Sample records for sum rules

  1. New QCD sum rules based on canonical commutation relations

    NASA Astrophysics Data System (ADS)

    Hayata, Tomoya

    2012-04-01

    New derivation of QCD sum rules by canonical commutators is developed. It is the simple and straightforward generalization of Thomas-Reiche-Kuhn sum rule on the basis of Kugo-Ojima operator formalism of a non-abelian gauge theory and a suitable subtraction of UV divergences. By applying the method to the vector and axial vector current in QCD, the exact Weinberg’s sum rules are examined. Vector current sum rules and new fractional power sum rules are also discussed.

  2. A cluster version of the GGT sum rule

    NASA Astrophysics Data System (ADS)

    Hencken, Kai; Baur, Gerhard; Trautmann, Dirk

    2004-03-01

    We discuss the derivation of a "cluster sum rule" from the Gellmann-Goldberger-Thirring (GGT) sum rule as an alternative to the Thomas-Reiche-Kuhn (TRK) sum rule, which was used as the basis up to now. We compare differences in the assumptions and approximations. Some applications of the sum rule for halo nuclei, as well as, nuclei with a pronounced cluster structure are discussed.

  3. Range of validity for perturbative treatments of relativistic sum rules

    NASA Astrophysics Data System (ADS)

    Cohen, Scott M.

    2003-10-01

    The range of validity of perturbative calculations of relativistic sum rules is investigated by calculating the second-order relativistic corrections to the Bethe sum rule and its small momentum limit, the Thomas-Reiche-Kuhn (TRK) sum rule. For the TRK sum rule and atomic systems, the second-order correction is found to be less than 0.5% up to about Z=70. The total relativistic corrections should then be accurate at least through this range of Z, and probably beyond this range if the second-order terms are included. For Rn (Z=86), however, the second-order corrections are nearly 1%. The total corrections to the Bethe sum rule are largest at small momentum, never being significantly larger than the corresponding corrections to the TRK sum rule. The first-order corrections to the Bethe sum rule also give better than 0.5% accuracy for Z<70, and inclusion of the second-order corrections should extend this range, as well.

  4. Relativistic corrections to a generalized sum rule

    NASA Astrophysics Data System (ADS)

    Sinky, H.; Leung, P. T.

    2006-09-01

    Relativistic corrections to a previously established generalized sum rule are obtained using the Foldy-Wouthysen transformation. This sum rule derived previously by Wang [Phys. Rev. A 60, 262 (1999)] for a nonrelativistic system contains both the well-known Thomas-Reiche-Kuhn and Bethe sum rules, for which relativistic corrections have been obtained in the literature. Our results for the generalized formula will be applied to recover several results obtained previously in the literature, as well as to another sum rule whose relativistic corrections will be obtained.

  5. Exact sum rules for inhomogeneous systems containing a zero mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amore, Paolo, E-mail: paolo.amore@gmail.com

    2014-10-15

    We show that the formulas for the sum rules for the eigenvalues of inhomogeneous systems that we have obtained in two recent papers are incomplete when the system contains a zero mode. We prove that there are finite contributions of the zero mode to the sum rules and we explicitly calculate the expressions for the sum rules of order one and two. The previous results for systems that do not contain a zero mode are unaffected. - Highlights: • We discuss the sum rules of the eigenvalues of inhomogeneous systems containing a zero mode. • We derive the explicit expressionsmore » for sum rules of order one and two. • We perform accurate numerical tests of these results for three examples.« less

  6. Sum Rule for a Schiff-Like Dipole Moment

    NASA Astrophysics Data System (ADS)

    Raduta, A. A.; Budaca, R.

    The energy-weighted sum rule for an electric dipole transition operator of a Schiff type differs from the Thomas-Reiche-Kuhn (TRK) sum rule by several corrective terms which depend on the number of system components, N. For illustration the formalism was applied to the case of Na clusters. One concludes that the random phase approximation (RPA) results for Na clusters obey the modified TRK sum rule.

  7. Energy-weighted sum rules connecting ΔZ = 2 nuclei within the SO(8) model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Štefánik, Dušan; Šimkovic, Fedor; Faessler, Amand

    2013-12-30

    Energy-weighted sum rules associated with ΔZ = 2 nuclei are obtained for the Fermi and the Gamow-Teller operators within the SO(8) model. It is found that there is a dominance of contribution of a single state of the intermediate nucleus to the sum rule. The results confirm founding obtained within the SO(5) model that the energy-weighted sum rules of ΔZ = 2 nuclei are governed by the residual interactions of nuclear Hamiltonian. A short discussion concerning some aspects of energy weighted sum rules in the case of realistic nuclei is included.

  8. Exact sum rules for inhomogeneous strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amore, Paolo, E-mail: paolo.amore@gmail.com

    2013-11-15

    We derive explicit expressions for the sum rules of the eigenvalues of inhomogeneous strings with arbitrary density and with different boundary conditions. We show that the sum rule of order N may be obtained in terms of a diagrammatic expansion, with (N−1)!/2 independent diagrams. These sum rules are used to derive upper and lower bounds to the energy of the fundamental mode of an inhomogeneous string; we also show that it is possible to improve these approximations taking into account the asymptotic behavior of the spectrum and applying the Shanks transformation to the sequence of approximations obtained to the differentmore » orders. We discuss three applications of these results. -- Highlights: •We derive an explicit expression for the sum rules of an inhomogeneous string. •We obtain a diagrammatic representation for the sum rules of a given order. •We obtain precise bounds on the lowest eigenvalue of the string.« less

  9. Compton scattering from nuclei and photo-absorption sum rules

    NASA Astrophysics Data System (ADS)

    Gorchtein, Mikhail; Hobbs, Timothy; Londergan, J. Timothy; Szczepaniak, Adam P.

    2011-12-01

    We revisit the photo-absorption sum rule for real Compton scattering from the proton and from nuclear targets. In analogy with the Thomas-Reiche-Kuhn sum rule appropriate at low energies, we propose a new “constituent quark model” sum rule that relates the integrated strength of hadronic resonances to the scattering amplitude on constituent quarks. We study the constituent quark model sum rule for several nuclear targets. In addition, we extract the α=0 pole contribution for both proton and nuclei. Using the modern high-energy proton data, we find that the α=0 pole contribution differs significantly from the Thomson term, in contrast with the original findings by Damashek and Gilman.

  10. Comparing T-odd and T-even spin sum rules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teryaev, O.V.

    2015-04-10

    Sum rules for T-even and T-odd structure functions and parton distributions are considered. The case of spin-dependent distributions related to energy-momentum tensor (EMT) is specifically addressed. The Burkardt sum rule for T-odd Sivers functions may be related to EMT provided the imaginary prescription for gluonic pole correlator is incorporated. The momentum sum rule for deuteron tensor spin structure function allows one to probe indirectly the gravity couplings to quarks and gluons.

  11. Transition sum rules in the shell model

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Johnson, Calvin W.

    2018-03-01

    An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy-weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, which in the case of the EWSR is a double commutator. While most prior applications of the double commutator have been to special cases, we derive general formulas for matrix elements of both operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We apply this simple tool to a number of nuclides and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E 1 ) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground-state electric quadrupole (E 2 ) centroids in the s d shell.

  12. Compton Scattering and Photo-absorption Sum Rules on Nuclei

    NASA Astrophysics Data System (ADS)

    Gorshteyn, Mikhail; Hobbs, Timothy; Londergan, J. Timothy; Szczepaniak, Adam P.

    2012-03-01

    We revisit the photo-absorption sum rule for real Compton scattering from the proton and from nuclear targets. In analogy with the Thomas-Reiche-Kuhn sum rule appropriate at low energies, we propose a new ``constituent quark model'' sum rule that relates the integrated strength of hadronic resonances to the scattering amplitude on constituent quarks. We study the constituent quark model sum rule for several nuclear targets. In addition we extract the J=0 pole contribution for both proton and nuclei. Using the modern high energy proton data we find that the J=0 pole contribution differs significantly from the Thomson term, in contrast with the original findings by Damashek and Gilman. We discuss phenomenological implications of this new result.

  13. Transition sum rules in the shell model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yi; Johnson, Calvin W.

    An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy- weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, in the case of the EWSR a double commutator. While most prior applications of the double-commutator have been to special cases, we derive general formulas for matrix elements of bothmore » operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We then apply this simple tool to a number of nuclides, and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E1) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground state electric quadrupole (E2) centroids in the $sd$-shell.« less

  14. Transition sum rules in the shell model

    DOE PAGES

    Lu, Yi; Johnson, Calvin W.

    2018-03-29

    An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy- weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, in the case of the EWSR a double commutator. While most prior applications of the double-commutator have been to special cases, we derive general formulas for matrix elements of bothmore » operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We then apply this simple tool to a number of nuclides, and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E1) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground state electric quadrupole (E2) centroids in the $sd$-shell.« less

  15. Chiral corrections to the Adler-Weisberger sum rule

    NASA Astrophysics Data System (ADS)

    Beane, Silas R.; Klco, Natalie

    2016-12-01

    The Adler-Weisberger sum rule for the nucleon axial-vector charge, gA , offers a unique signature of chiral symmetry and its breaking in QCD. Its derivation relies on both algebraic aspects of chiral symmetry, which guarantee the convergence of the sum rule, and dynamical aspects of chiral symmetry breaking—as exploited using chiral perturbation theory—which allow the rigorous inclusion of explicit chiral symmetry breaking effects due to light-quark masses. The original derivations obtained the sum rule in the chiral limit and, without the benefit of chiral perturbation theory, made various attempts at extrapolating to nonvanishing pion masses. In this paper, the leading, universal, chiral corrections to the chiral-limit sum rule are obtained. Using PDG data, a recent parametrization of the pion-nucleon total cross sections in the resonance region given by the SAID group, as well as recent Roy-Steiner equation determinations of subthreshold amplitudes, threshold parameters, and correlated low-energy constants, the Adler-Weisberger sum rule is confronted with experimental data. With uncertainty estimates associated with the cross-section parametrization, the Goldberger-Treimann discrepancy, and the truncation of the sum rule at O (Mπ4) in the chiral expansion, this work finds gA=1.248 ±0.010 ±0.007 ±0.013 .

  16. Forward Compton scattering with weak neutral current: Constraints from sum rules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorchtein, Mikhail; Zhang, Xilin

    2015-06-09

    We generalize forward real Compton amplitude to the case of the interference of the electromagnetic and weak neutral current, formulate a low-energy theorem, relate the new amplitudes to the interference structure functions and obtain a new set of sum rules. Furthermore, we address a possible new sum rule that relates the product of the axial charge and magnetic moment of the nucleon to the 0th moment of the structure function g5(ν, 0). For the dispersive γ Z-box correction to the proton’s weak charge, the application of the GDH sum rule allows us to reduce the uncertainty due to resonance contributionsmore » by a factor of two. Finally, the finite energy sum rule helps addressing the uncertainty in that calculation due to possible duality violations.« less

  17. Sum Rules of Charm CP Asymmetries beyond the SU(3)_{F} Limit.

    PubMed

    Müller, Sarah; Nierste, Ulrich; Schacht, Stefan

    2015-12-18

    We find new sum rules between direct CP asymmetries in D meson decays with coefficients that can be determined from a global fit to branching ratio data. Our sum rules eliminate the penguin topologies P and PA, which cannot be determined from branching ratios. In this way, we can make predictions about direct CP asymmetries in the standard model without ad hoc assumptions on the sizes of penguin diagrams. We consistently include first-order SU(3)_{F} breaking in the topological amplitudes extracted from the branching ratios. By confronting our sum rules with future precise data from LHCb and Belle II, one will identify or constrain new-physics contributions to P or PA. The first sum rule correlates the CP asymmetries a_{CP}^{dir} in D^{0}→K^{+}K^{-}, D^{0}→π^{+}π^{-}, and D^{0}→π^{0}π^{0}. We study the region of the a_{CP}^{dir}(D^{0}→π^{+}π^{-})-a_{CP}^{dir}(D^{0}→π^{0}π^{0}) plane allowed by current data and find that our sum rule excludes more than half of the allowed region at 95% C.L. Our second sum rule correlates the direct CP asymmetries in D^{+}→K[over ¯]^{0}K^{+}, D_{s}^{+}→K^{0}π^{+}, and D_{s}^{+}→K^{+}π^{0}.

  18. Aspects of QCD current algebra on a null plane

    NASA Astrophysics Data System (ADS)

    Beane, S. R.; Hobbs, T. J.

    2016-09-01

    Consequences of QCD current algebra formulated on a light-like hyperplane are derived for the forward scattering of vector and axial-vector currents on an arbitrary hadronic target. It is shown that current algebra gives rise to a special class of sum rules that are direct consequences of the independent chiral symmetry that exists at every point on the two-dimensional transverse plane orthogonal to the lightlike direction. These sum rules are obtained by exploiting the closed, infinite-dimensional algebra satisfied by the transverse moments of null-plane axial-vector and vector charge distributions. In the special case of a nucleon target, this procedure leads to the Adler-Weisberger, Gerasimov-Drell-Hearn, Cabibbo-Radicati and Fubini-Furlan-Rossetti sum rules. Matching to the dispersion-theoretic language which is usually invoked in deriving these sum rules, the moment sum rules are shown to be equivalent to algebraic constraints on forward S-matrix elements in the Regge limit.

  19. Force sum rules for stepped surfaces of jellium

    NASA Astrophysics Data System (ADS)

    Farjam, Mani

    2007-03-01

    The Budd-Vannimenus theorem for jellium surface is generalized for stepped surfaces of jellium. Our sum rules show that the average value of the electrostatic potential over the stepped jellium surface equals the value of the potential at the corresponding flat jellium surface. Several sum rules are tested with numerical results obtained within the Thomas-Fermi model of stepped surfaces.

  20. Neyman-Pearson biometric score fusion as an extension of the sum rule

    NASA Astrophysics Data System (ADS)

    Hube, Jens Peter

    2007-04-01

    We define the biometric performance invariance under strictly monotonic functions on match scores as normalization symmetry. We use this symmetry to clarify the essential difference between the standard score-level fusion approaches of sum rule and Neyman-Pearson. We then express Neyman-Pearson fusion assuming match scores defined using false acceptance rates on a logarithmic scale. We show that by stating Neyman-Pearson in this form, it reduces to sum rule fusion for ROC curves with logarithmic slope. We also introduce a one parameter model of biometric performance and use it to express Neyman-Pearson fusion as a weighted sum rule.

  1. Sum rules and the role of pressure on the excitation spectrum of a confined hydrogen atom by a spherical cavity

    NASA Astrophysics Data System (ADS)

    Cabrera-Trujillo, R.

    2017-08-01

    Sum rule relations over the excitation spectrum of a quantum system contain information about both the energy spectrum and eigenfunctions of the system in a compact form, particularly regarding closure relations. In this work, the effects of pressure induced by a spherical cavity on an atomic hydrogen impurity on the dipole oscillator strength (DOS) sum rule, S k , and its logarithmic version, L k , are studied by means of a numerical approach based on a finite-difference solution to the Schrödinger equation. Pressure effects are accounted for by means of a spherical cavity of radius R 0 immersed in a medium characterized by a penetrable potential height V 0. The DOS sum rules S k and L k are investigated as a function of these cavity parameters and thus directly related to the impurity static pressure and surrounding material. One finds that the sum rules are fulfilled within the numerical precision for low pressure conditions. However, when the barrier height is large or infinite (a non-penetrable cavity), the sum rule, for positive k, differs from its closure relation. One finds that this occurs for a cavity radius {R}0< 6 au, corresponding to a pressure such that the first p-state that contributes to the sum rule has positive energy and it is due to the fact that the spherical confinement cavity potential dominates over the Coulombic interaction for the hydrogenic impurity. Thus, as pressure increases, the excitation spectrum approaches that of a particle confined by a spherical cavity while the ground state is slightly affected by the cavity and more closely resembles a hydrogenic atom. Therefore, the sum rule over the excitation spectrum tends to a particle confined by a spherical cavity, while the closure relation gives that of a confined hydrogen atom in the ground state. For negative k, low excitations are the most important and this behavior is not presented. As the {S}-2 sum rule is the static dipole polarizability, the results are compared to available data in the literature, showing excellent agreement. This behavior in the sum rule and oscillator strength in electron-impurity excitations affects optical transitions of importance in semiconductor nanostructures.

  2. Bjorken unpolarized and polarized sum rules: comparative analysis of large- NF expansions

    NASA Astrophysics Data System (ADS)

    Broadhurst, D. J.; Kataev, A. L.

    2002-09-01

    Analytical all-orders results are presented for the one-renormalon-chain contributions to the Bjorken unpolarized sum rule for the F1 structure function of νN deep-inelastic scattering in the large-NF limit. The feasibility of estimating higher order perturbative QCD corrections, by the process of naive nonabelianization (NNA), is studied, in anticipation of measurement of this sum rule at a Neutrino Factory. A comparison is made with similar estimates obtained for the Bjorken polarized sum rule. Application of the NNA procedure to correlators of quark vector and scalar currents, in the euclidean region, is compared with recent analytical results for the O(αs4NF2) terms.

  3. Truncated Sum Rules and Their Use in Calculating Fundamental Limits of Nonlinear Susceptibilities

    NASA Astrophysics Data System (ADS)

    Kuzyk, Mark G.

    Truncated sum rules have been used to calculate the fundamental limits of the nonlinear susceptibilities and the results have been consistent with all measured molecules. However, given that finite-state models appear to result in inconsistencies in the sum rules, it may seem unclear why the method works. In this paper, the assumptions inherent in the truncation process are discussed and arguments based on physical grounds are presented in support of using truncated sum rules in calculating fundamental limits. The clipped harmonic oscillator is used as an illustration of how the validity of truncation can be tested and several limiting cases are discussed as examples of the nuances inherent in the method.

  4. Simple and accurate sum rules for highly relativistic systems

    NASA Astrophysics Data System (ADS)

    Cohen, Scott M.

    2005-03-01

    In this paper, I consider the Bethe and Thomas-Reiche-Kuhn sum rules, which together form the foundation of Bethe's theory of energy loss from fast charged particles to matter. For nonrelativistic target systems, the use of closure leads directly to simple expressions for these quantities. In the case of relativistic systems, on the other hand, the calculation of sum rules is fraught with difficulties. Various perturbative approaches have been used over the years to obtain relativistic corrections, but these methods fail badly when the system in question is very strongly bound. Here, I present an approach that leads to relatively simple expressions yielding accurate sums, even for highly relativistic many-electron systems. I also offer an explanation for the difference between relativistic and nonrelativistic sum rules in terms of the Zitterbewegung of the electrons.

  5. Sum rules and other properties involving resonance projection operators. [for optical potential description of electron scattering from atoms and ions

    NASA Technical Reports Server (NTRS)

    Berk, A.; Temkin, A.

    1985-01-01

    A sum rule is derived for the auxiliary eigenvalues of an equation whose eigenspectrum pertains to projection operators which describe electron scattering from multielectron atoms and ions. The sum rule's right-hand side depends on an integral involving the target system eigenfunctions. The sum rule is checked for several approximations of the two-electron target. It is shown that target functions which have a unit eigenvalue in their auxiliary eigenspectrum do not give rise to well-defined projection operators except through a limiting process. For Hylleraas target approximations, the auxiliary equations are shown to contain an infinite spectrum. However, using a Rayleigh-Ritz variational principle, it is shown that a comparatively simple aproximation can exhaust the sum rule to better than five significant figures. The auxiliary Hylleraas equation is greatly simplified by conversion to a square root equation containing the same eigenfunction spectrum and from which the required eigenvalues are trivially recovered by squaring.

  6. Neutrino mass sum-rule

    NASA Astrophysics Data System (ADS)

    Damanik, Asan

    2018-03-01

    Neutrino mass sum-rele is a very important research subject from theoretical side because neutrino oscillation experiment only gave us two squared-mass differences and three mixing angles. We review neutrino mass sum-rule in literature that have been reported by many authors and discuss its phenomenological implications.

  7. Sum Rules, Classical and Quantum - A Pedagogical Approach

    NASA Astrophysics Data System (ADS)

    Karstens, William; Smith, David Y.

    2014-03-01

    Sum rules in the form of integrals over the response of a system to an external probe provide general analytical tools for both experiment and theory. For example, the celebrated f-sum rule gives a system's plasma frequency as an integral over the optical-dipole absorption spectrum regardless of the specific spectral distribution. Moreover, this rule underlies Smakula's equation for the number density of absorbers in a sample in terms of the area under their absorption bands. Commonly such rules are derived from quantum-mechanical commutation relations, but many are fundamentally classical (independent of ℏ) and so can be derived from more transparent mechanical models. We have exploited this to illustrate the fundamental role of inertia in the case of optical sum rules. Similar considerations apply to sum rules in many other branches of physics. Thus, the ``attenuation integral theorems'' of ac circuit theory reflect the ``inertial'' effect of Lenz's Law in inductors or the potential energy ``storage'' in capacitors. These considerations are closely related to the fact that the real and imaginary parts of a response function cannot be specified independently, a result that is encapsulated in the Kramers-Kronig relations. Supported in part by the US Department of Energy, Office of Nuclear Physics under contract DE-AC02-06CH11357.

  8. Diagonalizing Tensor Covariants, Light-Cone Commutators, and Sum Rules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, C. Y.

    We derive fixed-mass sum rules for virtual Compton scattering the forward direction. We use the methods of both Dicus, Jackiw, and Teplitz (for the absorptive parts) and Heimann, Hey, and Mandula (for the real parts). We find a set of tensor covariansa such that the corresponding scalar amplitudes are proportional to simple t-channel parity-conserving helicity amplitudes. We give a relatively complete discussion of the convergence of the sum rules in a Regge model. (auth)

  9. The complete O (αs2) non-singlet heavy flavor corrections to the structure functions g1,2ep (x ,Q2), F1,2,Lep (x ,Q2), F1,2,3ν (ν bar) (x ,Q2) and the associated sum rules

    NASA Astrophysics Data System (ADS)

    Blümlein, Johannes; Falcioni, Giulio; De Freitas, Abilio

    2016-09-01

    We calculate analytically the flavor non-singlet O (αs2) massive Wilson coefficients for the inclusive neutral current non-singlet structure functions F1,2,Lep (x ,Q2) and g1,2ep (x ,Q2) and charged current non-singlet structure functions F1,2,3ν (ν bar) p (x ,Q2), at general virtualities Q2 in the deep-inelastic region. Numerical results are presented. We illustrate the transition from low to large virtualities for these observables, which may be contrasted to basic assumptions made in the so-called variable flavor number scheme. We also derive the corresponding results for the Adler sum rule, the unpolarized and polarized Bjorken sum rules and the Gross-Llewellyn Smith sum rule. There are no logarithmic corrections at large scales Q2 and the effects of the power corrections due to the heavy quark mass are of the size of the known O (αs4) corrections in the case of the sum rules. The complete charm and bottom corrections are compared to the approach using asymptotic representations in the region Q2 ≫mc,b2. We also study the target mass corrections to the above sum rules.

  10. A comprehensive revisit of the ρ meson with improved Monte-Carlo based QCD sum rules

    NASA Astrophysics Data System (ADS)

    Wang, Qi-Nan; Zhang, Zhu-Feng; Steele, T. G.; Jin, Hong-Ying; Huang, Zhuo-Ran

    2017-07-01

    We improve the Monte-Carlo based QCD sum rules by introducing the rigorous Hölder-inequality-determined sum rule window and a Breit-Wigner type parametrization for the phenomenological spectral function. In this improved sum rule analysis methodology, the sum rule analysis window can be determined without any assumptions on OPE convergence or the QCD continuum. Therefore, an unbiased prediction can be obtained for the phenomenological parameters (the hadronic mass and width etc.). We test the new approach in the ρ meson channel with re-examination and inclusion of α s corrections to dimension-4 condensates in the OPE. We obtain results highly consistent with experimental values. We also discuss the possible extension of this method to some other channels. Supported by NSFC (11175153, 11205093, 11347020), Open Foundation of the Most Important Subjects of Zhejiang Province, and K. C. Wong Magna Fund in Ningbo University, TGS is Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Z. F. Zhang and Z. R. Huang are Grateful to the University of Saskatchewan for its Warm Hospitality

  11. Generalized Thomas-Reiche-Kuhn sum rule

    NASA Astrophysics Data System (ADS)

    Zhou, Bing-Lu; Zhu, Jiong-Ming; Yan, Zong-Chao

    2006-01-01

    The generalized Thomas-Reiche-Kuhn sum rule is established for any Coulombic system with arbitrary masses and charges of its constituent particles. Numerical examples are given for the hydrogen molecular ions.

  12. QCD Sum Rules for Magnetically Induced Mixing between ηc and J/ψ

    DOE PAGES

    Cho, Sungtae; Hattori, Koichi; Lee, Su Houng; ...

    2014-10-20

    We investigate the properties of charmonia in strong magnetic fields by using QCD sum rules. We show how to implement the mixing effects between ηc and J/ψ on the basis of field-theoretical approaches, and then show that the sum rules are saturated by the mixing effects with phenomenologically determined parameters. Consequently, we find that the mixing effects are the dominant contribution to the mass shifts of the static charmonia in strong magnetic fields.

  13. QCD Sum Rules and Models for Generalized Parton Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anatoly Radyushkin

    2004-10-01

    I use QCD sum rule ideas to construct models for generalized parton distributions. To this end, the perturbative parts of QCD sum rules for the pion and nucleon electromagnetic form factors are interpreted in terms of GPDs and two models are discussed. One of them takes the double Borel transform at adjusted value of the Borel parameter as a model for nonforward parton densities, and another is based on the local duality relation. Possible ways of improving these Ansaetze are briefly discussed.

  14. Dipole polarizability, sum rules, mean excitation energies, and long-range dispersion coefficients for buckminsterfullerene C 60

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Thakkar, Ajit J.

    2011-11-01

    Experimental photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and the high-energy behavior of the dipole-oscillator-strength density are used to construct dipole oscillator strength distributions for buckminsterfullerene (C60). The distributions are used to predict dipole sum rules Sk, mean excitation energies Ik, the frequency dependent polarizability, and C6 coefficients for the long-range dipole-dipole interactions of C60 with a variety of atoms and molecules.

  15. Exact sum rules for inhomogeneous drums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amore, Paolo, E-mail: paolo.amore@gmail.com

    2013-09-15

    We derive general expressions for the sum rules of the eigenvalues of drums of arbitrary shape and arbitrary density, obeying different boundary conditions. The formulas that we present are a generalization of the analogous formulas for one dimensional inhomogeneous systems that we have obtained in a previous paper. We also discuss the extension of these formulas to higher dimensions. We show that in the special case of a density depending only on one variable the sum rules of any integer order can be expressed in terms of a single series. As an application of our result we derive exact summore » rules for the homogeneous circular annulus with different boundary conditions, for a homogeneous circular sector and for a radially inhomogeneous circular annulus with Dirichlet boundary conditions. -- Highlights: •We derive an explicit expression for the sum rules of inhomogeneous drums. •We discuss the extension to higher dimensions. •We discuss the special case of an inhomogeneity only along one direction.« less

  16. Modified Kramers-Kronig relations and sum rules for meromorphic total refractive index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peiponen, Kai-Erik; Saarinen, Jarkko J.; Vartiainen, Erik M.

    2003-08-01

    Modified Kramers-Kronig relations and corresponding sum rules are shown to hold for the total refractive index that can be presented as a sum of complex linear and nonlinear refractive indices, respectively. It is suggested that a self-action process, involving the degenerate third-order nonlinear susceptibility, can yield a negative total refractive index at some spectral range.

  17. Sum rule for rate and CP asymmetry in B+ →K+π0

    NASA Astrophysics Data System (ADS)

    Gronau, Michael; Rosner, Jonathan L.

    2007-01-01

    A sum rule relating the ratio Rc = 2 Γ (B+ →K+π0) / Γ (B+ →K0π+) and the CP asymmetry ACP (B+ →K+π0) is proved to first order in the ratio of tree to penguin amplitudes. The sum rule explains why it is possible to have Rc consistent with 1 together with a small CP asymmetry in B+ →K+π0. The measured ratio ACP (B+ →K+π0) /ACP (B0 →K+π-) rules out a small strong phase difference between a color-suppressed and a color-favored tree amplitude contributing to B+ →K+π0 as favored by QCD factorization.

  18. Optical Thomas-Reiche-Kuhn sum rules.

    PubMed

    Barnett, Stephen M; Loudon, Rodney

    2012-01-06

    The Thomas-Reiche-Kuhn sum rule is a fundamental consequence of the position-momentum commutation relation for an atomic electron and it provides an important constraint on the transition matrix elements for an atom. Analogously, the commutation relations for the electromagnetic field operators in a magnetodielectric medium constrain the properties of the dispersion relations for the medium through four sum rules for the allowed phase and group velocities for polaritons propagating through the medium. These rules apply to all bulk media including the metamaterials designed to provide negative refractive indices. An immediate consequence of this is that it is not possible to construct a medium in which all the polariton modes for a given wavelength lie in the negative-index region.

  19. Optical Thomas-Reiche-Kuhn Sum Rules

    NASA Astrophysics Data System (ADS)

    Barnett, Stephen M.; Loudon, Rodney

    2012-01-01

    The Thomas-Reiche-Kuhn sum rule is a fundamental consequence of the position-momentum commutation relation for an atomic electron and it provides an important constraint on the transition matrix elements for an atom. Analogously, the commutation relations for the electromagnetic field operators in a magnetodielectric medium constrain the properties of the dispersion relations for the medium through four sum rules for the allowed phase and group velocities for polaritons propagating through the medium. These rules apply to all bulk media including the metamaterials designed to provide negative refractive indices. An immediate consequence of this is that it is not possible to construct a medium in which all the polariton modes for a given wavelength lie in the negative-index region.

  20. Sum rules for quasifree scattering of hadrons

    NASA Astrophysics Data System (ADS)

    Peterson, R. J.

    2018-02-01

    The areas d σ /d Ω of fitted quasifree scattering peaks from bound nucleons for continuum hadron-nucleus spectra measuring d2σ /d Ω d ω are converted to sum rules akin to the Coulomb sums familiar from continuum electron scattering spectra from nuclear charge. Hadronic spectra with or without charge exchange of the beam are considered. These sums are compared to the simple expectations of a nonrelativistic Fermi gas, including a Pauli blocking factor. For scattering without charge exchange, the hadronic sums are below this expectation, as also observed with Coulomb sums. For charge exchange spectra, the sums are near or above the simple expectation, with larger uncertainties. The strong role of hadron-nucleon in-medium total cross sections is noted from use of the Glauber model.

  1. Nucleon QCD sum rules in the instanton medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryskin, M. G.; Drukarev, E. G., E-mail: drukarev@pnpi.spb.ru; Sadovnikova, V. A.

    2015-09-15

    We try to find grounds for the standard nucleon QCD sum rules, based on a more detailed description of the QCD vacuum. We calculate the polarization operator of the nucleon current in the instanton medium. The medium (QCD vacuum) is assumed to be a composition of the small-size instantons and some long-wave gluon fluctuations. We solve the corresponding QCD sum rule equations and demonstrate that there is a solution with the value of the nucleon mass close to the physical one if the fraction of the small-size instantons contribution is w{sub s} ≈ 2/3.

  2. Large-Nc masses of light mesons from QCD sum rules for nonlinear radial Regge trajectories

    NASA Astrophysics Data System (ADS)

    Afonin, S. S.; Solomko, T. D.

    2018-04-01

    The large-Nc masses of light vector, axial, scalar and pseudoscalar mesons are calculated from QCD spectral sum rules for a particular ansatz interpolating the radial Regge trajectories. The ansatz includes a linear part plus exponentially degreasing corrections to the meson masses and residues. The form of corrections was proposed some time ago for consistency with analytical structure of Operator Product Expansion of the two-point correlation functions. We revised that original analysis and found the second solution for the proposed sum rules. The given solution describes better the spectrum of vector and axial mesons.

  3. Charmonium ground and excited states at finite temperature from complex Borel sum rules

    NASA Astrophysics Data System (ADS)

    Araki, Ken-Ji; Suzuki, Kei; Gubler, Philipp; Oka, Makoto

    2018-05-01

    Charmonium spectral functions in vector and pseudoscalar channels at finite temperature are investigated through the complex Borel sum rules and the maximum entropy method. Our approach enables us to extract the peaks corresponding to the excited charmonia, ψ‧ and ηc‧ , as well as those of the ground states, J / ψ and ηc, which has never been achieved in usual QCD sum rule analyses. We show the spectral functions in vacuum and their thermal modification around the critical temperature, which leads to the almost simultaneous melting (or peak disappearance) of the ground and excited states.

  4. Constrained dipole oscillator strength distributions, sum rules, and dispersion coefficients for Br2 and BrCN

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Thakkar, Ajit J.

    2017-03-01

    Dipole oscillator strength distributions for Br2 and BrCN are constructed from photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule, the high-energy behavior of the dipole-oscillator-strength density and molar refractivity data when available. The distributions are used to predict dipole sum rules S (k) , mean excitation energies I (k) , and van der Waals C6 coefficients. Coupled-cluster calculations of the static dipole polarizabilities of Br2 and BrCN are reported for comparison with the values of S (- 2) extracted from the distributions.

  5. Can the oscillator strength of the quantum dot bandgap transition exceed unity?

    NASA Astrophysics Data System (ADS)

    Hens, Z.

    2008-10-01

    We discuss the apparent contradiction between the Thomas-Reiche-Kuhn sum rule for oscillator strengths and recent experimental data on the oscillator strength of the band gap transition of quantum dots. Starting from two simple single electron model systems, we show that the sum rule does not limit this oscillator strength to values below unity, or below the number of electrons in the highest occupied single electron state. The only upper limit the sum rule imposes on the oscillator strength of the quantum dot band gap transition is the total number of electrons in the quantum dot.

  6. Counter-ions at single charged wall: Sum rules.

    PubMed

    Samaj, Ladislav

    2013-09-01

    For inhomogeneous classical Coulomb fluids in thermal equilibrium, like the jellium or the two-component Coulomb gas, there exists a variety of exact sum rules which relate the particle one-body and two-body densities. The necessary condition for these sum rules is that the Coulomb fluid possesses good screening properties, i.e. the particle correlation functions or the averaged charge inhomogeneity, say close to a wall, exhibit a short-range (usually exponential) decay. In this work, we study equilibrium statistical mechanics of an electric double layer with counter-ions only, i.e. a globally neutral system of equally charged point-like particles in the vicinity of a plain hard wall carrying a fixed uniform surface charge density of opposite sign. At large distances from the wall, the one-body and two-body counter-ion densities go to zero slowly according to the inverse-power law. In spite of the absence of screening, all known sum rules are shown to hold for two exactly solvable cases of the present system: in the weak-coupling Poisson-Boltzmann limit (in any spatial dimension larger than one) and at a special free-fermion coupling constant in two dimensions. This fact indicates an extended validity of the sum rules and provides a consistency check for reasonable theoretical approaches.

  7. Complex-energy approach to sum rules within nuclear density functional theory

    DOE PAGES

    Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; ...

    2015-04-27

    The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations governing the behavior of the many-body system, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish anmore » efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random- phase approximation. The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel computing. As a result, the FAM formulation is especially useful when standard theorems based on commutation relations involving the nuclear Hamiltonian and external field cannot be used.« less

  8. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.

    1980-01-01

    Simple procedures are presented for treating cumulative fatigue damage under complex loading history using either the damage curve concept or the double linear damage rule. A single equation is provided for use with the damage curve approach; each loading event providing a fraction of damage until failure is presumed to occur when the damage sum becomes unity. For the double linear damage rule, analytical expressions are provided for determining the two phases of life. The procedure involves two steps, each similar to the conventional application of the commonly used linear damage rule. When the sum of cycle ratios based on phase 1 lives reaches unity, phase 1 is presumed complete, and further loadings are summed as cycle ratios on phase 2 lives. When the phase 2 sum reaches unity, failure is presumed to occur. No other physical properties or material constants than those normally used in a conventional linear damage rule analysis are required for application of either of the two cumulative damage methods described. Illustrations and comparisons of both methods are discussed.

  9. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.

    1981-01-01

    Simple procedures are given for treating cumulative fatigue damage under complex loading history using either the damage curve concept or the double linear damage rule. A single equation is given for use with the damage curve approach; each loading event providing a fraction of damage until failure is presumed to occur when the damage sum becomes unity. For the double linear damage rule, analytical expressions are given for determining the two phases of life. The procedure comprises two steps, each similar to the conventional application of the commonly used linear damage rule. Once the sum of cycle ratios based on Phase I lives reaches unity, Phase I is presumed complete, and further loadings are summed as cycle ratios based on Phase II lives. When the Phase II sum attains unity, failure is presumed to occur. It is noted that no physical properties or material constants other than those normally used in a conventional linear damage rule analysis are required for application of either of the two cumulative damage methods described. Illustrations and comparisons are discussed for both methods.

  10. Comparative study of multimodal biometric recognition by fusion of iris and fingerprint.

    PubMed

    Benaliouche, Houda; Touahria, Mohamed

    2014-01-01

    This research investigates the comparative performance from three different approaches for multimodal recognition of combined iris and fingerprints: classical sum rule, weighted sum rule, and fuzzy logic method. The scores from the different biometric traits of iris and fingerprint are fused at the matching score and the decision levels. The scores combination approach is used after normalization of both scores using the min-max rule. Our experimental results suggest that the fuzzy logic method for the matching scores combinations at the decision level is the best followed by the classical weighted sum rule and the classical sum rule in order. The performance evaluation of each method is reported in terms of matching time, error rates, and accuracy after doing exhaustive tests on the public CASIA-Iris databases V1 and V2 and the FVC 2004 fingerprint database. Experimental results prior to fusion and after fusion are presented followed by their comparison with related works in the current literature. The fusion by fuzzy logic decision mimics the human reasoning in a soft and simple way and gives enhanced results.

  11. Comparative Study of Multimodal Biometric Recognition by Fusion of Iris and Fingerprint

    PubMed Central

    Benaliouche, Houda; Touahria, Mohamed

    2014-01-01

    This research investigates the comparative performance from three different approaches for multimodal recognition of combined iris and fingerprints: classical sum rule, weighted sum rule, and fuzzy logic method. The scores from the different biometric traits of iris and fingerprint are fused at the matching score and the decision levels. The scores combination approach is used after normalization of both scores using the min-max rule. Our experimental results suggest that the fuzzy logic method for the matching scores combinations at the decision level is the best followed by the classical weighted sum rule and the classical sum rule in order. The performance evaluation of each method is reported in terms of matching time, error rates, and accuracy after doing exhaustive tests on the public CASIA-Iris databases V1 and V2 and the FVC 2004 fingerprint database. Experimental results prior to fusion and after fusion are presented followed by their comparison with related works in the current literature. The fusion by fuzzy logic decision mimics the human reasoning in a soft and simple way and gives enhanced results. PMID:24605065

  12. Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule.

    PubMed

    Cloët, Ian C; Bentz, Wolfgang; Thomas, Anthony W

    2016-01-22

    In light of the forthcoming high precision quasielastic electron scattering data from Jefferson Lab, it is timely for the various approaches to nuclear structure to make robust predictions for the associated response functions. With this in mind, we focus here on the longitudinal response function and the corresponding Coulomb sum rule for isospin-symmetric nuclear matter at various baryon densities. Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement, we find a dramatic quenching of the Coulomb sum rule for momentum transfers |q|≳0.5  GeV. The main driver of this effect lies in changes to the proton Dirac form factor induced by the nuclear medium. Such a dramatic quenching of the Coulomb sum rule was not seen in a recent quantum Monte Carlo calculation for carbon, suggesting that the Jefferson Lab data may well shed new light on the explicit role of QCD in nuclei.

  13. Spin structure of the neutron ({sup 3}He) and the Bjoerken sum rule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meziani, Z.E.

    1994-12-01

    A first measurement of the longitudinal asymmetry of deep-inelastic scattering of polarized electrons from a polarized {sup 3}He target at energies ranging from 19 to 26 GeV has been performed at the Stanford Linear Accelerator Center (SLAC). The spin-structure function of the neutron g{sub 1}{sup n} has been extracted from the measured asymmetries. The Quark Parton Model (QPM) interpretation of the nucleon spin-structure function is examined in light of the new results. A test of the Ellis-Jaffe sum rule (E-J) on the neutron is performed at high momentum transfer and found to be satisfied. Furthermore, combining the proton results ofmore » the European Muon Collaboration (EMC) and the neutron results of E-142, the Bjoerken sum rule test is carried at high Q{sup 2} where higher order Perturbative Quantum Chromodynamics (PQCD) corrections and higher-twist corrections are smaller. The sum rule is saturated to within one standard deviation.« less

  14. Spin-dependent sum rules connecting real and virtual Compton scattering verified

    NASA Astrophysics Data System (ADS)

    Lensky, Vadim; Pascalutsa, Vladimir; Vanderhaeghen, Marc; Kao, Chung Wen

    2017-04-01

    We present a detailed derivation of the two sum rules relating the spin polarizabilities measured in real, virtual, and doubly virtual Compton scattering. For example, the polarizability δL T , accessed in inclusive electron scattering, is related to the spin polarizability γE 1 E 1 and the slope of generalized polarizabilities P(M 1 ,M 1 )1-P(L 1 ,L 1 )1 , measured in, respectively, the real and the virtual Compton scattering. We verify these sum rules in different variants of chiral perturbation theory, discuss their empirical verification for the proton, and prospect their use in studies of the nucleon spin structure.

  15. QCD sum rules study of meson-baryon sigma terms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erkol, Gueray; Oka, Makoto; Turan, Guersevil

    2008-11-01

    The pion-baryon sigma terms and the strange-quark condensates of the octet and the decuplet baryons are calculated by employing the method of QCD sum rules. We evaluate the vacuum-to-vacuum transition matrix elements of two baryon interpolating fields in an external isoscalar-scalar field and use a Monte Carlo-based approach to systematically analyze the sum rules and the uncertainties in the results. We extract the ratios of the sigma terms, which have rather high accuracy and minimal dependence on QCD parameters. We discuss the sources of uncertainties and comment on possible strangeness content of the nucleon and the Delta.

  16. On the generality of the mass sum rule

    NASA Astrophysics Data System (ADS)

    Polchinski, J.; Wise, Mark B.

    1983-06-01

    The sum rule, Σi(-1) 2 Ji(2 Ji+1) mi2=2 ΣaDaTr Qa, is studied to first order in supersymmetry breaking, treating the other interactions exactly. It is found to hold for spontaneous breaking and many types of explicit breaking.

  17. Single-particle spectral density of the unitary Fermi gas: Novel approach based on the operator product expansion, sum rules and the maximum entropy method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubler, Philipp, E-mail: pgubler@riken.jp; RIKEN Nishina Center, Wako, Saitama 351-0198; Yamamoto, Naoki

    2015-05-15

    Making use of the operator product expansion, we derive a general class of sum rules for the imaginary part of the single-particle self-energy of the unitary Fermi gas. The sum rules are analyzed numerically with the help of the maximum entropy method, which allows us to extract the single-particle spectral density as a function of both energy and momentum. These spectral densities contain basic information on the properties of the unitary Fermi gas, such as the dispersion relation and the superfluid pairing gap, for which we obtain reasonable agreement with the available results based on quantum Monte-Carlo simulations.

  18. Constraining the double gluon distribution by the single gluon distribution

    DOE PAGES

    Golec-Biernat, Krzysztof; Lewandowska, Emilia; Serino, Mirko; ...

    2015-10-03

    We show how to consistently construct initial conditions for the QCD evolution equations for double parton distribution functions in the pure gluon case. We use to momentum sum rule for this purpose and a specific form of the known single gluon distribution function in the MSTW parameterization. The resulting double gluon distribution satisfies exactly the momentum sum rule and is parameter free. Furthermore, we study numerically its evolution with a hard scale and show the approximate factorization into product of two single gluon distributions at small values of x, whereas at large values of x the factorization is always violatedmore » in agreement with the sum rule.« less

  19. Radiation and ionization energy loss simulation for the GDH sum rule experiment in Hall-A at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Xin -Hu; Ye, Yun -Xiu; Chen, Jian -Ping

    2015-07-17

    The radiation and ionization energy loss are presented for single arm Monte Carlo simulation for the GDH sum rule experiment in Hall-A at Jefferson Lab. Radiation and ionization energy loss are discussed formore » $$^{12}C$$ elastic scattering simulation. The relative momentum ratio $$\\frac{\\Delta p}{p}$$ and $$^{12}C$$ elastic cross section are compared without and with radiation energy loss and a reasonable shape is obtained by the simulation. The total energy loss distribution is obtained, showing a Landau shape for $$^{12}C$$ elastic scattering. This simulation work will give good support for radiation correction analysis of the GDH sum rule experiment.« less

  20. Sum rules for the uniform-background model of an atomic-sharp metal corner

    NASA Astrophysics Data System (ADS)

    Streitenberger, P.

    1994-04-01

    Analytical results are derived for the electrostatic potential of an atomic-sharp 90° metal corner in the uniform-background model. The electrostatic potential at a free jellium edge and the jellium corner, respectively, is determined exactly in terms of the energy per electron of the uniform electron gas integrated over the background density. The surface energy, the edge formation energy and the derivative of the corner formation energy with respect to the background density are given as integrals over the electrostatic potential. The present approach represents a novel approach to such sum rules, inclusive of the Budd-Vannimenus sum rules for a free jellium surface, based on general properties of linear response functions.

  1. Photonuclear sum rules and the tetrahedral configuration of He4

    NASA Astrophysics Data System (ADS)

    Gazit, Doron; Barnea, Nir; Bacca, Sonia; Leidemann, Winfried; Orlandini, Giuseppina

    2006-12-01

    Three well-known photonuclear sum rules (SR), i.e., the Thomas-Reiche-Kuhn, the bremsstrahlungs and the polarizability SR are calculated for He4 with the realistic nucleon-nucleon potential Argonne V18 and the three-nucleon force Urbana IX. The relation between these sum rules and the corresponding energy weighted integrals of the cross section is discussed. Two additional equivalences for the bremsstrahlungs SR are given, which connect it to the proton-neutron and neutron-neutron distances. Using them, together with our result for the bremsstrahlungs SR, we find a deviation from the tetrahedral symmetry of the spatial configuration of He4. The possibility to access this deviation experimentally is discussed.

  2. Optical oscillator strength distribution of amino acids from 3 to 250 eV and examination of the Thomas Reiche Kuhn sum rule

    NASA Astrophysics Data System (ADS)

    Kamohara, Masumi; Izumi, Yudai; Tanaka, Masafumi; Okamoto, Keiko; Tanaka, Masahito; Kaneko, Fusae; Kodama, Yoko; Koketsu, Toshiyuki; Nakagawa, Kazumichi

    2008-10-01

    Absorption spectra of thin films of glycine (Gly), alanine (Ala), valine (Val), serine (Ser), leucine (Leu), phenylalanine (Phe) and methinine (Met) were measured in absolute values of absorption cross section σ( E) for the photon energy E from 3 to 250 eV. We translated σ( E) into the optical oscillator strength distribution df/dE and we examined the Thomas-Reiche-Kuhn sum rule [Hirschfelder, J.O., Curtiss, C.F., Bird, R.B., 1954. Molecular Theory of Gases and Liquids. Wiley, New York, p. 890]. We concluded that T-R-K sum rule was correctly applicable for such relatively large size of biomolecules.

  3. Department Of Defense September 2002 Adult Poll Overview Report

    DTIC Science & Technology

    2003-04-01

    American Poll C-17 20. Men of Honor 21. Pearl Harbor 22. Platoon 23. Rambo Series 24. Rules Of Engagement 25. Saving Private Ryan 26. Sum of...23. Rambo Series 24. Rules Of Engagement 25. Saving Private Ryan September 2002 Department of Defense Adult American Poll C-18 26. Sum of

  4. A new approximate sum rule for bulk alloy properties

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1991-01-01

    A new, approximate sum rule is introduced for determining bulk properties of multicomponent systems, in terms of the pure components properties. This expression is applied for the study of lattice parameters, cohesive energies, and bulk moduli of binary alloys. The correct experimental trends (i.e., departure from average values) are predicted in all cases.

  5. On the origin independence of the Verdet tensor†

    NASA Astrophysics Data System (ADS)

    Caputo, M. C.; Coriani, S.; Pelloni, S.; Lazzeretti, P.

    2013-07-01

    The condition for invariance under a translation of the coordinate system of the Verdet tensor and the Verdet constant, calculated via quantum chemical methods using gaugeless basis sets, is expressed by a vanishing sum rule involving a third-rank polar tensor. The sum rule is, in principle, satisfied only in the ideal case of optimal variational electronic wavefunctions. In general, it is not fulfilled in non-variational calculations and variational calculations allowing for the algebraic approximation, but it can be satisfied for reasons of molecular symmetry. Group-theoretical procedures have been used to determine (i) the total number of non-vanishing components and (ii) the unique components of both the polar tensor appearing in the sum rule and the axial Verdet tensor, for a series of symmetry groups. Test calculations at the random-phase approximation level of accuracy for water, hydrogen peroxide and ammonia molecules, using basis sets of increasing quality, show a smooth convergence to zero of the sum rule. Verdet tensor components calculated for the same molecules converge to limit values, estimated via large basis sets of gaugeless Gaussian functions and London orbitals.

  6. Renormalisation group corrections to neutrino mixing sum rules

    NASA Astrophysics Data System (ADS)

    Gehrlein, J.; Petcov, S. T.; Spinrath, M.; Titov, A. V.

    2016-11-01

    Neutrino mixing sum rules are common to a large class of models based on the (discrete) symmetry approach to lepton flavour. In this approach the neutrino mixing matrix U is assumed to have an underlying approximate symmetry form Ũν, which is dictated by, or associated with, the employed (discrete) symmetry. In such a setup the cosine of the Dirac CP-violating phase δ can be related to the three neutrino mixing angles in terms of a sum rule which depends on the symmetry form of Ũν. We consider five extensively discussed possible symmetry forms of Ũν: i) bimaximal (BM) and ii) tri-bimaximal (TBM) forms, the forms corresponding to iii) golden ratio type A (GRA) mixing, iv) golden ratio type B (GRB) mixing, and v) hexagonal (HG) mixing. For each of these forms we investigate the renormalisation group corrections to the sum rule predictions for δ in the cases of neutrino Majorana mass term generated by the Weinberg (dimension 5) operator added to i) the Standard Model, and ii) the minimal SUSY extension of the Standard Model.

  7. Structure-property correlation study through sum-over-state approach

    NASA Astrophysics Data System (ADS)

    Nandi, P. K.; Hatua, K.; Bansh, A. K.; Panja, N.; Ghanty, T. K.

    2015-01-01

    The use of Thomas Kuhn (TK) sum rule in the expanded sum-over-state (SOS) expression of hyperpolarizabilities leads to various relationships between different order of polarizabilities and ground state dipole moment etc.

  8. Systematics of strength function sum rules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Calvin W.

    2015-08-28

    Sum rules provide useful insights into transition strength functions and are often expressed as expectation values of an operator. In this letter I demonstrate that non-energy-weighted transition sum rules have strong secular dependences on the energy of the initial state. Such non-trivial systematics have consequences: the simplification suggested by the generalized Brink–Axel hypothesis, for example, does not hold for most cases, though it weakly holds in at least some cases for electric dipole transitions. Furthermore, I show the systematics can be understood through spectral distribution theory, calculated via traces of operators and of products of operators. Seen through this lens,more » violation of the generalized Brink–Axel hypothesis is unsurprising: one expectssum rules to evolve with excitation energy. Moreover, to lowest order the slope of the secular evolution can be traced to a component of the Hamiltonian being positive (repulsive) or negative (attractive).« less

  9. Iso-vector form factors of the delta and nucleon in QCD sum rules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozpineci, A.

    Form factors are important non-perturbative properties of hadrons. They give information about the internal structure of the hadrons. In this work, iso-vector axial-vector and iso-vector tensor form factors of the nucleon and the iso-vector axial-vector {Delta}{yields}N transition form factor calculations in QCD Sum Rules are presented.

  10. Spectral sum rules for confining large-N theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherman, Aleksey; McGady, David A.; Yamazaki, Masahito

    2016-06-17

    We consider asymptotically-free four-dimensional large-$N$ gauge theories with massive fermionic and bosonic adjoint matter fields, compactified on squashed three-spheres, and examine their regularized large-$N$ confined-phase spectral sums. The analysis is done in the limit of vanishing ’t Hooft coupling, which is justified by taking the size of the compactification manifold to be small compared to the inverse strong scale Λ ₋1. We find our results motivate us to conjecture some universal spectral sum rules for these large $N$ gauge theories.

  11. D-Wave Heavy Baryons from QCD Sum Rules

    NASA Astrophysics Data System (ADS)

    Mao, Qiang; Chen, Hua-Xing; Hosaka, Atsushi; Liu, Xiang; Zhu, Shi-Lin

    We study the D-wave heavy baryons using the method of QCD sum rules in the framework of heavy quark effective theory. Our results suggest that the Λc(2860), Λc(2880), Ξc(3055) and Ξc(3080) complete two D-wave SU(3) flavor 3¯F charmed baryon doublets of JP = 3/2+ and 5/2+.

  12. Advances in QCD sum-rule calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melikhov, Dmitri

    2016-01-22

    We review the recent progress in the applications of QCD sum rules to hadron properties with the emphasis on the following selected problems: (i) development of new algorithms for the extraction of ground-state parameters from two-point correlators; (ii) form factors at large momentum transfers from three-point vacuum correlation functions: (iii) properties of exotic tetraquark hadrons from correlation functions of four-quark currents.

  13. Large-Nc sum rules for charmed baryons at subleading orders

    NASA Astrophysics Data System (ADS)

    Heo, Yonggoo; Lutz, Matthias F. M.

    2018-05-01

    Sum rules for the low-energy constants of the chiral SU(3) Lagrangian with charmed baryons of spin JP=1 /2+ and JP=3 /2+ baryons are derived from large-Nc QCD. We consider the large-Nc operator expansion at subleading orders for current-current correlation functions in the charmed baryon-ground states for two scalar and two axial-vector currents.

  14. Beauty vector meson decay constants from QCD sum rules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucha, Wolfgang; Melikhov, Dmitri; D. V. Skobeltsyn Institute of Nuclear Physics, M. V. Lomonosov Moscow State University, 119991, Moscow

    We present the outcomes of a very recent investigation of the decay constants of nonstrange and strange heavy-light beauty vector mesons, with special emphasis on the ratio of any such decay constant to the decay constant of the corresponding pseudoscalar meson, by means of Borel-transformed QCD sum rules. Our results suggest that both these ratios are below unity.

  15. Inequalities for frequency-moment sum rules of electron liquids

    NASA Technical Reports Server (NTRS)

    Iwamoto, N.

    1986-01-01

    The relations between the various frequency-moment sum rules of electron liquids, which include even-power moments, are systematically examined by using the Cauchy-Schwarz and Hoelder inequalities. A relation involving the isothermal sound velocity and the kinetic and potential energies is obtained from one of the inequalities in the long-wavelength limit, and is generalized to arbitrary spatial dimensions.

  16. An exact sum-rule for the Hubbard model: an historical/pedagogical approach

    NASA Astrophysics Data System (ADS)

    Di Matteo, S.; Claveau, Y.

    2017-07-01

    The aim of the present article is to derive an exact integral equation for the Green function of the Hubbard model through an equation-of-motion procedure, like in the original Hubbard papers. Though our exact integral equation does not allow to solve the Hubbard model, it represents a strong constraint on its approximate solutions. An analogous sum rule has been already obtained in the literature, through the use of a spectral moment technique. We think however that our equation-of-motion procedure can be more easily related to the historical procedure of the original Hubbard papers. We also discuss examples of possible applications of the sum rule and propose and analyse a solution, fulfilling it, that can be used for a pedagogical introduction to the Mott-Hubbard metal-insulator transition.

  17. Sum rules for zeros and intersections of Bessel functions from quantum mechanical perturbation theory

    NASA Astrophysics Data System (ADS)

    Pedersen, Thomas Garm

    2018-07-01

    Bessel functions play an important role for quantum states in spherical and cylindrical geometries. In cases of perfect confinement, the energy of Schrödinger and massless Dirac fermions is determined by the zeros and intersections of Bessel functions, respectively. In an external electric field, standard perturbation theory therefore expresses the polarizability as a sum over these zeros or intersections. Both non-relativistic and relativistic polarizabilities can be calculated analytically, however. Hence, by equating analytical expressions to perturbation expansions, several sum rules for the zeros and intersections of Bessel functions emerge.

  18. Dependence of Coulomb Sum Rule on the Short Range Correlation by Using Av18 Potential

    NASA Astrophysics Data System (ADS)

    Modarres, M.; Moeini, H.; Moshfegh, H. R.

