Photoelectric charging of partially sunlit dielectric surfaces in space
NASA Technical Reports Server (NTRS)
De, B. R.; Criswell, D. R.
1977-01-01
Sunlight-shadow effects may substantially alter the charging situation for a dielectric surface. The sunlight-shadow boundary tends to be the site of intense multipole electric fields. Charges on a sunlit dielectric surface have a finite effective mobility. The charge distribution tends to resemble that on a conducting surface. A boundary between a conducting and a dielectric surface may not represent a conductivity discontinuity when this boundary is sunlit; charges may migrate at a nontrivial rate across the boundary. A contracting or expanding sunlit area may experience a supercharging.
Coming of Age: Polarization as a Probe of Plant Canopy Water Status
NASA Astrophysics Data System (ADS)
Vanderbilt, V. C.; Daughtry, C. S. T.; Kupinski, M.; Bradley, C. L.; Dahlgren, R. P.
2015-12-01
We tested the hypothesis that the relative water content (RWC) of the sunlit leaves in a plant canopy may be estimated from polarized canopy imagery. Recently (IGARSS, July 27-31, 2015, Milan, Italy), we reported the results of laboratory polarization measurements of single detached leaves during dry down. We found that RWC was linearly related to the ratio of the reflectance of the interior of the leaf and the leaf transmittance. Here we report application of the laboratory results to estimate RWC for sunlit leaves in a plant canopy. Using a commercial-off-the-shelf (COTS) Nikon 810 camera with Nikkor 300 mm lens and Polaroid type HN-22 linear polarizer, we photographed in the principle plane a plant canopy displaying a gradient of water stress and collected, at each of multiple points along the gradient, two images, one with the polarization filter oriented for maximum scene response and a second with the filter oriented for minimum scene response. We converted the digital values in the two images to reflectance factor with reference to images of a white, flat, horizontal Spectralon surface. We classified the polarization imagery, identifying reflecting leaves, transmitting leaves, other sunlit vegetation and shadows. For each image pair we normalized the leaf internal reflectance by dividing by the cosine of the angle of incidence of the sunlight on the leaf, selected the leaf maximum transmittance in the scene and divided to obtain the ratio reflectance/transmittance, which we compared with leaf RWC. We determined the leaf relative water content by harvesting a section of leaf and immediately placing it in a sealed container in an ice chest. Later in the laboratory the leaf sample was weighed, rehydrated, weighed, dried and again weighed. RWC was determined using the standard formula.Our experimental results support our hypothesis, suggesting that the RWC of sunlit leaves in a plant canopy may be estimated from analysis of polarization imagery collected by a COTS camera system. Unlike remotely sensed estimates of canopy equivalent water thickness, our estimates of the RWC of sunlit canopy leaves provide leaf physiological information. We propose RWC estimates based upon sunlit leaves are more relevant to assessing the water status of a plant canopy than would be RWC estimates based upon large FOV canopy measurements.
Coming of Age: Polarization as a Probe of Plant Canopy Water Status
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern C.; Daughtry, Craig S. T.; Kupinski, Meredith; Bradley, Christine Lavella; Dahlgren, Robert P.
