Farkas, I; Szerdahelyi, P; Kása, P
1988-01-01
The absolute concentration of zinc in the Purkinje cells of the rat cerebellum was determined by means of energy dispersive X-ray microanalysis (EDAX). Gelatine blocks with known zinc concentrations were stained by Timm's sulphide-silver method, and their silver concentrations were measured by EDAX. A linear correlation was found between the zinc and silver concentrations and this linear function was used as a quantitative calibration for evaluation of sulphide-silver staining, after perfusion with sodium-sulphide solution, fixation with glutaraldehyde, cryostat sectioning and staining of cerebellar samples in Timm's reagent.
Dynamic protein coronas revealed as a modulator of silver nanoparticle sulphidation in vitro
NASA Astrophysics Data System (ADS)
Miclăuş, Teodora; Beer, Christiane; Chevallier, Jacques; Scavenius, Carsten; Bochenkov, Vladimir E.; Enghild, Jan J.; Sutherland, Duncan S.
2016-06-01
Proteins adsorbing at nanoparticles have been proposed as critical toxicity mediators and are included in ongoing efforts to develop predictive tools for safety assessment. Strongly attached proteins can be isolated, identified and correlated to changes in nanoparticle state, cellular association or toxicity. Weakly attached, rapidly exchanging proteins are also present at nanoparticles, but are difficult to isolate and have hardly been examined. Here we study rapidly exchanging proteins and show for the first time that they have a strong modulatory effect on the biotransformation of silver nanoparticles. Released silver ions, known for their role in particle toxicity, are found to be trapped as silver sulphide nanocrystals within the protein corona at silver nanoparticles in serum-containing cell culture media. The strongly attached corona acts as a site for sulphidation, while the weakly attached proteins reduce nanocrystal formation in a serum-concentration-dependent manner. Sulphidation results in decreased toxicity of Ag NPs.
Pinzauti, S; Papeschi, G; La Porta, E
1983-01-01
A rugged, low resistance silver-silver sulphide solid-state electrode for determining pharmaceuticals as authentic samples or in dosage forms by potentiometric titration is described. Sodium tetraphenylborate, mercury(II) acetate and silver nitrate (0.01) M were employed as titrants in the analysis of cationic surfactants (cetylpyridinium chloride, benzethonium chloride, benzalkonium chloride and chlorhexidine salts), antithyroid drugs (methimazole and propylthiouracil) or sodium halides respectively.
NASA Astrophysics Data System (ADS)
Apostolova, Tzveta; Obreshkov, B. D.; Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Mel'nik, N. N.; Rudenko, A. A.
2018-01-01
In this work we show that nanometric-thick layers of SiO2, MnO2, and TiO2 may be effectively deposited on various silver nanoparticles (including cubic Ag nanoparticles) covered by a very thin (below 0.4 nm) layer of silver sulphide. The background in Raman measurements generated by sulphide-protected Ag nanoparticles is significantly smaller than that for analogous Ag nanoparticles protected by a monolayer formed from alkanethiols - depositing alkanethiols on a surface of anisotropic silver nanoparticles is the current standard method used for protecting a surface of Ag nanoparticles before depositing a layer of silica. Because of significantly smaller generated Raman background, Ag@SiO2 nanostructures with an Ag2S linkage layer between the silver core and the silica shell are very promising low-background electromagnetic nanoresonators for carrying out Raman analysis of various surfaces - especially using what is known as shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Sample SHINERS analyses of various surfaces (including pesticide-contaminated surfaces of tomatoes) using cubic-Ag@SiO2 nanoparticles as electromagnetic nanoresonators are also presented.
Torjussen, W; Haug, F M; Olsen, A; Andersen, I
1978-01-01
Histochemical methods and energy dispersive X-ray micro-analysis (EDX-analysis) were evaluated in model experiments and on tissue sections for their usefulness in detecting traces of metals in biological tissue. The goal for this study was to establish a method for localization of nickel deposits in the nasal mucosa, where it has been found in concentrations between 1 and 40 microgram/g in nickel exposed individuals. The histochemical methods tested were staining with dimethylglyoxime, rubeanic acid and dithizone, the Turnbull and Prussian blue methods and TIMM'S sulphide silver procedure. In model experiments nickel-, cobalt-, copper-, zinc- and ironsalts were applied to thin-layer chromatography sheets (TLC-sheets) and stained by the histochemical methods. Spots containing 500 and 50 ng of these metals represented the smallest amounts that could consistently be detected in these experiments, except for the sulphide silver method which seemed a little more sensitive. With the latter method, moreover, zinc was detected in 40 micrometer thick cryostat sections of gelatine made up with 1 microgram/g of the metal. For nickel the corresponding figure was 10 to 50 microgram/g. On specimens of nasal mucosa from nickel-exposed workers, a faint colour was obtained in 40 micron thick cryostat sections from specimens that had been immersed in dithizone, but the colour was too weak for histological analysis. None of the other coloured chelating agents caused noticeable staining when applied to blocks or to cryostat sections. TIMM'S sulphide silver method caused strong staining of the basal layers of the surface epithelium and of fibroblast-like cells in the underlying connective tissue. This staining pattern is described in more detail in a separate report. Rat liver tissue was analyzed by atomic absorption before and after araldite embedding. Blocks of gelatine made up with nickel, copper, zinc and iron were embedded in epoxy resin and analyzed by atomic absorption. Large changes in the metal concentrations, usually an increase, were found after embedding. Ultrathin sections from this material were used to test the sensitivity of the EDX-equipment. Referring to the concentrations determined by atomic absorption in the embedded material, iron was detected at 1215 microgram/g and 362 microgram/g (gelatine standards) but not at 167 microgram/g (rat liver). Similar values could not be determined for nickel, copper or zinc, because of background radiation resulting from the presence of these metals in the instrument. We did not succeed in establishing a procedure for detecting nickel deposits in nasal mucosa with any of the methods which were tested. The most sensitive but least specific of the tested methods for visualizing heavy metals in the nasal mucosa, was TIMM'S sulphide silver procedure. The preparation of tissue for this method is discussed.
Characterization of home-made silver sulphide based iodide selective electrode.
Rajbhandari Nyachhyon, A; Yadav, A P; Manandhar, K; Pradhananga, R R
2010-09-15
Polycrystalline silver sulphide/silver iodide ion selective electrodes (ISEs) with four different compositions, 9:1, 2:1, 1:1, 1:9 Ag(2)S-AgI mole ratios, have been fabricated in the laboratory and characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). X-ray diffraction studies show the presence of Ag(3)SI, Ag(2)S and AgI crystalline phases in the electrode material. The electrode surfaces have been found to become smoother and lustrous with increasing percentage of silver sulphide in silver iodide. ISE 1:1, ISE 2:1 and ISE 9:1 all responded in Nernstian manner with slopes of about 60 mV/decade change in iodide ion concentration in the linear range of 1 x 10(-1) to 1 x 10(-6)M while ISE 1:9 showed sub-Nernstian behavior with slope of about 45 mV up to the concentration 1 x 10(-5)M. Two capacitive loops, one corresponding to the charge transfer process at metal electrode and the back contact and a second loop corresponding to the charge transfer process at membrane-electrolyte interface have been observed at high and low frequency ranges, respectively. Mott-Schottky analysis shows that the materials are n-type semiconductors with donor defect concentrations in the range of 5.1 x 10(14) to 2.4 x 10(19)/cm(3). Copyright (c) 2010 Elsevier B.V. All rights reserved.
Silver aids healing in the sterile skin wound: experimental studies in the laboratory rat.
Lansdown, A B; Sampson, B; Laupattarakasem, P; Vuttivirojana, A
1997-11-01
Incisional wounds 15 mm long were induced surgically in the back skin of young adult Wistar rats. They were sutured and used as an experimental model in the therapeutic evaluation of daily applications of 0.5 mL of silver nitrate (SN) at 0.01, 0.1 or 1.0% w/v aqueous solution, or 0.5 g silver sulphadiazine (SSD) over a 10-day period. Control wounds received deionized water only. The silver preparations were not toxic but SN did stain the hair and superficial layers of the stratum corneum. The wounds remained microbiologically clean. Wounds exposed to SN (0.1 or 1.0%) or SSD healed more rapidly than controls. From about the fourth day of treatment, we noted a more rapid exteriorization of sutures, improved wound closure and an earlier loss of scabs and wound debris. Silver treatment appeared to reduce the inflammatory and granulation tissue phases of healing and enhance epidermal repair. Silver from SN was deposited as silver sulphide in extrafollicular hair shafts and superficial aspects of the skin and wound debris but not at deeper levels. Silver uptake was four-fold higher in damaged skin than in intact tissue. SSD was absorbed by intact and wounded skin but the silver did not precipitate as silver sulphide and its localization in the tissue is not known. Uptake of silver from SN or SSD was associated with changes in the concentrations of zinc and calcium in the skin. Zinc levels were depressed during the inflammatory and proliferative phases of healing and then increased. Zinc concentrations had normalized by 10 days when wound healing was achieved. Calcium levels remained higher than normal throughout the observation period. The mechanism of action of silver in advancing wound healing in the rat is unclear. Its ability to reduce the inflammatory and granulation phases of healing, and to invoke metallothionein production and influence metal ion binding are possibly important.
The adsorption of silver on potassium cyanocobalt(II)ferrate(II).
Wald, M; Soyka, W; Kaysser, B
1973-04-01
A procedure is described for recovering silver from industrial sewage (mining and photo-industry etc) with the aid of the ion-exchanger potassium cyanocobalt(II)ferrate(II) (KCFC). Silver is easily removed by simple mixing with KCFC, even from solutions containing less than 1 g of silver per ton of solution. The process is performed at room temperature at pH < 7. There is no interference from a 600-fold amount of Ca, Cu(II), Zn, Cd, Pb, and Fe(II). Pure silver may be obtained by dissolution of the ion-exchanger in potassium cyanide solution, subsequent precipitation as sulphide, and roasting, or by melting it out of the ion-exchanger after heat treatment in a high-frequency furnace. With 1 kg of KCFC, 1.25 kg of silver may be extracted from solution. The process is simple and economic.
Formation of recent Pb-Ag-Au mineralization by potential sub-surface microbial activity
NASA Astrophysics Data System (ADS)
Tornos, Fernando; Velasco, Francisco; Menor-Salván, César; Delgado, Antonio; Slack, John F.; Escobar, Juan Manuel
2014-08-01
Las Cruces is a base-metal deposit in the Iberian Pyrite Belt, one of the world’s best-known ore provinces. Here we report the occurrence of major Pb-Ag-Au mineralization resulting from recent sub-surface replacement of supergene oxyhydroxides by carbonate and sulphide minerals. This is probably the largest documented occurrence of recent microbial activity producing an ore assemblage previously unknown in supergene mineralizing environments. The presence of microbial features in the sulphides suggests that these may be the first-described natural bacteriomorphs of galena. The low δ13C values of the carbonate minerals indicate formation by deep anaerobic microbial processes. Sulphur isotope values of sulphides are interpreted here as reflecting microbial reduction in a system impoverished in sulphate. We suggest that biogenic activity has produced around 3.1 × 109 moles of reduced sulphur and 1010 moles of CO2, promoting the formation of ca. 1.19 Mt of carbonates, 114,000 t of galena, 638 t of silver sulphides and 6.5 t of gold.
NASA Astrophysics Data System (ADS)
Gonzalez-Carter, Daniel A.; Leo, Bey Fen; Ruenraroengsak, Pakatip; Chen, Shu; Goode, Angela E.; Theodorou, Ioannis G.; Chung, Kian Fan; Carzaniga, Raffaella; Shaffer, Milo S. P.; Dexter, David T.; Ryan, Mary P.; Porter, Alexandra E.
2017-03-01
Silver nanoparticles (AgNP) are known to penetrate into the brain and cause neuronal death. However, there is a paucity in studies examining the effect of AgNP on the resident immune cells of the brain, microglia. Given microglia are implicated in neurodegenerative disorders such as Parkinson’s disease (PD), it is important to examine how AgNPs affect microglial inflammation to fully assess AgNP neurotoxicity. In addition, understanding AgNP processing by microglia will allow better prediction of their long term bioreactivity. In the present study, the in vitro uptake and intracellular transformation of citrate-capped AgNPs by microglia, as well as their effects on microglial inflammation and related neurotoxicity were examined. Analytical microscopy demonstrated internalization and dissolution of AgNPs within microglia and formation of non-reactive silver sulphide (Ag2S) on the surface of AgNPs. Furthermore, AgNP-treatment up-regulated microglial expression of the hydrogen sulphide (H2S)-synthesizing enzyme cystathionine-γ-lyase (CSE). In addition, AgNPs showed significant anti-inflammatory effects, reducing lipopolysaccharide (LPS)-stimulated ROS, nitric oxide and TNFα production, which translated into reduced microglial toxicity towards dopaminergic neurons. Hence, the present results indicate that intracellular Ag2S formation, resulting from CSE-mediated H2S production in microglia, sequesters Ag+ ions released from AgNPs, significantly limiting their toxicity, concomitantly reducing microglial inflammation and related neurotoxicity.
A Pharmacological and Toxicological Profile of Silver as an Antimicrobial Agent in Medical Devices
Lansdown, Alan B. G.
2010-01-01
Silver is used widely in wound dressings and medical devices as a broad-spectrum antibiotic. Metallic silver and most inorganic silver compounds ionise in moisture, body fluids, and secretions to release biologically active Ag+. The ion is absorbed into the systemic circulation from the diet and drinking water, by inhalation and through intraparenteral administration. Percutaneous absorption of Ag+ through intact or damaged skin is low. Ag+ binds strongly to metallothionein, albumins, and macroglobulins and is metabolised to all tissues other than the brain and the central nervous system. Silver sulphide or silver selenide precipitates, bound lysosomally in soft tissues, are inert and not associated with an irreversible toxic change. Argyria and argyrosis are the principle effects associated with heavy deposition of insoluble silver precipitates in the dermis and cornea/conjunctiva. Whilst these changes may be profoundly disfiguring and persistent, they are not associated with pathological damage in any tissue. The present paper discusses the mechanisms of absorption and metabolism of silver in the human body, presumed mechanisms of argyria and argyrosis, and the elimination of silver-protein complexes in the bile and urine. Minimum blood silver levels consistent with early signs of argyria or argyrosis are not known. Silver allergy does occur but the extent of the problem is not known. Reference values for silver exposure are discussed. PMID:21188244
The Genesis of Precious and Base Metal Mineralization at the Miguel Auza Deposit, Zacatecas, Mexico
NASA Astrophysics Data System (ADS)
Findley, A. A.; Olivo, G. R.; Godin, L.
2009-05-01
The Miguel Auza mine located in Zacatecas State, Mexico, is a vein-type polymetallic epithermal deposit hosted in deformed argillite, siltstone and, greywacke of the Cretaceous Caracol Formation. Silver-rich base metal veins (0.2 m to >1.5 m wide) are spatially associated with the NE-striking, steeply SE- dipping (70-80°) Miguel Auza fault over a strike length of 1.6 km and a depth of 460 m. A 2 km2 monzonitic stock located in the proximity of the mineralized zones, has previously been interpreted as the source of the mineralizing fluids. Four distinct structural stages are correlated with hydrothermal mineral deposition: (I) The Pre-ore stage is characterized by normal faulting, fracturing of host rock, and rotation of bedding planes. This stage consists of quartz, illite, chlorite, +/- pyrite alteration of sedimentary wall rocks. (II) The Pyrite-vein stage is associated with reverse-sense reactivation of early normal faults, dilation of bedding planes/fractures, and deposition of generally barren calcite + pyrite veinlets. (III) The Main-ore stage is related to the development of reverse-fault- hosted massive sulphide veins. During this stage three phases of mineral deposition are recorded: early pyrite and arsenopyrite, intermediate chalcopyrite, pyrite, arsenopyrite, and base metals, and late base metals and Ag-bearing minerals. Associated gangue minerals during the main ore stage are quartz, muscovite, calcite and chlorite. (IV) The Post-ore stage involves late NW-SE striking block faulting, brecciation and calcite veining. Later supergene oxidation of veins led to deposition of Fe-oxides and hydroxides, commonly filling fractures or replacing early-formed sulphide assemblages. The various vein types display classic epithermal textures including open space filling, banding, comb quartz and brecciation. The Ag-bearing minerals comprise pyrargyrite [Ag3(Sb,As)S3], argentotennantite [(Cu,Ag)10(Zn,Fe)2(Sn,As)4S13], polybasite-pearceite [(Ag,Cu)16(Sb,As)2S11], and acanthite [AgS2]; associated sulphides include galena, sphalerite, chalcopyrite, arsenopyrite and pyrite. In the main ore zone, base metal sulphides are commonly intergrown with the Ag-bearing sulfosalts. Analyses of galena show no significant silver values indicating that silver grades are exclusively associated with the Ag-bearing sulfosalts and sulphides. The distribution of the Sb/(Sb + As) ratios in the silver sulfosalts indicate that the ore forming fluid(s) was consistently antimony-rich during the Ag-rich ore deposition with no significant variation laterally, vertically, or along strike of the vein systems. However, Ag/(Ag + Cu) values in argentotennantite decrease along-strike from NE to SW and with depth. Compositions of argentotennantite + pyrargyrite + sphalerite indicate a primary depositional temperature around 325-350° C for the late phase of the Main-ore stage. Compositions of sphalerite also show an increasing trend in FeS (mol %) along strike of the deposit from NE to SW. The geometric relationship between the various structures, vein types, and the regional Miguel Auza fault zone suggest episodic reverse-sense reactivation of normal faults. It is argued that the structural evolution of the area, and, in particular, the Main-ore stage, provided transport pathways for metal-rich fluids and controlled the orientations of ore-bearing veins. Variations in mineral chemistry suggest that the rocks in the NE sector interacted with hotter fluids than in the SW part of the deposit.
Mizoguchi, T; Ishii, H
1980-06-01
Sulphate in sulphate ores, e.g., alunite, anglesite, barytes, chalcanthite, gypsum, manganese sulphate ore, is reduced to hydrogen sulphide by the hypophosphite-tin metal-CPA method, if a slight modification is made. Sulphide ores, e.g., galena, sphalerite, are quantitatively decomposed with CPA alone to give hydrogen sulphide. Suitable reducing agents must be used for the quantitative recovery of hydrogen sulphide from pyrite, nickel sulphide, cobalt sulphide and cadmium sulphide, or elemental sulphur is liberated. Iodide must be used in the decomposition of chalcopyrite; the copper sulphide is too stable to be decomposed by CPA alone. Molybdenite is not decomposed in CPA even if reducing agents are added. The pretreatment methods for the determination of sulphur in sulphur oxyacids and elemental sulphur have also been investigated.
NASA Astrophysics Data System (ADS)
Basori, Mohd Basril Iswadi; Gilbert, Sarah; Large, Ross Raymond; Zaw, Khin
2018-06-01
The Bukit Botol volcanic-hosted massive sulphide (VHMS) deposit is located in the Central Belt of Peninsular Malaysia. The deposit occurs in a package of Permian-aged coherent felsic volcanic and volcaniclastic rocks which have a geochemical signature indicative of a volcanic arc tectonic setting. Mineralisation shows distinct ore zonation, forming a stringer to massive sulphide zone at the footwall followed by barite lenses and exhalite layers (Fe-Mn ore) at the top. Mineralogy is characterised by pyrite as the major sulphide mineral, with minor chalcopyrite, sphalerite, and rare galena; traces of gold, silver- and tin-bearing minerals also occur in the massive sulphide and barite ores. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis combined with the textural characteristics of pyrite provides evidence for significant variations of trace elements in different pyrite types at Bukit Botol, having three types of pyrite in the paragenetic sequence. The concentrations of As, Se, Te, Cu, Zn and Pb decrease from the early pyrite 1 to the late stage pyrite 3, and the Co/Ni ratios vary for the three pyrite types. The combined textural and compositional data of pyrite suggest that the hydrothermal fluid responsible for mineralisation evolved from an early, high temperature, reduced, low pH and desulphurized fluid to more S-rich, oxidized, high pH and cooler fluid. Available sulphur isotope data from the Bukit Botol deposit point to reduced seawater, along with a possible magmatic contribution, as the most probable sources for the ore-forming fluids.
Localized surface plasmon and exciton interaction in silver-coated cadmium sulphide quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, P.; Rustagi, K. C.; Vasa, P.
2015-05-15
Localized surface plasmon and exciton coupling has been investigated on colloidal solutions of silver-coated CdS nanoparticles (NPs), synthesized by gamma irradiation. Two broad photoluminescence (PL) bands (blue/red) corresponding to band to band and defect state transitions have been observed for the bare and coated samples. In case of bare CdS NPs, the intensity of the red PL peak is about ten times higher than the blue PL peak intensity. However, on coating the CdS NPs with silver, the peak intensity of the blue PL band gets enhanced and becomes equal to that of the red PL band. High-resolution transmission electronmore » microscopic (HRTEM) images adequately demonstrate size distribution of these metal/semiconductor nanocomposites. UV-Vis absorption studies show quantum confinement effect in these semiconductor quantum dot (SQD) systems. Absorption spectrum of silver-coated SQDs shows signature of surface plasmon-exciton coupling which has been theoretically verified.« less
Wintner, Edward A; Deckwerth, Thomas L; Langston, William; Bengtsson, Asa; Leviten, Dina; Hill, Paul; Insko, Michael A; Dumpit, Ronald; VandenEkart, Emily; Toombs, Christopher F; Szabo, Csaba
2010-01-01
Background and purpose: Hydrogen sulphide (H2S) is a labile, endogenous metabolite of cysteine, with multiple biological roles. The development of sulphide-based therapies for human diseases will benefit from a reliable method of quantifying H2S in blood and tissues. Experimental approach: Concentrations of reactive sulphide in saline and freshly drawn whole blood were quantified by reaction with the thio-specific derivatization agent monobromobimane, followed by reversed-phase fluorescence HPLC and/or mass spectrometry. In pharmacokinetic studies, male rats were exposed either to intravenous infusions of sodium sulphide or to H2S gas inhalation, and levels of available blood sulphide were measured. Levels of dissolved H2S/HS- were concomitantly measured using an amperometric sensor. Key results: Monobromobimane was found to rapidly and quantitatively derivatize sulphide in saline or whole blood to yield the stable small molecule sulphide dibimane. Extraction and quantification of this bis-bimane derivative were validated via reversed-phase HPLC separation coupled to fluorescence detection, and also by mass spectrometry. Baseline levels of sulphide in blood were in the range of 0.4–0.9 µM. Intravenous administration of sodium sulphide solution (2–20 mg·kg−1·h−1) or inhalation of H2S gas (50–400 ppm) elevated reactive sulphide in blood in a dose-dependent manner. Each 1 mg·kg−1·h−1 of sodium sulphide infusion into rats was found to be pharmacokinetically equivalent to approximately 30 ppm of H2S gas inhalation. Conclusions and implications: The monobromobimane derivatization method is a sensitive and reliable means to measure reactive sulphide species in whole blood. Using this method, we have established a bioequivalence between infused sodium sulphide and inhaled H2S gas. PMID:20590590
Wintner, Edward A; Deckwerth, Thomas L; Langston, William; Bengtsson, Asa; Leviten, Dina; Hill, Paul; Insko, Michael A; Dumpit, Ronald; VandenEkart, Emily; Toombs, Christopher F; Szabo, Csaba
2010-06-01
Hydrogen sulphide (H(2)S) is a labile, endogenous metabolite of cysteine, with multiple biological roles. The development of sulphide-based therapies for human diseases will benefit from a reliable method of quantifying H(2)S in blood and tissues. Concentrations of reactive sulphide in saline and freshly drawn whole blood were quantified by reaction with the thio-specific derivatization agent monobromobimane, followed by reversed-phase fluorescence HPLC and/or mass spectrometry. In pharmacokinetic studies, male rats were exposed either to intravenous infusions of sodium sulphide or to H(2)S gas inhalation, and levels of available blood sulphide were measured. Levels of dissolved H(2)S/HS(-) were concomitantly measured using an amperometric sensor. Monobromobimane was found to rapidly and quantitatively derivatize sulphide in saline or whole blood to yield the stable small molecule sulphide dibimane. Extraction and quantification of this bis-bimane derivative were validated via reversed-phase HPLC separation coupled to fluorescence detection, and also by mass spectrometry. Baseline levels of sulphide in blood were in the range of 0.4-0.9 microM. Intravenous administration of sodium sulphide solution (2-20 mg x kg(-1) x h(-1)) or inhalation of H(2)S gas (50-400 ppm) elevated reactive sulphide in blood in a dose-dependent manner. Each 1 mg x kg(-1) x h(-1) of sodium sulphide infusion into rats was found to be pharmacokinetically equivalent to approximately 30 ppm of H(2)S gas inhalation. The monobromobimane derivatization method is a sensitive and reliable means to measure reactive sulphide species in whole blood. Using this method, we have established a bioequivalence between infused sodium sulphide and inhaled H(2)S gas.
Zeta-potential and particle size studies of silver sulphide nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vikash, E-mail: vikash@csr.res.in; Tarachand,; Ganesan, V.
Silver sulfide (Ag{sub 2}S) nanoparticles (NPs) were prepared successfully for the first time using diethylene glycol (DEG) as a surfactant. X-ray diffraction (XRD) data revealed single phase nature of the compound and energy-dispersive X-ray (EDX) confirmed its nominal composition. Their sizes were 43 nm from XRD, 50 nm from atomic force microscopy (AFM) and 19 nm & 213 nm from dynamic light scattering (DLS); their differences have been discussed. Autotitration study of zeta potential of these NPs in deionized water by DLS at different pH values confirmed an isoelectric point at pH = 5.14 and their very unstable nature in deionized water.
Slack, J.F.; Palmer, M.R.; Stevens, B.P.J.
1989-01-01
IDENTIFYING the palaeogeographic setting and mode of origin of stratabound ore deposits can be difficult in high-grade metamorphic terranes, where the effects of metamorphism may obscure the nature of the protoliths. Here we report boron isotope data for tourmalines from the early Proterozoic Broken Hill block, in Australia, which hosts giant lead-zinc-silver sulphide deposits. With one exception the 11B/10B ratios are lower than those for all other tourmalines from massive sulphide deposits and tour-malinites elsewhere in the world. We propose that these low ratios reflect leaching of boron from non-marine evaporitic borates by convecting hydrothermal fluids associated with early Proterozoic continental rifting. A possible modern analogue is the Salton Sea geothermal field in California. ?? 1989 Nature Publishing Group.
An ore genetic model for the Lubin—Sieroszowice mining district, Poland
NASA Astrophysics Data System (ADS)
Wodzicki, A.; Piestrzyński, A.
1994-04-01
The Lubin-Sieroszowice mining district is a world-class copper-silver, stratabound ore deposit that lies near the Lower-Upper Permian boundary. It transgresses the Werra dolomite, the Kupferschiefer organicrich shale and the Weissliegendes sandstone, which overlie barren Rotliegendes sandstone. On the basis of underground and microscope observations and light stable isotope data, and thermodynamic calculations, a new ore genesis model is proposed whereby ore minerals were deposited in the following stages: Stage 0 was synsedimentary or earliest diagenetic and contains 100s ppm of base metals trapped by clay minerals, and minor sulphides. Stage I was early diagenetic and contains 1000s ppm base metals. It is characterized by bornite and overlying chalcopyrite + pyrite that lie a short distance above the Rotliegendes/Weissliegendes contact. The sulphides were deposited near the interface between an overlying, buffered, reducing fluid (1), largely derived from the Kupferschiefer, and an oxidizing fluid (2) in the Rotliegendes. Stage II is the main ore-forming stage. This stage is late diagenetic, peneconcordant, lies near the Kupferschiefer/Weissliegendes contact, and contains several percent base metals.It is associated with the hematite-bearing Rote Fäule facies and is characterized by vertical zonation. A central chalcocite zone is flanked above and below by bornite and chalcopyrite. Silver occurs with all the above sulphides. Galena and sphalerite occur mainly just above copper zone, whereas pyrite is usually present in the upper part of the copper zone and together with galena and sphalerite. Metals were transported in a copper-rich oxidizing fluid (3), which probably originated deep in the Permian basin, reacted with organic matter in the Kupferschiefer, and mixed with reducing fluid (1) in the Weissliegendes, resulting in the observed mineral zonation. Stage III is late diagenetic, discordant and is represented by massive and dispersed chalcocite ore present on the peripheries and below anhydrite-cemented Weissliegendes sandstone. It resulted from redistribution of earlier copper and silver minerals by descending, reduced, sulphur-rich fluids (4). Stage IV consists of rare polymetallic veins of no economic importance that cut the stratigraphy and are probably related to Alpine tectonism. The richest and thickest ore is in the Weissliegendes, 10-15 km east of the Rote Fäule facies (Fig. 1). It probably occupies structures that trapped fluid (1) which was the main precipitant of metals in the sandstone.
2007-03-01
acids. Violent reactions are possible. It also readily combines with silver oxide or mercury to form compounds that explode on contact with halogens...soldiers in 1917 (Sidell, et al, 1998). Mustard Gas is chemically called beta-chloroethyl sulphide (C4H8Cl2S) and has the ability to form large blisters
Automated classification of Acid Rock Drainage potential from Corescan drill core imagery
NASA Astrophysics Data System (ADS)
Cracknell, M. J.; Jackson, L.; Parbhakar-Fox, A.; Savinova, K.
2017-12-01
Classification of the acid forming potential of waste rock is important for managing environmental hazards associated with mining operations. Current methods for the classification of acid rock drainage (ARD) potential usually involve labour intensive and subjective assessment of drill core and/or hand specimens. Manual methods are subject to operator bias, human error and the amount of material that can be assessed within a given time frame is limited. The automated classification of ARD potential documented here is based on the ARD Index developed by Parbhakar-Fox et al. (2011). This ARD Index involves the combination of five indicators: A - sulphide content; B - sulphide alteration; C - sulphide morphology; D - primary neutraliser content; and E - sulphide mineral association. Several components of the ARD Index require accurate identification of sulphide minerals. This is achieved by classifying Corescan Red-Green-Blue true colour images into the presence or absence of sulphide minerals using supervised classification. Subsequently, sulphide classification images are processed and combined with Corescan SWIR-based mineral classifications to obtain information on sulphide content, indices representing sulphide textures (disseminated versus massive and degree of veining), and spatially associated minerals. This information is combined to calculate ARD Index indicator values that feed into the classification of ARD potential. Automated ARD potential classifications of drill core samples associated with a porphyry Cu-Au deposit are compared to manually derived classifications and those obtained by standard static geochemical testing and X-ray diffractometry analyses. Results indicate a high degree of similarity between automated and manual ARD potential classifications. Major differences between approaches are observed in sulphide and neutraliser mineral percentages, likely due to the subjective nature of manual estimates of mineral content. The automated approach presented here for the classification of ARD potential offers rapid, repeatable and accurate outcomes comparable to manually derived classifications. Methods for automated ARD classifications from digital drill core data represent a step-change for geoenvironmental management practices in the mining industry.
Taylor, Grahame N; Matherly, Ron
2014-05-20
During the reaction between 1,3,5-tris(2-hydroxyethyl)hexahydro-s-triazine and hydrogen sulphide, the principle by-product is the organic sulphide 5-(2-hydroxyethyl)dithiazine. It can be determined by a novel, portable, field-capable ion mobility spectrometry method described herein and enables the "degree spent" to be determined. Dependant upon the level of carbon dioxide in the produced gas, a mixture of ethanolaminium bicarbonate and ethanolamine bisulphide is also produced. Using a field capable spectrophotometric method the level of inorganic sulphide can be determined, thus allowing the ethanolaminium bisulphide concentration to be calculated. Provided the fluid is only partially spent, and there is some unreacted 1,3,5-tris(2-hydroxyethyl)hexahydro-s-triazine remaining; the only source of inorganic sulphide is the amine salt. From a knowledge of the original fluid concentration, the combination of these two methods allows the effective stoichiometry, or observed molar reaction proportions between 1,3,5-tris(2-hydroxyethyl)hexahydro-s-triazine and hydrogen sulphide, to be measured for a specific field location.
NASA Astrophysics Data System (ADS)
Altin Massinai, Muhammad; Lantu; Latuconsina, Hidayat; Fawzy Ismullah M, Muhammad
2018-03-01
Sulphide minerals are any member of a group of compounds of sulphur with one or more metals. Some of these sulphide minerals are economically important. This study used induced polarization method to identify distribution and mineralized zone of sulphide mineral (Pyrite), in Libureng, Bone Regency, South Sulawesi. The data processing yielded resistivity value, percent frequency effect (PPE) value, and metal factor (MF) value which were then used to produce 2-D and 3-D section model. Based on the data interpretation, an anomaly linked to pyrite deposits was seen in four trajectories with resistivity value < = 50, PFE = > 3%, and MF > = 150, deposited in hydrothermal alteration zone, sericite zone.
Macaskie, L E; Creamer, N J; Essa, A M M; Brown, N L
2007-03-01
A new approach is described for the recovery of precious metals (PMs: Au, Pd and Ag) with >99% efficiency from aqueous solution utilising biogas produced during the aerobic growth of Klebsiella pneumoniae. Gold was recovered from electronic scrap leachate ( approximately 95%) by this method, with some selectivity against Cu. The recovered PM solids all contained metal and sulphur as determined by energy dispersive X-ray microanalysis (EDX). X-ray powder diffraction analysis (XRD) showed no crystalline metal sulphur compounds but a crystalline palladium amine was recorded. Silver was recovered as a sulphide (found by EDX), carbonate and oxide (found by XRD). EDX analysis of the Au-precipitate showed mainly gold and sulphur, with some metallic Au(0) detected by XRD. The gold compound was shock-sensitive; upon grinding it detonated to leave a sooty black deposit.
NASA Astrophysics Data System (ADS)
Tassara, C. S.; González-Jiménez, J. M.; Reich, M.; Morata, D.; Barra, F.; Gregoire, M.; Saunders, J. E.; Cannatelli, C.
2017-12-01
Refertilisation of the subcontinental lithospheric mantle is a key process controlling the noble metal budget of the mantle, and recent views point to anomalously enriched mantle sources as a critical factor in the formation of noble metal (e.g., Au) provinces at a lithospheric scale. Here we test this hypothesis by studying peridotite xenoliths from the mantle beneath the Deseado Massif auriferous province in southern Patagonia, Argentina. Extensive Neogene back-arc plateau magmatism composed of alkaline basalts ( 3.5 Ma) has brought to the surface deep-seated mantle xenoliths from beneath the crust that host the Au mineralization. In the studied xenolith samples we found gold particles enclosed within primary olivine and pyroxene, and embedded in a highly alkaline interstitial glass or sulphides. Detailed inspection of the sulphide hosts using FESEM reveals abundant native Au nanoparticles, which are consistent with the high Au (up to 6 ppm) obtained by LA-ICP-MS analysis of these sulphides. It is relevant to note that these sulphides also contain significant amounts of Ag (up to 163 ppm). Different generations of sulphides were identified on the basis of their chondrite-normalized PGE patterns, and they can be systematically associated with different events of melt depletion and metasomatism in the mantle. Noticeably, Cu-Pd-Pt-Au rich sulfides are associated with clinopyroxene showing typical carbonatite markers (i.e., large LREE/HREE, Zr and Hf negative anomalies) and accessory minerals such as carbonates and apatite. Still, clinopyroxene commonly has high Ti contents suggesting that a "basaltic" component was also present during the metasomatism. These results suggest that overprinting of events of melt depletion and metasomatism lead to the formation of several generations of sulfides. We propose that the Cu-Pd-Pt-Au rich sulfides may be associated with carbonated silicate melts in the mantle. Our results point to 1) a link between an enriched source of gold (and silver) in the mantle and the formation of the Deseado Massif auriferous province; and 2) carbonated silicate melt metasomatism as an important factor in the PPGE + Au refertilisation of the mantle.
NASA Astrophysics Data System (ADS)
Wasag, H.; Cel, W.; Chomczynska, M.; Kujawska, J.
2018-05-01
The paper deals with a new method of hydrogen sulphide removal from air by its filtration and selective catalytic oxidation with the use of fibrous carriers of Fe(III)-EDTA complex. The basis of these filtering materials includes fibrous ion exchangers with the complex immobilized on their functional groups. It has been established that the degree of catalytic hydrogen sulphide decomposition depends on the reaction time. Thus, the required degree of hydrogen sulphide removal from air could be easily controlled by applying appropriate thickness of the filtering layer under a given filtering velocity. It allows applying very thin filtering layers of the Fe(III)-EDTA/Fiban AK-22 or Fiban A-6 catalysts. The obtained results of the research confirm the applicability of these materials for deep air purification from hydrogen sulphide.
NASA Astrophysics Data System (ADS)
Kurumshieva, K. R.; Gertner, I. F.; Tishin, P. A.
2017-12-01
An analysis of the distribution of noble metals in zones of sulfide mineralization makes it possible to justify the isolation of four ore-bearing horizons with a specific geochemical zonation. A rise in the gold content relative to palladium and platinum is observed from the bottom upwards along the section of the stratified series of gabbroids. The study of the mineral phases of sulphides and the noble minerals itself indicates the evolution of hydrothermal solutions, which determines the different activity and mobility of the fluid (mercury, tellurium, sulfur) and ore (copper, nickel, iron, platinum, gold and silver) components.
NASA Astrophysics Data System (ADS)
Mozgai, Viktória; Szabó, Máté; Bajnóczi, Bernadett; Weiszburg, Tamás G.; Fórizs, István; Mráv, Zsolt; Tóth, Mária
2017-04-01
During material analysis of archaeological metal objects, especially their inlays or corrosion products, not only microstructure and chemical composition, but mineralogical composition is necessary to be determined. X-ray powder diffraction (XRD) is a widely-used method to specify the mineralogical composition. However, when sampling is not or limitedly allowed due to e.g. the high value of the object, the conventional XRD analysis can hardly be used. Laboratory micro-XRD instruments provide good alternatives, like the RIGAKU Dmax Rapid II micro-X-ray diffractometer, which is a unique combination of a MicroMax-003 third generation microfocus, sealed tube X-ray generator and a curved 'image plate' detector. With this instrument it is possible to measure as small as 10 µm area in diameter on the object. Here we present case studies for the application of the micro-XRD technique in the study of archaeological metal objects. In the first case niello inlay of a Late Roman silver augur staff was analysed. Due to the high value of the object, since it is the only piece known from the Roman Empire, only non-destructive analyses were allowed. To reconstruct the preparation of the niello, SEM-EDX analysis was performed on the niello inlays to characterise their chemical composition and microstructure. Two types of niello are present: a homogeneous, silver sulphide niello (acanthite) and an inhomogeneous silver-copper sulphide niello (exsolution of acanthite and jalpaite or jalpaite and stromeyerite). The micro-X-ray diffractometer was used to verify the mineralogical composition of the niello, supposed on the base of SEM results. In the second case corrosion products of a Late Roman copper cauldron with uncertain provenance were examined, since they may hold clues about the burial conditions (pH, Eh, etc.) of the object. A layer by layer analysis was performed in cross sections of small metal samples by using electron microprobe and micro-X-ray diffractometer. The results show two corrosion zones: 1) the original (internal) surface zone of the metallic copper object was replaced by copper(I) oxide (cuprite), while 2) basic copper(II) carbonate (malachite) was deposited (externally) on the original surface. In our view these two minerals were formed during long-time burial, and protected the cauldron from further corrosion. Rarely copper(I) chloride (nantokite), basic copper(II) trihydroxychloride (atacamite/paratacamite) and basic copper(II) sulphate (brochantite) were also identified in the two corrosion zones. Their uneven distribution on the cauldron and their known formation conditions indicate, that these latter mineral phases may be the results of active corrosion, started possibly after excavation.
Barnes, S.-J.; Zientek, M.L.; Severson, M.J.
1997-01-01
The tectonic setting of intraplate magmas, typically a plume intersecting a rift, is ideal for the development of Ni - Cu - platinum-group element-bearing sulphides. The plume transports metal-rich magmas close to the mantle - crust boundary. The interaction of the rift and plume permits rapid transport of the magma into the crust, thus ensuring that no sulphides are lost from the magma en route to the crust. The rift may contain sediments which could provide the sulphur necessary to bring about sulphide saturation in the magmas. The plume provides large volumes of mafic magma; thus any sulphides that form can collect metals from a large volume of magma and consequently the sulphides will be metal rich. The large volume of magma provides sufficient heat to release large quantities of S from the crust, thus providing sufficient S to form a large sulphide deposit. The composition of the sulphides varies on a number of scales: (i) there is a variation between geographic areas, in which sulphides from the Noril'sk - Talnakh area are the richest in metals and those from the Muskox intrusion are poorest in metals; (ii) there is a variation between textural types of sulphides, in which disseminated sulphides are generally richer in metals than the associated massive and matrix sulphides; and (iii) the massive and matrix sulphides show a much wider range of compositions than the disseminated sulphides, and on the basis of their Ni/Cu ratio the massive and matrix sulphides can be divided into Cu rich and Fe rich. The Cu-rich sulphides are also enriched in Pt, Pd, and Au; in contrast, the Fe-rich sulphides are enriched in Fe, Os, Ir, Ru, and Rh. Nickel concentrations are similar in both. Differences in the composition between the sulphides from different areas may be attributed to a combination of differences in composition of the silicate magma from which the sulphides segregated and differences in the ratio of silicate to sulphide liquid (R factors). The higher metal content of the disseminated sulphides relative to the massive and matrix sulphides may be due to the fact that the disseminated sulphides equilibrated with a larger volume of magma than massive and matrix sulphides. The difference in composition between the Cu- and Fe-rich sulphides may be the result of the fractional crystallization of monosulphide solid solution from a sulphide liquid, with the Cu-rich sulphides representing the liquid and the Fe-rich sulphides representing the cumulate.
New sulphiding method for steel and cast iron parts
NASA Astrophysics Data System (ADS)
Tarelnyk, V.; Martsynkovskyy, V.; Gaponova, O.; Konoplianchenko, Ie; Dovzyk, M.; Tarelnyk, N.; Gorovoy, S.
2017-08-01
A new method for sulphiding steel and cast iron part surfaces by electroerosion alloying (EEA) with the use of a special electrode is proposed, which method is characterized in that while manufacturing the electrode, on its surface, in any known manner (punching, threading, pulling, etc.), there is formed at least a recess to be filled with sulfur as a consistent material, and then there is produced EEA by the obtained electrode without waiting for the consistent material to become dried.
NASA Astrophysics Data System (ADS)
Charles, Nicolas; Choulet, Flavien; Sizaret, Stanislas; Chen, Yan; Barbanson, Luc; Ennaciri, Aomar; Badra, Lakhlifi; Branquet, Yannick
2016-01-01
The renewal of interest in Zn-Pb non-sulphide ores has been induced by mineral processing improvement and leads to new exploration and mining projects in the world. Although the mineralogy is often precisely known, and despite several studies linking ore deposition to regional tectonics, absolute dating of non-sulphide stages is rare and structure of ore bodies was largely disregarded. Geochronological data from non-sulphide ores are essential to timely constrain alteration episodes and to insert supergene ore genesis in the climate and tectonic evolution of the metallogenic province. The access to internal organization of ore could reveal post-mineralization episodes related to supergene evolution. Thus, a rock magnetism study combining anisotropy of magnetic susceptibility (AMS) and palaeomagnetism was performed on four non-sulphide deposits from the Moroccan High Atlas. AMS generally shows similar horizontal magnetic fabrics for ores and the clayey and carbonaceous internal sediments filling karstic cavities. The palaeomagnetic directions of ores and internal sediments are compatible, and the calculated poles are consistent with the last 30 Ma of the Africa apparent polar wander path, with an upper age at 0.78 Ma. The proposed three-step scenario is placed within the evolution of the Moroccan High Atlas belt. Deposition of primary sulphides is contemporaneous with opening of the Tethyan and Atlantic oceans. During the Tertiary, intracontinental deformation gave rise to the High Atlas fold-and-thrust belt and to regional uplift. Finally, Zn-Pb sulphides hosted in carbonates experienced oxidation under an arid climate to form karst-related Zn-Pb non-sulphide ores. These promising results pave the way for an efficient method to constrain the internal fabrics and age of Zn supergene deposits.
Long-Term Planning for Open Pits for Mining Sulphide-Oxide Ores in Order to Achieve Maximum Profit
NASA Astrophysics Data System (ADS)
Kržanović, Daniel; Conić, Vesna; Stevanović, Dejan; Kolonja, Božo; Vaduvesković, Jovan
2017-12-01
Profitable exploitation of mineralised material from the earth's crust is a complex and difficult task that depends on a comprehensive planning process. Answering the question of how to plan production depends on the geometry of the deposit, as well as the concentration, distribution, and type of minerals in it. The complex nature of mineral deposits largely determines the method of exploitation and profitability of mining operations. In addition to unit operating costs and metal prices, the optimal recovery of and achievement of maximum profit from deposits of sulphide-oxide ores also depend, to a significant extent, on the level of technological recovery achieved in the ore processing procedure. Therefore, in defining a long-term development strategy for open pits, special attention must be paid to the selection of an optimal procedure for ore processing in order to achieve the main objective: maximising the Net Present Value (NPV). The effect of using two different processes, flotation processing and hydrometallurgical methods (bioleaching acid leaching), on determining the ultimate pit is shown in the case of the Kraku Bugaresku-Cementacija sulphide-oxide ore deposit in eastern Serbia. Analysis shows that the application of hydrometallurgical methods of processing sulphide-oxide ore achieved an increase in NPV of 20.42%.
Development of Technology for Enrichment of Silver Containing Ores
NASA Astrophysics Data System (ADS)
Shekiladze, Asmati; Kavtelashvili, Otari; Bagnashvili, Mamuka
2016-10-01
The progress of Georgian economics is substantially associated with a development of new deposits of mineral resources. Among them is the David-Gareji deposit where at present the intensive searching geological works are performed. The work goal involves the elaboration of the technology for processing of silver-containing quartz-barite ores. Without its development the mining of more valuable gold-polymetallic ores is impossible. Because of ore complexity silver and barite are considered in a common technological aspect. The investigations were carried out on the representative samples of quartz-barite ores containing 78-88 g/ton of silver and 27-29 % of silver is a nugget in the form of the simple sulphides and chlorides. The ore is characterized by fine coalescence of barite and ore-generating minerals. Non-ferrous metals haven't any industrial value because of their very low content. Therefore, for the processing of the ores under study the direct selective scheme of flotation enrichment was chosen and the formula of optimal reagent regime was elaborated. Potassium xanthogenate is used as a collector for flotation of silver minerals and pine oil- as a foaming agent. The effect of the pulp - pH and medium temperature on silver flotation was studied. It was established that the silver is actively floats in neutral medium. For barite flotation the various collectors were tested: sulfidezid cotton oil-soap stock, soaps of fatty acids and alkyl sulphates of C12 - C16 row, among the “Baritol” is the most efficient one. Depression of the barren rock was carried out by liquid glass in alkaline medium. The effect of pulp pH on barite flotation has been investigated. The best results were obtained at pH=8.5. The increase of the pulp alkalinity has no essential effect on the indexes of the barite enrichment. Conditional concentrate of the barite is obtained by two fold purification of the main flotation concentrate by the addition of the liquid glass to the re-purification operations. On the basis of laboratory investigations for silver-containing ores of David-Gareji deposit the technological scheme is recommended which implies the ore milling to 82 % class -074 mm, flotation of the silver minerals and the barite flotation from the tails of this operation by two-fold re-purification of the rough concentrate. The optimal parameters of the receipt of the reagent regime are: potassium butylxantogenate and pine oil-in the silver flotation; sodium carbonate, liquid glass, “Baritol”- in the barite main flotation and liquid glass in the repurification operations. Silver concentrate containing 680 g/ton of silver by extraction of 92.21% and barite concentrate, content - 92.11%, extraction - 81.85% are obtained.
Distribution of Ag in Cu-sulfides in Kupferschiefer deposit, SW Poland
NASA Astrophysics Data System (ADS)
Kozub, Gabriela A.
2014-05-01
The Cu-Ag Kupferschiefer deposit located at the Fore-Sudetic Monocline (SW Poland) is a world class deposit of stratabound type. The Cu-Ag mineralization in the deposit occurs in the Permian sedimentary rocks (Rotliegend and Zechstein) in three lithological types of ore: the dolomite, the black shale and the sandstone. Silver, next to copper, is the most important element in the Kupferschiefer deposit (Salamon 1979; Piestrzyński 2007; Pieczonka 2011). Although occurrence of the Ag-minerals such as native silver, silver amalgams, stromeyerite, jalpaite and mckinstryite, silver is mainly present in the deposit due to isomorphic substitutions in Cu-minerals such as chalcocite, bornite, tennantite, covellite and chalcopyrite. The aim of the study was to define distribution of silver in Cu-minerals and correlate occurrence of Ag-enriched Cu-sulfides with native silver and silver amalgams. Identification of minerals and textural observation were performed using field emission scanning electron microscope. Analyzes of chemical composition of Cu-sulfides were performed utilizing electron microprobe. Silver concentration in Cu sulfides ranges from 0.1 to 10.4 wt.% in chalcocite, 0.2-15.8 wt.% in bornite, 0.1-2.9 wt.% in tennantite, 0.05-0.3 wt.% in chalcopyrite and ca. 0.4 wt.% in covellite. In general, distribution of silver in Cu-minerals is irregular, as indicated by high variations of Ag concentration in each mineral. Content of Ag in Cu-sulphides, in samples where native silver and silver amalgams are not found, is lower than in samples, where native silver and silver amalgams are noted. The chemical analyzes of Ag-bearing Cu-minerals indicate decrease of Cu content in minerals with high Ag concentration. In such case, decrease of Fe content is also noted in bornite. Lack of micro-inclusions of the native silver or silver amalgams in the Cu-minerals indicates that presence of Ag is mainly related to the isomorphic substitutions. This is in agreement with previous reports on high Ag content reaching 49 wt.% Ag in bornite and 1.8 wt.% Ag in chalcocite occurring due to Ag substitution in Cu-minerals without modification of their crystallographic structure (Salamon 1979; Banaś et al 2007; Kucha 2007; Piestrzyński 2007, Pieczonka 2011). Acknowledgements. This work was supported by the National Science Centre research grant (No 2011/03/N/ST10/04619). References: Kucha H and Mayer W (2007) Geochemistry. [In:] Piestrzyński A (Ed) Monografia KGHM Polska Miedź SA., pp 197-207 (In Polish) Pieczonka J (2011) Factors controlling distribution of ore minerals within copper deposit, Fore-Sudetic Monocline, SW Poland. 195 pp (In Polish) Piestrzyński A (2007) Ore minerals. [In:] Piestrzyński A (Ed) Monografia KGHM Polska Miedź SA., pp 167-197 (in Polish) Salamon W (1979) Occurrence of the Ag and Mo in the Zechstein sediments of the Fore-Sudetic Monocline. Prace Mineralogiczne, PAN 62, pp 1-52 (In Polish)
Study of linear optical parameters of sodium sulphide nano-particles added ADP crystals
NASA Astrophysics Data System (ADS)
Kochuparampil, A. P.; Joshi, J. H.; Dixit, K. P.; Jethva, H. O.; Joshi, M. J.
2017-05-01
Ammonium Dihydrogen Phosphate (ADP) is one of the nonlinear optical crystals. It is having various applications like optical mixing, electro-optical modulator, harmonic generators, etc. Chalcogenide compounds are poorly soluble in water and difficult to add in the water soluble ADP crystals. The solubility of Chalcogenide compounds can be increased by synthesizing the nano-structured samples with suitable capping agent. In the present study sodium sulphide was added in to ADP to modify its linear optical parameters. Sodium sulphide nano particles were synthesized by co-precipitation technique using Ethylene diamine as capping agent followed by microwave irradiation. The powder XRD confirmed the nano-structured nature of sodium sulphide nano particles. The solubility of nanoparticles of sodium sulphide increased significantly in water compared to the bulk. Pure and Na2S added ADP crystals were grown by slow solvent evaporation method at room temperature. The presence of sodium in ADP was confirmed by AAS. The UV-Vis spectra were recorded for all crystals. Various optical parameters like, transmittance, energy band gap, extinction coefficient, refractive index, optical conductivity, etc. were evaluated. The electronic polarizibility of pure and doped crystals calculated from energy band gap. The effect of doping concentration was found on various parameters.
Application of ZnO Nanoparticle as Sulphide Gas Sensor Using UV/VIS/NIR-Spectrophotometer
NASA Astrophysics Data System (ADS)
Juliasih, N.; Buchari; Noviandri, I.
2017-04-01
The nanoparticle of metal oxides has great unique characteristics that applicable to the wide industrial as sensors and catalysts for reducing environmental pollution. Sulphide gas monitors and detectors are required for assessing safety aspects, due to its toxicity level. A thin film of ZnO as the sulphide gas sensor was synthesised by the simple method of chemical liquid deposition with variation of annealing temperature from 200 ºC to 500 ºC, and characterised by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), and UV/VIS/NIR-Spectrophotometer. Characterization studies showed nanoparticle size from the range 62 - 92 nm of diameters. The application this ZnO thin film to sulfide gas, detected by UV/VIS/NIR Spectrophotometer with diffuse reflectance, showed specific chemical reaction by the shifting of maximum % Reflectance peak. The gas sensing using this method is applicable at room.
Cheng, Kong-Wei; Hong, Shu-Wei
2018-06-13
The multicomponent metal sulphide (stannite Ag2ZnSnS4) samples were grown onto the conductive metal oxide coated glass substrates by using the sulfurization of co-sputtering silver-zinc-tin precursors. Several [Ag]/[Zn+Sn] and [Zn]/[Sn] ratios were set in the metal precursors to investigate their influences on the crystal phases, microstructures and physical properties of the stannite Ag2ZnSnS4 samples. The results of the crystal phases and compositions of samples showed that the stannite Ag2ZnSnS4 phase can be obtained using the two-step sulfurization process, which maintained the silver-zinc-tin precursors at 160C for 1 hour and then kept them at 450oC for 30 minutes under sulfur/nitrogen atmosphere. N-type stannite Ag2ZnSnS4 samples with the carrier concentrations of 5.54x1012 - 9.11x1012 cm-3 can be obtained. High resistivities of Ag2ZnSnS4 samples were observed due to the low values of carrier concentration. Increasing the silver content in the sample can improve its PEC performance due to the decrease in the sample resistivity. The ratio of [Ag]/[Zn+Sn] kept at 0.8 and ratio of [Zn]/[Sn] set at 0.90 in the stannite Ag2ZnSnS4 sample had the highest photoelectrochemical performance of 0.31 mA.cm-2 with the potential set at 1.23 V vs. relative hydrogen electrode applied on the sample because of it having the lowest charge transfer resistance in electrolyte.
NASA Astrophysics Data System (ADS)
Choudapur, V. H.; Bennal, A. S.; Raju, A. B.
2018-04-01
The ZnS nanomaterial is synthesized by hydrothermal method under optimized conditions using Zinc acetate and sodium sulphide as precursors. The Zinc Sulphide thin films are obtained by simple spin coating method with high optical transmittance. The prepared thin films are adhesive and uniform. The x-ray diffraction analysis showed that the films are polycrystalline in cubic phase with the preferred orientation along (111) direction. Current-voltage curves were recorded at room temperature using Keithley 617 programmable electrometer and conductivity is calculated for the film coated on ITO by two probe method. The pH of the solution is varied by using ammonia and hydrochloric acid. The comparative studies of effect of pH on the morphology, crystallanity and optoelectronic properties of the films are studied. It is observed that the pH of the solution has large influence on optoelectronic properties. The thin film prepared with neutral pH has higher crystallanity, bandgap and conductivity as compared to the samples prepared in acidic or basic solutions.
Mineralogy and chemistry of massive sulfide deposits from the Juan de Fuca Ridge.
Koski, R.A.; Clague, D.A.; Oudin, E.
1984-01-01
Two types of massive sulphide were dredged from one of the six vent sites located in the axial valley of the southern Juan de Fuca ridge. Type A samples are angular slabs of dark grey Zn-rich sulphide with interlayers and a thin, partly-oxidized crust of Fe-sulphide. These layered sulphide aggregates appear to be fragments of a sulphide wall enclosing an active hydrothermal vent. The outer sulphide wall is composed of colloform Fe sulphide and Fe-poor sphalerite deposited under low-T conditions when sea-water and hydrothermal fluid mix above the discharge point. Inside the wall the intensifying hydrothermal sytem deposits a higher-T assemblage of granular Fe-rich sphalerite, wurtzite, pyrite and minor Cu-Fe sulphide. Type B sulphide samples are sub-rounded, spongy-textured fragments composed almost entirely of dendritic aggregates of pale Fe-poor colloform sphalerite and opaline silica. This type of sulphide is deposited in settings peripheral to sites of focused discharge and in open spaces by moderate- to low-T fluid discharging at a slow but variable rate; the fluid becomes increasingly oxidizing, resulting in late-stage deposits of hematite, baryte and sulphur.-L.di H.
Volatile sulphur compounds in UHT milk.
Al-Attabi, Z; D'Arcy, B R; Deeth, H C
2009-01-01
Several volatile sulphur compounds have been detected in raw and processed milk. These are hydrogen sulphide, methanethiol, carbonyl sulphide, dimethyl sulphide, carbon disulphide, dimethyl disulphide, dimethyl trisulphide, dimethyl sulphoxide, and dimethyl sulphone. Many of these increase in milk during heat processing and are associated with the cooked flavor of heat-treated milks, particularly UHT and sterilized milk. Several researchers have attempted to explain the origin of these volatiles in both raw and processed milk, and how to reduce the associated cooked flavor that has a negative impact on consumer acceptability of processed milk. These compounds are difficult to detect and analyze due to their high volatility, sensitivity to oxidation and heat, and in some cases, their very low concentrations. However, methods of detection and quantification have improved in recent years. Pre-concentration methods such as solid phase microextraction (SPME) together with gas chromatography equipped with sulphur-selective detectors now enable low concentrations of these compounds to be analyzed. In this review, methods of extraction and analyzes of these volatile sulphur compounds are compared, and their occurrence in milk is reviewed.
Global warming enhances sulphide stress in a key seagrass species (NW Mediterranean).
García, Rosa; Holmer, Marianne; Duarte, Carlos M; Marbà, Núria
2013-12-01
The build-up of sulphide concentrations in sediments, resulting from high inputs of organic matter and the mineralization through sulphate reduction, can be lethal to the benthos. Sulphate reduction is temperature dependent, thus global warming may contribute to even higher sulphide concentrations and benthos mortality. The seagrass Posidonia oceanica is very sensitive to sulphide stress. Hence, if concentrations build up with global warming, this key Mediterranean species could be seriously endangered. An 8-year monitoring of daily seawater temperature, the sulphur isotopic signatures of water (δ(34)S(water)), sediment (δ(34)SCRS ) and P. oceanica leaf tissue (δ(34)S(leaves)), along with total sulphur in leaves (TS(leaves)) and annual net population growth along the coast of the Balearic archipelago (Western Mediterranean) allowed us to determine if warming triggers P. oceanica sulphide stress and constrains seagrass survival. From the isotopic S signatures, we estimated sulphide intrusion into the leaves (F(sulphide)) and sulphur incorporation into the leaves from sedimentary sulphides (SS(leaves)). We observed lower δ(34)S(leaves), higher F(sulphide) and SS(leaves) coinciding with a 6-year period when two heat waves were recorded. Warming triggered sulphide stress as evidenced by the negative temperature dependence of δ(34)S(leaves) and the positive one of F(sulphide), TS(leaves) and SS(leaves). Lower P. oceanica net population growth rates were directly related to higher contents of TS(leaves). At equivalent annual maximum sea surface water temperature (SST(max)), deep meadows were less affected by sulphide intrusion than shallow ones. Thus, water depth acts as a protecting mechanism against sulphide intrusion. However, water depth would be insufficient to buffer seagrass sulphide stress triggered by Mediterranean seawater summer temperatures projected for the end of the 21st century even under scenarios of moderate greenhouse gas emissions, A1B. Mediterranean warming, therefore, is expected to enhance P. oceanica sulphide stress, and thus compromise the survival of this key habitat along its entire depth distribution range. © 2013 John Wiley & Sons Ltd.
Jensen, H S; Nielsen, A H; Lens, P N L; Hvitved-Jacobsen, T; Vollertsen, J
2009-11-01
Corrosion of concrete sewer pipes caused by hydrogen sulphide is a problem in many sewer networks. The mechanisms of production and fate of hydrogen sulphide in the sewer biofilms and wastewater as well as its release to the sewer atmosphere are largely understood. In contrast, the mechanisms of the uptake of hydrogen sulphide on the concrete surfaces and subsequent concrete corrosion are basically unknown. To shed light on these mechanisms, the uptake of hydrogen sulphide from a sewer gas phase was compared to the biological hydrogen sulphide removal potential of the concrete corrosion products. The results showed that both microbial degradation at and sorption to the concrete surfaces were important for the uptake of hydrogen sulphide on the concrete surfaces.
NASA Astrophysics Data System (ADS)
Gil, A.; Chidlow, K. L.; Vardy, M. E.; Bialas, J.; Schroeder, H.; Stobbs, I. J.; Gehrmann, R. A. S.; North, L. J.; Minshull, T. A.; Petersen, S.; Murton, B. J.
2017-12-01
Seafloor massive sulphide (SMS) deposits have generated great interest regarding their formation and composition, since their discovery in 1977. SMS deposits form through hydrothermal circulation and are therefore commonly found near hydrothermal vent sites. The high base (Cu, Zn) and precious metal (Au, Ag) content has interested mining companies, due to their potentially high economic value. Currently, the possibility of mining extinct seafloor massive sulphides (eSMS) deposits has opened a debate about their environmentally and economically sustainable exploitation. A major goal is the rapid exploration and assessment of deposit structure and volume. This is challenging due to their small dimensions (100s m diameter) and typically great water depths (> 3000 mbsl). Here we present a novel approach combining seismic reflection/refraction forward modelling to data acquired from the TAG hydrothermal field (26ºN, Mid-Atlantic Ridge, 3500mbsl) to image deep-water eSMS deposits. In May 2016, the RV METEOR shot 30, short (<10km) MSC profiles across the TAG area. The data were recorded on a dense cluster (<75 m apart) of ocean bottom seismometers (OBS) and were able to image the subsurface of several 300m diameter eSMS deposits. The results show that the eSMS deposits present high velocities (5.4-6.6 km/s) to depths 200m below the seafloor where they are hosted in a 500m thick low-velocity (3.0-3.7 km/s) layer of altered basalt. In contrast to active hydrothermal systems, we see no evidence in the eSMS of a low-velocity anhydrite layer. The velocity-depth models obtained from this innovative method have been combined with other methods to study these eSMS deposits, such as electromagnetics, rocks physics and drilling technics, and the results are shown to concur, yielding information about deposit structure at depth. For example, the high-velocity layer extends deeper than the conductive layer, indicating a deep stock work of low-connectivity sulphides beneath a main ore body of more massive sulphide. These geophysical methods allow a better constraint on the volume of sulphide at typical SMS with implications for the metal budget within oceanic crust. This work was funded by the European Union's `Blue Mining' project, n˚ 604500.
Madsen, Henrik T; Søgaard, Erik G
2012-01-01
To study the reaction between hydrogen sulphide and 1,3,5-tri-(2-hydroxyethyl)-hexahydro-s-triazine, which is an often used hydrogen sulphide scavenger, electro spray ionisation mass spectrometry (ESI-MS) was used. The investigation was carried out in positive mode, and tandem mass spectrometry was used to investigate the nature of unknown peaks in the mass spectra. The reaction was found to proceed as expected from theory with the triazine reacting with hydrogen sulphide to form the corresponding thiadiazine. This species subsequently reacted with a second hydrogen sulphide molecule to form the dithiazine species, hereby confirming previously obtained results and showing the ability of the ESI-MS method for studying the scavenging reaction. The final theoretical product s-trithiane was not detected. Furthermore, fragmentation products of thiadiazine and dithiazine were detected in the solution, and possible pathways and structures were suggested to describe the observed fragments. In these, thiadiazine fragmented to 2-(methylidene amino)-ethanol and 2-(1,3-thiazetidin-3-yl)-ethanol and N-(2-hydroxyethyl)-N-(sulfanylmethyl)-ethaniminium, which underwent a further fragmentation to N-methyl-N-(2-oxoethyl)-methaniminium. Dithiazine fragmented to N-methyl-N-(2-oxoethyl)-methaniminium as well. The by-product from this reaction is methanedithiol, which was not detected due to its low polarity.
NASA Astrophysics Data System (ADS)
Keith, Manuel; Haase, Karsten M.; Klemd, Reiner; Smith, Daniel J.; Schwarz-Schampera, Ulrich; Bach, Wolfgang
2018-05-01
Most magmatic-hydrothermal Cu deposits are genetically linked to arc magmas. However, most continental or oceanic arc magmas are barren, and hence new methods have to be developed to distinguish between barren and mineralised arc systems. Source composition, melting conditions, the timing of S saturation and an initial chalcophile element-enrichment represent important parameters that control the potential of a subduction setting to host an economically valuable deposit. Brothers volcano in the Kermadec island arc is one of the best-studied examples of arc-related submarine magmatic-hydrothermal activity. This study, for the first time, compares the chemical and mineralogical composition of the Brothers seafloor massive sulphides and the associated dacitic to rhyolitic lavas that host the hydrothermal system. Incompatible trace element ratios, such as La/Sm and Ce/Pb, indicate that the basaltic melts from L'Esperance volcano may represent a parental analogue to the more evolved Brothers lavas. Copper-rich magmatic sulphides (Cu > 2 wt%) identified in fresh volcanic glass and phenocryst phases, such as clinopyroxene, plagioclase and Fe-Ti oxide suggest that the surrounding lavas that host the Brothers hydrothermal system represent a potential Cu source for the sulphide ores at the seafloor. Thermodynamic calculations reveal that the Brothers melts reached volatile saturation during their evolution. Melt inclusion data and the occurrence of sulphides along vesicle margins indicate that an exsolving volatile phase extracted Cu from the silicate melt and probably contributed it to the overlying hydrothermal system. Hence, the formation of the Cu-rich seafloor massive sulphides (up to 35.6 wt%) is probably due to the contribution of Cu from a bimodal source including wall rock leaching and magmatic degassing, in a mineralisation style that is hybrid between Cyprus-type volcanic-hosted massive sulphide and subaerial epithermal-porphyry deposits.
NASA Astrophysics Data System (ADS)
Maraeva, E. V.; Alexandrova, O. A.; Forostyanaya, N. A.; Levitskiy, V. S.; Mazing, D. S.; Maskaeva, L. N.; Markov, V. Ph; Moshnikov, V. A.; Shupta, A. A.; Spivak, Yu M.; Tulenin, S. S.
2015-11-01
In this study lead sulphide - cadmium sulphide based layers were obtained through chemical deposition of water solutions and cadmium sulphide quantum dots were formed through hot-injection technique. The article discusses the results of surface investigations with the use of atomic force microscopy, Raman spectroscopy and photoluminescence measurements.
Removal of mercury (II), elemental mercury and arsenic from simulated flue gas by ammonium sulphide.
Ning, Ping; Guo, Xiaolong; Wang, Xueqian; Wang, Ping; Ma, Yixing; Lan, Yi
2015-01-01
A tubular resistance furnace was used as a reactor to simulate mercury and arsenic in smelter flue gases by heating mercury and arsenic compounds. The flue gas containing Hg(2+), Hg(0) and As was treated with ammonium sulphide. The experiment was conducted to investigate the effects of varying the concentration of ammonium sulphide, the pH value of ammonium sulphide, the temperature of ammonium sulphide, the presence of SO2 and the presence of sulphite ion on removal efficiency. The prepared adsorption products were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The results showed that the optimal concentration of ammonium sulphide was 0.8 mol/L. The optimal pH value of ammonium sulphide was 10, and the optimal temperature of ammonium sulphide was 20°C.Under the optimum conditions, the removal efficiency of Hg(2+), Hg(0) and As could reach 99%, 88.8%, 98%, respectively. In addition, SO2 and sulphite ion could reduce the removal efficiency of mercury and arsenic from simulated flue gas.
Detoxification of sulphidic African shelf waters by blooming chemolithotrophs
NASA Astrophysics Data System (ADS)
Lavik, Gaute; Stührmann, Torben; Brüchert, Volker; van der Plas, Anja; Mohrholz, Volker; Lam, Phyllis; Mußmann, Marc; Fuchs, Bernhard M.; Amann, Rudolf; Lass, Ulrich; Kuypers, Marcel M. M.
2009-01-01
Coastal waters support ~90 per cent of global fisheries and are therefore an important food reserve for our planet. Eutrophication of these waters, due to human activity, leads to severe oxygen depletion and the episodic occurrence of hydrogen sulphide-toxic to multi-cellular life-with disastrous consequences for coastal ecosytems. Here we show that an area of ~7,000km2 of African shelf, covered by sulphidic water, was detoxified by blooming bacteria that oxidized the biologically harmful sulphide to environmentally harmless colloidal sulphur and sulphate. Combined chemical analyses, stoichiometric modelling, isotopic incubations, comparative 16S ribosomal RNA, functional gene sequence analyses and fluorescence in situ hybridization indicate that the detoxification proceeded by chemolithotrophic oxidation of sulphide with nitrate and was mainly catalysed by two discrete populations of γ- and ɛ-proteobacteria. Chemolithotrophic bacteria, accounting for ~20 per cent of the bacterioplankton in sulphidic waters, created a buffer zone between the toxic sulphidic subsurface waters and the oxic surface waters, where fish and other nekton live. This is the first time that large-scale detoxification of sulphidic waters by chemolithotrophs has been observed in an open-ocean system. The data suggest that sulphide can be completely consumed by bacteria in the subsurface waters and, thus, can be overlooked by remote sensing or monitoring of shallow coastal waters. Consequently, sulphidic bottom waters on continental shelves may be more common than previously believed, and could therefore have an important but as yet neglected effect on benthic communities.
In-situ XRD and EDS method study on the oxidation behaviour of Ni-Cu sulphide ore.
Li, Guangshi; Cheng, Hongwei; Xiong, Xiaolu; Lu, Xionggang; Xu, Cong; Lu, Changyuan; Zou, Xingli; Xu, Qian
2017-06-12
The oxidation mechanism of sulfides is the key issue during the sulphide-metallurgy process. In this study, the phase transformation and element migration were clearly demonstrated by in-situ laboratory-based X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS), respectively. The reaction sequence and a four-step oxidation mechanism were proposed and identified. The elemental distribution demonstrated that at a low temperature, the Fe atoms diffused outward and the Ni/Cu atoms migrated toward the inner core, whereas the opposite diffusion processes were observed at a higher temperature. Importantly, the unique visual presentation of the oxidation behaviour provided by the combination of in-situ XRD and EDS might be useful for optimising the process parameters to improve the Ni/Cu extraction efficiency during Ni-Cu sulphide metallurgy.
Cleaner processing: a sulphide-free approach for depilation of skins.
Ranjithkumar, Ammasi; Durga, Jayanthi; Ramesh, Ramakrishnan; Rose, Chellan; Muralidharan, Chellappa
2017-01-01
The conventional unhairing process in leather making utilises large amount of lime and sodium sulphide which is hazardous and poses serious waste disposal concerns. Under acidic conditions, sodium sulphide liberates significant quantities of hydrogen sulphide which causes frequent fatal accidents. Further, the conventional unhairing process involves destruction of the hair leading to increased levels of biological oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solids (TDS) and total suspended solids (TSS) in the effluent. A safe approach is needed to overcome such environmental and health problems through an eco-benign process. The present study deals with a clean technology in which the keratinous body is detached from the dermis using enzymes produced from Bacillus crolab MTCC 5468 by solid state fermentation (SSF) as an alternative to noxious chemicals. Complete unhairing of skin could be achieved with an enzyme concentration of 1.2 % (w/w). The bio-chemical parameters of the spent liquor of the enzymatic process were environmentally favourable when compared with conventional method. The study indicates that the enzymatic unhairing is a safe process which could be used effectively in leather processing to alleviate pollution and health problems.