    The Coulomb sum rule (CSR) and structure factor are calculated for inelastic electron scattering from nuclear matter at zero and finite temperature in the nonrelativistic limit. The effect of short-range correlation (SRC) is presented by using lowest order constrained variational (LOCV) method and the Argonne Av18 and Δ-Reid soft-core potentials. The effects of different potentials as well as temperature are investigated. It is found that the nonrelativistic version of Bjorken scaling approximately sets in at the momentum transfer of about 1.1 to 1.2 GeV/c and the increase of temperature makes it to decrease. While different potentials do not significantly change CSR, the SRC improves the Coulomb sum rule and we get reasonably close results to both experimental data and others theoretical predictions.

  19. Adler Function, Bjorken Sum Rule, and the Crewther Relation to Order {alpha}{sub s}{sup 4} in a General Gauge Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baikov, P. A.; Chetyrkin, K. G.; Kuehn, J. H.

    2010-04-02

    We compute, for the first time, the order {alpha}{sub s}{sup 4} contributions to the Bjorken sum rule for polarized electron-nucleon scattering and to the (nonsinglet) Adler function for the case of a generic color gauge group. We confirm at the same order a (generalized) Crewther relation which provides a strong test of the correctness of our previously obtained results: the QCD Adler function and the five-loop {beta} function in quenched QED. In particular, the appearance of an irrational contribution proportional to {zeta}{sub 3} in the latter quantity is confirmed. We obtain the commensurate scale equation relating the effective strong couplingmore » constants as inferred from the Bjorken sum rule and from the Adler function at order {alpha}{sub s}{sup 4}.« less

  20. Predictions for the Dirac C P -violating phase from sum rules

    NASA Astrophysics Data System (ADS)

    Delgadillo, Luis A.; Everett, Lisa L.; Ramos, Raymundo; Stuart, Alexander J.

    2018-05-01

    We explore the implications of recent results relating the Dirac C P -violating phase to predicted and measured leptonic mixing angles within a standard set of theoretical scenarios in which charged lepton corrections are responsible for generating a nonzero value of the reactor mixing angle. We employ a full set of leptonic sum rules as required by the unitarity of the lepton mixing matrix, which can be reduced to predictions for the observable mixing angles and the Dirac C P -violating phase in terms of model parameters. These sum rules are investigated within a given set of theoretical scenarios for the neutrino sector diagonalization matrix for several known classes of charged lepton corrections. The results provide explicit maps of the allowed model parameter space within each given scenario and assumed form of charged lepton perturbations.

  1. {lambda}{sub b}{yields}p, {lambda} transition form factors from QCD light-cone sum rules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Yuming; Lue Caidian; Shen Yuelong

    2009-10-01

    Light-cone sum rules for the {lambda}{sub b}{yields}p, {lambda} transition form factors are derived from the correlation functions expanded by the twist of the distribution amplitudes of the {lambda}{sub b} baryon. In terms of the {lambda}{sub b} three-quark distribution amplitude models constrained by the QCD theory, we calculate the form factors at small momentum transfers and compare the results with those estimated in the conventional light-cone sum rules (LCSR) and perturbative QCD approaches. Our results indicate that the two different versions of sum rules can lead to the consistent numbers of form factors responsible for {lambda}{sub b}{yields}p transition. The {lambda}{sub b}{yields}{lambda}more » transition form factors from LCSR with the asymptotic {lambda} baryon distribution amplitudes are found to be almost 1 order larger than those obtained in the {lambda}{sub b}-baryon LCSR, implying that the preasymptotic corrections to the baryonic distribution amplitudes are of great importance. Moreover, the SU(3) symmetry breaking effects between the form factors f{sub 1}{sup {lambda}{sub b}}{sup {yields}}{sup p} and f{sub 1}{sup {lambda}{sub b}}{sup {yields}}{sup {lambda}} are computed as 28{sub -8}{sup +14}% in the framework of {lambda}{sub b}-baryon LCSR.« less

  2. Finite-width Laplace sum rules for 0-+ pseudoscalar glueball in the instanton vacuum model

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Chen, Junlong; Liu, Jueping

    2015-10-01

    The correlation function of the 0-+ pseudoscalar glueball current is calculated based on the semiclassical expansion for quantum chromodynamics (QCD) in the instanton liquid background. Besides taking the pure classical contribution from instantons and the perturbative one into account, we calculate the contribution arising from the interaction (or the interference) between instantons and the quantum gluon fields, which is infrared free and more important than the pure perturbative one. Instead of the usual zero-width approximation for the resonances, the Breit-Wigner form with a correct threshold behavior for the spectral function of the finite-width resonance is adopted. The properties of the 0-+ pseudoscalar glueball are investigated via a family of the QCD Laplacian sum rules. A consistency between the subtracted and unsubtracted sum rules is very well justified. The values of the mass, decay width, and coupling constants for the 0-+ resonance in which the glueball fraction is dominant are obtained.

  3. Renormalization group analysis of B →π form factors with B -meson light-cone sum rules

    NASA Astrophysics Data System (ADS)

    Shen, Yue-Long; Wei, Yan-Bing; Lü, Cai-Dian

    2018-03-01

    Within the framework of the B -meson light-cone sum rules, we review the calculation of radiative corrections to the three B →π transition form factors at leading power in Λ /mb. To resum large logarithmic terms, we perform the complete renormalization group evolution of the correlation function. We employ the integral transformation which diagonalizes evolution equations of the jet function and the B -meson light-cone distribution amplitude to solve these evolution equations and obtain renormalization group improved sum rules for the B →π form factors. Results of the form factors are extrapolated to the whole physical q2 region and are compared with that of other approaches. The effect of B -meson three-particle light-cone distribution amplitudes, which will contribute to the form factors at next-to-leading power in Λ /mb at tree level, is not considered in this paper.

  4. Multipolar and Composite Ordering in Two-Dimensional Semiclassical Geometrically Frustrated Magnets

    NASA Astrophysics Data System (ADS)

    Parker, Edward Temchin

    Despite the success of QCD at high energies where the perturbation calculations can be carried out because of the asymptotic freedom, many fundamental questions, regarding the confinement of quarks and gluons, the nuclear forces, and the nucleon mass and structure, still remain in the non-perturbative regime. Dispersive sum rules, based on universal principles, provide a data-driven approach to study the nucleon structure without model-dependencies. Among those sum rules, the well known Gerasimov-Drell-Hearn (GDH) sum rule relates the anomalous magnetic moment to a weighted integral over the photo-absorption cross section. Its generalized form is extended for the virtual photon absorption at an arbitrary four momentum transfer square (Q2) and thus provides a unique relation to study the nucleon spin structure over an experimentally accessible range of Q2. The measured integrals can be compared with theoretical predictions for the spin dependent Compton amplitudes. Such experimental tests at intermediate and low Q 2 deepen our knowledge of the transition from the asymptotic freedom regime to the color confinement regime in QCD. Experiment E97-110 has been performed at the Thomas Jefferson National Accelerator Facility to precisely measure the generalized GDH sum rule and the moments of the neutron and 3He spin structure functions in the low energy region. During the experiment, a longitudinally-polarized electron beam with energies from 1.1 to 4.4 GeV was scattered from a 3He gas target which was polarized longitudinally or transversely at the Hall A center. Inclusive asymmetries and polarized cross-section differences, as well as the unpolarized cross sections, were measured in the quasielastic and resonance regions. In this work, the 3He spin dependent structure functions of g1(nu,Q 2) and g2(nu,Q 2) at Q2 = 0.032-0.230 GeV 2 have been extracted from the experimental data, and the generalized GDH sum rule of 3He is firstly obtained for Q 2 < 0.1 GeV2. The results exhibit a "turn-over" behavior at Q2 = 0.1 GeV2, which strongly indicates that the GDH sum rule for real photons will be recovered at Q2 → 0.

  5. 78 FR 48522 - Self-Regulatory Organizations; New York Stock Exchange LLC; Notice of Filing of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... systems and would reduce the systemic and administrative burdens on market participants by avoiding the... Arca rules rather than having the Exchange enforce NYSE Arca rules. In sum, the Exchange believes that...

  6. Correlations and sum rules in a half-space for a quantum two-dimensional one-component plasma

    NASA Astrophysics Data System (ADS)

    Jancovici, B.; Šamaj, L.

    2007-05-01

    This paper is the continuation of a previous one (Šamaj and Jancovici, 2007 J. Stat. Mech. P02002); for a nearly classical quantum fluid in a half-space bounded by a plain plane hard wall (no image forces), we had generalized the Wigner Kirkwood expansion of the equilibrium statistical quantities in powers of Planck's constant \\hbar . As a model system for a more detailed study, we consider the quantum two-dimensional one-component plasma: a system of charged particles of one species, interacting through the logarithmic Coulomb potential in two dimensions, in a uniformly charged background of opposite sign, such that the total charge vanishes. The corresponding classical system is exactly solvable in a variety of geometries, including the present one of a half-plane, when βe2 = 2, where β is the inverse temperature and e is the charge of a particle: all the classical n-body densities are known. In the present paper, we have calculated the expansions of the quantum density profile and truncated two-body density up to order \\hbar ^2 (instead of only to order \\hbar as in the previous paper). These expansions involve the classical n-body densities up to n = 4; thus we obtain exact expressions for these quantum expansions in this special case. For the quantum one-component plasma, two sum rules involving the truncated two-body density (and, for one of them, the density profile) have been derived, a long time ago, by using heuristic macroscopic arguments: one sum rule concerns the asymptotic form along the wall of the truncated two-body density; the other one concerns the dipole moment of the structure factor. In the two-dimensional case at βe2 = 2, we now have explicit expressions up to order \\hbar^2 for these two quantum densities; thus we can microscopically check the sum rules at this order. The checks are positive, reinforcing the idea that the sum rules are correct.

  7. L-edge sum rule analysis on 3d transition metal sites: from d10 to d0 and towards application to extremely dilute metallo-enzymes.

    PubMed

    Wang, Hongxin; Friedrich, Stephan; Li, Lei; Mao, Ziliang; Ge, Pinghua; Balasubramanian, Mahalingam; Patil, Daulat S

    2018-03-28

    According to L-edge sum rules, the number of 3d vacancies at a transition metal site is directly proportional to the integrated intensity of the L-edge X-ray absorption spectrum (XAS) for the corresponding metal complex. In this study, the numbers of 3d holes are characterized quantitatively or semi-quantitatively for a series of manganese (Mn) and nickel (Ni) complexes, including the electron configurations 3d 10 → 3d 0 . In addition, extremely dilute (<0.1% wt/wt) Ni enzymes were examined by two different approaches: (1) by using a high resolution superconducting tunnel junction X-ray detector to obtain XAS spectra with a very high signal-to-noise ratio, especially in the non-variant edge jump region; and (2) by adding an inert tracer to the sample that provides a prominent spectral feature to replace the weak edge jump for intensity normalization. In this publication, we present for the first time: (1) L-edge sum rule analysis for a series of Mn and Ni complexes that include electron configurations from an open shell 3d 0 to a closed shell 3d 10 ; (2) a systematic analysis on the uncertainties, especially on that from the edge jump, which was missing in all previous reports; (3) a clearly-resolved edge jump between pre-L 3 and post-L 2 regions from an extremely dilute sample; (4) an evaluation of an alternative normalization standard for L-edge sum rule analysis. XAS from two copper (Cu) proteins measured using a conventional semiconductor X-ray detector are also repeated as bridges between Ni complexes and dilute Ni enzymes. The differences between measuring 1% Cu enzymes and measuring <0.1% Ni enzymes are compared and discussed. This study extends L-edge sum rule analysis to virtually any 3d metal complex and any dilute biological samples that contain 3d metals.

  8. 78 FR 48513 - Self-Regulatory Organizations; NYSE MKT LLC; Notice of Filing of Proposed Rule Change To Adopt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... reduce the systemic and administrative burdens on market participants by avoiding the need for... enforce NYSE Arca rules, as the NYSE would do under its current rule. In sum, the Exchange believes that...

  9. EM Transition Sum Rules Within the Framework of sdg Proton-Neutron Interacting Boson Model, Nuclear Pair Shell Model and Fermion Dynamical Symmetry Model

    NASA Astrophysics Data System (ADS)

    Zhao, Yumin

    1997-07-01

    By the techniques of the Wick theorem for coupled clusters, the no-energy-weighted electromagnetic sum-rule calculations are presented in the sdg neutron-proton interacting boson model, the nuclear pair shell model and the fermion-dynamical symmetry model. The project supported by Development Project Foundation of China, National Natural Science Foundation of China, Doctoral Education Fund of National Education Committee, Fundamental Research Fund of Southeast University

  10. Finite-energy sum rules in eta photoproduction off a nucleon

    DOE PAGES

    Nys, Jannes; Mathieu, V.; Fernandez-Ramirez, Cesar; ...

    2017-02-15

    The reactionmore » $${\\gamma}N \\to {\\eta}N$$ is studied in the high-energy regime (with photon lab energies $$E_{\\gamma}^{\\textrm{lab}} > 4$$ GeV) using information from the resonance region through the use of finite-energy sum rules (FESR). We illustrate how analyticity allows one to map the t-dependence of the unknown Regge residue functions. As a result, we provide predictions for the energy dependence of the beam asymmetry at high energies.« less

  11. On the loop approximation in nucleon QCD sum rules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drukarev, E. G., E-mail: drukarev@thd.pnpi.spb.ru; Ryskin, M. G.; Sadovnikova, V. A.

    There was a general belief that the nucleon QCD sum rules which include only the quark loops and thus contain only the condensates of dimension d = 3 and d = 4 have only a trivial solution. We demonstrate that there is also a nontrivial solution. We show that it can be treated as the lowest order approximation to the solution which includes the higher terms of the Operator Product Expansion. Inclusion of the radiative corrections improves the convergence of the series.

  12. OPE, charm-quark mass, and decay constants of D and Ds mesons from QCD sum rules

    PubMed Central

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2011-01-01

    We present a sum-rule extraction of the decay constants of the charmed mesons D and Ds from the two-point correlator of pseudoscalar currents. First, we compare the perturbative expansion for the correlator and the decay constant performed in terms of the pole and the running MS¯ masses of the charm quark. The perturbative expansion in terms of the pole mass shows no signs of convergence whereas reorganizing this very expansion in terms of the MS¯ mass leads to a distinct hierarchy of the perturbative expansion. Furthermore, the decay constants extracted from the pole-mass correlator turn out to be considerably smaller than those obtained by means of the MS¯-mass correlator. Second, making use of the OPE in terms of the MS¯ mass, we determine the decay constants of both D and Ds mesons with an emphasis on the uncertainties in these quantities related both to the input QCD parameters and to the limited accuracy of the method of sum rules. PMID:21949465

  13. Radiative corrections to the solar lepton mixing sum rule

    NASA Astrophysics Data System (ADS)

    Zhang, Jue; Zhou, Shun

    2016-08-01

    The simple correlation among three lepton flavor mixing angles ( θ 12, θ 13, θ 23) and the leptonic Dirac CP-violating phase δ is conventionally called a sum rule of lepton flavor mixing, which may be derived from a class of neutrino mass models with flavor symmetries. In this paper, we consider the solar lepton mixing sum rule θ 12 ≈ θ 12 ν + θ 13 cos δ, where θ 12 ν stems from a constant mixing pattern in the neutrino sector and takes the value of θ 12 ν = 45 ° for the bi-maximal mixing (BM), {θ}_{12}^{ν } = { tan}^{-1}(1/√{2}) ≈ 35.3° for the tri-bimaximal mixing (TBM) or {θ}_{12}^{ν } = { tan}^{-1}(1/√{5+1}) ≈ 31.7° for the golden-ratio mixing (GR), and investigate the renormalization-group (RG) running effects on lepton flavor mixing parameters when this sum rule is assumed at a superhigh-energy scale. For illustration, we work within the framework of the minimal supersymmetric standard model (MSSM), and implement the Bayesian approach to explore the posterior distribution of δ at the low-energy scale, which becomes quite broad when the RG running effects are significant. Moreover, we also discuss the compatibility of the above three mixing scenarios with current neutrino oscillation data, and observe that radiative corrections can increase such a compatibility for the BM scenario, resulting in a weaker preference for the TBM and GR ones.

  14. He3 Spin-Dependent Cross Sections and Sum Rules

    NASA Astrophysics Data System (ADS)

    Slifer, K.; Amarian, M.; Auerbach, L.; Averett, T.; Berthot, J.; Bertin, P.; Bertozzi, B.; Black, T.; Brash, E.; Brown, D.; Burtin, E.; Calarco, J.; Cates, G.; Chai, Z.; Chen, J.-P.; Choi, Seonho; Chudakov, E.; Ciofi Degli Atti, C.; Cisbani, E.; de Jager, C. W.; Deur, A.; Disalvo, R.; Dieterich, S.; Djawotho, P.; Finn, M.; Fissum, K.; Fonvieille, H.; Frullani, S.; Gao, H.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gilad, S.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Glöckle, W.; Golak, J.; Goldberg, E.; Gomez, J.; Gorbenko, V.; Hansen, J.-O.; Hersman, B.; Holmes, R.; Huber, G. M.; Hughes, E.; Humensky, B.; Incerti, S.; Iodice, M.; Jensen, S.; Jiang, X.; Jones, C.; Jones, G.; Jones, M.; Jutier, C.; Kamada, H.; Ketikyan, A.; Kominis, I.; Korsch, W.; Kramer, K.; Kumar, K.; Kumbartzki, G.; Kuss, M.; Lakuriqi, E.; Laveissiere, G.; Lerose, J. J.; Liang, M.; Liyanage, N.; Lolos, G.; Malov, S.; Marroncle, J.; McCormick, K.; McKeown, R. D.; Meziani, Z.-E.; Michaels, R.; Mitchell, J.; Nogga, A.; Pace, E.; Papandreou, Z.; Pavlin, T.; Petratos, G. G.; Pripstein, D.; Prout, D.; Ransome, R.; Roblin, Y.; Rowntree, D.; Rvachev, M.; Sabatié, F.; Saha, A.; Salmè, G.; Scopetta, S.; Skibiński, R.; Souder, P.; Saito, T.; Strauch, S.; Suleiman, R.; Takahashi, K.; Teijiro, S.; Todor, L.; Tsubota, H.; Ueno, H.; Urciuoli, G.; van der Meer, R.; Vernin, P.; Voskanian, H.; Witała, H.; Wojtsekhowski, B.; Xiong, F.; Xu, W.; Yang, J.-C.; Zhang, B.; Zolnierczuk, P.

    2008-07-01

    We present a measurement of the spin-dependent cross sections for the He→3(e→,e')X reaction in the quasielastic and resonance regions at a four-momentum transfer 0.1≤Q2≤0.9GeV2. The spin-structure functions have been extracted and used to evaluate the nuclear Burkhardt-Cottingham and extended Gerasimov-Drell-Hearn sum rules for the first time. The data are also compared to an impulse approximation calculation and an exact three-body Faddeev calculation in the quasielastic region.

  15. The magnetic moment of the Z_c(3900) as an axialvector tetraquark state with QCD sum rules

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Gang

    2018-04-01

    In this article, we assign the Z_c^± (3900) to be the diquark-antidiquark type axialvector tetraquark state, study its magnetic moment with the QCD sum rules in the external weak electromagnetic field by carrying out the operator product expansion up to the vacuum condensates of dimension 8. We pay special attention to matching the hadron side with the QCD side of the correlation function to obtain solid duality, the routine can be applied to study other electromagnetic properties of the exotic particles.

  16. Boundary qKZ equation and generalized Razumov Stroganov sum rules for open IRF models

    NASA Astrophysics Data System (ADS)

    Di Francesco, P.

    2005-11-01

    We find higher-rank generalizations of the Razumov-Stroganov sum rules at q = -ei π/(k+1) for Ak-1 models with open boundaries, by constructing polynomial solutions of level-1 boundary quantum Knizhnik-Zamolodchikov equations for U_q(\\frak {sl}(k)) . The result takes the form of a character of the symplectic group, that leads to a generalization of the number of vertically symmetric alternating sign matrices. We also investigate the other combinatorial point q = -1, presumably related to the geometry of nilpotent matrix varieties.

  17. L-edge sum rule analysis on 3d transition metal sites: from d 10 to d 0 and towards application to extremely dilute metallo-enzymes

    DOE PAGES

    Wang, Hongxin; Friedrich, Stephan; Li, Lei; ...

    2018-02-13

    According to L-edge sum rules, the number of 3d vacancies at a transition metal site is directly proportional to the integrated intensity of the L-edge X-ray absorption spectrum (XAS) for the corresponding metal complex. In this study, the numbers of 3d holes are characterized quantitatively or semi-quantitatively for a series of manganese (Mn) and nickel (Ni) complexes, including the electron configurations 3d 10 → 3d 0. In addition, extremely dilute (<0.1% wt/wt) Ni enzymes were examined by two different approaches: (1) by using a high resolution superconducting tunnel junction X-ray detector to obtain XAS spectra with a very high signal-to-noisemore » ratio, especially in the non-variant edge jump region; and (2) by adding an inert tracer to the sample that provides a prominent spectral feature to replace the weak edge jump for intensity normalization. In this publication, we present for the first time: (1) L-edge sum rule analysis for a series of Mn and Ni complexes that include electron configurations from an open shell 3d0 to a closed shell 3d 10; (2) a systematic analysis on the uncertainties, especially on that from the edge jump, which was missing in all previous reports; (3) a clearly-resolved edge jump between pre-L 3 and post-L 2 regions from an extremely dilute sample; (4) an evaluation of an alternative normalization standard for L-edge sum rule analysis. XAS from two copper (Cu) proteins measured using a conventional semiconductor X-ray detector are also repeated as bridges between Ni complexes and dilute Ni enzymes. The differences between measuring 1% Cu enzymes and measuring <0.1% Ni enzymes are compared and discussed. As a result, this study extends L-edge sum rule analysis to virtually any 3d metal complex and any dilute biological samples that contain 3d metals.« less

  18. L-edge sum rule analysis on 3d transition metal sites: from d 10 to d 0 and towards application to extremely dilute metallo-enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongxin; Friedrich, Stephan; Li, Lei

    According to L-edge sum rules, the number of 3d vacancies at a transition metal site is directly proportional to the integrated intensity of the L-edge X-ray absorption spectrum (XAS) for the corresponding metal complex. In this study, the numbers of 3d holes are characterized quantitatively or semi-quantitatively for a series of manganese (Mn) and nickel (Ni) complexes, including the electron configurations 3d 10 → 3d 0. In addition, extremely dilute (<0.1% wt/wt) Ni enzymes were examined by two different approaches: (1) by using a high resolution superconducting tunnel junction X-ray detector to obtain XAS spectra with a very high signal-to-noisemore » ratio, especially in the non-variant edge jump region; and (2) by adding an inert tracer to the sample that provides a prominent spectral feature to replace the weak edge jump for intensity normalization. In this publication, we present for the first time: (1) L-edge sum rule analysis for a series of Mn and Ni complexes that include electron configurations from an open shell 3d0 to a closed shell 3d 10; (2) a systematic analysis on the uncertainties, especially on that from the edge jump, which was missing in all previous reports; (3) a clearly-resolved edge jump between pre-L 3 and post-L 2 regions from an extremely dilute sample; (4) an evaluation of an alternative normalization standard for L-edge sum rule analysis. XAS from two copper (Cu) proteins measured using a conventional semiconductor X-ray detector are also repeated as bridges between Ni complexes and dilute Ni enzymes. The differences between measuring 1% Cu enzymes and measuring <0.1% Ni enzymes are compared and discussed. As a result, this study extends L-edge sum rule analysis to virtually any 3d metal complex and any dilute biological samples that contain 3d metals.« less

  19. Fusion of classifiers for REIS-based detection of suspicious breast lesions

    NASA Astrophysics Data System (ADS)

    Lederman, Dror; Wang, Xingwei; Zheng, Bin; Sumkin, Jules H.; Tublin, Mitchell; Gur, David

    2011-03-01

    After developing a multi-probe resonance-frequency electrical impedance spectroscopy (REIS) system aimed at detecting women with breast abnormalities that may indicate a developing breast cancer, we have been conducting a prospective clinical study to explore the feasibility of applying this REIS system to classify younger women (< 50 years old) into two groups of "higher-than-average risk" and "average risk" of having or developing breast cancer. The system comprises one central probe placed in contact with the nipple, and six additional probes uniformly distributed along an outside circle to be placed in contact with six points on the outer breast skin surface. In this preliminary study, we selected an initial set of 174 examinations on participants that have completed REIS examinations and have clinical status verification. Among these, 66 examinations were recommended for biopsy due to findings of a highly suspicious breast lesion ("positives"), and 108 were determined as negative during imaging based procedures ("negatives"). A set of REIS-based features, extracted using a mirror-matched approach, was computed and fed into five machine learning classifiers. A genetic algorithm was used to select an optimal subset of features for each of the five classifiers. Three fusion rules, namely sum rule, weighted sum rule and weighted median rule, were used to combine the results of the classifiers. Performance evaluation was performed using a leave-one-case-out cross-validation method. The results indicated that REIS may provide a new technology to identify younger women with higher than average risk of having or developing breast cancer. Furthermore, it was shown that fusion rule, such as a weighted median fusion rule and a weighted sum fusion rule may improve performance as compared with the highest performing single classifier.

  20. New a1(1420 ) state: Structure, mass, and width

    NASA Astrophysics Data System (ADS)

    Sundu, H.; Agaev, S. S.; Azizi, K.

    2018-03-01

    The structure, spectroscopic parameters and width of the resonance with quantum numbers JP C=1++ discovered by the COMPASS Collaboration and classified as the a1(1420 ) meson are examined in the context of QCD sum rule method. In the calculations the axial-vector meson a1(1420 ) is treated as a four-quark state with the diquark-antidiquark structure. The mass and current coupling of a1(1420 ) are evaluated using QCD two-point sum rule approach. Its observed decay mode a1(1420 )→f0(980 )π , and kinematically allowed ones, namely a1→K*±K∓ , a1→K*0K¯ 0 and a1→K¯ *0K0 channels are studied employing QCD sum rules on the light-cone. Our prediction for the mass of the a1(1420 ) state ma1=1416-79+81 MeV is in excellent agreement with the experimental result. Width of this state Γ =145.52 ±20.79 MeV within theoretical and experimental errors is also in accord with the COMPASS data.

  1. Lattice input on the inclusive flavor-breaking τ Vus puzzle

    NASA Astrophysics Data System (ADS)

    Maltman, Kim; Hudspith, Renwick; Lewis, Randy; Wolfe, Carl; Zanotti, James

    2015-10-01

    Recent versions of the standard approach to implementing the flavor-breaking finite-energy sum rule determination of Vus using spectral data obtained from hadronic tau decays produce values of Vus more than 3 sigma low relative to the expectations of 3-family unitarity. We revisit this problem, focusing on systematic issues in the treatment of OPE contributions, employing lattice data for the relevant flavor-breaking correlator combinination to help in understanding how to treat the slowly converging D = 2 series and investigate potential D > 4 non-perturbative contributions. The results, in combination with observations from additional flavor-breaking continuum sum rules, are shown to suggest an alternate implementation of the flavor-breaking sum rule approach. This alternate analysis approach is shown to produce significantly higher Vus than obtained using the assumptions of the conventional implementation, for reasons that will be explained in detail. We also show that, when this approach is implemented using new preliminary results for the tau K pi branching fractions, the Vus obtained is in excellent agreement with that obtained from recent analyses of Kell3 using lattice input for f+(0).

  2. Exact Fundamental Limits of the First and Second Hyperpolarizabilities

    NASA Astrophysics Data System (ADS)

    Lytel, Rick; Mossman, Sean; Crowell, Ethan; Kuzyk, Mark G.

    2017-08-01

    Nonlinear optical interactions of light with materials originate in the microscopic response of the molecular constituents to excitation by an optical field, and are expressed by the first (β ) and second (γ ) hyperpolarizabilities. Upper bounds to these quantities were derived seventeen years ago using approximate, truncated state models that violated completeness and unitarity, and far exceed those achieved by potential optimization of analytical systems. This Letter determines the fundamental limits of the first and second hyperpolarizability tensors using Monte Carlo sampling of energy spectra and transition moments constrained by the diagonal Thomas-Reiche-Kuhn (TRK) sum rules and filtered by the off-diagonal TRK sum rules. The upper bounds of β and γ are determined from these quantities by applying error-refined extrapolation to perfect compliance with the sum rules. The method yields the largest diagonal component of the hyperpolarizabilities for an arbitrary number of interacting electrons in any number of dimensions. The new method provides design insight to the synthetic chemist and nanophysicist for approaching the limits. This analysis also reveals that the special cases which lead to divergent nonlinearities in the many-state catastrophe are not physically realizable.

  3. Longitudinal and bulk viscosities of Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Tankeshwar, K.; Pathak, K. N.; Ranganathan, S.

    1996-12-01

    Expressions for the longitudinal and bulk viscosities have been derived using Green Kubo formulae involving the time integral of the longitudinal and bulk stress autocorrelation functions. The time evolution of stress autocorrelation functions are determined using the Mori formalism and a memory function which is obtained from the Mori equation of motion. The memory function is of hyperbolic secant form and involves two parameters which are related to the microscopic sum rules of the respective autocorrelation function. We have derived expressions for the zeroth-, second-and fourth- order sum rules of the longitudinal and bulk stress autocorrelation functions. These involve static correlation functions up to four particles. The final expressions for these have been put in a form suitable for numerical calculations using low- order decoupling approximations. The numerical results have been obtained for the sum rules of longitudinal and bulk stress autocorrelation functions. These have been used to calculate the longitudinal and bulk viscosities and time evolution of the longitudinal stress autocorrelation function of the Lennard-Jones fluids over wide ranges of densities and temperatures. We have compared our results with the available computer simulation data and found reasonable agreement.

  4. Dipole oscillator strength distributions with improved high-energy behavior: Dipole sum rules and dispersion coefficients for Ne, Ar, Kr, and Xe revisited

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Thakkar, Ajit J.

    2010-02-01

    The construction of the dipole oscillator strength distribution (DOSD) from theoretical and experimental photoabsorption cross sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and molar refractivity data is a well-established technique that has been successfully applied to more than 50 species. Such DOSDs are insufficiently accurate at large photon energies. A novel iterative procedure is developed that rectifies this deficiency by using the high-energy asymptotic behavior of the dipole oscillator strength density as an additional constraint. Pilot applications are made for the neon, argon, krypton, and xenon atoms. The resulting DOSDs improve the agreement of the predicted S2 and S1 sum rules with ab initio calculations while preserving the accuracy of the remainder of the moments. Our DOSDs exploit new and more accurate experimental data. Improved estimates of dipole properties for these four atoms and of dipole-dipole C6 and triple-dipole C9 dispersion coefficients for the interactions among them are reported.

  5. Why do we need three levels to understand the molecular optical response?

    NASA Astrophysics Data System (ADS)

    Perez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.

    2011-10-01

    Traditionally, the nonlinear optical response at the molecular level has been modeled using the two-level approximation, under the assumption that the behavior of the exact sum-over-states (SOS) expressions for the molecular polarizabilities is well represented by the contribution of only two levels. We show how, a rigorous application of the Thomas-Kuhn sum-rules over the SOS expression for the diagonal component of the first-hyperpolarziability proves that the two-level approximation is unphysical. In addition, we indicate how the contributions of potentially infinite number of states to the SOS expressions for the first-hyperpolarizability are well represented by the contributions of a generic three-level system. This explains why the analysis of the three-level model in conjugation with the sum rules has lead to successful paradigms for the optimization of organic chromophores.

  6. High-frequency sum rules for the quasi-one-dimensional quantum plasma dielectric tensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genga, R.O.

    A high-frequency sum-rule expansion is derived for all elements of the spinless quasi-one-dimensional quantum plasma response tensor at T = 0 K. As in the magnetized classical plasmas, we find that Omega/sub 4//sup 13/ is the only coefficient of omega/sup -4/ that has no correlational term. Further, we find that the correlations either enhance or reduce the negative quantum dispersion, depending on the direction of propagation. It is also noted that the quantum effect does not exist for the ordinary and the extraordinary modes for perpendicular and parallel propagation, respectively.

  7. 76 FR 9939 - Garnishment of Accounts Containing Federal Benefit Payments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ... rule establishes procedures that financial institutions must follow when they receive a garnishment.... The rule requires financial institutions that receive such a garnishment order to determine the sum of... organizations, legal services organizations, financial institutions and their trade associations, State...

  8. Entanglement sum rules.

    PubMed

    Swingle, Brian

    2013-09-06

    We compute the entanglement entropy of a wide class of models that may be characterized as describing matter coupled to gauge fields. Our principle result is an entanglement sum rule that states that the entropy of the full system is the sum of the entropies of the two components. In the context of the models we consider, this result applies to the full entropy, but more generally it is a statement about the additivity of universal terms in the entropy. Our proof simultaneously extends and simplifies previous arguments, with extensions including new models at zero temperature as well as the ability to treat finite temperature crossovers. We emphasize that while the additivity is an exact statement, each term in the sum may still be difficult to compute. Our results apply to a wide variety of phases including Fermi liquids, spin liquids, and some non-Fermi liquid metals. For example, we prove that our model of an interacting Fermi liquid has exactly the log violation of the area law for entanglement entropy predicted by the Widom formula in agreement with earlier arguments.

  9. LETTER TO THE EDITOR: The quantum Knizhnik Zamolodchikov equation, generalized Razumov Stroganov sum rules and extended Joseph polynomials

    NASA Astrophysics Data System (ADS)

    Di Francesco, P.; Zinn-Justin, P.

    2005-12-01

    We prove higher rank analogues of the Razumov Stroganov sum rule for the ground state of the O(1) loop model on a semi-infinite cylinder: we show that a weighted sum of components of the ground state of the Ak-1 IRF model yields integers that generalize the numbers of alternating sign matrices. This is done by constructing minimal polynomial solutions of the level 1 U_q(\\widehat{\\frak{sl}(k)}) quantum Knizhnik Zamolodchikov equations, which may also be interpreted as quantum incompressible q-deformations of quantum Hall effect wavefunctions at filling fraction ν = k. In addition to the generalized Razumov Stroganov point q = -eiπ/k+1, another combinatorially interesting point is reached in the rational limit q → -1, where we identify the solution with extended Joseph polynomials associated with the geometry of upper triangular matrices with vanishing kth power.

  10. QCD as a Theory of Hadrons

    NASA Astrophysics Data System (ADS)

    Narison, Stephan

    2004-05-01

    About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD Spectral Sum Rules: 47. Introduction; 48. Theoretical foundations; 49. Survey of QCD spectral sum rules; 50. Weinberg and DMO sum rules; 51. The QCD coupling as; 52. The QCD condensates; 53. Light and heavy quark masses, etc.; 54. Hadron spectroscopy; 55. D, B and Bc exclusive weak decays; 56. B0(s)-B0(s) mixing, kaon CP violation; 57. Thermal behaviour of QCD; 58. More on spectral sum rules; Part XI. Appendix A: physical constants and unites; Appendix B: weight factors for SU(N)c; Appendix C: coordinates and momenta; Appendix D: Dirac equation and matrices; Appendix E: Feynman rules; Appendix F: Feynman integrals; Appendix G: useful formulae for the sum rules; Bibliography; Index.

  11. QCD as a Theory of Hadrons

    NASA Astrophysics Data System (ADS)

    Narison, Stephan

    2007-07-01

    About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD Spectral Sum Rules: 47. Introduction; 48. Theoretical foundations; 49. Survey of QCD spectral sum rules; 50. Weinberg and DMO sum rules; 51. The QCD coupling as; 52. The QCD condensates; 53. Light and heavy quark masses, etc.; 54. Hadron spectroscopy; 55. D, B and Bc exclusive weak decays; 56. B0(s)-B0(s) mixing, kaon CP violation; 57. Thermal behaviour of QCD; 58. More on spectral sum rules; Part XI. Appendix A: physical constants and unites; Appendix B: weight factors for SU(N)c; Appendix C: coordinates and momenta; Appendix D: Dirac equation and matrices; Appendix E: Feynman rules; Appendix F: Feynman integrals; Appendix G: useful formulae for the sum rules; Bibliography; Index.

  12. Improving detection of dementia in Asian patients with low education: combining the Mini-Mental State Examination and the Informant Questionnaire on Cognitive Decline in the Elderly.

    PubMed

    Narasimhalu, Kaavya; Lee, June; Auchus, Alexander P; Chen, Christopher P L H

    2008-01-01

    Previous work combining the Mini-Mental State Examination (MMSE) and Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) has been conducted in western populations. We ascertained, in an Asian population, (1) the best method of combining the tests, (2) the effects of educational level, and (3) the effect of different dementia etiologies. Data from 576 patients were analyzed (407 nondemented controls, 87 Alzheimer's disease and 82 vascular dementia patients). Sensitivity, specificity and AUC values were obtained using three methods, the 'And' rule, the 'Or' rule, and the 'weighted sum' method. The 'weighted sum' rule had statistically superior AUC and specificity results, while the 'Or' rule had the best sensitivity results. The IQCODE outperformed the MMSE in all analyses. Patients with no education benefited more from combined tests. There was no difference between Alzheimer's disease and vascular dementia populations in the predictive value of any of the combined methods. We recommend that the IQCODE be used to supplement the MMSE whenever available and that the 'weighted sum' method be used to combine the MMSE and the IQCODE, particularly in populations with low education. As the study population selected may not be representative of the general population, further studies are required before generalization to nonclinical samples. (c) 2007 S. Karger AG, Basel.

  13. Justifying the naive partonic sum rule for proton spin

    DOE PAGES

    Ji, Xiangdong; Zhang, Jian-Hui; Zhao, Yong

    2015-04-01

    We provide a theoretical basis for understanding the spin structure of the proton in terms of the spin and orbital angular momenta of free quarks and gluons in Feynman’s parton picture. We show that each term in the Jaffe–Manohar spin sum rule can be related to the matrix element of a gauge-invariant, but frame-dependent operator through a matching formula in large-momentum effective field theory. We present all the matching conditions for the spin content at one-loop order in perturbation theory, which provide a basis to calculate parton orbital angular momentum in lattice QCD at leading logarithmic accuracy.

  14. Flavor changing neutral current transition of B to a1 with light-cone sum rules

    NASA Astrophysics Data System (ADS)

    Momeni, S.; Khosravi, R.; Falahati, F.

    2017-01-01

    The B →a1ℓ+ℓ- decays occur by the electroweak penguin and box diagrams, which can be performed through the flavor changing neutral current (FCNC). We calculate the form factors of the FCNC B →a1 transitions in the light-cone sum rules approach, up to twist-4 distribution amplitudes of the axial vector meson a1. Forward-backward asymmetry, as well as branching ratios of B →a1ℓ+ℓ-, and B →a1γ decays are considered. A comparison is also made between our results and the predictions of other methods.

  15. Origin of the violation of the Gottfried sum rule

    NASA Astrophysics Data System (ADS)

    Hwang, W.-Y. P.; Speth, J.

    1992-08-01

    Using generalized Sullivan processes to generate sea-quark distributions of a nucleon at Q2=4 GeV2, we find that the recent finding by the New Muon Collaboration on the violation of the Gottfried sum rule can be understood quantitatively, including the shape of Fp2(x)-Fn2(x) as a function of x. The agreement may be seen as a clear evidence toward the validity of a recent suggestion of Hwang, Speth, and Brown that the sea distributions of a hadron, at low and moderate Q2 (at least up to a few GeV2), may be attributed primarily to generalized Sullivan processes.

  16. Giant quadrupole and monopole resonances in /sup 28/Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lui, Y.; Bronson, J.D.; Youngblood, D.H.

    1985-05-01

    Inelastic alpha scattering measurements have been performed for /sup 28/Si at small angles including zero degrees. A total of 66% of the E0 energy-weighted sum rule was identified (using a Satchler version 2 form factor) centered at E/sub x/ = 17.9 MeV having a width of 4.8 MeV and 34% of the E2 energy-weighted sum rule was identified above E/sub x/ = 15.3 MeV centered at 19.0 MeV with a width of 4.4 MeV. The dependence of the extracted E0 strength on form factor and optical potential was explored.

  17. Longitudinal leading-twist distribution amplitude of the J /ψ meson within the background field theory

    NASA Astrophysics Data System (ADS)

    Fu, Hai-Bing; Zeng, Long; Cheng, Wei; Wu, Xing-Gang; Zhong, Tao

    2018-04-01

    We make a detailed study on the J /ψ meson longitudinal leading-twist distribution amplitude ϕ2;J /ψ ∥ by using the QCD sum rules within the background field theory. By keeping all the nonperturbative condensates up to dimension 6, we obtain accurate QCD sum rules for the moments ⟨ξn;J /ψ ∥⟩. The first three ones are ⟨ξ2;J /ψ ∥⟩=0.083 (12 ), ⟨ξ4;J /ψ ∥⟩=0.015 (5 ), and ⟨ξ6;J /ψ ∥⟩=0.003 (2 ), respectively. Those values indicate a single peaked behavior for ϕ2;J /ψ ∥. As an application, we adopt the QCD light-cone sum rules to calculate the Bc meson semileptonic decay Bc+→J /ψ ℓ+νℓ. We obtain Γ (Bc+→J /ψ ℓ+νℓ)=(89.67-19.06+24.76)×10-15 GeV and ℜ(J /ψ ℓ+νℓ)=0.21 7-0.057+0.069, which agree with both the extrapolated next-to-leading order pQCD prediction and the new CDF measurement within errors.

  18. Relativistic interpretation of the nature of the nuclear tensor force

    NASA Astrophysics Data System (ADS)

    Zong, Yao-Yao; Sun, Bao-Yuan

    2018-02-01

    The spin-dependent nature of the nuclear tensor force is studied in detail within the relativistic Hartree-Fock approach. The relativistic formalism for the tensor force is supplemented with an additional Lorentz-invariant tensor formalism in the σ-scalar channel, so as to take into account almost fully the nature of the tensor force brought about by the Fock diagrams in realistic nuclei. Specifically, the tensor sum rules are tested for the spin and pseudo-spin partners with and without nodes, to further understand the nature of the tensor force within the relativistic model. It is shown that the interference between the two components of nucleon spinors causes distinct violations of the tensor sum rules in realistic nuclei, mainly due to the opposite signs on the κ quantities of the upper and lower components, as well as the nodal difference. However, the sum rules can be precisely reproduced if the same radial wave functions are taken for the spin/pseudo-spin partners in addition to neglecting the lower/upper components, revealing clearly the nature of the tensor force. Supported by National Natural Science Foundation of China (11375076, 11675065) and the Fundamental Research Funds for the Central Universities (lzujbky-2016-30)

  19. Spectral sum rules and magneto-roton as emergent graviton in fractional quantum Hall effect

    DOE PAGES

    Golkar, Siavash; Nguyen, Dung X.; Son, Dam T.

    2016-01-05

    Here, we consider gapped fractional quantum Hall states on the lowest Landau level when the Coulomb energy is much smaller than the cyclotron energy. We introduce two spectral densities, ρ T(ω) andmore » $$\\bar{p}$$ T(ω), which are proportional to the probabilities of absorption of circularly polarized gravitons by the quantum Hall system. We prove three sum rules relating these spectral densities with the shift S, the q 4 coefficient of the static structure factor S 4, and the high-frequency shear modulus of the ground state μ ∞, which is precisely defined. We confirm an inequality, first suggested by Haldane, that S 4 is bounded from below by |S–1|/8. The Laughlin wavefunction saturates this bound, which we argue to imply that systems with ground state wavefunctions close to Laughlin’s absorb gravitons of predominantly one circular polarization. We consider a nonlinear model where the sum rules are saturated by a single magneto-roton mode. In this model, the magneto-roton arises from the mixing between oscillations of an internal metric and the hydrodynamic motion. Implications for experiments are briefly discussed.« less

  20. Combining High Sensitivity Cardiac Troponin I and Cardiac Troponin T in the Early Diagnosis of Acute Myocardial Infarction.

    PubMed

    van der Linden, Noreen; Wildi, Karin; Twerenbold, Raphael; Pickering, John W; Than, Martin; Cullen, Louise; Greenslade, Jaimi; Parsonage, William; Nestelberger, Thomas; Boeddinghaus, Jasper; Badertscher, Patrick; Rubini Giménez, Maria; Klinkenberg, Lieke J J; Bekers, Otto; Schöni, Aline; Keller, Dagmar I; Sabti, Zaid; Puelacher, Christian; Cupa, Janosch; Schumacher, Lukas; Kozhuharov, Nikola; Grimm, Karin; Shrestha, Samyut; Flores, Dayana; Freese, Michael; Stelzig, Claudia; Strebel, Ivo; Miró, Òscar; Rentsch, Katharina; Morawiec, Beata; Kawecki, Damian; Kloos, Wanda; Lohrmann, Jens; Richards, A Mark; Troughton, Richard; Pemberton, Christopher; Osswald, Stefan; van Dieijen-Visser, Marja P; Mingels, Alma M; Reichlin, Tobias; Meex, Steven J R; Mueller, Christian

    2018-04-24

    Background -Combining two signals of cardiomyocyte injury, cardiac troponin I (cTnI) and T (cTnT), might overcome some individual pathophysiological and analytical limitations and thereby increase diagnostic accuracy for acute myocardial infarction (AMI) with a single blood draw. We aimed to evaluate the diagnostic performance of combinations of high sensitivity (hs) cTnI and hs-cTnT for the early diagnosis of AMI. Methods -The diagnostic performance of combining hs-cTnI (Architect, Abbott) and hs-cTnT (Elecsys, Roche) concentrations (sum, product, ratio and a combination algorithm) obtained at the time of presentation was evaluated in a large multicenter diagnostic study of patients with suspected AMI. The optimal rule out and rule in thresholds were externally validated in a second large multicenter diagnostic study. The proportion of patients eligible for early rule out was compared with the ESC 0/1 and 0/3 hour algorithms. Results -Combining hs-cTnI and hs-cTnT concentrations did not consistently increase overall diagnostic accuracy as compared with the individual isoforms. However, the combination improved the proportion of patients meeting criteria for very early rule-out. With the ESC 2015 guideline recommended algorithms and cut-offs, the proportion meeting rule out criteria after the baseline blood sampling was limited (6-24%) and assay dependent. Application of optimized cut-off values using the sum (9 ng/L) and product (18 ng2/L2) of hs-cTnI and hs-cTnT concentrations led to an increase in the proportion ruled-out after a single blood draw to 34-41% in the original (sum: negative predictive value (NPV) 100% (95%CI: 99.5-100%); product: NPV 100% (95%CI: 99.5-100%) and in the validation cohort (sum: NPV 99.6% (95%CI: 99.0-99.9%); product: NPV 99.4% (95%CI: 98.8-99.8%). The use of a combination algorithm (hs-cTnI <4 ng/L and hs-cTnT <9 ng/L) showed comparable results for rule out (40-43% ruled out; NPV original cohort 99.9% (95%CI: 99.2-100%); NPV validation cohort 99.5% (95%CI: 98.9-99.8%)) and rule-in (PPV original cohort 74.4% (95%Cl 69.6-78.8%); PPV validation cohort 84.0% (95%Cl 79.7-87.6%)). Conclusions -New strategies combining hs-cTnI and hs-cTnT concentrations may significantly increase the number of patients eligible for very early and safe rule-out, but do not seem helpful for the rule-in of AMI. Clinical Trial Registration -APACE URL: www.clinicaltrial.gov, Unique Identifier: NCT00470587; ADAPT URL: www.anzctr.org.au, Unique Identifier: ACTRN12611001069943.

  1. 76 FR 60565 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ... the same lien of securities of margin customers (a) with other customers without their written consent and (b) with the broker or dealer. The rule also prohibits the rehypothecation of customers' margin securities for a sum in excess of the customer's aggregate indebtedness. Pursuant to Rule 15c2-1, respondents...

  2. Low-Dimensional Nanostructures and a Semiclassical Approach for Teaching Feynman's Sum-over-Paths Quantum Theory

    ERIC Educational Resources Information Center

    Onorato, P.

    2011-01-01

    An introduction to quantum mechanics based on the sum-over-paths (SOP) method originated by Richard P. Feynman and developed by E. F. Taylor and coworkers is presented. The Einstein-Brillouin-Keller (EBK) semiclassical quantization rules are obtained following the SOP approach for bounded systems, and a general approach to the calculation of…

  3. Drude Conductivity of Dirac Fermions in Graphene

    DTIC Science & Technology

    2010-01-01

    interband transitions, as required by the sum rule. Our surprising observation indicates that many-body effects and Dirac fermion-impurity interactions...reduction of free electron oscillator strength is corroborated by corresponding changes in graphene interband transitions, as required by the sum...dimensions. Researchers have demonstrated in graphene exotic Dirac fermion phenomena ranging from anomalous quantum Hall effects 1,2 to Klein tunneling 3 in

  4. Scalar Hidden-Charm Tetraquark States with QCD Sum Rules

    NASA Astrophysics Data System (ADS)

    Di, Zun-Yan; Wang, Zhi-Gang; Zhang, Jun-Xia; Yu, Guo-Liang

    2018-02-01

    In this article, we study the masses and pole residues of the pseudoscalar-diquark-pseudoscalar-antidiquark type and vector-diquark-vector-antidiquark type scalar hidden-charm cu\\bar{c}\\bar{d} (cu\\bar{c}\\bar{s}) tetraquark states with QCD sum rules by taking into account the contributions of the vacuum condensates up to dimension-10 in the operator product expansion. The predicted masses can be confronted with the experimental data in the future. Possible decays of those tetraquark states are also discussed. Supported by the National Natural Science Foundation of China under Grant No. 11375063, the Fundamental Research Funds for the Central Universities under Grant Nos. 2016MS155 and 2016MS133

  5. D mesons in a magnetic field

    DOE PAGES

    Gubler, Philipp; Hattori, Koichi; Lee, Su Houng; ...

    2016-03-15

    In this paper, we investigate the mass spectra of open heavy flavor mesons in an external constant magnetic field within QCD sum rules. Spectral Ansatze on the phenomenological side are proposed in order to properly take into account mixing effects between the pseudoscalar and vector channels, and the Landau levels of charged mesons. The operator product expansion is implemented up to dimension-5 operators. As a result, we find for neutral D mesons a significant positive mass shift that goes beyond simple mixing effects. In contrast, charged D mesons are further subject to Landau level effects, which together with the mixingmore » effects almost completely saturate the mass shifts obtained in our sum rule analysis.« less

  6. Product-sum universality and Rushbrooke inequality in explosive percolation

    NASA Astrophysics Data System (ADS)

    Sabbir, M. M. H.; Hassan, M. K.

    2018-05-01

    We study explosive percolation (EP) on an Erdös-Rényi network for product rule (PR) and sum rule (SR). Initially, it was claimed that EP describes discontinuous phase transition; now it is well accepted as a probabilistic model for thermal continuous phase transition (CPT). However, no model for CPT is complete unless we know how to relate its observable quantities with those of thermal CPT. To this end, we define entropy and specific heat, redefine susceptibility, and show that they behave exactly like their thermal counterparts. We obtain the critical exponents ν ,α ,β , and γ numerically and find that both PR and SR belong to the same universality class and obey Rushbrooke inequality.

  7. A fuzzy controller with nonlinear control rules is the sum of a global nonlinear controller and a local nonlinear PI-like controller

    NASA Technical Reports Server (NTRS)

    Ying, Hao

    1993-01-01

    The fuzzy controllers studied in this paper are the ones that employ N trapezoidal-shaped members for input fuzzy sets, Zadeh fuzzy logic and a centroid defuzzification algorithm for output fuzzy set. The author analytically proves that the structure of the fuzzy controllers is the sum of a global nonlinear controller and a local nonlinear proportional-integral-like controller. If N approaches infinity, the global controller becomes a nonlinear controller while the local controller disappears. If linear control rules are used, the global controller becomes a global two-dimensional multilevel relay which approaches a global linear proportional-integral (PI) controller as N approaches infinity.

  8. The structure, mixing angle, mass and couplings of the light scalar f0(500) and f0(980) mesons

    NASA Astrophysics Data System (ADS)

    Agaev, S. S.; Azizi, K.; Sundu, H.

    2018-06-01

    The mixing angle, mass and couplings of the light scalar mesons f0 (500) and f0 (980) are calculated in the framework of QCD two-point sum rule approach by assuming that they are tetraquarks with diquark-antidiquark structures. The mesons are treated as mixtures of the heavy | H > = ([ su ] [ s bar u bar ] + [ sd ] [ s bar d bar ]) /√{ 2 } and light | L > = [ ud ] [ u bar d bar ] scalar diquark-antidiquark components. We extract from corresponding sum rules the mixing angles φH and φL of these states and evaluate the masses and couplings of the particles f0 (500) and f0 (980).

  9. Adler function and Bjorken polarized sum rule: Perturbation expansions in powers of the S U (Nc) conformal anomaly and studies of the conformal symmetry limit

    NASA Astrophysics Data System (ADS)

    Cvetič, Gorazd; Kataev, A. L.

    2016-07-01

    We consider a new form of analytical perturbation theory expansion in the massless S U (Nc) theory, for the nonsinglet part of the e+e--annihilation to hadrons Adler function Dn s and of the Bjorken sum rule of the polarized lepton-hadron deep-inelastic scattering Cns B j p, and demonstrate its validity at the O (αs4)-level at least. It is a two-fold series in powers of the conformal anomaly and of S U (Nc) coupling αs. Explicit expressions are obtained for the {β }-expanded perturbation coefficients at O (αs4) level in MS ¯ scheme, for both considered physical quantities. Comparisons of the terms in the {β }-expanded coefficients are made with the corresponding terms obtained by using extra gluino degrees of freedom, or skeleton-motivated expansion, or Rδ-scheme motivated expansion in the Principle of Maximal Conformality. Relations between terms of the {β }-expansion for the Dn s- and Cns B j p-functions, which follow from the conformal symmetry limit and its violation, are presented. The relevance to the possible new analyses of the experimental data for the Adler function and Bjorken sum rule is discussed.

  10. 26 CFR 1.848-2 - Determination of net premiums.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... contracts. With respect to any category of contracts, net premiums means— (i) The gross amount of premiums... subject to the rules of paragraph (h) of this section. (b) Gross amount of premiums and other consideration—(1) General rule. The term “gross amount of premiums and other consideration” means the sum of— (i...

  11. Chimera distribution amplitudes for the pion and the longitudinally polarized ρ-meson

    NASA Astrophysics Data System (ADS)

    Stefanis, N. G.; Pimikov, A. V.

    2016-01-01

    Using QCD sum rules with nonlocal condensates, we show that the distribution amplitude of the longitudinally polarized ρ-meson may have a shorttailed platykurtic profile in close analogy to our recently proposed platykurtic distribution amplitude for the pion. Such a chimera distribution de facto amalgamates the broad unimodal profile of the distribution amplitude, obtained with a Dyson-Schwinger equations-based computational scheme, with the suppressed tails characterizing the bimodal distribution amplitudes derived from QCD sum rules with nonlocal condensates. We argue that pattern formation, emerging from the collective synchronization of coupled oscillators, can provide a single theoretical scaffolding to study unimodal and bimodal distribution amplitudes of light mesons without recourse to particular computational schemes and the reasons for them.

  12. Asymptotic 3-loop heavy flavor corrections to the charged current structure functions FLW+-W-(x ,Q2) and F2W+-W-(x ,Q2)

    NASA Astrophysics Data System (ADS)

    Behring, A.; Blümlein, J.; Falcioni, G.; De Freitas, A.; von Manteuffel, A.; Schneider, C.

    2016-12-01

    We derive the massive Wilson coefficients for the heavy flavor contributions to the nonsinglet charged current deep-inelastic scattering structure functions FLW+(x ,Q2)-FLW-(x ,Q2) and F2W+(x ,Q2)-F2W-(x ,Q2) in the asymptotic region Q2≫m2 to 3-loop order in quantum chromodynamics at general values of the Mellin variable N and the momentum fraction x . Besides the heavy quark pair production, also the single heavy flavor excitation s →c contributes. Numerical results are presented for the charm quark contributions, and consequences on the unpolarized Bjorken sum rule and Adler sum rule are discussed.

  13. Mining HIV protease cleavage data using genetic programming with a sum-product function.

    PubMed

    Yang, Zheng Rong; Dalby, Andrew R; Qiu, Jing

    2004-12-12

    In order to design effective HIV inhibitors, studying and understanding the mechanism of HIV protease cleavage specification is critical. Various methods have been developed to explore the specificity of HIV protease cleavage activity. However, success in both extracting discriminant rules and maintaining high prediction accuracy is still challenging. The earlier study had employed genetic programming with a min-max scoring function to extract discriminant rules with success. However, the decision will finally be degenerated to one residue making further improvement of the prediction accuracy difficult. The challenge of revising the min-max scoring function so as to improve the prediction accuracy motivated this study. This paper has designed a new scoring function called a sum-product function for extracting HIV protease cleavage discriminant rules using genetic programming methods. The experiments show that the new scoring function is superior to the min-max scoring function. The software package can be obtained by request to Dr Zheng Rong Yang.