2015-01-01
We tested the hypothesis that the relative water content (RWC) of the sunlit leaves in a plant canopy may be estimated from polarized canopy imagery. Recently (IGARSS, July 27-31, 2015, Milan, Italy), we reported the results of laboratory polarization measurements of single detached leaves during dry down. We found that RWC was linearly related to the ratio of the reflectance of the interior of the leaf and the leaf transmittance. Here we report application of the laboratory results to estimate RWC for sunlit leaves in a plant canopy. Using a commercial-off-the-shelf (COTS) Nikon 810 camera with Nikkor 300 mm lens and Polaroid type HN-22 linear polarizer, we photographed in the principle plane a plant canopy displaying a gradient of water stress and collected, at each of multiple points along the gradient, two images, one with the polarization filter oriented for maximum scene response and a second with the filter oriented for minimum scene response. We converted the digital values in the two images to reflectance factor with reference to images of a white, flat, horizontal Spectralon surface. We classified the polarization imagery, identifying reflecting leaves, transmitting leaves, other sunlit vegetation and shadows. For each image pair we normalized the leaf internal reflectance by dividing by the cosine of the angle of incidence of the sunlight on the leaf, selected the leaf maximum transmittance in the scene and divided to obtain the ratio reflectance/transmittance, which we compared with leaf RWC. We determined the leaf relative water content by harvesting a section of leaf and immediately placing it in a sealed container in an ice chest. Later in the laboratory the leaf sample was weighed, rehydrated, weighed, dried and again weighed. RWC was determined using the standard formula. Our experimental results support our hypothesis, suggesting that the RWC of sunlit leaves in a plant canopy may be estimated from analysis of polarization imagery collected by a COTS camera system. Unlike remotely sensed estimates of canopy equivalent water thickness, our estimates of the RWC of sunlit canopy leaves provide leaf physiological information. We propose RWC estimates based upon sunlit leaves are more relevant to assessing the water status of a plant canopy than would be RWC estimates based upon large FOV canopy measurements.
Differential photoelectric charging of nonconducting surfaces in space. [on sunlit strip
NASA Technical Reports Server (NTRS)
Pelizzari, M. A.; Criswell, D. R.
1978-01-01
The photoelectric charging caused by an infinitely long strip of sunlight across a nonconducting plane is studied by use of a model which contains an electrical cutoff radius, and the results of numerical calculations are presented. The model simulates charging of a sunlit area with dimensions equal to the strip's width, exposed to a plasma with a comparatively large Debye length. Uniform potential is quickly established on a uniformly sunlit strip as a result of charge redistribution by low-energy photoelectrons. The results are in accord with a theoretical surface conductivity derived for photoelectron sheaths above highly charged sunlit areas. The surface potential, which drops sharply across the sunlight-shadow boundary, is discussed.
Li, Kai; Zhang, Peng; Ge, Linke; Ren, Honglei; Yu, Chunyan; Chen, Xiaoyang; Zhao, Yuanfeng
2014-09-01
Thiamphenicol and florfenicol are two phenicol antibiotics widely used in aquaculture and are ubiquitous as micropollutants in surface waters. The present study investigated their photodegradation kinetics, hydroxyl-radical (OH) oxidation reactivities and products. Firstly, the photolytic kinetics of the phenicols in pure water was studied as a function of initial concentrations (C0) under UV-vis irradiation (λ>200nm). It was found that the kinetics was influenced by C0. A linear plot of the pseudo-first-order rate constant vs C0 was observed with a negative slope. Secondly, the reaction between the phenicol antibiotics and OH was examined with a competition kinetic method under simulated solar irradiation (λ>290nm), which quantified their bimolecular reaction rate constants of (2.13±0.02)×10(9)M(-1)s(-1) and (1.82±0.10)×10(9)M(-1)s(-1) for thiamphenicol and florfenicol, respectively. Then the corresponding OH oxidated half-lives in sunlit surface waters were calculated to be 90.5-106.1h. Some main intermediates were formed from the reaction, which suggested that the two phenicols underwent hydroxylation, oxygenation and dehydrogenation when OH existed. These results are of importance to assess the phenicol persistence in wastewater treatment and sunlit surface waters. Copyright © 2014 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Experiments were performed using naturally sunlit Soil–Plant–Atmosphere-Research chambers that provided ambient or elevated CO2. Potato plants were grown in pots that were water sufficient (W), water insufficient for 12 to 18 days during both vegetative and tuber development stages (VR), or water i...
Solar Insolation Effect on the Local Distribution of Lunar Hydroxyl
NASA Astrophysics Data System (ADS)
Kim, Suyeon; Yi, Yu; Hong, Ik-Seon; Sohn, Jongdae
2018-03-01
Moon mineralogy mapper (M3)'s work proved that the moon is not completely dry but has some hydroxyl/water. M3's data confirmed that the amount of hydroxyl on the lunar surface is inversely related to the measured signal brightness, suggesting the lunar surface is sensitive to temperature by solar insolation. We tested the effect of solar insolation on the local distribution of hydroxyl by using M3 data, and we found that most craters had more hydroxyl in shade areas than in sunlit areas. This means that the local distribution of hydroxyl is absolutely influenced by the amount of sunshine. We investigated the factors affecting differences in hydroxyl; we found that the higher the latitude, the larger the difference during daytime. We also measured the pyroxene content and found that pyroxene affects the amount of hydroxyl, but it does not affect the difference in hydroxyl between sunlit and shaded areas. Therefore, we confirmed that solar insolation plays a significant role in the local distribution of hydroxyl, regardless of surface composition.