Watling, Helen R.; Shiers, Denis W.; Collinson, David M.
2015-01-01
In heap bioleaching, acidophilic extremophiles contribute to enhanced metal extraction from mineral sulphides through the oxidation of Fe(II) and/or reduced inorganic sulphur compounds (RISC), such as elemental sulphur or mineral sulphides, or the degradation of organic compounds derived from the ore, biota or reagents used during mineral processing. The impacts of variable solution acidity and composition, as well as temperature on the three microbiological functions have been examined for up to four bacterial species found in mineral sulphide heaps. The results indicate that bacteria adapt to sufficiently high metal concentrations (Cu, Ni, Co, Zn, As) to allow them to function in mineral sulphide heaps and, by engaging alternative metabolic pathways, to extend the solution pH range over which growth is sustained. Fluctuating temperatures during start up in sulphide heaps pose the greatest threat to efficient bacterial colonisation. The large masses of ores in bioleaching heaps mean that high temperatures arising from sulphide oxidation are hard to control initially, when the sulphide content of the ore is greatest. During that period, mesophilic and moderately thermophilic bacteria are markedly reduced in both numbers and activity. PMID:27682094
Díaz, I; Pérez, S I; Ferrero, E M; Fdz-Polanco, M
2011-02-01
Limited oxygen supply to anaerobic sludge digesters to remove hydrogen sulphide from biogas was studied. Micro-oxygenation showed competitive performance to reduce considerably the additional equipment necessary to perform biogas desulphurization. Two pilot-plant digesters with an HRT of ∼ 20 d were micro-oxygenated at a rate of 0.25 NL per L of feed sludge with a removal efficiency higher than 98%. The way of mixing (sludge or biogas recirculation) and the point of oxygen supply (headspace or liquid phase) played an important role on hydrogen sulphide oxidation. While micro-oxygenation with sludge recirculation removed only hydrogen sulphide from the biogas, dissolved sulphide was removed if micro-oxygenation was performed with biogas recirculation. Dosage in the headspace resulted in a more stable operation. The result of the hydrogen sulphide oxidation was mostly elemental sulphur, partially accumulated in the headspace of the digester, where different sulphide-oxidising bacteria were found. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Patten, C. G. C.; Pitcairn, I. K.; Teagle, D. A. H.; Harris, M.
2016-11-01
Fluxes of metals during the hydrothermal alteration of the oceanic crust have far reaching effects including buffering of the compositions of the ocean and lithosphere, supporting microbial life and the formation of sulphide ore deposits. The mechanisms responsible for metal mobilisation during the evolution of the oceanic crust are complex and are neither fully constrained nor quantified. Investigations into the mineral reactions that release metals, such as sulphide leaching, would generate better understanding of the controls on metal mobility in the oceanic crust. We investigate the sulphide and oxide mineral paragenesis and the extent to which these minerals control the metal budget in samples from Ocean Drilling Program (ODP) Hole 1256D. The ODP Hole 1256D drill core provides a unique sample suite representative of a complete section of a fast-spreading oceanic crust from the volcanic section down to the plutonic complex. The sulphide population at Hole 1256D is divided into five groups based on mineralogical assemblage, lithological location and texture: the magmatic, metasomatised, high temperature hydrothermal, low temperature and patchy sulphides. The initiation of hydrothermal alteration by downward flow of moderate temperature (250-350 °C) hydrothermal fluids under oxidising conditions leads to metasomatism of the magmatic sulphides in the sheeted dyke and plutonic complexes. Subsequent increase in the degree of hydrothermal alteration at temperatures >350 °C under reducing conditions then leads to the leaching of the metasomatised sulphides by rising hydrothermal fluids. Mass balance calculations show that the mobility of Cu, Se and Au occurs through sulphide leaching during high temperature hydrothermal alteration and that the mobility of Zn, As, Sb and Pb is controlled by silicate rather than sulphide alteration. Sulphide leaching is not complete at Hole 1256D and more advanced alteration would mobilise greater masses of metals. Alteration of oxide minerals does not release significant quantities of metal into the hydrothermal fluid at Hole 1256D. Mixing of rising high temperature fluids with low temperature fluids, either in the upper sheeted dyke section or in the transitional zone, triggers local high temperature hydrothermal sulphide precipitation and trapping of Co, Ni, Cu, Zn, As, Ag, Sb, Se, Te, Au, Hg and Pb. In the volcanic section, low temperature fluid circulation (<150 °C) leads to low temperature sulphide precipitation in the form of pyrite fronts that have high As concentrations due to uptake from the circulating fluids. Deep late low temperature circulation in the sheeted dyke and the plutonic complexes results in local precipitation of patchy sulphides and local metal remobilisation. Control of sulphides over Au, Se and Cu throughout fast-spreading mid-oceanic crust history implies that the generation of hydrothermal fluids enriched in these metals, which can eventually form VMS deposits, is strongly controlled by sulphide leaching.
Ayuso, Robert A.; Foley, Nora K.
2008-01-01
A survey of the natural and anthropogenic sources of lead contributing to secondary minerals in sulphidic schists associated with arsenic-enriched groundwater in Coastal Maine shows that the most likely source is natural Pb, particularly from coexisting sulphide minerals. The secondary minerals also reflect notable contributions from anthropogenic Pb. The Pb isotopes establish pathways by which Pb, and by inference As, could have been transported from As-bearing minerals (arsenian pyrite, arsenopyrite, lollingite, orpiment, arsenic oxide and others), via sulphide oxidation or carbonation reactions into multiple generations of secondary minerals (goethite, hematite, jarosite, natrojarosite and others). Lead isotopic compositions of the sulphides and secondary minerals determined by thermal ionization mass spectrometry (n=53) range widely. Lead and As contents of the sulphides and secondary minerals overlap, and are generally positively correlated. Pyrite, the dominant sulphide in sulphidic schists associated with As-enriched groundwater in Coastal Maine, has values of 206Pb/204Pb from 18.186 to 18.391, 207Pb/204Pb from 15.617 to 15.657, 208Pb/204Pb from 38.052 to 38.210, 206Pb/207Pb from c. 1.1625 to 1.1760 and 208Pb/207Pb from c. 2.4276 to 2.4394. Mixtures of Fe-hydroxide and oxide minerals (predominantly goethite and hematite) and secondary Fe-sulphate minerals (jarosite, natrojarosite, rozenite and melanterite) in the sulphidic schists have overlapping but generally higher values of 206Pb/204Pb from 18.495 to 19.747 (one sample at 21.495), 207Pb/204Pb from 15.595 to 15.722 (one sample at 15.839), 208Pb/204Pb from 38.186 to 39.162,206Pb/207Pb from c.1.1860 to 1.2575 (one sample at 1.3855) and 208Pb/207Pb from c. 2.4441 to 2.4865 than the sulphides. Sulphides from Zn-Pb metal mines are somewhat less radiogenic than sulphides from the schists. Other sulphides (mostly pyrite) associated with pegmatites and granitic rocks are heterogeneous and more radiogenic than the pyrite-rich sulphidic schists. Sulphides from other regional bedrock units also have heterogeneous isotope values. Lead isotopic compositions of the sulphides from the sulphidic schists and coexisting Fe-oxides and Fe-sulphates produced by weathering and alteration overlap, but the secondary minerals extend toward more radiogenic values that broadly indicate the addition of Pb from anthropogenic origin. As a component of Pb from extensively used arsenical pesticides may also be present in the secondary minerals, the range in Pb isotope values is consistent with multiple sources: natural Pb from the schists and anthropogenic Pb (industrial and possibly from agricultural activities). Contributions from past mining activities or from other bedrock sources are not implicated.
Surfactant free nickel sulphide nanoparticles for high capacitance supercapacitors
NASA Astrophysics Data System (ADS)
Nandhini, S.; Muralidharan, G.
2018-04-01
The surfactant free nickel sulphide nanoparticles were synthesized via facile hydrothermal method towards supercapacitor applications. The formation of crystalline spherical nanoparticles was confirmed through structural and morphological studies. Electrochemical behaviour of the electrode was analyzed using cyclic voltammetry (CV), galvanostatic charge-discharge studies (GCD) and electrochemical impedance spectroscopy (EIS). The CV studies imply that specific capacitance of the electrode arises from a combination of surface adsorption and Faradic reaction. The NiS electrode delivered a specific capacitance of about 529 F g-1 at a current density of 2 A g-1 (GCD measurements). A profitable charge transfer resistance of 0.5 Ω was obtained from EIS. The 100 % of capacity retention even after 2000 repeated charge-discharge cycles could be observed in 2 M KOH electrolyte at a much larger rate of 30 A g-1. The experimental results suggest that nickel sulphide is a potential candidate for supercapacitor applications.
NASA Astrophysics Data System (ADS)
Tanner, D.; McDonald, I.; Harmer, R. E. J.; Hughes, H. S. R.; Muir, D. D.
2017-12-01
The Volspruit deposit is a zone of disseminated magmatic sulphides carrying Ni-PGE (platinum-group element) mineralization in the Northern Limb of the Bushveld Complex, South Africa. It is one of the few known PGE prospects hosted by the lower ultramafic portion of a layered intrusion and the only known example in the Bushveld Complex. Volspruit therefore provides a unique insight into the processes governing mineralisation early in the Bushveld magmatic system. This study presents a detailed analysis from the northern portion of the Volspruit orebody combining mineralogical and textural observations with sulphide mineral trace element compositions. Electron microscopy reveals a diverse assemblage of Pt-, Pd- and Rh- dominant platinum-group minerals (PGM), electrum, Ag tellurides, Pb-chlorides, Pb-sulphides, U-oxide and monazite. Laser ablation ICP-MS has demonstrated that the Volspruit base metal sulphides have elevated PGE tenors but a range of S/Se values 1414-19319 - greater than other magmatic sulphide deposits in the northern Bushveld. The S/Se values are typical of crustal S and in agreement with previous S isotope data. These data imply a magma with initially high tenor sulphide liquid experienced local contamination from sedimentary S, leading to reduced tenors and elevated S/Se in sulphides coupled with a propensity of Pb- and Zn-bearing minerals (e.g., Pb-sulphide, Pb-chloride and sphalerite) in association with archetypal orthomagmatic sulphide assemblages. Our data demonstrate that assimilation of sedimentary rocks can modify sulphide melt evolution through the addition of metals such as Pb and Zn, not just contamination by sulphur. The Volspruit deposit illustrates the complexity of multi-stage processes governing mineralisation in the ultramafic portions of layered mafic intrusions.
Li, S.; Mendelssohn, I.A.; Hao, Chen; Orem, W.H.
2009-01-01
1. The expansion of Typha domingensis into areas once dominated by Cladium jamaicense in the Florida Everglades has been attributed to altered hydrology and phosphorus enrichment, although increased concentrations of sulphate and phosphorus often coincide. The potential importance of hydrogen sulphide produced from sulphate in the expansion of Typha has received little attention. The present study aimed to quantify the comparative growth and photosynthetic responses of Cladium and Typha to sulphate/sulphide. 2. Laboratory experiments showed that Cladium is less tolerant of sulphide than Typha. Cladium was adversely affected at sulphide concentrations of approximately 0.22 mm, while Typha continued to grow well and appeared healthy up to 0.69 mm sulphide. 3. Experiments in field mesocosms provided strong support for species-specific differences in physiology and growth. Regardless of interstitial sulphide concentrations attained, Typha grew faster and had a higher photosynthetic capacity than Cladium. However, sulphide concentrations in the mesocosms reached only 0.18 mm which, based on the hydroponic study, was insufficient to affect the growth or photosynthetic responses of either species. Nevertheless, the upper range of sulphide (0.25-0.375 mm) in Everglades' soil is high enough, based on our results, to impact Cladium but not Typha. 4. This research supports the hypothesis that sulphide accumulation could affect plant species differentially and modify species composition. Consequently, the role of sulphate loading should be considered, in conjunction with hydroperiod, phosphorus availability and disturbances, in developing future management plans for the Everglades. ?? 2009 Blackwell Publishing Ltd.
Optimization Of Optoelectronic Characteristics Of Sintered Cadmium Sulphide Photoconductive Layers
NASA Astrophysics Data System (ADS)
Chockalingam, Mary J.; Suryanarayana, C. V.
1986-11-01
Photograde cadmium sulphide useful for sintered polycrystalline cadmium sulphide photoconductive cells as also for solar cells can be prepared by a simple chemical reaction between a soluble cadmium salt and thiourea in an aqueous alkaline solution by optimising the pH, temperature and concentration of the constituents in the bath. The precipitated cadmium-sulphide after drying at 120°C was found to result in a photograde quality of 99.999% pure cadmium sulphide as estimated by atomic absorption spectrophotometer. Details are given in this paper, of the process of preparation of CdS powder, screen printing and sintering the cadmium sulphide layers to give finally the photoconductive cell which gave on irradiation a change in the resistance of six to seven orders. The sintering technique and the mechanism of the reaction resulting in high photosensitivity of the layer obtained are discussed in detail.
Meade, Rhiana D; Murray, Anna L; Mittelman, Anjuliee M; Rayner, Justine; Lantagne, Daniele S
2017-02-01
Locally manufactured ceramic water filters are one effective household drinking water treatment technology. During manufacturing, silver nanoparticles or silver nitrate are applied to prevent microbiological growth within the filter and increase bacterial removal efficacy. Currently, there is no recommendation for manufacturers to test silver concentrations of application solutions or filtered water. We identified six commercially available silver test strips, kits, and meters, and evaluated them by: (1) measuring in quintuplicate six samples from 100 to 1,000 mg/L (application range) and six samples from 0.0 to 1.0 mg/L (effluent range) of silver nanoparticles and silver nitrate to determine accuracy and precision; (2) conducting volunteer testing to assess ease-of-use; and (3) comparing costs. We found no method accurately detected silver nanoparticles, and accuracy ranged from 4 to 91% measurement error for silver nitrate samples. Most methods were precise, but only one method could test both application and effluent concentration ranges of silver nitrate. Volunteers considered test strip methods easiest. The cost for 100 tests ranged from 36 to 1,600 USD. We found no currently available method accurately and precisely measured both silver types at reasonable cost and ease-of-use, thus these methods are not recommended to manufacturers. We recommend development of field-appropriate methods that accurately and precisely measure silver nanoparticle and silver nitrate concentrations.
NASA Astrophysics Data System (ADS)
Kiseeva, Ekaterina S.; Wood, Bernard J.
2015-08-01
We develop a comprehensive model to describe trace and minor element partitioning between sulphide liquids and anhydrous silicate liquids of approximately basaltic composition. We are able thereby to account completely for the effects of temperature and sulphide composition on the partitioning of Ag, Cd, Co, Cr, Cu, Ga, Ge, In, Mn, Ni, Pb, Sb, Ti, Tl, V and Zn. The model was developed from partitioning experiments performed in a piston-cylinder apparatus at 1.5 GPa and 1300 to 1700 °C with sulphide compositions covering the quaternary FeSsbnd NiSsbnd CuS0.5sbnd FeO. Partitioning of most elements is a strong function of the oxygen (or FeO) content of the sulphide. This increases linearly with the FeO content of the silicate melt and decreases with Ni content of the sulphide. As expected, lithophile elements partition more strongly into sulphide as its oxygen content increases, while chalcophile elements enter sulphide less readily with increasing oxygen. We parameterised the effects by using the ε-model of non-ideal interactions in metallic liquids. The resulting equation for partition coefficient of an element M between sulphide and silicate liquids can be expressed as We used our model to calculate the amount of sulphide liquid precipitated along the liquid line of descent of MORB melts and find that 70% of silicate crystallisation is accompanied by ∼0.23% of sulphide precipitation. The latter is sufficient to control the melt concentrations of chalcophile elements such as Cu, Ag and Pb. Our partition coefficients and observed chalcophile element concentrations in MORB glasses were used to estimate sulphur solubility in MORB liquids. We obtained between ∼800 ppm (for primitive MORB) and ∼2000 ppm (for evolved MORB), values in reasonable agreement with experimentally-derived models. The experimental data also enable us to reconsider Ce/Pb and Nd/Pb ratios in MORB. We find that constant Ce/Pb and Nd/Pb ratios of 25 and 20, respectively, can be achieved during fractional crystallisation of magmas generated by 10% melting of depleted mantle provided the latter contains >100 ppm S and about 650 ppm Ce, 550 ppm Nd and 27.5 ppb Pb. Finally, we investigated the hypothesis that the pattern of chalcophile element abundances in the mantle was established by segregation of a late sulphide matte. Taking the elements Cu, Ag, Pb and Zn as examples we find that the Pb/Zn and Cu/Ag ratios of the mantle can, in principle, be explained by segregation of ∼0.4% sulphide matte to the core.
Osmium mass balance in peridotite and the effects of mantle-derived sulphides on basalt petrogenesis
NASA Astrophysics Data System (ADS)
Harvey, J.; Dale, C. W.; Gannoun, A.; Burton, K. W.
2011-10-01
Analyses of enriched mantle (EM)-basalts, using lithophile element-based isotope systems, have long provided evidence for discrete mantle reservoirs with variable composition. Upon partial melting, the mantle reservoir imparts its isotopic fingerprint upon the partial melt produced. However, it has increasingly been recognised that it may not be simple to delimit these previously well-defined mantle reservoirs; the "mantle zoo" may contain more reservoirs than previously envisaged. Here we demonstrate that a simple model with varying contributions from two populations of compositionally distinct mantle sulphides can readily account for the observed heterogeneities in Os isotope systematics of such basalts without additional mantle reservoirs. Osmium elemental and isotopic analyses of individual sulphide grains separated from spinel lherzolites from Kilbourne Hole, New Mexico, USA demonstrate that two discrete populations of mantle sulphide exist in terms of both Re-Os systematics and textural relationship with co-existing silicates. One population, with a rounded morphology, is preserved in silicate grains and typically possesses high [Os] and low [Re] with unradiogenic, typically sub-chondritic 187Os/ 188Os attributable to long term isolation in a low-Re environment. By contrast, irregular-shaped sulphides, preserved along silicate grain boundaries, possess low [Os], higher [Re] and a wider range of, but generally supra-chondritic 187Os/ 188Os ([Os] typically ⩽ 1-2 ppm, 187Os/ 188Os ⩽ 0.3729; this study). This population is thought to represent metasomatic sulphide. Uncontaminated silicate phases contain negligible Os (<100 ppt) therefore the Os elemental and isotope composition of basalts is dominated by volumetrically insignificant sulphide ([Os] ⩽ 37 ppm; this study). During the early stages of partial melting, supra-chondritic interstitial sulphides are mobilised and incorporated into the melt, adding their radiogenic 187Os/ 188Os signature. Only when sulphides armoured within silicates are exposed to the melt through continued partial melting will enclosed sulphides add their high [Os] and unradiogenic 187Os/ 188Os to the aggregate melt. Platinum-group element data for whole rocks are also consistent with this scenario. The sequence of (i) addition of all of the metasomatic sulphide, followed by (ii) the incorporation of small amounts of armoured sulphide can thus account for the range of both [Os] and 187Os/ 188Os of EM-basalts worldwide without the need for contributions from additional silicate mantle reservoirs.
Manganese Health Research Program (MHRP)
2008-01-01
NO3)2 Manganese sulphate or Manganese (II) sulphate – MnSO4 Manganese sulphide or Manganese (II) sulphide – MnS Manganese oxide – MnO Barium... sulphide or Manganese (II) sulphide – MnS 1344-43-0 Manganese oxide – MnO 7787-35-1 Barium manganate - BaMnO4 10294-64-1 Potassium manganate – K2MnO4...Characterization of welding fumes and their potential neurotoxic effects. International Workshop: Neurotoxic Metals- Lead, Mercury , and Manganese
Meyer, Daniel Derrossi; Andrino, Felipe Gabriel; Possedente de Lira, Simone; Fornaro, Adalgiza; Corção, Gertrudes; Brandelli, Adriano
2016-01-01
One of the problems in waste water treatment plants (WWTPs) is the increase in emissions of hydrogen sulphide (H2S), which can cause damage to the health of human populations and ecosystems. To control emissions of this gas, sulphur-oxidizing bacteria can be used to convert H2S to sulphate. In this work, sulphate detection was performed by spectrophotometry, ion chromatography and atomic absorption spectrometry, using Paracoccus pantotrophus ATCC 35512 as a reference strain growing in an inorganic broth supplemented with sodium thiosulphate (Na2S2O3·5H2O), sodium sulphide (Na2S) or sodium sulphite (Na2SO3), separately. The strain was metabolically competent in sulphate production. However, it was only possible to observe significant differences in sulphate production compared to abiotic control when the inorganic medium was supplemented with sodium thiosulphate. The three methods for sulphate detection showed similar patterns, although the chromatographic method was the most sensitive for this study. This strain can be used as a reference for sulphate production in studies with sulphur-oxidizing bacteria originating from environmental samples of WWTPs.
Noble metal superparticles and methods of preparation thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yugang; Hu, Yongxing
A method comprises heating an aqueous solution of colloidal silver particles. A soluble noble metal halide salt is added to the aqueous solution which undergoes a redox reaction on a surface of the silver particles to form noble metal/silver halide SPs, noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs on the surface of the silver particles. The heat is maintained for a predetermined time to consume the silver particles and release the noble metal/silver halide SPs, the noble metal halide/silver halide SPs or the noble metal oxide/silver halide SPs into the aqueous solution. The aqueous solution ismore » cooled. The noble metal/silver halide SPs, the noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs are separated from the aqueous solution. The method optionally includes adding a soluble halide salt to the aqueous solution.« less
NASA Astrophysics Data System (ADS)
Dunne, Peter W.; Starkey, Chris L.; Gimeno-Fabra, Miquel; Lester, Edward H.
2014-01-01
Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control.Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control. Electronic supplementary information (ESI) available: Experimental details, refinement procedure, fluorescence spectra of ZnS samples. See DOI: 10.1039/c3nr05749f
Strong, B; Murray-Smith, R
1974-12-01
A method is described which is specific for the determination of gold in sulphide copper ores and concentrates. Direct decomposition with aqua regia was found to be incomplete. A carefully controlled roasting stage followed by treatment with hydrochloric acid and then aqua regia was effective for dissolving all the gold. The gold is extracted into 4-methylpentan-2-one (methyli-sobutylketone) then aspirated into a very lean air-acetylene flame and the gold determined by atomic-absorption spectrometry. No interferences were observed from large concentrations of copper, iron or nickel.
NASA Astrophysics Data System (ADS)
Smith, Patrick E.; Farquhar, Ronald M.; Tatsumoto, Mitsunobo
1989-08-01
A detailed U-Th-Pb isotopic study of two Archean basalts from two greenstone belts in the eastern Wawa Subprovince of the Canadian shield was carried out on samples that were either dissolved at once or leached in either 1N HNO3, 2N HCl, or 6N HCl. The abundances and isotopic compositions from these samples suggest that variable disturbances had occurred in both rock systems, which can be attributed to Pb mobility, particularly in the form of sulphide addition at various times, and, in one case, by recent Pb loss. The Pb isotopic compositions of the sulphides record late events which affected the greenstone terrains. The results also indicate that the sulphides and silicate rocks could have originated from a common source. The isotopic compositions of the basalt suggest that, in the Archean, both depleted and enriched mantle sources existed beneath the Wawa Subprovince.
Dunne, Peter W; Starkey, Chris L; Gimeno-Fabra, Miquel; Lester, Edward H
2014-02-21
Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control.
NASA Astrophysics Data System (ADS)
Hughes, Hannah S. R.; McDonald, Iain; Faithfull, John W.; Upton, Brian G. J.; Loocke, Matthew
2016-01-01
Abundances of precious metals and cobalt in the lithospheric mantle are typically obtained by bulk geochemical analyses of mantle xenoliths. These elements are strongly chalcophile and the mineralogy, texture and trace element composition of sulphide phases in such samples must be considered. In this study we assess the mineralogy, textures and trace element compositions of sulphides in spinel lherzolites from four Scottish lithospheric terranes, which provide an ideal testing ground to examine the variability of sulphides and their precious metal endowments according to terrane age and geodynamic environment. Specifically we test differences in sulphide composition from Archaean-Palaeoproterozoic cratonic sub-continental lithospheric mantle (SCLM) in northern terranes vs. Palaeozoic lithospheric mantle in southern terranes, as divided by the Great Glen Fault (GGF). Cobalt is consistently elevated in sulphides from Palaeozoic terranes (south of the GGF) with Co concentrations > 2.9 wt.% and Co/Ni ratios > 0.048 (chondrite). In contrast, sulphides from Archaean cratonic terranes (north of the GGF) have low abundances of Co (< 3600 ppm) and low Co/Ni ratios (< 0.030). The causes for Co enrichment remain unclear, but we highlight that globally significant Co mineralisation is associated with ophiolites (e.g., Bou Azzer, Morocco and Outokumpu, Finland) or in oceanic peridotite-floored settings at slow-spreading ridges. Thus we suggest an oceanic affinity for the Co enrichment in the southern terranes of Scotland, likely directly related to the subduction of Co-enriched oceanic crust during the Caledonian Orogeny. Further, we identify a distinction between Pt/Pd ratio across the GGF, such that sulphides in the cratonic SCLM have Pt/Pd ≥ chondrite whilst Palaeozoic sulphides have Pt/Pd < chondrite. We observe that Pt-rich sulphides with discrete Pt-minerals (e.g., PtS) are associated with carbonate and phosphates in two xenolith suites north of the GGF. This three-way immiscibility (carbonate-sulphide-phosphate) indicates carbonatitic metasomatism is responsible for Pt-enrichment in this (marginal) cratonic setting. These Co and Pt-enrichments may fundamentally reflect the geodynamic setting of cratonic vs. non-cratonic lithospheric terranes and offer potential tools to facilitate geochemical mapping of the lithospheric mantle.
Method for the recovery of silver from silver zeolite
Reimann, G.A.
1985-03-05
High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.
Method for the recovery of silver from silver zeolite
Reimann, George A.
1986-01-01
High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.
Structural and optical properties of hydrazine hydrate capped cadmium sulphide nanoparticles
NASA Astrophysics Data System (ADS)
Solanki, Rekha Garg; Rajaram, P.
2018-05-01
Semiconductor nanoparticles have received considerable interest due to their size-dependent optical properties. CdS is an important semiconductor material widely used in low cost photovoltaic devices, light-emitting diodes and biological imaging. The nanoparticles of CdS were prepared by a simple chemical precipitation method in aqueous medium. The reaction was carried out at room temperature. The cadmium sulphide nanoparticles were characterized using X-ray powder diffraction (XRD) and UV-visible spectroscopy. The lattice strain, crystallite size and dislocation density were calculated using the Williamson-Hall (W-H) method. The band gap was obtained from the UV-Visible spectra of CdS nanoparticles. The band gap of CdS nanoparticles is around 2.68 eV and the crystallite size is around 5.8 nm.
Minimising hydrogen sulphide generation during steam assisted production of heavy oil
Montgomery, Wren; Sephton, Mark A.; Watson, Jonathan S.; Zeng, Huang; Rees, Andrew C.
2015-01-01
The majority of global petroleum is in the form of highly viscous heavy oil. Traditionally heavy oil in sands at shallow depths is accessed by large scale mining activities. Recently steam has been used to allow heavy oil extraction with greatly reduced surface disturbance. However, in situ thermal recovery processes can generate hydrogen sulphide, high levels of which are toxic to humans and corrosive to equipment. Avoiding hydrogen sulphide production is the best possible mitigation strategy. Here we use laboratory aquathermolysis to reproduce conditions that may be experienced during thermal extraction. The results indicate that hydrogen sulphide generation occurs within a specific temperature and pressure window and corresponds to chemical and physical changes in the oil. Asphaltenes are identified as the major source of sulphur. Our findings reveal that for high sulphur heavy oils, the generation of hydrogen sulphide during steam assisted thermal recovery is minimal if temperature and pressure are maintained within specific criteria. This strict pressure and temperature dependence of hydrogen sulphide release can allow access to the world's most voluminous oil deposits without generating excessive amounts of this unwanted gas product. PMID:25670085
Minimising hydrogen sulphide generation during steam assisted production of heavy oil
NASA Astrophysics Data System (ADS)
Montgomery, Wren; Sephton, Mark A.; Watson, Jonathan S.; Zeng, Huang; Rees, Andrew C.
2015-02-01
The majority of global petroleum is in the form of highly viscous heavy oil. Traditionally heavy oil in sands at shallow depths is accessed by large scale mining activities. Recently steam has been used to allow heavy oil extraction with greatly reduced surface disturbance. However, in situ thermal recovery processes can generate hydrogen sulphide, high levels of which are toxic to humans and corrosive to equipment. Avoiding hydrogen sulphide production is the best possible mitigation strategy. Here we use laboratory aquathermolysis to reproduce conditions that may be experienced during thermal extraction. The results indicate that hydrogen sulphide generation occurs within a specific temperature and pressure window and corresponds to chemical and physical changes in the oil. Asphaltenes are identified as the major source of sulphur. Our findings reveal that for high sulphur heavy oils, the generation of hydrogen sulphide during steam assisted thermal recovery is minimal if temperature and pressure are maintained within specific criteria. This strict pressure and temperature dependence of hydrogen sulphide release can allow access to the world's most voluminous oil deposits without generating excessive amounts of this unwanted gas product.
Minimising hydrogen sulphide generation during steam assisted production of heavy oil.
Montgomery, Wren; Sephton, Mark A; Watson, Jonathan S; Zeng, Huang; Rees, Andrew C
2015-02-11
The majority of global petroleum is in the form of highly viscous heavy oil. Traditionally heavy oil in sands at shallow depths is accessed by large scale mining activities. Recently steam has been used to allow heavy oil extraction with greatly reduced surface disturbance. However, in situ thermal recovery processes can generate hydrogen sulphide, high levels of which are toxic to humans and corrosive to equipment. Avoiding hydrogen sulphide production is the best possible mitigation strategy. Here we use laboratory aquathermolysis to reproduce conditions that may be experienced during thermal extraction. The results indicate that hydrogen sulphide generation occurs within a specific temperature and pressure window and corresponds to chemical and physical changes in the oil. Asphaltenes are identified as the major source of sulphur. Our findings reveal that for high sulphur heavy oils, the generation of hydrogen sulphide during steam assisted thermal recovery is minimal if temperature and pressure are maintained within specific criteria. This strict pressure and temperature dependence of hydrogen sulphide release can allow access to the world's most voluminous oil deposits without generating excessive amounts of this unwanted gas product.
Kupczewska-Dobecka, Małgorzata; Czerczak, Sławomir; Gromiec, Jan P; Konieczko, Katarzyna
2015-06-01
The aim of this study was to determine hydrogen sulphide concentration emitted from the mine extracting copper ore, to evaluate potential adverse health effects to the population living in four selected villages surrounding the exhaust shaft. Maximum measured concentration of hydrogen sulphide in the emitter is 286 µg/m³. Maximum emission calculated from the results of determinations of concentrations in the emitter is 0.44 kg/h. In selected villages hydrogen sulphide at concentrations exceeding 4 µg/m³ was not detected in any of the 5-hour air samples. In all locations, the estimated maximum 1-hour concentrations of hydrogen sulphide were below 1 µg/m³, and the estimated mean annual concentrations were below 0.53 µg/m³. Any risk to the health of people in the selected area is not expected. As indicated by the available data on the threshold odour, the estimated concentrations of hydrogen sulphide may be sensed by humans. Copyright© by the National Institute of Public Health, Prague 2015.
NASA Astrophysics Data System (ADS)
Veglio, E.; Ugalde, H. A.; Lenauer, I.; Milkereit, B.
2017-12-01
Magnetic anomalies near areas of known base metal sulphide mineralization were seen in regional airborne data from the Bay of Chaleur in northern New Brunswick, Canada. A ground magnetic investigation was performed over this area to better characterize the source of these regional anomalies and to investigate their relation to the sulphide mineralization. The mineralization is hosted in Late Silurian to Early Devonian volcano-sedimentary stratigraphy and has been identified in several boreholes. This volcano-sedimentary stratigraphy was deposited in a half-graben shallow marine setting, where hydrothermal fluids transported sulphide mineralization through a fault network. The ground magnetic surveys show that two anomalous regions characterized by a total magnetic field of 54,100 nT and 55,500 nT, whereas the shallow alteration associated with mineralized zones are approximately 53,450 nT. These are significant magnetic anomalies are close to 700 nT and 2,000 nT greater than the surrounding area. In order to compare the ground data to the existing airborne, the ground magnetic data was upward continued to a height of 100 meters. The few occurrences of bedrock outcrops on the property confirm the occurrence of rhyolites and tuffs, as well as the presence of sulphide mineralization. However, much of the study area is densely vegetated and covered by glacial sediments of up to 25 meters thickness. Thus, to better interpret the geology and occurrence of the sulphide mineralization, several boreholes were examined on the basis of magnetic susceptibility and further correlated with the borehole logs and observations of lithologies in core. It was found that an individual mafic unit has several orders of magnitude higher magnetic susceptibility than the alteration zones and felsic tuffs where mineralization occurs. This indicates that the magnetic anomaly identified both in the regional magnetic survey and the ground survey is likely caused by the occurrence of this mafic unit. Petrographic analysis of this unit indicates it is a diabase dyke. Further characterization of the host rocks of the sulphide mineralization and the alteration will be accomplished by incorporating historic petrophysical studies of density and conductivity to complement the existing magnetic susceptibility measurements.
Sulphide mineralization and wall-rock alteration in ophiolites and modern oceanic spreading centres
Koski, R.A.
1983-01-01
Massive and stockwork Fe-Cu-Zn (Cyprus type) sulphide deposits in the upper parts of ophiolite complexes represent hydrothermal mineralization at ancient accretionary plate boundaries. These deposits are probable metallogenic analogues of the polymetallic sulphide deposits recently discovered along modern oceanic spreading centres. Genetic models for these deposits suggest that mineralization results from large-scale circulation of sea-water through basaltic basement along the tectonically active axis of spreading, a zone of high heat flow. The high geothermal gradient above 1 to 2 km deep magma chambers emplaced below the ridge axis drives the convective circulation cell. Cold oxidizing sea-water penetrating the crust on the ridge flanks becomes heated and evolves into a highly reduced somewhat acidic hydrothermal solvent during interaction with basaltic wall-rock. Depending on the temperature and water/rock ratio, this fluid is capable of leaching and transporting iron, manganese, and base metals; dissolved sea-water sulphate is reduced to sulphide. At the ridge axis, the buoyant hydrothermal fluid rises through permeable wall-rocks, and fluid flow may be focussed along deep-seated fractures related to extensional tectonic processes. Metal sulphides are precipitated along channelways as the ascending fluid undergoes adiabatic expansion and then further cooling during mixing with ambient sub-sea-floor water. Vigorous fluid flow results in venting of reduced fluid at the sea-floor/sea-water interface and deposition of massive sulphide. A comparison of sulphide mineralization and wall-rock alteration in ancient and modern spreading centre environments supports this genetic concept. Massive sulphide deposits in ophiolites generally occur in clusters of closely spaced (< 1-5 km) deposits. Individual deposits are a composite of syngenetic massive sulphide and underlying epigenetic stockwork-vein mineralization. The massive sulphide occurs as concordant tabular, lenticular, or saucer-shaped bodies in pillow lavas and pillow-lava breccia; massive lava flows, hyalcoclastite, tuff, and bedded radolarian chert are less commonly associated rock types. These massive sulphide zones are as much as 700 m long, 200 m wide, and 50 m thick. The pipe-, funnel-, or keel-shaped stockwork zone may extend to a dehpth of 1 km in the sheeted-dike complex. Several deposits in Cyprus are confined to grabens or the hanging wall of premineralization normal faults. Polymetallic massive sulphide deposits and active hydrothermal vents at medium- to fast-rate spreading centres (the East Pacific Rise at lat. 21??N, the Galapagos Spreading Centre at long. 86??W, the Juan de Fuca Ridge at lat. 45??N., and the Southern Trough of Guaymas Basin, Gulf of California) have interdeposit spacings on a scale of tens or hundreds of metres, and are spatially associated with structural ridges or grabens within the narrow (< 5 km) axial valleys of the rift zones. Although the most common substrate for massive sulphide accumulations is stacked sequences of pillow basalt and sheet flows, the sea-floor underlying numerous deposits in Guaymas Basin consists of diatomaceous ooze and terrigenous clastic sediment that is intruded by diabase sills. Mound-like massive sulphide deposits, as much as 30 m wide and 5m high, occur over actively discharging vents on the East Pacific Rise, and many of these deposits serve as the base for narrow chimneys and spires of equal or greater height. Sulphides on the Juan de Fuca Ridge appear to form more widespread blanket deposits in the shallow axial-valley depression. The largest deposit found to date, along the axial ridge of the Galapagos Spreading Centre, has a tabular form and a length of 1000 m, a width of 200 m, and a height of 30 m. The sulphide assemblage in both massive and vein mineralization in Cyprus type deposits is characteristically simple: abundant pyrite or, less commonly, pyrrhotite accompanied by minor marcasite, chalcopyrite
Method for Reduction of Silver Biocide Plating on Metal Surfaces
NASA Technical Reports Server (NTRS)
Steele, John; Nalette, Timothy; Beringer, Durwood
2013-01-01
Silver ions in aqueous solutions (0.05 to 1 ppm) are used for microbial control in water systems. The silver ions remain in solution when stored in plastic containers, but the concentration rapidly decreases to non-biocidal levels when stored in metal containers. The silver deposits onto the surface and is reduced to non-biocidal silver metal when it contacts less noble metal surfaces, including stainless steel, titanium, and nickel-based alloys. Five methods of treatment of contact metal surfaces to deter silver deposition and reduction are proposed: (1) High-temperature oxidation of the metal surface; (2) High-concentration silver solution pre-treatment; (3) Silver plating; (4) Teflon coat by vapor deposition (titanium only); and (5) A combination of methods (1) and (2), which proved to be the best method for the nickel-based alloy application. The mechanism associated with surface treatments (1), (2), and (5) is thought to be the development of a less active oxide layer that deters ionic silver deposition. Mechanism (3) is an attempt to develop an equilibrium ionic silver concentration via dissolution of metallic silver. Mechanism (4) provides a non-reactive barrier to deter ionic silver plating. Development testing has shown that ionic silver in aqueous solution was maintained at essentially the same level of addition (0.4 ppm) for up to 15 months with method (5) (a combination of methods (1) and (2)), before the test was discontinued for nickel-based alloys. Method (1) resulted in the maintenance of a biocidal level (approximately 0.05 ppm) for up to 10 months before that test was discontinued for nickel-based alloys. Methods (1) and (2) used separately were able to maintain ionic silver in aqueous solution at essentially the same level of addition (0.4 ppm) for up to 10 months before the test was discontinued for stainless steel alloys. Method (3) was only utilized for titanium alloys, and was successful at maintaining ionic silver in aqueous solution at essentially the same level of addition (0.4 ppm) for up to 10 months before the test was discontinued for simple flat geometries, but not for geometries that are difficult to Teflon coat.
NASA Astrophysics Data System (ADS)
Muchez, Ph.; Vanderhaeghen, P.; El Desouky, H.; Schneider, J.; Boyce, A.; Dewaele, S.; Cailteux, J.
2008-07-01
The stratiform Cu-Co ore mineralisation in the Katangan Copperbelt consists of dispersed sulphides and sulphides in nodules and lenses, which are often pseudomorphs after evaporites. Two types of pseudomorphs can be distinguished in the nodules and lenses. In type 1 examples, dolomite precipitated first and was subsequently replaced by Cu-Co sulphides and authigenic quartz, whereas in type 2 examples, authigenic quartz and Cu-Co sulphides precipitated prior to dolomite and are coarse-grained. The sulphur isotopic composition of the copper-cobalt sulphides in the type 1 pseudomorphs is between -10.3 and 3.1‰ relative to the Vienna Canyon Diablo Troilite, indicating that the sulphide component was derived from bacterial sulphate reduction (BSR). The generation of {text{HCO}}_3^ - during this process caused the precipitation and replacement of anhydrite by dolomite. A second product of BSR is the generation of H2S, resulting in the precipitation of Cu-Co sulphides from the mineralising fluids. Initial sulphide precipitation occurred along the rim of the pseudomorphs and continued towards the core. Precipitation of authigenic quartz was most likely induced by a pH decrease during sulphide precipitation. Fluid inclusion data from quartz indicate the presence of a high-salinity (8-18 eq. wt.% NaCl) fluid, possibly derived from evaporated seawater which migrated through the deep subsurface. 87Sr/86Sr ratios of dolomite in type 1 nodules range between 0.71012 and 0.73576, significantly more radiogenic than the strontium isotopic composition of Neoproterozoic marine carbonates (87Sr/86Sr = 0.7056-0.7087). This suggests intense interaction with siliciclastic sedimentary rocks and/or the granitic basement. The low carbon isotopic composition of the dolomite in the pseudomorphs (-7.02 and -9.93‰ relative to the Vienna Pee Dee Belemnite, V-PDB) compared to the host rock dolomite (-4.90 and +1.31‰ V-PDB) resulted from the oxidation of organic matter during BSR.
Analyzing silver concentration in soil using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Prasetyo, S.; Isnaeni; Zaitun; Mitchell, K.; Suliyanti, M. M.; Herbani, Y.
2018-03-01
Determination of concentration of heavy metal ions in soil, such as silver, is very important to study soil pollution levels. Several techniques have been developed to determine silver ion concentration in soil. In this paper, we utilized laser-induced breakdown spectroscopy (LIBS) to study silver concentration in soil. We used four different data analysis methods to calculate silver concentration. In this case, we prepared soil samples with different silver ion concentrations from 400 ppm to 1000 ppm. Our analysis was focused on the 843.15 nm silver atomic absorption line. We found that plasma intensity increased as silver concentration increased. Our findings were based on our analysis using four different analysis methods. We believe that these analysis methods are able to calculate silver concentration in soil using LIBS.
Insoluble zinc, cupric and tin pyrophosphates inhibit the formation of volatile sulphur compounds.
Jonski, G; Young, A; Wåler, S M; Rölla, G
2004-10-01
Oral malodour is mainly a result of the production of volatile sulphur compounds (VSC). The present study was concerned with investigating the anti-VSC effect of insoluble pyrophosphates (PP) of zinc, copper(II) and tin(II). The hypothesis to be tested was that the sulphide anions produced when VSC are solubilized in water have a higher affinity for the respective metal ions than the PP anion. The anti-VSC effects of insoluble PP were compared with the corresponding soluble metal salts using three in vitro methods: saliva putrefaction; dialysis of a suspension of PP and saliva against water; and analysis of water containing hydrogen sulphide and methyl mercaptan gases, and gases in the headspace. The levels of VSC were analysed by gas chromatography in the first and third methods, and released metal ions were analysed by atomic absorption spectroscopy in the second. The results showed that: the insoluble metal PP inhibited VSC formation in saliva by 99-100%; under dialysis, only minute amounts of metal ions are released from the combination of PP and saliva; and the PP lost their metal cations in water containing dissolved gases and inhibited VSC formation. Hence, the results support the experimental hypothesis. Sulphide ions are obviously very strong ligands for these metal ions.
Hydrogen sulphide protects against NSAID-enteropathy through modulation of bile and the microbiota
Blackler, Rory W; Motta, Jean-Paul; Manko, Anna; Workentine, Matthew; Bercik, Premysl; Surette, Michael G; Wallace, John L
2015-01-01
Background and Purpose Hydrogen sulphide is an important mediator of gastrointestinal mucosal defence. The use of non-steroidal anti-inflammatory drugs (NSAIDs) is significantly limited by their toxicity in the gastrointestinal tract. Particularly concerning is the lack of effective preventative or curative treatments for NSAID-induced intestinal damage and bleeding. We evaluated the ability of a hydrogen sulphide donor to protect against NSAID-induced enteropathy. Experimental Approach Intestinal ulceration and bleeding were induced in Wistar rats by oral administration of naproxen. The effects of suppression of endogenous hydrogen sulphide synthesis or administration of a hydrogen sulphide donor (diallyl disulphide) on naproxen-induced enteropathy was examined. Effects of diallyl disulphide on small intestinal inflammation and intestinal microbiota were also assessed. Bile collected after in vivo naproxen and diallyl disulphide administration was evaluated for cytotoxicity in vitro using cultured intestinal epithelial cells. Key Results Suppression of endogenous hydrogen sulphide synthesis by β-cyano-L-alanine exacerbated naproxen-induced enteropathy. Diallyl disulphide co-administration dose-dependently reduced the severity of naproxen-induced small intestinal damage, inflammation and bleeding. Diallyl disulphide administration attenuated naproxen-induced increases in the cytotoxicity of bile on cultured enterocytes, and prevented or reversed naproxen-induced changes in the intestinal microbiota. Conclusions and Implications Hydrogen sulphide protects against NSAID-enteropathy in rats, in part reducing the cytotoxicity of bile and preventing NSAID-induced dysbiosis. PMID:25297699
NASA Astrophysics Data System (ADS)
Aulbach, Sonja; Krauss, Cristen; Creaser, Robert A.; Stachel, Thomas; Heaman, Larry M.; Matveev, Sergei; Chacko, Thomas
2010-09-01
We carried out a detailed study of sulphide minerals, a ubiquitous mineral group in lower crustal mafic to peraluminous granulite xenoliths from the Diavik kimberlites, to assess their use in constraining the origin and tectonothermal evolution of the deep crust, and to obtain additional data on the composition of lower crust beneath ancient continents. Sulphides are overwhelmingly pyrrhotite with minor Ni (0.7-3.9 at.%), Co (0.1-0.7 at.%), and Cu contents (0.4-3.9 at.%). Sulphide modes in mafic granulites range from 0.14 to 0.55 vol%, translating into bulk rock S contents from ˜600 to 2000 ppm, similar to S contents in other mafic igneous rocks and indicating preservation of primary igneous S contents. In mafic granulites, Re and Os abundances in sulphides range from 42.5 to 726 ppb and 3.2 to 180 ppb, respectively, whereas those in peraluminous granulites are distinctly lower (36.1-282 ppb and 1.8-7.2 ppb, respectively), suggestive of Re and Os loss to fractionating sulphides in the more evolved precursors of these rocks. The significant within-sample variability of 187Os/ 188Os and correlation with 187Re/ 188Os indicates the preservation of primary Re-Os isotope systematics and time-integrated decay of the measured 187Re. Within the large uncertainties inherent in the nature of the samples and technique, sulphides in some granulites may record major tectonothermal events in the central Slave craton spanning several billion years of evolution. Multiple generations of sulphide can occur in a single sample. These data attest to the heterogeneous composition and complex history of the Slave craton lower crust.
Interaction of mining activities and aquatic environment: A review from Greek mine sites.
NASA Astrophysics Data System (ADS)
Vasileiou, Eleni; Kallioras, Andreas
2016-04-01
In Greece a significant amount of mineral and ore deposits have been recorded accompanied by large industrial interest and a long mining history. Today many active and/or abandoned mine sites are scattered within the country; while mining activities take place in different sites for exploiting various deposits (clay, limestone, slate, gypsum, kaolin, mixed sulphide ores (lead, zinc, olivine, pozzolan, quartz lignite, nickel, magnesite, aluminum, bauxite, gold, marbles etc). The most prominent recent ones are: (i) the lignite exploitation that is extended in the area of Ptolemais (Western Macedonia) and Megalopolis (Central Peloponnese); and (ii) the major bauxite deposits located in central Greece within the Parnassos-Ghiona geotectonic zone and on Euboea Island. In the latter area, significant ores of magnesite were exploited and mixed sulphide ores. Centuries of intensive mining exploitation and metallurgical treatment of lead-silver deposits in Greece, have also resulted in significant abandoned sites, such as the one in Lavrion. Mining activities in Lavrio, were initiated in ancient times and continued until the 1980s, resulting in the production of significant waste stockpiles deposited in the area, crucial for the local water resources. Ιn many mining sites, environmental pressures are also recorded after the mine closure to the aquatic environment, as the surface waters flow through waste dump areas and contaminated soils. This paper aims to the geospatial visualization of the mining activities in Greece, in connection to their negative (surface- and/or ground-water pollution; overpumping due to extensive dewatering practices) or positive (enhanced groundwater recharge; pit lakes, improvement of water budget in the catchment scale) impacts on local water resources.
Rapid growth of mineral deposits at artificial seafloor hydrothermal vents
Nozaki, Tatsuo; Ishibashi, Jun-Ichiro; Shimada, Kazuhiko; Nagase, Toshiro; Takaya, Yutaro; Kato, Yasuhiro; Kawagucci, Shinsuke; Watsuji, Tomoo; Shibuya, Takazo; Yamada, Ryoichi; Saruhashi, Tomokazu; Kyo, Masanori; Takai, Ken
2016-01-01
Seafloor massive sulphide deposits are potential resources for base and precious metals (Cu-Pb-Zn ± Ag ± Au), but difficulties in estimating precise reserves and assessing environmental impacts hinder exploration and commercial mining. Here, we report petrological and geochemical properties of sulphide chimneys less than 2 years old that formed where scientific boreholes vented hydrothermal fluids in the Iheya-North field, Okinawa Trough, in East China Sea. One of these infant chimneys, dominated by Cu-Pb-Zn-rich sulphide minerals, grew a height of 15 m within 25 months. Portions of infant chimneys are dominated by sulphate minerals. Some infant chimneys are sulphide-rich similar to high-grade Cu-Pb-Zn bodies on land, albeit with relatively low As and Sb concentrations. The high growth rate reaching the 15 m height within 25 months is attributed to the large hydrothermal vent more than 50 cm in diameter created by the borehole, which induced slow mixing with the ambient seawater and enhanced efficiency of sulphide deposition. These observations suggest the possibility of cultivating seafloor sulphide deposits and even controlling their growth and grades through manipulations of how to mix and quench hydrothermal fluids with the ambient seawater. PMID:26911272
NASA Astrophysics Data System (ADS)
Peimanifard, Zahra; Rashid-Nadimi, Sahar
2015-12-01
The aim of this study is utilizing the artificial photosynthesis, which is an attractive and challenging theme in the photoelectrocatalytic water splitting, to charge the vanadium redox flow battery (VRFB). In this work multi walled carbon nanotube/cadmium sulphide hybrid is employed as a photoanode material to oxidize VO2+ toVO2+ for charging the positive vanadium redox flow battery's half-cell. Characterization studies are also described using the scanning electron microscopic-energy-dispersive X-ray spectroscopy (SEM-EDS), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and UV-Visible methods. The phtoelectrochemical performance is characterized by cyclic voltammetry and chronoamperometry. Applied bias photon-to-current efficiency (ABPE) is achieved for both two and three-electrode configurations. The glassy carbon/multi walled carbon nanotube/cadmium sulphide yields high maximum ABPE of 2.6% and 2.12% in three and two-electrode setups, respectively. These results provide a useful guideline in designing photoelectrochemical cells for charging the vanadium redox flow batteries by sunlight as a low cost, free and abundant energy source, which does not rely on an external power input.
NASA Astrophysics Data System (ADS)
Hara, Yotamu Stephen Rainford
2014-01-01
Mineral sulphide (MS)-lime (CaO) ion exchange reactions (MS + CaO = MO + CaS) and the effect of CaO/C mole ratio during carbothermic reduction (MS + CaO + C = M + CaS + CO(g)) were investigated for complex froth flotation mineral sulphide concentrates. Phases in the partially and fully reacted samples were characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The primary phases during mineral sulphide-lime ion exchange reactions are Fe3O4, CaSO4 Cu2S, and CaS. A complex liquid phase of Ca2CuFeO3S forms during mineral sulphide-lime exchange reactions above 1173 K. The formation mechanisms of Ca2CuFeO3S liquid phase are determined by characterising the partially reacted samples. The reduction rate and extent of mineral sulphides in the presence of CaO and C increase with the increase in CaO/C ratio. The metallic phases are surrounded by the CaS rich phase at CaO/C > 1, but the metallic phases and CaS are found as separate phases at CaO/C < 1. Experimental results show that the stoichiometric ratio of carbon should be slightly higher than that of CaO. The reactions between CaO and gangue minerals (SiO2 and Al2O3) are only observed at CaO/C > 1 and the reacted samples are excessively sintered.
A double Fe-Ti oxide and Fe-sulphide liquid immiscibility in the Itsindro Gabbro Complex, Madagascar
NASA Astrophysics Data System (ADS)
Augé, Thierry; Bailly, Laurent; Roig, Jean-Yves
2017-11-01
The petrology and mineralogy of the Itsindro complex in south-central Madagascar has been investigated through samples obtained from the 320.7 m-deep Lanjanina borehole. The section consists of a 254 m-thick pyroxenite unit with interbedded gabbro layers that overlies a gabbro unit and is itself overlain by a 19 m-thick granite unit. Most of the structures are sub-horizontal. A weak magmatic layering is locally observed but at the scale of the core, the intrusion does not appear to be a layered complex. Pyroxenite and gabbro show a systematic disseminated mineralization consisting of Fe-Ti-P oxides and Fe-(Cu-Ni) sulphides that takes the form of ilmenite-titanomagnetite ± apatite and pyrrhotite ± chalcopyrite ± pentlandite. In the upper zone, from 90 to 72 m, sub-massive centimetre-to decimetre-sized layers of oxides and sulphides comprise a total of 16 m of sub-massive sulphide (the main mineralized zone). In this mineralized zone the oxide/sulphide ratio is close to 1/1. The sulphide is strongly dominated by pyrrhotite, which may locally contain inclusions of molybdenite crystals with the Re sulphide rheniite (ReS2). Oxides are generally euhedral, included in or attached to the Fe-sulphide, and also locally form sub-massive centimetre-sized bands. Apatite as a cumulus phase is ubiquitous. Locally it may account for 30% of the ore-rich samples and some samples consist of apatite-Fe-Ti oxides-Fe-Cu-Ni sulphides with virtually no silicate. Apatite is the main REE carrier but the total REE content remains low (<90 ppm). Mineral compositions and whole rock geochemistry indicate that the rocks are highly differentiated, and in spite of a relatively limited thickness, the differentiation process is observed. Two zones can be distinguished: from the bottom to 162.8 m we see a decrease in the Mg number of olivine and pyroxene, and a drop in TiO2 and Al2O3 for the latter. A reverse trend is then observed within the pyroxenite unit from the 162.8 m level upwards. The main mineralized zone is located in the upper part of this unit, about 70 m above this discontinuity. The highly differentiated Fe-Ti-P facies of the Lanjanina series in the Itsindro Gabbro Complex have been interpreted as corresponding to the Fe-Ti-P rich, Si-poor member remaining after an immiscible segregation of an evolved mafic magma. The granite dykes and the overlying granite unit represent the second, Si-rich member of the immiscibility process. The presence of large amounts of sulphide is attributed to sulphur contamination of the Fe-Ti-rich liquid. Fe-Ti oxides will tend to crystallize on the sulphide droplets and the accumulation of dense Fe-sulphides (liquid) and associated Fe-Ti oxides (solid) will result in this complex and unusual association taking the form of a net texture.
NASA Astrophysics Data System (ADS)
Danyushevsky, L.; Ryan, C.; Kamenetsky, V.; Crawford, A.
2001-12-01
Sulphide inclusions have been identified in olivine phenocrysts (and in one case in a spinel phenocryst) in primitive volcanic rocks from mid- ocean ridges, subduction-related island arcs and backarc basins. These inclusions represent droplets of an immiscible sulphide melt and are trapped by olivine crystals growing from silicate melts. Sulphide melt is usually trapped as separate inclusions, however combined inclusions of sulphide and silicate melts have also been observed. Sulphide inclusions have rounded shapes and vary in size from several up to 100 microns in diameter. At room temperature sulphide inclusions consist of several phases. These phases are formed as a result of crystallisation of the sulphide melt after it was trapped. Crystallisation occurs due to decreasing temperature in the magma chamber after trapping and/or when magma ascents from the magma chamber during eruptions. In all studied sulphides three different phases can be identified: a high- Fe, low-Ni, low-Cu phase; a high-Fe, high-Ni, low-Cu phase; and high-Fe, low-Ni, high-Cu phase. Low-Cu phases appear to be monomineralic, whereas the high-Cu phase is usually composed of a fine intergrowth of high- and low-Cu phases, resembling the quench 'spinifex' structure. Fe, Ni and Cu are the major elements in all sulphides studied. The amount of Ni decreases with decreasing forsterite content of the host olivine phenocryst, which is an index of the degree of silicate magma fractionation. Since Ni content of the silicate magma is decreasing during fractionation, this indicates either that the immiscible sulfide melt remains in equilibrium with the silicate melt continuously changing its composition during fractionation, or that the sulfide melt is continuously separated from the silicate melt during fractionation, with later formed droplets having lower Ni content due to the lower Ni content of the evolved, stronger fractionated silicate melt. Trace element contents of the sulfide inclusions have been analysed on the proton microprobe at CSIRO in Sydney. The main trace elements in the sulfide inclusions are Zn, Pb, Ag, and Se. Other trace elements are below detection limits, which are normally at a level of several ppm. Zn concentrations (120 +/- 40 ppm) in sulphides are similar to those in silicate melts. This indicates that separation of the sulfide melt does not affect Zn contents of silicate melts. On the contrary, Ag (30 +/- 10 ppm) and Pb (40 +/- 10 ppm) contents in sulphides are at least in order of magnitude higher than in the silicate melt, and thus separation of the immiscible sulfide melt can significantly decrease Pb and Ag contents of the silicate magma. The widespread occurrence of sulfide inclusions, which were also described in olivine phenocrysts from ocean island basalts, indicates common saturation at low pressure of mantle-derived magmas with reduced sulfur.
NASA Astrophysics Data System (ADS)
Hughes, Hannah S. R.; McDonald, Iain; Loocke, Matthew; Butler, Ian B.; Upton, Brian G. J.; Faithfull, John W.
2017-04-01
The role of the subcontinental lithospheric mantle as a source of precious metals for mafic magmas is contentious and, given the chalcophile (and siderophile) character of metals such as the platinum-group elements (PGE), Se, Te, Re, Cu and Au, the mobility of these metals is intimately linked with that of sulphur. Hence the nature of the host phase(s), and their age and stability in the subcontinental lithospheric mantle may be of critical importance. We investigate the sulphide mineralogy and sulphide in situ trace element compositions in base metal sulphides (BMS) in a suite of spinel lherzolite mantle xenoliths from northwest Scotland (Loch Roag, Isle of Lewis). This area is situated on the margin of the North Atlantic Craton which has been overprinted by a Palaeoproterozoic orogenic belt, and occurs in a region which has undergone magmatic events from the Palaeoproterozoic to the Eocene. We identify two populations of co-existing BMS within a single spinel lherzolite xenolith (LR80) and which can also be recognised in the peridotite xenolith suite as a whole. Both populations consist of a mixture of Fe-Ni-Cu sulphide minerals, and we distinguished between these according to BMS texture, petrographic setting (i.e., location within the xenolith in terms of 'interstitial' or within feldspar-spinel symplectites, as demonstrated by X-ray Computed Microtomography) and in situ trace element composition. Group A BMS are coarse, metasomatic, have low concentrations of total PGE (< 40 ppm) and high (Re/Os)N (ranging 1 to 400). Group B BMS strictly occur within symplectites of spinel and feldspar, are finer-grained rounded droplets, with micron-scale PtS (cooperite), high overall total PGE concentrations (15-800 ppm) and low (Re/Os)N ranging 0.04 to 2. Group B BMS sometimes coexist with apatite, and both the Group B BMS and apatite can preserve rounded micron-scale Ca-carbonate inclusions indicative of sulphide-carbonate-phosphate immiscibility. This carbonate-phosphate metasomatic association appears to be important in forming PGE-rich sulphide liquids, although the precise mechanism for this remains obscure. As a consequence of their position within the symplectites, Group B BMS are particularly vulnerable to being incorporated in ascending mantle-derived magmas (either by melting or physical entrainment). Based on the cross-cutting relationships of the symplectites, it is possible to infer the relative ages of each metasomatic BMS population. We tally these with major tectono-magmatic events for the North Atlantic region by making comparisons to carbonatite events recorded in crustal and mantle rocks, and we suggest that the Pt-enrichment was associated with a pre-Carboniferous carbonatite episode. This method of mantle xenolith base metal sulphide documentation may ultimately permit the temporal and spatial mapping of the chalcophile metallogenic budget of the lithospheric mantle, providing a blueprint for assessing regional metallogenic potential.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Feng; Dai, Jing-Min; Zhang, Lei; Pan, Wei-Dong
2013-08-01
The spectral emissivity and transmissivity of zinc sulphide (ZnS) infrared windows in the spectral region from 2 to 12 μm and temperature range from 20 to 700°C is measured by a facility built at the Harbin Institute of Technology (HIT). The facility is based on the integrating-sphere reflectometry. Measurements have been performed on two samples made of ZnS. The results measured at 20°C are in good agreement with those obtained by the method of radiant energy comparison using a Fourier transform infrared spectrometer. Emissivity measurements performed with this facility present an uncertainty of 5.5% (cover factor=2).
Khutorianskiĭ, V A; Smirnov, A I; Matveev, D A
2014-01-01
The method of microcolumn reversed phase high performance liquid chromatography (rp-HPLC) was employed to determine the content of elemental sulphur in mineral waters. The study envisaged the analysis of the samples of sulphide-containing mineral waters Novonukutskaya and Matsesta obtained by the solid phase extraction technique. Based on these data, the authors discuss the origin and the circulation of sulphur in the hydrogen sulphide sources. The elution conditions selected in this study ensured the high-resolution separation of the octasulphur peak from the peaks of allotropic components of the extract whereas the two-wave detection technique allowed to identify the peaks of molecular sulphur.
NASA Astrophysics Data System (ADS)
Bala, Vaneeta; Tripathi, S. K.; Kumar, Ranjan
2015-02-01
Density functional theory has been applied to study cadmium sulphide-polyvinyl alcohol nanocomposite film. Structural models of two isotactic-polyvinyl alcohol (I-PVA) chains around one cadmium sulphide nanoparticle is considered in which each chain consists three monomer units of [-(CH2CH(OH))-]. All of the hydroxyl groups in I-PVA chains are directed to cadmium sulphide nanoparticle. Electronic and structural properties are investigated using ab-intio density functional code, SIESTA. Structural optimizations are done using local density approximations (LDA). The exchange correlation functional of LDA is parameterized by the Ceperley-Alder (CA) approach. The core electrons are represented by improved Troulier-Martins pseudopotentials. Densities of states clearly show the semiconducting nature of cadmium sulphide polyvinyl alcohol nanocomposite.
Electrodeposition as an alternate method for preparation of environmental samples for iodide by AMS
Adamic, M. L.; Lister, T. E.; Dufek, E. J.; ...
2015-03-25
This paper presents an evaluation of an alternate method for preparing environmental samples for 129I analysis by accelerator mass spectrometry (AMS) at Idaho National Laboratory. The optimal sample preparation method is characterized by ease of preparation, capability of processing very small quantities of iodide, and ease of loading into a cathode. Electrodeposition of iodide on a silver wire was evaluated using these criteria. This study indicates that the electrochemically-formed silver iodide deposits produce ion currents similar to those from precipitated silver iodide for the same sample mass. Furthermore, precipitated silver iodide samples are usually mixed with niobium or silver powdermore » prior to loading in a cathode. Using electrodeposition, the silver is already mixed with the sample and can simply be picked up with tweezers, placed in the sample die, and pressed into a cathode. The major advantage of this method is that the silver wire/electrodeposited silver iodide is much easier to load into a cathode.« less
Silver nanoparticles: Synthesis methods, bio-applications and properties.
Abbasi, Elham; Milani, Morteza; Fekri Aval, Sedigheh; Kouhi, Mohammad; Akbarzadeh, Abolfazl; Tayefi Nasrabadi, Hamid; Nikasa, Parisa; Joo, San Woo; Hanifehpour, Younes; Nejati-Koshki, Kazem; Samiei, Mohammad
2016-01-01
Silver nanoparticles size makes wide range of new applications in various fields of industry. Synthesis of noble metal nanoparticles for applications such as catalysis, electronics, optics, environmental and biotechnology is an area of constant interest. Two main methods for Silver nanoparticles are the physical and chemical methods. The problem with these methods is absorption of toxic substances onto them. Green synthesis approaches overcome this limitation. Silver nanoparticles size makes wide range of new applications in various fields of industry. This article summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations with respect to the biomedical applicability and regulatory requirements concerning silver nanoparticles.
Prieto-Lloret, Jesus; Shaifta, Yasin; Ward, Jeremy P T; Aaronson, Philip I
2015-01-01
An increase in the H2S (hydrogen sulphide, hereafter sulphide) concentration in pulmonary artery smooth muscle cells (PASMCs) has been proposed to mediate hypoxic pulmonary vasoconstriction (HPV). We evaluated this hypothesis in isolated rat intrapulmonary arteries (IPAs) by examining the effects of the sulphide precursor cysteine and sulphide-synthesis blockers on HPV and also on normoxic pulmonary vasoconstriction (NPV) stimulated by prostaglandin F2α (PGF2α) and by the drug LY83583, which causes contraction in IPAs by increasing cellular reactive oxygen species levels. Experiments with several blockers of cystathionine γ-lyase (CSE), the enzyme responsible for sulphide synthesis in the vasculature, demonstrated that propargylglycine (PAG, 1 mm) had little or no effect on the NPV caused by PGF2α or LY83583. Conversely, other CSE antagonists tested, aminooxyacetic acid (AOAA, 100 μm), β-cyanoalanine (BCA, 500 μm) and hydroxylamine (HA, 100 μm), altered the NPV to PGF2α (BCA increased, HA inhibited) and/or LY83583 (BCA increased, AOAA and HA inhibited). Preincubating IPAs in physiological saline solution (PSS) containing 1 mm cysteine increased the amplitude of the NPV to PGF2α by ∼50%, and had a similar effect on HPV elicited by hypoxic challenge with 0% O2. The enhancement of both responses by cysteine was abolished by pretreatment with 1 mm PAG. Measurements carried out with an amperometric electrode demonstrated that incubation with 1 mm cysteine under anoxic conditions (to minimize sulphide oxidation) greatly potentiated the release of sulphide from pieces of rat liver and that this release was strongly antagonized by PAG, indicating that at this concentration PAG could enter cells intact and antagonize CSE. PAG at 1 mm had no effect on HPV recorded in control PSS, or in PSS supplemented with physiological concentrations of cysteine (10 μm), cystine (50 μm) and glutamate (100 μm) in order to prevent the possible depletion of intracellular cysteine during experiments. Application of a combination of 1 mm cysteine and 1 mm α-ketoglutarate to promote sulphide synthesis via the cysteine aminotransferase/mercaptopyruvate sulphurtransferase (CAT/MST) pathway caused an increase in HPV similar to that observed for cysteine. This was partially blocked by the CAT antagonist aspartate (1 mm) and also by PAG. However, HPV was not increased by 1 mm α-ketoglutarate alone, and HPV in the absence of α-ketoglutarate and cysteine was not attenuated by aspartate. Pretreatment of IPAs with dithiothreitol (DTT, 1 mm), proposed to promote the conversion of mitochondrial thiosulphate to sulphide, did not increase the release of sulphide from pieces of rat liver in either the presence or the absence of 1 mm cysteine, and virtually abolished HPV. The results provide evidence that the sulphide precursor cysteine can promote both NPV and HPV in rat IPA by generating sulphide via a PAG-sensitive pathway, presumably CSE. However, HPV evoked under control conditions was unaffected by the blockade of CSE. Moreover, HPV was not affected by the CAT antagonist aspartate and was blocked rather than enhanced by DTT. The data therefore indicate that sulphide generated by CSE or CAT/MST or from thiosulphate is unlikely to contribute to O2 sensing during HPV in these arteries. PMID:25630260
Tobler, M; Riesch, R; Tobler, C M; Schulz-Mirbach, T; Plath, M
2009-11-01
Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence lead to speciation. But what mechanisms contribute to reproductive isolation among diverging populations? We tested for natural and sexual selection against immigrants in a fish species inhabiting (and adapting to) nonsulphidic surface habitats, sulphidic surface habitats and a sulphidic cave. Gene flow is strong among sample sites situated within the same habitat type, but low among divergent habitat types. Our results indicate that females of both sulphidic populations discriminate against immigrant males during mate choice. Furthermore, using reciprocal translocation experiments, we document natural selection against migrants between nonsulphidic and sulphidic habitats, whereas migrants between sulphidic cave and surface habitats did not exhibit increased mortality within the same time period. Consequently, both natural and sexual selection may contribute to isolation among parapatric populations, and selection against immigrants may be a powerful mechanism facilitating speciation among locally adapted populations even over very small spatial distances.
The carbonate-hosted willemite prospects of the Zambezi Metamorphic Belt (Zambia)
NASA Astrophysics Data System (ADS)
Boni, Maria; Terracciano, Rosario; Balassone, Giuseppina; Gleeson, Sarah A.; Matthews, Alexander
2011-10-01
Zambian willemite (Zn2SiO4) deposits occur in the metasedimentary carbonate rocks of the Proterozoic Katangan Supergroup. The most important orebodies are located around Kabwe and contain both sulphides and willemite in dolomites of low metamorphic grade. The Star Zinc and Excelsior prospects (Lusaka area), discovered in the early 1920s, occur in the metamorphic lithotypes of the late Proterozoic Zambezi Supracrustal sequence, which were deposited in a transtensional basin formed during the oblique collision of the Kalahari and Congo cratons. The deposits are hosted by the limestone and dolomitic marbles of the Cheta and Lusaka Formations. Structural analysis indicates that several fracture sets host the deposits, which may be genetically related to the Pan-African Mwembeshi dislocation zone (a major geotectonic boundary between the Lufilian Arc and the Zambezi Belt). In both prospects, willemite replaces the marbles and is found along joints and fissures with open-space filling textures and locally may develop colloform and vuggy fabrics as well. Silver as well as traces of germanium and cadmium have been detected within the willemite ore, and lead or zinc sulphides are scarce or absent. Calcite locally replaces willemite. Willemite is associated with specular hematite and franklinite and post-dates the Zn-spinel gahnite in the paragenesis. Genthelvite [Zn4Be3(SiO4)3S] occurs as a minor phase in irregular aggregates. The willemites from the Lusaka area, though Mn-poor, show green cathodoluminescence colours and bright green fluorescence in short-wave UV (as the high-temperature willemites in USA). Thermometric analyses of primary fluid inclusions in willemite yield homogenization temperatures that range from 160°C to 240°C and salinities of 8-16 wt.% equiv. NaCl. The homogenization temperatures suggest a hypogene-hydrothermal origin for the willemite concentrations. The geochemistry of fluid inclusion leachates suggests that the hydrothermal fluids were brines derived from highly evaporated seawater. Precise age constraints are currently lacking for the Lusaka area deposits, though the deposits are not deformed, indicating that they post-date the Lufilian orogeny (~520 Ma). The possibility of precursor ores exists; the gahnite-franklinite-willemite deposits could have been derived from a metamorphosed primary sulphide (or even nonsulphide) concentration that has subsequently been completely destroyed. However, there is no real evidence of such a primary source for the willemite mineral association. The Lusaka zinc ores may have been produced by an extensive hydrothermal system, with fluids discharging along basinal fracture zones controlled by the pre-Pan-African rifting stage. A paragenesis similar to that of the Lusaka prospects has been proposed to be a vector towards massive sulphide ores in several parts of the world; therefore, it is possible that these small willemite showings in Zambia may be part of a much bigger, and still unexplored, zinc province.