  14. A resolution of the inclusive flavor-breaking τ |Vus| puzzle

    NASA Astrophysics Data System (ADS)

    Hudspith, Renwick J.; Lewis, Randy; Maltman, Kim; Zanotti, James

    2018-06-01

    We revisit the puzzle of |Vus | values obtained from the conventional implementation of hadronic-τ- decay-based flavor-breaking finite-energy sum rules lying > 3 σ below the expectations of three-family unitarity. Significant unphysical dependences of |Vus | on the choice of weight, w, and upper limit, s0, of the experimental spectral integrals entering the analysis are confirmed, and a breakdown of assumptions made in estimating higher dimension, D > 4, OPE contributions identified as the main source of these problems. A combination of continuum and lattice results is shown to suggest a new implementation of the flavor-breaking sum rule approach in which not only |Vus |, but also D > 4 effective condensates, are fit to data. Lattice results are also used to clarify how to reliably treat the slowly converging D = 2 OPE series. The new sum rule implementation is shown to cure the problems of the unphysical w- and s0-dependence of |Vus | and to produce results ∼0.0020 higher than those of the conventional implementation employing the same data. With B-factory input, and using, in addition, dispersively constrained results for the Kπ branching fractions, we find |Vus | = 0.2231(27)exp(4)th, in excellent agreement with the result from Kℓ3, and compatible within errors with the expectations of three-family unitarity, thus resolving the long-standing inclusive τ |Vus | puzzle.

  15. Sum-rule corrections: a route to error cancellations in correlation matrix renormalisation theory

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, J.; Yao, Y. X.; Wang, C. Z.; Ho, K. M.

    2017-03-01

    We recently proposed the correlation matrix renormalisation (CMR) theory to efficiently and accurately calculate ground state total energy of molecular systems, based on the Gutzwiller variational wavefunction (GWF) to treat the electronic correlation effects. To help reduce numerical complications and better adapt the CMR to infinite lattice systems, we need to further refine the way to minimise the error originated from the approximations in the theory. This conference proceeding reports our recent progress on this key issue, namely, we obtained a simple analytical functional form for the one-electron renormalisation factors, and introduced a novel sum-rule correction for a more accurate description of the intersite electron correlations. Benchmark calculations are performed on a set of molecules to show the reasonable accuracy of the method.

  16. High-frequency sum rules for classical one-component plasma in a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genga, R.O.

    A high-frequency sum-rule expansion is derived for all elements of a classical plasma dielectric tensor in the presence of an external magnetic field. Omega/sub 4//sup 13/ is found to be the only coefficient of omega/sup -4/ that has no correlational and finite-radiation-temperature contributions. The finite-radiation-temperature effect results in an upward renormalization of the frequencies of the modes; it also leads to either reduction of the negative correlational effect on the positive thermal dispersion or, together with correlation, enhancement of the positive thermal dispersion for finite k, depending on the direction of propagation. Further, for the extraordinary mode, the finite-radiation-temperature effectmore » increases the positive refractive dispersion for finite k.« less

  17. Masses of Open-Flavour Heavy-Light Hybrids from QCD Sum Rules

    NASA Astrophysics Data System (ADS)

    Ho, Jason; Harnett, Derek; Steele, Tom

    2017-01-01

    Our current understanding of the strong interaction (QCD) permits the construction of colour singlet states with novel structures that do not fit within the traditional quark model, including hybrid mesons. To date, though other exotic structures such as pentaquark and tetraquark states have been confirmed, no unambiguous hybrid meson signals have been observed. However, with data collection at the GlueX experiment ongoing and with the construction of the PANDA experiment at FAIR, the opportunity to observe hybrid states has never been better. As theoretical calculations are a necessary piece for the identification of any observed experimental resonance, we present our mass predictions of heavy-light open-flavour hybrid mesons using QCD Laplace sum-rules for all scalar and vector JP channels, and including non-perturbative condensate contributions up to six-dimensions.

  18. Splitting of electrons and violation of the Luttinger sum rule

    NASA Astrophysics Data System (ADS)

    Quinn, Eoin

    2018-03-01

    We obtain a controlled description of a strongly correlated regime of electronic behavior. We begin by arguing that there are two ways to characterize the electronic degree of freedom, either by the canonical fermion algebra or the graded Lie algebra su (2 |2 ) . The first underlies the Fermi liquid description of correlated matter, and we identify a regime governed by the latter. We exploit an exceptional central extension of su (2 |2 ) to employ a perturbative scheme recently developed by Shastry and obtain a series of successive approximations for the electronic Green's function. We then focus on the leading approximation, which reveals a splitting in two of the electronic dispersion. The Luttinger sum rule is violated, and a Mott metal-insulator transition is exhibited. We offer a perspective.

  19. Neutron matter within QCD sum rules

    NASA Astrophysics Data System (ADS)

    Cai, Bao-Jun; Chen, Lie-Wen

    2018-05-01

    The equation of state (EOS) of pure neutron matter (PNM) is studied in QCD sum rules (QCDSRs ). It is found that the QCDSR results on the EOS of PNM are in good agreement with predictions by current advanced microscopic many-body theories. Moreover, the higher-order density terms in quark condensates are shown to be important to describe the empirical EOS of PNM in the density region around and above nuclear saturation density although they play a minor role at subsaturation densities. The chiral condensates in PNM are also studied, and our results indicate that the higher-order density terms in quark condensates, which are introduced to reasonably describe the empirical EOS of PNM at suprasaturation densities, tend to hinder the appearance of chiral symmetry restoration in PNM at high densities.

  20. Examination of the first excited state of 4He as a potential breathing mode

    NASA Astrophysics Data System (ADS)

    Bacca, Sonia; Barnea, Nir; Leidemann, Winfried; Orlandini, Giuseppina

    2015-02-01

    The isoscalar monopole excitation of 4He is studied within a few-body ab initio approach. We consider the transition density to the low-lying and narrow 0+ resonance, as well as various sum rules and the strength energy distribution itself at different momentum transfers q . Realistic nuclear forces of chiral and phenomenological nature are employed. Various indications for a collective breathing mode are found: (i) the specific shape of the transition density, (ii) the high degree of exhaustion of the non-energy-weighted sum rule at low q , and (iii) the complete dominance of the resonance peak in the excitation spectrum. For the incompressibility K of the α particle, two different definitions give two rather small values (22 and 36 MeV).

  1. Analysis of the strong coupling form factors of ΣbNB and ΣcND in QCD sum rules

    NASA Astrophysics Data System (ADS)

    Yu, Guo-Liang; Wang, Zhi-Gang; Li, Zhen-Yu

    2017-08-01

    In this article, we study the strong interaction of the vertices Σ b NB and Σ c ND using the three-point QCD sum rules under two different Dirac structures. Considering the contributions of the vacuum condensates up to dimension 5 in the operation product expansion, the form factors of these vertices are calculated. Then, we fit the form factors into analytical functions and extrapolate them into time-like regions, which gives the coupling constants. Our analysis indicates that the coupling constants for these two vertices are G ΣbNB = 0.43±0.01 GeV-1 and G ΣcND = 3.76±0.05 GeV-1. Supported by Fundamental Research Funds for the Central Universities (2016MS133)

  2. Deriving Laws from Ordering Relations

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.

    2003-01-01

    It took much effort in the early days of non-Euclidean geometry to break away from the mindset that all spaces are flat and that two distinct parallel lines do not cross. Up to that point, all that was known was Euclidean geometry, and it was difficult to imagine anything else. We have suffered a similar handicap brought on by the enormous relevance of Boolean algebra to the problems of our age-logic and set theory. Previously, I demonstrated that the algebra of questions is not Boolean, but rather is described by the free distributive algebra. To get to this stage took much effort, as many obstacles-most self-placed-had to be overcome. As Boolean algebras were all I had ever known, it was almost impossible for me to imagine working with an algebra where elements do not have complements. With this realization, it became very clear that the sum and product rules of probability theory at the most basic level had absolutely nothing to do with the Boolean algebra of logical statements. Instead, a measure of degree of inclusion can be invented for many different partially ordered sets, and the sum and product rules fall out of the associativity and distributivity of the algebra. To reinforce this very important idea, this paper will go over how these constructions are made, while focusing on the underlying assumptions. I will derive the sum and product rules for a distributive lattice in general and demonstrate how this leads to probability theory on the Boolean lattice and is related to the calculus of quantum mechanical amplitudes on the partially ordered set of experimental setups. I will also discuss the rules that can be derived from modular lattices and their relevance to the cross-ratio of projective geometry.

  3. Bilinearity in Spatiotemporal Integration of Synaptic Inputs

    PubMed Central

    Li, Songting; Liu, Nan; Zhang, Xiao-hui; Zhou, Douglas; Cai, David

    2014-01-01

    Neurons process information via integration of synaptic inputs from dendrites. Many experimental results demonstrate dendritic integration could be highly nonlinear, yet few theoretical analyses have been performed to obtain a precise quantitative characterization analytically. Based on asymptotic analysis of a two-compartment passive cable model, given a pair of time-dependent synaptic conductance inputs, we derive a bilinear spatiotemporal dendritic integration rule. The summed somatic potential can be well approximated by the linear summation of the two postsynaptic potentials elicited separately, plus a third additional bilinear term proportional to their product with a proportionality coefficient . The rule is valid for a pair of synaptic inputs of all types, including excitation-inhibition, excitation-excitation, and inhibition-inhibition. In addition, the rule is valid during the whole dendritic integration process for a pair of synaptic inputs with arbitrary input time differences and input locations. The coefficient is demonstrated to be nearly independent of the input strengths but is dependent on input times and input locations. This rule is then verified through simulation of a realistic pyramidal neuron model and in electrophysiological experiments of rat hippocampal CA1 neurons. The rule is further generalized to describe the spatiotemporal dendritic integration of multiple excitatory and inhibitory synaptic inputs. The integration of multiple inputs can be decomposed into the sum of all possible pairwise integration, where each paired integration obeys the bilinear rule. This decomposition leads to a graph representation of dendritic integration, which can be viewed as functionally sparse. PMID:25521832

  4. Born’s rule as signature of a superclassical current algebra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fussy, S.; Mesa Pascasio, J.; Institute for Atomic and Subatomic Physics, Vienna University of Technology, Operng. 9, 1040 Vienna

    2014-04-15

    We present a new tool for calculating the interference patterns and particle trajectories of a double-, three- and N-slit system on the basis of an emergent sub-quantum theory developed by our group throughout the last years. The quantum itself is considered as an emergent system representing an off-equilibrium steady state oscillation maintained by a constant throughput of energy provided by a classical zero-point energy field. We introduce the concept of a “relational causality” which allows for evaluating structural interdependences of different systems levels, i.e. in our case of the relations between partial and total probability density currents, respectively. Combined with themore » application of 21st century classical physics like, e.g., modern nonequilibrium thermodynamics, we thus arrive at a “superclassical” theory. Within this framework, the proposed current algebra directly leads to a new formulation of the guiding equation which is equivalent to the original one of the de Broglie–Bohm theory. By proving the absence of third order interferences in three-path systems it is shown that Born’s rule is a natural consequence of our theory. Considering the series of one-, double-, or, generally, of N-slit systems, with the first appearance of an interference term in the double slit case, we can explain the violation of Sorkin’s first order sum rule, just as the validity of all higher order sum rules. Moreover, the Talbot patterns and Talbot distance for an arbitrary N-slit device can be reproduced exactly by our model without any quantum physics tool. -- Highlights: •Calculating the interference patterns and particle trajectories of a double-, three- and N-slit system. •Deriving a new formulation of the guiding equation equivalent to the de Broglie–Bohm one. •Proving the absence of third order interferences and thus explaining Born’s rule. •Explaining the violation of Sorkin’s order sum rules. •Classical simulation of Talbot patterns and exact reproduction of Talbot distance for N slits.« less

  5. Model of a Negatively Curved Two-Dimensional Space.

    ERIC Educational Resources Information Center

    Eckroth, Charles A.

    1995-01-01

    Describes the construction of models of two-dimensional surfaces with negative curvature that are used to illustrate differences in the triangle sum rule for the various Big Bang Theories of the universe. (JRH)

  6. Explosive site percolation with a product rule.

    PubMed

    Choi, Woosik; Yook, Soon-Hyung; Kim, Yup

    2011-08-01

    We study the site percolation under Achlioptas process with a product rule in a two-dimensional square lattice. From the measurement of the cluster size distribution P(s), we find that P(s) has a very robust power-law regime followed by a stable hump near the transition threshold. Based on the careful analysis on the PP(s) distribution, we show that the transition should be discontinuous. The existence of the hysteresis loop in order parameter also verifies that the transition is discontinuous in two dimensions. Moreover, we also show that the transition nature from the product rule is not the same as that from a sum rule in two dimensions.

  7. Sum-rule corrections: A route to error cancellations in correlation matrix renormalisation theory

    DOE PAGES

    Liu, C.; Liu, J.; Yao, Y. X.; ...

    2017-01-16

    Here, we recently proposed the correlation matrix renormalisation (CMR) theory to efficiently and accurately calculate ground state total energy of molecular systems, based on the Gutzwiller variational wavefunction (GWF) to treat the electronic correlation effects. To help reduce numerical complications and better adapt the CMR to infinite lattice systems, we need to further refine the way to minimise the error originated from the approximations in the theory. This conference proceeding reports our recent progress on this key issue, namely, we obtained a simple analytical functional form for the one-electron renormalisation factors, and introduced a novel sum-rule correction for a moremore » accurate description of the intersite electron correlations. Benchmark calculations are performed on a set of molecules to show the reasonable accuracy of the method.« less

  8. Sum-rule corrections: A route to error cancellations in correlation matrix renormalisation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.; Liu, J.; Yao, Y. X.

    Here, we recently proposed the correlation matrix renormalisation (CMR) theory to efficiently and accurately calculate ground state total energy of molecular systems, based on the Gutzwiller variational wavefunction (GWF) to treat the electronic correlation effects. To help reduce numerical complications and better adapt the CMR to infinite lattice systems, we need to further refine the way to minimise the error originated from the approximations in the theory. This conference proceeding reports our recent progress on this key issue, namely, we obtained a simple analytical functional form for the one-electron renormalisation factors, and introduced a novel sum-rule correction for a moremore » accurate description of the intersite electron correlations. Benchmark calculations are performed on a set of molecules to show the reasonable accuracy of the method.« less

  9. Ward identities and combinatorics of rainbow tensor models

    NASA Astrophysics Data System (ADS)

    Itoyama, H.; Mironov, A.; Morozov, A.

    2017-06-01

    We discuss the notion of renormalization group (RG) completion of non-Gaussian Lagrangians and its treatment within the framework of Bogoliubov-Zimmermann theory in application to the matrix and tensor models. With the example of the simplest non-trivial RGB tensor theory (Aristotelian rainbow), we introduce a few methods, which allow one to connect calculations in the tensor models to those in the matrix models. As a byproduct, we obtain some new factorization formulas and sum rules for the Gaussian correlators in the Hermitian and complex matrix theories, square and rectangular. These sum rules describe correlators as solutions to finite linear systems, which are much simpler than the bilinear Hirota equations and the infinite Virasoro recursion. Search for such relations can be a way to solving the tensor models, where an explicit integrability is still obscure.

  10. The light-front gauge-invariant energy-momentum tensor

    DOE PAGES

    Lorce, Cedric

    2015-08-11

    In this study, we provide for the first time a complete parametrization for the matrix elements of the generic asymmetric, non-local and gauge-invariant canonical energy-momentum tensor, generalizing therefore former works on the symmetric, local and gauge-invariant kinetic energy-momentum tensor also known as the Belinfante-Rosenfeld energy-momentum tensor. We discuss in detail the various constraints imposed by non-locality, linear and angular momentum conservation. We also derive the relations with two-parton generalized and transverse-momentum dependent distributions, clarifying what can be learned from the latter. In particular, we show explicitly that two-parton transverse-momentum dependent distributions cannot provide any model-independent information about the parton orbitalmore » angular momentum. On the way, we recover the Burkardt sum rule and obtain similar new sum rules for higher-twist distributions.« less

  11. Chiral dynamics in the low-temperature phase of QCD

    NASA Astrophysics Data System (ADS)

    Brandt, Bastian B.; Francis, Anthony; Meyer, Harvey B.; Robaina, Daniel

    2014-09-01

    We investigate the low-temperature phase of QCD and the crossover region with two light flavors of quarks. The chiral expansion around the point (T,m=0) in the temperature vs quark-mass plane indicates that a sharp real-time excitation exists with the quantum numbers of the pion. An exact sum rule is derived for the thermal modification of the spectral function associated with the axial charge density; the (dominant) pion pole contribution obeys the sum rule. We determine the two parameters of the pion dispersion relation using lattice QCD simulations and test the applicability of the chiral expansion. The time-dependent correlators are also analyzed using the maximum entropy method, yielding consistent results. Finally, we test the predictions of the chiral expansion around the point (T=0,m=0) for the temperature dependence of static observables.

  12. Spin dependent structure function g1 of the deuteron and the proton

    NASA Astrophysics Data System (ADS)

    Klostermann, L.

    1995-05-01

    This thesis presents a study on the spin structure of the nucleon, via deep inelastic scattering (DIS) of polarized muons on polarized proton and deuterium targets. The work was done in the Spin Muon Collaboration (SMC) at CERN in Geneva. From the asymmetry in the scattering cross section for nucleon and lepton spins parallel and anti-parallel, one can determine the spin dependent structure function g(sub 1), which contains information on the quark and gluon spin distribution functions. The interpretation in the frame work of the quark parton model (QPM) of earlier results on g(sub 1, sup d) by the European Muon Collaboration (EMC), gave an indication that only a small fraction of the proton spin, compatible with zero, is carried by the spins of the constituent quarks. The SMC was set up to check this unexpected result with improved accuracy, and to combine measurements of g(sub 1, sup p) and g(sub 1, sup d) to test a fundamental sum rule in quantum chromodynamics (QCD), the Bjorken sum rule. The SMC results presented in this thesis are based on data taken in 1992 using a polarized deuterium target and polarized muons with an incident energy of 100 GeV, and 1993 data with a proton target and an incident muon energy of 190 GeV. Using all available data, the fundamental Bjorken sum rule has now been verified at the one standard deviation level to within 16% of its theoretical value.

  13. Dipole, quadrupole, and octupole terms in the long-range hyperfine frequency shift for hydrogen in the presence of inert gases

    NASA Astrophysics Data System (ADS)

    Greenwood, W. G.; Tang, K. T.

    1987-03-01

    The R-6, R-8, and R-10 terms in the long-range expansion for the hyperfine frequency shift are calculated for hydrogen in the presence of He, Ne, Ar, Kr, and Xe. The R-6 terms are based on the dipole oscillator strength sums. For helium, the R-8 and R-10 terms are based on quadrupole and octupole oscillator strength sums. For the heavier inert gases, the results for the R-8 and R-10 terms are obtained from the sum rules and the static polarizabilities. Upper bounds are also determined for the R-8 and R-10 terms.

  14. Department of Defense Youth Poll Wave 9 - June 2005. Overview Report

    DTIC Science & Technology

    2006-01-01

    Saving Private Ryan ,” “A...A*S*H 20 MEN OF HONOR 21 PEARL HARBOR 22 PLATOON 23 RAMBO SERIES (FIRST BLOOD, RAMBO 2, RAMBO 3) 24 RULES OF ENGAGEMENT 25 SAVING PRIVATE RYAN 26...RAMBO 2, RAMBO 3) 24 RULES OF ENGAGEMENT 25 SAVING PRIVATE RYAN 26 SUM OF ALL FEARS 27 A THIN RED LINE 28 THREE KINGS 29 TORA! TORA! TORA!

  15. Intraband magneto-optical absorption in InAs/GaAs quantum dots: Orbital Zeeman splitting and the Thomas-Reiche-Kuhn sum rule

    NASA Astrophysics Data System (ADS)

    Zhang, J.-Z.; Galbraith, I.

    2008-05-01

    Using perturbation theory, intraband magneto-optical absorption is calculated for InAs/GaAs truncated pyramidal quantum dots in a magnetic field applied parallel to the growth direction z . The effects of the magnetic field on the electronic states as well as the intraband transitions are systematically studied. Selection rules governing the intraband transitions are discussed based on the symmetry properties of the electronic states. While the broadband z -polarized absorption is almost insensitive to the magnetic field, the orbital Zeeman splitting is the dominant feature in the in-plane polarized spectrum. Strong in-plane polarized magneto-absorption features are located in the far-infrared region, while z -polarized absorption occurs at higher frequencies. This is due to the dot geometry (the base length is much larger than the height) yielding different quantum confinement in the vertical and lateral directions. The Thomas-Reiche-Kuhn sum rule, including the magnetic field effect, is applied together with the selection rules to the absorption spectra. The orbital Zeeman splitting depends on both the dot size and the confining potential—the splitting decreases as the dot size or the confining potential decreases. Our calculated Zeeman splittings are in agreement with experimental data.

  16. Experimental determination of the effective strong coupling constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandre Deur; Volker Burkert; Jian-Ping Chen

    2007-07-01

    We extract an effective strong coupling constant from low Q{sup 2} data on the Bjorken sum. Using sum rules, we establish its Q{sup 2}-behavior over the complete Q{sup 2}-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.

  17. Communication. Kinetics of scavenging of small, nucleating clusters. First nucleation theorem and sum rules

    DOE PAGES

    Malila, Jussi; McGraw, Robert; Laaksonen, Ari; ...

    2015-01-07

    Despite recent advances in monitoring nucleation from a vapor at close-to-molecular resolution, the identity of the critical cluster, forming the bottleneck for the nucleation process, remains elusive. During past twenty years, the first nucleation theorem has been often used to extract the size of the critical cluster from nucleation rate measurements. However, derivations of the first nucleation theorem invoke certain questionable assumptions that may fail, e.g., in the case of atmospheric new particle formation, including absence of subcritical cluster losses and heterogeneous nucleation on pre-existing nanoparticles. Here we extend the kinetic derivation of the first nucleation theorem to give amore » general framework to include such processes, yielding sum rules connecting the size dependent particle formation and loss rates to the corresponding loss-free nucleation rate and the apparent critical size from a naïve application of the first nucleation theorem that neglects them.« less

  18. Effects of plasmon pole models on the G0W0 electronic structure of various oxides

    NASA Astrophysics Data System (ADS)

    Miglio, A.; Waroquiers, D.; Antonius, G.; Giantomassi, M.; Stankovski, M.; Côté, M.; Gonze, X.; Rignanese, G.-M.

    2012-09-01

    The electronic properties of three different oxides (ZnO, SnO2 and SiO2) are investigated within many-body perturbation theory in the G 0 W 0 approximation. The frequency dependence of the dielectric function is either approximated using two different well-established plasmon-pole models (one of which enforces the fulfillment of the f-sum rule) or treated explicitly by means of the contour-deformation approach. Comparing these results, it is found that the plasmon-pole model enforcing the f-sum rule gives less accurate results for all three oxides. The calculated electronic properties are also compared with the available experimental data and previous ab initio results, focusing on the d state binding energies. The G 0 W 0 approach leads to significantly improved band gaps with respect to calculations based on the density functional theory in the local density approximation.

  19. TOPICS IN THEORY OF GENERALIZED PARTON DISTRIBUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radyushkin, Anatoly V.

    Several topics in the theory of generalized parton distributions (GPDs) are reviewed. First, we give a brief overview of the basics of the theory of generalized parton distributions and their relationship with simpler phenomenological functions, viz. form factors, parton densities and distribution amplitudes. Then, we discuss recent developments in building models for GPDs that are based on the formalism of double distributions (DDs). A special attention is given to a careful analysis of the singularity structure of DDs. The DD formalism is applied to construction of a model GPDs with a singular Regge behavior. Within the developed DD-based approach, wemore » discuss the structure of GPD sum rules. It is shown that separation of DDs into the so-called ``plus'' part and the $D$-term part may be treated as a renormalization procedure for the GPD sum rules. This approach is compared with an alternative prescription based on analytic regularization.« less

  20. Gottfried Sum Rule in QCD Nonsinglet Analysis of DIS Fixed-Target Data

    NASA Astrophysics Data System (ADS)

    Kotikov, A. V.; Krivokhizhin, V. G.; Shaikhatdenov, B. G.

    2018-03-01

    Deep-inelastic-scattering data from fixed-target experiments on the structure function F 2 were analyzed in the valence-quark approximation at the next-to-next-to-leading-order accuracy level in the strong-coupling constant. In this analysis, parton distributions were parametrized by employing information from the Gottfried sum rule. The strong-coupling constant was found to be α s ( M 2 Z) = 0.1180 ± 0.0020 (total expt. error), which is in perfect agreement with the world-averaged value from an updated Particle Data Group (PDG) report, α PDG s ( M 2 Z) = 0.1181 ± 0.0011. Also, the value of < x> u- d = 0.187 ± 0.021 found for the second moment of the difference in the u- and d-quark distributions complies very well with the most recent lattice result < x>LATTICE u- d = 0.208 ± 0.024.

  1. The analytical {\\mathscr{O}}({a}_{s}^{4}) expression for the polarized Bjorken sum rule in the miniMOM scheme and the consequences for the generalized Crewther relation

    NASA Astrophysics Data System (ADS)

    Kataev, A. L.; Molokoedov, V. S.

    2017-12-01

    The analytical {\\mathscr{O}}({a}s4) perturbative QCD expression for the flavour non-singlet contribution to the Bjorken polarized sum rule in the rather applicable at present gauge-dependent miniMOM scheme is obtained. For the considered three values of the gauge parameter, namely ξ = 0 (Landau gauge), ξ = -1 (anti-Feynman gauge) and ξ = -3 (Stefanis-Mikhailov gauge), the scheme-dependent coefficients are considerably smaller than the gauge-independent {\\overline{{MS}}} results. It is found that the fundamental property of the factorization of the QCD renormalization group β-function in the generalized Crewther relation, which is valid in the gauge-invariant {\\overline{{MS}}} scheme up to {\\mathscr{O}}({a}s4)-level at least, is unexpectedly valid at the same level in the miniMOM-scheme for ξ = 0, and for ξ = -1 and ξ = -3 in part.

  2. Light-cone distribution amplitudes of {xi} and their applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yonglu; Huang Mingqiu

    We present the light-cone distribution amplitudes of the {xi} baryons up to twist six on the basis of QCD conformal partial wave expansion to the leading order conformal spin accuracy. The nonperturbative parameters relevant to the DAs are determined in the framework of the QCD sum rule. The light-cone QCD sum rule approach is used to investigate both the electromagnetic form factors of {xi} and the exclusive semileptonic decay of {xi}{sub c} as applications. Our estimations on the magnetic moments are {mu}{sub {xi}{sup 0}}=-(1.92{+-}0.34){mu}{sub N} and {mu}{sub {xi}{sup -}}=-(1.19{+-}0.03){mu}{sub N}. The decay width of the process {xi}{sub c}{yields}{xi}e{sup +}{nu}{sub e}more » is evaluated to be {gamma}=8.73x10{sup -14} GeV, which is in accordance with the experimental measurements and other theoretical approaches.« less

  3. Study of optical and electronic properties of nickel from reflection electron energy loss spectra

    NASA Astrophysics Data System (ADS)

    Xu, H.; Yang, L. H.; Da, B.; Tóth, J.; Tőkési, K.; Ding, Z. J.

    2017-09-01

    We use the classical Monte Carlo transport model of electrons moving near the surface and inside solids to reproduce the measured reflection electron energy-loss spectroscopy (REELS) spectra. With the combination of the classical transport model and the Markov chain Monte Carlo (MCMC) sampling of oscillator parameters the so-called reverse Monte Carlo (RMC) method was developed, and used to obtain optical constants of Ni in this work. A systematic study of the electronic and optical properties of Ni has been performed in an energy loss range of 0-200 eV from the measured REELS spectra at primary energies of 1000 eV, 2000 eV and 3000 eV. The reliability of our method was tested by comparing our results with the previous data. Moreover, the accuracy of our optical data has been confirmed by applying oscillator strength-sum rule and perfect-screening-sum rule.

  4. Integrated layout based Monte-Carlo simulation for design arc optimization

    NASA Astrophysics Data System (ADS)

    Shao, Dongbing; Clevenger, Larry; Zhuang, Lei; Liebmann, Lars; Wong, Robert; Culp, James

    2016-03-01

    Design rules are created considering a wafer fail mechanism with the relevant design levels under various design cases, and the values are set to cover the worst scenario. Because of the simplification and generalization, design rule hinders, rather than helps, dense device scaling. As an example, SRAM designs always need extensive ground rule waivers. Furthermore, dense design also often involves "design arc", a collection of design rules, the sum of which equals critical pitch defined by technology. In design arc, a single rule change can lead to chain reaction of other rule violations. In this talk we present a methodology using Layout Based Monte-Carlo Simulation (LBMCS) with integrated multiple ground rule checks. We apply this methodology on SRAM word line contact, and the result is a layout that has balanced wafer fail risks based on Process Assumptions (PAs). This work was performed at the IBM Microelectronics Div, Semiconductor Research and Development Center, Hopewell Junction, NY 12533

  5. Object attributes combine additively in visual search.

    PubMed

    Pramod, R T; Arun, S P

    2016-01-01

    We perceive objects as containing a variety of attributes: local features, relations between features, internal details, and global properties. But we know little about how they combine. Here, we report a remarkably simple additive rule that governs how these diverse object attributes combine in vision. The perceived dissimilarity between two objects was accurately explained as a sum of (a) spatially tuned local contour-matching processes modulated by part decomposition; (b) differences in internal details, such as texture; (c) differences in emergent attributes, such as symmetry; and (d) differences in global properties, such as orientation or overall configuration of parts. Our results elucidate an enduring question in object vision by showing that the whole object is not a sum of its parts but a sum of its many attributes.

  6. Department of Defense Influencer Poll Wave 4 - June 2005. Overview Report

    DTIC Science & Technology

    2005-12-01

    source of their military impressions, but the most frequently mentioned movies include: “ Saving Private Ryan ”, “A Few Good Men”, “Band of Brothers...RAMBO 2, RAMBO 3) 24 RULES OF ENGAGEMENT 25 SAVING PRIVATE RYAN 26 SUM OF ALL FEARS 27 A THIN RED LINE 28 THREE KINGS 29 TORA! TORA! TORA... PRIVATE RYAN 26 SUM OF ALL FEARS 27 A THIN RED LINE 28 THREE KINGS 29 TORA! TORA! TORA! 30 TOP GUN 31 U-571 32 WAG THE DOG 33 WE WERE

  7. Two heads are better than one, but how much? Evidence that people's use of causal integration rules does not always conform to normative standards.

    PubMed

    Vadillo, Miguel A; Ortega-Castro, Nerea; Barberia, Itxaso; Baker, A G

    2014-01-01

    Many theories of causal learning and causal induction differ in their assumptions about how people combine the causal impact of several causes presented in compound. Some theories propose that when several causes are present, their joint causal impact is equal to the linear sum of the individual impact of each cause. However, some recent theories propose that the causal impact of several causes needs to be combined by means of a noisy-OR integration rule. In other words, the probability of the effect given several causes would be equal to the sum of the probability of the effect given each cause in isolation minus the overlap between those probabilities. In the present series of experiments, participants were given information about the causal impact of several causes and then they were asked what compounds of those causes they would prefer to use if they wanted to produce the effect. The results of these experiments suggest that participants actually use a variety of strategies, including not only the linear and the noisy-OR integration rules, but also averaging the impact of several causes.

  8. Application of a Novel Diagnostic Rule in the Differential Diagnosis between Acute Gouty Arthritis and Septic Arthritis.

    PubMed

    Lee, Kwang-Hoon; Choi, Sang-Tae; Lee, Soo-Kyung; Lee, Joo-Hyun; Yoon, Bo-Young

    2015-06-01

    Septic arthritis and gout are major diseases that should be suspected in patients with acute monoarthritis. These two diseases are clinically similar and often indistinguishable without the help of synovial fluid analysis. Recently, a novel diagnostic rule for gout without synovial fluid analysis was developed and showed relevant performances. This study aimed to determine whether this diagnostic rule could perform well in distinguishing gout from septic arthritis. The diagnostic rule comprises 7 clinical and laboratory variables, each of which is given a specified score. The probability of gout is classified into 3 groups according to the sum of the scores: high (≥ 8), intermediate (> 4 to < 8) and low probability (≤ 4). In this retrospective study, we applied this diagnostic rule to 136 patients who presented as acute monoarthritis and were subsequently diagnosed as acute gout (n = 82) and septic arthritis (n = 54) based on synovial fluid analysis. The mean sum of scores of acute gout patients was significantly higher than that of those with septic arthritis (8.6 ± 0.2 vs. 3.6 ± 0.32, P < 0.001). Patients with acute gout had significantly more 'high', and less 'low' probabilities compared to those with septic arthritis (Eta[η]: 0.776). The prevalence of acute gouty arthritis, as confirmed by the presence of monosodium crystal, was 95.5% (61/64), 57.5% (19/33), and 5.1% (2/39) in high, intermediate and low probability group, respectively. The recently introduced diagnostic rule properly discriminates acute gout from septic arthritis. It may help physicians diagnose gout in cases difficult to be differentiated from septic arthritis.

  9. Object attributes combine additively in visual search

    PubMed Central

    Pramod, R. T.; Arun, S. P.

    2016-01-01

    We perceive objects as containing a variety of attributes: local features, relations between features, internal details, and global properties. But we know little about how they combine. Here, we report a remarkably simple additive rule that governs how these diverse object attributes combine in vision. The perceived dissimilarity between two objects was accurately explained as a sum of (a) spatially tuned local contour-matching processes modulated by part decomposition; (b) differences in internal details, such as texture; (c) differences in emergent attributes, such as symmetry; and (d) differences in global properties, such as orientation or overall configuration of parts. Our results elucidate an enduring question in object vision by showing that the whole object is not a sum of its parts but a sum of its many attributes. PMID:26967014

  10. Dipole oscillator strength properties and dispersion energies for SiH 4

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Kumar, Mukesh; Meath, William J.

    2003-01-01

    A recommended isotropic dipole oscillator strength distribution (DOSD) has been constructed for the silane (SiH 4) molecule through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength data. The constraints are furnished by experimental molar refractivity data and the Thomas-Reiche-Kuhn sum rule. The DOSD is used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums, and mean excitation energies for the molecule. A pseudo-DOSD for SiH 4 is also presented which is used to obtain reliable results for the isotropic dipole-dipole dispersion energy coefficients C 6, for the interaction of silane with itself and with forty-four other species, and the triple-dipole dispersion energy coefficient C 9 for (SiH 4) 3.

  11. Dipole oscillator strengths, dipole properties and dispersion energies for SiF4

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Kumar, Mukesh; Meath, William J.

    2003-01-01

    A recommended isotropic dipole oscillator strength distribution (DOSD) has been constructed for the silicon tetrafluoride (SiF4) molecule through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength data. The constraints are furnished by experimental molar refractivity data and the Thomas-Reiche-Kuhn sum rule. The DOSD is used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums and mean excitation energies for the molecule. A pseudo-DOSD for SiF4 is also presented which is used to obtain reliable results for the isotropic dipole-dipole dispersion energy coefficients C6, for the interaction of SiF4 with itself and with 43 other species and the triple-dipole dispersion energy coefficient C9 for (SiF4)3.

  12. Which Basic Rules Underlie Social Judgments? Agency Follows a Zero-Sum Principle and Communion Follows a Non-Zero-Sum Principle.

    PubMed

    Dufner, Michael; Leising, Daniel; Gebauer, Jochen E

    2016-05-01

    How are people who generally see others positively evaluated themselves? We propose that the answer to this question crucially hinges on the content domain: We hypothesize that Agency follows a "zero-sum principle" and therefore people who see others ashighin Agency are perceived aslowin Agency themselves. In contrast, we hypothesize that Communion follows a "non-zero-sum principle" and therefore people who see others ashighin Communion are perceived ashighin Communion themselves. We tested these hypotheses in a round-robin and a half-block study. Perceiving others as agentic was indeed linked to being perceived as low in Agency. To the contrary, perceiving others as communal was linked to being perceived as high in Communion, but only when people directly interacted with each other. These results help to clarify the nature of Agency and Communion and offer explanations for divergent findings in the literature. © 2016 by the Society for Personality and Social Psychology, Inc.

  13. 49 CFR 1017.10 - Procedures for administrative offset.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION GENERAL RULES AND REGULATIONS DEBT COLLECTION-COLLECTION BY OFFSET FROM INDEBTED GOVERNMENT AND FORMER GOVERNMENT EMPLOYEES § 1017.10 Procedures for administrative offset. (a) Debts will be collected in one lump sum where possible. If the employee is financially unable...

  14. Accessing the nucleon transverse structure in inclusive deep inelastic scattering

    DOE PAGES

    Accardi, Alberto; Bacchetta, Alessandro

    2017-09-06

    Here, we revisit the standard analysis of inclusive Deep Inelastic Scattering off nucleons taking into account the fact that on-shell quarks cannot be present in the final state, but they rather decay into hadrons - a process that can be described in terms of suitable "jet" correlators. As a consequence, a spin-flip term associated with the invariant mass of the produced hadrons is generated non perturbatively and couples to the target's transversity distribution function. In inclusive cross sections, this provides an hitherto neglected and large contribution to the twist-3 part of the g 2 structure function, that can explain themore » discrepancy between recent calculations and fits of this quantity. It also provides an extension of the Burkhardt-Cottingham sum rule, putting constraints on the small-x behavior of the transversity function, as well as an extension of the Efremov-Teryaev-Leader sum rule, suggesting a novel way to measure the tensor charge of the proton.« less

  15. Study of D →a0(980 )e+νe decay in the light-cone sum rules approach

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao-Dong; Li, Hai-Bo; Wei, Bin; Xu, Yu-Guo; Yang, Mao-Zhi

    2017-08-01

    Within the QCD light-cone sum rule (LCSR) approach, we investigate the transition form factors of D →a0(980 ) up to the twist-3 light-cone distribution amplitudes (LCDAs) of the scalar meson a0(980 ) in the two-quark picture. Using these form factors, we calculate the differential decay widths and branching ratios of the D →a0(980 )e+νe semileptonic decays. We obtain B (D0→a0-(980 )e+νe)=(4.0 8-1.22+1.37)×10-4 and B (D+→a00(980 )e+νe)=(5.4 0-1.59+1.78)×10-4 . The results are sensitive to the a0(980 ) inner structure. These decays can be searched for at the BESIII experiment, and any experimental observations will be useful to identify internal quark contents of the a0(980 ) meson, which will shed light on understanding theoretical models.

  16. Spectroscopic parameters and decays of the resonance Z_b(10610)

    NASA Astrophysics Data System (ADS)

    Agaev, S. S.; Azizi, K.; Sundu, H.

    2017-12-01

    The resonance Z_b(10610) is investigated as the diquark-antidiquark Z_b=[bu][\\overline{bd}] state with spin-parity JP=1+. The mass and current coupling of the resonance Z_b(10610) are evaluated using QCD two-point sum rule and taking into account the vacuum condensates up to ten dimensions. We study the vertices Z_bΥ (nS)π (n=1,2,3) by applying the QCD light-cone sum rule to compute the corresponding strong couplings g_{Z_bΥ (nS)π } and widths of the decays Z_b → Υ (nS)π . We explore also the vertices Z_b hb(mP)π (m=1,2) and calculate the couplings g_{Z_b hb(mP)π } and the widths of the decay channels Z_b → hb(mP)π . To this end, we calculate the mass and decay constants of the h_b(1P) and h_b(2P) mesons. The results obtained are compared with experimental data of the Belle Collaboration.

  17. Finite-size effects in simulations of electrolyte solutions under periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Thompson, Jeffrey; Sanchez, Isaac

    The equilibrium properties of charged systems with periodic boundary conditions may exhibit pronounced system-size dependence due to the long range of the Coulomb force. As shown by others, the leading-order finite-size correction to the Coulomb energy of a charged fluid confined to a periodic box of volume V may be derived from sum rules satisfied by the charge-charge correlations in the thermodynamic limit V -> ∞ . In classical systems, the relevant sum rule is the Stillinger-Lovett second-moment (or perfect screening) condition. This constraint implies that for large V, periodicity induces a negative bias of -kB T(2 V) - 1 in the total Coulomb energy density of a homogeneous classical charged fluid of given density and temperature. We present a careful study of the impact of such finite-size effects on the calculation of solute chemical potentials from explicit-solvent molecular simulations of aqueous electrolyte solutions. National Science Foundation Graduate Research Fellowship Program, Grant No. DGE-1610403.

  18. In-medium properties of pseudoscalar D_s and B_s mesons

    NASA Astrophysics Data System (ADS)

    Chhabra, Rahul; Kumar, Arvind

    2017-11-01

    We calculate the shift in the masses and decay constants of D_s(1968) and B_s(5370) mesons in hot and dense asymmetric strange hadronic matter using QCD sum rules and chiral SU(3) model. In-medium strange quark condensates < \\bar{s}s> _{ρ _B}, and gluon condensates < α s/π {G^a}_{μ ν } {G^a}^{μ ν } > _{ρ _B}, to be used in the QCD sum rules for pseudoscalar D_s and B_s mesons, are calculated using a chiral SU(3) model. As an application of our present work, we calculate the in-medium decay widths of the excited (c\\bar{s}) states D_s^*(2715) and D_s^*(2860) decaying to (D_s(1968),η ) mesons. The medium effects in their decay widths are incorporated through the mass modification of the D_s(1968) and η mesons. The results of the present investigation may be helpful in understanding the possible outcomes of the future experiments like CBM and PANDA under the FAIR facility.

  19. Finite-width Laplacian sum rules for 2++ tensor glueball in the instanton vacuum model

    NASA Astrophysics Data System (ADS)

    Chen, Junlong; Liu, Jueping

    2017-01-01

    The more carefully defined and more appropriate 2++ tensor glueball current is a S Uc(3 ) gauge-invariant, symmetric, traceless, and conserved Lorentz-irreducible tensor. After Lorentz decomposition, the invariant amplitude of the correlation function is abstracted and calculated based on the semiclassical expansion for quantum chromodynamics (QCD) in the instanton liquid background. In addition to taking the perturbative contribution into account, we calculate the contribution arising from the interaction (or the interference) between instantons and the quantum gluon fields, which is infrared free. Instead of the usual zero-width approximation for the resonances, the Breit-Wigner form with a correct threshold behavior for the spectral function of the finite-width three resonances is adopted. The properties of the 2++ tensor glueball are investigated via a family of the QCD Laplacian sum rules for the invariant amplitude. The values of the mass, decay width, and coupling constants for the 2++ resonance in which the glueball fraction is dominant are obtained.

  20. Using Monte Carlo Simulations to Develop an Understanding of the Hyperpolarizability Near the Fundamental Limit

    NASA Astrophysics Data System (ADS)

    Shafei, Shoresh; Kuzyk, Mark C.; Kuzyk, Mark G.

    2010-03-01

    The hyperpolarizability governs all light-matter interactions. In recent years, quantum mechanical calculations have shown that there is a fundamental limit of the hyperpolarizability of all materials. The fundamental limits are calculated only under the assumption that the Thomas Kuhn sum rules and the three-level ansatz hold. (The three-level ansatz states that for optimized hyperpolarizability, only two excited states contribute to the hyperpolarizability.) All molecules ever characterized have hyperpolarizabilities that fall well below the limits. However, Monte Carlo simulations of the nonlinear polarizability have shown that attaining values close to the fundamental limit is theoretically possible; but, the calculations do not provide guidance with regards to what potentials are optimized. The focus of our work is to use Monte Carlo techniques to determine sets of energies and transition moments that are consistent with the sum rules, and study the constraints on their signs. This analysis will be used to implement a numerical proof of three-level ansatz.

  1. Ozone: Unresolved discrepancies for dipole oscillator strength distributions, dipole sums, and van der Waals coefficients

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Thakkar, Ajit J.

    2011-08-01

    Dipole oscillator strength distributions (DOSDs) for ozone are constructed from experimental photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule, the high-energy behavior of the dipole-oscillator-strength density, and molar refractivity data. A lack of photoabsorption data in the intermediate energy region from 24 to 524 eV necessitates the use of a mixture rule in that region. For this purpose, a DOSD for O2 is constructed first. The dipole properties for O2 are essentially the same as those obtained in earlier work even though most of the input data is from more recent experiments. A discrepancy is found between the refractivity data and photoabsorption data in the 10-20.6 eV range for ozone. A reliable ozone DOSD of the sort obtained for many other species remains out of reach. However, it is suggested that the true dipole properties of ozone lie between those predicted by two distributions that we present.

  2. An Empirical Model Building Criterion Based on Prediction with Applications in Parametric Cost Estimation.

    DTIC Science & Technology

    1980-08-01

    varia- ble is denoted by 7, the total sum of squares of deviations from that mean is defined by n - SSTO - (-Y) (2.6) iul and the regression sum of...squares by SSR - SSTO - SSE (2.7) II 14 A selection criterion is a rule according to which a certain model out of the 2p possible models is labeled "best...dis- cussed next. 1. The R2 Criterion The coefficient of determination is defined by R2 . 1 - SSE/ SSTO . (2.8) It is clear that R is the proportion of

  3. A Novel Feature Level Fusion for Heart Rate Variability Classification Using Correntropy and Cauchy-Schwarz Divergence.

    PubMed

    Goshvarpour, Ateke; Goshvarpour, Atefeh

    2018-04-30

    Heart rate variability (HRV) analysis has become a widely used tool for monitoring pathological and psychological states in medical applications. In a typical classification problem, information fusion is a process whereby the effective combination of the data can achieve a more accurate system. The purpose of this article was to provide an accurate algorithm for classifying HRV signals in various psychological states. Therefore, a novel feature level fusion approach was proposed. First, using the theory of information, two similarity indicators of the signal were extracted, including correntropy and Cauchy-Schwarz divergence. Applying probabilistic neural network (PNN) and k-nearest neighbor (kNN), the performance of each index in the classification of meditators and non-meditators HRV signals was appraised. Then, three fusion rules, including division, product, and weighted sum rules were used to combine the information of both similarity measures. For the first time, we propose an algorithm to define the weights of each feature based on the statistical p-values. The performance of HRV classification using combined features was compared with the non-combined features. Totally, the accuracy of 100% was obtained for discriminating all states. The results showed the strong ability and proficiency of division and weighted sum rules in the improvement of the classifier accuracies.

  4. 25 CFR 163.22 - Payment for forest products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Terms and conditions for payment of forest products under lump sum (predetermined volume) sales shall be... Forest Management and Operations § 163.22 Payment for forest products. (a) The basis of volume determination for forest products sold shall be the Scribner Decimal C log rules, cubic volume, lineal...

  5. Correlational correction to plasmon dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalman, G.; Golden, K.I.

    The authors question the suggestion that plasmon dispersion increases for small values of the coupling over its random-phase-approximation value, and conclude that, contrary to what has been stated in the literature, it does not: high-frequency-moment sum-rule and Kramers-Kronig arguments, when properly treated, do not entail such a consequence.

  6. 40 CFR Appendix II to Subpart V of... - Arbitration Rules

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Emissions Control System Performance Warranty... by either party. It shall contain a statement of the matter in dispute, the amount of money involved... sums of money as it deems necessary to defray the expense of the arbitration, including the arbitrator...

  7. 40 CFR Appendix II to Subpart V of... - Arbitration Rules

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Emissions Control System Performance Warranty... by either party. It shall contain a statement of the matter in dispute, the amount of money involved... sums of money as it deems necessary to defray the expense of the arbitration, including the arbitrator...

  8. 40 CFR Appendix II to Subpart V of... - Arbitration Rules

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Emissions Control System Performance Warranty... by either party. It shall contain a statement of the matter in dispute, the amount of money involved... sums of money as it deems necessary to defray the expense of the arbitration, including the arbitrator...

  9. 40 CFR Appendix II to Subpart V of... - Arbitration Rules

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Emissions Control System Performance Warranty... by either party. It shall contain a statement of the matter in dispute, the amount of money involved... sums of money as it deems necessary to defray the expense of the arbitration, including the arbitrator...

  10. 40 CFR Appendix II to Subpart V of... - Arbitration Rules

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Emissions Control System Performance Warranty... by either party. It shall contain a statement of the matter in dispute, the amount of money involved... sums of money as it deems necessary to defray the expense of the arbitration, including the arbitrator...

  11. 78 FR 66841 - Israel Loan Guarantees Issued Under the Emergency Wartime Supplemental Appropriations Act of 2003...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... AGENCY FOR INTERNATIONAL DEVELOPMENT 22 CFR Part 230 Israel Loan Guarantees Issued Under the... International Development (USAID). ACTION: Final rule. SUMMARY: This regulation prescribes the revised... International Development, may issue loan guarantees applicable to sums borrowed by the Government of Israel on...

  12. Developmental Trajectories and Antecedents of Distal Parental Supervision

    ERIC Educational Resources Information Center

    Laird, Robert D.; Criss, Michael M.; Pettit, Gregory S.; Bates, John E.; Dodge, Kenneth A.

    2009-01-01

    Groups of adolescents were identified on the basis of developmental trajectories of their families' rules and their parents' knowledge of their activities. Characteristics of the adolescent, peer antisociality, and family context were tested as antecedents. In sum, 404 parent-adolescent dyads provided data for adolescents aged 10-16. Most…

  13. Toward complete pion nucleon amplitudes

    DOE PAGES

    Mathieu, Vincent; Danilkin, Igor V.; Fernández-Ramírez, Cesar; ...

    2015-10-05

    We compare the low-energy partial wave analyses πN scattering with a high-energy data via finite energy sum rules. We also construct a new set of amplitudes by matching the imaginary part from the low-energy analysis with the high-energy, Regge parametrization and then reconstruct the real parts using dispersion relations.

  14. 10 CFR 600.315 - Revision of budget and program plans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....315 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS FINANCIAL ASSISTANCE RULES... Requirements § 600.315 Revision of budget and program plans. (a) The budget plan is the financial expression of the project or program as approved during the award process. It includes the sum of the Federal and...

  15. Enigmatic photon absorption in plasmas near solar interior conditions

    NASA Astrophysics Data System (ADS)

    Iglesias, Carlos A.

    2015-06-01

    Large systematic discrepancies between theoretical and experimental photon absorption of Fe plasmas applicable to the solar interior were reported [Bailey et al., Nature 517, 56 (2015)]. The disagreement is examined in the context of the Thomas-Reiche-Kuhn f-sum rule. The analysis identifies several anomalies in the experimental results.

  16. Atomic Spectra and the Vector Model

    NASA Astrophysics Data System (ADS)

    Candler, A. C.

    2015-05-01

    12. Displaced terms; 13. Combination of several electrons; 14. Short periods; 15. Long periods; 16. Rare earths; 17. Intensity relsations; 18. Sum rules and (jj) coupling; 19. Series limit; 20. Hyperfine structure; 21. Quadripole radiation; 22. Fluorescent crystals; Appendix 5. Key to references; Appendix 6. Bibliography; Subject index; Author index.

  17. 39 CFR 3060.22 - Financial status report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Postal Service POSTAL REGULATORY COMMISSION PERSONNEL ACCOUNTING PRACTICES AND TAX RULES FOR THE... Products Financials—PRC Form CP-02 [$ in 000s] Beginning value Change from prior year Ending value (1... Value: Sum total of Net Income (Loss) as of October 1 of Reportable Fiscal Year. Change from Prior Year...

  18. Inclusive inelastic scattering of heavy ions and nuclear correlations

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.; Khandelwal, Govind S.

    1990-01-01

    Calculations of inclusive inelastic scattering distributions for heavy ion collisions are considered within the high energy optical model. Using ground state sum rules, the inclusive projectile and complete projectile-target inelastic angular distributions are treated in both independent particle and correlated nuclear models. Comparisons between the models introduced are made for alpha particles colliding with He-4, C-12, and O-16 targets and protons colliding with O-16. Results indicate that correlations contribute significantly, at small momentum transfers, to the inelastic sum. Correlation effects are hidden, however, when total scattering distributions are considered because of the dominance of elastic scattering at small momentum transfers.

  19. Neutron-hole strength in the N = 81 isotones

    NASA Astrophysics Data System (ADS)

    Howard, A. M.; Freeman, S. J.; Schiffer, J. P.; Bloxham, T.; Clark, J. A.; Deibel, C. M.; Kay, B. P.; Parker, P. D.; Sharp, D. K.; Thomas, J. S.

    2012-09-01

    The distribution of neutron-hole strength has been studied in the N = 81 isotones 137Ba, 139Ce, 141Nd and 143Sm through the single-neutron removing reactions (p,d) and (3He,α), at energies of 23 and 34 MeV, respectively. Systematic cross section measurements were made at angles sensitive to the transferred angular momentum, and spectroscopic factors extracted through a distorted-wave Born approximation analysis. Application of the MacFarlane-French sum rules indicate an anomalously low summed g7/2 spectroscopic factor, most likely due to extensive fragmentation of the single-particle strength. Single-particle energies, based upon the centroids of observed strength, are presented.

  20. Comparative analysis of substance use in ballet, dance sport, and synchronized swimming: results of a longitudinal study.

    PubMed

    Zenic, Natasa; Peric, Mia; Zubcevic, Nada Grcic; Ostojic, Zdenko; Ostojic, Ljerka

    2010-06-01

    There have been few studies comparing substance use and misuse (SU&M) in different performing arts forms. Herein, we identified and compared SU&M in women studying an art (ballet, n = 21), a non-Olympic sport (dance sport, n = 25), and an Olympic sport (synchronized swimming, n = 23). The sample of variables comprised general, educational, and sport factors, as well as SU&M data, including consumption of opiates, cigarettes, alcohol, nutritional supplements, doping behaviors, and beliefs. Using the Kruskal-Wallis test, we found no significant differences between study groups in potential doping behaviors. Most of the examinees reported that they did not rely on physicians' and/or coaches' opinions regarding doping. Only sport dancers recognized their consumption of cannabis as a violation of anti-doping rules. Those more convinced that doping habits are present in their sport (or art) have a certain tendency toward doping usage. In conclusion, a strong anti-doping campaign within the studied arts is suggested, focusing on the health-related problems of SU&M.

  1. Born’s rule as signature of a superclassical current algebra

    NASA Astrophysics Data System (ADS)

    Fussy, S.; Mesa Pascasio, J.; Schwabl, H.; Grössing, G.

    2014-04-01

    We present a new tool for calculating the interference patterns and particle trajectories of a double-, three- and N-slit system on the basis of an emergent sub-quantum theory developed by our group throughout the last years. The quantum itself is considered as an emergent system representing an off-equilibrium steady state oscillation maintained by a constant throughput of energy provided by a classical zero-point energy field. We introduce the concept of a “relational causality” which allows for evaluating structural interdependences of different systems levels, i.e. in our case of the relations between partial and total probability density currents, respectively. Combined with the application of 21st century classical physics like, e.g., modern nonequilibrium thermodynamics, we thus arrive at a “superclassical” theory. Within this framework, the proposed current algebra directly leads to a new formulation of the guiding equation which is equivalent to the original one of the de Broglie-Bohm theory. By proving the absence of third order interferences in three-path systems it is shown that Born’s rule is a natural consequence of our theory. Considering the series of one-, double-, or, generally, of N-slit systems, with the first appearance of an interference term in the double slit case, we can explain the violation of Sorkin’s first order sum rule, just as the validity of all higher order sum rules. Moreover, the Talbot patterns and Talbot distance for an arbitrary N-slit device can be reproduced exactly by our model without any quantum physics tool.

  2. A simple signaling rule for variable life-adjusted display derived from an equivalent risk-adjusted CUSUM chart.

    PubMed

    Wittenberg, Philipp; Gan, Fah Fatt; Knoth, Sven

    2018-04-17

    The variable life-adjusted display (VLAD) is the first risk-adjusted graphical procedure proposed in the literature for monitoring the performance of a surgeon. It displays the cumulative sum of expected minus observed deaths. It has since become highly popular because the statistic plotted is easy to understand. But it is also easy to misinterpret a surgeon's performance by utilizing the VLAD, potentially leading to grave consequences. The problem of misinterpretation is essentially caused by the variance of the VLAD's statistic that increases with sample size. In order for the VLAD to be truly useful, a simple signaling rule is desperately needed. Various forms of signaling rules have been developed, but they are usually quite complicated. Without signaling rules, making inferences using the VLAD alone is difficult if not misleading. In this paper, we establish an equivalence between a VLAD with V-mask and a risk-adjusted cumulative sum (RA-CUSUM) chart based on the difference between the estimated probability of death and surgical outcome. Average run length analysis based on simulation shows that this particular RA-CUSUM chart has similar performance as compared to the established RA-CUSUM chart based on the log-likelihood ratio statistic obtained by testing the odds ratio of death. We provide a simple design procedure for determining the V-mask parameters based on a resampling approach. Resampling from a real data set ensures that these parameters can be estimated appropriately. Finally, we illustrate the monitoring of a real surgeon's performance using VLAD with V-mask. Copyright © 2018 John Wiley & Sons, Ltd.

