated, age-matched controls. After intravenous injection of 18F-fluoride (1 MBq), (99m)Tc-MDP (1 MBq), (51)Cr-ethylenediaminetetraacetic acid (51Cr-EDTA) (3 MBq) and (125)I-human serum albumin ((125)I-HSA) (0.25 MBq), multiple blood samples and urine collections were taken between 0 and 4 h after injection. (51)Cr-EDTA data were used to evaluate the glomerular filtration rate (GFR) and the completeness of each timed urine collection. (125)I-HSA data were used to evaluate the plasma volume and the red cell uptake of the other three tracers. At 4 h, the cumulative urine excretions (and standard deviations, SDs) were: (99m)Tc-MDP, 58.2% (4.8%); (18)F-fluoride, 36.1% (5.7%); (51)Cr-EDTA, 81.5% (4.5%). Plots of the renal clearance of (18)F-fluoride against urine volume showed that urine flow rates greater than 5 ml.min-1 were necessary to ensure a constant renal clearance of (18)F and hence stable conditions for the evaluation of bone tracer kinetics. In contrast, a low urine flow rate had no effect on the renal kinetics of (99m)Tc-MDP. For MDP, the evaluation of skeletal kinetics requires data on protein binding so that calculations can be performed for free MDP. In the present study, protein binding of MDP was evaluated from the ratio of total (99m)Tc-MDP renal clearance to GFR based on the principle that free (99m)Tc-MDP is a GFR tracer. Between 0 and 4 h after injection, the fractional protein binding of MDP increased linearly with time, changing from 21+/-5% immediately after injection to 58+/-5% at 4 h. Although red cell uptake of (99m)Tc-MDP was negligible, for (18)F-fluoride around 30% of circulating tracer was transported in red cells. In view of the data showing the rapid transport of (18)F-fluoride across the red cell membrane, bone kinetic data for (18)F are more accurately reported as whole-blood clearance rather than plasma clearance.

  4. Fluoride-induced enhancement of diffusion in streptococcal model plaque biofilms.

    PubMed

    Rose, R K; Turner, S J

    1998-01-01

    It has been demonstrated that fluoride decreases the calcium-binding affinity of Streptococcus mutans and approximately doubles the calcium-binding capacity. To investigate the effect of this mechanism on calcium mobility in plaque, 45Ca flux was measured from a condensed films of S. mutans into tracer-free solution. Bacteria were suspended in pH 7.0 or 5.0 buffer including 0, 5, 10, 15 or 20 mmol/l Ca2+ carrier, with or without 5 mmol/l F- and with 45Ca and 3H-inulin. The appearance of 45Ca and 3H-inulin in carrier-containing but initially tracer-free buffer was measured and extracellular fraction (Ve) and bound calcium were calculated. As the ratio (R) of bound to free Ca2+ approached zero at high [Ca2+], the measured diffusion coefficient (rDe) approached the effective diffusion coefficient (De), such that: rDe = De/(1+R). Fluoride increased the rate of calcium diffusion by a reduction in the binding affinity. This work demonstrates that fluoride significantly increases mobility in plaque; this may increase the rate at which calcium is transported between plaque and an underlying lesion and so promote remineralization. This mechanism could also increase the penetration of bacteriocides and suggests a novel method for biofilm treatment.

  5. Protective effect of lycopene on fluoride-induced ameloblasts apoptosis and dental fluorosis through oxidative stress-mediated Caspase pathways.

    PubMed

    Li, Weishan; Jiang, Binghua; Cao, Xianglin; Xie, Yongjiang; Huang, Ting

    2017-01-05

    Fluoride is an environmental toxicant and induces dental fluorosis and oxidative stress. Lycopene (LYC) is an effective antioxidant that is reported to attenuate fluoride toxicity. To determine the effects of LYC on sodium fluoride (NaF) -induced teeth and ameloblasts toxicity, rats were treated with NaF (10 mg/kg) and/or LYC (10 mg/kg) by orally administration for 5 weeks; ameloblasts were treated with NaF (5 mM) and/or LYC (2 μM) for 6 h. We found that the concentrations of fluoride, malondialdehyde (MDA) and reactive oxygen species (ROS), gene expressions and activities of Caspase-9 and Caspase-3, and the gene expressions of Bax were significantly decreased, while the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX), the gene expression of Bcl-2 were significantly increased in the LYC + NaF-treated rats group; concentrations of MDA and ROS, gene expressions and activities of Caspase-9 and Caspase-3, and the gene expression of Bax, and ameloblasts apoptosis rate were significantly decreased, while the activities of SOD and GPX, the gene expression of Bcl-2 were significantly increased in the LYC + NaF-treated ameloblasts group. These results suggest that LYC significantly combated NaF-induced ameloblasts apoptosis and dental fluorosis by attenuation oxidative stress and down-regulation Caspase pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Crystallization of heavy metal fluoride glasses

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Bruce, Allan J.; Doremus, R. H.; Moynihan, C. T.

    1984-01-01

    The kinetics of crystallization of a number of fluorozirconate glasses were studied using isothermal and dynamic differential scanning calorimetry and X-ray diffraction. The addition of the fluorides LiF, NaF, AlF3, LaF3 to a base glass composition of ZrF4-BaF2 reduced the tendency to crystallize, probably by modifying the viscosity-temperature relation. ZrF4-BaF2-LaF3-AlF3-NaF glass was the most stable against devitrification and perhaps is the best composition for optical fibers with low scattering loss. Some glasses first crystallize out into metastable beta-BaZr2F10 and beta-BaZrF6 phases, which transform into the most stable alpha-phases when heated to higher temperatures. The size of the crystallites was estimated to be about 600 A from X-ray diffraction.

  7. Anticaries Potential of a Sodium Monofluorophosphate Dentifrice Containing Calcium Sodium Phosphosilicate: Exploratory in situ Randomized Trial.

    PubMed

    Parkinson, Charles R; Siddiqi, Muhammad; Mason, Stephen; Lippert, Frank; Hara, Anderson T; Zero, Domenick T

    2017-01-01

    Calcium sodium phosphosilicate (CSPS) is a bioactive glass material that alleviates dentin hypersensitivity and is postulated to confer remineralization of caries lesions. This single-centre, randomized, single (investigator)-blind, placebo-controlled, crossover, in situ study explored whether the addition of 5% CSPS to a nonaqueous fluoride (F) such as sodium monofluorophosphate (SMFP)-containing dentifrice affects its cariostatic ability. Seventy-seven subjects wore 4 gauze-covered enamel specimens with preformed lesions (2 surface-softened and 2 subsurface) placed buccally on their mandibular bilateral dentures for up to 4 weeks. Subjects brushed twice daily with 1 of the 5 study dentifrices: 927 ppm F/5% CSPS, 927 ppm F/0% CSPS, 250 ppm F/0% CSPS, 0 ppm F/5% CSPS, or 0 ppm F/0% CSPS. Specimens were retrieved after either 21 (surface-softened lesions; analyzed by Knoop surface microhardness [SMH]) or 28 days (subsurface lesions; analyzed by transverse microradiography). The enamel fluoride uptake was determined for all specimens using a microbiopsy technique. The concentrations of fluoride and calcium in gauze-retrieved plaque were also evaluated. Higher dentifrice fluoride concentrations led to greater remineralization and fluoridation of both lesion types and increased plaque fluoride concentrations. CSPS did not improve the cariostatic properties of SMFP; there were no statistically significant differences between 927 ppm F/5% CSPS and 927 ppm F/0% CSPS in percent SMH recovery (p = 0.6788), change in integrated mineral loss (p = 0.5908), or lesion depth (p = 0.6622). Likewise, 0 ppm F/5% CSPS did not provide any benefits in comparison to 0 ppm F/0% CSPS. In conclusion, CSPS does not negatively impact nor does it improve the ability of an SMFP dentifrice to affect remineralization of caries lesions. © 2017 S. Karger AG, Basel.

  8. Potential of CO2 lasers (10.6 µm) associated with fluorides in inhibiting human enamel erosion.

    PubMed

    Ramos-Oliveira, Thayanne Monteiro; Ramos, Thaysa Monteiro; Esteves-Oliveira, Marcela; Apel, Christian; Fischer, Horst; Eduardo, Carlos de Paula; Steagall, Washington; Freitas, Patricia Moreira de

    2014-01-01

    This in vitro study aimed to investigate the potential of CO2 lasers associated with different fluoride agents in inhibiting enamel erosion. Human enamel samples were randomly divided into 9 groups (n = 12): G1-eroded enamel; G2-APF gel; G3-AmF/NaF gel; G4-AmF/SnF2 solution; G5-CO2 laser (λ = 10.6 µm)+APF gel; G6-CO2 laser+AmF/NaF gel; G7-CO2laser+AmF/SnF2solution; G8-CO2 laser; and G9-sound enamel. The CO2 laser parameters were: 0.45 J/cm2; 6 μs; and 128 Hz. After surface treatment, the samples (except from G9) were immersed in 1% citric acid (pH 4.0, 3 min). Surface microhardness was measured at baseline and after surface softening. The data were statistically analyzed by one-way ANOVA and Tukey's tests (p < 0.05). G2 (407.6 ± 37.3) presented the highest mean SMH after softening, followed by G3 (407.5 ± 29.8) and G5 (399.7 ± 32.9). Within the fluoride-treated groups, G4 (309.0 ± 24.4) had a significantly lower mean SMH than G3 and G2, which were statistically similar to each other. AmF/NaF and APF application showed potential to protect and control erosion progression in dental enamel, and CO2 laser irradiation at 0.45J/cm2 did not influence its efficacy. CO2 laser irradiation alone under the same conditions could also significantly decrease enamel erosive mineral loss, although at lower levels.

  9. Effects of fluoridated milk on root dentin remineralization.

    PubMed

    Arnold, Wolfgang H; Heidt, Bastian A; Kuntz, Sebastian; Naumova, Ella A

    2014-01-01

    The prevalence of root caries is increasing with greater life expectancy and number of retained teeth. Therefore, new preventive strategies should be developed to reduce the prevalence of root caries. The aim of this study was to investigate the effects of fluoridated milk on the remineralization of root dentin and to compare these effects to those of sodium fluoride (NaF) application without milk. Thirty extracted human molars were divided into 6 groups, and the root cementum was removed from each tooth. The dentin surface was demineralized and then incubated with one of the following six solutions: Sodium chloride NaCl, artificial saliva, milk, milk+2.5 ppm fluoride, milk+10 ppm fluoride and artificial saliva+10 ppm fluoride. Serial sections were cut through the lesions and investigated with polarized light microscopy and quantitative morphometry, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The data were statistically evaluated using a one-way ANOVA for multiple comparisons. The depth of the lesion decreased with increasing fluoride concentration and was the smallest after incubation with artificial saliva+10 ppm fluoride. SEM analysis revealed a clearly demarcated superficial remineralized zone after incubation with milk+2.5 ppm fluoride, milk+10 ppm fluoride and artificial saliva+10 ppm fluoride. Ca content in this zone increased with increasing fluoride content and was highest after artificial saliva+10 ppm fluoride incubation. In the artificial saliva+10 ppm fluoride group, an additional crystalline layer was present on top of the lesion that contained elevated levels of F and Ca. Incubation of root dentin with fluoridated milk showed a clear effect on root dentin remineralization, and incubation with NaF dissolved in artificial saliva demonstrated a stronger effect.

  10. Fluoride Increase in Saliva and Dental Biofilm due to a Meal Prepared with Fluoridated Water or Salt: A Crossover Clinical Study.

    PubMed

    Lima, Carolina V; Tenuta, Livia M A; Cury, Jaime A

    2018-06-07

    Knowledge about fluoride delivery to oral fluids from foods cooked with fluoridated water and salt is scarce, and no study has evaluated fluoride concentrations in saliva or biofilm during meal consumption. In this randomized double-blind crossover study, 12 volunteers ingested meals (rice, beans, meat, and legumes) prepared with nonfluoridated water and salt (control group), fluoridated water (0.70 mg F/L; water group), and fluoridated salt (183.7 mg F/kg; salt group). Whole saliva was collected before meal ingestion, during mastication, and up to 2 h after meal ingestion. Dental biofilm was collected before and immediately after meal ingestion. Fluoride concentrations in saliva and dental biofilm were determined by an ion-specific electrode. The mean (±standard deviation; n = 4) fluoride concentrations in meals prepared for the control, water, and salt groups were 0.039 ± 0.01, 0.43 ± 0.04, and 1.71 ± 0.32 μg F/g, respectively. The three groups had significantly different fluoride concentrations in saliva collected during mastication (p < 0.0001) and after meal ingestion (p < 0.04; salt > water > control). The fluoride concentration in saliva returned to baseline 30 min after meal ingestion in the water group but remained high for up to 2 h in the salt group (p = 0.002). The fluoride concentration in biofilm fluid differed only between the salt and control groups (p = 0.008). The mastication of foods cooked with fluoridated water and salt increases fluoride concentrations in oral fluids and may contribute to the local effect of these community-based fluoride interventions on caries control. © 2018 S. Karger AG, Basel.

  11. Effect of aqueous sprays of ammonium fluoride on oxygen consumption and firmness of suture and dorsal tissues of Early Improved Elberta peaches. [Prunus persica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Facteau, T.J.; Rowe, K.E.

    1976-06-01

    Aqueous ammonium fluoride (NH/sub 4/F) sprays on Early Improved Elberta peaches (Prunus persica (L.) Batsch) resulted in increased O/sub 2/ consumption of suture tissue and inconsistent changes in O/sub 2/ consumption of dorsal tissue as the spray concentration was increased. Flesh firmness on the suture side of treated fruit was less than non-sprayed fruit and decreased as either the NH/sub 4/F spray concentration or number of sprays increased. The effect of spray on the dorsal side differed from year to year. Levels of fluoride (F) in the fruit tissue were associated with F concentration and number of F sprays appliedmore » only within the same year. 3 references, 1 table.« less

  12. Microwave-assisted rapid synthesis and characterization of CaF₂ particles-filled cellulose nanocomposites in ionic liquid.

    PubMed

    Deng, Fu; Fu, Lian-Hua; Ma, Ming-Guo

    2015-05-05

    In this article, we try to compound cellulose/alkali earth metal fluorides (MF2, M=Ca, Mg, Sr, Ba) nanocomposites via microwave-assisted ionic liquid method, wherein cellulose/CaF2 and cellulose/MgF2 were successfully synthesized through this method while cellulose/SrF2 and cellulose/BaF2 could not be synthesized. We focused on the synthesis of cellulose/CaF2 and investigated the influences of the different time and different temperature for the synthesis of cellulose/CaF2 nanocomposites. The influence of different heating methods such as oil-bath heating method was also studied. Ionic liquid ([Bmim][BF4]) was used for dissolving microcrystalline cellulose and providing the source of fluoride ionic and the alkali earth metal nitrate (Ca(NO3)2, Mg(NO3)2, Sr(NO3)2, and Ba(NO3)2) was used as the reaction initiator. They were investigated by X-ray powder diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TG), derivative thermogravimetric (DTG), and energy-dispersive X-ray spectra (EDS). The different heating modes have influence on the morphology and property. The different temperature and heating time also have a certain influence on the morphology and crystallinity of calcium fluoride. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Development and properties of duplex MgF2/PCL coatings on biodegradable magnesium alloy for biomedical applications.

    PubMed

    Makkar, Preeti; Kang, Hoe Jin; Padalhin, Andrew R; Park, Ihho; Moon, Byoung-Gi; Lee, Byong Taek

    2018-01-01

    The present work addresses the performance of polycaprolactone (PCL) coating on fluoride treated (MgF2) biodegradable ZK60 magnesium alloy (Mg) for biomedical application. MgF2 conversion layer was first produced by immersing Mg alloy substrate in hydrofluoric acid solution. The outer PCL coating was then prepared using dip coating technique. Morphology, elements profile, phase structure, roughness, mechanical properties, invitro corrosion, and biocompatibility of duplex MgF2/PCL coating were then characterized and compared to those of fluoride coated and uncoated Mg samples. The invivo degradation behavior and biocompatibility of duplex MgF2/PCL coating with respect to ZK60 Mg alloy were also studied using rabbit model for 2 weeks. SEM and TEM analysis showed that the duplex coating was uniform and comprised of porous PCL film (~3.3 μm) as upper layer with compact MgF2 (~2.2 μm) as inner layer. No significant change in microhardness was found on duplex coating compared with uncoated ZK60 Mg alloy. The duplex coating showed improved invitro corrosion resistance than single layered MgF2 or uncoated alloy samples. The duplex coating also resulted in better cell viability, cell adhesion, and cell proliferation compared to fluoride coated or uncoated alloy. Preliminary invivo studies indicated that duplex MgF2/PCL coating reduced the degradation rate of ZK60 Mg alloy and exhibited good biocompatibility. These results suggested that duplex MgF2/PCL coating on magnesium alloy might have great potential for orthopedic applications.

  14. Development and properties of duplex MgF2/PCL coatings on biodegradable magnesium alloy for biomedical applications

    PubMed Central

    Makkar, Preeti; Kang, Hoe Jin; Padalhin, Andrew R.; Park, Ihho; Moon, Byoung-Gi

    2018-01-01

    The present work addresses the performance of polycaprolactone (PCL) coating on fluoride treated (MgF2) biodegradable ZK60 magnesium alloy (Mg) for biomedical application. MgF2 conversion layer was first produced by immersing Mg alloy substrate in hydrofluoric acid solution. The outer PCL coating was then prepared using dip coating technique. Morphology, elements profile, phase structure, roughness, mechanical properties, invitro corrosion, and biocompatibility of duplex MgF2/PCL coating were then characterized and compared to those of fluoride coated and uncoated Mg samples. The invivo degradation behavior and biocompatibility of duplex MgF2/PCL coating with respect to ZK60 Mg alloy were also studied using rabbit model for 2 weeks. SEM and TEM analysis showed that the duplex coating was uniform and comprised of porous PCL film (~3.3 μm) as upper layer with compact MgF2 (~2.2 μm) as inner layer. No significant change in microhardness was found on duplex coating compared with uncoated ZK60 Mg alloy. The duplex coating showed improved invitro corrosion resistance than single layered MgF2 or uncoated alloy samples. The duplex coating also resulted in better cell viability, cell adhesion, and cell proliferation compared to fluoride coated or uncoated alloy. Preliminary invivo studies indicated that duplex MgF2/PCL coating reduced the degradation rate of ZK60 Mg alloy and exhibited good biocompatibility. These results suggested that duplex MgF2/PCL coating on magnesium alloy might have great potential for orthopedic applications. PMID:29608572

  15. The effect on human salivary fluoride concentration of consuming fluoridated salt-containing baked food items.

    PubMed

    Macpherson, L M; Stephen, K W

    2001-10-01

    Salt fluoridation is recognised world-wide as a proven and viable alternative means of consumer choice-related, community-based fluoridation where water fluoridation is either technically or politically impossible. However, as most salt consumed is contained within cooked food products, rather than sprinkled over prepared food at the table, the purpose of this study was to investigate the effects on salivary fluoride concentration of consuming baked food products prepared with 250 and 350 ppm fluoridated salt (as KF). Six food items were baked with (a) normal non-fluoridated salt, (b) 250 mg F/kg salt and (c) 350 mg F/kg salt. Eleven adult volunteers consumed these foodstuffs on separate occasions and salivary samples were collected for fluoride analyses before and at various time points (1-30 min) after eating. For most foodstuffs, small but significant increases in salivary fluoride concentration occurred for at least 5 min after ingestion of the fluoridated salt-containing items. Salivary fluoride concentrations peaked 1 or 2 min after eating, with highest values for the six test foods ranging from 0.16 to 0.25 ppm F, and from 0.18 to 0.44 ppm F for the 250 and 350 mg F/kg salt products, respectively. In all cases, salivary fluoride concentrations had returned to baseline by 20 min. The clinical significance of such small, short-term increases in salivary fluoride is uncertain, but the findings suggest that a more frequent intake of foods with fluoridated salt substituted for normal salt could help sustain slightly elevated salivary fluoride concentrations for more prolonged periods of the day, and might thus potentiate the cariostatic effects of saliva on tooth mineral.

  16. A blind caries and fluorosis prevalence study of school-children in naturally fluoridated and nonfluoridated townships of Morayshire, Scotland.

    PubMed

    Stephen, Kenneth W; Macpherson, Lorna M D; Gilmour, W Harper; Stuart, Russell A M; Merrett, Martyn C W

    2002-02-01

    To undertake a blind caries and fluorosis prevalence study of Grade 1 (aged 5/6 yr) and Grade 4-7 (aged 8-12 yr) children from naturally water-fluoridated (1 ppm, since 1985) Burghead, Findhorn & Kinloss (F), and nearby nonfluoridated Buckie & Portessie (N-F), in rural Morayshire, Scotland. A blind clinical (+ 10% repeats) caries study of the above townships' 5/6-yr-old lifetime (15 F; 43 N-F), and 8-12-yr-old lifetime (55 F; 136 N-F)/school-lifetime (31 F; 37 N-F) residents was undertaken following bussing of these children to a common examination site in close-by Elgin Town Hall. Initially, each child was asked about their own perception of the aesthetics of their maxillary front teeth. Fluorosis was assessed clinically using the TF Index, as well as photographically - for later blind scoring (+ 10% repeats for lifetime 8-12-yr-olds) of slides by four dental and two lay 'jurors', alongside a now-established UK 'bench-mark' mildly mottled (TFI = 2), fluorosis comparator slide, judged in previous studies to be aesthetically lay-acceptable. In addition, by parental questionnaire, information was sought concerning their child's fluoride supplement and dentifrice usage histories. For 5/6-yr-olds, mean primary caries scores were 96.0% less in fluoridated than nonfluoridated subjects (P < 0.01). In 8-12-yr-olds, DMFT values favoured water-fluoridated subjects; their caries-free trend was significant (P < 0.001 overall). Clinically, 33% of all lifetime F subjects and 18% of all N-F pupils had fluorosed maxillary anterior teeth (P = 0.045), but no statistically significant difference was found between the 7% F and 3% N-F subjects with TFI scores > 2 (P = 0.25). Photographically, 'jury' mottling assessment (+ 10% repeats) of projected slides resulted in at least 1 : 6 positive scores in 43.6% of F and 30.9% of N-F pupils, albeit they unanimously scored only nine F and five N-F children as having fluorosed teeth (P < 0.01). In no case did all members score TFI > 2. Dental and lay scorers rated TFI = (1/2) in only a further 9.1% and 5.5% of F subjects, respectively, compared to 0.7% and 1.5% respectively of N-F pupils. Again, TFI > 2 was scored unanimously in no child. No differences were found regarding the children's own degree of anterior tooth aesthetic nonacceptability between F (11%) and N-F (12%) prevalence (P = 0.75). Finally, only one F child had taken F supplements and, while 26 N-F had used F drops, no significant relationship was found between their usage and TFI values in the latter group (P = 0.49). Additionally, no relationship was noted between clinical TFI scores and the age at which parents stated fluoridated dentifrice toothbrushing commenced, between 0 and 24 + months of age. Considerable caries benefit has accrued to those Morayshire rural children who have received naturally fluoridated water (at 1 ppm) throughout their lives, as compared to their socioeconomically similar, nonfluoridated rural counterparts. Furthermore, in spite of all but two subjects claiming to have brushed regularly with fluoridated dentifrice (and no evidence of the availability of nonfluoridated toothpaste being purchasable in the five townships), only borderline mild fluorosis disadvantages have been noted clinically, and none by the subjects' own aesthetic perceptions. Finally, no evidence was found to suggest any delay in permanent tooth eruption patterns of the F subjects. It would seem appropriate therefore, that adjustment of Scots' drinking waters' natural fluoride levels to 1 ppm should be pursued to extend similar dental advantages to the vast majority of that population (both young and old) which, it is well documented, has the worst dental health of mainland UK.

  17. Fluoride salts and container materials for thermal energy storage applications in the temperature range 973 to 1400 K

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.; Whittenberger, J. Daniel

    1987-01-01

    Multicomponent fluoride salt mixtures were characterized for use as latent heat of fusion heat storage materials in advanced solar dynamic space power systems with operating temperatures in the range of 973 to 1400 K. The melting points and eutectic composition for many systems with published phase diagrams were verified, and several new eutectic compositions were identified. Additionally, the heats of fusion of several binary and ternary eutectics and congruently melting intermediate compounds were measured by differential scanning calorimetry. The extent of corrosion of various metals by fluoride melts was estimated from thermodynamic considerations, and equilibrium conditions inside a containment vessel were calculated as functions of the initial moisture content of the salt and free volume above the molten salt. Preliminary experimental data on the corrosion of commercial, high-temperature alloys in LiF-19.5CaF2 and NaF-27CaF2-36MgF2 melts are presented and compared to the thermodynamic predictions.

  18. Fluoride salts and container materials for thermal energy storage applications in the temperature range 973 - 1400 K

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.; Whittenberger, J. Daniel

    1987-01-01

    Multicomponent fluoride salt mixtures were characterized for use as latent heat of fusion heat storage materials in advanced solar dynamic space power systems with operating temperatures in the range of 973 to 1400 K. The melting points and eutectic composition for many systems with published phase diagrams were verified, and several new eutectic compositions were identified. Additionally, the heats of fusion of several binary and ternary eutectics and congruently melting intermediate compounds were measured by differential scanning calorimetry. The extent of corrosion of various metals by fluoride melts was estimated from thermodynamic considerations, and equilibrium conditions inside a containment vessel were calculated as functions of the initial moisture content of the salt and free volume above the molten salt. Preliminary experimental data on the corrosion of commercial, high-temperature alloys in LiF-19.5CaF2 and NaF-27CaF2-36MgF2 melts are presented and compared to the thermodynamic predictions.

  19. Influence of Fluoride Ion on the Performance of Pb-Ag Anode During Long-Term Galvanostatic Electrolysis

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaocong; Yu, Xiaoying; Jiang, Liangxing; Lv, Xiaojun; Liu, Fangyang; Lai, Yanqing; Li, Jie

    2015-09-01

    Anodic potential, morphology and phase composition of the anodic layer, corrosion morphology of the metallic substrate, and oxygen evolution behavior of Pb-Ag anode in H2SO4 solution without/with fluoride ion were investigated and compared. The results showed that the presence of fluoride ions contributed to a smoother anodic layer with lower PbO2 concentration, which resulted in lower double layer capacity and higher charge transfer resistance for the oxygen evolution reaction. Consequently, the Pb-Ag anode showed a higher anodic potential (about 35 mV) in the fluoride-containing electrolyte. In addition, the fluoride ions accelerated the detachment of loose flakes on the anodic layer. It was demonstrated that the anodic layer formed in the fluoride-containing H2SO4 solution was thinner. Furthermore, fluoride ions aggravated the corrosion of the metallic substrate at interdendritic boundary regions. Hence, the presence of fluoride ions is detrimental to oxygen evolution reactivity and increases the corrosion of the Pb-Ag anode, which may further increase the energy consumption and capital cost of zinc plants.

  20. Synthesis and anion binding studies of tris(3-aminopropyl)amine-based tripodal urea and thiourea receptors: Proton transfer-induced selectivity for hydrogen sulfate over sulfate.

    PubMed

    Khansari, Maryam Emami; Johnson, Corey R; Basaran, Ismet; Nafis, Aemal; Wang, Jing; Leszczynski, Jerzy; Hossain, Md Alamgir

    2015-01-01

    Tris(3-aminopropyl)amine-based tripodal urea and thiourea receptors, tris([(4-cyanophenyl)amino]propyl)urea ( L1 ) and tris([(4-cyanophenyl)amino]propyl)thiourea ( L2 ), have been synthesized and their anion binding properties have been investigated for halides and oxoanions. As investigated by 1 H NMR titrations, each receptor binds an anion with a 1:1 stoichiometry via hydrogen-bonding interactions (NH⋯anion), showing the binding trend in the order of F - > H 2 PO 4 - > HCO 3 - > HSO 4 - > CH 3 COO - > SO 4 2- > Cl - > Br - > I in DMSO- d 6 . The interactions of the receptors were further studied by 2D NOESY, showing the loss of NOESY contacts of two NH resonances for the complexes of F - , H 2 PO 4 - , HCO 3 - , HSO 4 - or CH 3 COO - due to the strong NH⋯anion interactions. The observed higher binding affinity for HSO 4 - than SO 4 2- is attributed to the proton transfer from HSO 4 - to the central nitrogen of L1 or L2 which was also supported by the DFT calculations, leading to the secondary acid-base interactions. The thiourea receptor L2 has a general trend to show a higher affinity for an anion as compared to the urea receptor L1 for the corresponding anion in DMSO- d 6 . In addition, the compound L2 has been exploited for its extraction properties for fluoride in water using a liquid-liquid extraction technique, and the results indicate that the receptor effectively extracts fluoride from water showing ca. 99% efficiency (based on L2 ).

  1. Fluoride in groundwater: a case study in Precambrian terranes of Ambaji region, North Gujarat, India

    NASA Astrophysics Data System (ADS)

    Mohan Pradhan, Rudra; Biswal, Tapas Kumar

    2018-06-01

    Fluoride is one of the critical ions that influence the groundwater quality. World Health Organization (WHO, 1970) and Bureau of Indian Standards (BIS, 1991) set an upper limit of 1.5 mg L-1 in F- concentration for drinking water purpose and above affects teeth and bones of humans. The presence of fluoride in groundwater is due to an interaction of groundwater and fluoride bearing rocks. Fluoride rich groundwater is well known in granitic aquifers in India and elsewhere. Generally, the concentration of F- in groundwater is controlled by local geological setting; leaching and weathering of bedrock and climatic condition of an area. The main objective of the present study is to assess the hydrogeochemistry of groundwater and to understand the abundance of F- in groundwater in hard rock terranes of Ambaji region, North Gujarat. A total of forty-three representative groundwater samples were collected and analyzed for major cations and anions using ICP-AES, Ion Chromatograph (Metrohm 883 Basic IC Plus) and titration methods. The F- concentration in groundwater of this study area ranges from 0.17 to 2.7 mg L-1. Among, twenty groundwater samples have fluoride exceeding the maximum permissible limit as per the BIS (1.5 mg L-1). It is also noticed that residents of this region are affected by dental fluorosis. The general order of the dominance of major cations and anions are Ca2+ > Mg2+ > Na+ > K+ and HCO3- > Cl- > F- respectively. Geochemical classification of groundwater shows most of the samples are the alkaline earth-bicarbonate type. The semi-arid climatic conditions of the region, the dominance of granitoid-granulite suite rocks and the fracture network in the disturbed and brittle zone has facilitated the development of potential aquifers and enrichment in F- concentration in this area. The concentration of fluoride is due to high evaporation rate, longer residence time in the aquifer zone, intensive and long term pumping for irrigation.

  2. Longitudinal evaluation of fluoride levels in nails of 18-30-month-old children that were using toothpastes with 500 and 1100 μg F/g.

    PubMed

    Amaral, Jackeline G; Freire, Isabelle R; Valle-Neto, Eduardo F R; Cunha, Robson F; Martinhon, Cleide C R; Delbem, Alberto C B

    2014-10-01

    This study aimed to evaluate the fluoride concentration in the fingernails and toenails of children aged 18-30 months during use of fluoride-containing toothpastes supplemented with calcium glycerophosphate (CaGP) or sodium trimetaphosphate (TMP). According to the toothpaste used, children (n = 56) were randomly assigned into three groups: 500 μg F/g with 1% TMP, 500 μg F/g with 0.25% CaGP, and 1100 μg F/g. Fingernails and toenails were collected monthly over a period of 330 days, from the beginning of toothpaste use. Fluoride concentration in the water consumed by the volunteers and fluoride intake from diet and toothpaste were also determined. Fluoride analyses were performed with the electrode after hexamethyldisiloxane-facilitated diffusion or by the direct method, according to the samples. Data passed normality and homoscedasticity tests and were analyzed by 2-way analysis of variance (anova) and 1-way anova followed by Student-Newman-Keuls test (P < 0.05). Fluoride levels in the fingernails and toenails as well as fluoride intake from toothpaste were similar for the groups treated with 500 μg F/g with 1% TMP and 500 μg F/g with 0.25% CaGP toothpastes, but significantly lower than the 1100 μg F/g group (P < 0.05). No significant differences were noted among the groups regarding fluoride intake from diet and that by water consumed by the volunteers (P > 0.05). The results of the longitudinal study suggest that the level of fluoride present in nails was lower with the use of toothpastes with a low fluoride concentration. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Complex refractive index measurements for BaF 2 and CaF 2 via single-angle infrared reflectance spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly-Gorham, Molly Rose K.; DeVetter, Brent M.; Brauer, Carolyn S.

    We have re-investigated the optical constants n and k for the homologous series of inorganic salts barium fluoride (BaF2) and calcium fluoride (CaF2) using a single-angle near-normal incidence reflectance device in combination with a calibrated Fourier transform infrared (FTIR) spectrometer. Our results are in good qualitative agreement with most previous works. However, certain features of the previously published data near the reststrahlen band exhibit distinct differences in spectral characteristics. Notably, our measurements of BaF2 do not include a spectral feature in the ~250 cm-1 reststrahlen band that was previously published. Additionally, CaF2 exhibits a distinct wavelength shift relative to themore » model derived from previously published data. We confirmed our results with recently published works that use significantly more modern instrumentation and data reduction techniques« less

  4. Influence of magnesium fluoride (MgF2) layer on a conventional surface plasmon resonance sensor

    NASA Astrophysics Data System (ADS)

    Mohapatra, Saswat; Moirangthem, Rakesh S.

    2018-05-01

    In this work, a numerical study of Surface Plasmon Resonance (SPR) sensor has been done by using Magnesium Fluoride (MgF2) layer on a conventional Kretschmann configuration. The prism was coated with smooth gold thin film of thickness 50 nm followed by MgF2 layer. To obtain the maximum reflection dips in the SPR modes, the thickness of MgF2 layer is optimized by varying it from 200-800 nm. Our calculations also reveal that SPR modes corresponding to gold-MgF2 layer are very sensitive to the changes in the surrounding medium as compared to the traditional SPR device. The sensing performance of the proposed nano-plasmonic sensor is theoretically calculated using bulk refractive index sensing. Such bilayer device (gold-MgF2) is expected to take an important role on the field of chemical and biological sensing.

  5. Antibacterial Properties of Calcium Fluoride-Based Composite Materials: In Vitro Study

    PubMed Central

    Zarzycka, Beata; Grzegorczyk, Janina; Sokołowski, Krzysztof; Półtorak, Konrad; Sokołowski, Jerzy

    2016-01-01

    The aim of the study was to evaluate antibacterial activity of composite materials modified with calcium fluoride against cariogenic bacteria S. mutans and L. acidophilus. One commercially available conventional light-curing composite material containing fluoride ions (F2) and two commercially available flowable light-curing composite materials (Flow Art and X-Flow) modified with 1.5, 2.5, and 5.0 wt% anhydrous calcium fluoride addition were used in the study. Composite material samples were incubated in 0.95% NaCl at 35°C for 3 days; then dilution series of S. mutans and L. acidophilus strains were made from the eluates. Bacteria dilutions were cultivated on media afterwards. Colony-forming unit per 1 mL of solution (CFU/mL) was calculated. Composite materials modified with calcium fluoride highly reduced (p < 0.001) bacteria growth compared to commercially available composite materials containing fluoride compounds. The greatest reduction in bacteria growth was observed for composite materials modified with 1.5% wt. CaF2. All three tested composite materials showed statistically greater antibacterial activity against L. acidophilus than against S. mutans. PMID:28053976

  6. Method for fluorination of actinide fluorides and oxyfluorides thereof using O.sub.2 F.sub.2

    DOEpatents

    Eller, Phillip G.; Malm, John G.; Penneman, Robert A.

    1988-01-01

    Method for fluorination of actinides and fluorides and oxyfluorides thereof using O.sub.2 F.sub.2 which generates actinide hexafluorides, and for removal of actinides and compounds thereof from surfaces upon which they appear as unwanted deposits. The fluorinating agent, O.sub.2 F.sub.2, has been observed to readily perform the above-described tasks at sufficiently low temperatures that there is virtually no damage to the containment vessels. Moreover, the resulting actinide hexafluorides are thereby not destroyed by high temperature reactions with the walls of the reaction vessel. Dioxygen difluoride is easily prepared, stored and transferred to the desired place of reaction.

  7. Method for fluorination of actinide fluorides and oxyfluorides thereof using O[sub 2]F[sub 2

    DOEpatents

    Eller, P.G.; Malm, J.G.; Penneman, R.A.

    1988-11-08

    Method is described for fluorination of actinides and fluorides and oxyfluorides thereof using O[sub 2]F[sub 2] which generates actinide hexafluorides, and for removal of actinides and compounds thereof from surfaces upon which they appear as unwanted deposits. The fluorinating agent, O[sub 2]F[sub 2], has been observed to readily perform the above-described tasks at sufficiently low temperatures that there is virtually no damage to the containment vessels. Moreover, the resulting actinide hexafluorides are thereby not destroyed by high temperature reactions with the walls of the reaction vessel. Dioxygen difluoride is easily prepared, stored and transferred to the desired place of reaction.

  8. Quaternary ammonium promoted ultra selective and sensitive fluorescence detection of fluoride ion in water and living cells.

    PubMed

    Li, Long; Ji, Yuzhuo; Tang, Xinjing

    2014-10-21

    Highly selective and sensitive fluorescent probes with a quaternary ammonium moiety have been rationally designed and developed for fast and sensitive fluorescence detection of fluoride ion (F(-) from NaF, not TBAF) in aqueous solution and living cells. With the sequestration effect of quaternary ammonium, the detection time was less than 2 min and the detection limit of fluoride ion was as low as 0.57 ppm that is among the lowest detection limits in aqueous solutions of many fluoride fluorescence probes in the literature.

  9. Mechanochemical synthesis of MgF2 - MF2 composite systems (M = Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Scholz, G.; Breitfeld, S.; Krahl, T.; Düvel, A.; Heitjans, P.; Kemnitz, E.

    2015-12-01

    The capability of mechanochemical synthesis for the formation of MgF2-MF2 (M: Ca, Sr, Ba) composites, solid solutions or well-defined compounds was tested applying a fluorination of different fluorine-free metal sources with NH4F directly at milling. No evidence was found for a substitution of Mg2+ with Ca2+ (Sr2+, Ba2+) ions, or vice versa, in rutile or fluorite structure. However, an equimolar ratio of Mg2+ to the second cation allows the mechanochemical synthesis of tetrafluoromagnesates, MMgF4, which is more and more hampered the smaller the radius of the cation M2+ is. BaMgF4 is formed even phase pure from the acetates, SrMgF4 can only be observed in a mixture accompanied by the binary fluorides. In addition, 19F MAS NMR spectra along with calculations of 19F isotropic chemical shift values according to the superposition model point to the formation of a metastable phase of CaMgF4, which disappears at thermal treatment and decomposes into the binary fluorides CaF2 and MgF2.

  10. In vitro effect of calcium-containing prescription-strength fluoride toothpastes on bovine enamel erosion under hyposalivation-simulating conditions.

    PubMed

    Scaramucci, Taís; Borges, Alessandra B; Lippert, Frank; Zero, Domenick T; Hara, Anderson T

    2015-02-01

    To evaluate the ability of calcium-containing prescription-strength fluoride (F) toothpastes in preventing enamel erosion under low salivary flow simulating conditions. Enamel and dentin bovine specimens were assigned to the following groups: A - placebo; B - 1,100 ppm F/NaF (Aquafresh Advanced); C - 5,000 ppm F/NaF (Prevident 5000 Booster); D - 5000 ppm F/NaF+calcium sodium phosphosilicate (Topex Renew); and E - 5,000 ppm F/NaF+tri-calcium phosphate (Clinpro 5000). Specimens were positioned in custom-made devices, creating a sealed chamber on the surface, connected to peristaltic pumps. Citric acid was injected into the chamber for 2 minutes, followed by artificial saliva (0.05 ml/minute), for 60 minutes, 4x/day, for 3 days. Aquafresh was also tested under normal salivary flow (0.5 ml/minute), as reference (Group F). Specimens were exposed to the toothpastes for 2 minutes, 2x/day. After cycling, surface loss (SL) and concentration of loosely- and firmly-bound F were determined. Data were analyzed by ANOVA. Results: Group A (placebo) presented highest surface loss (SL), while Group F had the lowest, for both substrates. For enamel, none of the dentifrices differed from Group B or among each other. For dentin, none of the dentifrices differed from Group B, but Group E showed greater protection than Group C. Group E presented the highest F concentrations for both substrates, only matched by Group D for firmly-bound fluoride on enamel. All fluoridated dentifrices tested reduced SL, with no additional benefit from higher F concentrations. Some formulations, especially Clinpro 5000, increased F availability on the dental substrates, but no further erosion protection was observed.

  11. Fluoride estimation and its correlation with other physicochemical parameters in drinking water of some areas of Balochistan, Pakistan.

    PubMed

    Chandio, Tasawar Ali; Khan, Muhammad Nasiruddin; Sarwar, Anila

    2015-08-01

    The fluoride level in drinking water is an important parameter and has to be controlled in order to prevent dental and skeletal fluorosis. The objective of this study is to assess fluoride content and other water quality parameters in the samples taken from open wells, tube wells, and karezes of Mastung, Mangochar, and Pringabad areas of Balochistan province. A total number of 96 drinking water samples out of 150 were found unfit for human consumption. Area-wise analysis show that the samples from 39 sites from Mastung, 12 from Mangochar, and 13 from Pringabad were found in the risk of dental fluorosis of mild to severe nature. However, 12 sampling sites from Mastung, 8 from Mangochar, and 2 from Pringabad were identified as the risks of mottling and skeletal fluorosis or other bone abnormalities. The highest concentration of F(-) has been observed as 14 mg L(-1) in Mastung. Correlation analysis show that fluoride solubility in drinking water is pH dependent; and the salts of Ca(2+), Na(+), K(+), Cl(-), and SO4(2-) contribute to attain the favorable pH for dissolution of fluoride compounds in drinking water. Principal component analysis shows that the geochemical composition of the rocks is only responsible for groundwater contamination. On the basis of the results, defloridation of the identified sampling sites and continuous monitoring of drinking water at regular basis is recommended at government level to avoid further fluorosis risks.

  12. Bovine calves as ideal bio-indicators for fluoridated drinking water and endemic osteo-dental fluorosis.

    PubMed

    Choubisa, S L

    2014-07-01

    Relative susceptibility to fluoride (F) toxicosis in the form of osteo-dental fluorosis was observed in an observational survey of 2,747 mature and 887 immature domestic animals of diverse species living in areas with naturally fluoridated (>1.5 ppm F) drinking water. These animals included buffaloes (Bubalus bubalis), cattle (Bos taurus), camels (Camelus dromedarius), donkeys (Equus asinus), horses (Equus caballus), goats (Capra hircus), and sheep (Ovis aries). Of these mature and immature animals, 899 (32.7 %) and 322 (36.3 %) showed evidence of dental fluorosis with varying grades, respectively. Their incisor teeth were stained with light to deep brownish color. On clinical examination, 31.2 % mature and 10.7 % immature animals revealed periosteal exostoses, intermittent lameness, and stiffness of tendons in the legs as signs of skeletal fluorosis. The maximum susceptibility to fluoride toxicosis was found in bovines (buffaloes and cattle) followed by equines (donkeys and horses), flocks (goats and sheep), and camelids (camels). The bovine calves were found to be more sensitive and highly susceptible to F toxicosis and revealed the maximum prevalence (92.2 %) of dental fluorosis. This indicates that bovine calves are less tolerant and give early sign of F poisoning (dental fluorosis) and therefore, they can be considered as bio-indicators for fluoridated water as well as for endemicity of osteo-dental fluorosis. Causes for variation in susceptibility to F toxicosis (fluorosis) in various species of domestic animal are also discussed.

  13. Estimation of fluoride concentration in drinking water and common beverages in United Arab Emirates (UAE).

    PubMed

    Walia, Tarun; Abu Fanas, Salem; Akbar, Madiha; Eddin, Jamal; Adnan, Mohamad

    2017-07-01

    To assess fluoride concentration in drinking water which include tap water of 4 emirates - Abu Dhabi, Dubai, Sharjah and Ajman plus bottled water, commonly available soft drinks & juices in United Arab Emirates. Five different samples of tap water collected from each of the four emirates of UAE: Ajman, Sharjah, Abu Dhabi and Dubai; twenty-two brands of bottled water and fifteen brands of popular cold beverages, purchased from different supermarkets in U.A.E were tested using ion selective electrode method and the fluoride concentration was determined. The mean fluoride content of tap water samples was 0.14 mg F/L with a range of 0.04-0.3 mg F/L; with Ajman tap water samples showing the highest mean fluoride content of 0.3 mg F/L. The mean fluoride content for both bottled drinking water and beverages was 0.07 mg F/L with a range of 0.02-0.50 mg F/L and 0.04-0.1 mg F/L respectively. Majority (68.2%) of the bottled water are produced locally within U.A.E while a few (31.8%) are imported. The tap water, bottled water and beverages available in U.A.E show varying concentrations of fluoride, however none showed the optimal level necessary to prevent dental caries. Dental professionals in U.A.E should be aware of the fluoride concentrations before prescribing fluoride supplements to children.

  14. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials

    NASA Astrophysics Data System (ADS)

    Lecaplain, C.; Javerzac-Galy, C.; Gorodetsky, M. L.; Kippenberg, T. J.

    2016-11-01

    The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF2, CaF2, MgF2 and SrF2 microresonators. We show that MgF2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF2 and BaF2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date.

  15. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials

    PubMed Central

    Lecaplain, C.; Javerzac-Galy, C.; Gorodetsky, M. L.; Kippenberg, T. J.

    2016-01-01

    The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF2, CaF2, MgF2 and SrF2 microresonators. We show that MgF2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF2 and BaF2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date. PMID:27869119

  16. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials.

    PubMed

    Lecaplain, C; Javerzac-Galy, C; Gorodetsky, M L; Kippenberg, T J

    2016-11-21

    The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF 2 , CaF 2 , MgF 2 and SrF 2 microresonators. We show that MgF 2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF 2 and BaF 2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date.

  17. Inorganic Syntheses at High Temperatures and High Pressures with Special Interest in the Preparation of New Fluorine Compounds

    DTIC Science & Technology

    1981-05-26

    produced either 1,2-gauche- and trano- difluoroethane or vinyl fluoride and hydrogen fluoride, Propylene, butadiene, and cyclohaxene reacted...Ar matrices can be explained in a number of ways. If the reaction is visualized an proceeding through a hot 1.2- difluoroethane inturmediate, one can...probability of hot 1.2- difluoroethane decomposing into vinyl fluoride. The presence of both gauche and trt!ns forms when the athylene-F 2 adduct is

  18. Some metal-graphite and metal-ceramic composites for use as high energy brake lining materials

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1974-01-01

    Materials were studied as candidates for development as potential new aircraft brake lining materials. These families were (1) copper-graphite composites; (2) nickel-graphite composites; (3) copper - rare-earth-oxide (gadolinium oxide (Gd2O3) or lanthanum oxide (La2O3)) composites and copper - rare-earth-oxide (La2O3) - rare-earth-fluoride (lanthanum fluoride (LaF3)) composites; (4) nickel - rare-earth-oxide composites and nickel - rare-earth-oxide - rare-earth-fluoride composites. For comparison purposes, a currently used metal-ceramic composite was also studied. Results showed that the nickel-Gd2O3 and nickel-La2O3-LaF3 composites were comparable or superior in friction and wear performance to the currently used composite and therefore deserve to be considered for further development.

  19. Investigation of effect of fluoride on corrosion of 2S-0 aluminum and 347 stainless steel in fuming nitric acid at 170 F

    NASA Technical Reports Server (NTRS)

    Feiler, Charles E; Morrell, Gerald

    1954-01-01

    The effect of small additions of fluoride on the corrosion of 2S-0 aluminum and 347 stainless steel by fuming nitric acid at 170 degrees F has been evaluated quantitatively by the determination of the weight loss of metal specimens immersed in the acid. The ratio of metal surface area to volume of acid was approximately 7.5 inch (superscript)-1 in all cases. It was found that for acids containing no fluorides the weight loss of aluminum was approximately 1/5 that of stainless steel. Addition of 1 percent fluoride ion to the acid reduced the weight loss of both metals to practically zero even after 26 days of exposure to the acid at 170 degrees F. The minimum quantity of fluoride ion required to inhibit corrosion was found to be approximately 0.25 and 0.5 percent for aluminum and stainless steel, respectively, in white fuming nitric acid and 0.5 and 1 percent in red fuming nitric acid (18 percent nitrogen dioxide). These fluoride percentages were based on the total weight of acid. Provided the concentration of fluoride ion was sufficient to inhibit corrosion, the source of these ions was immaterial. Additional information concerning the effect of fluorides on corrosion was obtained by measuring the electrode potentials of the metals against a platinum reference electrode.

  20. [Pb2F2](SeO4): a heavier analogue of grandreefite, the first layered fluoride selenate

    NASA Astrophysics Data System (ADS)

    Charkin, Dmitri O.; Plokhikh, Igor V.; Zadoya, Anastasiya I.; Kazakov, Sergey M.; Zaloga, Alexander N.; Kozin, Michael S.; Depmeier, Wulf; Siidra, Oleg I.

    2018-01-01

    Co-precipitation of PbF2 and PbSeO4 in weakly acidic media results in the formation of [Pb2F2](SeO4), the selenate analogue of the naturally occurring mineral grandreefite, [Pb2F2](SO4). The new compound is monoclinic, C2/ c, a = 14.0784(2) Å, b = 4.6267(1) Å, c = 8.8628(1) Å, β = 108.98(1)°, V = 545.93(1) Å3. Its structure has been refined from powder data to R B = 1.55%. From thermal studies, it is established that the compound is stable in air up to about 300 °C, after which it gradually converts into a single phase with composition [Pb2O](SeO4), space group C2/ m, and lattice parameters a = 14.0332(1) Å, b = 5.7532(1) Å, c = 7.2113(1) Å, β = 115.07(1)°, V = 527.37(1) Å3. It is the selenate analogue of lanarkite, [Pb2O](SO4), and phoenicochroite, [Pb2O](CrO4), and its crystal structure was refined to R B = 1.21%. The formation of a single decomposition product upon heating in air suggests that this happens by a thermal hydrolysis mechanism, i.e., Pb2F2SeO4 + H2O (vapor) → Pb2OSeO4 + 2HF↑. This relatively low-temperature process involves complete rearrangement of the crystal structure—from a 2D architecture featuring slabs [Pb2F2]2+ formed by fluorine-centered tetrahedra into a structure characterized by 1D motifs based on [OPb2]2+ chains of oxocentered tetrahedra. The comparative crystal chemistry of the obtained anion-centered structural architectures is discussed.

  1. Caries-preventive effect of anti-erosive and nano-hydroxyapatite-containing toothpastes in vitro.

    PubMed

    Esteves-Oliveira, M; Santos, N M; Meyer-Lueckel, H; Wierichs, R J; Rodrigues, J A

    2017-01-01

    The aim of the study was to investigate the caries-preventive effect of newly developed fluoride and fluoride-free toothpastes specially designed for erosion prevention. The hypothesis was that these products might also show superior caries-inhibiting effect than regular fluoride toothpastes, since they were designed for stronger erosive acid challenges. Enamel specimens were obtained from bovine teeth and pre-demineralized (pH = 4.95/21 days) to create artificial caries lesions. Baseline mineral loss (ΔZ B ) and lesion depth (LD B ) were determined using transversal microradiography (TMR). Ninety specimens with a median ΔZ B (SD) of 6027 ± 1546 vol% × μm were selected and randomly allocated to five groups (n = 18). Treatments during pH-cycling (14 days, 4 × 60 min demineralization/day) were brushing 2×/day with AmF (1400 ppm F - , anti-caries [AC]); AmF/NaF/SnCl 2 /Chitosan (700 ppm F - /700 ppm F - /3500 ppm Sn 2+ , anti-erosion [AE1]); NaF/KNO 3 (1400 ppm F - , anti-erosion [AE2]); nano-hydroxyapatite-containing (0 ppm F - , [nHA]); and fluoride-free toothpastes (0 ppm F - , negative control [NC]). Toothpaste slurries were prepared with mineral salt solution (1:3 wt/wt). After pH-cycling specimens presenting lesion, surface loss (mainly by NC and nHA) were discarded. For the remaining 77 specimens, new TMR analyses (ΔZ E /LD E ) were performed. Changes in mineral loss (ΔΔZ = ΔZ B  - ΔZ E ) and lesion depth (ΔLD = LD B  - LD E ) were calculated. All toothpastes caused significantly less demineralization (lower ΔΔZ) than NC (p < 0.05, ANOVA) except for nHA. The fluoride toothpastes did not differ significantly regarding ΔΔZ and ΔLD (p > 0.05, ANOVA). While both anti-erosive and anti-caries toothpastes reduced mineral loss to a similar extent, the fluoride-free nano-hydroxyapatite-containing toothpaste seemed not to be suitable for inhibition of caries demineralization in vitro.

  2. Effects of perinatal fluoride exposure on the expressions of miR-124 and miR-132 in hippocampus of mouse pups.

    PubMed

    Wang, Jixiang; Zhang, Yuliang; Guo, Zhenzhen; Li, Rui; Xue, Xingchen; Sun, Zilong; Niu, Ruiyan

    2018-04-01

    To investigate the effects of perinatal fluoride exposure on learning and memory ability of mouse offspring, ICR female mice were received different doses of sodium fluoride (0, 25, 50, 100 mg/L NaF) from pregnant day 7 to lactational day 21. Pups were exposed to fluoride through the cord blood and breast milk. Open field test showed that compared to the control group, perinatal fluoride exposure significantly decreased the number of entries into the center zone in 100 mg/L NaF group. In the eight-arm maze test, the number of working memory errors, reference memory errors, and the total arm entries were significantly increased in fluoride treatment groups, compared to the control group. Additionally, 100 mg/L NaF significantly elevated the expression levels of miR-124, miR-132, and DiGeorge syndrome chromosomal region 8 (DGCR8) in hippocampus of mouse pups at postnatal day (PND) 21. Contrarily, methyl CpG binding protein 2 (MeCP2) were dramatically reduced in 50 and 100 mg/L NaF groups, while cAMP-response element binding protein (CREB) mRNA level was significantly decreased in all fluoride groups. These findings suggested that the impairment of learning and memory in mouse offspring induced by perinatal fluoride exposure may partly result from the enhanced miR-124 and miR-132 and the alterations of their target genes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Boric-Acid-Functional Lanthanide Metal-Organic Frameworks for Selective Ratiometric Fluorescence Detection of Fluoride Ions.

    PubMed

    Yang, Zhong-Rui; Wang, Man-Man; Wang, Xue-Sheng; Yin, Xue-Bo

    2017-02-07

    Here, we report that boric acid is used to tune the optical properties of lanthanide metal-organic frameworks (LMOFs) for dual-fluorescence emission and improves the selectivity of LMOFs for the determination of F - ions. The LMOFs are prepared with 5-boronoisophthalic acid (5-bop) and Eu 3+ ions as the precursors. Emission mechanism study indicates that 5-bop is excited with UV photons to produce its triplet state, which then excites Eu 3+ ions for their red emission. This is the general story of the antenna effect, but electron-deficient boric acid decreases the energy transfer efficiency from the triplet state of 5-bop to Eu 3+ ions, so dual emission from both 5-bop and Eu 3+ ions is efficiently excited at the single excitation of 275 nm. Moreover, boric acid is used to identify fluoride specifically as a free accessible site. The ratiometric fluorescent detection of F - ions is validated with the dual emission at single excitation. The LMOFs are very monodisperse, so the determination of aqueous F - ions is easily achieved with high selectivity and a low detection limit (2 μM). For the first time, we reveal that rational selection of functional ligands can improve the sensing efficiency of LMOFs through tuning their optical property and enhancing the selectivity toward targets.

  4. Thermodynamic Model of the Na-Al-Si-O-F Melts

    NASA Astrophysics Data System (ADS)

    Dolejs, D.; Baker, D. R.