Sulphurous Mineral Waters: New Applications for Health
Carbajo, Jose Manuel
2017-01-01
Sulphurous mineral waters have been traditionally used in medical hydrology as treatment for skin, respiratory, and musculoskeletal disorders. However, driven by recent intense research efforts, topical treatments are starting to show benefits for pulmonary hypertension, arterial hypertension, atherosclerosis, ischemia-reperfusion injury, heart failure, peptic ulcer, and acute and chronic inflammatory diseases. The beneficial effects of sulphurous mineral waters, sulphurous mud, or peloids made from sulphurous mineral water have been attributed to the presence of sulphur mainly in the form of hydrogen sulphide. This form is largely available in conditions of low pH when oxygen concentrations are also low. In the organism, small amounts of hydrogen sulphide are produced by some cells where they have numerous biological signalling functions. While high levels of hydrogen sulphide are extremely toxic, enzymes in the body are capable of detoxifying it by oxidation to harmless sulphate. Hence, low levels of hydrogen sulphide may be tolerated indefinitely. In this paper, we review the chemistry and actions of hydrogen sulphide in sulphurous mineral waters and its natural role in body physiology. This is followed by an update of available data on the impacts of exogenous hydrogen sulphide on the skin and internal cells and organs including new therapeutic possibilities of sulphurous mineral waters and their peloids. PMID:28484507
Schulz-Mirbach, Tanja; Riesch, Rüdiger; García de León, Francisco J; Plath, Martin
2011-12-01
Our study was designed to evaluate if, and to what extent, restrictive environmental conditions affect otolith morphology. As a model, we chose two extremophile livebearing fishes: (i) Poecilia mexicana, a widespread species in various Mexican freshwater habitats, with locally adapted populations thriving in habitats characterized by the presence of one (or both) of the natural stressors hydrogen sulphide and darkness, and (ii) the closely related Poecilia sulphuraria living in a highly sulphidic habitat (Baños del Azufre). All three otolith types (lapilli, sagittae, and asterisci) of P. mexicana showed a decrease in size ranging from the non-sulphidic cave habitat (Cueva Luna Azufre), to non-sulphidic surface habitats, to the sulphidic cave (Cueva del Azufre), to sulphidic surface habitats (El Azufre), to P. sulphuraria. Although we found a distinct differentiation between ecotypes with respect to their otolith morphology, no clear-cut pattern of trait evolution along the two ecological gradients was discernible. Otoliths from extremophiles captured in the wild revealed only slight similarities to aberrant otoliths found in captive-bred fish. We therefore hypothesize that extremophile fishes have developed coping mechanisms enabling them to avoid aberrant otolith growth - an otherwise common phenomenon in fishes reared under stressful conditions. Copyright © 2011 Elsevier GmbH. All rights reserved.
Lactate has the potential to promote hydrogen sulphide formation in the human colon.
Marquet, Perrine; Duncan, Sylvia H; Chassard, Christophe; Bernalier-Donadille, Annick; Flint, Harry J
2009-10-01
High concentrations of sulphide are toxic for the gut epithelium and may contribute to bowel disease. Lactate is a favoured cosubstrate for the sulphate-reducing colonic bacterium Desulfovibrio piger, as shown here by the stimulation of sulphide formation by D. piger DSM749 by lactate in the presence of sulphate. Sulphide formation by D. piger was also stimulated in cocultures with the lactate-producing bacterium Bifidobacterium adolescentis L2-32. Other lactate-utilizing bacteria such as the butyrate-producing species Eubacterium hallii and Anaerostipes caccae are, however, expected to be in competition with the sulphate-reducing bacteria (SRB) for the lactate formed in the human colon. Strains of E. hallii and A. caccae produced 65% and 96% less butyrate from lactate, respectively, in a coculture with D. piger DSM749 than in a pure culture. In triculture experiments involving B. adolescentis L2-32, up to 50% inhibition of butyrate formation by E. hallii and A. caccae was observed in the presence of D. piger DSM749. On the other hand, sulphide formation by D. piger was unaffected by E. hallii or A. caccae in these cocultures and tricultures. These experiments strongly suggest that lactate can stimulate sulphide formation by SRB present in the colon, with possible consequences for conditions such as colitis.
Passive particle dosimetry. [silver halide crystal growth
NASA Technical Reports Server (NTRS)
Childs, C. B.
1977-01-01
Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.
Dias, Pablo; Javimczik, Selene; Benevit, Mariana; Veit, Hugo; Bernardes, Andréa Moura
2016-11-01
Photovoltaic modules (or panels) are important power generators with limited lifespans. The modules contain known pollutants and valuable materials such as silicon, silver, copper, aluminum and glass. Thus, recycling such waste is of great importance. To date, there have been few published studies on recycling silver from silicon photovoltaic panels, even though silicon technology represents the majority of the photovoltaic market. In this study, the extraction of silver from waste modules is justified and evaluated. It is shown that the silver content in crystalline silicon photovoltaic modules reaches 600g/t. Moreover, two methods to concentrate silver from waste modules were studied, and the use of pyrolysis was evaluated. In the first method, the modules were milled, sieved and leached in 64% nitric acid solution with 99% sodium chloride; the silver concentration yield was 94%. In the second method, photovoltaic modules were milled, sieved, subjected to pyrolysis at 500°C and leached in 64% nitric acid solution with 99% sodium chloride; the silver concentration yield was 92%. The first method is preferred as it consumes less energy and presents a higher yield of silver. This study shows that the use of pyrolysis does not assist in the extraction of silver, as the yield was similar for both methods with and without pyrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Knief, Claudia; Altendorf, Karlheinz; Lipski, André
2003-11-01
A method for the detection of physiologically active autotrophic bacteria in complex microbial communities was developed based on labelling with the stable isotope 13C. Labelling of autotrophic nitrifying, sulphur-oxidizing and iron-oxidizing populations was performed in situ by incubation with NaH[13C]O3. Incorporated label into fatty acid methyl esters (FAMEs) was detected and quantified using gas chromatography-mass spectrometry in single ion monitoring mode. Before the analyses of different environmental samples, the protocol was evaluated in pure culture experiments. In different environmental samples a selective labelling of fatty acids demonstrated which microbial taxa were responsible for the respective chemolithoautotrophic activity. The most strongly labelled fatty acids of a sample from a sulphide treating biofilter from an animal rendering plant were cis-7-hexadecenoic acid (16:1 cis7) and 11-methyl hexadecanoic acid (16:0 11methyl), which are as-yet not known for any sulphide-oxidizing autotroph. The fatty acid labelling pattern of an experimental biotrickling filter sample supplied with dimethyl disulphide clearly indicated the presence and activity of sulphide-oxidizing bacteria of the genus Thiobacillus. For a third environmental sample from an acid mining lake sediment, the assignment of autotrophic activity to bacteria of the genus Leptospirillum but not to Acidithiobacillus could be made by this method, as the fatty acid patterns of these bacteria show clear differences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golow, A.A.; Laryea, J.N.
1994-09-01
Fruits such as oranges and avocados are important sources of drinks and food in the Ghanaian Society. If such fruits contain various types of metals they may augument the types and amounts of them in the human body. The metals in fruits may depend on what is in the soils from which they are grown. If the soils contain toxic metals like lead, mercury and cadmium then the consumers may be poisoned as happened in the [open quotes]Ouchi - ouchi[close quotes], disease in Japan and similar episodes. In the area under study, the Geological Survey indicates the presence of 2.5more » ppm of lead, 10 - 20 ppm of copper and less than 15 ppm of nickel. Silver, not reported in commercial amounts, is a byproduct of gold productions at Obuasi. Since copper and nickel are presented in the area traces of silver will certainly occur. In the same manner zinc is usually associated with lead as sulphide of zinc blend trace amounts of it are likely to occur in the area. Of the four metals measured, iron and zinc essential for citrus. The extractable iron and zinc in the area of study were 90 and 1.8 mg/kg, levels on the low side for the healthy growth of crops. The investigation reported here is the comparison of the levels of some metals in oranges and avocados from farms in Obuasi and Konongo with those from farms in Kumasi City. This is a part of a project aimed at finding out differences in the metal contents of various food crops grown in various regions of the country. Konongo and Obuasi have soils which are rich in gold but Kumasi city, which is not too distant from these towns, does not have gold in its soil. 18 refs., 1 tab.« less
Sulphoxidation reaction catalysed by myeloperoxidase from human leucocytes.
Capeillère-Blandin, C; Martin, C; Gaggero, N; Pasta, P; Carrea, G; Colonna, S
1998-10-01
The oxidation of alkyl aryl sulphides by myeloperoxidase (MPO) at the expense of hydrogen peroxide was investigated under steady-state conditions. The sulphide concentration effect was studied under saturating H2O2 concentrations at pH 5.0 and 20 degreesC. The kinetic constants, kcat and Km, of the different substrates were determined and the values were in the 1-10 s-1 range and around 43+/-26 microM respectively, whatever the sulphide considered. In the case of p-substituted thioanisoles, the oxidation rate was dependent upon the substituent effect. The correlation of log(kcat) with the substituent constants (sigma+ values) (Hammett equation) could be explained by a reaction mechanism involving the enzyme compound II and a sulphenium radical cation. This conclusion was also supported by spectrophotometric analysis of catalytic intermediates of the enzyme, showing the accumulation of compound II. Moreover, chiral HPLC analyses showed that MPO oxidation of alkyl aryl sulphides produced the corresponding (R)-sulphoxides with a low enantioselectivity (4-8%). Chloride ion effects on the MPO-catalysed oxygenation of sulphides were also studied. Chloride acted as a substrate for MPO and as an activator in MPO-catalysed sulphoxidation. Inhibition occurred at chloride concentrations above 120 mM, whereas below 120 mM, chloride increased the reaction rate when using p-tolyl methyl sulphide as the substrate. In the presence of 100 mM chloride the catalytic efficiency (kcat/Km) of MPO increased 3-4-fold, whatever the sulphide considered, but racemic products were obtained. These data have been interpreted in the light of known structural information on the accessibility of the distal haem cavity.
NASA Astrophysics Data System (ADS)
Hanley, Traci A.; Saadawi, Ryan; Zhang, Peng; Caruso, Joseph A.; Landero-Figueroa, Julio
2014-10-01
The production of commercially available products marketed to contain silver nanoparticles is rapidly increasing. Species-specific toxicity is a phenomenon associated with many elements, including silver, making it imperative to develop a method to identify and quantify the various forms of silver (namely, silver ions vs. silver nanoparticles) possibly present in these products. In this study a method was developed using high performance liquid chromatography (HPLC) with ultraviolet (UV-VIS) and inductively coupled mass spectrometric (ICP-MS) detection to separate starch stabilized silver nanoparticles (AgNPs) and silver ions (Ag+) by cation exchange chromatography with 0.5 M nitric acid mobile phase. The silver nanoparticles and ions were baseline resolved with an ICP-MS response linear over four orders of magnitude, 0.04 mg kg- 1 detection limit, and 90% chromatographic recovery for silver solutions containing ions and starch stabilized silver nanoparticles smaller than 100 nm.
Oliver, A.J.
1962-04-24
A method of preparing nuclear track emulsions having mean grain sizes less than 0.1 microns is described. The method comprises adding silver nitrate to potassium bromide at a rate at which there is always a constant, critical excess of silver ions. For minimum size grains, the silver ion concentration is maintained at the critical level of about pAg 2.0 to 5.0 during prectpitation, pAg being defined as the negative logarithm of the silver ion concentration. It is preferred to eliminate the excess silver at the conclusion of the precipitation steps. The emulsion is processed by methods in all other respects generally similar to the methods of the prior art. (AEC)
NASA Astrophysics Data System (ADS)
Rasmagin, S. I.; Krasovskii, V. I.; Apresyan, L. A.; Novikov, I. K.; Krystob, V. I.; Kazaryan, M. A.
2018-04-01
By the method of green synthesis, silver nanoparticles were obtained in colloidal solutions. The solutions were modified with thulium ions. Using the method of electron microscopy and optical method, the properties of silver nanoparticles obtained are studied. The influence of change in concentration of the solution of mint and thulium ions on the properties of colloidal silver nanoparticles was studied.
Chao, T.T.; Fishman, M. J.; Ball, J.W.
1969-01-01
A method has been developed for the accurate determination of 0.1-1 ??g of silver per liter of water. The method permits stabilization of silver in water without loss to container walls. Optimum conditions have been established for the complete recovery of silver from water with an anion-exchange column, for quantitative elution of silver from the resin, and for measurement of silver by atomic absorption spectrophotometry after chelation with ammonium pyrrolidine dithiocarbamate and extraction of the chelate with MIBK. Silver in the 1-10 ??g 1 range can be determined by extraction without pre-concentration on an ion-exchange resin. ?? 1969.
Method of Creating Micro-scale Silver Telluride Grains Covered with Bismuth Nanoparticles
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Lee, Kunik (Inventor); Kim, Hyun-Jung (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor)
2014-01-01
Provided is a method of enhancing thermoelectric performance by surrounding crystalline semiconductors with nanoparticles by contacting a bismuth telluride material with a silver salt under a substantially inert atmosphere and a temperature approximately near the silver salt decomposition temperature; and recovering a metallic bismuth decorated material comprising silver telluride crystal grains.
Antibacterial properties of Ag-doped hydroxyapatite layers prepared by PLD method
NASA Astrophysics Data System (ADS)
Jelínek, Miroslav; Kocourek, Tomáš; Jurek, Karel; Remsa, Jan; Mikšovský, Jan; Weiserová, Marie; Strnad, Jakub; Luxbacher, Thomas
2010-12-01
Thin hydroxyapatite (HA), silver-doped HA and silver layers were prepared using a pulsed laser deposition method. Doped layers were ablated from silver/HA targets. Amorphous and crystalline films of silver concentrations of 0.06 at.%, 1.2 at.%, 4.4 at.%, 8.3 at.% and 13.7 at.% were synthesized. Topology was studied using scanning electron microscopy and atomic force microscopy. Contact angle and zeta potential measurements were conducted to determine the wettability, surface free energy and electric surface properties. In vivo measurement (using Escherichia coli cells) of antibacterial properties of the HA, silver-doped HA and silver layers was carried out. The best antibacterial results were achieved for silver-doped HA layers of silver concentration higher than 1.2 at.%.
Trace and minor elements in sphalerite from metamorphosed sulphide deposits
NASA Astrophysics Data System (ADS)
Lockington, Julian A.; Cook, Nigel J.; Ciobanu, Cristiana L.
2014-12-01
Sphalerite is a common sulphide and is the dominant ore mineral in Zn-Pb sulphide deposits. Precise determination of minor and trace element concentrations in sulphides, including sphalerite, by Laser-Ablation Inductively-Coupled-Plasma Mass-Spectrometry (LA-ICP-MS) is a potentially valuable petrogenetic tool. In this study, LA-ICP-MS is used to analyse 19 sphalerite samples from metamorphosed, sphalerite-bearing volcanic-associated and sedimentary exhalative massive sulphide deposits in Norway and Australia. The distributions of Mn, Fe, Co, Cu, Ga, Se, Ag, Cd, In, Sn, Sb, Hg, Tl, Pb and Bi are addressed with emphasis on how concentrations of these elements vary with metamorphic grade of the deposit and the extent of sulphide recrystallization. Results show that the concentrations of a group of trace elements which are believed to be present in sphalerite as micro- to nano-scale inclusions (Pb, Bi, and to some degree Cu and Ag) diminish with increasing metamorphic grade. This is interpreted as due to release of these elements during sphalerite recrystallization and subsequent remobilization to form discrete minerals elsewhere. The concentrations of lattice-bound elements (Mn, Fe, Cd, In and Hg) show no correlation with metamorphic grade. Primary metal sources, physico-chemical conditions during initial deposition, and element partitioning between sphalerite and co-existing sulphides are dominant in defining the concentrations of these elements and they appear to be readily re-incorporated into recrystallized sphalerite, offering potential insights into ore genesis. Given that sphalerite accommodates a variety of trace elements that can be precisely determined by contemporary microanalytical techniques, the mineral has considerable potential as a geothermometer, providing that element partitioning between sphalerite and coexisting minerals (galena, chalcopyrite etc.) can be quantified in samples for which the crystallization temperature can be independently constrained.
Treating landfill gas hydrogen sulphide with mineral wool waste (MWW) and rod mill waste (RMW).
Bergersen, Ove; Haarstad, Ketil
2014-01-01
Hydrogen sulphide (H2S) gas is a major odorant at municipal landfills. The gas can be generated from different waste fractions, for example demolition waste containing gypsum based plaster board. The removal of H2S from landfill gas was investigated by filtering it through mineral wool waste products. The flow of gas varied from 0.3 l/min to 3.0 l/min. The gas was typical for landfill gas with a mean H2S concentration of ca. 4500 ppm. The results show that the sulphide gas can effectively be removed by mineral wool waste products. The ratios of the estimated potential for sulphide precipitation were 19:1 for rod mill waste (RMW) and mineral wool waste (MWW). A filter consisting of a mixture of MWW and RMW, with a vertical perforated gas tube through the center of filter material and with a downward gas flow, removed 98% of the sulfide gas over a period of 80 days. A downward gas flow was more efficient in contacting the filter materials. Mineral wool waste products are effective in removing hydrogen sulphide from landfill gas given an adequate contact time and water content in the filter material. Based on the estimated sulphide removal potential of mineral wool and rod mill waste of 14 g/kg and 261 g/kg, and assuming an average sulphide gas concentration of 4500 ppm, the removal capacity in the filter materials has been estimated to last between 11 and 308 days. At the studied location the experimental gas flow was 100 times less than the actual gas flow. We believe that the system described here can be upscaled in order to treat this gas flow. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sulphoxidation reaction catalysed by myeloperoxidase from human leucocytes.
Capeillère-Blandin, C; Martin, C; Gaggero, N; Pasta, P; Carrea, G; Colonna, S
1998-01-01
The oxidation of alkyl aryl sulphides by myeloperoxidase (MPO) at the expense of hydrogen peroxide was investigated under steady-state conditions. The sulphide concentration effect was studied under saturating H2O2 concentrations at pH 5.0 and 20 degreesC. The kinetic constants, kcat and Km, of the different substrates were determined and the values were in the 1-10 s-1 range and around 43+/-26 microM respectively, whatever the sulphide considered. In the case of p-substituted thioanisoles, the oxidation rate was dependent upon the substituent effect. The correlation of log(kcat) with the substituent constants (sigma+ values) (Hammett equation) could be explained by a reaction mechanism involving the enzyme compound II and a sulphenium radical cation. This conclusion was also supported by spectrophotometric analysis of catalytic intermediates of the enzyme, showing the accumulation of compound II. Moreover, chiral HPLC analyses showed that MPO oxidation of alkyl aryl sulphides produced the corresponding (R)-sulphoxides with a low enantioselectivity (4-8%). Chloride ion effects on the MPO-catalysed oxygenation of sulphides were also studied. Chloride acted as a substrate for MPO and as an activator in MPO-catalysed sulphoxidation. Inhibition occurred at chloride concentrations above 120 mM, whereas below 120 mM, chloride increased the reaction rate when using p-tolyl methyl sulphide as the substrate. In the presence of 100 mM chloride the catalytic efficiency (kcat/Km) of MPO increased 3-4-fold, whatever the sulphide considered, but racemic products were obtained. These data have been interpreted in the light of known structural information on the accessibility of the distal haem cavity. PMID:9742209
Wang, Ming-Jie; Cai, Wen-Jie; Zhu, Yi-Chun
2016-05-15
As a gasotransmitter, hydrogen sulphide exerts its extensive physiological and pathophysiological effects in mammals. The interaction between sulphur atoms and signalling molecules forms a cascade that modulates cellular functions and homeostasis. In this review, we focus on the signalling mechanism underlying the effect of hydrogen sulphide in the cardiovascular system and metabolism as well as the biological relevance to human diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles
NASA Astrophysics Data System (ADS)
Mungall, J. E.; Brenan, J. M.; Godel, B.; Barnes, S. J.; Gaillard, F.
2015-03-01
Emissions of sulphur and metals from magmas in Earth’s shallow crust can have global impacts on human society. Sulphur-bearing gases emitted into the atmosphere during volcanic eruptions affect climate, and metals and sulphur can accumulate in the crust above a magma reservoir to form giant copper and gold ore deposits, as well as massive sulphur anomalies. The volumes of sulphur and metals that accumulate in the crust over time exceed the amounts that could have been derived from an isolated magma reservoir. They are instead thought to come from injections of multiple new batches of vapour- and sulphide-saturated magmas into the existing reservoirs. However, the mechanism for the selective upward transfer of sulphur and metals is poorly understood because their main carrier phase, sulphide melt, is dense and is assumed to settle to the bottoms of magma reservoirs. Here we use laboratory experiments as well as gas-speciation and mass-balance models to show that droplets of sulphide melt can attach to vapour bubbles to form compound drops that float. We demonstrate the feasibility of this mechanism for the upward mobility of sulphide liquids to the shallow crust. Our work provides a mechanism for the atmospheric release of large amounts of sulphur, and contradicts the widely held assumption that dense sulphide liquids rich in sulphur, copper and gold will remain sequestered in the deep crust.
Method and etchant to join ag-clad BSSCO superconducting tape
Balachandran, Uthamalingam; Iyer, Anand N.; Huang, Jiann Yuan
1999-01-01
A method of removing a silver cladding from high temperature superconducting material clad in silver (HTS) is disclosed. The silver clad HTS is contacted with an aqueous solution of HNO.sub.3 followed by an aqueous solution of NH.sub.4 OH and H.sub.2 O.sub.2 for a time sufficient to remove the silver cladding from the superconducting material without adversely affecting the superconducting properties of the superconducting material. A portion of the silver cladding may be masked with a material chemically impervious to HNO.sub.3 and to a combination of NH.sub.4 OH and H.sub.2 O.sub.2 to preserve the Ag coating. A silver clad superconductor is disclosed, made in accordance with the method discussed.
Gorup, Luiz F; Longo, Elson; Leite, Edson R; Camargo, Emerson R
2011-08-15
A new method to stabilize silver nanoparticles by the addition of ammonia is proposed. Colloidal dispersions of silver nanoparticles were synthesized by the Turkevich method using sodium citrate to reduce silver nitrate at high pH and at 90 °C. After approximately 12 min, a diluted ammonia solution was added to the reaction flask to form soluble diamine silver (I) complexes that played an important growth moderating role, making it possible to stabilize metallic silver nanoparticles with sizes as small as 1.6 nm after 17 min of reaction. Colloidal dispersions were characterized by UV-visible absorption spectroscopy, X-ray diffraction, and transmission electronic microscopy. Copyright © 2011 Elsevier Inc. All rights reserved.
Deformation, geochemistry, and origin of massive sulfide deposits, Gossan lead district, Virginia.
Gair, J.E.; Slack, J.F.
1984-01-01
Lenses and layers of massive sulphides comprise a discontinuous horizon in the late Proterozoic metasedimentary Ashe formation. The folded and brecciated sulphides include pyrrhotite, minor chalcopyrite, sphalerite and pyrite, and rare arsenopyrite and galena. The deposits were mined for supergene copper, later for gossan iron, and finally for sulphur. The Ashe formation is interpreted to be marine turbidites, and contains lenses of mafic rocks of probable tholeiitic basalt parentage. Mineralogically and chemically distinctive rocks - for the Ashe formation - are interbedded with the sulphides and may represent metamorphosed alteration zones and/or mixed chemical and clastic sediments. The sulphide deposits are interpreted as syngenetic sediments, modified by deformation during metamorphism. Their deposition occurred in a deep, elongate marine basin overlying a crustal rift zone.-G.J.N.
Cavassin, Emerson Danguy; de Figueiredo, Luiz Francisco Poli; Otoch, José Pinhata; Seckler, Marcelo Martins; de Oliveira, Roberto Angelo; Franco, Fabiane Fantinelli; Marangoni, Valeria Spolon; Zucolotto, Valtencir; Levin, Anna Sara Shafferman; Costa, Silvia Figueiredo
2015-10-05
Multidrug resistant microorganisms are a growing challenge and new substances that can be useful to treat infections due to these microorganisms are needed. Silver nanoparticle may be a future option for treatment of these infections, however, the methods described in vitro to evaluate the inhibitory effect are controversial. This study evaluated the in vitro activity of silver nanoparticles against 36 susceptible and 54 multidrug resistant Gram-positive and Gram-negative bacteria from clinical sources. The multidrug resistant bacteria were oxacilin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus spp., carbapenem- and polymyxin B-resistant A. baumannii, carbapenem-resistant P. aeruginosa and carbapenem-resistant Enterobacteriaceae. We analyzed silver nanoparticles stabilized with citrate, chitosan and polyvinyl alcohol and commercial silver nanoparticle. Silver sulfadiazine and silver nitrate were used as control. Different methods were used: agar diffusion, minimum inhibitory concentration, minimum bactericidal concentration and time-kill. The activity of AgNPs using diffusion in solid media and the MIC methods showed similar effect against MDR and antimicrobial-susceptible isolates, with a higher effect against Gram-negative isolates. The better results were achieved with citrate and chitosan silver nanoparticle, both with MIC90 of 6.75 μg mL(-1), which can be due the lower stability of these particles and, consequently, release of Ag(+) ions as revealed by X-ray diffraction (XRD). The bactericidal effect was higher against antimicrobial-susceptible bacteria. It seems that agar diffusion method can be used as screening test, minimum inhibitory concentration/minimum bactericidal concentration and time kill showed to be useful methods. The activity of commercial silver nanoparticle and silver controls did not exceed the activity of the citrate and chitosan silver nanoparticles. The in vitro inhibitory effect was stronger against Gram-negative than Gram-positive, and similar against multidrug resistant and susceptible bacteria, with best result achieved using citrate and chitosan silver nanoparticles. The bactericidal effect of silver nanoparticle may, in the future, be translated into important therapeutic and clinical options, especially considering the shortage of new antimicrobials against the emerging antimicrobial resistant microorganisms, in particular against Gram-negative bacteria.
Synthesis of Silver Polymer Nanocomposites and Their Antibacterial Activity
NASA Astrophysics Data System (ADS)
Gavade, Chaitali; Shah, Sunil; Singh, N. L.
2011-07-01
PVA (Polyvinyl Alcohol) silver nanocomposites of different sizes were prepared by chemical reduction method. Silver nitrate was taken as the metal precursor and amine hydrazine as a reducing agent. The formation of the silver nanoparticles was noticed using UV- visible absorption spectroscopy. The UV-visible spectroscopy revealed the formation of silver nanoparticles by exhibiting the surface plasmon resonance. The bactericidal activity due to silver release from the surface was determined by the modification of conventional diffusion method. Salmonella typhimurium, Serratia sps and Shigella sps were used as test bacteria which are gram-negative type bacteria. Effect of the different sizes of silver nano particles on antibacterial efficiency was discussed. Zones of inhibition were measured after 24 hours of incubation at 37 °C which gave 20 mm radius for high concentration of silver nanoparticles.
NASA Astrophysics Data System (ADS)
Duuring, Paul; Bleeker, Wouter; Beresford, Steve W.; Hayward, Nicholas
2010-03-01
Perseverance is a world-class, komatiite-hosted nickel sulphide deposit situated in the well-endowed Leinster nickel camp of the Agnew-Wiluna greenstone belt, Western Australia. The mine stratigraphy at Perseverance trends north-northwest (NNW), dips steeply to the west, and is overturned. Stratigraphic footwall units lie along the western margin of the Perseverance Ultramafic Complex (PUC). The PUC comprises a basal nickel sulphide-bearing orthocumulate- to mesocumulate-textured komatiite that is overlain by a thicker, nickel sulphide-poor, dunite lens. Hanging wall rocks include rhyodacite that is texturally and compositionally similar to footwall volcanic rocks. These rocks separate the PUC from a second sequence of nickeliferous, E-facing, spinifex-textured komatiite units (i.e. the East Perseverance komatiite). Past workers argue for a conformable stratigraphic contact between the PUC and the East Perseverance komatiite and conclude that the PUC is extrusive. This study, however, clearly demonstrates that these komatiite sequences are discordant, implying that the PUC may have intruded rhyodacite country rock as a sill with subsequent structural juxtaposition against the East Perseverance komatiite. Early N-S shortening associated with the regional DI deformation event (corresponding to the local DP1 to DP3 events at Perseverance) resulted in the heterogeneous partitioning of strain along the margins of the competent dunite. A mylonite developed in the more ductile footwall rocks along the footwall margin of the PUC, while isoclinal F3 folds, such as the Hanging wall limb and Felsic Nose folds, formed in low-mean stress domains along the fringes of the elongated dunite lens. Strata-bound massive and disseminated nickel sulphides were passively fold thickened in hinge areas of isoclinal folds, whereas basal massive sulphides lubricated fold limbs and promoted thrust movement along shallowly dipping lithological contacts. Massive sulphides were physically remobilised up to 20 m from their primary footwall position into deposit-scale fold hinges to form the 1A and Felsic Nose orebodies. First-order controls on the geometry of the Perseverance deposit include the thermomechanical erosion of footwall rocks and the channelling of the mineralised komatiitic magma. Second- or third-order controls are several postvolcanic deformation events, which resulted in the progressive folding and shearing of the footwall contact, as well as the passive fold thickening of massive and disseminated sulphide orebodies. Massive sulphides were physically remobilised into multiple generations of fold hinges and shear zones. Important implications for near-mine exploration in the Leinster camp include identifying nickeliferous komatiite units, defining their three-dimensional geometry, and targeting fold hinge areas. Fold plunge directions and stretching lineations are indicators of potential plunge directions of massive sulphide orebodies.
Antimicrobial activity of silver nanoparticles impregnated wound dressing
NASA Astrophysics Data System (ADS)
Shinde, V. V.; Jadhav, P. R.; Patil, P. S.
2013-06-01
In this work, silver nanoparticles were synthesized by simple wet chemical reduction method. The silver nitrate was reduced by Sodium borohydride used as reducing agent and Poly (vinyl pyrrolidone) (PVP) as stabilizing agent. The formation of silver nanoparticles was evaluated by UV-visible spectroscope and transmission electron microscope (TEM). Absorption spectrum consist two plasmon peaks at 410 and 668 nm revels the formation of anisotropic nanoparticles confirmed by TEM. The formation of silver nanoparticles was also evidenced by dynamic light scattering (DLS) study. DLS showed polydisperse silver nanoparticles with hydrodynamic size 32 nm. Protecting mechanism of PVP was manifested by FT-Raman study. Silver nanoparticles were impregnated into wound dressing by sonochemical method. The Kirby-Bauer disc diffusion methods were used for antimicrobial susceptibility testing. The antimicrobial activity of the samples has been tested against gram-negative bacterium Escherichia coli and gram-positive bacterium Staphylococcus aureus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jian-Yang; Hsueh, Yu-Lee; Huang, Jung-Jie, E-mail: jjhuang@mdu.edu.tw
2014-06-01
Silver nanowires were synthesized by the polyol method employing ethylene glycol, Poly(N-vinylpyrrolidone) (PVP) and silver nitrate (AgNO{sub 3}) as the precursors. Most of the studies used metal salts (PtCl{sub 2}, NaCl) as seed precursor to synthesize the silver nanowires. In the study, the metal salts were not used and the concentration of capping agent was changed to observe the aspect ratio of silver nanowires. The experimental results showed that controlling synthesis temperature, Poly(N-vinylpyrrolidone) (PVP) molecular weight, reactant concentrations, and addition rates of AgNO{sub 3} affects the growth characteristics of silver nanowires. Field-emission scanning electron microscopy, UV–vis spectrophotometry, and X-ray diffractometrymore » were employed to characterize the silver nanowires. As increasing the concentration of PVP, the silver nanowire diameter widened and resulted in a smaller aspect ratio. We successfully prepared silver nanowires (diameter: 170 nm, length: 20 μm). The silver nanowire thin film suspension showed high transmittance, low sheet resistance, and may be used for transparent conductive film applications. - Graphical abstract: The FE-SEM image shows that nanostructures with considerable quantities of silver nanowires can also be produced when the PVP (Mw=360 K)/AgNO{sub 3} molar ratio was 2.5. - Highlights: • The polyol method was used to synthesize of silver nanowire. • The metal seed precursors were not used before synthesizing the silver nanowires. • The silver nanowire diameter and length was 170 nm and 20 μm, respectively. • Silver nanowire film with high transmittance (>85%) and low sheet resistance (<110 Ω/sq)« less
A green synthesis method for large area silver thin film containing nanoparticles.
Shinde, N M; Lokhande, A C; Lokhande, C D
2014-07-05
The green synthesis method is inexpensive and convenient for large area deposition of thin films. For the first time, a green synthesis method for large area silver thin film containing nanoparticles is reported. Silver nanostructured films are deposited using silver nitrate solution and guava leaves extract. The study confirmed that the reaction time plays a key role in the growth and shape/size control of silver nanoparticles. The properties of silver films are studied using UV-visible spectrophotometer, scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), contact angle, Fourier-transform Raman (FT-Raman) spectroscopy and Photoluminescence (PL) techniques. Finally, as an application, these films are used effectively in antibacterial activity study. Copyright © 2014 Elsevier B.V. All rights reserved.
Method and etchant to join Ag-clad BSSCO superconducting tape
Balachandran, U.; Iyer, A.N.; Huang, J.Y.
1999-03-16
A method of removing a silver cladding from high temperature superconducting material clad in silver (HTS) is disclosed. The silver clad HTS is contacted with an aqueous solution of HNO{sub 3} followed by an aqueous solution of NH{sub 4}OH and H{sub 2}O{sub 2} for a time sufficient to remove the silver cladding from the superconducting material without adversely affecting the superconducting properties of the superconducting material. A portion of the silver cladding may be masked with a material chemically impervious to HNO{sub 3} and to a combination of NH{sub 4}OH and H{sub 2}O{sub 2} to preserve the Ag coating. A silver clad superconductor is disclosed, made in accordance with the method discussed. 3 figs.
NASA Astrophysics Data System (ADS)
Gole, Martin J.
2014-10-01
Komatiite-hosted disseminated Ni sulphide deposits in the Agnew-Wiluna greenstone belt occur both above and below the olivine isograd that was imposed on the greenstone sequence during the M2 metamorphic/deformation event. Deposits in the northern and central part of the belt and that are located below the isograd (Mount Keith, Honeymoon Well and West Jordan) have complex sulphide mineralogy and strongly zoned sulphide assemblages. These range from least-altered assemblages of pentlandite-pyrrhotite-chalcopyrite±pyrite to altered assemblages of pentlandite±chalcopyrite, pentlandite-heazlewoodite (or millerite), heazlewoodite (or millerite), and rarely to heazlewoodite-native Ni. Deposits to the south and that are above of the olivine isograd (Six Mile, Goliath North) are dominated by less complex magmatic assemblages with a lower proportion of weakly altered pentlandite±chalcopyrite assemblages. More altered assemblages are uncommon in these deposits and occur as isolated patches around the periphery of the deposits. The sulphide zonation is reflected by whole-rock reductions in S, Cu, Fe and Zn, whereas Ni, Pt and Pd and, with some exceptions, Co are conservative. The leaching of S, Cu, Fe and Zn from sulphide assemblages and the whole rock was initiated by highly reduced conditions that were produced during low fluid/rock ratio serpentinization. Consumption of H2O resulted in Cl, a component of the fluid, being concentrated sufficiently to stabilise iowaite as part of lizardite-rich assemblages. Once the rate of olivine hydration reactions declined and during and after expansion and associated fracturing of the ultramafic sequence allowed higher fluid access, a more fluid-dominated environment formed and new carbonate-bearing fluid gained access to varying extents to the ultramafic rock sequence. This drove Cl from iowaite (to form pyroaurite) and caused the sulphide assemblages to be altered from the original magmatic assemblages and compositions to those stable at the prevailing fO2 and fS2 conditions. Mass transfer was made possible via metal chloride complexes and H2S with fluids driven by deformation associated with the M2 metamorphism. Disseminated deposits in higher metamorphic grade terrains where olivine was stable during peak metamorphism did not undergo the metasomatism seen in the deposits in areas of lower metamorphic grade. Some minor leaching of S, Fe and Cu occurred around the periphery of the deposits during early, pre-M2 peak metamorphism, but once olivine stability was reached the driving force for the series of leaching reactions was exhausted. The effect of this process on the original magmatic sulphides is to induce significant variability in texture, mineralogy and bulk composition and to markedly reduce the Fe and S contents of the sulphide fraction (in extreme cases to zero for both elements), and to reduce the volume of the sulphide fraction per unit of Ni. These changes impact unfavourably on Ni sulphide recoveries and metallurgical characteristics of these Ni ores.
Slack, John F.; Rosa, Diogo; Falck, Hendrik
2015-01-01
Bulk geochemical data acquired for host sedimentary rocks to the Late Ordovician Citronen Fjord sediment-hosted Zn-Pb deposit in North Greenland constrain the redox state of bottom waters prior to and during sulphide mineralization. Downhole profiles for one drill core show trends for redox proxies (MnO, Mo, Ce anomalies) that suggest the local basin bottom waters were initially oxic, changing to anoxic and locally sulphidic concurrent with sulphide mineralization. We propose that this major redox change was caused by two broadly coeval processes (1) emplacement of debris-flow conglomerates that sealed off the basin from oxic seawater, and (2) venting of reduced hydrothermal fluids into the basin. Both processes may have increased H2S in bottom waters and thus prevented the oxidation of sulphides on the sea floor.
Hill, April A; Lipert, Robert J; Porter, Marc D
2010-03-15
The increase in bacterial resistance to antibiotics has led to resurgence in the use of silver as a biocidal agent in applications ranging from washing machine additives to the drinking water treatment system on the International Space Station (ISS). However, growing concerns about the possible toxicity of colloidal silver to bacteria, aquatic organisms and humans have led to recently issued regulations by the US EPA and FDA regarding the usage of silver. As part of an ongoing project, we have developed a rapid, simple method for determining total silver, both ionic (silver(I)) and colloidal, in 0.1-1mg/L aqueous samples, which spans the ISS potable water target of 0.3-0.5mg/L (total silver) and meets the US EPA limit of 0.1mg/L in drinking water. The method is based on colorimetric solid-phase extraction (C-SPE) and involves the extraction of silver(I) from water samples by passage through a solid-phase membrane impregnated with the colorimetric reagent DMABR (5-[4-(dimethylamino)benzylidene]rhodanine). Silver(I) exhaustively reacts with impregnated DMABR to form a colored compound, which is quantified using a handheld diffuse reflectance spectrophotometer. Total silver is determined by first passing the sample through a cartridge containing Oxone, which exhaustively oxidizes colloidal silver to dissolved silver(I). The method, which takes less than 2 min to complete and requires only approximately 1 mL of sample, has been validated through a series of tests, including a comparison with the ICP-MS analysis of a water sample from ISS that contained both silver(I) and colloidal silver. Potential earth-bound applications are also briefly discussed. Copyright (c) 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Darling, J. R.; Storey, C. D.; Hawkesworth, C. J.; Lightfoot, P. C.
2012-12-01
Laser-ablation (LA) multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) is ideally suited to in situ determination of isotope ratios in sulphide minerals. Using samples of magmatic sulphide ore from the Sudbury impact structure, we test LA-MC-ICPMS analytical protocols that aim to meet a range of analytical challenges in the analysis of Pb isotopes. These include: potential matrix sensitive isotopic fractionation; interferences on Pb isotopes; low melting points of many sulphide minerals; the availability of standards. Magmatic sulphides of wide ranging mineralogy (pyrrhotite, pentlandite, chalcopyrite, pyrite and sphalerite) were analysed for Pb isotopic composition, using the silicate glass NIST SRM 610 as an external standard to correct for instrumental mass-fractionation. Despite matrix sensitive melting and re-deposition around ablation pits, several lines of evidence indicate that all analyses are accurate, within typical analytical uncertainties of 0.003-2% (2σ), and that the defined approach is insensitive to compositional diversity in sample matrix: (a) laser ablation and dissolution based measurements of sulphide powders are in agreement; (b) analyses from each sample define isochron ages within uncertainty of the known crystallization age (1850 Ma); (c) the results of sulphide measurements by laser ablation are consistent with age-corrected feldspar analyses from the same samples. The results have important implications for ore formation in Sudbury. The Pb isotope data regressions are consistent with age corrected feldspar analyses from each respective sample, which together with time integrated Th/U ratios that match whole rock values (3.1, 4.0 and 6.1 for the Worthington, Copper Cliff and Parkin Offset Dykes, respectively) indicate chemical equilibrium between the silicate and sulphide systems during ore formation. The sulphides within each respective sample have indistinguishable model initial Pb isotope ratios (207Pb/204Pbm), irrespective of mineralogy or texture, indicating a common origin for ores within each of three different Offset Dykes. Furthermore, variations between Offset Dykes (e.g., 207Pb/204Pbm = 15.514 ± 0.012, 15.399 ± 0.009 and 15.275 ± 0.003) show that the ores have differing crustal sources on previously unrecognized scales. Mass balance considerations, particularly for MgO, Ni and Cu, indicate that the spatial distribution of mafic target rocks played a significant role in controlling the mineralization potential in different parts of the melt sheet.
NASA Astrophysics Data System (ADS)
Lerouge, C.; Cailteux, J.; Kampunzu, A. B.; Milesi, J. P.; Fléhoc, C.
2005-07-01
Luiswishi is a Congo-type Neoproterozoic sediment-hosted stratiform Cu-Co ore deposit of the Central Africa Copperbelt, located northwest of Lubumbashi (DRC). The ores form two main Cu-Co orebodies hosted by the Mines Subgroup, one in the lower part of the Kamoto Formation and the other at the base of the Dolomitic Shales Formation. Sulphides occur essentially as early parallel layers of chalcopyrite and carrolite, and secondarily as late stockwork sulphides cross-cutting the bedding and the early sulphide generation. Both types of stratiform and stockwork chalcopyrite and carrolite were systematically analyzed for sulphur isotopes, along the lithostratigraphic succession of the Mine Series. The quite similar δ 34S values of stratiform sulphides and late stockwork sulphides suggest an in situ recrystallization or a slight remobilization of stockwork sulphides without attainment of isotopic equilibrium between different sulphide phases (chalcopyrite and carrolite). The distribution of δ 34S values (-14.4‰ to +17.5‰) combined with the lithology indicates a strong stratigraphic control of the sulphur isotope signature, supporting bacterial sulphate reduction during early diagenesis of the host sediments, in a shallow marine to lacustrine environment. Petrological features combined with sulphur isotopic data of sulphides at Luiswishi and previous results on nodules of anhydrite in the Mine Series indicate a dominant seawater/lacustrine origin for sulphates, precluding a possible hydrothermal participation. The high positive δ 34S values of sulphides in the lower orebody at Luiswishi, hosted in massive chloritic-dolomitic siltite (known as Grey R.A.T.), fine-grained stratified dolostone (D.Strat.) and silicified-stromatolitic dolomites alternating with chloritic-dolomitic silty beds (R.S.F.), suggest that they were probably deposited during a period of regression in a basin cut off from seawater. The variations of δ 34S values (i.e. the decrease of δ 34S values from the Kamoto Formation to the overlying Dolomitic Shales and then the slight increase from S.D.2d to S.D.3a and S.D.3b members) are in perfect agreement with the inferred lithological and transgressive-regressive evolution of the ore-hosting sedimentary rocks [Cailteux, J., 1994. Lithostratigraphy of the Neoproterozoic Shaba-type (Zaire) Roan Supergroup and metallogenesis of associated stratiform mineralization. In: Kampunzu A.B., Lubala, R.T. (Eds.), Neoproterozoic Belts of Zambia, Zaire and Namibia. Journal of African Earth Sciences 19, 279-301].
Induced Polarization Surveying for Acid Rock Screening in Highway Design
NASA Astrophysics Data System (ADS)
Butler, K. E.; Al, T.; Bishop, T.
2004-05-01
Highway and pipeline construction agencies have become increasingly vigilant in their efforts to avoid cutting through sulphide-bearing bedrock that has potential to produce acid rock drainage. Blasting and fragmentation of such rock increases the surface area available for sulphide oxidation and hence increases the risk of acid rock drainage unless the rock contains enough natural buffering capacity to neutralize the pH. In December, 2001, the New Brunswick Department of Transportation (NBOT) sponsored a field trial of geophysical surveying in order to assess its suitability as a screening tool for locating near-surface sulphides along proposed highway alignments. The goal was to develop a protocol that would allow existing programs of drilling and geochemical testing to be targeted more effectively, and provide design engineers with the information needed to reduce rock cuts where necessary and dispose of blasted material in a responsible fashion. Induced polarization (IP) was chosen as the primary geophysical method given its ability to detect low-grade disseminated mineralization. The survey was conducted in dipole-dipole mode using an exploration-style time domain IP system, dipoles 8 to 25 m in length, and six potential dipoles for each current dipole location (i.e. n = 1 - 6). Supplementary information was provided by resistivity and VLF-EM surveys sensitive to lateral changes in electrical conductivity, and by magnetic field surveying chosen for its sensitivity to the magnetic susceptibility of pyrrhotite. Geological and geochemical analyses of samples taken from several IP anomalies located along 4.3 line-km of proposed highway confirmed the effectiveness of the screening technique. IP pseudosections from a region of metamorphosed shales and volcaniclastic rocks identified discrete, well-defined mineralized zones. Stronger, overlapping, and more laterally extensive IP anomalies were observed over a section of graphitic and sulphide-bearing metasedimentary rocks. Attempts to use spectral IP characteristics to determine relative abundances of sulphides and graphite were not conclusive. The overall effectiveness of the screening technique however encouraged NBDOT to apply it to an additional 50 km of planned rock cuts along the corridor selected for the new Trans-Canada Highway.
Haouzi, Philippe; Sonobe, Takashi; Torsell-Tubbs, Nicole; Prokopczyk, Bogdan; Chenuel, Bruno; Klingerman, Candice M.
2014-01-01
Hydrogen sulphide (H2S), a chemical hazard in oil and gas production, has recently become a dreadful method of suicide, posing specific risks and challenges for the first responders. Currently, there is no proven effective treatment against H2S poisoning and its severe neurological, respiratory or cardiac after-effects. We have recently described that H2S is present in various compartments, or pools, in the body during sulphide exposure, which have different levels of toxicity. The general goals of our study were to (1) determine the concentrations and kinetics of the various pools of hydrogen sulphide in the blood, i.e., gaseous (CgH2S) versus total sulphide, i.e., reacting with monobromobimane (CMBBH2S), during and following H2S exposure in a small and large mammal and (2) establish the interaction between the pools of H2S and a methemoglobin (MetHb) solution or a high dose of hydroxocobalamin (HyCo). We found that CgH2S during and following H2S infusion was similar in sedated sheep and rats at any given rate of infusion/kg and provoked symptoms, i.e., hyperpnea and apnea, at the same CgH2S. After H2S administration was stopped, CgH2S disappeared within 1 min. CMBBH2S also dropped to 2–3μM, but remained above baseline levels for at least 30 min. Infusion of a MetHb solution during H2S infusion produced an immediate reduction in the free/soluble pool of H2S only, whereas CMBBH2S increased by severalfold. HyCo (70 mg/kg) also decreased the concentrations of free/soluble H2S to almost zero; CgH2S returned to pre-HyCo levels within a maximum of 20 min, if H2S infusion is maintained. These results are discussed in the context of a relevant scenario, wherein antidotes can only be administered after H2S exposure. PMID:25015662
High field CdS detector for infrared radiation
NASA Technical Reports Server (NTRS)
Tyagi, R. C.; Boer, K. W.; Hadley, H. C.; Robertson, J. B.
1972-01-01
New and highly sensitive method of detecting infrared irradiation makes possible solid state infrared detector which is more sensitive near room temperature than usual photoconductive low band gap semiconductor devices. Reconfiguration of high field domains in cadmium sulphide crystals provides basis for discovery.
Ehdaie, Beeta; Rento, Chloe T.; Son, Veronica; Turner, Sydney S.; Samie, Amidou; Dillingham, Rebecca A.
2017-01-01
The World Health Organization (WHO) recognizes point-of-use water treatment (PoUWT) technologies as effective means to improve water quality. This paper investigates long-term performance and social acceptance of a novel PoUWT technology, a silver-infused ceramic tablet, in Limpopo Province, South Africa. When placed in a water storage container, the silver-embedded ceramic tablet releases silver ions into water, thereby disinfecting microbial pathogens and leaving the water safe for human consumption. As a result of its simplicity and efficiency, the silver-embedded ceramic tablet can serve as a stand-alone PoUWT method and as a secondary PoUWT to improve exisitng PoUWT methods, such as ceramic water filters. In this paper, three PoUWT interventions were conducted to evaluate the silver-embedded ceramic tablet: (1) the silver-embedded ceramic tablet as a stand-alone PoUWT method, (2) ceramic water filters stand-alone, and (3) a filter-tablet combination. The filter-tablet combination evaluates the silver-embedded ceramic tablet as a secondary PoUWT method when placed in the lower reservoir of the ceramic water filter system to provide residual disinfection post-filtration. Samples were collected from 79 households over one year and analyzed for turbidity, total silver levels and coliform bacteria. Results show that the silver-embedded ceramic tablet effectively reduced total coliform bacteria (TC) and E. coli when used as a stand-alone PoUWT method and when used in combination with ceramic water filters. The silver-embedded ceramic tablet’s performance as a stand-alone PoUWT method was comparable to current inexpensive, single-use PoUWT methods, demonstrating 100% and 75% median reduction in E. coli and TC, respectively, after two months of use. Overall, the the filter-tablet combination performed the best of the three interventions, providing a 100% average percent reduction in E. coli over one year. User surveys were also conducted and indicated that the silver-embedded ceramic tablet was simple to use and culturally appropriate. Also, silver levels in all treated water samples remained below 20 μg/L, significantly lower than the drinking water standard of 100 μg/L, making it safe for consumption. Long-term data demonstrates that the silver-embedded ceramic tablet has beneficial effects even after one year of use. This study demonstrates that the silver-embedded ceramic tablet can effectively improve water quality when used alone, or with ceramic water filters, to reduce rates of recontamination. Therefore, the tablet has the potential to provide a low-cost means to purify water in resource-limited settings. PMID:28095435
Ehdaie, Beeta; Rento, Chloe T; Son, Veronica; Turner, Sydney S; Samie, Amidou; Dillingham, Rebecca A; Smith, James A
2017-01-01
The World Health Organization (WHO) recognizes point-of-use water treatment (PoUWT) technologies as effective means to improve water quality. This paper investigates long-term performance and social acceptance of a novel PoUWT technology, a silver-infused ceramic tablet, in Limpopo Province, South Africa. When placed in a water storage container, the silver-embedded ceramic tablet releases silver ions into water, thereby disinfecting microbial pathogens and leaving the water safe for human consumption. As a result of its simplicity and efficiency, the silver-embedded ceramic tablet can serve as a stand-alone PoUWT method and as a secondary PoUWT to improve exisitng PoUWT methods, such as ceramic water filters. In this paper, three PoUWT interventions were conducted to evaluate the silver-embedded ceramic tablet: (1) the silver-embedded ceramic tablet as a stand-alone PoUWT method, (2) ceramic water filters stand-alone, and (3) a filter-tablet combination. The filter-tablet combination evaluates the silver-embedded ceramic tablet as a secondary PoUWT method when placed in the lower reservoir of the ceramic water filter system to provide residual disinfection post-filtration. Samples were collected from 79 households over one year and analyzed for turbidity, total silver levels and coliform bacteria. Results show that the silver-embedded ceramic tablet effectively reduced total coliform bacteria (TC) and E. coli when used as a stand-alone PoUWT method and when used in combination with ceramic water filters. The silver-embedded ceramic tablet's performance as a stand-alone PoUWT method was comparable to current inexpensive, single-use PoUWT methods, demonstrating 100% and 75% median reduction in E. coli and TC, respectively, after two months of use. Overall, the the filter-tablet combination performed the best of the three interventions, providing a 100% average percent reduction in E. coli over one year. User surveys were also conducted and indicated that the silver-embedded ceramic tablet was simple to use and culturally appropriate. Also, silver levels in all treated water samples remained below 20 μg/L, significantly lower than the drinking water standard of 100 μg/L, making it safe for consumption. Long-term data demonstrates that the silver-embedded ceramic tablet has beneficial effects even after one year of use. This study demonstrates that the silver-embedded ceramic tablet can effectively improve water quality when used alone, or with ceramic water filters, to reduce rates of recontamination. Therefore, the tablet has the potential to provide a low-cost means to purify water in resource-limited settings.
Briggs, Scott; McKelvie, Jennifer; Sleep, Brent; Krol, Magdalena
2017-12-01
The use of a deep geological repository (DGR) for the long-term disposal of used nuclear fuel is an approach currently being investigated by several agencies worldwide, including Canada's Nuclear Waste Management Organization (NWMO). Within the DGR, used nuclear fuel will be placed in copper-coated steel containers and surrounded by a bentonite clay buffer. While copper is generally thermodynamically stable, corrosion can occur due to the presence of sulphide under anaerobic conditions. As such, understanding transport of sulphide through the engineered barrier system to the used fuel container is an important consideration in DGR design. In this study, a three-dimensional (3D) model of sulphide transport in a DGR was developed. The numerical model is implemented using COMSOL Multiphysics, a commercial finite element software package. Previous sulphide transport models of the NWMO repository used a simplified one-dimensional system. This work illustrates the importance of 3D modelling to capture non-uniform effects, as results showed locations of maximum sulphide flux are 1.7 times higher than the average flux to the used fuel container. Copyright © 2017. Published by Elsevier B.V.
An emerging role for gasotransmitters in the control of breathing and ionic regulation in fish.
Perry, Steve; Kumai, Y; Porteus, C S; Tzaneva, V; Kwong, R W M
2016-02-01
Three gases comprising nitric oxide, carbon monoxide and hydrogen sulphide, collectively are termed gasotransmitters. The gasotransmitters control several physiological functions in fish by acting as intracellular signaling molecules. Hydrogen sulphide, first implicated in vasomotor control in fish, plays a critical role in oxygen chemoreception owing to its production and downstream effects within the oxygen chemosensory cells, the neuroepithelial cells. Indeed, there is emerging evidence that hydrogen sulphide may contribute to oxygen sensing in both fish and mammals by promoting membrane depolarization of the chemosensory cells. Unlike hydrogen sulphide which stimulates breathing in zebrafish, carbon monoxide inhibits ventilation in goldfish and zebrafish whereas nitric oxide stimulates breathing in zebrafish larvae while inhibiting breathing in adults. Gasotransmitters also modulate ionic uptake in zebrafish. Though nothing is known about the role of CO, reduced activities of branchial Na(+)/K(+)-ATPase and H(+)-ATPase activities in the presence of NO donors suggest an inhibitory role of NO in fish osmoregulation. Hydrogen sulphide inhibits Na(+) uptake in zebrafish larvae and contributes to lowering Na(+) uptake capacity in fish acclimated to Na(+)-enriched water whereas it stimulates Ca(2+) uptake in larvae exposed to Ca(2+)-poor water.
Influence of surfaces on sulphidogenic bacteria.
Bass, C J; Webb, J S; Sanders, P F; Lappin-Scott, H M
1996-01-01
Sulphidogenic bacteria in oil reservoirs are of great economic importance in terms of souring, fouling and corrosion. Mixed cultures containing these bacteria were isolated from chalk formations in North Sea oil reservoirs. These were thermophilic cultures, growing optimally at 60°C. Oil formations are porous matrices, providing a very large surface area and ideal conditions for bacterial attachment, survival and growth. This study included assessments of sulphide production rates of thermophilic (t-)sulphidogen consortia with and without additional surfaces. The availability of a surface contributed significantly to the rate and extent of sulphide generation. Surfaces were offered in varying amounts to growing planktonic cultures: significantly more sulphide was produced from cultures in contact with a surface than from identical cultures in the absence of a surface. In another series of experiments, t-sulphidogens were added to chalk rock chips in the presence of nutrients and incubated for several months. This resulted in rapid sulphide generation, the final concentration being related to the initial nutrient concentration. Subsequent nutrient addition resulted in renewed sulphide generation. It is suggested that bacteria in reservoirs can withstand long periods of nutrient deprivation while attached within the porous rock matrix and opportunistically utilise nutrients when they become available.
Mass spectrometry-compatible silver staining of histones resolved on acetic acid-urea-Triton PAGE.
Pramod, Khare Satyajeet; Bharat, Khade; Sanjay, Gupta
2009-05-01
Acetic acid-Urea-Triton (AUT) PAGE is commonly used method to separate histone variants and their post-translationally modified forms. Coomassie staining is the preferred method for protein visualization; however, its sensitivity is less than that of silver staining. Though silver staining of histones in AUT-PAGE has been reported, the method is time-consuming, dependent on prior staining by Amido black and has not been reported suitable for mass spectrometry. Here, we propose 'SDS-Silver' method for rapid, sensitive and mass spectrometry-compatible staining of histones resolved on AUT-PAGE.
Focal Plane Array Technology for IR Detectors
1996-06-01
samples are determined. Our results on p-(HgCd)Te coated with passivation layers are evident from Figs 3.1 and 3.2. In the first case (native sulphides ...samples are evident from the Table II. We studied influence of (a) atmosphere, (b) ZnS passivation, (c) native sulphides + ZnS passivation. The (HgCd)Te...native sulphides + ZnS, full symbols RH<O, open symbols RH>O. 10 5 6408A3 10- 010o E 102 000 2 days after passivation 10 : 80 days after passivation 0
Reddy, P C; Rangamannar, B
1990-05-01
An accurate and rapid radiochemical method has been developed for the determination of microgram amount of silver employing potassium ethyl xanthate as a substoichiometric radiochemical reagent. The light yellow coloured silver ethyl xanthate formed was extracted into nitrobenzene from sulphuric acid media. The effect of foreign ions on the extraction was studied. The method was applied to the determination of silver content in photofilm washings.
Miltner, M; Makaruk, A; Krischan, J; Harasek, M
2012-01-01
In the present work chemical-oxidative scrubbing as a novel method for the desulphurisation of raw biogas is presented with a special focus on the process potentials and economics. The selective absorption of hydrogen sulphide from gas streams containing high amounts of carbon dioxide using caustic solutions is not trivial but has been treated in literature. However, the application of this method to biogas desulphurisation has not been established so far. Based on rigorous experimental work, an industrial-scale pilot plant has been designed, erected and commissioned at a biogas plant with biogas upgrading and gas grid injection in Austria. Data collected from the 12-month monitored operation has been used to elaborate performance as well as economic parameters for the novel desulphurisation method. The proposed technology offers significant operational advantages regarding the degree of automation and the flexibility towards fluctuations in process boundary conditions. Furthermore, the economic assessment revealed the high competitiveness of the chemical-oxidative scrubbing process compared with other desulphurisation technologies with the named advantageous operational behaviour.
Rasulov, Bakhtiyor A; Pattaeva, Mohichehra A; Yili, Abulimiti; Aisa, Haji Akber
2016-08-01
A simple and green method was developed for the biosynthesis of silver chloride nanoparticles, free from silver nanoparticles, using polysaccharide-based bioflocculant of a diazotrophic rhizobacteria Bradyrhizobium japonicum 36 strain. The synthesized silver chloride nanoparticles were characterized by UV-vis, XRD, FT-IR and TEM. The concentration-dependent and controllable method for silver chloride nanoparticles was developed. The biosynthesized silver chloride nanoparticles exhibited strong antimicrobial activity towards pathogenic microorganisms such as Escherichia coli, Staphylococcus aureus and Candida albicans. The synthesized silver chloride nanoparticles can be exploited as a promising new biocide bionanocomposite against pathogenic microorganisms. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mala, R.; Celsia, A. S. Ruby; Malathi Devi, S.; Geerthika, S.
2017-08-01
Biologically synthesized silver nanoparticle are biocompatible for medical applications. The present work is aimed to synthesize silver nanoparticle using the fruit pulp of Tamarindusindica and to evaluate its antibacterial and anticancer activity against lung cancercell lines. Antibacterial activity was assessed by well diffusion method. Cytotoxicity was evaluated using MTT assay. GC-MS of fruit pulp extract showed the presence of levoglucosenone, n-hexadecanoic acid, 9,12-octadecadienoic acid etc. Antioxidant activity of the fruit pulp was determined by DPPH assay, hydrogen peroxide scavenging assay and lipid peroxidation. The size of biologically synthesized silver nanoparticle varied from 50 nm to 76 nm. It was 59 nm to 98 nm for chemically synthesized silver nanoparticle. Biologically synthesized silver nanoparticle showed 26 mm inhibition zone against E. coli and chemically synthesized silver nanoparticle showed 20 mm. Antioxidant activity of fruit extract by DPPH showed 84 % reduction. The IC 50 of biologically synthesized silver nanoparticle against lung cancer cell lines was 48 µg/ml. It was 95 µg/ml for chemically synthesized silver nanoparticle. The increased activity of biologically synthesized silver nanoparticle was due to its smaller size, stability and the bioactive compounds capping the silver nanoparticle extracted from the fruit extract.
NASA Astrophysics Data System (ADS)
Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.
2016-06-01
Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.
Warner, Benjamin P.
2003-06-24
The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.
NASA Astrophysics Data System (ADS)
Goudarzi, Mojgan; Mir, Noshin; Mousavi-Kamazani, Mehdi; Bagheri, Samira; Salavati-Niasari, Masoud
2016-09-01
In this work, two natural sources, including pomegranate peel extract and cochineal dye were employed for the synthesis of silver nanoparticles. The natural silver complex from pomegranate peel extract resulted in nano-sized structures through solution-phase method, but this method was not efficient for cochineal dye-silver precursor and the as-formed products were highly agglomerated. Therefore, an alternative facile solid-state approach was investigated as for both natural precursors and the results showed successful production of well-dispersed nanoparticles with narrow size distribution for cochineal dye-silver precursor. The products were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray microanalysis (EDX), and Transmission Electron Microscopy (TEM).
NASA Astrophysics Data System (ADS)
Kumar, Deenadayalan Ashok; Palanichamy, V.; Roopan, Selvaraj Mohana
2014-06-01
A green rapid biogenic synthesis of silver nanoparticles AgNPs using Alternanthera dentata (A. dentata) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 430 nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by A. dentata extract was completed within 10 min. Synthesized nanoparticles were characterized using UV-visible spectroscopy; Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM). The extracellular silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method comparable to chemical and microbial methods. The colloidal solution of silver nanoparticles were found to exhibit antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia and, Enterococcus faecalis.
Biogenic catalysis in sulphide minerals' weathering processes and acid mine drainage genesis.
Kušnierová, Mária; Praščáková, Mária; Nowak, Anna K; Gorazda, Katarzyna; Wzorek, Zbigniew
2014-01-01
Bioleaching and biogenesis are the main outputs from a large group of environmental processes participating in the natural material cycle, used in raw materials processing. Bio-oxidation reactions are the main basis for bioleaching procedures, often participating in parallel leaching processes. During the leaching processes of polycomponent sulphide substrates, the factor of process selection also plays an important role, being in direct relation to the electric properties and galvanic effect occurring between the individual components of the leaching substrate. This work gives a summary of the results of a research focused on the possibilities of using biotechnological procedures for treatment of Slovak sulphide ores. The object of the research is extraction of valuable metals, undesirable admixtures and degradation of crystal lattice of sulphides for subsequent chemical leaching processing of precious metals. The results of experiments on the existence of biogenic processes in situ on waste dumps from exploitation containing residual sulphides are also presented. The processes result in acid mine drainage water generation. These waters are strongly mineralised (over 48 g/L) and of low pH; that is why they are very caustic. The arsenic content (2.558 mg/L) in outflowing waters from old mines is high and over the limits set by the law.
Magmatic sulphides in Quaternary Ecuadorian arc magmas
NASA Astrophysics Data System (ADS)
Georgatou, Ariadni; Chiaradia, Massimo; Rezeau, Hervé; Wälle, Markus
2018-01-01
New petrographic and geochemical data on magmatic sulphide inclusions (MSIs) are presented and discussed for 15 Quaternary volcanic centers of the Ecuadorian frontal, main and back volcanic arc. MSIs occur mostly in Fe-Ti oxides (magnetite and/or magnetite-ilmenite pair) and to a lesser extent in silicate minerals (amphibole, plagioclase, and pyroxene). MSIs are present in all volcanic centers ranging in composition from basalt to dacite (SiO2 = 50-67 wt.%), indicating that sulphide saturation occurs at various stages of magmatic evolution and independently from the volcano location along the volcanic arc. MSIs also occur in dioritic, gabbroic and hornblenditic magmatic enclaves of the volcanic rocks. MSIs display variable sizes (1-30 μm) and shapes (globular, ellipsoidal, angular, irregular) and occur mostly as polymineralic inclusions composed of Fe-rich and Cu-poor (pyrrhotite) and Cu-rich (mostly chalcopyrite) phases. Aerial sulphide relative abundances range from 0.3 to 7 ppm in volcanic host rocks and from 13 to 24 ppm in magmatic enclaves. Electron microprobe analyses of MSIs indicate maximum metal contents of Cu = 65.7 wt.%, Fe = 65.2 wt.%, Ni = 10.1 wt.% for those hosted in the volcanic rocks and of Cu = 57.7 wt.%, Fe = 60.9 wt.%, Ni = 5.1 wt.%, for those hosted in magmatic enclaves. Relationships of the sulphide chemistry to the host whole rock chemistry show that with magmatic differentiation (e.g., increasing SiO2) the Cu and Ni content of sulphides decrease whereas the Fe and S contents increase. The opposite behavior is observed with the increase of Cu in the whole rock, because the latter is anti-correlated with the SiO2 whole rock content. Laser ablation ICP-MS analyses of MSIs returned maximum values of PGEs and noble metals of Pd = 30 ppm, Rh = 8.1 ppm, Ag = 92.8 ppm and Au = 0.6 ppm and Pd = 43 ppm, Rh = 22.6 ppm, Ag = 89 ppm and Au = 1 ppm for those hosted in volcanic rocks and magmatic enclaves, respectively. These PGE contents display a different range of values with respect to those in previously investigated magmatic sulphides. MSIs that are Cu- and PGE/Cu-rich are found in less evolved rocks (i.e., lower SiO2 contents) that also display a lower amount of sulphide inclusions. Cu-rich sulphide phases (chalcopyrite ± bornite) are mostly hosted by magnetite, whereas PGE-rich ones consist of a Cu-poor phase (pyrrhotite) hosted by plagioclase. However, no systematic changes in the chemistry of the host silicate mineral are observed in coincidence with the occurrence of MSIs. We use the results of our study to draw some implications on Cu (and other chalcophile elements) behavior during arc magmatic processes potentially associated with the formation of porphyry-type deposits.
Natsuki, Jun; Abe, Takao
2011-07-01
This paper describes a practical and convenient method to prepare stable colloidal silver nanoparticles for use in printed electronic circuits. The method uses a dispersant and two kinds of reducing agents including 2-(dimethylamino) ethanol (DMAE), which play important roles in the reduction of silver ions in an aqueous medium. The effect of DMAE and dispersant, as well as the factors affecting particle size and morphology are investigated. In the formation of the silver nanoparticles, reduction occurs rapidly at room temperature and the silver particles can be separated easily from the mixture in a short time. In addition, organic solvents are not used. Pure, small and relatively uniform particles with a diameter less than 10 nm can be obtained that exhibit high electroconductivity. The silver nanoparticles are stable, and can be isolated as a dried powder that can be fully redispersed in deionized water. This method of producing colloidal silver nanoparticles will find practical use in electronics applications. Copyright © 2011 Elsevier Inc. All rights reserved.
Fluorogenic Ag+–Tetrazolate Aggregation Enables Efficient Fluorescent Biological Silver Staining
Xie, Sheng; Wong, Alex Y. H.; Kwok, Ryan T. K.; Li, Ying; Su, Huifang; Lam, Jacky W. Y.
2018-01-01
Abstract Silver staining, which exploits the special bioaffinity and the chromogenic reduction of silver ions, is an indispensable visualization method in biology. It is a most popular method for in‐gel protein detection. However, it is limited by run‐to‐run variability, background staining, inability for protein quantification, and limited compatibility with mass spectroscopic (MS) analysis; limitations that are largely attributed to the tricky chromogenic visualization. Herein, we reported a novel water‐soluble fluorogenic Ag+ probe, the sensing mechanism of which is based on an aggregation‐induced emission (AIE) process driven by tetrazolate‐Ag+ interactions. The fluorogenic sensing can substitute the chromogenic reaction, leading to a new fluorescence silver staining method. This new staining method offers sensitive detection of total proteins in polyacrylamide gels with a broad linear dynamic range and robust operations that rival the silver nitrate stain and the best fluorescent stains. PMID:29575702
NASA Astrophysics Data System (ADS)
Muhammed Ajmal, C.; Mol Menamparambath, Mini; Ryeol Choi, Hyouk; Baik, Seunghyun
2016-06-01
Highly conductive flexible adhesive (CFA) film was developed using micro-sized silver flakes (primary fillers), hybrids of silver nanoparticle-nanowires (secondary fillers) and nitrile butadiene rubber. The hybrids of silver nanoparticle-nanowires were synthesized by decorating silver nanowires with silver nanoparticle clusters using bifunctional cysteamine as a linker. The dispersion in ethanol was excellent for several months. Silver nanowires constructed electrical networks between the micro-scale silver flakes. The low-temperature surface sintering of silver nanoparticles enabled effective joining of silver nanowires to silver flakes. The hybrids of silver nanoparticle-nanowires provided a greater maximum conductivity (54 390 S cm-1) than pure silver nanowires, pure multiwalled carbon nanotubes, and multiwalled carbon nanotubes decorated with silver nanoparticles in nitrile butadiene rubber matrix. The resistance change was smallest upon bending when the hybrids of silver nanoparticle-nanowires were employed. The adhesion of the film on polyethylene terephthalate substrate was excellent. Light emitting diodes were successfully wired to the CFA circuit patterned by the screen printing method for application demonstration.
Kumar, Deenadayalan Ashok; Palanichamy, V; Roopan, Selvaraj Mohana
2014-06-05
A green rapid biogenic synthesis of silver nanoparticles AgNPs using Alternanthera dentata (A. dentata) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 430nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by A. dentata extract was completed within 10min. Synthesized nanoparticles were characterized using UV-visible spectroscopy; Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM). The extracellular silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method comparable to chemical and microbial methods. The colloidal solution of silver nanoparticles were found to exhibit antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia and, Enterococcus faecalis. Copyright © 2014 Elsevier B.V. All rights reserved.
Crowley, J.K.; Williams, D.E.; Hammarstrom, J.M.; Piatak, N.; Chou, I.-Ming; Mars, J.C.
2003-01-01
Diffuse reflectance spectra of 15 mineral species commonly associated with sulphide-bearing mine wastes show diagnostic absorption bands related to electronic processes involving ferric and/or ferrous iron, and to vibrational processes involving water and hydroxyl. Many of these absorption bands are relatively broad and overlapping; however, spectral analysis methods, including continuum removal and derivative analysis, permit most of the minerals to be distinguished. Key spectral differences between the minerals are illustrated in a series of plots showing major absorption band centres and other spectral feature positions. Because secondary iron minerals are sensitive indicators of pH, Eh, relative humidity, and other environmental conditions, spectral mapping of mineral distributions promises to have important application to mine waste remediation studies.