  3. 26 CFR 1.45D-1 - New markets tax credit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... close of the taxable year of the taxpayer conducting such trade or business, the sum of the aggregate... qualified active low-income community business (ii) Purchase of certain loans from CDEs (A) In general (B...) Example (3) Special rule for reserves (4) Qualified active low-income community business (i) In general (A...

  4. QCD for Postgraduates (3/5)

    ScienceCinema

    Zanderighi, Giulia

    2018-04-27

    Modern QCD - Lecture 3 We will introduce processes with initial-state hadrons and discuss parton distributions, sum rules, as well as the need for a factorization scale once radiative corrections are taken into account. We will then discuss the DGLAP equation, the evolution of parton densities, as well as ways in which parton densities are extracted from data.

  5. 26 CFR 1.162-11 - Rentals.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... purchaser may take as a deduction in his return an aliquot part of such sum each year, based on the number... or making permanent improvements on property of which he is the lessee is a capital investment, and... renewal and the relationship between the parties. As a general rule, unless the lease has been renewed or...

  6. Partial Row-Sums of Pascal's Triangle

    ERIC Educational Resources Information Center

    Ollerton, Richard L.

    2007-01-01

    Identities for many and varied combinations of binomial coefficients abound. Indeed, because of the wide range of interrelationships it is possible that a great deal of mathematical effort has been wasted in proving essentially equivalent formulae. As well as proving identities these methods can be used to rule out closed form solutions (at least…

  7. 26 CFR 1.597-3 - Other rules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... floating rate (and provides for no contingent payments) is the lesser of the sum of the present values of... the amount of money and the fair market value of property paid by the new holder in exchange for the... Agency Obligations provided as Net Worth Assistance. The issue price of an Agency Obligation that is...

  8. 26 CFR 1.597-3 - Other rules.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... floating rate (and provides for no contingent payments) is the lesser of the sum of the present values of... the amount of money and the fair market value of property paid by the new holder in exchange for the... Agency Obligations provided as Net Worth Assistance. The issue price of an Agency Obligation that is...

  9. 26 CFR 1.597-3 - Other rules.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... floating rate (and provides for no contingent payments) is the lesser of the sum of the present values of... the amount of money and the fair market value of property paid by the new holder in exchange for the... Agency Obligations provided as Net Worth Assistance. The issue price of an Agency Obligation that is...

  10. 26 CFR 1.597-3 - Other rules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... floating rate (and provides for no contingent payments) is the lesser of the sum of the present values of... the amount of money and the fair market value of property paid by the new holder in exchange for the... Agency Obligations provided as Net Worth Assistance. The issue price of an Agency Obligation that is...

  11. 26 CFR 1.411(a)-7 - Definitions and special rules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... this section), life insurance benefits payable as a lump sum, incidental death benefits, current life... annuity does not exceed the annual benefit of a single life annuity. (2) Defined contribution plan. In the case of a defined contribution plan, the balance of the employee's account held under the plan. (b...

  12. 26 CFR 53.4943-7 - Special rules for readjustments involving grandfathered holdings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of voting stock in a business enterprise owned (directly or indirectly) by a private foundation by... exceeds the greatest percentage of voting stock in any business enterprise owned (directly or indirectly... foundation in the exchange. (ii) If the sum of the percentage of voting stock in a business enterprise owned...

  13. Interpretation of the new Ω _c0 states via their mass and width

    NASA Astrophysics Data System (ADS)

    Agaev, S. S.; Azizi, K.; Sundu, H.

    2017-06-01

    The masses and pole residues of the ground and first radially excited Ω _c0 states with spin-parities JP=1/2+, 3/2+, as well as P-wave Ω _c0 with JP=1/2-, 3/2- are calculated by means of the two-point QCD sum rules. The strong decays of Ω _c0 baryons are also studied and the widths of these decay channels are computed. The relevant computations are performed in the context of the full QCD sum rules on the light cone. The results obtained for the masses and widths are confronted with recent experimental data of the LHCb Collaboration, which allow us to interpret Ω _c(3000)0, Ω _c(3050)0, and Ω _c(3119)0 as the excited css baryons with the quantum numbers (1P, 1/2-), (1P, 3/2-), and (2S, 3/2+), respectively. The (2S, 1/2+) state can be assigned either to the Ω _c(3066)0 state or the Ω _c(3090)0 excited baryon.

  14. Treating Zc(3900 ) and Z (4430 ) as the ground state and first radially excited tetraquarks

    NASA Astrophysics Data System (ADS)

    Agaev, S. S.; Azizi, K.; Sundu, H.

    2017-08-01

    Exploration of the resonances Zc(3900 ) and Z (4430 ) are performed by assuming that they are the ground state and first radial excitation of the same tetraquark with JP=1+. The mass and current coupling of the Zc(3900 ) and Z (4430 ) states are calculated using the QCD two-point sum rule method by taking into account vacuum condensates up to eight dimensions. We investigate the vertices ZcMhMl and Z MhMl, with Mh and Ml being the heavy and light mesons and evaluate the strong couplings gZcMhMl and gZ MhMl using the QCD sum rule on the light cone. The extracted couplings allow us to find the partial width of the decays Zc(3900 )→J /ψ π , ψ'π , ηcρ and Z (4430 )→ψ'π , J /ψ π , ηc'ρ , ηcρ , which may help in comprehensive investigation of these resonances. We compare the width of the decays of Zc(3900 ) and Z (4430 ) resonances with available experimental data as well as existing theoretical predictions.

  15. The Z {yields} cc-bar {yields} {gamma}{gamma}*, Z {yields} bb-bar {yields} {gamma}{gamma}* triangle diagrams and the Z {yields} {gamma}{psi}, Z {yields} {gamma}Y decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achasov, N. N., E-mail: achasov@math.nsc.ru

    2011-03-15

    The approach to the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decay study is presented in detail, based on the sum rules for the Z {yields} cc-bar {yields} {gamma}{gamma}* and Z {yields} bb-bar {yields} {gamma}{gamma}* amplitudes and their derivatives. The branching ratios of the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are calculated for different hypotheses on saturation of the sum rules. The lower bounds of {Sigma}{sub {psi}} BR(Z {yields} {gamma}{psi}) = 1.95 Multiplication-Sign 10{sup -7} and {Sigma}{sub {upsilon}} BR(Z {yields} {gamma}Y) = 7.23 Multiplication-Sign 10{sup -7} are found. Deviations from the lower bounds are discussed, including the possibilitymore » of BR(Z {yields} {gamma}J/{psi}(1S)) {approx} BR(Z {yields} {gamma}Y(1S)) {approx} 10{sup -6}, that could be probably measured in LHC. The angular distributions in the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are also calculated.« less

  16. QCD sum-rules analysis of vector (1-) heavy quarkonium meson-hybrid mixing

    NASA Astrophysics Data System (ADS)

    Palameta, A.; Ho, J.; Harnett, D.; Steele, T. G.

    2018-02-01

    We use QCD Laplace sum rules to study meson-hybrid mixing in vector (1-) heavy quarkonium. We compute the QCD cross-correlator between a heavy meson current and a heavy hybrid current within the operator product expansion. In addition to leading-order perturbation theory, we include four- and six-dimensional gluon condensate contributions as well as a six-dimensional quark condensate contribution. We construct several single and multiresonance models that take known hadron masses as inputs. We investigate which resonances couple to both currents and so exhibit meson-hybrid mixing. Compared to single resonance models that include only the ground state, we find that models that also include excited states lead to significantly improved agreement between QCD and experiment. In the charmonium sector, we find that meson-hybrid mixing is consistent with a two-resonance model consisting of the J /ψ and a 4.3 GeV resonance. In the bottomonium sector, we find evidence for meson-hybrid mixing in the ϒ (1 S ) , ϒ (2 S ), ϒ (3 S ), and ϒ (4 S ).

  17. Exclusive QCD processes, quark-hadron duality, and the transition to perturbative QCD

    NASA Astrophysics Data System (ADS)

    Corianò, Claudio; Li, Hsiang-nan; Savkli, Cetin

    1998-07-01

    Experiments at CEBAF will scan the intermediate-energy region of the QCD dynamics for the nucleon form factors and for Compton Scattering. These experiments will definitely clarify the role of resummed perturbation theory and of quark-hadron duality (QCD sum rules) in this regime. With this perspective in mind, we review the factorization theorem of perturbative QCD for exclusive processes at intermediate energy scales, which embodies the transverse degrees of freedom of a parton and the Sudakov resummation of the corresponding large logarithms. We concentrate on the pion and proton electromagnetic form factors and on pion Compton scattering. New ingredients, such as the evolution of the pion wave function and the complete two-loop expression of the Sudakov factor, are included. The sensitivity of our predictions to the infrared cutoff for the Sudakov evolution is discussed. We also elaborate on QCD sum rule methods for Compton Scattering, which provide an alternative description of this process. We show that, by comparing the local duality analysis to resummed perturbation theory, it is possible to describe the transition of exclusive processes to perturbative QCD.

  18. Sum rules across the unpolarized Compton processes involving generalized polarizabilities and moments of nucleon structure functions

    NASA Astrophysics Data System (ADS)

    Lensky, Vadim; Hagelstein, Franziska; Pascalutsa, Vladimir; Vanderhaeghen, Marc

    2018-04-01

    We derive two new sum rules for the unpolarized doubly virtual Compton scattering process on a nucleon, which establish novel low-Q2 relations involving the nucleon's generalized polarizabilities and moments of the nucleon's unpolarized structure functions F1(x ,Q2) and F2(x ,Q2). These relations facilitate the determination of some structure constants which can only be accessed in off-forward doubly virtual Compton scattering, not experimentally accessible at present. We perform an empirical determination for the proton and compare our results with a next-to-leading-order chiral perturbation theory prediction. We also show how these relations may be useful for a model-independent determination of the low-Q2 subtraction function in the Compton amplitude, which enters the two-photon-exchange contribution to the Lamb shift of (muonic) hydrogen. An explicit calculation of the Δ (1232 )-resonance contribution to the muonic-hydrogen 2 P -2 S Lamb shift yields -1 ±1 μ eV , confirming the previously conjectured smallness of this effect.

  19. The spin structure of the deuteron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frois, B.

    1994-12-01

    The Spin Muon Collaboration (SMC) has measured for the first time the spin-dependent structure function g{sub 1}{sup d} of the deuteron in the deep inelastic scattering of polarized muons on polarized deuterons in the kinematic range Q{sup 2} > 1 GeV{sup 2}, 0.006 < x < 0.6. The first moment {Gamma}{sub 1}{sup d} = {integral}{sub 0}{sup 1}g{sub 1}{sup d}dx = 0.023 {+-} 0.020(stat.) {+-} 0.015(syst.) is smaller than the prediction of the Ellis-Jaffe sum rules. The author finds that the fraction of the nucleon spin carried by strange quarks {Delta}s is appreciable and negative. Using earlier measurements of g{sub 1}{supmore » p}, the group can infer the first moment of the spin-dependent neutron structure function g{sub 1}{sup n}. The combined analysis of all the available data on the spin-dependent structure functions of the nucleon shows an excellent agreement among the data sets. The author does not find significant deviations from the prediction of the Bjorken sum rule.« less

  20. Precision calculation of threshold πd scattering, πN scattering lengths, and the GMO sum rule

    NASA Astrophysics Data System (ADS)

    Baru, V.; Hanhart, C.; Hoferichter, M.; Kubis, B.; Nogga, A.; Phillips, D. R.

    2011-12-01

    We use chiral perturbation theory (ChPT) to calculate the πd scattering length with an accuracy of a few percent, including isospin-violating corrections in both the two- and three-body sectors. In particular, we provide the technical details of a recent letter (Baru et al., 2011) [1], where we used data on pionic deuterium and pionic hydrogen atoms to extract the isoscalar and isovector pion-nucleon scattering lengths a and a. We study isospin-breaking contributions to the three-body part of a due to mass differences, isospin violation in the πN scattering lengths, and virtual photons. This last class of effects is ostensibly infrared enhanced due to the smallness of the deuteron binding energy. However, we show that the leading virtual-photon effects that might undergo such enhancement cancel, and hence the standard ChPT counting provides a reliable estimate of isospin violation in a due to virtual photons. Finally, we discuss the validity of the Goldberger-Miyazawa-Oehme sum rule in the presence of isospin violation, and use it to determine the charged-pion-nucleon coupling constant.

  1. Electromagnetic moments and electric dipole transitions in carbon isotopes

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2003-07-01

    We carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the configuration dependence of the quadrupole and magnetic moments of the odd C isotopes, which will be useful to find out the deformations and the spin parities of the ground states of these nuclei. We also study the electric dipole states of C isotopes, focusing on the interplay between low energy pigmy strength and giant dipole resonances. As far as the energies of the resonances are concerned, reasonable agreement is obtained with available experimental data for the photoreaction cross sections in 12C, 13C, and 14C, both in the low energy region below ħω=14 MeV and in the high energy giant resonance region (14 MeV <ħω⩽30 MeV). The calculated transition strength below the giant dipole resonance (ħω⩽14 MeV) in C isotopes heavier than 15C is found to exhaust about 12 16 % of the classical Thomas-Reiche-Kuhn sum rule value and 50 80 % of the cluster sum rule value.

  2. Determination of the ground state of an Au-supported FePc film based on the interpretation of Fe K - and L -edge x-ray magnetic circular dichroism measurements

    NASA Astrophysics Data System (ADS)

    Natoli, Calogero R.; Krüger, Peter; Bartolomé, Juan; Bartolomé, Fernando

    2018-04-01

    We determine the magnetic ground state of the FePc molecule on Au-supported thin films based on the observed values of orbital anisotropy and spectroscopic x-ray magnetic circular dichroism (XMCD) measurements at the Fe K and L edges. Starting from ab initio molecular orbital multiplet calculations for the isolated molecule, we diagonalize the spin-orbit interaction in the subspace spanned by the three lowest spin triplet states of 3A2 g and 3Eg symmetry in the presence of a saturating magnetic field at a polar angle θ with respect to the normal to the plane of the film, plus an external perturbation representing the effect of the molecules in the stack on the FePc molecule under consideration. We find that the orbital moment of the ground state strongly depends on the magnetic field direction in agreement with the sum rule analysis of the L23-edge XMCD data. We calculate integrals over the XMCD spectra at the Fe K and L23 edges as used in the sum rules and explicitly show that they agree with the expectation values of the orbital moment and effective spin moment of the ground state. On the basis of this analysis, we can rule out alternative candidates proposed in the literature.

  3. 26 CFR 1.467-4 - Section 467 loan.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... present values of all amounts payable by the lessor as interest on prepaid fixed rent, equals the sum of the present values of the fixed rent that accrues in accordance with § 1.467-1(d)(2). The yield must... terms of the rental agreement for that period. (4) Determination of present values. The rules for...

  4. 26 CFR 31.3211-2 - Rates and computation of employee representative tax.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Rates—(1)(i) Tier 1 tax. The Tier 1 employee representative tax rate equals the sum of the tax rates in... employer tax for hospital insurance. The Tier 1 employee representative tax rate is applied to compensation... Insurance Contributions Act. (ii) Example. The rule in paragraph (a)(1)(i) of this section is illustrated by...

  5. Empirical electronic polarizabilities: deviations from the additivity rule. I. M2+SO4·nH2O, blödite Na2M2+(SO4)2·4H2O, and kieserite-related minerals with sterically strained structures

    NASA Astrophysics Data System (ADS)

    Gagné, Olivier; Hawthorne, Frank; Shannon, Robert D.; Fischer, Reinhard X.

    2017-09-01

    Empirical electronic polarizabilities allow the prediction of total mineral polarizabilities and mean refractive indices of the vast majority of minerals and synthetic oxides. However, deviations from the valence-sum rule at cations in some minerals are associated with large deviations of observed from calculated total polarizabilities. We have identified several groups of minerals and compounds where deviations from the valence-sum rule at cations lead to polarizability deviations of 2-5%: M(SO4)·nH2O, n = 1-6, blödite-group minerals [Na2M2+(SO4)2·4H2O], and the kieserite-related minerals: isokite, panasqueiraite and tilasite. In these minerals, the environment of the M ions contains both O and H2O: Mg[O4(H2O)2] in kieserite, szmikite, and szomolnokite; Mg[O2(H2O)4] in starkeyite, ilesite, and rozenite, and Mg[(H2O)6] in hexahydrite. In compounds where the ligands are only H2O, deviations from the valence-sum rule at the M(H2O)6 groups are not accompanied by significant polarizability deviations. This is the case for epsomite, MgSO4·7H2O; bieberite, CoSO4·7H2O; goslarite, ZnSO4·7H2O, six silicofluorides, MSiF6·6H2O; eighteen Tutton's salts, M2M'(SO4)2·6H2O, where M = K, Rb, Cs and M' = Mg, Mn, Fe, Co, Ni, Cu, and Zn; and eleven MM'(SO4)2·12H2O alums, where M = Na, K, Rb and Cs, and M' = Al, Cr, Ga and In. This is also the case for the sulfates alunogen, Al2(SO4)3·17H2O and halotrichite, FeAl2(SO4)4·22H2O; three hydrated nitrates; one phosphate; three antimonates and two hydrated perchlorates. A possible explanation for this different behavior is that the bond-valence model treats O and H separately, whereas polarizability calculations treat the polarizability of the entire H2O molecule.

  6. A new dipole-free sum-over-states expression for the second hyperpolarizability

    NASA Astrophysics Data System (ADS)

    Pérez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.

    2008-02-01

    The generalized Thomas-Kuhn sum rules are used to eliminate the explicit dependence on dipolar terms in the traditional sum-over-states (SOS) expression for the second hyperpolarizability to derive a new, yet equivalent, SOS expression. This new dipole-free expression may be better suited to study the second hyperpolarizability of nondipolar systems such as quadrupolar, octupolar, and dodecapolar structures. The two expressions lead to the same fundamental limits of the off-resonance second hyperpolarizability; and when applied to a particle in a box and a clipped harmonic oscillator, have the same frequency dependence. We propose that the new dipole-free equation, when used in conjunction with the standard SOS expression, can be used to develop a three-state model of the dispersion of the third-order susceptibility that can be applied to molecules in cases where normally many more states would have been required. Furthermore, a comparison between the two expressions can be used as a convergence test of molecular orbital calculations when applied to the second hyperpolarizability.

  7. Probabilistic combination of static and dynamic gait features for verification

    NASA Astrophysics Data System (ADS)

    Bazin, Alex I.; Nixon, Mark S.

    2005-03-01

    This paper describes a novel probabilistic framework for biometric identification and data fusion. Based on intra and inter-class variation extracted from training data, posterior probabilities describing the similarity between two feature vectors may be directly calculated from the data using the logistic function and Bayes rule. Using a large publicly available database we show the two imbalanced gait modalities may be fused using this framework. All fusion methods tested provide an improvement over the best modality, with the weighted sum rule giving the best performance, hence showing that highly imbalanced classifiers may be fused in a probabilistic setting; improving not only the performance, but also generalized application capability.

  8. 78 FR 12705 - Atlantic Highly Migratory Species; North and South Atlantic 2013 Commercial Swordfish Quotas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... dead discards. We will adjust the quotas in the final rule based on updated data, including dead... quota, the sum of updated landings data (from late reports) and dead discard estimates would need to reach or exceed 475 mt dw. In 2011, dead discards were estimated to equal 101.5 mt dw and late reports...

  9. Value loss of hardwood lumber during air-drying

    Treesearch

    Leland F. Hanks; Margaret K. Peirsol

    1975-01-01

    Dry lumber prices were applied to green and air-dried lumber that was measured with a dry board rule. Values were summed by species, lumber grade, and thickness class. Differences between green and air-dried lumber value have been termed value losses and are given in dollars and in percentages. The percentages have been separated into loss due to shrinkage and loss due...

  10. Open-flavor charm and bottom s q q ¯ Q ¯ and q q q ¯ Q ¯ tetraquark states

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Chen, Hua-Xing; Liu, Xiang; Steele, T. G.; Zhu, Shi-Lin

    2017-06-01

    We provide comprehensive investigations for the mass spectrum of exotic open-flavor charmed/bottom s q q ¯ c ¯ , q q q ¯ c ¯ , s q q ¯ b ¯ , q q q ¯ b ¯ tetraquark states with various spin-parity assignments JP=0+,1+,2+ and 0- , 1- in the framework of QCD sum rules. In the diquark configuration, we construct the diquark-antidiquark interpolating tetraquark currents using the color-antisymmetric scalar and axial-vector diquark fields. The stable mass sum rules are established in reasonable parameter working ranges, which are used to give reliable mass predictions for these tetraquark states. We obtain the mass spectra for the open-flavor charmed/bottom s q q ¯c ¯, q q q ¯c ¯, s q q ¯b ¯, q q q ¯b ¯ tetraquark states with various spin-parity quantum numbers. In addition, we suggest searching for exotic doubly-charged tetraquarks, such as [s d ][u ¯ c ¯ ]→Ds(*)-π- in future experiments at facilities such as BESIII, BelleII, PANDA, LHCb, and CMS, etc.

  11. Exploring the resonances X (4140 ) and X (4274 ) through their decay channels

    NASA Astrophysics Data System (ADS)

    Agaev, S. S.; Azizi, K.; Sundu, H.

    2017-06-01

    Investigation of the resonances X (4140 ) and X (4274 ), which were recently confirmed by the LHCb Collaboration [1], is carried out by treating them as the color triplet and sextet [c s ][c ¯ s ¯ ] diquark-antidiquark states with the spin-parity JP=1+ , respectively. We calculate the masses and meson-current couplings of these tetraquarks in the context of the QCD two-point sum rule method by taking into account the quark, gluon, and mixed vacuum condensates up to eight dimensions. We also study the vertices X (4140 )J /ψ ϕ and X (4274 )J /ψ ϕ and evaluate corresponding strong couplings gX (4140 )J /ψ ϕ and gX (4274 )J /ψ ϕ by means of the QCD light-cone sum rule method and a technique of the soft-meson approximation. In turn, these couplings contain required information to determine the width of the X (4140 )→J /ψ ϕ and X (4274 )→J /ψ ϕ decay channels. We compare our results for the masses and decay widths of the X (4140 ) and X (4274 ) resonances with the LHCb data and alternative theoretical predictions.

  12. In-medium pseudoscalar D/B mesons and charmonium decay width

    NASA Astrophysics Data System (ADS)

    Chhabra, Rahul; Kumar, Arvind

    2017-05-01

    Using QCD sum rules and the chiral SU(3) model, we investigate the effect of temperature, density, strangeness fraction and isospin asymmetric parameter on the shift in masses and decay constants of the pseudoscalar D and B meson in the hadronic medium, which consist of nucleons and hyperons. The in-medium properties of D and B mesons within the QCD sum rule approach depend upon the quark and gluon condensates. In the chiral SU(3) model, quark and gluon condensates are introduced through the explicit symmetry breaking term and the trace anomaly property of the QCD, respectively and are written in terms of the scalar fields σ, ζ, δ and χ. Hence, through medium modification of σ, ζ, δ and χ fields, we obtain the medium-modified masses and decay constants of D and B mesons. As an application, using {}3P0 model, we calculate the in-medium decay width of the higher charmonium states ψ(3686), ψ(3770) and χ(3556) to the D\\bar{D} pairs, considering the in-medium mass of D mesons. These results may be important to understand the possible outcomes of the high-energy physics experiments, e.g., CBM and PANDA at GSI, Germany.

  13. Broad diphoton resonance at the TeV? Not alone

    NASA Astrophysics Data System (ADS)

    Roig, Pablo; Sanz-Cillero, Juan José

    2016-11-01

    The hint for a possible resonance in the diphoton channel with mass of 750 GeV disappeared in the data presented at ICHEP'16 by ATLAS and CMS. However, the diphoton final state remains as one of the golden channels for new physics discoveries at the TeV scale in the LHC experiments. This motivates us to analyze model independently the implications of an O (TeV ) bump in the γ γ final state. By means of forward sum rules for γ γ scattering, we show that a spin-zero resonance with mass of the order of the TeV and a sizable γ γ partial width—-of the order of a few GeV—must be accompanied by higher-spin resonances with JR≥2 with similar properties, as expected in strongly coupled extensions of the Standard Model or, alternatively, in higher-dimensional deconstructed duals. Furthermore, independently of whether the putative O (TeV ) candidate is a scalar or a tensor, the large contribution to the forward sum rules in the referred scenario implies the presence of states in the spectrum with JR≥2 , these high-spin particles being a manifestation of new extra dimensions or composite states of a new strong sector.

  14. Low-energy isovector and isoscalar dipole response in neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Vretenar, D.; Niu, Y. F.; Paar, N.; Meng, J.

    2012-04-01

    The self-consistent random-phase approximation, based on the framework of relativistic energy density functionals, is employed in the study of isovector and isoscalar dipole response in 68Ni,132Sn, and 208Pb. The evolution of pygmy dipole states (PDSs) in the region of low excitation energies is analyzed as a function of the density dependence of the symmetry energy for a set of relativistic effective interactions. The occurrence of PDSs is predicted in the response to both the isovector and the isoscalar dipole operators, and its strength is enhanced with the increase in the symmetry energy at saturation and the slope of the symmetry energy. In both channels, the PDS exhausts a relatively small fraction of the energy-weighted sum rule but a much larger percentage of the inverse energy-weighted sum rule. For the isovector dipole operator, the reduced transition probability B(E1) of the PDSs is generally small because of pronounced cancellation of neutron and proton partial contributions. The isoscalar-reduced transition amplitude is predominantly determined by neutron particle-hole configurations, most of which add coherently, and this results in a collective response of the PDSs to the isoscalar dipole operator.

  15. Powerful Voter Selection for Making Multistep Delegate Ballot Fair

    NASA Astrophysics Data System (ADS)

    Yamakawa, Hiroshi

    For decision by majority, each voter often exercises his right by delegating to trustable other voters. Multi-step delegates rule allows indirect delegating through more than one voter, and this helps each voter finding his delegate voters. In this paper, we propose powerful voter selection method depending on the multi-step delegate rule. This method sequentially selects voters who is most delegated indirectly. Multi-agent simulation demonstrate that we can achieve highly fair poll results from small number of vote by using proposed method. Here, fairness is prediction accuracy to sum of all voters preferences for choices. In simulation, each voter selects choices arranged on one dimensional preference axis for voting. Acquaintance relationships among voters were generated as a random network, and each voter delegates some of his acquaintances who has similar preferences. We obtained simulation results from various acquaintance networks, and then averaged these results. Firstly, if each voter has enough acquaintances in average, proposed method can help predicting sum of all voters' preferences of choices from small number of vote. Secondly, if the number of each voter's acquaintances increases corresponding to an increase in the number of voters, prediction accuracy (fairness) from small number of vote can be kept in appropriate level.

  16. Thermal behavior of Charmonium in the vector channel from QCD sum rules

    NASA Astrophysics Data System (ADS)

    Dominguez, C. A.; Loewe, M.; Rojas, J. C.; Zhang, Y.

    2010-11-01

    The thermal evolution of the hadronic parameters of charmonium in the vector channel, i.e. the J/Ψ resonance mass, coupling (leptonic decay constant), total width, and continuum threshold are analyzed in the framework of thermal Hilbert moment QCD sum rules. The continuum threshold s0 has the same behavior as in all other hadronic channels, i.e. it decreases with increasing temperature until the PQCD threshold s0 = 4mQ2 is reached at T≃1.22Tc (mQ is the charm quark mass). The other hadronic parameters behave in a very different way from those of light-light and heavy-light quark systems. The J/Ψ mass is essentially constant in a wide range of temperatures, while the total width grows with temperature up to T≃1.04Tc beyond which it decreases sharply with increasing T. The resonance coupling is also initially constant beginning to increase monotonically around T≃Tc. This behavior of the total width and of the leptonic decay constant is a strong indication that the J/Ψ resonance might survive beyond the critical temperature for deconfinement, in agreement with some recent lattice QCD results.

  17. Mixed valent metals

    NASA Astrophysics Data System (ADS)

    Riseborough, P. S.; Lawrence, J. M.

    2016-08-01

    We review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effect and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger’s theorem, the Friedel sum rule, the Schrieffer-Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Noziéres exhaustion principle, Doniach’s diagram, the Anderson lattice model, the Slave-Boson method, etc.

  18. Dimension-six matrix elements for meson mixing and lifetimes from sum rules

    NASA Astrophysics Data System (ADS)

    Kirk, M.; Lenz, A.; Rauh, T.

    2017-12-01

    The hadronic matrix elements of dimension-six Δ F = 0, 2 operators are crucial inputs for the theory predictions of mixing observables and lifetime ratios in the B and D system. We determine them using HQET sum rules for three-point correlators. The results of the required three-loop computation of the correlators and the one-loop computation of the QCD-HQET matching are given in analytic form. For mixing matrix elements we find very good agreement with recent lattice results and comparable theoretical uncertainties. For lifetime matrix elements we present the first ever determination in the D meson sector and the first determination of Δ B = 0 matrix elements with uncertainties under control — superseeding preliminary lattice studies stemming from 2001 and earlier. With our state-of-the-art determination of the bag parameters we predict: τ( B +)/ τ( B d 0 ) = 1.082 - 0.026 + 0.022 , τ( B s 0 )/ τ( B d 0 ) = 0.9994 ± 0.0025, τ( D +)/ τ( D 0) = 2. 7 - 0.8 + 0.7 and the mixing-observables in the B s and B d system, in good agreement with the most recent experimental averages.

  19. Mixed valent metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riseborough, P. S.; Lawrence, Jon M.

    Here, we review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effectmore » and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger's theorem, the Friedel sum rule, the Schrieffer–Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Nozieres exhaustion principle, Doniach's diagram, the Anderson lattice model, the Slave-Boson method, etc.« less

  20. Mixed valent metals

    DOE PAGES

    Riseborough, P. S.; Lawrence, Jon M.

    2016-07-04

    Here, we review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effectmore » and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger's theorem, the Friedel sum rule, the Schrieffer–Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Nozieres exhaustion principle, Doniach's diagram, the Anderson lattice model, the Slave-Boson method, etc.« less

  1. Quasiparticle Interactions in Neutron Matter for Applications in Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wambach, J.; Anisworth, T. L.; Pines, D.

    1993-01-01

    A microscopic model for the quaisiparticle interaction in neutron matter is presented. Both particle-particle (pp) and particle-hole (ph) correlation are are included. The pp correlations are treated in semi-empirical way, while ph correlations are incorporated by solving coupled two-body equations for the particle hole interaction and the scattering amplitude on the Fermi sphere. The resulting integral equations self-consistently sum the ph reducible diagrams. Antisymmetry is kept at all stages and hence the forward-scattering sum rules are obeyed. Results for Landau parameters and transport coefficients in a density regime representing the crust of a neutron star are presented. We also estimate the S-1 gap parameter for neutron superfluidity and comment briefly on neutron-star implications.

  2. Quasiparticle Interactions in Neutron Matter for Applications in Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wambach, J; Ainsworth, T. L.; Pines, D.

    1993-01-01

    A microscopic model for the quasiparticle interaction in neutron matter is presented. Both-particle (pp) and particle-hole (ph) correlations are included. The pp correlations are treated in semi-empirical way, while ph correlations are incorporated by solving coupled two-body equations for particle-hole interaction and the scattering amplitude of the Fermi sphere. The resulting integral equations self-consistently sum the ph reducible diagrams. Antisymmetry is kept at all stages and hence the forward-scattering sum rules for the scattering amplitude are obeyed. Results for Landau parameters and transport coefficients in a density regime representing the crust of a neutron star are presented. We also estimate the (1)S(sub 0) gap parameter for neutron superfluidity and comment briefly on neutron-star implications.

  3. 7 CFR 1710.2 - Definitions and rules of construction.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... as follows: EC16SE91.000 where: A=Distribution (plant), which equals Part E, Line 14(e) of RUS Form 7; B=General Plant, which equals Part E, Line 24(e) of RUS Form 7; C=Operating Revenue and Patronage Capital, which equals Part A, Line 1 of RUS Form 7; and D=Cost of Power, which equals the sum of Part A...

  4. 7 CFR 1710.2 - Definitions and rules of construction.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...=Distribution (plant), which equals Part E, Line 14(e) of RUS Form 7; B=General Plant, which equals Part E, Line 24(e) of RUS Form 7; C=Operating Revenue and Patronage Capital, which equals Part A, Line 1 of RUS Form 7; and D=Cost of Power, which equals the sum of Part A, Lines 2, 3, and 4 of RUS Form 7. Area...

  5. 7 CFR 1710.2 - Definitions and rules of construction.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... as follows: EC16SE91.000 where: A=Distribution (plant), which equals Part E, Line 14(e) of RUS Form 7; B=General Plant, which equals Part E, Line 24(e) of RUS Form 7; C=Operating Revenue and Patronage Capital, which equals Part A, Line 1 of RUS Form 7; and D=Cost of Power, which equals the sum of Part A...

  6. 7 CFR 1710.2 - Definitions and rules of construction.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... as follows: EC16SE91.000 where: A=Distribution (plant), which equals Part E, Line 14(e) of RUS Form 7; B=General Plant, which equals Part E, Line 24(e) of RUS Form 7; C=Operating Revenue and Patronage Capital, which equals Part A, Line 1 of RUS Form 7; and D=Cost of Power, which equals the sum of Part A...

  7. 7 CFR 1710.2 - Definitions and rules of construction.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... as follows: EC16SE91.000 where: A=Distribution (plant), which equals Part E, Line 14(e) of RUS Form 7; B=General Plant, which equals Part E, Line 24(e) of RUS Form 7; C=Operating Revenue and Patronage Capital, which equals Part A, Line 1 of RUS Form 7; and D=Cost of Power, which equals the sum of Part A...

  8. Electroproduction of the N*(1535) resonance at large momentum transfer.

    PubMed

    Braun, V M; Göckeler, M; Horsley, R; Kaltenbrunner, T; Lenz, A; Nakamura, Y; Pleiter, D; Rakow, P E L; Rohrwild, J; Schäfer, A; Schierholz, G; Stüben, H; Warkentin, N; Zanotti, J M

    2009-08-14

    We report on the first lattice calculation of light-cone distribution amplitudes of the N*(1535) resonance, which are used to calculate the transition form factors at large momentum transfers using light-cone sum rules. In the region Q2>2 GeV2, where the light-cone expansion is expected to converge, the results appear to be in good agreement with the experimental data.

  9. Towards a unifying theory for the first-, second-, and third-order molecular (non)linear optical response

    NASA Astrophysics Data System (ADS)

    Pérez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.

    2010-05-01

    We present a procedure for the modeling of the dispersion of the nonlinear optical response of complex molecular structures that is based strictly on the results from experimental characterization. We show how under some general conditions, the use of the Thomas-Kuhn sum-rules leads to a successful modeling of the nonlinear response of complex molecular structures.

  10. Impact of Duality Violations on Spectral Sum Rule analyses

    NASA Astrophysics Data System (ADS)

    Catà, Oscar

    2007-02-01

    Recent sum rule analyses on the two-point correlator have led to significant discrepancies in the values found for the OPE condensates, most dramatically in the dimension eight condensate and to a lesser extent in the dimension six one [R. Barate et al., ALEPH Collaboration, Eur. Phys. J. C 4 (1998) 409; K. Ackerstaff et al., OPAL Collaboration, Eur. Phys. J. C 7 (1999) 571, arXiv:hep-ex/9808019; S. Peris, B. Phily and E. de Rafael, Phys. Rev. Lett. 86 (2001) 14, arXiv:hep-ph/0007338; S. Friot, D. Greynat and E. de Rafael, JHEP 0410 (2004) 043, arXiv:hep-ph/0408281; M. Davier, L. Girlanda, A. Hocker and J. Stern, Phys. Rev. D 58 (1998) 096014, arXiv:hep-ph/9802447; B.L. Ioffe and K.N. Zyablyuk, Nucl. Phys. A 687 (2001) 437, arXiv:hep-ph/0010089. K.N. Zyablyuk, Eur. Phys. J. C 38 (2004) 215, arXiv:hep-ph/0404230; J. Bijnens, E. Gamiz and J. Prades, JHEP 0110 (2001) 009, arXiv:hep-ph/0108240; C.A. Dominguez and K. Schilcher, Phys. Lett. B 581 (2004) 193, arXiv:hep-ph/0309285; J. Rojo and J. I. Latorre, JHEP 0401 (2004) 055, arXiv:hep-ph/0401047; V. Cirigliano, E. Golowich and K. Maltman, Phys. Rev. D 68 (2003) 054013, arXiv:hep-ph/0305118; S. Ciulli, C. Sebu, K. Schilcher and H. Spiesberger, Phys. Lett. B 595 (2004) 359, arXiv:hep-ph/0312212. S. Narison, arXiv:hep-ph/0412152]. Precise knowledge of these condensates is of relevance in kaon decays [M. Knecht, S. Peris and E. de Rafael, Phys. Lett. B 457 (1999) 227, arXiv:hep-ph/9812471; J.F. Donoghue and E. Golowich, Phys. Lett. B 478 (2000) 172, arXiv:hep-ph/9911309; M. Knecht, S. Peris and E. de Rafael, Phys. Lett. B 508 (2001) 117, arXiv:hep-ph/0102017] and therefore it seems mandatory to assess the actual impact of what is commonly neglected in spectral sum rules, most prominently the issue of duality violations. We will explicitly compute them in a toy model and show that they are a priori non-negligible.

  11. LipidMatch: an automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data.

    PubMed

    Koelmel, Jeremy P; Kroeger, Nicholas M; Ulmer, Candice Z; Bowden, John A; Patterson, Rainey E; Cochran, Jason A; Beecher, Christopher W W; Garrett, Timothy J; Yost, Richard A

    2017-07-10

    Lipids are ubiquitous and serve numerous biological functions; thus lipids have been shown to have great potential as candidates for elucidating biomarkers and pathway perturbations associated with disease. Methods expanding coverage of the lipidome increase the likelihood of biomarker discovery and could lead to more comprehensive understanding of disease etiology. We introduce LipidMatch, an R-based tool for lipid identification for liquid chromatography tandem mass spectrometry workflows. LipidMatch currently has over 250,000 lipid species spanning 56 lipid types contained in in silico fragmentation libraries. Unique fragmentation libraries, compared to other open source software, include oxidized lipids, bile acids, sphingosines, and previously uncharacterized adducts, including ammoniated cardiolipins. LipidMatch uses rule-based identification. For each lipid type, the user can select which fragments must be observed for identification. Rule-based identification allows for correct annotation of lipids based on the fragments observed, unlike typical identification based solely on spectral similarity scores, where over-reporting structural details that are not conferred by fragmentation data is common. Another unique feature of LipidMatch is ranking lipid identifications for a given feature by the sum of fragment intensities. For each lipid candidate, the intensities of experimental fragments with exact mass matches to expected in silico fragments are summed. The lipid identifications with the greatest summed intensity using this ranking algorithm were comparable to other lipid identification software annotations, MS-DIAL and Greazy. For example, for features with identifications from all 3 software, 92% of LipidMatch identifications by fatty acyl constituents were corroborated by at least one other software in positive mode and 98% in negative ion mode. LipidMatch allows users to annotate lipids across a wide range of high resolution tandem mass spectrometry experiments, including imaging experiments, direct infusion experiments, and experiments employing liquid chromatography. LipidMatch leverages the most extensive in silico fragmentation libraries of freely available software. When integrated into a larger lipidomics workflow, LipidMatch may increase the probability of finding lipid-based biomarkers and determining etiology of disease by covering a greater portion of the lipidome and using annotation which does not over-report biologically relevant structural details of identified lipid molecules.

  12. Alpha-like resonances in nuclei

    NASA Astrophysics Data System (ADS)

    Baran, V. V.; Delion, D. S.

    2018-03-01

    We investigate normal dipole oscillations in a system of protons, neutrons and α-particles within the Brink approach. We introduce an effective mass of α-clusters in terms of the spectroscopic factor. The Pauli exclusion principle is taken into account by using the Wildermuth rule. The ratio between alpha and giant resonance energy weighted sum rule (EWSR) is investigated for N = Z and N> Z systems. In both cases we notice an unexpected decrease of this ratio versus the increase of the spectroscopic factor. Due to this fact the possibility to experimentally detect α-like oscillations is enhanced in nuclei above 100Sn. The occurrence of the pygmy mode in N> Z systems decreases the EWSR for the α-like oscillations.

  13. Photoabsorption cross section of acetylene in the EUV region

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. R.; Judge, D. L.

    1985-01-01

    The measurement of the absolute photoabsorption cross sections of C2H2 in the 175-740 A region by means of a double ionization chamber is reported. The continuum background source is the synchrotron radiation emitted by the Wisconsin 240 MeV electron storage ring. It is found that the cross sections range from 2 to a maximum of 36 Mb. Two new Rydberg series are identified and the cross section data are applied in the analysis of various sum rules. From the rules, it is shown that the data of C2H2 in the 580-1088 A range may be too low, while the measured ionization transition moment may be too high.

  14. Some rules for polydimensional squeezing

    NASA Technical Reports Server (NTRS)

    Manko, Vladimir I.

    1994-01-01

    The review of the following results is presented: For mixed state light of N-mode electromagnetic field described by Wigner function which has generic Gaussian form, the photon distribution function is obtained and expressed explicitly in terms of Hermite polynomials of 2N-variables. The momenta of this distribution are calculated and expressed as functions of matrix invariants of the dispersion matrix. The role of new uncertainty relation depending on photon state mixing parameter is elucidated. New sum rules for Hermite polynomials of several variables are found. The photon statistics of polymode even and odd coherent light and squeezed polymode Schroedinger cat light is given explicitly. Photon distribution for polymode squeezed number states expressed in terms of multivariable Hermite polynomials is discussed.

  15. Application of ant colony Algorithm and particle swarm optimization in architectural design

    NASA Astrophysics Data System (ADS)

    Song, Ziyi; Wu, Yunfa; Song, Jianhua

    2018-02-01

    By studying the development of ant colony algorithm and particle swarm algorithm, this paper expounds the core idea of the algorithm, explores the combination of algorithm and architectural design, sums up the application rules of intelligent algorithm in architectural design, and combines the characteristics of the two algorithms, obtains the research route and realization way of intelligent algorithm in architecture design. To establish algorithm rules to assist architectural design. Taking intelligent algorithm as the beginning of architectural design research, the authors provide the theory foundation of ant colony Algorithm and particle swarm algorithm in architectural design, popularize the application range of intelligent algorithm in architectural design, and provide a new idea for the architects.

  16. Process-independent strong running coupling

    DOE PAGES

    Binosi, Daniele; Mezrag, Cedric; Papavassiliou, Joannis; ...

    2017-09-25

    Here, we unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. As a result, thismore » reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann–Low effective charge.« less

  17. Process-independent strong running coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binosi, Daniele; Mezrag, Cedric; Papavassiliou, Joannis

    Here, we unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. As a result, thismore » reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann–Low effective charge.« less

  18. Angular momentum conservation law in light-front quantum field theory

    DOE PAGES

    Chiu, Kelly Yu-Ju; Brodsky, Stanley J.

    2017-03-31

    We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3, the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED andmore » QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less

  19. Consultation sequencing of a hospital with multiple service points using genetic programming

    NASA Astrophysics Data System (ADS)

    Morikawa, Katsumi; Takahashi, Katsuhiko; Nagasawa, Keisuke

    2018-07-01

    A hospital with one consultation room operated by a physician and several examination rooms is investigated. Scheduled patients and walk-ins arrive at the hospital, each patient goes to the consultation room first, and some of them visit other service points before consulting the physician again. The objective function consists of the sum of three weighted average waiting times. The problem of sequencing patients for consultation is focused. To alleviate the stress of waiting, the consultation sequence is displayed. A dispatching rule is used to decide the sequence, and best rules are explored by genetic programming (GP). The simulation experiments indicate that the rules produced by GP can be reduced to simple permutations of queues, and the best permutation depends on the weight used in the objective function. This implies that a balanced allocation of waiting times can be achieved by ordering the priority among three queues.

  20. Angular momentum conservation law in light-front quantum field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Kelly Yu-Ju; Brodsky, Stanley J.

    We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3, the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED andmore » QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less

  1. Angular momentum conservation law in light-front quantum field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Kelly Yu-Ju; Brodsky, Stanley J.

    We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3 , the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QEDmore » and QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less

  2. The Balance-Scale Task Revisited: A Comparison of Statistical Models for Rule-Based and Information-Integration Theories of Proportional Reasoning

    PubMed Central

    Hofman, Abe D.; Visser, Ingmar; Jansen, Brenda R. J.; van der Maas, Han L. J.

    2015-01-01

    We propose and test three statistical models for the analysis of children’s responses to the balance scale task, a seminal task to study proportional reasoning. We use a latent class modelling approach to formulate a rule-based latent class model (RB LCM) following from a rule-based perspective on proportional reasoning and a new statistical model, the Weighted Sum Model, following from an information-integration approach. Moreover, a hybrid LCM using item covariates is proposed, combining aspects of both a rule-based and information-integration perspective. These models are applied to two different datasets, a standard paper-and-pencil test dataset (N = 779), and a dataset collected within an online learning environment that included direct feedback, time-pressure, and a reward system (N = 808). For the paper-and-pencil dataset the RB LCM resulted in the best fit, whereas for the online dataset the hybrid LCM provided the best fit. The standard paper-and-pencil dataset yielded more evidence for distinct solution rules than the online data set in which quantitative item characteristics are more prominent in determining responses. These results shed new light on the discussion on sequential rule-based and information-integration perspectives of cognitive development. PMID:26505905

  3. Grammar and Learner as System: Some Proposed New Directions for Research in Second Language Acquisition. CUNYForum, No. 3.

    ERIC Educational Resources Information Center

    Pia, J. Joseph

    Some aspects of a general systems theory of second language acquisition are as follows: the system is greater than the sum of its parts; each component has a distinctive role in the overall operation of the system; some components may be entire systems themselves; the workings of the system proceed according to patterns, and rules for any given…

  4. 26 CFR 1.663(a)-1 - Special rules applicable to sections 661 and 662; exclusions; gifts, bequests, etc.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...; exclusions; gifts, bequests, etc. (a) In general. A gift or bequest of a specific sum of money or of specific property, which is required by the specific terms of the will or trust instrument and is properly paid or... trust instrument the gift or bequest is to be paid or credited to the recipient in more than three...

  5. Integral formulae of the canonical correlation functions for the one dimensional transverse Ising model

    NASA Astrophysics Data System (ADS)

    Inoue, Makoto

    2017-12-01

    Some new formulae of the canonical correlation functions for the one dimensional quantum transverse Ising model are found by the ST-transformation method using a Morita's sum rule and its extensions for the two dimensional classical Ising model. As a consequence we obtain a time-independent term of the dynamical correlation functions. Differences of quantum version and classical version of these formulae are also discussed.

  6. Evolution equations for connected and disconnected sea parton distributions

    NASA Astrophysics Data System (ADS)

    Liu, Keh-Fei

    2017-08-01

    It has been revealed from the path-integral formulation of the hadronic tensor that there are connected sea and disconnected sea partons. The former is responsible for the Gottfried sum rule violation primarily and evolves the same way as the valence. Therefore, the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations can be extended to accommodate them separately. We discuss its consequences and implications vis-á-vis lattice calculations.

  7. Mass formulas for {Xi}{sub c} and {Xi}{sub b} baryons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliev, T. M.; Zamiralov, V. S.; Ozpineci, A.

    The importance of taking into account the mixing of the heavy cascade baryons {Xi} and {Xi}' that have new quantum numbers in analyzing their properties is shown. The Ono quark model is considered by way of example. The masses of the new baryons and the {Xi}-{Xi}' mixing angles are obtained. The same approach is applied to the interpolating currents of these baryons within QCD sum rules.

  8. Electroproduction of the N*(1535) Resonance at Large Momentum Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, V. M.; Goeckeler, M.; Kaltenbrunner, T.

    2009-08-14

    We report on the first lattice calculation of light-cone distribution amplitudes of the N*(1535) resonance, which are used to calculate the transition form factors at large momentum transfers using light-cone sum rules. In the region Q{sup 2}>2 GeV{sup 2}, where the light-cone expansion is expected to converge, the results appear to be in good agreement with the experimental data.

  9. Determinations of Vus using inclusive hadronic τ decay data

    NASA Astrophysics Data System (ADS)

    Maltman, Kim; Hudspith, Renwick James; Lewis, Randy; Izubuchi, Taku; Ohki, Hiroshi; Zanotti, James M.

    2016-08-01

    Two methods for determining |Vus| employing inclusive hadronic τ decay data are discussed. The first is the conventional flavor-breaking sum rule determination whose usual implementation produces results ˜ 3σ low compared to three-family unitary expectations. The second is a novel approach combining experimental strange hadronic τ distributions with lattice light-strange current-current two-point function data. Preliminary explorations of the latter show the method promises |Vus| determinations competitive with those from Kℓ3 and Γ[Kμ2]/Γ[πμ2]. For the former, systematic issues in the conventional implementation are investigated. Unphysical dependences of |Vus| on the choice of sum rule weight, w, and upper limit, s0, of the weighted experimental spectral integrals are observed, the source of these problems identified and a new implementation which overcomes these problems developed. Lattice results are shown to provide a tool for quantitatively assessing truncation uncertainties for the slowly converging D = 2 OPE series. The results for |Vus| from this new implementation are shown to be free of unphysical w- and s0-dependences, and ˜ 0.0020 higher than those produced by the conventional implementation. With preliminary new Kπ branching fraction results as input, we find |Vus| in excellent agreement with that obtained from Kℓ3, and compatible within errors with expectations from three-family unitarity.

  10. Spectral assignment and orientational analysis in a vibrational sum frequency generation study of DPPC monolayers at the air/water interface

    NASA Astrophysics Data System (ADS)

    Feng, Rong-Juan; Li, Xia; Zhang, Zhen; Lu, Zhou; Guo, Yuan

    2016-12-01

    The interfacial behavior of the benchmark zwitterionic phospholipid molecule dipalmitoylphosphatidylcholine (DPPC) has been extensively investigated by surface-selective vibrational sum frequency generation spectroscopy (VSFG). However, there is still a lack of agreement between various orientational measurements of phospholipid monolayers at the air/water interface, mainly because of the difficulty in assigning congested VSFG features. In this study, polarization-dependent VSFG measurements reveal a frequency shift between the in-plane and out-of-plane antisymmetric stretching modes of the terminal methyl groups in the DPPC alkyl tails, favoring the model of Cs local symmetry rather than the previously assumed C3v symmetry. Further VSFG experiments of isotopically labeled DPPC successfully capture the vibrational signatures of the glycerol backbone. With the newly derived VSFG polarization selection rules for Cs symmetry and the refreshed spectral assignments, the average tilt angles of the alkyl tail groups, choline headgroup, and glycerol backbone of DPPC molecules can all be determined, showing the powerful capability of VSFG spectroscopy in revealing the structural details at interfaces. The VSFG polarization dependence rules and the orientational analysis procedures developed for Cs symmetry in this work are applicable to other bulky molecules in which the methyl group cannot freely rotate, and they therefore have general applications in future VSFG studies.

  11. Exotic Structure of Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2003-12-01

    Ground state properties of C isotopes, deformation and elecromagnetic moments, as well as electric dipole transition strength are investigated. We first study the ground state properties of C isotopes using a deformed Hartree-Fock (HF) + BCS model with Skyrme interactions. Isotope dependence of the deformation properties is investigated. Shallow deformation minima are found in several neutron-rich C isotopes. It is also shown that the deformation minima appear in both the oblate and the prolate sides in 17C and 19C having almost the same binding energies. Next, we carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the clear configuration dependence of the quadrupole and magnetic moments in the odd C isotopes, which will be useful to find out the deformation and spin-parities of the ground states of these nuclei. Electric dipole states of C isotopes are studied focusing on the interplay between low energy Pigmy strength and giant dipole resonances. Low peak energies, two-peak structure and large widths of the giant resonances show deformation effects. Calculated transition strength below dipole giant resonance in heavier C isotopes than 15C is found to exhaust 12 ~ 15% of the Thomas-Reiche-Kuhn sum rule value and 50 ~ 80% of the cluster sum rule value.

  12. Bayesian probability estimates are not necessary to make choices satisfying Bayes' rule in elementary situations.

    PubMed

    Domurat, Artur; Kowalczuk, Olga; Idzikowska, Katarzyna; Borzymowska, Zuzanna; Nowak-Przygodzka, Marta

    2015-01-01

    This paper has two aims. First, we investigate how often people make choices conforming to Bayes' rule when natural sampling is applied. Second, we show that using Bayes' rule is not necessary to make choices satisfying Bayes' rule. Simpler methods, even fallacious heuristics, might prescribe correct choices reasonably often under specific circumstances. We considered elementary situations with binary sets of hypotheses and data. We adopted an ecological approach and prepared two-stage computer tasks resembling natural sampling. Probabilistic relations were inferred from a set of pictures, followed by a choice which was made to maximize the chance of a preferred outcome. Use of Bayes' rule was deduced indirectly from choices. Study 1 used a stratified sample of N = 60 participants equally distributed with regard to gender and type of education (humanities vs. pure sciences). Choices satisfying Bayes' rule were dominant. To investigate ways of making choices more directly, we replicated Study 1, adding a task with a verbal report. In Study 2 (N = 76) choices conforming to Bayes' rule dominated again. However, the verbal reports revealed use of a new, non-inverse rule, which always renders correct choices, but is easier than Bayes' rule to apply. It does not require inversion of conditions [transforming P(H) and P(D|H) into P(H|D)] when computing chances. Study 3 examined the efficiency of three fallacious heuristics (pre-Bayesian, representativeness, and evidence-only) in producing choices concordant with Bayes' rule. Computer-simulated scenarios revealed that the heuristics produced correct choices reasonably often under specific base rates and likelihood ratios. Summing up we conclude that natural sampling results in most choices conforming to Bayes' rule. However, people tend to replace Bayes' rule with simpler methods, and even use of fallacious heuristics may be satisfactorily efficient.

  13. Bayesian probability estimates are not necessary to make choices satisfying Bayes’ rule in elementary situations

    PubMed Central

    Domurat, Artur; Kowalczuk, Olga; Idzikowska, Katarzyna; Borzymowska, Zuzanna; Nowak-Przygodzka, Marta

    2015-01-01

    This paper has two aims. First, we investigate how often people make choices conforming to Bayes’ rule when natural sampling is applied. Second, we show that using Bayes’ rule is not necessary to make choices satisfying Bayes’ rule. Simpler methods, even fallacious heuristics, might prescribe correct choices reasonably often under specific circumstances. We considered elementary situations with binary sets of hypotheses and data. We adopted an ecological approach and prepared two-stage computer tasks resembling natural sampling. Probabilistic relations were inferred from a set of pictures, followed by a choice which was made to maximize the chance of a preferred outcome. Use of Bayes’ rule was deduced indirectly from choices. Study 1 used a stratified sample of N = 60 participants equally distributed with regard to gender and type of education (humanities vs. pure sciences). Choices satisfying Bayes’ rule were dominant. To investigate ways of making choices more directly, we replicated Study 1, adding a task with a verbal report. In Study 2 (N = 76) choices conforming to Bayes’ rule dominated again. However, the verbal reports revealed use of a new, non-inverse rule, which always renders correct choices, but is easier than Bayes’ rule to apply. It does not require inversion of conditions [transforming P(H) and P(D|H) into P(H|D)] when computing chances. Study 3 examined the efficiency of three fallacious heuristics (pre-Bayesian, representativeness, and evidence-only) in producing choices concordant with Bayes’ rule. Computer-simulated scenarios revealed that the heuristics produced correct choices reasonably often under specific base rates and likelihood ratios. Summing up we conclude that natural sampling results in most choices conforming to Bayes’ rule. However, people tend to replace Bayes’ rule with simpler methods, and even use of fallacious heuristics may be satisfactorily efficient. PMID:26347676

  14. Deriving Laws from Ordering Relations

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.