    2004-05-01

    Fluorine is a common volatile element in magmatic-hydrothermal systems, but its solution mechanisms in highly polymerized silicate melts are poorly known. We have developed a thermodynamic model for fluorosilicate liquids which links experimentally determined phase equilibria and spectroscopic information on melt structure. The model is applicable to crystallization of fluoride minerals or fluoride-silicate immiscibility in natural felsic melts. Configurational properties of the liquid are defined by mixing of alkali fluoride, polyhedral aluminofluoride and silicofluoride species and non-bridging terminations of the silicate network. Abundances of individual structural species are described by a homogeneous equilibrium, representing melt depolymerization: F- (free) + O0 (bridging) = F0 (terminal) + O- (non-bridging), which is a replacement of one oxygen bridge, Si-O-Si, by two terminations, Si-F | Na-O-Si. In cryolite-bearing systems, the self-dissociation of octahedral aluminofluoride complexes: Na3[AlF6] = Na[AlF4] + 2 NaF, and the short-range order between (O,F)-corners and (Si,NaAl)-centers of tetrahedra: Si-O-Si + 2 [NaAl]-F = [NaAl]-O-[NaAl] + 2 Si-F, represent two additional interaction mechanisms. Portrayal of these equilibria in ternary Thompson reaction space allows to decrease the number of interaction mechanisms by linearly combining melt depolymerization with tetrahedral short-range order. In this formulation, the interaction parameters are incorporated directly in configurational properties, thus the complete melt speciation can be calculated, and the activities of any macroscopic species are readily derived. The model has been applied to subsystems of the Na2O-NaAlO2-SiO2-F2O-1 compositional space. Activity-composition relationships in the villiaumite-sodium silicate binaries require clustering of silicate tetrahedra in fluoride solvent. Phase-equilibria in cryolite-nepheline and cryolite-albite systems illustrate an overall increase of Na3AlF6 self-association in both joins. On the other hand, melt depolymerization by fluorine controls depression of silicate liquidi. The present model is useful for modeling the differentiation of peralkaline fluorine-bearing magmas and provides a starting point for predicting halide, carbonate, sulfide or sulfate saturation in natural melts.

  5. Anion Channel Inhibitor NPPB-Inhibited Fluoride Accumulation in Tea Plant (Camellia sinensis) Is Related to the Regulation of Ca2+, CaM and Depolarization of Plasma Membrane Potential

    PubMed Central

    Zhang, Xian-Chen; Gao, Hong-Jian; Yang, Tian-Yuan; Wu, Hong-Hong; Wang, Yu-Mei; Zhang, Zheng-Zhu; Wan, Xiao-Chun

    2016-01-01

    Tea plant is known to be a hyper-accumulator of fluoride (F). Over-intake of F has been shown to have adverse effects on human health, e.g., dental fluorosis. Thus, understanding the mechanisms fluoride accumulation and developing potential approaches to decrease F uptake in tea plants might be beneficial for human health. In the present study, we found that pretreatment with the anion channel inhibitor NPPB reduced F accumulation in tea plants. Simultaneously, we observed that NPPB triggered Ca2+ efflux from mature zone of tea root and significantly increased relative CaM in tea roots. Besides, pretreatment with the Ca2+ chelator (EGTA) and CaM antagonists (CPZ and TFP) suppressed NPPB-elevated cytosolic Ca2+ fluorescence intensity and CaM concentration in tea roots, respectively. Interestingly, NPPB-inhibited F accumulation was found to be significantly alleviated in tea plants pretreated with either Ca2+ chelator (EGTA) or CaM antagonists (CPZ and TFP). In addition, NPPB significantly depolarized membrane potential transiently and we argue that the net Ca2+ and H+ efflux across the plasma membrane contributed to the restoration of membrane potential. Overall, our results suggest that regulation of Ca2+-CaM and plasma membrane potential depolarization are involved in NPPB-inhibited F accumulation in tea plants. PMID:26742036

  6. Fluorination process using catalyst

    DOEpatents

    Hochel, Robert C.; Saturday, Kathy A.

    1985-01-01

    A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.

  7. Fluorination process using catalysts

    DOEpatents

    Hochel, R.C.; Saturday, K.A.

    1983-08-25

    A process is given for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/, AgF/sub 2/ and NiF/sub 2/, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/ and AgF/sub 2/, whereby the fluorination is significantly enhanced.

  8. A novel smart supramolecular organic gelator exhibiting dual-channel responsive sensing behaviours towards fluoride ion via gel-gel states.

    PubMed

    Mehdi, Hassan; Pang, Hongchang; Gong, Weitao; Dhinakaran, Manivannan Kalavathi; Wajahat, Ali; Kuang, Xiaojun; Ning, Guiling

    2016-07-07

    A novel smart supramolecular organic gelator G-16 containing anion and metal-coordination ability has been designed and synthesized. It shows excellent and robust gelation capability as a strong blue fluorescent supramolecular organic gel OG in DMF. Addition of Zn(2+) produced Zn(2+)-coordinated supramolecular metallogel OG-Zn. Organic gel OG and organometallic gel OG-Zn exhibited efficient and different sensing behaviors towards fluoride ion due to the variation in self-assembling nature. Supramolecular metallogel OG-Zn displayed specific selectivity for fluoride ion and formed OG-Zn-F with dramatic color change from blue to blue green in solution and gel to gel states. Furthermore after directly addition of fluoride into OG produced fluoride containing organic gel OG-F with drastically modulation in color from blue to greenish yellow fluorescence via strong aggregation-induced emission (AIE) property. A number of experiments were conducted such as FTIR, (1)H NMR, and UV/Vis spectroscopies, XRD, SEM and rheology. These results revealed that the driving forces involved in self-assembly of OG, OG-Zn, OG-Zn-F and OG-F were hydrogen bonding, metal coordination, π-π interactions, and van der Waal forces. In contrast to the most anion responsive gels, particularly fluoride ion responsive gels showed gel-sol state transition on stimulation by anions, the gel state of OG and OG-Zn did not show any gel-to-sol transition during the whole F(-) response process.

  9. Effect of pretreatment with an Er:YAG laser and fluoride on the prevention of dental enamel erosion.

    PubMed

    dos Reis Derceli, Juliana; Faraoni-Romano, Juliana Jendiroba; Azevedo, Danielle Torres; Wang, Linda; Bataglion, César; Palma-Dibb, Regina Guenka

    2015-02-01

    The aim of this study was to evaluate the effect of the Er:YAG laser and its association with fluoride (1.23% acidulate phosphate fluoride gel) on the prevention of enamel erosion. Sixty specimens were obtained from bovine enamel (4 × 4 mm), which were ground flat, polished, and randomly divided into five groups according to the preventive treatments: control-fluoride application; L--Er:YAG laser; L+F--laser + fluoride; F+L--fluoride + laser; L/F--laser/fluoride simultaneously. Half of the enamel surface was covered with nail varnish (control area), and the other half was pretreated with one of the preventive strategies to subsequently be submitted to erosive challenge. When the laser was applied, it was irradiated for 10 s with a focal length of 4 mm and 60 mJ/2 Hz. Fluoride gel was applied for 4 min. Each specimen was individually exposed to regular Coca-Cola® for 1 min, four times/day, for 5 days. Wear analysis was performed with a profilometer, and demineralization was assessed with an optical microscope. Data were analyzed using the Kruskal-Wallis test (wear)/Dunn test and ANOVA/Fisher's exact tests. The group L/F was similar to control group. The other groups showed higher wear, which did not present differences among them. In the demineralization assessment, the groups F+L and L/F showed lower demineralization in relation to the other groups. It can be concluded that none preventive method was able to inhibit dental wear. The treatments L/F and F+L showed lower enamel demineralization.

  10. PbF2-based single crystals and phase diagrams of PbF2-MF2 systems (M = Mg, Ca, Sr, Ba, Cd)

    NASA Astrophysics Data System (ADS)

    Buchinskaya, I. I.; Fedorov, Pavel P.; Sobolev, B. P.

    1997-07-01

    Optical grade single crystals of Pb0.67Cd0.33F2 and Pb1-xCaxF2 (x less than 0.05) were grown by the Bridgman technique in graphite crucibles under fluorinating atmosphere of teflon pyrolysis products. For determinations of concentration areas of solid solutions, suitable for crystal growth, the phase interactions in the systems PbF2 with fluorides of alkaline-earth elements and Cd were studied by DTA and x-ray powder diffraction techniques. Phase diagrams were described by corresponding thermodynamic models. Transition from pure PbF2 to two- component Pb0.67Cd0.33F2 crystal is accompanied by some increase in radiation hardness of the latter and positive changes of mechanical characteristics (the Pb0.67Cd0.33F2 composition microhardness is 147 plus or minus 5 kg/mm2 that is 5 times that of a pure lead fluoride, 28 plus or minus 4 kg/mm2). These solid solutions have a cubic Fm3m fluorite-type lattice as a high-temperature modification of PbF2.

  11. The fractional urinary fluoride excretion of adults consuming naturally and artificially fluoridated water and the influence of water hardness: a randomized trial.

    PubMed

    Villa, A; Cabezas, L; Anabalón, M; Rugg-Gunn, A

    2009-09-01

    To assess whether there was any significant difference in the average fractional urinary fluoride excretion (FUFE) values among adults consuming (NaF) fluoridated Ca-free water (reference water), naturally fluoridated hard water and an artificially (H2SiF6) fluoridated soft water. Sixty adult females (N=20 for each treatment) participated in this randomized, double-blind trial. The experimental design of this study provided an indirect estimation of the fluoride absorption in different types of water through the assessment of the fractional urinary fluoride excretion of volunteers. Average daily FUFE values (daily amount of fluoride excreted in urine/daily total fluoride intake) were not significantly different between the three treatments (Kruskal-Wallis; p = 0.62). The average 24-hour FUFE value (n=60) was 0.69; 95% C.I. 0.65-0.73. The results of this study suggest that the absorption of fluoride is not affected by water hardness.

  12. Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses

    NASA Astrophysics Data System (ADS)

    Shaharyar, Yaqoot

    The dissolution of fluoride-containing bioactive glasses critically affects their biomedical applications. Most commercial fluoride-releasing bioactive glasses have been designed in the soda-lime-silica system. However, their relatively slow chemical dissolution and the adverse effect of fluoride on their bioactivity are stimulating the study of novel biodegradable materials with higher bioactivity, such as biodegradable phosphate-based bioactive glasses, which can be a viable alternative for applications where a fast release of active ions is sought. In order to design new biomaterials with controlled degradability and high bioactivity, it is essential to understand the connection between chemical composition, molecular structure, and solubility in physiological fluids.Accordingly, in this work we have combined the strengths of various experimental techniques with Molecular Dynamics (MD) simulations, to elucidate the impact of fluoride ions on the structure and chemical dissolution of bioactive phosphate glasses in the system: 10Na2O - (45-x) CaO - 45P2O5 - xCaF2, where x varies between 0 -- 10 mol.%. NMR and MD data reveal that the medium-range atomic-scale structure of thse glasses is dominated by Q2 phosphate units followed by Q1 units, and the MD simulations further show that fluoride tends to associate with network modifier cations to form alkali/alkaline-earth rich ionic aggregates. On a macroscopic scale, we find that incorporating fluoride in phosphate glasses does not affect the rate of apatite formation on the glass surface in simulated body fluid (SBF). However, fluoride has a marked favorable impact on the glass dissolution in deionized water. Similarly, fluoride incorporation in the glasses results in significant weight gain due to adsorption of water (in the form of OH ions). These macroscopic trends are discussed on the basis of the F effect on the atomistic structure of the glasses, such as the F-induced phosphate network re-polymerization, in a first attempt to establish composition-structure-property relationships for these biomaterials.

  13. Particle Size Effects on Flow Properties of PS304 Plasma Spray Feedstock Powder Blend

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; DellaCorte, Christopher; Eylon, Daniel

    2002-01-01

    The effects of BaF2-CaF2 particle size and size distribution on PS304 feedstock powder flowability have been investigated. Angular BaF2-CaF2 eutectic powders were produced by comminution and classified by screening to obtain 38 to 45 microns 45 to 106 microns, 63 to 106 microns, 45 to 53 microns, 63 to 75 microns, and 90 to 106 microns particle size distributions. The fluorides were added incrementally from 0 to 10 wt% to the other powder constituents of the PS304 feedstock: nichrome, chromia, and silver powders. The flow rate of the powder blends decreased linearly with increasing concentration of the fluorides. Flow was degraded with decreasing BaF2-CaF2 particle size and with increasing BaF2-CaF2 particle size distribution. A semiempirical relationship is offered to describe the PS304 powder blend flow behavior. The Hausner Ratio confirmed the funnel flow test results, but was slightly less sensitive to differences in BaF2-CaF2 particle size and size distribution. These findings may have applicability to other powders that do not flow easily, such as ceramic powders.

  14. Origin of the SN2 benzylic effect.

    PubMed

    Galabov, Boris; Nikolova, Valia; Wilke, Jeremiah J; Schaefer, Henry F; Allen, Wesley D

    2008-07-30

    The S N2 identity exchange reactions of the fluoride ion with benzyl fluoride and 10 para-substituted derivatives (RC6H 4CH 2F, R = CH3, OH, OCH 3, NH2, F, Cl, CCH, CN, COF, and NO2) have been investigated by both rigorous ab initio methods and carefully calibrated density functional theory. Groundbreaking focal-point computations were executed for the C6H5CH 2F + F (-) and C 6H 5CH2Cl + Cl (-) SN2 reactions at the highest possible levels of electronic structure theory, employing complete basis set (CBS) extrapolations of aug-cc-pV XZ (X = 2-5) Hartree-Fock and MP2 energies, and including higher-order electron correlation via CCSD/aug-cc-pVQZ and CCSD(T)/aug-cc-pVTZ coupled cluster wave functions. Strong linear dependences are found between the computed electrostatic potential at the reaction-center carbon atom and the effective SN2 activation energies within the series of para-substituted benzyl fluorides. An activation strain energy decomposition indicates that the SN2 reactivity of these benzylic compounds is governed by the intrinsic electrostatic interaction between the reacting fragments. The delocalization of nucleophilic charge into the aromatic ring in the SN2 transition states is quite limited and should not be considered the origin of benzylic acceleration of SN2 reactions. Our rigorous focal-point computations validate the benzylic effect by establishing SN2 barriers for (F (-), Cl (-)) identity exchange in (C6H5CH2F, C6H 5CH2Cl) that are lower than those of (CH3F, CH3Cl) by (3.8, 1.6) kcal mol (-1), in order.

  15. Influence of bioadhesive polymers on the protective effect of fluoride against erosion.

    PubMed

    Ávila, Daniele Mara da Silva; Zanatta, Rayssa Ferreira; Scaramucci, Tais; Aoki, Idalina Vieira; Torres, Carlos Rocha Gomes; Borges, Alessandra Bühler

    2017-01-01

    This study investigated if the incorporation of the bioadhesive polymers Carbopol 980, Carboxymethyl cellulose (CMC), and Aristoflex AVC in a fluoridated solution (NaF-900ppm) would increase the solution's protective effect against enamel erosion. Enamel specimens were submitted to a 5-day de-remineralization cycling model, consisting of 2min immersions in 0.3% citric acid (6x/day), 1min treatments with the polymers (associated or not with fluoride), and 60min storage in artificial saliva. Ultrapure water was used as the negative control and a 900ppm fluoride solution as positive control. The initial Knoop microhardness (KHN1) was used to randomize the samples into groups. Another two microhardness assessments were performed after the first (KHN2) and second (KHN3) acid immersions, to determine initial erosion in the first day. The formula: %KHN alt =[(KHN3-KHN2)/KHN2]*100 was used to define the protective effect of the treatments. After the 5-day cycling, surface loss (SL, in μm) was evaluated with profilometry. Data were analyzed with 2-way ANOVA and Tukey's tests (p<0.05). For %KHN alt , the polymers alone did not reduce enamel demineralization when compared to the negative control, but Carbopol associated with NaF significantly improved its protective effect. The profilometric analysis showed that Carbopol, associated or not with NaF, exhibited the lowest SL, while CMC and Aristoflex did not exhibit a protective effect, nor were they able to improve the protection of NaF. It is concluded that Carbopol enhanced NaF's protection against initial erosion. Carbopol alone or associated with NaF was able to reduce SL after several erosive challenges. Carbopol by itself was able to reduce the erosive wear magnitude to the same extent as the sodium fluoride, therefore, is a promising agent to prevent or control enamel erosion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Manufacturing of Dysprosium-Iron Alloys by Electrolysis in Fluoride-Based Electrolytes: Oxide Solubility Determinations

    NASA Astrophysics Data System (ADS)

    Martinez, Ana Maria; Støre, Anne; Osen, Karen Sende

    2018-04-01

    Electrolytic production of light rare earth elements and alloys takes place in a fluoride-based electrolyte using rare earth oxides as raw material. The optimization of this method, mainly in terms of the energy efficiency and environmental impact control, is rather challenging. Anode effects, evolution of fluorine-containing compounds, and side cathode reactions could largely be minimized by a good control of the amount of rare earth oxide species dissolved in the fluoride-based electrolyte and their dissolution rate. The oxide content of the fluoride melts REF3-LiF (RE = Nd, Dy) at different compositions and temperatures were experimentally determined by carbothermal analysis of melt samples. The highest solubility values of oxide species, added as Dy2O3 and Dy2(CO3)3, were obtained to be of ca. 3 wt pct (expressed as Dy2O3) in the case of the equimolar DyF3-LiF melt at 1323 K (1050 °C). The oxide saturation values increased with the amount of REF3 present in the molten bath and the working temperature.

  17. K(3)TaF(8) from laboratory X-ray powder data.

    PubMed

    Smrcok, Lubomír; Cerný, Radovan; Boca, Miroslav; Macková, Iveta; Kubíková, Blanka

    2010-02-01

    The crystal structure of tripotassium octafluoridotantalate, K(3)TaF(8), determined from laboratory powder diffraction data by the simulated annealing method and refined by total energy minimization in the solid state, is built from discrete potassium cations, fluoride anions and monocapped trigonal-prismatic [TaF(7)](2-) ions. All six atoms in the asymmetric unit are in special positions of the P6(3)mc space group: the Ta and one F atom in the 2b (3m) sites, the K and two F atoms in the 6c (m) sites, and one F atom in the 2a (3m) site. The structure consists of face-sharing K(6) octahedra with a fluoride anion at the center of each octahedron, forming chains of composition [FK(3)](2+) running along [001] with isolated [TaF(7)](2-) trigonal prisms in between. The structure of the title compound is different from the reported structure of Na(3)TaF(8) and represents a new structure type.

  18. Children's Menu Diversity: Influence on Fluoride Absorption and Excretion.

    PubMed

    Cavalli, Andreany M; Flório, Flávia M

    2018-01-01

    The aim of this study is to determine the influence of children's menu diversity on the absorption and excretion of fluoride. The experimental, longitudinal, quantitative study was carried out in a city without fluoridation in water supply. A total of 16 adult volunteers (>63.9 kg) participated in the study who, after a 12-hour fast, ingested two types of children's meals, whose quantity and diversity were determined after weighing the meals best consumed by children at a kindergarten in Campinas, Sao Paulo: Simple child meal (SCM; n = 8) and hearty child meal (HCM; n = 8). The fluoride gel residual after professional application (12,300 ppm, 30.75 mg F, pH = 4.65) was simulated 15 minutes after feeding. Saliva samples (in time intervals of 0, 15, 30, and 45 minutes and 1, 2, 3, 4, 6, and 12 hours after ingestion of the fluorine solution) and urine of the volunteers were analyzed at 24 hours. Fluoride concentrations were determined using a selective ion electrode. Data were analyzed by analysis of variance for repeated measurements (PROC MIXED)/Tukey-Kramer. The concentrations of fluoride in saliva at 0 and 15 minutes and after 6 hours were the same between groups (p > 0.05). From 30 minutes to 4 hours after ingestion, the SCM group showed a higher concentration of fluoride in the saliva, which has a higher absorption (p < 0.05). The fluoride concentration in the urine did not differ between groups at both collection times (p > 0.05), and for both, the fluoride concentration in the urine increased in the final measurement (p < 0.05). The children's menu diversity influenced the absorption of fluoride so that the topical application of fluoride should be performed in infants fed preferably after the fuller diet and following the established guidelines to ensure the safety of the procedure. Knowledge of the influence of the children's menu diversity on fluoride metabolism after professional application is important so that the actions of fluoride therapy may be planned in a safer manner and be based on the reality of the universe of children.

  19. [A study on the concentration quenching of Tm3+ upconversion luminescence].

    PubMed

    Chen, B; Wang, H; Huang, S

    2001-06-01

    In this work, we have a designation and preparation of MFT glasses for upconversion, the glasses consisted of TeO2 and fluoride: PbF2, AlF3, BaF2, NaF and the impurity Tm2O3. In this glass system the oxide improve forming ability, the fluorides improve the microscopic environment around RE ions in glasses. In this glass host the content of Tm2O3 achieves to 4% mol and crystallization no occurred. A detail study on the concentration quenching of upconversion luminescence for 1G4-->3H6 and 1D2-->3H4 transitions was completed. The experimental results directed that the quenching concentration was 0.6 mol.% and higher 3 times than in other glasses materials. The cross relaxation and mechanism of concentration quenching were discussed.

  20. Chronic Effects of Fluoride Exposure on Growth, Metamorphosis, and Skeleton Development in Bufo gargarizans Larvae.

    PubMed

    Chai, Lihong; Wang, Hongyuan; Zhao, Hongfeng; Dong, Suiming

    2017-04-01

    Bufo gargarizans tadpoles were chronically exposed to waterborne fluoride at measured concentrations ranging from 0.4 to 61.2 mg F - /L for 70 days from Gosner stage 26 to completion of metamorphosis. The chronic exposure caused a concentration-dependent mortality in all tested fluoride concentrations. Total length, snout-to-vent length (SVL), body mass, and developmental stage of tadpoles were significantly inhibited at 42.6 mg F - /L. In addition, significant metamorphic delay and increase in size at completion of metamorphosis occurred after exposure to 19.8 mg F - /L. Moreover, 19.8 mg F - /L suppressed the bone mineralization of larvae at completion of metamorphosis. However, the bone mineralization could be enhanced by 4.1 mg F - /L. In conclusion, our results suggested that the presence of high concentrations of fluoride could increase mortality risk, delay metamorphosis, and suppress skeletal ossification in B. gargarizans larvae.

  1. Lunar mining of oxygen using fluorine

    NASA Technical Reports Server (NTRS)

    Burt, Donald M.

    1992-01-01

    An important aspect of lunar mining will be the extraction of volatiles, particularly oxygen, from lunar rocks. Thermodynamic data show that oxygen could readily be recovered by fluorination of abundant lunar anorthite, CaAl2Si2O8. Fluorine is the most reactive element, and the only reagent able to extract 100 percent of the oxygen from any mineral, yet it can safely be stored or reacted in nickel or iron containers. The general fluorination reaction, mineral + 2F2 = mixed fluorides = O2, has been used for more than 30 years at a laboratory scale by stable-isotope geochemists. For anorthite, metallic Al and Si may be recovered from the mixed fluorides by Na-reduction, and CaO via exchange with Na2O; the resulting NaF may be recycled into F2 and Na by electrolysis, using lanthanide-doped CaF2 as the inert anode.

  2. Effect of lead fluoride incorporation on the structure and luminescence properties of tungsten sodium phosphate glasses

    NASA Astrophysics Data System (ADS)

    Nardi, Rachel Prado Russo Delorenzo; Braz, Celso Eduardo; de Camargo, Andrea S. S.; Ribeiro, Sidney J. L.; Rocha, Lucas A.; Cassanjes, Fábia Castro; Poirier, Gael

    2015-11-01

    Tungsten phosphate glasses are known to be promising materials for several applications in optics such as non linear optical properties, lower phonon energy or photochromic effects related with tungsten oxide incorporation inside the phosphate network. In this study, lead fluoride has been incorporated in a 60NaPO3-40WO3 glass composition according to the ternary molar compositions (100 - x)[0.6NaPO3-0.4WO3]-xPbF2 with x varying from 0 to 60 mol%. The structural changes as a function of composition were investigated by thermal analysis, UV-visible absorption, Raman spectroscopy, X-ray diffraction of the crystallized samples, and Eu3+ emission in the visible. While DSC analyzes points out a strong decrease in the glass network connectivity and higher crystallization tendency with increasing PbF2 contents, Raman spectra clearly identify a progressive incorporation of PbF2 in the phosphate network with the formation of terminal Psbnd F and Wsbnd F bonds. These results are also in agreement with the crystallization of β-PbF2 observed for the most lead fluoride concentrated samples. Investigation of Eu3+ emission data in the visible showed longer 5D0 excited state lifetime values and higher quantum efficiencies. These results are discussed in terms of the assumption of higher local symmetry around Eu3+ with increasing PbF2 contents.

  3. Geochemical evaluation of fluoride contamination of groundwater in the Thoothukudi District of Tamilnadu, India

    NASA Astrophysics Data System (ADS)

    Singaraja, C.; Chidambaram, S.; Anandhan, P.; Prasanna, M. V.; Thivya, C.; Thilagavathi, R.; Sarathidasan, J.

    2014-09-01

    Fluoride is a chemical element that has been shown to cause significant effects on human health through drinking water. Different forms of fluoride exposure are of importance and have shown to affect the body's fluoride content and thus increasing the risks of fluoride-prone diseases. Fluoride has beneficial effects on teeth; however, low concentrations of fluoride intensify the risk of tooth decay. Fluoride can also be quite detrimental at higher concentrations at skeletal fluorosis. The Thoothukudi District is a hard rock and alluvial plain marked as one of the Fluoride-increase area in Tamilnadu due to occurrence of various rock types including fluoride-bearing minerals. The F- content of groundwater can thus originate from the dissolution of Fluoride-bearing minerals in the bed rock. Hundred representative groundwater samples from Thoothukudi District were collected during two different seasons. Samples were analysed for F-, other major cations and anions. The study area is chiefly composed of hornblende biotite gneiss, charnockite, alluvio marine, fluvial marine and granite with small patches of quartzite and sandstone. Higher concentration of fluoride is observed during pre-monsoon (3.3 mg l-1) compared to the post-monsoon (2.4 mg l-1) due to the dilution effect. Spatial distribution and factor score show that higher concentrations of F- are noted in the north and central part of the study area owing to lithology. Bicarbonate is well correlated with F- which explains that both ions were derived from the weathering. While F- has a very weak correlation with pH which may be due to the increase of alkalinity resulting from the increase of carbonate and bicarbonate ions.

  4. Erosion protection by calcium lactate/sodium fluoride rinses under different salivary flows in vitro.

    PubMed

    Borges, Alessandra B; Scaramucci, Taís; Lippert, Frank; Zero, Domenick T; Hara, Anderson T

    2014-01-01

    This study investigated the effect of a calcium lactate prerinse on sodium fluoride protection in an in vitro erosion-remineralization model simulating two different salivary flow rates. Enamel and dentin specimens were randomly assigned to 6 groups (n = 8), according to the combination between rinse treatments - deionized water (DIW), 12 mM NaF (NaF) or 150 mM calcium lactate followed by NaF (CaL + NaF) - and unstimulated salivary flow rates - 0.5 or 0.05 ml/min - simulating normal and low salivary flow rates, respectively. The specimens were placed into custom-made devices, creating a sealed chamber on the specimen surface connected to a peristaltic pump. Citric acid was injected into the chamber for 2 min, followed by artificial saliva (0.5 or 0.05 ml/min) for 60 min. This cycle was repeated 4×/day for 3 days. Rinse treatments were performed daily 30 min after the 1st and 4th erosive challenges, for 1 min each time. Surface loss was determined by optical profilometry. KOH-soluble fluoride and structurally bound fluoride were determined in specimens at the end of the experiment. Data were analyzed by 2-way ANOVA and Tukey tests (α = 0.05). NaF and CaL + NaF exhibited significantly lower enamel and dentin loss than DIW, with no difference between them for normal flow conditions. The low salivary flow rate increased enamel and dentin loss, except for CaL + NaF, which presented overall higher KOH-soluble and structurally bound fluoride levels. The results suggest that the NaF rinse was able to reduce erosion progression. Although the CaL prerinse considerably increased F availability, it enhanced NaF protection against dentin erosion only under hyposalivatory conditions.

  5. Microstructure-related properties of magnesium fluoride films at 193nm by oblique-angle deposition.

    PubMed

    Guo, Chun; Kong, Mingdong; Lin, Dawei; Liu, Cunding; Li, Bincheng

    2013-01-14

    Magnesium fluoride (MgF2) films deposited by resistive heating evaporation with oblique-angle deposition have been investigated in details. The optical and micro-structural properties of single-layer MgF2 films were characterized by UV-VIS and FTIR spectrophotometers, scanning electron microscope (SEM), atomic force microscope (AFM), and x-ray diffraction (XRD), respectively. The dependences of the optical and micro-structural parameters of the thin films on the deposition angle were analyzed. It was found that the MgF2 film in a columnar microstructure was negatively inhomogeneous of refractive index and polycrystalline. As the deposition angle increased, the optical loss, extinction coefficient, root-mean-square (rms) roughness, dislocation density and columnar angle of the MgF2 films increased, while the refractive index, packing density and grain size decreased. Furthermore, IR absorption of the MgF2 films depended on the columnar structured growth.

  6. Graphitic carbon grown on fluorides by molecular beam epitaxy.

    PubMed

    Jerng, Sahng-Kyoon; Lee, Jae Hong; Kim, Yong Seung; Chun, Seung-Hyun

    2013-01-03

    We study the growth mechanism of carbon molecules supplied by molecular beam epitaxy on fluoride substrates (MgF2, CaF2, and BaF2). All the carbon layers form graphitic carbon with different crystallinities depending on the cation. Especially, the growth on MgF2 results in the formation of nanocrystalline graphite (NCG). Such dependence on the cation is a new observation and calls for further systematic studies with other series of substrates. At the same growth temperature, the NCG on MgF2 has larger clusters than those on oxides. This is contrary to the general expectation because the bond strength of the carbon-fluorine bond is larger than that of the carbon-oxygen bond. Our results show that the growth of graphitic carbon does not simply depend on the chemical bonding between the carbon and the anion in the substrate.

  7. Graphitic carbon grown on fluorides by molecular beam epitaxy

    PubMed Central

    2013-01-01

    We study the growth mechanism of carbon molecules supplied by molecular beam epitaxy on fluoride substrates (MgF2, CaF2, and BaF2). All the carbon layers form graphitic carbon with different crystallinities depending on the cation. Especially, the growth on MgF2 results in the formation of nanocrystalline graphite (NCG). Such dependence on the cation is a new observation and calls for further systematic studies with other series of substrates. At the same growth temperature, the NCG on MgF2 has larger clusters than those on oxides. This is contrary to the general expectation because the bond strength of the carbon-fluorine bond is larger than that of the carbon-oxygen bond. Our results show that the growth of graphitic carbon does not simply depend on the chemical bonding between the carbon and the anion in the substrate. PMID:23286607

  8. One-Step Synthesis of Titanium Oxyhydroxy-Fluoride Rods and Research on the Electrochemical Performance for Lithium-ion Batteries and Sodium-ion Batteries.

    PubMed

    Li, Biao; Gao, Zhan; Wang, Dake; Hao, Qiaoyan; Wang, Yan; Wang, Yongkun; Tang, Kaibin

    2015-12-01

    Titanium oxyhydroxy-fluoride, TiO0.9(OH)0.9F1.2 · 0.59H2O rods with a hexagonal tungsten bronze (HTB) structure, was synthesized via a facile one-step solvothermal method. The structure, morphology, and component of the products were characterized by X-ray powder diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), inductively coupled plasma optical emission spectroscopy (ICP-OES), ion chromatograph, energy-dispersive X-ray (EDX) analyses, and so on. Different rod morphologies which ranged from nanoscale to submicron scale were simply obtained by adjusting reaction conditions. With one-dimension channels for Li/Na intercalation/de-intercalation, the electrochemical performance of titanium oxyhydroxy-fluoride for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) was also studied. Electrochemical tests revealed that, for LIBs, titanium oxyhydroxy-fluoride exhibited a stabilized reversible capacity of 200 mAh g(-1) at 25 mA g(-1) up to 120 cycles in the electrode potential range of 3.0-1.2 V and 140 mAh g(-1) at 250 mA g(-1) up to 500 cycles, especially; for SIBs, a high capacity of 100 mAh g(-1) was maintained at 25 mA g(-1) after 115 cycles in the potential range of 2.9-0.5 V.

  9. The chemistry of the superheavy elements. II. The stability of high oxidation states in group 11 elements: Relativistic coupled cluster calculations for the di-, tetra- and hexafluoro metallates of Cu, Ag, Au, and element 111

    NASA Astrophysics Data System (ADS)

    Seth, Michael; Cooke, Fiona; Schwerdtfeger, Peter; Heully, Jean-Louis; Pelissier, Michel

    1998-09-01

    The stability of the high oxidation states +3 and +5 in Group 11 fluorides is studied by relativistic Møller-Plesset (MP) and coupled cluster methods. Higher metal oxidation states are stabilized by relativistic effects. As a result, the hexafluoro complex of the Group 11 element with nuclear charge 111 and oxidation state +5 is the most stable compared to the other congeners. The results also suggest that AgF6- is thermodynamically stable and, therefore, it might be feasable to synthesize this compound. For the copper fluorides we observe very large oscillations in the Møller-Plesset series up to the fourth order. Nonrelativistic calculations lead to the expected trend in the metal-fluorine bond distances for the MF2- compounds, CuF2-

  10. Determination of total fluoride in HF/HNO3/H2SiF6 etch solutions by new potentiometric titration methods.

    PubMed

    Weinreich, Wenke; Acker, Jörg; Gräber, Iris

    2007-03-30

    In the photovoltaic industry the etching of silicon in HF/HNO(3) solutions is a decisive process for cleaning wafer surfaces or to produce certain surface morphologies like polishing or texturization. With regard to cost efficiency, a maximal utilisation of etch baths in combination with highest quality and accuracy is strived. To provide an etch bath control realised by a replenishment with concentrated acids the main constituents of these HF/HNO(3) etch solutions including the reaction product H(2)SiF(6) have to be analysed. Two new methods for the determination of the total fluoride content in an acidic etch solution based on the precipitation titration with La(NO(3))(3) are presented within this paper. The first method bases on the proper choice of the reaction conditions, since free fluoride ions have to be liberated from HF and H(2)SiF(6) at the same time to be detected by a fluoride ion-selective electrode (F-ISE). Therefore, the sample is adjusted to a pH of 8 for total cleavage of the SiF(6)(2-) anion and titrated in absence of buffers. In a second method, the titration with La(NO(3))(3) is followed by a change of the pH-value using a HF resistant glass-electrode. Both methods provide consistent values, whereas the analysis is fast and accurate, and thus, applicable for industrial process control.

  11. Impact of leather industries on fluoride dynamics in groundwater around a tannery cluster in South India.

    PubMed

    Sajil Kumar, P J

    2013-03-01

    The aim of this study was to investigate the controls of leather industries on fluoride contamination in and around a tannery cluster in Vaniyambadi. Hydrochemical analysis, mineral saturation indices and statistical methods were used to evaluate the intervening factors that controls the contamination processes. Fluoride in groundwater is exceeded the WHO guideline value (1.5 mg/L), in 62 % of the samples, mostly with Na-HCO3 and Na-Cl type of water. Results of the principal component analysis grouped Na, F, HCO3 and NO3 under component 1. This result was in agreement with the cross plot indicating high positive correlation between F and Na (r (2)  = 0.87), HCO3 (r (2)  = 0.84) and NO3 (r (2)  = 0.55). Fluorite (CaF2) and Halite (NaCl) was undersaturated, while calcite (CaCO3) was oversaturated for all the samples. This suggest more dissolution of F-rich minerals under the active supports of Na. Bivariate plots of Na versus Cl and Na + K versus HCO3 showed a combined origin of Na from tannery effluent as well as silicate weathering. Two major clusters, based on the Na, HCO3 and F concentration showed that groundwater is affected by tanneries and silicate weathering. Fluoride concentration in 38 % of samples (n = 5) have significantly affected by the high Na concentration from tanneries.

  12. Evaluation of low fluoride toothpaste using primary enamel and a validated pH-cycling model.

    PubMed

    Velo, Marilia Mattar de Amoêdo Campos; Tabchoury, Cínthia Pereira Machado; Romão, Dayse Andrade; Cury, Jaime Aparecido

    2016-11-01

    To develop and validate pH-cycling model for primary enamel, which was then used to evaluate the anti-caries potential of fluoride toothpastes. Human primary enamel slabs were subjected to pH-cycling model for 10 days and maintained for 6 h in demineralizing solution and 18 h in remineralizing solution daily. Twice/day, the slabs were treated. To validate it, the treatments were water or solutions containing 62.5, 125, 250, and 375 μg F/mL. Commercial toothpastes containing no fluoride, 500, 1100, and 1450 μg F/g were evaluated. Demineralization was assessed by percentage of surface hardness loss (%SHL) and cross-sectional hardness (ΔS). Fluoride dose-response effect was analysed by quadratic regression and the effects of toothpastes by Tukey's test. Dose-response effect was found between fluoride concentration and %SHL (R 2  = 0.7047; P < 0.01) or ΔS (R 2  = 0.4465; P < 0.01). %SHL and ΔS (mean ± SD) for the group treated with 500 μg F/g toothpaste was 36.6 ± 8.0 and 6298.5 ± 1221.3, respectively, which were significantly higher than those treated with 1100 (25.2 ± 8.7; 4565.7 ± 1122) and 1450 μg F/g (24.2 ± 5.2; 2339.1 ± 879.7) toothpastes. The developed pH-cycling model may be used to evaluate and compare the anti-caries potential of toothpaste formulations with low fluoride concentration because it presents dose-response effects on the reduction of primary enamel demineralization. © 2015 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. A2TiF 5· nH 2O ( A=K, Rb, or Cs; n=0 or 1): Synthesis, structure, characterization, and calculations of three new uni-dimensional titanium fluorides

    NASA Astrophysics Data System (ADS)

    Jo, Vinna; Woo Lee, Dong; Koo, Hyun-Joo; Ok, Kang Min

    2011-04-01

    Three new uni-dimensional alkali metal titanium fluoride materials, A2TiF 5· nH 2O ( A=K, Rb, or Cs; n=0 or 1) have been synthesized by hydrothermal reactions. The structures of A2TiF 5· nH 2O have been determined by single-crystal X-ray diffraction. The Ti 4+ cations have been reduced to Ti 3+ during the synthesis reactions. All three A2TiF 5· nH 2O materials contain novel 1-D chain structures that are composed of the slightly distorted Ti 3+F 6 corner-sharing octahedra attributable to the Jahn-Teller distortion. The coordination environment of the alkali metal cations plays an important role to determine the degree of turning in the chain structures. Complete structural analyses, Infrared and UV-vis diffuse reflectance spectra, and thermal analyses are presented, as are electronic structure calculations.

  14. Comparing three toothpastes in controlling plaque and gingivitis: A 6-month clinical study.

    PubMed

    Triratana, Terdphong; Kraivaphan, Petcharat; Amornchat, Cholticha; Mateo, Luis R; Morrison, Boyce M; Dibart, Serge; Zhang, Yun-Po

    2015-04-01

    To investigate the clinical efficacy of three toothpastes in controlling established gingivitis and plaque over 6 months. 135 subjects were enrolled in a single-center, double-blind, parallel group, randomized clinical study. Subjects were randomly assigned to one of three treatments: triclosan/copolymer/fluoride dentifrice containing 0.3% triclosan, 2.0% copolymer and 1,450 ppm F as sodium fluoride in a silica base; herbal/bicarbonate dentifrice containing herbal extract and 1,400 ppm F as sodium fluoride in a sodium bicarbonate base; or fluoride dentifrice containing 450 ppm F as sodium fluoride, and 1,000 ppm F as sodium monofluorophosphate. Subjects were instructed to brush their teeth twice daily for 1 minute for 6 months. After 6 months, subjects assigned to the triclosan/copolymer/fluoride group exhibited statistically significant reductions in gingival index scores and plaque index scores as compared to subjects assigned to the herbal/bicarbonate group by 35.4% and 48.9%, respectively. There were no statistically significant differences in gingival index and plaque index between subjects in the herbal/ bicarbonate group and those in the fluoride group. The triclosan/copolymer/fluoride dentifrice was statistically significantly more effective in reducing gingivitis and dental plaque than the herbal/bicarbonate dentifrice, and this difference in efficacy was clinically meaningful.

  15. Efficacy of triclosan-based toothpastes in the prevention and treatment of plaque-induced periodontal and peri-implant diseases.

    PubMed

    Trombelli, L; Farina, R

    2013-03-01

    To evaluate the efficacy of triclosan (T)-based toothpaste formulations in the prevention and treatment of plaque-induced periodontal and peri-implant diseases. A review of the existing literature was conducted with a systematic approach in order to retrieve pertinent articles. i) Compared with a control fluoride dentifrice, a fluoride dentifrice containing T formulations provides a more effective level of plaque control and gingival health in patients affected by gingivitis; ii) 0.3% T/2% copolymer/0.243% NaF formulation and 0.3% T/0.13% Ca glicerophosphate/1000 ppm F toothpaste in a natural Ca carbonate base seem the most effective T-based toothpaste formulations in controlling plaque and gingival inflammation in patients with gingivitis or mild/moderate periodontitis over a 6-month period; iii) 0.3% T/2% copolymer/0.243% NaF toothpaste formulation can reduce clinical attachment loss in young adolescents when compared with a 0.243% NaF toothpaste formulation, the magnitude of the difference being greater for patients with deep periodontal pockets at baseline; iv) 0.3% T/2% copolymer/0.243% NaF toothpaste formulation is either similarly or more efficacious in preventing the progression/recurrence of periodontal destruction when compared to a conventional fluoride toothpaste; v) 0.3% T/2% copolymer/0.243% NaF toothpaste formulation seems to be more effective than a fluoride toothpaste formulation in controlling the severity of mucosal inflammation, the incidence of mucosal bleeding as well as reducing probing pocket depth around dental implants.

  16. Advanced Valve Technology. Volume 2. Materials Compatibility and Liquid Propellant Study

    DTIC Science & Technology

    1967-11-01

    hydrogen fluoride and hydrogen chloride, which are formed by the reaction of chlorine trifluoride with water. Aluminum alloys, 18-8 stainless steels... CHLORINE TRIFLUORIDE (CTF) (ClF3) 1-68 CHLORINE PENTAFLUORIDE 1-72 OXYGEN DIFLUORIDE (OF2) 1-74 PERCHLORYL FLUORIDE (PF) (FC103 or C103F) 1-79...enclosures refer to the Propellant Rating Chart, Page 1-11. 1-67 SPACE STORABLE PROPELLANTS (Continued) OXIDIZERS CHLORINE TRIFLUORIDE (CTF) (CIF 3

  17. The effects of low-fluoride toothpaste supplemented with calcium glycerophosphate on enamel demineralization.

    PubMed

    Zaze, Ana Carolina Soares Fraga; Dias, Ana Paula; Sassaki, Kikue Takebayashi; Delbem, Alberto Carlos Botazzo

    2014-07-01

    The aim of the present study was to evaluate the effects of different concentrations of calcium glycerophosphate (CaGP) in toothpastes with low-fluoride (low-F) concentrations on enamel demineralization by using a bovine enamel and pH cycling model. Experimental toothpastes containing 0 or 500 μg F/g (NaF) and CaGP concentrations of 0, 0.1, 0.25, 0.5, 1, and 2 % were manufactured. A commercial toothpaste was used as a positive control (1,100 μg F/g). After polishing and hardness tests, enamel blocks were subjected to pH cycling for 5 days and toothpaste treatment twice daily. The treatment regimen involved soaking all blocks in the corresponding slurry for 1 min (2 ml/block). Surface and cross-sectional hardness and fluoride concentrations in enamel were analyzed. The hardness data were analyzed using a one-way ANOVA followed by a Bonferroni post hoc test. Fluoride concentrations were analyzed using a Kruskal-Wallis followed by a Student-Newman-Keuls post hoc test. The mineral loss with the toothpaste containing 500 μg F/g and 0.25 % CaGP was lower than that in the other groups (p < 0.05). Fluoride concentrations in the enamel treated with 0.1, 0.25, and 0.5 % CaGP toothpastes were similar to those in the enamel treated with the 500 μg F/g toothpaste (p > 0.05). A greater concentration of CaGP reduced the fluoride levels in enamel (p < 0.05). The results from the present in vitro study show that a low-F (500 μg F/g) toothpaste is capable of maintaining the efficacy of 1,100 μg F/g toothpaste when supplemented with 0.25 % of CaGP. The developed toothpaste prevents caries as a standard one and is safe for individuals of any age group.

  18. In situ study of the anticariogenic potential of fluoride varnish combined with CO2 laser on enamel.

    PubMed

    Souza-Gabriel, Aline Evangelista; Turssi, Cecília Pedroso; Colucci, Vivian; Tenuta, Lívia Maria Andaló; Serra, Mônica Campos; Corona, Silmara Aparecida Milori

    2015-06-01

    This in situ study evaluated the effect of fluoride varnish combined with CO2 laser in controlling enamel demineralization caused by cariogenic challenges. In a crossover study conducted in 2 phases of 14 days each, 14 volunteers (n = 14) wore palatal appliances with bovine enamel slabs treated with fluoride varnish + CO2 laser (FV + CO2), fluoride varnish (FV), nonfluoride placebo varnish (PV) and nonfluoride placebo varnish + CO2 laser (PV + CO2). Drops of sucrose solution were dripped onto enamel slabs allowing the accumulation of biofilm. At the first phase, half of the volunteers received 4 enamel slabs treated with FV while the remainders received slabs exposed to the PV with and without CO2 laser. In the second phase, the vonlunteers were reversed treatments. The slabs were evaluated for cross-sectional microhardness (CSMH) and the concentration of loosely bound fluoride (CaF2) and firmly bound fluoride (FAp). The concentration of fluoride in biofilm were also determined. Two-way ANOVA showed that the CSMH values were higher in laser-irradiated enamel, regardless of the fluoride varnish. Friedman test showed that FV group presented significantly larger amount of fluoride in biofilm (P < 0.05). In the enamel, the largest amount of fluoride was found in the groups FV + CO2, which was not different from FV (P > 0.05). The synergistic effect of fluoride varnish and CO2 laser on enamel demineralization was not observed, however, CO2 laser reduces enamel demineralization. CO2 laser might reduce the demineralization of subsurface enamel, although its association with a high concentrated fluoride therapy may not result in a positive synergistic interaction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Correlation between Fluoride in Drinking Water and Its Levels in Breast Milk in Golestan Province, Northern Iran.

    PubMed

    Faraji, Hossein; Mohammadi, Ali Akbar; Akbari-Adergani, Behrouz; Vakili Saatloo, Naimeh; Lashkarboloki, Gholamreza; Mahvi, Amir Hossein

    2014-12-01

    Fluoride is an essential element for human health. However, excess fluoride in drinking water may cause dental and/or skeletal fluorosis. Drinking water is the main route of fluoride intake. The aim of the present study was to measure fluoride levels in human breast milk collected from two regions of Golestan Province, northern Iran with different amount of fluoride concentration of drinking water in Bandar Gaz and Nokande cities and to correlate it with fluoride concentrations in drinking water used by mothers living in these two areas. Twenty samples of water were collected from seven drinking water wells during 2012 from Bandar Gaz and Nokande in Iran during 2012. Fluoride concentration of water samples was measured using SPADNS method. Sixty breast milk samples were collected from lactating mothers of Bandar Gaz and Nokande cities. Content in breast milk was determined using standard F ion-selective electrode. Spearman's rho correlation analysis was used to assess any possible relationship between fluoride levels in breast milk and in drinking water. The means and standard deviation for F concentration in breast milk and drinking water were 0.002188±0.00026224 ppm and 0.5850±0.22542 ppm, respectively. Analysis of data showed that the variables were not normally distributed so the Spearman correlation coefficient between two variables calculated (ρ S = 0.65) and it was significant (P=0.002). Fluoride concentration in water can directly act on its concentration in breast milk. We speculate that modifying F concentration in water can affect accessibility of fluoride for infants.

  20. Correlation between Fluoride in Drinking Water and Its Levels in Breast Milk in Golestan Province, Northern Iran

    PubMed Central

    FARAJI, Hossein; MOHAMMADI, Ali Akbar; AKBARI-ADERGANI, Behrouz; VAKILI SAATLOO, Naimeh; LASHKARBOLOKI, Gholamreza; MAHVI, Amir Hossein

    2014-01-01

    Background: Fluoride is an essential element for human health. However, excess fluoride in drinking water may cause dental and/or skeletal fluorosis. Drinking water is the main route of fluoride intake. The aim of the present study was to measure fluoride levels in human breast milk collected from two regions of Golestan Province, northern Iran with different amount of fluoride concentration of drinking water in Bandar Gaz and Nokande cities and to correlate it with fluoride concentrations in drinking water used by mothers living in these two areas. Methods: Twenty samples of water were collected from seven drinking water wells during 2012 from Bandar Gaz and Nokande in Iran during 2012. Fluoride concentration of water samples was measured using SPADNS method. Sixty breast milk samples were collected from lactating mothers of Bandar Gaz and Nokande cities. Content in breast milk was determined using standard F ion-selective electrode. Spearman’s rho correlation analysis was used to assess any possible relationship between fluoride levels in breast milk and in drinking water. Results: The means and standard deviation for F concentration in breast milk and drinking water were 0.002188±0.00026224 ppm and 0.5850±0.22542 ppm, respectively. Analysis of data showed that the variables were not normally distributed so the Spearman correlation coefficient between two variables calculated (ρS = 0.65) and it was significant (P=0.002). Conclusion: Fluoride concentration in water can directly act on its concentration in breast milk. We speculate that modifying F concentration in water can affect accessibility of fluoride for infants. PMID:26171359

  1. Polymorph (C{sub 2}N{sub 2}H{sub 10}){sub 0.5}RE{sub 3}F{sub 10}·xH{sub 2}O (RE = Ho-Lu, Y) and REF{sub 3} nanocrystals: Hydrothermal synthesis, characterization and luminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Li-Ping; Zhang, Qiang; Yan, Bing, E-mail: byan@tongji.edu.cn

    Graphical abstract: A hydrothermal system is developed to prepare one new polymorph of (C{sub 2}N{sub 2}H{sub 10}){sub 0.5}RE{sub 3}F{sub 10}·xH{sub 2}O and known rare earth fluorides involving REF{sub 3} nanocrystals under mild condition. Highlights: ► A new polymorph of (C{sub 2}N{sub 2}H{sub 10}){sub 0.5}RE{sub 3}F{sub 10}·xH{sub 2}O has been synthesized. ► The RE{sup 3+} radius decides the shape evolution and phase control for REF{sub 3} NCs. ► The RE{sup 3+} radius has influence on the microstructure and morphology of REF{sub 3} NCs. -- Abstract: In this paper, a solvents-thermal system is developed to prepare one new polymorph of (C{sub 2}N{submore » 2}H{sub 10}){sub 0.5}Ho{sub 3}F{sub 10}·xH{sub 2}O and rare earth fluorides REF{sub 3} nanocrystals under mild condition. It is found that the ionic radius of RE{sup 3+} is the key factor responsible for the shape evolution and phase control for rare earth fluorides nanocrystals at selected temperatures, which has an influence on the microstructure and morphology of the products to some extent. With the increase of the atomic number, the shape of fluoride changes from hexagonal REF{sub 3} phase (RE = La, Sm) to orthorhombic REF{sub 3} phase (RE = Eu-Dy), and finally to diamond structure (C{sub 2}N{sub 2}H{sub 10}){sub 0.5}Ho{sub 3}F{sub 10}·xH{sub 2}O (RE = Ho, Er, Tm, Yb, Lu, Y). In addition, the characteristic energy level transition {sup 5}D{sub 0}–{sup 7}F{sub 1} of Eu{sup 3+} splits into 585 and 591 nm emission peaks, and the dominant peak is the orange emission at 591 nm.« less

  2. New observations on the pressure dependence of luminescence from Eu2+-doped MF2 (M = Ca, Sr, Ba) fluorides.

    PubMed

    Su, Fu Hai; Chen, Wei; Ding, Kun; Li, Guo Hua

    2008-05-29

    The luminescence from Eu(2+) ions in MF2 (M = Ca, Sr, Ba) fluorides has been investigated under the pressure range of 0-8 GPa. The emission band originating from the 4f(6)5d(1) --> 4f(7) transition of Eu(2+) ions in CaF2 and SrF2 shows the red-shift as increasing pressure with pressure coefficients of -17 meV/GPa for CaF2 and -18 meV/GPa for SrF2. At atmospheric pressure, the emission spectrum of BaF2:Eu(2+) comprises two peaks at 2.20 and 2.75 eV from the impurity trapped exciton (ITE) and the self-trapped exciton (STE), respectively. As the pressure is increased, both emission peaks shift to higher energies, and the shifting rate is slowed by the phase transition from the cubic to orthorhombic phase at 4 GPa. Due to the phase transition at 4-5 GPa pressure, the ITE emission disappears gradually, and the STE emission is gradually replaced by the 4f(6)5d(1) --> 4f(7) transition of Eu(2+). Above 5 GPa, the pressure behavior of the 4f(6)5d(1) --> 4f(7) transition of Eu(2+) in BaF2:Eu(2+) is the same as the normal emission of Eu(2+) in CaF2 and SrF2 phosphors.

  3. Distribution and health risk assessment of natural fluoride of drinking groundwater resources of Isfahan, Iran, using GIS.

    PubMed

    Aghapour, Saba; Bina, Bijan; Tarrahi, Mohammad Javad; Amiri, Fahimeh; Ebrahimi, Afshin

    2018-02-13

    Fluoride (F) contamination in groundwater can be problematic to human health. This study evaluated the concentration of fluoride in groundwater resources of Isfahan Province, the central plateau of Iran, and its related health issues to the inhabitant populations. For this purpose, 573 drinking groundwater samples were analyzed in 2016 by using the spectrophotometric method. Non-carcinogenic health risks due to F exposure through consumption of drinking water were assessed using the US EPA method. In addition, the associated zoning maps of the obtained results were presented using geographic information system (GIS). The results indicated that F content in drinking water ranged from 0.02 to 2.8 mg/L. The F contents were less than 0.50 mg/L in 63% of the drinking groundwater samples, 0.51-1.5 mg/L in 33.15%, and higher than 1.5 mg/L in 3.85% (Iran and World Health Organization guidelines) of the drinking groundwater samples. The F levels in the west and the south groundwater resources of the study areas were lower than 0.5 mg/L, which is within the recommended values for controlling dental caries (0.50-1.0 mg/L). Therefore, these places require more attention and more research is needed to increase F intake for health benefit. The HQ index for children, teens and male and female adults had health hazards (HQ > 1) in 51, 17, 28, and 18 of samples, respectively. Groundwater resources having a risk of more than one were located in the counties of Nayin, Natanz, and Ardestan. So, in these areas, there are potential risks of dental fluorosis. The most vulnerable groups were children. The F levels must be reduced in this region to decrease endemic fluorosis.

  4. Ammonium Fluoride Mediated Synthesis of Anhydrous Metal Fluoride-Mesoporous Carbon Nanocomposites for High-Performance Lithium Ion Battery Cathodes.

    PubMed

    Chun, Jinyoung; Jo, Changshin; Sahgong, Sunhye; Kim, Min Gyu; Lim, Eunho; Kim, Dong Hyeon; Hwang, Jongkook; Kang, Eunae; Ryu, Keun Ah; Jung, Yoon Seok; Kim, Youngsik; Lee, Jinwoo

    2016-12-28

    Metal fluorides (MF x ) are one of the most attractive cathode candidates for Li ion batteries (LIBs) due to their high conversion potentials with large capacities. However, only a limited number of synthetic methods, generally involving highly toxic or inaccessible reagents, currently exist, which has made it difficult to produce well-designed nanostructures suitable for cathodes; consequently, harnessing their potential cathodic properties has been a challenge. Herein, we report a new bottom-up synthetic method utilizing ammonium fluoride (NH 4 F) for the preparation of anhydrous MF x (CuF 2 , FeF 3 , and CoF 2 )/mesoporous carbon (MSU-F-C) nanocomposites, whereby a series of metal precursor nanoparticles preconfined in mesoporous carbon were readily converted to anhydrous MF x through simple heat treatment with NH 4 F under solventless conditions. We demonstrate the versatility, lower toxicity, and efficiency of this synthetic method and, using XRD analysis, propose a mechanism for the reaction. All MF x /MSU-F-C prepared in this study exhibited superior electrochemical performances, through conversion reactions, as the cathode for LIBs. In particular, FeF 3 /MSU-F-C maintained a capacity of 650 mAh g -1 FeF3 across 50 cycles, which is ∼90% of its initial capacity. We expect that this facile synthesis method will trigger further research into the development of various nanostructured MF x for use in energy storage and other applications.

  5. Effect of fluoride dentifrice and casein phosphopeptide-amorphous calcium phosphate cream with and without fluoride in preventing enamel demineralization in a pH cyclic study.