Dong, Tingfa; Li, Junyu; Zhang, Yuanbin; Korpelainen, Helena; Niinemets, Ülo; Li, Chunyang
2015-06-01
The degree to which branches are autonomous in their acclimation responses to alteration in light environment is still poorly understood. We investigated the effects of shading of the sapling crown of Cunninghamia lanceolata (Lamb.) Hook on the whole-tree and mid-crown branch growth and current-year foliage structure and physiology. Four treatments providing 0, 50, 75 and 90% shading compared with full daylight (denoted as Treatment(0), Treatment(50%), Treatment(75%) and Treatment(90%), and Shaded(0), Shaded(50%), Shaded(75%) and Shaded(90%) for the shaded branches and Sunlit(0), Sunlit(50%), Sunlit(75%) and Sunlit(90%) for the opposite sunlit branches under natural light conditions, respectively), were applied over two consecutive growing seasons. Shading treatments decreased the growth of basal stem diameter, leaf dry mass per unit leaf area, stomatal conductance, transpiration rate, the ratio of water-soluble to structural leaf nitrogen content, photosynthetic nitrogen-use efficiency and instantaneous and long-term (estimated from carbon isotope composition) water-use efficiency in shaded branches. Differences between shaded and sunlit branches increased with increasing severity and duration of shading. A non-autonomous, partly compensatory behavior of non-shaded branches was observed for most traits, thus reflecting the dependence between the traits of sunlit branches and the severity of shading of the opposite crown half. The results collectively indicated that tree growth and branch and leaf acclimation responses of C. lanceolata are not only affected by the local light environment, but also by relative within-crown light conditions. We argue that such a non-autonomous branch response to changes in light conditions can improve whole-tree resource optimization. These results contribute to better understanding of tree growth and utilization of water and nitrogen under heterogeneous light conditions within tree canopies. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
Potato plants (Solanum tuberosum L. cv Kennebec) were grown in outdoor, naturally sunlit, soil-plant-atmosphere research (SPAR) chambers. Drought treatments were imposed at post-tuber initiation stage to assess water stress effects on leaf metabolites, and interactions with enriched CO2 concentrati...
Detection of adsorbed water and hydroxyl on the Moon.
Clark, Roger N
2009-10-23
Data from the Visual and Infrared Mapping Spectrometer (VIMS) on Cassini during its flyby of the Moon in 1999 show a broad absorption at 3 micrometers due to adsorbed water and near 2.8 micrometers attributed to hydroxyl in the sunlit surface on the Moon. The amounts of water indicated in the spectra depend on the type of mixing and the grain sizes in the rocks and soils but could be 10 to 1000 parts per million and locally higher. Water in the polar regions may be water that has migrated to the colder environments there. Trace hydroxyl is observed in the anorthositic highlands at lower latitudes.
NASA Astrophysics Data System (ADS)
Pôças, Isabel; Nogueira, António; Paço, Teresa A.; Sousa, Adélia; Valente, Fernanda; Silvestre, José; Andrade, José A.; Santos, Francisco L.; Pereira, Luís S.; Allen, Richard G.