    2004-01-01

    The effect of Richard T. Cox's contribution to probability theory was to generalize Boolean implication among logical statements to degrees of implication, which are manipulated using rules derived from consistency with Boolean algebra. These rules are known as the sum rule, the product rule and Bayes Theorem, and the measure resulting from this generalization is probability. In this paper, I will describe how Cox s technique can be further generalized to include other algebras and hence other problems in science and mathematics. The result is a methodology that can be used to generalize an algebra to a calculus by relying on consistency with order theory to derive the laws of the calculus. My goals are to clear up the mysteries as to why the same basic structure found in probability theory appears in other contexts, to better understand the foundations of probability theory, and to extend these ideas to other areas by developing new mathematics and new physics. The relevance of this methodology will be demonstrated using examples from probability theory, number theory, geometry, information theory, and quantum mechanics.

  15. Algebraic geometry and Bethe ansatz. Part I. The quotient ring for BAE

    NASA Astrophysics Data System (ADS)

    Jiang, Yunfeng; Zhang, Yang

    2018-03-01

    In this paper and upcoming ones, we initiate a systematic study of Bethe ansatz equations for integrable models by modern computational algebraic geometry. We show that algebraic geometry provides a natural mathematical language and powerful tools for understanding the structure of solution space of Bethe ansatz equations. In particular, we find novel efficient methods to count the number of solutions of Bethe ansatz equations based on Gröbner basis and quotient ring. We also develop analytical approach based on companion matrix to perform the sum of on-shell quantities over all physical solutions without solving Bethe ansatz equations explicitly. To demonstrate the power of our method, we revisit the completeness problem of Bethe ansatz of Heisenberg spin chain, and calculate the sum rules of OPE coefficients in planar N=4 super-Yang-Mills theory.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brünner, F.; Parganlija, D.; Rebhan, A.

    We present new results on the decay patterns of scalar and tensor glueballs in the top-down holographic Witten-Sakai-Sugimoto model. This model, which has only one free dimensionless parameter, gives semi-quantitative predictions for the vector meson spectrum, their decay widths, and also a gluon condensate in agreement with SVZ sum rules. The holographic predictions for scalar glueball decay rates are compared with experimental data for the widely discussed gluon candidates f{sub 0}(1500) and f{sub 0}(1710)

  17. 77 FR 21114 - Self-Regulatory Organizations; NYSE Arca, Inc.; Order Granting Approval of Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ... Sugar 11. SB 03:30-14:00 2.25 ICE-US Cocoa CC 04:00-14:00 0.39 ICE-US Cotton 2. CT 21:00-14:30 1.24 CME... quotient of (i) the product of (a) the total annualized quantity traded of such Designated Contract during the relevant calculation period and (b) the sum of the products of (x) the Designated Contract...

  18. Mixing {Xi}--{Xi}' Effects and Static Properties of Heavy {Xi}'s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliev, T. M.; Ozpineci, A.; Zamiralov, V. S.

    It is shown the importance of mixing of heavy baryons {Xi}--{Xi}' with the new quantum numbers for analysis of its characteristics. The quark model of Ono is used as an example. Masses of new baryons as well as mixing angles of the states {Xi}--{Xi}' are obtained. The same reasoning is shown to be valid for the interpolating currents of these baryons in the framework of the QCD sum rules.

  19. Direct Determinations of the πNN Coupling Constants

    NASA Astrophysics Data System (ADS)

    Ericson, T. E. O.; Loiseau, B.

    1998-11-01

    A novel extrapolation method has been used to deduce directly the charged πN N coupling constant from backward np differential scattering cross sections. The extracted value, g2c = 14.52(0.26) is higher than the indirectly deduced values obtained in nucleon-nucleon energy-dependent partial-wave analyses. Our preliminary direct value from a reanalysis of the GMO sum-rule points to an intermediate value of g2c about 13.97(30).

  20. Scalar correlator at [symbol: see text](alpha(s)4), Higgs boson decay into bottom quarks, and bounds on the light-quark masses.

    PubMed

    Baikov, P A; Chetyrkin, K G; Kühn, J H

    2006-01-13

    We compute, for the first time, the absorptive part of the massless correlator of two quark scalar currents in five loops. As physical applications, we consider the [symbol: see text](alpha(s)4) corrections to the decay rate of the standard model Higgs boson into quarks, as well as the constraints on the strange quark mass following from QCD sum rules.

  1. Multivariate Quality Control Procedures

    DTIC Science & Technology

    1988-10-01

    CLASSIFICATION OF THIS PAGE PREFACE The mathematical modeling work described in this report was authorized under Project No. IC162706A553, CB Defense and...the sum of the measurements. A CUSUM of the first principal component would detect changes in the overall thickness of the sheet. A linear trend could...develop- ment of a unique outlier rule for the specific application. 28 LITERATURE CITED 1. Mood, A.M., Graybill , F.A., and Boes, D.C., Introduction to

  2. A clinical prediction rule for detecting major depressive disorder in primary care: the PREDICT-NL study.

    PubMed

    Zuithoff, Nicolaas P A; Vergouwe, Yvonne; King, Michael; Nazareth, Irwin; Hak, Eelko; Moons, Karel G M; Geerlings, Mirjam I

    2009-08-01

    Major depressive disorder often remains unrecognized in primary care. Development of a clinical prediction rule using easily obtainable predictors for major depressive disorder in primary care patients. A total of 1046 subjects, aged 18-65 years, were included from seven large general practices in the center of The Netherlands. All subjects were recruited in the general practice waiting room, irrespective of their presenting complaint. Major depressive disorder according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Text Revision edition criteria was assessed with the Composite International Diagnostic Interview. Candidate predictors were gender, age, educational level, being single, number of presented complaints, presence of non-somatic complaints, whether a diagnosis was assigned, consultation rate in past 12 months, presentation of depressive complaints or prescription of antidepressants in past 12 months, number of life events in past 6 months and any history of depression. The first multivariable logistic regression model including only predictors that require no confronting depression-related questions had a reasonable degree of discrimination (area under the receiver operating characteristic curve or concordance-statistic (c-statistic) = 0.71; 95% Confidence Interval (CI): 0.67-0.76). Addition of three simple though more depression-related predictors, number of life events and history of depression, significantly increased the c-statistic to 0.80 (95% CI: 0.76-0.83). After transforming this second model to an easily to use risk score, the lowest risk category (sum score < 5) showed a 1% risk of depression, which increased to 49% in the highest category (sum score > or = 30). A clinical prediction rule allows GPs to identify patients-irrespective of their complaints-in whom diagnostic workup for major depressive disorder is indicated.

  3. Stochastic Laplacian growth

    NASA Astrophysics Data System (ADS)

    Alekseev, Oleg; Mineev-Weinstein, Mark

    2016-12-01

    A point source on a plane constantly emits particles which rapidly diffuse and then stick to a growing cluster. The growth probability of a cluster is presented as a sum over all possible scenarios leading to the same final shape. The classical point for the action, defined as a minus logarithm of the growth probability, describes the most probable scenario and reproduces the Laplacian growth equation, which embraces numerous fundamental free boundary dynamics in nonequilibrium physics. For nonclassical scenarios we introduce virtual point sources, in which presence the action becomes the Kullback-Leibler entropy. Strikingly, this entropy is shown to be the sum of electrostatic energies of layers grown per elementary time unit. Hence the growth probability of the presented nonequilibrium process obeys the Gibbs-Boltzmann statistics, which, as a rule, is not applied out from equilibrium. Each layer's probability is expressed as a product of simple factors in an auxiliary complex plane after a properly chosen conformal map. The action at this plane is a sum of Robin functions, which solve the Liouville equation. At the end we establish connections of our theory with the τ function of the integrable Toda hierarchy and with the Liouville theory for noncritical quantum strings.

  4. Pillars of judgment: how memory abilities affect performance in rule-based and exemplar-based judgments.

    PubMed

    Hoffmann, Janina A; von Helversen, Bettina; Rieskamp, Jörg

    2014-12-01

    Making accurate judgments is an essential skill in everyday life. Although how different memory abilities relate to categorization and judgment processes has been hotly debated, the question is far from resolved. We contribute to the solution by investigating how individual differences in memory abilities affect judgment performance in 2 tasks that induced rule-based or exemplar-based judgment strategies. In a study with 279 participants, we investigated how working memory and episodic memory affect judgment accuracy and strategy use. As predicted, participants switched strategies between tasks. Furthermore, structural equation modeling showed that the ability to solve rule-based tasks was predicted by working memory, whereas episodic memory predicted judgment accuracy in the exemplar-based task. Last, the probability of choosing an exemplar-based strategy was related to better episodic memory, but strategy selection was unrelated to working memory capacity. In sum, our results suggest that different memory abilities are essential for successfully adopting different judgment strategies. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  5. Haunted by a doppelgänger: irrelevant facial similarity affects rule-based judgments.

    PubMed

    von Helversen, Bettina; Herzog, Stefan M; Rieskamp, Jörg

    2014-01-01

    Judging other people is a common and important task. Every day professionals make decisions that affect the lives of other people when they diagnose medical conditions, grant parole, or hire new employees. To prevent discrimination, professional standards require that decision makers render accurate and unbiased judgments solely based on relevant information. Facial similarity to previously encountered persons can be a potential source of bias. Psychological research suggests that people only rely on similarity-based judgment strategies if the provided information does not allow them to make accurate rule-based judgments. Our study shows, however, that facial similarity to previously encountered persons influences judgment even in situations in which relevant information is available for making accurate rule-based judgments and where similarity is irrelevant for the task and relying on similarity is detrimental. In two experiments in an employment context we show that applicants who looked similar to high-performing former employees were judged as more suitable than applicants who looked similar to low-performing former employees. This similarity effect was found despite the fact that the participants used the relevant résumé information about the applicants by following a rule-based judgment strategy. These findings suggest that similarity-based and rule-based processes simultaneously underlie human judgment.

  6. Suggested search for doubly charmed baryons of JP=3 /2+ via their electromagnetic transitions

    NASA Astrophysics Data System (ADS)

    Cui, Er-Liang; Chen, Hua-Xing; Chen, Wei; Liu, Xiang; Zhu, Shi-Lin

    2018-02-01

    We use the method of light-cone sum rules to study the electromagnetic transition of the Ξcc *++ into Ξcc ++γ , whose decay width is estimated to be 13.7-7.9+17.7 keV . This value is large enough for the Ξcc *++ to be observed in the Ξcc ++γ channel, and we propose to continually search for it in future LHCb and BelleII experiments.

  7. Proton spin structure from measurable parton distributions.

    PubMed

    Ji, Xiangdong; Xiong, Xiaonu; Yuan, Feng

    2012-10-12

    We present a systematic study of the proton spin structure in terms of measurable parton distributions. For a transversely polarized proton, we derive a polarization sum rule from the leading generalized parton distributions appearing in hard exclusive processes. For a longitudinally polarized proton, we obtain a helicity decomposition from well-known quark and gluon helicity distributions and orbital angular-momentum contributions. The latter are shown to be related to measurable subleading generalized parton distributions and quantum-phase space Wigner distributions.

  8. The Impact of Highly and Minimally Guided Discovery Instruction on Promoting the Learning of Reasoning Strategies for Basic Add-1 and Doubles Combinations

    ERIC Educational Resources Information Center

    Baroody, Arthur J.; Purpura, David J.; Eiland, Michael D.; Reid, Erin E.

    2015-01-01

    A 9-month training experiment was conducted to evaluate the efficacy of highly and minimally guided discovery interventions targeting the add-1 rule (the sum of a number and one is the next number on the mental number list) and doubles relations (e.g., an everyday example of the double 5 + 5 is five fingers on the left hand and five fingers on the…

  9. Nickel L-edge and K-edge X-ray absorption spectroscopy of non-innocent Ni[S₂C₂(CF₃)₂]₂(n) series (n = -2, -1, 0): direct probe of nickel fractional oxidation state changes.

    PubMed

    Gu, Weiwei; Wang, Hongxin; Wang, Kun

    2014-05-07

    A series of nickel dithiolene complexes Ni[S2C2(CF3)2]2(n) (n = -2, -1, 0) has been investigated using Ni L- and K-edge X-ray absorption spectroscopy (XAS). The L3 centroid shifts about 0.3 eV for a change of one unit in the formal oxidation state (or 0.3 eV per oxi), corresponding to ~33% of the shift for Ni oxides or fluorides (about 0.9 eV per oxi). The K-edge XAS edge position shifts about 0.7 eV per oxi, corresponding to ~38% of that for Ni oxides (1.85 eV per oxi). In addition, Ni L sum rule analysis found the Ni(3d) ionicity in the frontier orbitals being 50.5%, 44.0% and 38.5% respectively (for n = -2, -1, 0), in comparison with their formal oxidation states (of Ni(II), Ni(III), and Ni(IV)). For the first time, direct and quantitative measurement of the Ni fractional oxidation state changes becomes possible for Ni dithiolene complexes, illustrating the power of L-edge XAS and L sum rule analysis in such a study. The Ni L-edge and K-edge XAS can be used in a complementary manner to better assess the oxidation states for Ni.

  10. Direct surface magnetometry with photoemission magnetic x-ray dichroism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobin, J.G.; Goodman, K.W.; Schumann, F.O.

    1997-04-01

    Element specific surface magnetometry remains a central goal of synchrotron radiation based studies of nanomagnetic structures. One appealing possibility is the combination of x-ray absorption dichroism measurements and the theoretical framework provided by the {open_quotes}sum rules.{close_quotes} Unfortunately, sum rule analysis are hampered by several limitations including delocalization of the final state, multi-electronic phenomena and the presence of surface dipoles. An alternative experiment, Magnetic X-Ray Dichroism in Photoelectron Spectroscopy, holds out promise based upon its elemental specificity, surface sensitivity and high resolution. Computational simulations by Tamura et al. demonstrated the relationship between exchange and spin orbit splittings and experimental data ofmore » linear and circular dichroisms. Now the authors have developed an analytical framework which allows for the direct extraction of core level exchange splittings from circular and linear dichroic photoemission data. By extending a model initially proposed by Venus, it is possible to show a linear relation between normalized dichroism peaks in the experimental data and the underlying exchange splitting. Since it is reasonable to expect that exchange splittings and magnetic moments track together, this measurement thus becomes a powerful new tool for direct surface magnetometry, without recourse to time consuming and difficult spectral simulations. The theoretical derivation will be supported by high resolution linear and circular dichroism data collected at the Spectromicroscopy Facility of the Advanced Light Source.« less

  11. Local-duality QCD sum rules for strong isospin breaking in the decay constants of heavy-light mesons.

    PubMed

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2018-01-01

    We discuss the leptonic decay constants of heavy-light mesons by means of Borel QCD sum rules in the local-duality (LD) limit of infinitely large Borel mass parameter. In this limit, for an appropriate choice of the invariant structures in the QCD correlation functions, all vacuum-condensate contributions vanish and all nonperturbative effects are contained in only one quantity, the effective threshold. We study properties of the LD effective thresholds in the limits of large heavy-quark mass [Formula: see text] and small light-quark mass [Formula: see text]. In the heavy-quark limit, we clarify the role played by the radiative corrections in the effective threshold for reproducing the pQCD expansion of the decay constants of pseudoscalar and vector mesons. We show that the dependence of the meson decay constants on [Formula: see text] arises predominantly (at the level of 70-80%) from the calculable [Formula: see text]-dependence of the perturbative spectral densities. Making use of the lattice QCD results for the decay constants of nonstrange and strange pseudoscalar and vector heavy mesons, we obtain solid predictions for the decay constants of heavy-light mesons as functions of [Formula: see text] in the range from a few to 100 MeV and evaluate the corresponding strong isospin-breaking effects: [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text].

  12. Moldauer's sum rule as a test of the consistency of transmission coefficients in Hauser Feshbach theory

    NASA Astrophysics Data System (ADS)

    Brown, David; Nobre, Gustavo; Herman, Michal

    2017-09-01

    For neutron induced reactions below 20 MeV incident energy, the Unresolved Resonance Region (URR) connects the fast neutron region with the Resolved Resonance Region (RRR). The URR is problematic since resonances are not resolvable experimentally yet the fluctuations in the neutron cross sections play a discernible and technologically important role - the URR in a typical nucleus is in the 100 keV - 2 MeV window where the typical fission spectrum peaks. The URR also represents the transition between R-matrix theory used to describe isolated resonances and Hauser-Feshbach theory which accurately describes the average cross sections. In practice, only average or systematic features of the resonances in the URR are known and are tabulated in evaluations in a nuclear data library such as ENDF/B-VII.1. Here we apply Moldauer's ``sum rule for resonance reactions'' to compute the effective transmission coefficients for reactions in the RRR and URR regions. We compare these to the transmission coefficients used in the fast region in the EMPIRE Hauser-Feshbach code, demonstrating the consistency (or lack thereof) between these different physical regimes. This work suggests a better approach to evaluating the URR average parameters using the results from the fast region modeling. This material is based upon work supported by the US Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-SC0012704 (BNL).

  13. Electron emission and recoil effects following the beta decay of He6

    NASA Astrophysics Data System (ADS)

    Schulhoff, Eva E.; Drake, G. W. F.

    2015-11-01

    Probabilities for atomic electron excitation (shake-up) and ionization (shake-off) are studied following the beta-decay process →Li+6He6+e-+ν¯e , and in particular, recoil-induced contributions to the shake-off probability are calculated within the nonrelativistic sudden approximation. A pseudostate expansion method together with Stieltjes imaging is used to represent the complete two-electron spectrum of final Li+6 ,Li26+, and Li36+ states. Results for the recoil correction show a 7 σ disagreement with the experiment of Carlson et al. [Phys. Rev. 129, 2220 (1963), 10.1103/PhysRev.129.2220]. A variety of sum rules, including a newly derived Thomas-Reich-Kuhn oscillator strength sum rule for dipole recoil terms, provides tight constraints on the accuracy of the results. Calculations are performed for the helium 1 s 2 s 3S metastable state, as well as for the 1 s21S ground state. Our results would reduce the recoil-induced correction to the measured electroneutrino coupling constant ae μ from the apparent 0.6% used in the experiments to 0.09%.

  14. Model-Free Adaptive Control for Unknown Nonlinear Zero-Sum Differential Game.

    PubMed

    Zhong, Xiangnan; He, Haibo; Wang, Ding; Ni, Zhen

    2018-05-01

    In this paper, we present a new model-free globalized dual heuristic dynamic programming (GDHP) approach for the discrete-time nonlinear zero-sum game problems. First, the online learning algorithm is proposed based on the GDHP method to solve the Hamilton-Jacobi-Isaacs equation associated with optimal regulation control problem. By setting backward one step of the definition of performance index, the requirement of system dynamics, or an identifier is relaxed in the proposed method. Then, three neural networks are established to approximate the optimal saddle point feedback control law, the disturbance law, and the performance index, respectively. The explicit updating rules for these three neural networks are provided based on the data generated during the online learning along the system trajectories. The stability analysis in terms of the neural network approximation errors is discussed based on the Lyapunov approach. Finally, two simulation examples are provided to show the effectiveness of the proposed method.

  15. Review of the Theoretical Description of Time-Resolved Angle-Resolved Photoemission Spectroscopy in Electron-Phonon Mediated Superconductors

    DOE PAGES

    Kemper, A. F.; Sentef, M. A.; Moritz, B.; ...

    2017-07-13

    Here. we review recent work on the theory for pump/probe photoemission spectroscopy of electron-phonon mediated superconductors in both the normal and the superconducting states. We describe the formal developments that allow one to solve the Migdal-Eliashberg theory in nonequilibrium for an ultrashort laser pumping field, and explore the solutions which illustrate the relaxation as energy is transferred from electrons to phonons. We also focus on exact results emanating from sum rules and approximate numerical results which describe rules of thumb for relaxation processes. Additionally, in the superconducting state, we describe how Anderson-Higgs oscillations can be excited due to the nonlinearmore » coupling with the electric field and describe mechanisms where pumping the system enhances superconductivity.« less

  16. Review of the Theoretical Description of Time-Resolved Angle-Resolved Photoemission Spectroscopy in Electron-Phonon Mediated Superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemper, A. F.; Sentef, M. A.; Moritz, B.

    Here. we review recent work on the theory for pump/probe photoemission spectroscopy of electron-phonon mediated superconductors in both the normal and the superconducting states. We describe the formal developments that allow one to solve the Migdal-Eliashberg theory in nonequilibrium for an ultrashort laser pumping field, and explore the solutions which illustrate the relaxation as energy is transferred from electrons to phonons. We also focus on exact results emanating from sum rules and approximate numerical results which describe rules of thumb for relaxation processes. Additionally, in the superconducting state, we describe how Anderson-Higgs oscillations can be excited due to the nonlinearmore » coupling with the electric field and describe mechanisms where pumping the system enhances superconductivity.« less

  17. Characterization of the major histopathological components of thyroid nodules using sonographic textural features for clinical diagnosis and management.

    PubMed

    Chen, Shao-Jer; Yu, Sung-Nien; Tzeng, Jeh-En; Chen, Yen-Ting; Chang, Ku-Yaw; Cheng, Kuo-Sheng; Hsiao, Fu-Tsung; Wei, Chang-Kuo

    2009-02-01

    In this study, the characteristic sonographic textural feature that represents the major histopathologic components of the thyroid nodules was objectively quantified to facilitate clinical diagnosis and management. A total of 157 regions-of-interest thyroid ultrasound image was recruited in the study. The sonographic system used was the GE LOGIQ 700), (General Electric Healthcare, Chalfant St. Giles, UK). The parameters affecting image acquisition were kept in the same condition for all lesions. Commonly used texture analysis methods were applied to characterize thyroid ultrasound images. Image features were classified according to the corresponding pathologic findings. To estimate their relevance and performance to classification, ReliefF was used as a feature selector. Among the various textural features, the sum average value derived from co-occurrence matrix can well reflect echogenicity and can effectively differentiate between follicles and fibrosis base thyroid nodules. Fibrosis shows lowest echogenicity and lowest difference sum average value. Enlarged follicles show highest echogenicity and difference sum average values. Papillary cancer or follicular tumors show the difference sum average values and echogenicity between. The rule of thumb for the echogenicity is that the more follicles are mixed in, the higher the echo of the follicular tumor and papillary cancer will be and vice versa for fibrosis mixed. Areas with intermediate and lower echo should address the possibility of follicular or papillary neoplasm mixed with either follicles or fibrosis. These areas provide more cellular information for ultrasound guided aspiration

  18. Light Quark Mass Ratios (mu:md:ms) from Meson and Baryon Mass Splittings

    NASA Astrophysics Data System (ADS)

    Minkowski, Peter

    2013-08-01

    The basis of the material discussed is our work in collaboration with Arnulfo Zepeda from 1979 [Nucl. Phys. B164, 25 (1980)]. The ingredients and consequences of this work will be presented, and compared with results obtained from QCD sum rules and lattice simulations of QCD in accordance with chiral expansions. An up-to-date conclusion will not be possible in this paper, but some comments towards such goal will be given in a concluding section.

  19. Deployed Women’s Illness Behaviors While Managing Genitourinary Symptoms: An Exploratory Theoretical Synthesis of Two Qualitative Studies

    DTIC Science & Technology

    2018-04-21

    rules provided opportunities for women to serve in a broad range of military occupations not previously available (Pellerin, 2015). Full integration ...Behavior Model Disease I ._I _____ _ _ 1_L_L_N_e_s_s_e_x_P_E_R_1e_N_c_ e ______ _, ETH NO-CULTURAL CONTEXT External Influences Internal Integration ...disease. Distress refers to the " sum total of psychological factors and somatic sensations, and as such, it was intricately interwoven with meaning

  20. Free-free opacity in dense plasmas with an average atom model

    DOE PAGES

    Shaffer, Nathaniel R.; Ferris, Natalie G.; Colgan, James Patrick; ...

    2017-02-28

    A model for the free-free opacity of dense plasmas is presented. The model uses a previously developed average atom model, together with the Kubo-Greenwood model for optical conductivity. This, in turn, is used to calculate the opacity with the Kramers-Kronig dispersion relations. Furthermore, comparisons to other methods for dense deuterium results in excellent agreement with DFT-MD simulations, and reasonable agreement with a simple Yukawa screening model corrected to satisfy the conductivity sum rule.

  1. Free-free opacity in dense plasmas with an average atom model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaffer, Nathaniel R.; Ferris, Natalie G.; Colgan, James Patrick

    A model for the free-free opacity of dense plasmas is presented. The model uses a previously developed average atom model, together with the Kubo-Greenwood model for optical conductivity. This, in turn, is used to calculate the opacity with the Kramers-Kronig dispersion relations. Furthermore, comparisons to other methods for dense deuterium results in excellent agreement with DFT-MD simulations, and reasonable agreement with a simple Yukawa screening model corrected to satisfy the conductivity sum rule.

  2. Measuring Radiofrequency and Microwave Radiation from Varying Signal Strengths

    NASA Technical Reports Server (NTRS)

    Davis, Bette; Gaul, W. C.

    2007-01-01

    This viewgraph presentation discusses the process of measuring radiofrequency and microwave radiation from various signal strengths. The topics include: 1) Limits and Guidelines; 2) Typical Variable Standard (IEEE) Frequency Dependent; 3) FCC Standard 47 CFR 1.1310; 4) Compliance Follows Unity Rule; 5) Multiple Sources Contribute; 6) Types of RF Signals; 7) Interfering Radiations; 8) Different Frequencies Different Powers; 9) Power Summing - Peak Power; 10) Contribution from Various Single Sources; 11) Total Power from Multiple Sources; 12) Are You Out of Compliance?; and 13) In Compliance.

  3. Moiré assisted fractional quantum Hall state spectroscopy

    DOE PAGES

    Wu, Fengcheng; MacDonald, A. H.

    2016-12-14

    Intra-Landau level excitations in the fractional quantum Hall regime are not accessible via optical absorption measurements. Here we point out that optical probes are enabled by the periodic potentials produced by a moire pattern. Our observation is motivated by the recent observations of fractional quantum Hall incompressible states in moire-patterned graphene on a hexagonal boron nitride substrate, and is theoretically based on f-sum rule considerations supplemented by a perturbative analysis of the influence of the moire potential on many-body states.

  4. Theoretical and experimental characterization of the first hyperpolarizability

    NASA Astrophysics Data System (ADS)

    Perez-Moreno, Javier

    We present a theoretical and experimental study of the molecular susceptibilities. The generalized Thomas-Kuhn sum rules are used to characterize the nonlinear response of organic chromophores in terms of fundamental parameters. The nonlinear optical performance of real molecules is evaluated from the calculation of the quantum limits and Hyper-Rayleigh scattering measurements. Different strategies for the enhancement of nonlinear behavior at the molecular and supramolecular level are evaluated and new paradigms for de design of more efficient nonlinear molecules are proposed.

  5. On the small-x behavior of the orbital angular momentum distributions in QCD

    NASA Astrophysics Data System (ADS)

    Hatta, Yoshitaka; Yang, Dong-Jing

    2018-06-01

    We present the numerical solution of the leading order QCD evolution equation for the orbital angular momentum distributions of quarks and gluons and discuss its implications for the nucleon spin sum rule. We observe that at small-x, the gluon helicity and orbital angular momentum distributions are roughly of the same magnitude but with opposite signs, indicating a significant cancellation between them. A similar cancellation occurs also in the quark sector. We explain analytically the reason for this cancellation.

  6. Weighted Association Rule Mining for Item Groups with Different Properties and Risk Assessment for Networked Systems

    NASA Astrophysics Data System (ADS)

    Kim, Jungja; Ceong, Heetaek; Won, Yonggwan

    In market-basket analysis, weighted association rule (WAR) discovery can mine the rules that include more beneficial information by reflecting item importance for special products. In the point-of-sale database, each transaction is composed of items with similar properties, and item weights are pre-defined and fixed by a factor such as the profit. However, when items are divided into more than one group and the item importance must be measured independently for each group, traditional weighted association rule discovery cannot be used. To solve this problem, we propose a new weighted association rule mining methodology. The items should be first divided into subgroups according to their properties, and the item importance, i.e. item weight, is defined or calculated only with the items included in the subgroup. Then, transaction weight is measured by appropriately summing the item weights from each subgroup, and the weighted support is computed as the fraction of the transaction weights that contains the candidate items relative to the weight of all transactions. As an example, our proposed methodology is applied to assess the vulnerability to threats of computer systems that provide networked services. Our algorithm provides both quantitative risk-level values and qualitative risk rules for the security assessment of networked computer systems using WAR discovery. Also, it can be widely used for new applications with many data sets in which the data items are distinctly separated.

  7. Analysis 320 coal mine accidents using structural equation modeling with unsafe conditions of the rules and regulations as exogenous variables.

    PubMed

    Zhang, Yingyu; Shao, Wei; Zhang, Mengjia; Li, Hejun; Yin, Shijiu; Xu, Yingjun

    2016-07-01

    Mining has been historically considered as a naturally high-risk industry worldwide. Deaths caused by coal mine accidents are more than the sum of all other accidents in China. Statistics of 320 coal mine accidents in Shandong province show that all accidents contain indicators of "unsafe conditions of the rules and regulations" with a frequency of 1590, accounting for 74.3% of the total frequency of 2140. "Unsafe behaviors of the operator" is another important contributory factor, which mainly includes "operator error" and "venturing into dangerous places." A systems analysis approach was applied by using structural equation modeling (SEM) to examine the interactions between the contributory factors of coal mine accidents. The analysis of results leads to three conclusions. (i) "Unsafe conditions of the rules and regulations," affect the "unsafe behaviors of the operator," "unsafe conditions of the equipment," and "unsafe conditions of the environment." (ii) The three influencing factors of coal mine accidents (with the frequency of effect relation in descending order) are "lack of safety education and training," "rules and regulations of safety production responsibility," and "rules and regulations of supervision and inspection." (iii) The three influenced factors (with the frequency in descending order) of coal mine accidents are "venturing into dangerous places," "poor workplace environment," and "operator error." Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Variational Calculation of the Ground State of Closed-Shell Nuclei Up to $A$ = 40

    DOE PAGES

    Lonardoni, Diego; Lovato, Alessandro; Pieper, Steven C.; ...

    2017-08-31

    Variational calculations of ground-state properties of 4He, 16O and 40Ca are carried out employing realistic phenomenological two- and three-nucleon potentials. The trial wave function includes twoand three-body correlations acting on a product of single-particle determinants. Expectation values are evaluated with a cluster expansion for the spin-isospin dependent correlations considering up to five-body cluster terms. The optimal wave function is obtained by minimizing the energy expectation value over a set of up to 20 parameters by means of a nonlinear optimization library. We present results for the binding energy, charge radius, point density, single-nucleon momentum distribution, charge form factor, and Coulombmore » sum rule. We find that the employed three-nucleon interaction becomes repulsive for A ≥ 16. In 16O the inclusion of such a force provides a better description of the properties of the nucleus. In 40Ca instead, the repulsive behavior of the three-body interaction fails to reproduce experimental data for the charge radius and the charge form factor. We find that the high-momentum region of the momentum distributions, determined by the short-range terms of nuclear correlations, exhibit a universal behavior independent of the particular nucleus. The comparison of the Coulomb sum rules for 4He, 16O, and 40Ca reported in this work will help elucidate in-medium modifications of the nucleon form factors.« less

  9. 0+ tetraquark states from improved QCD sum rules: delving into X(5568)

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Rong; Zou, Jing-Lan; Wu, Jin-Yun

    2018-04-01

    In order to investigate the possibility of the recently observed X(5568) being a 0+ tetraquark state, we make an improvement to the study of the related various configuration states in the framework of the QCD sum rules. Particularly, to ensure the quality of the analysis, condensates up to dimension 12 are included to inspect the convergence of operator product expansion (OPE) and improve the final results of the studied states. We note that some condensate contributions could play an important role on the OPE side. By releasing the rigid OPE convergence criterion, we arrive at the numerical value {5.57}-0.23+0.35 {{GeV}} for the scalar-scalar diquark-antidiquark 0+ state, which agrees with the experimental data for the X(5568) and could support its interpretation in terms of a 0+ tetraquark state with the scalar-scalar configuration. The corresponding result for the axial-axial current is calculated to be {5.77}-0.33+0.44 {{GeV}}, which is still consistent with the mass of X(5568) in view of the uncertainty. The feasibility of X(5568) being a tetraquark state with the axial-axial configuration therefore cannot be definitely excluded. For the pseudoscalar-pseudoscalar and the vector-vector cases, their unsatisfactory OPE convergence make it difficult to find reasonable work windows to extract the hadronic information. Supported by National Natural Science Foundation of China (11475258, 11105223, 11675263) and the Project in NUDT for Excellent Youth Talents

  10. Spin and orbital magnetic moments of Fe and Co in Co/Fe and Fe/Co multilayers on Si from L2,3 edge X-ray Magnetic Circular Dichroism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Vemuru, Krishnamurthy; Rosenberg, Richard; Mankey, Gary

    Nanostructured FeCo thin films are interesting for magnetic recording applications due to their high saturation magnetization, high Curie temperature and low magnetocrystalline anisotropy. It is desirable to know how the magnetism is modified by the nanostructrure. We report Fe L 2 , 3 edge and Co L2 , 3 edge x-ray magnetic circular dichroism (XMCD) investigations of element specific spin and orbital magnetism of Fe and Co in two multilayer samples: (S1) Si/SiO2/[Co 0.8 nm/Fe 1.6 nm]x32/W (2nm) and (S2) Si/SiO2/[Co 1.6 nm/Fe 0.8 nm]x32/W (2nm) thin films at room temperature. Sum rule analysis of XMCD at Fe L2 , 3 edge in sample S1 shows that the orbital moment of Fe is strongly enhanced and the spin moment is strongly reduced as compared to the values found in bulk Fe. Details of sum rule analysis will be presented to compare and contrast spin magnetic moments and orbital magnetic moments of Fe and Co in the two multilayer samples. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

  11. Multiple symbol partially coherent detection of MPSK

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Divsalar, D.

    1992-01-01

    It is shown that by using the known (or estimated) value of carrier tracking loop signal to noise ratio (SNR) in the decision metric, it is possible to improve the error probability performance of a partially coherent multiple phase-shift-keying (MPSK) system relative to that corresponding to the commonly used ideal coherent decision rule. Using a maximum-likeihood approach, an optimum decision metric is derived and shown to take the form of a weighted sum of the ideal coherent decision metric (i.e., correlation) and the noncoherent decision metric which is optimum for differential detection of MPSK. The performance of a receiver based on this optimum decision rule is derived and shown to provide continued improvement with increasing length of observation interval (data symbol sequence length). Unfortunately, increasing the observation length does not eliminate the error floor associated with the finite loop SNR. Nevertheless, in the limit of infinite observation length, the average error probability performance approaches the algebraic sum of the error floor and the performance of ideal coherent detection, i.e., at any error probability above the error floor, there is no degradation due to the partial coherence. It is shown that this limiting behavior is virtually achievable with practical size observation lengths. Furthermore, the performance is quite insensitive to mismatch between the estimate of loop SNR (e.g., obtained from measurement) fed to the decision metric and its true value. These results may be of use in low-cost Earth-orbiting or deep-space missions employing coded modulations.

  12. Precision measurement of quasi-elastic transverse and longitudinal response functions in the range 0.55 GeV/c lte |q-right arrow| lte 1.0 GeV/c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atac, Hamza

    The Coulomb Sum is defined by the quasi-elastic nucleon knock-out process and it is the integration of the longitudinal response function over the energy loss of the incident electron. The Coulomb sum goes to the total charge at large q. The existing measurements of the Coulomb Sum Rule show disagreement with the theoretical calculations for the medium and heavy nuclei. To find the reason behind the disagreement might answer the question of whether the properties of the nucleons are affected by the nuclear medium or not. In order to determine the Coulomb Sum in nuclei, a precision measurement of inclusivemore » electron scattering in the quasi-elastic region was performed at the Thomas Jefferson National Accelerator Facility. Incident electrons with energies ranging from 0.4 GeV to 4 GeV scattered off 4He,12C,56Fe and 208Pb nuclei at four scattering angles (15 deg.; 60 deg.; 90 deg.; 120 deg.) and scattered energies ranging from 0.1 GeV to 4 GeV. The Born cross sections were extracted for the Left High Resolution Spectrometer (LHRS) and the Right High Resolution Spectrometer 56Fe data. The Rosenbluth separation was performed to extract the transverse and longitudinal response functions at 650 MeV three-momentum transfer. The preliminary results of the longitudinal and transverse functions were extracted for 56Fe target at 650 MeV three-momentum transfer.« less

  13. Excited Nucleons and Hadron Structure - Proceedings of the Nstar 2000 Conference

    NASA Astrophysics Data System (ADS)

    Burkert, V. D.; Elouadrhiri, L.; Kelly, J. J.; Minehart, R. C.

    The Table of Contents for the book is as follows: * Probing the Structure of Nucleons in the Resonance Region * Pion Photoproduction Results from MAMI * Pion Production and Compton Scattering at LEGS * Electroproduction Multipoles from ELSA * Baryon Resonance Production at Jefferson Lab at High Q2 * A Dynamical Model for the Resonant Multipoles and the Δ Structure * Relations between N and Δ Electromagnetic Form Factors * Measurement of the Recoil Polarization in the [p(ěc e ,{e^prime}ěc p ){π ^0}] Reaction at the Energy of the Δ(1232) Resonance * Electroproduction Results from CLAS * S11 (1535) Resonance Production at Jefferson Lab at High Q2 * η and η' Electro- and Photoproduction with the CEBAF Large Acceptance Spectrometer * η Production in Hadronic Interactions * Electromagnetic Production of η and η' Mesons * The Crystal Barrel Experiment at ELSA * Measurement of π-p → Neutrals Using the Crystal Ball * π+π0 and η Photoproduction at GRAAL * Partial Wave Analysis of Pion Photoproduction with Constraints from Fixed-t Dispersion Relations * N* Resonances in e+e- Collisions at BEPC * What is the Structure of the Roper Resonance? * Hybrid Baryon Signatures * Mixing Angles Determination via the Process γp → ηp * SU(6) Breaking Effects in the Nucleon Elastic Electromagnetic Form Factors * The Hypercentral Constituent Quark Model * Baryon Resonance Decays Within Constituent Quark Models * Pion Production Model - Connection between Dynamics and Quark Models * N* Investigation via Two Pion Electroproduction with the CLAS Detector at Jefferson Laboratory * Isobar Model for Studies of N* Excitation in Charged Double Pion Production by Real and Virtual Photons * Double Pion Photoproduction in the Second Resonance Region * CLAS Electroproduction of ω(783) Mesons * Electromagnetic Production of Vector Mesons at Low Energies * Polarized Target Developments for GRAAL and Prospects * Analytic Structure of a Multichannel Model * Missing Nucleon Resonances in Kaon Production with Pions and Photons * Hyperon Electroproduction with CLAS * From Bjorken to Drell-Hearn-Gerasimov Sum Rules * GDH Measurements at Mainz * Double Polarization Measurements in Inclusive Inelastic e - p Scattering * Measurement of Inclusive Spin Asymmetries and Sum Rules on 3He and the Neutron * Polarization and Out-of-Plane Responses in Pion and ETA Electroproduction * Polarization Observables in π+ Electroproduction with CLAS * Pion Electroproduction on the Nucleon and the Generalized GDH Sum Rule * Virtual Compton Scattering in the Resonance Region * What We Know about the Theoretical Foundation of Duality in Electron Scattering * Hadron Structure in Lattice QCD: Exploring the Gluon Wave Functional * N* Spectrum in Lattice QCD * Baryon Spectrum in the Large Nc Limit * Deeply Virtual Photon and Meson Electroproduction * Why N*'s are Important * Participant List

  14. Hot electron energy relaxation in lattice-matched InAlN/AlN/GaN heterostructures: The sum rules for electron-phonon interactions and hot-phonon effect

    NASA Astrophysics Data System (ADS)

    Zhang, J.-Z.; Dyson, A.; Ridley, B. K.

    2015-01-01

    Using the dielectric continuum (DC) and three-dimensional phonon (3DP) models, energy relaxation (ER) of the hot electrons in the quasi-two-dimensional channel of lattice-matched InAlN/AlN/GaN heterostructures is studied theoretically, taking into account non-equilibrium polar optical phonons, electron degeneracy, and screening from the mobile electrons. The electron power dissipation (PD) and ER time due to both half-space and interface phonons are calculated as functions of the electron temperature Te using a variety of phonon lifetime values from experiment, and then compared with those evaluated by the 3DP model. Thereby, particular attention is paid to examination of the 3DP model to use for the hot-electron relaxation study. The 3DP model yields very close results to the DC model: With no hot phonons or screening, the power loss calculated from the 3DP model is 5% smaller than the DC power dissipation, whereas slightly larger 3DP power loss (by less than 4% with a phonon lifetime from 0.1 to 1 ps) is obtained throughout the electron temperature range from room temperature to 2500 K after including both the hot-phonon effect (HPE) and screening. Very close results are obtained also for ER time with the two phonon models (within a 5% of deviation). However, the 3DP model is found to underestimate the HPE by 9%. The Mori-Ando sum rule is restored by which it is proved that the PD values obtained from the DC and 3DP models are in general different in the spontaneous phonon emission process, except when scattering with interface phonons is sufficiently weak, or when the degenerate modes condition is imposed, which is also consistent with Register's scattering rate sum rule. The discrepancy between the DC and 3DP results is found to be caused by how much the high-energy interface phonons contribute to the ER: their contribution is enhanced in the spontaneous emission process but is dramatically reduced after including the HPE. Our calculation with both phonon models has obtained a great fall in ER time at low electron temperatures (Te < 750 K) and slow decrease at the high temperatures with the use of decreasing phonon lifetime with Te. The calculated temperature dependence of the relaxation time and the high-temperature relaxation time ˜0.09 ps are in good agreement with experimental results.

  15. Frequency selection rule for high definition and high frame rate Lissajous scanning.

    PubMed

    Hwang, Kyungmin; Seo, Yeong-Hyeon; Ahn, Jinhyo; Kim, Pilhan; Jeong, Ki-Hun

    2017-10-26

    Lissajous microscanners are very attractive in compact laser scanning applications such as endomicroscopy or pro-projection display owing to high mechanical stability and low operating voltages. The scanning frequency serves as a critical factor for determining the scanning imaging quality. Here we report the selection rule of scanning frequencies that can realize high definition and high frame-rate (HDHF) full-repeated Lissajous scanning imaging. The fill factor (FF) monotonically increases with the total lobe number of a Lissajous curve, i.e., the sum of scanning frequencies divided by the great common divisor (GCD) of bi-axial scanning frequencies. The frames per second (FPS), called the pattern repeated rate or the frame rate, linearly increases with GCD. HDHF Lissajous scanning is achieved at the bi-axial scanning frequencies, where the GCD has the maximum value among various sets of the scanning frequencies satisfying the total lobe number for a target FF. Based on this selection rule, the experimental results clearly demonstrate that conventional Lissajous scanners substantially increase both FF and FPS by slightly modulating the scanning frequencies at near the resonance within the resonance bandwidth of a Lissajous scanner. This selection rule provides a new guideline for HDHF Lissajous scanning in compact laser scanning systems.

  16. Tree Branching: Leonardo da Vinci's Rule versus Biomechanical Models

    PubMed Central

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule. PMID:24714065

  17. Tree branching: Leonardo da Vinci's rule versus biomechanical models.

    PubMed

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule.

  18. Fractional Quantum Hall Effect in Infinite-Layer Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naud, J. D.; Pryadko, Leonid P.; Sondhi, S. L.

    2000-12-18

    Stacked two dimensional electron systems in transverse magnetic fields exhibit three dimensional fractional quantum Hall phases. We analyze the simplest such phases and find novel bulk properties, e.g., irrational braiding. These phases host ''one and a half'' dimensional surface phases in which motion in one direction is chiral. We offer a general analysis of conduction in the latter by combining sum rule and renormalization group arguments, and find that when interlayer tunneling is marginal or irrelevant they are chiral semimetals that conduct only at T>0 or with disorder.

  19. Determination of the orbital moment and crystal-field splitting in LaTiO3.

    PubMed

    Haverkort, M W; Hu, Z; Tanaka, A; Ghiringhelli, G; Roth, H; Cwik, M; Lorenz, T; Schüssler-Langeheine, C; Streltsov, S V; Mylnikova, A S; Anisimov, V I; de Nadai, C; Brookes, N B; Hsieh, H H; Lin, H-J; Chen, C T; Mizokawa, T; Taguchi, Y; Tokura, Y; Khomskii, D I; Tjeng, L H

    2005-02-11

    Utilizing a sum rule in a spin-resolved photoelectron spectroscopic experiment with circularly polarized light, we show that the orbital moment in LaTiO3 is strongly reduced from its ionic value, both below and above the Ne el temperature. Using Ti L2,3 x-ray absorption spectroscopy as a local probe, we found that the crystal-field splitting in the t2g subshell is about 0.12-0.30 eV. This large splitting does not facilitate the formation of an orbital liquid.

  20. Exact Mass-Coupling Relation for the Homogeneous Sine-Gordon Model.

    PubMed

    Bajnok, Zoltán; Balog, János; Ito, Katsushi; Satoh, Yuji; Tóth, Gábor Zsolt

    2016-05-06

    We derive the exact mass-coupling relation of the simplest multiscale quantum integrable model, i.e., the homogeneous sine-Gordon model with two mass scales. The relation is obtained by comparing the perturbed conformal field theory description of the model valid at short distances to the large distance bootstrap description based on the model's integrability. In particular, we find a differential equation for the relation by constructing conserved tensor currents, which satisfy a generalization of the Θ sum rule Ward identity. The mass-coupling relation is written in terms of hypergeometric functions.

  1. An Assessment of the Impact of the Contract Disputes Act of 1978 on U.S. Army Corps of Engineers’ Construction Contracts.

    DTIC Science & Technology

    1981-03-01

    paid from the date the Contracting Officer accepts the claim until payment thereof. Simple interest will be paid as computed at the rate established by...were of quantum (e.g., involved monetary decisions). If money is part of the decision, the Board will often rule in favor of one party based on the... quantum is in issue the exact amount had to be stated. This sum would then have to be certified if it exceeded $50,000. Althoug ’ the legislative

  2. Isoscalar giant resonances in Ca48

    NASA Astrophysics Data System (ADS)

    Lui, Y.-W.; Youngblood, D. H.; Shlomo, S.; Chen, X.; Tokimoto, Y.; Krishichayan; Anders, M.; Button, J.

    2011-04-01

    The giant resonance region from 9.5 MeV < Ex < 40 MeV in Ca48 has been studied with inelastic scattering of 240-MeV α particles at small angles, including 0°. 95-15+11% of E0 energy-weighted sum rule (EWSR), 83-16+10% of E2 EWSR, and 137 ± 20% of E1 EWSR were located below Ex=40 MeV. A comparison of the experimental data with calculated results for the isoscalar giant monopole resonance, obtained within the mean-field-based random-phase approximation, is also given.

  3. Better Than Counting: Density Profiles from Force Sampling

    NASA Astrophysics Data System (ADS)

    de las Heras, Daniel; Schmidt, Matthias

    2018-05-01

    Calculating one-body density profiles in equilibrium via particle-based simulation methods involves counting of events of particle occurrences at (histogram-resolved) space points. Here, we investigate an alternative method based on a histogram of the local force density. Via an exact sum rule, the density profile is obtained with a simple spatial integration. The method circumvents the inherent ideal gas fluctuations. We have tested the method in Monte Carlo, Brownian dynamics, and molecular dynamics simulations. The results carry a statistical uncertainty smaller than that of the standard counting method, reducing therefore the computation time.

  4. Superradiant phase transitions with three-level systems

    NASA Astrophysics Data System (ADS)

    Baksic, Alexandre; Nataf, Pierre; Ciuti, Cristiano

    2013-02-01

    We determine the phase diagram of N identical three-level systems interacting with a single photonic mode in the thermodynamical limit (N→∞) by accounting for the so-called diamagnetic term and the inequalities imposed by the Thomas-Reich-Kuhn (TRK) oscillator strength sum rule. The key role of transitions between excited levels and the occurrence of first-order phase transitions is discussed. We show that, in contrast to two-level systems, in the three-level case the TRK inequalities do not always prevent a superradiant phase transition in the presence of a diamagnetic term.

  5. Fundamental Limits:. Developing New Tools for a Better Understanding of Second-Order Molecular Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Pérez-Moreno, Javier; Clays, Koen

    The generalized Thomas-Kuhn sum rules are used to characterize the nonlinear optical response of organic chromophores in terms of fundamental parameters that can be measured experimentally. The nonlinear optical performance of organic molecules is evaluated from the combination of hyper-Rayleigh scattering measurements and the analysis in terms of the fundamental limits. Different strategies for the enhancement of nonlinear optical behavior at the molecular and supramolecular level are evaluated and new paradigms for the design of more efficient nonlinear optical molecules are proposed and investigated.

  6. Clinical laboratory billing: superfluous requirements without justification?

    PubMed

    Stadler, Stephen

    2004-01-01

    Congress occasionally passes new laws that affect how clinical laboratories handle test orders from physicians and, subsequently, process the billing for tests. Once a bill is signed into law, it is forwarded to administrative agencies, which draft regulations and administrative procedures, under which the intentions of Congress are carried out. In the case of laboratory test ordering and billing, the Centers for Medicare and Medicaid Services (CMS) has the greatest influence over how these regulations and procedures are defined. Unfortunately, in many cases, billing rules have been promulgated in ways that create the need for hospitals and commercial laboratories to expend huge sums of money to bill within the confines of the administrative rules; cause clinical laboratories to suffer from omissions and mistakes of other parties who are part of the patient care process but are not accountable for the billing information they provide to laboratories; and, frankly, in some respects, simply defy common sense.

  7. Sea-quark distributions in the pion

    NASA Astrophysics Data System (ADS)

    Hwang, W.-Y. P.; Speth, J.

    1992-05-01

    Using Sullivan processes with ρππ, K*+K¯ 0π, and K¯ *0K+π vertices, we describe how the sea-quark distributions of a pion may be generated in a quantitative manner. The input valence-quark distributions are obtained using the leading Fock component of the light-cone wave function, which is in accord with results obtained from the QCD sum rules. The sample numerical results appear to be reasonable as far as the existing Drell-Yan production data are concerned, although the distributions as a function of x differs slightly from those obtained by imposing counting rules for x-->0 and x-->1. Our results lend additional support toward the conjecture of Hwang, Speth, and Brown that the sea distributions of a hadron, at low and moderate Q2 (at least up to a few GeV2), may be attributed primarily to generalized Sullivan processes.

  8. Good times, bad times: how personal disadvantage moderates the relationship between social dominance and efforts to win.

    PubMed

    Cozzolino, Philip J; Snyder, Mark

    2008-10-01

    Recent work has linked social dominance orientation (SDO) to ruthless, uncaring individuals who see the world as a competitive jungle. This need to "rule the jungle," then, should become activated when high SDOs are in positions that threaten their chances of victory. In Study 1, the authors manipulated advantage and disadvantage in the form of resources; in an ensuing task, they observed higher levels of greed only among disadvantaged high SDOs. In Study 2, high SDOs with less opportunity to compete relative to others evidenced significantly more extra-effort to win, even though their effort broke the rules. In Study 3, the authors replicated this effect and demonstrated that extra-effort predicted increased beliefs in actual performance, which in turn predicted decisions to argue for a higher score. In sum, the results provide support for the notion of SDO reflecting underlying needs to compete and win at all costs.

  9. Linear solvation energy relationships (LSER): 'rules of thumb' for Vi/100, π*, Βm, and αm estimation and use in aquatic toxicology

    USGS Publications Warehouse

    Hickey, James P.

    1996-01-01

    This chapter provides a listing of the increasing variety of organic moieties and heteroatom group for which Linear Solvation Energy Relationship (LSER) values are available, and the LSER variable estimation rules. The listings include values for typical nitrogen-, sulfur- and phosphorus-containing moieties, and general organosilicon and organotin groups. The contributions by an ion pair situation to the LSER values are also offered in Table 1, allowing estimation of parameters for salts and zwitterions. The guidelines permit quick estimation of values for the four primary LSER variables Vi/100, π*, Βm, and αm by summing the contribtuions from its components. The use of guidelines and Table 1 significantly simplifies computation of values for the LSER variables for most possible organic comppounds in the environment, including the larger compounds of environmental and biological interest.

  10. Colony size as a buffer against seasonality: Bergmann's rule in social insects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspari, M.; Vargo, E.

    1994-06-01

    In eusocial species, the size of the superorganism is the summed sizes of its component individuals. Bergmann's rule, the cline of decreasing size with decreasing latitude, applies to colony size in ants. Using data from the literature and our own collections, we show that colony sizes of tropical ant species are on average 1/10th the size of temperate species. The patterns holds for 5 of 6 subfamilies and 15 of 16 genera tested. What causes this trend Larger colonies of the fire ant, Solenopsis invicta, are better able to protect the queen (the colony's reproductive tissue) against food shortage, likelymore » by sacrificing workers (it's somatic tissue). Days of queen survival follows the allometry M[sup 0.25]. We propose that the shorter growing seasons in temperate latitudes cull small-colony species through over-wintering starvation.« less

  11. Is the formula of Traub still up to date in antemortem blood glucose level estimation?

    PubMed

    Palmiere, Cristian; Sporkert, Frank; Vaucher, Paul; Werner, Dominique; Bardy, Daniel; Rey, François; Lardi, Christelle; Brunel, Christophe; Augsburger, Marc; Mangin, Patrice

    2012-05-01

    According to the hypothesis of Traub, also known as the 'formula of Traub', postmortem values of glucose and lactate found in the cerebrospinal fluid or vitreous humor are considered indicators of antemortem blood glucose levels. However, because the lactate concentration increases in the vitreous and cerebrospinal fluid after death, some authors postulated that using the sum value to estimate antemortem blood glucose levels could lead to an overestimation of the cases of glucose metabolic disorders with fatal outcomes, such as diabetic ketoacidosis. The aim of our study, performed on 470 consecutive forensic cases, was to ascertain the advantages of the sum value to estimate antemortem blood glucose concentrations and, consequently, to rule out fatal diabetic ketoacidosis as the cause of death. Other biochemical parameters, such as blood 3-beta-hydroxybutyrate, acetoacetate, acetone, glycated haemoglobin and urine glucose levels, were also determined. In addition, postmortem native CT scan, autopsy, histology, neuropathology and toxicology were performed to confirm diabetic ketoacidosis as the cause of death. According to our results, the sum value does not add any further information for the estimation of antemortem blood glucose concentration. The vitreous glucose concentration appears to be the most reliable marker to estimate antemortem hyperglycaemia and, along with the determination of other biochemical markers (such as blood acetone and 3-beta-hydroxybutyrate, urine glucose and glycated haemoglobin), to confirm diabetic ketoacidosis as the cause of death.

  12. Multi-Higgs doublet models: physical parametrization, sum rules and unitarity bounds

    NASA Astrophysics Data System (ADS)

    Bento, Miguel P.; Haber, Howard E.; Romão, J. C.; Silva, João P.

    2017-11-01

    If the scalar sector of the Standard Model is non-minimal, one might expect multiple generations of the hypercharge-1/2 scalar doublet analogous to the generational structure of the fermions. In this work, we examine the structure of a Higgs sector consisting of N Higgs doublets (where N ≥ 2). It is particularly convenient to work in the so-called charged Higgs basis, in which the neutral Higgs vacuum expectation value resides entirely in the first Higgs doublet, and the charged components of remaining N - 1 Higgs doublets are mass-eigenstate fields. We elucidate the interactions of the gauge bosons with the physical Higgs scalars and the Goldstone bosons and show that they are determined by an N × 2 N matrix. This matrix depends on ( N - 1)(2 N - 1) real parameters that are associated with the mixing of the neutral Higgs fields in the charged Higgs basis. Among these parameters, N - 1 are unphysical (and can be removed by rephasing the physical charged Higgs fields), and the remaining 2( N - 1)2 parameters are physical. We also demonstrate a particularly simple form for the cubic interaction and some of the quartic interactions of the Goldstone bosons with the physical Higgs scalars. These results are applied in the derivation of Higgs coupling sum rules and tree-level unitarity bounds that restrict the size of the quartic scalar couplings. In particular, new applications to three Higgs doublet models with an order-4 CP symmetry and with a Z_3 symmetry, respectively, are presented.