    PubMed

    Sinfiteli, Priscila de Pinto; Coutinho, Thereza Christina Lopes; Oliveira, Patrícia Regina Almeida de; Vasques, Wesley Felisberto; Azevedo, Leandra Matos; Pereira, André Maues Brabo; Tostes, Monica Almeida

    2017-01-01

    Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) complexes are anticariogenic and capable of remineralizing the early stages of enamel lesions. The use of fluoride prevents dental decay and the association of CPP-ACP with fluoride can increase remineralization. To evaluate the effect of CPP-ACP and CPP-ACPF creams associated with a fluoride dentifrice to prevent enamel demineralization in a pH cyclic model. Previously selected by surface microhardness (SH) analysis, human enamel blocks (n = 56) were submitted to daily treatment with dentifrice in a pH-cycling model. The enamel blocks were divided into four groups; G1: Crest™ Cavity Protection - Procter & Gamble (1,100 ppmF of NaF); G2: Crest™ +MI Paste (MP) - Recaldent™ GC Corporation Tokyo, Japan); G3: Crest™ + MI Paste Plus (MPP) - Recaldent™ 900 ppm as NaF, GC Corporation Tokyo, Japan), and G4: control, saliva. Specimens were soaked alternatively in a demineralizing solution and in artificial saliva for 5 d. The fluoride dentifrice, with proportion of 1:3 (w/w), was applied three times for 60 s after the remineralization period. The undiluted MP and MPP creams were applied for 3 m/d. After cycling, SH was re-measured and cross section microhardness measurements were taken. The SH values observed for the groups G3 (257±70), G1 (205±70), and G2 (208±84) differed from the G4 group (98±110) (one-way ANOVA and Tukey's post hoc test). There were no differences between the groups G1xG2, G2xG3, and G1xG3 for demineralization inhibition. The percentage of volume mineral showed that, when applied with fluoride dentifrice, MPP was the most effective in preventing enamel demineralization at 50 µ from the outer enamel surface (Kruskal-Wallis and Mann Whitney p<0.05). Fluoride dentifrice associated with CPP-ACPF inhibited subsurface enamel demineralization.

  6. Effect of toothbrushing duration and dentifrice quantity on enamel remineralisation: An in situ randomized clinical trial.

    PubMed

    Creeth, J E; Kelly, S A; González-Cabezas, C; Karwal, R; Martinez-Mier, E A; Lynch, R J M; Bosma, M L; Zero, D T

    2016-12-01

    The influence of toothbrushing duration and dentifrice quantity on fluoride efficacy against dental caries is poorly understood. This study investigated effects of these two oral hygiene factors on enamel remineralisation (measured as surface microhardness recovery [SMHR]), enamel fluoride uptake (EFU), and net acid resistance (NAR) post-remineralisation in a randomized clinical study using an in situ caries model. Subjects (n=63) wore their partial dentures holding partially demineralised human enamel specimens and brushed twice-daily for two weeks, following each of five regimens: brushing for 120 or 45s with 1.5g of 1150ppm F (as NaF) dentifrice; for 120 or 45s with 0.5g of this dentifrice; and for 120s with 1.5g of 250ppm F (NaF) dentifrice. Comparing brushing for 120s against brushing for 45s, SMHR and EFU increased by 20.0% and 26.9% respectively when 1.5g dentifrice was used; and by 22.8% and 19.9% respectively when 0.5g dentifrice was used. Comparing brushing with 1.5g against brushing with 0.5g dentifrice, SMHR and EFU increased by 35.3% and 51.3% respectively when brushing for 120s, and by 38.4% and 43.0% respectively when brushing for 45s. Increasing brushing duration and dentifrice quantity also increased the NAR value. The effects of these two oral hygiene factors on SMHR, EFU, and NAR were statistically significant (p<0.05 in all cases). Brushing duration and dentifrice quantity have the potential to influence the anti-caries effectiveness of fluoride dentifrices. Study NCT01563172 on ClinicalTrials.gov. The effect of two key oral hygiene regimen factors - toothbrushing duration and dentifrice quantity - on fluoride's anticaries effectiveness is unclear. This 2-week home-use in situ remineralisation clinical study showed both these factors can influence fluoride bioactivity, and so can potentially affect fluoride's ability to protect against caries. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Nonstoichiometry in inorganic fluorides: I. Nonstoichiometry in MF m - RF n ( m < n ≤ 4) systems

    NASA Astrophysics Data System (ADS)

    Sobolev, B. P.

    2012-05-01

    The manifestation of gross nonstoichiometry in MF m - RF n systems ( m < n ≤ 4) has been studied. Fluorides of 34 elements, in the systems of which phases of practical interest are formed, are chosen. To search for new phases of complex composition, a program for studying the phase diagrams of the condensed state (˜200 systems) has been carried out at the Institute of Crystallography, Russian Academy of Sciences. The main products of high-temperature interactions of the fluorides of elements with different valences ( m ≠ n) are grossly nonstoichiometric phases of two structural types: fluorite (CaF2) and tysonite (LaF3). Systems of fluorides of 27 elements ( M 1+ = Na, K; M 2+ = Ca, Sr, Ba, Cd, Pb; R 3+ = Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; R 4+ = Zr, Hf, Th, U) are selected; nonstoichiometric M 1 - x R x F m(1 - x) + nx phases, which are of greatest practical interest, are formed in these systems. The gross nonstoichiometry in inorganic fluorides is most pronounced in 80 MF2 - RF3 systems ( M = Ca, Sr, Ba, Cd, Pb; R are rare earth elements). The problems related to the growth of single crystals of nonstoichiometric phases and basic fields of their application as new fluoride multicomponent materials, the properties of which are controlled by the defect structure, are considered.

  8. Theoretical understanding of ruthenium(II) based fluoride sensor derived from 4,5-bis(benzimidazol-2-yl)imidazole (H3ImBzim) and bipyridine: electronic structure and binding nature.

    PubMed

    Wang, Jian; Bai, Fu-Quan; Xia, Bao-Hui; Sun, Lei; Zhang, Hong-Xing

    2011-03-17

    Using density functional theory (DFT) approach, we assessed the newly developed fluoride sensor: [(bpy)(2)Ru(H(3)ImBzim)](2+) (denoted as 1, where H(3)ImBzim = 4,5-bis(benzimidazol-2-yl)imidazole and byp = 2,2'-bipyridine). On the basis of our benchmark test, a PBE0 functional with a LanL2DZ basis set was chosen to explore the electronic structure of 1 in both ground and singlet excited states in acetonitrile solution. Both absorption bands at 426 and 352 nm are assigned as metal-to-ligand charge-transfer transition characters. By analyzing the difference of absorption spectrum between the binding adducts and the experimental measurement, the fluoride detection process was found to be driven by the proton transfer model, which makes 1 not only capable of detecting fluoride, but also for other Bønster base anions. And the result is in general accordance with the experimental observations. We hope the current exploration can give some knowledge about the detection mechanism of the F(-) anion sensor and provide some inspiration for the design of functional molecular detectors for F(-) anion.

  9. Ammonium boranes for the selective complexation of cyanide or fluoride ions in water.

    PubMed

    Hudnall, Todd W; Gabbaï, François P

    2007-10-03

    With the recognition of aqueous fluoride and cyanide ions as an objective, we have investigated the anion binding properties of two isomeric ammonium boranes, namely [p-(Mes2B)C6H4(NMe3)]+ ([1]+) and [o-(Mes2B)C6H4(NMe3)]+ ([2]+). These cationic boranes, which could be obtained by reaction of the known 4- and 2-dimesitylboryl-N,N-dimethylaniline with MeOTf, have been investigated both experimentally and computationally. They both react with fluoride and cyanide ions in organic solvents to afford the corresponding fluoroborate/ or cyanoborate/ammonium zwitterions 1F, 1CN, 2F, and 2CN. In aqueous solution, however, these cationic boranes behave as remarkably selective receptors. Indeed, [1]+ only complexes cyanide ions while [2]+ only complexes fluoride ions. In H2O/DMSO 60:40 vol (HEPES 6 mM, pH 7), the cyanide binding constant of [1]+ and the fluoride binding constant of [2]+ are respectively equal to 3.9 (+/-0.1) x 108 and 910 (+/-50) M-1. Structural and computational studies indicate that both steric and electronic effects contribute to the unusual selectivity displayed by these cationic boranes. Owing to favorable Coulombic effects, the para-derivative [1]+ has a very high affinity for cyanide; yet these effects are not sufficiently intense to allow complexation of the more efficiently hydrated and less basic fluoride anion. In the case of the ortho-derivative [2]+, the proximity of the ammonium moiety leads to an increase in the Lewis acidity of the boron center thus making fluoride binding possible. However, steric effects prevent cyanide coordination to the boron center of [2]+. Finally, cation [1]+ and [2]+ bind their dedicated anions reversibly and show a negligible response in the presence of other common anions including Cl-, Br-, I-, NO3-, OAc-, H2PO4-, and HSO4-.

  10. CO2 laser and fluoride on the inhibition of root caries—an in vitro microbial model

    NASA Astrophysics Data System (ADS)

    Steiner-Oliveira, C.; Rodrigues, L. K. A.; Parisotto, T. M.; Sousa E Silva, C. M.; Hara, A. T.; Nobre-Dos-Santos, M.

    2010-09-01

    An increase in the dental caries prevalence on root surfaces has been observed mainly in elderly. This research assessed, in vitro, the effectiveness of a pulsed CO2 (λ = 10.6 μm) laser associated or not with fluoride, in reducing human root dentine demineralization in conditions that mimic an oral high cariogenic challenge. After sterilization, root dentine specimens were randomly assigned into 6 groups ( n = 30), in triplicate. The groups were Control (C), Streptococcus mutans (SM), Fluoride (F), Laser (L), Fluoride + laser (FL), and Laser + fluoride (LF). Except for the control group, all the specimens were inoculated with SM and immersed 3 times a day in a 40% sucrose bath. After a 7-day cariogenic challenge, the mineral loss and lesion depth were evaluated by transverse microradiography and fluoride in the biofilm was determined using an ion-selective electrode. Results were statistically analyzed by analysis of variance, at 5% of significance level. For groups C, SM, F, L, FL and LF, the means (standard-deviation) of mineral loss were 816.3 (552.5)a, 3291.5 (1476.2)c, 2508.5 (1240.5)bc, 2916.2 (1323.7)c, 1839.7 (815.2)b and 1955.0 (1001.4)b, respectively; while lesion depths were 39.6 (22.8)a, 103.1 (38.9)c, 90.3 (44.6)bc, 91.7 (27.0)bc, 73.3 (26.6)b, 75.1 (35.2)b, respectively (different superscript letters indicate significant differences among groups). In conclusion, irradiation of root dentine with a pulsed CO2 laser at fluency of 12.0 J/cm2 was able to inhibit root surface demineralization only when associated with fluoride. No synergy effect on the inhibition of root dentine mineral loss was provided by the combination of fluoride application and laser irradiation.

  11. Evaluation of the effect of a CO2 laser and fluoride on the reduction of carious lesions progression in primary teeth: an in vitro study

    NASA Astrophysics Data System (ADS)

    Zancopé, Bruna R.; Cesar, Marina M. C.; Rodrigues, Lidiany K. A.; Nobre-dos-Santos, Marinês

    2014-02-01

    This study aimed at investigating if CO2 laser irradiation (λ =10.6μm - 11.3 J/cm2) combined with fluoridated products, enhances the CaF2 formation on enamel surface and inhibits lesion progression of demineralized primary enamel. Thus, 135 demineralized primary enamel specimens (DES) were allocated to 9 groups (n=15) as follows: 1- DES only, 2- DES + pH cycling (control), 3- 1.23% acidulated phosphate fluoride gel (APF), 4- 1.23% fluoride foam (FF), 5- 5% fluoride varnish (FV), 6- CO2 Laser (L), 7 - Laser during APF application, 8-Laser during FF application and 9-Laser during FV application. Except for the demineralized enamel group, all specimens were submitted to a 7 day pH cycling regime. The knoop hardness number (KHN) was determined by cross-sectional microhardness analysis. After treatments application, three specimens of each group had their surface examined for CaF2 formation by scanning electron microscopy (SEM). The data was analyzed by ANOVA and Student's t-test (α= 0.05). Enamel mineral loss (ΔS) for groups 1 to 9 were respectively,(8,676.28+/-1,077.46b),(12,419.54+/-1,050.21a),(8,156.80+/-1,279.90b),(8,081.32+/-1,019.69b),(8,820.86+/-1,805. 99b),(8,723.45+/-1,167.14b),(9,003.17+/-796.90b),(8.229,03+/-961.25b),(9,023.32+/-1,1069b). The results showed statistically significant difference between control and all treatments groups (p<0.05). However there was no difference among them (p>0.05). SEM observations showed evidences of melting, fusion and calcium fluoride formation on enamel surface. In conclusion, laser irradiation alone or combined with fluoridated products inhibited lesion progression of demineralized primary enamel surface. However, no synergistic effect was observed when CO2 laser irradiation and fluoridated products application were combined.

  12. Fluoride bioaccumulation and toxic effects on the survival and behavior of the endangered white-clawed crayfish Austropotamobius pallipes (Lereboullet).

    PubMed

    Aguirre-Sierra, Arantxa; Alonso, Alvaro; Camargo, Julio A

    2013-08-01

    Laboratory experiments were performed to examine the toxic effects of fluoride (F(-)) on the survival and behavior of white-clawed crayfish (Austropotamobius pallipes). Body fluoride contents (bioaccumulation) of test crayfish were also examined. No significant differences between male and female crayfish regarding mortality, escape (tail-flip) response, and fluoride bioaccumulation were detected. For mortality, 48-, 72-, 96-, 120-, 144-, 168-, and 192-h median lethal concentrations (LC50) were estimated to be 93.0, 55.3, 42.7, 36.5, 32.9, 30.6, and 28.9 mg F(-)/l, respectively. For the escape response, 48-, 72-, 96-, 120-, 144-, 168- and 192-h median effective concentrations (EC50) were estimated to be 18.4, 11.1, 8.6, 7.4, 6.7, 6.2 and 5.9 mg F(-)/l, respectively. Average food consumption in test crayfish tended to decrease with increasing water fluoride concentration with a 192-h lowest-observed effect concentration of 10.7 mg F(-)/l. These results indicate that the escape response was the most sensitive end point to fluoride toxicity followed by food consumption and mortality. Fluoride bioaccumulation in test crayfish increased with increasing water fluoride concentration and exposure time. The exoskeleton accumulated more fluoride than muscle. A comparison of the obtained results with previous data for other freshwater invertebrates shows that white-clawed crayfish are relatively tolerant to fluoride toxicity. We conclude that fluoride pollution in freshwater ecosystems should not be viewed as an important risk factor contributing to the catastrophic decrease of A. pallipes in many European countries. Our results indicate that fluoride bioaccumulation in A. pallipes might be used as a bioindicator of fluoride pollution in freshwater ecosystems where it is present.

  13. Synthesis of Bisimidazole Derivatives for Selective Sensing of Fluoride Ion.

    PubMed

    Zhang, Liang; Liu, Fang

    2017-09-11

    Rapid and efficient analysis of fluoride ion is crucial to providing key information for fluoride ion hazard assessment and pollution management. In this study, we synthesized one symmetrical structure called 1,4-bis(4,5-diphenyl-1 H -imidazol-2-yl)benzene ( 1a ) and two asymmetrical structures, namely 2-(4-(4,5-diphenyl-1 H -imidazol-2-yl)phenyl)-1 H -phenanthro(9,10- d )imidazole ( 1b ) and 2-(4-(4,5-diphenyl-1 H -imidazol-2-yl)phenyl)-1 H -imidazo(4,5- f )(1,10)phenanthroline ( 1c ), which served as an efficient anion sensor for fluoride ion over a wide range of other anions (Cl - , Br - , I - , NO₃ - , ClO₄ - , HSO₄ - , BF₄ - , and PF₆ - ) owing to imidazole group in the main backbone. The absorption intensity of compound 1a at λ max 358 nm slightly decreased; however, a new band at λ max 414 nm appeared upon the addition of fluoride ion, while no evident change occurred upon the addition of eight other anions. The photoluminescence intensity of compound 1a at λ max 426 nm was nearly quenched and fluorescence emission spectra were broadened when fluoride ion was added into dimethyl sulfoxide (DMSO) solution of compound 1a . Compared with the optical behaviors of the DMSO solution of compound 1a in the presence of Bu₄N⁺F - , compounds 1b and 1c exhibited considerable sensitivity to fluoride ion due to the increase in coplanarity. Furthermore, compared with the fluorescence emission behaviors of the DMSO solutions of compounds 1a and 1b in the presence of Bu₄N⁺F - , compound 1c exhibited the most significant sensitivity to fluoride ion due to the charge transfer enhancement. Consequently, the detection limits of compounds 1a - 1 c increased from 5.47 × 10 -6 M to 4.21 × 10 -6 M to 9.12 × 10 -7 M. Furthermore, the largest red shift (75 nm) of the DMSO solution compound 1c in the presence of fluoride ion can be observed. Our results suggest that the increase in coplanarity and the introduction of electron-withdrawing groups to the imidazole backbone can improve the performance in detecting fluoride ion.

  14. JNK and NADPH Oxidase Involved in Fluoride-Induced Oxidative Stress in BV-2 Microglia Cells

    PubMed Central

    Yan, Ling; Liu, Shengnan; Wang, Chen; Wang, Fei; Song, Yingli; Yan, Nan; Xi, Shuhua; Liu, Ziyou; Sun, Guifan

    2013-01-01

    Excessive fluoride may cause central nervous system (CNS) dysfunction, and oxidative stress is a recognized mode of action of fluoride toxicity. In CNS, activated microglial cells can release more reactive oxygen species (ROS), and NADPH oxidase (NOX) is the major enzyme for the production of extracellular superoxide in microglia. ROS have been characterized as an important secondary messenger and modulator for various mammalian intracellular signaling pathways, including the MAPK pathways. In this study we examined ROS production and TNF-α, IL-1β inflammatory cytokines releasing, and the expression of MAPKs in BV-2 microglia cells treated with fluoride. We found that fluoride increased JNK phosphorylation level of BV-2 cells and pretreatment with JNK inhibitor SP600125 markedly reduced the levels of intracellular O2 ·− and NO. NOX inhibitor apocynin and iNOS inhibitor SMT dramatically decreased NaF-induced ROS and NO generations, respectively. Antioxidant melatonin (MEL) resulted in a reduction in JNK phosphorylation in fluoride-stimulated BV-2 microglia. The results confirmed that NOX and iNOS played an important role in fluoride inducing oxidative stress and NO production and JNK took part in the oxidative stress induced by fluoride and meanwhile also could be activated by ROS in fluoride-treated BV-2 cells. PMID:24072958

  15. Magnesium fluoride as energy storage medium for spacecraft solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Lurio, Charles A.

    1992-01-01

    MgF2 was investigated as a phase-change energy-storage material for LEO power systems using solar heat to run thermal cycles. It provides a high heat of fusion per unit mass at a high melting point (1536 K). Theoretical evaluation showed the basic chemical compatibility of liquid MgF2 with refractory metals at 1600 K, though transient high pressures of H2 can occur in a closed container due to reaction with residual moisture. The compatibility was tested in two refractory metal containers for over 2000 h. Some showed no deterioration, while there was evidence that the fluoride reacted with hafnium in others. Corollary tests showed that the MgF2 supercooled by 10-30 K and 50-90 K.

  16. Thermodynamic modeling of melts in the system Na 2O-NaAlO 2-SiO 2-F 2O -1

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Baker, Don R.

    2005-12-01

    Fluorine is a common volatile element in magmatic-hydrothermal systems, but its solution mechanisms and thermodynamic description in highly polymerized silicate melts are poorly known. We have developed a thermodynamic model for fluorosilicate liquids that links experimentally determined phase equilibria and spectroscopic information on melt structure. The model is applicable to crystallization of fluoride minerals, fluoride-silicate immiscibility in natural felsic melts, and metallurgical processes. Configurational properties of fluorosilicate melts are described by mixing on three site levels (sublattices): (1) alkali fluoride, polyhedral aluminofluoride and silicofluoride species and nonbridging terminations of the aluminosilicate network, (2) alkali-aluminate and silicate tetrahedra within the network and (3) bridging oxygen, nonbridging oxygen and terminal fluorine atoms on tetrahedral apices of the network. Abundances of individual chemical species are described by a homogeneous equilibrium representing melt depolymerization: F - (free) + O 0 (bridging) = F 0 (terminal) + O - (nonbridging) which corresponds to a replacement of an oxygen bridging two tetrahedra by a pair of terminations, one with F and the other with an O and a charge-balancing Na. In cryolite-bearing systems two additional interaction mechanisms occur: (1) the self-dissociation of octahedral aluminofluoride complexes: [AlF 6] = [AlF 4] + 2 [F], and (2) the short-range order between (O,F)-corners and (Si,NaAl)-centers of tetrahedra: Si-O-Si + 2 [NaAl]-F = [NaAl]-O-[NaAl] + 2 Si-F. Portrayal of these equilibria in ternary Thompson reaction space allows for the decrease in the number of interaction mechanisms by linearly combining melt depolymerization with tetrahedral short-range order. In this formulation, the nonideal thermodynamic properties are represented by reaction energies of homogeneous equilibria, thus defining directly individual chemical species concentrations and configurational properties. Thermodynamic expressions for the activity-composition relationships are simplified if all entities are expressed using symbolic molecular notation (e.g., SiO 2, SiF 4, [NaAl]O 2, [NaAl]F 4, NaF etc.) with corresponding nonfractional site multiplicities (1, 2 or 4). The model has been applied to three subsystems of the Na 2O-NaAlO 2-SiO 2-F 2O -1 compositional space. Activity-composition relationships in the villiaumite-sodium silicate binaries require clustering of silicate tetrahedra and only negligible interaction between fluoride species and silicate polymer. Phase equilibria in the cryolite-albite system with a large depression of albite liquidus are interpreted via complete substitution of O 0 by O - and F 0 in the silicate framework. With increasing fluorine content, initial Al-F and Si-O short-range order evolves into the partial O-F disorder. The present model provides a useful relationship between experimental equilibria, macroscopic thermodynamics and melt speciation, thus it facilitates comparisons with, and interpretations of, spectroscopic and molecular simulation data.

  17. Laser-induced damage thresholds of bulk and coating optical materials at 1030  nm, 500  fs.

    PubMed

    Gallais, Laurent; Commandré, Mireille

    2014-02-01

    We report on extensive femtosecond laser damage threshold measurements of optical materials in both bulk and thin-film form. This study, which is based on published and new data, involved simple oxide and fluoride films, composite films made from a mixture of two dielectric materials, metallic films, and the surfaces of various bulk materials: oxides, fluorides, semiconductors, and ionic crystals. The samples were tested in comparable conditions at 1030 nm, 375 to 600 fs, under single-pulse irradiation. A large number of different samples prepared by different deposition techniques have been tested, involving classical materials used in the fabrication of optical thin film components (Ag, AlF3, Al2O3, HfO2, MgF2, Nb2O5, Pt, Sc2O3, SiO2, Ta2O5, Y2O3, and ZrO2) and their combination with codeposition processes. Their behaviors are compared with the surfaces of bulk materials (Al2O3, BaF2, CaF2, Ge, KBr, LiF, MgF2, NaCl, Quartz, Si, ZnS, ZnSe, and different silica glasses). Tabulated values of results are presented and discussed.

  18. Fluoride and phosphate release from carbonate-rich fluorapatite during managed aquifer recharge

    NASA Astrophysics Data System (ADS)

    Schafer, David; Donn, Michael; Atteia, Olivier; Sun, Jing; MacRae, Colin; Raven, Mark; Pejcic, Bobby; Prommer, Henning

    2018-07-01

    Managed aquifer recharge (MAR) is increasingly used as a water management tool to enhance water availability and to improve water quality. Until now, however, the risk of fluoride release during MAR with low ionic strength injectate has not been recognised or examined. In this study we analyse and report the mobilisation of fluoride (up to 58 μM) and filterable reactive phosphorus (FRP) (up to 55 μM) during a field groundwater replenishment experiment in which highly treated, deionised wastewater (average TDS 33 mg/L) was injected into a siliciclastic Cretaceous aquifer. In the field experiment, maximum concentrations, which coincided with a rise in pH, exceeded background groundwater concentrations by an average factor of 3.6 for fluoride and 24 for FRP. The combined results from the field experiment, a detailed mineralogical characterisation and geochemical modelling suggested carbonate-rich fluorapatite (CFA: Ca10(PO4)5(CO3,F)F2) to be the most likely source of fluoride and phosphate release. An anoxic batch experiment with powdered CFA-rich nodules sourced from the target aquifer and aqueous solutions of successively decreasing ionic strength closely replicated the field-observed fluoride and phosphate behaviour. Based on the laboratory experiment and geochemical modelling, we hypothesise that the release of fluoride and phosphate results from the incongruent dissolution of CFA and the simultaneous formation of a depleted layer that has hydrated di-basic calcium phosphate (CaHPO4·nH2O) composition at the CFA-water interface. Disequilibrium caused by calcium removal following breakthrough of the deionised injectate triggered the release of fluoride and phosphate. Given the increasing use of highly treated, deionised water for MAR and the ubiquitous presence of CFA and fluorapatite (Ca10(PO4)6F2) in aquifer settings worldwide, the risk of fluoride and phosphate release needs to be considered in the MAR design process.

  19. The molecular structures and conformation of o-selenobenzyl fluoride derivatives, ArSeX (Ar=C 6H 4CH 2F; X=CN, Cl, Me): ab initio and DFT calculations

    NASA Astrophysics Data System (ADS)

    Jeong, Myongho; Kwon, Younghi

    2000-10-01

    Ab initio and density functional theory methods are applied to investigate the molecular structures, intramolecular orbital interactions, and 19F and 77Se NMR chemical shifts of o-selenobenzyl fluoride derivatives, ArSeX ( Ar= C6H4CH2F; X= CN, Cl, Me) , at both RHF and B3LYP levels with the basis sets 6-311G ∗∗ and 6-311+G ∗∗. There are two stable rotational conformers for ArSeX. The energy differences between both conformers for each compound are small (within 2 kcal/mol) at various levels.

  20. Ultrafast Self-Crystallization of High-External-Quantum-Efficient Fluoride Phosphors for Warm White Light-Emitting Diodes.

    PubMed

    Zhou, Wenli; Fang, Mu-Huai; Lian, Shixun; Liu, Ru-Shi

    2018-05-30

    In this study, we used HF (as good solvent) to dissolve K 2 GeF 6 and K 2 MnF 6 and added ethanol (as poor solvent) to cause ultrafast self-crystallization of K 2 GeF 6 :Mn 4+ crystals, which had an unprecedentedly high external quantum efficiency that reached 73%. By using the red phosphor, we achieved a high-quality warm white light-emitting diode with color-rendering index of R a = 94, R9 = 95, luminous efficacy of 150 lm W -1 , and correlated color temperature at 3652 K. Furthermore, the good-poor solvent strategy can be used to fast synthesize other fluorides.

  1. Comparison of Fluoridated Miswak and Toothbrushing with Fluoridated Toothpaste on Plaque Removal and Fluoride Release.

    PubMed

    Baeshen, Hosam; Salahuddin, Sabin; Dam, Robel; Zawawi, Khalid H; Birkhed, Dowen

    2017-04-01

    Dental caries and periodontal diseases are all induced by oral biofilm (dental plaque). This study was conducted to evaluate if fluoride-impregnated miswak is as effective in plaque removal and fluoride release as toothbrushing with fluoride toothpaste. This single-blind, randomized, crossover study was conducted at the Department of Cariology, University of Gothenburg, Gothenburg, Sweden, from February 2010 to January 2011. Fifteen healthy subjects participated in this study. The participants were instructed to use the following: (1) 0.5% NaF-impregnated miswak, (2) nonfluoridated miswak, (3) toothbrush with nonfluoride toothpaste, and (4) toothbrush with 1450 ppm fluoride toothpaste. Each method was used twice a day for 1 week after which plaque amount and fluoride concentration in resting saliva were measured. There was a 1-week washout period between each method. No significant difference between miswak and tooth-brushing was found regarding plaque removal on buccal and lingual surfaces. A somewhat higher fluoride concentration in resting saliva was found after using impregnated miswak when compared with toothbrushing with fluoride toothpaste (p < 0.05). Miswak and toothbrushing showed the same plaque removing effect on buccal and lingual surfaces. Miswak impregnated with 0.5% NaF resulted in a higher concentration of fluoride in saliva than brushing with 1450 ppm fluoride toothpaste. Miswak impregnated with 0.5% NaF and toothbrushing results in comparable plaque removal and about the same fluoride concentration in saliva even it was somewhat higher for impregnated miswak.

  2. Nanoscale “fluorescent stone”: Luminescent Calcium Fluoride Nanoparticles as Theranostic Platforms

    PubMed Central

    Li, Zhanjun; Zhang, Yuanwei; Huang, Ling; Yang, Yuchen; Zhao, Yang; El-Banna, Ghida; Han, Gang

    2016-01-01

    Calcium Fluoride (CaF2) based luminescent nanoparticles exhibit unique, outstanding luminescent properties, and represent promising candidates as nanoplatforms for theranostic applications. There is an urgent need to facilitate their further development and applications in diagnostics and therapeutics as a novel class of nanotools. Here, in this critical review, we outlined the recent significant progresses made in CaF2-related nanoparticles: Firstly, their physical chemical properties, synthesis chemistry, and nanostructure fabrication are summarized. Secondly, their applications in deep tissue bio-detection, drug delivery, imaging, cell labeling, and therapy are reviewed. The exploration of CaF2-based luminescent nanoparticles as multifunctional nanoscale carriers for imaging-guided therapy is also presented. Finally, we discuss the challenges and opportunities in the development of such CaF2-based platform for future development in regard to its theranostic applications. PMID:27877242

  3. A Comparative Evaluation of the Amount of Fluoride Release and Re-Release after Recharging from Aesthetic Restorative Materials: An in vitro Study.

    PubMed

    Bansal, Ruchika; Bansal, Tajinder

    2015-08-01

    To measure the amount of fluoride released and re released after recharging from various restorative materials: Conventional Glass Ionomer Cement (Fuji II), Light Cure Resin Modified GIC (Fuji II LC), Giomer (Beautifil II), Compomer (Dyract). Fifteen cylindrical specimens were prepared from each material. The specimens were immersed in 20 ml of deionized water. The amount of released fluoride was measured during the 1(st) day, 7(th) day and on the day15 by using specific fluoride electrode and an ion-analyser. After 15 days each material was divided into three Sub Groups of five samples each. Sub Group A served as control, Sub Group B was exposed to 2% NaF solution, Sub Group C to 1000ppm F toothpaste. The amount of fluoride re-released was measured during the 1(st) day, 7(th) day and on the day15 by using specific fluoride electrode and an ion-analyser. The results were statistically analysed using analysis of variance (one-way ANOVA) and Tukey Kramer multiple comparison tests (p≤0.05). Independent of the observation time period of the study the Conventional GIC released the highest amount of fluoride followed by RMGIC, Giomer and Compomer. The initial burst effect was seen with GIC'S but not with Giomer and Compomer. After topical fluoride application fluoride re release was highest in Sub Group B and GIC had a greater recharging ability followed by RMGIC, Giomer and Compomer. The fluoride re release was greatest on 1(st) day followed by rapid return to near exposure levels. From the study it was concluded that, the initial Fluoride release was highest from Conventional GIC followed by Resin Modified GIC, Giomer and Compomer. The Fluoride re release was high when recharging with professional regime (2% NaF) as compared to home regime (Toothpaste). Conventional GIC had a greater recharging ability followed by Resin Modified GIC, Giomer and Compomer.

  4. The effect of fluoride treatment on titanium treated with anodic spark oxidation

    NASA Astrophysics Data System (ADS)

    Park, Il Song; Kim, Jong Jun; Ahn, Seung Geun; Lee, Min Ho; Seol, Kyeong Won; Bae, Tae Sung

    2007-04-01

    This study examined the effect of fluoride on the surface characteristics of an anodized titanium implant. Commercial pure titanium plate 20mm×10mm×2mm in size, and discs 1.5 mm thick and 1.5 mm in diameter, were used. The prepared samples were polished with #200 to #1, 000 SiC papers and were then washed sequentially with distilled water, alcohol and acetone. Anodic oxidation was performed using a regulated DC power supply in an electrolyte containing a mixture of 0.015 M DL-α-glycerophosphate disodium salt hydrate (DL-α-GP) and 0.2 M calcium acetate hydrate (CA) with an electric current density of 30mA/cm2 and voltage ranging from 0 to 290 V. The specimens were divided into four groups and a fluoride treatment was carried out. Group 1 was thermally treated in a 0.05 M TiF3 solution at 90°C, Group 2 was electrochemically treated at 150 V in a 0.05 M TiF3 solution, Group 3 was electrochemically treated at 150 V in a 0.05 M NaF solution, and Group 4 was electrochemically treated at 150 V in a 0.05 M HF solution. A porous oxide layer containing pores 1-4 μm in size was observed on the surface treated with anodic oxidation. The diameter of the pores was higher in the protrusion areas than in the sunken areas. A significant amount of fluoride ions was released in the initial period, with small amounts being released continuously thereafter. The viability of MC3T3 cells was high when the fluoride ion concentration was 10 ppm, but decreased with further increases in the fluoride concentration. A six-week immersion test in simulated body fluid (SBF) showed dense HA crystals in the group immersed in 0.05 M TiF3 at 90°C, which indicated good biocompatibility.

  5. The calcium fluoride effect on properties of cryolite melts feasible for low-temperature production of aluminum and its alloys

    NASA Astrophysics Data System (ADS)

    Tkacheva, O.; Dedyukhin, A.; Redkin, A.; Zaikov, Yu.

    2017-07-01

    The CaF2 effect on the liquidus temperature, electrical conductivity and alumina solubility in the potassium-sodium and potassium-lithium cryolite melts with cryolite ratio (CR = (nKF+nMF)/nAlF3, M = Li, Na) 1.3 was studied. The liquidus temperature in the quisi-binary system [KF-LiF-AlF3]-CaF2 changes with the same manner as in the [KF-NaF-AlF3]-CaF2. The electrical conductivity in the KF-NaF-AlF3-CaF2 melt decreases with increasing the CaF2 content, but it slightly raises with the first small addition of CaF2 into the KF-LiF-AlF3-CaF2 melts, enriched with KF, which was explained by the increased K+ ions mobility due to their relatively low ionic potential. The contribution of the Li+ cations in conductivity of the KF-LiF-AlF3-CaF2 electrolyte is not noteworthy. The Al2O3 solubility in the KF-NaF-AlF3 electrolyte rises with the increasing KF content, but the opposite tendency is observed in the cryolite mixtures containing CaF2. The insoluble compounds - KCaAl2F9 or KCaF3 - formed in the molten mixtures containing potassium and calcium ions endorse the increase of the liquidus temperature. The calcium fluoride effect on the side ledge formation in the electrolytic cell during low-temperature aluminum electrolysis is discussed.

  6. SEPARATION OF TRANSURANIC ELEMENTS FROM RARE EARTH COMPOUNDS

    DOEpatents

    Kohman, T.P.

    1961-11-21

    A process of separating neptunium and plutonium values from rare earths and alkaline earth fission products present on a solid mixed actinide carrier (Th or U(IV) oxalate or fluoride) --fission product carrier (LaF/sub 3/, CeF/sub 3/, SrF/sub 2/, CaF/sub 2/, YF/sub 3/, La oxalate, cerous oxalate, Sr oxalate, Ca oxalate or Y oxalate) by extraction of the actinides at elevated temperature with a solution of ammonium fluoride and/or ammonium oxalate is described. Separation of the fission-product-containing carriers from the actinide solution formed and precipitation of the neptunium and plutonium from the solution with mineral acid are also accomplished. (AEC)

  7. Reaction of (carbonylimido)sulfur(IV) derivatives with TAS-fluoride, (Me2N)3S+Me3SiF2-.

    PubMed

    Lork, E; Viets, D; Mews, R; Oberhammer, H

    2000-10-16

    In the reaction of TAS-fluoride, (Me2N)3S+Me3SiF2-, with carbonyl sulfur difluoride imides RC(O)NSF2 (R = F, CF3), C-N bond, cleavage is observed, and TAS+RC(O)F2- and NSF are the final products. From TASF and RC(O)NS(CF3)F, the salts TAS+RC(O)NS(CF3)F2- (R = F (14), CF3 (15)), with psi-pentacoordinate sulfur centers in the anions, are formed. An X-ray structure investigation of 14 shows that the fluorine atoms occupy axial positions and CF3, NC(O)F, and the sulfur lone pair occupy equatorial positions of the trigonal bipyramid. The -C(O)F group lies in the equatorial plane with the CO bond synperiplanar to the SN bond. According to B3LYP calculations, this structure corresponds to a global minimum and the expected axial orientation of the -C(O)F group represents a transition state. Calculations for the unstable FC(O)NSF3- anion show a different geometry. The -C(O)F group deviates 40 degrees from axial orientation, and the equatorially bonded fluorine is, in contrast to the -CF3 group in 14, syn positioned.

  8. Polynomial expressions of electron depth dose as a function of energy in various materials: application to thermoluminescence (TL) dosimetry

    NASA Astrophysics Data System (ADS)

    Deogracias, E. C.; Wood, J. L.; Wagner, E. C.; Kearfott, K. J.

    1999-02-01

    The CEPXS/ONEDANT code package was used to produce a library of depth-dose profiles for monoenergetic electrons in various materials for energies ranging from 500 keV to 5 MeV in 10 keV increments. The various materials for which depth-dose functions were derived include: lithium fluoride (LiF), aluminum oxide (Al 2O 3), beryllium oxide (BeO), calcium sulfate (CaSO 4), calcium fluoride (CaF 2), lithium boron oxide (LiBO), soft tissue, lens of the eye, adiopose, muscle, skin, glass and water. All materials data sets were fit to five polynomials, each covering a different range of electron energies, using a least squares method. The resultant three dimensional, fifth-order polynomials give the dose as a function of depth and energy for the monoenergetic electrons in each material. The polynomials can be used to describe an energy spectrum by summing the doses at a given depth for each energy, weighted by the spectral intensity for that energy. An application of the polynomial is demonstrated by explaining the energy dependence of thermoluminescent detectors (TLDs) and illustrating the relationship between TLD signal and actual shallow dose due to beta particles.

  9. Li(x)FeF6 (x = 2, 3, 4) battery materials: structural, electronic and lithium diffusion properties.

    PubMed

    Schroeder, Melanie; Eames, Christopher; Tompsett, David A; Lieser, Georg; Islam, M Saiful

    2013-12-21

    Lithium iron fluoride materials have attracted recent interest as cathode materials for lithium ion batteries. The electrochemical properties of the high energy density Li(x)FeF6 (x = 2, 3, 4) materials have been evaluated using a combination of potential-based and DFT computational methods. Voltages of 6.1 V and 3.0 V are found for lithium intercalation from Li2FeF6 to α-Li3FeF6 and α-Li3FeF6 to Li4FeF6 respectively. The calculated density of states indicate that Li2FeF6 possesses metallic states that become strongly insulating after lithium intercalation to form α-Li3FeF6. The large energy gain associated with this metal-insulator transition is likely to contribute to the associated large voltage of 6.1 V. Molecular dynamics simulations of lithium diffusion in α-Li3FeF6 at typical battery operating temperatures indicate high lithium-ion mobility with low activation barriers. These results suggest the potential for good rate performance of lithium iron fluoride cathode materials.

  10. Immobilization of Alkali Metal Fluorides via Recrystallization in a Cationic Lamellar Material, [Th(MoO4)(H2O)4Cl]Cl·H2O.

    PubMed

    Lin, Jian; Bao, Hongliang; Qie, Meiying; Silver, Mark A; Yue, Zenghui; Li, Xiaoyun; Zhu, Lin; Wang, Xiaomei; Zhang, Linjuan; Wang, Jian-Qiang

    2018-06-05

    Searching for cationic extended materials with a capacity for anion exchange resulted in a unique thorium molybdate chloride (TMC) with the formula of [Th(MoO 4 )(H 2 O) 4 Cl]Cl·H 2 O. The structure of TMC is composed of zigzagging cationic layers [Th(MoO 4 )(H 2 O) 4 Cl] + with Cl - as interlamellar charge-balancing anions. Instead of performing ion exchange, alkali thorium fluorides were formed after soaking TMC in AF (A = Na, K, and Cs) solutions. The mechanism of AF immobilization is elucidated by the combination of SEM-EDS, PXRD, FTIR, and EXAFS spectroscopy. It was observed that four water molecules coordinating with the Th 4+ center in TMC are vulnerable to competition with F - , due to the formation of more favorable Th-F bonds compared to Th-OH 2 . This leads to a single crystal-to-polycrystalline transformation via a pathway of recrystallization to form alkali thorium fluorides.

  11. Altered sperm chromatin structure in mice exposed to sodium fluoride through drinking water.

    PubMed

    Sun, Zilong; Niu, Ruiyan; Wang, Bin; Wang, Jundong

    2014-06-01

    This study investigated the effects of sodium fluoride (NaF) on sperm abnormality, sperm chromatin structure, protamine 1 and protamine 2 (P1 and P2) mRNA expression, and histones expression in sperm in male mice. NaF was orally administrated to male mice at 30, 70, and 150 mg/l for 49 days (more than one spermatogenic cycle). Sperm head and tail abnormalities were significantly enhanced at middle and high doses. Similarly, sperm chromatin structure was also adversely affected by NaF exposure, indicating DNA integrity damage. Furthermore, middle and high NaF significantly reduced the mRNA expressions of P1 and P2, and P1/P2 ratio, whereas the sperm histones level was increased, suggesting the abnormal histone-protamine replacement. Therefore, we concluded that the mechanism by which F induced mice sperm abnormality and DNA integrity damage may involved in the alterations in P1, P2, and histones expression in sperm of mice. Copyright © 2012 Wiley Periodicals, Inc.

  12. Biofilm community diversity after exposure to 0·4% stannous fluoride gels.

    PubMed

    Reilly, C; Rasmussen, K; Selberg, T; Stevens, J; Jones, R S

    2014-12-01

    To test the effect of 0·4% stannous fluoride (SnF2 ) glycerine-based gels on specific portions of the bacterial community in both a clinical observational study and in vitro multispecies plaque-derived (MSPD) biofilm model. Potential changes to specific portions of the bacterial community were determined through the Human Oral Microbial Identification Microarray (HOMIM). Both the observational clinical study and the biofilm model showed that short-term use of 0·4% SnF2 gel has little effect on the bacterial community depicted by hierarchical cluster analysis. The amount of plaque accumulation on a subject's teeth, which was measured by plaque index scores, failed to show statistical significant changes over the two baselines or after treatment (P = 0·9928). The in vitro results were similar when examining the effect of 0·4% SnF2 gels on biofilm adherence through a crystal violet assay (P = 0·1157). The bacteria within the dental biofilms showed resilience in maintaining the overall community diversity after exposure to 0·4% SnF2 topical gels. The study supports that the immediate benefits of using 0·4% SnF2 gels in children may be strictly from fluoride ions inhibiting tooth demineralization rather than delivering substantial antimicrobial effects. © 2014 The Society for Applied Microbiology.

  13. Peroxidative oxidation of halides catalysed by myeloperoxidase. Effect of fluoride on halide oxidation.

    PubMed

    Zgliczyński, J M; Stelmaszyńska, T; Olszowska, E; Krawczyk, A; Kwasnowska, E; Wróbel, J T

    1983-01-01

    It was found that all halides can compete with cyanide for binding with myeloperoxidase. The lower is the pH, the higher is the affinity of halides. The apparent dissociation constants (Kd) of myeloperoxidase-cyanide complex were determined in the presence of F-, Cl-, Br- and I- in the pH range of 4 to 7. In slightly acidic pH (4 - 6) fluoride and chloride exhibit a higher affinity towards the enzyme than bromide and iodide. Taking into account competition between cyanide and halides for binding with myeloperoxidase the dissociation constants of halide-myeloperoxidase complexes were calculated. All halides except fluoride can be oxidized by H2O2 in the presence of myeloperoxidase. However, since fluoride can bind with myeloperoxidase, it can competitively inhibit the oxidation of other halides. Fluoride was a competitive inhibitor with respect to other halides as well as to H2O2. Inhibition constants (Ki) for fluoride as a competitive inhibitor with respect to H2O2 increased from iodide oxidation through bromide to chloride oxidation.

  14. 76 FR 37129 - Determination That SODIUM FLUORIDE F 18 (Sodium Fluoride F-18) Injection, 10 to 200 Millicuries...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ...] Determination That SODIUM FLUORIDE F 18 (Sodium Fluoride F-18) Injection, 10 to 200 Millicuries per Milliliter... FLUORIDE F 18 (sodium fluoride F-18) injection, 10 to 200 millicuries per milliliter (mCi/mL), was not... abbreviated new drug applications (ANDAs) for SODIUM FLUORIDE F 18 injection, 10 to 200 mCi/mL, if all other...

  15. Inhibition of Aspergillus niger Phosphate Solubilization by Fluoride Released from Rock Phosphate

    PubMed Central

    Mendes, Gilberto de Oliveira; Vassilev, Nikolay Bojkov; Bonduki, Victor Hugo Araújo; da Silva, Ivo Ribeiro; Ribeiro, José Ivo

    2013-01-01

    The simultaneous release of various chemical elements with inhibitory potential for phosphate solubilization from rock phosphate (RP) was studied in this work. Al, B, Ba, Ca, F, Fe, Mn, Mo, Na, Ni, Pb, Rb, Si, Sr, V, Zn, and Zr were released concomitantly with P during the solubilization of Araxá RP (Brazil), but only F showed inhibitory effects on the process at the concentrations detected in the growth medium. Besides P solubilization, fluoride decreased fungal growth, citric acid production, and medium acidification by Aspergillus niger. At the maximum concentration found during Araxá RP solubilization (22.9 mg F− per liter), fluoride decreased P solubilization by 55%. These findings show that fluoride negatively affects RP solubilization by A. niger through its inhibitory action on the fungal metabolism. Given that fluoride is a common component of RPs, the data presented here suggest that most of the microbial RP solubilization systems studied so far were probably operated under suboptimal conditions. PMID:23770895

  16. Reduction of erosive wear in situ by stannous fluoride-containing toothpaste.

    PubMed

    Huysmans, M C D N J M; Jager, D H J; Ruben, J L; Unk, D E M F; Klijn, C P A H; Vieira, A M

    2011-01-01

    Stannous fluoride (SnF) has been suggested as a dental erosion-preventive agent. The aim of this single-centre, randomized, double-blind, in situ study was to evaluate the effect of toothpastes with SnF in the prevention of erosive enamel wear. A combined split-mouth (extra-oral water or toothpaste brushing) and crossover (type of toothpaste) set-up was used. Twelve volunteers wore palatal appliances containing human enamel samples. Three toothpastes were used, in three consecutive runs, in randomized order: two toothpastes containing SnF (coded M and PE) and one toothpaste containing only sodium fluoride (coded C). On day 1 of each run the appliances were worn for pellicle formation. On days 2-5 the samples were also brushed twice with a toothpaste-water slurry or only water (control). Erosion took place on days 2-5 extra-orally 3 times a day (5 min) in a citric acid solution (pH 2.3). Enamel wear depth was quantified by optical profilometry. The effect of toothpastes was tested using General Linear Modeling. Average erosive wear depth of control samples was 23 μm. Both SnF toothpastes significantly reduced erosive wear: M by 34% (SD 39%) and PE by 26% (SD 25%). The control toothpaste reduced erosive wear non-significantly by 7% (SD 20%). Both SnF-containing toothpastes significantly reduced erosive wear compared to the sodium fluoride toothpaste. We conclude that SnF-containing toothpastes are able to reduce erosive tooth wear in situ. Copyright © 2011 S. Karger AG, Basel.

  17. Nonstoichiometry in inorganic fluorides: I. Nonstoichiometry in MF{sub m}-RF{sub n} (m < n {<=} 4) systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolev, B. P., E-mail: sobolevb@yandex.ru

    The manifestation of gross nonstoichiometry in MF{sub m}-RF{sub n} systems (m < n {<=} 4) has been studied. Fluorides of 34 elements, in the systems of which phases of practical interest are formed, are chosen. To search for new phases of complex composition, a program for studying the phase diagrams of the condensed state ({approx}200 systems) has been carried out at the Institute of Crystallography, Russian Academy of Sciences. The main products of high-temperature interactions of the fluorides of elements with different valences (m {ne} n) are grossly nonstoichiometric phases of two structural types: fluorite (CaF{sub 2}) and tysonite (LaF{submore » 3}). Systems of fluorides of 27 elements (M{sup 1+} = Na, K; M{sup 2+} = Ca, Sr, Ba, Cd, Pb; R{sup 3+} = Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; R{sup 4+} = Zr, Hf, Th, U) are selected; nonstoichiometric M{sub 1-x}R{sub x}F{sub m(1-x)+nx} phases, which are of greatest practical interest, are formed in these systems. The gross nonstoichiometry in inorganic fluorides is most pronounced in 80 MF{sub 2} - RF{sub 3} systems (M = Ca, Sr, Ba, Cd, Pb; R are rare earth elements). The problems related to the growth of single crystals of nonstoichiometric phases and basic fields of their application as new fluoride multicomponent materials, the properties of which are controlled by the defect structure, are considered.« less

  18. In vitro enamel remineralization capacity of composite resins containing sodium trimetaphosphate and fluoride.

    PubMed

    Tiveron, Adelisa Rodolfo Ferreira; Delbem, Alberto Carlos Botazzo; Gaban, Gabriel; Sassaki, Kikue Takebayashi; Pedrini, Denise

    2015-11-01

    This study evaluated the in vitro enamel remineralization capacity of experimental composite resins containing sodium trimetaphosphate (TMP) combined or not with fluoride (F). Bovine enamel slabs were selected upon analysis of initial surface hardness (SH1) and after induction of artificial carious lesions (SH2). Experimental resins were as follows: resin C (control—no sodium fluoride (NaF) or TMP), resin F (with 1.6% NaF), resin TMP (with 14.1% TMP), and resin TMP/F (with NaF and TMP). Resin samples were made and attached to enamel slabs (n = 12 slabs per material). Those specimens (resin/enamel slab) were subjected to pH cycling to promote remineralization, and then final surface hardness (SH3) was measured to calculate the percentage of surface hardness recovery (%SH). The integrated recovery of subsurface hardness (ΔKHN) and F concentration in enamel were also determined. Data was analyzed by ANOVA and Student-Newman-Keuls test (p < 0.05). Resins F and TMP/F showed similar SH3 values (p = 0.478) and %SH (p = 0.336) and differed significantly from the other resins (p < 0.001). Considering ΔKHN values, resin TMP/F presented the lowest area of lesion (p < 0.001). The presence of F on enamel was different among the fluoridated resins (p = 0.042), but higher than in the other resins (p < 0.001). The addition of TMP to a fluoridated composite resin enhanced its capacity for remineralization of enamel in vitro. The combination of two agents with action on enamel favored remineralization, suggesting that composite resins containing sodium trimetaphosphate and fluoride could be indicated for clinical procedures in situations with higher cariogenic challenges.

  19. High-temperature corrosion of metals in the salt and metallic melts containing rare earths

    NASA Astrophysics Data System (ADS)

    Karpov, V. V.; Abramov, A. V.; Zhilyakov, A. Yu.; Belikov, S. V.; Volkovich, V. A.; Polovov, I. B.; Rebrin, O. I.

    2016-09-01

    A complex of independent methods was employed to study the corrosion resistance of molybdenum, zirconium, tantalum and tungsten in chloride, chloride-fluoride and fluoride-oxide melts based on LiCl, CaCl2, NaCl- KCl, LiF, and containing rare earths. Tests were conducted for 30 h at 750-1050 °C. The metals showed excellent corrosion resistance in fused chlorides (the corrosion rates were below 0.0005 g/(m2 h). Despite the presence of chemically active fluoride ions in the chloride-fluoride melts, the metals studied also showed very low corrosion rates, except molybdenum, for which the rate of corrosion was 0,8 g/(m2 h). The corrosion resistance of tantalum was considerably reduced in the fluoride-oxide melts; the corrosion rate was over 1 g/(m2 h) corresponding to the 8-th grade of stability and placing tantalum to the group of "low stability" materials.

  20. Reactive ion-beam-sputtering of fluoride coatings for the UV/VUV range

    NASA Astrophysics Data System (ADS)

    Schink, Harald; Kolbe, Jurgen; Zimmermann, F.; Ristau, Detlev; Welling, Herbert

    1991-06-01

    Fluoride coatings produced by thermal evaporation suffer from high scatter losses ageing and cracking due to high tensile stress. These problems impose severe limitations to the production of low loss multilayer coatings for the VUV range. A key position for improved performance is the microstructure of the layers. The aim of our investigations is to improve the microstructure of A1F3- and LaF3-'' films by ionbeamsputtering. Scatter measurements of single layers revealed lower values for lBS than for boat evaporation. Unfortunately sputtered fluoride films nave high absorption losses caused by decomposition of the coating material. By sputtering in reactive atmospheres and annealing we were able to reduce the absorption losses significantly. Antireflective as well as high reflective coatings were produced. Reflection and transmission values were obtained with a VUV-spectrophotometer. Damage tests at the 193 mu ArF laser wavelength were performed at the Laser-Laboratorium Gttingen. Key words: ion-beamsputtering fluoride films UVcoatings VUV-coatings color-center laser damage A]. F3 MgF2 LaF3. 1.

  1. Cross sections and quantum yields of the 3 micron emission for Er(3+) and Ho(3+) dopants in crystalsls

    NASA Astrophysics Data System (ADS)

    Payne, Stephen A.; Smith, Larry K.; Krupke, William F.

    1995-05-01

    The lifetime, quantum yields, and branching ratios for the 2.8 micron emissions of several Er-and Ho-doped fluorides and oxides were measured. Among the fluoride crystals examined, which included LiYF4, BaY2F8, LaF3, and KY3F10, only the Ho:LiFY4 systems showed any proof of nonradiative decay. Conversely, all the oxide crystals were affected by nonradiative processes, resulting in measured quantum yields ranging from 3.6% for Er:Y3Al5O12 to 62% for Er in Gd3Sc2Ga3O12. In addition, plots of the 2.8 micron emission cross sections for seven Er- and Ho-doped crystals were presented.

  2. Magnesium fluoride as energy storage medium for spacecraft solar thermal power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lurio, C.A.

    1992-10-01

    MgF2 was investigated as a phase-change energy-storage material for LEO power systems using solar heat to run thermal cycles. It provides a high heat of fusion per unit mass at a high melting point (1536 K). Theoretical evaluation showed the basic chemical compatibility of liquid MgF2 with refractory metals at 1600 K, though transient high pressures of H2 can occur in a closed container due to reaction with residual moisture. The compatibility was tested in two refractory metal containers for over 2000 h. Some showed no deterioration, while there was evidence that the fluoride reacted with hafnium in others. Corollarymore » tests showed that the MgF2 supercooled by 10-30 K and 50-90 K. 24 refs.« less

  3. Inferring the fluoride hydrogeochemistry and effect of consuming fluoride-contaminated drinking water on human health in some endemic areas of Birbhum district, West Bengal.

    PubMed

    Mondal, D; Dutta, G; Gupta, S

    2016-04-01

    This research work is carried out to evaluate fluoride (F) hydrogeochemistry and its effect on the population of two endemic villages of Birbhum district, West Bengal. Fluoride concentration in drinking water varies from 0.33 to 18.08 mg/L. Hydrogeochemical evolution suggests that ion-exchange mechanism is the major controlling factor for releasing F in the groundwater. Most of the groundwater samples are undersaturated with respect to calcite and fluorite. Health survey shows that out of 235 people, 142 people suffer from dental fluorosis. According to fluoride impact severity, almost 80 and 94 % people in an age group of 11-20 and 41-50 suffer from dental and skeletal fluorosis, respectively. Statistically drinking water F has a positive correlation with dental and skeletal fluorosis. Bone mineral density test reveals that 33 and 45 % of the studied population suffer from osteopenic and osteoporosis disease. IQ test also signifies that F has a bearing on the intelligence development of the study area school children. The existence of significant linear relationship (R (2) = 0.77) between drinking water F and urinary F suggests that consumption of F-contaminated drinking water has a major control over urinary F (0.39-20.1 mg/L) excretion.

  4. The effects of fluoride concentration and the level of cariogenic challenge on caries development in desalivated rats.

    PubMed

    Tabchoury, C M; Holt, T; Pearson, S K; Bowen, W H

    1998-12-01

    Dental caries is an infectious and transmissible disease that continues to affect the majority of people. The presence of carbohydrate, mainly sucrose in the diet, is an important factor in its occurrence. The amount of fluoride required for optimal protective effect where there is a high caries challenge is unclear. Differences in the intensity of cariogenic challenge, for whatever reason, may play a part in determining fluctuations in the effectiveness of fluoride. The purpose of this study was to evaluate the effect of different concentrations of fluoride on the development of caries and explore the cariostatic effect of fluoride under various levels of cariogenic challenge. The study comprises two experiments. In experiment I, 60 desalivated Sprague Dawley rats infected with Streptococcus sobrinus were offered the following to drink for 21 days: group (1), sterile distilled water (SDW); (2) 10 parts/10(6) F SDW; (3) 20 parts/10(6) F SDW; (4) 30 parts/10(6) F SDW; (5) 40 parts/10(6) F SDW. In experiment II, eight groups of 9 rats were placed in a König Höfer programmed feeder and were exposed to different levels of cariogenic challenge through varying frequency of eating and offered water containing 10 parts/10(6) F. In experiment I, exposure to 20, 30 and 40 parts/10(6) F reduced caries development significantly: fluoride, at 10 parts/10(6), reduced the severity of the carious lesions. In this model of severe cariogenic challenge, the results suggest that elevated concentrations of fluoride might be effective in patients at high caries risk. In experiment II, fluoride reduced the incidence and severity of smooth-surface caries in all groups. The protective effect of fluoride decreased as the number of exposures to sugar increased. It is concluded that the effectiveness of fluoride is influenced by the level of cariogenic challenge and that consideration should be given to adjusting the level of fluoride exposure based on perceived caries risk, and that there is a maximum therapeutic effect of fluoride beyond which no additional protection can be expected.