Epoxidation catalyst and process
Linic, Suljo; Christopher, Phillip
2010-10-26
Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.
Corrosion protection for silver reflectors
Arendt, Paul N.; Scott, Marion L.
1991-12-31
A method of protecting silver reflectors from damage caused by contact with gaseous substances which are often present in the atmosphere and a silver reflector which is so protected. The inventive method comprises at least partially coating a reflector with a metal oxide such as aluminum oxide to a thickness of 15 .ANG. or less.
Method for the recovery of silver from waste photographic fixer solutions
Posey, F.A.; Palko, A.A.
The method of the present invention is directed to the recovery of silver from spent photographic fixer solutions and for providing an effluent essentially silver-free that is suitable for discharge into commercial sewage systems. The present method involves the steps of introducing the spent photographic fixer solution into an alkaline hypochlorite solution. The oxidizing conditions of the alkaline hypochlorite solution are maintained during the addition of the fixer solution so that the silver ion complexing agents of thiosulfate and sulfite ions are effectively destroyed. Hydrazine monohydrate is then added to the oxidizing solution to form a reducing solution to effect the formation of a precipitate of silver which can be readily removed by filtration of decanting. Experimental tests indicate that greater than 99.99% of the original silver in the spent photographic fixer can be efficiently removed by practicing the present method. Also, the chemical and biological oxygen demand of the remaining effluent is significantly reduced so as to permit the discharge thereof into sewage systems at levels in compliance with federal and state environmental standards.
Method for the recovery of silver from waste photographic fixer solutions
Posey, Franz A.; Palko, Aloysius A.
1984-01-01
The method of the present invention is directed to the recovery of silver from spent photographic fixer solutions and for providing an effluent essentially silver-free that is suitable for discharge into commercial sewage systems. The present method involves the steps of introducing the spent photographic fixer solution into an alkaline hypochlorite solution. The oxidizing conditions of the alkaline hypochlorite solution are maintained during the addition of the fixer solution so that the silver ion complexing agents of thiosulfate and sulfite ions are effectively destroyed. Hydrazine monohydrate is then added to the oxidizing solution to form a reducing solution to effect the formation of a precipitate of silver which can be readily removed by filtration or decanting. Experimental tests indicate that greater than 99.99% of the original silver in the spent photographic fixer can be efficiently removed by practicing the present method. Also, the chemical and biological oxygen demand of the remaining effluent is significantly reduced so as to permit the discharge thereof into sewage systems at levels in compliance with federal and state environmental standards.
Dobrucka, Renata; Długaszewska, Jolanta
2015-06-01
Green synthesis of nanoparticles has gained significant importance in recent years and has become the one of the most preferred methods. Also, green synthesis of nanoparticles is valuable branch of nanotechnology. Plant extracts are eco-friendly and can be an economic option for synthesis of nanoparticles. This study presents method the synthesis of silver nanoparticles using water extract of Arnicae anthodium. Formation of silver nanoparticles was confirmed by UV-visble spectroscopy, Fourier transform infrared spectroscopy and total reflection X-ray fluorescence analysis. The morphology of the synthesized silver nanoparticles was verified by SEM-EDS. The obtained silver nanoparticles were used to study their antimicrobial activity.
NASA Astrophysics Data System (ADS)
Wagner, Thomas; Jonsson, Erik; Boyce, Adrian J.
2005-07-01
The marble- and metavolcanic-hosted Pb Zn (Ag Sb As) deposits of the Hällefors district, located in the Palaeoproterozoic Bergslagen ore province, south central Sweden, comprise both stratabound sulphides and discordant, Ag-rich sulphide sulphosalt veins. The complex sulphide sulphosalt assemblages of the Alfrida-Jan Olof mines at Hällefors were investigated by a combination of ore microscopy, electron-microprobe analysis, and in situ laser sulphur isotope analysis. The massive ore is characterized by positive and homogeneous δ34S (+1.4‰ to +2.7‰ V-CDT), whereas vein-hosted sulphides and sulphosalts exhibit similar, but generally less positive to slightly negative δ34S (-0.6‰ to +2.0‰). Comparison of the observed ore mineral assemblages with calculated phase equilibria in the system Fe As S O H and isotopic fractionation as a function of temperature, oxygen fugacity and pH indicates that the vein-type mineralization was formed from relatively reduced and rather alkaline hydrothermal fluids. At these reduced conditions, fractionation of δ34S via changes of fO2 is insignificant, and thus the isotopic signatures of the vein minerals directly reflect the composition of the sulphur source. We therefore conclude that the vein-type ore essentially inherited the sulphur isotope signature from the pre-existing massive sulphides via metamorphic remobilization at approximately 300 400°C and 2 3 kbar. Scales of remobilization observable are on the order of about 5 mm to 30 cm. Overall, the sulphide sulphosalt assemblages from the Alfrida-Jan Olof mines exhibit δ34S values which are comparable to a majority of metasupracrustal-hosted deposits in the Bergslagen province, thereby suggesting a common origin from ca. 1.90 1.88 Ga volcanic-hydrothermal processes.
NASA Astrophysics Data System (ADS)
Cerantola, V.; Walte, N. P.; Rubie, D. C.
2015-05-01
Deformation-assisted segregation of metallic and sulphidic liquid from a solid peridotitic matrix is a process that may contribute to the early differentiation of small planetesimals into a metallic core and a silicate mantle. Here we present results of an experimental study using a simplified system consisting of a polycrystalline Fo90-olivine matrix containing a small percentage of iron sulphide and a synthetic primitive MORB melt, in order to investigate whether the silicate melt enhances the interconnection and segregation of FeS liquid under deformation conditions at varying strain rates. The experiments have been performed at 2 GPa, 1450 °C and strain rates between 1 ×10-3s-1 to 1 ×10-5s-1. Our results show that the presence of silicate melt actually hinders the migration and segregation of sulphide liquid by reducing its interconnectivity. At low to moderate strain rates the sulphide liquid pockets preserved a roundish shape, showing the liquid behavior is governed mainly by surface tension rather than by differential stress. Even at the highest strain rates, insignificant FeS segregation and interconnection were observed. On the other hand the basaltic melt was very mobile during deformation, accommodating part of the strain, which led to its segregation from the matrix at high bulk strains leaving the sulphide liquid stranded in the olivine matrix. Hence, we conclude that deformation-induced percolation of sulphide liquid does not contribute to the formation of planetary cores after the silicate solidus is overstepped. A possible early deformation enhanced core-mantle differentiation after overstepping the Fe-S solidus is not possible between the initial formation of silicate melt and the formation of a widespread magma ocean.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agasti, Nityananda, E-mail: nnagasti@gmail.com; Singh, Vinay K.; Kaushik, N.K.
Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO{sub 3} with NaBH{sub 4} in aqueous solution under atmospheric air in themore » presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility.« less
Hyaluronan- and heparin-reduced silver nanoparticles with antimicrobial properties
Kemp, Melissa M; Kumar, Ashavani; Clement, Dylan; Ajayan, Pulickel; Mousa, Shaker
2009-01-01
Aims Silver nanoparticles exhibit unique antibacterial properties that make these ideal candidates for biological and medical applications. We utilized a clean method involving a single synthetic step to prepare silver nanoparticles that exhibit antimicrobial activity. Materials & methods These nanoparticles were prepared by reducing silver nitrate with diaminopyridinylated heparin (DAPHP) and hyaluronan (HA) polysaccharides and tested for their efficacy in inhibiting microbial growth. Results & discussion The resulting silver nanoparticles exhibit potent antimicrobial activity against Staphylococcus aureus and modest activity against Escherichia coli. Silver–HA showed greater antimicrobial activity than silver–DAPHP, while silver–glucose nanoparticles exhibited very weak antimicrobial activity. Neither HA nor DAPHP showed activity against S. aureus or E. coli. Conclusion These results suggest that DAPHP and HA silver nanoparticles have potential in antimicrobial therapeutic applications. PMID:19505245
NASA Astrophysics Data System (ADS)
Ashokraja, C.; Sakar, M.; Balakumar, S.
2017-10-01
We report the hemolysis properties of silver and silver oxide nanoparticles (NPs) prepared by chemical and green-synthesis methods. The prepared silver and silver oxide NPs were analyzed using UV-vis spectroscopy to confirm their formation by characterizing their surface plasmon resonance (SPR) and absorption band peaks respectively. The Fourier transmission infrared (FTIR) spectra of the materials showed the characteristic functional groups corresponding to the molecules present in leaf extracts, which is proposed to be acted as reducing and capping agents that are also found on the surface of silver and silver oxide nanoparticles that synthesized via green-synthesis method. Zeta potential analysis revealed the surface charge and stability of the prepared NPs. HRTEM images showed almost spherical shape nanoparticles with an average size of 15.2 and 31.5 nm for wet chemical synthesized silver and silver oxide nanoparticles respectively. In the case of green synthesized silver and silver oxide nanoparticles, it was observed to be 19.4 and 30.4 nm respectively. The order of hemolysis efficacy of the materials is found to be as follows: chemically synthesized Ag2O> chemically synthesized Ag NPs followed by green-synthesized Ag2O and green-synthesized Ag NPs which showed almost similar hemolysis with respect to concentration. The relatively stable nature of the silver NPs could be attributed to their lower hemolysis efficacy, while the increased lysis properties of silver oxide could be attributed due to reductive/oxidative processes that give rise to the hemolysis through interfacial charge interactions with RBCs.
Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents
Kędziora, Anna; Speruda, Mateusz; Rybka, Jacek; Łukowiak, Anna; Bugla-Płoskońska, Gabriela
2018-01-01
Silver is considered as antibacterial agent with well-known mode of action and bacterial resistance against it is well described. The development of nanotechnology provided different methods for the modification of the chemical and physical structure of silver, which may increase its antibacterial potential. The physico-chemical properties of silver nanoparticles and their interaction with living cells differs substantially from those of silver ions. Moreover, the variety of the forms and characteristics of various silver nanoparticles are also responsible for differences in their antibacterial mode of action and probably bacterial mechanism of resistance. The paper discusses in details the aforementioned aspects of silver activity. PMID:29393866
Effect of corona discharge on cadmium sulphide and lead sulphide films
NASA Astrophysics Data System (ADS)
Koul Chaku, Anemone; Singh, Pramod K.; Bhattacharya, Bhaskar
2018-03-01
This paper describes the effect of corona discharge on cadmium sulphide (CdS) and lead sulphide (PbS) films prepared using the chemical route. The property of films before and after exposure to corona has been described in detail. The electronic properties of the CdS and PbS films have been studied by current-voltage (I-V), capacitance-voltage (C-V) measurements. The structural properties and surface morphology were studied by using X-ray diffraction and scanning electron microscopy before and after exposing to Corona discharge. The films displayed the change in surface morphology after exposure to the corona discharge. It has been found that the films showed an increase in resistivity after exposure. This change in property has been attributed to modification in surface states. Time-dependent recovery indicated that room temperature annealing is sufficient to regain the normal resistivity of the films. The experiment was carried with the aim of studying the effect of the interaction of corona discharge on the semiconductor films and its subsequent effects.
Yin, Zhixuan; Xie, Li; Khanal, Samir Kumar; Zhou, Qi
2016-01-01
Interaction of organic carbon, reduced sulphur and nitrate was examined using anaerobic baffled reactor for fresh leachate treatment by supplementing nitrate and/or sulphide to compartment 3. Nitrate was removed completely throughout the study mostly via denitrification (>80%) without nitrite accumulation. Besides carbon source, various reduced sulphur (e.g. sulphide, elemental sulphur and organic sulphur) could be involved in the nitrate reduction process via sulphur-based autotrophic denitrification when dissolved organic carbon/nitrate ratio decreased below 1.6. High sulphide concentration not only stimulated autotrophic denitrification, but it also inhibited heterotrophic denitrification, resulting in a shift (11-20%) from heterotrophic denitrification to dissimilatory nitrate reduction to ammonia. High-throughput 16S rRNA gene sequencing analysis further confirmed that sulphur-oxidizing nitrate-reducing bacteria were stimulated with increase in the proportion of bacterial population from 18.6% to 27.2% by high sulphide concentration, meanwhile, heterotrophic nitrate-reducing bacteria and fermentative bacteria were inhibited with 25.5% and 66.6% decrease in the bacterial population.
Procedures for making gaseous industrial waste safe
NASA Astrophysics Data System (ADS)
Matros, Yu Sh; Noskov, Aleksandr S.
1990-10-01
The application of various methods (adsorption, absorption, thermal afterburning, catalytic purification, and others) for the removal of sulphur and nitrogen oxides, toxic organic compounds, hydrogen sulphide, and carbon monoxide from industrial waste gases is described. Much attention is devoted to the catalytic procedure for making the gases safe using an energy collecting non-stationary method (reversible process). The advantages and limitations of various gas purification methods are considered. The bibliography includes 279 references.
Synthesis of silver nanoparticles: chemical, physical and biological methods
Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B.
2014-01-01
Silver nanoparticles (NPs) have been the subjects of researchers because of their unique properties (e.g., size and shape depending optical, antimicrobial, and electrical properties). A variety of preparation techniques have been reported for the synthesis of silver NPs; notable examples include, laser ablation, gamma irradiation, electron irradiation, chemical reduction, photochemical methods, microwave processing, and biological synthetic methods. This review presents an overview of silver nanoparticle preparation by physical, chemical, and biological synthesis. The aim of this review article is, therefore, to reflect on the current state and future prospects, especially the potentials and limitations of the above mentioned techniques for industries. PMID:26339255
NASA Astrophysics Data System (ADS)
Prabhu, Sukumaran; Poulose, Eldho K.
2012-10-01
Silver nanoparticles are nanoparticles of silver which are in the range of 1 and 100 nm in size. Silver nanoparticles have unique properties which help in molecular diagnostics, in therapies, as well as in devices that are used in several medical procedures. The major methods used for silver nanoparticle synthesis are the physical and chemical methods. The problem with the chemical and physical methods is that the synthesis is expensive and can also have toxic substances absorbed onto them. To overcome this, the biological method provides a feasible alternative. The major biological systems involved in this are bacteria, fungi, and plant extracts. The major applications of silver nanoparticles in the medical field include diagnostic applications and therapeutic applications. In most of the therapeutic applications, it is the antimicrobial property that is being majorly explored, though the anti-inflammatory property has its fair share of applications. Though silver nanoparticles are rampantly used in many medical procedures and devices as well as in various biological fields, they have their drawbacks due to nanotoxicity. This review provides a comprehensive view on the mechanism of action, production, applications in the medical field, and the health and environmental concerns that are allegedly caused due to these nanoparticles. The focus is on effective and efficient synthesis of silver nanoparticles while exploring their various prospective applications besides trying to understand the current scenario in the debates on the toxicity concerns these nanoparticles pose.
Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise
Francheteau, Jean; Needham, H.D.; Choukroune, P.; Juteau, Tierre; Seguret, M.; Ballard, Richard D.; Fox, P.J.; Normark, William; Carranza, A.; Cordoba, D.; Guerrero, J.; Rangin, C.; Bougault, H.; Cambon, P.; Hekinian, R.
1979-01-01
Massive ore-grade zinc, copper and iron sulphide deposits have been found at the axis of the East Pacific Rise. Although their presence on the deep ocean-floor had been predicted there was no supporting observational evidence. The East Pacific Rise deposits represent a modern analogue of Cyprus-type sulphide ores associated with ophiolitic rocks on land. They contain at least 29% zinc metal and 6% metallic copper. Their discovery will provide a new focus for deep-sea exploration, leading to new assessments of the concentration of metals in the upper layers of the oceanic crust. ?? 1979 Nature Publishing Group.
Schmidt, J.M.
1986-01-01
The Arctic prospect, south central Brooks Range, is among the 30 largest of 508 volcanic-hosted massive sulphide deposits in the world. The massive sulphide lenses are interlayered with graphitic schist between metamorphosed rhyolite porphyries in Middle Devonian to early Mississippian metamorphosed volcanic, volcaniclastic and sedimentary rocks. Hydrothermal alteration is of three types: chloritic, phyllic s.l., and pyrite-phengite, each type strata-distinctively and respectively below, in, and above the sulphides. Maximum alteration conforms with metal zoning in the sulfides to suggest predominantly northwestward dispersal from a linear vent area in the elongate basin containing the deposit.-G.J.N.
Mechanism of Prophylaxis by Silver Compounds against Infection of Burns
Ricketts, C. R.; Lowbury, E. J. L.; Lawrence, J. C.; Hall, M.; Wilkins, M. D.
1970-01-01
To clarify tthe mechanism by which local application of silver compounds protects burns against infection, an ion-specific electrode was used to measùre the concentration of silver ions in solutions. By this method it was shown that in burn dressings silver ions were reduced to a very low level by precipitation as silver chloride. The antibacterial effect was found to depend on the availability of silver ions from solution in contact with precipitate. Between 10-5 and 10-6 molar silver nitrate solution in water was rapidly bactericidal. The minimal amount of silver nitrate causing inhibition of respiration of skin in tissue culture was about 25 times the minimal concentration of silver nitrate that inhibited growth of Pseudomonas aeruginosa. PMID:4986877
Catalysts to reduce NO.sub.x in an exhaust gas stream and methods of preparation
Koermer, Gerald S [Basking Ridge, NJ; Moini, Ahmad [Princeton, NJ; Furbeck, Howard [Hamilton, NJ; Castellano, Christopher R [Ringoes, NJ
2012-05-08
Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having a catalyst comprising silver on a particulate alumina support, the silver having a diameter of less than about 20 nm. Methods of manufacturing catalysts are described in which ionic silver is impregnated on particulate hydroxylated alumina particles.
Geethalakshmi, R; Sarada, DVL
2012-01-01
Background There is an increasing commercial demand for nanoparticles due to their wide applicability in various markets, including medicine, catalysis, electronics, chemistry, and energy. In this report, a simple and ecofriendly chemical reaction for the synthesis of gold and silver nanoparticles from Trianthema decandra (Aizoaceae) has been developed. Methods and results On treatment of aqueous solutions containing chloroauric acid or silver nitrate with root extract of T. decandra, stable gold or silver nanoparticles were rapidly formed. The kinetics of reduction of gold and silver ions during the reaction was analyzed by ultraviolet-visible spectroscopy. Field emission-scanning electron microscopy showed formation of gold nanoparticles in various shapes, including spherical, cubical, triangular, and hexagonal, while silver nanoparticles were spherical. The size of the gold nanoparticles was 33–65 nm and that of the silver nanoparticles was 36–74 nm. Energy dispersive x-ray and Fourier transform infrared spectroscopy confirmed the presence of metallic gold and metallic silver in the respective nanoparticles. The antimicrobial properties of the synthesized nanoparticles were analyzed using the Kirby-Bauer method. The results show varied susceptibility of microorganisms to the gold and silver nanoparticles. Conclusion It is believed that phytochemicals present in T. decandra extract reduce the silver and gold ions into metallic nanoparticles. This strategy reduces the cost of production and the environmental impact. The silver and gold nanoparticles formed showed strong activity against all microorganisms tested. PMID:23091381
Su, Lianghu; Zhen, Guangyin; Zhang, Longjiang; Zhao, Youcai; Niu, Dongjie; Chai, Xiaoli
2015-12-01
A core-shell structure results in zero-valent iron nanoparticles (NZVI) with manifold functional properties. In this study, the long-term effects of NZVI on hydrogen sulphide removal in an anaerobic sludge digester were investigated. Within 20 days, the average hydrogen sulphide content in the biogas was successfully reduced from 300 (or 3620 of sulphate-rich sludge) mg Nm(-3) to 6.1 (121), 0.9 (3.3) and 0.5 (1.3) mg Nm(-3) in the presence of 0.05, 0.10 and 0.20% (wt) NZVI, respectively. Methane yield was enhanced at the low NZVI dose (0.05-0.10%) but decreased at the elevated dose (0.20%). Methane production and volatile solid degradation analyses implied that doses of 0.5-0.10% NZVI could accelerate sludge stabilization during anaerobic digestion. The phosphorus fractionation profile suggested that methane production could be inhibited at the elevated NZVI dose, partly due to the limited availability of soluble phosphorus due to the immobilization of bioavailable-P through the formation of vivianite. An analysis of the reducible inorganic sulphur species revealed that the elimination of hydrogen sulphide occurred via the reaction between hydrogen sulphide and the oxide shell of NZVI, which mainly formed FeS and some FeS2 and S(0).
Convergent evolution of reduced energy demands in extremophile fish
Arias-Rodriguez, Lenin; Tobler, Michael
2017-01-01
Convergent evolution in organismal function can arise from nonconvergent changes in traits that contribute to that function. Theory predicts that low resource availability and high maintenance costs in extreme environments select for reductions in organismal energy demands, which could be attained through modifications of body size or metabolic rate. We tested for convergence in energy demands and underlying traits by investigating livebearing fish (genus Poecilia) that have repeatedly colonized toxic, hydrogen sulphide-rich springs. We quantified variation in body size and routine metabolism across replicated sulphidic and non-sulphidic populations in nature, modelled total organismal energy demands, and conducted a common-garden experiment to test whether population differences had a genetic basis. Sulphidic populations generally exhibited smaller body sizes and lower routine metabolic rates compared to non-sulphidic populations, which together caused significant reductions in total organismal energy demands in extremophile populations. Although both mechanisms contributed to variation in organismal energy demands, variance partitioning indicated reductions of body size overall had a greater effect than reductions of routine metabolism. Finally, population differences in routine metabolism documented in natural populations were maintained in common-garden reared individuals, indicating evolved differences. In combination with other studies, these results suggest that reductions in energy demands may represent a common theme in adaptation to physiochemical stressors. Selection for reduced energy demand may particularly affect body size, which has implications for life history evolution in extreme environments. PMID:29077740
Method for producing microcomposite powders using a soap solution
Maginnis, Michael A.; Robinson, David A.
1996-01-01
A method for producing microcomposite powders for use in superconducting and non-superconducting applications. A particular method to produce microcomposite powders for use in superconducting applications includes the steps of: (a) preparing a solution including ammonium soap; (b) dissolving a preselected amount of a soluble metallic such as silver nitrate in the solution including ammonium soap to form a first solution; (c) adding a primary phase material such as a single phase YBC superconducting material in particle form to the first solution; (d) preparing a second solution formed from a mixture of a weak acid and an alkyl-mono-ether; (e) adding the second solution to the first solution to form a resultant mixture; (f) allowing the resultant mixture to set until the resultant mixture begins to cloud and thicken into a gel precipitating around individual particles of the primary phase material; (g) thereafter drying the resultant mixture to form a YBC superconducting material/silver nitrate precursor powder; and (h) calcining the YBC superconducting material/silver nitrate precursor powder to convert the silver nitrate to silver and thereby form a YBC/silver microcomposite powder wherein the silver is substantially uniformly dispersed in the matrix of the YBC material.
Removal of brownish-black tarnish on silver-copper alloy objects with sodium glycinate
NASA Astrophysics Data System (ADS)
de Figueiredo, João Cura D.'Ars; Asevedo, Samara Santos; Barbosa, João Henrique Ribeiro
2014-10-01
This article has the principal aim of presenting a new method of chemical cleaning of tarnished silver-copper alloy objects. The chemical cleaning must be harmless to the health, selective to tarnish removal, and easy to use. Sodium glycinate was selected for the study. The reactions of sodium glycinate with tarnish and the silver-copper alloy were evaluated. Products of the reaction, the lixiviated material, and the esthetics of silver-copper alloy coins (used as prototypes) were studied to evaluate if the proposed method can be applied to the cleaning of silver objects. Silver-copper alloys can be deteriorated through a uniform and superficial corrosion process that produces brownish-black tarnish. This tarnish alters the esthetic of the object. The cleaning of artistic and archeological objects requires more caution than regular cleaning, and it must take into account the procedures for the conservation and restoration of cultural heritage. There are different methods for cleaning silver-copper alloy objects, chemical cleaning is one of them. We studied two chemical cleaning methods that use sodium glycinate and sodium acetylglycinate solutions. Silver-copper alloy coins were artificially corroded in a basic thiourea solution and immersed in solutions of sodium glycinate and sodium acetylglycinate. After immersion, optical microscopy and scanning electron microscopy of the surfaces were studied. The sodium glycinate solution was shown to be very efficient in removing the brownish-black tarnish. Absorption spectroscopy measured the percentage of silver and copper lixiviated in immersion baths, and very small quantities of these metals were detected. Infrared absorption spectroscopy and X-ray fluorescence characterized the obtained products. The greater efficiency of the sodium glycinate solution compared to the sodium acetylglycinate solution was explained by chelation and Hard-Soft Acid-Base Theory with the aid of quantum chemical calculations.
Zhang, Junmei; Brodbelt, Jennifer S
2005-03-15
For detection and differentiation of isomeric flavonoids, electrospray ionization mass spectrometry is used to generate silver complexes of the type (Ag + flavonoid)+. Collisionally activated dissociation (CAD) of the resulting 1:1 silver/flavonoid complexes allows isomer differentiation of flavonoids. Eighteen flavonoid diglycosides constituting seven isomeric series are distinguishable from each other based on the CAD patterns of their silver complexes. Characteristic dissociation pathways allow identification of the site of glycosylation, the type of disaccharide (rutinose versus neohesperidose), and the type of aglycon (flavonol versus flavone versus flavanone). This silver complexation method is more universal than previous metal complexation methods, as intense silver complexes are observed even for flavonoids that lack the typical metal chelation sites. To demonstrate the feasibility of using silver complexation and tandem mass spectrometry to characterize flavonoids in complex mixtures, flavonoids extracted from grapefruit juice are separated by high-performance liquid chromatography and analyzed via a postcolumn complexation ESI-MS/MS strategy. Diagnostic fragmentation pathways of the silver complexes of the individual eluting flavonoids allow successful identification of the six flavonoids in the extract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junaidi, E-mail: junaidi.1982@fmipa.unila.ac.id; Departement of Physics, Lampung University, Bandar Lampung; Triyana, K., E-mail: triyana@ugm.ac.id
In this paper, we report our investigation on the effect of the molecular weight and molar ratio of polyvinyl pyrrolidone (PVP) and silver nitrate (AgNO{sub 3}) for controlling diameter and length of the silver nanowires synthesized with a high-aspect-ratio. The silver nanowires synthesized by one-pot polyol method at a constant temperature oil bath of 130°C. Different molecule weights of PVP, i.e. 55 K, 360 K, and 1300 K were used combined with different molar ratios of [PVP:Ag]. The UV–vis spectrophotometry and Field-emission scanning electron microscopy (FE-SEM) were employed to characterize the silver nanowires. The results show that the molecular weightmore » and molar ratio of [PVP:Ag] are very important for controlling growth and properties of the silver nanowires. The diameter and length of silver nanowires are obtained 80 to 140 nm and 30 to 70 µm, respectively. The higher molecular weight of PVP, the greater diameter and length of silver nanowires.« less
Siczek, Krzysztof; Fichna, Jakub; Zatorski, Hubert; Karolewicz, Bożena; Klimek, Leszek; Owczarek, Artur
2018-03-01
Recent findings indicating the anti-inflammatory action of silver preparations through modulation of the gut microbiota and apoptosis of inflammatory cells predestine silver use in inflammatory bowel disease (IBD). The aim of our study was to validate the possibility of effective silver release from silver-coated glass beads for anti-inflammatory local application in the lower sections of the gastrointestinal (GI) tract. Silver-coated glass beads were prepared using magnetron method. Release of silver from the silver-coated glass bead surface was carried out in BIO-DIS reciprocating cylinder apparatus. Erosion of silver coating and indirect estimation of the silver release dynamics was assessed using scanning electron microscope. Rectal suppositories containing silver-coated glass beads were prepared using five different methods (M1-M5) and X-ray scanned for their composition. The XR microanalysis and the chemical composition analysis evidenced for a rapid (within 30 min) release of nearly 50% of silver from the coating of the glass beads, which remained stable up to 24 h of incubation. The most homogeneous distribution of beads in the entire volume of the suppository was obtained for formulation M5, where the molten base was poured into mold placed in an ice bath, and the beads were added after 10 s. Our study is the first to present the concept of enclosing silver-coated glass beads in the lipophilic suppository base to attenuate inflammation in the lower GI tract and promises efficient treatment with reduced side effects.
Spiandore, Marie; Souilah-Edib, Mélanie; Piram, Anne; Lacoste, Alexandre; Josse, Denis; Doumenq, Pierre
2018-01-01
Chemical warfare agents have been used to incapacitate, injure or kill people, in a context of war or terrorist attack. It has previously been shown that hair could trap the sulphur mustard simulants methyl salicylate and 2-chloroethyl ethyl sulphide. In order to investigate simulants persistency in hair after intense vapour exposure, their desorption kinetics were studied by using two complementary methods: hair residual content measurement and desorbed vapour monitoring. Results showed that both simulants were detected in air and could be recovered from hair 2 h after the end of exposure. Longer experiments with methyl salicylate showed that it could still be recovered from hair after 24 h. Our data were fitted with several kinetic models and best correlation was obtained with a bimodal first-order equation, suggesting a 2-step desorption kinetics model: initial fast regime followed by a slower desorption. 2-chloroethyl ethyl sulphide was also detected in the immediate environment after hair exposure for 2 h, and hair simulant content decreased by more than 80%. Our results showed that hair ability to release formerly trapped chemical toxics could lead to health hazard. Their persistency however confirmed the potentiality of hair analysis as a tool for chemical exposure assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.
METAL COATED ARTICLES AND METHOD OF MAKING
Eubank, L.D.
1958-08-26
A method for manufacturing a solid metallic uranium body having an integral multiple layer protective coating, comprising an inner uranium-aluminum alloy firmly bonded to the metallic uranium is presented. A third layer of silver-zinc alloy is bonded to the zinc-aluiminum layer and finally a fourth layer of lead-silver alloy is firmly bonded to the silver-zinc layer.
NASA Astrophysics Data System (ADS)
Junaidi, Triyana, Kuwat; Harsojo, Suharyadi, Edi
2016-04-01
We report our investigation on the effect of chloride ions oncontrolling the shapes and properties of silver nanorods(AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as asalt precursor and performed at the oilbath temperature of 140 °C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorodswere characterized using UV-VIS, XRD, SEM and TEM. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorodsdecreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.
Synthesis of Nanosilver Particles in the Texture of Bank Notes to Produce Antibacterial Effect
NASA Astrophysics Data System (ADS)
Lari, Mohammad Hossein Asadi; Esmaili, Vahid; Naghavi, Seyed Mohammad Ebrahim; Kimiaghalam, Amir Hossein; Sharifaskari, Emadaldin
Silver particles show antibacterial and antiseptic properties at the nanoscale. Such properties result from an alteration in the binding capacity of silver atoms in bits of less than 6.5nm which enables them to kill harmful organisms. Silver nanoparticles are now the most broadly used agents in the area of nanotechnology after carbon nanotubes. Given that currency bills are one of the major sources of bacterial disseminations and their contamination has recently been nominated as a critical factor in gastrointestinal infections and possibly colon cancers, here we propose a new method for producing antibacterial bank notes by using silver nanoparticles. Older bank notes are sprayed with acetone to clean the surface. The bank note is put into a petri-dish containing a solution of silver nitrate and ammonia so that it is impregnated. The bank notes are then reduced with the formaldehyde gas, which penetrates its texture and produces silver nanoparticles in the cellulose matrix. The side products of the reactions are quickly dried off and the procedure ends with the drying of the bank note. The transmission electron microscope (TEM) images confirmed the nanoscale size range for the formed particles while spectroscopy methods, such as XRD, provided proof for the metallic nature of the particles. Bacterial challenge tests then showed that no colonies of the three tested bacterium (Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa survived on the sample after a 72h incubation period. This study has provided a method for synthesizing silver NPs directly into the texture of fabrics and textiles (like that of bank notes) which can result in lower production costs, making the use of silver NPs economically beneficial. The method, specifically works on the fabric of bank notes, suggesting a method to tackle the transmission of bacteria through bank notes. Moreover, this study is a testament to the strong antibacterial nature of even low concentrations of silver NPs.
Highly efficient method for production of radioactive silver seed cores for brachytherapy.
Cardoso, Roberta Mansini; de Souza, Carla Daruich; Rostelato, Maria Elisa Chuery Martins; Araki, Koiti
2017-02-01
A simple and highly efficient (shorter reaction time and almost no rework) method for production of iodine based radioactive silver seed cores for brachytherapy is described. The method allows almost quantitative deposition of iodine-131 on dozens of silver substrates at once, with even distribution of activity per core and insignificant amounts of liquid and solid radioactive wastes, allowing the fabrication of cheaper radioactive iodine seeds for brachytherapy. Copyright © 2016. Published by Elsevier Ltd.
Factors influencing the preparation of silver-coated glass frit with polyvinyl-pyrrolidone
NASA Astrophysics Data System (ADS)
Xiang, Feng; Gan, Weiping
2018-01-01
In this work, a new electroless silver plating method for the synthesis of silver-coated glass frit composite powders with good morphology has been proposed and the polyvinyl-pyrrolidone (PVP) was used the activating agent. It was found that the weight ratio of PVP to glass frit affected the distribution and number of silver nanoparticles. Moreover, the loading capacity of the glass frit, the pH value and reaction temperature could influence the size of the silver nanoparticles and morphology of silver on the surface of glass frit. The as-prepared silver-coated glass frit was used to prepare a silver paste using an optimized process to form silver nanoparticles with uniform size and high density. The silver paste with silver-coated glass frit increased the photovoltaic conversion efficiency of silicon solar cells by 0.271% compared with the silver paste prepared with pure glass frit. The silver nanoparticles can promoted the precipitation of Ag crystallites on the silicon wafer. Therefore, the silver-coated glass frit can further optimize and enhance the electrical performance of solar cells.
Effect of aluminum and yttrium doping on zinc sulphide nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Swati, E-mail: sharma.swati1507@gmail.com; Kashyap, Jyoti; Kapoor, A.
2016-05-06
In this work, pristine and doped Zinc Sulphide (ZnS) nanoparticles have been synthesized via chemical co-precipitation method. ZnS nanoparticles have been doped with Aluminium (Al) and Yttrium (Y) with doping concentration of 5wt% each. The structural and optical properties of the as prepared nanoparticles have been studied using X-Ray diffraction (XRD) technique and Photoluminescence spectroscopy. Average grain size of 2-3nm is observed through the XRD analysis. Effect of doping on stress, strain and lattice constant of the nanoparticles has also been analyzed. Photoluminescence spectra of the as prepared nanoparticles is enhanced due to Al doping and quenched due to Ymore » doping. EDAX studies confirm the relative doping percentage to be 3.47 % and 3.94% by wt. for Al and Y doped nanoparticles respectively. Morphology of the nanoparticles studied using TEM and SEM indicates uniform distribution of spherical nanoparticles.« less
NASA Astrophysics Data System (ADS)
Elliott, R.; Pickles, C. A.
2017-09-01
Nickeliferous limonitic laterite ores are becoming increasingly attractive as a source of metallic nickel as the costs associated with recovering nickel from the sulphide ores increase. Unlike the sulphide ores, however, the laterite ores are not amenable to concentration by conventional mineral processing techniques such as froth flotation. One potential concentrating method would be the pyrometallurgical solid state reduction of the nickeliferous limonitic ores at relatively low temperatures, followed by beneficiation via magnetic separation. A number of reductants can be utilized in the reduction step, and in this research, a thermodynamic model has been developed to investigate the reduction of a nickeliferous limonitic laterite by hydrogen. The nickel recovery to the ferronickel phase was predicted to be greater than 95 % at temperatures of 673-873 K. Reductant additions above the stoichiometric requirement resulted in high recoveries over a wider temperature range, but the nickel grade of the ferronickel decreased.
Synthesis of nanocrystalline CdS thin film by SILAR and their characterization
NASA Astrophysics Data System (ADS)
Mukherjee, A.; Satpati, B.; Bhattacharyya, S. R.; Ghosh, R.; Mitra, P.
2015-01-01
Cadmium sulphide (CdS) thin film was prepared by successive ion layer adsorption and reaction (SILAR) technique using ammonium sulphide as anionic precursor. Characterization techniques of XRD, SEM, TEM, FTIR and EDX were utilized to study the microstructure of the films. Structural characterization by x-ray diffraction reveals the polycrystalline nature of the films. Cubic structure is revealed from X-ray diffraction and selected area diffraction (SAD) patterns. The particle size estimated using X-ray line broadening method is approximately 7 nm. Instrumental broadening was taken into account while particle size estimation. TEM shows CdS nanoparticles in the range 5-15 nm. Elemental mapping using EFTEM reveals good stoichiometric composition of CdS. Characteristic stretching vibration mode of CdS was observed in the absorption band of FTIR spectrum. Optical absorption study exhibits a distinct blue shift in band gap energy value of about 2.56 eV which confirms the size quantization.
Use of the Analysis of the Volatile Faecal Metabolome in Screening for Colorectal Cancer
2015-01-01
Diagnosis of colorectal cancer is an invasive and expensive colonoscopy, which is usually carried out after a positive screening test. Unfortunately, existing screening tests lack specificity and sensitivity, hence many unnecessary colonoscopies are performed. Here we report on a potential new screening test for colorectal cancer based on the analysis of volatile organic compounds (VOCs) in the headspace of faecal samples. Faecal samples were obtained from subjects who had a positive faecal occult blood sample (FOBT). Subjects subsequently had colonoscopies performed to classify them into low risk (non-cancer) and high risk (colorectal cancer) groups. Volatile organic compounds were analysed by selected ion flow tube mass spectrometry (SIFT-MS) and then data were analysed using both univariate and multivariate statistical methods. Ions most likely from hydrogen sulphide, dimethyl sulphide and dimethyl disulphide are statistically significantly higher in samples from high risk rather than low risk subjects. Results using multivariate methods show that the test gives a correct classification of 75% with 78% specificity and 72% sensitivity on FOBT positive samples, offering a potentially effective alternative to FOBT. PMID:26086914
Wirtz, Markus; Droux, Michel; Hell, Rüdiger
2004-08-01
The synthesis of cysteine is positioned at a decisive stage of assimilatory sulphate reduction, marking the fixation of inorganic sulphide into a carbon skeleton. O-acetylserine (thiol) lyase (OAS-TL) catalyses the reaction of inorganic sulphide with O-acetylserine (OAS). Despite its prominent position in the pathway OAS-TL is generally regarded as a non-limiting enzyme without regulatory function, due to low substrate affinities and semi-constitutive expression patterns. To resolve this apparent contradiction, the kinetic properties of three OAS-TLs from Arabidopsis thaliana, localized in the cytosol (A), plastids (B), and mitochondria (C), were analysed. The recombinant expressed OAS-TLs were purified to apparent homogeneity without any fusion tag to maintain their native forms. The proteins displayed high specific activities of 550-900 micromol min(-1) mg(-1). Using an improved and highly sensitive assay method for cysteine determination, the apparent K(m)(sulphide) was 3-6 microM for OAS-TL A, B, and C and thus 10-100 times lower than previously reported for plant OAS-TLs. K(m)(OAS) was between 310 microM and 690 microM for OAS-TL isoform A, B, and C, whereas the apparent dissociation binding constant for OAS was much lower (K(d)<1 microM OAS). A HPLC method was developed for OAS quantification that revealed fast increases of the cellular OAS concentration in response to sulphate deprivation. The observed fluctuations of intracellular OAS concentrations, combined with the OAS dissociation constant and the catalytic properties of OAS-TL, support the model of a dynamic cysteine synthesis system with regulatory function as can be expected from the position of the reaction in the sulphur assimilation pathway.
NASA Astrophysics Data System (ADS)
Anis, Badawi; Mostafa, A. M.; El Sayed, Z. A.; Khalil, A. S. G.; Abouelsayed, A.
2018-07-01
We present the preparation of highly conducting, transparent, and flexible reduced graphene oxide/silver nanowires (rGO/SNWs) substrates using non-thermal laser photoreduction method. High quality monolayers graphene oxide (GO) solution has been prepared by the chemical oxidation of thermally expanded large area natural graphite. Silver nanowires was prepared by using the typical polyol method. Uniform hybrid GO/silver nanowires (GO/SNWs) was prepared by growing the nanowires from silver nuclei in the presence of GO. Uniform and high-quality rGO/SNWs thin films were prepared using a dip-coating technique and were reduced to highly electrically conductive graphene and transparent conductive films using non-thermal laser scribe method. The laser scribed rGO/SNWs hybrid film exhibited 80% transparency with 70 Ω □-1 after 20 min of dipping in GO/SNWs solution.
Changes in optical spectra of silver nanoparticles doped europium ions
NASA Astrophysics Data System (ADS)
Rasmagin, S. I.; Krasovskii, V. I.; Novikov, I. K.; Kryshtob, V. I.; Kazaryan, M. A.
2018-04-01
Colloidal solutions of Ag silver nanoparticles were studied in the presence of Eu3+ ions and in the absence of their. Silver nanoparticles were created by the method of green synthesis using an aqueous solution of mint. Optical and electronic spectroscopy have been used to explore the interaction of these ions with silver nanoparticles.
Ariza-Avidad, M; Agudo-Acemel, M; Salinas-Castillo, A; Capitán-Vallvey, L F
2015-05-04
A sulphide selective colorimetric metal complexing indicator-displacement assay has been developed using an immobilized copper(II) complex of the azo dye 1-(2-pyridylazo)-2-naphthol printed by inkjetting on a nylon support. The change in colour measured from the image of the disposable membrane acquired by a digital camera using the H coordinate of the HSV colour space as the analytical parameter is able to sense sulphide in aqueous solution at pH 7.4 with a dynamic range up to 145 μM, a detection limit of 0.10 μM and a precision between 2 and 11%. Copyright © 2015 Elsevier B.V. All rights reserved.
Some advances in the silver physical development of latent prints on paper
NASA Astrophysics Data System (ADS)
Cantu, Antonio A.; Leben, Deborah A.; Wilson, Kelley
2003-09-01
Silver physical development, a now-abandoned technique used for developing photographic film or paper, is one of the most powerful methods for visualizing latent prints on paper. The method develops the water-insoluble components in the print residue. These components include the "fats and oils" or lipids found on the skin of fingers. The resulting developed print, referred to as a silver physically developed (Ag-PD) print, is made up of (gray to black) silver particles adhered to the fingerprint residue. Such prints are usually intensified (made darker) with a hypochlorite treatment. This process converts silver to silver oxide making the Ag-PD print become a Ag2O-PD prints. Often such (Ag-PD or Ag2O-PD) prints are found on areas with heavy or patterned printing making them difficult to see. This work resolves this problem by chemically lightening the print and darkening (suppressing) the interfering background.
Kalpana, Duraisamy; Lee, Yang Soo
2013-03-05
Silver nanoparticles were synthesized by biological method using cultural filtrate of Klebsiella pneumoniae cultured under simulated microgravity and silver nitrate solution as precursor. The nanoparticles exhibited typical plasmon absorption maximum of silver nanoparticles between 405 and 407 nm. Spherical silver nanoparticles were found to have size between 15 and 37 nm by TEM analysis. XRD pattern corresponding to planes (111), (200), (220) (311) revealed the crystalline nature of the biosynthesized silver nanoparticles. FTIR spectrum proposed stabilization of silver nanoparticles by the protein molecules present in the cultural filtrate. The silver nanoparticles exhibited high bactericidal activity against Salmonella enterica, Escherichia coli and moderate bactericidal activity against Streptococcus pyogenes. Copyright © 2012 Elsevier Inc. All rights reserved.
Effect of silver ions and clusters on the luminescence properties of Eu-doped borate glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Qing, E-mail: jiaoqing@nbu.edu.cn; Wang, Xi; Qiu, Jianbei
2015-12-15
Highlights: • Ag{sup +} and Ag clusters are investigated in the borate glasses via ion exchange method. • The aggregation of silver ions to the clusters was controlled by the ion exchange concentration. • Eu{sup 3+}/Eu{sup 2+} ions emission was enhanced with the sensitization of the silver species. • Energy transfer process from Ag ions and Ag clusters to Eu ions is identified by the lifetime measurements. - Abstract: Silver ions and clusters were applied to Eu{sup 3+}-doped borate glasses via the Ag{sup +}–Na{sup +} ion exchange method. Eu{sup 3+}/Eu{sup 2+} ion luminescence enhancement was achieved after silver ion exchange.more » Absorption spectra showed no band at 420 nm, which indicates that silver nanoparticles can be excluded as a silver state in the glass. Silver ion aggregation into clusters during the ion exchange process may be inferred. The effect of silver ions and clusters on rare earth emissions was investigated using spectral information and lifetime measurements. Significant luminescence enhancements were observed from the energy transfer of Ag{sup +} ions and clusters to Eu{sup 3+}/Eu{sup 2+} ions, companied with the silver ions aggregated into the clusters state. The results of this research may extend the current understanding of interactions between rare-earth ions and Ag species.« less
NASA Astrophysics Data System (ADS)
Fairuzi, Afiza Ahmad; Bonnia, Noor Najmi; Akhir, Rabiatuladawiyah Md.; Akil, Hazizan Md; Yahya, Sabrina M.; Rahman, Norafifah A.
2018-05-01
Synthesis of silver nanoparticles has been developed by using aqueous leaves extract (ALE) of Hibiscus rosa sinensis (H. rosa sinensis) and Imperata cylindrica (I. cylindrica). Both plants extract acts as reducing and capping agent. The colour change in reaction mixture (pale yellow to dark brown) was observed during the synthesis process. The formation of silver nanoparticles was confirmed by surface Plasmon Resonance (SPR) at range 300-700 nm for both leaves using UV-Vis Spectroscopy. The reduction of silver ions to silver nanoparticles was completed within 2 hour for H. rosa sinensis and 30 minutes for I. cylindrica extract. The synthesized nanoparticles were characterized using UV-Vis spectroscopy, field emission scanning electron microscope (FESEM) and Fourier transform infrared (FTIR) spectroscopy. The morphology of silver nanoparticles was found to be different when synthesized using different plant extract. In addition, this study also reported on the effect of silver nanoparticles on the degradation of organic dye by sodium borohydride (NaBH4). The silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method compared to the conventional physical and physical methods. The efficiency of silver nanoparticles as a promising candidate for the catalysis of organic dyes by NaBH4 through the electron transfer is established in the present study.
NASA Astrophysics Data System (ADS)
Labanni, A.; Zulhadjri; Handayani, D.; Arief, S.
2018-01-01
Studies of silver nanoparticles preparation has been developed increasingly due to the wide application in various areas and field, such as medicine, energy, catalysis, and electronic. An environmental-friendly method is needed to fabricate biocompatible silver nanoparticles without producing hazardous materials to the environment. In this study, we synthesized silver nanoparticles by green synthesis method, using leaf extract of gambir (Uncaria gambir Roxb.) as bioreducing agent and aqueous diethanolamine (DEA) solution as capping agents. The AgNO3/DEA molar ratio was varied to investigate the effect of DEA concentration to the properties of silver nanoparticles. The formation of silver nanoparticles was indicated by colour changes to yellowish brown and confirmed by result of UV-Vis spectrophotometer analysis which shown absorption band at 400 to 410 nm. The absorbance was increased to the reaction time of 24 hours, and was decrease by the increasing of DEA concentration in reaction. TEM analysis showed that prepared silver nanoparticles were spherical in shape with diameter of 3,5 - 45,5 nm. The diameter of DEA capped silver nanoparticles was 13 nm, smaller than uncapped silver nanoparticles which was 26 nm It exhibited good stability to time reaction of one month which was potential to be developed in some fields.
Bond, R; Rose, J F; Ellis, J W; Lloyd, D H
1995-03-01
A randomised-double-blind parallel study compared the clinical and antimicrobial efficacies of a miconazole-chlorhexidine shampoo with a selenium sulphide shampoo for the treatment of seborrhoeic dermatitis associated with Malassezia pachydermatis in 33 basset hounds. All 16 miconazole-chlorhexidine treated hounds and 11 of 17 selenium sulphide treated hounds improved when shampooed at three-day intervals for three weeks. The miconazole-chlorhexidine treated hounds showed significantly greater reductions in pruritus (P < 0.01), erythema (P < 0.001), exudation (P < 0.01) and overall severity (P < 0.001), and in counts of M pachydermatis (P < 0.001), total bacteria (P < 0.001) and coagulase-positive staphylococci (P < 0.001), when compared to the selenium sulphide treated group. Improvements in scaling and coat condition did not vary significantly between the two groups. These results indicate that seborrhoeic dermatitis in basset hounds is often associated with elevated cutaneous populations of M pachydermatis and bacteria, and that the miconazole-chlorhexidine shampoo is more effective than the selenium sulphide product for the treatment for this disease.
Terada, Yuko; Hosono, Takashi; Seki, Taiichiro; Ariga, Toyohiko; Ito, Sohei; Narukawa, Masataka; Watanabe, Tatsuo
2014-08-15
Durian (Durio zibethinus Murr.) is classified as a body-warming food in Indian herbalism, and its hyperthermic effect is empirically known in Southeast Asia. To investigate the mechanism underlying this effect, we focused on the thermogenesis-inducing receptors, TRPA1 and TRPV1. Durian contains sulphides similar to the TRPA1 and TRPV1 agonists of garlic. Accordingly, we hypothesized that the thermogenic effect of durian is driven by sulphide-induced TRP channel activation. To investigate our hypothesis, we measured the TRPA1 and TRPV1 activity of the sulphur-containing components of durian and quantified their content in durian pulp. These sulphur-containing components had a stronger effect on TRPA1 than TRPV1. Furthermore, sulphide content in the durian pulp was sufficient to evoke TRP channel activation and the main agonist was diethyl disulphide. From these results, we consider that the body-warming effect of durian is elicited by TRPA1 activation with its sulphides, as can be seen in spices. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D.; Baffa, Oswaldo
2011-11-01
Colloidal silver nanoparticles were synthesized by an easy green method using thermal treatment of aqueous solutions of silver nitrate and natural rubber latex (NRL) extracted from Hevea brasiliensis. The UV-Vis spectra detected the characteristic surface plasmonic absorption band around 435 nm. Both NRL and AgNO 3 contents in the reaction medium have influence in the Ag nanoparticles formation. Lower AgNO 3 concentration led to decreased particle size. The silver nanoparticles presented diameters ranging from 2 nm to 100 nm and had spherical shape. The selected area electron diffraction (SAED) patterns indicated that the silver nanoparticles have face centered cubic (fcc) crystalline structure. FTIR spectra suggest that reduction of the silver ions are facilitated by their interaction with the amine groups from ammonia, which is used for conservation of the NRL, whereas the stability of the particles results from cis-isoprene binding onto the surface of nanoparticles. Therefore natural rubber latex extracted from H. brasiliensis can be employed in the preparation of stable aqueous dispersions of silver nanoparticles acting as a dispersing and/or capping agent. Moreover, this work provides a new method for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive.
NASA Astrophysics Data System (ADS)
Aulbach, Sonja; Stachel, Thomas; Seitz, Hans-Michael; Brey, Gerhard P.
2012-09-01
In the central Slave craton, eclogitic diamonds are suggested to have formed during Paleoproterozoic subduction in a meta-gabbroic substrate representing former lower oceanic crust that interacted with serpentinite-derived fluids at high fluid-rock ratios. In order to assess the behaviour of chalcophile and siderophile elements (CSE) during this process, we measured trace-element concentrations of sulphide inclusions in diamonds from the Diavik mine by laser ablation ICPMS. The nitrogen systematics of the diamonds (average N concentration of ˜600 ppm and aggregation state 4% N as B-aggregates) indicate average mantle residence temperatures of ˜1050 °C for a 1.85 Ga formation age, corresponding ˜170 km depth. Based on the available evidence from natural samples and experiments, we suggest that the highly siderophile elements (HSE: Os, Ir, Ru, Rh, Pd, Pt, Re) except Au behaved largely conservatively during fluid-induced metamorphism, which may point to a reducing and Cl-poor nature of the fluid. The abundances of the moderately siderophile and chalcophile elements Cr, Co, Ni, Cu, Ag, Sn, Mo and W may also have changed little, whereas As, Sb, Tl, Pb and Bi may have been mobilised from the subducting lower oceanic crust. The partitioning of CSE in eclogite and geochemical behaviour during oceanic crust formation was assessed for inferred conservative elements. Assuming an average sulphide mode of 0.3 wt.% for the oceanic crust, its abundances of HSE, Cu, Mo, Se and Te can mostly be accounted for by sulphide minerals alone. Lithophile behaviour of W, Cd, In and Sn and enrichment in residual melts may explain their lower abundances in the gabbroic eclogitic sulphide inclusions compared to MORB sulphide. These elements, as well as Cr, Co, Ni, Zn and Ga require additional host phases both in eclogite, where rutile partitions significant amounts of Cr, Zn, W, Ga and Sn, and in the oceanic crust.
Espinosa, Nieves; Søndergaard, Roar R; Jørgensen, Mikkel; Krebs, Frederik C
2016-04-21
Silver nanowires (AgNWs) were prepared on a 5 g scale using either the well-known batch synthesis following the polyol method or a new flow synthesis method. The AgNWs were employed as semitransparent electrode materials in organic photovoltaics and compared to traditional printed silver electrodes based on micron sized silver flakes using life cycle analysis and environmental impact analysis methods. The life cycle analysis of AgNWs confirms that they provide an avenue to low-impact semitransparent electrodes. We find that the benefit of AgNWs in terms of embodied energy is less pronounced than generally assumed but that the toxicological and environmental benefits are significant. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract
Khan, Mujeeb; Khan, Merajuddin; Adil, Syed Farooq; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Alkhathlan, Hamad Z; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H
2013-01-01
The green synthesis of metallic nanoparticles (NPs) has attracted tremendous attention in recent years because these protocols are low cost and more environmentally friendly than standard methods of synthesis. In this article, we report a simple and eco-friendly method for the synthesis of silver NPs using an aqueous solution of Pulicaria glutinosa plant extract as a bioreductant. The as-prepared silver NPs were characterized using ultraviolet–visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. Moreover, the effects of the concentration of the reductant (plant extract) and precursor solution (silver nitrate), the temperature on the morphology, and the kinetics of reaction were investigated. The results indicate that the size of the silver NPs varied as the plant extract concentration increased. The as-synthesized silver NPs were phase pure and well crystalline with a face-centered cubic structure. Further, Fourier-transform infrared spectroscopy analysis confirmed that the plant extract not only acted as a bioreductant but also functionalized the NPs’ surfaces to act as a capping ligand to stabilize them in the solvent. The developed eco-friendly method for the synthesis of NPs could prove a better substitute for the physical and chemical methods currently used to prepare metallic NPs commonly used in cosmetics, foods, and medicines. PMID:23620666
Silver-catalyzed synthesis of amides from amines and aldehydes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madix, Robert J; Zhou, Ling; Xu, Bingjun
The invention provides a method for producing amides via the reaction of aldehydes and amines with oxygen adsorbed on a metallic silver or silver alloy catalyst. An exemplary reaction is shown in Scheme 1: (I), (II), (III). ##STR00001##
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wen-Hua; Yan, Hao-Jie; Chen, Hui
Dipyridyl sulphide ligands 4-(pyridin-4-ylmethylthio)pyridine (abbreviated as L1) and 3-(pyridin-4-ylmethylthio)pyridine (abbreviated as L2) have been designed and used as μ-{sub N},{sub N}-bridging linkages to construct coordination polymers with free –S–CH{sub 2}– groups as secondary donor sites. By use solvent control method, coordination polymers ([Ag{sub 3}SO{sub 4}(L1){sub 3}](Cl)·4.5H{sub 2}O){sub ∞}(1), ([Ag{sub 2}SO{sub 4}(L1){sub 2}]·6H{sub 2}O·2CH{sub 3}OH){sub ∞}(2), ([Ag{sub 2}SO{sub 4}(L2){sub 2}]·H{sub 2}O){sub ∞}(3) and ([Ag{sub 4}(SO{sub 4}){sub 2}(L2){sub 4}]·5H{sub 2}O){sub ∞}(4) with different architectures were obtained. Complexes 1, 3 and 4 feature 1D channel with different sizes and structures. Complex 1 exhibits guest exchange by THF and 1,4-dioxane, and Hg{sup 2+} sorptionmore » ability from solution due to its relative larger channel and available bonding sites of –S– exposed to the channel region. All complexes have been characterized through single-crystal and powder X-ray diffraction (PXRD), FT-IR spectra, X-ray photoelectron spectroscopy (XPS), elemental and thermogravimetric analyses. The guest exchange and Hg{sup 2+} sorption were monitored and identified, and the structure-property relationship of coordination polymers 1–4 are discussed. - Graphical abstract: Coordination polymers of silver(I) sulfate with secondary donor sites are shown guest exchange property and Hg{sup 2+} absorb ability from solution. This work provides a new method to construct functional materials with potential application. - Highlights: • New example of constructing functional coordination polymer with secondary donor methylthio group. • Guest exchange and interesting Hg(II) absorb ability from solution are investigated. • New method to construct functional materials with potential application.« less
NASA Astrophysics Data System (ADS)
Junaidi, Yunus, Muhammad; Triyana, Kuwat; Harsojo, Suharyadi, Edi
2016-04-01
We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junaidi; Departement of Physics, Lampung University, Bandar Lampung; Triyana, Kuwat, E-mail: triyana@ugm.ac.id
2016-04-19
We report our investigation on the effect of chloride ions oncontrolling the shapes and properties of silver nanorods(AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as asalt precursor and performed at the oilbath temperature of 140 °C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorodswere characterized using UV-VIS, XRD, SEM and TEM. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able tomore » control the growth of multi-twinned-particles into the single crystalline silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorodsdecreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junaidi, E-mail: junaidi.1982@fmipa.unila.ac.id; Department of Physics, Lampung University, Bandar Lampung; Yunus, Muhammad, E-mail: muhammad.yunus@mail.ugm.ac.id
2016-04-19
We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were alsomore » able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.« less
Inkjet-Printed Porous Silver Thin Film as a Cathode for a Low-Temperature Solid Oxide Fuel Cell.
Yu, Chen-Chiang; Baek, Jong Dae; Su, Chun-Hao; Fan, Liangdong; Wei, Jun; Liao, Ying-Chih; Su, Pei-Chen
2016-04-27
In this work we report a porous silver thin film cathode that was fabricated by a simple inkjet printing process for low-temperature solid oxide fuel cell applications. The electrochemical performance of the inkjet-printed silver cathode was studied at 300-450 °C and was compared with that of silver cathodes that were fabricated by the typical sputtering method. Inkjet-printed silver cathodes showed lower electrochemical impedance due to their porous structure, which facilitated oxygen gaseous diffusion and oxygen surface adsorption-dissociation reactions. A typical sputtered nanoporous silver cathode became essentially dense after the operation and showed high impedance due to a lack of oxygen supply. The results of long-term fuel cell operation show that the cell with an inkjet-printed cathode had a more stable current output for more than 45 h at 400 °C. A porous silver cathode is required for high fuel cell performance, and the simple inkjet printing technique offers an alternative method of fabrication for such a desirable porous structure with the required thermal-morphological stability.
Flow injection method for sulphide determination using an organic mercury compound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaqoob, M.; Anwar, M.; Masood, A.S.
1991-04-01
A simple flow injection analysis method is described for the determination of soluble sulfide, based on the complexation of sulfide with p-hydroxymercurbenzoic acid, in the presence of dithizone used as an indicator. The reaction is very rapid, with a sampling rate of 90/hr. and requires a very short length post injection reaction coil. The detection limit and precision are 0.01 mM and 0.7%, respectively.
Cai, Shaobo; Pourdeyhimi, Behnam; Loboa, Elizabeth G
2017-06-28
In this study, we report a high-throughput fabrication method at industrial pilot scale to produce a silver-nanoparticles-doped nanoclay-polylactic acid composite with a novel synergistic antibacterial effect. The obtained nanocomposite has a significantly lower affinity for bacterial adhesion, allowing the loading amount of silver nanoparticles to be tremendously reduced while maintaining satisfactory antibacterial efficacy at the material interface. This is a great advantage for many antibacterial applications in which cost is a consideration. Furthermore, unlike previously reported methods that require additional chemical reduction processes to produce the silver-nanoparticles-doped nanoclay, an in situ preparation method was developed in which silver nanoparticles were created simultaneously during the composite fabrication process by thermal reduction. This is the first report to show that altered material surface submicron structures created with the loading of nanoclay enables the creation of a nanocomposite with significantly lower affinity for bacterial adhesion. This study provides a promising scalable approach to produce antibacterial polymeric products with minimal changes to industry standard equipment, fabrication processes, or raw material input cost.
NASA Astrophysics Data System (ADS)
Pugazhendhi, S.; Palanisamy, P. K.; Jayavel, R.
2018-05-01
Green synthesis techniques are developing as more simplistic and eco-friendly approach for the synthesis of metal nanoparticles compared to chemical reduction methods. Herein we report Synthesis of highly stable silver nanoparticles using Mirabillis jalapa seed extract as a reducing and capping agent. The as-prepared silver nanoparticles were characterized by UV-vis spectroscopy (UV-vis) to confirm the formation of silver nanoparticles by its characteristic surface plasmon resonance peak observed at 420 nm. The Powder X-ray diffraction (P-XRD) revealed the structure and crystalline nature of synthesized silver nanoparticles, The Fourier transform infra-red spectroscopic (FT-IR) revealed the presence of the biomolecules in the extract that acted as reducing as well stabilizing agent. The high resolution transmission electron microscopic (HRTEM) images divulged that the synthesized silver nanoparticles were spherical in shape and poly dispersed. The energy dispersive X-ray diffraction (EDX) profile revealed the elements present in the as-synthesized colloidal silver nanoparticles and its percentages. The Zeta potential measured for silver nanoparticles evidenced that the prepared silver nanoparticles owned high stability in room temperature itself. The as-synthesized silver nanoparticles (AgNPs) in colloidal form were showed good antimicrobial effects and it's were found to exhibit third order optical nonlinearity as studied by Z-scan technique using 532 nm Nd:YAG (SHG) CW laser beam (COHERENT-Compass 215 M-50 diode pumped) output as source. The negative nonlinearity observed was well utilized for the study of optical limiting behavior of the silver nanoparticles.
Han, L; Tanweer, A; Szaran, J; Halas, S
2002-09-01
A modified technique for the conversion of sulphates and sulphides to SO2 with the mixture of V2O5-SiO2 for sulphur isotopic analyses is described. This technique is more suitable for routine analysis of large number of samples. Modification of the reaction vessel and using manifold inlet system allows to analyse up to 24 samples every day. The modified technique assures the complete yield of SO2, consistent oxygen isotope composition of the SO2 gas and reproducibility of delta34S measurements being within 0.10 per thousand. It is observed, however, oxygen in SO2 produced from sulphides differs in delta18O with respect to that produced from sulphates.
Tien, Der-Chi; Tseng, Kuo-Hsiung; Liao, Chih-Yu; Tsung, Tsing-Tshih
2008-10-01
Nanoscale techniques for silver production may assist the resurgence of the medical use of silver, especially given that pathogens are showing increasing resistance to antibiotics. Traditional chemical synthesis methods for colloidal silver (CS) may lead to the presence of toxic chemical species or chemical residues, which may inhibit the effectiveness of CS as an antibacterial agent. To counter these problems a spark discharge system (SDS) was used to fabricate a suspension of colloidal silver in deionized water with no added chemical surfactants. SDS-CS contains both metallic silver nanoparticles (Ag(0)) and ionic silver forms (Ag(+)). The antimicrobial affect of SDS-CS on Staphylococcus aureus was studied. The results show that CS solutions with an ionic silver concentration of 30 ppm or higher are strong enough to destroy S. aureus. In addition, it was found that a solution's antimicrobial potency is directly related to its level of silver ion concentration.
Sintered silver joints via controlled topography of electronic packaging subcomponents
Wereszczak, Andrew A.
2014-09-02
Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.
Ink composition for making a conductive silver structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Steven B.; Lewis, Jennifer A.
An ink composition for making a conductive silver structure comprises a silver salt and a complex of (a) a complexing agent and a short chain carboxylic acid or (b) a complexing agent and a salt of a short chain carboxylic acid, according to one embodiment. A method for making a silver structure entails combining a silver salt and a complexing agent, and then adding a short chain carboxylic acid or a salt of the short chain carboxylic acid to the combined silver salt and a complexing agent to form an ink composition. A concentration of the complexing agent in themore » ink composition is reduced to form a concentrated formulation, and the silver salt is reduced to form a conductive silver structure, where the concentrated formulation and the conductive silver structure are formed at a temperature of about 120.degree. C. or less.« less
Bruzzoniti, Maria Concetta; Kobylinska, Dorota Korte; Franko, Mladen; Sarzanini, Corrado
2010-04-14
A flow injection method has been developed for determination of silver. The method is based on a reduction reaction with sodium borohydride which leads to the formation of a colloidal species which is monitored at a wavelength of 390 nm. The reaction variables flow rate, sodium borohydride concentration and pH, which affect sensitivity, were investigated and their effects were established using a two-levels, three-factor experimental design. Further optimization of manifold variables (reaction coil and injection volume) allowed us to determine silver in the range 0.050-5.0 mg L(-1) with a minimum detectable concentration of 0.050 mg L(-1). Silver is added, as biocide, to drinking water for spacecrafts. The chemical species of silver, present in this kind of sample, were characterized by a procedure based on the selective retention of Ag(+) onto a 2.2.2. cryptand based substrate followed by determination of the non-bound and bound (after elution) Ag(+) by the FIA method. The method optimized was applied to a drinking water sample provided for the launch with the Automated Transfer Vehicle (ATV) module Jule Verne to the International Space Station (March 9, 2008). Copyright 2010 Elsevier B.V. All rights reserved.
Antimicrobial Activity of Thin Solid Films of Silver Doped Hydroxyapatite Prepared by Sol-Gel Method
Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela
2014-01-01
In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x Ag = 0.5 are effective against E. coli and S. aureus after 24 h. PMID:24523630
Red tea leaves infusion as a reducing and stabilizing agent in silver nanoparticles synthesis
NASA Astrophysics Data System (ADS)
Pluta, K.; Tryba, A. M.; Malina, D.; Sobczak-Kupiec, A.
2017-12-01
Due to the unique properties of silver nanoparticles there is growing interest in their applications. Current trends in nanotechnology are focused on developing a new technique to synthesize nanoparticles using biological methods associated with the use of plant extracts, fungi, bacteria or essential oils. These methods are a promising alternative to conventional approaches which can minimize the use of hazardous substances. The silver nanoparticles synthesis using red tea infusion as a reducing and stabilizing agent and their characteristics have been described. Total antioxidant capacity using DPPH radical and total content of phenolic compounds by Folin-Ciocalteau method were measured in tea infusion. Synthesis of silver nanoparticles was carried out using chemical reduction at various temperatures. Furthermore, the effect of tea infusion volume added to reaction mixture on nanoparticles’ properties was investigated. Finally, nanosilver suspensions were characterized by UV-vis spectrophotometer, dynamic light scattering (DLS) scanning electron microscope (SEM) and transmission electron microscope (TEM). Moreover, phytotoxicity of silver nanoparticles was determined using Phytotestkit microbiotest.
Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela
2014-01-01
In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x(Ag) = 0.5 are effective against E. coli and S. aureus after 24 h.
Massive Sulphide Exploration at the Mid-Atlantic Ridge 26oN: an interdisciplinary geophysical study
NASA Astrophysics Data System (ADS)
Gehrmann, R. A. S.; Hölz, S.; Jegen, M. D.; Graber, S.; Szitkar, F.; Petersen, S.; Yeo, I. A.; North, L. J.; Gil, A.; Vardy, M. E.; Haroon, A.; Schroeder, H.; Bialas, J.; Tan, Y. Y.; Attias, E.; Sommer, M.; Minshull, T. A.; Murton, B. J.
2017-12-01
During the summer 2016 two cruises (M127 and JC138) conducted an interdisciplinary survey as part of the EU FP7 project `Blue Mining' in the Trans-Atlantic Geotraverse (TAG) hydrothermal field, at the Mid-Atlantic Ridge (26° N), to study the geophysical and geochemical signature of extinct seafloor massive sulphide (eSMS) deposits. The survey comprised AUV-based high-resolution bathymetric mapping, magnetic and self-potential data acquisition, reflection and refraction seismic imaging and three types of controlled source electromagnetic (CSEM) experiments (Geomar, UoS). Additionally seafloor coring, drilling and video imaging (NOC, University of Lisbon, BGS) were realized. Laboratory measurements of physical and chemical properties were taken on and post-cruise from rock samples and sediment cores. Here, we present results from the geophysical data analysis with emphasis on the electromagnetic studies in respect to eSMS detection. Six multi-kilometre-long profiles were acquired with the towed CSEM experiment (UoS) and preliminary results indicate the sensitivity to the conductive eSMS deposits and the resistive background to a depth of about 200 m. The system is also sensitive to the rough topography and interpretation of eSMS deposits requires validation from other methods such as measurements with the MARTEMIS system, a seafloor source-receiver coil (Geomar), which were conducted in two collocated work areas for high-resolution imaging with a depth penetration of up to 50 m. Each geophysical method is sensitive to different SMS characteristics, for example, bathymetric and seismic data are sensitive to the shape and structure of the whole deposit, magnetic data are susceptive to the hydrothermal alteration of magnetic minerals, and self-potential and electromagnetic data respond to the electrically conductive sulphide bodies. Each method has different resolution, penetration depths and challenges with the rough-topographic terrain and navigation. Only implementing them together leads to a more robust identification of the eSMS deposits. We will show results for known and previously unknown deposits, case studies where methods support and complement, or contradict each other, and the overall distribution of eSMS deposits in the TAG hydrothermal field.
Step-reduced synthesis of starch-silver nanoparticles.
Raghavendra, Gownolla Malegowd; Jung, Jeyoung; Kim, Dowan; Seo, Jongchul
2016-05-01
In the present process, silver nanoparticles were directly synthesized in a single step by microwave irradiation of a mixture of starch, silver nitrate, and deionized water. This is different from the commonly adopted procedure for starch-silver nanoparticle synthesis in which silver nanoparticles are synthesized by preparing a starch solution as a reaction medium first. Thus, the additional step associated with the preparation of the starch solution was eliminated. In addition, no additional reducing agent was utilized. The adopted method was facile and straight forward, affording spherical silver nanoparticles with diameter below 10nm that exhibited good antibacterial activity. Further, influence of starch on the size of the silver nanoparticles was noticed. Copyright © 2016 Elsevier B.V. All rights reserved.
Adkar, Dattatraya; Adhyapak, Parag; Mulik, Uttamrao; Jadkar, Sandesh; Vutova, Katia; Amalnerkar, Dinesh
2018-05-01
SnS nanostructured materials have attracted enormous interest due to their important properties and potential application in low cost solar energy conversion systems and optical devices. From the perspective of SnS based device fabrication, we offer single-stroke in-situ technique for the generation of Sn based sulphide and oxide nanostructures inside the polymer network via polymer-inorganic solid state reaction route. In this method, polyphenylene sulphide (PPS)-an engineering thermoplastic-acts as chalcogen source as well as stabilizing matrix for the resultant nano products. Typical solid state reaction was accomplished by simply heating the physical admixtures of the tin salts (viz. tin acetate/tin chloride) with PPS at the crystalline melting temperature (285 °C) of PPS in inert atmosphere. The synthesized products were characterized by using various physicochemical characterization techniques. The prima facie observations suggest the concurrent formation of nanocrystalline SnS with extraneous oxide phase. The TEM analysis revealed formation of nanosized particles of assorted morphological features with polydispersity confined to 5 to 50 nm. However, agglomerated particles of nano to submicron size were also observed. The humidity sensing characterization of these nanocomposites was also performed. The resistivity response with the level of humidity (20 to 85% RH) was compared for these nanocomposites. The linear response was obtained for both the products. Nevertheless, the nanocomposite product obtained from acetate precursor showed higher sensitivity towards the humidity than that of one prepared from chloride precursor.