2013-04-01
Satellite-based surface energy balance models have been successfully applied to estimate and map evapotranspiration (ET). The METRICtm model, Mapping EvapoTranspiration at high Resolution using Internalized Calibration, is one of such models. METRIC has been widely used over an extensive range of vegetation types and applications, mostly focusing annual crops. In the current study, the single-layer-blended METRIC model was applied to Landsat5 TM and Landsat7 ETM+ images to produce estimates of evapotranspiration (ET) in a super intensive olive orchard in Southern Portugal. In sparse woody canopies as in olive orchards, some adjustments in METRIC application related to the estimation of vegetation temperature and of momentum roughness length and sensible heat flux (H) for tall vegetation must be considered. To minimize biases in H estimates due to uncertainties in the definition of momentum roughness length, the Perrier function based on leaf area index and tree canopy architecture, associated with an adjusted estimation of crop height, was used to obtain momentum roughness length estimates. Additionally, to minimize the biases in surface temperature simulations, due to soil and shadow effects, the computation of radiometric temperature considered a three-source condition, where Ts=fcTc+fshadowTshadow+fsunlitTsunlit. As such, the surface temperature (Ts), derived from the thermal band of the Landsat images, integrates the temperature of the canopy (Tc), the temperature of the shaded ground surface (Tshadow), and the temperature of the sunlit ground surface (Tsunlit), according to the relative fraction of vegetation (fc), shadow (fshadow) and sunlit (fsunlit) ground surface, respectively. As the sunlit canopies are the primary source of energy exchange, the effective temperature for the canopy was estimated by solving the three-source condition equation for Tc. To evaluate METRIC performance to estimate ET over the olive grove, several parameters derived from the algorithm were tested against data collected in the field, including eddy covariance ET, surface temperature over the canopy and soil temperature in shaded and sunlit conditions. Additionally, the results were also compared with results published in the literature. The information obtained so far revealed very interesting perspectives for the use of METRIC in the estimation and mapping of ET in super intensive olive orchards. Thereby, this approach might constitute a useful tool towards the improvement of the efficiency of irrigation water management in this crop. The study described is still under way, and thus further applications of METRIC algorithm to a larger number of images and to olive groves with different tree density are planned.
Vione, D; Calza, P; Galli, F; Fabbri, D; Santoro, V; Medana, C
2015-12-15
The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with OH radicals would be negligible and that with (3)CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO2, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO2 yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde. Copyright © 2015 Elsevier B.V. All rights reserved.
Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1.
Pieters, C M; Goswami, J N; Clark, R N; Annadurai, M; Boardman, J; Buratti, B; Combe, J-P; Dyar, M D; Green, R; Head, J W; Hibbitts, C; Hicks, M; Isaacson, P; Klima, R; Kramer, G; Kumar, S; Livo, E; Lundeen, S; Malaret, E; McCord, T; Mustard, J; Nettles, J; Petro, N; Runyon, C; Staid, M; Sunshine, J; Taylor, L A; Tompkins, S; Varanasi, P
2009-10-23
The search for water on the surface of the anhydrous Moon had remained an unfulfilled quest for 40 years. However, the Moon Mineralogy Mapper (M3) on Chandrayaan-1 has recently detected absorption features near 2.8 to 3.0 micrometers on the surface of the Moon. For silicate bodies, such features are typically attributed to hydroxyl- and/or water-bearing materials. On the Moon, the feature is seen as a widely distributed absorption that appears strongest at cooler high latitudes and at several fresh feldspathic craters. The general lack of correlation of this feature in sunlit M3 data with neutron spectrometer hydrogen abundance data suggests that the formation and retention of hydroxyl and water are ongoing surficial processes. Hydroxyl/water production processes may feed polar cold traps and make the lunar regolith a candidate source of volatiles for human exploration.
Character and spatial distribution of OH/H2O on the surface of the moon seen by M3 on chandrayaan-1
Pieters, C.M.; Goswami, J.N.; Clark, R.N.; Annadurai, M.; Boardman, J.; Buratti, B.; Combe, J.-P.; Dyar, M.D.; Green, R.; Head, J.W.; Hibbitts, C.; Hicks, M.; Isaacson, P.; Klima, R.; Kramer, G.; Kumar, S.; Livo, E.; Lundeen, S.; Malaret, E.; McCord, T.; Mustard, J.; Nettles, J.; Petro, N.; Runyon, C.; Staid, M.; Sunshine, J.; Taylor, L.A.; Tompkins, S.; Varanasi, P.