  5. Electrical characterization and modeling of the Au/CaF{sub 2}/nSi(111) structures with high-quality tunnel-thin fluoride layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vexler, M. I.; A. F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26 Polytechnicheskaya Str., 194021 St.-Petersburg; Sokolov, N. S.

    2009-04-15

    Au/CaF{sub 2}/nSi(111) structures with 4-5 monolayers of epitaxial fluoride are fabricated and electrically tested. The leakage current in these structures was substantially smaller than in similar samples reported previously. Simulations adopting a Franz-type dispersion relation with Franz mass of m{sub F}approx1.2m{sub 0} for carriers in the forbidden band of CaF{sub 2} reproduced the measured current-voltage curves quite satisfactorily. Roughly, these curves could also be reproduced using the parabolic dispersion law with the electron mass of m{sub e}=1.0m{sub 0}, which is a material constant rather than a fitting parameter. Experimental facts and their comparison to modeling results allow qualification of themore » crystalline quality of fabricated structures as sufficient for device applications.« less

  6. Comparison of fluoride effects on germination and growth of Zea mays, Glycine max and Sorghum vulgare.

    PubMed

    Fina, Brenda L; Lupo, Maela; Dri, Nicolas; Lombarte, Mercedes; Rigalli, Alfredo

    2016-08-01

    Fluorosis is a disease caused by over-exposure to fluoride (F). Argentina's rural lands have higher fluorine content than urban lands. Evidence confirms that plants grown in fluoridated areas could have higher F content. We compared F uptake and growth of crops grown in different F concentrations. The effect of 0-8 ppm F concentrations on maize, soybeans and sorghum germination and growth was compared. After 6 days seeding, the germination was determined, the roots and aerial parts lengths were measured, and vigor index was calculated. F content was measured in each part of the plants. Controls with equal concentrations of NaCl were carried out. Significant decrease in roots and aerial parts lengths, and in vigor index of maize and soybeans plants was observed with F concentrations greater than 2 ppm. This was not observed in sorghum seedlings. Also, the amount of F in all crops augmented as F increases, being higher in roots and ungerminated seeds. Sorghum was the crop with the highest F content. Fluoride decreased the germination and growth of maize and soybeans and therefore could influence on their production. Conversely, sorghum seems to be resistant to the action of F. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  7. Biogeochemistry of fluoride in a plant-solution system

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Grossl, P. R.; Bugbee, B. G.

    2003-01-01

    Fluoride (F-) pollutants can harm plants and the animals feeding on them. However, it is largely unknown how complexing and chelating agents affect F bioavailability. Two studies were conducted that measured F- bioavailability and uptake by rice (Oryza sativa L.). In the first study, rice was grown in solution culture (pH 5.0) with 0, 2, or 4 mM F- as KF to compare the interaction of F- with humic acid (HA) and with a conventional chelating agent, N-hydroxyethylenthylenediaminetriacetic acid (HEDTA). In the second study, F was supplied at 0, 0.5, 1.0, and 2.0 mM KF with an additional 2 mM F- treatment containing solution Ca at 2x (2 mM Ca) the level used in the first study, to test the effect added Ca had on F- availability and uptake. Total biomass was greatest with HEDTA and F- < 1 mM. Leaf and stem F concentrations increased exponentially as solution F- increased linearly, with nearly no F partitioning into the seed. Results suggest that F was taken up as HF0 while F- uptake was likely restricted. Additionally, F- competed with HA for Ca, thus preventing the formation of Ca-HA flocculents. The addition of soluble Ca resulted in the precipitation of CaF2 solids on the root surface, as determined by tissue analysis and energy dispersive X-ray spectroscopy.

  8. High energy chemical laser system

    DOEpatents

    Gregg, D.W.; Pearson, R.K.

    1975-12-23

    A high energy chemical laser system is described wherein explosive gaseous mixtures of a reducing agent providing hydrogen isotopes and interhalogen compounds are uniformly ignited by means of an electrical discharge, flash- photolysis or an electron beam. The resulting chemical explosion pumps a lasing chemical species, hydrogen fluoride or deuterium fluoride which is formed in the chemical reaction. The generated lasing pulse has light frequencies in the 3- micron range. Suitable interhalogen compounds include bromine trifluoride (BrF$sub 3$), bromine pentafluoride (BrF$sub 5$), chlorine monofluoride (ClF), chlorine trifluoride (ClF$sub 3$), chlorine pentafluoride (ClF$sub 5$), iodine pentafluoride (IF$sub 5$), and iodine heptafluoride (IF$sub 7$); and suitable reducing agents include hydrogen (H$sub 2$), hydrocarbons such as methane (CH$sub 4$), deuterium (D$sub 2$), and diborane (B$sub 2$H$sub 6$), as well as combinations of the gaseous compound and/or molecular mixtures of the reducing agent.

  9. Ferroelectricity in d0 double perovskite fluoroscandates

    NASA Astrophysics Data System (ADS)

    Charles, Nenian; Rondinelli, James M.

    2015-08-01

    Ferroelectricity in strain-free and strained double perovskite fluorides, Na3ScF6 and K2NaScF6 , is investigated using first-principles density functional theory. Although the experimental room temperature crystal structures of these fluoroscandates are centrosymmetric, i.e., Na3ScF6 (P 21/n ) and K2NaScF6 (F m 3 ¯m ), lattice dynamical calculations reveal that soft polar instabilities exist in each prototypical cubic phase and that the modes harden as the tolerance factor approaches unity. Thus the double fluoroperovskites bear some similarities to A B O3 perovskite oxides; however, in contrast, these fluorides exhibit large acentric displacements of alkali metal cations (Na, K) rather than polar displacements of the transition metal cations. Biaxial strain investigations of the centrosymmetric and polar Na3ScF6 and K2NaScF6 phases reveal that the paraelectric structures are favored under compressive strain, whereas polar structures with in-plane electric polarizations (˜5 -18 μ C cm-2 ) are realized at sufficiently large tensile strains. The electric polarization and stability of the polar structures for both chemistries are found to be further enhanced and stabilized by a coexisting single octahedral tilt system. Our results suggest that polar double perovskite fluorides may be realized by suppression of octahedral rotations about more than one Cartesian axis; structures exhibiting in- or out-of-phase octahedral rotations about the c axis are more susceptible to polar symmetries.

  10. Repeatability of quantitative parameters of 18F-fluoride PET/CT and biochemical tumour and specific bone remodelling markers in prostate cancer bone metastases.

    PubMed

    Wassberg, Cecilia; Lubberink, Mark; Sörensen, Jens; Johansson, Silvia

    2017-12-01

    18F-fluoride PET/CT exhibits high sensitivity to delineate and measure the extent of bone metastatic disease in patients with prostate cancer. 18F-fluoride PET/CT could potentially replace traditional bone scintigraphy in clinical routine and trials. However, more studies are needed to assess repeatability and biological uptake variation. The aim of this study was to perform test-retest analysis of quantitative PET-derived parameters and blood/serum bone turnover markers at the same time point. Ten patients with prostate cancer and verified bone metastases were prospectively included. All underwent two serial 18F-fluoride PET/CT at 1 h post-injection. Up to five dominant index lesions and whole-body 18F-fluoride skeletal tumour burden were recorded per patient. Lesion-based PET parameters were SUVmax, SUVmean and functional tumour volume applying a VOI with 50% threshold (FTV 50% ). The total skeletal tumour burden, total lesion 18F-fluoride (TLF), was calculated using a threshold of SUV of ≥15. Blood/serum biochemical bone turnover markers obtained at the time of each PET were PSA, ALP, S-osteocalcin, S-beta-CTx, 1CTP and BAP. A total of 47 index lesions and a range of 2-122 bone metastases per patient were evaluated. Median time between 18F-fluoride PET/CT was 7 days (range 6-8 days). Repeatability coefficients were for SUVmax 26%, SUVmean 24%, FTV 50% for index lesions 23% and total skeletal tumour burden (TLF) 35%. Biochemical bone marker repeatability coefficients were for PSA 19%, ALP 23%, S-osteocalcin 18%, S-beta-CTx 22%, 1CTP 18% and BAP 23%. Quantitative 18F-fluoride uptake and simultaneous biochemical bone markers measurements are reproducible for prostate cancer metastases and show similar magnitude in test-retest variation.

  11. Bone formation in ankylosing spondylitis during anti-tumour necrosis factor therapy imaged by 18F-fluoride positron emission tomography

    PubMed Central

    Bruijnen, Stefan T G; Verweij, Nicki J F; van Duivenvoorde, Leonie M; Bravenboer, Nathalie; Baeten, Dominique L P; van Denderen, Christiaan J; van der Horst-Bruinsma, Irene E; Voskuyl, Alexandre E; Custers, Martijn; van de Ven, Peter M; Bot, Joost C J; Boden, Bouke J H; Lammertsma, Adriaan A; Hoekstra, Otto S H; Raijmakers, Pieter G H M; van der Laken, Conny J

    2018-01-01

    Abstract Objectives Excessive bone formation is an important hallmark of AS. Recently it has been demonstrated that axial bony lesions in AS patients can be visualized using 18F-fluoride PET-CT. The aim of this study was to assess whether 18F-fluoride uptake in clinically active AS patients is related to focal bone formation in spine biopsies and is sensitive to change during anti-TNF treatment. Methods Twelve anti-TNF-naïve AS patients [female 7/12; age 39 years (SD 11); BASDAI 5.5 ± 1.1] were included. 18 F-fluoride PET-CT scans were performed at baseline and in two patients, biopsies were obtained from PET-positive and PET-negative spine lesions. The remaining 10 patients underwent a second 18F-fluoride PET-CT scan after 12 weeks of anti-TNF treatment. PET scans were scored visually by two blinded expert readers. In addition, 18F-fluoride uptake was quantified using the standardized uptake value corrected for individual integrated whole blood activity concentration (SUVAUC). Clinical response to anti-TNF was defined according to a ⩾ 20% improvement in Assessment of SpondyloArthritis international Society criteria at 24 weeks. Results At baseline, all patients showed at least one axial PET-positive lesion. Histological analysis of PET-positive lesions in the spine confirmed local osteoid formation. PET-positive lesions were found in the costovertebral joints (43%), facet joints (23%), bridging syndesmophytes (20%) and non-bridging vertebral lesions (14%) and in SI joints (75%). After 12 weeks of anti-TNF treatment, 18F-fluoride uptake in clinical responders decreased significantly in the costovertebral (mean SUVAUC −1.0; P < 0.001) and SI joints (mean SUVAUC −1.2; P = 0.03) in contrast to non-responders. Conclusions 18F-fluoride PET-CT identified bone formation, confirmed by histology, in the spine and SI joints of AS patients and demonstrated alterations in bone formation during anti-TNF treatment. PMID:29329443

  12. Bone formation in ankylosing spondylitis during anti-tumour necrosis factor therapy imaged by 18F-fluoride positron emission tomography.

    PubMed

    Bruijnen, Stefan T G; Verweij, Nicki J F; van Duivenvoorde, Leonie M; Bravenboer, Nathalie; Baeten, Dominique L P; van Denderen, Christiaan J; van der Horst-Bruinsma, Irene E; Voskuyl, Alexandre E; Custers, Martijn; van de Ven, Peter M; Bot, Joost C J; Boden, Bouke J H; Lammertsma, Adriaan A; Hoekstra, Otto S H; Raijmakers, Pieter G H M; van der Laken, Conny J

    2018-04-01

    Excessive bone formation is an important hallmark of AS. Recently it has been demonstrated that axial bony lesions in AS patients can be visualized using 18F-fluoride PET-CT. The aim of this study was to assess whether 18F-fluoride uptake in clinically active AS patients is related to focal bone formation in spine biopsies and is sensitive to change during anti-TNF treatment. Twelve anti-TNF-naïve AS patients [female 7/12; age 39 years (SD 11); BASDAI 5.5 ± 1.1] were included. 18 F-fluoride PET-CT scans were performed at baseline and in two patients, biopsies were obtained from PET-positive and PET-negative spine lesions. The remaining 10 patients underwent a second 18F-fluoride PET-CT scan after 12 weeks of anti-TNF treatment. PET scans were scored visually by two blinded expert readers. In addition, 18F-fluoride uptake was quantified using the standardized uptake value corrected for individual integrated whole blood activity concentration (SUVAUC). Clinical response to anti-TNF was defined according to a ⩾ 20% improvement in Assessment of SpondyloArthritis international Society criteria at 24 weeks. At baseline, all patients showed at least one axial PET-positive lesion. Histological analysis of PET-positive lesions in the spine confirmed local osteoid formation. PET-positive lesions were found in the costovertebral joints (43%), facet joints (23%), bridging syndesmophytes (20%) and non-bridging vertebral lesions (14%) and in SI joints (75%). After 12 weeks of anti-TNF treatment, 18F-fluoride uptake in clinical responders decreased significantly in the costovertebral (mean SUVAUC -1.0; P < 0.001) and SI joints (mean SUVAUC -1.2; P = 0.03) in contrast to non-responders. 18F-fluoride PET-CT identified bone formation, confirmed by histology, in the spine and SI joints of AS patients and demonstrated alterations in bone formation during anti-TNF treatment.

  13. Effect of fluoride sodium mouthwash solutions on cpTI: evaluation of physicochemical properties.

    PubMed

    Toniollo, Marcelo Bighetti; Galo, Rodrigo; Macedo, Ana Paula; Rodrigues, Renata Cristina Silveira; Ribeiro, Ricardo Faria; Mattos, Maria da Gloria Chiarello de

    2012-01-01

    The effects of fluoride, which is present in different oral hygiene products, deserve more investigation because little is known about their impact on the surface of titanium, which is largely used in Implantology. This study evaluated the surface of commercially pure titanium (cpTi) after exposure to different concentrations of sodium fluoride (NaF). The hypothesis tested in this study was that different concentrations of NaF applied at different time intervals can affect the titanium surface in different ways. The treatments resulted in the following groups: GA (control): immersion in distilled water; GB: immersion in 0.05% NaF for 3 min daily; GC: immersion in 0.2% NaF for 3 min daily; GD: immersion in 0.05% NaF for 3 min every 2 weeks; and GE: immersion in 0.2% NaF for 3 min every 2 weeks. The experiment lasted 60 days. Roughness was measured initially and every 15 days subsequently up to 60 days. After 60 days, corrosion analysis and anodic polarization were done. The samples were examined by scanning electron microscopy (SEM). The roughness data were analyzed by ANOVA and there was no significant difference among groups and among time intervals. The corrosion data (i(corr)) were analyzed by the Mann-Whitney test, and significant differences were found between GA and GC, GB and GC, GC and GD, GC and GE. SEM micrographs showed that the titanium surface exposed to NaF presented corrosion that varied with the different concentrations. This study suggests that the use of 0.05% NaF solution on cpTi is safe, whereas the 0.2% NaF solution should be carefully evaluated with regard to its daily use.

  14. Controlled Formation of Mixed Nanoscale Domains of High Capacity Fe 2O 3–FeF 3 Conversion Compounds by Direct Fluorination

    DOE PAGES

    Zhou, Hui; Ruther, Rose E.; Adcock, Jamie; ...

    2015-02-22

    In this paper, we report a direct fluorination method under fluorine gas atmosphere using a fluidized bed reactor for converting nanophase iron oxide (n-Fe 2O 3) to an electrochemically stable and higher energy density iron oxyfluoride/fluoride phase. Interestingly, no noticeable bulk iron oxyfluoride phase (FeOF) phase was observed even at fluorination temperature close to 300 °C. Instead, at fluorination temperatures below 250 °C, scanning transmission electron microscopy coupled with electron energy loss spectroscopy (STEM-EELS) and X-ray photoelectron spectroscopy (XPS) analysis showed surface fluorination with nominal composition, Fe 2O 3-xF 2x (x < 1). At fluorination temperatures of 275 °C, STEM-EELSmore » results showed porous interconnected nanodomains of FeF 3 and Fe 2O 3 coexisting within the same particle, and overall the particles become less dense after fluorination. We performed potentiometric intermittent titration and electrochemical impedance spectroscopy studies to understand the lithium diffusion (or apparent diffusion) in both the oxyfluoride and mixed phase FeF 3 + Fe 2O 3 composition, and correlate the results to their electrochemical performance. Finally and further, we analyze from a thermodynamical perspective, the observed formation of the majority fluoride phase (77% FeF 3) and the absence of the expected oxyfluoride phase based on the relative formation energies of oxide, fluoride, and oxyfluorides.« less

  15. Syntheses of Eu-Activated Alkaline Earth Fluoride MF2 (M=Ca, Sr) Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hong, Byung-Chul; Kawano, Katsuyasu

    2007-09-01

    The Eu2+ ion-activated CaF2 and SrF2 nanoparticles were prepared by the sol-gel technique assisted with the trifluoro-acetic acid (TFA), and were evaluated by X-ray diffraction (XRD), photoluminescence (PL), photoluminescence excitation (PLE) measurements and atomic force microscopy (AFM) observation. A modified reducing method based on the thermal-carbon reducing atmosphere (TCRA) treatment using activated carbon was proposed to realize the effective reduction from Eu3+ to Eu2+ ions, in which the nanoparticles showed a strong and broad luminescence due to the parity allowed 4f7-4f65d1 transition. From the XRD results, it was found that the average particle size proportionally increased in the range of 15 to 120 nm and 10 to 100 nm for CaF2 and SrF2, respectively, with increasing sintering temperatures 300-700 °C. The surface images of nanoparticles obtained by the AFM revealed that the grains with high uniformity grew with increasing TCRA temperatures. It was confirmed that the reduced Eu2+ ions were homogeneously dispersed with the critical distance 16-17 Å in the fluoride nanoparticles from the concentration quenching results.

  16. Decomposition pathways of polytetrafluoroethylene by co-grinding with strontium/calcium oxides.

    PubMed

    Qu, Jun; He, Xiaoman; Zhang, Qiwu; Liu, Xinzhong; Saito, Fumio

    2017-06-01

    Waste polytetrafluoroethylene (PTFE) could be easily decomposed by co-grinding with inorganic additive such as strontium oxide (SrO), strontium peroxide (SrO 2 ) and calcium oxide (CaO) by using a planetary ball mill, in which the fluorine was transformed into nontoxic inorganic fluoride salts such as strontium fluoride (SrF 2 ) or calcium fluoride (CaF 2 ). Depending on the kind of additive as well as the added molar ratio, however, the reaction mechanism of the decomposition was found to change, with different compositions of carbon compounds formed. CO gas, the mixture of strontium carbonate (SrCO 3 ) and carbon, only SrCO 3 were obtained as reaction products respectively with equimolar SrO, excess SrO and excess SrO 2 to the monomer unit CF 2 of PTFE were used. Excess amount of CaO was needed to effectively decompose PTFE because of its lower reactivity compared with strontium oxide, but it promised practical applications due to its low cost.

  17. A2B corroles: Fluorescence signaling systems for sensing fluoride ions.

    PubMed

    Yadav, Omprakash; Varshney, Atul; Kumar, Anil; Ratnesh, Ratneshwar Kumar; Mehata, Mohan Singh

    2018-05-19

    Four free base corroles, 1-4, A 2 B, (where A = nitrophenyl, and B = pentafluorophenyl, 2, 6-difluoro, 3, 4, 5-trifluoro and 4-carboxymethylphenyl group) have been synthesized, characterized and demonstrated as excellent chemosensor for the detection of fluoride ions selectively in toluene solution. The reported corroles shows highest quantum yield in free base form of porphyrinoid systems so far. All these corrole, 1-4, have the excellent ability to sense fluoride ion. Cumulative effect of static and dynamic factors is responsible for the quenching of fluorescence which indicates the detection of fluoride ion in solution. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Ab initio study of the diatomic fluorides FeF, CoF, NiF, and CuF.

    PubMed

    Koukounas, Constantine; Mavridis, Aristides

    2008-11-06

    The late-3d transition-metal diatomic fluorides MF = FeF, CoF, NiF, and CuF have been studied using variational multireference (MRCI) and coupled-cluster [RCCSD(T)] methods, combined with large to very large basis sets. We examined a total of 35 (2S+1)|Lambda| states, constructing as well 29 full potential energy curves through the MRCI method. All examined states are ionic, diabatically correlating to M(+)+F(-)((1)S). Notwithstanding the "eccentric" character of the 3d transition metals and the difficulties to accurately be described with all-electron ab initio methods, our results are, in general, in very good agreement with available experimental numbers.

  19. Ammonium iron(III) phosphate(V) fluoride, (NH4)0.5[(NH4)0.375K0.125]FePO4F, with ammonium partially substituted by potassium

    PubMed Central

    Wang, Lei; Zhou, Yan; Huang, Ya-Xi; Mi, Jin-Xiao

    2009-01-01

    The title compound, ammonium potassium iron(III) phosphate fluoride, (NH4)0.875K0.125FePO4F, is built from zigzag chains ∞ 1{[FeO4F2]7−}, with Fe3+ in a distorted octahedral coordination, extending along both the [011] and [01] directions. These chains are made up of alternating trans-[FeO4F2] and cis-[FeO4F2] octa­hedra via shared F-atom corners, and are linked by PO4 tetra­hedra, resulting in an open-framework structure with channels along the [010] and [100] directions. There are two crystallographically independent ammonium sites: one in the [010] channels and the other, partially substituted by K+ ions, in the [100] channels. The ammonium in the [010] channels is fixed to the framework via eight hydrogen bonds (six N—H⋯O and two N—H⋯F). PMID:21581466

  20. Rare earth/iron fluoride and methods for making and using same

    DOEpatents

    Schmidt, Frederick A.; Wheelock, John T.; Peterson, David T.

    1991-12-17

    A particulate mixture of Fe.sub.2 O.sub.3 and RE.sub.2 O.sub.3, where RE is a rare earth element, is reacted with an excess of HF acid to form an insoluble fluoride compound (salt) comprising REF.sub.3 and FeF.sub.3 present in solid solution in the REF.sub.3 crystal lattice. The REF.sub.3 /FeF.sub.3 compound is dried to render it usable as a reactant in the thermite reduction process as well as other processes which require an REF.sub.3 /FeF.sub.3 mixture. The dried REF.sub.3 /FeF.sub.3 compound comprises about 5 weight % to about 40 weight % of FeF.sub.3 and the balance REF.sub.3 to this end.

  1. Possibility to realize spin-orbit-induced correlated physics in iridium fluorides

    NASA Astrophysics Data System (ADS)

    Rossi, M.; Retegan, M.; Giacobbe, C.; Fumagalli, R.; Efimenko, A.; Kulka, T.; Wohlfeld, K.; Gubanov, A. I.; Moretti Sala, M.

    2017-06-01

    Recent theoretical predictions of "unprecedented proximity" of the electronic ground state of iridium fluorides to the SU(2) symmetric jeff=1 /2 limit, relevant for superconductivity in iridates, motivated us to investigate their crystal and electronic structure. To this aim, we performed high-resolution x-ray powder diffraction, Ir L3-edge resonant inelastic x-ray scattering, and quantum chemical calculations on Rb2[IrF6] and other iridium fluorides. Our results are consistent with the Mott insulating scenario predicted by Birol and Haule [Phys. Rev. Lett. 114, 096403 (2015), 10.1103/PhysRevLett.114.096403], but we observe a sizable deviation of the jeff=1 /2 state from the SU(2) symmetric limit. Interactions beyond the first coordination shell of iridium are negligible, hence the iridium fluorides do not show any magnetic ordering down to at least 20 K. A larger spin-orbit coupling in iridium fluorides compared to oxides is ascribed to a reduction of the degree of covalency, with consequences on the possibility to realize spin-orbit-induced strongly correlated physics in iridium fluorides.

  2. Nonstoichiometry in inorganic fluorides: 2. Ionic conductivity of nonstoichiometric M 1 - x R xF2 + x and R 1 - y M yF3 - y crystals ( M = Ca, Sr, Ba; R are rare earth elements)

    NASA Astrophysics Data System (ADS)

    Sobolev, B. P.; Sorokin, N. I.

    2014-11-01

    The peak manifestation of nonstoichiometry in fluoride systems in the number of phases with valuable properties and wide homogeneity ranges is 45 MF2- RF3 systems, where M = Ca, Sr, Ba and R are 15 rare earth elements from La to Lu and Y (with Pm and Sc excluded). A deviation from stoichiometry in crystals of the M 1 - x R xF2 + x (CaF2 fluorite type) and R 1 - y M yF3 - y (LaF3 tysonite type) phases is responsible for the fluorine superionic conductivity σ. The range of variation in σ with changes in the qualitative ( M, R) and quantitative ( x, y) compositions in both structure types is very wide. The σ value changes by a factor of 108 in the M 1 - x R xF2 + x phases (at 500 K) and by a factor of 106 in the R 1 - y M yF3 - y phases (at 293 K). Changing compositions, one can also obtain crystals with σ values large enough for their use as fluorine-conducting solid electrolytes. Phases promising for solid electrolytes were revealed in the MFm- RFn systems ( m < n ≤ 4), which were studied within the program of searching for new multicomponent fluoride materials at the Institute of Crystallography, Russian Academy of Sciences (IC RAS). Superionic conductivity is one of the peak manifestations of the influence of defect structure of nonstoichiometric crystals on their properties. The subject of this review is the results of the studies performed at the IC RAS on the ionic conductivity of single crystals of the M 1 - x R xF2 + x and R 1 - y M yF3 - y nonstoichiometric phases.

  3. In Vitro Comparison of the Effects of Diode Laser and CO2 Laser on Topical Fluoride Uptake in Primary Teeth

    PubMed Central

    Bahrololoomi, Zahra; Sorouri, Milad

    2015-01-01

    Objectives: Fluoride therapy is important for control and prevention of dental caries. Laser irradiation can increase fluoride uptake especially when combined with topical fluoride application. The objective of this study was to compare the effects of CO2 and diode lasers on enamel fluoride uptake in primary teeth. Materials and Methods: Forty human primary molars were randomly assigned to four groups (n=10). The roots were removed and the crowns were sectioned mesiodistally into buccal and lingual halves as the experimental and control groups. All samples were treated with 5% sodium fluoride (NaF) varnish. The experimental samples in the four groups were irradiated with 5 or 7W diode or 1 or 2W CO2 laser for 15 seconds and were compared with the controls in terms of fluoride uptake, which was determined using an ion selective electrode after acid dissolution of the specimens. Data were analyzed by SPSS version 16 using ANOVA treating the control measurements as covariates. Results: The estimated amount of fluoride uptake was 59.5± 16.31 ppm, 66.5± 14.9 ppm, 78.6± 12.43 ppm and 90.4± 11.51 ppm for 5W and 7 W diode and 1W and 2 W CO2 lasers, respectively, which were significantly greater than the values in the conventional topical fluoridation group (P<0.005). There were no significant differences between 7W diode laser and 1W CO2 laser, 5W and 7W diode laser, or 1W and 2W CO2 laser in this regard. Conclusion: The results showed that enamel surface irradiation by CO2 and diode lasers increases the fluoride uptake. PMID:27123018

  4. In Vitro Comparison of the Effects of Diode Laser and CO2 Laser on Topical Fluoride Uptake in Primary Teeth.

    PubMed

    Bahrololoomi, Zahra; Fotuhi Ardakani, Faezeh; Sorouri, Milad

    2015-08-01

    Fluoride therapy is important for control and prevention of dental caries. Laser irradiation can increase fluoride uptake especially when combined with topical fluoride application. The objective of this study was to compare the effects of CO2 and diode lasers on enamel fluoride uptake in primary teeth. Forty human primary molars were randomly assigned to four groups (n=10). The roots were removed and the crowns were sectioned mesiodistally into buccal and lingual halves as the experimental and control groups. All samples were treated with 5% sodium fluoride (NaF) varnish. The experimental samples in the four groups were irradiated with 5 or 7W diode or 1 or 2W CO2 laser for 15 seconds and were compared with the controls in terms of fluoride uptake, which was determined using an ion selective electrode after acid dissolution of the specimens. Data were analyzed by SPSS version 16 using ANOVA treating the control measurements as covariates. The estimated amount of fluoride uptake was 59.5± 16.31 ppm, 66.5± 14.9 ppm, 78.6± 12.43 ppm and 90.4± 11.51 ppm for 5W and 7 W diode and 1W and 2 W CO2 lasers, respectively, which were significantly greater than the values in the conventional topical fluoridation group (P<0.005). There were no significant differences between 7W diode laser and 1W CO2 laser, 5W and 7W diode laser, or 1W and 2W CO2 laser in this regard. The results showed that enamel surface irradiation by CO2 and diode lasers increases the fluoride uptake.

  5. Effect of Fluoride on the Morphology and Electrochemical Property of Co3O4 Nanostructures for Hydrazine Detection

    PubMed Central

    Gao, Wanlin; Wang, Qiang; Umar, Ahmad

    2018-01-01

    In this paper, we systematically investigated the influence of fluoride on the morphology and electrochemical property of Co3O4 nanostructures for hydrazine detection. The results showed that with the introduction of NH4F during the synthesis process of Co3O4, both Co(CO3)0.5(OH)·0.11H2O and Co(OH)F precursors would be generated. To understand the influence of F on the morphology and electrochemical property of Co3O4, three Co3O4 nanostructures that were respectively obtained from bare Co(CO3)0.5(OH)·0.11H2O, Co(OH)F and Co(CO3)0.5(OH)·0.11H2O mixtures and bare Co(OH)F were successfully synthesized. The electrochemical tests revealed the sensing performance of prepared Co3O4 nanostructures decreased with the increase in the fluoride contents of precursors. The more that dosages of NH4F were used, the higher crystallinity and smaller specific surface area of Co3O4 was gained. Among these three Co3O4 nanostructures, the Co3O4 that was obtained from bare Co(CO3)0.5(OH)·0.11H2O-based hydrazine sensor displayed the best performances, which exhibited a great sensitivity (32.42 μA·mM−1), a low detection limit (9.7 μΜ), and a wide linear range (0.010–2.380 mM), together with good selectivity, great reproducibility and longtime stability. To the best of our knowledge, it was revealed for the first time that the sensing performance of prepared Co3O4 nanostructures decreased with the increase in fluoride contents of precursors. PMID:29382161

  6. Effect of fluoride dentifrice and casein phosphopeptide-amorphous calcium phosphate cream with and without fluoride in preventing enamel demineralization in a pH cyclic study

    PubMed Central

    Sinfiteli, Priscila de Pinto; Coutinho, Thereza Christina Lopes; de Oliveira, Patrícia Regina Almeida; Vasques, Wesley Felisberto; Azevedo, Leandra Matos; Pereira, André Maues Brabo; Tostes, Monica Almeida

    2017-01-01

    Abstract Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) complexes are anticariogenic and capable of remineralizing the early stages of enamel lesions. The use of fluoride prevents dental decay and the association of CPP-ACP with fluoride can increase remineralization. Objective: To evaluate the effect of CPP-ACP and CPP-ACPF creams associated with a fluoride dentifrice to prevent enamel demineralization in a pH cyclic model. Material and Methods: Previously selected by surface microhardness (SH) analysis, human enamel blocks (n = 56) were submitted to daily treatment with dentifrice in a pH-cycling model. The enamel blocks were divided into four groups; G1: Crest™ Cavity Protection - Procter & Gamble (1,100 ppmF of NaF); G2: Crest™ +MI Paste (MP) - Recaldent™ GC Corporation Tokyo, Japan); G3: Crest™ + MI Paste Plus (MPP) - Recaldent™ 900 ppm as NaF, GC Corporation Tokyo, Japan), and G4: control, saliva. Specimens were soaked alternatively in a demineralizing solution and in artificial saliva for 5 d. The fluoride dentifrice, with proportion of 1:3 (w/w), was applied three times for 60 s after the remineralization period. The undiluted MP and MPP creams were applied for 3 m/d. After cycling, SH was re-measured and cross section microhardness measurements were taken. Results: The SH values observed for the groups G3 (257±70), G1 (205±70), and G2 (208±84) differed from the G4 group (98±110) (one-way ANOVA and Tukey's post hoc test). There were no differences between the groups G1xG2, G2xG3, and G1xG3 for demineralization inhibition. The percentage of volume mineral showed that, when applied with fluoride dentifrice, MPP was the most effective in preventing enamel demineralization at 50 µ from the outer enamel surface (Kruskal-Wallis and Mann Whitney p<0.05). Conclusion: Fluoride dentifrice associated with CPP-ACPF inhibited subsurface enamel demineralization. PMID:29211281

  7. Efficient removal of sulfur hexafluoride (SF6) through reacting with recycled electroplating sludge.

    PubMed

    Zhang, Jia; Zhou, Ji Zhi; Liu, Qiang; Qian, Guangren; Xu, Zhi Ping

    2013-06-18

    This paper reports that recycled electroplating sludge is able to efficiently remove greenhouse gas sulfur hexafluoride (SF6). The removal process involves various reactions of SF6 with the recycled sludge. Remarkably, the sludge completely removed SF6 at a capacity of 1.10 mmol/g (SF6/sludge) at 600 °C. More importantly, the evolved gases were SO2, SiF4, and a limited amount of HF, with no toxic SOF4, SO2F2, or SF4 being detected. These generated gases can be readily captured and removed by NaOH solution. The reacted solids were further found to be various metal fluorides, thus revealing that SF6 removal takes place by reacting with various metal oxides and silicate in the sludge. Moreover, the kinetic investigation revealed that the SF6 reaction with the sludge is a first-order chemically controlled process. This research thus demonstrates that the waste electroplating sludge can be potentially used as an effective removal agent for one of the notorious greenhouse gases, SF6.

  8. The OsO(3)F(+) and mu-F(OsO(3)F)(2)(+) cations: their syntheses and study by Raman and (19)F NMR spectroscopy and electron structure calculations and X-ray crystal structures of [OsO(3)F][PnF(6)] (Pn = As, Sb), [OsO(3)F][HF](2)[AsF(6)], [OsO(3)F][HF][SbF(6)], and [OsO(3)F][Sb(3)F(16)].

    PubMed

    Gerken, Michael; Dixon, David A; Schrobilgen, Gary J

    2002-01-28

    The fluoride ion donor properties of OsO(3)F(2) have been investigated. The salts [OsO(3)F][AsF(6)], [OsO(3)F][HF](2)[AsF(6)], mu-F(OsO(3)F)(2)[AsF(6)], [OsO(3)F][HF](2)[SbF(6)], and [OsO(3)F][HF][SbF(6)] have been prepared by reaction of OsO(3)F(2) with AsF(5) and SbF(5) in HF solvent and have been characterized in the solid state by Raman spectroscopy. The single-crystal X-ray diffraction studies of [OsO(3)F][AsF(6)] (P2(1)/n, a = 7.0001(11) A, c = 8.8629(13) A, beta = 92.270(7) degrees, Z = 4, and R(1) = 0.0401 at -126 degrees C), [OsO(3)F][SbF(6)] (P2(1)/c, a = 5.4772(14) A, b = 10.115(3) A, c = 12.234(3) A, beta = 99.321(5) degrees, Z = 4, and R(1) = 0.0325 at -173 degrees C), [OsO(3)F][HF](2)[AsF(6)] (P2(1)/n, a = 5.1491(9) A, b = 8.129(2) A, c = 19.636(7) A, beta = 95.099(7) degrees, Z = 4, and R(1) = 0.0348 at -117 degrees C), and [OsO(3)F][HF][SbF(6)] (Pc, a = 5.244(4) A, b = 9.646(6) A, c = 15.269(10) A, beta = 97.154(13) degrees, Z = 4, and R(1) = 0.0558 at -133 degrees C) have shown that the OsO(3)F(+) cations exhibit strong contacts to the anions and HF solvent molecules giving rise to cyclic, dimeric structures in which the osmium atoms have coordination numbers of 6. The reaction of OsO(3)F(2) with neat SbF(5) yielded [OsO(3)F][Sb(3)F(16)], which has been characterized by (19)F NMR spectroscopy in SbF(5) and SO(2)ClF solvents and by Raman spectroscopy and single-crystal X-ray diffraction in the solid state (P4(1)m, a = 10.076(6) A, c = 7.585(8) A, Z = 2, and R(1) = 0.0858 at -113 degrees C). The weak fluoride ion basicity of the Sb(3)F(16)(-) anion resulted in an OsO(3)F(+) cation (C(3)(v) point symmetry) that is well isolated from the anion and in which the osmium is four-coordinate. The geometrical parameters and vibrational frequencies of OsO(3)F(+), ReO(3)F, mu-F(OsO(3)F)(2)(+), (FO(3)Os--FPnF(5))(2), and (FO(3)Os--(HF)(2)--FPnF(5))(2) (Pn = As, Sb) have been calculated using density functional theory methods.

  9. Occurrence of fluoride in ground waters of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alabdulaaly, Abdulrahman I.; Al-Zarah, Abdullah I.; Khan, Mujahid A.

    2013-09-01

    The presence of elevated levels of fluoride in groundwater is considered a global problem. Fluoride in water derives mainly from dissolution of natural minerals in the rocks and soils with which water interacts. The most common fluorine-bearing minerals are fluorite, apatite and micas. Anthropogenic sources of fluoride include agricultural fertilizers and combustion of coal. In the present research, a survey of wells ( n = 1,060) was undertaken in all the 13 regions of the Kingdom of Saudi Arabia to assess the contained fluoride (F) levels. The results indicated variation in fluoride levels from 0.10 to 5.4 mg/L as F throughout the kingdom. The average fluoride levels in milligrams per liter as F were as follows in descending order: 1.80 (Hadwood Shamalyah), 1.37 (Hail), 1.33 (Eastern Province), 1.16 (Al Jouf), 1.11 (Qassim), 1.01 (Riyadh), 0.90 (Madina Al Munnawara), 0.81 (Tabouk), 0.74 (Makkah Al- Mukaramma), 0.73 (Jizan), 0.66 (Asir), 0.64 (Najran), and 0.60 (Al Baha). The results indicated that fluoride levels exceeded the USEPA maximum contaminant limits for drinking water (4 mg/L) in several wells ( n = 7) in different regions of the kingdom and that 13.96 % of the wells exceeded the World Health Organization recommended levels (1.5 mg/L). The results were also compared with the secondary USEPA contaminant standards of 2.0 mg/L for fluorides.

  10. Oral fluoride reservoirs and the prevention of dental caries.

    PubMed

    Vogel, Gerald Lee

    2011-01-01

    Current models for increasing the anti-caries effects of fluoride (F) agents emphasize the importance of maintaining a cariostatic concentration of F in oral fluids. The concentration of F in oral fluids is maintained by the release of this ion from bioavailable reservoirs on the teeth, oral mucosa and - most importantly, because of its association with the caries process - dental plaque. Oral F reservoirs appear to be of two types: (1) mineral reservoirs, in particular calcium fluoride or phosphate-contaminated 'calcium-fluoride-like' deposits; (2) biological reservoirs, in particular (with regard to dental plaque) F held to bacteria or bacterial fragments via calcium-fluoride bonds. The fact that all these reservoirs are mediated by calcium implies that their formation is limited by the low concentration of calcium in oral fluids. By using novel procedures which overcome this limitation, the formation of these F reservoirs after topical F application can be greatly increased. Although these increases are associated with substantive increases in salivary and plaque fluid F, and hence a potential increase in cariostatic effect, it is unclear if such changes are related to the increases in the amount of these reservoirs, or changes in the types of F deposits formed. New techniques have been developed for identifying and quantifying these deposits which should prove useful in developing agents that enhance formation of oral F reservoirs with optimum F release characteristics. Such research offers the prospect of decreasing the F content of topical agents while simultaneously increasing their cariostatic effect. Copyright © 2011 S. Karger AG, Basel.

  11. Colorimetric chemosensors based on diketopyrrolopyrrole for selective and reversible recognition of fluoride ions

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Yang, Xiaofeng; Sun, Guoxin; Zhang, Hao; Liu, Xiaolei; Zhu, Fengqiao; Qin, Shuchun; Zhao, Ziqi; Cui, Yu

    2018-06-01

    A series of colorimetric and reversible receptors for fluoride anions based on diketopyrrolopyrrole (DPP) were designed and synthesized successfully. The position of nitro substituent on the phenylhydrazide affected the alteration of photophysical properties to varying degrees. While the photoluminescence intensity of receptor 1 was weaker than that of receptor 2 and receptor 3 on account of the formation of intramolecular hydrogen bond deriving from oxygen atom of nitro substituent and hydrogen atom of hydrazide. The receptor 2 was a preferable chemosensor for responding fluoride anions. The fluorescence was quenched in the presence of fluoride anion resulted from the photo-induced electron transfer (PET) effect from the amide. The formation of deprotonation species, which produced by hydrazide Nsbnd H moiety and F- was answerable for the spectral changes. Especially, the spectral and color responses of receptors could be switched back and forth successively by adding F- and HSO4- anions in DMSO solution. These receptors could response fluoride anion sensitively, visually and selectively in a manner of reversible with a low determination.

  12. Peak exposures in aluminium potrooms: instrument development and field calibration.

    PubMed

    Carter, Stephanie R; Seixas, Noah S; Thompson, Mary Lou; Yost, Michael G

    2004-11-01

    Aluminium smelter potrooms are unique in that workplace exposures to hydrogen fluoride (HF), sulfur dioxide (SO2), and particulate matter occur simultaneously for some tasks. The peak exposures to these contaminants are of increasing interest in discovering the etiology of respiratory health effects. While a variety of direct-reading instruments are available for sulfur dioxide and particulate matter, only a few exist for hydrogen fluoride. The sensors in these HF instruments have a cross-sensitivity to sulfur dioxide making it difficult to monitor HF in an environment that also contains SO2. To overcome this problem, we assessed the simultaneous use of two electrochemical instruments: one with a SO2 sensor that does not respond to HF and the second with a hydrogen fluoride sensor that responds to both HF and SO2 in a 1 : 1 ratio, termed 'total acid gas'. The difference in the response between the two instruments should indicate the HF concentration: [HF + SO2] minus SO2 equals HF. The performance characteristics of this sampling train were evaluated in the laboratory through the generation of both HF and SO2 with permeation tubes. The response and recovery times for the SO2 only instrument were acceptable (6 and 15 s, respectively), but the "total acid gas" instrument exhibited both slow response and slow recovery approaching three and six min. The association between the traditional integrated filter sampling method and the direct-reading instrument for SO2 is 0.80 (Spearman's rho). The use of the digital filter strengthens the association between the HF direct-reading instrument and the integrated samples from 0.41 to 0.68.

  13. Effect of high-energy electron irradiation in an electron microscope column on fluorides of alkaline earth elements (CaF2, SrF2, and BaF2)

    NASA Astrophysics Data System (ADS)

    Nikolaichik, V. I.; Sobolev, B. P.; Zaporozhets, M. A.; Avilov, A. S.

    2012-03-01

    The effect of high-energy (150 eV) electron irradiation in an electron microscope column on crystals of fluorides of alkaline earth elements CaF2, SrF2, and BaF2 is studied. During structural investigations by electron diffraction and electron microscopy, the electron irradiation causes chemical changes in MF2 crystals such as the desorption of fluorine and the accumulation of oxygen in the irradiated area with the formation of oxide MO. The fluorine desorption rate increases significantly when the electron-beam density exceeds the threshold value of ˜2 × 103 pA/cm2). In BaF2 samples, the transformation of BaO into Ba(OH)2 was observed when irradiation stopped. The renewal of irradiation is accompanied by the inverse transformation of Ba(OH)2 into BaO. In the initial stage of irradiation of all MF2 compounds, the oxide phase is in the single-crystal state with a lattice highly matched with the MF2 matrix. When the irradiation dose is increased, the oxide phase passes to the polycrystalline phase. Gaseous products of MF2 destruction (in the form of bubbles several nanometers in diameter) form a rectangular array with a period of ˜20 nm in the sample.

  14. In vivo nuclear magnetic resonance studies of hepatic methoxyflurane metabolism. I. Verification and quantitation of methoxydifluoroacetate.

    PubMed

    Selinsky, B S; Perlman, M E; London, R E

    1988-05-01

    The elimination and metabolism of the fluorinated inhalation anesthetic methoxyflurane (2,2-dichloro-1,1-difluoroethyl methyl ether) in rats has been monitored using in vivo 19F nuclear magnetic resonance at 8.45 T. The elimination of methoxyflurane from rat liver as measured using a surface coil is a first order process when measured beginning 2-3 hr after the end of methoxyflurane anesthesia over a period of 12 hr. The rate constant for hepatic methoxyflurane elimination is dependent upon the duration of anesthesia, varying from 0.24 hr-1 for 15 min of anesthesia to 0.07 hr-1 for 1 hr of anesthesia. Methoxyflurane was shown to be metabolized in the liver to methoxydifluoroacetate using the surface coil method. No resonance for hepatic fluoride ion could be observed in vivo. Pure sodium methoxydifluoroacetate was synthesized in order to confirm the identity of the resonances in liver and urine. 19F NMR spectra of urine collected from anesthetized rats contain resonances for two methoxyflurane metabolites, methoxydifluoroacetate and inorganic fluoride. Studies with liver homogenates imply that fluoride is quickly cleared from the liver and eliminated from the body through the urine, explaining the inability to observe hepatic fluoride using a surface coil. The 19F NMR resonance for inorganic fluoride in urine was found to be broadened by interaction with metal ions, since the broadening could be eliminated by treatment with chelating resin.

  15. Selective inhibition of ammonium oxidation and nitrification-linked N2O formation by methyl fluoride and dimethyl ether

    USGS Publications Warehouse

    Miller, L.G.; Coutlakis, M.D.; Oremland, R.S.; Ward, B.B.

    1993-01-01

    Methyl fluoride (CH3F) and dimethyl ether (DME) inhibited nitrification in washed-cell suspensions of Nitrosomonas europaea and in a variety of oxygenated soils and sediments. Headspace additions of CH3F (10% [vol/vol]) and DME (25% [vol/vol]) fully inhibited NO2- and N2O production from NH4+ in incubations of N. europaea, while lower concentrations of these gases resulted in partial inhibition. Oxidation of hydroxylamine (NH2OH) by N. europaea and oxidation of NO2- by a Nitrobacter sp. were unaffected by CH3F or DME. In nitrifying soils, CH3F and DME inhibited N2O production. In field experiments with surface flux chambers and intact cores, CH3F reduced the release of N2O from soils to the atmosphere by 20- to 30-fold. Inhibition by CH3F also resulted in decreased NO3- + NO2- levels and increased NH4+ levels in soils. CH3F did not affect patterns of dissimilatory nitrate reduction to ammonia in cell suspensions of a nitrate- respiring bacterium, nor did it affect N2O metabolism in denitrifying soils. CH3F and DME will be useful in discriminating N2O production via nitrification and denitrification when both processes occur and in decoupling these processes by blocking NO2- and NO3- production.

  16. Impact of CO2 laser and stannous fluoride on primary tooth erosion.

    PubMed

    Rocha, Cristiane Tomaz; Turssi, Cecilia Pedroso; Rodrigues-Júnior, Antonio Luiz; Corona, Silmara Aparecida Milori

    2016-04-01

    This study evaluated in vitro the effect of input power of CO2 laser, either associated or not to stannous fluoride (SnF2) gel, for the control of intrinsic erosion in primary teeth. One hundred four enamel slabs (3 × 3 × 2 mm) from human primary molars were flattened and polished. Adhesive tapes were placed on their surface leaving a window of 3 × 1 mm. Slabs were then cycled four times in 0.01 M hydrochloric acid (pH 2, 2 min) and in artificial saliva (2 h) for creation of erosive lesions. Specimens were randomly assigned into eight groups (n = 13) according to fluoride application [absent (control) or 0.4% stannous fluoride gel (SnF2)] and input power of CO2 laser [unlased (control), 0.5, 1.0 or 1.5 W]. The CO2 laser irradiation was performed in an ultra-pulse mode (100 μs of pulse duration), 4-mm working distance, for 10 s. Specimens were then submitted to further erosive episodes for 5 days and evaluated for enamel relative permeability. Fluoride did not show any protective effect for any of the laser-treated groups or control (p = 0.185). However, a significant effect was detected for input power of CO2 laser (p = 0.037). Tukey's test showed that there was a significant statistically difference between specimens irradiated with 0.5 and 1.5 W (p = 0.028). The input power of 0.5 W showed lower permeability. Variation of input power CO2 laser can influence enamel permeability, at the power of 1.5 W which promoted greater permeability.

  17. The efficacy of amine fluoride/stannous fluoride in the suppression of morning breath odour.

    PubMed

    Quirynen, Marc; Avontroodt, Pieter; Soers, Catherine; Zhao, Hong; Pauwels, Martine; Coucke, Wim; van Steenberghe, Daniel

    2002-10-01

    Breath odour is a complaint encountered worldwide, often linked to microbial overload in the oral cavity. This double blind, crossover, randomised study assessed the efficacy of several antiseptic mouthrinses or slurry vs. a control solution in the prevention of morning bad breath during an experimental period of 7 days without mechanical plaque control. Sixteen dental students with a healthy periodontium abolished, after a thorough professional cleaning, all means of mechanical plaque control during five experimental periods of 7 days, interleaved by washout periods of at least 3 weeks. During each experimental period, as the only oral hygiene measure, the students rinsed twice a day with one of the following formulations (in a randomised order): a 0.2% chlorhexidine-alcohol mouthrinse (CHX-Alc), a 0.05% CHX + 0.05% cetylpyridinium chloride + 0.14% zinc lactate mouthrinse (CHX-CPC-Zn), an amine fluoride/stannous fluoride (125 ppm F-/125 ppm F-) containing mouthrinse (AmF/SnF2Mr), a slurry of a tooth paste (AmF/SnF2Sl) containing amine fluoride (350 ppm F-) and stannous fluoride (1050 ppm F-) and a placebo solution (placebo). At days 0, 3 and 7, morning breath was scored via VSC level measurements of the mouth air, and organoleptic ratings of the mouth air and tongue coating. At the same visits both the degree of gingival inflammation and the de novo plaque formation were rated. At the end of each period a questionnaire for subjective ratings was completed and microbiological samples were taken from the tongue dorsum, the saliva and the supragingival plaque for anaerobic and aerobic culturing. Although oral hygiene during the experimental periods was limited to rinsing, bad breath parameters systematically improved (P < 0.001) with the three mouthrinses (CHX-Alc, CHX-CPC-Zn, AmF/SnF2Mr), with a superiority of the CHX-CPC-Zn solution when only VSC values were considered (P < 0.003). The AmF/SnF2 slurry and the placebo solution showed only minor changes with time. The three mouthrinses reduced significantly (P < 0.001) the bacterial load (aerobic & anaerobic) in the saliva (>or= 0.5 log reduction with a superiority (P < 0.005) for the CHX-Alc when compared to the two others). Changes in the bacterial load on the tongue dorsum could only be detected for the CHX-Alc solution (0.5 log). The antibacterial effect of the placebo solution and the slurry were negligible. The composition of microflora on the other hand did not reveal significant changes. The de novo supragingival plaque formation was significantly (P < 0.05) inhibited by the three mouthrinses with a slight superiority for the CHX-Alc solution. The degree of gingival inflammation at day 7 remained low (< 0.16) for all products. The CHX-Alc solution scored significantly worse for the subjective evaluation (questionnaires) concerning taste and sensitivity of tongue). The results of this study demonstrate that morning breath odour can be successfully reduced by the sole twice daily use of CHX-Alc, CHX-CPC-Zn or AmF/SnF2Mr mouthrinses, which all significantly reduced the bacterial load in the saliva and retarded the de novo plaque formation.

  18. Ternary metal fluorides as high-energy cathodes with low cycling hysteresis

    DOE PAGES

    Wang, Feng; Kim, Sung -Wook; Seo, Dong -Hwa; ...

    2015-03-26

    In this study, transition metal fluorides are an appealing alternative to conventional intercalation compounds for use as cathodes in next-generation lithium batteries due to their extremely high capacity (3–4 times greater than the current state-of-the-art). However, issues related to reversibility, energy efficiency and kinetics prevent their practical application. Here we report on the synthesis, structural and electrochemical properties of ternary metal fluorides (M 1 yM 2 1-yF x: M 1, M 2 = Fe, Cu), which may overcome these issues. By substituting Cu into the Fe lattice, forming the solid–solution Cu yFe 1-yF 2, reversible Cu and Fe redox reactionsmore » are achieved with surprisingly small hysteresis (<150 mV). This finding indicates that cation substitution may provide a new avenue for tailoring key electrochemical properties of conversion electrodes. In conclusion, although the reversible capacity of Cu conversion fades rapidly, likely due to Cu + dissolution, the low hysteresis and high energy suggest that a Cu-based fluoride cathode remains an intriguing candidate for rechargeable lithium batteries.« less

  19. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study.

    PubMed

    Derlin, Thorsten; Tóth, Zoltán; Papp, László; Wisotzki, Christian; Apostolova, Ivayla; Habermann, Christian R; Mester, Janos; Klutmann, Susanne

    2011-07-01

    Formation and progression of atherosclerotic plaque is a dynamic and complex process involving various pathophysiologic steps including inflammation and calcification. The purpose of this study was to compare macrophage activity as determined by (18)F-FDG PET and ongoing mineral deposition as measured by (18)F-sodium fluoride PET in atherosclerotic plaque and to correlate these findings with calcified plaque burden as assessed by CT. Forty-five patients were examined by whole-body (18)F-FDG PET, (18)F-sodium fluoride PET, and CT. Tracer uptake in various arterial segments was analyzed both qualitatively and semiquantitatively by measuring the blood-pool-corrected standardized uptake value (target-to-background ratio [TBR]). The pattern of tracer uptake in atherosclerotic lesions was compared after color-coded multistudy image fusion of PET and CT studies. The Fisher exact test and the Spearman correlation coefficient r(s) were used for statistical analysis of image-based results and cardiovascular risk factors. Intra- and interrater reproducibility were evaluated using the Cohen κ. (18)F-sodium fluoride uptake was observed at 105 sites in 27 (60%) of the 45 study patients, and mean TBR was 2.3 ± 0.7. (18)F-FDG uptake was seen at 124 sites in 34 (75.6%) patients, and mean TBR was 1.5 ± 0.3. Calcified atherosclerotic lesions were observed at 503 sites in 34 (75.6%) patients. Eighty-one (77.1%) of the 105 lesions with marked (18)F-sodium fluoride uptake and only 18 (14.5%) of the 124 lesions with (18)F-FDG accumulation were colocalized with arterial calcification. Coincident uptake of both (18)F-sodium fluoride and (18)F-FDG was observed in only 14 (6.5%) of the 215 arterial lesions with radiotracer accumulation. PET/CT with (18)F-FDG and (18)F-sodium fluoride may allow evaluation of distinct pathophysiologic processes in atherosclerotic lesions and might provide information on the complex interactions involved in formation and progression of atherosclerotic plaque.

  20. Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guoping, E-mail: guoping.lin@femto-st.fr; Diallo, Souleymane; Saleh, Khaldoun

    2014-12-08

    We report the observation of stimulated Brillouin scattering and lasing at 1550 nm in barium fluoride (BaF{sub 2}) crystal. Brillouin lasing was achieved with ultra-high quality (Q) factor monolithic whispering gallery mode mm-size disk resonators. Overmoded resonators were specifically used to provide cavity resonances for both the pump and all Brillouin Stokes waves. Single and multiple Brillouin Stokes radiations with frequency shift ranging from 8.2 GHz up to 49 GHz have been generated through cascaded Brillouin lasing. BaF{sub 2} resonator-based Brillouin lasing can find potential applications for high-coherence lasers and microwave photonics.

  1. Corrosive effects of fluoride on titanium under artificial biofilm.

    PubMed

    Fukushima, Azusa; Mayanagi, Gen; Sasaki, Keiichi; Takahashi, Nobuhiro

    2018-01-01

    This study aimed to investigate the effect of sodium fluoride (NaF) on titanium corrosion using a biofilm model, taking environmental pH into account. Streptococcus mutans cells were used as the artificial biofilm, and pH at the bacteria-titanium interface was monitored after the addition of 1% glucose with NaF (0, 225 or 900ppmF) at 37°C for 90min. In an immersion test, the titanium samples were immersed in the NaF solution (0, 225 or 900ppm F; pH 4.2 or 6.5) for 30 or 90min. Before and after pH monitoring or immersion test, the electrochemical properties of the titanium surface were measured using a potentiostat. The amount of titanium eluted into the biofilm or the immersion solution was measured using inductively coupled plasma mass spectrometry. The color difference (ΔE*ab) and gloss of the titanium surface were determined using a spectrophotometer. After incubation with biofilm, pH was maintained at around 6.5 in the presence of NaF. There was no significant change in titanium surface and elution, regardless of the concentration of NaF. After immersion in 900ppm NaF solution at pH 4.2, corrosive electrochemical change was induced on the surface, titanium elution and ΔE*ab were increased, and gloss was decreased. NaF induces titanium corrosion in acidic environment in vitro, while NaF does not induce titanium corrosion under the biofilm because fluoride inhibits bacterial acid production. Neutral pH fluoridated agents may still be used to protect the remaining teeth, even when titanium-based prostheses are worn. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  2. Fluoride concentration in saliva after use of oral hygiene products.