Assessment of mobility and bioavailability of mercury compounds in sewage sludge and composts.
Janowska, Beata; Szymański, Kazimierz; Sidełko, Robert; Siebielska, Izabela; Walendzik, Bartosz
2017-07-01
Content of heavy metals, including mercury, determines the method of management and disposal of sewage sludge. Excessive concentration of mercury in composts used as organic fertilizer may lead to accumulation of this element in soil and plant material. Fractionation of mercury in sewage sludge and composts provides a better understanding of the extent of mobility and bioavailability of the different mercury species and helps in more informed decision making on the application of sludge for agricultural purposes. The experimental setup comprises the composing process of the sewage sludge containing 13.1mgkg -1 of the total mercury, performed in static reactors with forced aeration. In order to evaluate the bioavailability of mercury, its fractionation was performed in sewage sludge and composts during the process. An analytical procedure based on four-stage sequential extraction was applied to determine the mercury content in the ion exchange (water soluble and exchangeable Hg), base soluble (Hg bound to humic and fulvic acid), acid soluble (Hg bound to Fe/Mn oxides and carbonates) and oxidizable (Hg bound to organic matter and sulphide) fractions. The results showed that from 50.09% to 64.55% of the total mercury was strongly bound to organo-sulphur and inorganic sulphide; that during composting, increase of concentrations of mercury compounds strongly bound with organic matter and sulphides; and that mercury content in the base soluble and oxidizable fractions was strongly correlated with concentration of dissolved organic carbon in those fractions. Copyright © 2017 Elsevier Inc. All rights reserved.
Silver nanostructures synthesis via optically induced electrochemical deposition
NASA Astrophysics Data System (ADS)
Li, Pan; Liu, Na; Yu, Haibo; Wang, Feifei; Liu, Lianqing; Lee, Gwo-Bin; Wang, Yuechao; Li, Wen Jung
2016-06-01
We present a new digitally controlled, optically induced electrochemical deposition (OED) method for fabricating silver nanostructures. Projected light patterns were used to induce an electrochemical reaction in a specialized sandwich-like microfluidic device composed of one indium tin oxide (ITO) glass electrode and an optically sensitive-layer-covered ITO electrode. Silver polyhedral nanoparticles, triangular and hexagonal nanoplates, and nanobelts were controllably synthesized in specific positions at which projected light was illuminated. The silver nanobelts had rectangular cross-sections with an average width of 300 nm and an average thickness of 100 nm. By controlling the applied voltage, frequency, and time, different silver nanostructure morphologies were obtained. Based on the classic electric double-layer theory, a dynamic process of reduction and crystallization can be described in terms of three phases. Because it is template- and surfactant-free, the digitally controlled OED method facilitates the easy, low cost, efficient, and flexible synthesis of functional silver nanostructures, especially quasi-one-dimensional nanobelts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Peng; Zhang Milin; Hou Hongwei
2008-03-04
A novel strategy has been put forward to prepare hierarchical dendrites of silver nanorods via a simple integration method using 'Devarda's template' as a reducing agent and architecture template with the assistance of ultrasonic waves, in which the template was firstly fabricated and employed. The individual silver dendrite is composed of a long central trunk with secondary branches, which preferentially grew in a parallel direction with a definite angle to the trunk. The results reveal that the dendrites are single crystalline in nature and interestingly prove that the silver single crystal has the preferential orientation in <1 1 1> directionmore » in normal conditions. The contrast experiments demonstrated that both 'Devarda's template' and the ultrasonic irradiation are necessary for building hierarchically silver dendrites in a water system. Moreover, the experimental results show that the dendrites of silver nanorods are the superior electrode materials for the electrochemical sensors to detect directly NO{sub 2}{sup -} in aqueous solution.« less
A Combined Theoretical and Experimental Study for Silver Electroplating
Liu, Anmin; Ren, Xuefeng; An, Maozhong; Zhang, Jinqiu; Yang, Peixia; Wang, Bo; Zhu, Yongming; Wang, Chong
2014-01-01
A novel method combined theoretical and experimental study for environmental friendly silver electroplating was introduced. Quantum chemical calculations and molecular dynamic (MD) simulations were employed for predicting the behaviour and function of the complexing agents. Electronic properties, orbital information, and single point energies of the 5,5-dimethylhydantoin (DMH), nicotinic acid (NA), as well as their silver(I)-complexes were provided by quantum chemical calculations based on density functional theory (DFT). Adsorption behaviors of the agents on copper and silver surfaces were investigated using MD simulations. Basing on the data of quantum chemical calculations and MD simulations, we believed that DMH and NA could be the promising complexing agents for silver electroplating. The experimental results, including of electrochemical measurement and silver electroplating, further confirmed the above prediction. This efficient and versatile method thus opens a new window to study or design complexing agents for generalized metal electroplating and will vigorously promote the level of this research region. PMID:24452389
Arjunan, Naresh Kumar; Murugan, Kadarkarai; Rejeeth, Chandrababu; Madhiyazhagan, Pari; Barnard, Donald R
2012-03-01
A biological method was used to synthesize stable silver nanoparticles that were tested as mosquito larvicides against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Annona squamosa leaf broth (5%) reduced aqueous 1 mM AgNO₃ to stable silver nanoparticles with an average size of 450 nm. The structure and percentage of synthesized nanoparticles was characterized by using ultraviolet spectrophotometry, X-Ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy methods. The median lethal concentrations (LC₅₀) of silver nanoparticles that killed fourth instars of Ae. aegypti, Cx. quinquefasciatus, and An. stephensi were 0.30, 0.41, and 2.12 ppm, respectively. Adult longevity (days) in male and female mosquitoes exposed as larvae to 0.1 ppm silver nanoparticles was reduced by ~30% (p<0.05), whereas the number of eggs laid by females exposed as larvae to 0.1 ppm silver nanoparticles decreased by 36% (p<0.05).
Hu, Pengfei; Cao, Yali
2012-08-07
The room-temperature solid-state chemical reaction technique has been used to synthesize the silver nanoparticle-loaded semiconductor silver@silver chloride for the first time. It has the advantages of convenient operation, lower cost, less pollution, and mass production. This simple technique created a wide array of nanosized silver particles which had a strong surface plasmon resonance effect in the visible region, and built up an excellent composite structure of silver@silver chloride hybrid which exhibited high photocatalytic activity and stability towards decomposition of organic methyl orange under visible-light illumination. Moreover, this work achieved the control of composition of the silver@silver chloride composite simply by adjusting the feed ratio of reactants. It offers an alternative method for synthesising metal@semiconductor composites.
Formation of hybrid nanocomposites polymethylolacrylamide/silver
NASA Astrophysics Data System (ADS)
Kolzunova, L. G.; Shchitovskaya, E. V.; Rodzik, I. G.
2018-05-01
In this study, polymethylolacrylamide/silver composites have been formed by incorporating silver nanoparticles into the pre-electrosynthesized polymer film. The composites were formed in a two-step process involving the sorption of silver nitrate by a polymer matrix followed by chemical reduction of Ag-ions. The presence of crystalline silver phase in the polymer was confirmed by X-ray phase analysis (XRD), plasmon resonance and scanning electron microscopy (SEM). The small-angle X-ray scattering (SAXS) method has obtained the distribution functions of silver particles over radii. It is established that the content of silver in composites without chitosan is 10-15 times higher than with its additive. The dependences of cyclic voltammetry in pure phosphate buffer (pH 6.86) and in the presence of hydrogen peroxide were obtained. It has been shown that polymer/silver composites exhibit selectivity to hydrogen peroxide.
Silver removal from aqueous solution by biochar produced from biosolids via microwave pyrolysis.
Antunes, Elsa; Jacob, Mohan V; Brodie, Graham; Schneider, Philip A
2017-12-01
The contamination of water with silver has increased due to the widespread applications of products with silver employed as antimicrobial agent. Adsorption is a cost-effective method for silver removal from aqueous solution. In this study biochar, produced from the microwave assisted pyrolysis of biosolids, was used for silver removal from an aqueous solution. The adsorption kinetics, isotherms and thermodynamics were investigated to better understand the silver removal process by biochar. X-ray diffraction results demonstrated that silver removal was a combination two consecutive mechanisms, reduction and physical adsorption. The Langmuir model fitted the experimental data well, showing that silver removal was predominantly a surface mechanism. The thermodynamic investigation demonstrated that silver removal by biochar was an exothermic process. The final nanocomposite Ag-biochar (biochar plus silver) was used for methylene blue adsorption and photodegradation. This study showed the potential of using biochar produced from biosolids for silver removal as a promising solution to mitigate water pollution and an environmentally sustainable approach for biosolids management and re-use. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khaydarov, R. R.; Khaydarov, R. A.; Estrin, Y.; Evgrafova, S.; Scheper, T.; Endres, C.; Cho, S. Y.
The bactericidal effect of silver nanoparticles obtained by a novel electrochemical method on Escherichia coli, Staphylococcus aureus, Aspergillus niger and Penicillium phoeniceum cultures has been studied. The tests conducted have demonstrated that synthesized silver nanoparticles — when added to water paints or cotton fabrics — show a pronounced antibacterial/antifungal effect. It was shown that smaller silver nanoparticles have a greater antibacterial/antifungal efficacy. The paper also provides a review of scientific literature with regard to recent developments in the field of toxicity of silver nanoparticles and its effect on environment and human health.
Thin film solar energy collector
Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.
1983-11-22
A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.
Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D; Baffa, Oswaldo
2011-11-01
Colloidal silver nanoparticles were synthesized by an easy green method using thermal treatment of aqueous solutions of silver nitrate and natural rubber latex (NRL) extracted from Hevea brasiliensis. The UV-Vis spectra detected the characteristic surface plasmonic absorption band around 435 nm. Both NRL and AgNO(3) contents in the reaction medium have influence in the Ag nanoparticles formation. Lower AgNO(3) concentration led to decreased particle size. The silver nanoparticles presented diameters ranging from 2 nm to 100 nm and had spherical shape. The selected area electron diffraction (SAED) patterns indicated that the silver nanoparticles have face centered cubic (fcc) crystalline structure. FTIR spectra suggest that reduction of the silver ions are facilitated by their interaction with the amine groups from ammonia, which is used for conservation of the NRL, whereas the stability of the particles results from cis-isoprene binding onto the surface of nanoparticles. Therefore natural rubber latex extracted from H. brasiliensis can be employed in the preparation of stable aqueous dispersions of silver nanoparticles acting as a dispersing and/or capping agent. Moreover, this work provides a new method for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive. Copyright © 2011 Elsevier B.V. All rights reserved.
Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp.
Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T; Soniya, E V; Mathew, Jyothis; Radhakrishnan, E K
2014-01-01
Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm - 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus.
Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp
Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T.; Soniya, E.V.; Mathew, Jyothis; Radhakrishnan, E.K.
2014-01-01
Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm – 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus. PMID:25763025
Precise micropatterning of silver nanoparticles on plastic substrates
NASA Astrophysics Data System (ADS)
Ammosova, Lena; Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A.
2017-04-01
Conventional fabrication methods to obtain metal patterns on polymer substrates are restricted by high operating temperature and complex preparation steps. The present study demonstrates a simple yet versatile method for preparation of silver nanoparticle micropatterns on polymer substrates with various surface geometry. With the microworking robot technique, we were able not only to directly structure the surface, but also precisely deposit silver nanoparticle ink on the desired surface location with the minimum usage of ink material. The prepared silver nanoparticle ink, containing silver cations and polyethylene glycol (PEG) as a reducing agent, yields silver nanoparticle micropatterns on plastic substrates at low sintering temperature without any contamination. The influence of the ink behaviour was studied, such as substrate wettability, ink volume, and sintering temperature. The ultraviolet visible (UV-vis), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) measurements revealed the formation of micropatterns with uniformly distributed silver nanoparticles. The prepared patterns are expected to have a broad range of applications in optics, medicine, and sensor devices owing to the unique properties of silver. Furthermore, the deposition of a chemical compound, which is different from the substrate material, not only adds a fourth dimension to the prestructured three-dimensional (3D) surfaces, but also opens new application areas to the conventional surface structures.
Catalytically and biologically active silver nanoparticles synthesized using essential oil
NASA Astrophysics Data System (ADS)
Vilas, Vidya; Philip, Daizy; Mathew, Joseph
2014-11-01
There are numerous reports on phytosynthesis of silver nanoparticles and various phytochemicals are involved in the reduction and stabilization. Pure explicit phytosynthetic protocol for catalytically and biologically active silver nanoparticles is of importance as it is an environmentally benign green method. This paper reports the use of essential oil of Myristica fragrans enriched in terpenes and phenyl propenes in the reduction and stabilization. FTIR spectra of the essential oil and the synthesized biogenic silver nanoparticles are in accordance with the GC-MS spectral analysis reports. Nanosilver is initially characterized by an intense SPR band around 420 nm, followed by XRD and TEM analysis revealing the formation of 12-26 nm sized, highly pure, crystalline silver nanoparticles. Excellent catalytic and bioactive potential of the silver nanoparticles is due to the surface modification. The chemocatalytic potential of nanosilver is exhibited by the rapid reduction of the organic pollutant, para nitro phenol and by the degradation of the thiazine dye, methylene blue. Significant antibacterial activity of the silver colloid against Gram positive, Staphylococcus aureus (inhibition zone - 12 mm) and Gram negative, Escherichia coli (inhibition zone - 14 mm) is demonstrated by Agar-well diffusion method. Strong antioxidant activity of the biogenic silver nanoparticles is depicted through NO scavenging, hydrogen peroxide scavenging, reducing power, DPPH and total antioxidant activity assays.
Rare-earth transition-metal gallium chalcogenides RE3MGaCh7 (M=Fe, Co, Ni; Ch=S, Se)
NASA Astrophysics Data System (ADS)
Rudyk, Brent W.; Stoyko, Stanislav S.; Oliynyk, Anton O.; Mar, Arthur
2014-02-01
Six series of quaternary rare-earth transition-metal chalcogenides RE3MGaCh7 (M=Fe, Co, Ni; Ch=S, Se), comprising 33 compounds in total, have been prepared by reactions of the elements at 1050 °C (for the sulphides) or 900 °C (for the selenides). They adopt noncentrosymmetric hexagonal structures (ordered Ce3Al1.67S7-type, space group P63, Z=2) with cell parameters in the ranges of a=9.5-10.2 Å and c=6.0-6.1 Å for the sulphides and a=10.0-10.5 Å and c=6.3-6.4 Å for the selenides as refined from powder X-ray diffraction data. Single-crystal structures were determined for five members of the sulphide series RE3FeGaS7 (RE=La, Pr, Tb) and RE3CoGaS7 (RE=La, Tb). The highly anisotropic crystal structures consist of one-dimensional chains of M-centred face-sharing octahedra and stacks of Ga-centred tetrahedra all pointing in the same direction. Magnetic measurements on the sulphides reveal paramagnetic behaviour in some cases and long-range antiferromagnetic behaviour with low Néel temperatures (15 K or lower) in others. Ga L-edge XANES spectra support the presence of highly cationic Ga tetrahedral centres with a tendency towards more covalent Ga-Ch character on proceeding from the sulphides to the selenides. Band structure calculations on La3FeGaS7 indicate that the electronic structure is dominated by Fe 3d-based states near the Fermi level.
NASA Astrophysics Data System (ADS)
Zheng, Yibo; Zhang, Lei; Wang, Yuan
2017-10-01
In this letter, surface plasmon resonance sensors based on grapefruit-type photonic crystal fiber (PCF)with different silver nano-filling structure have been analyzed and compared though the finite element method (FEM). The regularity of the resonant wavelength changing with refractive index of the sample has been numerically simulated. The surface plasmon resonance (SPR) sensing properties have been numerically simulated in both areas of resonant wavelength and intensity detection. Numerical results show that excellent sensor resolution of 4.17×10-5RIU can be achieved as the radius of the filling silver nanowires is 150 nm by spectrum detection method. Comprehensive comparison indicates that the 150 nm silver wire filling structure is suitable for spectrum detection and 30 nm silver film coating structure is suitable for the amplitude detection.
Understanding Marine Biocorrosion: Experiments with Artificial and Natural Seawater
2015-11-04
study of microbiologically infl uenced marine corrosion (MIMC) and the consideration of nutrients for microorganisms. Recent MIMC investigations have...conclusion of the experiment the concentration of sulphide was below the detection limit (Figure 13.3 ). Generally, KW seawater had higher numbers of...sulphides. Supporting their hypothesis, diagnostic catechols, which are known aerobic degradation products of hydrocarbons, were detected in the NRL
Sulphide production and corrosion in seawaters during exposure to FAME diesel.
Lee, Jason S; Ray, Richard I; Little, Brenda J; Duncan, Kathleen E; Oldham, Athenia L; Davidova, Irene A; Suflita, Joseph M
2012-01-01
Experiments were designed to evaluate the corrosion-related consequences of storing/transporting fatty acid methyl ester (FAME) alternative diesel fuel in contact with natural seawater. Coastal Key West, FL (KW), and Persian Gulf (PG) seawaters, representing an oligotrophic and a more organic- and inorganic mineral-rich environment, respectively, were used in 60 day incubations with unprotected carbon steel. The original microflora of the two seawaters were similar with respect to major taxonomic groups but with markedly different species. After exposure to FAME diesel, the microflora of the waters changed substantially, with Clostridiales (Firmicutes) becoming dominant in both. Despite low numbers of sulphate-reducing bacteria in the original waters and after FAME diesel exposure, sulphide levels and corrosion increased markedly due to microbial sulphide production. Corrosion morphology was in the form of isolated pits surrounded by an intact, passive surface with the deepest pits associated with the fuel/seawater interface in the KW exposure. In the presence of FAME diesel, the highest corrosion rates measured by linear polarization occurred in the KW exposure correlating with significantly higher concentrations of sulphur and chlorine (presumed sulphide and chloride, respectively) in the corrosion products.
Industrial applications of new sulphur biotechnology.
Janssen, A J; Ruitenberg, R; Buisman, C J
2001-01-01
The emission of sulphur compounds into the environment is undesirable because of their acidifying characteristics. The processing of sulphidic ores, oil refining and sulphuric acid production are major sources of SO2 emissions. Hydrogen sulphide is emitted into the environment as dissolved sulphide in wastewater or as H2S in natural gas, biogas, syngas or refinery gases. Waste streams containing sulphate are generated by many industries, including mining, metallurgical, pulp and paper and petrochemical industries. Applying process technologies that rely on the biological sulphur cycle can prevent environmental pollution. In nature sulphur compounds may cycle through a series of oxidation states (-2, 0, +2, +4, +6). Bacteria of a wide range of genera gain metabolic energy from either oxidising or reducing sulphur compounds. Paques B.V. develops and constructs reactor systems to remove sulphur compounds from aqueous and gaseous streams by utilising naturally occurring bacteria from the sulphur cycle. Due to the presence of sulphide, heavy metal removal is also achieved with very high removal efficiencies. Ten years of extensive laboratory and pilot plant research has, to date, resulted in the construction of over 30 full-scale installations. This paper presents key processes from the sulphur cycle and discusses recent developments about their application in industry.
Chatterjee, Pritha; Ghangrekar, M M; Rao, Surampalli; Kumar, Senthil
2017-05-01
Varying chemical oxygen demand (COD) and sulphate concentrations in substrate were used to determine reaction kinetics and mass balance of organic matter and sulphate transformation in a microbial fuel cell (MFC). MFC with anodic chamber volume of 1 L, fed with wastewater having COD of 500 mg/L and sulphate of 200 mg/L, could harvest power of 54.4 mW/m 2 , at a Coulombic efficiency of 14%, with respective COD and sulphate removals of 90 and 95%. Sulphide concentration, even up to 1500 mg/L, did not inhibit anodic biochemical reactions, due to instantaneous abiotic oxidation to sulphur, at high inlet sulphate. Experiments on abiotic oxidation of sulphide to sulphur revealed maximum oxidation taking place at an anodic potential of -200 mV. More than 99% sulphate removal could be achieved in a MFC with inlet COD/sulphate of 0.75, giving around 1.33 kg/m 3 day COD removal. Bioelectrochemical conversion of sulphate facilitating sulphur recovery in a MFC makes it an interesting pollution abatement technique.
Manikprabhu, Deene; Cheng, Juan; Chen, Wei; Sunkara, Anil Kumar; Mane, Sunilkumar B; Kumar, Ram; das, Mousumi; N Hozzein, Wael; Duan, Yan-Qing; Li, Wen-Jun
2016-05-01
Synthesis of silver nanoparticles using microorganism are many, but there are only scanty reports using actinobacteria. In the present study, the actinobacterium of the genus Sinomonas was reported to synthesis silver nanoparticles for the first time. A photo-irradiation based method was developed for the synthesis of silver nanoparticles, which includes two day old cultural supernatant of novel species Sinomonas mesophila MPKL 26 and silver nitrate solution, exposed to sunlight. The preliminary synthesis of silver nanoparticles was noted by the color change of the solution from colorless to brown; the synthesis was further confirmed using UV-visible spectroscopy which shows a peak between 400 and 450nm. Spherical shape silver nanoparticles of size range 4-50nm were synthesized, which were characterized using transmission electron microscopy. The Fourier transform infrared spectroscopy result indicates that, the metabolite produced by the novel species S. mesophila MPKL 26 was the probable reducing/capping agent involved in the synthesis of silver nanoparticles. The synthesized silver nanoparticles maintained consistent shape with respect to different time periods. The synthesized silver nanoparticles were evaluated for the antimicrobial activity against multi drug resistant Staphylococcus aureus which show good antimicrobial activity. The method developed for synthesis is easy, requires less time (20min) and produces spherical shape nanoparticles of size as small as 4nm, having good antimicrobial activity. Hence, our study enlarges the scope of actinobacteria for the rapid biosynthesis of silver nanoparticles and can be used in formulating remedies for multi drug resistant S. aureus. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Augustine, Robin; Kalarikkal, Nandakumar; Thomas, Sabu
2014-10-01
Green synthesis of nanoparticles is widely accepted due to the less toxicity in comparison with chemical methods. But there are certain drawbacks like slow formation of nanoparticles, difficulty to control particle size and shape make them less convenient. Here we report a novel cost-effective and eco-friendly method for the rapid green synthesis of silver nanoparticles using leaf extracts of Piper nigrum. Our results suggest that this method can be used for obtaining silver nanoparticles with controllable size within a few minutes. The fabricated nanoparticles possessed excellent antibacterial property against both Gram-positive and Gram-negative bacteria.
NASA Astrophysics Data System (ADS)
Masrournia, Mahboube; Montazarolmahdi, Maliheh; Sani, Faramarz Aliasghari
2017-07-01
Determination of dextrose in peritoneal dialysis with a method based on silver nanoparticles (AgNPs) formation was investigated. In a green chemistry method, silver nanoparticles (AgNPs) were synthesized in the natural polymeric matrix of gelatin. The nanoparticles were characterized with UV-Vis spectroscopy and transmission electron microscopy (TEM). Absorbance signal of AgNPs could be applied to determine the various concentrations of dextrose solutions. Drop wise and ultrasonic methods were used and compared with each other. The dynamic range of methods with limit of detection and relative standard deviations were obtained. Results for real sample (peritoneal dialysis) were satisfied.
A new method for measuring low resistivity contacts between silver and YBa2Cu3O(7-x) superconductor
NASA Technical Reports Server (NTRS)
Hsi, Chi-Shiung; Haertling, Gene H.; Sherrill, Max D.
1991-01-01
Several methods of measuring contact resistivity between silver electrodes and YBa2Cu3O(7-x) superconductors were investigated; including the two-point, the three point, and the lap-joint methods. The lap-joint method was found to yield the most consistent and reliable results and is proposed as a new technique for this measurement. Painting, embedding, and melting methods were used to apply the electrodes to the superconductor. Silver electrodes produced good ohmic contacts to YBa2Cu3O(7-x) superconductors with contact resistivities as low as 1.9 x 10 to the -9th ohm sq cm.
Metagenomic analysis of a desulphurisation system used to treat biogas from vinasse methanisation.
Dias, Marcela França; Colturato, Luis Felipe; de Oliveira, João Paulo; Leite, Laura Rabelo; Oliveira, Guilherme; Chernicharo, Carlos Augusto; de Araújo, Juliana Calabria
2016-04-01
We investigated the response of microbial community to changes in H2S loading rate in a microaerated desulphurisation system treating biogas from vinasse methanisation. H2S removal efficiency was high, and both COD and DO seemed to be important parameters to biomass activity. DGGE analysis retrieved sequences of sulphide-oxidising bacteria (SOB), such as Thioalkalimicrobium sp. Deep sequencing analysis revealed that the microbial community was complex and remained constant throughout the experiment. Most sequences belonged to Firmicutes and Proteobacteria, and, to a lesser extent, Bacteroidetes, Chloroflexi, and Synergistetes. Despite the high sulphide removal efficiency, the abundance of the taxa of SOB was low, and was negatively affected by the high sulphide loading rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gress, Michael U.; Pearson, D. Graham; Timmerman, Suzette; Chinn, Ingrid L.; Koornneef, Janne M.; Davies, Gareth R.
2017-04-01
The diamondiferous Letlhakane kimberlites are part of the Orapa kimberlite cluster (˜ 93.1 Ma) in north-eastern Botswana, located on the edge of the Zimbabwe Craton, close to the Proterozoic Magondi Mobile Belt. Here we report the first Re-Os ages of six individual eclogitic sulphide inclusions (3.0 to 35.7μg) from Letlhakane diamonds along with their rhenium, osmium, iridium and platinum concentrations, and carbon isotope, nitrogen content and N-aggregation data from the corresponding growth zones of the host diamonds. For the first time, Re-Os data will be compared to Sm-Nd ages of individual eclogitic silicate inclusions recovered from the same diamonds using a Triton Plus equipped with four 1013Ω amplifiers. The analysed inclusion set currently encompasses pairs of individual sulphides from two diamonds (LK040 sf4 & 5, LK113 sf1 & 2) and two sulphide inclusions from separate diamonds (LK048, LK362). Ongoing work will determine the Sm-Nd ages and element composition of multiple individual eclogitic garnets (LK113/LK362, n=4) and an eclogitic clinopyroxene (LK040) inclusion. TMA ages of the six sulphides range from 1.06 to 2.38 Ga (± 0.1 to 0.54 Ga) with Re and Os contents between 7 and 68 ppb and 0.03 and 0.3 ppb, respectively. The host diamond growth zones have low nitrogen abundances (21 to 43 ppm N) and high N-aggregation (53 to 90% IaB). Carbon isotope data suggests the involvement of crustal carbon (δ13C between -19.3 to -22.7 ± 0.2 per mill) during diamond precipitation. Cathodoluminescence imaging of central plates from LK040 and LK113 displays homogenous internal structure with no distinct zonation. The two sulphide inclusions from LK040 define an 'isochron' of 0.92 ± 0.23 Ga (2SD) with initial 187Os/188Os = 1.31 ± 0.24. Sulphides from LK113 have clear imposed diamond morphology and indicate diamond formation at 0.93 ± 0.36 Ga (2SD) with initial 187Os/188Os = 0.69 ± 0.44. The variation in the initial 187Os/188Os does not justify including these inclusions (or any from other diamonds) on the same isochron and implies an extremely heterogeneous diamond crystallisation environment that incorporated recycled Os. C1-normalized osmium, iridium and platinum (PGE) compositions from the analysed sulphide inclusions display enrichment in Ir (3.4 to 33) and Pt (2.3 to 28.1) in comparison to eclogitic xenolith data from Orapa that are depleted relative to chondrite. The Re-Os isochrons determined in this study are within error of previously reported ages from the adjacent (˜40km) Orapa diamond mine (1.0 to 2.9 Ga) based on sulphide inclusions and a multi-point 990 ± 50 Ma (2SD) isochron for composite (n=730) silicate inclusions. Together with additional new Sm-Nd isochron age determinations from individual silicate inclusions from Letlhakane (2.3 ± 0.02 (n = 3); 1.0 ± 0.14 (n = 4) and 0.25 ± 0.04 Ga (n = 3), all 2SE) these data suggest a phase of Mesoproterozoic diamond formation as well as Neoarchean/Paleoproterozoic and Mesozoic diamond growth, in punctuated events spanning >2.0 Ga.
NASA Astrophysics Data System (ADS)
Syrvatka, Vasyl J.; Slyvchuk, Yurij I.; Rozgoni, Ivan I.; Gevkan, Ivan I.; Overchuk, Marta O.
2014-02-01
Modern routine enzyme immunoassays for detection and quantification of biomolecules have several disadvantages such as high cost, insufficient sensitivity, complexity and long-term execution. The surface plasmon resonance of silver nanoparticles gives reasons of creating new in the basis of simple, highly sensitive and low cost colorimetric assays that can be applied to the detection of small molecules, DNA, proteins and pollutants. The main aim of the study was the improving of enzyme immunoassay for detection and quantification of the target molecules using silver nanoparticles. For this purpose we developed method for synthesis of silver nanoparticles with hyaluronic acid and studied possibility of use these nanoparticles in direct determination of target molecules concentration (in particular proteins) and for improving of enzyme immunoassay. As model we used conventional enzyme immunoassays for determination of progesterone and estradiol concentration. We obtained the possibility to produce silver nanoparticles with hyaluronan homogeneous in size between 10 and 12 nm, soluble and stable in water during long term of storage using modified procedure of silver nanoparticles synthesis. New method allows to obtain silver nanoparticles with strong optical properties at the higher concentrations - 60-90 μg/ml with the peak of absorbance at the wavelength 400 nm. Therefore surface plasmon resonance of silver nanoparticles with hyaluronan and ultraviolet-visible spectroscopy provide an opportunity for rapid determination of target molecules concentration (especial protein). We used silver nanoparticles as enzyme carriers and signal enhancers. Our preliminary data show that silver nanoparticles increased absorbance of samples that allows improving upper limit of determination of estradiol and progesterone concentration.
Ultralight Conductive Silver Nanowire Aerogels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Fang; Lan, Pui Ching; Freyman, Megan C.
Low-density metal foams have many potential applications in electronics, energy storage, catalytic supports, fuel cells, sensors, and medical devices. Here in this work, we report a new method for fabricating ultralight, conductive silver aerogel monoliths with predictable densities using silver nanowires. Silver nanowire building blocks were prepared by polyol synthesis and purified by selective precipitation. Silver aerogels were produced by freeze-casting nanowire aqueous suspensions followed by thermal sintering to weld the nanowire junctions. As-prepared silver aerogels have unique anisotropic microporous structures, with density precisely controlled by the nanowire concentration, down to 4.8 mg/cm 3 and an electrical conductivity up tomore » 51 000 S/m. Lastly, mechanical studies show that silver nanowire aerogels exhibit “elastic stiffening” behavior with a Young’s modulus up to 16 800 Pa.« less
Enhanced photoluminescence of Alq3 via patterned array silver dendritic nanostructures
NASA Astrophysics Data System (ADS)
Hsu, Wei-Hsiu; Hsieh, Ming-Hao; Lo, Shih-Shou
2012-04-01
Various silver nanostructures, semi-ball, jungle, and dendritic, are demonstrated by an electrical deposition process. The formation of silver nanostructures with various morphologies is studied by the mechanism of the diffusion limited aggregation (DLA) model. A array pattern of silver nanostructures can be obtained when the conductive substrate was used in a uniform electrical filed. A thickness 500 nm of Alq3 thin-film was covered on the silver nanostructure by thermal evaporation method. The strongest intensity of Alq3 green emission was observed when the pattern-array dendritic silver nanostructure was covered by Alq3. It can be explained with the plasmonic coupling due to the Alq3 and dendritic nanostructure. The result can help us to further application the patterned-array silver dendritic nanostructure for advanced opto-electronic device.
Ultralight Conductive Silver Nanowire Aerogels
Qian, Fang; Lan, Pui Ching; Freyman, Megan C.; ...
2017-09-05
Low-density metal foams have many potential applications in electronics, energy storage, catalytic supports, fuel cells, sensors, and medical devices. Here in this work, we report a new method for fabricating ultralight, conductive silver aerogel monoliths with predictable densities using silver nanowires. Silver nanowire building blocks were prepared by polyol synthesis and purified by selective precipitation. Silver aerogels were produced by freeze-casting nanowire aqueous suspensions followed by thermal sintering to weld the nanowire junctions. As-prepared silver aerogels have unique anisotropic microporous structures, with density precisely controlled by the nanowire concentration, down to 4.8 mg/cm 3 and an electrical conductivity up tomore » 51 000 S/m. Lastly, mechanical studies show that silver nanowire aerogels exhibit “elastic stiffening” behavior with a Young’s modulus up to 16 800 Pa.« less
BULK AND TEMPLATE-FREE SYNTHESIS OF SILVER NANOWIRES USING CAFFEINE AT ROOM TEMPERATURE
A simple eco-friendly one-pot method is described to synthesize bulk quantities of nanowires of silver (Ag) using caffeine without the need of reducing agent, surfactants, and/or large amounts of insoluble templates. Chemical reduction of silver salts with caffeine dramatically c...
USDA-ARS?s Scientific Manuscript database
A biological method was used to synthesize stable silver nanoparticles. The nanoparticles were tested as larvicides against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Annona squamosa leaf broth (5%) reduced aqueous AgNO3 to stable silver nanoparticles with average particle siz...
Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S
2014-01-01
Biomediated silver nanoparticles were synthesized with the aid of an eco-friendly biomaterial, namely, aqueous Tribulus terrestris extract. Silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous T. terrestris leaf extracts as both the reducing and capping agent. Silver ions were rapidly reduced by aqueous T. terrestris leaf extracts, leading to the formation of highly crystalline silver nanoparticles. An attempt has been made and formation of the silver nanoparticles was verified by surface plasmon spectra using an UV-vis (Ultra violet), spectrophotometer. Morphology and crystalline structure of the prepared silver nanoparticles were characterized by TEM (Transmission Electron Microscope) and XRD (X-ray Diffraction), techniques, respectively. FT-IR (Fourier Transform Infrared), analysis suggests that the obtained silver nanoparticles might be stabilized through the interactions of carboxylic groups, carbonyl groups and the flavonoids present in the T. terrestris extract. Copyright © 2013 Elsevier B.V. All rights reserved.
Preparation and characterization of silver nanoparticles homogenous thin films
NASA Astrophysics Data System (ADS)
Hegazy, Maroof A.; Borham, E.
2018-06-01
The wet chemical method by metal salt reduction has been widely used to synthesize nanoparticles. Accordingly the silver nitrate used as silver precursor and sodium borohydrate as reduction agent. The silver nanoparticles were characterized by different characterization techniques including UV-VIS spectrometry, Transmission electron microscope (TEM), and Zeta potential technique. Thin films of the colloidal solution were fabricated using direct precipitation technique on ITO glass, silicon substrate and commercial glass substrate and characterized by imaging technique. The absorption peak of the silver nanoparticles colloidal solution was around 400 nm. The TEM images indicate that the silver nanoparticles had spherical shape and their sizes were from 10 to 17 nm. The particle size of the silver nanoparticles was confirmed by Zeta potential technique. The imaging technique indicated that the homogeneous distribution of the colloidal silver solution thin film on the silicon substrate was stronger than the ITO glass and inhomogeneous film was emerged on the commercial glass.
Chao, T.T.; Ball, J.W.; Nakagawa, H.M.
1971-01-01
A useful method for the determination of silver in soil, sediment, and rock samples in geochemical exploration has been developed. The sample is digested with concentrated nitric acid, and the silver extracted with triisooctyl thiophosphate (TOTP) in methyl isobutyl ketone (MIBK) after dilution of the acid digest to approximately 6 M. The extraction of silver into the organic extractant is quantitative and not affected by the nitric acid concentration from 4 M to 8 M, or by different volumes of TOTP-MIBK. The extracted silver is stable and remains in the organic phase up to several days. The silver concentration is determined by atomic absorption spectrophotometry. ?? 1971.
NASA Astrophysics Data System (ADS)
Raja, K.; Saravanakumar, A.; Vijayakumar, R.
2012-11-01
In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.
Nenezić, Dragoslav; Pandaitan, Simon; Ilijevski, Nenad; Matić, Predrag; Gajin, Predag; Radak, Dorde
2005-01-01
Although the incidence of prosthetic infection is low (1%-6%), the consequences (limb loss or death) are dramatic for a patient, with high mortality rate (25%-75%) and limb loss in 40%-75% of cases. In case of Szilagyi's grade III infection, standard procedure consists of the excision of prosthesis and wound debridement. Alternative method is medical treatment. This is a case report of a patient with prosthetic infection of Silver-ring graft, used for femoropopliteal reconstruction, in whom an extreme skin necrosis developed in early postoperative period. This complication was successfully treated medically. After repeated debridement and wound-packing, the wound was covered using Thiersch skin graft.
Electrochemical Study and Applications of Selective Electrodeposition of Silver on Quantum Dots.
Martín-Yerga, Daniel; Rama, Estefanía Costa; Costa-García, Agustín
2016-04-05
In this work, selective electrodeposition of silver on quantum dots is described. The particular characteristics of the nanostructured silver thus obtained are studied by electrochemical and microscopic techniques. On one hand, quantum dots were found to catalyze the silver electrodeposition, and on the other hand, a strong adsorption between electrodeposited silver and quantum dots was observed, indicated by two silver stripping processes. Nucleation of silver nanoparticles followed different mechanisms depending on the surface (carbon or quantum dots). Voltammetric and confocal microscopy studies showed the great influence of electrodeposition time on surface coating, and high-resolution transmission electron microscopy (HRTEM) imaging confirmed the initial formation of Janus-like Ag@QD nanoparticles in this process. By use of moderate electrodeposition conditions such as 50 μM silver, -0.1 V, and 60 s, the silver was deposited only on quantum dots, allowing the generation of localized nanostructured electrode surfaces. This methodology can also be employed for sensing applications, showing a promising ultrasensitive electrochemical method for quantum dot detection.
Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat
2018-01-01
The aim of this investigation to preparation of silver nanoparticles organized chitosan nano polymer, which effective against microbial and pathogens, when apply to liquid medium and edible food products surface, will rescue the growth of microbes. Self-assembly approach used to synthesis of silver nanoparticles and silver nanoparticles organized chitosan nano polymer. Silver nanoparticles and silver nanoparticles organized chitosan nano polymer and film characterized using Ultra-violate visible spectrometer (UV-vis), X-ray diffraction (X-ray), and Scanning electronic microscope (SEM). The crystalline structured protein capped nano silver successfully synthesized at range of 12 nm-29 nm and organized into chitosan nano polymer. Antimicrobial ingredient in liquid medium and food product surface provide to rescue oxidative change and growth of microorganism to provide higher safety. The silver nanoparticles organized chitosan nano polymer caused the death of microorganism. The materials in nano scale synthesized successfully using self-assembly method, which showed good antimicrobial properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bittar, Dayana Borges; Catelani, Tiago Augusto; Pezza, Leonardo; Pezza, Helena Redigolo
2018-01-01
A sensitive, rapid and robust method based on the use of stabilizer-free silver nanoparticles was developed for lead detection in honey. Silver nanoparticles were synthesized without the presence of any stabilizers using silver nitrate and sodium borohydride as precursors where the latter was applied as reducing agent. The optimization of the experimental variables (AgNO3 and NaBH4) for the formation of the nanoparticles was carried out using varying volumes of these solutions. Spectrophotometric measurements at 393 nm showed a linear working range between 0.0500 and 0.167 mg L- 1 lead (R = 0.994), with limits of detection (LOD) and quantification (LOQ) of 0.0135 and 0.0451 mg L- 1, respectively. The proposed method proved to be a significantly sensitive mechanism for lead detection in honey samples.
Determination of the reaction rate coefficient of sulphide mine tailings deposited under water.
Awoh, Akué Sylvette; Mbonimpa, Mamert; Bussière, Bruno
2013-10-15
The efficiency of a water cover to limit dissolved oxygen (DO) availability to underlying acid-generating mine tailings can be assessed by calculating the DO flux at the tailings-water interface. Fick's equations, which are generally used to calculate this flux, require knowing the effective DO diffusion coefficient (Dw) and the reaction (consumption) rate coefficient (Kr) of the tailings, or the DO concentration profile. Whereas Dw can be accurately estimated, few studies have measured the parameter Kr for submerged sulphide tailings. The objective of this study was to determine Kr for underwater sulphide tailings in a laboratory experiment. Samples of sulphide mine tailings (an approximately 6 cm layer) were placed in a cell under a water cover (approximately 2 cm) maintained at constant DO concentration. Two tailings were studied: TA1 with high sulphide content (83% pyrite) and TA2 with low sulphide content (2.8% pyrite). DO concentration was measured with a microelectrode at various depths above and below the tailings-water interface at 1 mm intervals. Results indicate that steady-state condition was rapidly attained. As expected, a diffusive boundary layer (DBL) was observed in all cases. An iterative back-calculation process using the numerical code POLLUTEv6 and taking the DBL into account provided the Kr values used to match calculated and experimental concentration profiles. Kr obtained for tailings TA1 and TA2 was about 80 d(-1) and 6.5 d(-1), respectively. For comparison purposes, Kr obtained from cell tests on tailings TA1 was lower than Kr calculated from the sulphate production rate obtained from shake-flask tests. Steady-state DO flux at the water-tailings interface was then calculated with POLLUTEv6 using tailings characteristics Dw and Kr. For the tested conditions, DO flux ranged from 608 to 758 mg O2/m(2)/d for tailings TA1 and from 177 to 221 mg O2/m(2)/d for tailings TA2. The impact of placing a protective layer of inert material over the tailings was also investigated for tailings TA1 (with high sulphide content). A protective layer of only 5 cm reduced the DO flux into the tailings at about 5 mg/m(2)/d, compared to 608 mg O2/m(2)/d without a protective layer, or an approximately 99% reduction in flux. Copyright © 2013 Elsevier Ltd. All rights reserved.
Studies of reaction geometry in oxidation and reduction of the alkaline silver electrode
NASA Technical Reports Server (NTRS)
Butler, E. A.; Blackham, A. U.
1971-01-01
Two methods of surface area estimations of sintered silver electrodes have given roughness factors of 58 and 81. One method is based on constant current oxidation, the other is based on potentiostatic oxidation. Examination of both wire and sintered silver electrodes via scanning electron microscopy at various stages of oxidation have shown that important structural features are mounds of oxide. In potentiostatic oxidations these appear to form on sites instantaneously nucleated while in constant current oxidations progressive nucleation is indicated.
METHOD OF REMOVING IODINE FROM GASES AND FILTER MEDIUM THEREFOR
Silverman, L.
1961-08-01
A method for the removal of iodine from large gas volumes is described. The gaseous medium is heated to a temperature not exceeding 400 deg C. Water vapor is then added to the medium in approximate amounts of 1 lb/cu ft of the medium. The medium is then passed through a porous copper fibrous pad having deposited thereon a coating of silver, the silver coating being treated with hydrogen sulfide forming a layer of silver sulfide. (AEC)
An improved silver staining procedure for schizodeme analysis in polyacrylamide gradient gels.
Gonçalves, A M; Nehme, N S; Morel, C M
1990-01-01
A simple protocol is described for the silver staining of polyacrylamide gradient gels used for the separation of restriction fragments of kinetoplast DNA [schizodeme analysis of trypanosomatids (Morel et al., 1980)]. The method overcomes the problems of non-uniform staining and strong background color which are frequently encountered when conventional protocols for silver staining of linear gels are applied to gradient gels. The method described has proven to be of general applicability for DNA, RNA and protein separations in gradient gels.
The impact of bacteria of circulating water on apatite-nepheline ore flotation.
Evdokimova, G A; Gershenkop, A Sh; Fokina, N V
2012-01-01
A new phenomenon has been identified and studied-the impact of bacteria on the benefication process of non-sulphide ores using circulating water supply-a case study of apatite-nepheline ore. It is shown that bacteria deteriorate the floatability of apatite due to their interaction with active centres of calcium-containing minerals and intense flocculation, resulting in a decrease of the flotation process selectivity thus deteriorating the quality of concentrate. Based on the comparative analysis of primary sequences of 16S rRNA genes, there have been identified dominating bacteria species, recovered from the circulating water used at apatite-nepheline concentrating mills, and their phylogenetic position has been determined. All the bacteria were related to γ-Proteobacteria, including the Acinetobacter species, Pseudomonas alcaliphila, Ps. plecoglossicida, Stenotrophomonas rhizophila. A method of non-sulphide ores flotation has been developed with consideration of the bacterial factor. It consists in use of small concentrations of sodium hypochlorite, which inhibits the development of bacteria in the flotation of apatite-nepheline ores.
NASA Astrophysics Data System (ADS)
Wang, Nannan; Yang, Zhuxian; Wang, Yuan; Thummavichai, Kunyapat; Xia, Yongde; Ghita, Oana; Zhu, Yanqiu
We report a simple and effective method to fabricate PEEK (poly ether ether ketone)/IF-WS2 (Inorganic Fullerene Tungsten Sulphide) nanocomposites with IF-WS2 content up to 8 wt%. We have used electron microscopies to characterise the morphology and structural features of the nancomposites, and FTIR and XPS to show that some chemical interface bondings were formed between the PEEK and IF-WS2. We demonstrate that the resulting PEEK/IF-WS2 nanocomposites showed an extraordinary 190% increase in thermal conductivity, 50 °C higher in degradation temperature, and mild improvements in strength and hardness. The increased degradation activation energy from 64 to 76 kJ/mol for neat PEEK and PEEK/IF-WS2 nanocomposites, respectively, is attributed to the synergistic interface between the PEEK matrix and IF-WS2 nanoparticles. The enhancements in both the mechanical and thermal properties will significantly expand the capacities of PEEK-based nanocomposites towards applications where thermal conductivity and stability are important.
NASA Astrophysics Data System (ADS)
Canil, Dante; Fellows, Steven A.
2017-07-01
The redox budget during subduction is tied to the evolution of oxygen and biogeochemical cycles on Earth's surface over time. The sulphide-sulphate couple in subducted crust has significant potential for redox and control on extraction of chalcophile metals from the arc mantle. We derive oxygen buffers for sulphide-sulphate stability ('SSO buffers') using mineral assemblages in subducted crust within the eclogite facies, and examine their disposition relative to the fO2 in the arc mantle along various P-T trajectories for subduction. The fO2 required for sulphide stability in subducted crust passing beneath an arc is shifted by variations in the bulk Ca/(Ca + Mg + Fe) of the subducting crust alone. Hotter slabs and more Fe-rich sediments stabilize sulphide and favour chalcophile sequestration deep into the mantle, whereas colder slabs and calcic sediment will stabilize anhydrite, in some cases at depths of melt generation in the arc mantle (<130 km). The released sulphate on melting potentially increases the fO2 of the arc mantle. We performed melting experiments on three subducted sediment compositions varying in bulk Ca/(Ca + Mg + Fe) from 0.3 to 0.6 at 2.5 GPa and 900-1100 °C to confirm how anhydrite stability can change by orders of magnitude the S, Cu, As, Zn, Mo, Pb, and Sb contents of sediment melts, and their subsequent liberation to the arc mantle. Using Cu/Sc as a proxy for the behaviour of S, the effect of variable subducted sediment composition on sulphide-sulphate stability and release of chalcophiles to the arc mantle is recognizable in volcanic suites from several subduction zones in space and time. The fO2 of the SSO buffers in subducted sediment relative to the arc mantle may have changed with time by shifts in the nature of pelagic sedimentation in the oceans over earth history. Oxidation of arc mantle and the proliferation of porphyry Cu deposits may be latter-day advents in earth history partly due to the rise of planktic calcifiers in the oceans in only the past 250 million years.
Simulation of pyrite oxidation in fresh mine tailings under near-neutral conditions.
Alakangas, Lena; Lundberg, Angela; Nason, Peter
2012-08-01
Sulphidic residual products from ore processing may produce acid rock drainage, when exposed to oxygen and water. Predictions of the magnitude of ARD and sulphide oxidation rates are of great importance in mine planning because they can be used to minimize or eliminate ARD and the associated economic and environmental costs. To address the lack of field data of sulphide oxidation rate in fresh sulphide-rich tailings under near-neutral conditions, determination and simulation of the rate was performed in pilot-scale at Kristineberg, northern Sweden. The quality of the drainage water was monitored, along with oxygen and carbon dioxide concentrations. The chemical composition of the solid tailings was also determined. The field data were compared to predictions from simulations of pyrite oxidation using a 1-D numerical model. The simulations' estimates of the amount of Fe and S released over a seven year period (52 kg and 178 kg, respectively) were in reasonably good agreement with those obtained by analysing the tailings (34 kg and 155 kg, respectively). The discrepancy is probably due to the formation of secondary precipitates such as iron hydroxides and gypsum; which are not accounted for in the model. The observed mass transport of Fe and S (0.05 and 1.0 kg per year, respectively) was much lower than expected on the basis of the simulations and the core data. Neutralization reactions involving carbonates in the tailings result in a near-neutral pH at all depths except at the oxidation front (pH < 5), indicating that the dissolution of carbonates was too slow for the acid to be neutralized, which instead neutralized deeper down in the tailings. This was also indicated by the reduced abundance of solid Ca at greater depths and the high levels of carbon dioxide both of which are consistent with the dissolution of carbonates. It could be concluded that the near-neutral pH in the tailings has no decreasing effect on the rate of sulphide oxidation, but does reduce the concentrations of dissolved elements in the drainage water due to the formation of secondary minerals. This means that sulphide oxidation rates may be underestimated if determined from drainage alone.
NASA Astrophysics Data System (ADS)
Marescotti, P.; Cecchi, G.; Di Piazza, S.; Lucchetti, G.; Zotti, M.
2015-12-01
Sulphide-bearing waste-rock dumps represent complex geological systems characterised by high percentages of low-grade mineralisations and non-valuable sulphides (such as pyrite and pyrrhotite). The sulphide oxidation triggers acid mine drainage (AMD) processes and the release of several metals of environmental concern. The severe physicochemical properties of these metal-contaminated environments tend to inhibit soil forming processes and represent an important stress factor for the biotic communities by exerting a strong selective pressure. Some macro- and micro-fungi are pioneer and extremophile organisms, which may survive and tolerate high concentrations of toxic metals in contaminated environments. Many studies show the fungal capability to bioaccumulate, biosorb, and store in their cells a high concentration of ecotoxic metals. A 7 years multidisciplinary survey was carried out in the Libiola sulphide mine. The results evidenced that the waste rock dumps of the area are characterized by an extremely poor flora and a specific mycobiota, due to the soil acidity, high concentration of trace metals, and unavailability or paucity of nutrients and organic matter. Our studies allowed the complete mineralogical, geochemical, and mycological characterization of one of the biggest dumps of the mine. 30 microfungal vital strains were isolated in pure cultures and studied with molecular and morphological approach, for their identification. The results allowed the isolation of some rare and important extremophilic species. Penicillium was the most recurrent genus, together with Trichoderma and Cladosporium. In particular, Penicillium glandicola is a rare species previously isolated from cave or arid environments, whereas P. brevicompactum is one of the most important fungi for metal corrosion. Hence, some bioaccumulation tests allowed to select a Trichoderma harzianum strain efficient to uptake Cu and Ag from pyrite-bearing soils, highlighting its central role in fungal remediation protocol. Further studies are in progress to investigate the potential interactions between microfungi and sulphides from the Libiola mine soils and to evaluate the fungal role in the biomineralisation and deactivation/mobilisation of toxic metals.
Jia, Yonggao; Chen, Chao; Jia, Dan; Li, Shuxin; Ji, Shulin; Ye, Changhui
2016-04-20
The uniformity of the sheet resistance of transparent conductive films is one of the most important quality factors for touch panel applications. However, the uniformity of silver nanowire transparent conductive films is far inferior to that of indium-doped tin oxide (ITO). Herein, we report a dynamic heating method using infrared light to achieve silver nanowire transparent conductive films with high uniformity. This method can overcome the coffee ring effect during the drying process and suppress the aggregation of silver nanowires in the film. A nonuniformity factor of the sheet resistance of the as-prepared silver nanowire transparent conductive films could be as low as 6.7% at an average sheet resistance of 35 Ω/sq and a light transmittance of 95% (at 550 nm), comparable to that of high-quality ITO film in the market. In addition, a mechanical study shows that the sheet resistance of the films has little change after 5000 bending cycles, and the film could be used in touch panels for human-machine interactive input. The highly uniform and mechanically stable silver nanowire transparent conductive films meet the requirement for many significant applications and could play a key role in the display market in a near future.
A refined electrofishing technique for collecting Silver Carp: Implications for management
Bouska, Wesley W.; Glover, David C.; Bouska, Kristen; Garvey, James E.
2017-01-01
Detecting nuisance species at low abundance or in newly established areas is critical to developing pest management strategies. Due to their sensitivity to disturbance and erratic jumping behavior, Silver Carp Hypophthalmichthys molitrix can be difficult to collect with traditional sampling methods. We compared catch per unit effort (CPUE) of all species from a Long Term Resource Monitoring (LTRM) electrofishing protocol to an experimental electrofishing technique designed to minimize Silver Carp evasion through tactical boat maneuvering and selective application of power. Differences in CPUE between electrofishing methods were detected for 2 of 41 species collected across 2 years of sampling at 20 sites along the Illinois River. The mean catch rate of Silver Carp using the experimental technique was 2.2 times the mean catch rate of the LTRM electrofishing technique; the increased capture efficiency at low relative abundance emphasizes the utility of this method for early detection. The experimental electrofishing also collected slightly larger Silver Carp (mean: 510.7 mm TL versus 495.2 mm TL), and nearly four times as many Silver Carp independently jumped into the boat during experimental transects. Novel sampling approaches, such as the experimental electrofishing technique used in this study, should be considered to increase probability of detection for aquatic nuisance species.
NASA Astrophysics Data System (ADS)
Nakhjavani, Maryam; Nikkhah, V.; Sarafraz, M. M.; Shoja, Saeed; Sarafraz, Marzieh
2017-10-01
In this paper, silver nanoparticles are produced via green synthesis method using green tea leaves. The introduced method is cost-effective and available, which provides condition to manipulate and control the average nanoparticle size. The produced particles were characterized using x-ray diffraction, scanning electron microscopic images, UV visualization, digital light scattering, zeta potential measurement and thermal conductivity measurement. Results demonstrated that the produced samples of silver nanoparticles are pure in structure (based on the x-ray diffraction test), almost identical in terms of morphology (spherical and to some extent cubic) and show longer stability when dispersed in deionized water. The UV-visualization showed a peak in 450 nm, which is in accordance with the previous studies reported in the literature. Results also showed that small particles have higher thermal and antimicrobial performance. As green tea leaves are used for extracting the silver nanoparticles, the method is eco-friendly. The thermal behaviour of silver nanoparticle was also analysed by dispersing the nanoparticles inside the deionized water. Results showed that thermal conductivity of the silver nano-fluid is higher than that of obtained for the deionized water. Activity of Ag nanoparticles against some bacteria was also examined to find the suitable antibacterial application for the produced particles.
Investigation of surface enhanced Raman spectroscopy for hemozoin detection in malaria diagnosis
NASA Astrophysics Data System (ADS)
Chen, Keren; Xiong, Aoli; Yuen, Clement; Preiser, Peter; Liu, Quan
2016-03-01
We report two methods of surface enhanced Raman spectroscopy (SERS) for hemozoin detection in malaria infected human blood. In the first method, silver nanoparticles were synthesized separately and then mixed with lysed blood; while in the second method, silver nanoparticles were synthesized directly inside the parasites of Plasmodium falciparum.
Novel method for synthesis of silver nanoparticles and their application on wool
NASA Astrophysics Data System (ADS)
Boroumand, Majid Nasiri; Montazer, Majid; Simon, Frank; Liesiene, Jolanta; Šaponjic, Zoran; Dutschk, Victoria
2015-08-01
In this study, a new method for the synthesis of silver nanoparticles (AgNPs) suitable to impart antibacterial properties of wool fabric is proposed. AgNPs were synthesized by a biochemical reduction method. An aqueous solution of extracted dye from Pomegranate peel was used as a reducing agent for the synthesis of AgNPs from silver nitrate. The ratio of dye to silver nitrate concentration (RDye/Ag = [Dye]/[AgNO3]) is the influencing factor in the synthesis of silver nanoparticles. The nanoparticles formation was followed by UV/Vis absorption spectroscopy. The size and shape of AgNPs were studied by transmission electron microscopy (TEM). The size distribution and Zetapotential of nanoparticles were evaluated using diffraction light scattering (DLS) measurements. The antibacterial potential of biosynthesized silver nanoparticles against Escherichia coli (E. coli) was examined qualitatively and quantitatively. Kinetic analysis of the bacteria reduction using AgNPs synthesized in different way was performed. AgNPs were applied on wool fabrics by exhaustion. The changes in surface morphology of wool fibers after AgNPs loading were studied using scanning electron microscopy (SEM). The amounts of silver deposited on wool fabrics at different pH and temperature were compared applying energy-dispersive X-ray spectroscopy (EDX). AgNPs loaded fabrics showed excellent antibacterial efficiency even after five washing cycles. To investigate the nature of interaction and bonding between the AgNPs and the wool substrate XPS measurements were performed.
Biocompatible silver nanoparticles prepared with amino acids and a green method.
de Matos, Ricardo Almeida; Courrol, Lilia Coronato
2017-02-01
The synthesis of nanoparticles is usually carried out by chemical reduction, which is effective but uses many toxic substances, making the process potentially harmful to the environment. Hence, as part of the search for environmentally friendly or green synthetic methods, this study aimed to produce silver nanoparticles (AgNPs) using only AgNO 3 , Milli-Q water, white light from a xenon lamp (Xe) and amino acids. Nanoparticles were synthetized using 21 amino acids, and the shapes and sizes of the resultant nanoparticles were evaluated. The products were characterized by UV-Vis, zeta potential measurements and transmission electron microscopy. The synthesis of silver nanoparticles with tryptophan and tyrosine, methionine, cystine and histidine was possible through photoreduction method. Spherical nanoparticles were produced, with sizes ranging from 15 to 30 nm. Tryptophan does not require illumination nor heating, and the solution color changes immediately after the mixing of reagents if sodium hydroxide is added to the solution (pH = 10). The Xe illumination acts as sodium hydroxide in the nanoparticles synthesis, releases H + and allows the reduction of silver ions (Ag + ) in metallic silver (Ag 0 ).
Nanostructured silver sulfide: synthesis of various forms and their application
NASA Astrophysics Data System (ADS)
Sadovnikov, S. I.; Rempel, A. A.; Gusev, A. I.
2018-04-01
The results of experimental studies on nanostructured silver sulfide are analyzed and generalized. The influence of small particle size on nonstoichiometry of silver sulfide is discussed. Methods for the synthesis of various forms of nanostructured Ag2S including nanopowders, stable colloidal solutions, quantum dots, core–shell nanoparticles and heteronanostructures are described. The advantages and drawbacks of different synthetic procedures are analyzed. Main fields of application of nanostructured silver sulfide are considered. The bibliography includes 184 references.
Wang, Zheng; Sun, Yan; Wang, Dongzhou; Liu, Hong; Boughton, Robert I
2013-01-01
A silver nanoparticle (AgNP)-filled hydrogen titanate nanotube layer was synthesized in situ on a metallic titanium substrate. In the synthesis approach, a layer of sodium titanate nanotubes is first prepared on the titanium surface by using a hydrothermal method. Silver nitrate solution is absorbed into the nanotube channels by immersing a dried nanotube layer in silver nitrate solution. Finally, silver ions are reduced by glucose, leading to the in situ growth of AgNPs in the hydrogen titanate nanotube channels. Long-term silver release and bactericidal experiments demonstrated that the effective silver release and effective antibacterial period of the titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface can extend to more than 15 days. This steady and prolonged release characteristic is helpful to promote a long-lasting antibacterial capability for the prevention of severe infection after surgery. A series of antimicrobial and biocompatible tests have shown that the sandwich nanostructure with a low level of silver loading exhibits a bacteriostatic rate as high as 99.99%, while retaining low toxicity for cells and possessing high osteogenic potential. Titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface that is fabricated with low-cost surface modification methods is a promising implantable material that will find applications in artificial bones, joints, and dental implants. PMID:23966780
NASA Astrophysics Data System (ADS)
Lin, Yu-Hsuan; Chen, Kun-Tso; Ho, Jeng-Rong
2011-06-01
A method for rapidly fabricating dense and high-aspect-ratio silver nanowires, with wire diameter of 200 nm and wire length more than 30 µm, is reported. The fabrication process simply involves filling the silver nitrate solution into the pores of an anodic-aluminum-oxide (AAO) membrane through capillary attraction and irradiating the dried template AAO membrane using a pulsed ArF excimer laser. Through varying the thickness and pore diameter of the employed AAO membrane, the primary dimensions of the targeted silver nanowires can be plainly specified; and, by amending the initial concentration of the silver nitrate solution and adjusting the laser operation parameters, laser fluence and number of laser pulses, the surface morphology and size of the resulting nanowires can be finely regulated. The wire formation mechanism is considered through two stages: the period of precipitation of silver particles from the dried silver nitrate film through the laser-induced photoreduction; and, the phase of clustering, merging and fusing of the reduced particles to form nanowires in the template pores by the thermal energy owing to photothermal effect. This approach is straightforward and takes the advantage that all the fabrication processes can be executed in an ambient environment and at room temperature. In addition, by the excellence in local processing that the laser possesses, this method is suitable for precisely growing nanowires.
Li, Yuanyuan; Zhu, Nan; Li, Bingxiang; Chen, Tong; Ma, Yulong; Li, Qiang
2018-02-01
A new silver-functionalized silica-based material with a core-shell structure based on silver nanoparticle-coated silica spheres was synthesized, and silver nanoparticles were modified using strongly bound l-cysteine. l-Cysteine-silver@silica was characterized by scanning electron microscopy and FTIR spectroscopy. Then, a solid-phase extraction method based on l-cysteine-silver@silica was developed and successfully used for bisphenol A determination prior to HPLC analysis. The results showed that the l-cysteine-silver@silica as an adsorbent exhibited good enrichment capability for bisphenol A, and the maximum adsorption saturation was 20.93 mg/g. Moreover, a short adsorption equilibrium time was obtained due to the presence of silver nanoparticles on the surface of the silica. The extraction efficiencies were then optimized by varying the eluents and pH. Under the optimized conditions, good linearity for bisphenol A was obtained in the range from 0.4 to 4.0 μM (R 2 > 0.99) with a low limit of detection (1.15 ng/mL). The spiked recoveries from tap water and milk samples were satisfactory (85-102%) with relative standard deviations below 5.2% (n = 3), which indicated that the method was suitable for the analysis of bisphenol A in complex samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fabrication Of Biogenic Silver Nanoparticles Using Agricultural Crop Plant Leaf Extracts
NASA Astrophysics Data System (ADS)
Rajani, P.; SriSindhura, K.; Prasad, T. N. V. K. V.; Hussain, O. M.; Sudhakar, P.; Latha, P.; Balakrishna, M.; Kambala, V.; Reddy, K. Raja
2010-10-01
Nanoparticles are being viewed as fundamental building blocks of nanotechnology. Biosynthesis of nanoparticles by plant extracts is currently under exploitation. Use of agricultural crop plant extracts for synthesis of metal nanoparticles would add a new dimension to the agricultural sector in the utilization of crop waste. Silver has long been recognized as having an inhibitory effect towards many bacterial strains and microorganisms commonly present in medical and industrial processes. Four pulse crop plants and three cereal crop plants (Vigna radiata, Arachis hypogaea, Cyamopsis tetragonolobus, Zea mays, Pennisetum glaucum, Sorghum vulgare) were used and compared for their extra cellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO3 with the plant leaf extracts as reducing agent at temperatures 50 °C-95 °C. UV-Visible spectroscopy was utilized to monitor the formation of silver nanoparticles. XRD analysis of formed silver nanoparticles revealed face centered cubic structure with (111), (200), (220) and (311) planes. SEM and EDAX analysis confirm the size of the formed silver nanoparticles to be in the range of 50-200 nm. Our proposed work offers a enviro-friendly method for biogenic silver nanoparticles production. This could provide a faster synthesis rate comparable to those of chemical methods and potentially be used in areas such as cosmetics, food and medical applications.
Amooaghaie, Rayhaneh; Saeri, Mohammad Reza; Azizi, Morteza
2015-10-01
Despite the development potential in the field of nanotechnology, there is a concern about possible effects of nanoparticles on the environment and human health. In this study, silver nanoparticles (AgNPs) were synthesized by 'green' and 'chemical' methods. In the wet-chemistry method, sodium borohydrate, sodium citrate and silver nitrate were used as raw materials. Leaf extract of Nigella sativa was used as reducing as well as capping agent to reduce silver nitrate in the green synthesis method. In addition, toxic responses of both synthesized AgNPs were monitored on bone-building stem cells of mice as well as seed germination and seedling growth of six different plants (Lolium, wheat, bean and common vetch, lettuce and canola). In both synthesis methods, the colorless reaction mixtures turned brown and UV-visible spectra confirmed the presence of silver nanoparticles. Scanning electron microscope (SEM) observations revealed the predominance of silver nanosized crystallites and fourier transform infra-red spectroscopy (FTIR) indicated the role of different functional groups in the synthetic process. MTT assay showed cell viability of bone-building stem cells of mice was further in the green AgNPs synthesized using black cumin extract than chemical AgNPs. IC50 (inhibitory concentrations) values for seed germination, root and shoot length for 6 plants in green AgNPs exposures were higher than the chemical AgNPs. These results suggest that cytotoxicity and phytotoxicity of the green synthesized AgNPs were significantly less than wet-chemistry synthesized ones. This study indicated an economical, simple and efficient ecofriendly technique using leaves of N. sativa for synthesis of AgNPs and confirmed that green AgNPs are safer than chemically-synthesized AgNPs. Copyright © 2015 Elsevier Inc. All rights reserved.
Feichtmeier, Nadine S; Ruchter, Nadine; Zimmermann, Sonja; Sures, Bernd; Leopold, Kerstin
2016-01-01
Engineered silver nanoparticles (AgNPs) are implemented in food contact materials due to their powerful antimicrobial properties and so may enter the human food chain. Hence, it is desirable to develop easy, sensitive and fast analytical screening methods for the determination of AgNPs in complex biological matrices. This study describes such a method using solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry (GFAAS). A recently reported novel evaluation strategy uses the atomization delay of the respective GFAAS signal as significant indicator for AgNPs and thereby allows discrimination of AgNPs from ionic silver (Ag(+)) in the samples without elaborate sample pre-treatment. This approach was further developed and applied to a variety of biological samples. Its suitability was approved by investigation of eight different food samples (parsley, apple, pepper, cheese, onion, pasta, maize meal and wheat flour) spiked with ionic silver or AgNPs. Furthermore, the migration of AgNPs from silver-impregnated polypropylene food storage boxes to fresh pepper was observed and a mussel sample obtained from a laboratory exposure study with silver was investigated. The differences in the atomization delays (Δt(ad)) between silver ions and 20-nm AgNPs vary in a range from -2.01 ± 1.38 s for maize meal to +2.06 ± 1.08 s for mussel tissue. However, the differences were significant in all investigated matrices and so indicative of the presence/absence of AgNPs. Moreover, investigation of model matrices (cellulose, gelatine and water) gives the first indication of matrix-dependent trends. Reproducibility and homogeneity tests confirm the applicability of the method.
Segura-Anaya, Edith; Flores-Miranda, Rommel; Martínez-Gómez, Alejandro; Dent, Myrna A R
2018-07-01
The Golgi silver method has been widely used in neuroscience for the study of normal and pathological morphology of neurons. The method has been steadily improved and Bielschowsky's silver staining method (BSSM) is widely used in various pathological conditions, like Alzheimer's disease. In this work, teased sciatic nerves were silver impregnated using BSSM. We also developed simultaneous staining by silver impregnation and single- or double-immunofluorescence of the same section in teased nerve preparations. We immunostained against non-myelinating Schwann cells and different myelinating Schwann cell domains. BSSM teased nerves show a strong staining of axons (black) and a gold-brown staining of myelinating and non-myelinating Schwann cells. We were also able to stain by immunofluorescence these BSSM teased nerves with specific molecular markers against non-myelinating Schwann cells, also against non-compact myelin such as the Schmidt-Lanterman incisures or paranodal regions and compact myelin, but not axons. In peripheral nerves, several silver impregnation methods have been used to stain nerves in paraffin sections, but not in teased nerves to enable the assessment of isolated nerve fibers. In conclusion, BSSM gives accurate information of nerve morphology and combining the procedure with immunofluorescence it would be very useful to study the molecular nerve domain organization of the nerve fibers, and to study the molecular pathology of axon degeneration, or myelin disorders, or of any peripheral neuropathy, also to study demyelination diseases in the central nervous system. Copyright © 2018. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorin, Thomas, E-mail: thomas.dorin@deakin.edu.au; Wood, Kathleen; Taylor, Adam
2016-02-15
A high strength low alloy steel composition has been melted and processed by two different routes: simulated direct strip casting and slow cooled ingot casting. The microstructures were examined with scanning and transmission electron microscopy, atom probe tomography and small angle neutron scattering (SANS). The formation of cementite (Fe{sub 3}C), manganese sulphides (MnS) and niobium carbo-nitrides (Nb(C,N)) was investigated in both casting conditions. The sulphides were found to be significantly refined by the higher cooling rate, and developed an average diameter of only 100 nm for the fast cooled sample, and a diameter too large to be measured with SANSmore » in the slow cooled condition (> 1.1 μm). Slow cooling resulted in the development of classical Nb(C,N) precipitation, with an average diameter of 7.2 nm. However, after rapid cooling both the SANS and atom probe tomography data indicated that the Nb was retained in the matrix as a random solid solution. There was also some evidence that O, N and S are also retained in solid solution in levels not found during conventional processing. - Highlights: • The influence of cooling rate on microstructure is investigated in a HSLA steel. • SANS, TEM and APT are used to characterise the sulphides and Nb(C,N) precipitates. • The slow cooling rate result in the formation of Nb(C,N) precipitates. • The fast cooling rate results in a microstructure supersaturated in Nb, C and N. • The sulphides are 100 nm in the fast cooled sample and > 1 μm in the slow cooled one.« less
Hurtado, Paloma; Ordóñez, Salvador; Vega, Aurelio; Díez, Fernando V
2004-05-01
The performance of different commercially available catalysts (supported Pd, Pt, Rh, bimetallic Pd-Pt, and Cr-Cu-Ti oxide catalyst) for the oxidation of methane, alone and in presence of ammonia and hydrogen sulphide is studied in this work. Catalysts performance was evaluated both in terms of activity and resistance to poisoning. The main conclusions are that supported Pd and Rh, present the highest activities for methane oxidation, both alone and in presence of ammonia, whereas they are severely poisoned in presence of H2S. Pt and Cr-Cu-Ti are less active but more sulphur resistant, but their activity is lower than the residual activity of sulphur-deactivated Pd and Rh catalysts. The Pd-Pt catalyst exhibits low activity and it is quickly deactivated in presence of hydrogen sulphide.