2009-01-01
The search for water on the surface of the anhydrous Moon had remained an unfulfilled quest for 40 years. However, the Moon Mineralogy Mapper (M 3) on Chandrayaan-1 has recently detected absorption features near 2.8 to 3.0 micrometers on the surface of the Moon. For silicate bodies, such features are typically attributed to hydroxyl- and/or water-bearing materials. On the Moon, the feature is seen as a widely distributed absorption that appears strongest at cooler high latitudes and at several fresh feldspathic craters. The general lack of correlation of this feature in sunlit M3 data with neutron spectrometer hydrogen abundance data suggests that the formation and retention of hydroxyl and water are ongoing surficial processes. Hydroxyl/water production processes may feed polar cold traps and make the lunar regolith a candidate source of volatiles for human exploration.
Estimating the Relative Water Content of Leaves in a Cotton Canopy
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern; Daughtry, Craig; Kupinski, Meredith; French, Andrew; Chipman, Russell; Dahlgren, Robert
2017-01-01
Remotely sensing plant canopy water status remains a long-term goal of remote sensing research. Established approaches to estimating canopy water status the Crop Water Stress Index, the Water Deficit Index and the Equivalent Water Thickness involve measurements in the thermal or reflective infrared. Here we report plant water status estimates based upon analysis of polarized visible imagery of a cotton canopy measured by ground Multi-Spectral Polarization Imager (MSPI). Such estimators potentially provide access to the plant hydrological photochemistry that manifests scattering and absorption effects in the visible spectral region.Twice during one day, +- 3 hours from solar noon, we collected polarized imagery and relative water content data on a cotton test plot located at the Arid Land Agricultural Research Center, United States Department of Agriculture, Maricopa, AZ. The test plot, a small portion of a large cotton field, contained stressed plants ready for irrigation. The evening prior to data collection we irrigated several rows of plants within the test plot. Thus, ground MSPI imagery from both morning and afternoon included cotton plants with a range of water statuses. Data analysis includes classifying the polarized imagery into sunlit reflecting, sunlit transmitting, shaded foliage and bare soil. We estimate the leaf surface reflection and interior reflection based upon the per pixel polarization and sunview directions. We compare our cotton results with our prior polarization results for corn and soybean leaves measured in the lab and corn leaves measured in the field.
Chlorophyll Fluorescence Is a Better Proxy for Sunlit Leaf Than Total Canopy Photosynthesis
NASA Astrophysics Data System (ADS)
Chen, J. M.; Wang, Z.; Zhang, F.; Mo, G.
2015-12-01
Chlorophyll fluorescence (CF) results from non-photochemical quenching during plant photosynthesis under excessive radiation. We explore the relationship between gross primary productivity (GPP) and CF using a process ecosystem model, which separates a vegetation canopy into sunlit and shaded leaf groups and simulates the total canopy GPP as the sum of sunlit and shaded leaf GPP. Using GOME-2 and GOSAT data acquired in 2010 over the global land surface, we found that measured CF signals gridded in 1 degree resolution are well correlated with simulated total GPP and its sunlit and shaded components, but the correlation coefficients (R) are largest for the sunlit GPP and smallest for shaded GPP. The seasonal R2 values vary from 0.57 to 0.74, 0.58 to 0.71, and 0.48 to 0.56 for sunlit, total and shaded GPP, respectively. The significance levels for these correlations are all greater than p<0.01. Averaged over the globe, the total simulated shaded GPP is 39% of the total GPP. Theoretically, CF from vegetation comes mostly from sunlit leaves. The significant correlation between measured canopy-level CF and the shaded GPP is likely due to the correlation between shaded and sunlit GPP as both increase with leaf area index. Our simulation confirms the validity of using canopy-level CF measurements to assess the total GPP as the first approximation, although these measurements are a consistently better indicator of sunlit GPP than total GPP. In previous studies, the R2 values for the correlation between CF and total GPP were found to range from 0.76 to 0.88, 0.56 to 0.78, and 0.57 to 0.77 for MPI-BGC, MODIS and CASA model results, respectively. These values are similar or larger than those for sunlit GPP simulated in our study, but are considerably larger than those for total GPP in our study because the correlation for total GPP is contaminated by the inclusion of shaded GPP. All these three models use canopy total light use efficiency without considering the differences between sunlit and shaded leaves, and therefore they mostly capture spatio-temporal variations in sunlit GPP. We therefore argue that solar-induced CF measured from vegetation is a better proxy of sunlit GPP than the total GPP, and the use of CF data for assessing the terrestrial carbon cycle can be improved when sunlit and shaded GPP are modelled separately.