    PubMed

    Campus, Guglielmo; Lallai, Maria Rosario; Carboni, Roberto

    2003-01-01

    The purpose of this in vivo, single-blind, randomized study was to compare fluoride concentrations in saliva of patients treated with oral hygiene products containing different fluoride salts. The study involved 104 students attending the University of Sassari. Participants were subdivided: group A used a sodium monofluorophosphate (NaMFP) toothpaste; groups B and C used an amine fluoride (AmF) toothpaste; group D used a toothpaste and a mouthwash both based on AmF, and group E used a toothpaste and a varnish both on an NaMFP base. Samples of unstimulated saliva were collected at baseline (t(0)), at the end of the 20 days' treatment phase (t(1)) and after 24 h, during which the volunteers refrained from any oral hygiene measure (t(2)). Saliva fluoride concentrations were measured using an ion-specific electrode. All measurements were made in triplicate and analysed statistically using ANOVA. In saliva, the mean fluoride concentration increased significantly in each treatment group. In conclusion, the fluoride concentration in saliva can be maintained to an optimal therapeutic level with the regular use of fluoridated products. Copyright 2003 S. Karger AG, Basel

  3. The effect of increasing sodium fluoride concentrations on erosion and attrition of enamel and dentine in vitro.

    PubMed

    Austin, R S; Rodriguez, J M; Dunne, S; Moazzez, R; Bartlett, D W

    2010-10-01

    To investigate the effect of an aqueous sodium fluoride solution of increasing concentration on erosion and attrition of enamel and dentine in vitro. Enamel and dentine sections from caries-free human third molars were polished flat and taped (exposing a 3 mm x 3 mm area) before being randomly allocated to 1 of 5 groups per substrate (n=10/gp): G1 (distilled water control); G2 (225 ppm NaF); G3 (1450 ppm NaF); G4 (5000 ppm NaF); G5 (19,000 ppm NaF). All specimens were subjected to 5, 10 and 15 cycles of experimental wear [1 cycle=artificial saliva (2h, pH 7.0)+erosion (0.3% citric acid, pH 3.2, 5 min)+fluoride/control (5 min)+attrition (60 linear strokes in artificial saliva from enamel antagonists loaded to 300 g)]. Following tape removal, step height (SH) in mum was measured using optical profilometry. When the number of cycles increased the amount of tooth surface loss increased significantly in enamel and dentine after attrition and erosion and for dentine after attrition. Attrition and erosion resulted in greater surface loss than attrition alone after 15 cycles of experimental wear of enamel. 5000 ppm and 19,000 ppm sodium fluoride solutions had a protective effect on erosive and attritional enamel tooth wear in vitro, however no other groups showed significant differences. The more intensive the fluoride regime the more protection was afforded to enamel from attrition and erosion. However, in this study no such protective effect was demonstrated for dentine. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Effectiveness of a Toothpaste with Low Fluoride Content Combined with Trimetaphosphate on Dental Biofilm and Enamel Demineralization in situ.

    PubMed

    Takeshita, Eliana M; Danelon, Marcelle; Castro, Luciene P; Sassaki, Kikue T; Delbem, Alberto C B

    2015-01-01

    The aim of the present study was to evaluate in situ whether a toothpaste with low fluoride associated with sodium trimetaphosphate (TMP) would provide similar effect to that of a 1,100 ppm F toothpaste. This crossover double-blind study consisted of 4 phases (14 days each), during which 10 volunteers wore oral appliances containing 4 enamel bovine blocks. The cariogenic challenge was performed by the application of a 20% sucrose solution (6×/day). The toothpaste treatments (2×/day) were: placebo, 500 ppm F, 500 ppm F plus 1% TMP, and 1,100 ppm F. At the end, enamel mineral loss and biofilm composition were analyzed. The toothpaste with 500 ppm F plus 1% TMP showed the lowest mineral loss (p < 0.05). Regarding the fluoride and calcium concentrations in the enamel and in the biofilm, there were no significant differences between 500 ppm F plus 1% TMP, and 1,100 ppm F toothpastes (p > 0.569), but they were significantly different when compared to toothpaste with 500 ppm F (p < 0.050). The addition of 1% TMP to a low-fluoride toothpaste reduces enamel demineralization in situ similar to a 1,100 ppm F toothpaste. © 2015 S. Karger AG, Basel.

  5. The accumulation of femtosecond laser radiation energy in crystals of lithium fluoride

    NASA Astrophysics Data System (ADS)

    Dresvyanskiy, V. P.; Glazunov, D. S.; Alekseev, S. V.; Losev, V. F.; Chadraa, B.; Bukhtsooj, O.; Baasankhuu, N.; Zandan, B.; Martynovich, E. F.

    2015-12-01

    We present the results of studies of energy accumulation during the non-destructive interaction of extremely intense near infrared laser radiation with model wide band gap dielectric crystals of lithium fluoride, when the intensity of pulses is sufficient for effective highly nonlinear absorption of light and for the excitation of the electron subsystem of matter and the energy of pulses is still not sufficient for significant heating, evaporation, laser breakdown or other destruction to occur. We studied the emission of energy in the form of light sum of thermally stimulated luminescence accumulated under conditions of self-focusing and multiple filamentation of femtosecond laser radiation. It was established that it's the F2 and F3+ color centers and supplementary to them centers of interstitial type which accumulate energy under the action of a single femtosecond laser pulses. When irradiated by series of pulses the F3, F3- and F4 centers additionally appear. F2 centers are the main centers of emission in the process of thermally stimulated luminescence of accumulated energy. The interstitial fluoride ions (I-centers) are the kinetic particles. They split off from the X3- centers in the result of thermal decomposition of latter on the I-centers and molecules X20. I-centers recombine with F3+ centers and form F2 centers in excited state. The latter produce the characteristic emission spectrum emitted in the form of thermally stimulated luminescence.

  6. An easy prepared dual-channel chemosensor for selective and instant detection of fluoride based on double Schiff-base

    NASA Astrophysics Data System (ADS)

    Leng, Yan-Li; Zhang, Jian-Hui; Li, Qiao; Zhang, You-Ming; Lin, Qi; Yao, Hong; Wei, Tai-Bao

    2016-10-01

    A colorimetric and fluorescent dual-channel fluoride chemosensor N,N‧-bis (4-diethylaminosalicylidene) hydrazine (sensor S) bearing two imine groups has been designed and synthesized. This structurally simple probe displays rapid response and high selectivity for fluoride over other common anions (Cl-, Br-, I-, AcO-, H2PO4-, HSO4-, ClO4-, CN- and SCN-) in a highly polar aqueous DMSO solution. Mechanism studies suggested that the sensor firstly combined with F- through hydrogen bonds and then experienced the deprotonation process at higher concentrations of F- anion to the two Ar-OH groups. The detection limit was 5.78 × 10- 7 M of F-, which points to the high detection sensitivity. Test strips based on sensor S were fabricated, which could act as a convenient and efficient F- test kit to detect F- for ;in-the-field; measurement.

  7. Fluoride and calcium-phosphate coated sponges of the magnesium alloy AX30 as bone grafts: a comparative study in rabbits.

    PubMed

    Lalk, Mareike; Reifenrath, Janin; Angrisani, Nina; Bondarenko, Alexandr; Seitz, Jan-Marten; Mueller, Peter P; Meyer-Lindenberg, Andrea

    2013-02-01

    Biocompatibility and degradation of magnesium sponges (alloy AX30) with a fluoride (MgF(2) sponge, n = 24, porosity 63 ± 6 %, pore size 394 ± 26 μm) and with a fluoride and additional calcium-phosphate coating (CaP sponge, n = 24, porosity 6 ± 4 %, pore size 109 ± 37 μm) were evaluated over 6, 12 and 24 weeks in rabbit femurs. Empty drill holes (n = 12) served as controls. Clinical and radiological examinations, in vivo and ex vivo μ-computed tomographies and histological examinations were performed. Clinically both sponge types were tolerated well. Radiographs and XtremeCT evaluations showed bone changes comparable to controls and mild gas formation. The μCT80 depicted a higher and more inhomogeneous degradation of the CaP sponges. Histomorphometrically, the MgF(2) sponges resulted in the highest bone and osteoid fractions and were integrated superiorly into the bone. Histologically, the CaP sponges showed more inflammation and lower vascularization. MgF(2) sponges turned out to be better biocompatible and promising, biodegradable bone replacements.

  8. Synthesis of Organotitanium(IV) Fluoride Phosphates and the Crystal Structure of [(C5Me4Et)TiF(µ-F){µ-O2P(OSiMe3)2}]2.

    PubMed

    Pevec, Andrej; Demšar, Alojz; Pinkas, Jiri; Necas, Marek

    2012-03-01

    The complexes [(C5Me4R)TiF(µ-F)µ-O2P(OSiMe3)2]2 [R = Me (1), Et (2)] were prepared from [(C5Me4R)TiF3]2, (R = Me, Et) and OP(OSiMe3)3. The molecular structure of 2 has been determined by single-crystal X-ray diffraction analysis. An eight-membered Ti2O4P2 metallacycle bridged by two fluorine ligands between two titanium centers is observed.

  9. A novel fluoride ion colorimetric chemosensor based on coumarin.

    PubMed

    Zhuang, Xiaoqing; Liu, Weimin; Wu, Jiasheng; Zhang, Hongyan; Wang, Pengfei

    2011-09-01

    A novel visible colorimetric sensor (L1) with high selectivity for fluoride ion based on coumarin has been synthesized by a simple modification of our earlier report. The chemosensor L1 shows an obvious color change from yellow to blue upon addition of fluoride ion with a large red shift of 145 nm in acetonitrile, and without interference of other anions such as Cl-, Br-, I-, NO3-, H2PO4-, HSO4-, and AcO-. The investigation of 1H NMR spectrum titration indicates the proposed mechanism is that F- first establishes a hydrogen bonding interaction with L1, and then the formation of [F-H-F]- induces deprotonation. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. A cross-sectional study to assess the intelligence quotient (IQ) of school going children aged 10-12 years in villages of Mysore district, India with different fluoride levels.

    PubMed

    Sebastian, Shibu Thomas; Sunitha, S

    2015-01-01

    Besides dental and skeletal fluorosis, excessive fluoride intake can also affect the central nervous system without first causing the physical deformities associated with skeletal fluorosis. With the existence of widespread endemic fluorosis in India, the possible adverse effect of elevated fluoride in drinking water on the Intelligence Quotient (IQ) level of children is a potentially serious public health problem. This study assessed the Intelligence Quotient (IQ) of school going children aged 10-12 years in villages of Mysore district with different fluoride levels. In this cross-sectional study, 405 school children aged 10-12 years were selected from three villages in Mysore district with normal fluoride (1.20 mg F/l), low fluoride (0.40 mg F/l) and high fluoride (2.20 mg F/l) in their water supplies. A pre designed questionnaire was used to collect the required data for the survey which included socio demographic details, oral hygiene practices, diet history, body mass index and dental fluorosis. Intelligence Quotient was assessed using Raven's colored Progressive Matrices Test. In bivariate analysis, significant relationships were found between water fluoride levels and Intelligence Quotient of school children (P < 0.05). In the high fluoride village, the proportion of children with IQ below 90, i.e. below average IQ was larger compared to normal and low fluoride village. Age, gender, parent education level and family income had no significant association with IQ. School children residing in area with higher than normal water fluoride level demonstrated more impaired development of intelligence when compared to school children residing in areas with normal and low water fluoride levels. Thus, children's intelligence can be affected by high water fluoride levels.

  11. Dental fluorosis in children in areas with fluoride-polluted air, high-fluoride water, and low-fluoride water as well as low-fluoride air: a study of deciduous and permanent teeth in the Shaanxi province, China.

    PubMed

    Ruan, Jian Ping; Bårdsen, Asgeir; Astrøm, Anne Nordrehaug; Huang, Rui Zhe; Wang, Zhi Lun; Bjorvatn, Kjell

    2007-04-01

    The aim of the study was to assess dental fluorosis (DF) in the deciduous and permanent teeth of children in areas with high-F coal (area A) and high-F water (area C) compared to children from area B, with low-F water and coal. 596 children were examined. DF was assessed by TF-score. F-content of indoor air, drinking water, coal, tea, rice, and maize was analyzed. F-content of air and coal ranged from 3.2 microg/m(3) and 25.8 mg/kg (area B), 3.8 microg/m(3) and 36.3 mg/kg (area C) to 56.8 microg/m(3) and 713.1 mg/kg (area A). Likewise, mean F-content of water ranged from approximately 0.50 mg/l (areas A and B) to 3.64 mg/l (area C). F-content of tea leaves was similar in all three areas. Maize and rice contained <5 mg F/kg. Prevalence of primary teeth with DF was 49.1%, 2.0%, and 66.8% in areas A, B, and C, respectively. Similarly, DF was found in 96.7% (area A), 19.6% (area B), and 94.4% (area C) of the permanent teeth. Severe fluorosis (TF > or = 5) was found in area A (47.0%) and area C (36.1%) (p<0.01). Early erupting teeth had slightly higher mean TF-scores in area A than in area C. DF was prevalent in both dentitions in areas A and C. Similarity in percentages of DF may indicate that indoor air with approximately 60 microg F/m(3) and drinking water with 3.6 mg F/L are similarly toxic to developing permanent teeth. The percentage of deciduous teeth with DF was significantly lower in area A compared to area C. Where low-F coal and low-F water were used (area B), approximately 20% of permanent teeth had DF, indicating a relatively low tolerance to fluoride in Chinese children brought up under the present living conditions.

  12. Surface chemistry associated with the cooling and subaerial weathering of recent basalt flows

    USGS Publications Warehouse

    White, A.F.; Hochella, M.F.

    1992-01-01

    The surface chemistry of fresh and weathered historical basalt flows was characterized using surface-sensitive X-ray photoelectron spectroscopy (XPS). Surfaces of unweathered 1987-1990 flows from the Kilauea Volcano, Hawaii, exhibited variable enrichment in Al, Mg, Ca, and F due to the formation of refractory fluoride compounds and pronounced depletion in Si and Fe from the volatilization of SiF4 and FeF3 during cooling. These reactions, as predicted from shifts in thermodynamic equilibrium with temperature, are induced by diffusion of HF from the flow interiors to the cooling surface. The lack of Si loss and solid fluoride formation for recent basalts from the Krafla Volcano, Iceland, suggest HF degassing at higher temperatures. Subsequent short-term subaerial weathering reactions are strongly influenced by the initial surface composition of the flow and therefore its cooling history. Successive samples collected from the 1987 Kilauea flow demonstrated that the fluoridated flow surfaces leached to a predominantly SiO2 composition by natural weathering within one year. These chemically depleted surfaces were also observed on Hawaiian basalt flows dating back to 1801 AD. Solubility and kinetic models, based on thermodynamic and kinetic data for crystalline AlF3, MgF2, and CaF2, support observed elemental depletion rates due to chemical weathering. Additional loss of alkalis from the Hawaiian basalt occurs from incongruent dissolution of the basalt glass substrate during weathering. ?? 1992.

  13. The influence of HF treatment on corrosion resistance and in vitro biocompatibility of Mg-Zn-Zr alloy

    NASA Astrophysics Data System (ADS)

    Ye, Xin-Yu; Chen, Min-Fang; You, Chen; Liu, De-Bao

    2010-06-01

    The samples made of a Mg-2.5wt.%Zn-0.5wt.%Zr alloy were immersed in the 20% hydrofluoric acid (HF) solution at room temperature for different time, with the aim of improving the properties of magnesium (Mg) alloy in applications as biomaterials. The corrosion resistance and in vitro biocompatibility of untreated and fluoride-coated samples were investigated. The results show that the optimum process is to immerse Mg alloys in the 20% HF solution for 6 h. After the immersion, a dense magnesium fluoride (MgF2) coating of 0.5 μm was synthesized on the surface of Mg-Zn-Zr alloy. Polarization tests recorded a reduction in the corrosion current density from 2.10 to 0.05 μA/cm2 due to the MgF2 protective coating. Immersion tests in the simulated body fluid (SBF) also reveal a much milder corrosion on the fluoride-coated samples, and its corrosion rate was calculated to be 0.05 mm/yr. Hemolysis test suggests that the conversion coated Mg alloy has no obvious hemolysis reaction. The hemolysis ratio (HR) of the samples decreases from 11.34% to 1.86% with the HF treatment, which meets the requirements of biomaterials (HR < 5%). The coculture of 3T3 fibroblasts with Mg alloy results in the adhesion and proliferation of cells on the surface of fluoride-coated samples. All the results show that the MgF2 conversion coating would markedly improve the corrosion resistance and in vitro biocompatibility of Mg-Zn-Zr alloy.

  14. Interactive effects of soil acidity and fluoride on soil solution aluminium chemistry and barley (Hordeum vulgare L.) root growth.

    PubMed

    Manoharan, V; Loganathan, P; Tillman, R W; Parfitt, R L

    2007-02-01

    A greenhouse study was conducted to determine if concentrations of fluoride (F), which would be added to acid soils via P fertilisers, were detrimental to barley root growth. Increasing rates of F additions to soil significantly increased the soil solution concentrations of aluminium (Al) and F irrespective of the initial adjusted soil pH, which ranged from 4.25 to 5.48. High rates of F addition severely restricted root growth; the effect was more pronounced in the strongly acidic soil. Speciation calculations demonstrated that increasing rates of F additions substantially increased the concentrations of Al-F complexes in the soil. Stepwise regression analysis showed that it was the combination of the activities of AlF2(1+) and AlF(2+) complexes that primarily controlled barley root growth. The results suggested that continuous input of F to soils, and increased soil acidification, may become an F risk issue in the future.

  15. Effect of phytate and zinc ions on fluoride toothpaste efficacy using an in situ caries model.

    PubMed

    Parkinson, Charles R; Burnett, Gary R; Creeth, Jonathan E; Lynch, Richard J M; Budhawant, Chandrashekhar; Lippert, Frank; Hara, Anderson T; Zero, Domenick T

    2018-06-01

    To compare and explore the dose-response of phytate-containing 1150 ppm fluoride toothpastes on model caries lesions and to determine the impact of zinc ions. This was a single-centre, randomised, blinded (examiner/laboratory analyst), six-treatment, four-period crossover, in situ study in adults with a removable bilateral maxillary partial denture. Study treatments were toothpastes containing: 0.425% phytate/F; 0.85% phytate/F; 0.85% phytate/Zn/F; F-only; Zn/F and a 0% F placebo. Where present, F was 1150 ppm as NaF; Zn was 0.3% as ZnCl 2 . Human enamel specimens containing early-stage, surface-softened (A-lesions) or more advanced, subsurface (B-lesions) caries lesions were placed into the buccal flanges of participants' modified partial denture (one of each lesion type per side). A-lesions were removed after 14 days of twice-daily treatment use; B-lesions were removed after a further 14 days. A-lesions were analysed for surface microhardness recovery. Both lesion types were analysed by transverse microradiography and for enamel fluoride uptake, with B-lesions additionally analysed by quantitative light-induced fluorescence. Comparison was carried out using an analysis of covariance model. Statistically significant differences between 1150 ppm F and the placebo toothpastes (p < 0.05) were shown for all measures, validating the model. No differences between fluoride toothpastes were observed for any measure with little evidence of a dose-response for phytate. Study treatments were generally well-tolerated. Results suggest phytate has little impact on fluoride's ability to promote early-stage lesion remineralisation or prevent more advanced lesion demineralisation in this in situ caries model. Similarly, results suggest zinc ions do not impair fluoride efficacy. Toothpastes may contain therapeutic or cosmetic agents that could interfere with fluoride's caries prevention efficacy. The present in situ caries study has demonstrated that phytate, added to provide enhanced extrinsic stain removal/prevention, and zinc, added to inhibit malodour, do not impair fluoride efficacy. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Effect of low-fluoride toothpastes combined with hexametaphosphate on in vitro enamel demineralization.

    PubMed

    da Camara, Danielle Mendes; Miyasaki, Marcela Lumi; Danelon, Marcelle; Sassaki, Kikue Takebayashi; Delbem, Alberto Carlos Botazzo

    2014-03-01

    The aim of this study was to evaluate the anticaries effect of low-fluoride toothpastes combined with hexametaphosphate (HMP) on enamel demineralization. Bovine enamel blocks were subjected to pH cycling and treatment with toothpaste's slurries (15 groups; 2×/day). Toothpaste mixtures contained the following: no fluoride (F) plus HMP (from 0 to 3.0%); 250ppm F plus HMP (from 0 to 3.0%); 500ppm F; 1100ppm F; and a commercial toothpaste (1100ppm F). After pH cycling, surface and cross-sectional hardness, as well as F present in the enamel were determined. The demineralization depth was analyzed using polarized light microscopy. The variables were subjected to 1-way ANOVA, followed by Student-Newman-Keuls' test (p<0.05). In the absence of fluoride, 0.5% HMP promoted the lowest mineral loss and its effect was similar to that of a 250ppm F toothpaste (p>0.05). The combination of 0.5% HMP and 250ppm F resulted in lower mineral loss (p<0.05) and similar lesion depth when compared to the 1100ppm F toothpaste (p>0.05). To conclude, the combination of 0.5% HMP and 250ppm fluoride in a toothpaste has a similar inhibitory effect on enamel demineralization in vitro when compared to a toothpaste containing 1100ppm F. The anticaries effect of toothpaste containing 250ppm F combined with 0.5% HMP was similar to that of a 1100ppm F toothpaste, despite the 4-fold difference in F concentration. Although such effects still need to be demonstrated in clinical studies, it may be a viable alternative for preschool children. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials

    PubMed Central

    2011-01-01

    Novel polymer nanocomposites comprising of MnO2 nanotubes (MNTs), functionalized multiwalled carbon nanotubes (f-MWCNTs), and polyvinylidene fluoride (PVDF) were synthesized. Homogeneous distribution of f-MWCNTs and MNTs in PVDF matrix were confirmed by field emission scanning electron microscopy. Electrical conductivity measurements were performed on these polymer composites using four probe technique. The addition of 2 wt.% of MNTs (2 wt.%, f-MWCNTs) to PVDF matrix results in an increase in the electrical conductivity from 10-16S/m to 4.5 × 10-5S/m (3.2 × 10-1S/m). Electromagnetic interference shielding effectiveness (EMI SE) was measured with vector network analyzer using waveguide sample holder in X-band frequency range. EMI SE of approximately 20 dB has been obtained with the addition of 5 wt.% MNTs-1 wt.% f-MWCNTs to PVDF in comparison with EMI SE of approximately 18 dB for 7 wt.% of f-MWCNTs indicating the potential use of the present MNT/f-MWCNT/PVDF composite as low-cost EMI shielding materials in X-band region. PMID:21711633

  18. High precision processing CaF2 application research based on the magnetorheological finishing (MRF) technology

    NASA Astrophysics Data System (ADS)

    Zhong, Xianyun; Fan, Bin; Wu, Fan

    2017-10-01

    Single crystal calcium fluoride (CaF2) is the excellent transparent optical substance that has extremely good permeability and refractive index from 120nm wavelength ultraviolet range to 12μm wavelength infrared range and it has widely used in the applications of various advanced optical instrument, such as infrared optical systems (IR), short wavelength optical lithography systems (DUV), as well as high power UV laser systems. Nevertheless, the characteristics of CaF2 material, including low fracture toughness, low hardness, low thermal conductivity and high thermal expansion coefficient, result in that the conventional pitch polishing techniques usually expose to lots of problems, such as subsurface damage, scratches, digs and so on. Single point diamond turning (SPDT) is a prospective technology for manufacture the brittle material, but the residual surface textures or artifacts of SPDT will cause great scattering losses. Meanwhile, the roughness also falls far short from the requirement in the short wavelength optical systems. So, the advanced processing technologies for obtaining the shape accuracy, roughness, surface flaw at the same time need to put forward. In this paper, the authors investigate the Magnetorheological Finishing (MRF) technology for the high precision processing of CaF2 material. We finish the surface accuracy RMS λ/150 and roughness Rq 0.3nm on the concave aspheric from originate shape error 0.7λ and roughness 17nm by the SPDT. The studying of the MRF techniques makes a great effort to the processing level of CaF2 material for the state-of-the-art DUV lithography systems applications.

  19. Acid demineralization susceptibility of dental enamel submitted to different bleaching techniques and fluoridation regimens.

    PubMed

    Salomão, Dlf; Santos, Dm; Nogueira, Rd; Palma-Dibb, Rg; Geraldo-Martins, Vr

    2014-01-01

    The aim of the current study was to assess the acid demineralization susceptibility of bleached dental enamel submitted to different fluoride regimens. One hundred bovine enamel blocks (6×6×3 mm) were randomly divided into 10 groups (n=10). Groups 1 and 2 received no bleaching. Groups 3 to 6 were submitted to an at-home bleaching technique using 6% hydrogen peroxide (HP; G3 and G4) or 10% carbamide peroxide (CP; G5 and G6). Groups 7 to 10 were submitted to an in-office bleaching technique using 35% HP (G7 and G8) or 35% CP (G9 and G10). During bleaching, a daily fluoridation regimen of 0.05% sodium fluoride (NaF) solution was performed on groups 3, 5, 7, and 9, while weekly fluoridation with a 2% NaF gel was performed on groups 4, 6, 8, and 10. The samples in groups 2 to 10 were pH cycled for 14 consecutive days. The samples from all groups were then assessed by cross-sectional Knoop microhardness at different depths from the outer enamel surface. The average Knoop hardness numbers (KHNs) were compared using one-way analysis of variance and Tukey tests (α=0.05). The comparison between groups 1 and 2 showed that the demineralization method was effective. The comparison among groups 2 to 6 showed the same susceptibility to acid demineralization, regardless of the fluoridation method used. However, the samples from groups 8 and 10 showed more susceptibility to acid demineralization when compared with group 2 (p<0.05). Groups 7 and 9 provided similar results to group 2, but the results of those groups were different when compared with groups 8 and 10. The use of 6% HP and 10% CP associated with daily or weekly fluoridation regimens did not increase the susceptibility of enamel to acid demineralization. However, the use of 35% HP and 35% CP must be associated with a daily fluoridation regimen, otherwise the in-office bleaching makes the bleached enamel more susceptible to acid demineralization.

  20. Frequency dependence of electrical properties of polyvinylidene fluoride/graphite electrode waste/natural carbon black composite

    NASA Astrophysics Data System (ADS)

    Insiyanda, D. R.; Indayaningsih, N.; Prihandoko, B.; Subhan, A.; Khaerudini, D. S.; Widodo, H.; Destyorini, F.; Chaer, A.

    2018-03-01

    Polyvinylidene fluoride (PVdF) is a semi-crystalline thermoplastic material with remarkably high piezoelectric coefficient and an attractive polymer matrix for micro-composite with superior mechanical and electrical properties. The conductive filler is obtained from Graphite Electrode Waste (GEW) and Natural Carbon Black (NCB). The variation of composite content (%) of PVdF/NCB/GEW were 100/0/0, 95/5/0, 95/0/5, 95/2.5/2.5. This experiment employed dry dispersion method for material mixing. The materials were then moulded using hot press machine with compression parameters of P = 5.5 MPa, T = 150 °C, t = 60 minutes, A = 5×5×(0.2 - 0.4) cm3. The electrical conductivity properties of pure PVdF, as well as PVdF/GEW, PVdF/NCB, and PVdF/NCB/GEW composites were investigated in a frequency range of 100 to 100000 Hz. The PVdF/GEW sample obtained the highest electrical conductivity. It is concluded that GEW and NCB can be incorporated into PVdF as a conductive filler to increase the conductivity of conductive material composite without solvent.

  1. Whole-Saliva Fluoride Levels and Saturation Indices in 65+ Elderly during Use of Four Different Toothpaste Regimens.

    PubMed

    Ekstrand, Kim Rud; Ekstrand, Mia Linding; Lykkeaa, Joan; Bardow, Allan; Twetman, Svante

    2015-01-01

    Elderly individuals suffering from subnormal saliva secretion combined with inadequate oral hygiene may develop rampant caries and caries in parts of the dentition not normally affected by caries if preventive measures are not undertaken. Such measures include elevating fluoride levels at the saliva/biofilm/tooth interface. To analyse whole-saliva fluoride levels and mineral saturation indices during different fluoride toothpaste regimens in home-living elderly. Whole saliva was collected from 27 subjects (7 males and 20 females, mean age 73.5±6.1 years) at ten time points covering the whole day during five 2-week periods. During the first period, participants used their normal toothpaste without instructions (baseline). This was followed by TP1: 1,450-ppm NaF toothpaste; TP2: 1,450-ppm monofluorophosphate (MFP) toothpaste with addition of calcium; TP3: 5,000-ppm NaF toothpaste, and TP4: the same toothpaste with additional 'smearing' of toothpaste on the teeth, twice daily. During TP1-TP4, the participants were instructed to brush 3 times per day using 1.5 g of toothpaste without rinsing. Salivary fluoride levels increased with toothpaste fluoride content (p<0.001), although major interindividual and intraindividual variations were observed. The highest fluoride values appeared in the morning and at night (p<0.001). Saturation indices for calcium fluoride were affected by the fluoride content in pastes (p<0.05). Concerning hydroxyapatite and fluorapatite, indices were highest with the MFP toothpaste and extra calcium (NS to p<0.05). Use of a high-fluoride toothpaste resulted in significantly increased fluoride levels in whole saliva and mineral saturation indices were indeed influenced by choice of toothpaste. © 2015 S. Karger AG, Basel.

  2. Effects of high fluoride content in livestock drinking water on milk samples of different cattle in endemic area of Pakistan: risk assessment for children.

    PubMed

    Kazi, Tasneem Gul; Brahman, Kapil Dev; Afridi, Hassan Imran; Shah, Faheem; Arain, Mohammad Balal

    2018-05-01

    Fluoride in trace quantity is beneficial for human beings, serving to strengthen the apatite matrix of skeletal tissues and teeth, whereas high intake causes adverse impacts. In the present study, the effect of fluoride-contaminated drinking water of livestock on the milk samples of different cattle, belonging to a fluoride-endemic area (Tharparkar, Pakistan), was studied. In milk samples of different cattle (cows, camels, sheep, and goats), free and bound fluoride forms and its total (free (F - ) + bound (F - )) contents were measured by ion-selective electrode. The concentration of fluoride in drinking water of livestock was also analyzed, as found in the range of 11.8-33.5 mg/L. The concentration of total fluoride in the milk samples of sheep, goats, cows, and camels were observed in the range of 1.72-2.43, 1.40-2.03, 0.835-1.41, and 0.425-0.897 mg/L, respectively. The resulted data indicated that the concentration of fluoride was higher in the milk samples of smaller cattle (sheep and goat), as compared to cow and camel. The fluoride in milk samples of all cattle appeared dominantly in free form. The percentage values of bound fluoride in the milk samples of sheep, goats, and cows were found to be 6.76, 11.6, and 19.7% in total, respectively, while in camel milk, the percentage was below the detection limit. The estimated daily intake of fluoride contents on consuming different types of milk by children age ranged 1.0 to 3.0 years was evaluated. Graphical abstract ᅟ.

  3. Selective Complexation of Cyanide and Fluoride Ions with Ammonium Boranes: A Theoretical Study on Sensing Mechanism Involving Intramolecular Charge Transfer and Configurational Changes.

    PubMed

    Bhat, Haamid R; Jha, Prakash C

    2017-05-18

    The anion binding selectivity and the recognition mechanism of two isomeric boranes, namely, 4-[bis(2,4,6-trimethylphenyl)boranyl]-N,N,N-trimethylaniline ([p-(Mes 2 B)C 6 H 4 (NMe 3 )] + , 1, where "Mes" represents mesitylene and "Me" represents methyl) and 2-[bis(2,4,6-trimethylphenyl)boranyl]-N,N,N-trimethylaniline ([o-(Mes 2 B)C 6 H 4 (NMe 3 )] + , 2) has been investigated using density functional theory (DFT) and time dependent-density functional theory (TD-DFT) methods. Natural population analysis indicates that the central boron atoms in 1 and 2 are the most active centers for nucleophilic addition of anions. The negative magnitude of free energy changes (ΔG) reveals that out of CN - , F - , Cl - , Br - , NO 3 - , and HSO 4 - only the binding of CN - and F - with 1 and 2 is thermodynamically feasible and spontaneous. In addition, the calculated binding energies reveal that the CN - is showing lesser binding affinity than F - both with 1 and 2, while other ions, viz. NO 3 - , HSO 4 - , Br - , and Cl - , either do not bind at all or show very insignificant binding energy. The first excited states (S 1 ) of 1 and 2 are shown to be the local excited states with π → σ* transition by frontier molecular orbital analysis, whereas fourth excited states (S 4 ) of 4-[bis(2,4,6-trimethylphenyl)boranyl]-N,N,N-trimethylaniline cyanide ([p-(Mes 2 B)C 6 H 4 (NMe 3 )] CN, 1CN, the cyano form of 1) and 4-[bis(2,4,6-trimethylphenyl)boranyl]-N,N,N-trimethylaniline fluoride ([p-(Mes 2 B)C 6 H 4 (NMe 3 )] F, 1F, the fluoro form of 1) and fifth excited state (S 5 ) of 2-[bis(2,4,6-trimethylphenyl)boranyl]-N,N,N-trimethylaniline fluoride ([o-(Mes 2 B)C 6 H 4 (NMe 3 )] F, 2F, the fluoro form of 2) are charge separation states that are found to be responsible for the intramolecular charge transfer (ICT) process. The synergistic effect of ICT and partial configuration changes induce fluorescence quenching in 1CN, 1F, and 2F after a significant internal conversion (IC) from S 4 and S 5 to S 1.

  4. High-pressure structural study of MnF 2

    DOE PAGES

    Stavrou, Elissaios; Yao, Yansun; Goncharov, Alexander F.; ...

    2015-02-01

    In this study, manganese fluoride (MnF 2) with the tetragonal rutile-type structure has been studied using a synchrotron angle-dispersive powder x-ray diffraction and Raman spectroscopy in a diamond anvil cell up to 60 GPa at room temperature combined with first-principles density functional calculations. The experimental data reveal two pressure-induced structural phase transitions with the following sequence: rutile → SrI 2 type (3 GPa)→ α–PbCl 2 type (13 GPa). Complete structural information, including interatomic distances, has been determined in the case of MnF 2 including the exact structure of the debated first high-pressure phase. First-principles density functional calculations confirm this phasemore » transition sequence, and the two calculated transition pressures are in excellent agreement with the experiment. Lattice dynamics calculations also reproduce the experimental Raman spectra measured for the ambient and high-pressure phases. The results are discussed in line with the possible practical use of rutile-type fluorides in general and specifically MnF 2 as a model compound to reveal the HP structural behavior of rutile-type SiO 2 (Stishovite).« less

  5. Catalytic degradation of the nerve agent VX by water-swelled polystyrene-supported ammonium fluorides.

    PubMed

    Marciano, Daniele; Goldvaser, Michael; Columbus, Ishay; Zafrani, Yossi

    2011-10-21

    The catalytic degradation of the nerve agent VX (O-ethyl S-2-(diisopropylamino)ethyl methylphosphonothioate) by water-swelled polymer-supported ammonium fluorides is described. VX (0.06-0.53 mol/mol F(-)) is rapidly degraded (t(1/2) ∼ 10-30 min) to form the "G-analogue" (O-ethyl methylphosphonofluoridate), which hydrolyzes (t(1/2) ∼ 1-1.5 h) to the nontoxic EMPA (ethyl methylphosphonic acid). The toxic desethyl-VX is not formed. The catalytic effect of fluoride is maintained even when 6 equiv of VX are loaded. GB (O-isopropyl methylphosphonofluoridate) and desethyl-VX agents are also degraded under these conditions.

  6. A randomized clinical study comparing the plaque inhibition effect of a SnF2/SHMP dentifrice (blend-a-med EXPERT GUMS PROTECTION) and a chlorhexidine digluconate dentifrice (Lacalut Aktiv).

    PubMed

    Bellamy, P G; Khera, N; Day, T N; Mussett, A J; Barker, M L

    2009-01-01

    To compare the plaque inhibition benefits of a control 0.454% stannous fluoride/sodium hexametaphosphate/sodium fluoride dentifrice (SnF2/SHMP with 1450 ppm F) to a chlorhexidine digluconate (0.05%), aluminum lactate (0.8%), and aluminum fluoride (AlF3/Chx with 1400 ppm F) dentifrice. Twenty-nine subjects were randomized to a two-period, two-treatment, double-blind crossover sequence using blend-a-med EXPERT GUMS PROTECTION toothpaste (SnF2/SHMP) and Lacalut Aktiv toothpaste (AlF3/Chx). Each treatment was used along with a standard manual toothbrush (Oral-B P35 Indicator) for 17 days. Digital plaque image analysis (DPIA) was used at the end of each period for three consecutive days to evaluate plaque levels; a) overnight (A.M. pre-brush); b) following 40 seconds of brushing with the test product (A.M. post-brush); and c) mid-afternoon (P.M.). Images were analyzed using an objective computer algorithm to calculate the total area of visible plaque. A four-day washout period was instituted for the crossover phase. Twenty-seven subjects completed the study. The SnF2/SHMP dentifrice provided a statistically significant lower level of plaque area coverage compared to the AlF3/Chx dentifrice at all time points. For the SnF2/SHMP dentifrice, plaque coverage was 19.4% lower (p = 0.0043) at the A.M. pre-brush, 25.6% lower (p = 0.0014) at the A.M. post-brush, and 19.8% lower (p = 0.0057) at the P.M. measure relative to the AlF3/Chx dentifrice. The blend-a-med EXPERT GUMS PROTECTION toothpaste inhibits plaque regrowth, both overnight and during the day, to a significantly greater degree than Lacalut Aktiv. Additionally, immediately after brushing with blend-a-med EXPERT GUMS PROTECTION, subjects had significantly less plaque than after brushing with Lacalut Aktiv.

  7. Biofilm Community Diversity after Exposure to 0.4% Stannous Fluoride Gels

    PubMed Central

    Reilly, Cavan; Rasmussen, Karin; Selberg, Tieg; Stevens, Justin; Jones, Robert S.

    2015-01-01

    Aims To test the effect of %0.4 stannous fluoride (SnF2) glycerin based gels on the bacterial ecology in both a clinical observational study and in vitro polymicobial biofilm model. Methods and Results The influence of stannous fluoride (0.4% SnF2) gels on bacteria was tested in both an observational study in children 6-12 years of age (n=20) and an in vitro biofilm model system. The plaque derived multi-species bacterial biofilm model was based on clinical bacterial strains derived directly from the clinical study. Potential changes in the plaque ecology were determined through the Human Oral Microbial Identification Microarray-HOMIM (n=10). The semiquantitative data resulting from this system were analyzed with cumulative logit models for each bacterial strain and Bonferroni adjustments were employed to correct for multiple hypothesis testing. Both hierarchical biclustering and principal components analysis were used to graphically assess reproducibility within subjects over time. Mixed effects models were used to examine changes in plaque scores and numbers of bacterial strains found in the various conditions. Conclusions Both the observational clinical study and the biofilm model showed that short-term use of 0.4% SnF2 gel has little effect on the bacterial plaque ecology. The amount of plaque accumulation on a subject's teeth, which was measured by plaque index scores failed to show statistical significant changes over the two baselines or after treatment (p=0.9928). The in vitro results were similar when examining the effect of 0.4% SnF2 gels on biofilm adherence through a crystal violet assay (p= 0.1157). Significance and Impact of the Study The bacteria within the dental biofilms showed resilience in maintaining the overall community diversity after exposure to 0.4% Stannous Fluoride Gels. The study supports that the immediate benefits of using these gels each night to manage caries in children may be strictly from fluoride ions inhibiting tooth demineralization. PMID:25263195

  8. Immobilization of Organophosphorus Acid Anhydrolase Mutant Y212F on Silica Nanospheres

    DTIC Science & Technology

    2016-09-01

    Enzyme to 80 nm Amine Terminated SiO2 ..................2 2.3 Testing of Conjugated Enzyme Activity... SiO2 Particles ........................................................6 2. Summary Results from Testing on DFP Substrate at nanoComposix...7 3. Results of Fluoride Release Assay from GD Testing of Y212F Enzyme before and after Conjugation to SiO2 Particles

  9. Ion mobility and conductivity in the M{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} (M=K, Rb) solid solutions with fluorite structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavun, V. Ya., E-mail: kavun@ich.dvo.ru; Uvarov, N.F.; Slobodyuk, A.B.

    Ionic mobility and conductivity in the K{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} and Rb{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} (x=0.05, 0.09) solid solutions with the fluorite structure have been investigated using the methods of {sup 19}F NMR, X-ray diffraction and impedance spectroscopy. Types of ionic motions in the fluoride sublattice of solid solutions have been established and temperature ranges of their realization have been determined (150–450 K). Diffusion of fluoride ions is a dominating type of ionic motions in the fluoride sublattice of solid solutions under study above 350 K. Due to high ionic conductivity, above 10{sup –3} S/cm at 450 K,more » these solid solutions can be used as solid electrolytes in various electrochemical devices and systems. - Graphical abstract: Temperature dependence of the concentration of mobile (2, 4) and immobile (1, 3) F ions in the K{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} solid solutions. - Highlights: • Studied the ion mobility, conductivity in M{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} solid solutions (M=K, Rb). • An analysis of {sup 19}F NMR spectra made it possible to identify types of ion mobility. • The main type of ion motion above 300 K in solid solutions is a diffusion of ions F{sup –}. • The ionic conductivity of the solid solutions studied more than 10{sup –3} S/cm at 450 K.« less

  10. The Reduction of Sulfuryl Chloride at Teflon-Bonded Carbon Cathodes.

    DTIC Science & Technology

    1981-01-01

    100C. The cathode was then extracted with a total volume of 100 cc of water and aliquots of the extract titrated potentiometrically with a standardized...S02C12 In an alkaline aqueous solution, S02 or Cl2 when individually dissolved, can be titrated through iodimetry or iodometry, respectively.8 If both

  11. Anion binding in the C3v-symmetric cavity of a protonated tripodal amine receptor: potentiometric and single crystal X-ray studies.

    PubMed

    Bose, Purnandhu; Ravikumar, I; Ghosh, Pradyut

    2011-11-07

    Tris(2-aminoethyl)amine (tren) based pentafluorophenyl-substituted tripodal L, tris[[(2,3,4,5,6-pentafluorobenzyl)amino]ethyl]amine receptor is synthesized in good yield and characterized by single crystal X-ray diffraction analysis. Detailed structural aspects of binding of different anionic guests toward L in its triprotonated form are examined thoroughly. Crystallographic results show binding of fluoride in the C(3v)-symmetric cavity of [H(3)L](3+) where spherical anion fluoride is in tricoordinated geometry via (N-H)(+)···F interaction in the complex [H(3)L(F)]·[F](2)·2H(2)O, (3). In the case of complexes [H(3)L(OTs)]·[OTs](2), (4) and [H(3)L(OTs)]·[NO(3)]·[OTs], (5), tetrahedral p-toluenesulphonate ion is engulfed in the cavity of [H(3)L](3+) via (N-H)(+)···O interactions. Interestingly, complex [(H(3)L)(2)(SiF(6))]·[BF(4)](4)·CH(3)OH·H(2)O, (6) shows encapsulation of octahedral hexafluorosilicate in the dimeric capsular assembly of two [H(3)L](3+) units, via a number of (N-H)(+)···F interactions. The kinetic parameters of L upon binding with different anions are evaluated using a potentiometric study in solution state. The potentiometric titration experiments in a polar protic methanol/water (1:1 v/v) binary solvent system show high affinity of the receptor toward more basic fluoride and acetate anions, with a lesser affinity for other inorganic anions (e.g., chloride, bromide, nitrate, sulfate, dihydrogenphosphate, and p-toluenesulphonate). © 2011 American Chemical Society

  12. Thermochemistry of the gaseous fluorides of samarium, europium, and thulium

    NASA Astrophysics Data System (ADS)

    Kleinschmidt, P. D.; Lau, K. H.; Hildenbrand, D. L.

    1981-01-01

    The gaseous mono-, di-, and trifluorides of the lanthanide metals samarium, europium, and thulium were characterized thermochemically from high temperature equilibrium studies carried out by mass spectrometry. Reaction enthalpies and entropies were derived using second-law analysis throughout, and the results were used to evaluate the enthalpies of formation and bond dissociation energies (BDE) of the gaseous fluorides, and to obtain approximate values for the electronic entropies of the MF and MF2 species. The dissociation energies of the monofluorides D°0(SmF)=134 kcal/mole, D°0(EuF)=129 kcal/mole, and D°0(TmF)=121 kcal/mole, all ±2 kcal/mole, are in good agreement with values predicted by the Rittner electrostatic model, whereas values in the polyatomic fluorides show considerable variation and do not seem to follow any clear trends. Although the BDE values in some instances differ from previous estimates, their sums yield trifluoride heats of atomization that are in close accord with values derived from the vaporization thermodynamics of the solid trifluorides.

  13. A newly developed highly selective ratiometric fluoride ion sensor: spectroscopic, NMR and density functional studies.

    PubMed

    Mallick, Arabinda; Roy, Ujjal Kanti; Haldar, Basudeb; Pratihar, Sanjay

    2012-03-07

    A new easy-to-synthesize chemosensor, 3,3'-bis(indolyl)-4-chlorophenylmethane (hereafter S), was designed, synthesized and employed as a selective optical chemosensor for fluoride ions.(1)H NMR and density functional studies on the system have been carried out to determine the nature of the interaction between S and X(-) (X = inorganic anions) responsible for the significant fluoride-induced changes in the absorption properties of S. The experimental results reveal that abstraction of an acidic proton of S by the fluoride ion, leading to the formation of anionic species, is responsible for the spectral changes. These changes allow signaling for the fluoride ion to detect and estimate the concentration of fluoride ion present even at the submicromolar level, accurate up to 2 μM. Calculations of the transition energies of S, S(-), and S···F(-) (hydrogen bonded complex) show that only S(-) is responsible for the long-wavelength absorption band in the presence of F(-).

  14. Mild hydrothermal crystal growth of new uranium(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30}: Structures, optical and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeon, Jeongho; Smith, Mark D.; Tapp, Joshua

    Two new uranium(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} (1) and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30} (2), were synthesized through an in situ mild hydrothermal route, and were structurally characterized by single crystal X-ray diffraction. The compounds exhibit complex crystal structures composed of corner- or edge-shared UF{sub 9} and MF{sub 6} (M=Mg, Mn) polyhedra, forming hexagonal channels in the three-dimensional framework, in which ordered or disordered divalent metal and sodium atoms reside. The large hexagonal voids contain the nearly regular M(II)F{sub 6} octahedra and sodium ions, whereas the small hexagonal cavities include M(II) and sodium ions on a mixed-occupied site.more » Magnetic susceptibility measurements yielded effective magnetic moments of 8.36 and 11.6 µ{sub B} for 1 and 2, respectively, confirming the presence and oxidation states of U(IV) and Mn(II). The large negative Weiss constants indicate the spin gap between a triplet and a singlet state in the U(IV). Magnetization data as a function of applied fields revealed that 2 exhibits paramagnetic behavior due to the nonmagnetic singlet ground state of U(IV) at low temperature. UV–vis diffuse reflectance and X-ray photoelectron spectroscopy data were also analyzed. - Graphical abstract: Two new quaternary U(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30}, were crystallized via an in situ reduction step of U(VI) to U(IV) under mild hydrothermal conditions. The compounds show complex crystal structures based on the 3-D building block of U{sub 6}F{sub 30}. Magnetic property measurements revealed that the U(IV) exhibits a nonmagnetic singlet ground state at low temperature with a spin gap. - Highlights: • Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30} have been synthesized and characterized. • The U(IV) fluorides exhibit complex three-dimensional crystal structures. • The optical properties were investigated. • Magnetic susceptibility data were collected.« less

  15. Field Applicable Method to Reduce Dental Emergencies.

    DTIC Science & Technology

    1982-04-15

    removed from a lower right 2nd molar and an orthodontic band was cemented and the tooth restored with the 70 percEnt SnF 2-polycarboxylate cement. 51 dAK...Martens & Mpqkin (1972) using only the buccal surfaces of 20 teeth (from 2nd premolars to 2nd pre - molars of both maxillary and mandibular arches). The...34 effect (Table 1, Fig. 3). Salivary and Urinary Fluoride Levels The pre -experimental baseline for salivary and urinary fluoride were 0.039 + 0.015 and

  16. Fluorine analysis of human dentin surrounding resin composite after fluoride application by μ-PIGE/PIXE analysis

    NASA Astrophysics Data System (ADS)

    Okuyama, Katsushi; Komatsu, Hisanori; Yamamoto, Hiroko; Pereira, Patricia N. R.; Bedran-Russo, Ana K.; Nomachi, Masaharu; Sato, Takahiro; Sano, Hidehiko

    2011-10-01

    The use of fluoride for the prevention of caries is based on the transformation of hydroxylapatite to fluoroapatite in the presence of fluoride ions, thereby strengthening tooth structure. Adhesion of dentin and resin composite (tooth-colored restoration material) requires a dentin bonding system, since resin composite is not able to adhere to dentin directly. Demineralization of dentin by acid etching is an important step in the dentin bonding system, however, demineralization also introduces weaknesses in tooth structure. If the demineralized dentin could be strengthened by the application of fluoride, then the dentin-resin composite bond strength might also improve. To test this hypothesis, the present study evaluated the influence of fluoride applications on the strength of the dentin-resin composite bond by (1) tensile strength testing analyses, (2) SEM analyses of tooth structure, and (3) detection of calcium (Ca) and fluorine (F) distribution patterns by micro proton-induced X-ray emission (μ-PIXE) and micro proton-induced gamma-ray emission (μ-PIGE) analyses conducted at the Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) at the Takasaki Advanced Radiation Research Institute (TARRI). In this study, the dentin in extracted human molars was exposed by grinding and the dentin was etched with 35% phosphoric acid. Fluoride was applied at two concentrations, 0.022% (100 ppm F) and 2.21% (10,000 ppm F) NaF solution, for two time periods, 30 and 60 s, prior to bonding the resin composite with the treated dentin. Controls were prepared in the same manner, but without the fluoride application. Bond strength was measured with a micro-tensile testing unit, and the fluorine and calcium distributions at the interface between dentin and resin composite were detected by μ-PIGE and μ-PIXE analysis, respectively. Results indicate that the 10,000 ppm F applications resulted in higher bond strengths than observed in either the 100 ppm F applications or the control group. In addition, PIGE analyses showed high concentrations of fluorine in the hybrid bonding layer of the 10,000 ppm F samples, suggesting that the fluorine contributes to the strength of the dentin-resin composite bond. Detection of fluoroapatite within the hybrid bonding layer suggests that bond strength involves remineralization processes.

  17. Fluoride-dependent formation of mineralized layers in bovine dentin during demineralization in vitro.

    PubMed

    Damen, J J; Buijs, M J; ten Cate, J M

    1998-01-01

    Demineralization of dentin in the presence of fluoride produces lesions with a mineralized surface layer which becomes thicker and more mineralized with higher fluoride concentrations whereas the lesion depth is hardly affected. The aim of this study was to investigate the effects of the time of fluoride treatment and the amount of fluoride taken up on the properties of the mineralized layer. Discs of bovine dentin embedded in methylmethacrylate with one surface exposed were demineralized in 50 mM acetic acid, 2.2 mM CaCl2, 2.2 mM KH2PO4, pH 5.0. At the start and/or later during the demineralization period, the specimens were incubated individually for 1 or 2 days in 10 ml of the same demineralization solution supplemented with 0.5, 2.0 or 5.0 ppm fluoride, which was then assessed for changes in calcium and fluoride concentrations. After 2, 5 and 8 days, specimens were sectioned for microradiographic analysis so as to follow development of the lesions and the mineralized layers. The results were the following: While demineralization with fluoride present at the first day led to the formation of a surface layer, fluoride present only at a later day produced a subsurface layer, not at the lesion front but closer to the surface. This layer resulted from (re)precipitation and not from preservation of the original mineral. The 'integrated mineral content' of the surface layer increased linearly with the uptake of fluoride, which resulted in an apparent fluorapatite content of about 20 vol%. The profiles of the surface layers remained unchanged during continued demineralization in the absence of fluoride. It was concluded that in the presence of fluoride mineral loss is reduced as a result of the reprecipitation of dissolved mineral ions as a layer of fluoride-enriched apatite. This layer does not offer protection of underlying dentin against continued demineralization.

  18. Fluoride pollution of atmospheric precipitation and its relationship with air circulation and weather patterns (Wielkopolski National Park, Poland).

    PubMed

    Walna, Barbara; Kurzyca, Iwona; Bednorz, Ewa; Kolendowicz, Leszek

    2013-07-01

    A 2-year study (2010-2011) of fluorides in atmospheric precipitation in the open area and in throughfall in Wielkopolski National Park (west-central Poland) showed their high concentrations, reaching a maximum value of 2 mg/l under the tree crowns. These high values indicate substantial deposition of up to 52 mg/m(2)/year. In 2011, over 51% of open area precipitation was characterized by fluoride concentration higher than 0.10 mg/l, and in throughfall such concentrations were found in more than 86% of events. In 2010, a strong connection was evident between fluoride and acid-forming ions, and in 2011, a correlation between phosphate and nitrite ions was seen. Analysis of available data on F(-) concentrations in the air did not show an unequivocal effect on F(-) concentrations in precipitation. To find reasons for and source areas of high fluoride pollution, the cases of extreme fluoride concentration in rainwater were related to atmospheric circulation and weather patterns. Weather conditions on days of extreme pollution were determined by movement of weather fronts over western Poland, or by small cyclonic centers with meteorological fronts. Macroscale air advection over the sampling site originated in the western quadrant (NW, W, and SW), particularly in the middle layers of the troposphere (2,500-5,000 m a.s.l.). Such directions indicate western Poland and Germany as possible sources of the pollution. At the same time in the lower troposphere, air inflow was frequently from the north, showing short distance transport from local emitters, and from the agglomeration of Poznań.

  19. Extended Abstracts. International Symposium on Halide Glasses (2nd), Rensselaer Polytechnic Institute, Troy, New York, USA, 2-5 August 1983.

    DTIC Science & Technology

    1983-08-02

    Research and Development in ’" T. Miyashita and i.. . nabe 34 "Environmental Effects on the Strength of Fluoride Glass Fibers" A. Nakata, J. Lau, and J...continuous optical window. Ujnfortunately YVP3 ony permit’s thin samiples (1 mm) to be synthesized. Vitrco&us domnain ina the ternary sys ~tem TIT "Zni - YbF 4...synthesis methods, quenched glasses have been obtained in the CdF2-ZnF 2-BaF2 and CdF2-MnF2-BaF 2 ternary sys - tems. Binary glasses (Cd0 .5Ba0 .5 )F2 have

  20. The toxic effect of sodium fluoride on Spodoptera frugiperda 9 cells and differential protein analysis following NaF treatment of cells.

    PubMed

    Zuo, Huan; Chen, Liang; Kong, Ming; Yang, Yanhua; Lü, Peng; Qiu, Lipeng; Wang, Qiang; Ma, Shangshang; Chen, Keping

    2018-05-01

    Accumulation of excess fluoride has a destructive effect on the environment, endangering human health, affecting organism growth and development, and leading to damage to the biological chain, thereby affecting ecological environment balance. In recent years, numerous studies focused on the molecular mechanisms associated with fluoride toxicity; however, fluoride-toxicity mechanisms in insect cells remain unclear. This study explored the toxic impact of sodium fluoride (NaF) on Spodoptera frugiperda 9 (Sf9) insect cells. High concentrations of NaF (10 -4  M, 10 -3  M and 10 -2  M) resulted in cell enlargement, cell membrane blurring and breakage, and release of cellular contents. Dose-response curves indicated that NaF-specific inhibition rates on Sf9-cell activity increased along with increases in NaF concentration, with a half-inhibitory concentration (IC 50 ) for NaF of 5.919 × 10 -3  M at 72 h. Compared with controls, the percentages of early and late apoptotic and necrotic cells clearly increased based on observed increases in NaF concentrations. Two-dimensional gel electrophoresis combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to detect differentially expressed proteins in Sf9 cells treated with IC 50 NaF, identifying 17 proteins, seven of which were upregulated and 10 downregulated. These results demonstrated that Sf9 cells showed signs of NaF-mediated toxicity through alterations in cell morphology, apoptosis rates, and protein expression. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Fluoride decreased the sperm ATP of mice through inhabiting mitochondrial respiration.