Tian, Yue; Qi, Juanjuan; Zhang, Wei; Cai, Qiang; Jiang, Xingyu
2014-08-13
In this study, we exploit a facile, one-pot method to prepare MCM-41 type mesoporous silica nanoparticles decorated with silver nanoparticles (Ag-MSNs). Silver nanoparticles with diameter of 2-10 nm are highly dispersed in the framework of mesoporous silica nanoparticles. These Ag-MSNs possess an enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria by preventing the aggregation of silver nanoparticles and continuously releasing silver ions for one month. The cytotoxicity assay indicates that the effective antibacterial concentration of Ag-MSNs shows little effect on human cells. This report describes an efficient and economical route to synthesize mesoporous silica nanoparticles with uniform silver nanoparticles, and these nanoparticles show promising applications as antibiotics.
Surface-enhanced Raman scattering from silver nanostructures with different morphologies
NASA Astrophysics Data System (ADS)
Zhang, W. C.; Wu, X. L.; Kan, C. X.; Pan, F. M.; Chen, H. T.; Zhu, J.; Chu, Paul K.
2010-07-01
Scanning electron microscopy and X-ray diffraction reveal that four different types of crystalline silver nanostructures including nanoparticles, nanowires, nanocubes, and bipyramids are synthesized by a solvothermal method by reducing silver nitrate with ethylene glycol using poly(vinylpyrrolidone) as an adsorption agent and adding different quantities of sodium chloride to the solution. These nanostructures which exhibit different surface plasma resonance properties in the ultraviolet-visible region are shown to be good surface-enhanced Raman scattering (SERS) substrates using rhodamine 6G molecules. Our results demonstrate that the silver nanocubes, bipyramids with sharp corners and edges, and aggregated silver nanoparticles possess better SERS properties than the silver nanowires, indicating that they can serve as high-sensitivity substrates in SERS-based measurements.
A possible oriented attachment growth mechanism for silver nanowire formation
Murph, Simona E. Hunyadi; Murphy, Catherine J.; Leach, Austin; ...
2015-04-06
Electron microscopy studies suggest that silver nanowires prepared by an approach reported earlier by us (Caswell, K. K., Bender, C. M., Murphy, C. J. Nano Lett.,2003, 3, 667–669) form through a coarsening process via an oriented attachment mechanism. Initially, silver nucleation centers were produced by chemical reduction of silver ions in boiling water, with sodium citrate and sodium hydroxide as additives in solution. These nucleation centers, with a twinned crystallographic orientation, ultimately merge into fully grown silver nanowires. This is a completely different mechanism from the seed-mediated growth approach, which has also been used to produce silver nanowires. Furthermore, companionmore » molecular dynamics performed with the embedded atom method are in agreement with our experimental data.« less
A possible oriented attachment growth mechanism for silver nanowire formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murph, Simona E. Hunyadi; Murphy, Catherine J.; Leach, Austin
Electron microscopy studies suggest that silver nanowires prepared by an approach reported earlier by us (Caswell, K. K., Bender, C. M., Murphy, C. J. Nano Lett.,2003, 3, 667–669) form through a coarsening process via an oriented attachment mechanism. Initially, silver nucleation centers were produced by chemical reduction of silver ions in boiling water, with sodium citrate and sodium hydroxide as additives in solution. These nucleation centers, with a twinned crystallographic orientation, ultimately merge into fully grown silver nanowires. This is a completely different mechanism from the seed-mediated growth approach, which has also been used to produce silver nanowires. Furthermore, companionmore » molecular dynamics performed with the embedded atom method are in agreement with our experimental data.« less
Preliminary experimental research for silver recovery from radiographic films
NASA Astrophysics Data System (ADS)
Cânda, L. R.; Ardelean, E.
2017-01-01
Global demand for silver remains steadily to about 1,000 million ounces (28349500 kg), of which around 600 million ounces (17009700 kg) are used in industrial applications. Extraction of silver from the ore is expensive and harmful to the environment and low efficiency. X-ray films represent an important worldwide consumer as research on recovery of silver from exposed radiographic films must be oriented to achieve a maximum recovery and a high purity silver, with methods through the by-products will be less polluting for the environment. The paper presents some laboratory tests referring to the recovery of silver from radiographic films by leaching with sodium hydroxide. Two series of experiments were performed with different amounts of used X-ray film.
Raja, K; Saravanakumar, A; Vijayakumar, R
2012-11-01
In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods. Copyright © 2012 Elsevier B.V. All rights reserved.
Synthesis of silver nanoparticle and its application.
Pandian, A Muthu Kumara; Karthikeyan, C; Rajasimman, M; Dinesh, M G
2015-11-01
In this work, silver nanoparticles have been synthesized by wet chemical technique, green synthesis and microbial methods. Silver nitrate (10(-3)M) was used with aqueous extract to produce silver nanoparticles. From the results it was observed that the yield of nanoparticles was high in green synthesis. The size of the silver nanoparticles was determined from Scanning Electron Microscope analysis (SEM). Fourier Transform Infrared spectroscopy (FTIR) was carried out to determine the presence of biomolecules in them. Its cytotoxic effect was studied in cancerous cell line and normal cell line. MTT assay was done to test its optimal concentration and efficacy which gives valuable information for the use of silver nanoparticles for future cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.
Maddinedi, Sireesh Babu; Mandal, Badal Kumar; Anna, Kiran Kumar
2017-01-01
A green, facile method for the size selective synthesis of silver nanoparticles (AgNPs) using diastase as green reducing and stabilizing agent is reported. The thiol groups present in the diastase are mainly responsible for the rapid reaction rate of silver nanoparticles synthesis. The variation in the size and morphology of AgNPs were studied by changing the pH of diastase. The prepared silver nanoparticles were characterized by using UV-vis, XRD, FTIR, TEM and SAED. The FTIR analysis revealed the stabilization of diastase molecules on the surface of AgNPs. Additionally, in-vitro cytotoxicity experiments concluded that the cytotoxicity of the as-synthesized AgNPs towards mouse fibroblast (3T3) cell lines is dose and size dependent. Furthermore, the present method is an alternative to the traditional chemical methods of size controlled AgNPs synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.
Method of bonding silver to glass and mirrors produced according to this method
Pitts, J.R.; Thomas, T.M.; Czanderna, A.W.
1984-07-31
A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.
Method of bonding silver to glass and mirrors produced according to this method
Pitts, John R.; Thomas, Terence M.; Czanderna, Alvin W.
1985-01-01
A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.
NASA Astrophysics Data System (ADS)
McDonald, Iain; Hughes, Hannah S. R.; Butler, Ian B.; Harris, Jeffrey W.; Muir, Duncan
2017-11-01
Base metal sulphide (BMS) inclusions in diamonds provide a unique insight into the chalcophile and highly siderophile element composition of the mantle. Entombed within their diamond hosts, these provide a more robust (closed system) sample, from which to determine the trace element, Re-Os and S-isotopic compositions of the mantle than mantle xenoliths or orogenic peridotites, as they are shielded from alteration during ascent to the Earth's crust and subsequent surface weathering. However, at temperatures below 1100 °C some BMS inclusions undergo subsolidus re-equilibration from an original monosulphide solid solution (Mss) and this causes fractionation of the major and trace elements within the inclusions. Thus to study the subjects noted above, current techniques require the entire BMS inclusion to be extracted for analyses. Unfortunately, 'flaking' of inclusions during break-out is a frequent occurrence and hence the risk of accidentally under-sampling a portion of the BMS inclusion is inherent in current practices. This loss may have significant implications for Re-Os isotope analyses where incomplete sampling of a Re-rich phase, such as chalcopyrite that typically occurs at the outer margins of BMS inclusions, may induce significant bias in the Re-Os and 187Os/188Os measurements and resulting model and isochron ages. We have developed a method for the homogenisation of BMS inclusions in diamond prior to their break-out from the host stone. Diamonds are heated to 1100 °C and then quenched to chemically homogenise any sulphide inclusions for both major and trace elements. Using X-ray Computed Microtomography (μCT) we determine the shape and spatial setting of multiple inclusions within a host stone and crucially show that the volume of a BMS inclusion is the same both before and after homogenisation. We show that the homogenisation process significantly reduces the inherent variability of in situ analysis when compared with unhomogenised BMS, thereby widening the scope for multiple methods for quantitative analysis, even on 'flakes' of single BMS inclusions. Finally we show that the trace elements present in peridotite (P-type) and eclogitic (E-type) BMS are distinct, with P-type diamonds having systematically higher total platinum-group element (particularly Os, Ir, Ru) and Te and As concentrations. These distinctions suggest that the PGE and semi-metal budgets of mantle-derived partial melts will be significantly dependent upon the type(s) and proportions of sulphides present in the mantle source.
Chalcogenide Glass for Active and Passive Mid-IR Applications
2010-09-01
Reactive gas conversion • Chemical vapour deposition What is a Chalcogenide? – From Greek sulphur-loving for elements that frequently bond to sulphur...Predominately As or Se based (toxic!) ORC Research Focussed On – Gallium Lanthanum Sulphides (non-toxic) – Germanium Sulphides (non-toxic) – Capability to...770 2 hours Primary Screening 2 - 3 days Time Scale: one week Pioneering Technology: High Throughput Physical Vapour Deposition Material Discovery
NASA Technical Reports Server (NTRS)
Canfield, D. E.; Teske, A.
1996-01-01
The evolution of non-photosynthetic sulphide-oxidizing bacteria was contemporaneous with a large shift in the isotopic composition of biogenic sedimentary sulphides between 0.64 and 1.05 billion years ago. Both events were probably driven by a rise in atmospheric oxygen concentrations to greater than 5-18% of present levels--a change that may also have triggered the evolution of animals.
Case studies of hydrogen sulphide occupational exposure incidents in the UK.
Jones, Kate
2014-12-15
The UK Health and Safety Executive has investigated several incidents of workplace accidents involving hydrogen sulphide exposure in recent years. Biological monitoring has been used in some incidents to determine the cause of unconsciousness resulting from these incidents and as a supporting evidence in regulatory enforcement. This paper reports on three case incidents and discusses the use of biological monitoring in such cases. Biological monitoring has a role in identifying hydrogen sulphide exposure in incidents, whether these are occupational or in the wider environment. Sample type, time of collection and sample storage are important factors in the applicability of this technique. For non-fatal incidents, multiple urine samples are recommended at two or more time points between the incident and 15 h post-exposure. For routine occupational monitoring, post-shift samples should be adequate. Due to endogenous levels of urinary thiosulphate, it is likely that exposures in excess of 12 ppm for 30 min (or 360 ppm/min equivalent) would be detectable using biological monitoring. This is within the Acute Exposure Guideline Level 2 (the level of the chemical in air at or above which there may be irreversible or other serious long-lasting effects or impaired ability to escape) for hydrogen sulphide. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.
Ecophysiological capability of Marenzelleria populations inhabiting North Sea estuaries: an overview
NASA Astrophysics Data System (ADS)
Schiedek, Doris
1998-09-01
The metabolic responses of Marenzelleria cf. wireni, a newly established polychaete worm within North Sea estuaries, to various kinds of environmental stress are summarised. With respect to salinity, M. cf. wireni is able to deal with variations within a wide range. In the process of osmotic acclimation, free amino acids are involved. The major amino acid in terms of osmotic effector is glycine, followed by alanine. Under severe hypoxia, M. cf. wireni switches to an anaerobic metabolism, but at a very low oxygen partial pressure (<3 kPa), which indicates efficient utilisation of oxygen. Anaerobic energy production occurs predominantly via the succinate-propionate pathway. When exposed to hydrogen sulphide, M. cf. wireni is able to cope with high sulphide concentrations (up to 3 mmol l-1), but the pattern of end products of the anaerobic energy metabolism changes. In terms of sulphide tolerance, M. cf. wireni probably is even better adapted than other, indigenous polychaetes. However, in comparison with the sibling species Marenzelleria viridis, which appeared at the same time in European waters but mainly inhabits the coastal inlets of the Baltic Sea in high numbers, the metabolic capabilities of M. cf. wireni seem to be more limited at higher sulphide concentrations (>1 mmol l-1). This might have an influence on the distribution pattern of the two sibling species.
Mikelonis, Anne M; Lawler, Desmond F; Passalacqua, Paola
2016-10-01
This research examined how variations in synthesis methods of silver nanoparticles affect both the release of silver from ceramic water filters (CWFs) and disinfection efficacy. The silver nanoparticles used were stabilized by four different molecules: citrate, polyvinylpyrrolidone, branched polyethylenimine, and casein. A multilevel statistical model was built to quantify if there was a significant difference in: a) extent of silver lost, b) initial amount of silver lost, c) silver lost for water of different quality, and d) total coliform removal. Experiments were performed on location at Pure Home Water, a CWF factory in Tamale, Ghana using stored rainwater and dugout water (a local surface water). The results indicated that using dugout vs. rainwater significantly affects the initial (p-value 0.0015) and sustained (p-value 0.0124) loss of silver, but that silver type does not have a significant effect. On average, dugout water removed 37.5μg/L more initial silver and had 1.1μg/L more silver in the filtrate than rainwater. Initially, filters achieved 1.9 log reduction values (LRVs) on average, but among different silver and water types this varied by as much as 2.5 LRV units. Overall, bacterial removal effectiveness was more challenging to evaluate, but some data suggest that the branched polyethylenimine silver nanoparticles provided improved initial bacterial removal over filters which were not painted with silver nanoparticles (p-value 0.038). Copyright © 2016 Elsevier B.V. All rights reserved.
Mathew, Thomas V; Kuriakose, Sunny
2013-01-01
Colloidal silver nanoparticles were synthesised using sol-gel method and these nanoparticles were stabilised by encapsulated into the scaffolds of bovine serum albumin. Silver nanoparticles and encapsulated products were characterised by FTIR, NMR, XRD, TG, SEM and TEM analyses. Silver nanoparticle encapsulated bovine serum albumin showed highly potent antibacterial activity towards the bacterial strains such as Staphylococcus aureus, Serratia marcescens, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vijila, C. V. Mary; Rahman, K. K. Arsina; Parvathy, N. S.; Jayaraj, M. K.
2016-05-01
Transparent conducting films are becoming increasingly interesting because of their applications in electronics industry such as their use in solar energy applications. In this work silver nanowires were synthesized using solvothermal method by reducing silver nitrate and adding sodium chloride for assembling silver into nanowires. Absorption spectra of nanowires in the form of a dispersion in deionized water, AFM and SEM images confirm the nanowire formation. Solution of nanowire was coated over PET films to obtain transparent conducting films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijila, C. V. Mary; Rahman, K. K. Arsina; Parvathy, N. S.
2016-05-23
Transparent conducting films are becoming increasingly interesting because of their applications in electronics industry such as their use in solar energy applications. In this work silver nanowires were synthesized using solvothermal method by reducing silver nitrate and adding sodium chloride for assembling silver into nanowires. Absorption spectra of nanowires in the form of a dispersion in deionized water, AFM and SEM images confirm the nanowire formation. Solution of nanowire was coated over PET films to obtain transparent conducting films.
Physics and chemistry of antimicrobial behavior of ion-exchanged silver in glass.
Borrelli, N F; Senaratne, W; Wei, Y; Petzold, O
2015-02-04
The results of a comprehensive study involving the antimicrobial activity in a silver ion-exchanged glass are presented. The study includes the glass composition, the method of incorporating silver into the glass, the effective concentration of the silver available at the glass surface, and the effect of the ambient environment. A quantitative kinetic model that includes the above factors in predicting the antimicrobial activity is proposed. Finally, experimental data demonstrating antibacterial activity against Staphylococcus aureus with correlation to the predicted model is shown.
NASA Astrophysics Data System (ADS)
Dill, H. G.; Eberhard, E.; Hartmann, B.
1997-01-01
Fe disulphides are common opaque accessories in sedimentary rocks. Both marcasite and pyrite may shed some light on the depositional environment and help determine the diagenesis of their host rocks. Quantitative ore microscopy (reflectance measurements, Vickers hardness numbers) and X-ray diffraction methods, supplemented with scanning electron microscopy and chemical analyses, were applied to pyrite (and some marcasite) hosted by sedimentary rocks spanning the interval from the Devonian to the Pliocene, and formed in various marine and continental environments. Quantitative ore microscopy of pyrites of sedimentary origin does not seem to be an efficient tool for analyzing the environment owing to the inhomogeneous nature of sulphide aggregates when viewed under the ore microscope, and the variable amounts of minor elements (e.g., As, Ni, and Co) that control the reflectance values (RV) and Vickers hardness numbers (VHN) of the host sulphides. However, such parameters as crystal habit and unit cell length of pyrite, which correlate with FeS x, are useful for environmental analysis. The redox conditions and the presence of organic remains during formation are the main factors determining these crystallographic parameters. Differences in these parameters from those of pure, ideal FeS 2 can be related to substitution of, e.g., wustite in the pyrite lattice, reflecting moderate oxidation (i.e. in the microenvironment). As far as crystal habit and length of the cell edge are concerned, late stage diagenesis is obviously less important than the microenvironment attending initial formation. The environment of deposition (i.e. the macroenvironment) of pyrite-bearing rocks has no influence on the crystal morphology or the length of the unit cell of Fe disulphide. X-ray diffraction measurements demonstrate that this method provides useful evidence on the microenvironment of sulphide precipitation around a single, equant pyrite, as well as around pyritized fossils.
Disinfection effects of undoped and silver-doped ceria powders of nanometer crystallite size
Tsai, Dah-Shyang; Yang, Tzu-Sen; Huang, Yu-Sheng; Peng, Pei-Wen; Ou, Keng-Liang
2016-01-01
Being endowed with an ability of capturing and releasing oxygen, the ceria surface conventionally assumes the role of catalyzing redox reactions in chemistry. This catalytic effect also makes possible its cytotoxicity toward microorganisms at room temperature. To study this cytotoxicity, we synthesized the doped and undoped ceria particles of 8–9 nm in size using an inexpensive precipitation method and evaluated their disinfecting aptitudes with the turbidimetric and plate count methods. Among the samples being analyzed, the silver-doped ceria exhibits the highest sterilization ability, yet the undoped ceria is the most intriguing. The disinfection effect of undoped ceria is moderate in magnitude, demanding a physical contact between the ceria surface and bacteria cell wall, or the redox catalysis that can damage the cell wall and result in the cell killing. Evidently, this effect is short-range and depends strongly on dispersion of the nanoparticles. In contrast, the disinfection effects of silver-doped ceria reach out several millimeters since it releases silver ions to poison the surrounding microorganisms. Additionally, the aliovalent silver substitution creates more ceria defects. The synergetic combination, silver poisoning and heterogeneous redox catalysis, lifts and extends the disinfecting capability of silver-doped ceria to a superior level. PMID:27330294
Niraimathi, K L; Sudha, V; Lavanya, R; Brindha, P
2013-02-01
The present work focuses the use of the aqueous extract of Alternanthera sessilis Linn. (Amaranthaceae) in producing silver nanoparticles (AgNPs) from silver nitrate aqueous. Phytochemical analysis of the extract revealed the presence of alkaloid, tannins, ascorbic acid, carbohydrates and proteins and they serve as effective reducing and capping agents for converting silver nitrate into nanoparticles. The synthesized silver nanoparticles (AgNPs) were also tested for proteins and ascorbic acid. Its pH was also determined (5.63). The AgNPs obtained was characterized by UV-vis spectroscopy, FT-IR spectroscopy, SEM, Zeta sizer and TG-DSC. SEM images which revealed the presence of various shapes and sizes. FT-IR spectrum showed the AgNPs having a coating of proteins indicating a dual role of bio-molecules responsible for capping and efficient stabilization of the silver nanoparticles. Presence of impurities and melting point profile were screened by TG-DSC analyzer. AgNPs were synthesized from the silver nitrate through the reducing power of ascorbic acid present in A. sessilis leaves. In this study, we also investigated antimicrobial and antioxidant activity of green synthesized AgNPs. The antimicrobial activity is investigated by Bauer et al.'s method. Antioxidant activity was done by DPPH method. Copyright © 2012 Elsevier B.V. All rights reserved.
Coplen, Tyler B.; Qi, Haiping
2010-01-01
The δ2HVSMOW–SLAP value of total hydrogen of the international measurement standard NBS 22 oil was determined by a new method of sealing water in silver tubes for use in a thermal conversion elemental analysis (TC/EA) reduction unit. The isotopic fractionation of water due to evaporation is virtually non-existent in this silver-tube method. A new value for the δ2HVSMOW–SLAP of NBS 22 oil, calibrated with isotopic reference waters, was determined to be −116.9 ± 0.8‰ (1σ and n = 31).
Solt, M W; Wahlberg, J S; Myers, A T
1969-01-01
Rhenium in molybdenite is separated from molybdenum by distillation of rhenium heptoxide from a perchloric-sulphuric acid mixture. It is concentrated by precipitation of the sulphide and then determined by X-ray fluorescence. From 3 to 1000 microg of rhenium can be measured with a precision generally within 2%. The procedure tolerates larger amounts of molybdenum than the usual colorimetric methods.
NASA Astrophysics Data System (ADS)
de Jesús Ruíz-Baltazar, Álvaro; Reyes-López, Simón Yobbany; Larrañaga, Daniel; Estévez, Miriam; Pérez, Ramiro
The exceptional properties of the silver nanoparticles offer several applications in the biomedicine field. The development of antibiotics which are clinically useful against bacteria and drug resistant microorganisms, it is one of the main approaches of silver nanoparticles. However, it is necessary to develop environmentally friendly methods for their synthesis. In this sense, the main objective of this work is focused on to propose a simplified and efficient green synthesis of silver nanoparticles with proven antibacterial properties. The green synthesis route is based on the use of the Melissa officinalis as reducing agent of the silver ions in aqueous solution at room temperature. Complementary, the antibacterial activity of the silver nanoparticles against Staphylococcus aureus and Escherichia coli was confirmed. The silver nanoparticles obtained were characterized by transmission electron microscopy, X-ray diffraction, UV-vis, Raman and FT-IR spectroscopy. The observed results suggested that using Melissa officinalis, it is possible to performed silver nanoparticles with controlled characteristics and with significant inhibitory activity against the Staphylococcus aureus and Escherichia coli.
NASA Astrophysics Data System (ADS)
Vankar, Padma S.; Shukla, Dhara
2012-06-01
Preparation of silver nanoparticles have been carried out using aqueous extract of lemon leaves ( Citrus limon) which acts as reducing agent and encapsulating cage for the silver nanoparticles. These silver nanoparticles have been used for durable textile finish on cotton and silk fabrics. Remarkable antifungal activity has been observed in the treated fabrics. The antimicrobial activity of silver nanoparticles derived from lemon leaves showed enhancement in activity due to synergistic effect of silver and essential oil components of lemon leaves. The present investigation shows the extracellular synthesis of highly stable silver nanoparticles by biotransformation using the extract of lemon leaves by controlled reduction of the Ag+ ion to Ag0. Further the silver nanoparticles were used for antifungal treatment of fabrics which was tested by antifungal activity assessment of textile material by Agar diffusion method against Fusarium oxysporum and Alternaria brassicicola. Formation of the metallic nanoparticles was established by FT-IR, UV-Visible spectroscopy, transmission electron microscopy, scanning electron microscopy, atomic force microscopy.
Barani, Hossein; Montazer, Majid; Braun, Hans-Georg; Dutschk, Victoria
2014-12-01
The use of silver nanoparticle on various substrates has been widespread because of its good antibacterial properties that directly depend on the stability of the silver nanoparticles in a colloidal suspension. In this study, the colloidal solutions of the silver nanoparticles were synthesised by a simple and safe method by using lecithin as a stabilising agent and their stability was examined at various temperatures. The effect of the lecithin concentrations on the stability of the synthesised silver nanoparticles was examined from 25 to 80°C at 5°C intervals, by recording the changes in the UV-vis absorption spectra, the hydrodynamic diameter and the light scattering intensity of the silver nanoparticles. In addition, the morphology of the synthesised silver nanoparticles was investigated with the low-voltage scanning electron microscopy and transmission electron microscopy. The results indicated that increasing temperature caused different changes in the size of the stabilised and the unstabilised silver nanoparticles. The size of the stabilised silver nanoparticles reduced from 38 to 36 nm during increasing temperature, which confirmed good stability.
Synthesis and Characterization of Composite Hydroxyapatite-Silver Nanoparticles
NASA Astrophysics Data System (ADS)
Charlena; Nuzulia, N. A.; Handika
2017-03-01
Hydroxyapatite (HAp) is commonly used as bone implant coating recently; however, the material has disadvantage such as lack of antibacterial properties, that can cause an bacterial infection. Addition of silver nanoparticles is expected to be able to provide antibacterial properties. Silver nanoparticles was obtained by reduction of AgNO3 using glucose monohydrate with microwave heating at 100p for 4 minutes. The composite of hydroxyapatite-silver nanoparticles was synthesized using chemical methods by coprecipitation suspension of Ca(OH)2 with (NH4)HPO4, followed by adding silver nanoparticles solution. The size of the synthesized silver nanoparticles was 30-50 nm and exhibited good antibacterial activity. Nevertheless, when it was composited with HAp to form HAp-AgNPs, there was no antibacterial activity due to very low concentration of silver nanoparticles. This was indicated by the absence of silver nanoparticles diffraction patterns. Infrared spectra indicated the presence of chemical shift and the results of scanning electron microscope showed size of the HAp-AgNPs composite was smaller than that of the HAp. This showed the interaction between HAp and the silver nanoparticles.
Green Synthesis of Silver Nanoparticles by using Eucalyptus Globulus Leaf Extract
NASA Astrophysics Data System (ADS)
Balamurugan, Madheswaran; Saravanan, Shanmugam
2017-12-01
A single step eco-friendly, energy efficient and economically scalable green method was employed to synthesize silver nanoparticles. In this work, the synthesis of silver nanoparticles using Eucalyptus globulus leaf extract as reducing and capping agent along with water as solvent at normal room temperature is described. Silver nanoparticles were prepared from aqueous silver nitrate solution by adding the leaf extract. The prepared nanoparticles were characterized by using UV-visible Spectrophotometer, X-ray diffractometer, High Resolution Transmission Electron Microscope (HR-TEM) and Fourier Transform Infrared Spectroscope (FTIS). X-ray diffraction studies brought to light the crystalline nature and the face centered cubic structure of the silver nanoparticles. Using HR-TEM. the nano sizes and morphology of the particles were studied. The mean sizes of the prepared silver nanoparticles ranged from 30 to 36 nm. The density of the particles was tuned by varying the molar ratio of silver nitrate. FTIS studies showed the functional group of organic molecules which were located on the surface of the silver nanoparticles. Originating from the leaf extracts, these organic molecules reduced and capped the particles.
Preferential Solvation of Silver (I) Bromate in Methanol-Dimethylsulfoxide Mixtures
NASA Astrophysics Data System (ADS)
Janardhanan, S.; Kalidas, C.
1984-06-01
The solubiltiy of silver bromate, the Gibbs transfer energy of Ag+ and BrO3- and the solvent transport number in methanol-dimethyl sulfoxide mixtures are reported. The solubility of silver bromate increases with addition of DMSO. The Gibbs energy of transfer of the silver ion (based on the ferrocene reference method) decreases, while that of the bromate ion becomes slightly negative with the addition of DMSO. The solvent transport number A passes through a maximum (⊿ = 1.0 at XDMSO = 0.65. From these results, it is concluded that the silver ion is preferentially solvated by DMSO whereas the bromate ion shows no preferential solvation.
The interference of metals with the determination of arsenic by the silver diethyldithiocarbamate (SDDC) Method was investigated. Low recoveries of arsenic are obtained when cobalt, chromium, molybdenum, nitrate, nickel or phosphate are at concentrations of 7 mg/l or above (indiv...
Study of ecotoxicity of silver nanoparticles using algae
NASA Astrophysics Data System (ADS)
Kustov, L. M.; Abramenko, N. B.
2016-11-01
Silver nanoparticles have been prepared and tested for their ecotoxicity using Chlorella vulgaris Beijer. algae as a hydrobiotic test organism and a photometric method of control. The toxicity was supposed to originate from Ag+ ions released into the aqueous solution. Also, the toxicity of the stabilizing agent was found to be comparable to that of silver nanoparticles.
NASA Astrophysics Data System (ADS)
Hill, R. E. T.; Barnes, S. J.; Dowling, S. E.; Thordarson, T.
2004-11-01
The Black Swan Succession is a bimodal association of dacitic and komatiitic volcanic rocks located about 50 km NNE of Kalgoorlie, within the 2.7-Ga Eastern Goldfields greenstone province of the Yilgarn Craton. The komatiite stratigraphy comprises a steep dipping, east facing package about 700 m in maximum thickness and about 2.5 km in strike length (Fig. 1), which hosts a number of economically exploitable Ni sulphide orebodies including the Silver Swan massive ore shoot (approximately half a million tonnes at about 10.5% Ni). The sequence can be subdivided into a Lower Felsic Unit, comprising coherent and autobrecciated facies of multiple dacite lava flows; an upper Eastern and lower Western Ultramafic Unit, each showing marked lateral facies variation, and an Upper Felsic Unit coeval with the Eastern Ultramafic Unit. The komatiite sequence has been metamorphosed at sub-greenschist facies in the presence of high proportions of CO2-rich fluid, giving rise to pervasive talc carbonate and talc carbonate quartz assemblages, with extensive preservation of pseudomorphed igneous textures. Cores of lizardite serpentinite are present in the thickest parts of the ultramafic succession. The degree of penetrative deformation is generally very low, and original stratigraphic relationships are largely intact in much of the sequence. The Eastern Ultramafic Unit and Western Ultramafic Unit are interpreted as components of a single large komatiite flow field, representing overlapping stages in the emplacement of a series of distributory lava pathways and flanking sheet flows. The Western Ultramafic Unit which hosts the bulk of the high-grade massive and disseminated ores is a sequence dominated by coarse-grained olivine cumulates, 2 km wide and up to 500 m thick, with major magma pathways represented by thick, homogenous olivine mesocumulate piles at its northern and southern ends: respectively 400 and 200 m thick. The sequence between the two major pathways consists of olivine orthocumulates (oOC) with minor spinifex-textured intervals. The Unit is capped by a persistent spinifex-textured crust less than 1 m thick, and is locally vesicular. The Eastern Ultramafic Unit contains the Black Swan Cumulate Zone, a 500-m thick sequence of very coarse-grained hopper-textured, locally vesicular oOC containing disseminated sulphides in its lower 200 m. The zone is flanked to the north and south by complexly interdigitated sequence of highly irregular, spinifex-capped, olivine cumulate-rich flow lobes between 1 and 100 m thick, and dacitic lavas and tuffs. The complexity of the 3-D spatial relationship of these units suggests a combination of simultaneous eruption of dacite and komatiite, combined with thermal or thermomechanical erosion. The Eastern and Western Units are interpreted as the result of more or less continuous prolonged eruption of olivine charged komatiite lava, which developed localised thermo-mechanical erosion channels in the dacitic substrate. Komatiite and dacite eruption was synchronous, giving rise to complex interdigitation and extensive contamination and hybridisation.
Preparation of the egg membrane bandage contained the antibacterial Ag nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jin; Duan, Guangwen; Fu, Yunzhi, E-mail: yzhfu@hainu.edu.cn
Silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous aloe leaf extracts as both the reducing and capping agent. Transmission electron microscopy analysis revealed the average size of silver nanoparticles approximately 18.05 nm. Fourier transform infrared spectroscopy observation showed the estimation of two kinds of binding sites between aqueous aloe leaf and aqueous aloe leaf with silver nanoparticles. In addition, the critical roles of the concentration of silver nitrate, temperature, and reaction time in the formation of silver nanoparticles had been illustrated. Furthermore, silver nanoparticles were deposited on egg membrane bandage, forming amore » new egg membrane bandage that contained silver nanoparticles that exhibiting excellent antibacterial effects against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, which was 2.5 times stronger than the commercially available bandage. - Graphical Abstract: Display Omitted.« less
Silver nanocluster catalytic microreactors for water purification
NASA Astrophysics Data System (ADS)
Da Silva, B.; Habibi, M.; Ognier, S.; Schelcher, G.; Mostafavi-Amjad, J.; Khalesifard, H. R. M.; Tatoulian, M.; Bonn, D.
2016-07-01
A new method for the elaboration of a novel type of catalytic microsystem with a high specific area catalyst is developed. A silver nanocluster catalytic microreactor was elaborated by doping a soda-lime glass with a silver salt. By applying a high power laser beam to the glass, silver nanoclusters are obtained at one of the surfaces which were characterized by BET measurements and AFM. A microfluidic chip was obtained by sealing the silver coated glass with a NOA 81 microchannel. The catalytic activity of the silver nanoclusters was then tested for the efficiency of water purification by using catalytic ozonation to oxidize an organic pollutant. The silver nanoclusters were found to be very stable in the microreactor and efficiently oxidized the pollutant, in spite of the very short residence times in the microchannel. This opens the way to study catalytic reactions in microchannels without the need of introducing the catalyst as a powder or manufacturing complex packed bed microreactors.
Mehmood, Ansar; Murtaza, Ghulam; Bhatti, Tariq Mahmood; Kausar, Rehana; Ahmed, Muhammad Jamil
2016-01-01
Various biological methods are being recognized for the fabrication of silver nanoparticles, which are used in several fields. The phytosynthesis of nanoparticles came out as a cost effective and enviro-friendly approach. When root bark extract of Berberis lycium was treated with silver ions, they reduced to silver nanoparticles, which were spherical, crystalline, size ranged from 10-100nm and capped by biomolecules. Synthesized silver nanoparticles were characterized by UV-visible spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) and Fourier Transform Infra Red Spectroscopy (FTIR). The plant mediated synthesized silver nanoparticles showed pronounced antimicrobial activities against both Gram negative bacteria (Escherichia coli, Klebseilla pneumoniae, Pseudomonas aeruginosa) and Gram positive bacteria (Staphylococcus aureus and Bacillus subtilis). The plant mediated process proved to be non-toxic and low cost contender as reducing agent for synthesizing stable silver nanoparticles.
Method for treating a nuclear process off-gas stream
Pence, Dallas T.; Chou, Chun-Chao
1984-01-01
Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO.sub.x, hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140.degree. to -160.degree. C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140.degree. to -160.degree. C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton.
NASA Astrophysics Data System (ADS)
Qiu, T.; Wu, X. L.; Mei, Y. F.; Chu, P. K.; Siu, G. G.
2005-09-01
Unique silver dendritic nanostructures, with stems, branches, and leaves, were synthesized with self-organization via a simple electroless metal deposition method in a conventional autoclave containing aqueous HF and AgNO3 solution. Their growth mechanisms are discussed in detail on the basis of a self-assembled localized microscopic electrochemical cell model. A process of diffusion-limited aggregation is suggested for the formation of the silver dendritic nanostructures. This nanostructured material is of great potential to be building blocks for assembling mini-functional devices of the next generation.
Arash, Valiollah; Anoush, Keivan; Rabiee, Sayed Mahmood; Rahmatei, Manuchehr; Tavanafar, Saeid
2015-01-01
Aims of the present study was to measure frictional resistance between silver coated brackets and different types of arch wires, and shear bond strength of these brackets to the tooth. In an experimental clinical research 28 orthodontic brackets (standard, 22 slots) were coated with silver ions using electroplate method. Six brackets (coated: 3, uncoated: 3) were evaluated with Scanning Electron Microscopy and Atomic Force Microscopy. The amount of friction in 15 coated brackets was measured with three different kinds of arch wires (0.019 × 0.025-in stainless steel [SS], 0.018-in stainless steel [SS], 0.018-in Nickel-Titanium [Ni-Ti]) and compared with 15 uncoated steel brackets. In addition, shear bond strength values were compared between 10 brackets with silver coating and 10 regular brackets. Universal testing machine was used to measure shear bond strength and the amount of friction between the wires and brackets. SPSS 18 was used for data analysis with t-test. SEM and AFM results showed deposition of a uniform layer of silver, measuring 8-10 μm in thickness on bracket surfaces. Silver coating led to higher frictional forces in all the three types of arch wires, which was statistically significant in 0.019 × 0.025-in SS and 0.018-in Ni-Ti, but it did not change the shear bond strength significantly. Silver coating with electroplating method did not affect the bond strength of the bracket to enamel; in addition, it was not an effective method for decreasing friction in sliding mechanics. © Wiley Periodicals, Inc.
Damrau, D.L.
1993-01-01
Increased awareness of the quality of water in the United States has led to the development of a method for determining low levels (0.2-5.0 microg/L) of silver in water samples. Use of graphite furnace atomic absorption spectrophotometry provides a sensitive, precise, and accurate method for determining low-level silver in samples of low ionic-strength water, precipitation water, and natural water. The minimum detection limit determined for low-level silver is 0.2 microg/L. Precision data were collected on natural-water samples and SRWS (Standard Reference Water Samples). The overall percent relative standard deviation for natural-water samples with silver concentrations more than 0.2 microg/L was less than 40 percent throughout the analytical range. For the SRWS with concentrations more than 0.2 microg/L, the overall percent relative standard deviation was less than 25 percent throughout the analytical range. The accuracy of the results was determined by spiking 6 natural-water samples with different known concentrations of the silver standard. The recoveries ranged from 61 to 119 percent at the 0.5-microg/L spike level. At the 1.25-microg/L spike level, the recoveries ranged from 92 to 106 percent. For the high spike level at 3.0 microg/L, the recoveries ranged from 65 to 113 percent. The measured concentrations of silver obtained from known samples were within the Branch of Quality Assurance accepted limits of 1 1/2 standard deviations on the basis of the SRWS program for Inter-Laboratory studies.
Towards field malaria diagnosis using surface enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Chen, Keren; Xiong, Aoli; Yuen, Clement; Preiser, Peter; Liu, Quan
2016-04-01
We report three strategies of surface enhanced Raman spectroscopy (SERS) for β-hematin and hemozoin detection in malaria infected human blood, which can be potentially developed for field malaria diagnosis. In the first strategy, we used silver coated magnetic nanoparticles (Fe3O4@Ag) in combination with an external magnetic field to enhance the Raman signal of β-hematin. Then we developed two SERS methods without the requirement of magnetic field for malaria infection diagnosis. In Method 1, silver nanoparticles were synthesized separately and then mixed with lysed blood just like in traditional SERS measurements; while in Method 2, we developed an ultrasensitive SERS method by synthesizing silver nanoparticles directly inside the parasites of Plasmodium falciparum. Method 2 can be also used to detect single parasites in the ring stage.
Reddy, N Jayachandra; Nagoor Vali, D; Rani, M; Rani, S Sudha
2014-01-01
Silver nanoparticles synthesized through bio-green method has been reported to have biomedical applications to control pathogenic microbes as it is cost effective compared to commonly used physical and chemical methods. In present study, silver nanoparticles were synthesized using aqueous Piper longum fruit extract (PLFE) and confirmed by UV-visible spectroscopy. The nanoparticles were spherical in shape with an average particle size of 46nm as determined by scanning electronic microscopy (SEM) and dynamic light scattering (DLS) particle size analyzer respectively. FT-IR spectrum revealed the capping of the phytoconstituents, probably polyphenols from P. longum fruit extract and stabilizing the nanoparticles. Further the ferric ion reducing test, confirmed that the capping agents were condensed tannins. The aqueous P. longum fruit extract (PLFE) and the green synthesized silver nanoparticles (PLAgNPs) showed powerful antioxidant properties in in vitro antioxidant assays. The results from the antimicrobial assays suggested that green synthesized silver nanoparticles (PLAgNPs) were more potent against pathogenic bacteria than the P. longum fruit extract (PLFE) alone. The nanoparticles also showed potent cytotoxic effect against MCF-7 breast cancer cell lines with an IC 50 value of 67μg/ml/24h by the MTT assay. These results support the advantages of using bio-green method for synthesizing silver nanoparticles with antioxidant, antimicrobial and cytotoxic activities those are simple and cost effective as well. © 2013.
Nanosilver - does it have only one face?
Likus, Wirginia; Bajor, Grzegorz; Siemianowicz, Krzysztof
2013-01-01
Silver nanoparticles (NPs) have at least one dimension of a particle smaller than 100 nm and contain 20-15,000 silver atoms. Due to its antibacterial activity nanosilver (NS) is used for medical purposes. NS particles can be obtained by various methods. Potentially, the best method of the NS synthesis for medical purposes is based on a brief flow of electric current between two silver electrodes placed in deionized water. It is accepted that the major antibacterial effect of silver is its partial oxidation and releasing silver ions, which interact with thiol groups of peptidoglicans of bacterial cell wall, and proteins of the cell membrane causing cell lysis. Silver ions can also bind to bacterial DNA preventing its replication and stopping synthesis of bacterial proteins. The rise in exposure to silver NPs has spurred interest into their toxicology. NS undergoes a set of biochemical transformations including accelerated oxidative dissolution in gastric acid, binding to thiol groups of serum and tissue proteins, exchange between thiol groups, sulfides and selenides, binding to selenoproroteins and photoreduction in skin to zerovalent metallic silver. Animal studies have shown that exposure to NS may lead to liver and spleen damage. NS can also stimulate an increased secretion of proinflammatory cytokines by monocytes. As a spectrum of NS applications is still growing, the complex evaluation of a safety of its use becomes an important task. This requires an elucidation of not only the influence of NS on human cells and organism, but also its biotransformation in organism and in environment.
Short term serum pharmacokinetics of diammine silver fluoride after oral application
2012-01-01
Background There is growing interest in the use of diammine silver fluoride (DSF) as a topical agent to treat dentin hypersensitivity and dental caries as gauged by increasing published research from many parts of the world. While DSF has been available in various formulations for many years, most of its pharmacokinetic aspects within the therapeutic concentration range have never been fully characterized. Methods This preliminary study determined the applied doses (3 teeth treated), maximum serum concentrations, and time to maximum serum concentration for fluoride and silver in 6 adults over 4 h. Fluoride was determined using the indirect diffusion method with a fluoride selective electrode, and silver was determined using inductively coupled plasma-mass spectrometry. The mean amount of DSF solution applied to the 3 teeth was 7.57 mg (6.04 μL). Results Over the 4 hour observation period, the mean maximum serum concentrations were 1.86 μmol/L for fluoride and 206 nmol/L for silver. These maximums were reached 3.0 h and 2.5 h for fluoride and silver, respectively. Conclusions Fluoride exposure was below the U.S. Environmental Protection Agency (EPA) oral reference dose. Silver exposure exceeded the EPA oral reference dose for cumulative daily exposure over a lifetime, but for occasional use was well below concentrations associated with toxicity. This preliminary study suggests that serum concentrations of fluoride and silver after topical application of DSF should pose little toxicity risk when used in adults. Clinical trials registration NCT01664871. PMID:23272643
Chung, Wan-Ho; Hwang, Yeon-Taek; Lee, Seung-Hyun; Kim, Hak-Sung
2016-05-20
In this work, combined silver/copper nanoparticles were fabricated by the electrical explosion of a metal wire. In this method, a high electrical current passes through the metal wire with a high voltage. Consequently, the metal wire evaporates and metal nanoparticles are formed. The diameters of the silver and copper nanoparticles were controlled by changing the voltage conditions. The fabricated silver and copper nano-inks were printed on a flexible polyimide (PI) substrate and sintered at room temperature via a flash light process, using a xenon lamp and varying the light energy. The microstructures of the sintered silver and copper films were observed using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). To investigate the crystal phases of the flash-light-sintered silver and copper films, x-ray diffraction (XRD) was performed. The absorption wavelengths of the silver and copper nano-inks were measured using ultraviolet-visible spectroscopy (UV-vis). Furthermore, the resistivity of the sintered silver and copper films was measured using the four-point probe method and an alpha step. As a result, the fabricated Cu/Ag film shows a high electrical conductivity (4.06 μΩcm), which is comparable to the resistivity of bulk copper (1.68 μΩcm). In addition, the fabricated Cu/Ag nanoparticle film shows superior oxidation stability compared to the Cu nanoparticle film.
Charge transfer properties of pentacene adsorbed on silver: DFT study
NASA Astrophysics Data System (ADS)
N, Rekha T.; Rajkumar, Beulah J. M.
2015-06-01
Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistribution of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.
Anuratha, M; Jawahar, A; Umadevi, M; Sathe, V G; Vanelle, P; Terme, T; Meenakumari, V; Milton Franklin Benial, A
2014-10-15
In the present study, the silver nanoparticles were synthesized using a solution combustion method with urea as fuel. The prepared silver nanoparticles show an FCC crystalline structure with particle size of 59nm. FESEM image shows the prepared silver is a rod like structure. The surface-enhanced Raman scattering (SERS) spectrum indicates that the N-(1-(2-chlorophenyl)-2-(2-nitrophenyl)ethyl)-4-methylbenzenesulfonamide (CS) molecule adsorbed on the silver nanoparticles. The spectral analysis reveals that the sulfonamide is adsorbed by tilted orientation on the silver surface. The Hatree Fock calculations were also performed to predict the vibrational motions of CS. This present investigation has been a model system to deduce the interaction of drugs with DNA. Copyright © 2014 Elsevier B.V. All rights reserved.
Interactions of molecules and the properties of crystals
NASA Astrophysics Data System (ADS)
McConnell, Thomas Daniel Leigh
In this thesis the basic theory of the lattice dynamics of molecular crystals is considered, with particular reference to the specific case of linear molecules. The objective is to carry out a critical investigation of a number of empirical potentials as models for real systems. Suitable coordinates are introduced, in particular vibrational coordinates which are used to describe the translational and rotational modes of the free molecule. The Taylor expansion of the intermolecular potential is introduced and its terms considered, in particular the (first-order) equilibrium conditions for such a system and the (second-order) lattice vibrations. The elastic properties are also considered, in particular with reference to the specific case of rhombohedral crystals. The compressibility and a number of conditions for elastic stability are introduced. The total intermolecular interaction potential is divided into three components using perturbation methods, the electrostatic energy, the repulsion energy and the dispersion energy. A number of models are introduced for these various components. The induction energy is neglected. The electrostatic interaction is represented by atomic multipole and molecular multipole models. The repulsion and dispersion energies are modelled together in a central interaction potential, either the Lennard-Jones atom-atom potential or the anisotropic Berne-Pechukas molecule-molecule potential. In each case, the Taylor expansion coefficients, used to calculate the various molecular properties, are determined. An algorithm is described which provides a relatively simple method for calculating cartesian tensors, which are found in the Taylor expansion coefficients of the multipolar potentials. This proves to be particularly useful from a computational viewpoint, both in terms of programming and calculating efficiency. The model system carbonyl sulphide is introduced and its lattice properties are described. Suitable parameters for potentials used to model the system are discussed and the simplifications to the Taylor expansion coefficients due to crystal symmetry are detailed. Four potential parameters are chosen to be fitted to four lattice properties, representing zero, first and second order Taylor expansion coefficients. The supplementary tests of a given fitted potential are detailed. A number of forms for the electrostatic interaction of carbonyl sulphide are considered, each combined with a standard atom-atom potential. The success of the molecular octupole model is considered and the inability of more complex electrostatic potentials to improve on this simple model is noted. The anisotropic Berne-Pechukas potential, which provides an increased estimate of the compressibility is considered as being an improvement on the various atom-atom potentials. The effect of varying the exponents in the atom-atom (or molecule-molecule) potential, representing a systematic variation of the repulsion and dispersion energy models, is examined and a potential which is able to reproduce all of the given lattice properties for carbonyl sulphide is obtained. The molecular crystal of cyanogen iodide is investigated. Superficially it is similar to the crystal of carbonyl sulphide and the potentials used with success for the latter are applied to cyanogen iodide to determine whether they are equally as effective models for this molecule. These potentials are found to be far less successful, in all cases yielding a number of unrealistic results. Reasons for the failure of the model are considered, in particular the 3 differences between the electrostatic properties of the two molecules are discussed. It is concluded that some of the simplifications which proved satisfactory for carbonyl sulphide are invalid for simple extension to the case of cyanogen iodide. A first estimate of the differences in the electrostatic properties is attempted, calculating the induction energies of the two molecules. The assumption that the induction energy may be neglected is justified for the case of carbonyl sulphide but found to be far less satisfactory for cyanogen iodide. Finally details of ab initio calculations are outlined. The amount of experimental data available for the electrostatic properties of the two molecules under consideration is relatively small and the experimental data which is available is supplemented by values obtained from these calculations.
NASA Astrophysics Data System (ADS)
Ganzherli, N. M.; Gulyaev, S. N.; Gurin, A. S.; Kramushchenko, D. D.; Maurer, I. A.; Chernykh, D. F.
2009-07-01
The formation of diffusers and microlens rasters on silver halide emulsions by holographic methods is considered. Two techniques for converting amplitude holographic recording to relief-phase recording, selective curing and irradiation of the emulsion gelatin by short-wavelength UV radiation, are compared.
Peláez, R J; Espinós, J P; Afonso, C N
2017-04-28
The aging of supported Ag nanostructures upon storage in ambient conditions (air and room temperature) for 20 months has been studied. The samples are produced on glass substrates by pulsed laser deposition (PLD); first a 15 nm thick buffer layer of amorphous aluminum oxide (a-Al 2 O 3 ) is deposited, followed by PLD of Ag. The amount of deposited Ag ranges from that leading to a discontinuous layer up to an almost-percolated layer with a thickness of <6 nm. Some regions of the as-grown silver layers are converted, by laser induced dewetting, into round isolated nanoparticles (NPs) with diameters of up to ∼25 nm. The plasmonic, structural and chemical properties of both as-grown and laser exposed regions upon aging have been followed using extinction spectroscopy, scanning electron microscopy and x-ray photoelectron spectroscopy, respectively. The results show that the discontinuous as-grown regions are optically and chemically unstable and that the metal becomes oxidized faster, the smaller the amount of Ag. The corrosion leads to the formation of nitrile species due to the reaction between NO x species from the atmosphere adsorbed at the surface of Ag, and hydrocarbons adsorbed in defects at the surface of the a-Al 2 O 3 layer during the deposition of the Ag nanostructures by PLD that migrate to the surface of the metal with time. The nitrile formation thus results in the main oxidation mechanism and inhibits almost completely the formation of sulphate/sulphide. Finally, the optical changes upon aging offer an easy-to-use tool for following the aging process. They are dominated by an enhanced absorption in the UV side of the spectrum and a blue-shift of the surface plasmon resonance that are, respectively, related to the formation of a dielectric overlayer on the Ag nanostructure and changes in the dimensions/features of the nanostructures, both due to the oxidation process.
O'Neill, A; Phillips, D H; Bowen, J; Sen Gupta, B
2015-04-15
A former silver mine in Tynagh, Co. Galway, Ireland is one of the most contaminated mine sites in Europe with maximum concentrations of Zn, As, Pb, Mn, Ni, Cu, and Cd far exceeding guideline values for water and sediment. The aims of this research were to 1) further assess the contamination, particularly metals, in surface water and sediment around the site, and 2) determine if the contamination has increased 10 years after the Environmental Protection Agency Ireland (EPAI) identified off-site contamination. Site pH is alkaline to neutral because CaCO3-rich sediment and rock material buffer the exposed acid generating sulphide-rich ore. When this study was compared to the previous EPAI study conducted 10 years earlier, it appeared that further weathering of exposed surface sediment had increased concentrations of As and other potentially toxic elements. Water samples from the tailings ponds and adjacent Barnacullia Stream had concentrations of Al, Cd, Mn, Zn and Pb above guideline values. Lead and Zn concentrations from the tailings pond sediment were 16 and 5 times higher, respectively, than concentrations reported 10 years earlier. Pb and Zn levels in most sediment samples exceeded the Expert Group (EGS) guidelines of 1000 and 5000 mg/kg, respectively. Arsenic concentrations were as high as 6238 mg/kg in the tailings ponds sediment, which is 62 and 862 times greater than the EGS and Canadian Soil Quality Guidelines (CSQG), respectively. Cadmium, Cu, Fe, Mn, Pb and Zn concentrations in water and sediment were above guideline values downstream of the site. Additionally, Fe, Mn and organic matter (OM) were strongly correlated and correlated to Zn, Pb, As, Cd, Cu and Ni in stream sediment. Therefore, the nearby Barnacullia Stream is also a significant pathway for contaminant transport to downstream areas. Further rehabilitation of the site may decrease the contamination around the area. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Haifei
Noble-metal nanocrystals have received considerable attention in recent years for their size and shape dependent localized surface Plasmon resonances (LSPR). Various applications based on colloidal nanoparticles, such as surface enhanced Raman scattering (SERS), surface enhanced fluorescence (SEF), plasmonic sensing, photothermal therapy etc., have been broadly explored in the field of biomedicine, because of their extremely large optical scattering and absorption cross sections, as well as giant electric field enhancement on their surface. However, despite its high chemical stability, gold exhibits quite large losses and electric field enhancement is comparatively weaker than silver. Silver nanoparticles synthesized by the traditional technique only cover an LSPR ranged from 420~500 nm. On the other hand, the range of 500~660 nm, which is covered by several easily available commercial laser lines, very limited colloidal silver nanostructures with controllable size and shape have been reported, and realization of tuning the resonance to longer wavelengths is very important for the practical applications. In this thesis, a systematic study on photochemical synthesis of silver nanodecahedrons (NDs) and related nanostructures, and their plasmonic field enhancements are presented. First, the roles of chemicals and the light source during the formation of silver nanoparticles have been studied. We have also developed a preparation route for the production size-controlled silver nanodecahedrons (LSPR range 420 ~ 660 nm) in high purity. Indeed our experiments indicate that both the chemicals and the light sources can affect the shape and purity of final products. Adjusting the molar ratio between sodium citrate and silver nitrate can help to control the crystal structure following rapid reduction from sodium borohydride. Light from a blue LED (465 nm) can efficiently transform the polyvinylpyrrolidone stabilized small silver nanoparticles into silver NDs through photo excitation. These silver NDs acting as seeds can be re-grown into larger silver NDs with LSPR ranging from 490 nm to 590 nm, upon receiving LED irradiation with emission close to the LSPR of silver ND seeds, which are suspended in a precursor solution containing small silver nanoparticles. With the aid of centrifugation, silver NDs with high purity can be obtained. Furthermore, silver ND with a broad tuning range (LSPR 490 ~ 660 nm) can be synthesized from these seeds using irradiation from a 500 nm LED. Second, the optical properties of silver NDs and their SERS application for sensitive molecular detection are presented. Raman signal obtained from silver NDs show remarkable advantage over noble nanoparticles of other shaped, thus revealing their strong localized field enhancement. Experimental results demonstrate that average enhancement factor from individual silver ND may be as high as 106. In order to explore their application for biosensing and bioimaging, stable silica coated SERS tags based on silver ND producing high Raman intensity have been studied. Our experiment results indicate that 10-8 M 4-MBA in solution can be detected by silver NDs modified silicon chip through SERS. Simulation result on the geometry of silver ND/silica spacer/gold film/substrate shows that the Raman sensitivity of the NDs modified chip can be further improved with the insertion of a dielectric/conductor film between them. Finally, we present a photochemical method for the preparation of silver nanostructures preparation with the use of 633 nm laser. Silver nanostructures composed of silver nanoplates could be grown from small silver nanoparticles deposited on a glass substrate. The periodicity of the silver nanostructures is several micrometers, revealing that this photochemical method has the potential for "writing" silver pattern on a solid substrate. Raman spectroscopy has also been explored for real-time monitoring of silver nanostructure growth and SERS hotspots formation.
Reagents and fractions impact on sulphide ore heap bioleaching at Smolnik mine
NASA Astrophysics Data System (ADS)
Oros, L. M.; Zavada, J.
2017-10-01
Mine Smolnik is one of the oldest sulphide ore mines in Europe and it is also an important part of bioleaching development. This paper follows previous attempts to extract residual metals from nearby heaps via variations in bioleaching reagents with regard to recent findings and needs in the related industry. Furthermore, economic and process relations between reagents and chosen heap fractions were also investigated in this case study.
Tourmaline in Appalachian - Caledonian massive sulphide deposits and its exploration significance.
Slack, J.F.
1982-01-01
Tourmaline is a common gangue mineral in several types of stratabound mineral deposits, including some massive base-metal sulphide ores of the Appalachian - Caledonian orogen. It is most abundant (sometimes forming massive foliated tourmalinite) in sediment-hosted deposits, such as those at the Elizabeth Cu mine and the Ore Knob Cu mine (North Carolina, USA). Trace amounts of tourmaline occur associated with volcanic-hosted deposits in the Piedmont and New England and also in the Trondheim district. Tourmaline associated with the massive sulphide deposits are Mg- rich dravites with major- and trace-element compositions significantly different from schorl. It is suggested that the necessary B was produced by submarine exhalative processes as a part of the same hydrothermal system that deposited the ores. An abundance of dravite in non-evaporitic terrains is believed to indicate proximity to former subaqueous fumarolic centres.-R.A.H.
Bierbach, David; Klein, Moritz; Saßmannshausen, Vanessa; Schlupp, Ingo; Riesch, Rüdiger; Parzefall, Jakob; Plath, Martin
2012-01-01
Reproductive isolation among locally adapted populations may arise when immigrants from foreign habitats are selected against via natural or (inter-)sexual selection (female mate choice). We asked whether also intrasexual selection through male-male competition could promote reproductive isolation among populations of poeciliid fishes that are locally adapted to extreme environmental conditions [i.e., darkness in caves and/or toxic hydrogen sulphide (H2S)]. We found strongly reduced aggressiveness in extremophile P. oecilia mexicana, and darkness was the best predictor for the evolutionary reduction of aggressiveness, especially when combined with presence of H2S. We demonstrate that reduced aggression directly translates into migrant males being inferior when paired with males from non-sulphidic surface habitats. By contrast, the phylogenetically old sulphur endemic P. sulphuraria from another sulphide spring area showed no overall reduced aggressiveness, possibly indicating evolved mechanisms to better cope with H2S. PMID:22315695
Comparative study on the passivation layers of copper sulphide minerals during bioleaching
NASA Astrophysics Data System (ADS)
Fu, Kai-bin; Lin, Hai; Mo, Xiao-lan; Wang, Han; Wen, Hong-wei; Wen, Zi-long
2012-10-01
The bioleaching of copper sulphide minerals was investigated by using A. ferrooxidans ATF6. The result shows the preferential order of the minerals bioleaching as djurleite>bornite>pyritic chalcopyrite>covellite>porphyry chalcopyrite. The residues were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is indicated that jarosite may not be responsible for hindered dissolution. The elemental sulfur layer on the surface of pyritic chalcopyrite residues is cracked. The compact surface layer of porphyry chalcopyrite may strongly hinder copper extraction. X-ray photoelectron spectroscopy (XPS) further confirms that the passivation layers of covellite, pyritic chalcopyrite, and porphyry chalcopyrite are copper-depleted sulphide Cu4S11, S8, and copper-rich iron-deficient polysulphide Cu4Fe2S9, respectively. The ability of these passivation layers was found as Cu4Fe2S9>Cu4S11>S8>jarosite.
Strauss, Harald; Chmiel, Hannah; Christ, Andreas; Fugmann, Artur; Hanselmann, Kurt; Kappler, Andreas; Königer, Paul; Lutter, Andreas; Siedenberg, Katharina; Teichert, Barbara M A
2016-01-01
Highly mineralized springs in the Scuol-Tarasp area of the Lower Engadin and in the Albula Valley near Alvaneu, Switzerland, display distinct differences with respect to the source and fate of their dissolved sulphur species. High sulphate concentrations and positive sulphur (δ(34)S) and oxygen (δ(18)O) isotopic compositions argue for the subsurface dissolution of Mesozoic evaporitic sulphate. In contrast, low sulphate concentrations and less positive or even negative δ(34)S and δ(18)O values indicate a substantial contribution of sulphate sulphur from the oxidation of sulphides in the crystalline basement rocks or the Jurassic sedimentary cover rocks. Furthermore, multiple sulphur (δ(34)S, Δ(33)S) isotopes support the identification of microbial sulphate reduction and sulphide oxidation in the subsurface, the latter is also evident through the presence of thick aggregates of sulphide-oxidizing Thiothrix bacteria.
Porous silicon-based direct hydrogen sulphide fuel cells.
Dzhafarov, T D; Yuksel, S Aydin
2011-10-01
In this paper, the use of Au/porous silicon/Silicon Schottky type structure, as a direct hydrogen sulphide fuel cell is demonstrated. The porous silicon filled with hydrochlorid acid was developed as a proton conduction membrane. The Au/Porous Silicon/Silicon cells were fabricated by first creating the porous silicon layer in single-crystalline Si using the anodic etching under illumination and then deposition Au catalyst layer onto the porous silicon. Using 80 mM H2S solution as fuel the open circuit voltage of 0.4 V was obtained and maximum power density of 30 W/m2 at room temperature was achieved. These results demonstrate that the Au/Porous Silicon/Silicon direct hydrogen sulphide fuel cell which uses H2S:dH2O solution as fuel and operates at room temperature can be considered as the most promising type of low cost fuel cell for small power-supply units.
Zhang, Xiu-qing; Peng, Jun; Ling, Jian; Liu, Chao-juan; Cao, Qiu-e; Ding, Zhong-tao
2015-04-01
In the present paper, the authors studied fluorescence resonance energy transfer (FRET) phenomenon between silver triangular nanoplates and bovine serum albumin (BSA)/Rhodamine 6G fluorescence complex, and established a fluorescence method for the detection of cobalt ions. We found that when increasing the silver triangular nanoplates added to certain concentrations of fluorescent bovine serum albumin (BSA)/Rhodamine 6G complex, the fluorescence of Rhodamine 6G would be quenched up to 80% due to the FRET between the quencher and donor. However, in the presence of cobalt ions, the disassociation of the fluorescent complex from silver triangular nanoplates occurred and the fluorescence of the Rhodamine 6G recovered. The recovery of fluorescence intensity rate (I/I0) has a good relationship with the cobalt ion concentration (cCO2+) added. Thus, the authors developed a fluorescence method for the detection of cobalt ions based on the FRET of silver triangular nanoplates and Rhodamine 6G.
NASA Astrophysics Data System (ADS)
Ebrahimi, Izadyar; Gashti, Mazeyar Parvinzadeh
2018-07-01
In this study, we focused on the synthesis of polypyrrole-MWCNT-Ag composites and we evaluated their electrical properties to determine the electromagnetic interference shielding performance. We reduced silver nanoparticles in composites using two different in situ methods: UV-reduction and chemical deposition. Composites were characterized using spectroscopic and microscopic tools for evaluation of the chemical, morphological, electrical conductivity and electromagnetic shielding effectiveness. Results from Fourier transform infrared spectroscopy and dispersive Raman microscope showed chemical interactions between silver and the polypyrrole-MWCNT composite due to the charge-transfer within the structure. X-ray diffraction confirmed appearance of two new peaks for silver nanoparticles embedded in polypyrrole-MWCNT independent to reduction method. According to microscopy images, silver nanoparticles were homogenously distributed at the PPy-MWCNTs interfaces by UV reduction, while, chemical reduction resulted to deposition of silver within the PPy matrix. Finally, our results revealed that the polypyrrole-MWCNT-Ag composite produced via UV-reduction has higher electrical conductivity and shielding effectiveness in comparison to chemically reduced one.
NASA Astrophysics Data System (ADS)
Pang, Hongwei; Bai, Ruicheng; Shao, Qinsi; Gao, Yufang; Li, Aijun; Tang, Zhiyong
2015-12-01
A novel Ag catalyzation process using swelling impregnation pretreatment method was developed for electroless nickel (EN) deposition on Kevlar fiber. Firstly, the fiber was immersed into an aqueous dimethylsulfoxide (DMSO) solution of silver nitrate to impart silver nitrate into the inner part of the fiber near the surface. Subsequently silver nitrate was reduced to metal silver nanoparticles on the fiber surface by treatment with aqueous solution of sodium borohydride. After electroless plating, a dense and homogeneous nickel coating was obtained on the fiber surface. The silver nanoparticles formed at the fiber surface functioned as a catalyst for electroless deposition as well as an anchor for the plated layer. The study also revealed that the incorporation of surfactant sodium dodecyl sulfate (SDS) in electroless nickel plating bath can enhance the adhesion strength of EN layer with the fiber surface and minimize the surface roughness of the EN coating. The Ni plated Kevlar fiber possessed excellent corrosion resistance and high tensile strength.
Hohenberger, Erik; Freitag, Nathan; Rosenmann, Daniel; ...
2017-04-19
Here, we present a facile method for fabricating nanostructured silver films containing a high density of nanoscopic gap features through a surface directed phenomenon utilizing nanoporous scaffolds rather than through traditional lithographic patterning processes. This method enables tunability of the silver film growth by simply adjusting the formulation and processing conditions of the nanoporous film prior to metallization. We further demonstrate that this process can produce nanoscopic gaps in thick (100 nm) silver films supporting localized surface plasmon resonance with large field amplification within the gaps while enabling launching of propagating surface plasmons within the silver grains. These enhanced fieldsmore » provide metal enhanced fluorescence with enhancement factors as high as 21 times compared to glass, as well as enable visualization of single fluorophore emission. This work provides a low-cost rapid approach for producing novel nanostructures capable of broadband fluorescence amplification, with potential applications including plasmonic and fluorescence based optical sensing and imaging applications.« less
NASA Astrophysics Data System (ADS)
Kelley, Karen D.; Selby, David; Falck, Hendrik; Slack, John F.
2017-03-01
Stratiform Zn-Pb deposits hosted in unmetamorphosed carbonaceous and siliceous mudstones of the Ordovician to Silurian Duo Lake Formation define the Howards Pass district in Yukon Territory and Northwest Territories, western Canada. Collectively, the deposits are amongst the largest in the world, containing drill-indicated and inferred resources of 423 Mt at 4.84 % Zn and 1.59 % Pb. Sulphide textures include (a) fine-scale laminations of sphalerite, galena, and pyrite from <0.05 mm to 1 cm thick, interbedded with carbonaceous sedimentary rock; (b) layers of coarse sulphide that are structurally controlled by microfolds; and (c) veins that cut bedding and sulphide laminations. The finely interlaminated nature of sulphides with mudstone has been used as evidence for syngenetic mineralizing processes, whereas paleomagnetic data determined on coarse layered sulphides suggest a Middle Jurassic age of mineralization. Here, we present new rhenium-osmium (Re-Os) isotopic data for 12 pyrite separates obtained from 4 laminated sulphide-rich samples from the XY Central (XYC) and Don (DON) deposits and for 1 unmineralized organic-rich mudstone ˜20 m stratigraphically below the sulphide-bearing zone. Pyrite separates that lack mudstone inclusions ("pure") from the XYC deposit contain 2.2 to 4.0 ppb Re and 93.4 to 123.4 ppt Os; pure pyrite from the DON deposit is significantly more enriched in Re and Os (34-37 ppb Re; 636.8-694.9 ppt Os). The 187Re/188Os values of pure pyrite separates from the XYC and DON deposits range from 137.6 to 197 and 182.1 to 201.4, respectively. Regression of all pure pyrite Re-Os data from both deposits yields an isochron age of 442 ± 14 Ma (MSWD = 7.4) and an initial 187Os/188Os (Osi) value of 0.71 ± 0.07. The Re-Os age indicates that the early phase of pyrite precipitation (and by inference, sphalerite and galena) occurred during the early Silurian, consistent with biostratigraphic ages of the host rocks. The Osi value of ˜0.8 for earliest Silurian seawater recorded from organic-rich shale in the basal Silurian Global Stratotype Section and Point (GSSP) at Dobs Linn, Scotland is very similar to that provided by the Howards Pass pyrite regression and hence suggests a hydrogenous (seawater) source of Os for the pyrite. Therefore, two possible sources of Os are (1) the Zn- and Pb-bearing hydrothermal fluid that leached Os from footwall sedimentary rocks, which were deposited in seawater, or (2) directly from seawater during precipitation of the pyrite, which suggests that the Os content of the hydrothermal fluid was minor relative to that of seawater.
NASA Astrophysics Data System (ADS)
Kazemi, Elahe; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Fattahi, Mohammad Reza; Khodaveisi, Javad
2017-12-01
A novel, efficient, easy to use, environmentally friendly and cost-effective methodology is developed for the indirect spectrophotometric determination of sulfadiazine in different samples. The method is based on the micelle-mediated extraction of silver sulfadiazine and converting the silver content of the resultant surfactant-rich phase to the silver nanoparticles via generation of [Ag(NH3)2]+ followed by its chemical reduction using ascorbic acid. The changes in the amplitude of localized surface plasmon resonance peak of silver nanoparticles as a function of sulfadiazine concentration in the sample solution was monitored using fiber optic linear array spectrophotometry at 457 nm. The experimental conditions were thoroughly investigated and optimized. Under the optimized condition, the developed procedure showed dynamic linear calibration within the range of 10.0-800.0 μg L- 1 with a detection limit of 2.8 μg L- 1 for sulfadiazine. The relative standard deviation of the method for six replicate measurements at 150.0 μg L- 1 of sulfadiazine was 4.7%. The developed method was successfully applied to the determination of sulfadiazine in different samples including well water, human urine, milk and pharmaceutical formulation.
Preparation of silver nanoparticles in virgin coconut oil using laser ablation.
Zamiri, Reza; Azmi, B Z; Sadrolhosseini, Amir Reza; Ahangar, Hossein Abbastabar; Zaidan, A W; Mahdi, M A
2011-01-07
Laser ablation of a silver plate immersed in virgin coconut oil was carried out for fabrication of silver nanoparticles. A Nd:YAG laser at wavelengths of 1064 nm was used for ablation of the plate at different times. The virgin coconut oil allowed formation of nanoparticles with well-dispersed, uniform particle diameters that were stable for a reasonable length of time. The particle sizes and volume fraction of nanoparticles inside the solutions obtained at 15, 30, 45 min ablation times were 4.84, 5.18, 6.33 nm and 1.0 × 10(-8), 1.6 × 10(-8), 2.4 × 10(-8), respectively. The presented method for preparation of silver nanoparticles in virgin coconut oil is environmentally friendly and may be considered a green method.
Preparation of silver nanoparticles in virgin coconut oil using laser ablation
Zamiri, Reza; Azmi, B Z; Sadrolhosseini, Amir Reza; Ahangar, Hossein Abbastabar; Zaidan, A W; Mahdi, M A
2011-01-01
Laser ablation of a silver plate immersed in virgin coconut oil was carried out for fabrication of silver nanoparticles. A Nd:YAG laser at wavelengths of 1064 nm was used for ablation of the plate at different times. The virgin coconut oil allowed formation of nanoparticles with well-dispersed, uniform particle diameters that were stable for a reasonable length of time. The particle sizes and volume fraction of nanoparticles inside the solutions obtained at 15, 30, 45 min ablation times were 4.84, 5.18, 6.33 nm and 1.0 × 10−8, 1.6 × 10−8, 2.4 × 10−8, respectively. The presented method for preparation of silver nanoparticles in virgin coconut oil is environmentally friendly and may be considered a green method. PMID:21289983
NASA Astrophysics Data System (ADS)
Kim, Byung-Ho; Hyuck Kim, Yoon; Lee, Young Jin; Lee, Mi Jai; Kim, Jin-Ho; Hwang, Jonghee; Jeon, Dae-Woo
2018-01-01
We have developed a facile single-step synthesis of silver nanocomposite using a conventional spray dryer. We investigated the synthetic conditions by controlling the concentrations of the chemical reactants. Further, we confirmed the effect of the molecular weight of polyvinylpyrrolidones, and revealed that the molecular weight significantly affected the properties of the resultant silver nanocomposites. The long-term stability of the silver nanocomposites was tested, and little change was observed, even after storage for three months. Most of all, the simple commercial implementation, in combination with large-scale synthesis, possesses a variety of advantages, compared to conventional complicated and costly dry-process synthesis methods. Thus, our method presents opportunities for further investigation, for both lab-scale studies and large-scale industrial applications.