Estimation of Leaf Area Index and its Sunlit Portion from DSCOVR EPIC data
NASA Astrophysics Data System (ADS)
Knyazikhin, Y.; Yang, B.; Mottus, M.; Rautiainen, M.; Stenberg, P.; Yan, L.; Chen, C.; Yan, K.; Park, T.; Myneni, R. B.; Song, W.
2016-12-01
The NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR) mission was launched on February 11, 2015 to the Sun-Earth Lagrangian L1 point where it began to collect radiance data of the entire sunlit Earth at 16 km resolution (in equatorial zone) every 65 to 110 min in June 2015. It provides imageries in near backscattering directions with the scattering angle between 168o and 176o at ten UV to Near-IR narrow spectral bands centered at 317.5 (band width 1.0) nm, 325.0 (1.0) nm, 340.0 (3.0) nm, 388.0 (3.0) nm, 433.0 (3.0) nm, 551.0 (3.0) nm, 680.0 (1.7) nm, 687.8 (0.6) nm, 764.0 (1.7) nm and 779.5 (2.0) nm. This poster presents the theoretical basis of the algorithm designed for the generation of leaf area index (LAI) and diurnal course of sunlit leaf area index (SLAI) from EPIC Bidirectional Reflectance Factor of vegetated land. LAI and SLAI are defined as the total hemi-surface and sunlit leaf semi-surface per unit ground area. Whereas LAI is a standard product of many satellite the SLAI is a new satellite-derived parameter. Sunlit and shaded leaves exhibit different radiative response to incident Photosynthetically Active Radiation (400-700 nm), which in turn triggers various physiological and physical processes required for the functioning of plants. Leaf area and its sunlit portion are key state parameters in most ecosystem productivity and carbon/nitrogen cycle. Status of the EPIC LAI/SLAI product and its validation strategy are also discussed in this poster.
Qu, Shen; Kolodziej, Edward P; Cwiertny, David M
2012-12-18
Trenbolone acetate, melengestrol acetate, and zeranol are synthetic hormones extensively used as growth promoters in animal agriculture, yet despite occurrence in water and soil little is known about their environmental fate. Here, we establish the time scales and mechanisms by which these synthetic growth promoters and their metabolites (SGPMs) undergo phototransformation in sunlit surface waters. The families of trenbolone acetate (including 17β-trenbolone, 17α-trenbolone, and trendione) and melengestrol acetate (including melengestrol) readily undergo direct photolysis, exhibiting half-lives between ∼0.25 and 1 h in both natural and simulated sunlight that were largely insensitive to solution variables (e.g., pH, temperature, and cosolutes). Direct photolysis yielded products that not only are more photostable but also maintain their steroidal ring structure and therefore may retain some biological activity. In contrast, zeranol, β-zearalanol, and zearalanone only exhibited reactivity in irradiated solutions of model humic and fulvic acids, and rates of indirect photolysis increased steadily from pH 7 to 9. Use of selective probe and quencher compounds suggest hydroxyl radical and triplet state dissolved organic matter are responsible for zeranol family decay at neutral pH, although singlet oxygen contributes modestly in more alkaline waters. This observed pH-dependence appears to result from photooxidants reacting primarily with the monodeprotonated form of zeranol (pK(a) values of 8.44 and 11.42). This investigation provides the first characterization of the fate of this emerging pollutant class in sunlit surface waters and prioritizes future efforts on the identity, fate, and biological impact of their more persistent phototransformation products.