    PubMed

    Sun, Zilong; Zhang, Wen; Xue, Xingchen; Zhang, Yuliang; Niu, Ruiyan; Li, Xuying; Li, Baojun; Wang, Xiaowen; Wang, Jundong

    2016-02-01

    Fluoride-induced low sperm motility was observed in accumulated investigations. However, the effect of fluoride exposure on ATP generation which is essential to sperm motility remains to be elucidated. In this study, 120 healthy male mice were orally administrated with 0, 25, 50, and 100 mg L(-1) NaF for 90 d. Results showed that compared with controls, fluoride ingestion significantly reduced sperm count, survival, as well as mobility and total ATP level in sperm untreated with carbonyl cyanide m-chlorophenylhydrazone (CCCP) or pyruvate, which was used to establish glycolysis or mitochondrial respiration model, respectively. Data further revealed that sperm mobility and ATP level under mitochondrial respiration condition were significantly suppressed, while no statistical difference occurred in the model of glycolysis, indicating ATP derived from mitochondria was affected. Moreover, mRNA expressions of mitochondrial cytochrome b (mt-Cytb) and cytochrome c oxidase subunit 2 (mt-COX2), two important molecules in mitochondrial electron transport chain (ETC), were down-regulated in all fluoride treatment groups. Mitochondria in sperm of mice exposed to 100 mg L(-1) NaF appeared to be irregular and vacuolated. These findings suggested that decreased sperm motility induced by fluoride may result from low ATP generation due to the disturbed ETC in sperm mitochondrial. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effect of Fluoride-Releasing Adhesive Systems on the Mechanical Properties of Eroded Dentin.

    PubMed

    Guedes, Ana Paula Albuquerque; Moda, Mariana Dias; Suzuki, Thaís Yumi Umeda; Godas, André Gustavo de Lima; Sundfeld, Renato Herman; Briso, André Luiz Fraga; Santos, Paulo Henrique dos

    2016-01-01

    The aim of the study was to evaluate the effect of erosive pH cycling with solutions that simulate dental erosion on Martens hardness (HMV) and elastic modulus (Eit) of dentin restored with fluoride-releasing adhesive systems. Twenty-seven bovine dentin slabs were restored with three adhesive systems: Adper Single Bond 2 total-etch adhesive system, One Up Bond F and Clearfil SE Protect fluoride-containing self-etching adhesive systems. The restorations were made with Filtek Z250. The HMV and Eit values at distances of 10, 30, 50 and 70 µm from the interface were evaluated using a dynamic ultra microhardness tester before and after immersion in deionized water, citric acid and hydrochloric acid (n=9). Data were submitted to repeated-measures ANOVA and Fisher's PLSD tests (=0.05). After erosive cycling, HMV values of dentin decreased in all groups. For dentin restored with Adper Single Bond 2, the lowest values were found closer to the hybrid layer, while for One Up Bond F and Clearfil SE Protect, the values remained unaltered at all distances. For dentin restored with fluoride-releasing adhesive systems, a decrease in Eit was found, but after 30 µm this difference was not significant. The acid substances were able to alter HMV and Eit of the underlying dentin. For fluoride-releasing adhesives, the greater the distance from bonded interface, the lower the Eit values. The fluoride in One Up Bond F and Clearfil SE Protect was able to protect the underlying dentin closer to the materials. In this way, the fluoride from adhesive systems could have some positive effect in the early stages of erosive lesions.

  3. The activity of calcium in calcium-metal-fluoride fluxes

    NASA Astrophysics Data System (ADS)

    Ochifuji, Yuichiro; Tsukihashi, Fumitaka; Sano, Nobuo

    1995-08-01

    The standard Gibbs energy of reaction Ca (1) + O (mass pct, in Zr) = CaO (s) has been determined as follows by equilibrating molten calcium with solid zirconium in a CaO crucible: Δ G° = -64,300(±700) + 19.8(±3.5) T J/mol (1373 to 1623 K) The activities of calcium in the CaOsatd-Ca- MF2 ( M: Ca, Ba, Mg) and CaOsatd-Ca-NaF systems were measured as a function of calcium composition at high calcium contents at 1473 K on the basis of the standard Gibbs energy. The activities of calcium increase in the order of CaF2, BaF2, and MgF2 at the same calcium fraction of these fluxes. The observed activities are compared with those estimated by using the Temkin model for ionic solutions. Furthermore, the possibility of the removal of tramp elements such as tin, arsenic, antimony, bismuth, and lead from carbon-saturated iron by using calcium-metal-fluoride fluxes is discussed.

  4. Effect of fluoride on caries progression and dentin apposition in rats fed on a cariogenic or non-cariogenic diet.

    PubMed

    Kortelainen, S; Larmas, M

    1993-02-01

    The effect of fluoride in drinking water on the progression of dentinal caries and dentin apposition was studied in Wistar rats. The initiation of enamel caries lesions was first induced for 2 wk with S. sobrinus and a 43% sucrose diet after weaning. Thereafter the animals were fed on either a cariogenic or a non-cariogenic diet and distilled water supplemented with 0, 1, 7 or 19 ppm fluoride. The areas of dentinal caries and dentin apposition were quantified after tetracycline staining. Fluoride reduced dentinal caries progression after the initiation of lesions in the presence of a cariogenic diet at a concentration of 19 ppm F, and without sucrose at 1 ppm F. The effect of fluoride in reducing dentin apposition with a cariogenic diet was dose-dependent, whereas fluoride in non-cariogenic groups had practically no effect on dentin formation. These results suggest that fluoride together with a high concentration of sucrose in the diet might have an odontoblast-mediated effect on the regulation of the progression of dentinal caries.

  5. Red Mn4+-Doped Fluoride Phosphors: Why Purity Matters.

    PubMed

    Verstraete, Reinert; Sijbom, Heleen F; Joos, Jonas J; Korthout, Katleen; Poelman, Dirk; Detavernier, Christophe; Smet, Philippe F

    2018-06-06

    Traditional light sources, e.g., incandescent and fluorescent lamps, are currently being replaced by white light-emitting diodes (wLEDs) because of their improved efficiency, prolonged lifetime, and environmental friendliness. Much effort has recently been spent to the development of Mn 4+ -doped fluoride phosphors that can enhance the color gamut in displays and improve the color rendering index, luminous efficacy of the radiation, and correlated color temperature of wLEDs used for lighting. Purity, stability, and degradation of fluoride phosphors are, however, rarely discussed. Nevertheless, the typical wet chemical synthesis routes (involving hydrogen fluoride (HF)) and the large variety of possible Mn valence states often lead to impurities that drastically influence the performance and stability of these phosphors. In this article, the origins and consequences of impurities formed during synthesis and aging of K 2 SiF 6 :Mn 4+ are revealed. Both crystalline impurities such as KHF 2 and ionic impurities such as Mn 3+ are found to affect the phosphor performance. While Mn 3+ mainly influences the optical absorption behavior, KHF 2 can affect both the optical performance and chemical stability of the phosphor. Moisture leads to decomposition of KHF 2 , forming HF and amorphous hydrated potassium fluoride. As a consequence of hydrate formation, significant amounts of water can be absorbed in impure phosphor powders containing KHF 2 , facilitating the hydrolysis of [MnF 6 ] 2- complexes and affecting the optical absorption of the phosphors. Strategies are discussed to identify impurities and to achieve pure and stable phosphors with internal quantum efficiencies of more than 90%.

  6. Mechanochemical synthesis of low-fluorine doped aluminum hydroxide fluorides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scalise, V.; Scholz, G., E-mail: gudrun.scholz@rz.hu-berlin.de; Kemnitz, E., E-mail: erhard.kemnitz@chemie.hu-berlin.de

    2016-11-15

    Different aluminum hydroxide fluorides with varying Al/F molar ratios from 1:1.5 up to 1:0.05 were successfully synthesized by mechanochemical reactions. The characterization of the products by XRD, {sup 27}Al and {sup 19}F MAS NMR, thermal analysis, nitrogen adsorption and zeta potential techniques allows a detailed understanding of the structure and surface properties of the products. Using γ-Al(OH){sub 3} and β-AlF{sub 3}·3H{sub 2}O as OH- and F-sources, respectively, strongly disordered products were obtained with an Al: F molar ratio higher than 1:0.25. The fluorination degree has affected the amount of 4- and 5-fold coordinated Al sites, not present in the reactants.more » An evolution of the sub-coordinated Al-species has been detected also as a consequence of annealing processes. Obviously, these species affect the phase transition to alumina, by decreasing the transition temperature of the formation of α-Al{sub 2}O{sub 3}. Synthesis conditions (milling time, fluorination degree) play a crucial role for the product composition. - Graphical abstract: The impact of the combined action of the milling and the different fluorine doping on the structure of new aluminum hydroxide fluorides was followed by {sup 27}Al and {sup 19}F NMR and by other complementary techniques. - Highlights: • Low F-doped Al-hydroxide fluorides can be successfully prepared by mechanosynthesis. • Both F-doping and mechanochemical synthesis introduce a high number of defects in the structure. • The fluorination degree affects the amount of 4- and 5-fold coordinated Al sites as well as the transition temperature to corundum.« less

  7. A high selective anion colorimetric sensor based on salicylaldehyde for fluoride in aqueous media.

    PubMed

    Li, Jianwei; Lin, Hai; Cai, Zunsheng; Lin, Huakuan

    2009-06-01

    A new and simple salicylaldehyde-based sensor 1 designed for fluoride sensing has been investigated in DMSO and even in the 9/1 DMSO/H(2)O (v/v) mixtures. The affinity constants of receptor 1 for anionic species in the 9/1 DMSO/H(2)O (v/v) reveal that it is sensitive to F. Also, the color changes induced by anions can provide a way of detection by 'naked-eye'. These result can be substantiated by the spectrum changes upon the addition of 25equiv. anions to 1 in the 9/1 DMSO/H(2)O solution. The further insights to the nature of interactions between the sensor 1 and F(-) were investigated by (1)H NMR titration experiments in 9/1 DMSO-d(6)/H(2)O (v/v). In addition, the proposed binding mode between 1 and F(-) was suggested.

  8. Fluoride-containing nanoporous calcium-silicate MTA cements for endodontics and oral surgery: early fluorapatite formation in a phosphate-containing solution.

    PubMed

    Gandolfi, M G; Taddei, P; Siboni, F; Modena, E; Ginebra, M P; Prati, C

    2011-10-01

    To test the chemical-physical properties and apatite-forming ability of experimental fluoride-doped calcium silicate cements designed to create novel bioactive materials for use in endodontics and oral surgery. A thermally treated calcium silicate cement (wTC) containing CaCl(2) 5%wt was modified by adding NaF 1%wt (FTC) or 10%wt (F10TC). Cements were analysed by environmental scanning electron microscopy with energy-dispersive X-ray analysis, IR and micro-Raman spectroscopy in wet conditions immediately after preparation or after ageing in a phosphate-containing solution (Dulbecco's phosphate-buffered saline). Calcium and fluoride release and pH of the storage solution were measured. The results obtained were analysed statistically (Tukey's HSD test and two-way anova). The formation of calcium phosphate precipitates (spherulites) was observed on the surface of 24 h-aged cements and the formation of a thick bone-like B-type carbonated apatite layer (biocoating) on 28 day-aged cements. The rate of apatite formation was FTC>F10TC>wTC. Fluorapatite was detected on FTC and F10TC after 1 day of ageing, with a higher fluoride content on F10TC. All the cements released calcium ions. At 5 and 24 h, the wTC had the significantly highest calcium release (P<0.001) that decreased significantly over the storage time. At 3-28 days, FTC and F10TC had significantly higher calcium release than wTC (P<0.05). The F10TC had the significantly highest fluoride release at all times (P<0.01) that decreased significantly over storage time. No significant differences were observed between FTC and wTC. All the cements had a strong alkalinizing activity (OH(-) release) that remained after 28 days of storage. The addition of sodium fluoride accelerated apatite formation on calcium silicate cements. Fluoride-doped calcium silicate cements had higher bioactivity and earlier formation of fluorapatite. Sodium fluoride may be introduced in the formulation of mineral trioxide aggregate cements to enhance their biological behaviour. F-doped calcium silicate cements are promising bone cements for clinical endodontic use. © 2011 International Endodontic Journal.

  9. Sodium fluoride affects zebrafish behaviour and alters mRNA expressions of biomarker genes in the brain: Role of Nrf2/Keap1.

    PubMed

    Mukhopadhyay, Debdip; Priya, Pooja; Chattopadhyay, Ansuman

    2015-09-01

    Sodium fluoride (NaF), used as pesticides and for industrial purposes are deposited in the water bodies and therefore affects its biota. Zebrafish exposed to NaF in laboratory condition showed hyperactivity and frequent surfacing activity, somersaulting and vertical swimming pattern as compared to the control group. Reactive oxygen species level was elevated and glutathione level was depleted along with increased malondialdehyde content in the brain. Levels of glutathione-s-transferase (GST), catalase (CAT) and superoxide dismutase were also elevated in the treatment groups. Expression of mRNA of nuclear factor erythroid 2 related factor 2 (Nrf2) and its inhibitor Kelch-like ECH-associated protein 1 (Keap1) during stress condition were observed along with Gst, Cat, NADPH: quinone oxidoreductase 1(Nqo1) and p38. Except Keap1, all other genes exhibited elevated expression. Nrf2/Keap1 proteins had similar expression pattern as their corresponding mRNA. The findings in this study might help to understand the molecular mechanism of fluoride induced neurotoxicity in fish. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. [Physicochemical quality of drinking water in Southern Algeria: study of excess mineral salts].

    PubMed

    Djellouli, H M; Taleb, S; Harrache-Chettouh, D; Djaroud, S

    2005-01-01

    The aim of this study was to determine the physicochemical composition of water intended for human consumption in several regions of Southern Algeria. Excess minerals in drinking water, including magnesium, calcium, sulfates and fluorides play a fundamental role in the prevention of urinary calculi, which are formed mainly from calcium oxalate. The ever-increasingly prevalence of this disorder and its recurrence make it a real public health problem in Algeria. The most elementary preventive treatment, recommended to all subjects with lithiasis, is to drink 2 to 3 L water distributed throughout the (24-hour) day. This study began by conducting a physicochemical analysis of the principal components of water from several sources. We will subsequently test it to examine the effects of its mineral salts on the crystallization kinetics of the principal component of calculi (calcium oxalate). The results indicate that 77.5 % of the samples had magnesium concentrations ([Mg 2+] > 50 mg/L), 95 % were sulfated, with sulfate ion concentrations exceeding the standard recommended by WHO ([SO4 2-] > 250 mg/L). Moreover, 57.5 % had excess fluoride levels, [F-] > 1.5 mg/L, and 65 % excessive calcium concentrations, with Ca 2+ > 150 mg/L.

  11. Spatial distribution mapping of drinking water fluoride levels in Karnataka, India: fluoride-related health effects.

    PubMed

    Chowdhury, Chitta R; Shahnawaz, Khijmatgar; Kumari, Divya; Chowdhury, Avidyuti; Bedi, Raman; Lynch, Edward; Harding, Stewart; Grootveld, Martin

    2016-11-01

    (1) To estimate the concentrations of fluoride in drinking water throughout different zones and districts of the state of Karnataka. (2) To investigate the variation of fluoride concentration in drinking water from different sources, and its relationships to daily temperature and rainfall status in the regional districts. (3) To develop an updated fluoride concentration intensity map of the state of Karnataka, and to evaluate these data in the context of fluoride-related health effects such as fluorosis and their prevalence. Aqueous standard solutions of 10, 100 and 1,000 ppm fluoride (F - ) were prepared with analytical grade Na + /F - and a buffer; TISAB II was incorporated in both calibration standard and analysis solutions in order to remove the potentially interfering effects of trace metal ions. This analysis was performed using an ion-selective electrode (ISE), and mean determination readings for n = 5 samples collected at each Karnataka water source were recorded. The F - concentration in drinking water in Karnataka state was found to vary substantially, with the highest mean values recorded being in the north-eastern zone (1.61 ppm), and the lowest in the south-western one (only 0.41 ppm). Analysis of variance (ANOVA) demonstrated that there were very highly significant 'between-zone' and 'between-districts-within-zones' sources of variation (p < 10 -5 -10 -9 ), results consistent with a substantial spatial variance of water source F - levels within this state. The southern part of Karnataka has low levels of F - in its drinking water, and may require fluoridation treatment in order to mitigate for dental caries and further ailments related to fluoride deficiency. However, districts within the north-eastern region have contrastingly high levels of fluoride, an observation which has been linked to dental and skeletal fluorosis. This highlights a major requirement for interventional actions in order to ensure maintenance of the recommended range of fluoride concentrations (0.8-1.5 ppm) in Karnataka's drinking water sources. © Royal Society for Public Health 2016.

  12. Solubilization of bovine corpus-luteum adenylate cyclase in lubrol-PX, triton X-100 or digitonin and the stabilizing effect of sodium fluoride present in the solubilization medium.

    PubMed

    Young, J L; Stansfield, D A

    1978-09-01

    1. Adenylate cyclase activity of the washed 600g sediment of bovine corpus-luteum homogenate was solubilized by Lubrol-PX, Triton X-100 and digitonin. Digitonin was the least destructive of NaF-stimulated activity. 2. NaF, present in the solubilization medium together with MgSO4, increased the percentage yields of soluble activity from untreated 600g sediment and 600g sediment which had been preincubated with p[NH]ppG (guanosine 5'-[betagamma-imido]triphosphate). The stabilizing influence of NaF was most marked with digitonin. However, the highest specific activities of soluble enzyme were obtained with Lubrol-PX as solubilizing agent, since digitonin solubilized more membrane protein than does Lubrol-PX, and less of the activity of the digitonin-dispersed 600g sediment was recovered in the 105000g supernatant. 3. p[NH]ppG also has a stabilizing effect when present during the solubilization, but less so than NaF. 4. Both NaF and MgSO4 alone have a stabilizing effect during solubilization. The greatest amounts of soluble activity were obtained with both agents present in the solubilization medium, there being a synergistic effect.

  13. Solubilization of bovine corpus-luteum adenylate cyclase in lubrol-PX, triton X-100 or digitonin and the stabilizing effect of sodium fluoride present in the solubilization medium.

    PubMed Central

    Young, J L; Stansfield, D A

    1978-01-01

    1. Adenylate cyclase activity of the washed 600g sediment of bovine corpus-luteum homogenate was solubilized by Lubrol-PX, Triton X-100 and digitonin. Digitonin was the least destructive of NaF-stimulated activity. 2. NaF, present in the solubilization medium together with MgSO4, increased the percentage yields of soluble activity from untreated 600g sediment and 600g sediment which had been preincubated with p[NH]ppG (guanosine 5'-[betagamma-imido]triphosphate). The stabilizing influence of NaF was most marked with digitonin. However, the highest specific activities of soluble enzyme were obtained with Lubrol-PX as solubilizing agent, since digitonin solubilized more membrane protein than does Lubrol-PX, and less of the activity of the digitonin-dispersed 600g sediment was recovered in the 105000g supernatant. 3. p[NH]ppG also has a stabilizing effect when present during the solubilization, but less so than NaF. 4. Both NaF and MgSO4 alone have a stabilizing effect during solubilization. The greatest amounts of soluble activity were obtained with both agents present in the solubilization medium, there being a synergistic effect. PMID:568467

  14. An in situ caries study on the interplay between fluoride dose and concentration in milk.

    PubMed

    Lippert, F; Martinez-Mier, E A; Zero, D T

    2014-07-01

    This randomized, cross-over in situ study investigated the impact of sodium fluoride dose and concentration in milk on caries lesion rehardening, fluoridation and acid resistance. Twenty-eight subjects wore two gauze-covered enamel specimens with preformed lesions placed buccally on their mandibular partial dentures for three weeks. Participants used fluoride-free dentifrice throughout the study and consumed once daily one of the five study treatments: no fluoride in 200 ml milk (0F-200), 1.5 or 3 mg fluoride in either 100 (1.5F-100; 3F-100) or 200 ml milk (1.5F-200; 3F-200). After three weeks, specimens were retrieved. Knoop hardness was used to determine rehardening and resistance to a secondary acid challenge. Enamel fluoride uptake (EFU) was determined using a microbiopsy technique. A linear fluoride dose-response was observed for all study variables which exhibited similar overall patterns. All the treatments resulted in rehardening, with 0F-200 inducing the least and 3F-100 the most. Apart from 1.5F-200, all the treatments resulted in statistically significantly more rehardening compared to 0F-200. The fluoride doses delivered in 100 ml provided directionally although not statistically significantly more rehardening than those delivered in 200 ml milk. EFU data exhibited better differentiation between treatments: all fluoridated milk treatments delivered more fluoride to lesions than 0F-200; fluoride in 100 ml demonstrated statistically significantly higher EFU than fluoride in 200 ml milk. Findings for acid resistance were also more discerning than rehardening data. The present study has provided further evidence for the anti-caries benefits of fluoridated milk. Both fluoride dose and concentration appear to impact the cariostatic properties of fluoride in milk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. IMPACT OF FLUORIDE ON DENTAL HEALTH QUALITY.

    PubMed

    Medjedovic, Eida; Medjedovic, Senad; Deljo, Dervis; Sukalo, Aziz

    2015-12-01

    Fluoride is natural element that strengthens teeth and prevents their decay. Experts believe that the best way to prevent cavities is the use of fluoride from multiple sources. Studies even show that in some cases, fluoride can stop already started damage of the teeth. In children younger than 6 years fluoride is incorporated into the enamel of permanent teeth, making the teeth more resistant to the action of bacterial and acids in food. The aim of this study is to determine the effects of improving the health status of teeth after six months treatment with the use of topical fluoridation 0.5% NaF, and the level and quality of the impact of treatment with chemical 0.5% NaF on the dental health of children at age from 8 to 15 years, in relation to gender and chronological age. This study included school children aged 8 to 15 years who visited health and dental services dependent in Mostar. It is obvious that after the implementation of treatment with 5% NaF by the method of topical fluoridation, health status of subjects from the experimental group significantly improved, so that at the final review 89.71% or 61 subjects of the experimental group had healthy (cured teeth), tooth with dental caries only 5.88% or 4 respondents tooth with dental caries and filling 4.41% or 3 respondents, extracted baby tooth 14.71% or 10 respondents, while for 13.24% of respondents was identified state with still unerupted teeth. Our findings are indirectly confirmed that the six-month treatment of fluoridation with 5% NaF, contributed to statistically significant improvement in overall oral health of the experimental group compared to the control group which was not treated by any dental treatment. It can be concluded that there is a statistically significant difference in the evaluated parameters of oral health of children in the control group compared to the studied parameters of oral health the experimental group of children at the final dental examination.

  16. Exposure to Sodium Fluoride Produces Signs of Apoptosis in Rat Leukocytes

    PubMed Central

    Gutiérrez-Salinas, José; Morales-González, José A.; Madrigal-Santillán, Eduardo; Esquivel-Soto, Jaime; Esquivel-Chirino, César; González-Rubio, Manuel García-Luna y; Suástegui-Domínguez, Sigrit; Valadez-Vega, Carmen

    2010-01-01

    Fluoride is naturally present in the earth’s crust and can be found in rocks, coal, and clay; thus, it can be found in small quantities in water, air, plants, and animals. Therefore, humans are exposed to fluoride through food, drinking water, and in the air they breathe. Flouride is essential to maintain bone strength and to protect against dental decay, but if it is absorbed too frequently, it can cause tooth decay, osteoporosis, and damage to kidneys, bones, nerves, and muscles. Therefore, the present work was aimed at determining the effect of intake of sodium fluoride (NaF) as an apoptosis inducer in leukocytes of rats treated for eight weeks with 1 or 50 parts per million (ppm) NaF. Expression of p53, bcl-2, and caspade-3 were used as apoptotic and general metabolism indicators of leukocyte-like indicators of the (INT) oxidation system. Male rats were exposed to NaF (1 and 500 ppm) for eight weeks, and then sacrificed weekly to obtain blood samples. Expression of p53, bcl-2, and caspase-3 were determined in leukocytes by Western blot, and general metabolism of leukocytes was analyzed with a commercial kit. We found changes in the expression of the proteins described, especially when the animals received 50 ppm of NaF. These results indicate that NaF intoxication can be an apoptosis inducer in rat leukocytes treated with the compound for eight weeks. PMID:20957113

  17. Synthesis of Multicolor Core/Shell NaLuF4:Yb3+/Ln3+@CaF2 Upconversion Nanocrystals

    PubMed Central

    Li, Hui; Hao, Shuwei; Yang, Chunhui; Chen, Guanying

    2017-01-01

    The ability to synthesize high-quality hierarchical core/shell nanocrystals from an efficient host lattice is important to realize efficacious photon upconversion for applications ranging from bioimaging to solar cells. Here, we describe a strategy to fabricate multicolor core @ shell α-NaLuF4:Yb3+/Ln3+@CaF2 (Ln = Er, Ho, Tm) upconversion nanocrystals (UCNCs) based on the newly established host lattice of sodium lutetium fluoride (NaLuF4). We exploited the liquid-solid-solution method to synthesize the NaLuF4 core of pure cubic phase and the thermal decomposition approach to expitaxially grow the calcium fluoride (CaF2) shell onto the core UCNCs, yielding cubic core/shell nanocrystals with a size of 15.6 ± 1.2 nm (the core ~9 ± 0.9 nm, the shell ~3.3 ± 0.3 nm). We showed that those core/shell UCNCs could emit activator-defined multicolor emissions up to about 772 times more efficient than the core nanocrystals due to effective suppression of surface-related quenching effects. Our results provide a new paradigm on heterogeneous core/shell structure for enhanced multicolor upconversion photoluminescence from colloidal nanocrystals. PMID:28336867

  18. Combined effect of fluoride and 2,3,7,8-tetrachlorodibenzo-p-dioxin on mouse dental hard tissue formation in vitro.

    PubMed

    Salmela, Eija; Lukinmaa, Pirjo-Liisa; Partanen, Anna-Maija; Sahlberg, Carin; Alaluusua, Satu

    2011-08-01

    Fluoride interferes with enamel matrix secretion and mineralization and dentin mineralization. The most toxic dioxin congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), also impairs dental hard tissue formation and mineralization in vitro and in vivo. Our aim was to investigate in vitro whether the combined effect of sodium fluoride (NaF) and TCDD on dental hard tissue formation is potentiative. For this purpose, mandibular first and second molar tooth germs of E18 mouse embryos were cultured for 5-12 days with NaF and TCDD alone at various concentrations (2.5, 5, 10, 12.5, 15, and 20 μM and 5, 10, 12.5, and 15 nM, respectively) to determine the highest concentrations, which alone cause no or negligible effects. Morphological changes were studied from the whole tooth photographs and histological tissue sections. The concentrations found were 15 μM for NaF and 10 nM for TCDD. While at these concentrations, the effects of NaF and TCDD alone were barely detectable, the effect of simultaneous exposure on dentin and enamel formation was overt; mineralization of predentin to dentin and enamel matrix secretion and mineralization were impaired. Immunohistochemical analysis revealed that the combined exposure modified amelogenin expression by odontoblasts. Morphology of ameloblasts and the expression of amelogenin indicated that ameloblasts were still secretory. The results show that NaF and TCDD have potentiative, harmful effects on the formation of dental hard tissues. Since children can be exposed to subclinical levels of fluoride and dioxins during early childhood, coincidently with mineralization of the first permanent teeth, this finding may have clinical significance.

  19. Ecotoxicological assessment of the impact of fluoride (F-) and turbidity on the freshwater snail Physella acuta in a polluted river receiving an industrial effluent.

    PubMed

    Camargo, Julio A; Alonso, Álvaro

    2017-06-01

    We carried out field studies and laboratory experiments to assess the impact of fluoride (F - ) and turbidity on the freshwater snail Physella acuta in a polluted river receiving an industrial effluent (the middle Duraton River, Central Spain). Fluoride concentrations and turbidity levels significantly increased downstream from the industrial effluent (with the highest values being 0.6 mg F - /L and 55.2 nephelometric turbidity unit). In addition, higher deposition of fine inorganic matter was evident at polluted sampling sites. Conversely, the abundance of P. acuta significantly declined (until its virtual disappearance) downstream from the industrial effluent. Toxicity bioassays showed that P. acuta is a relatively tolerant invertebrate species to fluoride toxicity, with estimated safe concentrations (expressed as LC 0.10 values for infinite hours of exposure) for juvenile and adult snails being 2.4 and 3.7 mg F - /L, respectively. Furthermore, juvenile snails (more sensitive than adult snails) did not show significant alterations in their behavior through 15 days of exposure to 2.6 mg F - /L: mean values of the proportion of test snails located on the water surface habitat, as well as mean values of the sliding movement rate (velocity) of test snails, never showed significant differences when comparing control and treatment glass vessels. It is concluded that instream habitat degradation, derived from increased turbidity levels, might be a major cause for significant reductions in the abundance of P. acuta downstream from the industrial effluent. The presence of the competing gastropod Ancylus fluviatilis could also affect negatively the recovery of P. acuta abundance.

  20. Groundwater quality from a part of Prakasam District, Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Subba Rao, N.

    2018-03-01

    Quality of groundwater is assessed from a part of Prakasam district, Andhra Pradesh, India. Groundwater samples collected from thirty locations from the study area were analysed for pH, electrical conductivity (EC), total dissolved solids (TDS), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), bicarbonate ( {HCO}3^{ - } ), chloride (Cl-), sulphate ( {SO}4^{2 - } ), nitrate ( {NO}3^{ - } ) and fluoride (F-). The results of the chemical analysis indicate that the groundwater is alkaline in nature and are mainly characterized by Na+- {HCO}3^{ - } and Na+-Cl- facies. Groundwater chemistry reflects the dominance of rock weathering and is subsequently modified by human activities, which are supported by genetic geochemical evolution and hydrogeochemical relations. Further, the chemical parameters (pH, TDS, Ca2+, Mg2+, Na+, {HCO}3^{ - } , Cl-, {SO}4^{2 - } , {NO}3^{ - } and F-) were compared with the drinking water quality standards. The sodium adsorption ratio, percent sodium, permeability index, residual sodium carbonate, magnesium ratio and Kelly's ratio were computed and USSL, Wilcox and Doneen's diagrams were also used for evaluation of groundwater quality for irrigation. For industrial purpose, the pH, TDS, {HCO}3^{ - } , Cl- and {SO}4^{2 - } were used to assess the impact of incrustation and corrosion activities on metal surfaces. As a whole, it is observed that the groundwater quality is not suitable for drinking, irrigation and industrial purposes due to one or more chemical parameters exceeding their standard limits. Therefore, groundwater management measures were suggested to improve the water quality.

  1. Ion release from, and fluoride recharge of a composite with a fluoride-containing bioactive glass.

    PubMed

    Davis, Harry B; Gwinner, Fernanda; Mitchell, John C; Ferracane, Jack L

    2014-10-01

    Materials that are capable of releasing ions such as calcium and fluoride, that are necessary for remineralization of dentin and enamel, have been the topic of intensive research for many years. The source of calcium has most often been some form of calcium phosphate, and that for fluoride has been one of several metal fluoride or hexafluorophosphate salts. Fluoride-containing bioactive glass (BAG) prepared by the sol-gel method acts as a single source of both calcium and fluoride ions in aqueous solutions. The objective of this investigation was to determine if BAG, when added to a composite formulation, can be used as a single source for calcium and fluoride ion release over an extended time period, and to determine if the BAG-containing composite can be recharged upon exposure to a solution of 5000ppm fluoride. BAG 61 (61% Si; 31% Ca; 4% P; 3% F; 1% B) and BAG 81 (81% Si; 11% Ca; 4% P; 3% F; 1% B) were synthesized by the sol-gel method. The composite used was composed of 50/50 Bis-GMA/TEGDMA, 0.8% EDMAB, 0.4% CQ, and 0.05% BHT, combined with a mixture of BAG (15%) and strontium glass (85%) to a total filler load of 72% by weight. Disks were prepared, allowed to age for 24h, abraded, then placed into DI water. Calcium and fluoride release was measured by atomic absorption spectroscopy and fluoride ion selective electrode methods, respectively, after 2, 22, and 222h. The composite samples were then soaked for 5min in an aqueous 5000ppm fluoride solution, after which calcium and fluoride release was again measured at 2, 22, and 222h time points. Prior to fluoride recharge, release of fluoride ions was similar for the BAG 61 and BAG 81 composites after 2h, and also similar after 22h. At the four subsequent time points, one prior to, and three following fluoride recharge, the BAG 81 composite released significantly more fluoride ions (p<0.05). Both composites were recharged by exposure to 5000ppm fluoride, although the BAG 81 composite was recharged more than the BAG 61 composite. The BAG 61 composite released substantially more calcium ions prior to fluoride recharge during each of the 2 and 22h time periods. Thereafter, the release of calcium at the four subsequent time points was not significantly different (p>0.05) for the two composites. These results show that, when added to a composite formulation, fluoride-containing bioactive glass made by the sol-gel route can function as a single source for both calcium and fluoride ions, and that the composite can be readily recharged with fluoride. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Reproductive and developmental toxicity of degradation products of refrigerants in experimental animals.

    PubMed

    Ema, Makoto; Naya, Masato; Yoshida, Kikuo; Nagaosa, Ryuichi

    2010-01-01

    The present paper summarizes the results of animal studies on the reproductive and developmental toxicity of the degradation products of refrigerants, including trifluoroacetic acid (TFA), carbon dioxide (CO(2)), carbon monoxide (CO), carbonyl fluoride (CF), hydrogen fluoride (HF) and formic acid (FA). Excessive CO(2) in the atmosphere is testicular and reproductive toxic, embryolethal, developmentally neurotoxic and teratogenic in experimental animals. As for CO, maternal exposure causes prenatal and postnatal lethality and growth retardation, skeletal variations, cardiomegaly, blood biochemical, immunological and postnatal behavioral changes, and neurological impairment in offspring of several species. Very early studies of CO in rats and guinea pigs reported fetal malformations in exposed dams. The results of toxicological studies on sodium fluoride (NaF) were used to obtain insight into the toxicity of CF and HF, because CF is rapidly hydrolyzed in contact with water yielding CO(2) and HF, and NaF is similar in kinetics and dynamics to HF. Increased fetal skeletal variation, but not malformation, was noted after the maternal administration of NaF. Rat multiple-generation studies revealed that NaF caused retarded ossification and degenerative changes in the lung and kidney in offspring. There is a lack of information about the toxicity of TFA and FA. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Fluoride crystals: materials for near-infrared solid state lasers

    NASA Astrophysics Data System (ADS)

    Parisi, Daniela; Veronesi, Stefano; Volpi, Azzurra; Gemmi, Mauro; Tonelli, Mauro; Cassanho, Arlete; Jenssen, Hans P.

    2013-07-01

    In this work we present an overview of the best 2μm laser results obtained in Tm-doped fluoride hosts LiYF4(YLF), LiLuF4 (LLF) and BaY2F8 (BYF) and we report on the growth, spectroscopy and first laser test emission of a novel mixed material BaYLuF8 (BYLF), interesting as a variant of BYF material with a partial substitution of Y3+ ions by Lu3+. The novel host is interesting mainly because indications are that the mixed crystal would be sturdier than BYF. The addition of Lutetium would improve the thermo-mechanical properties going into the direction of high power applications, as suggest from works on YLF and its isomorph LLF. A detailed description of Czochralski growth of fluoride laser materials is provided, focusing on the growth parameters of the novel BYLF:Tm3+12% material grown. With regard of spectroscopy analysis, we report on the results obtained with BYLF host. Detailed absorption, fluorescence and lifetime measurements have been performed focusing on the 3H4 and 3F4 manifolds, the pumping and upper laser level. Moreover diode pumped CW laser emission at 2 μm has been achieved in BYLF: Tm3+12% sample obtaining a slope efficiency of about 28% with respect to the absorbed power.

  4. Organoboron compounds as Lewis acid receptors of fluoride ions in polymeric membranes.

    PubMed

    Jańczyk, Martyna; Adamczyk-Woźniak, Agnieszka; Sporzyński, Andrzej; Wróblewski, Wojciech

    2012-07-06

    Newly synthesized organoboron compounds - 4-octyloxyphenylboronic acid (OPBA) and pinacol ester of 2,4,6-trifluorophenylboronic acid (PE-PBA) - were applied as Lewis acid receptors of fluoride anions. Despite enhanced selectivity, the polymer membrane electrodes containing the lipophilic receptor OPBA exhibited non-Nernstian slopes of the responses toward fluoride ions in acidic conditions. Such behavior was explained by the lability of the B-O bond in the boronic acids, and the OH(-)/F(-) exchange at higher fluoride content in the sample solution. In consequence, the stoichiometry of the OPBA-fluoride complexes in the membrane could vary during the calibration, changing the equilibrium concentration of the primary anion in membrane and providing super-Nernstian responses. The proposed mechanism was supported by (19)F NMR studies, which indicated that the fluoride complexation proceeds more effectively in acidic solution leading mainly to PhBF(3)(-) species. Finally, the performances of the membranes based on the phenylboronic acid pinacol ester, with a more stable B-O bond, were tested. As it was expected, Nernstian fluoride responses were recorded for such membranes with worsened fluoride selectivity. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A colorimetric and ratiometric fluorescent chemosensor for fluoride based on proton transfer.

    PubMed

    Jia, Chuandong; Wu, Biao; Liang, Jianjun; Huang, Xiaojuan; Yang, Xiao-Juan

    2010-01-01

    N-Phenyl-N'-(3-quinolinyl)urea (1) has been developed as a highly selective colorimetric and ratiometric fluorescent chemosensor for fluoride ion based on a proton transfer mechanism. Evidences for the mechanism were provided by UV-vis and fluorescence titration and especially (1)H and (19)F NMR experiments. The sensor gave the largest ratiometric fluorescent response reported so far (R(max)/R(min) = 2620) to fluoride. Taking H(+) as the "recovering reagent", the sensor can be reversibly "used" and "recovered" for several cycles with only a slight decay of the response ability.

  6. 21 CFR 355.60 - Professional labeling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... water supply contains 0.3 to 0.7 ppm fluoride ion, reduce the dose to 2.5 mL of 0.02 percent or 5 mL of... labeling. (a) The labeling for anticaries fluoride treatment rinses identified in § 355.10(a)(3) and (c)(3) that are specially formulated so they may be swallowed (fluoride supplements) and are provided to...

  7. 21 CFR 355.60 - Professional labeling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... water supply contains 0.3 to 0.7 ppm fluoride ion, reduce the dose to 2.5 mL of 0.02 percent or 5 mL of... labeling. (a) The labeling for anticaries fluoride treatment rinses identified in § 355.10(a)(3) and (c)(3) that are specially formulated so they may be swallowed (fluoride supplements) and are provided to...

  8. 21 CFR 355.60 - Professional labeling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... water supply contains 0.3 to 0.7 ppm fluoride ion, reduce the dose to 2.5 mL of 0.02 percent or 5 mL of... labeling. (a) The labeling for anticaries fluoride treatment rinses identified in § 355.10(a)(3) and (c)(3) that are specially formulated so they may be swallowed (fluoride supplements) and are provided to...

  9. 21 CFR 355.60 - Professional labeling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... water supply contains 0.3 to 0.7 ppm fluoride ion, reduce the dose to 2.5 mL of 0.02 percent or 5 mL of... labeling. (a) The labeling for anticaries fluoride treatment rinses identified in § 355.10(a)(3) and (c)(3) that are specially formulated so they may be swallowed (fluoride supplements) and are provided to...

  10. 21 CFR 355.60 - Professional labeling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... water supply contains 0.3 to 0.7 ppm fluoride ion, reduce the dose to 2.5 mL of 0.02 percent or 5 mL of... labeling. (a) The labeling for anticaries fluoride treatment rinses identified in § 355.10(a)(3) and (c)(3) that are specially formulated so they may be swallowed (fluoride supplements) and are provided to...

  11. The First Molybdenum(VI) and Tungsten(VI) Oxoazides MO2(N3)2, MO2(N3)2⋅2 CH3CN, (bipy)MO2(N3)2, and [MO2(N3)4](2-) (M=Mo, W).

    PubMed

    Haiges, Ralf; Skotnitzki, Juri; Fang, Zongtang; Dixon, David A; Christe, Karl O

    2015-08-10

    Molybdenum(VI) and tungsten(VI) dioxodiazide, MO2(N3)2 (M=Mo, W), were prepared through fluoride-azide exchange reactions between MO2F2 and Me3SiN3 in SO2 solution. In acetonitrile solution, the fluoride-azide exchange resulted in the isolation of the adducts MO2(N3)2⋅2 CH3CN. The subsequent reaction of MO2(N3)2 with 2,2'-bipyridine (bipy) gave the bipyridine adducts (bipy)MO2(N3)2. The hydrolysis of (bipy)MoO2(N3)2 resulted in the formation and isolation of [(bipy)MoO2N3]2O. The tetraazido anions [MO2(N3)4](2-) were obtained by the reaction of MO2(N3)2 with two equivalents of ionic azide. Most molybdenum(VI) and tungsten(VI) dioxoazides were fully characterized by their vibrational spectra, impact, friction, and thermal sensitivity data and, in the case of (bipy)MoO2(N3)2, (bipy)WO2(N3)2, [PPh4]2[MoO2(N3)4], [PPh4]2[WO2(N3)4], and [(bipy)MoO2N3]2O by their X-ray crystal structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Improved process for generating ClF/sub 3/ from ClF and F/sub 2/

    DOEpatents

    Reiner, R.H.; Pashley, J.H.; Barber, E.J.

    The invention is an improvement in the process for producing gaseous ClF/sub 3/ by reacting ClF and F/sub 2/ at elevated temperature. The improved process comprises conducting the reaction in the presence of NiF/sub 2/, which preferably is in the form of particles or in the form of a film or layer on a particulate substrate. The nickel fluoride acts as a reaction catalyst, significantly increasing the reaction rate and thus permitting valuable reductions in process temperature, pressure, and/or reactor volume.

  13. Dynamics of the C/H and C/F exchanges in the reaction of 3P carbon atoms with vinyl fluoride

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Huang; Chen, Wei-Kan; Chin, Chih-Hao; Huang, Wen-Jian

    2013-08-01

    Two product channels C3H2F + H and C3H3 + F were identified in the reaction of C(3P) atoms with vinyl fluoride (C2H3F) at collision energy 3.7 kcal mol-1 in a crossed molecular-beam apparatus using selective photoionization. Time-of-flight (TOF) spectra of products C3H2F and C3H3 were measured at 12-16 laboratory angles as well as a TOF spectrum of atomic F, a counter part of C3H3, was recorded at single laboratory angle. From the best simulation of product TOF spectra, translational-energy distributions at seven scattering angles and a nearly isotropic (forward and backward peaked) angular distribution were derivable for exit channel C3H2F + H (C3H3 + F) that has average kinetic-energy release of 14.5 (4.9) kcal mol-1. Products C3H2F + H and C3H3 + F were estimated to have a branching ratio of ˜53:47. Furthermore, TOF spectra and photoionization spectra of products C3H2F and C3H3 were measured at laboratory angle 62° with photoionization energy ranging from 7 eV to 11.6 eV. The appearance of TOF spectra is insensitive to photon energy, implying that only single species overwhelmingly contributes to products C3H2F and C3H3. HCCCHF (H2CCCH) was identified as the dominant species based on the measured ionization threshold of 8.3 ± 0.2 (8.6 ± 0.2) eV and the maximal translational-energy release. The C/H and C/F exchange mechanisms are stated.

  14. The dimeric [V{sub 2}O{sub 2}F{sub 8}]{sup 4−} anion: Structural characterization of a magnetic basic-building-unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Hongcheng, E-mail: hchlu@northwestern.edu; State Key Laboratory of Solidification Processing, School of Material Science and Engineering, Northwestern Polytechnical University, 127 Youyixilu Road, Xi'an 710072; Gautier, Romain, E-mail: r-gautier@northwestern.edu

    2013-04-15

    New materials built from the [V{sub 2}O{sub 2}F{sub 8}]{sup 4−} anionic basic-building-unit (BBU) exhibit interesting magnetic properties owing to the proximity of the two d{sup 1} V(IV) cations and the orbital interactions of fluoride and oxide ligands. In our search to target such materials, the vanadium oxide–fluoride compound [dpaH{sub 2}]{sub 2}[V{sub 2}O{sub 2}F{sub 8}] in which a dimeric anion [V{sub 2}O{sub 2}F{sub 8}]{sup 4−} is isolated in a hydrogen bond network was hydrothermally synthesized (dpa=2,2′-dipyridylamine). This hydrogen bond network is able to stabilize the highly ionic species [V{sub 2}O{sub 2}F{sub 8}]{sup 4−} as demonstrated with bond valence calculations. The coordinationmore » of the O{sup 2−}/F{sup −} ordered ligands was investigated and antiferromagnetic coupling of the isolated BBU was measured. - The new hybrid compound [dpaH{sub 2}]{sub 2}[V{sub 2}O{sub 2}F{sub 8}] built from the interesting [V{sub 2}O{sub 2}F{sub 8}]{sup 4−} magnetic basic-building-unit (BBU) was synthesized by the hydrothermal method. The coordination of the O{sup 2−}/F{sup −} ordered ligands was investigated by BVS calculations and antiferromagnetic coupling was measured. Highlights: ► A new vanadium oxyfluoride was synthesized by hydrothermal method. ► The Dimeric [V{sub 2}O{sub 2}F{sub 8}]{sup 4−} basic building unit is isolated in the hydrogen bond networks. ► The coordination of [V{sub 2}O{sub 2}F{sub 8}]{sup 4−} units to the extended structure is investigated. ► Isolated [V{sub 2}O{sub 2}F{sub 8}]{sup 4−} units exhibit antiferromagnetic coupling.« less

  15. Taurine reverses sodium fluoride-mediated increase in inflammation, caspase-3 activity, and oxidative damage along the brain-pituitary-gonadal axis in male rats.

    PubMed

    Adedara, Isaac A; Olabiyi, Bolanle F; Ojuade, TeminiJesu D; Idris, Umar F; Onibiyo, Esther M; Farombi, Ebenezer O

    2017-09-01

    Excessive exposure to fluoride is associated with male reproductive dysfunction in humans and animals. Taurine (2-aminoethane sulfonic acid) is a free intracellular β-amino acid with antioxidant, anti-inflammatory, and neuroprotective properties. However, the effect of taurine on fluoride-induced reproductive toxicity has not been reported. The present study investigated the influence of taurine on sodium fluoride (NaF)-induced functional changes along the brain-pituitary-gonadal axis in male rats. NaF was administered singly in drinking water at 15 mg·L -1 alone or orally co-administered by gavage with taurine at 100 and 200 mg·(kg body mass) -1 for 45 consecutive days. Results showed that taurine significantly prevented NaF-induced increase in oxidative stress indices as well as augmented antioxidant enzymes activities and glutathione level in the brain, testes, and epididymis of the treated rats. Moreover, taurine reversed NaF-induced elevation in inflammatory biomarkers and caspase-3 activity as well as histological damage in the brain, testes, and epididymis of the treated rats. The significant reversal of NaF-induced decreases in testosterone level and testicular activities of acid phosphatase, alkaline phosphatase, and lactate dehydrogenase by taurine was accompanied by enhancement of sperm functional characteristics in the treated rats. Taurine may be a possible chemopreventive candidate against reproductive dysfunction resulting from fluoride exposure.

  16. Estimated heats of fusion of fluoride salt mixtures suitable for thermal energy storage applications

    NASA Technical Reports Server (NTRS)

    Misra, A. K.; Whittenberger, J. D.

    1986-01-01

    The heats of fusion of several fluoride salt mixtures with melting points greater than 973 K were estimated from a coupled analysis of the available thermodynamic data and phase diagrams. Simple binary eutectic systems with and without terminal solid solutions, binary eutectics with congruent melting intermediate phases, and ternary eutectic systems were considered. Several combinations of salts were identified, most notable the eutectics LiF-22CaF2 and NaF-60MgF2 which melt at 1039 and 1273 K respectively which posses relatively high heats of fusion/gm (greater than 0.7 kJ/g). Such systems would seemingly be ideal candidates for the light weight, high energy storage media required by the thermal energy storage unit in advanced solar dynamic power systems envisioned for the future space missions.

  17. Fluorine incorporation into SnO2 nanoparticles by co-milling with polyvinylidene fluoride

    NASA Astrophysics Data System (ADS)

    Senna, Mamoru; Turianicová, Erika; Šepelák, Vladimír; Bruns, Michael; Scholz, Gudrun; Lebedkin, Sergei; Kübel, Christian; Wang, Di; Kaňuchová, Mária; Kaus, Maximilian; Hahn, Horst

    2014-04-01

    Fluorine was incorporated into SnO2 nanoparticles from polyvinylidene fluoride (PVdF) by co-milling. The incorporation process was triggered by an oxidative partial decomposition of PVdF due to the abstraction of oxygen atoms, and began soon after milling with a simultaneous decrease in the crystallite size of SnO2 from 56 nm to 19 nm, and increase in the lattice strain by a factor 7. Appearance of D and G Raman peaks indicated that the decomposition of PVdF was accompanied by the formation of nanometric carbon species. Decomposing processes of PVdF were accompanied by the continuous change in the states of F, with a decrease of C-F in PVdF and increase in Sn-F. This indicates the gradual incorporation of F into SnO2, by replacing a part of oxygen in the oxide with fluorine. These serial mechanochemical reaction processes were discussed on the basis of X-ray diffractometry, FT-IR, Raman and UV-Vis diffuse reflectance spectroscopy, transmission electron microscopy, F1s, Sn3d and C1s X-ray photoelectron spectroscopy and Auger electron spectra, as well as magic angle spinning NMR spectroscopy of 19F and 119Sn. The present findings serve as an initial stage of incorporating fluorine into SnO2 via a solvent-free solid-state process, toward the rational fabrication of fluorine doped SnO2 powders.

  18. Clinical evaluation of the efficacy of fluoride adhesive tape (F-PVA) in reducing dentin hypersensitivity.

    PubMed

    Lee, Sang-Ho; Lee, Nan-Young; Lee, In-Hwa

    2013-06-01

    To evaluate the in vivo effectiveness of an experimental 2.26% fluoride polyvinyl alcohol (F-PVA) tape in reducing dentin hypersensitivity. 30 healthy men and women (total of 79 teeth) in their third decade of life with dentin hypersensitivity were enrolled in this study. The subjects were divided into four groups: three experimental groups were treated with fluoride agents (F-PVA tape, Vanish varnish, and ClinPro XT varnish), and a control group was treated with gelatin as a placebo. Each fluoride agent was applied according to the manufacturer's instructions. Stimulation was applied to the subjects' teeth using compressed air and ice sticks before applying the agent, as well as at 3 days and 4, 8, and 12 weeks after applying the agent. The degree of pain was measured using a visual analogue scale (VAS). The VAS scores were significantly (P < 0.05) decreased at 3 days and at 4, 8, and 12 weeks from baseline in both the air stream and ice stick tests. The reduction in the VAS scores for the three fluoride agents was decreased 8 weeks after their application. The F-PVA tape was found to be more effective for dentin hypersensitivity than the Vanish varnish and ClinPro XT varnish at 4 and 8 weeks of the examination period.

  19. Fluoride-elicited developmental testicular toxicity in rats: Roles of endoplasmic reticulum stress and inflammatory response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shun; Jiang, Chunyang; Department of Thoracic Surgery, Tianjin Union Medicine Centre, 190 Jieyuan Road, Hongqiao District, Tianjin 300121, Tianjin

    Long-term excessive fluoride intake is known to be toxic and can damage a variety of organs and tissues in the human body. However, the molecular mechanisms underlying fluoride-induced male reproductive toxicity are not well understood. In this study, we used a rat model to simulate the situations of human exposure and aimed to evaluate the roles of endoplasmic reticulum (ER) stress and inflammatory response in fluoride-induced testicular injury. Sprague–Dawley rats were administered with sodium fluoride (NaF) at 25, 50 and 100 mg/L via drinking water from pre-pregnancy to gestation, birth and finally to post-puberty. And then the testes of malemore » offspring were studied at 8 weeks of age. Our results demonstrated that fluoride treatment increased MDA accumulation, decreased SOD activity, and enhanced germ cell apoptosis. In addition, fluoride elevated mRNA and protein levels of glucose-regulated protein 78 (GRP78), inositol requiring ER-to-nucleus signal kinase 1 (IRE1), and C/EBP homologous protein (CHOP), indicating activation of ER stress signaling. Furthermore, fluoride also induced testicular inflammation, as manifested by gene up-regulation of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in a nuclear factor-κB (NF-κB)-dependent manner. These were associated with marked histopathological lesions including injury of spermatogonia, decrease of spermatocytes and absence of elongated spermatids, as well as severe ultrastructural abnormalities in testes. Taken together, our results provide compelling evidence that ER stress and inflammation would be novel and significant mechanisms responsible for fluoride-induced disturbance of spermatogenesis and germ cell loss in addition to oxidative stress. - Highlights: • We used a rat model to simulate the situations of human fluoride (F) exposure. • Developmental F exposure induces testicular damage related with oxidative stress. • Endoplasmic reticulum stress is involved in testis disorder and germ cell apoptosis. • Inflammatory response is implicated in impaired spermatogenesis and germ cell loss.« less

  20. Improved Energetic-Behaviors of Spontaneously Surface-Mediated Al Particles.

    PubMed

    Kim, Dong Won; Kim, Kyung Tae; Min, Tae Sik; Kim, Kyung Ju; Kim, Soo Hyung

    2017-07-05

    Surface-mediated Al particles are synthesized by incorporating the stable fluoride reaction of Al-F on a pure Al surface in place of natural oxides. Al particles with fluoro-polymer directly adsorbed on the surface show a considerable capability to overcome limitations caused by the surface oxide. Here, we report that Al fluoride when spontaneously formed at the poly(vinylidene fluoride)/Al interface serves as an oxidation-protecting layer while also providing an efficient combustion path along which the internal Al rapidly reacts with external oxygen atoms. Both thermal oxidation and explosion tests of the poly(vinylidene fluoride)/Al particles show superior exothermic enthalpy energy and simultaneously rapid oxidation reactivity compared to those of Al 2 O 3 passivated Al particles. It is clearly elucidated that the enhanced energetic properties of Al particles mediated by poly(vinylidene fluoride) originate from the extraordinary pyrolytic process of Al fluoride occurring at a low temperature compared to Al 2 O 3 passivated Al. Hence, these results clarify that the surface mediation of Al particles can be significantly considered as advanced technology for many energetic applications.

  1. 2-Keto-3-fluoroglutarate: a useful mechanistic probe of 2-keto-glutarate-dependent enzyme systems.

    PubMed

    Grissom, C B; Cleland, W W

    1987-12-18

    2-Keto-3-fluoroglutaric acid prepared by acid hydrolysis of its diethyl ester is stable, as the free acid in aqueous solution at pH 2, and can be stored at -20 degrees C for several years. Both enantiomers are reduced by NADH in the presence of glutamate dehydrogenase (EC 1.4.1.2) to the two diastereomers of 3-fluoro-L-glutamate, which are stable at neutral pH and at high pH unless heated. 2-Keto-3-fluoroglutarate exists in solution almost entirely as a hydrate both at low and neutral pH. Both enantiomers of ketofluoroglutarate react with the pyridoxamine forms of aspartate, alanine and 4-aminobutyrate transaminases to give fluoride release. 2 mol of cosubstrate amino acid react for each mol of ketofluoroglutarate (KFG) when starting from the pyridoxamine form of the enzyme: 2 RCHNH2COOH + KFG + H2O----F- + NH4+ + glutamate + 2 RCOCOOH. Both diastereomers of fluoroglutamate are decarboxylated by glutamate decarboxylase (EC 4.1.1.15) with fluoride release: KFG + H2O----CO2 + F- + HCOCH2CH2COOH. By contrast, only one isomer of fluoroglutamate will react with the pyridoxal form of glutamate-oxalacetate transaminase to give fluoride release: HOOCCHNH2CHFCH2COOH + H2O----4F- + NH4+ + HOOCCOCH2CH2COOH. The enzymatic decarboxylation of 3-fluoroisocitrate produces only one enantiomer of ketofluoroglutarate, which is reduced to threo (2R,3R)-3-fluoroglutamate by NADH and glutamate dehydrogenase: [2R,3S]-HOOCCH(OH)CF(COOH)CH2COOH + NADP+----[3R]-KFG + CO2 + NADPH + H+. The proton, 13C, and 19F-NMR parameters of ketofluoroglutarate and the two fluoroglutamate diastereomers are presented. These molecules are useful probes of enzymatic mechanisms thought to involve carbanion intermediates.

  2. Preventive Effect of CPP-ACPF Paste and Fluoride Toothpastes Against Erosion and Erosion Plus Abrasion 
In Vitro - A 3D Profilometric Analysis.