Prasad, TNVKV; Elumalai, EK
2011-01-01
Objective To formulate a simple rapid procedure for bioreduction of silver nanoparticles using aqueous leaves extract of Moringa oleifera (M. oleifera). Methods 10 mL of leaf extract was mixed to 90 mL of 1 mM aqueous of AgNO3 and was heated at 60 - 80 °C for 20 min. A change from brown to reddish color was observed. Characterization using UV-Vis spectrophotometry, Transmission Electron Microscopy (TEM) was performed. Results TEM showed the formation of silver nanoparticles with an average size of 57 nm. Conclusions M. oleifera demonstrates strong potential for synthesis of silver nanoparticles by rapid reduction of silver ions (Ag+ to Ag0). Biological methods are good competents for the chemical procedures, which are eco-friendly and convenient. PMID:23569809
Functional Iron Oxide-Silver Hetero-Nanocomposites: Controlled Synthesis and Antibacterial Activity
NASA Astrophysics Data System (ADS)
Trang, Vu Thi; Tam, Le Thi; Van Quy, Nguyen; Huy, Tran Quang; Thuy, Nguyen Thanh; Tri, Doan Quang; Cuong, Nguyen Duy; Tuan, Pham Anh; Van Tuan, Hoang; Le, Anh-Tuan; Phan, Vu Ngoc
2017-06-01
Iron oxide-silver nanocomposites are of great interest for their antibacterial and antifungal activities. We report a two-step synthesis of functional magnetic hetero-nanocomposites of iron oxide nanoparticles and silver nanoparticles (Fe3O4-Ag). Iron oxide nanoparticles were prepared first by a co-precipitation method followed by the deposition of silver nanoparticles via a hydrothermal route. The prepared Fe3O4-Ag hetero-nanocomposites were characterized by x-ray diffraction, transmission electron microscopy, high resolution transmission electron microscopy and vibrating sample magnetometry. Their antibacterial activities were investigated by using paper-disc diffusion and direct-drop diffusion methods. The results indicate that the Fe3O4-Ag hetero-nanocomposites exhibit excellent antibacterial activities against two Gram-negative bacterial strains ( Salmonella enteritidis and Klebsiella pneumoniae).
Streeter, K A; Sunshine, M D; Patel, S R; Liddell, S S; Denholtz, L E; Reier, P J; Fuller, D D; Baekey, D M
2017-03-01
Midcervical spinal interneurons form a complex and diffuse network and may be involved in modulating phrenic motor output. The intent of the current work was to enable a better understanding of midcervical "network-level" connectivity by pairing the neurophysiological multielectrode array (MEA) data with histological verification of the recording locations. We first developed a method to deliver 100-nA currents to electroplate silver onto and subsequently deposit silver from electrode tips after obtaining midcervical (C3-C5) recordings using an MEA in anesthetized and ventilated adult rats. Spinal tissue was then fixed, harvested, and histologically processed to "develop" the deposited silver. Histological studies verified that the silver deposition method discretely labeled (50-μm resolution) spinal recording locations between laminae IV and X in cervical segments C3-C5. Using correlative techniques, we next tested the hypothesis that midcervical neuronal discharge patterns are temporally linked. Cross-correlation histograms produced few positive peaks (5.3%) in the range of 0-0.4 ms, but 21.4% of neuronal pairs had correlogram peaks with a lag of ≥0.6 ms. These results are consistent with synchronous discharge involving mono- and polysynaptic connections among midcervical neurons. We conclude that there is a high degree of synaptic connectivity in the midcervical spinal cord and that the silver-labeling method can reliably mark metal electrode recording sites and "map" interneuron populations, thereby providing a low-cost and effective tool for use in MEA experiments. We suggest that this method will be useful for further exploration of midcervical network connectivity. NEW & NOTEWORTHY We describe a method that reliably identifies the locations of multielectrode array (MEA) recording sites while preserving the surrounding tissue for immunohistochemistry. To our knowledge, this is the first cost-effective method to identify the anatomic locations of neuronal ensembles recorded with a MEA during acute preparations without the requirement of specialized array electrodes. In addition, evaluation of activity recorded from silver-labeled sites revealed a previously unappreciated degree of connectivity between midcervical interneurons. Copyright © 2017 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Moussa, N.; Boiron, M. C.; Grassineau, N.; Fouquet, Y.; Le Gall, B.; Mohamed, J.
2015-12-01
The Afar rift results from the interaction of a number of actively-propagating tectono-magmatic axes. Recent field investigations in the SE Afar rift have emphasized the importance of hydrothermal system in rift-related volcanic complexes. Mineralization occur as gold-silver bearing veins and are associated with felsic volcanism. Late carbonate veins barren of sulfides and gold are common. The morphologies and textures of quartz show crustiform colloform banding, massive and breccias. Microthermometric measurements were made on quartz-hosted two phases (liquid + vapor) inclusions; mean homogenization temperature range from 150°C to 340°C and ice-melting temperatures range from -0.2° to 1.6°C indicating that inclusion solutions are dilute and contain 0.35 to 2.7 equivalent wt. % NaCl. Furthermore, δ18O and δ13C values from calcite range from 3.7 to 26.6 ‰ and -7.5 to 0.3‰, respectively. The presence of platy calcite and adularia indicate that boiling condition existed. This study shows that precious-metal deposition mainly occurred from hydrothermal fluids at 200°C at around 300 and 450 m below the present-day surface in a typical low-sulphidation epithermal environment.
Silver diagnosis in neuropathology: principles, practice and revised interpretation
2007-01-01
Silver-staining methods are helpful for histological identification of pathological deposits. In spite of some ambiguities regarding their mechanism and interpretation, they are widely used for histopathological diagnosis. In this review, four major silver-staining methods, modified Bielschowsky, Bodian, Gallyas (GAL) and Campbell–Switzer (CS) methods, are outlined with respect to their principles, basic protocols and interpretations, thereby providing neuropathologists, technicians and neuroscientists with a common basis for comparing findings and identifying the issues that still need to be clarified. Some consider “argyrophilia” to be a homogeneous phenomenon irrespective of the lesion and the method. Thus, they seek to explain the differences among the methods by pointing to their different sensitivities in detecting lesions (quantitative difference). Comparative studies, however, have demonstrated that argyrophilia is heterogeneous and dependent not only on the method but also on the lesion (qualitative difference). Each staining method has its own lesion-dependent specificity and, within this specificity, its own sensitivity. This “method- and lesion-dependent” nature of argyrophilia enables operational sorting of disease-specific lesions based on their silver-staining profiles, which may potentially represent some disease-specific aspects. Furthermore, comparisons between immunohistochemical and biochemical data have revealed an empirical correlation between GAL+/CS-deposits and 4-repeat (4R) tau (corticobasal degeneration, progressive supranuclear palsy and argyrophilic grains) and its complementary reversal between GAL-/CS+deposits and 3-repeat (3R) tau (Pick bodies). Deposits containing both 3R and 4R tau (neurofibrillary tangles of Alzheimer type) are GAL+/CS+. Although no molecular explanations, other than these empiric correlations, are currently available, these distinctive features, especially when combined with immunohistochemistry, are useful because silver-staining methods and immunoreactions are complementary to each other. PMID:17401570
Qi, Haiping; Groning, Manfred; Coplen, Tyler B.; Buck, Bryan; Mroczkowski, Stanley J.; Brand, Willi A.; Geilmann, Heike; Gehre, Matthias
2010-01-01
A new method to seal water in silver tubes for use in a TC/EA reduction unit using a semi-automated sealing apparatus can yield reproducibilities (1 standard deviation) of δ2H and &delta18O measurements of 1.0 ‰ and 0.06 ‰, respectively. These silver tubes containing reference waters may be preferred for calibration of H- and O-bearing materials analyzed with a TC/EA reduction unit. The new sealing apparatus employs a computer controlled stepping motor to produce silver tubes identical in length. The reproducibility of mass of water sealed in tubes (in a range of 200 to 400 µg) can be as good as 1 percent. Although silver tubes sealed with reference waters are robust and can be shaken or heated to 110 °C with no loss of integrity, they should not be frozen because the expansion during the phase transition of water to ice will break the cold seals and all water will be lost. They should be shipped in insulated containers. This new method eliminates air inclusions and isotopic fractionation of water associated with the loading of water into capsules using a syringe. The method is also more than an order of magnitude faster than preparing water samples in ordinary Ag capsules. Nevertheless, some laboratories may prefer loading water into silver capsules because expensive equipment is not needed, but they are cautioned to apply the necessary corrections for evaporation, back exchange with laboratory atmospheric moisture, and blank.
Comparison between histochemical and immunohistochemical methods for diagnosis of sporotrichosis.
Marques, M E; Coelho, K I; Sotto, M N; Bacchi, C E
1992-01-01
AIMS: To compare the efficacy of histochemical and immunohistochemical methods in detecting forms of Sporothrix schenckii in tissue. METHODS: Thirty five cutaneous biopsy specimens from 27 patients with sporotrichosis were stained by histochemical haematoxylin and eosin, periodic acid Schiff, and Gomori's methenamine silver methods and an immunohistochemical (avidin-biotin complex immunoperoxidase) (ABC) technique associated with a newly produced rabbit polyclonal antibody anti-Sporothrix schenckii. RESULTS: A total of 29 (83%) cases were positive by the ABC method used in association with anti-Sporothrix schenckii rabbit polyclonal antibodies. Histochemical methods, using silver staining, periodic acid Schiff, and conventional haematoxylin and eosin detected 37%, 23%, and 23% of forms of S schenckii, respectively. The ABC technique was significantly more reliable than periodic acid Schiff and silver staining techniques. CONCLUSIONS: It is concluded that immunostaining is an easy and rapid method which can efficiently increase the accuracy of the diagnosis of sporotrichosis in human tissue. Images PMID:1479036
NASA Astrophysics Data System (ADS)
Jacob Inbaneson, Samuel; Ravikumar, Sundaram; Manikandan, Nachiappan
2011-12-01
The silver nanoparticles were synthesized by chemical reduction method and the nanoparticles were characterized using ultraviolet-visible (UV-Vis) absorption spectroscopy and X-ray diffraction (XRD) studies. The synthesized silver nanoparticles were investigated to evaluate the antibacterial activity against urinary tract infectious (UTIs) bacterial pathogens. Thirty-two bacteria were isolated from mid urine samples of 25 male and 25 female patients from Thondi, Ramanathapuram District, Tamil Nadu, India and identified by conventional methods. Escherichia coli was predominant (47%) followed by Pseudomonas aeruginosa (22%), Klebsiella pneumoniae (19%), Enterobacter sp. (6%), Proteus morganii (3%) and Staphylococcus aureus (3%). The antibacterial activity of silver nanoparticles was evaluated by disc diffusion assay. P. aeruginosa showed maximum sensitivity (11 ± 0.58 mm) followed by Enterobacter sp. (8 ± 0.49 mm) at a concentration of 20 μg disc-1 and the sensitivity was highly comparable with the positive control kanamycin and tetracycline. K. pneumoniae, E. coli, P. morganii and S. aureus showed no sensitivity against all the tested concentrations of silver nanoparticles. The results provided evidence that, the silver nanoparticles might indeed be the potential sources to treat urinary tract infections caused by P. aeruginosa and Enterobacter sp.
Electrochemical synthesis, characterisation and phytogenic properties of silver nanoparticles
NASA Astrophysics Data System (ADS)
Singaravelan, R.; Bangaru Sudarsan Alwar, S.
2015-12-01
This work exemplifies a simple and rapid method for the synthesis of silver nanodendrite with a novel electrochemical technique. The antibacterial activity of these silver nanoparticles (Ag NPs) against pathogenic bacteria was investigated along with the routine study of optical and spectral characterisation. The optical properties of the silver nanoparticles were characterised by diffuse reflectance spectroscopy. The optical band gap energy of the electrodeposited Ag NPs was determined from the diffuse reflectance using Kubelka-Munk formula. X-ray diffraction (XRD) studies were carried out to determine the crystalline nature of the silver nanoparticles which confirmed the formation of silver nanocrystals. The XRD pattern revealed that the electrodeposited Ag NPs were in the cubic geometry with dendrite preponderance. The average particle size and the peak broadening were deliberated using Debye-Scherrer equation and lattice strain due to the peak broadening was studied using Williamson-Hall method. Surface morphology of the Ag NPs was characterised by high-resolution scanning electron microscope and the results showed the high degree of aggregation in the particles. The antibacterial activity of the Ag NPs was evaluated and showed unprecedented level antibacterial activity against multidrug resistant strains such as Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia and Escherichia coli in combination with Streptomycin.
Femtosecond laser direct writing of monocrystalline hexagonal silver prisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vora, Kevin; Kang, SeungYeon; Moebius, Michael
Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundredsmore » of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.« less
NASA Astrophysics Data System (ADS)
Malý, J.; Lampová, H.; Semerádtová, A.; Štofik, M.; Kováčik, L.
2009-09-01
This paper presents a synthesis of a novel nanoparticle label with selective biorecognition properties based on a biotinylated silver-dendrimer nanocomposite (AgDNC). Two types of labels, a biotin-AgDNC (bio-AgDNC) and a biotinylated AgDNC with a poly(ethylene)glycol spacer (bio-PEG-AgDNC), were synthesized from a generation 7 (G7) hydroxyl-terminated ethylenediamine-core-type (2-carbon core) PAMAM dendrimer (DDM) by an N,N'-dicyclohexylcarbodiimide (DDC) biotin coupling and a NaBH4 silver reduction method. Synthesized conjugates were characterized by several analytical methods, such as UV-vis, FTIR, AFM, TEM, ELISA, HABA assay and SPR. The results show that stable biotinylated nanocomposites can be formed either with internalized silver nanoparticles (AgNPs) in a DMM polymer backbone ('type I') or as externally protected ('type E'), depending on the molar ratio of the silver/DMM conjugate and type of conjugate. Furthermore, the selective biorecognition function of the biotin is not affected by the AgNPs' synthesis step, which allows a potential application of silver nanocomposite conjugates as biospecific labels in various bioanalytical assays, or potentially as fluorescence cell biomarkers. An exploitation of the presented label in the development of electrochemical immunosensors is anticipated.
Can a novel silver nano coating reduce infections and maintain cell viability in vitro?
Qureshi, Ammar T; Landry, Jace P; Dasa, Vinod; Janes, Marlene; Hayes, Daniel J
2014-03-01
Herein we report a facile layer-by-layer method for creating an antimicrobial coating composed of silver nanoparticles on medical grade titanium test discs. Nanoscale silver nanoparticle layers are attached to the titanium orthopedic implant material via aminopropyltriethoxy silane crosslinker that reacts with neighboring silane moieties to create an interconnected network. A monolayer of silane, followed by a monolayer of silver nanoparticles would form one self-assembled layer and this process can be repeated serially, resulting in increased silver nanoparticles deposition. The release rate of silver ion increases predictably with increasing numbers of layers and at appropriate thicknesses these coatings demonstrate 3-4 log reduction of viable Escherichia coli and Staphylococcus aureus bacteria. Increasing the thickness of the coatings resulted in reduced bacterial colonization as determined by fluorescent staining and image analysis. Interestingly, the cytotoxicity of murine 3T3 cells as quantified by fluorescent staining and flow cytometry, was minimal and did not vary significantly with the coating thickness. Additionally, these coatings are mechanically stable and resist delamination by orthogonal stress test. This simple layer-by-layer coating technique may provide a cost-effective and biocompatible method for reducing microbial colonization of implantable orthopedic devices.
Synthesis and properties of silver nanoparticles in sodium bismuth borate glasses
NASA Astrophysics Data System (ADS)
Patwari, D. Rajeshree; Eraiah, B.
2018-04-01
Rare earth doped Sodium Bismuth Borate glass samples with silver chloride were prepared by melt quenching method. X-Ray diffraction pattern was used to confirm the amorphous nature of the samples. UV-Visible Spectra was recorded to study the optical properties. Surface plasmon resonance (SPR) peak was observed due to the formation of silver nanoparticles before and after heat treatment and the presence of silver nanoparticles were confirmed by UV-Visible Spectral studies and transmission electron microscopy. The surface plasmon resonance band became wider and red shifted after longer heat treatment.
Yang, Xinjian; Gao, Zhiqiang
2015-04-25
On the basis of enzyme-catalysed reduction of silver ions and consequent deposition of ultrathin silver shells on gold nanorods, a highly efficient signal amplification method for immunoassay is developed. For a model analyte prostate-specific antigen, a 10(4)-fold improvement over conventional enzyme-linked immunosorbent assay is accomplished by leveraging on the cumulative nature of the enzymatic reaction and the sensitive response of plasnomic gold nanorods to the deposition the silver shells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stierhof, Y.D.; Humbel, B.M.; Schwarz, H.
1991-03-01
In order to exploit the recently introduced 1 nm gold colloids in routine electron microscopic labeling experiments, an efficient enhancement step for a better visualization of this small marker is a prerequisite. Efficiency and reproducibility of enhancement as well as growth homogeneity of gold particles were evaluated for three different silver intensifying solutions: silver lactate/hydroquinone/gum arabic, and the commercially available IntenSE M silver enhancement kit. The best results were obtained by using the silver lactate/hydroquinone/gum arabic mixture. The quality of enhancement of the IntenSE M kit was considerably increased by the addition of the protective colloid gum arabic.
A facile route to synthesize nanogels doped with silver nanoparticles
NASA Astrophysics Data System (ADS)
Coll Ferrer, M. Carme; Ferrier, Robert C.; Eckmann, David M.; Composto, Russell J.
2013-01-01
In this study, we describe a simple method to prepare hybrid nanogels consisting of a biocompatible core-shell polymer host containing silver nanoparticles. First, the nanogels (NG, 160 nm) containing a lysozyme rich core and a dextran rich shell, are prepared via Maillard and heat-gelation reactions. Second, silver nanoparticles (Ag NPs, 5 nm) are synthesized "in situ" in the NG solution without requiring additional reducing agents. This approach leads to stable Ag NPs located in the NG. Furthermore, we demonstrate that the amount of Ag NPs in the NG can be tuned by varying silver precursor concentration. Hybrid nanogels with silver nanoparticles have potential in antimicrobial, optical, and therapeutic applications.
NASA Astrophysics Data System (ADS)
Stobbs, I. J.; Lusty, P.; Petersen, S.; Murton, B. J.
2017-12-01
Two extinct seafloor massive sulphide (eSMS) deposits within the TAG hydrothermal field, 26oN, mid-Atlantic ridge, were mapped and drilled: Southern Mound and the newly discovered `Rona Mound'. Surface mapping was undertaken by combining high definition video footage and high resolution bathymetry to interpret surface geological and geomorphological features. Drill core was recovered using the BGS RD2 robotic drilling rig. Surface mapping of the mounds revealed a superficial cover of carbonate and iron-oxyhydroxides sediments, observed to directly overly oxide coated sulphide material within fault scarps, which dissect the flanks of both mounds. Drilling at the summits of the mounds revealed similar stratigraphy to the mapping, with the addition of a coherent and dense layer of red-coloured silica-rich `jasper', up to 3m thick, underlying the sediments and overlying unoxidised massive sulphides. The jasper mineralogy is dominated by silica, with minor iron oxides and rare disseminated sulphides. It displays a range of complex textures including filamentous and dendritic iron oxides often coated in silica. Drill core samples show the material to be porous, but relatively impermeable. Strong and positive Eu (REE) anomalies indicates a hydrothermal origin with little evidence of a seawater signature (lack of negative Ce anomaly). Silica precipitation is associated with low temperature hydrothermal activity, chert and jasper materials are locally present within the nearby hydrothermally active TAG mound and are more widespread at low-temperature diffuse hydrothermal sites such as within the MESO field. We interpret the `jasper' layers to be a common product, formed during the waning, low temperature, stage of the hydrothermal cycle which may form an impermeable and resistant `cap' that protects the underlying massive sulphide ore body from oxidation and dissolution. The formation of a `jasper cap' could act automatically to preserve eSMS deposits when hydrothermal circulation ceases and is essential to preserving the resource potential of eSMS deposits. This `jasper' capping layer is important from an economic perspective, and reinforces the need for shallow sub-seafloor mapping as part of any deep-sea mineral exploration. This research received funding from the EC FP7 project Blue Mining (604500).
NASA Astrophysics Data System (ADS)
Choudhary, Manoj Kumar; Kataria, Jyoti; Cameotra, Swaranjit Singh; Singh, Jagdish
2016-01-01
The significant antibacterial activity of silver nanoparticles draws the major attention toward the present nanobiotechnology. Also, the use of plant material for the synthesis of metal nanoparticles is considered as a green technology. In this context, a non-toxic, eco-friendly, and cost-effective method has been developed for the synthesis of silver nanoparticles using seed extract of mung beans ( Vigna radiata). The synthesized nanoparticles have been characterized by UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), atomic absorption spectroscopy (AAS), and X-ray diffraction (XRD). The UV-visible spectrum showed an absorption peak at around 440 nm. The different types of phytochemicals present in the seed extract synergistically reduce the Ag metal ions, as each phytochemical is unique in terms of its structure and antioxidant function. The colloidal silver nanoparticles were observed to be highly stable, even after 5 months. XRD analysis showed that the silver nanoparticles are crystalline in nature with face-centered cubic geometry and the TEM micrographs showed spherical particles with an average size of 18 nm. Further, the antibacterial activity of silver nanoparticles was evaluated by well-diffusion method and it was observed that the biogenic silver nanoparticles have an effective antibacterial activity against Escherichia coli and Staphylococcus aureus. The outcome of this study could be useful for nanotechnology-based biomedical applications.
Antitumor activity of colloidal silver on MCF-7 human breast cancer cells
2010-01-01
Background Colloidal silver has been used as an antimicrobial and disinfectant agent. However, there is scarce information on its antitumor potential. The aim of this study was to determine if colloidal silver had cytotoxic effects on MCF-7 breast cancer cells and its mechanism of cell death. Methods MCF-7 breast cancer cells were treated with colloidal silver (ranged from 1.75 to 17.5 ng/mL) for 5 h at 37°C and 5% CO2 atmosphere. Cell Viability was evaluated by trypan blue exclusion method and the mechanism of cell death through detection of mono-oligonucleosomes using an ELISA kit and TUNEL assay. The production of NO, LDH, and Gpx, SOD, CAT, and Total antioxidant activities were evaluated by colorimetric assays. Results Colloidal silver had dose-dependent cytotoxic effect in MCF-7 breast cancer cells through induction of apoptosis, shown an LD50 (3.5 ng/mL) and LD100 (14 ng/mL) (*P < 0.05), significantly decreased LDH (*P < 0.05) and significantly increased SOD (*P < 0.05) activities. However, the NO production, and Gpx, CAT, and Total antioxidant activities were not affected in MCF-7 breast cancer cells. PBMC were not altered by colloidal silver. Conclusions The present results showed that colloidal silver might be a potential alternative agent for human breast cancer therapy. PMID:21080962
Valappil, Sabeel P; Higham, Susan M
2014-01-01
Gallium and silver incorporated phosphate-based glasses were evaluated for antibacterial effect on the growth of Pseudomonas aeruginosa, which is a leading cause of opportunistic infections. The glasses were produced by conventional melt quenching methods at 1100°C for 1 h. Glass degradation studies were conducted by weight loss method. Disc diffusion assay and cell viability assay displayed statistically significant (p ≤ 0.0005) effect on P. aeruginosa growth which increased with decreasing calcium content in the glasses. The gallium ion release rates (1.83, 0.69 and 0.48 ppm·h(-1)) and silver ion release rates (2.97, 2.84 and 2.47 ppm·h(-1)) were found to account for this variation. Constant depth film fermentor was used to evaluate the anti-biofilm properties of the glasses. Both gallium and silver in the glass contributed to biofilm growth inhibitory effect on P. aeruginosa (up to 2.68 reduction in log 10 values of the viable counts compared with controls). The glasses were found to deliver gallium and silver in a controlled way and exerted cumulative antibacterial action on planktonic and biofilm growth of P. aeruginosa. The antibacterial, especially anti-biofilm, properties of the gallium and silver incorporated phosphate-based glasses make them a potential candidate to combat infections caused by P. aeruginosa.
Sulphide Production and Corrosion in Seawaters During Exposure to FAME Diesel
2012-05-12
FAME diesel is a renewable fuel produced from vegetable oils made by converting triglyceride oils to methyl (or ethyl) esters by... oil from which the biodiesel was made (Knothe 2004; Barabas and Todorut 2011). FAME diesel mixes easily with petro- leum diesel (Chotwichien et al...Materials and methods FAME diesel A previously characterized soy -based diesel was obtained from US Navy Fuel and Lubes, Patuxent River, MD (Lee
Solt, M.W.; Wahlberg, J.S.; Myers, A.T.
1969-01-01
Rhenium in molybdenite is separated from molybdenum by distillation of rhenium heptoxide from a perchloric-sulphuric acid mixture. It is concentrated by precipitation of the sulphide and then determined by X-ray fluorescence. From 3 to 1000 ??g of rhenium can be measured with a precision generally within 2%. The procedure tolerates larger amounts of molybdenum than the usual colorimetric methods. ?? 1969.
NASA Astrophysics Data System (ADS)
Kochuparampil, A. P.; Joshi, J. H.; Joshi, M. J.
2017-09-01
As ammonium dihydrogen phosphate (ADP) is a popular nonlinear optical crystal, to engineer its linear and nonlinear optical properties, the chalcogenide compound cobalt sulphide (CoS) was doped and the crystals were grown by the slow solvent evaporation method. To increase the solubility of CoS in water, its nanoparticles were synthesized by wet chemical technique using ethylene diamine as the capping agent followed by microwave irradiation. The nanoparticle sample exhibited finite solubility in water and was used to dope in ADP crystals. The powder XRD patterns showed the single phase nature of the doped crystals. The FTIR spectra confirmed the presence of various functional groups and EDAX gave the estimation of Co and S elements. The EPR spectroscopy also confirmed the presence of cobalt in the doped samples. TGA indicated slightly less thermal stability of the doped crystals compared to the pure ADP. The dielectric study was carried out at room temperature in the frequency range from 100Hz to 1MHz. Also, various linear optical parameters were evaluated for pure and doped crystals using UV-Vis spectroscopy. The second harmonic generation (SHG) efficiency of Nd:YAG laser was evaluated by the Kurtz and Parry method for the doped samples, it was found to be slightly lesser than that of the pure ADP crystals.
Dermal exposure potential from textiles that contain silver nanoparticles
Stefaniak, Aleksandr B; Duling, Mathew G; Lawrence, Robert B; Thomas, Treye A; LeBouf, Ryan F; Wade, Eleanor E; Abbas Virji, M
2014-01-01
Background: Factors that influence exposure to silver particles from the use of textiles are not well understood. Objectives: The aim of this study was to evaluate the influence of product treatment and physiological factors on silver release from two textiles. Methods: Atomic and absorbance spectroscopy, electron microscopy, and dynamic light scattering (DLS) were applied to characterize the chemical and physical properties of the textiles and evaluate silver release in artificial sweat and saliva under varying physiological conditions. One textile had silver incorporated into fiber threads (masterbatch process) and the other had silver nanoparticles coated on fiber surfaces (finishing process). Results: Several complementary and confirmatory analytical techniques (spectroscopy, microscopy, etc.) were required to properly assess silver release. Silver released into artificial sweat or saliva was primarily in ionic form. In a simulated “use” and laundering experiment, the total cumulative amount of silver ion released was greater for the finishing process textile (0.51±0.04%) than the masterbatch process textile (0.21±0.01%); P<0.01. Conclusions: We found that the process (masterbatch vs finishing) used to treat textile fibers was a more influential exposure factor than physiological properties of artificial sweat or saliva. PMID:25000110
Shen, Wenfeng; Zhang, Xianpeng; Huang, Qijin; Xu, Qingsong; Song, Weijie
2014-01-01
Silver nanoparticles (NPs) which could be kept in solid form and were easily stored without degeneration or oxidation at room temperature for a long period of time were synthesized by a simple and environmentally friendly wet chemistry method in an aqueous phase. Highly stable dispersions of aqueous silver NP inks, sintered at room temperature, for printing highly conductive tracks (∼8.0 μΩ cm) were prepared simply by dispersing the synthesized silver NP powder in water. These inks are stable, fairly homogeneous and suitable for a wide range of patterning techniques. The inks were successfully printed on paper and polyethylene terephthalate (PET) substrates using a common color printer. Upon annealing at 180 °C, the resistivity of the printed silver patterns decreased to 3.7 μΩ cm, which is close to twice that of bulk silver. Various factors affecting the resistivity of the printed silver patterns, such as annealing temperature and the number of printing cycles, were investigated. The resulting high conductivity of the printed silver patterns reached over 20% of the bulk silver value under ambient conditions, which enabled the fabrication of flexible electronic devices, as demonstrated by the inkjet printing of conductive circuits of LED devices.
Antibacterial Activity of pH-Dependent Biosynthesized Silver Nanoparticles against Clinical Pathogen
Chitra, Kethirabalan; Annadurai, Gurusamy
2014-01-01
Simple, nontoxic, environmental friendly method is employed for the production of silver nanoparticles. In this study the synthesized nanoparticles UV absorption band occurred at 400 nm because of the surface Plasmon resonance of silver nanoparticles. The pH of the medium plays important role in the synthesis of control shaped and sized nanoparticles. The colour intensity of the aqueous solution varied with pH. In this study, at pH 9, the colour of the aqueous solution was dark brown, whereas in pH 5 the colour was yellowish brown; the colour difference in the aqueous solution occurred due to the higher production of silver nanoparticles. The antibacterial activity of biosynthesized silver nanoparticles was carried out against E. coli. The silver nanoparticles synthesized at pH 9 showed maximum antibacterial activity at 50 μL. PMID:24967396
Fabricating the spherical and flake silver powder used for the optoelectronic devices
NASA Astrophysics Data System (ADS)
Ju, Wei; Ma, Wangjing; Zhang, Fangzhi; Chen, Yixiang; Xie, Jinpeng
2018-01-01
The spherical and flake silver powder with different particle size for the optoelectronic devices was partly prepared by using chemical reduction and ball milling method, and charactered by scanning electron microscope (SEM), X-ray diffraction (XRD), laser particle size analyzer and thermo-gravimetric(TG) analyzer. The particle size of three series of spherical silver powder fabricated by chemical reduction is about 1.5μm, 1μm and 0.6μm, respectively; after being mechanical milling, the particle size of flake silver powder with high flaky rate is about 10μm, 6μm and 2μm respectively. Thermo gravimetric (TG) and XRD analyses showed that the silver powders have high purity and crystalline, and then the laser particle size and SEM analyses showed that the silver powders has good uniformity.
He, Huawei; Tao, Gang; Wang, Yejing; Cai, Rui; Guo, Pengchao; Chen, Liqun; Zuo, Hua; Zhao, Ping; Xia, Qingyou
2017-11-01
Silver nanoparticle has been widely applied to a variety of fields for its outstanding antimicrobial activity. However, the stability of silver nanoparticle limits its application under certain conditions. Thus, improving the stability of silver nanoparticle via biosynthesis is a promising shortcut to expand its application. Sericin from silkworm cocoon has good hydrophilicity, reaction activity, biocompatibility and biodegradability. In this study, we developed a novel, simple, one-step biosynthesis method to prepare sericin-silver nanoparticle composite in situ in solution. Sericin served as the reductant of silver ion, the dispersant and stabilizer of the prepared sericin-silver nanoparticle composite. Natural light was the only power source used to catalyze the synthesis of silver nanoparticle in situ in solution. The novel sericin-silver nanoparticle composite was characterized by ultraviolet-visible and fluorescence spectroscopy, X-ray diffraction, transmission electron microscopy and fourier transform infrared spectroscopy. The results showed silver nanoparticle could be synthesized through the reduction of AgNO 3 by the phenolic hydroxyl group of tyrosine residues of sericin under the catalysis of natural light. The synthesized silver nanoparticle had good crystalline, size distribution and long-term stability at room temperature. Light irradiation was essential for the preparation of sericin-silver nanoparticle composite. The antibacterial activity assay showed 25mg/L and 100mg/L were the minimum concentrations of sericin-silver nanoparticle composite required to inhibit the growth of Staphylococcus aureus and kill this bacterium, respectively. The cytotoxicity assay showed cell viability and cell growth were almost not affected by sericin-silver nanoparticle composite under the concentration of 25mg/L. Our study suggested the preparation of sericin-silver nanoparticle composite was environmentally friendly and energy conservation, and the prepared sericin-silver nanoparticle composite had long-term stability, effective antibacterial activity and good biocompatibility. This novel sericin-silver nanoparticle composite has shown great potentials for biomedical application such as antibacterial agent and wound care. Copyright © 2017 Elsevier B.V. All rights reserved.
Simple morphological control over functional diversity of SERS materials
NASA Astrophysics Data System (ADS)
Semenova, A. A.; Goodilin, E. A.
2018-03-01
Nowadays, surface-enhanced Raman spectroscopy (SERS) becomes a promising universal low-cost and real-time tool in biomedical applications, medical screening or forensic analysis allowing for detection of different molecules below nanomolar concentrations. Silver nanoparticles and nanostructures have proven to be a common choice for SERS measurements due to a tunable plasmon resonance, high stability and facile fabrication methods. However, a proper design of silver-based nanomaterials for highly sensitive SERS applications still remains a challenge. In this work, effective and simple preparation methods of various silver nanostructures are proposed and systematically developed using aqueous diamminesilver (I) hydroxide as a precursor.
Toxicity of Silver Nanoparticles at the Air-Liquid Interface
Holder, Amara L.; Marr, Linsey C.
2013-01-01
Silver nanoparticles are one of the most prevalent nanomaterials in consumer products. Some of these products are likely to be aerosolized, making silver nanoparticles a high priority for inhalation toxicity assessment. To study the inhalation toxicity of silver nanoparticles, we have exposed cultured lung cells to them at the air-liquid interface. Cells were exposed to suspensions of silver or nickel oxide (positive control) nanoparticles at concentrations of 2.6, 6.6, and 13.2 μg cm−2 (volume concentrations of 10, 25, and 50 μg ml−1) and to 0.7 μg cm−2 silver or 2.1 μg cm−2 nickel oxide aerosol at the air-liquid interface. Unlike a number of in vitro studies employing suspensions of silver nanoparticles, which have shown strong toxic effects, both suspensions and aerosolized nanoparticles caused negligible cytotoxicity and only a mild inflammatory response, in agreement with animal exposures. Additionally, we have developed a novel method using a differential mobility analyzer to select aerosolized nanoparticles of a single diameter to assess the size-dependent toxicity of silver nanoparticles. PMID:23484109
Silver Nanoforms as a Therapeutic Agent for Killing Escherichia coli and Certain ESKAPE Pathogens.
Kedziora, A; Korzekwa, K; Strek, W; Pawlak, A; Doroszkiewicz, W; Bugla-Ploskonska, G
2016-07-01
The scope of this study included the preparation of silver nanoforms with high antimicrobial efficacy, low cost, and ease of application. The term 'silver nanoforms' refers to silver located on the amorphous or crystalline titanium dioxide (TiO2). Silver nanoforms may be used as an alternative to antibiotics in killing bacteria. Pure and silver-incorporated titanium (used as a carrier) was prepared using the sol-gel-modified method. Physical and chemical properties of the samples were described, and the antibacterial activity was indicated using the following strains of bacteria: Staphylococcus aureus, Klebsiella pneumoniae (ESKAPE pathogens), and Escherichia coli. The results have shown that the antibacterial activity of silver nanoforms with amorphous TiO2 is much better than that in the samples based on anatase (crystalline TiO2). The sensitivity of the tested bacteria to silver nanoforms depends on physical and chemical properties of the nanoforms and individual characteristics of the bacteria. For the first time, significant participation of amorphous TiO2 in antibacterial compounds has been described through this study.
Wani, Irshad A; Khatoon, Sarvari; Ganguly, Aparna; Ahmed, Jahangeer; Ahmad, Tokeer; Manzoor, Nikhat
2013-01-01
Silver nanoparticles have been synthesized in the inverse microemulsions formed using three different surfactants viz., cetyl-trimethyl ammonium bromide (CTAB), Tergitol and Triton X-100. We have done a systematic study of the effect of the surfactants on the particle size and properties of the silver nanoparticles. Microscopic studies show the formation of spheres, cubes and discs shaped silver nanostructures with the size in the range from 8 to 40 nm. Surface plasmon resonance (SPR) peak was observed around 400 nm and 500 nm. In addition to SPR some extra peaks have also been observed due to the formation of silver metal clusters. The surface area increases from 3.45 to 15.06 m(2)/g with decreasing the size of silver nanoparticles (40-8 nm). To investigate the antimicrobial activity of silver nanoparticles, the nanoparticles were tested against the yeast, Candida albicans and the bacterium, E. coli. The results suggest very good antimicrobial activity of the silver nanoparticles against the test microbes. The mode of action of the antimicrobial activity was also proposed. Copyright © 2012 Elsevier B.V. All rights reserved.
Wojtas, Jacek
2015-01-01
The paper presents one of the laser absorption spectroscopy techniques as an effective tool for sensitive analysis of trace gas species in human breath. Characterization of nitric oxide, carbonyl sulphide and ethane, and the selection of their absorption lines are described. Experiments with some biomarkers showed that detection of pathogenic changes at the molecular level is possible using this technique. Thanks to cavity enhanced spectroscopy application, detection limits at the ppb-level and short measurements time (<3 s) were achieved. Absorption lines of reference samples of the selected volatile biomarkers were probed using a distributed feedback quantum cascade laser and a tunable laser system consisting of an optical parametric oscillator and difference frequency generator. Setup using the first source provided a detection limit of 30 ppb for nitric oxide and 250 ppb for carbonyl sulphide. During experiments employing a second laser, detection limits of 0.9 ppb and 0.3 ppb were obtained for carbonyl sulphide and ethane, respectively. The conducted experiments show that this type of diagnosis would significantly increase chances for effective therapy of some diseases. Additionally, it offers non-invasive and real time measurements, high sensitivity and selectivity as well as minimizing discomfort for patients. For that reason, such sensors can be used in screening for early detection of serious diseases. PMID:26091398
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, DR. Jennifer; Yu, DR. Hang; Steele, Joshua
2013-01-01
Microbes have obligate requirements for trace metals in metalloenzymes that catalyse important biogeochemical reactions. In anoxic methane- and sulphiderich environments, microbes may have unique adaptations for metal acquisition and utilization because of decreased bioavailability as a result of metal sulphide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulphidic (> 1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5 270 nM), cobalt (0.5 6 nM), molybdenum (10 5600 nM) and tungsten (0.3 8more » nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalysing anaerobic oxidation of methane (AOM) utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulphate-reducing bacteria. Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrophilic microorganisms. Overall, our data suggest that AOM consortia use specialized biochemical strategies to overcome the challenges of metal availability in sulphidic environments.« less
Van Campenhout, Jelle; Derycke, Sofie; Moens, Tom; Vanreusel, Ann
2014-01-01
The discovery of morphologically very similar but genetically distinct species complicates a proper understanding of the link between biodiversity and ecosystem functioning. Cryptic species have been frequently observed to co-occur and are thus expected to be ecological equivalent. The marine nematode Halomonhystera disjuncta contains five cryptic species (GD1-5) that co-occur in the Westerschelde estuary. In this study, we investigated the effect of three abiotic factors (salinity, temperature and sulphide) on life-history traits of three cryptic H. disjuncta species (GD1-3). Our results show that temperature had the most profound influence on all life-cycle parameters compared to a smaller effect of salinity. Life-history traits of closely related cryptic species were differentially affected by temperature, salinity and presence of sulphides which shows that cryptic H. disjuncta species are not ecologically equivalent. Our results further revealed that GD1 had the highest tolerance to a combination of sulphides, high salinities and low temperatures. The close phylogenetic position of GD1 to Halomonhystera hermesi, the dominant species in sulphidic sediments of the Håkon Mosby mud volcano (Barent Sea, 1280 m depth), indicates that both species share a recent common ancestor. Differential life-history responses to environmental changes among cryptic species may have crucial consequences for our perception on ecosystem functioning and coexistence of cryptic species.
Wojtas, Jacek
2015-06-17
The paper presents one of the laser absorption spectroscopy techniques as an effective tool for sensitive analysis of trace gas species in human breath. Characterization of nitric oxide, carbonyl sulphide and ethane, and the selection of their absorption lines are described. Experiments with some biomarkers showed that detection of pathogenic changes at the molecular level is possible using this technique. Thanks to cavity enhanced spectroscopy application, detection limits at the ppb-level and short measurements time (<3 s) were achieved. Absorption lines of reference samples of the selected volatile biomarkers were probed using a distributed feedback quantum cascade laser and a tunable laser system consisting of an optical parametric oscillator and difference frequency generator. Setup using the first source provided a detection limit of 30 ppb for nitric oxide and 250 ppb for carbonyl sulphide. During experiments employing a second laser, detection limits of 0.9 ppb and 0.3 ppb were obtained for carbonyl sulphide and ethane, respectively. The conducted experiments show that this type of diagnosis would significantly increase chances for effective therapy of some diseases. Additionally, it offers non-invasive and real time measurements, high sensitivity and selectivity as well as minimizing discomfort for patients. For that reason, such sensors can be used in screening for early detection of serious diseases.
Analysis of Aircraft Fuels and Related Materials
1982-09-01
content by the Karl Fischer method . Each 2040 solvent sample represented a different step in a clean-up procedure conducted by Aero Propulsion...izes a potentiometric titration with alcoholic silver nitrate. This method has a minimum detectability of 1 ppm. It has a re- peatability of 0.1 ppm... Method 163-80, which util- izes a potentiometric titration with alcoholic silver nitrate. This method has a minimum detectability of 1 ppm and has a
Mangifera Indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles
NASA Astrophysics Data System (ADS)
Philip, Daizy
2011-01-01
The use of various parts of plants for the synthesis of nanoparticles is considered as a green technology as it does not involve any harmful chemicals. The present study reports a facile and rapid biosynthesis of well-dispersed silver nanoparticles. The method developed is environmentally friendly and allows the reduction to be accelerated by changing the temperature and pH of the reaction mixture consisting of aqueous AgNO 3 and Mangifera Indica leaf extract. At a pH of 8, the colloid consists of well-dispersed triangular, hexagonal and nearly spherical nanoparticles having size ˜20 nm. The UV-vis spectrum of silver nanoparticles gave surface plasmon resonance (SPR) at 439 nm. The synthesized nanocrystals were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Water soluble organics present in the leaf are responsible for the reduction of silver ions. This green method provides faster synthesis comparable to chemical methods and can be used in areas such as cosmetics, foods and medical applications.
Feng, Xingli; Ma, Houyi; Huang, Shaoxin; Pan, Wei; Zhang, Xiaokai; Tian, Fang; Gao, Caixia; Cheng, Yingwen; Luo, Jingli
2006-06-29
A simple but effective aqueous-organic phase-transfer method for gold, silver, and platinum nanoparticles was developed on the basis of the decrease of the PVP's solubility in water with the temperature increase. The present method is superior in the transfer efficiency of highly stable nanoparticles to the common phase-transfer methods. The gold, silver, and platinum nanoparticles transferred to the 1-butanol phase dispersed well, especially silver and platinum particles almost kept the previous particle size. Electrochemical synthesis of gold nanoparticles in an oil-water system was achieved by controlling the reaction temperature at 80 degrees C, which provides great conveniences for collecting metal particles at the oil/water interface and especially for fabricating dense metal nanoparticle films. A technique to fabricate gold nanofilms on solid supports was also established. The shapes and sizes of gold nanoparticles as the building blocks may be controllable through changing reaction conditions.
Rajaeian, Babak; Allard, Sébastien; Joll, Cynthia; Heitz, Anna
2018-07-01
Silver impregnated activated carbon (SIAC) has been found to be effective in mitigating the formation of brominated-disinfection by products during drinking water treatment. However, there are still uncertainties regarding its silver leaching properties, and strategies for the prevention of silver leaching have remained elusive. This study focused on the evaluation of one type of commercially available SIAC for its ability to remove bromide while minimising silver leaching from the material. Both synthetic and real water matrices were tested. Depending on solution pH, it was found that changing the surface charge properties of SIAC, as measured by the point of zero charge pH, can result in additional bromide removal while minimising the extent of silver leaching. To better understand the mechanism of silver leaching from the SIAC, eight preconditioning environments, i.e. variable pH and ionic strength were tested for a fixed amount of SIAC and two preconditioning environments were selected for a more detailed investigation. Experiments carried out in synthetic water showed that preconditioning at pH 10.4 did not deteriorate the capacity of SIAC to remove bromide, but significantly decreased the release of silver in the form of ionic silver (Ag + ), silver bromide (AgBr) and silver chloride (AgCl) from 40% for the pristine to 3% for the treated SIAC. This was confirmed using a groundwater sample. These results suggest that preconditioned SIAC has the potential to be an effective method for bromide removal with minimised silver leaching in a long-term field application for drinking water production. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fewtrell, Lorna; Majuru, Batsirai; Hunter, Paul R
2017-06-20
Despite poor evidence of their effectiveness, colloidal silver and silver nanoparticles are increasingly being promoted for treating potentially contaminated drinking water in low income countries. Recently, however, concerns have been raised about the possible genotoxicity of particulate silver. The goal of this paper was to review the published mammalian in vivo genotoxicity studies using silver micro and nanoparticles. SCOPUS and Medline were searched using the following search string: ("DNA damage" OR genotox* OR Cytotox* OR Embryotox*) AND (silver OR AgNP). Included papers were any mammalian in vivo experimental studies investigating genotoxicity of silver particles. Studies were quality assessed using the ToxRTool. 16 relevant papers were identified. There were substantial variations in study design including the size of silver particles, animal species, target organs, silver dose, route of administration and the method used to detect genotoxicity. Thus, it was not possible to produce a definitive pooled result. Nevertheless, most studies showed evidence of genotoxicity unless using very low doses. We also identified one human study reporting evidence of "severe DNA damage" in silver jewellery workers occupationally exposed to silver particles. With the available evidence it is not possible to be definitive about risks to human health from oral exposure to silver particulates. However, the balance of evidence suggests that there should be concerns especially when considering the evidence from jewellery workers. There is an urgent need to determine whether people exposed to particulate silver as part of drinking water treatment have evidence of DNA damage.
Chudobova, Dagmar; Nejdl, Lukas; Gumulec, Jaromir; Krystofova, Olga; Rodrigo, Miguel Angel Merlos; Kynicky, Jindrich; Ruttkay-Nedecky, Branislav; Kopel, Pavel; Babula, Petr; Adam, Vojtech; Kizek, Rene
2013-06-28
Polymers are currently widely used to replace a variety of natural materials with respect to their favourable physical and chemical properties, and due to their economic advantage. One of the most important branches of application of polymers is the production of different products for medical use. In this case, it is necessary to face a significant disadvantage of polymer products due to possible and very common colonization of the surface by various microorganisms that can pose a potential danger to the patient. One of the possible solutions is to prepare polymer with antibacterial/antimicrobial properties that is resistant to bacterial colonization. The aim of this study was to contribute to the development of antimicrobial polymeric material ideal for covering vascular implants with subsequent use in transplant surgery. Therefore, the complexes of polymeric substances (hyaluronic acid and chitosan) with silver nitrate or silver phosphate nanoparticles were created, and their effects on gram-positive bacterial culture of Staphylococcus aureus were monitored. Stages of formation of complexes of silver nitrate and silver phosphate nanoparticles with polymeric compounds were characterized using electrochemical and spectrophotometric methods. Furthermore, the antimicrobial activity of complexes was determined using the methods of determination of growth curves and zones of inhibition. The results of this study revealed that the complex of chitosan, with silver phosphate nanoparticles, was the most suitable in order to have an antibacterial effect on bacterial culture of Staphylococcus aureus. Formation of this complex was under way at low concentrations of chitosan. The results of electrochemical determination corresponded with the results of spectrophotometric methods and verified good interaction and formation of the complex. The complex has an outstanding antibacterial effect and this effect was of several orders higher compared to other investigated complexes.
Chudobova, Dagmar; Nejdl, Lukas; Gumulec, Jaromir; Krystofova, Olga; Rodrigo, Miguel Angel Merlos; Kynicky, Jindrich; Ruttkay-Nedecky, Branislav; Kopel, Pavel; Babula, Petr; Adam, Vojtech; Kizek, Rene
2013-01-01
Polymers are currently widely used to replace a variety of natural materials with respect to their favourable physical and chemical properties, and due to their economic advantage. One of the most important branches of application of polymers is the production of different products for medical use. In this case, it is necessary to face a significant disadvantage of polymer products due to possible and very common colonization of the surface by various microorganisms that can pose a potential danger to the patient. One of the possible solutions is to prepare polymer with antibacterial/antimicrobial properties that is resistant to bacterial colonization. The aim of this study was to contribute to the development of antimicrobial polymeric material ideal for covering vascular implants with subsequent use in transplant surgery. Therefore, the complexes of polymeric substances (hyaluronic acid and chitosan) with silver nitrate or silver phosphate nanoparticles were created, and their effects on gram-positive bacterial culture of Staphylococcus aureus were monitored. Stages of formation of complexes of silver nitrate and silver phosphate nanoparticles with polymeric compounds were characterized using electrochemical and spectrophotometric methods. Furthermore, the antimicrobial activity of complexes was determined using the methods of determination of growth curves and zones of inhibition. The results of this study revealed that the complex of chitosan, with silver phosphate nanoparticles, was the most suitable in order to have an antibacterial effect on bacterial culture of Staphylococcus aureus. Formation of this complex was under way at low concentrations of chitosan. The results of electrochemical determination corresponded with the results of spectrophotometric methods and verified good interaction and formation of the complex. The complex has an outstanding antibacterial effect and this effect was of several orders higher compared to other investigated complexes. PMID:23812079
Arulkumar, Subramanian; Sabesan, Muthukumaran
2010-01-01
Backgorund: Development of biologically inspired experimental processes for the synthesis of nanoparticles is evolving an important branch of nanotechnology. Methods: The bioreduction behavior of plant seed extract of Mucuna pruriens in the synthesis of silver nanoparticles was investigated employing UV/visible spectrophotometry, X-ray diffraction (XRD), and transmission electron microscopy (TEM), Fourier transform – infra red (FT- IR). Result: M. pruriens was found to exhibit strong potential for rapid reduction of silver ions. The formation of nanoparticles by this method is extremely rapid, requires no toxic chemicals, and the nanoparticles are stable for several months. Conclusion: The main conclusion is that the bioreduction method to produce nanoparticles is a good alternative to the electrochemical methods and it is expected to be biocompatible. PMID:21808573
Harshiny, Muthukumar; Matheswaran, Manickam; Arthanareeswaran, Gangasalam; Kumaran, Shanmugam; Rajasree, Shanmuganathan
2015-11-01
Green synthesis of nanoparticles with low range of toxicity and conjugation to antibiotics has become an attractive area of research for several biomedical applications. Nanoconjugates exhibited notable increase in biological activity compared to free antibiotic molecules. With this perception, we report the biosynthesis of silver nanoparticles using aqueous extract of leaves of Mukia maderaspatana and subsequent conjugation of the silver nanoparticles to antibiotic ceftriaxone. The leaves of this plant are known to be a rich source of phenolic compounds with high antioxidant activity that are used as reducing agents. The size, morphology, crystallinity, composition of the synthesized silver nanoparticles and conjugation of ceftriaxone to silver nanoparticles were studied using analytical techniques. The activity of the conjugates against Bacillus subtilis (MTCC 1790), Klebsiella pneumoniae (MTCC 3384), Staphylococcus aureus (ATCC 25923), and Salmonella typhi (MTCC 3224) was compared to ceftriaxone and unconjugated nanoparticles using disc diffusion method. The effect of silver nanoparticles on the reduction of biofilms of Pseudomonas fluorescens (MTCC 6732) was determined by micro plate assay method. The antioxidant activities of extract, silver nitrate, silver nanoparticles, ceftriaxone and conjugates of nanoparticles were evaluated by radical scavenging 1, 1- diphenyl-2-picrylhydrazyl test. Ultraviolet visible spectroscopy and Fourier transform infrared spectroscopy confirmed the formation of metallic silver nanoparticles and conjugation to ceftriaxone. Atomic force microscopy, transmission electron microscopy and particle size analysis showed that the formed particles were of spherical morphology with appreciable nanosize and the conjugation was confirmed by slight increase in surface roughness. The results thus showed that the conjugation of ceftriaxone with silver nanoparticles has better antioxidant and antimicrobial effects than ceftriaxone and unconjugated nanoparticles. It can be suggested that M. maderaspatana mediated nanoparticle-ceftriaxone conjugate can be used effectively in the production of potential antioxidant and antimicrobial agents. The present study offers a significant overview to the development of novel antimicrobial nanoparticles. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, Yong; Baker, Laura A; Brindle, Ian D
2016-02-01
Focused infrared radiation-based digestions, for the determination of gold and silver, can be achieved in a timeframe as short as 10-15 min, making it an attractive candidate technology for the mining industry, where very large numbers of samples are analyzed on a daily basis. An investigation was carried out into gold and silver dissolution chemistry from geological samples using this novel digestion technique. This study investigated in-depth the issue of low recoveries of gold from aqua regia (AR) digestions, reported by a number of researchers. Conventional AR digestions consistently delivered gold recoveries in a range of 69-80% of the certified values for the four certified reference materials (CRM) employed (CCU-1d, SN26, OREAS 62c, and AMiS 0274), while silver recoveries were satisfactory. By gradually shifting the HCl:HNO3 ratio (v/v) from 3:1 to a reversed 1:3 ratio, recoveries of gold and silver exhibited inverse trends. At a HCl:HNO3 ratio of 1:3, complete recovery of gold was achieved with excellent reproducibility in all CRMs. Meanwhile, silver recoveries plunged significantly at this ratio in samples with higher silver concentrations. Silver values were recovered, however, when the silver was re-solubilized by adding a small volume of concentrated HCl to the cooled reverse aqua regia digests. Recoveries of base metals, such as Fe and Cu, were satisfactory throughout and were much less sensitive to changes in the digestion medium. Using four CRMs and five real-world gold/silver containing samples, the utility of the proposed reverse aqua regia was systematically studied. The uncomplicated nature of the digestion methods reported here, that are fast, effective and inexpensive, may be useful to analysts developing/optimizing their methods for the rapid determination of Au and Ag in a variety of mineral phases, particularly where rapid results are desirable, such as in prospecting and mine development. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Han, Jae Woong; Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Choi, Yun-Jung; Kwon, Deug-Nam; Park, Jin-Ki; Kim, Jin-Hoi
2014-09-01
The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate . The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles.
2014-01-01
The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate. The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles. PMID:25242904
NASA Astrophysics Data System (ADS)
Ramar, Manikandan; Manikandan, Beulaja; Marimuthu, Prabhu Narayanan; Raman, Thiagarajan; Mahalingam, Anjugam; Subramanian, Palanisamy; Karthick, Saravanan; Munusamy, Arumugam
2015-04-01
In the present study, we have synthesized silver nanoparticles by a simple and eco-friendly method using unripe fruits of Solanum trilobatum. The aqueous silver ions when exposed to unripe fruits extract were reduced and stabilized over long time resulting in biosynthesis of surface functionalized silver nanoparticles. The bio-reduced silver nanoparticles were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction (XRD). These biologically synthesized silver nanoparticles were tested for its antibacterial activity against few human pathogenic bacteria including Gram-positive (Streptococcus mutans, Enterococcus faecalis) and Gram-negative (Escherichia coli, Klebsiella pneumoniae) bacteria. In addition, we also demonstrated anticancer activity of these nanoparticles in vitro against human breast cancer cell line (MCF 7) using MTT, nuclear morphology assay, Western blot and RT-PCR expression. These results taken together show the potential applications of biosynthesized silver nanoparticles using S. trilobatum fruits.
In Vivo Human Time-Exposure Study of Orally Dosed Commercial Silver Nanoparticles
Munger, Mark A.; Radwanski, Przemyslaw; Hadlock, Greg C.; Stoddard, Greg; Shaaban, Akram; Falconer, Jonathan; Grainger, David W.; Deering-Rice, Cassandra E.
2013-01-01
Background Human biodistribution, bioprocessing and possible toxicity of nanoscale silver receives increasing health assessment. Methods We prospectively studied commercial 10- and 32-ppm nanoscale silver particle solutions in a single-blind, controlled, cross-over, intent-to-treat, design. Healthy subjects (n=60) underwent metabolic, blood counts, urinalysis, sputum induction, and chest and abdomen magnetic resonance imaging. Silver serum and urine content was determined. Results No clinically important changes in metabolic, hematologic, or urinalysis measures were identified. No morphological changes were detected in the lungs, heart or abdominal organs. No significant changes were noted in pulmonary reactive oxygen species or pro-inflammatory cytokine generation. Conclusion In vivo oral exposure to these commercial nanoscale silver particle solutions does not prompt clinically important changes in human metabolic, hematologic, urine, physical findings or imaging morphology. Further study of increasing time exposure and dosing of silver nanoparticulate silver, and observation of additional organ systems is warranted to assert human toxicity thresholds. PMID:23811290
Reducing Environmental Toxicity of Silver Nanoparticles through Shape Control.
Gorka, Danielle E; Osterberg, Joshua S; Gwin, Carley A; Colman, Benjamin P; Meyer, Joel N; Bernhardt, Emily S; Gunsch, Claudia K; DiGulio, Richard T; Liu, Jie
2015-08-18
The use of antibacterial silver nanomaterials in consumer products ranging from textiles to toys has given rise to concerns over their environmental toxicity. These materials, primarily nanoparticles, have been shown to be toxic to a wide range of organisms; thus methods and materials that reduce their environmental toxicity while retaining their useful antibacterial properties can potentially solve this problem. Here we demonstrate that silver nanocubes display a lower toxicity toward the model plant species Lolium multiflorum while showing similar toxicity toward other environmentally relevant and model organisms (Danio rerio and Caenorhabditis elegans) and bacterial species (Esherichia coli, Bacillus cereus, and Pseudomonas aeruginosa) compared to quasi-spherical silver nanoparticles and silver nanowires. More specifically, in the L. multiflorum experiments, the roots of silver nanocube treated plants were 5.3% shorter than the control, while silver nanoparticle treated plant roots were 39.6% shorter than the control. The findings here could assist in the future development of new antibacterial products that cause less environmental toxicity after their intended use.
Toward Interpreting Failure in Sintered-Silver Interconnection Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wereszczak, Andrew A; Waters, Shirley B
2016-01-01
The mechanical strength and subsequent reliability of a sintered-silver interconnection system is a function of numerous independent parameters. That system is still undergoing process development. Most of those parameters (e.g., choice of plating) are arguably and unfortunately taken for granted and are independent of the silver s cohesive strength. To explore such effects, shear strength testing and failure analyses were completed on a simple, mock sintered-silver interconnection system consisting of bonding two DBC ceramic substrates. Silver and gold platings were part of the test matrix, as was pre-drying strategies, and the consideration of stencil-printing vs. screen-printing. Shear strength of sintered-silvermore » interconnect systems was found to be was insensitive to the choice of plating, drying practice, and printing method provided careful and consistent processing of the sintered-silver are practiced. But if the service stress in sintered silver interconnect systems is anticipated to exceed ~ 60 MPa, then the system will likely fail.« less
Spectroscopic investigations on the orientation of 1,4-dibromonaphthalene on silver nanoparticles.
Geetha, K; Umadevi, M; Sathe, G V; Erenler, R
2013-12-01
Silver nanoparticles (Ag NPs) have been prepared by solution combustion method with glycine as fuel. Silver nanoparticles were characterized by X-Ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM) and UV-visible spectroscopy. The prepared silver nanoparticles exhibit cubic crystalline structure with grain size of 59 nm. HRTEM image shows that the silver nanoparticles have strain and four-fold symmetry formed by twinning in the crystal structure. The optical adsorption spectrum shows that the surface plasmon resonance peak of silver is observed at 380 nm. The orientation of 1,4-dibromonaphthlaene (1,4-DBrN) on silver nanoparticles has been inferred from nRs and SERS spectral features. The absence of a C-H stretching vibrations, the observed high intense C-H out-of-plane bending modes and high intense C-Br stretching vibration suggest that the 1,4-DBrN molecule may be adsorbed in a 'stand-on' orientation to the surface. Copyright © 2013 Elsevier B.V. All rights reserved.
Shameli, Kamyar; Ahmad, Mansor Bin; Jazayeri, Seyed Davoud; Sedaghat, Sajjad; Shabanzadeh, Parvaneh; Jahangirian, Hossein; Mahdavi, Mahnaz; Abdollahi, Yadollah
2012-01-01
The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs) in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG), and β-D-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD), zeta potential measurements and Fourier transform infrared (FT-IR). The use of green chemistry reagents, such as glucose, provides green and economic features to this work.
How metallic is the binding state of indium hosted by excess-metal chalcogenides in ore deposits?
NASA Astrophysics Data System (ADS)
Ondina Figueiredo, Maria; Pena Silva, Teresa; Oliveira, Daniel; Rosa, Diogo
2010-05-01
Discovered in 1863, indium is nowadays a strategic scarce metal used both in classical technologic fields (like low melting-temperature alloys and solders) and in innovative nano-technologies to produce "high-tech devices" by means of new materials, namely liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and the recently introduced transparent flexible thin-films manufactured with ionic amorphous oxide semiconductors (IAOS). Indium is a typical chalcophile element, seldom forming specific minerals and occurring mainly dispersed within polymetallic sulphides, particularly with excess metal ions [1]. The average content of indium in the Earth's crust is very low but a further increase in its demand is still expected in the next years, thus focusing a special interest in uncovering new exploitation sites through promising polymetallic sulphide ores - e.g., the Iberian Pyrite Belt (IPB) [2] - and in improving recycling technologies. Indium recovery stands mostly on zinc extraction from sphalerite, the natural cubic sulphide which is the prototype of so-called "tetrahedral sulphides" where metal ions fill half of the available tetrahedral sites within the cubic closest packing of sulphur anions where the double of unfilled interstices are available for further in-filling. It is worth remarking that such packing array is particularly suitable for accommodating polymetallic cations by filling closely located interstitial sites [3] as happens in excess-metal tetrahedral sulphides - e.g. bornite, ideally Cu5FeS4, recognized as an In-carrying mineral [4]. Studying the tendency towards In-In interactions able of leading to the formation of polycations would efficiently contribute to understand indium crystal chemistry and the metal binding state in natural chalcogenides. Accordingly, an X-ray absorption near-edge spectroscopy (XANES) study at In L3-edge was undertaken using the instrumental set-up of ID21 beamline at the ESRF (European Synchrotron Radiation Facility, in Grenoble/France). Polymetallic chalcogenide minerals and various model compounds displaying distinct bonding situations of indium to other ligands (oxygen and halides) were studied. Encouraging results from a first experiment [5] showed the presence of a "white line" in the XANES spectra collected from InF3 and from In-hosting bornite; however, the impossibility of clearly identifying the nanoscale phase hosting indium in sulphide ore samples has hindered a full interpretation of X-ray absorption data. The crystal chemistry of indium in natural chalcogenides is now reanalysed and XANES results obtained so far for polymetallic sulphides are accordingly re-evaluated, disclosing a challenging clue for indium binding state in these host minerals within sulphide ores. [1] M.O. Figueiredo et al. (2007) Procd. 9th Biennial SGA Mtg., Dublin/Ireland, edt. C. Andrew et al., 1355-1357. [2] O.C. Gaspar (2002) Canad. Miner. 40, 611-636. [3] M.O. Figueiredo & T.P. Silva (2009) ICANS 23, 23rd Int. Conf. Amorphous & Nano-crystalline Semiconductors, Netherlands, August 23-28. Poster ID 229 (abstract). [4] T. Seifert & D. Sandmann (2002) Ore Geol. Reviews 28, 1-31. [5] M.O. Figueiredo & T.P. Silva (2009) XVIII Int. Mater. Res. Congr., Mexico, August 16-20. Symp. 20, Poster nr. 1 (abstract). * Work developed within the research project PTDC/CTE-GIN/67027/2006 financed by the Portuguese Foundation for Science & Technology (FCT/MCTES). The financial support from EU to perform the experiments at the ESRF is also acknowledged.
NASA Astrophysics Data System (ADS)
Augé, Thierry; Joubert, Marc; Bailly, Laurent
2012-02-01
With the aims to bring new information about the typology and mineral potential of mafic-ultramafic complexes of the Hoggar, detailed petrological and chemical characterisation were performed on serpentinite bands and layered intrusions. The serpentinite bands locally contain pods, layers and disseminations of chromite showing all the characteristics (mode of occurrence, composition, nature and composition of silicate inclusions, etc.) of an "ophiolite" chromite. Some chromite concentrations in the serpentinite bands also contain inclusions of platinum-group minerals (described for the first time in the Hoggar) such as ruarsite (RuAsS), an Os, Ru, Ir alloy, and complex Os, Ir, Ru sulfarsenides and arsenides. The serpentinite probably corresponds to remnants of oceanic lithosphere—more specifically from the upper part of the mantle sequence, generally where chromitite pods are most abundant, and the basal part of the cumulate series with stratiform chromite concentrations—and marks suture zones; the rest of the oceanic crust has not been preserved. Considering the typology of the serpentinites bands, their potential for precious- and base-metals is suspected to be low. Of the two layered mafic-ultramafic intrusions that were studied, the In Tedeini intrusion has a wehrlite core intruded by olivine gabbronorite and surrounded by an olivine gabbro aureole; three orthocumulate units, containing disseminated magmatic base-metal sulphides and with a plagioclase composition varying around An 58.1 and An 63.3, that could have been derived from a single magma. The East Laouni intrusion has a basal unit of olivine gabbronorite with specific silicate oxide intergrowths, and an upper unit of more differentiated gabbro, both units containing disseminated magmatic Ni-Cu sulphides indicative of early sulphide immiscibility; the mineral composition of these two cumulate units indicates that they also could have been derived from a single magmatic episode. The characteristic of the two intrusions appears very favourable for the presence of a significant Ni-Cu-(PGE) sulphide mineralisation.
Synthesis and characterization of cadmium sulphide thin films prepared by spin coating
NASA Astrophysics Data System (ADS)
Chodavadiya, Nisarg; Chapanari, Amisha; Zinzala, Jignesh; Ray, Jaymin; Pandya, Samir
2018-05-01
An II-VI group semiconductor is Wide band gap materials and has been widely studied due to their fundamental optical, structural, and electrical properties. Cadmium sulphide (CdS) is one of the most emerged materials in II-VI group. It has many applications such as buffer later in photovoltaic cell, multilayer light emitting diodes, optical filters, thin film field effect transistors, gas sensors, light detectors etc. It is fundamentally an n-type material with an optical band gap of 2.4 eV. Owing to these properties we had studied CdS thin films synthesis and characterized by Raman, Ultraviolet - Visible spectroscopy (UV-VIS) and Hot probe method. CdS thin films were prepared by spin coating of the Cadmium-thiourea precursor solution. Visual inspection after 20 minute thermolysis time the films were looks uniform and shiny pale yellow in color. Raman confirms the A1 vibration of pure CdS. UV-VIS gives the band gap about 2.52 eV, which confirms the formation of nanocrystalline form of CdS. Finally, hot probe signifies the n-type conductivity of the CdS film.
NASA Astrophysics Data System (ADS)
Jabeen, Uzma; Adhikari, Tham; Shah, Syed Mujtaba; Pathak, Dinesh; Nunzi, Jean-Michel
2017-11-01
Zinc sulphide (ZnS) and transition metal-doped ZnS nanocrystals were synthesized by co-precipitation method. Further the synthesized nanocrystals were characterized by Field Emission Scanning Electron Microscope (FESEM), High Resolution Transmission Electron Microscope (HRTEM), Fluorescence, UV-Visible, X-ray diffraction (XRD) and Fourier Transformed Infra-red (FTIR) Spectrometer (FTIR). Scanning electron microscope supplemented with EDAX was employed to attain grain size and chemical composition of the nanomaterials. A considerable blue shift of absorption band was noted by the manganese concentration (0.5 M) in the doped sample in comparison with ZnS quantum dots because of the decrease in the size of nanoparticles which may be due to quantum confinement. The photoluminescence emission observed at 596 nm is due to the emission of divalent manganese and can be ascribed to a 4T1→6A1 transition within the 3d shell. Though, the broad blue emission band was observed at 424 nm which may originates from the radiative recombination comprising defect states in the un-doped zinc sulphide quantum dots. XRD analysis exhibited that the synthesized nanomaterial endured in cubic structure. The synthesized nanomaterial combined with organic polymer P3HT, poly (3-hexyl thiophene) and worked in the construction of inverted solar cells. The photovoltaic devices with un-doped zinc sulphide quantum dots showed power conversion efficiency of 0.48% without annealing and 0.52% with annealing. By doping with manganese, the efficiency was enhanced by a factor of 0.52 without annealing and 0.59 with annealing. The morphology and packing behavior of blend of nanocrystals with organic polymer were explored using Atomic Force Microscopy.
Organic silicon compounds anf hydrogen sulfide removal from biogas by mineral and adsorbent
NASA Astrophysics Data System (ADS)
Choi, J.
2015-12-01
Biogas utilized for energy production needs to be free from organic silicon compounds and hydrogen sulfide , as their burning has damaging effects on utilities and humans; organic silicon compounds and hydrogen sulfide can be found in biogas produced from biomass wastes, due to their massive industrial use in synthetic product,such as cosmetics, detergents and paints.Siloxanes and hydrogen sulfide removal from biogas can be carried out by various methods (Ajhar et al., 2010); aim of the present work is to find a single practical andeconomic way to drastically and simultaneously reduce both hydrogen sulfide and the siloxanes concentration to less than 1 ppm. Some commercial activated carbons previously selected (Monteleoneet al., 2011) as being effective in hydrogen sulfide up taking have been tested in an adsorption measurement apparatus, by flowing both hydrogen sulphide and volatile siloxane (Decamethycyclopentasiloxane or D5) in a nitrogen stream,typically 25-300 ppm D5 over N2, through an clay minerals, Fe oxides and Silica; the adsorption process was analyzed by varying some experimental parameters (concentration, grain size, bed height). The best silica shows an adsorption capacity of 0.2 g D5 per gram of silica. The next thermo gravimetric analysis (TGA) confirms the capacity data obtained experimentally by the breakthrough curve tests.The capacity results depend on D5 and hydrogen sulphide concentrations. A regenerative silica process is then carried out byheating the silica bed up to 200 ° C and flushing out the adsorbed D5 and hydrogen sulphide samples in a nitrogen stream in athree step heating procedure up to 200 ° C. The adsorption capacity is observed to degrade after cyclingthe samples through several adsorption-desorption cycles.