  13. Structure of the two-neutrino double-β decay matrix elements within perturbation theory

    NASA Astrophysics Data System (ADS)

    Štefánik, Dušan; Šimkovic, Fedor; Faessler, Amand

    2015-06-01

    The two-neutrino double-β Gamow-Teller and Fermi transitions are studied within an exactly solvable model, which allows a violation of both spin-isospin SU(4) and isospin SU(2) symmetries, and is expressed with generators of the SO(8) group. It is found that this model reproduces the main features of realistic calculation within the quasiparticle random-phase approximation with isospin symmetry restoration concerning the dependence of the two-neutrino double-β decay matrix elements on isovector and isoscalar particle-particle interactions. By using perturbation theory an explicit dependence of the two-neutrino double-β decay matrix elements on the like-nucleon pairing, particle-particle T =0 and T =1 , and particle-hole proton-neutron interactions is obtained. It is found that double-β decay matrix elements do not depend on the mean field part of Hamiltonian and that they are governed by a weak violation of both SU(2) and SU(4) symmetries by the particle-particle interaction of Hamiltonian. It is pointed out that there is a dominance of two-neutrino double-β decay transition through a single state of intermediate nucleus. The energy position of this state relative to energies of initial and final ground states is given by a combination of strengths of residual interactions. Further, energy-weighted Fermi and Gamow-Teller sum rules connecting Δ Z =2 nuclei are discussed. It is proposed that these sum rules can be used to study the residual interactions of the nuclear Hamiltonian, which are relevant for charge-changing nuclear transitions.

  14. Opinion formation on multiplex scale-free networks

    NASA Astrophysics Data System (ADS)

    Nguyen, Vu Xuan; Xiao, Gaoxi; Xu, Xin-Jian; Li, Guoqi; Wang, Zhen

    2018-01-01

    Most individuals, if not all, live in various social networks. The formation of opinion systems is an outcome of social interactions and information propagation occurring in such networks. We study the opinion formation with a new rule of pairwise interactions in the novel version of the well-known Deffuant model on multiplex networks composed of two layers, each of which is a scale-free network. It is found that in a duplex network composed of two identical layers, the presence of the multiplexity helps either diminish or enhance opinion diversity depending on the relative magnitudes of tolerance ranges characterizing the degree of openness/tolerance on both layers: there is a steady separation between different regions of tolerance range values on two network layers where multiplexity plays two different roles, respectively. Additionally, the two critical tolerance ranges follow a one-sum rule; that is, each of the layers reaches a complete consensus only if the sum of the tolerance ranges on the two layers is greater than a constant approximately equaling 1, the double of the critical bound on a corresponding isolated network. A further investigation of the coupling between constituent layers quantified by a link overlap parameter reveals that as the layers are loosely coupled, the two opinion systems co-evolve independently, but when the inter-layer coupling is sufficiently strong, a monotonic behavior is observed: an increase in the tolerance range of a layer causes a decline in the opinion diversity on the other layer regardless of the magnitudes of tolerance ranges associated with the layers in question.

  15. Summation rules for a fully nonlocal energy-based quasicontinuum method

    NASA Astrophysics Data System (ADS)

    Amelang, J. S.; Venturini, G. N.; Kochmann, D. M.

    2015-09-01

    The quasicontinuum (QC) method coarse-grains crystalline atomic ensembles in order to bridge the scales from individual atoms to the micro- and mesoscales. A crucial cornerstone of all QC techniques, summation or quadrature rules efficiently approximate the thermodynamic quantities of interest. Here, we investigate summation rules for a fully nonlocal, energy-based QC method to approximate the total Hamiltonian of a crystalline atomic ensemble by a weighted sum over a small subset of all atoms in the crystal lattice. Our formulation does not conceptually differentiate between atomistic and coarse-grained regions and thus allows for seamless bridging without domain-coupling interfaces. We review traditional summation rules and discuss their strengths and weaknesses with a focus on energy approximation errors and spurious force artifacts. Moreover, we introduce summation rules which produce no residual or spurious force artifacts in centrosymmetric crystals in the large-element limit under arbitrary affine deformations in two dimensions (and marginal force artifacts in three dimensions), while allowing us to seamlessly bridge to full atomistics. Through a comprehensive suite of examples with spatially non-uniform QC discretizations in two and three dimensions, we compare the accuracy of the new scheme to various previous ones. Our results confirm that the new summation rules exhibit significantly smaller force artifacts and energy approximation errors. Our numerical benchmark examples include the calculation of elastic constants from completely random QC meshes and the inhomogeneous deformation of aggressively coarse-grained crystals containing nano-voids. In the elastic regime, we directly compare QC results to those of full atomistics to assess global and local errors in complex QC simulations. Going beyond elasticity, we illustrate the performance of the energy-based QC method with the new second-order summation rule by the help of nanoindentation examples with automatic mesh adaptation. Overall, our findings provide guidelines for the selection of summation rules for the fully nonlocal energy-based QC method.

  16. Improved model reduction and tuning of fractional-order PI(λ)D(μ) controllers for analytical rule extraction with genetic programming.

    PubMed

    Das, Saptarshi; Pan, Indranil; Das, Shantanu; Gupta, Amitava

    2012-03-01

    Genetic algorithm (GA) has been used in this study for a new approach of suboptimal model reduction in the Nyquist plane and optimal time domain tuning of proportional-integral-derivative (PID) and fractional-order (FO) PI(λ)D(μ) controllers. Simulation studies show that the new Nyquist-based model reduction technique outperforms the conventional H(2)-norm-based reduced parameter modeling technique. With the tuned controller parameters and reduced-order model parameter dataset, optimum tuning rules have been developed with a test-bench of higher-order processes via genetic programming (GP). The GP performs a symbolic regression on the reduced process parameters to evolve a tuning rule which provides the best analytical expression to map the data. The tuning rules are developed for a minimum time domain integral performance index described by a weighted sum of error index and controller effort. From the reported Pareto optimal front of the GP-based optimal rule extraction technique, a trade-off can be made between the complexity of the tuning formulae and the control performance. The efficacy of the single-gene and multi-gene GP-based tuning rules has been compared with the original GA-based control performance for the PID and PI(λ)D(μ) controllers, handling four different classes of representative higher-order processes. These rules are very useful for process control engineers, as they inherit the power of the GA-based tuning methodology, but can be easily calculated without the requirement for running the computationally intensive GA every time. Three-dimensional plots of the required variation in PID/fractional-order PID (FOPID) controller parameters with reduced process parameters have been shown as a guideline for the operator. Parametric robustness of the reported GP-based tuning rules has also been shown with credible simulation examples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Casimir effect for perfect electromagnetic conductors (PEMCs): a sum rule for attractive/repulsive forces

    NASA Astrophysics Data System (ADS)

    Rode, Stefan; Bennett, Robert; Yoshi Buhmann, Stefan

    2018-04-01

    We discuss the Casimir effect for boundary conditions involving perfect electromagnetic conductors, which interpolate between perfect electric conductors and perfect magnetic conductors. Based on the corresponding reciprocal Green’s tensor we construct the Green’s tensor for two perfectly reflecting plates with magnetoelectric coupling (non-reciprocal media) within the framework of macroscopic quantum electrodynamics. We calculate the Casimir force between two arbitrary perfect electromagnetic conductor plates, resulting in a universal analytic expression that connects the attractive Casimir force with the repulsive Boyer force. We relate the results to a duality symmetry of electromagnetism.

  18. a Holographic Model of Hadrons

    NASA Astrophysics Data System (ADS)

    Stephanov, M. A.

    2007-03-01

    This short talk is based on the work with J. Erlich, E. Katz and D. Son, hep-ph/0501128. Inspired by ideas of gauge/string duality, we propose a five-dimensional framework for modeling low energy properties of QCD. The model naturally incorporates properties of QCD dictated by chiral symmetry, which we demonstrate by deriving the Gell-Mann-Oakes-Renner relationship for the pion mass. The couplings and masses of the infinite towers of vector and axial vector mesons described by the model automatically obey QCD sum rules. The phenomenon of vector-meson dominance is a straightforward consequence of the model.

  19. Spatial correlations in polydisperse, frictionless, two-dimensional packings

    NASA Astrophysics Data System (ADS)

    O'Donovan, C. B.; Möbius, M. E.

    2011-08-01

    We investigate next-nearest-neighbor correlations of the contact number in simulations of polydisperse, frictionless packings in two dimensions. We find that disks with few contacting neighbors are predominantly in contact with disks that have many neighbors and vice versa at all packing fractions. This counterintuitive result can be explained by drawing a direct analogy to the Aboav-Weaire law in cellular structures. We find an empirical one parameter relation similar to the Aboav-Weaire law that satisfies an exact sum rule constraint. Surprisingly, there are no correlations in the radii between neighboring particles, despite correlations between contact number and radius.

  20. Worldwide Express: Exploiting Existing Contract Provisions to Maximize Savings

    DTIC Science & Technology

    2012-06-01

    transportation lane for the case study, the author employed the Willie Sutton rule, looking for large sums of money first. Following the recommendation of a...profitable. The firm is a freight forwarder, not a small package operator like other WWX carriers. Freight forwarders generate profits by marking up...3,095.87 $3.39 $2,142.48 28 B 9 312 $3.19 $996.53 $3.39 $1,057.68 K 61 500 $5.04 $2,522.36 $3.39 $1,695.00 29 K 52 343 $5.61 $1,925.36 $3.39 $1,162.77 S

  1. Direct CP asymmetry in D → π-π+ and D → K-K+ in QCD-based approach

    NASA Astrophysics Data System (ADS)

    Khodjamirian, Alexander; Petrov, Alexey A.

    2017-11-01

    We present the first QCD-based calculation of hadronic matrix elements with penguin topology determining direct CP-violating asymmetries in D0 →π-π+ and D0 →K-K+ nonleptonic decays. The method is based on the QCD light-cone sum rules and does not rely on any model-inspired amplitude decomposition, instead leaning heavily on quark-hadron duality. We provide a Standard Model estimate of the direct CP-violating asymmetries in both pion and kaon modes and their difference and comment on further improvements of the presented computation.

  2. Hyperspherical Symmetry of Hydrogenic Orbitals and Recoupling Coefficients among Alternative Bases

    NASA Astrophysics Data System (ADS)

    Aquilanti, Vincenzo; Cavalli, Simonetta; Coletti, Cecilia

    1998-04-01

    Fock's representation of momentum space hydrogenic orbitals in terms of harmonics on the hypersphere S3 of a four-dimensional space is extended to classify alternative bases. These orbitals are of interest for Sturmian expansions of use in atomic and molecular structure calculations and for the description of atoms in fields. Because of the correspondence between the S3 manifold and the SU\\(2\\) group, new sum rules are established which are of relevance for the connection, not only among hydrogen atom orbitals in different bases, but also among the usual vector coupling coefficients and rotation matrix elements.

  3. Neutron electric dipole moment from electric and chromoelectric dipole moments of quarks

    NASA Astrophysics Data System (ADS)

    Pospelov, Maxim; Ritz, Adam

    2001-04-01

    Using QCD sum rules, we calculate the electric dipole moment of the neutron dn induced by all CP violating operators up to dimension five. We find that the chromoelectric dipole moments of quarks d~i, including that of the strange quark, provide significant contributions comparable in magnitude to those induced by the quark electric dipole moments di. When the theta term is removed via the Peccei-Quinn symmetry, the strange quark contribution is also suppressed and dn=(1+/-0.5)\\{0.55e(d~d+0.5d~u)+0.7(dd-0.25du)\\}.

  4. Properties of the probability density function of the non-central chi-squared distribution

    NASA Astrophysics Data System (ADS)

    András, Szilárd; Baricz, Árpád

    2008-10-01

    In this paper we consider the probability density function (pdf) of a non-central [chi]2 distribution with arbitrary number of degrees of freedom. For this function we prove that can be represented as a finite sum and we deduce a partial derivative formula. Moreover, we show that the pdf is log-concave when the degrees of freedom is greater or equal than 2. At the end of this paper we present some Turán-type inequalities for this function and an elegant application of the monotone form of l'Hospital's rule in probability theory is given.

  5. Progress in vacuum susceptibilities and their applications to the chiral phase transition of QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Zhu-Fang, E-mail: phycui@nju.edu.cn; State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing, 100190; Hou, Feng-Yao

    2015-07-15

    The QCD vacuum condensates and various vacuum susceptibilities are all important parameters which characterize the nonperturbative properties of the QCD vacuum. In the QCD sum rules external field formula, various QCD vacuum susceptibilities play important roles in determining the properties of hadrons. In this paper, we review the recent progress in studies of vacuum susceptibilities together with their applications to the chiral phase transition of QCD. The results of the tensor, the vector, the axial–vector, the scalar, and the pseudo-scalar vacuum susceptibilities are shown in detail in the framework of Dyson–Schwinger equations.

  6. Research on power market technical analysis index system employing high-low matching mechanism

    NASA Astrophysics Data System (ADS)

    Li, Tao; Wang, Shengyu

    2018-06-01

    The power market trading technical analysis refers to a method that takes the bidding behavior of members in the power market as the research object, sums up some typical market rules and price trends by applying mathematical and logical methods, and finally can effectively assist members in the power market to make more reasonable trading decisions. In this paper, the following four indicators have been proposed: bidding price difference scale, extreme bidding price rate, dispersion of bidding price and monthly transaction satisfaction of electricity trading, which are the core of the index system.

  7. Moments of the neutron g₂ structure function at intermediate Q²

    DOE PAGES

    Solvignon-Slifer, Patricia H.

    2015-07-15

    We present new experimental results of the ³He spin structure function g₂ in the resonance region at Q² values between 1.2 and 3.0 (GeV/c)². Spin dependent moments of the neutron were then extracted.Our main result, the inelastic contribution to the neutron d₂ matrix element, was found to be small (Q²) = 2.4 (GeV/c)² and in agreement with the Lattice QCD calculation. The Burkhardt-Cottingham sum rule for ³He neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low x unmeasured region.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovato, A.; Gandolfi, S.; Carlson, J.

    Here, the longitudinal and transverse electromagnetic response functions ofmore » $$^{12}$$C are computed in a ``first-principles'' Green's function Monte Carlo calculation, based on realistic two- and three-nucleon interactions and associated one- and two-body currents. We find excellent agreement between theory and experiment and, in particular, no evidence for the quenching of measured versus calculated longitudinal response. This is further corroborated by a re-analysis of the Coulomb sum rule, in which the contributions from the low-lying $$J^\\pi\\,$$=$$\\, 2^+$$, $0^+$ (Hoyle), and $4^+$ states in $$^{12}$$C are accounted for explicitly in evaluating the total inelastic strength.« less

  9. Multi-Objective Lake Superior Regulation

    NASA Astrophysics Data System (ADS)

    Asadzadeh, M.; Razavi, S.; Tolson, B.

    2011-12-01

    At the direction of the International Joint Commission (IJC) the International Upper Great Lakes Study (IUGLS) Board is investigating possible changes to the present method of regulating the outflows of Lake Superior (SUP) to better meet the contemporary needs of the stakeholders. In this study, a new plan in the form of a rule curve that is directly interpretable for regulation of SUP is proposed. The proposed rule curve has 18 parameters that should be optimized. The IUGLS Board is also interested in a regulation strategy that considers potential effects of climate uncertainty. Therefore, the quality of the rule curve is assessed simultaneously for multiple supply sequences that represent various future climate scenarios. The rule curve parameters are obtained by solving a computationally intensive bi-objective simulation-optimization problem that maximizes the total increase in navigation and hydropower benefits of the new regulation plan and minimizes the sum of all normalized constraint violations. The objective and constraint values are obtained from a Microsoft Excel based Shared Vision Model (SVM) that compares any new SUP regulation plan with the current regulation policy. The underlying optimization problem is solved by a recently developed, highly efficient multi-objective optimization algorithm called Pareto Archived Dynamically Dimensioned Search (PA-DDS). To further improve the computational efficiency of the simulation-optimization problem, the model pre-emption strategy is used in a novel way to avoid the complete evaluation of regulation plans with low quality in both objectives. Results show that the generated rule curve is robust and typically more reliable when facing unpredictable climate conditions compared to other SUP regulation plans.

  10. Comparison of American Academy of Sleep Medicine (AASM) versus Center for Medicare and Medicaid Services (CMS) polysomnography (PSG) scoring rules on AHI and eligibility for continuous positive airway pressure (CPAP) treatment.

    PubMed

    Korotinsky, Arkady; Assefa, Samson Z; Diaz-Abad, Montserrat; Wickwire, Emerson M; Scharf, Steven M

    2016-12-01

    Obstructive sleep apnea (OSA) is an important clinical condition. Eligibility for treatment usually depends on disease severity, measured as the apnea-hypopnea index (AHI), equal to the sum of apneas plus hypopneas per hour of sleep. There is divergence on scoring rules for hypopneas between the recommendations of the American Academy of Sleep Medicine (AASM) and the Center for Medicare Services (CMS), the latter being more restrictive. Thus, patients could be eligible for treatment under AASM rules, but not under CMS rules. Sleep laboratory records of 112 consecutive patients were reviewed (85 < 65, 27 ≥ 65 years old). AHI was calculated both by AASM and by CMS criteria. Information on demographics, and important comorbidities, was also reviewed. AHI was lower in younger patients using CMS criteria. However, differences in AHI using the two sets of criteria were not significantly different in the older patients. Incorporating all criteria for eligibility (severity, presence of certain comorbid conditions) for treatment, we found that fewer younger patients would be eligible using CMS criteria, but among the older patients, eligibility for treatment was the same whether AASM or CMS criteria were used. Use of CMS criteria for scoring hypopneas results in lower estimates of OSA severity, with fewer younger patients eligible for treatment. However, among Medicare age patients, the rate of treatment eligibility was the same whether AASM or CMS scoring rules were used.

  11. Precision measurement of longitudinal and transverse response functions of quasi-elastic electron scattering in the momentum transfer range 0.55GeV/c lte math| lte 0.9GeV/c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huan Yao, Jefferson Lab Hall A Collaboration, E05-110 Collaboration

    2012-04-01

    In order to test the Coulomb sum rule in nuclei, a precision measurement of inclusive electron scattering cross sections in the quasi-elastic region was performed at Jefferson Lab. Incident electrons of energies ranging from 0.4 GeV/c to 4 GeV/c scattered off {sup 4}He, {sup 12}C, {sup 56}Fe and {sup 208}Pb nuclei at four scattering angles (15deg., 60deg., 90deg., 120deg.) and scattered energies ranging from 0.1 GeV/c to 4 GeV/c. The Rosenbluth method with proper Coulomb corrections is used to extract the transverse and longitudinal response functions at three-momentum transfers 0.55 GeV/c {le} |q{yields}| {le} 1.0 GeV/c. The Coulomb Sum ismore » determined in the same |q{yields}| range as mentioned above and will be compared to predictions. Analysis progress and preliminary results will be presented.« less

  12. Rates of profit as correlated sums of random variables

    NASA Astrophysics Data System (ADS)

    Greenblatt, R. E.

    2013-10-01

    Profit realization is the dominant feature of market-based economic systems, determining their dynamics to a large extent. Rather than attaining an equilibrium, profit rates vary widely across firms, and the variation persists over time. Differing definitions of profit result in differing empirical distributions. To study the statistical properties of profit rates, I used data from a publicly available database for the US Economy for 2009-2010 (Risk Management Association). For each of three profit rate measures, the sample space consists of 771 points. Each point represents aggregate data from a small number of US manufacturing firms of similar size and type (NAICS code of principal product). When comparing the empirical distributions of profit rates, significant ‘heavy tails’ were observed, corresponding principally to a number of firms with larger profit rates than would be expected from simple models. An apparently novel correlated sum of random variables statistical model was used to model the data. In the case of operating and net profit rates, a number of firms show negative profits (losses), ruling out simple gamma or lognormal distributions as complete models for these data.

  13. RG-invariant sum rule in a generalization of anomaly-mediated SUSY-breaking models

    NASA Astrophysics Data System (ADS)

    Carena, Marcela; Huitu, Katri; Kobayashi, Tatsuo

    2001-01-01

    We study a generalization of anomaly-mediated supersymmetry-breaking (AMSB) scenarios, under the assumption that the effects of the high-scale theory do not completely decouple and that D-term type contributions can therefore be present. We investigate the effect of such possible D-term additional contributions to soft scalar masses by requiring that, for non-vanishing, renormalizable Yukawa couplings Yijk, the sum of squared soft supersymmetry breaking mass parameters, M2ijk≡mi2+mj2+mk2, is RG-invariant, in the sense that it becomes independent of the specific ultraviolet boundary conditions as it occurs in the AMSB models. This type of models can avoid the problem of tachyonic solutions for the slepton mass spectrum present in AMSB scenarios. We implement the electroweak symmetry breaking condition and explore the sparticle spectrum associated with this framework. To show the possible diversity of the sparticle spectrum, we consider two examples, one in which the D-terms induce a common soft supersymmetry breaking mass term for all sfermion masses, and another one in which a light stop can be present in the spectrum.

  14. Determination of the pion-nucleon coupling constant and scattering lengths

    NASA Astrophysics Data System (ADS)

    Ericson, T. E.; Loiseau, B.; Thomas, A. W.

    2002-07-01

    We critically evaluate the isovector Goldberger-Miyazawa-Oehme (GMO) sum rule for forward πN scattering using the recent precision measurements of π-p and π-d scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data, g2c(GMO)/ 4π=14.11+/-0.05(statistical)+/-0.19(systematic) or f2c/4π=0.0783(11). This value is intermediate between that of indirect methods and the direct determination from backward np differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the pion-proton and pion-neutron scattering lengths with high precision, namely, (aπ-p+aπ-n)/2=[- 12+/-2(statistical)+/-8(systematic)]×10-4 m-1π and (aπ-p-aπ- n)/2=[895+/-3(statistical)+/-13 (systematic)]×10-4 m-1π. For the need of the present analysis, we improve the theoretical description of the pion-deuteron scattering length.

  15. A fully-nonlocal energy-based formulation and high-performance realization of the quasicontinuum method

    NASA Astrophysics Data System (ADS)

    Amelang, Jeff

    The quasicontinuum (QC) method was introduced to coarse-grain crystalline atomic ensembles in order to bridge the scales from individual atoms to the micro- and mesoscales. Though many QC formulations have been proposed with varying characteristics and capabilities, a crucial cornerstone of all QC techniques is the concept of summation rules, which attempt to efficiently approximate the total Hamiltonian of a crystalline atomic ensemble by a weighted sum over a small subset of atoms. In this work we propose a novel, fully-nonlocal, energy-based formulation of the QC method with support for legacy and new summation rules through a general energy-sampling scheme. Our formulation does not conceptually differentiate between atomistic and coarse-grained regions and thus allows for seamless bridging without domain-coupling interfaces. Within this structure, we introduce a new class of summation rules which leverage the affine kinematics of this QC formulation to most accurately integrate thermodynamic quantities of interest. By comparing this new class of summation rules to commonly-employed rules through analysis of energy and spurious force errors, we find that the new rules produce no residual or spurious force artifacts in the large-element limit under arbitrary affine deformation, while allowing us to seamlessly bridge to full atomistics. We verify that the new summation rules exhibit significantly smaller force artifacts and energy approximation errors than all comparable previous summation rules through a comprehensive suite of examples with spatially non-uniform QC discretizations in two and three dimensions. Due to the unique structure of these summation rules, we also use the new formulation to study scenarios with large regions of free surface, a class of problems previously out of reach of the QC method. Lastly, we present the key components of a high-performance, distributed-memory realization of the new method, including a novel algorithm for supporting unparalleled levels of deformation. Overall, this new formulation and implementation allows us to efficiently perform simulations containing an unprecedented number of degrees of freedom with low approximation error.

  16. Generalized quantum theory of recollapsing homogeneous cosmologies

    NASA Astrophysics Data System (ADS)

    Craig, David; Hartle, James B.

    2004-06-01

    A sum-over-histories generalized quantum theory is developed for homogeneous minisuperspace type A Bianchi cosmological models, focusing on the particular example of the classically recollapsing Bianchi type-IX universe. The decoherence functional for such universes is exhibited. We show how the probabilities of decoherent sets of alternative, coarse-grained histories of these model universes can be calculated. We consider in particular the probabilities for classical evolution defined by a suitable coarse graining. For a restricted class of initial conditions and coarse grainings we exhibit the approximate decoherence of alternative histories in which the universe behaves classically and those in which it does not. For these situations we show that the probability is near unity for the universe to recontract classically if it expands classically. We also determine the relative probabilities of quasiclassical trajectories for initial states of WKB form, recovering for such states a precise form of the familiar heuristic “JṡdΣ” rule of quantum cosmology, as well as a generalization of this rule to generic initial states.

  17. Fusion of local and global detection systems to detect tuberculosis in chest radiographs.

    PubMed

    Hogeweg, Laurens; Mol, Christian; de Jong, Pim A; Dawson, Rodney; Ayles, Helen; van Ginneken, Bramin

    2010-01-01

    Automatic detection of tuberculosis (TB) on chest radiographs is a difficult problem because of the diverse presentation of the disease. A combination of detection systems for abnormalities and normal anatomy is used to improve detection performance. A textural abnormality detection system operating at the pixel level is combined with a clavicle detection system to suppress false positive responses. The output of a shape abnormality detection system operating at the image level is combined in a next step to further improve performance by reducing false negatives. Strategies for combining systems based on serial and parallel configurations were evaluated using the minimum, maximum, product, and mean probability combination rules. The performance of TB detection increased, as measured using the area under the ROC curve, from 0.67 for the textural abnormality detection system alone to 0.86 when the three systems were combined. The best result was achieved using the sum and product rule in a parallel combination of outputs.

  18. Cross sections of projectile-like fragments in the reaction {sup 19}F+{sup 66}Zn in the beam energy range of 3-6 MeV/nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, R.; Sudarshan, K.; Sodaye, S.

    2009-06-15

    Angular distributions of projectile-like fragments (PLFs) have been measured in the reaction {sup 19}F+{sup 66}Zn at E{sub lab}=61,82,92, and 109 MeV to understand their formation in the low energy domain (< or approx. 7 MeV nucleon). In this energy range, maximum angular momentum 'l{sub max}' in the reaction is lower than or close to the critical or limiting angular momentum for complete fusion 'l{sub lim}(CF).' The sum-rule model was modified to explain the cross sections of PLFs in the present study. For the first time, the modified sum-rule model, with a competition of incomplete fusion (ICF) reaction with complete fusionmore » below l{sub lim}(CF) reasonably reproduced the cross sections of PLFs in the beam energy range of the present study. It was observed that the cross sections of lighter PLFs fall more rapidly with decreasing beam energy compared to those of heavier PLFs, suggesting a change in the reaction mechanism from heavier to lighter PLFs. Transfer probabilities for peripheral collisions were calculated within the framework of a semiclassical formalism. The parameters of the nuclear potential required for the calculation of transfer probability were obtained by fitting the elastic scattering data measured in the present work. Calculated transfer probabilities were significantly lower compared to the corresponding experimental values, suggesting a significant overlap of the projectile and the target nuclei in incomplete fusion reactions. The present analysis showed that the overlap of the projectile and the target nuclei increases with increasing mass transfer at a given beam energy and for a given PLF, overlap increases with increasing beam energy.« less

  19. XYZ-like spectra from Laplace sum rule at N2LO in the chiral limit

    NASA Astrophysics Data System (ADS)

    Albuquerque, R.; Narison, S.; Fanomezana, F.; Rabemananjara, A.; Rabetiarivony, D.; Randriamanatrika, G.

    2016-12-01

    We present new compact integrated expressions of QCD spectral functions of heavy-light molecules and four-quark XY Z-like states at lowest order (LO) of perturbative (PT) QCD and up to d = 8 condensates of the Operator Product Expansion (OPE). Then, by including up to next-to-next leading order (N2LO) PT QCD corrections, which we have estimated by assuming the factorization of the four-quark spectral functions, we improve previous LO results from QCD spectral sum rules (QSSR), on the XY Z-like masses and decay constants which suffer from the ill-defined heavy quark mass. PT N3LO corrections are estimated using a geometric growth of the PT series and are included in the systematic errors. Our optimal results based on stability criteria are summarized in Tables 11-14 and compared, in Sec. 10, with experimental candidates and some LO QSSR results. We conclude that the masses of the XZ observed states are compatible with (almost) pure JPC = 1+±, 0++ molecule or/and four-quark states. The ones of the 1-±, 0-± molecule/four-quark states are about 1.5 GeV above the Yc,b mesons experimental candidates and hadronic thresholds. We also find that the couplings of these exotics to the associated interpolating currents are weaker than that of ordinary D,B mesons (fDD ≈ 10-3f D) and may behave numerically as 1/m¯b3/2 (respectively 1/m¯b) for the 1+, 0+ (respectively 1-, 0-) states which can stimulate further theoretical studies of these decay constants.

  20. Perturbative corrections to B → D form factors in QCD

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Ming; Wei, Yan-Bing; Shen, Yue-Long; Lü, Cai-Dian

    2017-06-01

    We compute perturbative QCD corrections to B → D form factors at leading power in Λ/ m b , at large hadronic recoil, from the light-cone sum rules (LCSR) with B-meson distribution amplitudes in HQET. QCD factorization for the vacuum-to- B-meson correlation function with an interpolating current for the D-meson is demonstrated explicitly at one loop with the power counting scheme {m}_c˜ O(√{Λ {m}_b}) . The jet functions encoding information of the hard-collinear dynamics in the above-mentioned correlation function are complicated by the appearance of an additional hard-collinear scale m c , compared to the counterparts entering the factorization formula of the vacuum-to- B-meson correction function for the construction of B → π from factors. Inspecting the next-to-leading-logarithmic sum rules for the form factors of B → Dℓν indicates that perturbative corrections to the hard-collinear functions are more profound than that for the hard functions, with the default theory inputs, in the physical kinematic region. We further compute the subleading power correction induced by the three-particle quark-gluon distribution amplitudes of the B-meson at tree level employing the background gluon field approach. The LCSR predictions for the semileptonic B → Dℓν form factors are then extrapolated to the entire kinematic region with the z-series parametrization. Phenomenological implications of our determinations for the form factors f BD +,0 ( q 2) are explored by investigating the (differential) branching fractions and the R( D) ratio of B → Dℓν and by determining the CKM matrix element |V cb | from the total decay rate of B → Dμν μ .

  1. Determining Optimal Location and Numbers of Sample Transects for Characterization of UXO Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BILISOLY, ROGER L.; MCKENNA, SEAN A.

    2003-01-01

    Previous work on sample design has been focused on constructing designs for samples taken at point locations. Significantly less work has been done on sample design for data collected along transects. A review of approaches to point and transect sampling design shows that transects can be considered as a sequential set of point samples. Any two sampling designs can be compared through using each one to predict the value of the quantity being measured on a fixed reference grid. The quality of a design is quantified in two ways: computing either the sum or the product of the eigenvalues ofmore » the variance matrix of the prediction error. An important aspect of this analysis is that the reduction of the mean prediction error variance (MPEV) can be calculated for any proposed sample design, including one with straight and/or meandering transects, prior to taking those samples. This reduction in variance can be used as a ''stopping rule'' to determine when enough transect sampling has been completed on the site. Two approaches for the optimization of the transect locations are presented. The first minimizes the sum of the eigenvalues of the predictive error, and the second minimizes the product of these eigenvalues. Simulated annealing is used to identify transect locations that meet either of these objectives. This algorithm is applied to a hypothetical site to determine the optimal locations of two iterations of meandering transects given a previously existing straight transect. The MPEV calculation is also used on both a hypothetical site and on data collected at the Isleta Pueblo to evaluate its potential as a stopping rule. Results show that three or four rounds of systematic sampling with straight parallel transects covering 30 percent or less of the site, can reduce the initial MPEV by as much as 90 percent. The amount of reduction in MPEV can be used as a stopping rule, but the relationship between MPEV and the results of excavation versus no-further-action decisions is site specific and cannot be calculated prior to the sampling. It may be advantageous to use the reduction in MPEV as a stopping rule for systematic sampling across the site that can then be followed by focused sampling in areas identified has having UXO during the systematic sampling. The techniques presented here provide answers to the questions of ''Where to sample?'' and ''When to stop?'' and are capable of running in near real time to support iterative site characterization campaigns.« less

  2. Development of a clinical prediction rule for risk stratification of recurrent venous thromboembolism in patients with cancer-associated venous thromboembolism.

    PubMed

    Louzada, Martha L; Carrier, Marc; Lazo-Langner, Alejandro; Dao, Vi; Kovacs, Michael J; Ramsay, Timothy O; Rodger, Marc A; Zhang, Jerry; Lee, Agnes Y Y; Meyer, Guy; Wells, Philip S

    2012-07-24

    Long-term low-molecular-weight heparin (LMWH) is the current standard for treatment of venous thromboembolism (VTE) in cancer patients. Whether treatment strategies should vary according to individual risk of VTE recurrence remains unknown. We performed a retrospective cohort study and a validation study in patients with cancer-associated VTE to derive a clinical prediction rule that stratifies VTE recurrence risk. The cohort study of 543 patients determined the model with the best classification performance included 4 independent predictors (sex, primary tumor site, stage, and prior VTE) with 100% sensitivity, a wide separation of recurrence rates, 98.1% negative predictive value, and a negative likelihood ratio of 0.16. In this model, the score sum ranged between -3 and 3 score points. Patients with a score ≤ 0 had low risk (≤ 4.5%) for recurrence and patients with a score >1 had a high risk (≥ 19%) for VTE recurrence. Subsequently, we applied and validated the rule in an independent set of 819 patients from 2 randomized, controlled trials comparing low-molecular-weight heparin to coumarin treatment in cancer patients. By identifying VTE recurrence risk in cancer patients with VTE, we may be able to tailor treatment, improving clinical outcomes while minimizing costs.

  3. Competitive two-agent scheduling problems to minimize the weighted combination of makespans in a two-machine open shop

    NASA Astrophysics Data System (ADS)

    Jiang, Fuhong; Zhang, Xingong; Bai, Danyu; Wu, Chin-Chia

    2018-04-01

    In this article, a competitive two-agent scheduling problem in a two-machine open shop is studied. The objective is to minimize the weighted sum of the makespans of two competitive agents. A complexity proof is presented for minimizing the weighted combination of the makespan of each agent if the weight α belonging to agent B is arbitrary. Furthermore, two pseudo-polynomial-time algorithms using the largest alternate processing time (LAPT) rule are presented. Finally, two approximation algorithms are presented if the weight is equal to one. Additionally, another approximation algorithm is presented if the weight is larger than one.

  4. Electromagnetic response of C 12 : A first-principles calculation

    DOE PAGES

    Lovato, A.; Gandolfi, S.; Carlson, J.; ...

    2016-08-15

    Here, the longitudinal and transverse electromagnetic response functions ofmore » $$^{12}$$C are computed in a ``first-principles'' Green's function Monte Carlo calculation, based on realistic two- and three-nucleon interactions and associated one- and two-body currents. We find excellent agreement between theory and experiment and, in particular, no evidence for the quenching of measured versus calculated longitudinal response. This is further corroborated by a re-analysis of the Coulomb sum rule, in which the contributions from the low-lying $$J^\\pi\\,$$=$$\\, 2^+$$, $0^+$ (Hoyle), and $4^+$ states in $$^{12}$$C are accounted for explicitly in evaluating the total inelastic strength.« less

  5. Deviation pattern approach for optimizing perturbative terms of QCD renormalization group invariant observables

    NASA Astrophysics Data System (ADS)

    Khellat, M. R.; Mirjalili, A.

    2017-03-01

    We first consider the idea of renormalization group-induced estimates, in the context of optimization procedures, for the Brodsky-Lepage-Mackenzie approach to generate higher-order contributions to QCD perturbative series. Secondly, we develop the deviation pattern approach (DPA) in which through a series of comparisons between lowerorder RG-induced estimates and the corresponding analytical calculations, one could modify higher-order RG-induced estimates. Finally, using the normal estimation procedure and DPA, we get estimates of αs4 corrections for the Bjorken sum rule of polarized deep-inelastic scattering and for the non-singlet contribution to the Adler function.

  6. Dense modifiable interconnections utilizing photorefractive volume holograms

    NASA Astrophysics Data System (ADS)

    Psaltis, Demetri; Qiao, Yong

    1990-11-01

    This report describes an experimental two-layer optical neural network built at Caltech. The system uses photorefractive volume holograms to implement dense, modifiable synaptic interconnections and liquid crystal light valves (LCVS) to perform nonlinear thresholding operations. Kanerva's Sparse, Distributed Memory was implemented using this network and its ability to recognize handwritten character-alphabet (A-Z) has been demonstrated experimentally. According to Kanerva's model, the first layer has fixed, random weights of interconnections and the second layer is trained by sum-of-outer-products rule. After training, the recognition rates of the network on the training set (104 patterns) and test set (520 patterns) are 100 and 50 percent, respectively.

  7. Thomas-Reiche-Khun populations in X-CH 3 and X-C 2H 5 series of molecules

    NASA Astrophysics Data System (ADS)

    Zitto, M. E.; Caputo, M. C.; Ferraro, M. B.; Lazzeretti, P.

    2000-09-01

    Calculations of nuclear electric shieldings, equivalent to dipole moment geometric derivatives, and related to atomic polar tensors, are presented for X-CH 3 and X-C 2H 5 molecules with X=NH 2, OH and F. The electric shielding tensors satisfy a constraint for the electrostatic equilibrium, i.e., the mixed length-acceleration Thomas-Reiche-Khun sum rule, which gives important indications on the reliability of theoretical predictions of IR intensities and leads to the definition of atomic populations. Numerical evidence was found for the additivity and transferability of atomic populations, within the X-substituted alkane series.

  8. Low-energy pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Gibbs, W. R.; Ai, Li; Kaufmann, W. B.

    1998-02-01

    An analysis of low-energy charged pion-nucleon data from recent π+/-p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f2=0.0756+/-0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P31 and P13 partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the Σ term. Off-shell amplitudes are also provided.

  9. Numerical analysis of the unintegrated double gluon distribution

    NASA Astrophysics Data System (ADS)

    Elias, Edgar; Golec-Biernat, Krzysztof; Staśto, Anna M.

    2018-01-01

    We present detailed numerical analysis of the unintegrated double gluon distribution which includes the dependence on the transverse momenta of partons. The unintegrated double gluon distribution was obtained following the Kimber-Martin-Ryskin method as a convolution of the perturbative gluon splitting function with the collinear integrated double gluon distribution and the Sudakov form factors. We analyze the dependence on the transverse momenta, longitudinal momentum fractions and hard scales. We find that the unintegrated gluon distribution factorizes into a product of two single unintegrated gluon distributions in the region of small values of x, provided the splitting contribution is included and the momentum sum rule is satisfied.

  10. Isovector and isoscalar dipole excitations in 9Be and 10Be studied with antisymmetrized molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kanada-En'yo, Yoshiko

    2016-02-01

    Isovector and isoscalar dipole excitations in 9Be and 10Be are investigated in the framework of antisymmetrized molecular dynamics, in which angular-momentum and parity projections are performed. In the present method, 1p-1h excitation modes built on the ground state and a large amplitude α -cluster mode are taken into account. The isovector giant dipole resonance (GDR) in E >20 MeV shows the two-peak structure, which is understood from the dipole excitation in the 2 α core part with the prolate deformation. Because of valence neutron modes against the 2 α core, low-energy E 1 resonances appear in E <20 MeV, exhausting about 20 % of the Thomas-Reiche-Kuhn sum rule and 10 % of the calculated energy-weighted sum. The dipole resonance at E ˜15 MeV in 10Be can be interpreted as the parity partner of the ground state having a 6He+α structure and has remarkable E 1 strength because of the coherent contribution of two valence neutrons. The isoscalar dipole strength for some low-energy resonances is significantly enhanced by the coupling with the α -cluster mode. For the E 1 strength of 9Be, the calculation overestimates the energy-weighted sum (EWS) in the low-energy (E <20 MeV) and GDR (20

  11. Breaking of axial symmetry in excited heavy nuclei as identified in giant dipole resonance data

    DOE PAGES

    Grosse, E.; Junghans, A. R.; Massarczyk, R.

    2017-11-28

    Here, a recent theoretical prediction of a breaking of axial symmetry in quasi all heavy nuclei is confronted to a new critical analysis of photon strength functions of nuclei in the valley of stability. For the photon strength in the isovector giant dipole resonance (IVGDR) regime a parameterization of GDR shapes by the sum of three Lorentzians (TLO) is extrapolated to energies below and above the IVGDR. The impact of non-GDR modes adding to the low energy slope of photon strength is discussed including recent data on photon scattering and other radiative processes. These are shown to be concentrated inmore » energy regions where various model calculations predict intermediate collective strength; thus they are obviously separate from the IVGDR tail. The triple Lorentzian (TLO) ansatz for giant dipole resonances is normalized in accordance to the dipole sum rule. The nuclear droplet model with surface dissipation accounts well for positions and widths without local, nuclide specific, parameters. Very few and only global parameters are needed when a breaking of axial symmetry already in the valley of stability is admitted and hence a reliable prediction for electric dipole strength functions also outside of it is expected.« less

  12. Breaking of axial symmetry in excited heavy nuclei as identified in giant dipole resonance data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grosse, E.; Junghans, A. R.; Massarczyk, R.

    Here, a recent theoretical prediction of a breaking of axial symmetry in quasi all heavy nuclei is confronted to a new critical analysis of photon strength functions of nuclei in the valley of stability. For the photon strength in the isovector giant dipole resonance (IVGDR) regime a parameterization of GDR shapes by the sum of three Lorentzians (TLO) is extrapolated to energies below and above the IVGDR. The impact of non-GDR modes adding to the low energy slope of photon strength is discussed including recent data on photon scattering and other radiative processes. These are shown to be concentrated inmore » energy regions where various model calculations predict intermediate collective strength; thus they are obviously separate from the IVGDR tail. The triple Lorentzian (TLO) ansatz for giant dipole resonances is normalized in accordance to the dipole sum rule. The nuclear droplet model with surface dissipation accounts well for positions and widths without local, nuclide specific, parameters. Very few and only global parameters are needed when a breaking of axial symmetry already in the valley of stability is admitted and hence a reliable prediction for electric dipole strength functions also outside of it is expected.« less

  13. Isotropic C6, C8 and C10 interaction coefficients for CH 4, C 2H 6, C 3H 8, n-C 4H 10 and cyclo- C3H 6

    NASA Astrophysics Data System (ADS)

    Thomas, Gerald F.; Mulder, Fred; Meath, William J.

    1980-12-01

    The non-empirical generalized Kirkwood, Unsöld, and the single-Δ Unsöld methods (with double-zeta quality SCF wave-functions) are used to calculate isotropic dispersion (and induction) energy coefficients C2n, with n ⩽ 5, for interactions involving ground state CH 4, C 2H 6, C 3H 8, n-C 4H 10 and cyclo-C 3H 6. Results are also given for the related multipole polarizabilities α l, multipole sums S1/(0) and S1(-1) which are evaluated using sum rules, and the permanent multipole moments. for l = 1 (dipole) to l = 3 (octupole). Estimates of the reliability of the non-empirical methods, for the type of molecules considered, are obtained by a comparison with accurate literature values of α 1S1(-1) and C6. This, and the asymptotic properties of the multipolar expansion of the dispersion energy, the use to discuss recommended representation for the isotropic long range interaction energies through R-10 where R is the intermolecular separation.

  14. Individual differences in early adolescents' beliefs in the legitimacy of parental authority.

    PubMed

    Kuhn, Emily S; Laird, Robert D

    2011-09-01

    Adolescents differ in the extent to which they believe that parents have legitimate authority to impose rules restricting adolescents' behavior. The purpose of the current study was to test predictors of individual differences in legitimacy beliefs during the middle school years. Annually, during the summers following Grades 5, 6, and 7, early adolescents (n = 218; 51% female, 47% African American, 73% in 2-parent homes) reported their beliefs regarding the legitimacy of parents' rules that restrict and monitor adolescents' free time activities. Cross-lagged analyses revealed that legitimacy beliefs were bidirectionally associated with independent decision making, psychological control, antisocial peer involvement, and resistance to control. Legitimacy beliefs declined more rapidly during the middle school years for boys than for girls and for adolescents who were older relative to their classmates. More independent decision making in Grades 5 and 6 predicted larger than expected declines in legitimacy beliefs in Grades 6 and 7. In sum, legitimacy beliefs weaken developmentally, and weaker legitimacy beliefs relative to same-grade peers are anteceded by premature autonomous experiences, psychological control, and adolescent attributes.

  15. Questions Revisited: A Close Examination of Calculus of Inference and Inquiry

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.; Koga, Dennis (Technical Monitor)

    2003-01-01

    In this paper I examine more closely the way in which probability theory, the calculus of inference, is derived from the Boolean lattice structure of logical assertions ordered by implication. I demonstrate how the duality between the logical conjunction and disjunction in Boolean algebra is lost when deriving the probability calculus. In addition, I look more closely at the other lattice identities to verify that they are satisfied by the probability calculus. Last, I look towards developing the calculus of inquiry demonstrating that there is a sum and product rule for the relevance measure as well as a Bayes theorem. Current difficulties in deriving the complete inquiry calculus will also be discussed.

  16. Establishing low-lying doubly charmed baryons

    NASA Astrophysics Data System (ADS)

    Chen, Hua-Xing; Mao, Qiang; Chen, Wei; Liu, Xiang; Zhu, Shi-Lin

    2017-08-01

    We systematically study the S -wave doubly charmed baryons using the method of QCD sum rules. Our results suggest that the Ξcc ++ recently observed by LHCb can be well identified as the S -wave Ξc c state of JP=1 /2+. We study its relevant Ωc c state, the mass of which is predicted to be around 3.7 GeV. We also systematically study the P -wave doubly charmed baryons, the masses of which are predicted to be around 4.1 GeV. Especially, there can be several excited doubly charmed baryons in this energy region, and we suggest searching for them in order to study the fine structure of the strong interaction.

  17. Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air

    NASA Technical Reports Server (NTRS)

    Porter, H. S.; Jackman, C. H.; Green, A. E. S.

    1976-01-01

    Relativistic electron and proton impact cross sections are obtained and represented by analytic forms which span the energy range from threshold to 1 GeV. For ionization processes, the Massey-Mohr continuum generalized oscillator strength surface is parameterized. Parameters are determined by simultaneous fitting to (1) empirical data, (2) the Bethe sum rule, and (3) doubly differential cross sections for ionization. Branching ratios for dissociation and predissociation from important states of N2 and O2 are determined. The efficiency for the production of atomic nitrogen and oxygen by protons with kinetic energy less than 1 GeV is determined using these branching ratio and cross section assignments.

  18. Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider.

    PubMed

    Ji, Xiangdong; Yuan, Feng; Zhao, Yong

    2017-05-12

    Applying the connection between the parton Wigner distribution and orbital angular momentum (OAM), we investigate the probe of the gluon OAM in hard scattering processes at the planned electron-ion collider. We show that the single longitudinal target-spin asymmetry in the hard diffractive dijet production is very sensitive to the gluon OAM distribution. The associated spin asymmetry leads to a characteristic azimuthal angular correlation of sin(ϕ_{q}-ϕ_{Δ}), where ϕ_{Δ} and ϕ_{q} are the azimuthal angles of the proton momentum transfer and the relative transverse momentum between the quark-antiquark pair. This study may motivate a first measurement of the gluon OAM in the proton spin sum rule.

  19. Quantum Corrections in Nanoplasmonics: Shape, Scale, and Material

    NASA Astrophysics Data System (ADS)

    Christensen, Thomas; Yan, Wei; Jauho, Antti-Pekka; Soljačić, Marin; Mortensen, N. Asger

    2017-04-01

    The classical treatment of plasmonics is insufficient at the nanometer-scale due to quantum mechanical surface phenomena. Here, an extension of the classical paradigm is reported which rigorously remedies this deficiency through the incorporation of first-principles surface response functions—the Feibelman d parameters—in general geometries. Several analytical results for the leading-order plasmonic quantum corrections are obtained in a first-principles setting; particularly, a clear separation of the roles of shape, scale, and material is established. The utility of the formalism is illustrated by the derivation of a modified sum rule for complementary structures, a rigorous reformulation of Kreibig's phenomenological damping prescription, and an account of the small-scale resonance shifting of simple and noble metal nanostructures.

  20. Volumes of critical bubbles from the nucleation theorem

    NASA Astrophysics Data System (ADS)

    Wilemski, Gerald

    2006-09-01

    A corollary of the nucleation theorem due to Kashchiev [Nucleation: Basic Theory with Applications (Butterworth-Heinemann, Oxford, 2000)] allows the volume V* of a critical bubble to be determined from nucleation rate measurements. The original derivation was limited to one-component, ideal gas bubbles with a vapor density much smaller than that of the ambient liquid. Here, an exact result is found for multicomponent, nonideal gas bubbles. Provided a weak density inequality holds, this result reduces to Kashchiev's simple form which thus has a much broader range of applicability than originally expected. Limited applications to droplets are also mentioned, and the utility of the pT,x form of the nucleation theorem as a sum rule is noted.

  1. [The use of continuous subcutaneous insulin infusion (CSII) with personal insulin pumps in the treatment of children and adolescents with diabetes type 1].

    PubMed

    Jarosz-Chobot, Przemysława

    2004-01-01

    This paper sums up recently published researches on the continuous subcutaneous insulin infusion (CSII) with the use of insulin pump in children and adolescents with diabetes type 1. Obtaining a balance in the organism metabolism in childhood and adolescence diabetology is nowadays one of the most important rules of the diabetes management in children. One of the modern ways to achieve that goal is the intensive insulin therapy model with use of the insulin pump. In this paper the advantages and disadvantages as well as the indications and contraindications for the CSII in children and adolescents with diabetes are widely discussed.

  2. On the ππ continuum in the nucleon form factors and the proton radius puzzle

    NASA Astrophysics Data System (ADS)

    Hoferichter, M.; Kubis, B.; Ruiz de Elvira, J.; Hammer, H.-W.; Meißner, U.-G.

    2016-11-01

    We present an improved determination of the ππ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the ππ→bar{N} N partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the ππ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius.

  3. Lattice QCD Calculation of Hadronic Light-by-Light Scattering.

    PubMed

    Green, Jeremy; Gryniuk, Oleksii; von Hippel, Georg; Meyer, Harvey B; Pascalutsa, Vladimir

    2015-11-27

    We perform a lattice QCD calculation of the hadronic light-by-light scattering amplitude in a broad kinematical range. At forward kinematics, the results are compared to a phenomenological analysis based on dispersive sum rules for light-by-light scattering. The size of the pion pole contribution is investigated for momenta of typical hadronic size. The presented numerical methods can be used to compute the hadronic light-by-light contribution to the anomalous magnetic moment of the muon. Our calculations are carried out in two-flavor QCD with the pion mass in the range of 270-450 MeV and contain so far only the diagrams with fully connected quark lines.

  4. Update on ɛK with lattice QCD inputs

    NASA Astrophysics Data System (ADS)

    Jang, Yong-Chull; Lee, Weonjong; Lee, Sunkyu; Leem, Jaehoon

    2018-03-01

    We report updated results for ɛK, the indirect CP violation parameter in neutral kaons, which is evaluated directly from the standard model with lattice QCD inputs. We use lattice QCD inputs to fix B\\hatk,|Vcb|,ξ0,ξ2,|Vus|, and mc(mc). Since Lattice 2016, the UTfit group has updated the Wolfenstein parameters in the angle-only-fit method, and the HFLAV group has also updated |Vcb|. Our results show that the evaluation of ɛK with exclusive |Vcb| (lattice QCD inputs) has 4.0σ tension with the experimental value, while that with inclusive |Vcb| (heavy quark expansion based on OPE and QCD sum rules) shows no tension.

  5. From bare to renormalized order parameter in gauge space: Structure and reactions

    NASA Astrophysics Data System (ADS)

    Potel, G.; Idini, A.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2017-09-01

    It is not physically obvious why one can calculate with similar accuracy, as compared to the experimental data, the absolute cross section associated with two-nucleon transfer processes between members of pairing rotational bands, making use of simple BCS (constant matrix elements) or of many-body [Nambu-Gorkov (NG), nuclear field theory (NFT)] spectroscopic amplitudes. Restoration of spontaneous symmetry breaking and associated emergent generalized rigidity in gauge space provides the answer and points to a new emergence: A physical sum rule resulting from the intertwining of structure and reaction processes, closely connected with the central role induced pairing interaction plays in structure, together with the fact that successive transfer dominates Cooper pair tunneling.

  6. On a realization of { β}-expansion in QCD

    NASA Astrophysics Data System (ADS)

    Mikhailov, S. V.

    2017-04-01

    We suggest a simple algebraic approach to fix the elements of the { β}-expansion for renormalization group invariant quantities, which uses additional degrees of freedom. The approach is discussed in detail for N2LO calculations in QCD with the MSSM gluino — an additional degree of freedom. We derive the formulae of the { β}-expansion for the nonsinglet Adler D-function and Bjorken polarized sum rules in the actual N3LO within this quantum field theory scheme with the MSSM gluino and the scheme with the second additional degree of freedom. We discuss the properties of the { β}-expansion for higher orders considering the N4LO as an example.

  7. Better late than never: information retrieval from black holes.

    PubMed

    Braunstein, Samuel L; Pirandola, Stefano; Życzkowski, Karol

    2013-03-08

    We show that, in order to preserve the equivalence principle until late times in unitarily evaporating black holes, the thermodynamic entropy of a black hole must be primarily entropy of entanglement across the event horizon. For such black holes, we show that the information entering a black hole becomes encoded in correlations within a tripartite quantum state, the quantum analogue of a one-time pad, and is only decoded into the outgoing radiation very late in the evaporation. This behavior generically describes the unitary evaporation of highly entangled black holes and requires no specially designed evolution. Our work suggests the existence of a matter-field sum rule for any fundamental theory.

  8. The Vertex on a Strip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashani-Poor, A.

    2004-11-03

    We demonstrate that for a broad class of local Calabi-Yau geometries built around a string of IP{sup 1}s--those whose toric diagrams are given by triangulations of a strip--we can derive simple rules, based on the topological vertex, for obtaining expressions for the topological string partition function in which the sums over Young tableaux have been performed. By allowing non-trivial tableaux on the external legs of the corresponding web diagrams, these strips can be used as building blocks for more general geometries. As applications of our result, we study the behavior of topological string amplitudes under flops, as well as checkmore » Nekrasov's conjecture in its most general form.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.

    Light-Front Quantization – Dirac’s “Front Form” – provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic LFWFs. One obtains new insights into the hadronic mass scale, the hadronic spectrum, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons. I also discuss evidence that the antishadowing of nuclear structure functions is nonuniversal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatiblemore » with the momentum and other sum rules for the nuclear parton distribution functions.« less

  10. Predicting the nonlinear optical response in the resonant region from the linear characterization: a self-consistent theory for the first-, second-, and third-order (non)linear optical response

    NASA Astrophysics Data System (ADS)

    Pérez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.

    2010-08-01

    We introduce a self-consistent theory for the description of the optical linear and nonlinear response of molecules that is based strictly on the results of the experimental characterization. We show how the Thomas-Kuhn sum-rules can be used to eliminate the dependence of the nonlinear response on parameters that are not directly measurable. Our approach leads to the successful modeling of the dispersion of the nonlinear response of complex molecular structures with different geometries (dipolar and octupolar), and can be used as a guide towards the modeling in terms of fundamental physical parameters.

  11. Some properties of the two-body effective interaction in the /sup 208/Pb region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groleau, R.