    PubMed

    Soares, Genaina Guimarães; Magalhães, Pâmela Amorim; Fonseca, Ana Beatriz Monteiro; Tostes, Monica Almeida; Silva, Eduardo Moreira da; Coutinho, Thereza Christina Lopes

    To evaluate the effect of CPP-ACPF paste and fluoride toothpastes on enamel subjected to erosion and erosion plus abrasion in vitro. A total of 220 human enamel blocks were divided into eleven groups (n = 20): CPP-ACPF paste (MPP), potassium nitrate/sodium fluoride toothpaste (PE), sodium fluoride toothpaste (FD), fluoride-free toothpaste (SO) and control (erosion only with no paste or toothpastes; CO) according to the experimental design: erosion or erosion plus abrasion immediately after erosion (ERO+I-ABR) or 30 min after erosion (ERO+30min-ABR). For 5 days, the specimens were subjected to: (1) erosive challenge (EC) (cola drink, 4 x 5 min/day), topical application of the undiluted paste or diluted toothpastes (1:2 w/w) (4 x 1 min/ day) plus 1 h in artificial saliva (AS) between cycles and overnight; or (2) EC plus abrasion (4 x /60 s/day) performed with the diluted toothpastes (no MMP) plus 1 h in AS between cycles and overnight. Erosion depth was quantified through a 3D profilometer. Data were analysed using Kruskal-Wallis, Mann-Whitney and Wilcoxon tests (p = 0.05). CPP-ACPF paste and NaF toothpaste showed lowest enamel wear among groups and reduced tissue loss by 89% in erosion challenge. Abrasion led to higher enamel wear than erosion only (p = 0.030). ERO+30min-ABR had no protective effect when compared to ERO+I-ABR (p > 0.05). A high frequency of CPP-ACPF paste application (4x daily) is effective in reducing the effects of erosion. A waiting period before performing toothbrushing does not protect enamel against erosion regardless the composition of the toothpastes.

  3. A newly synthesized thiazole derivative as a fluoride ion chemosensor: naked-eye, spectroscopic, electrochemical and NMR studies.

    PubMed

    Sarıgüney, Ahmet Burak; Saf, Ahmet Özgür; Coşkun, Ahmet

    2014-07-15

    2,3-Indoledione 3-thiosemicarbazone (TSCI) and a novel compound 3-(2-(4-(4-phenoxyphenyl)thiazol-2-yl)hydrazono)indolin-2-one (FTHI) were synthesized with high yield and characterized by spectroscopic techniques. The complexation behaviors of TSCI and FTHI for various anionic species (F(-), Cl(-), Br(-), I(-), NO2(-), NO3(-), BzO(-), HSO4(-), ClO4(-)) in CH3CN were investigated and compared by UV-vis spectroscopy, cyclic voltammetry and (1)H NMR titration techniques. FTHI showed high degree of selectivity for fluoride over other anions. This selectivity could be easily observed by the naked eye, indicating that FTHI is potential colorimetric sensor for fluoride anion. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Role of the P-F bond in fluoride-promoted aqueous VX hydrolysis: an experimental and theoretical study.

    PubMed

    Marciano, Daniele; Columbus, Ishay; Elias, Shlomi; Goldvaser, Michael; Shoshanim, Ofir; Ashkenazi, Nissan; Zafrani, Yossi

    2012-11-16

    Following our ongoing studies on the reactivity of the fluoride ion toward organophosphorus compounds, we established that the extremely toxic and environmentally persistent chemical warfare agent VX (O-ethyl S-2-(diisopropylamino)ethyl methylphosphonothioate) is exclusively and rapidly degraded to the nontoxic product EMPA (ethyl methylphosphonic acid) even in dilute aqueous solutions of fluoride. The unique role of the P-F bond formation in the reaction mechanism was explored using both experimental and computational mechanistic studies. In most cases, the "G-analogue" (O-ethyl methylphosphonofluoridate, Et-G) was observed as an intermediate. Noteworthy and of practical importance is the fact that the toxic side product desethyl-VX, which is formed in substantial quantities during the slow degradation of VX in unbuffered water, is completely avoided in the presence of fluoride. A computational study on a VX-model, O,S-diethyl methylphosphonothioate (1), clarifies the distinctive tendency of aqueous fluoride ions to react with such organophosphorus compounds. The facility of the degradation process even in dilute fluoride solutions is due to the increased reactivity of fluoride, which is caused by the significant low activation barrier for the P-F bond formation. In addition, the unique nucleophilicity of fluoride versus hydroxide toward VX, in contrast to their relative basicity, is discussed. Although the reaction outcomes were similar, much slower reaction rates were observed experimentally for the VX-model (1) in comparison to VX.

  5. Bioavailability of fluoride in drinking water: a human experimental study.

    PubMed

    Maguire, A; Zohouri, F V; Mathers, J C; Steen, I N; Hindmarch, P N; Moynihan, P J

    2005-11-01

    It has been suggested that systemic fluoride absorption from drinking water may be influenced by the type of fluoride compound in the water and by water hardness. Using a human double-blind cross-over trial, we conducted this study to measure c(max), T(max), and Area Under the Curve (AUC) for plasma F concentration against time, following the ingestion of naturally fluoridated hard and soft waters, artificially fluoridated hard and soft waters, and a reference water. Mean AUC over 0 to 8 hours was 1330, 1440, 1679, 1566, and 1328 ng F.min.mL(-1) for naturally fluoridated soft, naturally fluoridated hard, artificially fluoridated soft, artificially fluoridated hard, and reference waters, respectively, with no statistically significant differences among waters for AUC, c(max), or T(max). Any differences in fluoride bioavailability between drinking waters in which fluoride is present naturally or added artificially, or the waters are hard or soft, were small compared with large within- and between-subject variations in F absorption. Abbreviations used: F, fluoride; AUC, Area under the Curve for plasma F concentration against time; AUC(0-3), Area under the Curve for plasma F concentration against time for 0 to 3 hours following water ingestion; AUC(0-8), Area under the Curve for plasma F concentration against time for 0 to 8 hours following water ingestion; c(max), maximum plasma F concentration corrected for baseline plasma F and dose (i.e., F concentration of individual waters); T(max), time of c(max).

  6. Dentifrices, mouthwashes, and remineralization/caries arrestment strategies

    PubMed Central

    Zero, Domenick T

    2006-01-01

    While our knowledge of the dental caries process and its prevention has greatly advanced over the past fifty years, it is fair to state that the management of this disease at the level of the individual patient remains largely empirical. Recommendations for fluoride use by patients at different levels of caries risk are mainly based on the adage that more is better. There is a general understanding that the fluoride compound, concentration, frequency of use, duration of exposure, and method of delivery can influence fluoride efficacy. Two important factors are (1) the initial interaction of relatively high concentrations of fluoride with the tooth surface and plaque during application and (2) the retention of fluoride in oral fluids after application. Fluoride dentifrices remain the most widely used method of delivering topical fluoride. The efficacy of this approach in preventing dental caries is beyond dispute. However, the vast majority of currently marketed dentifrice products have not been clinically tested and have met only the minimal requirements of the FDA monograph using mainly laboratory testing and animal caries testing. Daily use of fluoride dental rinses as an adjunct to fluoride dentifrice has been shown to be clinically effective as has biweekly use of higher concentration fluoride rinses. The use of remineralizing agents (other than fluoride), directed at reversing or arresting non-cavitated lesions, remains a promising yet largely unproven strategy. High fluoride concentration compounds, e.g., AgF, Ag(NH3)2F, to arrest more advanced carious lesions with and without prior removal of carious tissue are being used in several countries as part of the Atraumatic Restorative Treatment (ART) approach. Most of the recent innovations in oral care products have been directed toward making cosmetic marketing claims. There continues to be a need for innovation and collaboration with other scientific disciplines to fully understand and prevent dental caries. PMID:16934126

  7. Vanadium Extraction from Shale via Sulfuric Acid Baking and Leaching

    NASA Astrophysics Data System (ADS)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing

    2018-01-01

    Fluorides are widely used to improve vanadium extraction from shale in China. Sulfuric acid baking-leaching (SABL) was investigated as a means of recovering vanadium which does not require the use of fluorides and avoids the productions of harmful fluoride-containing wastewater. Various effective factors were systematically studied and the experimental results showed that 90.1% vanadium could be leached from the shale. On the basis of phase transformations and structural changes after baking the shale, a mechanism of vanadium extraction from shale via SABL was proposed. The mechanism can be described as: (1) sulfuric acid diffusion into particles; (2) the formation of concentrated sulfuric acid media in the particles after water evaporation; (3) hydroxyl groups in the muscovite were removed and transient state [SO4 2-] was generated; and (4) the metals in the muscovite were sulfated by active [SO4 2-] and the vanadium was released. Thermodynamics modeling confirmed this mechanism.

  8. Development of Customized [18F]Fluoride Elution Techniques for the Enhancement of Copper-Mediated Late-Stage Radiofluorination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mossine, Andrew V.; Brooks, Allen F.; Ichiishi, Naoko

    In a relatively short period of time, transition metal-mediated radiofluorination reactions have changed the PET radiochemistry landscape. These reactions have enabled the radiofluorination of a wide range of substrates, facilitating access to radiopharmaceuticals that were challenging to synthesize using traditional fluorine-18 radiochemistry. However, the process of adapting these new reactions for automated radiopharmaceutical production has revealed limitations in fitting them into the confines of traditional radiochemistry systems. In particular, the presence of bases (e.g. K 2CO 3) and/or phase transfer catalysts (PTC) (e.g. kryptofix 2.2.2) associated with fluorine-18 preparation has been found to be detrimental to reaction yields. We hypothesizedmore » that these limitations could be addressed through the development of alternate techniques for preparing [18F]fluoride. This approach also opens the possibility that an eluent can be individually tailored to meet the specific needs of a metal-catalyzed reaction of interest. In this communication, we demonstrate that various solutions of copper salts, bases, and ancillary ligands can be utilized to elute [ 18F]fluoride from ion exchange cartridges. The new procedures we present here are effective for fluorine-18 radiochemistry and, as proof of concept, have been used to optimize an otherwise base-sensitive copper-mediated radiofluorination reaction.« less

  9. Development of Customized [18F]Fluoride Elution Techniques for the Enhancement of Copper-Mediated Late-Stage Radiofluorination

    DOE PAGES

    Mossine, Andrew V.; Brooks, Allen F.; Ichiishi, Naoko; ...

    2017-03-22

    In a relatively short period of time, transition metal-mediated radiofluorination reactions have changed the PET radiochemistry landscape. These reactions have enabled the radiofluorination of a wide range of substrates, facilitating access to radiopharmaceuticals that were challenging to synthesize using traditional fluorine-18 radiochemistry. However, the process of adapting these new reactions for automated radiopharmaceutical production has revealed limitations in fitting them into the confines of traditional radiochemistry systems. In particular, the presence of bases (e.g. K 2CO 3) and/or phase transfer catalysts (PTC) (e.g. kryptofix 2.2.2) associated with fluorine-18 preparation has been found to be detrimental to reaction yields. We hypothesizedmore » that these limitations could be addressed through the development of alternate techniques for preparing [18F]fluoride. This approach also opens the possibility that an eluent can be individually tailored to meet the specific needs of a metal-catalyzed reaction of interest. In this communication, we demonstrate that various solutions of copper salts, bases, and ancillary ligands can be utilized to elute [ 18F]fluoride from ion exchange cartridges. The new procedures we present here are effective for fluorine-18 radiochemistry and, as proof of concept, have been used to optimize an otherwise base-sensitive copper-mediated radiofluorination reaction.« less

  10. Combined electrocoagulation and electroflotation for removal of fluoride from drinking water.

    PubMed

    Zuo, Qianhai; Chen, Xueming; Li, Wei; Chen, Guohua

    2008-11-30

    A combined electrocoagulation (EC) and electroflotation (EF) process was proposed to remove fluoride from drinking water. Its efficacy was investigated under different conditions. Experimental results showed that the combined process could remove fluoride effectively. The total hydraulic retention time required was only 30 min. After treatment, the fluoride concentration was reduced from initial 4.0-6.0mg/L to lower than 1.0mg/L. The influent pH value was found to be a very important variable that affected fluoride removal significantly. The optimal influent pH range is 6.0-7.0 at which not only can effective defluoridation be achieved, but also no pH readjustment is needed after treatment. In addition, it was found that SO(4)(2-) had negative effect; Ca(2+) had positive effect; while Cl(-) had little effect on the fluoride removal. The EC charge loading, EF charge loading and energy consumption were 3.0 Faradays/m(3), 1.5 Faradays/m(3), and 1.2 kWh/m(3), respectively, under typical conditions where fluoride was reduced from initial 4.0 to 0.87 mg/L.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanjeewa, Liurukara D.; McMillen, Colin D.; McGuire, Michael A.

    We synthesized manganese vanadate fluorides using high-temperature hydrothermal techniques with BaF 2 as a mineralizer. Ba 3Mn 2(V 2O 7) 2F 2 crystallizes in space group C2/c and consists of dimers built from edge-sharing MnO 4F 2 trigonal prisms with linking V 2O 7 groups. Ba 7Mn 8O 2(VO 4) 2F 23 crystallizes in space group Cmmm, with a manganese oxyfluoride network built from edge- and corner-sharing Mn 2+/3+(O,F) 6 octahedra. The resulting octahedra form alternating Mn 2+ and Mn 2+/3+ layers separated by VO 4 tetrahedra. This latter compound exhibits a canted antiferromagnetic order below TN = 25 K.

  12. Quantum Chemical Insight into the LiF Interlayer Effects in Organic Electronics: Reactions between Al Atom and LiF Clusters.

    PubMed

    Wu, Shui-Xing; Kan, Yu-He; Li, Hai-Bin; Zhao, Liang; Wu, Yong; Su, Zhong-Min

    2015-08-06

    It is well known that the aluminum cathode performs dramatically better when a thin lithium fluoride (LiF) layer inserted in organic electronic devices. The doping effect induced by the librated Li atom via the chemical reactions producing AlF3 as byproduct was previously proposed as one of possible mechanisms. However, the underlying mechanism discussion is quite complicated and not fully understood so far, although the LiF interlayer is widely used. In this paper, we perform theoretical calculations to consider the reactions between an aluminum atom and distinct LiF clusters. The reaction pathways of the Al-(LiF)n (n = 2, 4, 16) systems were discovered and the energetics were theoretically evaluated. The release of Li atom and the formation of AlF3 were found in two different chemical reaction routes. The undissociated Al-(LiF)n systems have chances to change to some structures with loosely bound electrons. Our findings about the interacted Al-(LiF)n systems reveal new insights into the LiF interlayer effects in organic electronics applications.

  13. Divalent europium doped CaF 2 and BaF 2 nanocrystals from ionic liquids

    DOE PAGES

    Anghel, Sergiu; Golbert, Sebastian; Meijerink, Andries; ...

    2016-10-11

    A new, facile and quick synthesis method for Eu 2+ doped the alkaline earth fluorides was developed using ionic liquids as solvent, precursor and capping agent. Reductive atmosphere and very high temperatures were avoided, while still attaining the desired structure, small particle sizes and divalent oxidation state of the lanthanide. Here, this opens the door for the development of new Ln 2+ doped nanomaterials. Here, the successful Eu 2+ incorporation was proven by optical spectroscopic measurements which showed the spin and parity allowed f-d transitions of Eu 2+ in CaF 2:Eu 2+/BaF 2:Eu 2+. 4f 7-4f 7 transitions could bemore » observed at low temperatures (7 K).« less

  14. Synthesis and characterization of new fluoride-containing manganese vanadates A{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} (A=Rb, Cs) and Mn{sub 2}VO{sub 4}F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanjeewa, Liurukara D.; McGuire, Michael A.; Smith Pellizzeri, Tiffany M.

    2016-09-15

    Large single crystals of A{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} (A=Rb, Cs) and Mn{sub 2}VO{sub 4}F were grown using a high-temperature (~600 °C) hydrothermal technique. Single crystal X-ray diffraction and powder X-ray diffraction were utilized to characterize the structures, which both possess MnO{sub 4}F{sub 2} building blocks. The A{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} series crystallizes as a new structure type in space group Pbcn (No. 60), Z=4 (Rb{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2}: a=7.4389(17) Å, b=11.574(3) Å, c=10.914(2) Å; Cs{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2}: a=7.5615(15) Å, b=11.745(2) Å, c=11.127(2) Å). The structure is composed of zigzag chains ofmore » edge-sharing MnO{sub 4}F{sub 2} units running along the a-axis, and interconnected through V{sub 2}O{sub 7} pyrovanadate groups. Temperature dependent magnetic susceptibility measurements on this interesting one-dimensional structural feature based on Mn{sup 2+} indicated that Cs{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} is antiferromagnetic with a Neél temperature, T{sub N}=~3 K and a Weiss constant, θ, of −11.7(1) K. Raman and infrared spectra were also analyzed to identify the fundamental V–O vibrational modes in Cs{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2}. Mn{sub 2}(VO{sub 4})F crystalizes in the monoclinic space group of C2/c (no. 15), Z=8 with unit cell parameters of a=13.559(2) Å, b=6.8036(7) Å, c=10.1408(13) Å and β=116.16(3)°. The structure is associated with those of triplite and wagnerite. Dynamic fluorine disorder gives rise to complex alternating chains of five-and six-coordinate Mn{sup 2+}. These interpenetrating chains are additionally connected through isolated VO{sub 4} tetrahedra to form the condensed structure. - Graphical abstract: New vanadate fluorides A{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} (A=Rb, Cs) and Mn{sub 2}(VO{sub 4})F have been synthesized hydrothermally. Upon cooling, the one-dimensional Mn(II) substructure results in antiferromagnetic ordering. Display Omitted - Highlights: • Single crystals of A{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2}, (A=Rb, Cs) and Mn{sub 2}VO{sub 4}F were grown hydrothermally. • The use of fluoride mineralizers in the synthesis led to the formation of new compounds without OH{sup −} groups. • The structure of A{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} features zigzag chains of MnO{sub 4}F{sub 2} units. • Cs{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} exhibits antiferromagnetic ordering with a Neel temperature of ~3 K. • Mn{sub 2}VO{sub 4}F possesses a condensed framework structure with disordered fluorine atoms.« less

  15. TiF(4) and NaF at pH 1.2 but not at pH 3.5 are able to reduce dentin erosion.

    PubMed

    Wiegand, Annette; Magalhães, Ana Carolina; Sener, Beatrice; Waldheim, Elena; Attin, Thomas

    2009-08-01

    This study aimed to analyse and compare the protective effect of buffered (pH 3.5) and native (pH 1.2) TiF(4) in comparison to NaF solutions of same pH on dentin erosion. Bovine samples were pretreated with 1.50% TiF(4) or 2.02% NaF (both 0.48M F) solutions, each with a pH of 1.2 and 3.5. The control group received no fluoride pretreatment. Ten samples in each group were eroded with HCl (pH 2.6) for 10x60s. Erosion was analysed by determination of calcium release into the acid. Additionally, the surface and the elemental surface composition were examined by scanning electron microscopy (two samples in each group) and X-ray energy-dispersive spectroscopy in fluoridated but not eroded samples (six samples in each group). Cumulative calcium release (nmol/mm(2)) was statistically analysed by repeated measures ANOVA and one-way ANOVA at t=10min. TiF(4) and NaF at pH 1.2 decreased calcium release significantly, while TiF(4) and NaF at pH 3.5 were not effective. Samples treated with TiF(4) at pH 1.2 showed a significant increase of Ti, while NaF pretreatment increased F concentration significantly. TiF(4) at pH 1.2 led to the formation of globular precipitates occluding dentinal tubules, which could not be observed on samples treated with TiF(4) at pH 3.5. NaF at pH 1.2 but not at pH 3.5 induced the formation of surface precipitates covering dentinal tubules. Dentin erosion can be significantly reduced by TiF(4) and NaF at pH 1.2, but not at pH 3.5.

  16. Influence of the method of fluoride administration on toxicity and fluoride concentrations in Japanese quail

    USGS Publications Warehouse

    Fleming, W.J.; Schuler, C.A.

    1988-01-01

    Young Japanese quail (Coturnix japonica) were administered NaF for 16 d either in their diet or by esophageal intubation. Based on the total fluoride ion (Emg F-) intake over the l6-d experimental period, fluoride administered by intubation was at least six times more toxic than that fed in the diet. Dietary concentrations of 1,000 ppm F- (Emg F- for 16 d = approx. 144) produced no mortality, whereas intubated doses produced 73% or greater mortality in all groups administered 54 mg F- /kg/d or more (Emg F- for 16 d _ approx. 23 mg). GraphIc companson of the regression of log F- ppm in femurs/mg F- intake showed that fluoride levels in the femurs of quail administered fluoride by intubation were higher than in those administered fluoride in the diet.

  17. Fluoride abundance and controls in fresh groundwater in Quaternary deposits and bedrock fractures in an area with fluorine-rich granitoid rocks.

    PubMed

    Berger, Tobias; Mathurin, Frédéric A; Drake, Henrik; Åström, Mats E

    2016-11-01

    This study focuses on fluoride (F(-)) concentrations in groundwater in an area in northern Europe (Laxemar, southeast Sweden) where high F(-) concentrations have previously been found in surface waters such as streams and quarries. Fluoride concentrations were determined over time in groundwater in the Quaternary deposits ("regolith groundwater"), and with different sampling techniques from just beneath the ground surface to nearly -700m in the bedrock (fracture) groundwater. A number of potential controls of dissolved F(-) were studied, including geological variables, mineralogy, mineral chemistry and hydrology. In the regolith groundwater the F(-) concentrations (0.3-4.2mg/L) were relatively stable over time at each sampling site but varied widely among the sampling sites. In these groundwaters, the F(-) concentrations were uncorrelated with sample (filter) depth and the water table in meters above sea level (masl), with the thicknesses of the groundwater column and the regolith, and with the distribution of soil types at the sampling sites. Fluoride concentrations were, however, correlated with the anticipated spatial distribution of erosional material (till) derived from a F-rich circular granite intrusion. Abundant release of F(-) from such material is thus suggested, primarily via dissolution of fluorite and weathering of biotite. In the fresh fracture groundwater, the F(-) concentrations (1.2-7.4mg/L) were generally higher than in the regolith groundwater, and were uncorrelated with depth and with location relative to the granite intrusion. Two mechanisms explaining the overall high F(-) levels in the fracture groundwater were addressed. First, weathering/dissolution of fluorite, bastnäsite and apophyllite, which are secondary minerals formed in the fractures during past hydrothermal events, and biotite which is a primary mineral exposed on fracture walls. Second, long water-residence times, favoring water-rock interaction and build-up of high dissolved F(-) concentrations. The findings are relevant in contexts of extraction of groundwater for drinking-water purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. An assessment of the relationship between excess fluoride intake from drinking water and essential hypertension in adults residing in fluoride endemic areas.

    PubMed

    Sun, Liyan; Gao, Yanhui; Liu, Hui; Zhang, Wei; Ding, Yunpeng; Li, Bingyun; Li, Mang; Sun, Dianjun

    2013-01-15

    In this study, the relationships between high water fluoride exposure and essential hypertension as well as plasma ET-1 levels were investigated. A total of 487 residents aged 40 to 75 were randomly recruited from eight villages in Zhaozhou County from Heilongjiang Province in China and were divided into 4 groups according to the concentrations of fluoride in their water. Consumption levels of drinking water fluoride for normal, mild, moderate, and high exposure groups were 0.84±0.26 mg/L, 1.55±0.22 mg/L, 2.49±0.30 mg/L, and 4.06±1.15 mg/L, respectively. The prevalence of hypertension in each group was 20.16%, 24.54%, 32.30%, and 49.23%, respectively. There were significant differences between all the groups; namely, with the increase in water fluoride concentrations, the risk of essential hypertension in adults grows in a concentration-dependent manner. Significant differences were observed in the plasma ET-1 levels between the different groups (P<0.0001). In the multivariable logistic regression model, high water fluoride concentrations (F(-)≥3.01 mg/L, OR(4/1)=2.84), age (OR(3/1)=2.63), and BMI (OR(2/1)=2.40, OR(3/1)=6.03) were closely associated with essential hypertension. In other words, the study not only confirmed the relationship between excess fluoride intake and essential hypertension in adults, but it also demonstrated that high levels of fluoride exposure in drinking water could increase plasma ET-1 levels in subjects living in fluoride endemic areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Measuring the short-term impact of fluoridation cessation on dental caries in Grade 2 children using tooth surface indices.

    PubMed

    McLaren, Lindsay; Patterson, Steven; Thawer, Salima; Faris, Peter; McNeil, Deborah; Potestio, Melissa; Shwart, Luke

    2016-06-01

    To examine the short-term impact of fluoridation cessation on children's caries experience measured by tooth surfaces. If there is an adverse short-term effect of cessation, it should be apparent when we focus on smooth tooth surfaces, where fluoride is most likely to have an impact for the age group and time frame considered in this study. We examined data from population-based samples of school children (Grade 2) in two similar cities in the province of Alberta, Canada: Calgary, where cessation occurred in May 2011 and Edmonton where fluoridation remains in place. We analysed change over time (2004/2005 to 2013/2014) in summary data for primary (defs) and permanent (DMFS) teeth for Calgary and Edmonton, for all tooth surfaces and smooth surfaces only. We also considered, for 2013/2014 only, the exposed subsample defined as lifelong residents who reported usually drinking tap water. We observed, across the full sample, an increase in primary tooth decay (mean defs - all surfaces and smooth surfaces) in both cities, but the magnitude of the increase was greater in Calgary (F-cessation) than in Edmonton (F-continued). For permanent tooth decay, when focusing on smooth surfaces among those affected (those with DMFS>0), we observed a non-significant trend towards an increase in Calgary (F-cessation) that was not apparent in Edmonton (F-continued). Trends observed for primary teeth were consistent with an adverse effect of fluoridation cessation on children's tooth decay, 2.5-3 years post-cessation. Trends for permanent teeth hinted at early indication of an adverse effect. It is important that future data collection efforts in the two cities be undertaken, to permit continued monitoring of these trends. © 2016 The Authors. Community Dentistry and Oral Epidemiology Published by John Wiley & Sons Ltd.

  20. Successful high-resolution animal positron emission tomography of human Ewing tumours and their metastases in a murine xenograft model.

    PubMed

    Franzius, Christiane; Hotfilder, Marc; Poremba, Christopher; Hermann, Sven; Schäfers, Klaus; Gabbert, Helmut Erich; Jürgens, Heribert; Schober, Otmar; Schäfers, Michael; Vormoor, Josef

    2006-12-01

    As primary osseous metastasis is the main adverse prognostic factor in patients with Ewing tumours, a NOD/scid mouse model for human Ewing tumour metastases has been established to examine the mechanisms of metastasis. The aim of this study was to evaluate the feasibility of diagnostic molecular imaging by small animal PET in this mouse model. Human Ewing tumour cells were transplanted into immune-deficient NOD/scid mice via s.c injection (n=17) or i.v. injection (n=17). The animals (mean weight 23.2 g) were studied 2-7 weeks after transplantation using a submillimetre resolution animal PET scanner. To assess glucose utilisation and bone metabolism, mice were scanned after intravenous injection of 9.6 MBq (mean) 2-[(18)F]fluoro-2-deoxy-D: -glucose (FDG) or 9.4 MBq (mean) [(18)F]fluoride. Whole-body PET images were analysed visually and semi-quantitatively [%ID/g, tumour to non-tumour ratio (T/NT)]. Foci of pathological uptake were identified with respect to the physiological organ uptake in corresponding regions. Subcutaneously transplanted Ewing tumours demonstrated a moderately increased glucose uptake (median %ID/g 2.5; median T/NT 2.2). After i.v. transplantation, the pattern of metastasis was similar to that in patients with metastases in lung, bone and soft tissue. These metastases showed an increased FDG uptake (median %ID/g 3.6; median T/NT 2.7). Osseous metastases were additionally visible on [(18)F]fluoride PET by virtue of decreased [(18)F]fluoride uptake (osteolysis; median %ID/g 8.4; median T/NT 0.59). Metastases were confirmed immunohistologically. Diagnostic molecular imaging of Ewing tumours and their small metastases in an in vivo NOD/scid mouse model is feasible using a submillimetre resolution PET scanner.

  1. Simulation and analysis of plasmonic sensor in NIR with fluoride glass and graphene layer

    NASA Astrophysics Data System (ADS)

    Pandey, Ankit Kumar; Sharma, Anuj K.

    2018-02-01

    A calcium fluoride (CaF2) prism based plasmonic biosensor with graphene layer is proposed in near infrared region (NIR) of operation. The stacking of multilayer graphene is considered with dielectric interlayer sandwiched between two graphene layers. Excellent optical properties of CaF2 glass and enhanced field at the graphene-analyte interface are intended to be exploited for proposed sensor structure in NIR spectral region. Performance parameters in terms of field enhancement at interface and figure of merit (FOM) are analyzed and compared with those of conventional SPR based sensor. It is demonstrated that the same sensor probe can also be used for gas sensing with nearly 3.5-4 times enhancement in FOM, compared with conventional sensor. The results show that CaF2 based SPR sensor provides much better sensitivity than that based on other glasses.

  2. Intra-oral models to assess cariogenicity: evaluation of oral fluoride and pH.

    PubMed

    Duckworth, R M; Gilbert, R J

    1992-04-01

    The main purpose of this paper is to review the various methods used for evaluation of fluoride retention in saliva, plaque, and enamel following application of topical anti-caries treatments such as F dentifrices and F mouthwashes. Such methods monitor delivery of fluoride to the site of action, the mouth, and so can be regarded as assessing potential for treatment action. It is concluded that intra-oral fluoride measurements are appropriate to support bioequivalence claims for anti-caries treatments, provided that particular chosen methods have been calibrated against clinical data. Studies purporting to show superiority are of interest mechanistically, but links to caries are not sufficiently understood to define superiority claims. A wide variety of methods has been used for determination of the fluoride content of enamel. Of these, well-established methods such as the micro-drill and acid-etch procedures are appropriate for routine comparative testing, whereas sophisticated instrumental techniques such as SIMS are more appropriate for detailed mechanistic studies. Intra-oral pH measurements are also relevant to many topical treatments. Single-site determinations in plaque are preferred, but for comparative studies non-specific determinations may be adequate.

  3. Hydrogen mitigation in submerged arc welding

    NASA Astrophysics Data System (ADS)

    Klimowicz, Steven

    With the role of hydrogen in weld metal well understood in its relation to cold cracking, there has been a push to produce welds with lower and lower diffusible hydrogen contents. The push for lower diffusible hydrogen contents has placed pressure on consumables manufactures to create consumables that can achieve the requirements for lower diffusible hydrogen content. Currently EM12K flux is produced so that it can achieve below 4 ml of diffusible hydrogen for every 100g of weld metal deposited (ml/100g) for submerged arc welding (SAW). The recent trend for industry is to preferentially achieve diffusible hydrogen contents below 3 ml/100g. Making it necessary to find a way to modify the flux to achieve a lower diffusible hydrogen content for the welds it produces. To achieve this goal a two phase plan was developed. The first phase was to characterize the entire welding system for hydrogen. Since the goal of the project is hydrogen mitigation, any amount of hydrogen that could be reduced is helpful and therefore must first be discovered. Sources of hydrogen may be found by analyzing the welding wire and base metal, as well as breaking the flux down into its components and production steps. The wire was analyzed for total hydrogen content as was the base metal. The flux and its components were analyzed using differential thermal analysis-simultaneous thermal analysis (DTA-STA) and later vacuum degassing for moisture content. The analysis of the wire showed that the copper coating on the wire was the largest contributor of hydrogen. There was lubricant present on the wire surface as well, but it did not contribute as much as the copper coating. It was found that a simple low temperature baking of the wire was enough to remove the lubricant and coating moisture. The base metal was found to have a similar total hydrogen content to that of the wire. The breakdown of the flux and production process for moisture content analysis revealed that the production process removes the moisture that is added by the water based binder. The second phase of the project was to modify the flux with fluoride additions to remove hydrogen from the arc while welding. The introduction of fluorine into the arc would lower the amount of hydrogen that may be absorbed as diffusible hydrogen by the weld metal. To select the fluorides a series of thermodynamic calculations were performed as well as simple tests to determine the fluorides behavior in a welding arc and flux. From these tests the following fluorides were selected to be used to be added to EM12K flux as oneweight percent additions: SrF 2, K2TiF6, K2SiF6, and LiF. Welds were then run with the experimental fluxes according to AWS A4.3 standard for diffusible hydrogen testing. From these tests it was found that none experimental fluxes were able to achieve a diffusible hydrogen content lower than the original EM12K flux. It was also found that fluoride reduction in a simple flux is a better predictor of fluoride effectiveness than decomposition temperature.

  4. Polyfluorides and Neat Fluorine as Host Material in Matrix-Isolation Experiments.

    PubMed

    Brosi, Felix; Vent-Schmidt, Thomas; Kieninger, Stefanie; Schlöder, Tobias; Beckers, Helmut; Riedel, Sebastian

    2015-11-09

    The use of neat fluorine in matrix isolation is reported, as well as the formation of polyfluoride monoanions under cryogenic conditions. Purification procedures and spectroscopic data of fluorine are described, and matrix shifts of selected molecules and impurities in solid fluorine are compared to those of common matrix gases (Ar, Kr, N2 , Ne). The reaction of neat fluorine and IR-laser ablated metal atoms to yield fluorides of chromium (CrF5 ), palladium (PdF2 ), gold (AuF5 ), and praseodymium (PrF4 ) has been investigated. The fluorides have been characterized in solid fluorine by IR spectroscopy at 5 K. Also the fluorination of Kr and the photo-dismutation of XeO4 have been studied by using IR spectroscopy in neat fluorine. Formation of the [F5 ](-) ion was obtained by IR-laser ablation of platinum in the presence of fluorine and proven in a Ne matrix at 5 K by two characteristic vibrational bands of [F5 ](-) at $\\tilde \

  5. Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials

    NASA Astrophysics Data System (ADS)

    Lyapin, A. A.; Fedorov, P. P.; Garibin, E. A.; Malov, A. V.; Osiko, V. V.; Ryabochkina, P. A.; Ushakov, S. N.

    2013-08-01

    The laser quality transparent СаF2:Tm fluoride ceramics has been prepared by hot forming. Comparative study of absorption and emission spectra of СаF2:Tm (4 mol.% TmF3) ceramic and single crystal samples demonstrated that these materials possess almost identical spectroscopic properties. Laser oscillations of СаF2:Tm ceramics were obtained at 1898 nm under diode pumping, with the slope efficiency of 5.5%. Also, the continuous-wave (CW) laser have been obtained for СаF2:Tm single crystal at 1890 nm pumped by a diode laser was demonstrated.

  6. The Potential of Self-assembling Peptides for Enhancement of In Vitro Remineralisation of White Spot Lesions as Measured by Quantitative Laser Fluorescence.

    PubMed

    Golland, Luca; Schmidlin, Patrick R; Schätzle, Marc

    To test the remineralisation potential of a single application of self-assembling peptides or acidic fluoride solution using quantitative light-induced fluorescence (QLF) in vitro. Bovine enamel disks were prepared, and white spot lesions were created on one half of the disk with an acidic buffer solution. After demineralisation, disks were allocated into three groups of 11 specimens each. Group A served as a control group and received no treatment. Group B had a single application of fluoride, and group C was treated once with self-assembling peptides. All disks were embedded in a plastic mold (diameter 15 mm, height 9 mm) with an a-silicone, and remineralisation was initiated using a pH-cycling protocol for five days. Four experimental regions on each disk were measured prior to the start of the study (T0), after demineralisation (T1) and after the remineralisation process (T2) using QLF. After demineralisation, all areas showed a distinct loss of fluorescence, with no statistically significant difference between the groups (ΔF from -69.3 to -10.2). After remineralisation, samples of group B (treated with fluoride) showed a statistically significant fluorescence increase (ΔF from T1 to T2 15.2 ± 7.3) indicating remineralisation, whereas the samples of control group A and group C (treated with self-assembling peptides) showed no significant changes in ΔF of 1.1 ± 1.9 and 2.5 ± 1.9, respectively. Application of self-assembling peptides on demineralised bovine enamel did not lead to increased fluorescence using QLF, indicating either lack of remineralisation or irregular crystals. Increased fluorescence using QLF indicated mineral gain following a single application of a highly concentrated fluoride.

  7. High-Dose Fluoride Impairs the Properties of Human Embryonic Stem Cells via JNK Signaling.

    PubMed

    Fu, Xin; Xie, Fang-Nan; Dong, Ping; Li, Qiu-Chen; Yu, Guang-Yan; Xiao, Ran

    2016-01-01

    Fluoride is a ubiquitous natural substance that is often used in dental products to prevent dental caries. The biphasic actions of fluoride imply that excessive systemic exposure to fluoride can cause harmful effects on embryonic development in both animal models and humans. However, insufficient information is available on the effects of fluoride on human embryonic stem cells (hESCs), which is a novel in vitro humanized model for analyzing the embryotoxicities of chemical compounds. Therefore, we investigated the effects of sodium fluoride (NaF) on the proliferation, differentiation and viability of H9 hESCs. For the first time, we showed that 1 mM NaF did not significantly affect the proliferation of hESCs but did disturb the gene expression patterns of hESCs during embryoid body (EB) differentiation. Higher doses of NaF (2 mM and above) markedly decreased the viability and proliferation of hESCs. The mode and underlying mechanism of high-dose NaF-induced cell death were further investigated by assessing the sub-cellular morphology, mitochondrial membrane potential (MMP), caspase activities, cellular reactive oxygen species (ROS) levels and activation of mitogen-activated protein kinases (MAPKs). High-dose NaF caused the death of hESCs via apoptosis in a caspase-mediated but ROS-independent pathway, coupled with an increase in the phospho-c-Jun N-terminal kinase (p-JNK) levels. Pretreatment with a p-JNK-specific inhibitor (SP600125) could effectively protect hESCs from NaF-induced cell death in a concentration- and time-dependent manner. These findings suggest that NaF might interfere with early human embryogenesis by disturbing the specification of the three germ layers as well as osteogenic lineage commitment and that high-dose NaF could cause apoptosis through a JNK-dependent pathway in hESCs.

  8. The association between area deprivation and dental caries in groups with and without fluoride in their drinking water.

    PubMed

    Ellwood, R P; O'Mullane, D M

    1995-03-01

    In order to determine the association between social background and dental caries for subjects living in areas with and without fluoride in the drinking water, lifetime residents from Anglesey (0.7 mg/l F-, n = 196) and Chester/Bala (< 0.1 mg/l F-, n = 267) were examined. The mean age overall was 14.1 (+/- 0.3) years. For the Anglesey group, when differences in material deprivation were controlled, the mean DMFS was 2.9 compared with 4.3 in Chester/Bala, a difference of 33 per cent. Using multiple linear regression it was found that there was no interaction between material deprivation and water fluoridation. This suggested that absolute differences in dental caries between these areas with and without fluoride in the drinking water were similar for different strata of deprivation. It follows that percentage reductions in dental caries resulting from fluoridation of water supplies tended to be less in deprived than non deprived groups.

  9. Experimental study of electrochemical fluorination of trichloroethylene

    NASA Technical Reports Server (NTRS)

    Polisena, C.; Liu, C. C.; Savinell, R. F.

    1982-01-01

    The electrochemical fluorination of trichloroethylene in anhydrous hydrogen fluoride at 0 C and at constant cell potential was investigated. A microprocessor-aided electrochemical fluorination reactor system that yields highly reproducible results was utilized. The following major two-carbon-chain products were observed: CHCl2-CCl2F, CHCl2-CClF2, CHClF-CCl2F, and CCl2F-CClF2. The first step in the reaction sequence was determined to be fluorine addition to the double bond, followed by replacement of first hydrogen and then chlorine by fluorine. Polymerization reactions yielded higher molecular weight or possible ring-type chlorofluorohydrocarbons. A comparison of the reaction products of electrochemical and chemical fluorinations of trichloroethylene is also discussed.

  10. Cytotoxicity of novel fluoride solutions and their influence on mineral loss from enamel exposed to a Streptococcus mutans biofilm.

    PubMed

    Vieira, Thiago Isidro; Câmara, João Victor Frazão; Cardoso, Júlia Gabiroboertz; Alexandria, Adílis Kalina; Pintor, Andréa Vaz Braga; Villaça, Jaqueline Correia; Cabral, Lúcio Mendes; Romanos, Maria Teresa Villela; Fonseca-Gonçalves, Andrea; Valença, Ana Maria Gondim; Maia, Lucianne Cople

    2018-07-01

    This study evaluated the cytotoxicity, antimicrobial activity and in vitro influence of new fluoridated nanocomplexes on dental demineralization. The nanocomplexes hydroxypropyl-β-cyclodextrin with 1% titanium tetrafluoride (TiF 4 ) and γ-cyclodextrin with TiF 4 were compared to a positive control (TiF 4 ), a blank control (without treatment) and negative controls (hydroxypropyl-β-cyclodextrin, γ-cyclodextrin, deionized water), following 12- and 72-hour complexation periods. The cytotoxicity was assessed using the neutral red dye uptake assay at T1-15 min, T2-30 min and T3-24 h. A minimum bactericidal concentration (MBC) against Streptococcus mutans (ATCC 25175) was performed. Enamel blocks were exposed to an S. mutans biofilm, and the percentage of surface microhardness loss was obtained. Biocompatibility and microhardness data were analysed using ANOVA/Tukey tests (p < 0.05). At T1, the cell viability results of the nanocomplexes were similar to that of the blank control. At T2 and T3, the 72 h nanocomplexes demonstrated cell viability results similar to that of the blank, while the 12 h solutions showed results different from that of the blank (p < 0.05). All fluoridated nanocompounds inhibited S. mutans (MBC = 0.25%), while the MBC of TiF 4 alone was 0.13%. All fluoridated compounds presented a percentage of surface microhardness loss lower than that of deionized water (p < 0.05). The new fluoridated nanocomplexes did not induce critical cytotoxic effects during the experimental periods, whilst they did show bactericidal potential against S. mutans and inhibited enamel mineral loss. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. F{sup −}/OH{sup −} substitution in [H{sub 4}tren]{sup 4+} and [H{sub 3}tren]{sup 3+} hydroxyfluorotitanates(IV) and classification of tren cation configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lhoste, Jérôme, E-mail: jerome.lhoste@univ-lemans.fr; Body, Monique, E-mail: monique.body@univ-lemans.fr; Legein, Christophe, E-mail: christophe.legein@univ-lemans.fr

    2014-09-15

    Three [H{sub 3}tren]{sup 3+} or [H{sub 4}tren]{sup 4+} hydroxyfluorotitanates(IV) are solvothermally synthesized from TiO{sub 2}, tren amine, 40% HF aqueous solution and ethanol under microwave heating at 120 °C and 190 °C. [H{sub 4}tren]·(TiF{sub 4.6}(OH){sub 1.4}){sub 2}·2.7H{sub 2}O (I) and β-[H{sub 3}tren]·(TiF{sub 4.5}(OH){sub 1.5})·(F) (II) are described for the first time. The third compound, α-[H{sub 3}tren]·(TiF{sub 4.7}(OH){sub 1.3})·(F) (III), was previously reported as a pure fluorotitanate. The structure determinations are performed from single crystal (I) and powder (II) X-ray diffraction data. The F{sup −}/OH{sup −} substitution, expected from the presence of water in the reaction medium, is characterized by chemicalmore » analyses and {sup 19}F MAS solid state NMR experiments: all three structures are built up from Ti(F,OH){sub 6}{sup 2−} octahedra and “free” fluoride ions or water molecules. “Free” fluoride ions are not affected by F{sup −}/OH{sup −} substitution. The electroneutrality is ensured by triprotonated or tetraprotonated tren amines which adopt specific configurations. Additionally, based on the analysis of [H{sub 3}tren]{sup 3+} or [H{sub 4}tren]{sup 4+} hydroxo/oxo/fluorometalates, a classification of the configurations of tren cations is proposed. - Graphical abstract: The ratio of the relative intensities of the {sup 19}F NMR lines assigned to F atoms belonging to isolated TiF{sub 6−x}(OH){sub x} octahedra and to “free” fluoride ions shows that the F{sup −}/OH{sup −} substitution concerns only F atoms bonded to titanium. - Highlights: • Three tren templated hydroxyfluorotitanates(IV) have been solvothermally synthesized. • They are built up from Ti(F,OH){sub 6}{sup 2−} octahedra and “free” F{sup −} ions or H{sub 2}O molecules. • F{sup −}/OH{sup −} substitution does not affect “free” F{sup −} sites. • [H{sub 4}tren]{sup 4+} and [H{sub 3}tren]{sup 3+} cations adopt specific configurations. • A classification of the configurations of tren cations is proposed.« less

  12. Test Operations Procedure (TOP) 1-2-612 Nuclear Environment Survivability

    DTIC Science & Technology

    2008-10-24

    measurements. The area equal to the area of gamma dose sensitive electronics will be mapped using CaF2 (Mn) TLDs . The selection of each STT...October 2008 8 2.3.3 HEMP / SREMP Instrumentation / Dosimetry . Measurement Parameter Preferred Device Measurement Accuracy Current...Calcium Fluoride Manganese CaF2 (Mn) Thermoluminescent Dosimeter ( TLDs ) and Compton diodes, respectively. The measured gamma dose values will be

  13. Standardization of fluorine-18 manufacturing processes: new scientific challenges for PET.

    PubMed

    Hjelstuen, Ole K; Svadberg, Anders; Olberg, Dag E; Rosser, Mark

    2011-08-01

    In [(18)F]fluoride chemistry, the minute amounts of radioactivity taking part in a radiolabeling reaction are easily outnumbered by other reactants. Surface areas become comparably larger and more influential than in standard fluorine chemistry, while leachables, extractables, and other components that normally are considered small impurities can have a considerable influence on the efficiency of the reaction. A number of techniques exist to give sufficient (18)F-tracer for a study in a pre-clinical or clinical system, but the chemical and pharmaceutical understanding has significant gaps when it comes to scaling up or making the reaction more efficient. Automation and standardization of [(18)F]fluoride PET tracers is a prerequisite for reproducible manufacturing across multiple PET centers. So far, large-scale, multi-site manufacture has been established only for [(18)F]FDG, but several new tracers are emerging. In general terms, this transition from small- to large-scale production has disclosed several scientific challenges that need to be addressed. There are still areas of limited knowledge in the fundamental [(18)F]fluoride chemistry. The role of pharmaceutical factors that could influence the (18)F-radiosynthesis and the gaps in precise chemistry knowledge are discussed in this review based on a normal synthesis pattern. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Fluorine sites in glasses and transparent glass-ceramics of the system Na{sub 2}O/K{sub 2}O/Al{sub 2}O{sub 3}/SiO{sub 2}/BaF{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocker, Christian, E-mail: christian.bocker@uni-jena.d; Munoz, Francisco; Duran, Alicia

    2011-02-15

    The transparent glass-ceramics obtained in the silicate system Na{sub 2}O/K{sub 2}O/SiO{sub 2}/BaF{sub 2} show homogeneously dispersed BaF{sub 2} nano crystals with a narrow size distribution. The X-ray diffraction and the nuclear magnetic resonance spectroscopy were applied to glasses and the respective glass-ceramics in order to clarify the crystallization mechanism and the role of fluorine during crystallization. With an increasing annealing time, the concentration and also the number of crystals remain approximately constant. With an increasing annealing temperature, the crystalline fraction increases until a saturation limit is reached, while the number of crystals decreases and the size of the crystals increases.more » Fluoride in the glassy network occurs as Al-F-Ba, Al-F-Na and also as Ba-F structures. The latter are transformed into crystalline BaF{sub 2} and fluoride is removed from the Al-F-Ba/Na bonds. However, some fluorine is still present in the glassy phase after the crystallization. -- Graphical abstract: The X-ray diffraction and the nuclear magnetic resonance spectroscopy were applied to glasses in the silicate system Na{sub 2}O/K{sub 2}O/SiO{sub 2}/BaF{sub 2} and the respective glass-ceramics with BaF{sub 2} nano crystals in order to clarify the crystallization mechanism and the role of fluorine during crystallization. Display Omitted Research highlights: {yields} BaF{sub 2} nano crystals are precipitated from a silicate glass system. {yields} Ostwald ripening during the late stage of crystallization does not occur. {yields} Fluorine in the glass is coordinated with Ba as well as Al together with Ba or Na.{yields} In the glass-ceramics, the residual fluorine is coordinated as Al-F-Ba/Na.« less

  15. Combined impact of exercise and temperature in learning and memory performance of fluoride toxicated rats.

    PubMed

    Basha, P Mahaboob; Sujitha, N S

    2012-12-01

    In previous studies, we investigated a link between high fluoride exposure and functional IQ deficits in rats. This study is an extension conducted to explore the combined influence of physical exercise and temperature stress on the learning ability and memory in rats and to assess whether any positive modulation could be attenuated due to exercise regimen subjected to F-toxicated animals at different temperatures. Accumulation of ingested fluoride resulted significant inhibition in acetylcholinesterase activity (P < 0.05), plasma cortisol levels (P < 0.05), and impaired the acquisition, performance, latency time, and retention in fluoride-exposed animals. Fluoride-toxicated rats took more number of sessions during the learning phase [F (5, 35) = 19.065; P < 0.05] and post hoc analysis on the number of correct choices revealed that there was a significant effect of treatments [F (5, 30) = 15.763; P < 0.05]; sessions [F (8, 240) = 58.698; P < 0.05]; and also significant difference in the interactions [F (40, 240) = 1.583; P < 0.05]. The latency data also revealed a significant difference between groups [F (5, 30) = 28.085; P < 0.05]; time = [F (8, 240) = 136.314; P < 0.05]; and there was a significant difference in the interactions [F (40, 240) = 2.090; P < 0.05]. In order to ascertain if interdependence between fluoride concentrations and the foregoing free radical parameters, respective correlation coefficients were calculated and results clearly emphasize the positive role of exercise in the promotion of cognitive functions by decreasing fluoride levels in rat hippocampus. A significant recovery in cognitive function was noticed in all the exercised animals due to reduced burden of brain oxidative stress. In comparison to exercise regimens performed at different temperatures, high (35 °C) and low temperatures (20 °C) led to a slower acquisition and poor retention of the task when compared to thermo neutral temperatures (25 and 30 °C). Thus exercise up-regulate antioxidant defenses and promote learning abilities in fluorotic population.

  16. Dentifrice fluoride and abrasivity interplay on artificial caries lesions.

    PubMed

    Nassar, Hani M; Lippert, Frank; Eckert, George J; Hara, Anderson T

    2014-01-01

    Incipient caries lesions on smooth surfaces may be subjected to toothbrushing, potentially leading to remineralization and/or abrasive wear. The interplay of dentifrice abrasivity and fluoride on this process is largely unknown and was investigated on three artificially created lesions with different mineral content/distribution. 120 bovine enamel specimens were randomly allocated to 12 groups (n = 10), resulting from the association of (1) lesion type [methylcellulose acid gel (MeC); carboxymethylcellulose solution (CMC); hydroxyethylcellulose gel (HEC)], (2) slurry abrasive level [low (REA 4/ RDA 69); high (REA 7/RDA 208)], and (3) fluoride concentration [0/275 ppm (14.5 mM) F as NaF]. After lesion creation, specimens were brushed in an automated brushing machine with the test slurries (50 strokes 2×/day). Specimens were kept in artificial saliva in between brushings and overnight. Enamel surface loss (SL) was determined by optical profilometry after lesion creation, 1, 3 and 5 days. Two enamel sections (from baseline and post-brushing areas) were obtained and analyzed microradiographically. Data were analyzed by analysis of variance and Tukey's tests (α = 5%). Brushing with high-abrasive slurry caused more SL than brushing with low-abrasive slurry. For MeC and CMC lesions, fluoride had a protective effect on SL from day 3 on. Furthermore, for MeC and CMC, there was a significant mineral gain in the remaining lesions except when brushed with high-abrasive slurries and 0 ppm F. For HEC, a significant mineral gain took place when low-abrasive slurry was used with fluoride. The tested lesions responded differently to the toothbrushing procedures. Both slurry fluoride content and abrasivity directly impacted SL and mineral gain of enamel caries lesions.

  17. Building an Electronic Bridge via Ag Decoration To Enhance Kinetics of Iron Fluoride Cathode in Lithium-Ion Batteries.

    PubMed

    Li, Yu; Zhou, Xingzhen; Bai, Ying; Chen, Guanghai; Wang, Zhaohua; Li, Hui; Wu, Feng; Wu, Chuan

    2017-06-14

    As a typical multielectron cathode material for lithium-ion batteries, iron fluoride (FeF 3 ) and its analogues suffer from poor electronic conductivity and low actual specific capacity. Herein, we introduce Ag nanoparticles by silver mirror reaction into the FeF 3 ·0.33H 2 O cathode to build the electronic bridge between the solid (active materials) and liquid (electrolyte) interface. The crystal structures of as-prepared samples are characterized by X-ray diffraction and Rietveld refinement. Moreover, the density of states of FeF 3 ·0.33H 2 O and FeF 3 ·0.33H 2 O/Ag (Ag-decorated FeF 3 ·0.33H 2 O) samples are calculated using the first principle density functional theory. The FeF 3 ·0.33H 2 O/Ag cathodes exhibit significant enhancements on the electrochemical performance in terms of the cycle performance and rate capability, especially for the Ag-decorated amount of 5%. It achieves an initial capacity of 168.2 mA h g -1 and retains a discharge capacity of 128.4 mA h g -1 after 50 cycles in the voltage range of 2.0-4.5 V. It demonstrates that Ag decoration can reduce the band gap, improve electronic conductivity, and elevate intercalation/deintercalation kinetics.

  18. Fluoride therapy for osteoporosis: characterization of the skeletal response by serial measurements of serum alkaline phosphatase activity.

    PubMed

    Farley, S M; Wergedal, J E; Smith, L C; Lundy, M W; Farley, J R; Baylink, D J

    1987-03-01

    Optimum use of fluoride therapy for osteoporosis requires a sensitive and convenient index of the skeletal response to fluoride. Since previous studies had shown that serum alkaline phosphatase activity (SALP) was increased in response to fluoride therapy, we examined serial measurements of SALP in 53 osteoporotics treated with 66 to 110 mg of sodium fluoride (NaF) for 12 to 91 months. SALP was increased in 87% of the subjects during therapy with fluoride. The increase in SALP was thought to reflect the osteogenic action of fluoride based on the findings that SALP correlated with both trabecular bone area (r = .81, P less than .001) and osteoid length (r = .67, P less than .01) in iliac crest biopsies, predicted increased bone density on spinal radiographs in response to fluoride therapy with an 87% accuracy, and predicted decreased back pain in response to fluoride with a 91% accuracy. In addition, the SALP response to fluoride was seen earlier than other therapeutic responses as indicated by the findings that the tau 1/2 for the SALP response (ie, time for 1/2 of the patients to show a significant response) was significantly less (1.2 +/- 0.3 yr) than that for the pain response (1.6 +/- 0.3 yr, P less than .05) or that for the radiographic response (3.7 +/- 0.5 yr, P less than .001). Although most patients responded to fluoride with an increase in SALP, evaluation of the kinetics of the SALP response to fluoride revealed marked interpatient variation.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Atomic Layer Deposited (ALD) coatings for future astronomical telescopes: recent developments

    NASA Astrophysics Data System (ADS)

    Moore, Christopher Samuel; Hennessy, John; Jewell, April D.; Nikzad, Shouleh; France, Kevin

    2016-07-01

    Atomic Layer Deposition (ALD) can create conformal, near stoichiometric and pinhole free transmissive metal fluoride coatings to protect reflective aluminum films. Spectral performance of astronomical mirror coatings strongly affect the science capabilities of astronomical satellite missions. We are utilizing ALD to create a transmissive overcoat to protect aluminum film mirrors from oxidation with the goal of achieving high reflectance (> 80%) from the UV ( 100 nm) to the IR ( 2,000 nm). This paper summarizes the recent developments of ALD aluminum fluoride (AlF3) coatings on Al. Reflectance measurements of aluminum mirrors protected by ALD AlF3 and future applications are discussed. These measurements demonstrate that Al + ALD AlF3, even with an interfacial oxide layer of a few nanometers, can provide higher reflectance than Al protected by traditional physical vapor deposited MgF2 without an oxide layer, below 115 nm.

  20. Fluoride triggered fluorescence "turn on" sensor for Zn2+ ions based on pentaquinone scaffold that works as a molecular keypad lock.

    PubMed

    Bhalla, Vandana; Roopa; Kumar, Manoj

    2012-06-01

    A pentaquinone based compound 3a has been synthesized which exhibits pronounced fluorescence enhancement in the presence of Zn(2+) ions under a F(-) triggered synergistic effect. Derivative 3a also behaves as a molecular keypad lock with sequential chemical inputs of Zn(2+) and F(-) ions.