Catharanthus roseus: a natural source for the synthesis of silver nanoparticles
Mukunthan, KS; Elumalai, EK; Patel, Trupti N; Murty, V Ramachandra
2011-01-01
Objective To develop a simple rapid procedure for bioreduction of silver nanoparticles (AgNPs) using aqueous leaves extracts of Catharanthus roseus (C. roseus). Methods Characterization were determined by using UV-Vis spectrophotometry, scanning electron microscopy (SEM), energy dispersive X-ray and X-ray diffraction. Results SEM showed the formation of silver nanoparticles with an average size of 67 nm to 48 nm. X-ray diffraction analysis showed that the particles were crystalline in nature with face centered cubic geometry. Conclusions C. roseus demonstrates strong potential for synthesis of silver nanoparticles by rapid reduction of silver ions (Ag+ to Ag0). This study provides evidence for developing large scale commercial production of value-added products for biomedical/nanotechnology-based industries. PMID:23569773
Mashwani, Zia-ur-Rehman; Khan, Tariq; Khan, Mubarak Ali; Nadhman, Akhtar
2015-12-01
Synthesis of silver nanoparticles by plants and plant extracts (green synthesis) has been developed into an important innovative biotechnology, especially in the application of such particles in the control of pathogenic bacteria. This is a safer technology, biologically and environmentally, than synthesis of silver nanoparticles by chemical or physical methods. Plants are preferable to microbes as agents for the synthesis of silver nanoparticles because plants do not need to be maintained in cell culture. The antibacterial activity of bionanoparticles has been extensively explored during the past decade. This review examines studies published in the last decade that deal with the synthesis of silver nanoparticles in plants and their antibacterial activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N, Rekha T.; Rajkumar, Beulah J. M., E-mail: beulah-rajkumar@yahoo.co.in
Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistributionmore » of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.« less
Copper-silver-titanium filler metal for direct brazing of structural ceramics
Moorhead, Arthur J.
1987-01-01
A method of joining ceramics and metals to themselves and to one another is described using a brazing filler metal consisting essentially of 35 to 50 atomic percent copper, 15 to 50 atomic percent silver and 10 to 45 atomic percent titanium. This method produces strong joints that can withstand high service temperatures and oxidizing environments.
USDA-ARS?s Scientific Manuscript database
The purpose of this study was to prepare a novel temperature-sensitive spray gel containing silver nanoparticles and investigate its anti-bacterial properties in vitro. Methods: The aqueous complex gel was prepared by Pluronic F127 (18-22%) and Pluronic F68 (3-9%) through a cold method to obtain a p...
2012-01-01
We have developed a method for obtaining a direct pattern of silver nanoparticles (NPs) on porous silicon (p-Si) by means of inkjet printing (IjP) of a silver salt. Silver NPs were obtained by p-Si mediated in-situ reduction of Ag+ cations using solutions based on AgNO3 which were directly printed on p-Si according to specific geometries and process parameters. The main difference with respect to existing literature is that normally, inkjet printing is applied to silver (metal) NP suspensions, while in our experiment the NPs are formed after jetting the solution on the reactive substrate. We performed both optical and scanning electron microscopes on the NPs traces, correlating the morphology features with the IjP parameters, giving an insight on the synthesis kinetics. The patterned NPs show good performances as SERS substrates. PMID:22953722
NASA Astrophysics Data System (ADS)
Iwai, Katsumasa; Takaku, Hiroyuki; Miyagi, Mitsunobu; Shi, Yi-Wei; Zhu, Xiao-Song; Matsuura, Yuji
2017-02-01
Flexible hollow fibers with 530-μm-bore size were developed for infrared laser delivery. Sturdy hollow fibers were fabricated by liquid-phase coating techniques. A silica glass capillary is used as the substrate. Acrylic silicone resin is used as a buffer layer and the buffer layer is firstly coated on the inner surface of the capillary to protect the glass tube from chemical damages due to the following silver plating process. A silver layer was inner-plated by using the conventional silver mirror-plating technique. To improve adhesion of catalyst to the buffer layer, a surface conditioner has been introduced in the method of silver mirror-plating technique. We discuss improvement of transmission properties of sturdy polymer-coated silver hollow fibers for the Er:YAG laser and red pilot beam delivery.
Cheng, Fei; Betts, Jonathan W; Kelly, Stephen M; Hector, Andrew L
2015-01-01
A simple, environmentally friendly and cost-effective method has been developed to prepare a range of aqueous silver colloidal solutions, using ascorbic acid as a reducing agent, water-soluble starch as a combined crystallising, stabilising and solubilising agent, and water as the solvent. The diameter of silver nanoplatelets increases with higher concentrations of AgNO3 and starch. The silver nanoparticles are also more uniform in shape the greater the diameter of the nanoparticles. Colloidal solutions with a very high concentration of large, flat, hexagonal silver nanoplatelets (~230 nm in breadth) have been used to deposit and fix an antibacterial coating of these large starch-stabilised silver nanoplates on commercial cotton fibres, using a simple dip-coating process using water as the solvent, in order to study the dependence of the antibacterial properties of these nanoplatelets on their size. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kemp, Melissa M.; Kumar, Ashavani; Mousa, Shaymaa; Dyskin, Evgeny; Yalcin, Murat; Ajayan, Pulickel; Linhardt, Robert J.; Mousa, Shaker A.
2009-11-01
Silver and gold nanoparticles display unique physical and biological properties that have been extensively studied for biological and medical applications. Typically, gold and silver nanoparticles are prepared by chemical reductants that utilize excess toxic reactants, which need to be removed for biological purposes. We utilized a clean method involving a single synthetic step to prepare metal nanoparticles for evaluating potential effects on angiogenesis modulation. These nanoparticles were prepared by reducing silver nitrate and gold chloride with diaminopyridinyl (DAP)-derivatized heparin (HP) polysaccharides. Both gold and silver nanoparticles reduced with DAPHP exhibited effective inhibition of basic fibroblast growth factor (FGF-2)-induced angiogenesis, with an enhanced anti-angiogenesis efficacy with the conjugation to DAPHP (P<0.01) as compared to glucose conjugation. These results suggest that DAPHP-reduced silver nanoparticles and gold nanoparticles have potential in pathological angiogenesis accelerated disorders such as cancer and inflammatory diseases.
NASA Astrophysics Data System (ADS)
Azkiya, N. I.; Masruri, M.; Ulfa, S. M.
2018-01-01
The paper studies recent application of cone flower waste from Pinus merkusii Jungh & De Vriese for an environmentally unclear method for synthesis silver nanoparticle. Phytochemical characterization using iron trichloride solution showed the extract of Pinus merkusii cone flower contains of phenolic group of secondary metabolite. This group acts as both reducing and stabilizing agents. For the synthesis of silver nanoparticle, solution of silver nitrate is added to the extract at 60°C. The effect of extract concentration (5-20%) and time reaction (15-60 min) is investigated. The formation of silver nanoparticle is confirmed by the color change from yellowish to brown. Meanwhile, UV-Vis characterization of silver nanoparticle in extract 20% and 60 min reaction showed surface plasmon resonance (SPR) at 431 nm, and transmission electron microscope (TEM) revealed the particle size range in between 8 and 23 nm with a spherical in shape.
NASA Astrophysics Data System (ADS)
Singhal, Garima; Bhavesh, Riju; Kasariya, Kunal; Sharma, Ashish Ranjan; Singh, Rajendra Pal
2011-07-01
Development of green nanotechnology is generating interest of researchers toward ecofriendly biosynthesis of nanoparticles. In this study, biosynthesis of stable silver nanoparticles was done using Tulsi ( Ocimum sanctum) leaf extract. These biosynthesized nanoparticles were characterized with the help of UV-vis spectrophotometer, Atomic Absorption Spectroscopy (AAS), Dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM). Stability of bioreduced silver nanoparticles was analyzed using UV-vis absorption spectra, and their antimicrobial activity was screened against both gram-negative and gram-positive microorganisms. It was observed that O. sanctum leaf extract can reduce silver ions into silver nanoparticles within 8 min of reaction time. Thus, this method can be used for rapid and ecofriendly biosynthesis of stable silver nanoparticles of size range 4-30 nm possessing antimicrobial activity suggesting their possible application in medical industry.
Antibacterial and catalytic activities of green synthesized silver nanoparticles.
Bindhu, M R; Umadevi, M
2015-01-25
The aqueous beetroot extract was used as reducing agent for silver nanoparticles synthesis. The synthesized nanoparticles were characterized using UV-visible spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface plasmon resonance peak of synthesized nanoparticles was observed at 438 nm. As the concentration of beetroot extract increases, absorption spectra shows blue shift with decreasing particle size. The prepared silver nanoparticles were well dispersed, spherical in shape with the average particle size of 15 nm. The prepared silver nanoparticles are effective in inhibiting the growth of both gram positive and gram negative bacteria. The prepared silver nanoparticles reveal faster catalytic activity. This natural method for synthesis of silver nanoparticles offers a valuable contribution in the area of green synthesis and nanotechnology avoiding the presence of hazardous and toxic solvents and waste. Copyright © 2014 Elsevier B.V. All rights reserved.
Silver manganese oxide electrodes for lithium batteries
Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.
2006-05-09
This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.
Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity
NASA Astrophysics Data System (ADS)
Campillo Gloria, E.; Ederley, Vélez; Gladis, Morales; César, Hincapié; Jaime, Osorio; Oscar, Arnache; Uribe José, Ignacio; Franklin, Jaramillo
2017-06-01
The synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO3) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) - Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV-visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λmax ~ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated.
NASA Astrophysics Data System (ADS)
Roy, Pragyan; Das, Bhagyalaxmi; Mohanty, Abhipsa; Mohapatra, Sujata
2017-11-01
In this study, green synthesis of silver nanoparticles was done using leaf extracts of Azadirachta indica. The flavonoids and terpenoids present in the extract act as both reducing and capping agent. Microbes ( Escherichia coli and Gram-positive bacteria) were isolated from borewell water using selective media. The silver nanoparticles showed antimicrobial activities against Gram-positive bacteria and E. coli. However the silver nanoparticles were more effective against E. coli as compared to Gram-positive bacteria. Various techniques were used to characterize synthesized silver nanoparticles such as DLS and UV-visible spectrophotometer. The absorbance peak was in the range of 420-450 nm, that varied depending upon the variation in the concentration of neem extract. This is a very rapid and cost-effective method for generation of silver nanoparticle at room temperature, however, its exact dose in water purification has to be determined.
Salvaging and Conserving Water Damaged Photographic Materials
NASA Astrophysics Data System (ADS)
Suzuki, Ryuji
Degradation of water damaged photographic materials is discussed; the most vulnerable elements are gelatin layers and silver image. A simple and inexpensive chemical treatment is proposed, consisting of a bath containing a gelatin-protecting biocide and a silver image protecting agent. These ingredients were selected among those used in manufacturing of silver halide photographic emulsions or processing chemicals. Experiments confirmed that this treatment significantly reduced oxidative attacks to silver image and bacterial degradation of gelatin layers. The treated material was also stable under intense light fading test. Method of hardening gelatin to suppress swelling is also discussed.
Silver nanoparticles toxicity against airborne strains of Staphylococcus spp.
Wolny-Koładka, Katarzyna A; Malina, Dagmara K
2017-11-10
The aim of this study was to explore the toxicity of silver nanoparticles (AgNPs) synthesized by chemical reduction method assessment with regard to airborne strains of Staphylococcus spp. The first step of the experiment was the preparation of silver nanoparticle suspension. The suspension was obtained by a fast and simple chemical method involving the reduction of silver ions through a reducing factor in the presence of the suitable stabilizer required to prevent the aggregation. In the second stage, varied instrumental techniques were used for the analysis and characterization of the obtained nanostructures. Third, the bacteria of the Staphylococcus genus were isolated from the air under stable conditions with 47 sports and recreational horses, relatively. Next, isolated strains were identified using biochemical and spectrophotometric methods. The final step was the evaluation of the Staphylococcus genus sensitivity to nanosilver using the disk diffusion test. It has been proven that prepared silver nanoparticles exhibit strong antibacterial properties. The minimum inhibitory concentration for tested isolates was 30 μg/mL. It has been found that the sensitivity of Staphylococcus spp. isolated from six identified species differs considerably. The size distribution of bacterial growth inhibition zones indicates that resistance to various nanosilver concentrations is an individual strain feature, and has no connection with belonging to a specific species.
Kazemi, Elahe; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Fattahi, Mohammad Reza; Khodaveisi, Javad
2017-12-05
A novel, efficient, easy to use, environmentally friendly and cost-effective methodology is developed for the indirect spectrophotometric determination of sulfadiazine in different samples. The method is based on the micelle-mediated extraction of silver sulfadiazine and converting the silver content of the resultant surfactant-rich phase to the silver nanoparticles via generation of [Ag(NH 3 ) 2 ] + followed by its chemical reduction using ascorbic acid. The changes in the amplitude of localized surface plasmon resonance peak of silver nanoparticles as a function of sulfadiazine concentration in the sample solution was monitored using fiber optic linear array spectrophotometry at 457nm. The experimental conditions were thoroughly investigated and optimized. Under the optimized condition, the developed procedure showed dynamic linear calibration within the range of 10.0-800.0μgL -1 with a detection limit of 2.8μgL -1 for sulfadiazine. The relative standard deviation of the method for six replicate measurements at 150.0μgL -1 of sulfadiazine was 4.7%. The developed method was successfully applied to the determination of sulfadiazine in different samples including well water, human urine, milk and pharmaceutical formulation. Copyright © 2017. Published by Elsevier B.V.
Surface Passivation for 3-5 Semiconductor Processing: Stable Gallium Sulphide Films by MOCVD
NASA Technical Reports Server (NTRS)
Macinnes, Andrew N.; Jenkins, Phillip P.; Power, Michael B.; Kang, Soon; Barron, Andrew R.; Hepp, Aloysius F.; Tabib-Azar, Massood
1994-01-01
Gallium sulphide (GaS) has been deposited on GaAs to form stable, insulating, passivating layers. Spectrally resolved photoluminescence and surface recombination velocity measurements indicate that the GaS itself can contribute a significant fraction of the photoluminescence in GaS/GaAs structures. Determination of surface recombination velocity by photoluminescence is therefore difficult. By using C-V analysis of metal-insulator-semiconductor structures, passivation of the GaAs with GaS films is quantified.
Bullion to B-fields: The Silver Program of the Manhattan Project
NASA Astrophysics Data System (ADS)
Reed, Cameron
2010-04-01
Between October 1942 and September 1944, over 14,000 tons of silver bullion bars withdrawn form the U.S. Treasury were melted and cast into magnet coils and busbar pieces for the ``calutron'' electromagnetic isotope-separators constructed at Oak Ridge. Based on Manhattan Engineer District documents, this paper will review the history of this ``Silver Program,'' including discussions of the contractors, production methods, and quantities of materials involved.
Bullion to B-fields: The Silver Program of the Manhattan Project
NASA Astrophysics Data System (ADS)
Reed, Cameron
2010-02-01
Between October 1942 and September 1944, over 14,000 tons of silver bullion bars withdrawn from the U. S. Treasury were melted and cast into magnet coils and busbar pieces for the ``calutron'' electromagnetic isotope-separators constructed at Oak Ridge. Based on Manhattan Engineer District documents, this paper will review the history of this ``Silver Program,'' including discussions of the contractors, production methods, and quantities of material involved. )
Ultrathin Carbon Film Protected Silver Nanostructures for Surface-Enhanced Raman Scattering.
Peng, Yinshan; Zheng, Xianliang; Tian, Hongwei; Cui, Xiaoqiang; Chen, Hong; Zheng, Weitao
2016-06-23
In this article, ultrathin carbon film protected silver substrate (Ag/C) was prepared via a plasma-enhanced chemical vapor deposition (PECVD) method. The morphological evolution of silver nanostructures underneath, as well as the surface-enhanced Raman scattering (SERS) activity of Ag/C hybrid can be tuned by controlling the deposition time. The stability and reproducibility of the as-prepared hybrid were also studied. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Zhao, Nan; Fei, Xiao; Cheng, Xiaonong; Yang, Juan
2017-09-01
Recently, silver nanoparticles decorated with graphene and graphene oxide (GO) sheets can be employed as surface-enhanced Raman scattering (SERS) substrates. However, their SERS activity on macromolecular compound detection is all one-time process. In order to solve this issue and decrease the cost of routine SERS detection, silver/silver chloride (Ag/AgCl) with photocatalytic activity under visible light was introduced. In this study, a novel, simple and clean approach is carried out for synthesis of the Ag/AgCl/GO composite. The Ag/AgCl colloidal solution is obtained by hydrothermal method and then mixed with GO solution to obtain the Ag/AgCl/GO composite using a facile electrostatic self-assembly method. Results showed that the Ag/AgCl/GO composite has the optimized SERS activity to Rhodamine 6G molecules with the maximum enhancement factor value of 3.8×107. Furthermore, the Ag/AgCl particles with high efficient and stable photocatalytic activity under visible light lead to an outstanding self-cleaning property of the Ag/AgCl/GO composite.
NASA Astrophysics Data System (ADS)
Cheng, Yun; Chen, Xiaoqian; Sheng, Tao
2016-01-01
Research into the measurement of atomic oxygen (AO) flux in a low Earth orbit (LEO) is highly significant for the development of spacecraft surface materials as well as for enhancing the reliability of space instruments. In the present study, we studied a silver film resistance method for AO flux measurement and we established a quantitative calculation model. Moreover, we designed a silver film sensor for space flight tests with a mass of about 100 g and a peak power consumption of less than 0.2 W. The effect of AO on the silver film was demonstrated in a ground-based simulation experiment and compared with the Kapton-mass-loss method. For the space flight test, the AO flux was estimated by monitoring the change in the resistance in the linear part of the silver/AO reaction regime. Finally, the sensor was carried onboard our nanosatellite ;TianTuo 1; to obtain in situ measurements of the AO flux during a 476 km sun synchronous orbit. The result was critically compared with theoretical predictions, which validated the design of this sensor.
Orientation of N-benzoyl glycine on silver nanoparticles: SERS and DFT studies
NASA Astrophysics Data System (ADS)
Parameswari, A.; Asath, R. Mohamed; Premkumar, R.; Benial, A. Milton Franklin
2017-05-01
Surface enhanced Raman scattering (SERS) studies of N-benzoyl glycine (NBG) adsorbed on silver nanoparticles (AgNPs) was studied by experimental and density functional theory (DFT) approach. Single crystals of NBG were prepared using slow evaporation method. The AgNPs were prepared and characterized. The DFT/ B3PW91 method with LanL2DZ basis set was used to optimize the molecular structure of NBG and NBG adsorbed on silver cluster. The calculated and observed vibrational frequencies were assingned on the basis of potential energy distribution calculation. The reduced band gap value was obtained for NBG adsorbed on silver nanoparticles from the frontier molecular orbitals analysis. Natural bond orbital analysis was carried out to inspect the intra-molecular stabilization interactions, which are responsible for the bio activity and nonlinear optical property of the molecule. The spectral analysis was also evidenced that NBG would adsorb tilted orientation on the silver surface over the binding sites such as lone pair electron of N atom in amine group and through phenyl ring π system.
NASA Astrophysics Data System (ADS)
Pant, Gaurav; Nayak, Nitesh; Gyana Prasuna, R.
2013-10-01
The present investigation describes simple and effective method for synthesis of silver nanoparticles via green route. Solanum trilobatum Linn extract were prepared by both conventional and homogenization method. We optimized the production of silver nanoparticles under sunlight, microwave and room temperature. The best results were obtained with sunlight irradiation, exhibiting 15-20 nm silver nanoparticles having cubic and hexagonal shape. Biosynthesized nanoparticles were highly toxic to various bacterial strains tested. In this study we report antibacterial activity against various Gram negative ( Klebsiella pneumoniae, Vibrio cholerae and Salmonella typhi) and Gram positive ( Staphylococcus aureus, Bacillus cereus and Micrococcus luteus) bacterial strains. Screening was also performed for any antifungal properties of the nanoparticles against human pathogenic fungal strains ( Candida albicans and Candida parapsilosis). We also demonstrated that these nanoparticles when mixed with shampoo enhance the anti-dandruff effect against dandruff causing fungal pathogens ( Pityrosporum ovale and Pityrosporum folliculitis). The present study showed a simple, rapid and economical route to synthesize silver nanoparticles and their applications hence has a great potential in biomedical field.
Assessment of Silver Based Disinfection Technology for CEV and Future US Spacecraft
NASA Technical Reports Server (NTRS)
Callahan, Michael R.; Adam, Niklas M.; Roberts, Michael S.; Garland, Jay L.; Sager, John C.; Pickering, Karen D.
2007-01-01
Silver biocide offers a potential advantage over iodine, the current state-of-the-art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. As such, silver may reduce the overall complexity and mass of future spacecraft potable water systems, particularly those used to support long duration missions. A primary technology gap identified for the use of silver biocide is one of material compatibility. Wetted materials of construction are required to be selected such that silver ion concentrations can be maintained at biocidally effective levels. Preliminary data on silver biocide depletion rates in heritage spacecraft potable water system wetted-materials of construction has been gathered as part of a multi-phase test project aimed at the characterization of silver based biocide technology through: development of preferred materials lists, investigation of silver biocide forms and delivery methods, down-selection of silver biocide technologies, and integrated testing. A 10% - 20% loss in silver ion concentration per day was observed for acid passivated Nitronic 40 tubing with surface area to volume (S/V) ratios of approximately 4.59 cm-1. The Nitronic 40 tubes were tested both with and without biocide pretreatment. Silver biocide depletion was also observed at approximately 0.1% per day for the first 35 days of exposure to acid passivated Inconel 718 coupon, S/V of approximately 0.14 cm-1. Surface analysis by scanning election microscopy (SEM) suggested deposition of silver metal on both test materials. SEM analysis also provided evidence of potential variability in the passivation process for tube configuration of the Nitronic 40 test apparatus. These preliminary results are presented and discussed herein, along with the current project status.
Paladini, Federica; Di Franco, Cinzia; Panico, Angelica; Scamarcio, Gaetano; Sannino, Alessandro; Pollini, Mauro
2016-01-01
Multidrug-resistant organisms are increasingly implicated in acute and chronic wound infections, thus compromising the chance of therapeutic options. The resistance to conventional antibiotics demonstrated by some bacterial strains has encouraged new approaches for the prevention of infections in wounds and burns, among them the use of silver compounds and nanocrystalline silver. Recently, silver wound dressings have become widely accepted in wound healing centers and are commercially available. In this work, novel antibacterial wound dressings have been developed through a silver deposition technology based on the photochemical synthesis of silver nanoparticles. The devices obtained are completely natural and the silver coatings are characterized by an excellent adhesion without the use of any binder. The silver-treated cotton gauzes were characterized through scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA) in order to verify the distribution and the dimension of the silver particles on the cotton fibers. The effectiveness of the silver-treated gauzes in reducing the bacterial growth and biofilm proliferation has been demonstrated through agar diffusion tests, bacterial enumeration test, biofilm quantification tests, fluorescence and SEM microscopy. Moreover, potential cytotoxicity of the silver coating was evaluated through 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay (MTT) and the extract method on fibroblasts and keratinocytes. Inductively coupled plasma mass spectrometry (ICP-MS) was performed in order to determine the silver release in different media and to relate the results to the biological characterization. All the results obtained were compared with plain gauzes as a negative control, as well as gauzes treated with a higher silver percentage as a positive control. PMID:28773531
Gopinath, V; MubarakAli, D; Priyadarshini, S; Priyadharsshini, N Meera; Thajuddin, N; Velusamy, P
2012-08-01
In the recent decades, increased development of green synthesis of nanoparticles is inevitable because of its incredible applications in all fields of science. There were numerous work have been produced based on the plant and its extract mediated synthesis of nanoparticles, in this present study to explore that the novel approaches for the biosynthesis of silver nanoparticles using plant fruit bodies. The plant, Tribulus terrestris L. fruit bodies are used in this study, where the dried fruit body extract was mixed with silver nitrate in order to synthesis of silver nanoparticles. The active phytochemicals present in the plant were responsible for the quick reduction of silver ion (Ag(+)) to metallic silver nanoparticles (Ag(0)). The reduced silver nanoparticles were characterized by Transmission Electron Microscope (TEM), Atomic Force Microscope (AFM), XRD, FTIR, UV-vis spectroscopy. The spherical shaped silver nanoparticles were observed and it was found to be 16-28 nm range of sizes. The diffraction pattern also confirmed that the higher percentage of silver with fine particles size. The antibacterial property of synthesized nanoparticles was observed by Kirby-Bauer method with clinically isolated multi-drug resistant bacteria such as Streptococcus pyogens, Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus aureus. The plant materials mediated synthesis of silver nanoparticles have comparatively rapid and less expensive and wide application to antibacterial therapy in modern medicine. Copyright © 2012 Elsevier B.V. All rights reserved.
Hong, Xuesen; Wen, Junjie; Xiong, Xuhua; Hu, Yongyou
2016-03-01
Silver nanoparticles (AgNPs) are used as sustained-release bactericidal agents for water treatment. Among the physicochemical characteristics of AgNPs, shape is an important parameter relevant to the antibacterial activity. Three typically shaped AgNPs, nanocubes, nanospheres, and nanowires, were prepared via a microwave-assisted method and characterized by TEM, UV-vis, and XRD. The antibacterial activity of AgNPs was determined by OD growth curves tests, MIC tests, and cell viability assay against Escherichia coli. The interaction between AgNPs and bacterial cells was observed by TEM. The results showed that the three differently shaped AgNPs were nanoscale, 55 ± 10 nm in edge length for nanocubes, 60 ± 15 nm in diameter for nanospheres, 60 ± 10 nm in diameter and 2-4 μm in length for nanowires. At the bacterial concentration of 10(4) CFU/mL, the MIC of nanocubes, nanospheres, and nanowires were 37.5, 75, and 100 μg/mL, respectively. Due to the worst contact with bacteria, silver nanowires exhibited the weakest antibacterial activity compared with silver nanocubes and silver nanospheres. Besides, silver nanocubes mainly covered by {100} facets showed stronger antibacterial activity than silver nanospheres covered by {111} facets. It suggests that the shape effect on the antibacterial activity of AgNPs is attributed to the specific surface areas and facets reactivity; AgNPs with larger effective contact areas and higher reactive facets exhibit stronger antibacterial activity.
Gabel, Jon; Whitmore, Heidi; Green, Matthew; Call, Adrienne; Stromberg, Sam; Oran, Rebecca
2016-10-01
Issue: Without the cost-sharing reductions (CSRs) made available by the Affordable Care Act, health plans sold in the marketplaces may be unaffordable for many low-income people. CSRs are available to households earning between 100 percent and 250 percent of the federal poverty level that choose a silver-level marketplace plan. In 2016, about 7 million people received cost-sharing reductions that substantially lowered their deductibles, copayments, coinsurance, and out-of-pocket limits. Goal: To examine variations in consumer cost-sharing reductions between silver-level plans with CSRs to traditional marketplace plans and to employer-based insurance. Methods: Data analysis of 1,209 CSR-eligible plans sold in individual marketplaces in all 50 states and Washington, D.C. Key findings and conclusions: Cost-sharing amounts in silver plans with CSRs are much less than those in non-CSR base silver plans; silver plans with CSRs generally offer far better financial protection than those without. General annual deductibles range from $246 for CSR silver plans with a platinum-level actuarial value (94%) to as much as $3,063 for non-CSR silver plans. Out-of-pocket limits vary from $6,223 in base silver plans to $1,102 in silver plans with CSRs and a platinum-level actuarial level.
Tuning silver ion release properties in reactively sputtered Ag/TiOx nanocomposites
NASA Astrophysics Data System (ADS)
Xiong, J.; Ghori, M. Z.; Henkel, B.; Strunskus, T.; Schürmann, U.; Deng, M.; Kienle, L.; Faupel, F.
2017-07-01
Silver/titania nanocomposites with strong bactericidal effects and good biocompatibility/environmental safety show a high potential for antibacterial applications. Tailoring the silver ion release is thus highly promising to optimize the antibacterial properties of such coatings and to preserve biocompatibility. Reactive sputtering is a fast and versatile method for the preparation of such Ag/TiOx nanocomposites coatings. The present work is concerned with the influence of sputter parameters on the surface morphology and silver ion release properties of reactively sputtered Ag/TiOx nanocomposites coatings showing a silver nanoparticle size distribution in the range from 1 to 20 nm. It is shown that the silver ion release rate strongly depends on the total pressure: the coatings prepared at lower pressure present a lower but long-lasting release behavior. The much denser structure produced under these conditions reduces the transport of water molecules into the coating. In addition, the influence of microstructure and thickness of titanium oxide barriers on the silver ion release were investigated intensively. Moreover, for the coatings prepared at high total pressure, it was demonstrated that stable and long-lasting silver release can be achieved by depositing a barrier with a high rate. Nanocomposites produced under these conditions show well controllable silver ion release properties for applications as antibacterial coatings.
Basavegowda, Nagaraj; Lee, Yong Rok
2014-06-01
The present investigation demonstrates a rapid biogenic approach for the synthesis of gold and silver nanoparticles using biologically active and medicinal important Perilla frutescens leaf extract as a reducing and stabilizing agent under ambient conditions. Gold and silver nanoparticles were first synthesized from Perilla frutescens leaf extract which was used as a vegetable and in traditional medicines for a long time in Korea, Japan, and China. The nanoparticles obtained were characterized by UV-vis spectroscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Surface plasmon resonance spectra of gold and silver nanoparticles were obtained at 540 and 430 nm and triangular and spherical shape respectively. TEM studies showed that the particle sizes of gold and silver nanoparticles ranges -50 nm and -40 nm respectively. X-ray diffraction studies confirm that the biosynthesized nanoparticles were crystalline gold and silver. Fourier transform infra-red spectroscopy revealed that biomolecules were involved in the synthesis and capping of the nanoparticles produced. XRD and EDX confirmed the formation of gold and silver nanoparticles. This is a simple, efficient and rapid method to synthesize gold and silver nanoparticles at room temperature without use of toxic chemicals. Obtained gold and silver nanoparticles can be used in various biomedical and biotechnological applications.
A visible light-induced photocatalytic silver enhancement reaction for gravimetric biosensors.
Ko, Wooree; Yim, Changyong; Jung, Namchul; Joo, Jinmyoung; Jeon, Sangmin; Seo, Hyejung; Lee, Soo Suk; Park, Jae Chan
2011-10-07
We have developed a novel microgravimetric immunosensor using a WO(3) nanoparticle-modified immunoassay and a silver enhancement reaction. When the nanoparticles in silver ion solution (i.e. AgNO(3)) are exposed to visible light, the silver ions are photocatalytically reduced and form a metallic silver coating on the nanoparticles. This silver coating consequently induces changes in the mass and light absorption spectrum. Although photocatalytic reduction reactions can be achieved using ultraviolet (UV) light and TiO(2) nanoparticles as described in our previous publication (Seo et al 2010 Nanotechnology 21 505502), the use of UV light in biosensing applications has drawbacks in that UV light can damage proteins. In addition, conventional quartz crystal substrates must be passivated to prevent undesirable silver ion reduction on their gold-coated sensing surfaces. We addressed these problems by adopting a visible light-induced photocatalytic silver enhancement method using WO(3) nanoparticles and lateral field excited (LFE) quartz crystals. As a proof-of-concept demonstration of the technique, streptavidin was adsorbed onto an LFE quartz crystal, and its mass was enhanced with biotinylated WO(3) nanoparticles, this being followed by a photocatalytic silver enhancement reaction. The mass change due to the enhancement was found to be > 30 times greater than the mass change obtained with the streptavidin alone.
NASA Astrophysics Data System (ADS)
Mala, R.; Celsia, A. S. Ruby
2018-02-01
Burn wound is a global problem affecting millions of people. It is the major cause of mortality and morbidity. This study was aimed to isolate and identify the wound isolates by 16S rRNA and to assess their susceptibility to antibiotics and silver nanoparticles. Silver nanoparticles were synthesized using aqueous extract of A.indica. The silver nanoparticles were characterized by FESEM, XRD, FTIR and DSC. Antibacterial susceptibility of the isolates was assessed by well diffusion method. The wound isolates were identified as S.aureus and E.coli. Both isolates were resistant to β lactum antibiotics, aminoglycoside, quinolones and macrolides. The inhibition zone exhibited by all antibiotics against both organisms was less than 5 mm. The size of silver nanoparticles were recorded as 55 nm. XRD confirmed the crystalline nature of the nanoparticles. TGA and DSC of silver nanoparticles showed the loss of weight and the melting point of silver nanoparticles was recorded at 871.3°C. Silver nano particles inhibited S.aureus and E.coli with an inhibition zone of 27 mm and 32 mm respectively. Therefore the study demonstrated that only silver containing dressings can be used in burn wounds infected by multi drug resistant super bugs.
Synthesis and characterization of graphene quantum dots-silver nanocomposites
NASA Astrophysics Data System (ADS)
Vandana, M.; Ashokkumar, S. P.; Vijeth, H.; Niranjana, M.; Yesappa, L.; Devendrappa, H.
2018-04-01
A facile microwave assisted hydrothermal method is used to synthesise glucose derived water soluble crystalline graphene quantum dots (GQDs) andcitrate reduction method was used to synthesized silver nanoparticles (SNPs). The formation of graphene quantum dots-silver nanocomposites (GSC) was synthesized through a simple refluxing process and characterised using Fourier Transform Infrared (FT-IR) to study the chemical interaction, Surface morphology using FESEM, Optical properties were studied using UV-Visible spectroscopy. The absorption band shows at 249, 306 and 447 nm confirms the formation of GQDs and GSC. The electrochemical performance of GSC tested to determine the oxidation/reduction processes by cyclic voltammetry and linear sweep voltammetry.
Silver-based Antibacterial Surfaces for Drinking Water Disinfection - An overview
Risks associated with current disinfection techniques, including the formation of disinfection by-products and multi-drug resistant bacterial species, have prompted the exploration of advanced disinfection methods. One such technique employs silver nanoparticles incorporation on ...
ERIC Educational Resources Information Center
Journal of Chemical Education, 2000
2000-01-01
Presents an activity that allows students to remove tarnish from silver using the reaction of tarnish with aluminum rather than the abrasion method of commercial tarnish removers. Makes suggestions for adapting the activity to an at-home investigation. (WRM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohenberger, Erik; Freitag, Nathan; Rosenmann, Daniel
Here, we present a facile method for fabricating nanostructured silver films containing a high density of nanoscopic gap features through a surface directed phenomenon utilizing nanoporous scaffolds rather than through traditional lithographic patterning processes. This method enables tunability of the silver film growth by simply adjusting the formulation and processing conditions of the nanoporous film prior to metallization. We further demonstrate that this process can produce nanoscopic gaps in thick (100 nm) silver films supporting localized surface plasmon resonance with large field amplification within the gaps while enabling launching of propagating surface plasmons within the silver grains. These enhanced fieldsmore » provide metal enhanced fluorescence with enhancement factors as high as 21 times compared to glass, as well as enable visualization of single fluorophore emission. This work provides a low-cost rapid approach for producing novel nanostructures capable of broadband fluorescence amplification, with potential applications including plasmonic and fluorescence based optical sensing and imaging applications.« less
NASA Astrophysics Data System (ADS)
Chu, Dung Tien; Sai, Doanh Cong; Luu, Quynh Manh; Tran, Hong Thi; Quach, Truong Duy; Kim, Dong Hyun; Nguyen, Nam Hoang
2017-06-01
Bifunctional magnetic-plasmonic nanoparticles (NPs)—Fe3O4@SiO2-Ag were successfully synthesized by an ultrasound assisted chemical method. Silver ions were absorbed and then reduced by sodium borohydride on the surface of 3-aminopropyltriethoxysilane (APTES) functionalized silica-coated magnetic NPs, then they were reduced under the influence of a 200 W ultrasonic wave for 60 min. When the amount of precursor silver ions increased, the relative intensity of diffraction peaks of silver crystals in all samples increased with the atomic ratio of silver/iron increasing from 0.208 to 0.455 and saturation magnetization ( M s) decreasing from 44.68 emu/g to 34.74 emu/g. The NPs have superparamagnetic properties and strong surface plasmon absorption at 420 nm, which make these particles promising for biomedical applications.
Slack, J.F.; Coad, P.R.
1989-01-01
The tourmalines and chlorites record a series of multiple hydrothermal and metamorphic events. Paragenetic studies suggest that tourmaline was deposited during several discrete stages of mineralization, as evidence by brecciation and cross-cutting relationships. Most of the tourmalines have two concentric growth zones defined by different colours (green, brown, blue, yellow). Some tourmalines also display pale discordant rims that cross-cut and embay the inner growth zones and polycrystalline, multiple-extinction domains. Late sulphide veinlets (chalcopyrite, pyrrhotite) transect the inner growth zones and pale discordant rims of many crystals. The concentric growth zones are interpreted as primary features developed by the main ore-forming hydrothermal system, whereas the discordant rims, polycrystalline domains, and cross-cutting sulphide veinlets reflect post-ore metamorphic processes. Variations in mineral proportions and mineral chemistry within the deposit mainly depend on fluctuations in temperature, pH, water/rock ratios, and amounts of entrained seawater. -from Authors
Molar tooth carbonates and benthic methane fluxes in Proterozoic oceans.
Shen, Bing; Dong, Lin; Xiao, Shuhai; Lang, Xianguo; Huang, Kangjun; Peng, Yongbo; Zhou, Chuanming; Ke, Shan; Liu, Pengju
2016-01-07
Molar tooth structures are ptygmatically folded and microspar-filled structures common in early- and mid-Proterozoic (∼2,500-750 million years ago, Ma) subtidal successions, but extremely rare in rocks <750 Ma. Here, on the basis of Mg and S isotopes, we show that molar tooth structures may have formed within sediments where microbial sulphate reduction and methanogenesis converged. The convergence was driven by the abundant production of methyl sulphides (dimethyl sulphide and methanethiol) in euxinic or H2S-rich seawaters that were widespread in Proterozoic continental margins. In this convergence zone, methyl sulphides served as a non-competitive substrate supporting methane generation and methanethiol inhibited anaerobic oxidation of methane, resulting in the buildup of CH4, formation of degassing cracks in sediments and an increase in the benthic methane flux from sediments. Precipitation of crack-filling microspar was driven by methanogenesis-related alkalinity accumulation. Deep ocean ventilation and oxygenation around 750 Ma brought molar tooth structures to an end.
Half-cell potentials of semiconductive simple binary sulphides in aqueous solution
Sato, M.
1966-01-01
Theoretical consideration of the charge-transfer mechanism operative in cells with an electrode of a semiconductive binary compound leads to the conclusion that the half-cell potential of such a compound is not only a function of ionic activities in the electrolytic solution, but also a function of the activities of the component elements in the compound phase. The most general form of the electrode equation derived for such a compound with a formula MiXj which dissociates into Mj+ and Xi- ions in aqueous solution is. EMiXj = EMiXj0 + R T 2 ij ln [ (sua Mj+)aqi ?? (suaX)jMiXj/ (suaXi-)aqj ?? (suaM)iMiXj],. where. EMiXj0 = 1 2(EM,Mj+0 + EXi-,X). The equation can be modified to other forms. When applied to semiconductive simple binary sulphides, these equations appear to give better descriptions of the observed electrode potentials of such sulphides than any other proposed equations. ?? 1966.
The case against climate regulation via oceanic phytoplankton sulphur emissions.
Quinn, P K; Bates, T S
2011-11-30
More than twenty years ago, a biological regulation of climate was proposed whereby emissions of dimethyl sulphide from oceanic phytoplankton resulted in the formation of aerosol particles that acted as cloud condensation nuclei in the marine boundary layer. In this hypothesis--referred to as CLAW--the increase in cloud condensation nuclei led to an increase in cloud albedo with the resulting changes in temperature and radiation initiating a climate feedback altering dimethyl sulphide emissions from phytoplankton. Over the past two decades, observations in the marine boundary layer, laboratory studies and modelling efforts have been conducted seeking evidence for the CLAW hypothesis. The results indicate that a dimethyl sulphide biological control over cloud condensation nuclei probably does not exist and that sources of these nuclei to the marine boundary layer and the response of clouds to changes in aerosol are much more complex than was recognized twenty years ago. These results indicate that it is time to retire the CLAW hypothesis.
Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach
NASA Astrophysics Data System (ADS)
Hudlikar, Manish; Joglekar, Shreeram; Dhaygude, Mayur; Kodam, Kisan
2012-05-01
A low-cost, green synthesis of ZnS nanoparticles is reported using 0.3 % latex solution prepared from Jatropha curcas L. ZnS nanoparticles were characterized by X-ray diffraction, selected area electron diffraction, transmission electron microscopy, energy dispersive analysis of X-rays, UV-vis optical absorption and photoluminescence techniques. Fourier Transform Infrared Spectroscopy was performed to find the role of cyclic peptides namely curcacycline A (an octapeptide), curcacycline B (a nonapeptide) and curcain (an enzyme) as a possible reducing and stabilizing agents present in the latex of J. curcas L. The average size of ZnS nanoparticles was found to be 10 nm. Latex of J. curcas L. itself acts as a source of sulphide (S-2) ions that are donated to Zn ions under present experimental conditions. Source of sulphide (S-2) ions is still unclear, but we speculate that cysteine or thiol residues present in enzyme curcain may be donating these sulphide (S-2) ions.
NASA Astrophysics Data System (ADS)
Soler, A.; Ayora, C.; Cardellach, E.; Delgado, J.
1990-12-01
Several varieties of skarn outcrop have been found to develop along the contact between the Andorra granite and the Devonian limestones. The skarns contain variable amounts of gold ranging up to 5 g/t, always associated with sulphides. The sulphides in the skarn include arsenopyrite and pyrrhotite with lesser amounts of chalcopyrite, galena, sphalerite and Bi-minerals. Geothermometric and geobarometric data indicate the skarns formed at about 2 kbar and temperatures ranging from 500 ° to 350 °C from CO2-free polysaline brines at a slightly acidic pH and oxygen fugacity which decreases with time from the pyrite-pyrrhotite-magnetite towards the QFM buffer. Available data on gold solubility suggest that sufficient quantities of gold to form an ore deposit could have been transported as AuCl{2/-}at the high temperatures and salinities under which the skarns formed. Both gold deposition and sulphide precipitation could have occurred due to a decrease in temperature and/or oxygen fugacity.
Molar tooth carbonates and benthic methane fluxes in Proterozoic oceans
Shen, Bing; Dong, Lin; Xiao, Shuhai; Lang, Xianguo; Huang, Kangjun; Peng, Yongbo; Zhou, Chuanming; Ke, Shan; Liu, Pengju
2016-01-01
Molar tooth structures are ptygmatically folded and microspar-filled structures common in early- and mid-Proterozoic (∼2,500–750 million years ago, Ma) subtidal successions, but extremely rare in rocks <750 Ma. Here, on the basis of Mg and S isotopes, we show that molar tooth structures may have formed within sediments where microbial sulphate reduction and methanogenesis converged. The convergence was driven by the abundant production of methyl sulphides (dimethyl sulphide and methanethiol) in euxinic or H2S-rich seawaters that were widespread in Proterozoic continental margins. In this convergence zone, methyl sulphides served as a non-competitive substrate supporting methane generation and methanethiol inhibited anaerobic oxidation of methane, resulting in the buildup of CH4, formation of degassing cracks in sediments and an increase in the benthic methane flux from sediments. Precipitation of crack-filling microspar was driven by methanogenesis-related alkalinity accumulation. Deep ocean ventilation and oxygenation around 750 Ma brought molar tooth structures to an end. PMID:26739600
Short-term temperature impact on simultaneous biological nitrogen-sulphur treatment in EGSB reactor.
Sposob, Michal; Dinamarca, Carlos; Bakke, Rune
2016-10-01
Sulphides are present in many wastewater streams; their removal is important due to corrosiveness, toxicity and unpleasant odour, and can be carried out by anaerobic biological treatment. This study focuses on the temperature effect (25-10 °C) on an expanded granular sludge bed (EGSB) reactor for sulphide removal using nitrate as electron acceptor. The reactor was run at a NO 3 - /HS - molar ratio of 0.35 and pH of 8.5-9.0. Samples were analysed by ion chromatography (NO 3 - , SO 4 2- and S 2 O 3 2- ), spectrophotometry (S 2- ) and by scanning electron microscopy (SEM). S 2- and NO 3 - removal was 99.74 ± 0.04 and 99.5 ± 2.9%, respectively. Sulphur (S 0 ) was found on the outer granule surface and struvite inside the granule, by SEM. Sulphide conversion to sulphur was up to 76%. Temperature transitions and levels influenced S 2 O 3 2- and SO 4 2- concentrations.
Studies on volatile organic compounds of some truffles and false truffles.
D'Auria, Maurizio; Racioppi, Rocco; Rana, Gian Luigi; Laurita, Alessandro
2014-01-01
Results of solid phase micro-extraction coupled to gas chromatography and mass spectrometry analyses, accomplished on sporophores of 11 species of truffles and false truffles, are reported. Volatile organic compounds (VOCs) found in Gautieria morchelliformis were dimethyl sulphide, 1,3-octadiene, 3,7-dimethyl-1,6-octadien-3-ol, amorphadiene, isoledene and cis-muurola-3,5-diene. In Hymenogaster luteus var. luteus, presence of 1,3-octadiene, 1-octen-3-ol, 3-octanone, 3-octanol and 4-acetylanisole was revealed. Two VOCs, 4-acetylanisole and β-farnesene, constituted aroma of Hymenogaster olivaceus.Melanogaster broomeanus exhibited as components of its aroma 2-methyl-1,3-butadiene, 2-methylpropanal, 2-methylpropanol, isobutyl acetate, 3,7-dimethyl-1,6-octadien-3-ol, 3-octanone and β-curcumene. VOC profile of Octavianina asterosperma was characterised by the presence of dimethyl sulphide, ethyl 2-methylpropanoate, methyl 2-methylbutanoate and 3-octanone. Tuber rufum var. rufum and Pachyphloeus conglomeratus showed the presence of dimethyl sulphide only.
Kijjanapanich, P; Pakdeerattanamint, K; Lens, P N L; Annachhatre, A P
2012-12-01
This research was conducted to select suitable natural organic substrates as potential carbon sources for use as electron donors for biological sulphate reduction in a permeable reactive barrier (PRB). A number of organic substrates were assessed through batch and continuous column experiments under anaerobic conditions with acid mine drainage (AMD) obtained from an abandoned lignite coal mine. To keep the heavy metal concentration at a constant level, the AMD was supplemented with heavy metals whenever necessary. Under anaerobic conditions, sulphate-reducing bacteria (SRB) converted sulphate into sulphide using the organic substrates as electron donors. The sulphide that was generated precipitated heavy metals as metal sulphides. Organic substrates, which yielded the highest sulphate reduction in batch tests, were selected for continuous column experiments which lasted over 200 days. A mixture of pig-farm wastewater treatment sludge, rice husk and coconut husk chips yielded the best heavy metal (Fe, Cu, Zn and Mn) removal efficiencies of over 90%.
Bacterial growth on a superhydrophobic surface containing silver nanoparticles
NASA Astrophysics Data System (ADS)
Heinonen, S.; Nikkanen, J.-P.; Laakso, J.; Raulio, M.; Priha, O.; Levänen, E.
2013-12-01
The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating.
Qiu, Hong-yan; Zou, Yan; Li, Li; Liang, Hong; Zhang, Hong-yan; Wu, Shang-chun
2011-02-01
To compare efficacy of female sterilization by modified Uchida technique and silver clips and to evaluate the influence on operation procedure and clinical effect with or without surgery training of service providers. A comparative, multicenter clinical trial was performed in 18 county and township-level service centers. Totally 2198 women underwent sterilization from these 18 study center were divided into 1116 women sterilized by modified Uchida technique and 1082 women by silver clips. Those 18 centers were classified into 9 training groups which provide surgical skills of sterilization and other contents and 9 non training groups. Clinical documents of sterilization were recorded. All women were follow-up at 3, 6 and 12 months after surgery. There were no complications during surgery by both sterilization. The failure rate was 2.03% (22/1082) in silver clip method and the mean operative time were (12.4 ± 6.4) minutes in training group and (14.4 ± 8.1) minutes in non training group. In modified Uchida method, the failure rate was 0.18% (2/1116) and the mean operative time were (16.2 ± 4.9) minutes in training group and (19.0 ± 8.6) minutes in non training group. The mean operative time between two groups reached statistical difference (all P < 0.05). Total ended rate in modified Uchida technique were 2.2/hundred women year in training group and 2.5/hundred women year in non training group, and the rate of silver slips were 3.9/hundred women year and 4.8/hundred women year, which did not show significant difference (all P > 0.05). There was no significant difference in acceptability and side effects of all women between two methods (P > 0.05). The training of service providers could influence acceptability of women (P < 0.05). Clinical efficacy was not influenced by those two methods. The operative time and acceptability were improved by training surgeons in silver clips method.
Wang, Ping; Wu, Tun-Hua; Zhang, Yong
2016-01-01
Metal-enhanced fluorescence (MEF) has exhibited promise for applications in fluorometric assays. The effects of silver nanoparticles (AgNP) on the fluorescence behaviours of tetracycline hydrochloride (TCH) and chlortetracycline hydrochloride (CTC) in aqueous solutions were investigated. The experimental results demonstrated that the fluorescence intensities of each tetracycline in water solutions were greatly enhanced by AgNP through the MEF effect. In addition, a novel silver nanoparticle-enhanced fluorometric method was established for the direct determination of TCH and CTC in aqueous solutions. Under optimum experimental conditions, the linear dynamic ranges for the determination of TCH and CTC in aqueous solutions varied from 0.10 to 6.0 mg L(-1) and 0.050 to 3.0 mg L(-1) with detection limits of 0.63 µg L(-1) and 0.19 µg L(-1), respectively, and with the relative standard deviation of less than 1.9% (n=9). The experimental recovery results for the determination of TCH and CTC in aqueous solutions ranged from 93-106% and 95-104%, respectively. Compared with the established method without the addition of AgNP, the limits of quantitation of the silver nanoparticle-enhanced fluorometric method were approximately 5-fold lower for TCH and 3-fold lower for CTC. Moreover, the newly established silver nanoparticle-enhanced fluorometric method was successfully applied to the direct determination of TCH and CTC in pharmaceutical preparations. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhou, Zhenpeng; Li, Tian; Huang, Hongduan; Chen, Yang; Liu, Feng; Huang, Chengzhi; Li, Na
2014-11-11
Silver-enhanced fluorescence was coupled with a bio-barcode assay to facilitate a dual amplification assay to demonstrate a non-enzymatic approach for simple and sensitive detection of DNA. In the assay design, magnetic nanoparticles seeded with silver nanoparticles were modified with the capture DNA, and silver nanoparticles were modified with the binding of ssDNA and the fluorescently labeled barcode dsDNA. Upon introduction of the target DNA, a sandwich structure was formed because of the hybridization reaction. By simple magnetic separation, silver-enhanced fluorescence of barcode DNAs could be readily measured without the need of a further step to liberate barcode DNAs from silver nanoparticles, endowing the method with simplicity and high sensitivity with a detection limit of 1 pM.
2013-01-01
We have synthesized silver nanoparticles from silver nitrate solutions using extracts of Rumex hymenosepalus, a plant widely found in a large region in North America, as reducing agent. This plant is known to be rich in antioxidant molecules which we use as reducing agents. Silver nanoparticles grow in a single-step method, at room temperature, and with no addition of external energy. The nanoparticles have been characterized by ultraviolet-visible spectroscopy and transmission electron microscopy, as a function of the ratio of silver ions to reducing agent molecules. The nanoparticle diameters are in the range of 2 to 40 nm. High-resolution transmission electron microscopy and fast Fourier transform analysis show that two kinds of crystal structures are obtained: face-centered cubic and hexagonal. PMID:23841946
Dankovich, Theresa A.
2014-01-01
This work reports an environmentally benign method for the in situ preparation of silver nanoparticles (AgNPs) in paper using microwave irradiation. Through thermal evaporation, microwave heating with an excess of glucose relative to the silver ion precursor yields nanoparticles on the surface of cellulose fibers within three minutes. Paper sheets were characterized by electron microscopy, UV-Visible reflectance spectroscopy, and atomic absorption spectroscopy. Antibacterial activity and silver release from the AgNP sheets were assessed for model Escherichia coli and Enterococci faecalis bacteria in deionized water and in suspensions that also contained with various influent solution chemistries, i.e. with natural organic matter, salts, and proteins. The paper sheets containing silver nanoparticles were effective in inactivating the test bacteria as they passed through the paper. PMID:25400935
Advances in Surface-Enhanced Fluorescence
Lakowicz, Joseph R.; Geddes, Chris D.; Gryczynski, Ignacy; Malicka, Joanna; Gryczynski, Zygmunt; Aslan, Kadir; Lukomska, Joanna; Matveeva, Evgenia; Zhang, Jian; Badugu, Ramachandram; Huang, Jun
2009-01-01
We report recent achievements in metal-enhanced fluorescence from our laboratory. Several fluorophore systems have been studied on metal particle-coated surfaces and in colloid suspensions. In particular, we describe a distance dependent enhancement on silver island films (SIFs), release of self-quenching of fluorescence near silver particles, and the applications of fluorescence enhancement near metalized surfaces to bioassays. We discuss a number of methods for various shaped silver particle deposition on surfaces. PMID:15617385
Reche, Irene; Gallardo, Iluminada; Guirado, Gonzalo
2015-01-28
A report is presented on the use of cyclic voltammetry using silver as a working electrode. The combined electrocatalytic properties of silver and ionic liquids allow cyclic voltammetry to be turned into an ideal tool for the rapid and accurate access to diffusion coefficient values and solubility values of carbon dioxide in ionic liquids under standard conditions.
NASA Astrophysics Data System (ADS)
Mu, Quanyi; Dunn, Conner K.; Wang, Lei; Dunn, Martin L.; Qi, H. Jerry; Wang, Tiejun
2017-04-01
Recent developments in soft materials and 3D printing are promoting the rapid development of novel technologies and concepts, such as 4D printing and soft machines, that in turn require new methods for fabricating conductive materials. Despite the ubiquity of silver nanoparticles (NPs) in the conducting electrodes of printed electronic devices, their potential use in stretchable conductors has not been fully explored in 4D printing and soft machines. This paper studies the effect of thermal cure conditions on conductivity and electro-mechanical behaviors of silver ink by the direct ink write (DIW) printing approach. We found that the electro-mechanical properties of silver wires can be tailored by controlling cure time and cure temperature to achieve conductivity as well as stretchability. For the silver NP ink we used in the experiments, silver wires cured at 80 °C for 10-30 min have conductivity >1% bulk silver, Young’s modulus <100 MPa, yield strain ˜9%, and can retain conductivity up to 300% strain. In addition, under stress controlled cyclic loading/unloading conditions, the resistance of these wires is only about 1.3 times the initial value after the 100th repeat cycle (7.6% maximum strain in the first cycle). Silver wires cured at 120 °C for 10-20 min are more sensitive to strain and have a yield strain of around 6%. These properties indicate that the silver ink can be used to fabricate stretchable electrodes and flex sensors. Using the DIW fabrication method, we printed silver ink patterns on the surface of 3D printed polymer parts, with the future goal of constructing fully 3D printed arbitrarily formed soft and stretchable devices and of applying them to 4D printing. We demonstrated a fully printed functional soft-matter sensor and a circuit element that can be stretched by as much as 45%.
Microwave-Assisted Green Synthesis of Silver Nanostructures
This account summarizes a microwave (MW)-assisted synthetic approach for producing silver nanostructures. The rapid and in-core MW heating has received considerable attention as a promising new method for the one-pot synthesis of metallic nanostructures in solutions. Conceptually...
NASA Astrophysics Data System (ADS)
Moulton, Michael C.; Braydich-Stolle, Laura K.; Nadagouda
2010-05-01
Since ancient times, people have taken advantage of the antimicrobial effects of colloidal silver particles. Aside from the medical prospects, silver nanoparticles are found in a wide range of commercially available consumer products ranging from cosmetics to household cleansers. Current synthetic methods for creating silver nanoparticles typically call for potentially hazardous chemicals, extreme heat, and produce environmentally dangerous byproducts. Therefore, it is essential that novel ``green'' synthesis of nanoparticles becomes a reality, and it is imperative to fully analyze the potential toxic effects of these nanoparticles. In this study, we have shown that by reducing silver nitrate in solutions of tea extract or epicatechin of varying concentrations, spherical silver nanoparticles were formed that had controllable size distributions depending on the concentration of tea extract or epicatechin in the samples. Our ultra-resolution microscopy demonstrated that the nanoparticles were in fact interacting with the keratinocytes. Furthermore, evaluation of mitochondrial function (MTS) to assess cell viability and membrane integrity (LDH) in human keratinocytes showed that the silver nanoparticles were nontoxic. These results demonstrated that these nanoparicles are potentially biocompatible and warrant further evaluation in other biological systems.
Surface enhanced Raman spectral studies of 2-bromo-1,4-naphthoquinone.
Geetha, K; Umadevi, M; Sathe, G V; Vanelle, P; Terme, T; Khoumeri, O
2015-03-05
Silver nanoparticles have been synthesized by a simple and inexpensive solution combustion method with urea as fuel. The structural and morphology of the silver nanoparticles were investigated through X-ray powder diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersion Spectra (EDS) techniques. Structural and morphological results confirmed the nanocrystalline nature of the silver nanoparticles. Density Functional Theory (DFT) calculations were also performed to study the ground and excited state behavior of 2-bromo-1,4-naphthoquinone (2-BrNQ) and 2-BrNQ on silver nanoparticles. Surface-Enhanced Raman Scattering (SERS) spectra of 2-BrNQ adsorbed on silver nanoparticles were investigated. The CO, CH in-plane bending and CBr stretching modes were enhanced in SERS spectrum with respect to normal Raman spectrum. The spectral analysis reveals that the 2-BrNQ adsorbed 'stand-on' orientation on the silver surface. Density Functional Theory (DFT) calculations are also performed to study the vibrational features of 2-BrNQ molecule and 2-BrNQ molecule on silver surface. Copyright © 2014 Elsevier B.V. All rights reserved.
Siqueira, Maria C; Coelho, Gustavo F; de Moura, Márcia R; Bresolin, Joana D; Hubinger, Silviane Z; Marconcini, José M; Mattoso, Luiz H C
2014-07-01
In this study, silver nanoparticles were prepared and incorporated into carboxymethylcellulose films to evaluate the antimicrobial activity for food packaging applications. The techniques carried out for material characterization were: infrared spectroscopy and thermal analysis for the silver nanoparticles and films, as well as particle size distribution for the nanoparticles and water vapor permeability for the films. The antimicrobial activity of silver nanoparticles prepared by casting method was investigated. The minimum inhibitory concentration (MIC) value of the silver nanoparticles to test Gram-positive (Enterococcus faecalis) and Gram-negative (Escherichia coli) microorganisms was carried out by the serial dilution technique, tested in triplicate to confirm the concentration used. The results were developed using the Mcfarland scale which indicates that the presence or absence of turbidity tube demonstrates the inhibition of bacteria in relation to the substance inoculated. It was found that the silver nanoparticles inhibited the growth of the tested microorganisms. The carboxymethylcellulose film embedded with silver nanoparticles showed the best antimicrobial effect against Gram-positive (E. faecalis) and Gram-negative (E. coli) bacteria (0.1 microg cm(-3)).
Advanced fabrication of single-crystalline silver nanopillar on SiO{sub 2} substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, Tomohiro, E-mail: tomohiro-mori@wakayama-kg.jp, E-mail: kenzo@eng.kagawa-u.ac.jp; Industrial Technology Center of Wakayama Prefecture, Ogura 60, Wakayama 649-6261; Tanaka, Yasuhiro
2016-01-25
Nanoscale crystallographic textures have received very little attention in research on surface plasmons using metallic nanostructures. A single-crystalline metallic nanostructure with a controlled crystallographic texture is expected to reduce optical losses. We elucidated the grain growth mechanism in silver thin films deposited on a highly transparent SiO{sub 2} substrate by electron backscatter diffraction methods with nanoscale resolution. At higher substrate temperatures, the grain growth was facilitated but the preferred orientation was not achieved. Moreover, we fabricated a single-crystalline silver nanopillar in a (111)-oriented large growing grain, which was controlled by varying the substrate temperature during film deposition by focused ion-beammore » milling. Furthermore, the light intensity of the scattering spectrum was measured for a single-crystalline silver nanopillar (undersurface diameter: 200 nm) for which surface plasmon resonance was observed. The single-crystalline silver nanopillar exhibits a stronger and sharper spectrum than the polycrystalline silver nanopillar. These results can be applied to the direct fabrication of a single-crystalline silver nanopillar using only physical processing.« less
Cantilever testing of sintered-silver interconnects
Wereszczak, Andrew A.; Chen, Branndon R.; Jadaan, Osama M.; ...
2017-10-19
Cantilever testing is an underutilized test method from which results and interpretations promote greater understanding of the tensile and shear failure responses of interconnects, metallizations, or bonded joints. The use and analysis of this method were pursued through the mechanical testing of sintered-silver interconnects that joined Ni/Au-plated copper pillars or Ti/Ni/Ag-plated silicon pillars to Ag-plated direct bonded copper substrates. Sintered-silver was chosen as the interconnect test medium because of its high electrical and thermal conductivities and high-temperature capability—attractive characteristics for a candidate interconnect in power electronic components and other devices. Deep beam theory was used to improve upon the estimationsmore » of the tensile and shear stresses calculated from classical beam theory. The failure stresses of the sintered-silver interconnects were observed to be dependent on test-condition and test-material-system. In conclusion, the experimental simplicity of cantilever testing, and the ability to analytically calculate tensile and shear stresses at failure, result in it being an attractive mechanical test method to evaluate the failure response of interconnects.« less
NASA Astrophysics Data System (ADS)
Ghafoori, Seyed Mohammad; Entezari, Maliheh; Taghva, Arefeh; Tayebi, Zahra
2017-12-01
There are several ways to produce nanoparticles, but the biological method of nanoparticle production is considered most efficient by researchers due to its eco-friendly and energy saving properties. In this study, the biosynthesis of silver nanoparticles (AgNPs) via Cassia fistula fruit pulp extract was examined. Furthermore, its antibacterial effects were investigated both in vitro and in vivo. To achieve biosynthesis, 10 ml of C. fistula extract was added to 90 ml of aqueous solution of 1 mM silver nitrate. The solution was incubated in darkness overnight, at room temperature. After changing the color of solution, the production of AgNPs was examined by UV-Vis spectrophotometry, XRD and DLS methods. Finally, the antibacterial activity of AgNPs was investigated by using three methods: (1) agar well diffusion, (2) MIC determining and (3) effect on prevention of infection in wound on rat models. The results revealed that synthesized silver nanoparticles have strong antibacterial activity in vitro and in vivo conditions. Undeniably, further research is required to investigate the side effects of such particles.
Preparation of metallic nanoparticles by irradiation in starch aqueous solution
NASA Astrophysics Data System (ADS)
NemÅ£anu, Monica R.; Braşoveanu, Mirela; Iacob, Nicuşor
2014-11-01
Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔEab (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle ho was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.
Cantilever testing of sintered-silver interconnects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wereszczak, Andrew A.; Chen, Branndon R.; Jadaan, Osama M.
Cantilever testing is an underutilized test method from which results and interpretations promote greater understanding of the tensile and shear failure responses of interconnects, metallizations, or bonded joints. The use and analysis of this method were pursued through the mechanical testing of sintered-silver interconnects that joined Ni/Au-plated copper pillars or Ti/Ni/Ag-plated silicon pillars to Ag-plated direct bonded copper substrates. Sintered-silver was chosen as the interconnect test medium because of its high electrical and thermal conductivities and high-temperature capability—attractive characteristics for a candidate interconnect in power electronic components and other devices. Deep beam theory was used to improve upon the estimationsmore » of the tensile and shear stresses calculated from classical beam theory. The failure stresses of the sintered-silver interconnects were observed to be dependent on test-condition and test-material-system. In conclusion, the experimental simplicity of cantilever testing, and the ability to analytically calculate tensile and shear stresses at failure, result in it being an attractive mechanical test method to evaluate the failure response of interconnects.« less
Hydrostatic extrusion of Cu-Ag melt spun ribbon
Hill, M.A.; Bingert, J.F.; Bingert, S.A.; Thoma, D.J.
1998-09-08
The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process. 5 figs.
Hydrostatic extrusion of Cu-Ag melt spun ribbon
Hill, Mary Ann; Bingert, John F.; Bingert, Sherri A.; Thoma, Dan J.
1998-01-01
The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendoza-Lopez, M.L.; Centro de Fisica Aplicada y Tecnologia Avanzada, Departamento de Nanotecnologia, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Apdo. Postal 1-1010, Queretaro Qro. C.P. 76230; Perez-Bueno, J.J.
This paper presents a complete methodology for the characterization of silver alloys used in modern coin production. Mexican coins with a nominal silver concentration from 10% to 99.99% were used in this study. Calibrated Glow Discharge Optical Emission Spectrometers were used to determine the chemical composition of the alloys as a function of the depth, while inductively coupled plasma was used to determine the total element composition in bulk. Scanning Electron Microscope was used to study the phase distributions in the different silver coins. According to Glow Discharge Optical Emission Spectrometers and inductively coupled plasma, the silver content found inmore » the studied samples was consistently greater than that of the nominal silver content reported by the Mexican mint. This may lead to a review of the new methods of analysis used nowadays in contemporary coin minting. This result is very important because silver is increasing in value as metal and, considering the volume of production of silver coins, this may increase further as a consequence of a growing popular confidence in silver currency. In the case of silver studies, an advantage of the absence of silver detector in the Glow Discharge Optical Emission Spectrometers system is that it allows for the recalibration to have a better range of detection of other metals present in the alloys. A calibration curve using the copper content obtained by inductively coupled plasma (bulk) and Glow Discharge Optical Emission Spectrometers (depth profile) was performed. The relevance of control in modern silver coin minting was clarified, especially in minimizing the discrepancy between the nominal and the core fineness. The physical and chemical properties of the alloys studied are defined, revealing important variations in silver and copper contents. A new methodology and metrology for the control of coinage are suggested.« less
Use of Silver in the Prevention and Treatment of Infections: Silver Review
Campbell, Kristin T.; Rosenberger, Laura H.; Sawyer, Robert G.
2013-01-01
Abstract Background The use of silver for the treatment of various maladies or to prevent the transmission of infection dates back to at least 4000 b.c.e. Medical applications are documented in the literature throughout the 17th and 18th centuries. The bactericidal activity of silver is well established. Silver nitrate was used topically throughout the 1800s for the treatment of burns, ulcerations, and infected wounds, and although its use declined after World War II and the advent of antibiotics, Fox revitalized its use in the form of silver sulfadiazine in 1968. Method Review of the pertinent English-language literature. Results Since Fox's work, the use of topical silver to reduce bacterial burden and promote healing has been investigated in the setting of chronic wounds and ulcers, post-operative incision dressings, blood and urinary catheter designs, endotracheal tubes, orthopedic devices, vascular prostheses, and the sewing ring of prosthetic heart valves. The beneficial effects of silver in reducing or preventing infection have been seen in the topical treatment of burns and chronic wounds and in its use as a coating for many medical devices. However, silver has been unsuccessful in certain applications, such as the Silzone heart valve. In other settings, such as orthopedic hardware coatings, its benefit remains unproved. Conclusion Silver remains a reasonable addition to the armamentarium against infection and has relatively few side effects. However, one should weigh the benefits of silver-containing products against the known side effects and the other options available for the intended purpose when selecting the most appropriate therapy. PMID:23448590
Green chemical synthesis of silver nanomaterials with maltodextrin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tallant, David Robert; Lu, Ping; Lambert, Timothy N.
2010-11-01
Silver nanomaterials have significant application resulting from their optical properties related to surface enhanced Raman spectroscopy, high electrical conductivity, and anti-microbial impact. A 'green chemistry' synthetic approach for silver nanomaterials minimizes the environmental impact of silver synthesis, as well as lowers the toxicity of the reactive agents. Biopolymers have long been used for stabilization of silver nanomaterials during synthesis, and include gum Arabic, heparin, and common starch. Maltodextrin is a processed derivative of starch with lower molecular weight and an increase in the number of reactive reducing aldehyde groups, and serves as a suitable single reactant for the formation ofmore » metallic silver. Silver nanomaterials can be formed under either a thermal route at neutral pH in water or by reaction at room temperature under more alkaline conditions. Deposited silver materials are formed on substrates from near neutral pH solutions at low temperatures near 50 C. Experimental conditions based on material concentrations, pH and reaction time are investigated for development of deposited films. Deposit morphology and optical properties are characterized using SEM and UV-vis techniques. Silver nanoparticles are generated under alkaline conditions by a dissolution-reduction method from precipitated silver (II) oxide. Synthesis conditions were explored for the rapid development of stable silver nanoparticle dispersions. UV-vis absorption spectra, powder X-ray diffraction (PXRD), dynamic light scattering (DLS), and transmission electron microscopy (TEM) techniques were used to characterize the nanoparticle formation kinetics and the influence of reaction conditions. The adsorbed content of the maltodextrin was characterized using thermogravimetric analysis (TGA).« less
Guthrie, Kathleen M.; Agarwal, Ankit; Teixeira, Leandro B. C.; Dubielzig, Richard R.; Abbott, Nicholas L.; Murphy, Christopher J.; Singh, Harpreet; McAnulty, Jonathan F.; Schurr, Michael J.
2013-01-01
Silver is a commonly used topical antimicrobial. However, technologies to immobilize silver at the wound surface are lacking, while currently available silver-containing wound dressings release excess silver that can be cytotoxic and impair wound healing. We have shown that precise concentrations of silver at lower levels can be immobilized into a wound bed using a polyelectrolyte multilayer (PEM) attachment technology. These silver nanoparticle-impregnated PEMs are non-cytotoxic yet bactericidal in vitro, but their effect on wound healing in vivo was previously unknown. Objective The purpose of this study was to determine the effect on wound healing of integrating silver nanoparticle/PEMs into the wound bed. Methods A full-thickness, splinted, excisional murine wound healing model was employed in both phenotypically normal mice and spontaneously diabetic mice (healing impaired model). Results Gross image measurements showed an initial small lag in healing in the silver-treated wounds in diabetic mice, but no difference in time to complete wound closure in either normal or diabetic mice. Histological analysis showed modest differences between silver-treated and control groups on day 9, but no difference between groups at the time of wound closure. Conclusions We conclude that silver nanoparticle/PEMs can be safely integrated into the wound beds of both normal and diabetic mice without delaying wound closure, and with transient histological effects. The results of this study suggest the feasibility of this technology for use as a platform to effect nanoscale wound engineering approaches to microbial prophylaxis or to augment wound healing. PMID:23511285
NASA Astrophysics Data System (ADS)
Ezealisiji, K. M.; Noundou, X. S.; Ukwueze, S. E.
2017-11-01
In recent time, various phytosynthetic methods have been employed for the fabrication of silver nanoparticles; these unique metal nanoparticles are used in several applications which include pharmaceuticals and material engineering. The current research reports a rapid and simple synthetic partway for silver nanoparticles (AgNPs) using root bark aqueous extract of Annona muricata and the evaluation of its antimicrobial efficacy against pathogenic microorganisms. The root bark extract was treated with aqueous silver nitrate solution. Silver ions were reduced to silver atoms which on aggregation gave Silver nanoparticles; the biosynthesized AgNPs were characteristically spherical, discreet and stabilized by phytochemical entities and were characterized using ultraviolet visible spectroscopy, transmission electron microscope (TEM) and photon correlation microscopy. The aqueous plant extract-AgNPs suspension was subjected to Fourier transform infrared spectroscopy. TEM result for the average particle size is 22 ± 2 nm. The polydispersity index and zeta-potential were found to be 0.44 ± 0.02 and - 27.90 ± 0.01 mV, respectively (Zeta-Sizer). The antimicrobial evaluation result showed that the synthesized silver nanoparticles at different concentration were very active against the Gram-positive bacteria ( B. subtilis, S. aureous) and Gram-negative bacteria ( K. Pneumonia, E. Coli and Pseudomonas aeruginosa), P. aeruginosa being most susceptible to the anti microbial effect of the silver nanoparticles. Stable silver nanoparticles with antimicrobial activity were obtained through biosynthesis.