    The (/sup 3/He,d) and (/sup 4/He,t) single proton transfer reactions on /sup 208/Pb and /sup 209/Bi were studied using 30 and 40 MeV He beams from the Princeton Cyclotron Laboratory. The outgoing d and t were detected by a position sensitive proportional counter in the focal plane of a Q-3D spectrometer. The resolution varied between 10 and 14 keV (FWHM). Using the ratio of the cross-sections for the (/sup 3/He,d) and (/sup 4/He,t) reactions to determine the magnitude of the angular momentum transfers, the spectroscopic factors for the reaction on /sup 209/Bi have been measured relative to the transitions tomore » the single particle states in these reactions on /sup 208/Pb. Sum rules as developed by Bansal and French are used to study the configurations vertical bar h/sub 9/2 x h/sub 9/2/>, vertical bar h/sub 9/2/ x f/sub 7/2/>, vertical bar h/sub 9/2 x i/sub 13/2/>, vertical bar h/sub 9/2/ x f/sub 5/2/>and part of vertical bar h/sub 9/2/ x p/sub 3/2/> and vertical bar h/sub 9/2/ x p/sub 1/2>. Using the linear energy weighted sum rule, the diagonal matrix elements of the effective interaction between valence protons around the /sup 208/Pb core are deduced. The matrix elements obtained from a simple empirical interaction V/sub I//sup T=1/ of a pure Wigner type are compared to the extracted matrix elements. The interaction is characterized by an attractive short-range (0.82j and a repulsive long-range (8.2fm) potential: V/sub I//sup T = 1/ (MeV =-/96 e/sup - (r/0.82) /sup 2// + 0.51 e/sup -(r/8.2)/sup 2/. The core polarization is studied using the experimental static electric quadrupole and magnetic dipole moments of the nuclei in the /sup 208/Pb region. In general, the magnetic moments of multiple valence nucleon nuclei are well predicted by simple rules of Racah algebra. The three and four valence proton spectra (/sup 211/At and /sup 212/Rn) calculated with the experimental two particle matrix elements agree well with the experimental spectra.« less

  12. Cortical Merging in S1 as a Substrate for Tactile Input Grouping

    PubMed Central

    Zennou-Azogui, Yoh’I; Xerri, Christian

    2018-01-01

    Abstract Perception is a reconstruction process guided by rules based on knowledge about the world. Little is known about the neural implementation of the rules of object formation in the tactile sensory system. When two close tactile stimuli are delivered simultaneously on the skin, subjects feel a unique sensation, spatially centered between the two stimuli. Voltage-sensitive dye imaging (VSDi) and electrophysiological recordings [local field potentials (LFPs) and single units] were used to extract the cortical representation of two-point tactile stimuli in the primary somatosensory cortex of anesthetized Long-Evans rats. Although layer 4 LFP responses to brief costimulation of the distal region of two digits resembled the sum of individual responses, approximately one-third of single units demonstrated merging-compatible changes. In contrast to previous intrinsic optical imaging studies, VSD activations reflecting layer 2/3 activity were centered between the representations of the digits stimulated alone. This merging was found for every tested distance between the stimulated digits. We discuss this laminar difference as evidence that merging occurs through a buildup stream and depends on the superposition of inputs, which increases with successive stages of sensory processing. These findings show that layers 2/3 are involved in the grouping of sensory inputs. This process that could be inscribed in the cortical computing routine and network organization is likely to promote object formation and implement perception rules. PMID:29354679

  13. The use of artificial intelligence technology to predict lymph node spread in men with clinically localized prostate carcinoma.

    PubMed

    Crawford, E D; Batuello, J T; Snow, P; Gamito, E J; McLeod, D G; Partin, A W; Stone, N; Montie, J; Stock, R; Lynch, J; Brandt, J

    2000-05-01

    The current study assesses artificial intelligence methods to identify prostate carcinoma patients at low risk for lymph node spread. If patients can be assigned accurately to a low risk group, unnecessary lymph node dissections can be avoided, thereby reducing morbidity and costs. A rule-derivation technology for simple decision-tree analysis was trained and validated using patient data from a large database (4,133 patients) to derive low risk cutoff values for Gleason sum and prostate specific antigen (PSA) level. An empiric analysis was used to derive a low risk cutoff value for clinical TNM stage. These cutoff values then were applied to 2 additional, smaller databases (227 and 330 patients, respectively) from separate institutions. The decision-tree protocol derived cutoff values of < or = 6 for Gleason sum and < or = 10.6 ng/mL for PSA. The empiric analysis yielded a clinical TNM stage low risk cutoff value of < or = T2a. When these cutoff values were applied to the larger database, 44% of patients were classified as being at low risk for lymph node metastases (0.8% false-negative rate). When the same cutoff values were applied to the smaller databases, between 11 and 43% of patients were classified as low risk with a false-negative rate of between 0.0 and 0.7%. The results of the current study indicate that a population of prostate carcinoma patients at low risk for lymph node metastases can be identified accurately using a simple decision algorithm that considers preoperative PSA, Gleason sum, and clinical TNM stage. The risk of lymph node metastases in these patients is < or = 1%; therefore, pelvic lymph node dissection may be avoided safely. The implications of these findings in surgical and nonsurgical treatment are significant.

  14. Testing the fetal overnutrition hypothesis; the relationship of maternal and paternal adiposity to adiposity, insulin resistance and cardiovascular risk factors in Indian children

    PubMed Central

    Veena, Sargoor R; Krishnaveni, Ghattu V; Karat, Samuel C; Osmond, Clive; Fall, Caroline HD

    2012-01-01

    Objective We aimed to test the fetal overnutrition hypothesis by comparing the associations of maternal and paternal adiposity (sum of skinfolds) with adiposity and cardiovascular risk factors in children. Design Children from a prospective birth cohort had anthropometry, fat percentage (bio-impedance), plasma glucose, insulin and lipid concentrations and blood pressure measured at 9·5 years of age. Detailed anthropometric measurements were recorded for mothers (at 30 ± 2 weeks’ gestation) and fathers (5 years following the index pregnancy). Setting Holdsworth Memorial Hospital, Mysore, India. Subjects Children (n 504), born to mothers with normal glucose tolerance during pregnancy. Results Twenty-eight per cent of mothers and 38 % of fathers were overweight/obese (BMI ≥ 25·0 kg/m2), but only 4 % of the children were overweight/obese (WHO age- and sex-specific BMI ≥ 18·2 kg/m2). The children’s adiposity (BMI, sum of skinfolds, fat percentage and waist circumference), fasting insulin concentration and insulin resistance increased with increasing maternal and paternal sum of skinfolds adjusted for the child’s sex, age and socio-economic status. Maternal and paternal effects were similar. The associations with fasting insulin and insulin resistance were attenuated after adjusting for the child’s current adiposity. Conclusions In this population, both maternal and paternal adiposity equally predict adiposity and insulin resistance in the children. This suggests that shared family environment and lifestyle, or genetic/epigenetic factors, influence child adiposity. Our findings do not support the hypothesis that there is an intrauterine overnutrition effect of maternal adiposity in non-diabetic pregnancies, although we cannot rule out such an effect in cases of extreme maternal obesity, which is rare in our population. PMID:22895107

  15. Photoresponse of 60Ni below 10-MeV excitation energy: Evolution of dipole resonances in fp-shell nuclei near N=Z

    NASA Astrophysics Data System (ADS)

    Scheck, M.; Ponomarev, V. Yu.; Fritzsche, M.; Joubert, J.; Aumann, T.; Beller, J.; Isaak, J.; Kelley, J. H.; Kwan, E.; Pietralla, N.; Raut, R.; Romig, C.; Rusev, G.; Savran, D.; Schorrenberger, L.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zilges, A.; Zweidinger, M.

    2013-10-01

    Background: Within the last decade, below the giant dipole resonance the existence of a concentration of additional electric dipole strength has been established. This accumulation of low-lying E1 strength is commonly referred to as pygmy dipole resonance (PDR).Purpose: The photoresponse of 60Ni has been investigated experimentally and theoretically to test the evolution of the PDR in a nucleus with only a small neutron excess. Furthermore, the isoscalar and isovector M1 resonances were investigated.Method: Spin-1 states were excited by exploiting the (γ,γ') nuclear resonance fluorescence technique with unpolarized continuous bremsstrahlung as well as with fully linearly polarized, quasimonochromatic, Compton-backscattered laser photons in the entrance channel of the reaction.Results: Up to 10 MeV a detailed picture of J=1 levels was obtained. For the preponderant number of the individual levels spin and parity were firmly assigned. Furthermore, branching ratios, transition widths, and reduced B(E1) or B(M1) excitation probability were calculated from the measured scattering cross sections. A comparison with theoretical results obtained within the quasiparticle phonon model allows an insight into the microscopic structure of the observed states.Conclusions: Below 10 MeV the directly observed E1 strength [∑B(E1)↑=(153.8±9.5) e2(fm)2] exhausts 0.5% of the Thomas-Reiche-Kuhn sum rule. This value increases to 0.8% of the sum rule [∑B(E1)↑=(250.9±31.1) e2(fm)2] when indirectly observed branches to lower-lying levels are considered. Two accumulations of M1 excited spin-1 states near 8 and 9 MeV excitation energy are identified as isoscalar and isovector M1 resonances dominated by proton and neutron f7/2→f5/2 spin-flip excitations. The B(M1)↑ strength of these structures accumulates to 3.94(27)μN2.

  16. Nonlinear optical and electroabsorption spectra of polydiacetylene crystals and films

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, D.; Soos, Z. G.

    1996-01-01

    Vibronic structure of nonlinear optical (NLO) coefficients is developed within the Condon approximation, displaced harmonic oscillators, and crude adiabatic states. The displacements of backbone modes of conjugated polymers are taken from vibrational data on the ground and 1B excited state. NLO resonances are modeled by three excitations and transition moments taken from Pariser-Parr-Pople (PPP) theory and optimized to polydiacetylene (PDA) spectra in crystals and films, with blue-shifted 1B exciton. The joint analysis of third-harmonic-generation, two-photon absorption, and nondegenerate four-wave-mixing spectra of PDA crystals and films shows weak two-photon absorption to 2A below 1B, leading to overlapping resonances in the THG spectrum, strong two-photon absorption to an nA state some 35% above 1B, and weak Raman resonances in nondegenerate FWM spectra. The full π-π* spectrum contributes to Stark shifts and field-induced transitions, as shown by PPP results for PDA oligomers. The Stark shift dominates high-resolution electroabsorption (EA) spectra of PDA crystals below 10 K. The close correspondence between EA and the first-derivative I'(ω) of the linear absorption above the 1B exciton in PDA crystals provides an experimental separation of vibrational and electronic contributions that limits any even-parity state in this 0.5 eV interval. An oscillator-strength sum rule is applied to the convergence of PDA oligomers with increasing length, N, and the crystal oscillator strengths are obtained without adjustable parameters. The sum rule for the 1B exciton implies large transition moments to higher-energy Ag states, whose locations in recent models are contrasted to PPP results. Joint analysis of NLO and EA spectra clarifies when a few electronic excitations are sufficient, distinguishes between vibrational and electronic contributions, and supports similar π-electron interactions in conjugated molecules and polymers.

  17. Compton scattering from the proton in an effective field theory with explicit Delta degrees of freedom

    NASA Astrophysics Data System (ADS)

    McGovern, J. A.; Phillips, D. R.; Grießhammer, H. W.

    2013-01-01

    We analyse the proton Compton-scattering differential cross section for photon energies up to 325 MeV using Chiral Effective Field Theory (χEFT) and extract new values for the electric and magnetic polarisabilities of the proton. Our approach builds in the key physics in two different regimes: photon energies ω ≲ m π ("low energy"), and the higher energies where the Δ(1232) resonance plays a key role. The Compton amplitude is complete at N4LO, {O}( {e^2 δ ^4 } ), in the low-energy region, and at NLO, {O}( {e^2 δ ^0 } ), in the resonance region. Throughout, the Delta-pole graphs are dressed with π N loops and γN Δ vertex corrections. A statistically consistent database of proton Compton experiments is used to constrain the free parameters in our amplitude: the M1 γN Δ transition strength b 1 (which is fixed in the resonance region) and the polarisabilities α E1 and β M1 (which are fixed from data below 170 MeV). In order to obtain a reasonable fit, we find it necessary to add the spin polarisability γ M1 M1 as a free parameter, even though it is, strictly speaking, predicted in χEFT at the order to which we work. We show that the fit is consistent with the Baldin sum rule, and then use that sum rule to constrain α E1 + β M1. In this way we obtain α E1 = [10.65 ± 0.35(stat) ± 0.2(Baldin) ± 0.3(theory)] × 10-4 fm3 and β M1 = [3.15 ∓ 0.35(state) ± 0.2(Baldin) ∓ 0.3()theory] × 10-4 fm3, with χ2 = 113.2 for 135 degrees of freedom. A detailed rationale for the theoretical uncertainties assigned to this result is provided.

  18. The generalized scheme-independent Crewther relation in QCD

    NASA Astrophysics Data System (ADS)

    Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang; Brodsky, Stanley J.

    2017-07-01

    The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton-nucleon scattering times the Adler function, defined from the cross section for electron-positron annihilation into hadrons, has no pQCD radiative corrections. The ;Generalized Crewther Relation; relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (Dns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (CBjp) at leading twist. A scheme-dependent ΔCSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both Dns and the inverse coefficient CBjp-1 have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, αˆd (Q) =∑i≥1 αˆg1 i (Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Similar scale-fixed commensurate scale relations also connect other physical observables at their physical momentum scales, thus providing convention-independent, fundamental precision tests of QCD.

  19. Origin of a sensitive dependence of calculated {beta}{beta}-decay amplitudes on the particle-particle residual interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodin, Vadim; Faessler, Amand

    2011-07-15

    In the present work the sensitivity of calculated {beta}{beta}-decay amplitudes to a realistic residual interaction is analyzed in the framework of the approach of O. A. Rumyantsev and M. H. Urin, Phys. Lett. B 443, 51 (1998). and V. A. Rodin, M. H. Urin, and A. Faessler, Nucl. Phys. A 747, 297 (2005). Both the Gamow-Teller (GT) and Fermi (F) matrix elements M{sup 2}{nu} for two-neutrino {beta}{beta} decay (2{nu}{beta}{beta} decay), along with the monopole transition contributions to the total matrix elements M{sup 0{nu}} of neutrinoless {beta}{beta} decay (0{nu}{beta}{beta} decay), are calculated within the quasiparticle random-phase approximation (QRPA). In the aforementionedmore » approach decompositions of M{sup 2{nu}} and M{sup 0{nu}} can be obtained in terms of the corresponding energy-weighted sum rules S. It is shown that in most of the cases almost the whole dependence of M{sup 2{nu}} and M{sup 0{nu}} on the particle-particle (p-p) renormalization parameter g{sub pp} is accounted for by the g{sub pp} dependence of the corresponding sum rules S. General expressions relating S to a realistic residual particle-particle interaction are derived, which show a pronounced sensitivity of S to the singlet-channel interaction in the case of F transitions and to the triplet-channel interaction in the case of GT transitions. Thus, the sensitivity of M{sup 2{nu}} and M{sup 0{nu}} to the SU(4)-symmetry-breaking part of the p-p residual interaction is dictated by the generic structure of the {beta}{beta}-decay amplitudes. Therefore, a choice of this part in a particular calculation needs a special caution. Finally, a better isospin-consistent way of renormalization of a realistic residual p-p interaction to use in QRPA calculations is suggested.« less

  20. Weak Relationships between Stint Duration, Physical and Skilled Match Performance in Australian Football

    PubMed Central

    Corbett, David M.; Sweeting, Alice J.; Robertson, Sam

    2017-01-01

    Australian Rules football comprises physical and skilled performance for more than 90 min of play. The cognitive and physiological fatigue experienced by participants during a match may reduce performance. Consequently, the length of time an athlete is on the field before being interchanged (known as a stint), is a key tactic which could maximize the skill and physical output of the Australian Rules athlete. This study developed two methods to quantify the relationship between athlete time on field, skilled and physical output. Professional male athletes (n = 39) from a single elite Australian Rules football club participated, with physical output quantified via player tracking systems across 22 competitive matches. Skilled output was calculated as the sum of involvements performed by each athlete, collected from a commercial statistics company. A random intercept and slope model was built to identify how a team and individuals respond to physical outputs and stint lengths. Stint duration (mins), high intensity running (speeds >14.4 km · hr−1) per minute, meterage per minute and very high intensity running (speeds >25 km·hr−1) per minute had some relationship with skilled involvements. However, none of these relationships were strong, and the direction of influence for each player was varied. Three conditional inference trees were computed to identify the extent to which combinations of physical parameters altered the anticipated skilled output of players. Meterage per minute, player, round number and duration were all related to player involvement. All methods had an average error of 10 to 11 involvements, per player per match. Therefore, other factors aside from physical parameters extracted from wearable technologies may be needed to explain skilled output within Australian Rules football matches. PMID:29109688

  1. Automated target classification in high resolution dual frequency sonar imagery

    NASA Astrophysics Data System (ADS)

    Aridgides, Tom; Fernández, Manuel

    2007-04-01

    An improved computer-aided-detection / computer-aided-classification (CAD/CAC) processing string has been developed. The classified objects of 2 distinct strings are fused using the classification confidence values and their expansions as features, and using "summing" or log-likelihood-ratio-test (LLRT) based fusion rules. The utility of the overall processing strings and their fusion was demonstrated with new high-resolution dual frequency sonar imagery. Three significant fusion algorithm improvements were made. First, a nonlinear 2nd order (Volterra) feature LLRT fusion algorithm was developed. Second, a Box-Cox nonlinear feature LLRT fusion algorithm was developed. The Box-Cox transformation consists of raising the features to a to-be-determined power. Third, a repeated application of a subset feature selection / feature orthogonalization / Volterra feature LLRT fusion block was utilized. It was shown that cascaded Volterra feature LLRT fusion of the CAD/CAC processing strings outperforms summing, baseline single-stage Volterra and Box-Cox feature LLRT algorithms, yielding significant improvements over the best single CAD/CAC processing string results, and providing the capability to correctly call the majority of targets while maintaining a very low false alarm rate. Additionally, the robustness of cascaded Volterra feature fusion was demonstrated, by showing that the algorithm yields similar performance with the training and test sets.

  2. Use of the ( e , e prime n ) reaction to study the giant multipole resonances in sup 116 Sn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskimen, R.A.; Ammons, E.A.; Arruda-Neto, J.D.T.

    1991-04-01

    The giant multipole resonances in {sup 116}Sn have been studied using the ({ital e},{ital e}{prime}{ital n}) reaction. Data were taken at effective momentum transfers of 0.37, 0.45, and 0.55 fm{sup {minus}1} and a multipole analysis of the data was performed. The inferred multipole strength functions identify the {ital E}2 and {ital E}0 resonances as distinct peaks at 12.2 and 17.9 MeV, respectively. The energy-weighted sum-rule strengths for the {ital E}2 and {ital E}0 resonances, obtained using a Lorentzian fit to the data, are 34{plus minus}13% and 93{plus minus}37%. When compared with results from alpha scattering and pion scattering the sum-rulemore » strengths exhibit approximate agreement, but the {ital E}0 strength identified in this measurement lies at higher excitation energy, consistent with the trend observed in heavier nuclei. The ({ital e},{ital e}{prime}{ital n}) data are compared with a continuum random phase approximation (RPA) calculation of the {ital E}2 and {ital E}0 strengths, and with an open-shell RPA calculation of the {ital E}2 strength. Both calculations disagree with the data in the region of the {ital E}2 resonance.« less

  3. Linear error analysis of slope-area discharge determinations

    USGS Publications Warehouse

    Kirby, W.H.

    1987-01-01

    The slope-area method can be used to calculate peak flood discharges when current-meter measurements are not possible. This calculation depends on several quantities, such as water-surface fall, that are subject to large measurement errors. Other critical quantities, such as Manning's n, are not even amenable to direct measurement but can only be estimated. Finally, scour and fill may cause gross discrepancies between the observed condition of the channel and the hydraulic conditions during the flood peak. The effects of these potential errors on the accuracy of the computed discharge have been estimated by statistical error analysis using a Taylor-series approximation of the discharge formula and the well-known formula for the variance of a sum of correlated random variates. The resultant error variance of the computed discharge is a weighted sum of covariances of the various observational errors. The weights depend on the hydraulic and geometric configuration of the channel. The mathematical analysis confirms the rule of thumb that relative errors in computed discharge increase rapidly when velocity heads exceed the water-surface fall, when the flow field is expanding and when lateral velocity variation (alpha) is large. It also confirms the extreme importance of accurately assessing the presence of scour or fill. ?? 1987.

  4. Exact relations between homoclinic and periodic orbit actions in chaotic systems

    NASA Astrophysics Data System (ADS)

    Li, Jizhou; Tomsovic, Steven

    2018-02-01

    Homoclinic and unstable periodic orbits in chaotic systems play central roles in various semiclassical sum rules. The interferences between terms are governed by the action functions and Maslov indices. In this article, we identify geometric relations between homoclinic and unstable periodic orbits, and derive exact formulas expressing the periodic orbit classical actions in terms of corresponding homoclinic orbit actions plus certain phase space areas. The exact relations provide a basis for approximations of the periodic orbit actions as action differences between homoclinic orbits with well-estimated errors. This enables an explicit study of relations between periodic orbits, which results in an analytic expression for the action differences between long periodic orbits and their shadowing decomposed orbits in the cycle expansion.

  5. Holographic CBK relation

    NASA Astrophysics Data System (ADS)

    Gabadadze, Gregory; Tukhashvili, Giorgi

    2018-07-01

    The Crewther-Broadhurst-Kataev (CBK) relation connects the Bjorken function for deep-inelastic sum rules (or the Gross-Llewellyn Smith function) with the Adler function for electron-positron annihilation in QCD; it has been checked to hold up to four loops in perturbation theory. Here we study non-perturbative terms in the CBK relation using a holographic dual theory that is believed to capture properties of QCD. We show that for the large invariant momenta the perturbative CBK relation is exactly satisfied. For the small momenta non-perturbative corrections enter the relation and we calculate their significant effects. We also give an exact holographic expression for the Bjorken function, as well as for the entire three-point axial-vector-vector correlation function, and check their consistency in the conformal limit.

  6. SU(3) group structure of strange flavor hadrons

    NASA Astrophysics Data System (ADS)

    Hong, Soon-Tae

    2015-01-01

    We provide the isoscalar factors of the SU(3) Clebsch-Gordan series 8⊗ 35 which are extensions of the previous works of de Swart, McNamee and Chilton and play practical roles in current ongoing strange flavor hadron physics research. To this end, we pedagogically study the SU(3) Lie algebra, its spin symmetries, and its eigenvalues for irreducible representations. We also evaluate the values of the Wigner D functions related to the isoscalar factors; these functions are immediately applicable to strange flavor hadron phenomenology. Exploiting these SU(3) group properties associated with the spin symmetries, we investigate the decuplet-to-octet transition magnetic moments and the baryon octet and decuplet magnetic moments in the flavor symmetric limit to construct the Coleman-Glashow-type sum rules.

  7. Electronic transport coefficients in plasmas using an effective energy-dependent electron-ion collision-frequency

    NASA Astrophysics Data System (ADS)

    Faussurier, G.; Blancard, C.; Combis, P.; Decoster, A.; Videau, L.

    2017-10-01

    We present a model to calculate the electrical and thermal electronic conductivities in plasmas using the Chester-Thellung-Kubo-Greenwood approach coupled with the Kramers approximation. The divergence in photon energy at low values is eliminated using a regularization scheme with an effective energy-dependent electron-ion collision-frequency. Doing so, we interpolate smoothly between the Drude-like and the Spitzer-like regularizations. The model still satisfies the well-known sum rule over the electrical conductivity. Such kind of approximation is also naturally extended to the average-atom model. A particular attention is paid to the Lorenz number. Its nondegenerate and degenerate limits are given and the transition towards the Drude-like limit is proved in the Kramers approximation.

  8. Quantum critical charge response from higher derivatives in holography

    NASA Astrophysics Data System (ADS)

    Witczak-Krempa, William

    2014-04-01

    We extend the range of possibilities for the charge response in the quantum critical regime in 2 + 1D using holography, and compare them with field theory and recent quantum Monte Carlo results. We show that a family of (infinitely many) higher derivative terms in the gravitational bulk leads to behavior far richer than what was previously obtained. For example, we prove that the conductivity becomes unbounded, undermining previously obtained constraints. We further find a nontrivial and infinite set of theories that have a self-dual conductivity. Particle-vortex or S duality plays a key role; notably, it maps theories with a finite number of bulk terms to ones with an infinite number. Many properties, such as sum rules and stability conditions, are proven.

  9. Hadron physics through asymptotic SU(3) and the chiral SU(3) x SU(3) algebra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oneda, S.; Matsuda, S.; Perlmutter, A.

    From Coral Gables conference on fundamental interactions for theoretical studies; Coral Gables, Florida, USA (22 Jan 1973). See CONF-730124-. The inter- SU(3)-multiplet regularities and clues to a possible level scheme of hadrons are studied in a systematic way. The hypothesis of asymptotic SU(3) is made in the presence of GMO mass splittings with mixing, which allows information to be extracted from the chiral SU(3) x SU(3) charge algebras and from the exotic commutation relations. For the ground states the schemes obtained are compatible with those of the SU(6) x O(3) classification. Sum rules are obtained which recover most of themore » good results of SU(6). (LBS)« less

  10. Low-energy pion-nucleon scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, W.R.; Ai, L.; Kaufmann, W.B.

    An analysis of low-energy charged pion-nucleon data from recent {pi}{sup {plus_minus}}p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f{sup 2}=0.0756{plus_minus}0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P{sub 31} and P{sub 13} partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the {Sigma} term. Off-shell amplitudes are also provided. {copyright} {italmore » 1998} {ital The American Physical Society}« less

  11. Digital Reconstruction of 3D Polydisperse Dry Foam

    NASA Astrophysics Data System (ADS)

    Chieco, A.; Feitosa, K.; Roth, A. E.; Korda, P. T.; Durian, D. J.

    2012-02-01

    Dry foam is a disordered packing of bubbles that distort into familiar polyhedral shapes. We have implemented a method that uses optical axial tomography to reconstruct the internal structure of a dry foam in three dimensions. The technique consists of taking a series of photographs of the dry foam against a uniformly illuminated background at successive angles. By summing the projections we create images of the foam cross section. Image analysis of the cross sections allows us to locate Plateau borders and vertices. The vertices are then connected according to Plateau's rules to reconstruct the internal structure of the foam. Using this technique we are able to visualize a large number of bubbles of real 3D foams and obtain statistics of faces and edges.

  12. QRPA plus phonon coupling model and the photoabsorption cross section for 18,20,22O

    NASA Astrophysics Data System (ADS)

    Colò, G.; Bortignon, P. F.

    2001-12-01

    We have calculated the electric dipole strength distributions in the unstable neutron-rich oxygen isotopes 18,20,22O, in a model which include up to four quasiparticle-type configurations. The model is the extension, to include the effect of the pairing correlations, of a previous model very successful around closed shell nuclei, and it is based on the quasiparticle-phonon coupling. Low-lying dipole strength is found, which exhausts between 5 and 10% of the Thomas-Reiche-Kuhn (TRK) energy-weighted sum rule (EWSR) below 15 MeV excitation energy, in rather good agreement with recent experimental data. The role of the phonon coupling is shown to be crucial in order to obtain this result.

  13. Superradiant phase transition in a model of three-level-Λ systems interacting with two bosonic modes

    NASA Astrophysics Data System (ADS)

    Hayn, Mathias; Emary, Clive; Brandes, Tobias

    2012-12-01

    We consider an ensemble of three-level particles in Lambda configuration interacting with two bosonic modes. The Hamiltonian has the form of a generalized Dicke model. We show that in the thermodynamic limit this model supports a superradiant quantum phase transition. Remarkably, this can be both a first- and a second-order phase transition. A connection of the phase diagram to the symmetries of the Hamiltonian is also given. In addition, we show that this model can describe atoms interacting with an electromagnetic field in which the microscopic Hamiltonian includes a diamagnetic contribution. Even though the parameters of the atomic system respect the Thomas-Reiche-Kuhn sum rule, the system still shows a superradiant phase transition.

  14. The use of an analytic Hamiltonian matrix for solving the hydrogenic atom

    NASA Astrophysics Data System (ADS)

    Bhatti, Mohammad

    2001-10-01

    The non-relativistic Hamiltonian corresponding to the Shrodinger equation is converted into analytic Hamiltonian matrix using the kth order B-splines functions. The Galerkin method is applied to the solution of the Shrodinger equation for bound states of hydrogen-like systems. The program Mathematica is used to create analytic matrix elements and exact integration is performed over the knot-sequence of B-splines and the resulting generalized eigenvalue problem is solved on a specified numerical grid. The complete basis set and the energy spectrum is obtained for the coulomb potential for hydrogenic systems with Z less than 100 with B-splines of order eight. Another application is given to test the Thomas-Reiche-Kuhn sum rule for the hydrogenic systems.

  15. Effect of a cosmological constant on propagation of vacuum polarized photons in stationary spacetimes

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sourav

    2015-06-01

    Consideration of vacuum polarization in quantum electrodynamics may affect the momentum dispersion relation for photons for a non-trivial background, due to the appearance of curvature dependent terms in the effective action. We investigate the effect of a positive cosmological constant on this at one-loop order for stationary -vacuum spacetimes. To the best of our knowledge, so far it only has been shown that affects the propagation in a time dependent black hole spacetime. Here we consider the static de Sitter cosmic string and the Kerr-de Sitter spacetime to show that there might occur a non-vanishing effect due to for physical polarizations. The consistency of these results with the polarization sum rule is discussed.

  16. An embedding of the universal Askey-Wilson algebra into Uq (sl2) ⊗Uq (sl2) ⊗Uq (sl2)

    NASA Astrophysics Data System (ADS)

    Huang, Hau-Wen

    2017-09-01

    The Askey-Wilson algebras were used to interpret the algebraic structure hidden in the Racah-Wigner coefficients of the quantum algebra Uq (sl2). In this paper, we display an injection of a universal analog △q of Askey-Wilson algebras into Uq (sl2) ⊗Uq (sl2) ⊗Uq (sl2) behind the application. Moreover we establish the decomposition rules for 3-fold tensor products of irreducible Verma Uq (sl2)-modules and of finite-dimensional irreducible Uq (sl2)-modules into the direct sums of finite-dimensional irreducible △q-modules. As an application, we derive a formula for the Racah-Wigner coefficients of Uq (sl2).

  17. In the Superior Court of Fulton County, State of Georgia.

    PubMed

    1992-01-01

    In sum, it is the decision of this Court that the hospital not deescalate Jane Doe's treatment or enforce any DNR order unless both parents agree to this final course of treatment. Scottish Rite, its physicians, staff, agents, and employees are enjoined from taking any action inconsistent with this order. This Court hopes that the ordeal suffered by all concerned in having to resort to the courts for direction will soon be alleviated by judicial precedent or legislative enactment establishing proper rules and procedures for all involved in a future dilemma such as this one. In an effort to define such rules and procedures, however, this Court hereby directs the Attorney General to appeal this Order to the Supreme Court of Georgia for immediate review, as this case involves important constitutional issues. The Clerk is directed to prepare the record in this case for immediate transmittal to the Supreme Court. This Court thanks respective counsel involved for the highly professional and dignified manner in which this case has been handled, and to the parents of Jane Doe goes this Court's admiration for their strength and courage under these most trying circumstances. Love often travels a rugged highway.

  18. Determination of the effective transverse coherence of the neutron wave packet as employed in reflectivity investigations of condensed-matter structures. II. Analysis of elastic scattering using energy-gated wave packets with an application to neutron reflection from ruled gratings

    NASA Astrophysics Data System (ADS)

    Berk, N. F.

    2014-03-01

    We present a general approach to analyzing elastic scattering for those situations where the incident beam is prepared as an incoherent ensemble of wave packets of a given arbitrary shape. Although wave packets, in general, are not stationary solutions of the Schrödinger equation, the analysis of elastic scattering data treats the scattering as a stationary-state problem. We thus must gate the wave packet, coherently distorting its shape in a manner consistent with the elastic condition. The resulting gated scattering amplitudes (e.g., reflection coefficients) thus are weighted coherent sums of the constituent plane-wave scattering amplitudes, with the weights determined by the shape of the incident wave packet as "filtered" by energy gating. We develop the gating formalism in general and apply it to the problem of neutron scattering from ruled gratings described by Majkrzak et al. in a companion paper. The required exact solution of the associated problem of plane-wave reflection from gratings also is derived.

  19. The Replicator Equation on Graphs

    PubMed Central

    Ohtsuki, Hisashi; Nowak, Martin A.

    2008-01-01

    We study evolutionary games on graphs. Each player is represented by a vertex of the graph. The edges denote who meets whom. A player can use any one of n strategies. Players obtain a payoff from interaction with all their immediate neighbors. We consider three different update rules, called ‘birth-death’, ‘death-birth’ and ‘imitation’. A fourth update rule, ‘pairwise comparison’, is shown to be equivalent to birth-death updating in our model. We use pair-approximation to describe the evolutionary game dynamics on regular graphs of degree k. In the limit of weak selection, we can derive a differential equation which describes how the average frequency of each strategy on the graph changes over time. Remarkably, this equation is a replicator equation with a transformed payoff matrix. Therefore, moving a game from a well-mixed population (the complete graph) onto a regular graph simply results in a transformation of the payoff matrix. The new payoff matrix is the sum of the original payoff matrix plus another matrix, which describes the local competition of strategies. We discuss the application of our theory to four particular examples, the Prisoner’s Dilemma, the Snow-Drift game, a coordination game and the Rock-Scissors-Paper game. PMID:16860343

  20. Apparent violation of the sum rule for exchange-correlation charges by generalized gradient approximations.

    PubMed

    Kohut, Sviataslau V; Staroverov, Viktor N

    2013-10-28

    The exchange-correlation potential of Kohn-Sham density-functional theory, vXC(r), can be thought of as an electrostatic potential produced by the static charge distribution qXC(r) = -(1∕4π)∇(2)vXC(r). The total exchange-correlation charge, QXC = ∫qXC(r) dr, determines the rate of the asymptotic decay of vXC(r). If QXC ≠ 0, the potential falls off as QXC∕r; if QXC = 0, the decay is faster than coulombic. According to this rule, exchange-correlation potentials derived from standard generalized gradient approximations (GGAs) should have QXC = 0, but accurate numerical calculations give QXC ≠ 0. We resolve this paradox by showing that the charge density qXC(r) associated with every GGA consists of two types of contributions: a continuous distribution and point charges arising from the singularities of vXC(r) at each nucleus. Numerical integration of qXC(r) accounts for the continuous charge but misses the point charges. When the point-charge contributions are included, one obtains the correct QXC value. These findings provide an important caveat for attempts to devise asymptotically correct Kohn-Sham potentials by modeling the distribution qXC(r).

  1. Cross sections for electron scattering from furan molecules: Measurements and calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szmytkowski, Czeslaw; Mozejko, Pawel; Ptasinska-Denga, Elzbieta

    Electron-scattering cross sections have been determined for the furan (C{sub 4}H{sub 4}O) molecule, both experimentally and theoretically. An absolute total cross section (TCS) has been measured over energies from 0.6 to 400 eV using a linear electron-transmission method. The TCS energy function is dominated with a very broad enhancement, between 1.2 and 9 eV; on the low-energy side, some resonant structures are visible. Integral elastic (ECS) and ionization (ICS) cross sections have been also calculated up to 4 keV in the additivity rule approximation and the binary-encounter-Bethe approach, respectively. Their sum, ECS+ICS, is in a very good agreement with themore » measured TCS above 70 eV.« less

  2. Conducting a thermal conductivity survey

    NASA Technical Reports Server (NTRS)

    Allen, P. B.

    1985-01-01

    A physically transparent approximate theory of phonon decay rates is presented starting from a pair potential model of the interatomic forces in an insulator or semiconductor. The theory applies in the classical regime and relates the 3-phonon decay rate to the third derivative of the pair potential. Phonon dispersion relations do not need to be calculated, as sum rules relate all the needed quantities directly to the pair potential. The Brillouin zone averaged phonon lifetime turns out to involve a dimensionless measure of the anharmonicity multiplied by an effective density of states for 3-phonon decay. Results are given for rare gas and alkali halide crystals. For rare gases, the results are in good agreement with more elaborate perturbation calculations. Comparison to experimental data on phonon linewidths and thermal conductivity are made.

  3. Dissipative quantum hydrodynamics model of x-ray Thomson scattering in dense plasmas

    NASA Astrophysics Data System (ADS)

    Diaw, Abdourahmane; Murillo, Michael

    2017-10-01

    X-ray Thomson scattering (XRTS) provides detailed diagnostic information about dense plasma experiments. The inferences made rely on an accurate model for the form factor, which is typically expressed in terms of a well-known response function. Here, we develop an alternate approach based on quantum hydrodynamics using a viscous form of dynamical density functional theory. This approach is shown to include the equation of state self-consistently, including sum rules, as well as irreversibility arising from collisions. This framework is used to generate a model for the scattering spectrum, and it offers an avenue for measuring hydrodynamic properties, such as transport coefficients, using XRTS. This work was supported by the Air Force Office of Scientific Research (Grant No. FA9550-12-1-0344).

  4. Swap Bribery

    NASA Astrophysics Data System (ADS)

    Elkind, Edith; Faliszewski, Piotr; Slinko, Arkadii

    In voting theory, bribery is a form of manipulative behavior in which an external actor (the briber) offers to pay the voters to change their votes in order to get her preferred candidate elected. We investigate a model of bribery where the price of each vote depends on the amount of change that the voter is asked to implement. Specifically, in our model the briber can change a voter’s preference list by paying for a sequence of swaps of consecutive candidates. Each swap may have a different price; the price of a bribery is the sum of the prices of all swaps that it involves. We prove complexity results for this model, which we call swap bribery, for a broad class of voting rules, including variants of approval and k-approval, Borda, Copeland, and maximin.

  5. Tables of stark level transition probabilities and branching ratios in hydrogen-like atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    The transition probabilities which are given in terms of n prime k prime and n k are tabulated. No additional summing or averaging is necessary. The electric quantum number k plays the role of the angular momentum quantum number l in the presence of an electric field. The branching ratios between stark levels are also tabulated. Necessary formulas for the transition probabilities and branching ratios are given. Symmetries are discussed and selection rules are given. Some disagreements for some branching ratios are found between the present calculation and the measurement of Mark and Wierl. The transition probability multiplied by the statistical weight of the initial state is called the static intensity J sub S, while the branching ratios are called the dynamic intensity J sub D.

  6. Uranium 5f shell in UPd2Al3 and URu2Si2 studied by x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Yaouanc, A.; Dalmas de Réotier, P.; van der Laan, G.; Hiess, A.; Goulon, J.; Neumann, C.; Lejay, P.; Sato, N.

    1998-10-01

    We report x-ray magnetic circular dichroism (XMCD) measurements performed at the uranium M4,5 edges in the paramagnetic phase of the heavy fermion superconductors UPd2Al3 and URu2Si2. The analysis of the spectra with the first sum rule yields the orbital moment of the 5f shell for both compounds. The shape of the dichroic spectrum at the M5 edge for the two compounds is qualitatively different: a single lobe is observed for URu2Si2 and two lobes are detected for UPd2Al3. This two lobe structure reflects the strong effect of the interaction of the uranium 5f electrons with their environment in the latter compound.

  7. H- photodetachment and radiative attachment for astrophysical applications

    NASA Astrophysics Data System (ADS)

    McLaughlin, B. M.; Stancil, P. C.; Sadeghpour, H. R.; Forrey, R. C.

    2017-06-01

    We combine R-matrix calculations, asymptotic relations, and comparison to available experimental data to construct an H- photodetachment cross section reliable over a large range of photon energies and take into account the series of auto-detaching shape and Feshbach resonances between 10.92 and 14.35 eV. The accuracy of the cross section is controlled by ensuring that it satisfies all known oscillator strength sum rules, including contributions from the resonances and single-photon double-electron photodetachment. From the resulting recommended cross section, spontaneous and stimulated radiative attachment rate coefficients are obtained. Photodetachment rates are also computed for the standard interstellar radiation field, in diffuse and dense interstellar clouds, for blackbody radiation, and for high redshift distortion photons in the recombination epoch. Implications are investigated for these astrophysical radiation fields and epochs.

  8. Momentum dependence of the topological susceptibility and its derivative at zero momentum with overlap fermions

    NASA Astrophysics Data System (ADS)

    Koma, Y.

    The derivative of the topological susceptibility at zero momentum is responsible for the validity of the Witten-Veneziano formula for the η mass, and also for the resolution of the EMC pro- ton spin problem. We investigate the momentum dependence of the topological susceptibility and its derivative at zero momentum using lattice QCD simulations with overlap fermions within quenched approximation. We expose the role of the low-lying Dirac eigenmodes for the topolog- ical charge density, and find the negative value for the derivative. While the sign of the derivative is consistent with the QCD sum rule in pure Yang-Mills theory, the absolute value becomes larger if only the contribution from the zero modes and the low-lying eigenmodes is taken into account.

  9. Interface concerns of ejector integration in V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Lowry, R. B.

    1979-01-01

    A number of areas which have in the past contributed to weight, complexity, and thrust losses in the ejector-powered V/STOL vehicle were identified. Most of these interfaces taken singly do not represent a severe compromise to the vehicle; however, the bottom line is that the sum of compromises and the subsequent effects on performance, flight operations and maintenance have rendered the ejector V/STOL aircraft unattractive. In addition to some of the unique ejector/aircraft integration problems, the vehicle by virtue of having a V/STOL capability, is compromised in other areas. To be successful and acceptable, the advantages must outweight the disadvantages and simplicity with minimum penalties must be the rule. It is concluded that more emphasis must be placed on the ejector/aircraft interface for the concept to be successful.

  10. Gigantic transverse x-ray magnetic circular dichroism in ultrathin Co in Au/Co/Au(001)

    NASA Astrophysics Data System (ADS)

    Koide, T.; Mamiya, K.; Asakura, D.; Osatune, Y.; Fujimori, A.; Suzuki, Y.; Katayama, T.; Yuasa, S.

    2014-04-01

    Transverse-geometry x-ray magnetic circular dichroism (TXMCD) measurements on Au/Co-staircase/Au(001) reveal the orbital origin of intrinsic in-plane magnetic anisotropy A gigantic TXMCD was successfully observed at the Co L3,2 edges for Co thickness (tC0) in the 2-monolayer regime. A TXMCD-sum-rule analysis shows a remarkable enhancement of an orbital-moment anisotropy (Δmorb) and of an in-plane magnetic dipole moment (m||T). Both Δmorb and m||T exhibit close similarity in tCo dependence, reflecting the in-plane magnetic anisotropy These observations evidence that extremely strong, intrinsic, in-plane magnetic anisotropy originates from the anisotropic orbital part of the wave function, dominating the dipole-dipole-interaction-derived, extrinsic, in-plane magnetic anisotropy.

  11. Light-cone distribution amplitudes of light JPC = 2- tensor mesons in QCD

    NASA Astrophysics Data System (ADS)

    Aliev, T. M.; Bilmis, S.; Yang, Kwei-Chou

    2018-06-01

    We present a study for two-quark light-cone distribution amplitudes for the 13D2 light tensor meson states with quantum number JPC =2-. Because of the G-parity, the chiral-even two-quark light-cone distribution amplitudes of this tensor meson are antisymmetric under the interchange of momentum fractions of the quark and antiquark in the SU(3) limit, while the chiral-odd ones are symmetric. The asymptotic leading-twist LCDAs with the strange quark mass correction are shown. We estimate the relevant parameters, the decay constants fT and fT⊥, and first Gegenbauer moment a1⊥ , by using the QCD sum rule method. These parameters play a central role in the investigation of B meson decaying into the 2- tensor mesons.

  12. The electromagnetic multipole moments of the charged open-flavor {Z}_{\\bar{c}q} states

    NASA Astrophysics Data System (ADS)

    Azizi, K.; Özdem, U.

    2018-05-01

    The electromagnetic multipole moments of the open-flavor {Z}\\bar{cq} states are investigated by assuming a diquark–antidiquark picture for their internal structure and quantum numbers {J}{PC}={1}+- for their spin-parity. In particular, their magnetic and quadrupole moments are extracted in the framework of light-cone QCD sum rule by the help of the photon distribution amplitudes. The electromagnetic multipole moments of the open-flavor {Z}\\bar{cq} states are important dynamical observables, which encode valuable information on their underlying structure. The results obtained for the magnetic moments of different structures are considerably large and can be measured in future experiments. We obtain very small values for the quadrupole moments of {Z}\\bar{cq} states indicating a nonspherical charge distribution.

  13. Electromagnetic multipole moments of the P_c^+(4380) pentaquark in light-cone QCD

    NASA Astrophysics Data System (ADS)

    Özdem, U.; Azizi, K.

    2018-05-01

    We calculate the electromagnetic multipole moments of the P_c^+(4380) pentaquark by modeling it as the diquark-diquark-antiquark and {\\bar{D}}^*Σ _c molecular state with quantum numbers J^P = 3/2^-. In particular, the magnetic dipole, electric quadrupole and magnetic octupole moments of this particle are extracted in the framework of light-cone QCD sum rule. The values of the electromagnetic multipole moments obtained via two pictures differ substantially from each other, which can be used to pin down the underlying structure of P_c^+(4380). The comparison of any future experimental data on the electromagnetic multipole moments of the P_c^+(4380) pentaquark with the results of the present work can shed light on the nature and inner quark organization of this state.

  14. Constraints on the I = 1 hadronic τ decay and e+e- →hadrons data sets and implications for (g - 2) μ

    NASA Astrophysics Data System (ADS)

    Maltman, Kim

    2006-02-01

    Sum rule tests are performed on the spectral data for (i) flavor ud vector-current-induced hadronic τ decays and (ii) e+e- hadroproduction, in the region below s ∼ 3- 4 GeV2, where discrepancies exist between the isospin-breaking-corrected charged and neutral current I = 1 spectral functions. The τ data is found to be compatible with expectations based on high-scale αs (MZ) determinations, while the electroproduction data displays two problems. The results favor determinations of the leading order hadronic contribution to (g - 2) μ which incorporate hadronic τ decay data over those employing electroproduction data only, and hence a reduced discrepancy between experiment and the Standard Model prediction for (g - 2) μ.

  15. Effect of broken axial symmetry on the electric dipole strength and the collective enhancement of level densities in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Grosse, E.; Junghans, A. R.; Wilson, J. N.

    2017-11-01

    The basic parameters for calculations of radiative neutron capture, photon strength functions and nuclear level densities near the neutron separation energy are determined based on experimental data without an ad hoc assumption about axial symmetry—at variance to previous analysis. Surprisingly few global fit parameters are needed in addition to information on nuclear deformation, taken from Hartree Fock Bogolyubov calculations with the Gogny force, and the generator coordinator method assures properly defined angular momentum. For a large number of nuclei the GDR shapes and the photon strength are described by the sum of three Lorentzians, extrapolated to low energies and normalised in accordance to the dipole sum rule. Level densities are influenced strongly by the significant collective enhancement based on the breaking of shape symmetry. The replacement of axial symmetry by the less stringent requirement of invariance against rotation by 180° leads to a novel prediction for radiative neutron capture. It compares well to recent compilations of average radiative widths and Maxwellian average cross sections for neutron capture by even target nuclei. An extension to higher spin promises a reliable prediction for various compound nuclear reactions also outside the valley of stability. Such predictions are of high importance for future nuclear energy systems and waste transmutation as well as for the understanding of the cosmic synthesis of heavy elements.

  16. Determination of π± meson polarizabilities from the γγ→π+π- process

    NASA Astrophysics Data System (ADS)

    Fil'Kov, L. V.; Kashevarov, V. L.

    2006-03-01

    A fit of the experimental data to the total cross section of the process γγ→π+π- in the energy region from threshold to 2500 MeV has been carried out using dispersion relations with subtractions for the invariant amplitudes, where the dipole and the quadrupole polarizabilities of the charged pion are free parameters. As a result, the sum and the difference of the electric and magnetic dipole and quadrupole polarizabilities of the charged pion have been found: (α1+β1)π±=(0.18-0.02+0.11)×10-4fm3,(α1-β1)π±=(13.0-1.9+2.6)×10-4fm3,(α2+β2)π±=(0.133±0.015)×10-4fm5,(α2-β2)π±=(25.0-0.3+0.8)×10-4fm5. These values agree with the dispersion sum rule predictions. The value found for the difference of the dipole polarizabilities is consistent with the results obtained from scattering of high energy π- mesons off the Coulomb field of heavy nuclei [Yu. M. Antipov , Phys. Lett. B121, 445 (1983)] and from radiative π+ photoproduction from the proton at MAMI [J. Ahrens , Eur. Phys. J. A 23, 113 (2005)], whereas it is at variance with the recent calculations in the framework of chiral perturbation theory.

  17. Formulation of D-brane Dynamics

    NASA Astrophysics Data System (ADS)

    Evans, Thomas

    2012-03-01

    It is the purpose of this paper (within the context of STS rules & guidelines ``research report'') to formulate a statistical-mechanical form of D-brane dynamics. We consider first the path integral formulation of quantum mechanics, and extend this to a path-integral formulation of D-brane mechanics, summing over all the possible path integral sectors of R-R, NS charged states. We then investigate this generalization utilizing a path-integral formulation summing over all the possible path integral sectors of R-R charged states, calculated from the mean probability tree-level amplitude of type I, IIA, and IIB strings, serving as a generalization of all strings described by D-branes. We utilize this generalization to study black holes in regimes where the initial D-brane system is legitimate, and further this generalization to look at information loss near regions of nonlocality on a non-ordinary event horizon. We see here that in these specific regimes, we can calculate a path integral formulation, as describing D0-brane mechanics, tracing the dissipation of entropy throughout the event horizon. This is used to study the information paradox, and to propose a resolution between the phenomena and the correct and expected quantum mechanical description. This is done as our path integral throughout entropy entering the event horizon effectively and correctly encodes the initial state in subtle correlations in the Hawking radiation.

  18. Determinations of Vus using inclusive hadronic τ decay data

    DOE PAGES

    Maltman, Kim; Hudspith, Renwick James; Lewis, Randy; ...

    2016-08-30

    Two methods for determining |V us| employing inclusive hadronic ττ decay data are discussed. The first is the conventional flavor-breaking sum rule determination whose usual implementation produces results ~3σ low compared to three-family unitary expectations. The second is a novel approach combining experimental strange hadronic ττ distributions with lattice light-strange current–current two-point function data. In preliminary explorations of the latter show the method promises |V us| determinations are competitive with those from K ℓ3 and Γ[π μ2]/Γ[π μ2]. For the former, systematic issues in the conventional implementation are investigated. Unphysical dependences of |V us| on the choice of sum rulemore » weight, w, and upper limit, s 0, of the weighted experimental spectral integrals are observed, the source of these problems identified and a new implementation which overcomes these problems developed. The lattice results are shown to provide a tool for quantitatively assessing truncation uncertainties for the slowly converging D=2 OPE series. Our results for |V us| from this new implementation are shown to be free of unphysical w- and s0-dependences, and ~0.0020 higher than those produced by the conventional implementation. With preliminary new Kπ branching fraction results as input, we find |V us| in excellent agreement with that obtained from K ℓ3, and compatible within errors with expectations from three-family unitarity.« less

  19. Is there a danger for myopia in anti-doping education? Comparative analysis of substance use and misuse in Olympic racket sports calls for a broader approach.

    PubMed

    Kondric, Miran; Sekulic, Damir; Petroczi, Andrea; Ostojic, Ljerka; Rodek, Jelena; Ostojic, Zdenko

    2011-10-11

    Racket sports are typically not associated with doping. Despite the common characteristics of being non-contact and mostly individual, racket sports differ in their physiological demands, which might be reflected in substance use and misuse (SUM). The aim of this study was to investigate SUM among Slovenian Olympic racket sport players in the context of educational, sociodemographic and sport-specific factors. Elite athletes (N=187; mean age=22±2.3; 64% male) representing one of the three racket sports, table tennis, badminton, and tennis, completed a paper-and-pencil questionnaire on substance use habits. Athletes in this sample had participated in at least one of the two most recent competitions at the highest national level and had no significant difference in competitive achievement or status within their sport. A significant proportion of athletes (46% for both sexes) reported using nutritional supplements. Between 10% and 24% of the studied males would use doping if the practice would help them achieve better results in competition and if it had no negative health consequences; a further 5% to 10% indicated potential doping behaviour regardless of potential health hazards. Females were generally less oriented toward SUM than their male counterparts with no significant differences between sports, except for badminton players. Substances that have no direct effect on sport performance (if timed carefully to avoid detrimental effects) are more commonly consumed (20% binge drink at least once a week and 18% report using opioids), whereas athletes avoid substances that can impair and threaten athletic achievement by decreasing physical capacities (e.g. cigarettes), violating anti-doping codes or potentially transgressing substance control laws (e.g. opiates and cannabinoids). Regarding doping issues, athletes' trust in their coaches and physicians is low. SUM in sports spreads beyond doping-prone sports and drugs that enhance athletic performance. Current anti-doping education, focusing exclusively on rules and fair play, creates an increasingly widening gap between sports and the athletes' lives outside of sports. To avoid myopia, anti-doping programmes should adopt a holistic approach to prevent substance use in sports for the sake of the athletes' health as much as for the integrity of sports.

  20. Is there a danger for myopia in anti-doping education? Comparative analysis of substance use and misuse in Olympic racket sports calls for a broader approach

    PubMed Central

    2011-01-01

    Background Racket sports are typically not associated with doping. Despite the common characteristics of being non-contact and mostly individual, racket sports differ in their physiological demands, which might be reflected in substance use and misuse (SUM). The aim of this study was to investigate SUM among Slovenian Olympic racket sport players in the context of educational, sociodemographic and sport-specific factors. Methods Elite athletes (N = 187; mean age = 22 ± 2.3; 64% male) representing one of the three racket sports, table tennis, badminton, and tennis, completed a paper-and-pencil questionnaire on substance use habits. Athletes in this sample had participated in at least one of the two most recent competitions at the highest national level and had no significant difference in competitive achievement or status within their sport. Results A significant proportion of athletes (46% for both sexes) reported using nutritional supplements. Between 10% and 24% of the studied males would use doping if the practice would help them achieve better results in competition and if it had no negative health consequences; a further 5% to 10% indicated potential doping behaviour regardless of potential health hazards. Females were generally less oriented toward SUM than their male counterparts with no significant differences between sports, except for badminton players. Substances that have no direct effect on sport performance (if timed carefully to avoid detrimental effects) are more commonly consumed (20% binge drink at least once a week and 18% report using opioids), whereas athletes avoid substances that can impair and threaten athletic achievement by decreasing physical capacities (e.g. cigarettes), violating anti-doping codes or potentially transgressing substance control laws (e.g. opiates and cannabinoids). Regarding doping issues, athletes' trust in their coaches and physicians is low. Conclusion SUM in sports spreads beyond doping-prone sports and drugs that enhance athletic performance. Current anti-doping education, focusing exclusively on rules and fair play, creates an increasingly widening gap between sports and the athletes' lives outside of sports. To avoid myopia, anti-doping programmes should adopt a holistic approach to prevent substance use in sports for the sake of the athletes' health as much as for the integrity of sports. PMID:21988896

  1. Predictors of Very Low Adherence with Medications for Osteoporosis: Towards Development of a Clinical Prediction Rule

    PubMed Central

    Solomon, Daniel H.; Brookhart, M. Alan; Tsao, Peter; Sundaresan, Devi; Andrade, Susan E.; Mazor, Kathleen; Yood, Robert

    2016-01-01

    Background Medication non-adherence is extremely common for osteoporosis, however no clear methods exist for identifying patients at-risk of this behavior. We developed a clinical prediction rule to predict medication non-adherence for women prescribed osteoporosis treatment. Methods Women undergoing bone mineral density testing and fulfilling WHO criteria for osteoporosis were invited to complete a questionnaire and then followed for one year. Adjusted logistic regression models were examined to identify variables associated with very low adherence (medication possession ratio < 20%). The weighted variables, based on the logistic regression, were summed and the score compared with the proportion of subjects with very low adherence. Results 142 women participated in the questionnaire and were prescribed an osteoporosis medication. After one year, 36% (n = 50) had very low adherence. Variables associated with very low adherence included: prior non-adherence with chronic medications, agreement that side effects are concerning, agreement that she is taking too many medications, lack of agreement that osteoporosis is a worry, lack of agreement that a fracture will cause disability, lack of agreement that medications help her stay active, and frequent use of alcohol. When combined into a summative score, 36 of the 58 subjects (62%) with 7 or more points on the score demonstrated very low adherence. This compares with 14 of the 84 (17%) subjects with fewer than 7 points (c-statistic = 0.74). Conclusions We developed a brief clinical prediction rule that was able to discriminate between women likely (and unlikely) to experience very low adherence with osteoporosis medications. PMID:20878392

  2. XYZ-SU3 breakings from Laplace sum rules at higher orders

    NASA Astrophysics Data System (ADS)

    Albuquerque, R.; Narison, S.; Rabetiarivony, D.; Randriamanatrika, G.

    2018-06-01

    We present new compact integrated expressions of SU3 breaking corrections to QCD spectral functions of heavy-light molecules and four-quark XY Z-like states at lowest order (LO) of perturbative (PT) QCD and up to d = 8 condensates of the Operator Product Expansion (OPE). Including next-to-next-to-leading order (N2LO) PT corrections in the chiral limit and next-to-leading order (NLO) SU3 PT corrections, which we have estimated by assuming the factorization of the four-quark spectral functions, we improve previous LO results for the XY Z-like masses and decay constants from QCD spectral sum rules (QSSR). Systematic errors are estimated from a geometric growth of the higher order PT corrections and from some partially known d = 8 nonperturbative contributions. Our optimal results, based on stability criteria, are summarized in Tables 18-21 while the 0++ and 1++ channels are compared with some existing LO results in Table 22. One can note that, in most channels, the SU3 corrections on the meson masses are tiny: ≤ 10% (respectively ≤ 3%) for the c (respectively b)-quark channel but can be large for the couplings ( ≤ 20%). Within the lowest dimension currents, most of the 0++ and 1++ states are below the physical thresholds while our predictions cannot discriminate a molecule from a four-quark state. A comparison with the masses of some experimental candidates indicates that the 0++ X(4500) might have a large D¯s0∗D s0∗ molecule component while an interpretation of the 0++ candidates as four-quark ground states is not supported by our findings. The 1++ X(4147) and X(4273) are compatible with the D¯s∗D s, D¯s0∗D s1 molecules and/or with the axial-vector Ac four-quark ground state. Our results for the 0‑±, 1‑± and for different beauty states can be tested in the future data. Finally, we revisit our previous estimates1 for the D¯0∗D 0∗ and D¯0∗D 1 and present new results for the D¯1D1.