  1. NMR parameters in alkali, alkaline earth and rare earth fluorides from first principle calculations.

    PubMed

    Sadoc, Aymeric; Body, Monique; Legein, Christophe; Biswal, Mamata; Fayon, Franck; Rocquefelte, Xavier; Boucher, Florent

    2011-11-07

    (19)F isotropic chemical shifts for alkali, alkaline earth and rare earth of column 3 basic fluorides are measured and the corresponding isotropic chemical shieldings are calculated using the GIPAW method. When using the PBE exchange-correlation functional for the treatment of the cationic localized empty orbitals of Ca(2+), Sc(3+) (3d) and La(3+) (4f), a correction is needed to accurately calculate (19)F chemical shieldings. We show that the correlation between experimental isotropic chemical shifts and calculated isotropic chemical shieldings established for the studied compounds allows us to predict (19)F NMR spectra of crystalline compounds with a relatively good accuracy. In addition, we experimentally determine the quadrupolar parameters of (25)Mg in MgF(2) and calculate the electric field gradients of (25)Mg in MgF(2) and (139)La in LaF(3) using both PAW and LAPW methods. The orientation of the EFG components in the crystallographic frame, provided by DFT calculations, is analysed in terms of electron densities. It is shown that consideration of the quadrupolar charge deformation is essential for the analysis of slightly distorted environments or highly irregular polyhedra. This journal is © the Owner Societies 2011

  2. Fluoride in groundwater: toxicological exposure and remedies.

    PubMed

    Jha, S K; Singh, R K; Damodaran, T; Mishra, V K; Sharma, D K; Rai, Deepak

    2013-01-01

    Fluoride is a chemical element that is found most frequently in groundwater and has become one of the most important toxicological environmental hazards globally. The occurrence of fluoride in groundwater is due to weathering and leaching of fluoride-bearing minerals from rocks and sediments. Fluoride when ingested in small quantities (<0.5 mg/L) is beneficial in promoting dental health by reducing dental caries, whereas higher concentrations (>1.5 mg/L) may cause fluorosis. It is estimated that about 200 million people, from among 25 nations the world over, may suffer from fluorosis and the causes have been ascribed to fluoride contamination in groundwater including India. High fluoride occurrence in groundwaters is expected from sodium bicarbonate-type water, which is calcium deficient. The alkalinity of water also helps in mobilizing fluoride from fluorite (CaF2). Fluoride exposure in humans is related to (1) fluoride concentration in drinking water, (2) duration of consumption, and (3) climate of the area. In hotter climates where water consumption is greater, exposure doses of fluoride need to be modified based on mean fluoride intake. Various cost-effective and simple procedures for water defluoridation techniques are already known, but the benefits of such techniques have not reached the rural affected population due to limitations. Therefore, there is a need to develop workable strategies to provide fluoride-safe drinking water to rural communities. The study investigated the geochemistry and occurrence of fluoride and its contamination in groundwater, human exposure, various adverse health effects, and possible remedial measures from fluoride toxicity effects.

  3. Monoclinic β-BaY2F8—a novel crystal simultaneously active for SRS and Ln3+-ion lasing

    NASA Astrophysics Data System (ADS)

    Kaminskii, A. A.; Lux, O.; Hanuza, J.; Rhee, H.; Eichler, H. J.; Zhang, J.; Tang, D.; Shen, D.; Yu, H.; Wang, J.; Yoneda, H.; Shirakawa, A.

    2015-01-01

    This paper presents the first investigation of stimulated Raman scattering (SRS) in the monoclinic fluoride crystal β-BaY2F8, which is known as a promising host-material for trivalent lanthanide (Ln3+) lasant ions. Picosecond laser excitation in the visible and near-IR spectral range at room temperature revealed the manifestation of nine SRS-promoting phonon modes, which are related to Ag and Bg vibrations of the crystal. Besides multi-phonon Stokes and anti-Stokes generation, we observed cross-cascaded χ(3) ↔ χ(3) processes involving different pairs of SRS-active phonons. A comparative estimation of the first Stokes steady-state Raman gain coefficients, both in the visible and near-IR region related to the most active SRS-phonon mode ωSRS1 ≈ 208 cm-1 of β-BaY2F8, was also performed. Furthermore, a brief review of the pioneering papers on laser action of Ln3+-ions doped in β-BaY2F8 single crystals and other known SRS-active fluoride crystals is given in tabular form.

  4. Control of the shell structural properties and cavity diameter of hollow magnesium fluoride particles.

    PubMed

    Nandiyanto, Asep Bayu Dani; Ogi, Takashi; Okuyama, Kikuo

    2014-03-26

    Control of the shell structural properties [i.e., thickness (8-25 nm) and morphology (dense and raspberry)] and cavity diameter (100-350 nm) of hollow particles was investigated experimentally, and the results were qualitatively explained based on the available theory. We found that the selective deposition size and formation of the shell component on the surface of a core template played important roles in controlling the structure of the resulting shell. To achieve the selective deposition size and formation of the shell component, various process parameters (i.e., reaction temperature and charge, size, and composition of the core template and shell components) were tested. Magnesium fluoride (MgF2) and polystyrene spheres were used as models for shell and core components, respectively. MgF2 was selected because, to the best of our knowledge, the current reported approaches to date were limited to synthesis of MgF2 in film and particle forms only. Therefore, understanding how to control the formation of MgF2 with various structures (both the thickness and morphology) is a prospective for advanced lens synthesis and applications.

  5. Effects of oxide replacement with fluoride at the CoFeB interface on interface magnetic anisotropy and its voltage control

    NASA Astrophysics Data System (ADS)

    Pankieiev, Mykhailo; Kita, Koji

    2018-05-01

    In this paper we report results of improving Co60Fe20B20 interface perpendicular magnetic anisotropy (PMA) by replacing neighbor oxide layer with fluoride one. We expected that fluorine as element with higher than oxide electronegativity could more effectively attract electrons from out-of-plane d orbitals of ferromagnetic, increasing role of in-plane orbitals. By this we wanted to increase PMA and its response to applied voltage bias. Polar magneto-optic Kerr effect measurement show decreasing of out-of-plane magnetic field needed to change magnetization to perpendicular in stacks with oxygen replaced by fluorine as well as increasing of coefficient of response to applied voltage α from < 10 fJ/Vm for CoFeB/Al2O3 interface to 20 fJ/Vm for CoFeB/AlF3/Al2O3 and 22 fJ/Vm for CoFeB/MgF2 stacks. Direct chemical interaction of Co with F was confirmed by x-ray photoelectron spectroscopy (XPS) measurement of Co2p core level region. Moreover angular-resolved XPS showed that F tends to stay at CoFeB interface rather than diffuse out of it.

  6. Preparation of sodium fluoride-loaded gelatin microspheres, characterization and cariostatic studies.

    PubMed

    Wu, H; Zhang, Z X; Zhao, H P; Wu, D C; Wu, B L; Cong, R

    2004-12-01

    Sodium fluoride-loaded gelatin microspheres (NaF-GMS) were prepared using double-phase emulsified condensation polymerization. The average diameter of microspheres was (11.33+/-5.56) microm. The drug content and encapsulation efficiency were 8.80% and 76.73%, respectively. The fluoride releasing profiles of NaF-GMS in physiological saline and artificial saliva (pH 4.5, pH 6.8) showed that NaF-GMS had a sustained-release property and fluoride release rate was increased in pH 4.5 artificial saliva. Experiments conducted in rabbits' oral cavity using NaF-GMS and NaF solution as control revealed NaF-GMS could maintain oral fluoride retention longer than NaF solution. Cariostatic abilities of NaF-GMS including demineralization prohibition in vitro, fluoride deposition in artificial dental plaque and the ability of targeting to cariogenic bacteria were investigated in artificial dental plaque. The results indicated NaF-GMS with lower fluoride concentrations could achieve equivalent cariostatic effect to the concentrated NaF solution, at the same time, could prolong fluoride retention in dental plaque. Microscopic observation showed that NaF-GMS carrying fusion protein of glucan-binding domain could adhere more bacteria than NaF-GMS and this might indicate the possibility of targeting to cariogenic bacteria when NaF-GMS were properly modified.

  7. Decline of caries prevalence after the cessation of water fluoridation in the former East Germany.

    PubMed

    Künzel, W; Fischer, T; Lorenz, R; Brühmann, S

    2000-10-01

    In contrast to the anticipated increase in dental caries following the cessation of water fluoridation in the cities Chemnitz (formerly Karl-Marx-Stadt) and Plauen, a significant fall in caries prevalence was observed. This trend corresponded to the national caries decline and appeared to be a new population-wide phenomenon. Additional surveys (N=1017) carried out in the formerly-fluoridated towns of Spremberg (N=9042) and Zittau (N=6232) were carried out in order to support this unexpected epidemiological finding. Pupils from these towns, aged 8/9-, 12/13- and 15/16-years, have been examined repeatedly over the last 20 years using standardised caries-methodological procedures. While the data provided additional support for the established fact of a caries reduction brought about by the fluoridation of drinking water (48% on average), it has also provided further support for the contention that caries prevalence may continue to fall after the reduction of fluoride concentration in the water supply from about 1 ppm to below 0.2 ppm F. Caries levels for the 12-year-olds of both towns significantly decreased during the years 1993-96, following the cessation of water fluoridation. In Spremberg, DMFT fell from 2.36 to 1.45 (38.5%) and in Zittau from 2.47 to 1.96 (20.6%). These findings have therefore supported the previously observed change in the caries trend of Chemnitz and Plauen. The mean of 1.81 DMFT for the 12-year-olds, computed from data of the four towns, is the lowest observed in East Germany during the past 40 years. The causes for the changed caries trend were seen on the one hand in improvements in attitudes towards oral health behaviour and, on the other hand, to the broader availability and application of preventive measures (F-salt, F-toothpastes, fissure sealants etc.). There is, however, still no definitive explanation for the current pattern and further analysis of future caries trends in the formerly fluoridated towns would therefore seem to be necessary.

  8. Clinical comparison of plaque inhibition effects of a novel stabilized stannous fluoride dentifrice and a chlorhexidine digluconate dentifrice using digital plaque imaging.

    PubMed

    Bellamy, P G; Boulding, A; Farmer, S; Day, T N; Mussett, A J; Barker, M L

    2011-01-01

    To compare the plaque inhibition efficacy of a novel 0.454% stannous fluoride (SnF2) test dentifrice with sodium hexametaphosphate and stannous chloride to a chlorhexidine digluconate (0.05%), aluminium lactate (0.8%), and aluminium fluoride marketed control dentifrice (Lacalut Aktiv or AlF3/Chx). This was a randomized, two-treatment, two-period, double-blind crossover study that compared the SnF2 test dentifrice to the AlF3/Chx control dentifrice. Each of the two treatment periods lasted for 17 consecutive days of product use, during which subjects were required to brush twice per day with their assigned dentifrice using a standard manual toothbrush (Oral-B P35 Indicator). The two periods of the crossover were separated by a four-day washout period. Plaque levels on the facial anterior tooth surfaces were evaluated and averaged among three assessment days at the end of each treatment period using digital plaque imaging analysis (DPIA). The evening prior to assessments, subjects only brushed lingual surfaces. Assessment time points were carried out in the morning following no morning brushing (A.M. pre-brush), following 40 seconds of brushing with the assigned dentifrice (A.M. post-brush), and in the afternoon (P.M.). The DPIA captured images were used to calculate and analyze visible plaque coverage. Twenty-eight subjects were randomized and completed the study. At each assessment time point, the SnF2 test dentifrice demonstrated a statistically significant lower plaque level compared to the AlF3/Chx dentifrice: A.M. mean pre-brush 15.9% lower, p < 0.05; A.M. mean post-brush 22.2% lower, p < 0.05; P.M. mean 24.3% lower, p < 0.005. Compared to the AlF3/Chx control dentifrice, the novel SnF2 test dentifrice significantly inhibited plaque regrowth overnight and during the day. Immediately after brushing there was also significantly less plaque coverage with the SnF2 test dentifrice.

  9. Evidence-based recommendation on toothpaste use.

    PubMed

    Cury, Jaime Aparecido; Tenuta, Livia Maria Andalo

    2014-01-01

    Toothpaste can be used as a vehicle for substances to improve the oral health of individuals and populations. Therefore, it should be recommended based on the best scientific evidence available, and not on the opinion of authorities or specialists. Fluoride is the most important therapeutic substance used in toothpastes, adding to the effect of mechanical toothbrushing on dental caries control. The use of fluoride toothpaste to reduce caries in children and adults is strongly based on evidence, and is dependent on the concentration (minimum of 1000 ppm F) and frequency of fluoride toothpaste use (2'/day or higher). The risk of dental fluorosis due to toothpaste ingestion by children has been overestimated, since there is no evidence that: 1) fluoride toothpaste use should be postponed until the age of 3-4 or older, 2) low-fluoride toothpaste avoids fluorosis and 3) fluorosis has a detrimental effect on the quality of life of individuals exposed to fluoridated water and toothpaste. Among other therapeutic substances used in toothpastes, there is evidence that triclosan/copolymer reduce dental biofilm, gingivitis, periodontitis, calculus and halitosis, and that toothpastes containing stannous fluoride reduce biofilm and gingivitis.

  10. Cationic boranes for the complexation of fluoride ions in water below the 4 ppm maximum contaminant level.

    PubMed

    Kim, Youngmin; Gabbaï, François P

    2009-03-11

    In search of a molecular receptor that could bind fluoride ions in water below the maximum contaminant level of 4 ppm set by the Environmental Protection Agency (EPA), we have investigated the water stability and fluoride binding properties of a series of phosphonium boranes of general formula [p-(Mes(2)B)C(6)H(4)(PPh(2)R)](+) with R = Me ([1](+)), Et ([2](+)), n-Pr ([3](+)), and Ph ([4](+)). These phosphonium boranes are water stable and react reversibly with water to form the corresponding zwitterionic hydroxide complexes of general formula p-(Mes(2)(HO)B)C(6)H(4)(PPh(2)R). They also react with fluoride ions to form the corresponding zwitterionic fluoride complexes of general formula p-(Mes(2)(F)B)C(6)H(4)(PPh(2)R). Spectrophotometric acid-base titrations carried out in H(2)O/MeOH (9:1 vol.) afford pK(R+) values of 7.3(+/-0.07) for [1](+), 6.92(+/-0.1) for [2](+), 6.59(+/-0.08) for [3](+), and 6.08(+/-0.09) for [4](+), thereby indicating that the Lewis acidity of the cationic boranes increases in following order: [1](+) < [2](+) < [3](+) < [4](+). In agreement with this observation, fluoride titration experiments in H(2)O/MeOH (9:1 vol.) show that the fluoride binding constants (K = 840(+/-50) M(-1) for [1](+), 2500(+/-200) M(-1) for [2](+), 4000(+/-300) M(-1) for [3](+), and 10 500(+/-1000) M(-1) for [4](+)) increase in the same order. These results show that the Lewis acidity of the cationic boranes increases with their hydrophobicity. The resulting Lewis acidity increase is substantial and exceeds 1 order of magnitude on going from [1](+) to [4](+). In turn, [4](+) is sufficiently fluorophilic to bind fluoride ions below the EPA contaminant level in pure water. These results indicate that phosphonium boranes related to [4](+) could be used as molecular recognition units in chemosensors for drinking water analysis.

  11. Develop a Low Cost, Safe and Environmentally Benign High Energy and High Rate Reserve Battery

    DTIC Science & Technology

    2004-09-30

    Methylimidazolium hexafluorophosphate BMItrif 1-Butyl-3-Methylimidazolium trifluoromethanesulfonate EC Ethylene carbonate EMC Ethyl methyl carbonate DEC...ionic liquid, a new field in lithium -based batteries, merits special recognition. The contribution of Dr. Mark Salomon with respect to the...applications. In particular, the anode is typically metallic lithium , and the cathode depolarizer is, most commonly, thionyl chloride (SOCl2) or sulfuryl

  12. Assessment of the efficacy of second life, a virtual learning environment, in dental education.

    PubMed

    El Tantawi, Maha M A; El Kashlan, Mona K; Saeed, Yasmin M

    2013-12-01

    This study assessed the efficacy of Second Life (SL) in delivering lectures and demonstrating clinical procedures. Sixteen students in a dental school in Alexandria, Egypt, volunteered to participate in SL to learn about topical fluoride through lectures and YouTube videos demonstrating the application of fluoride gel. This was followed by face to face (F2F) sessions about pits and fissures sealant including lectures and F2F demonstration. Knowledge improvement was assessed by pre- and posttests; practical skills were assessed by a checklist; and percent scores were calculated. The relation between these scores and some background variables was assessed. Students' satisfaction with and perceptions of SL were also assessed. Knowledge improved significantly after both SL and F2F experiences (p<0.0001 for both). There were no significant differences between SL and F2F in knowledge improvement or skills percent scores (p=0.16 and 0.26, respectively). Knowledge improvement was significantly related to previous experience with SL and previous year grade (p=0.02 and 0.007, respectively) but not to gender. Practical skills scores were not related to any of these three variables. Satisfaction with SL experience was high and not affected by any of the three variables, and the experience was perceived positively. This study suggests that SL can complement traditional F2F teaching, especially for underachieving students and in higher education institutions with problems of increasing numbers of students and limited space.

  13. Prior fluoridation in childhood affects dental caries and tooth wear in a south east Queensland population.

    PubMed

    Teo, C; Young, W G; Daley, T J; Sauer, H

    1997-04-01

    Fluoride exposure in early life has an effect on dental caries experience, but does it affect tooth wear in later life? Ninety-six South East Queensland subjects were studied. Their histories revealed three groups; a fluoride (F-) in water supply, a F- by supplement, and a non-fluoridated (non F-) group. Significantly higher caries experience was found in the non-F- group compared with F- in water group and the F- supplement group. No statistically significant difference in caries experience was found between the F- in water and F- supplement groups. Overall, tooth wear affected more sextants of the dentitions of non-fluoridated, high-caries subjects than of fluoridated low-caries subjects. Comparisons of wear patterns on sextants of the dentitions, between the fluoridated and non-fluoridated groups, revealed that in sextants where attrition was present no marked differences were discernible between the two groups. However, in most sextants where incisal, palatal, occlusal or non-occlusal erosion was found, this type of wear was commoner in non-fluoridated subjects. The exceptions were the mandibular molar sextants, where prior fluoride-exposure did not appear to protect against occlusal erosion patterns. This study showed that fluoride exposure during the first 12 years of life, which reduced dental caries in this population, may also protect teeth from wear to some extent.

  14. Ultrasonic Determination of Combinations of Third-Order Elastic Constants of Small Cubic Single Crystals

    DTIC Science & Technology

    1981-05-01

    crystals Cesium cadmium fluoride Ultrasonic wave propagation Potassium zinc fluoride Nonlinear acoustics 20. A’?S1 RACT (Continue on reverse side If...is the stray capacitance of the detector, L is the inductance of the wire leading from the banana jack to the BNC connector (shown in Figure 111-2). Z...The samples on which measurements were made included [lO0] and [1111 copper samples, a sample of potassium zinc fluoride (KZnF 3 ) and a sample of

  15. Infrared spectra of MF2, MF2+, MF4-, MF3, and M2F6 molecules (M = Sc, Y, La) in solid argon.

    PubMed

    Wang, Xuefeng; Andrews, Lester

    2010-02-18

    Reactions of laser-ablated Sc, Y and La atoms with F(2) in excess argon gave new absorptions in the M-F stretching region, which are assigned to metal fluoride neutral species MF(2) and MF(3) and ions MF(2)(+) and MF(4)(-). Dibridged MF(3) dimers, M(2)F(6), were also identified through terminal M-F and bridge M-F-M stretching modes. Density functional theory (DFT) calculations substantiated the experimental assignments. Mulliken and natural charge distributions indicate significant electron transfer from metal d orbitals to F ligands that increase from Sc to La, suggesting that strong participation of La 5d orbital hybridization drives the F-La-F bond angle below 120 degrees.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Targove, J.D.

    The columnar microstructure of most thermally evaporated thin films detrimentally affects many of their properties through a reduction in packing density. In this work, the author investigated ion-assisted deposition as a means of disrupting this columnar growth for a number of coating materials. A Kaufman hot-cathode ion source bombarded thermally evaporated films with low-energy (<1000 eV) positive ions during deposition in a cryopumped box coater. The author investigated MgF/sub 2/, Na/sub 3/AlF/sub 6/, AlF/sub 3/, LaF/sub 3/,CeF/sub 3/,NdF/sub 3/,Al/sub 2/O/sub 3/, and AlN. Argon ion bombardment of the fluoride coatings increased their packing densities dramatically. He achieved packing densities nearmore » unity without significant absorption for MgF/sub 2/,LaF/sub 3/, and NdF/sub 3/, while Na/sub 3/AlF/sub 6/,AlF/sub 3/, and CeF/sub 3/ began to absorb before unity packing density could be achieved. Fluorine was preferentially sputtered by the ion bombardment, creating anion vacancies. The films adsorbed water vapor and hydroxyl radicals from the residual chamber atmosphere. These filled the vacancy sites, eliminating absorption in the visible, but the oxygen complexes caused increased absorption in the ultraviolet. For LaF/sub 3/ and NdF/sub 3/, a sufficient amount of oxygen caused a phase transformation from the fluoride phase to an oxyfluoride phase.« less

  17. High-resolution FTIR spectroscopy of the Coriolis interacting nu3 and nu9 fundamentals of methylene fluoride-d2

    NASA Astrophysics Data System (ADS)

    Goh, K. L.; Tan, T. L.; Ong, P. P.; Chaw, K. H.; Teo, H. H.

    The Fourier transform infrared spectrum of the υ3 and υ9 bands of methylene fluoride-d2 (CD2F2) has been recorded with an unapodized resolution of 0.0024cm-1 in the frequency range 970-1080cm-1. These two bands with band centres approximately 26 cm-1 apart were mutually coupled by Coriolis interactions. By fitting a total of 1639 infrared transitions of both υ3 and υ9 with a standard deviation of 0.00084cm-1 S/S using a Watson's A-reduced Hamiltonian in the Ir representation with the inclusion of a first order c-type Coriolis resonance term, two sets of rovibrational constants for υ3 = 1 and υ9 = 1 states were derived. The υ3 band is B-type while the υ9 band is A-type with band centres at 1030.1573 ± 0.0003 and 1003.7435 ± 0.0001cm-1, respectively.

  18. Optical Properties of Nickel(ii) and Radiation Defects in Magnesium-Fluoride and Manganese-Fluoride

    NASA Astrophysics Data System (ADS)

    Feuerhelm, Leonard Norman

    1980-12-01

    Scope and Method of Study. A study has been made of the radiation defects in pure MgF(,2) by observating the polarized absorption, luminescence, and excitation spectra in electron-irradiated MgF(,2). Additionally, studies of the absorption, emission, excitation, and temperature dependence of the lifetimes of transitions in nickel-doped MgF(,2) and MnF(,2) have been accomplished, as well as the observation of radiation effects on these crystals. Findings and Conclusions. The absorption band at about 320 nm in irradiated MgF(,2) is identified to be due to the F(,2)(D(,2h)) center, and to have an emission at about 450 nm. Analysis of the temperature dependence of this band indicates a dominant phonon mode of 255 cm(' -1) for the excited state. The F(,2)(C(,1)) center is identified with an absorption of about 360 nm and an emission of 410 nm. An absorption peak at 300 nm, for which no corresponding emission has been found, is tentatively identified to be the F(,3)-center, and to have a dominant phonon mode of 255 cm('-1). The temperature dependence of the lifetimes of transitions in nickel-doped MgF(,2) have been analyzed by the quantum mechanical single configuration coordinate model of Struck and Fonger, and a complete configuration coordinate model has been made for this crystal. Similar studies have been made in MnF(,2):Ni, but energy transfer between Mn('2+) ions and Ni('2+) ions prevents completion of the complete model. Energy transfer in this crystal was studied, with the finding that a gain of about 2 in luminescence output was possible for excitation in the visible region (400-600 nm) as compared with MgF(,2):Ni. The effects of radiation upon the Ni('2+) transitions in these crystals were studied with the finding that no observable change occurred in the Ni('2+) transitions with radiation, although other radiation effects were noted in the crystal.

  19. [Comparison of fluoride concentrations in human, dog, fox and raccoon dog bones from northwestern Poland].

    PubMed

    Palczewska-Komsa, Mirona

    2015-01-01

    Since the beginning of the XXth there has been a constant increase in fluoride (F-) emissions into the environment, mainly due to the development of industry, the fluoridation of drinking water, and the widespread use of toothpaste containing fluoride. All these factors have resulted in an intensive accumulation of F- in the bodies of vertebrates, mainly in their bones. It is therefore reasonable to estimate the F- concentration in humans and other long-lived mammals. Accordingly, ecotoxicologists worldwide have looked for mammalian species that may serve as good bioindicators of environmental fluoride pollution. In contrast to ungulates, long-lived domestic mammals and wild carnivores have rarely been used for this purpose (including the dog, fox and raccoon dog). The main aims of this study were to: 1) investigate F- concentrations in bones obtained from humans, dog, fox and raccoon dog from northwestern Poland, 2) perform intra- and inter-specific comparisons of F- concentrations in the studied mammalian bones against the background of environmental and living conditions, 3) examine the relationship between concentrations of F- in bones and the age or age category of the studied mammals. The study material comprised bones of the hip joint obtained from 36 patients who underwent hip replacement in Szczecin, 43 dogs from Szczecin veterinary clinics, 32 foxes and 18 raccoon dogs provided by hunters, with the whole test material consisting of 129 samples. The indications of F- (using potentiometry with Thermo Orion ion-selective electrodes) were performed in triplicate. The F- concentration was expressed on a dry weight basis. Interspecific analysis showed that the largest number of differences in the concentrations of F- were between the fox and raccoon, and then between the dog and fox, and then between the dog and the wild canids (foxes and raccoon dogs together). Close statistically significant differences were also found between the samples from humans and the fox, and also between human and dog bones. There were no statistically significant differences in the concentrations of F- between humans and raccoons, humans and canids (dog, fox, raccoon dog together), and between dogs and raccoon dogs. Domesticated and wild canids are good bioindicators of environmental levels of fluoride, because they reflect the concentration of fluoride in bones observed in humans who lived in a similar area.

  20. Mitigation of enamel erosion using commercial toothpastes evaluated with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cassimiro-Silva, Patricia Fernandes; Maia, Ana Marly Araújo; Monteiro, Gabriela Queiroz de Melo; Gomes, Anderson S. L.

    2016-03-01

    The aim of this study was to evaluate the efficacy of commercial toothpastes containing sodium fluoride (NaF), stannous fluoride (SnF2), or casein phosphopeptides (CPP)-amorphous calcium phosphate (ACP)/NaF regarding their potential to inhibit enamel erosion. Twenty-eight 4×4 mm enamel specimens were randomly allocated into 4 groups (n=7): negative control; Pronamel (NaF); Pro Health (SnF2/NaF); Mi Paste Plus (CPP-ACP/NaF). Erosive cycles with 0.5% citric acid, 5 times, 3 minutes/day for 7 days were performed. After the first and last cycle of each day, toothpaste slurries were applied for 2 min. The quantitative analysis was accomplished using Contact Profilometry and Optical Coherence Tomography (OCT), complemented by roughness and qualitative scanning electron microscopy (SEM) analysis. OCT and Profilometry analysis showed similar effectiveness in measuring the reduction of mineral loss. A significant increase in the mean roughness values was observed on eroded surface and also on treated surface as revealed by scanning electron microscopy. The use of SnF2/NaF toothpaste was the most effective method for reducing mineral loss. As quantitative methods, OCT and Contact Profilometry showed no statistical differences. OCT, which was used for this purpose for the first time, has the advantage of being noninvasive, and therefore have the potential for clinical application.

  1. APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.; Pak, D.

    2011-08-10

    Vacuum distillation of chloride salts from plutonium oxide (PuO{sub 2}) and simulant PuO{sub 2} has been previously demonstrated at Department of Energy (DOE) sites using kilogram quantities of chloride salt. The apparatus for vacuum distillation contains a zone heated using a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attained, heating begins. Volatile salts distill frommore » the heated zone to the cooled zone where they condense, leaving behind the non-volatile materials in the feed boat. The application of vacuum salt distillation (VSD) is of interest to the HB-Line Facility and the MOX Fuel Fabrication Facility (MFFF) at the Savannah River Site (SRS). Both facilities are involved in efforts to disposition excess fissile materials. Many of these materials contain chloride and fluoride salt concentrations which make them unsuitable for dissolution without prior removal of the chloride and fluoride salts. Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. Subsequent efforts are attempting to adapt the technology for the removal of fluoride. Fluoride salts of interest are less-volatile than the corresponding chloride salts. Consequently, an alternate approach is required for the removal of fluoride without significantly increasing the operating temperature. HB-Line Engineering requested SRNL to evaluate and demonstrate the feasibility of an alternate approach using both non-radioactive simulants and plutonium-bearing materials. Whereas the earlier developments targeted the removal of sodium chloride (NaCl) and potassium chloride (KCl), the current activities are concerned with the removal of the halide ions associated with plutonium trifluoride (PuF{sub 3}), plutonium tetrafluoride (PuF{sub 4}), calcium fluoride (CaF{sub 2}), and calcium chloride (CaCl{sub 2}). This report discusses non-radioactive testing of small-scale and pilot-scale systems and radioactive testing of a small-scale system. Experiments focused on demonstrating the chemistry for halide removal and addressing the primary engineering questions associated with a change in the process chemistry.« less

  2. Antibacterial Effects of Toothpastes Evaluated in an 
In Vitro Biofilm Model.

    PubMed

    Fernández, Eva; Sánchez, María Del Carmen; Llama-Palacios, Arancha; Sanz, Mariano; Herrera, David

    To test the antibacterial effects of different toothpastes with the slurry method of toothpaste application in an in vitro oral biofilm model including relevant periodontal pathogens. Four commercially available toothpastes, two containing sodium fluoride (NaF) at different concentrations (1450 and 2500 ppm), two NaF with either triclosan or stannous fluoride, and a control phosphate-buffered saline (PBS) were used. Multispecies biofilms containing 6 species of oral bacteria were grown on hydroxyapatite disks for 72 h and then exposed for 2 min to the toothpaste slurries or phosphate buffer saline (PBS) by immersion, under continuous agitation at 37°C. Biofilms were then analysed by means of real-time polymerase chain reaction (PCR), combined with propidium monoazide (PMA). Statistical evaluation was performed using ANOVA and Student's t-test, with Bonferroni correction for multiple comparisons. The toothpastes containing NaF and stannous fluoride demonstrated superior antimicrobial activity for A. actinomycetencomitans, P. gingivalis and F. nucleatum when compared to those containing NaF and triclosan, 1450 ppm NaF or 2500 ppm NaF in this multispecies biofilm model. The proposed model for the evaluation of toothpastes in the form of slurries detected significant differences in the antimicrobial effects among the tested NaF-containing toothpastes, with the stannous fluoride-based formulation achieving better results than the other formulations. The use of toothpaste as slurries and real-time PCR with PMA is an adequate method for comparing the in vitro antimicrobial effect of different toothpastes.

  3. Manganese Vanadate Chemistry in Hydrothermal BaF 2 Brines: Ba 3 Mn 2 (V 2 O 7 ) 2 F 2 and Ba 7 Mn 8 O 2 (VO 4 ) 2 F 23

    DOE PAGES

    Sanjeewa, Liurukara D.; McMillen, Colin D.; McGuire, Michael A.; ...

    2016-12-05

    We synthesized manganese vanadate fluorides using high-temperature hydrothermal techniques with BaF 2 as a mineralizer. Ba 3Mn 2(V 2O 7) 2F 2 crystallizes in space group C2/c and consists of dimers built from edge-sharing MnO 4F 2 trigonal prisms with linking V 2O 7 groups. Ba 7Mn 8O 2(VO 4) 2F 23 crystallizes in space group Cmmm, with a manganese oxyfluoride network built from edge- and corner-sharing Mn 2+/3+(O,F) 6 octahedra. The resulting octahedra form alternating Mn 2+ and Mn 2+/3+ layers separated by VO 4 tetrahedra. This latter compound exhibits a canted antiferromagnetic order below TN = 25 K.

  4. Versatile fluoride substrates for Fe-based superconducting thin films

    NASA Astrophysics Data System (ADS)

    Kurth, F.; Reich, E.; Hänisch, J.; Ichinose, A.; Tsukada, I.; Hühne, R.; Trommler, S.; Engelmann, J.; Schultz, L.; Holzapfel, B.; Iida, K.

    2013-04-01

    We demonstrate the growth of Co-doped BaFe2As2 (Ba-122) thin films on CaF2 (001), SrF2 (001), and BaF2 (001) single crystal substrates using pulsed laser deposition. All films are grown epitaxially despite of a large misfit of -10.6% for BaF2 substrate. For all films, a reaction layer is formed at the interface confirmed by X-ray diffraction and for the films grown on CaF2 and BaF2 additionally by transmission electron microscopy. The superconducting transition temperature of the film on CaF2 is around 27 K, whereas the corresponding values of the films on SrF2 and BaF2 are around 22 K and 21 K, respectively. The Ba-122 on CaF2 shows almost identical crystalline quality and superconducting properties as films on Fe-buffered MgO.

  5. High-fluoride toothpaste: a multicenter randomized controlled trial in adults

    PubMed Central

    Srinivasan, Murali; Schimmel, Martin; Riesen, Martine; Ilgner, Alexander; Wicht, Michael J; Warncke, Michael; Ellwood, Roger P; Nitschke, Ina; Müller, Frauke; Noack, Michael J

    2014-01-01

    Objective The aim of this single – blind, multicenter, parallel, randomized controlled trial was to evaluate the effectiveness of the application of a high-fluoride toothpaste on root caries in adults. Methods Adult patients (n = 130, ♂ = 74, ♀ = 56; mean age ± SD: 56.9 ± 12.9) from three participating centers, diagnosed with root caries, were randomly allocated into two groups: Test (n = 64, ♂ = 37, ♀ = 27; lesions = 144; mean age: 59.0 ± 12.1; intervention: high-fluoride toothpaste with 5000 ppm F), and Control (n = 66, ♂ = 37, ♀ = 29; lesions = 160; mean age: 54.8 ± 13.5; intervention: regular-fluoride toothpaste with 1350 ppm F) groups. Clinical examinations and surface hardness scoring of the carious lesions were performed for each subject at specified time intervals (T0 – at baseline before intervention, T1 – at 3 months and T2 – at 6 months after intervention). Mean surface hardness scores (HS) were calculated for each patient. Statistical analyses comprised of two-way analysis of variance and post hoc comparisons using the Bonferroni–Dunn correction. Results At T0, there was no statistical difference between the two groups with regard to gender (P = 0.0682, unpaired t-test), or age (P = 0.9786, chi-squared test), and for the overall HS (Test group: HS = 3.4 ± 0.61; Control group: HS = 3.4 ± 0.66; P = 0.8757, unpaired t-test). The anova revealed significantly better HS for the test group than for the control groups (T1: Test group: HS = 2.9 ± 0.67; Control group: HS = 3.1 ± 0.75; T2: Test group: HS = 2.4 ± 0.81; Control group: HS = 2.8 ± 0.79; P < 0.0001). However, the interaction term time-point*group was not significant. Conclusions The application of a high-fluoride containing dentifrice (5000 ppm F) in adults, twice daily, significantly improves the surface hardness of otherwise untreated root caries lesions when compared with the use of regular fluoride containing (1350 ppm F) toothpastes. PMID:24354454

  6. TiF4 varnish protects the retention of brackets to enamel after in vitro mild erosive challenge.

    PubMed

    Medeiros, Maria Isabel Dantas de; Carlo, Hugo Lemes; Santos, Rogério Lacerda Dos; Sousa, Frederico Barbosa; Castro, Ricardo Dias de; França, Renata Cristina Sobreira; Carvalho, Fabíola Galbiatti de

    2018-05-14

    The effect of fluoride agents on the retention of orthodontic brackets to enamel under erosive challenge is little investigated. The aim of this study was to evaluate the effect of titanium tetrafluoride (TiF4) and sodium fluoride (NaF) agents on the shear bond strength of brackets to enamel and on the enamel microhardness around brackets under erosive challenge. Brackets were bonded to bovine incisors. Five groups were formed according to fluoride application (n=10): TiF4 varnish, TiF4 solution, NaF varnish, NaF solution and control (without application). The specimens were submitted to erosive challenge (90 s cola drink/2h artificial saliva, 4x per day for 7 days). Solutions were applied before each erosive cycle and varnishes were applied once. Vickers Microhardness (VHN) was obtained before and after all cycles of erosion and the percentage of microhardness loss was calculated. Shear bond strength, adhesive remnant index and polarized light microscopy were conducted after erosion. The data were analyzed by ANOVA, Tukey, Kruskal-Wallis and Mann-Whitney U tests (α=0.05). The %VHN had no statistically significant differences among the experimental groups. However, considering the comparisons of all groups with the control group, TiF4 varnish showed the highest protection from enamel demineralization (effect size of 2.94, while the effect size for the other groups was >2.4). The TiF4 varnish group had significantly higher shear bond strength compared to other groups. There was no difference among groups for adhesive remnant index. Polarized light microscopy showed higher demineralization depth for the control group. Application of NaF and TiF4 agents during mild erosive challenge minimized the enamel mineral loss around brackets, however only the experimental TiF4 varnish was able to prevent the reduction of shear bond strength of brackets to enamel.

  7. Study of structure and antireflective properties of LaF3/HfO2/SiO2 and LaF3/HfO2/MgF2 trilayers for UV applications

    NASA Astrophysics Data System (ADS)

    Marszalek, K.; Jaglarz, J.; Sahraoui, B.; Winkowski, P.; Kanak, J.

    2015-01-01

    The aim of this paper is to study antireflective properties of the tree-layer systems LaF3/HfO2/SiO2 and LaF3/HfO2/MgF2 deposited on heated optical glass substrates. The films were evaporated by the use two deposition techniques. In first method oxide films were prepared by means of e-gun evaporation in vacuum of 5 × 10-5 mbar in the presence of oxygen. The second was used for the deposition of fluoride films. They were obtained by means of thermal source evaporation. Simulation of reflectance was performed for 1M2H1L (Quarter Wavelength Optical Thickness) film stack on an optical quartz glass with the refractive index n = 1.46. The layer thickness was optimized to achieve the lowest light scattering from glass surface covered with dioxide and fluoride films. The values of the interface roughness were determined through atomic force microscopy measurements. The essence of performed calculation was to find minimum reflectance of light in wide ultraviolet region. The spectral dispersion of the refractive index needed for calculations was determined from ellipsometric measurements using the spectroscopic ellipsometer M2000. Additionally, the total reflectance measurements in integrating sphere coupled with Perkin Elmer 900 spectrophotometer were performed. These investigations allowed to determine the influence of such film features like surface and interface roughness on light scattering.

  8. Proteomic analysis of urine in rats chronically exposed to fluoride.

    PubMed

    Kobayashi, Claudia Ayumi Nakai; Leite, Aline de Lima; da Silva, Thelma Lopes; dos Santos, Lucilene Delazari; Nogueira, Fábio César Sousa; Santos, Keity Souza; de Oliveira, Rodrigo Cardoso; Palma, Mario Sérgio; Domont, Gilberto Barbosa; Buzalaf, Marília Afonso Rabelo

    2011-01-01

    Urine is an ideal source of materials to search for potential disease-related biomarkers as it is produced by the affected tissues and can be easily obtained by noninvasive methods. 2-DE-based proteomic approach was used to better understand the molecular mechanisms of injury induced by fluoride (F(-)) and define potential biomarkers of dental fluorosis. Three groups of weanling male Wistar rats were treated with drinking water containing 0 (control), 5, or 50 ppm F(-) for 60 days (n = 15/group). During the experimental period, the animals were kept individually in metabolic cages, to analyze the water and food consumption, as well as fecal and urinary F(-) excretion. Urinary proteome profiles were examined using 2-DE and Colloidal Coomassie Brilliant Blue staining. A dose-response regarding F(-) intake and excretion was detected. Quantitative intensity analysis revealed 8, 11, and 8 significantly altered proteins between control vs. 5 ppm F(-), control vs. 50 ppm F(-) and 5 ppm F(-) vs. 50 ppm F(-) groups, respectively. Two proteins regulated by androgens (androgen-regulated 20-KDa protein and α-2μ-globulin) and one related to detoxification (aflatoxin-B1-aldehyde-reductase) were identified by MALDI-TOF-TOF MS/MS. Thus, proteomic analysis can help to better understand the mechanisms underlying F(-) toxicity, even in low doses. Copyright © 2010 Wiley Periodicals, Inc.

  9. Antibacterial activity against Streptococcus mutans and inhibition of bacterial induced enamel demineralization of propolis, miswak, and chitosan nanoparticles based dental varnishes.

    PubMed

    Wassel, Mariem O; Khattab, Mona A

    2017-07-01

    Using natural products can be a cost-effective approach for caries prevention especially in low income countries where dental caries is highly prevalent and the resources are limited. Specially prepared dental varnishes containing propolis, miswak, and chitosan nanoparticles (CS-NPs) with or without sodium fluoride (NaF) were assessed for antibacterial effect against Streptococcus mutans ( S. mutans ) using disk diffusion test. In addition, the protective effect of a single pretreatment of primary teeth enamel specimens against in vitro bacterial induced enamel demineralization was assessed for 3 days. All natural products containing varnishes inhibited bacterial growth significantly better than 5% NaF varnish, with NaF loaded CS-NPs (CSF-NPs) showing the highest antibacterial effect, though it didn't significantly differ than those of other varnishes except miswak ethanolic extract (M) varnish. Greater inhibitory effect was noted with varnish containing freeze dried aqueous miswak extract compared to that containing ethanolic miswak extract, possibly due to concentration of antimicrobial substances by freeze drying. Adding natural products to NaF in a dental varnish showed an additive effect especially compared to fluoride containing varnish. 5% NaF varnish showed the best inhibition of demineralization effect. Fluoride containing miswak varnish (MF) and CSF-NPs varnish inhibited demineralization significantly better than all experimental varnishes, especially during the first 2 days, though CSF-NPs varnish had a low fluoride concentration, probably due to better availability of fluoride ions and the smaller size of nanoparticles. Incorporating natural products with fluoride into dental varnishes can be an effective approach for caries prevention, especially miswak and propolis when financial resources are limited.

  10. Broadband Optical Active Waveguides Written by Femtosecond Laser Pulses in Lithium Fluoride

    NASA Astrophysics Data System (ADS)

    Ismael, Chiamenti; Francesca, Bonfigli; Anderson, S. L. Gomes; Rosa, Maria Montereali; Larissa, N. da Costa; Hypolito, J. Kalinowski

    2014-01-01

    Broadband waveguiding through light-emitting strips directly written in a blank lithium fluoride crystal with a femtosecond laser is reported. Light guiding was observed at several optical wavelengths, from blue, 458 nm, to near-infrared, at 1550 nm. Visible photoluminescence spectra of the optically active F2 and F3+ color centers produced by the fs laser writing process were measured. The wavelength-dependent refractive index increase was estimated to be in the order of 10-3-10-4 in the visible and near-infrared spectral intervals, which is consistent with the stable formation of point defects in LiF.

  11. Cow bones char as a green sorbent for fluorides removal from aqueous solutions: batch and fixed-bed studies.

    PubMed

    Nigri, Elbert M; Cechinel, Maria Alice P; Mayer, Diego A; Mazur, Luciana P; Loureiro, José M; Rocha, Sônia D F; Vilar, Vítor J P

    2017-01-01

    Cow bone char was investigated as sorbent for the defluoridation of aqueous solutions. The cow bone char was characterized in terms of its morphology, chemical composition, and functional groups present on the bone char surface using different analytical techniques: SEM, EDS, N 2 -BET method, and FTIR. Batch equilibrium studies were performed for the bone chars prepared using different procedures. The highest sorption capacities for fluoride were obtained for the acid washed (q = 6.2 ± 0.5 mg/g) and Al-doped (q = 6.4 ± 0.3 mg/g) bone chars. Langmuir and Freundlich models fitted well the equilibrium sorption data. Fluoride removal rate in batch system is fast in the first 5 h, decreasing after this time until achieving equilibrium due to pore diffusion. The presence of carbonate and bicarbonate ions in the aqueous solution contributes to a decrease of the fluoride sorption capacity of the bone char by 79 and 31 %, respectively. Regeneration of the F-loaded bone char using 0.5 M NaOH solution leads to a sorption capacity for fluoride of 3.1 mg/g in the second loading cycle. Fluoride breakthrough curve obtained in a fixed-bed column presents an asymmetrical S-shaped form, with a slow approach of C/C 0  → 1.0 due to pore diffusion phenomena. Considering the guideline value for drinking water of 1.5 mg F - /L, as recommended by World Health Organization, the service cycle for fluoride removal was of 71.0 h ([F - ] feed  ∼ 9 mg/L; flow rate = 1 mL/min; m sorbent  = 12.6 g). A mass transfer model considering the pore diffusion was able to satisfactorily describe the experimental data obtained in batch and continuous systems.

  12. Radiation Heat Transfer Modeling Improved for Phase-Change, Thermal Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Jacqmin, David A.

    1998-01-01

    Spacecraft solar dynamic power systems typically use high-temperature phase-change materials to efficiently store thermal energy for heat engine operation in orbital eclipse periods. Lithium fluoride salts are particularly well suited for this application because of their high heat of fusion, long-term stability, and appropriate melting point. Considerable attention has been focused on the development of thermal energy storage (TES) canisters that employ either pure lithium fluoride (LiF), with a melting point of 1121 K, or eutectic composition lithium-fluoride/calcium-difluoride (LiF-20CaF2), with a 1040 K melting point, as the phase-change material. Primary goals of TES canister development include maximizing the phase-change material melt fraction, minimizing the canister mass per unit of energy storage, and maximizing the phase-change material thermal charge/discharge rates within the limits posed by the container structure.

  13. Clinical utility of (18)F-fluoride PET/CT in benign and malignant bone diseases.

    PubMed

    Li, Yuxin; Schiepers, Christiaan; Lake, Ralph; Dadparvar, Simin; Berenji, Gholam R

    2012-01-01

    (18)F labeled sodium fluoride is a positron-emitting, bone seeking agent with more favorable skeletal kinetics than conventional phosphate and diphosphonate compounds. With the expanding clinical usage of PET/CT, there is renewed interest in using (18)F-fluoride PET/CT for imaging bone diseases. Growing evidence indicates that (18)F fluoride PET/CT offers increased sensitivity, specificity, and diagnostic accuracy in evaluating metastatic bone disease compared to (99m)Tc based bone scintigraphy. National Oncologic PET Registry (NOPR) has expanded coverage for (18)F sodium fluoride PET scans since February 2011 for the evaluation of osseous metastatic disease. In this article, we reviewed the pharmacological characteristics of sodium fluoride, as well as the clinical utility of PET/CT using (18)F-fluoride in both benign and malignant bone disorders. Published by Elsevier Inc.

  14. Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric-pressure plasmas.

    PubMed

    Lee, How Ming; Chang, Moo Been; Wu, Kuan Yu

    2004-08-01

    Sulfur hexafluoride (SF6) is an important gas for plasma etching processes in the semiconductor industry. SF6 intensely absorbs infrared radiation and, consequently, aggravates global warming. This study investigates SF6 abatement by nonthermal plasma technologies under atmospheric pressure. Two kinds of nonthermal plasma processes--dielectric barrier discharge (DBD) and combined plasma catalysis (CPC)--were employed and evaluated. Experimental results indicated that as much as 91% of SF6 was removed with DBDs at 20 kV of applied voltage and 150 Hz of discharge frequency for the gas stream containing 300 ppm SF6, 12% oxygen (O2), and 40% argon (Ar), with nitrogen (N2) as the carrier gas. Four additives, including Ar, O2, ethylene (C2H4), and H2O(g), are effective in enhancing SF6 abatement in the range of conditions studied. DBD achieves a higher SF6 removal efficiency than does CPC at the same operation condition. But CPC achieves a higher electrical energy utilization compared with DBD. However, poisoning of catalysts by sulfur (S)-containing species needs further investigation. SF6 is mainly converted to SOF2, SO2F4, sulfur dioxide (SO2), oxygen difluoride (OF2), and fluoride (F2). They do not cause global warming and can be captured by either wet scrubbing or adsorption. This study indicates that DBD and CPC are feasible control technologies for reducing SF6 emissions.

  15. Synthesis of the complex fluoride LiBaF 3 and optical spectroscopy properties of LiBaF 3: M( M=Eu,Ce) through a solvothermal process

    NASA Astrophysics Data System (ADS)

    Hua, Ruinian; Lei, Bingfu; Xie, Demin; Shi, Chunshan

    2003-11-01

    The complex fluoride LiBaF 3 and LiBaF 3: M( M=Eu, Ce) is solvothermally synthesized at 180°C and characterized by means of X-ray powder diffraction, scanning electron microscopy, thermogravimetric analysis and infrared spectroscopy. In the solvothermal process, the solvents, molar ratios of initial mixtures and reaction temperature play important roles in the formation of products. The excitation and emission spectra of the LiBaF 3: M( M=Eu,Ce) have been measured by fluorescence spectrophotometer. In the LiBaF 3:Eu emission spectra, there is one sharp line emission located at 360 nm arising from f→ f transition of Eu 2+ in the host lattice, and typical doublet 5 d-4 f emission of Ce 3+ in LiBaF 3 powder is shown.

  16. Sodium fluoride induces apoptosis in mouse embryonic stem cells through ROS-dependent and caspase- and JNK-mediated pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen Ngoc, Tam Dan; Son, Young-Ok; Lim, Shin-Saeng

    2012-03-15

    Sodium fluoride (NaF) is used as a source of fluoride ions in diverse applications. Fluoride salt is an effective prophylactic for dental caries and is an essential element required for bone health. However, fluoride is known to cause cytotoxicity in a concentration-dependent manner. Further, no information is available on the effects of NaF on mouse embryonic stem cells (mESCs). We investigated the mode of cell death induced by NaF and the mechanisms involved. NaF treatment greater than 1 mM reduced viability and DNA synthesis in mESCs and induced cell cycle arrest in the G{sub 2}/M phase. The addition of NaFmore » induced cell death mainly by apoptosis rather than necrosis. Catalase (CAT) treatment significantly inhibited the NaF-mediated cell death and also suppressed the NaF-mediated increase in phospho-c-Jun N-terminal kinase (p-JNK) levels. Pre-treatment with SP600125 or z-VAD-fmk significantly attenuated the NaF-mediated reduction in cell viability. In contrast, intracellular free calcium chelator, but not of sodium or calcium ion channel blockers, facilitated NaF-induced toxicity in the cells. A JNK specific inhibitor (SP600125) prevented the NaF-induced increase in growth arrest and the DNA damage-inducible protein 45α. Further, NaF-mediated loss of mitochondrial membrane potential was apparently inhibited by pifithrin-α or CAT inhibitor. These findings suggest that NaF affects viability of mESCs in a concentration-dependent manner, where more than 1 mM NaF causes apoptosis through hydroxyl radical-dependent and caspase- and JNK-mediated pathways. -- Highlights: ► The mode of NaF-induced cell death and the mechanisms involved were examined. ► NaF induced mainly apoptotic death of mouse embryonic stem cells (mESCs). ► NaF induced mitochondrial-mediated and caspase-dependent apoptosis. ► JNK- and p53-mediated pathways are involved in NaF-mediated apoptosis in the cells. ► ROS are the up-stream effector in NaF-mediated activation of JNK and p53 in mESCs.« less

  17. Large exchange anisotropy in quasi-one-dimensional spin-1/2 fluoride antiferromagnets with a d (z2)1 ground state

    NASA Astrophysics Data System (ADS)

    Kurzydłowski, D.; Grochala, W.

    2017-10-01

    Hybrid density functional calculations are performed for a variety of systems containing d9 ions (C u2 + and A g2 + ) and exhibiting quasi-one-dimensional magnetic properties. In particular, we study fluorides containing these ions in a rarely encountered compressed octahedral coordination that forces the unpaired electron into the local d (z2) orbital. We predict that such systems should exhibit exchange anisotropies surpassing that of S r2Cu O3 , one of the best realizations of a one-dimensional system known to date. In particular, we predict that the interchain coupling in the A g2 + -containing [AgF ] [B F4 ] system should be nearly four orders of magnitude smaller than the intrachain interaction. Our results indicate that quasi-one-dimensional spin-1/2 systems containing chains with spin sites in the d (z2)1 local ground state could constitute a versatile model for testing modern theories of quantum many-body physics in the solid state.

  18. Metabolism of 1-fluoro-1,1,2-trichloroethane, 1,2-dichloro-1,1-difluoroethane, and 1,1,1-trifluoro-2-chloroethane.

    PubMed

    Yin, H; Jones, J P; Anders, M W

    1995-03-01

    1-Fluoro-1,1,2-trichloroethane (HCFC-131a), 1,2-dichloro-1,1-difluoroethane (HCFC-132b), and 1,1,1-trifluoro-2-chloroethane (HCFC-133a) were chosen as models for comparative metabolism studies on 1,1,1,2-tetrahaloethanes, which are under consideration as replacements for ozone-depleting chlorofluorocarbons (CFCs). Male Fischer 344 rats were given 10 mmol/kg ip HCFC-131a or HCFC-132b or exposed by inhalation to 1% HCFC-133a for 2 h. Urine collected in the first 24 h after exposure was analyzed by 19F NMR and GC/MS and with a fluoride-selective ion electrode for the formation of fluorine-containing metabolites. Metabolites of HCFC-131a included 2,2-dichloro-2-fluoroethyl glucuronide, 2,2-dichloro-2-fluoroethyl sulfate, dichlorofluoroacetic acid, and inorganic fluoride. Metabolites of HCFC-132b were characterized as 2-chloro-2,2-difluoroethyl glucuronide, 2-chloro-2,2-difluoroethyl sulfate, chlorodifluoroacetic acid, chlorodifluoroacetaldehyde hydrate, chlorodifluoroacetaldehyde-urea adduct, and inorganic fluoride. HCFC-133a was metabolized to 2,2,2-trifluoroethyl glucuronide, trifluoroacetic acid, trifluoroacetaldehyde hydrate, trifluoroacetaldehyde-urea adduct, inorganic fluoride, and a minor, unidentified metabolite. With HCFC-131a and HCFC-132b, glucuronide conjugates of 2,2,2-trihaloethanols were the major urinary metabolites, whereas with HCFC-133a, a trifluoroacetaldehyde-urea adduct was the major urinary metabolite. Analysis of metabolite distribution in vivo indicated that aldehydic metabolites increased as fluorine substitution increased in the order HCFC-131a < HCFC-132b < HCFC-133a. With NADPH-fortified rat liver microsomes, HCFC-133a and HCFC-132b were biotransformed to trifluoroacetaldehyde and chlorodifluoroacetaldehyde, respectively, whereas HCFC-131a was converted to dichlorofluoroacetic acid. No covalently bound metabolites were detected by 19F NMR spectroscopy.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Co-occurrence of arsenic and fluoride in the groundwater of Punjab, Pakistan: source discrimination and health risk assessment.

    PubMed

    Rasool, Atta; Xiao, Tangfu; Baig, Zenab Tariq; Masood, Sajid; Mostofa, Khan M G; Iqbal, Muhammad

    2015-12-01

    The present study discusses elevated groundwater arsenic (As) and fluoride (F(-)) concentrations in Mailsi, Punjab, Pakistan, and links these elevated concentrations to health risks for the local residents. The results indicate that groundwater samples of two areas of Mailsi, Punjab were severely contaminated with As (5.9-507 ppb) and F(-) (5.5-29.6 ppm), as these values exceeded the permissible limits of World Health Organization (10 ppb for As and 1.5 ppm for F(-)). The groundwater samples were categorized by redox state. The major process controlling the As levels in groundwater was the adsorption of As onto PO4 (3-) at high pH. High alkalinity and low Ca(2+) and Mg(2+) concentrations promoted the higher F(-) and As concentrations in the groundwater. A positive correlation was observed between F(-) and As concentrations (r = 0.37; n = 52) and other major ions found in the groundwater of the studied area. The mineral saturation indices calculated by PHREEQC 2.1 suggested that a majority of samples were oversaturated with calcite and fluorite, leading to the dissolution of fluoride minerals at alkaline pH. Local inhabitants exhibited arsenicosis and fluorosis after exposure to environmental concentration doses of As and F(-). Estimated daily intake (EDI) and target hazard quotient (THQ) highlighted the risk factors borne by local residents. Multivariate statistical analysis further revealed that both geologic origins and anthropogenic activities contributed to As and F(-) contamination in the groundwater. We propose that pollutants originate, in part, from coal combusted at brick factories, and agricultural activities. Once generated, these pollutants were mobilized by the alkaline nature of the groundwater.

  20. Fluxing agent for metal cast joining

    DOEpatents

    Gunkel, Ronald W.; Podey, Larry L.; Meyer, Thomas N.

    2002-11-05

    A method of joining an aluminum cast member to an aluminum component. The method includes the steps of coating a surface of an aluminum component with flux comprising cesium fluoride, placing the flux coated component in a mold, filling the mold with molten aluminum alloy, and allowing the molten aluminum alloy to solidify thereby joining a cast member to the aluminum component. The flux preferably includes aluminum fluoride and alumina. A particularly preferred flux includes about 60 wt. % CsF, about 30 wt. % AlF.sub.3, and about 10 wt. % Al.sub.2 O.sub.3.

Top