  3. Collisional Line Mixing in Parallel and Perpendicular Bands of Linear Molecules by a Non-Markovian Approach

    NASA Astrophysics Data System (ADS)

    Buldyreva, Jeanna

    2013-06-01

    Reliable modeling of radiative transfer in planetary atmospheres requires accounting for the collisional line mixing effects in the regions of closely spaced vibrotational lines as well as in the spectral wings. Because of too high CPU cost of calculations from ab initio potential energy surfaces (if available), the relaxation matrix describing the influence of collisions is usually built by dynamical scaling laws, such as Energy-Corrected Sudden law. Theoretical approaches currently used for calculation of absorption near the band center are based on the impact approximation (Markovian collisions without memory effects) and wings are modeled via introducing some empirical parameters [1,2]. Operating with the traditional non-symmetric metric in the Liouville space, these approaches need corrections of the ECS-modeled relaxation matrix elements ("relaxation times" and "renormalization procedure") in order to ensure the fundamental relations of detailed balance and sum rules.We present an extension to the infrared absorption case of the previously developed [3] for rototranslational Raman scattering spectra of linear molecules non-Markovian approach of ECS-type. Owing to the specific choice of symmetrized metric in the Liouville space, the relaxation matrix is corrected for initial bath-molecule correlations and satisfies non-Markovian sum rules and detailed balance. A few standard ECS parameters determined by fitting to experimental linewidths of the isotropic Q-branch enable i) retrieval of these isolated-line parameters for other spectroscopies (IR absorption and anisotropic Raman scattering); ii) reproducing of experimental intensities of these spectra. Besides including vibrational angular momenta in the IR bending shapes, Coriolis effects are also accounted for. The efficiency of the method is demonstrated on OCS-He and CO_2-CO_2 spectra up to 300 and 60 atm, respectively. F. Niro, C. Boulet, and J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transf. 88, 483 (2004). H. Tran, C. Boulet, S. Stefani, M. Snels, and G. Piccioni, J. Quant. Spectrosc. Radiat. Transf. 112, 925 (2011). J. Buldyreva and L. Bonamy, Phys. Rev. A 60, 370-376 (1999).

  4. The generalized scheme-independent Crewther relation in QCD

    DOE PAGES

    Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang; ...

    2017-05-10

    The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton–nucleon scattering times the Adler function, defined from the cross section for electron–positron annihilation into hadrons, has no pQCD radiative corrections. The “Generalized Crewther Relation” relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (D ns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (C Bjp) at leading twist. A scheme-dependent Δ CSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both D ns and the inverse coefficient Cmore » $$-1\\atop{Bjp}$$ have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, $$\\hat{α}$$ d(Q)=Σ i≥1$$\\hat{α}^i\\atop{g1}$$(Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Lastly, similar scale-fixed commensurate scale relations also connect other physical observables at their physical momentum scales, thus providing convention-independent, fundamental precision tests of QCD.« less

  5. The generalized scheme-independent Crewther relation in QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang

    The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton–nucleon scattering times the Adler function, defined from the cross section for electron–positron annihilation into hadrons, has no pQCD radiative corrections. The “Generalized Crewther Relation” relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (D ns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (C Bjp) at leading twist. A scheme-dependent Δ CSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both D ns and the inverse coefficient Cmore » $$-1\\atop{Bjp}$$ have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, $$\\hat{α}$$ d(Q)=Σ i≥1$$\\hat{α}^i\\atop{g1}$$(Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Lastly, similar scale-fixed commensurate scale relations also connect other physical observables at their physical momentum scales, thus providing convention-independent, fundamental precision tests of QCD.« less

  6. The optimal algorithm for Multi-source RS image fusion.

    PubMed

    Fu, Wei; Huang, Shui-Guang; Li, Zeng-Shun; Shen, Hao; Li, Jun-Shuai; Wang, Peng-Yuan

    2016-01-01

    In order to solve the issue which the fusion rules cannot be self-adaptively adjusted by using available fusion methods according to the subsequent processing requirements of Remote Sensing (RS) image, this paper puts forward GSDA (genetic-iterative self-organizing data analysis algorithm) by integrating the merit of genetic arithmetic together with the advantage of iterative self-organizing data analysis algorithm for multi-source RS image fusion. The proposed algorithm considers the wavelet transform of the translation invariance as the model operator, also regards the contrast pyramid conversion as the observed operator. The algorithm then designs the objective function by taking use of the weighted sum of evaluation indices, and optimizes the objective function by employing GSDA so as to get a higher resolution of RS image. As discussed above, the bullet points of the text are summarized as follows.•The contribution proposes the iterative self-organizing data analysis algorithm for multi-source RS image fusion.•This article presents GSDA algorithm for the self-adaptively adjustment of the fusion rules.•This text comes up with the model operator and the observed operator as the fusion scheme of RS image based on GSDA. The proposed algorithm opens up a novel algorithmic pathway for multi-source RS image fusion by means of GSDA.

  7. Mammogram segmentation using maximal cell strength updation in cellular automata.

    PubMed

    Anitha, J; Peter, J Dinesh

    2015-08-01

    Breast cancer is the most frequently diagnosed type of cancer among women. Mammogram is one of the most effective tools for early detection of the breast cancer. Various computer-aided systems have been introduced to detect the breast cancer from mammogram images. In a computer-aided diagnosis system, detection and segmentation of breast masses from the background tissues is an important issue. In this paper, an automatic segmentation method is proposed to identify and segment the suspicious mass regions of mammogram using a modified transition rule named maximal cell strength updation in cellular automata (CA). In coarse-level segmentation, the proposed method performs an adaptive global thresholding based on the histogram peak analysis to obtain the rough region of interest. An automatic seed point selection is proposed using gray-level co-occurrence matrix-based sum average feature in the coarse segmented image. Finally, the method utilizes CA with the identified initial seed point and the modified transition rule to segment the mass region. The proposed approach is evaluated over the dataset of 70 mammograms with mass from mini-MIAS database. Experimental results show that the proposed approach yields promising results to segment the mass region in the mammograms with the sensitivity of 92.25% and accuracy of 93.48%.

  8. The rules of information aggregation and emergence of collective intelligent behavior.

    PubMed

    Bettencourt, Luís M A

    2009-10-01

    Information is a peculiar quantity. Unlike matter and energy, which are conserved by the laws of physics, the aggregation of knowledge from many sources can in fact produce more information (synergy) or less (redundancy) than the sum of its parts. This feature can endow groups with problem-solving strategies that are superior to those possible among noninteracting individuals and, in turn, may provide a selection drive toward collective cooperation and coordination. Here we explore the formal properties of information aggregation as a general principle for explaining features of social organization. We quantify information in terms of the general formalism of information theory, which also prescribes the rules of how different pieces of evidence inform the solution of a given problem. We then show how several canonical examples of collective cognition and coordination can be understood through principles of minimization of uncertainty (maximization of predictability) under information pooling over many individuals. We discuss in some detail how collective coordination in swarms, markets, natural language processing, and collaborative filtering may be guided by the optimal aggregation of information in social collectives. We also identify circumstances when these processes fail, leading, for example, to inefficient markets. The contrast to approaches to understand coordination and collaboration via decision and game theory is also briefly discussed. Copyright © 2009 Cognitive Science Society, Inc.

  9. High-lying Gamow-Teller excited states in the deformed nuclei,76Ge,82Se and N = 20 nuclei in the island of inversion by the Deformed QRPA (DQRPA)

    NASA Astrophysics Data System (ADS)

    Cheoun, Myung-Ki; Ha, Eunja

    2013-07-01

    With the advent of high analysis technology in detecting the Gamow-Teller (GT) excited states beyond one nucleon emission threshold, the quenching of the GT strength to the Ikeda sum rule (ISR) seems to be recovered by the high-lying (HL) GT states. We address that these HL GT excited states result from the smearing of the Fermi surface by the increase of the chemical potential owing to the deformation within a framework of the deformed quasi-particle random phase approximation (DQRPA). Detailed mechanism leading to the smearing is discussed, and comparisons to the available experimental data on 76Ge,82Se and N = 20 nuclei are shown to explain the strong peaks on the HL GT excited states.

  10. Static and dynamic efficiency of irreversible health care investments under alternative payment rules.

    PubMed

    Levaggi, R; Moretto, M; Pertile, P

    2012-01-01

    The paper studies the incentive for providers to invest in new health care technologies under alternative payment systems, when the patients' benefits are uncertain. If the reimbursement by the purchaser includes both a variable (per patient) and a lump-sum component, efficiency can be ensured both in the timing of adoption (dynamic) and the intensity of use of the technology (static). If the second instrument is unavailable, a trade-off may emerge between static and dynamic efficiency. In this context, we also discuss how the regulator could use control of the level of uncertainty faced by the provider as an instrument to mitigate the trade-off between static and dynamic efficiency. Finally, we calibrate the model to study a specific technology and estimate the cost of a regulatory failure. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Overlaps with arbitrary two-site states in the XXZ spin chain

    NASA Astrophysics Data System (ADS)

    Pozsgay, B.

    2018-05-01

    We present a conjectured exact formula for overlaps between the Bethe states of the spin-1/2 XXZ chain and generic two-site states. The result takes the same form as in the previously known cases: it involves the same ratio of two Gaudin-like determinants, and a product of single-particle overlap functions, which can be fixed using a combination of the quench action and quantum transfer matrix methods. Our conjecture is confirmed by numerical data from exact diagonalization. For one-site states, the formula is found to be correct even in chains with odd length. It is also pointed out that the ratio of the Gaudin-like determinants plays a crucial role in the overlap sum rule: it guarantees that in the thermodynamic limit there remains no term in the quench action.

  12. Bayesian Cherry Picking Revisited

    NASA Astrophysics Data System (ADS)

    Garrett, Anthony J. M.; Prozesky, Victor M.; Padayachee, J.

    2004-04-01

    Tins are marketed as containing nine cherries. To fill the tins, cherries are fed into a drum containing twelve holes through which air is sucked; either zero, one or two cherries stick in each hole. Dielectric measurements are then made on each hole. Three outcomes are distinguished: empty hole (which is reliable); one cherry (which indicates one cherry with high probability, or two cherries with a complementary low probability known from calibration); or an uncertain number (which also indicates one cherry or two, with known probabilities that are quite similar). A choice can be made from which holes simultaneously to discharge contents into the tin. The sum and product rules of probability are applied in a Bayesian manner to find the distribution for the number of cherries in the tin. Based on this distribution, ways are discussed to optimise the number to nine cherries.

  13. Fast self contained exponential random deviate algorithm

    NASA Astrophysics Data System (ADS)

    Fernández, Julio F.

    1997-03-01

    An algorithm that generates random numbers with an exponential distribution and is about ten times faster than other well known algorithms has been reported before (J. F. Fernández and J. Rivero, Comput. Phys. 10), 83 (1996). That algorithm requires input of uniform random deviates. We now report a new version of it that needs no input and is nearly as fast. The only limitation we predict thus far for the quality of the output is the amount of computer memory available. Performance results under various tests will be reported. The algorithm works in close analogy to the set up that is often used in statistical physics in order to obtain the Gibb's distribution. N numbers, that are are stored in N registers, change with time according to the rules of the algorithm, keeping their sum constant. Further details will be given.

  14. Beam-Energy Dependence of Directed Flow of Λ , Λ ¯, K±, Ks0, and ϕ in Au +Au Collisions

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adams, J. R.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Barish, K.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fujita, J.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Horvat, S.; Huang, X.; Huang, B.; Huang, T.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kapukchyan, D.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kim, C.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Krauth, L.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, C.; Li, X.; Li, Y.; Li, W.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, P.; Liu, H.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, Y. G.; Ma, L.; Ma, R.; Ma, G. L.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seto, R.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shi, Z.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, G.; Xie, W.; Xu, J.; Xu, Z.; Xu, Q. H.; Xu, Y. F.; Xu, N.; Yang, S.; Yang, Y.; Yang, C.; Yang, Q.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, J. B.; Zhang, J.; Zhang, S.; Zhang, Y.; Zhang, X. P.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, C.; Zhou, L.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration

    2018-02-01

    Rapidity-odd directed-flow measurements at midrapidity are presented for Λ , Λ ¯, K±, Ks0, and ϕ at √{sN N }=7.7 , 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV in Au +Au collisions recorded by the Solenoidal Tracker detector at the Relativistic Heavy Ion Collider. These measurements greatly expand the scope of data available to constrain models with differing prescriptions for the equation of state of quantum chromodynamics. Results show good sensitivity for testing a picture where flow is assumed to be imposed before hadron formation and the observed particles are assumed to form via coalescence of constituent quarks. The pattern of departure from a coalescence-inspired sum rule can be a valuable new tool for probing the collision dynamics.

  15. Filling-enforced nonsymmorphic Kondo semimetals in two dimensions

    NASA Astrophysics Data System (ADS)

    Pixley, J. H.; Lee, SungBin; Brandom, B.; Parameswaran, S. A.

    2017-08-01

    We study the competition between Kondo screening and frustrated magnetism on the nonsymmorphic Shastry-Sutherland Kondo lattice at a filling of two conduction electrons per unit cell. This model is known to host a set of gapless partially Kondo screened phases intermediate between the Kondo-destroyed paramagnet and the heavy Fermi liquid. Based on crystal symmetries, we argue that (i) both the paramagnet and the heavy Fermi liquid are semimetals protected by a glide symmetry; and (ii) partial Kondo screening breaks the symmetry, removing this protection and allowing the partially Kondo screened phase to be deformed into a Kondo insulator via a Lifshitz transition. We confirm these results using large-N mean-field theory and then use nonperturbative arguments to derive a generalized Luttinger sum rule constraining the phase structure of two-dimensional nonsymmorphic Kondo lattices beyond the mean-field limit.

  16. Structural, thermodynamic, and electrical properties of polar fluids and ionic solutions on a hypersphere: Theoretical aspects

    NASA Astrophysics Data System (ADS)

    Caillol, J. M.

    1992-01-01

    We generalize previous work [J. Chem. Phys. 94, 597 (1991)] on an alternative to the Ewald method for the numerical simulations of Coulomb fluids. This new method consists in using as a simulation cell the three-dimensional surface of a four-dimensional sphere, or hypersphere. Here, we consider the case of polar fluids and electrolyte solutions. We derive all the formal expressions which are needed for numerical simulations of such systems. It includes a derivation of the multipolar interactions on a hypersphere, the expansion of the pair-correlation functions on rotational invariants, the expression of the static dielectric constant of a polar liquid, the expressions of the frequency-dependent conductivity and dielectric constant of an ionic solution, and the derivation of the Stillinger-Lovett sum rules for conductive systems.

  17. |Vus| determination from inclusive strange tau decay and lattice HVP

    NASA Astrophysics Data System (ADS)

    Boyle, Peter; Hudspith, Renwick James; Izubuchi, Taku; Jüttner, Andreas; Lehner, Christoph; Lewis, Randy; Maltman, Kim; Ohki, Hiroshi; Portelli, Antonin; Spraggs, Matthew

    2018-03-01

    We propose and apply a novel approach to determining |Vus| which uses inclusive strange hadronic tau decay data and hadronic vacuum polarization functions (HVPs) computed on the lattice. The experimental and lattice data are related through dispersion relations which employ a class of weight functions having poles at space-like momentum. Implementing this approach using lattice data generated by the RBC/UKQCD collaboration, we show examples of weight functions which strongly suppress spectral integral contributions from the region where experimental data either have large uncertainties or do not exist while at the same time allowing accurate determinations of relevant lattice HVPs. Our result for |Vus| is in good agreement with determinations from K physics and 3-family CKM unitarity. The advantages of the new approach over the conventional sum rule analysis will be discussed.

  18. Observation of isoscalar and isovector dipole excitations in neutron-rich 20O

    NASA Astrophysics Data System (ADS)

    Nakatsuka, N.; Baba, H.; Aumann, T.; Avigo, R.; Banerjee, S. R.; Bracco, A.; Caesar, C.; Camera, F.; Ceruti, S.; Chen, S.; Derya, V.; Doornenbal, P.; Giaz, A.; Horvat, A.; Ieki, K.; Inakura, T.; Imai, N.; Kawabata, T.; Kobayashi, N.; Kondo, Y.; Koyama, S.; Kurata-Nishimura, M.; Masuoka, S.; Matsushita, M.; Michimasa, S.; Million, B.; Motobayashi, T.; Murakami, T.; Nakamura, T.; Ohnishi, T.; Ong, H. J.; Ota, S.; Otsu, H.; Ozaki, T.; Saito, A.; Sakurai, H.; Scheit, H.; Schindler, F.; Schrock, P.; Shiga, Y.; Shikata, M.; Shimoura, S.; Steppenbeck, D.; Sumikama, T.; Syndikus, I.; Takeda, H.; Takeuchi, S.; Tamii, A.; Taniuchi, R.; Togano, Y.; Tscheuschner, J.; Tsubota, J.; Wang, H.; Wieland, O.; Wimmer, K.; Yamaguchi, Y.; Yoneda, K.; Zenihiro, J.

    2017-05-01

    The isospin characters of low-energy dipole excitations in neutron-rich unstable nucleus 20O were investigated, for the first time in unstable nuclei. Two spectra obtained from a dominant isovector probe (20O + Au) and a dominant isoscalar probe (20O + α) were compared and analyzed by the distorted-wave Born approximation to extract independently the isovector and isoscalar dipole strengths. Two known 1- states with large isovector dipole strengths at energies of 5.36(5) MeV (11-) and 6.84(7) MeV (12-) were also excited by the isoscalar probe. These two states were found to have different isoscalar dipole strengths, 2.70(32)% (11-) and 0.67(12)% (12-), respectively, in exhaustion of the isoscalar dipole-energy-weighted sum rule. The difference in isoscalar strength indicated that they have different underlying structures.

  19. [Basic principles and results of brachytherapy in gynecological oncology].

    PubMed

    Kanaev, S V; Turkevich, V G; Baranov, S B; Savel'eva, V V

    2014-01-01

    The fundamental basics of contact radiation therapy (brachytherapy) for gynecological cancer are presented. During brachytherapy the principles of conformal radiotherapy should be implemented, the aim of which is to sum the maximum possible dose of radiation to the tumor and decrease the dose load in adjacent organs and tissues, which allows reducing the frequency of radiation damage at treatment of primary tumors. It is really feasible only on modern technological level, thanks to precision topometry preparation, optimal computer dosimetrical and radiobiological planning of each session and radiotherapy in general. Successful local and long-term results of the contact radiation therapy for cancer of cervix and endometrium are due to optimal anatomical and topometrical ratio of the tumor localization, radioactive sources, and also physical and radiobiological laws of distribution and effects of ionizing radiation, the dose load accounting rules.

  20. Shape coexistence and the role of axial asymmetry in 72Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayangeakaa, A. D.; Janssens, R. F.; Wu, C. Y.

    2016-01-22

    The quadrupole collectivity of low-lying states and the anomalous behavior of the0 + 2 and 2 + 3 levels in 72Ge are investigated via projectile multi-step Coulomb excitation with GRETINA and CHICO-2. A total of forty six E2 and M1 matrix elements connecting fourteen low-lying levels were determined using the least-squares search code, GOSIA. Evidence for triaxiality and shape coexistence, based on the model-independent shape invariants deduced from the Kumar–Cline sum rule, is presented. Moreover, these are interpreted using a simple two-state mixing model as well as multi-state mixing calculations carried out within the framework of the triaxial rotor model.more » Our results represent a significant milestone towards the understanding of the unusual structure of this nucleus.« less

  1. Ghulam Ali v. Ghulam Sarwar Naqvi (Mst.) [15 May 1989].

    PubMed

    1989-01-01

    In Pakistan, the respondent sought to claim under Islamic law her share of property left by her father to her and her 3 brothers. The brothers opposed her suit on the grounds that she had relinquished her claim because they had expended sums of money on her maintenance, her 2 marriages, and a murder case in which she was involved. The court upheld her claim, ruling that relinquishment of the kind argued by the brothers was against public policy and morality as well as Islamic law, which calls for brothers to protect the rights of their sisters. The court concluded its decision by urging that women be better informed of their rights, particularly those women living in rural areas, and that Islamic law, which protects women, be cleansed of alien customs and laws denigrating the status of women.

  2. The second hyperpolarizability of systems described by the space-fractional Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Dawson, Nathan J.; Nottage, Onassis; Kounta, Moussa

    2018-01-01

    The static second hyperpolarizability is derived from the space-fractional Schrödinger equation in the particle-centric view. The Thomas-Reiche-Kuhn sum rule matrix elements and the three-level ansatz determines the maximum second hyperpolarizability for a space-fractional quantum system. The total oscillator strength is shown to decrease as the space-fractional parameter α decreases, which reduces the optical response of a quantum system in the presence of an external field. This damped response is caused by the wavefunction dependent position and momentum commutation relation. Although the maximum response is damped, we show that the one-dimensional quantum harmonic oscillator is no longer a linear system for α ≠ 1, where the second hyperpolarizability becomes negative before ultimately damping to zero at the lower fractional limit of α → 1 / 2.

  3. Partial Photoneutron Cross Sections for 207,208Pb

    NASA Astrophysics Data System (ADS)

    Kondo, T.; Utsunomiya, H.; Goriely, S.; Iwamoto, C.; Akimune, H.; Yamagata, T.; Toyokawa, H.; Harada, H.; Kitatani, F.; Lui, Y.-W.; Hilaire, S.; Koning, A. J.

    2014-05-01

    Using linearly-polarized laser-Compton scattering γ-rays, partial E1 and M1 photoneutron cross sections along with total cross sections were determined for 207,208Pb at four energies near neutron threshold by measuring anisotropies in photoneutron emission. Separately, total photoneutron cross sections were measured for 207,208Pb with a high-efficiency 4π neutron detector. The partial cross section measurement provides direct evidence for the presence of pygmy dipole resonance (PDR) in 207,208Pb in the vicinity of neutron threshold. The strength of PDR amounts to 0.32%-0.42% of the Thomas-Reiche-Kuhn sum rule. Several μN2 units of B(M1)↑ strength were observed in 207,208Pb just above neutron threshold, which correspond to M1 cross sections less than 10% of the total photoneutron cross sections.

  4. Pascalutsa-Vanderhaeghen light-by-light sum rule from photon-photon collisions

    DOE PAGES

    Dai, Ling -Yun; Pennington, Michael R.

    2017-03-06

    Light-by-light scattering sumrules based on general field theory principles relate cross-sections with different helicities. In this paper the simplest sumrule is tested for themore » $I=0$ and $2$$ channels for \\lq\\lq real'' photon-photon collisions. Important contributions come from the long-lived pseudoscalar mesons and from di-meson intermediate states. The latest Amplitude Analysis of $$\\gamma\\gamma\\to\\pi\\pi, \\overline{K}K$ allows this contribution to be evaluated. Furthermore, we find that other multi-meson contributions up to 2.5~GeV are required to satisfy the sumrules. While data on three and four pion cross-sections exist, there is no information about their isospin and helicity decomposition. Nevertheless, we show the measured cross-sections are sufficiently large to ensure the sumrules for the helicity differences are likely fulfilled.« less

  5. Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS)

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Fei; Gan, Wei; Lu, Rong; Rao, Yi; Wu, Bao-Hua

    Sum frequency generation vibrational spectroscopy (SFG-VS) has been proven to be a uniquely effective spectroscopic technique in the investigation of molecular structure and conformations, as well as the dynamics of molecular interfaces. However, the ability to apply SFG-VS to complex molecular interfaces has been limited by the ability to abstract quantitative information from SFG-VS experiments. In this review, we try to make assessments of the limitations, issues and techniques as well as methodologies in quantitative orientational and spectral analysis with SFG-VS. Based on these assessments, we also try to summarize recent developments in methodologies on quantitative orientational and spectral analysis in SFG-VS, and their applications to detailed analysis of SFG-VS data of various vapour/neat liquid interfaces. A rigorous formulation of the polarization null angle (PNA) method is given for accurate determination of the orientational parameter D = /, and comparison between the PNA method with the commonly used polarization intensity ratio (PIR) method is discussed. The polarization and incident angle dependencies of the SFG-VS intensity are also reviewed, in the light of how experimental arrangements can be optimized to effectively abstract crucial information from the SFG-VS experiments. The values and models of the local field factors in the molecular layers are discussed. In order to examine the validity and limitations of the bond polarizability derivative model, the general expressions for molecular hyperpolarizability tensors and their expression with the bond polarizability derivative model for C3v, C2v and C∞v molecular groups are given in the two appendixes. We show that the bond polarizability derivative model can quantitatively describe many aspects of the intensities observed in the SFG-VS spectrum of the vapour/neat liquid interfaces in different polarizations. Using the polarization analysis in SFG-VS, polarization selection rules or guidelines are developed for assignment of the SFG-VS spectrum. Using the selection rules, SFG-VS spectra of vapour/diol, and vapour/n-normal alcohol (n˜ 1-8) interfaces are assigned, and some of the ambiguity and confusion, as well as their implications in previous IR and Raman assignment, are duly discussed. The ability to assign a SFG-VS spectrum using the polarization selection rules makes SFG-VS not only an effective and useful vibrational spectroscopy technique for interface studies, but also a complementary vibrational spectroscopy method in general condensed phase studies. These developments will put quantitative orientational and spectral analysis in SFG-VS on a more solid foundation. The formulations, concepts and issues discussed in this review are expected to find broad applications for investigations on molecular interfaces in the future.

  6. Taste Mixture Interactions: Suppression, Additivity, and the Predominance of Sweetness

    PubMed Central

    Green, Barry G.; Lim, Juyun; Osterhoff, Floor; Blacher, Karen; Nachtigal, Danielle

    2010-01-01

    Most of what is known about taste interactions has come from studies of binary mixtures. The primary goal of this study was to determine whether asymmetries in suppression between stimuli in binary mixtures predict the perception of tastes in more complex mixtures (e.g., ternary, quaternary mixtures). Also of interest was the longstanding question of whether overall taste intensity derives from the sum of the tastes perceived within a mixture (perceptual additivity) or from the sum of the perceived intensities of the individual stimuli (stimulus additivity). Using the general Labeled Magnitude Scale together with a sip-and-spit procedure, we asked subjects to rate overall taste intensity and the sweetness, sourness, saltiness and bitterness of approximately equi- intense sucrose, NaCl, citric acid and QSO4 stimuli presented alone and in all possible binary, ternary and quaternary mixtures. The results showed a consistent pattern of mixture suppression in which sucrose sweetness tended to be both the least suppressed quality and the strongest suppressor of other tastes. The overall intensity of mixtures was found to be predicted best by perceptual additivity. A second experiment that was designed to rule out potentially confounding effects of the order of taste ratings and the temperature of taste solutions replicated the main findings of the first experiment. Overall, the results imply that mixture suppression favors perception of sweet carbohydrates in foods at the expense of other potentially harmful ingredients, such as high levels of sodium (saltiness) and potential poisons or spoilage (bitterness, sourness). PMID:20800076

  7. Two-dimensional sum-frequency generation (2D SFG) spectroscopy: Summary of principles and its application to amyloid fiber monolayers

    PubMed Central

    Ghosh, Ayanjeet; Ho, Jia-Jung; Serrano, Arnaldo L.; Skoff, David R.; Zhang, Tianqi; Zanni, Martin T.

    2015-01-01

    By adding a mid-infrared pulse shaper to a sum-frequency generation (SFG) spectrometer, we have built a 2D SFG spectrometer capable of measuring spectra analogous to 2D IR spectra but with monolayer sensitivity and SFG selection rules. In this paper, we describe the experimental apparatus and provide an introduction to 2D SFG spectroscopy to help the reader interpret 2D SFG spectra. The main aim of this manuscript is to report 2D SFG spectra of the amyloid forming peptide FGAIL. FGAIL is a critical segment of the human islet amyloid polypeptide (hIAPP or amylin) that aggregates in people with type 2 diabetes. FGAIL is catalyzed into amyloid fibers by many types of surfaces. Here, we study the structure of FGAIL upon deposition onto a gold surface covered with a self-assembled monolayer of methyl 4-mercaptobenzoate (MMB) that produces an ester coating. FGAIL deposited on bare gold does not form ordered layers. The measured 2D SFG spectrum is consistent with amyloid fiber formation, exhibiting both the parallel (a+) and perpendicular (a−) symmetry modes associated with amyloid β-sheets. Cross peaks are observed between the ester stretches of the coating and the FGAIL peptides. Simulations are presented for two possible structures of FGAIL amyloid β-sheets that illustrates the sensitivity of the 2D SFG spectra to structure and orientation. These results provide some of the first molecular insights into surface catalyzed amyloid fiber structure. PMID:25611039

  8. Two-dimensional sum-frequency generation (2D SFG) spectroscopy: summary of principles and its application to amyloid fiber monolayers.

    PubMed

    Ghosh, Ayanjeet; Ho, Jia-Jung; Serrano, Arnaldo L; Skoff, David R; Zhang, Tianqi; Zanni, Martin T

    2015-01-01

    By adding a mid-infrared pulse shaper to a sum-frequency generation (SFG) spectrometer, we have built a 2D SFG spectrometer capable of measuring spectra analogous to 2D IR spectra but with monolayer sensitivity and SFG selection rules. In this paper, we describe the experimental apparatus and provide an introduction to 2D SFG spectroscopy to help the reader interpret 2D SFG spectra. The main aim of this manuscript is to report 2D SFG spectra of the amyloid forming peptide FGAIL. FGAIL is a critical segment of the human islet amyloid polypeptide (hIAPP or amylin) that aggregates in people with type 2 diabetes. FGAIL is catalyzed into amyloid fibers by many types of surfaces. Here, we study the structure of FGAIL upon deposition onto a gold surface covered with a self-assembled monolayer of methyl-4-mercaptobenzoate (MMB) that produces an ester coating. FGAIL deposited on bare gold does not form ordered layers. The measured 2D SFG spectrum is consistent with amyloid fiber formation, exhibiting both the parallel (a+) and perpendicular (a-) symmetry modes associated with amyloid β-sheets. Cross peaks are observed between the ester stretches of the coating and the FGAIL peptides. Simulations are presented for two possible structures of FGAIL amyloid β-sheets that illustrate the sensitivity of the 2D SFG spectra to structure and orientation. These results provide some of the first molecular insights into surface catalyzed amyloid fiber structure.

  9. Is realistic neuronal modeling realistic?

    PubMed Central

    Almog, Mara

    2016-01-01

    Scientific models are abstractions that aim to explain natural phenomena. A successful model shows how a complex phenomenon arises from relatively simple principles while preserving major physical or biological rules and predicting novel experiments. A model should not be a facsimile of reality; it is an aid for understanding it. Contrary to this basic premise, with the 21st century has come a surge in computational efforts to model biological processes in great detail. Here we discuss the oxymoronic, realistic modeling of single neurons. This rapidly advancing field is driven by the discovery that some neurons don't merely sum their inputs and fire if the sum exceeds some threshold. Thus researchers have asked what are the computational abilities of single neurons and attempted to give answers using realistic models. We briefly review the state of the art of compartmental modeling highlighting recent progress and intrinsic flaws. We then attempt to address two fundamental questions. Practically, can we realistically model single neurons? Philosophically, should we realistically model single neurons? We use layer 5 neocortical pyramidal neurons as a test case to examine these issues. We subject three publically available models of layer 5 pyramidal neurons to three simple computational challenges. Based on their performance and a partial survey of published models, we conclude that current compartmental models are ad hoc, unrealistic models functioning poorly once they are stretched beyond the specific problems for which they were designed. We then attempt to plot possible paths for generating realistic single neuron models. PMID:27535372

  10. Methodology for speech assessment in the Scandcleft project--an international randomized clinical trial on palatal surgery: experiences from a pilot study.

    PubMed

    Lohmander, A; Willadsen, E; Persson, C; Henningsson, G; Bowden, M; Hutters, B

    2009-07-01

    To present the methodology for speech assessment in the Scandcleft project and discuss issues from a pilot study. Description of methodology and blinded test for speech assessment. Speech samples and instructions for data collection and analysis for comparisons of speech outcomes across five included languages were developed and tested. PARTICIPANTS AND MATERIALS: Randomly selected video recordings of 10 5-year-old children from each language (n = 50) were included in the project. Speech material consisted of test consonants in single words, connected speech, and syllable chains with nasal consonants. Five experienced speech and language pathologists participated as observers. Narrow phonetic transcription of test consonants translated into cleft speech characteristics, ordinal scale rating of resonance, and perceived velopharyngeal closure (VPC). A velopharyngeal composite score (VPC-sum) was extrapolated from raw data. Intra-agreement comparisons were performed. Range for intra-agreement for consonant analysis was 53% to 89%, for hypernasality on high vowels in single words the range was 20% to 80%, and the agreement between the VPC-sum and the overall rating of VPC was 78%. Pooling data of speakers of different languages in the same trial and comparing speech outcome across trials seems possible if the assessment of speech concerns consonants and is confined to speech units that are phonetically similar across languages. Agreed conventions and rules are important. A composite variable for perceptual assessment of velopharyngeal function during speech seems usable; whereas, the method for hypernasality evaluation requires further testing.

  11. Galileon gravity in light of ISW, CMB, BAO and H0 data

    NASA Astrophysics Data System (ADS)

    Renk, Janina; Zumalacárregui, Miguel; Montanari, Francesco; Barreira, Alexandre

    2017-10-01

    Cosmological models with Galileon gravity are an alternative to the standard ΛCDM paradigm with testable predictions at the level of its self-accelerating solutions for the expansion history, as well as large-scale structure formation. Here, we place constraints on the full parameter space of these models using data from the cosmic microwave background (CMB) (including lensing), baryonic acoustic oscillations (BAO) and the Integrated Sachs-Wolfe (ISW) effect. We pay special attention to the ISW effect for which we use the cross-spectra, ClTg, of CMB temperature maps and foreground galaxies from the WISE survey. The sign of ClTg is set by the time evolution of the lensing potential in the redshift range of the galaxy sample: it is positive if the potential decays (like in ΛCDM), negative if it deepens. We constrain three subsets of Galileon gravity separately known as the Cubic, Quartic and Quintic Galileons. The cubic Galileon model predicts a negative ClTg and exhibits a 7.8σ tension with the data, which effectively rules it out. For the quartic and quintic models the ISW data also rule out a significant portion of the parameter space but permit regions where the goodness-of-fit is comparable to ΛCDM. The data prefers a non zero sum of the neutrino masses (∑mν ≈ 0.5eV) with ~ 5σ significance in these models. The best-fitting models have values of H0 consistent with local determinations, thereby avoiding the tension that exists in ΛCDM. We also identify and discuss a ~ 2σ tension that Galileon gravity exhibits with recent BAO measurements. Our analysis shows overall that Galileon cosmologies cannot be ruled out by current data but future lensing, BAO and ISW data hold strong potential to do so.

  12. A clinical score to obviate the need for cardiac stress testing in patients with acute chest pain and negative troponins.

    PubMed

    Bouzas-Mosquera, Alberto; Peteiro, Jesús; Broullón, Francisco J; Álvarez-García, Nemesio; Maneiro-Melón, Nicolás; Pardo-Martinez, Patricia; Sagastagoitia-Fornie, Marta; Martínez, Dolores; Yáñez, Juan C; Vázquez-Rodríguez, José Manuel

    2016-08-01

    Although cardiac stress testing may help establish the safety of early discharge in patients with suspected acute coronary syndromes and negative troponins, more cost-effective strategies are necessary. We aimed to develop a clinical prediction rule to safely obviate the need for cardiac stress testing in this setting. A decision rule was derived in a prospective cohort of 3001 patients with acute chest pain and negative troponins, and validated in a set of 1473 subjects. The primary end point was a composite of positive cardiac stress testing (in the absence of a subsequent negative coronary angiogram), positive coronary angiography, or any major coronary events within 3 months. A score chart was built based on 7 variables: male sex (+2), age (+1 per decade from the fifth decade), diabetes mellitus (+2), hypercholesterolemia (+1), prior coronary revascularization (+2), type of chest pain (typical angina, +5; non-specific chest pain, -3), and non-diagnostic repolarization abnormalities (+2). In the validation set, the model showed good discrimination (c statistic = 0.84; 95% confidence interval, 0.82-0.87) and calibration (Hosmer-Lemeshow goodness-of-fit test, P= .34). If stress tests were avoided in patients in the validation sample with a sum score of 0 or lower, the number of referrals would be reduced by 23.4%, yielding a negative predictive value of 98.8% (95% confidence interval, 97.0%-99.7%). This novel prediction rule based on a combination of readily available clinical characteristics may be a valuable tool to decide whether stress testing can be reliably avoided in patients with acute chest pain and negative troponins. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. 7 CFR 42.132 - Determining cumulative sum values.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the previous subgroup. (2) Subtract the subgroup tolerance (“T”). (3) The CuSum value is reset in the... 7 Agriculture 2 2010-01-01 2010-01-01 false Determining cumulative sum values. 42.132 Section 42... Determining cumulative sum values. (a) The parameters for the on-line cumulative sum sampling plans for AQL's...

  14. 20 CFR 234.12 - 1937 Act lump-sum death payment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false 1937 Act lump-sum death payment. 234.12 Section 234.12 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD RETIREMENT ACT LUMP-SUM PAYMENTS Lump-Sum Death Payment § 234.12 1937 Act lump-sum death payment. (a) The 1937 Act...

  15. 20 CFR 234.12 - 1937 Act lump-sum death payment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false 1937 Act lump-sum death payment. 234.12 Section 234.12 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD RETIREMENT ACT LUMP-SUM PAYMENTS Lump-Sum Death Payment § 234.12 1937 Act lump-sum death payment. (a) The 1937 Act...

  16. 20 CFR 234.12 - 1937 Act lump-sum death payment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false 1937 Act lump-sum death payment. 234.12 Section 234.12 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD RETIREMENT ACT LUMP-SUM PAYMENTS Lump-Sum Death Payment § 234.12 1937 Act lump-sum death payment. (a) The 1937 Act...

  17. 20 CFR 234.12 - 1937 Act lump-sum death payment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true 1937 Act lump-sum death payment. 234.12 Section 234.12 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD RETIREMENT ACT LUMP-SUM PAYMENTS Lump-Sum Death Payment § 234.12 1937 Act lump-sum death payment. (a) The 1937 Act...

  18. 20 CFR 234.12 - 1937 Act lump-sum death payment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true 1937 Act lump-sum death payment. 234.12 Section 234.12 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD RETIREMENT ACT LUMP-SUM PAYMENTS Lump-Sum Death Payment § 234.12 1937 Act lump-sum death payment. (a) The 1937 Act...

  19. The evolution of high summit metabolism and cold tolerance in birds and its impact on present-day distributions.

    PubMed

    Swanson, David L; Garland, Theodore

    2009-01-01

    Summit metabolic rate (M(sum), maximum cold-induced metabolic rate) is positively correlated with cold tolerance in birds, suggesting that high M(sum) is important for residency in cold climates. However, the phylogenetic distribution of high M(sum) among birds and the impact of its evolution on current distributions are not well understood. Two potential adaptive hypotheses might explain the phylogenetic distribution of high M(sum) among birds. The cold adaptation hypothesis contends that species wintering in cold climates should have higher M(sum) than species wintering in warmer climates. The flight adaptation hypothesis suggests that volant birds might be capable of generating high M(sum) as a byproduct of their muscular capacity for flight; thus, variation in M(sum) should be associated with capacity for sustained flight, one indicator of which is migration. We collected M(sum) data from the literature for 44 bird species and conducted both conventional and phylogenetically informed statistical analyses to examine the predictors of M(sum) variation. Significant phylogenetic signal was present for log body mass, log mass-adjusted M(sum), and average temperature in the winter range. In multiple regression models, log body mass, winter temperature, and clade were significant predictors of log M(sum). These results are consistent with a role for climate in determining M(sum) in birds, but also indicate that phylogenetic signal remains even after accounting for associations indicative of adaptation to winter temperature. Migratory strategy was never a significant predictor of log M(sum) in multiple regressions, a result that is not consistent with the flight adaptation hypothesis.

  20. 46 CFR 45.65 - Excess sheer limitations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Midship 1 _______ Sum of Aft Products After Standard Sheer .2665L+26.651 _______ Difference: Sum-STD... 1 _______ Sum of Fwd Products Fwd Standard Sheer .5330L+53.301 _______ Difference: Sum-STD...

  1. 46 CFR 45.65 - Excess sheer limitations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Midship 1 _______ Sum of Aft Products After Standard Sheer .2665L+26.651 _______ Difference: Sum-STD... 1 _______ Sum of Fwd Products Fwd Standard Sheer .5330L+53.301 _______ Difference: Sum-STD...

  2. 46 CFR 45.65 - Excess sheer limitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Midship 1 _______ Sum of Aft Products After Standard Sheer .2665L+26.651 _______ Difference: Sum-STD... 1 _______ Sum of Fwd Products Fwd Standard Sheer .5330L+53.301 _______ Difference: Sum-STD...

  3. 46 CFR 45.65 - Excess sheer limitations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Midship 1 _______ Sum of Aft Products After Standard Sheer .2665L+26.651 _______ Difference: Sum-STD... 1 _______ Sum of Fwd Products Fwd Standard Sheer .5330L+53.301 _______ Difference: Sum-STD...

  4. 46 CFR 45.65 - Excess sheer limitations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Midship 1 _______ Sum of Aft Products After Standard Sheer .2665L+26.651 _______ Difference: Sum-STD... 1 _______ Sum of Fwd Products Fwd Standard Sheer .5330L+53.301 _______ Difference: Sum-STD...

  5. Light-front spin-dependent spectral function and nucleon momentum distributions for a three-body system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Dotto, Alessio; Pace, Emanuele; Salme, Giovanni

    Poincare covariant definitions for the spin-dependent spectral function and for the momentum distributions within the light-front Hamiltonian dynamics are proposed for a three-fermion bound system, starting from the light-front wave function of the system. The adopted approach is based on the Bakamjian–Thomas construction of the Poincaré generators, which allows one to easily import the familiar and wide knowledge on the nuclear interaction into a light-front framework. The proposed formalism can find useful applications in refined nuclear calculations, such as those needed for evaluating the European Muon Collaboration effect or the semi-inclusive deep inelastic cross sections with polarized nuclear targets, sincemore » remarkably the light-front unpolarized momentum distribution by definition fulfills both normalization and momentum sum rules. As a result, also shown is a straightforward generalization of the definition of the light-front spectral function to an A-nucleon system.« less

  6. Broken Replica Symmetry Bounds in the Mean Field Spin Glass Model

    NASA Astrophysics Data System (ADS)

    Guerra, Francesco

    By using a simple interpolation argument, in previous work we have proven the existence of the thermodynamic limit, for mean field disordered models, including the Sherrington-Kirkpatrick model, and the Derrida p-spin model. Here we extend this argument in order to compare the limiting free energy with the expression given by the Parisi Ansatz, and including full spontaneous replica symmetry breaking. Our main result is that the quenched average of the free energy is bounded from below by the value given in the Parisi Ansatz, uniformly in the size of the system. Moreover, the difference between the two expressions is given in the form of a sum rule, extending our previous work on the comparison between the true free energy and its replica symmetric Sherrington-Kirkpatrick approximation. We give also a variational bound for the infinite volume limit of the ground state energy per site.

  7. Self-regulation and selective exposure: the impact of depleted self-regulation resources on confirmatory information processing.

    PubMed

    Fischer, Peter; Greitemeyer, Tobias; Frey, Dieter

    2008-03-01

    In the present research, the authors investigated the impact of self-regulation resources on confirmatory information processing, that is, the tendency of individuals to systematically prefer standpoint-consistent information to standpoint-inconsistent information in information evaluation and search. In 4 studies with political and economic decision-making scenarios, it was consistently found that individuals with depleted self-regulation resources exhibited a stronger tendency for confirmatory information processing than did individuals with nondepleted self-regulation resources. Alternative explanations based on processes of ego threat, cognitive load, and mood were ruled out. Mediational analyses suggested that individuals with depleted self-regulation resources experienced increased levels of commitment to their own standpoint, which resulted in increased confirmatory information processing. In sum, the impact of ego depletion on confirmatory information search seems to be more motivational than cognitive in nature.

  8. Intercalated europium metal in epitaxial graphene on SiC

    DOE PAGES

    Anderson, Nathaniel; Hupalo, Myron; Keavney, David; ...

    2017-10-25

    X-ray magnetic circular dichroism (XMCD) reveals the magnetic properties of intercalated europium metal under graphene on SiC(0001). Intercalation of Eu nanoclusters (average size 2.5 nm) between graphene and SiC substate are formed by deposition of Eu on epitaxially grown graphene that is subsequently annealed at various temperatures while keeping the integrity of the graphene layer. Using sum-rules analysis of the XMCD of Eu M 4,5 edges at T = 15 K, our samples show paramagnetic-like behavior with distinct anomaly at T ≈ 90 K, which may be related to the Nèel transition, T N = 91 K, of bulk metalmore » Eu. Here, we find no evidence of ferromagnetism due to EuO or antiferromagnetism due to Eu 2 O 3, indicating that the graphene layer protects the intercalated metallic Eu against oxidation over months of exposure to atmospheric environment.« less

  9. Vector and axial-vector charmoniumlike states

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Zhu, Shi-Lin

    2011-02-01

    After constructing all the tetraquark interpolating currents with JPC=1-+, 1--, 1++ and 1+- in a systematic way, we investigate the two-point correlation functions to extract the masses of the charmoniumlike states with QCD sum rule. For the 1-- qcq¯c¯ charmoniumlike state, mX=4.6˜4.7GeV, which implies a possible tetraquark interpretation for the state Y(4660). The masses for both the 1++ qcq¯c¯ and scs¯c¯ charmoniumlike states are around 4.0˜4.2GeV, which are slightly above the mass of X(3872). For the 1-+ and 1+- qcq¯c¯ charmoniumlike states, the extracted masses are around 4.5˜4.7GeV and 4.0˜4.2GeV, respectively. As a by-product, the bottomoniumlike states are also studied. We also discuss the possible decay modes and experimental search of the charmoniumlike states.

  10. Central charge from adiabatic transport of cusp singularities in the quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Can, Tankut

    2017-04-01

    We study quantum Hall (QH) states on a punctured Riemann sphere. We compute the Berry curvature under adiabatic motion in the moduli space in the large N limit. The Berry curvature is shown to be finite in the large N limit and controlled by the conformal dimension of the cusp singularity, a local property of the mean density. Utilizing exact sum rules obtained from a Ward identity, we show that for the Laughlin wave function, the dimension of a cusp singularity is given by the central charge, a robust geometric response coefficient in the QHE. Thus, adiabatic transport of curvature singularities can be used to determine the central charge of QH states. We also consider the effects of threaded fluxes and spin-deformed wave functions. Finally, we give a closed expression for all moments of the mean density in the integer QH state on a punctured disk.

  11. Mass and residue of Λ (1405) as hybrid and excited ordinary baryon

    NASA Astrophysics Data System (ADS)

    Azizi, K.; Barsbay, B.; Sundu, H.

    2018-03-01

    The nature of the Λ (1405) has been a puzzle for decades, whether it is a standard three-quark baryon, a hybrid baryon or a baryon-meson molecule. More information on the decay channels of this particle and its strong, weak and electromagnetic interactions with other hadrons is needed to clarify its internal organization. The residue of this particle is one of the main inputs in investigation of its decay properties in many approaches. We calculate the mass and residue of the Λ (1405) state in the context of QCD sum rules considering it as a hybrid baryon with three-quark-one-gluon content as well as an excited ordinary baryon with quantum numbers I(JP)=0(1/2-). The comparison of the obtained results on the mass with the average experimental value presented in PDG allows us to interpret this state as a hybrid baryon.

  12. Beam-Energy Dependence of Directed Flow of Λ , Λ ¯ , K ± , K s 0 , and φ in Au + Au Collisions

    DOE PAGES

    Adamczyk, L.; Adams, J. R.; Adkins, J. K.; ...

    2018-02-06

    Rmore » apidity-odd directed-flow measurements at midrapidity are presented for Λ , Λ ¯ , K ± , K s 0 , and φ at √ sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV in Au + Au collisions recorded by the Solenoidal Tracker detector at the elativistic Heavy Ion Collider. These measurements greatly expand the scope of data available to constrain models with differing prescriptions for the equation of state of quantum chromodynamics. esults show good sensitivity for testing a picture where flow is assumed to be imposed before hadron formation and the observed particles are assumed to form via coalescence of constituent quarks. The pattern of departure from a coalescence-inspired sum rule can be a valuable new tool for probing the collision dynamics.« less

  13. Conformal manifolds: ODEs from OPEs

    NASA Astrophysics Data System (ADS)

    Behan, Connor

    2018-03-01

    The existence of an exactly marginal deformation in a conformal field theory is very special, but it is not well understood how this is reflected in the allowed dimensions and OPE coefficients of local operators. To shed light on this question, we compute perturbative corrections to several observables in an abstract CFT, starting with the beta function. This yields a sum rule that the theory must obey in order to be part of a conformal manifold. The set of constraints relating CFT data at different values of the coupling can in principle be written as a dynamical system that allows one to flow arbitrarily far. We begin the analysis of it by finding a simple form for the differential equations when the spacetime and theory space are both one-dimensional. A useful feature we can immediately observe is that our system makes it very difficult for level crossing to occur.

  14. Modified magnetism within the coherence volume of superconducting Fe1+δSexTe1-x

    NASA Astrophysics Data System (ADS)

    Leiner, J.; Thampy, V.; Christianson, A. D.; Abernathy, D. L.; Stone, M. B.; Lumsden, M. D.; Sefat, A. S.; Sales, B. C.; Hu, Jin; Mao, Zhiqiang; Bao, Wei; Broholm, C.

    2014-09-01

    Neutron scattering is used to probe magnetic interactions as superconductivity develops in optimally doped Fe1+δSexTe1-x. Applying the first moment sum rule to comprehensive neutron scattering data, we extract the change in magnetic exchange energy Δ [JR -R'] in the superconducting state referenced to the normal state. Oscillatory changes are observed for Fe-Fe displacements |ΔR |<ξ, where ξ =1.3(1) nm is the superconducting coherence length. Dominated by a large reduction in the second nearest neighbor exchange energy [-1.2(2) meV/Fe], the overall reduction in magnetic interaction energy is Δ=-0.31(9) meV/Fe. Comparison to the superconducting condensation energy ΔESC=-0.013(1) meV/Fe, which we extract from specific heat data, suggests the modified magnetism we probe drives superconductivity in Fe1+δSexTe1-x.

  15. Identifying decohering paths in closed quantum systems

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas

    1990-01-01

    A specific proposal is discussed for how to identify decohering paths in a wavefunction of the universe. The emphasis is on determining the correlations among subsystems and then considering how these correlations evolve. The proposal is similar to earlier ideas of Schroedinger and of Zeh, but in other ways it is closer to the decoherence functional of Griffiths, Omnes, and Gell-Mann and Hartle. There are interesting differences with each of these which are discussed. Once a given coarse-graining is chosen, the candidate paths are fixed in this scheme, and a single well defined number measures the degree of decoherence for each path. The normal probability sum rules are exactly obeyed (instantaneously) by these paths regardless of the level of decoherence. Also briefly discussed is how one might quantify some other aspects of classicality. The important role that concrete calculations play in testing this and other proposals is stressed.

  16. Application of the weighted-density approximation to the accurate description of electron-positron correlation effects in materials

    NASA Astrophysics Data System (ADS)

    Callewaert, Vincent; Saniz, Rolando; Barbiellini, Bernardo; Bansil, Arun; Partoens, Bart

    2017-08-01

    We discuss positron-annihilation lifetimes for a set of illustrative bulk materials within the framework of the weighted-density approximation (WDA). The WDA can correctly describe electron-positron correlations in strongly inhomogeneous systems, such as surfaces, where the applicability of (semi-)local approximations is limited. We analyze the WDA in detail and show that the electrons which cannot screen external charges efficiently, such as the core electrons, cannot be treated accurately via the pair correlation of the homogeneous electron gas. We discuss how this problem can be addressed by reducing the screening in the homogeneous electron gas by adding terms depending on the gradient of the electron density. Further improvements are obtained when core electrons are treated within the LDA and the valence electron using the WDA. Finally, we discuss a semiempirical WDA-based approach in which a sum rule is imposed to reproduce the experimental lifetimes.

  17. Theoretical evaluation of the radiative lifetimes of LiCs and NaCs in the A1Σ+ state

    NASA Astrophysics Data System (ADS)

    Mabrouk, N.; Berriche, H.

    2017-08-01

    Calculations of the adiabatic potential energy curves and the transition dipole moments between the ground (A1Σ+) and the first excited (A1Σ+) states have been determined for the LiCs and NaCs molecules. The calculations are performed using an ab initio approach based on non-empirical pseudopotentials for Cs+, Li+ and Na+ cores, parameterized l-dependent polarization potentials and full configuration interaction calculations. The potential energy curves and the transition dipole moment are used to estimate the radiative lifetimes of the vibrational levels of the A+Σ+ state using the Franck-Condon (FC) approximation and the approximate sum rule method. The radiative lifetimes associated with the A+Σ+ state are presented here for the first time. These data can help experimentalists to optimize photoassociative formation of ultracold molecules and their longevity in a trap or in an optical lattice.

  18. Aspects of spatial dispersion in the optical properties of a vacuum-dielectric interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.L.; Rimbey, P.R.

    1976-09-15

    We have examined the relationship between the polarizibility for a two-phase (vacuum-dielectric) system and the use of additional boundary conditions and the like, as regards the response of systems exhibiting spatial dispersion. As a consequence we are able to derive information about induced-charge and current densities and the continuity of the field quantities across the interface. It is shown that it is not possible to resonantly excite longitudinal bulk modes with incident light in the formalism of Rimbey-Mahan. We have derived sum rules in wave-vector space on bulk polaritions in homogeneous isotropic systems. In the case of nonhomogeneous perfect crystalsmore » in which the bulk response is described by the matrix epsilon-bar (Q, Q'), we have solved formally for the surface impedance in terms of an assumed arbitrary epsilon-bar (Q, Q'), by means of an extension of the Fuchs-Kliewer formalism. (AIP)« less

  19. Beam-Energy Dependence of Directed Flow of Λ , Λ ¯ , K ± , K s 0 , and φ in Au + Au Collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamczyk, L.; Adams, J. R.; Adkins, J. K.

    Rmore » apidity-odd directed-flow measurements at midrapidity are presented for Λ , Λ ¯ , K ± , K s 0 , and φ at √ sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV in Au + Au collisions recorded by the Solenoidal Tracker detector at the elativistic Heavy Ion Collider. These measurements greatly expand the scope of data available to constrain models with differing prescriptions for the equation of state of quantum chromodynamics. esults show good sensitivity for testing a picture where flow is assumed to be imposed before hadron formation and the observed particles are assumed to form via coalescence of constituent quarks. The pattern of departure from a coalescence-inspired sum rule can be a valuable new tool for probing the collision dynamics.« less

  20. Laser spectroscopic probing of coexisting superfluid and insulating states of an atomic Bose–Hubbard system

    PubMed Central

    Kato, Shinya; Inaba, Kensuke; Sugawa, Seiji; Shibata, Kosuke; Yamamoto, Ryuta; Yamashita, Makoto; Takahashi, Yoshiro

    2016-01-01

    A system of ultracold atoms in an optical lattice has been regarded as an ideal quantum simulator for a Hubbard model with extremely high controllability of the system parameters. While making use of the controllability, a comprehensive measurement across the weakly to strongly interacting regimes in the Hubbard model to discuss the quantum many-body state is still limited. Here we observe a great change in the excitation energy spectra across the two regimes in an atomic Bose–Hubbard system by using a spectroscopic technique, which can resolve the site occupancy in the lattice. By quantitatively comparing the observed spectra and numerical simulations based on sum rule relations and a binary fluid treatment under a finite temperature Gutzwiller approximation, we show that the spectra reflect the coexistence of a delocalized superfluid state and a localized insulating state across the two regimes. PMID:27094083

Top