2015-03-16
This view shows Mercury's north polar region, colored by the maximum biannual surface temperature, which ranges from >400 K (red) to 50 K (purple). As expected for the Solar System's innermost planet, areas of Mercury's surface that are sunlit reach high temperatures, and hence most of this image is colored red! In contrast, some craters near Mercury's poles have regions that remain permanently in shadow, and in these regions even the maximum temperatures can be extremely low. Evidence from MESSENGER and Earth-based observations indicate that water ice deposits are present in these cold craters. The craters nearest Mercury' poles have surface temperatures less than 100 K (-173°C, -280°F), and water ice is stable on the surface, such as in Prokofiev. However, many craters near but somewhat farther from Mercury's poles have cold, permanently shadowed interiors, but the maximum temperature is too high for water ice to persist at the surface. In these craters, water ice is present but is buried beneath a thin, low-reflectance volatile layer likely consisting of organic-rich material, such as in Berlioz crater. http://photojournal.jpl.nasa.gov/catalog/PIA19247
Effect of the atmosphere on the color coordinates of sunlit surfaces
NASA Astrophysics Data System (ADS)
Willers, Cornelius J.; Viljoen, Johan W.
2016-02-01
Aerosol attenuation in the atmosphere has a relatively weak spectral variation compared to molecular absorption. However, the solar spectral irradiance differs considerably for the sun at high zenith angles versus the sun at low zenith angles. The perceived color of a sunlit object depends on the object's spectral reflectivity as well as the irradiance spectrum. The color coordinates of the sunlit object, hence also the color balance in a scene, shift with changes in the solar zenith angle. The work reported here does not claim accurate color measurement. With proper calibration mobile phones may provide reasonably accurate color measurement, but the mobile phones used for taking these pictures and videos are not scientific instruments and were not calibrated. The focus here is on the relative shift of the observed colors, rather than absolute color. The work in this paper entails the theoretical analysis of color coordinates of surfaces and how they change for different colored surfaces. Then follows three separate investigations: (1) Analysis of a number of detailed atmospheric radiative transfer code (Modtran) runs to show from the theory how color coordinates should change. (2) Analysis of a still image showing how the colors of two sample surfaces vary between sunlit and shaded areas. (3) Time lapse video recordings showing how the color coordinates of a few surfaces change as a function of time of day. Both the theoretical and experimental work shows distinct shifts in color as function of atmospheric conditions. The Modtran simulations demonstrate the effect from clear atmospheric conditions (no aerosol) to low visibility conditions (5 km visibility). Even under moderate atmospheric conditions the effect was surprisingly large. The experimental work indicated significant shifts during the diurnal cycle.
Experimental evidence that stripes do not cool zebras.
Horváth, Gábor; Pereszlényi, Ádám; Száz, Dénes; Barta, András; Jánosi, Imre M; Gerics, Balázs; Åkesson, Susanne
2018-06-19
There are as many as 18 theories for the possible functions of the stripes of zebras, one of which is to cool the animal. We performed field experiments and thermographic measurements to investigate whether thermoregulation might work for zebra-striped bodies. A zebra body was modelled by water-filled metal barrels covered with horse, cattle and zebra hides and with various black, white, grey and striped patterns. The barrels were installed in the open air for four months while their core temperature was measured continuously. Using thermography, the temperature distributions of the barrel surfaces were compared to those of living zebras. The sunlit zebra-striped barrels reproduced well the surface temperature characteristics of sunlit zebras. We found that there were no significant core temperature differences between the striped and grey barrels, even on many hot days, independent of the air temperature and wind speed. The average core temperature of the barrels increased as follows: white cattle, grey cattle, real zebra, artificial zebra, grey horse, black cattle. Consequently, we demonstrate that zebra-striped coats do not keep the body cooler than grey coats challenging the hypothesis of a thermoregulatory role of zebra stripes.
A statistical light use efficiency model explains 85% variations in global GPP
NASA Astrophysics Data System (ADS)
Jiang, C.; Ryu, Y.
2016-12-01
Photosynthesis is a complicated process whose modeling requires different levels of assumptions, simplification, and parameterization. Among models, light use efficiency (LUE) model is highly compact but powerful in monitoring gross primary production (GPP) from satellite data. Most of LUE models adopt a multiplicative from of maximum LUE, absorbed photosynthetically active radiation (APAR), and temperature and water stress functions. However, maximum LUE is a fitting parameter with large spatial variations, but most studies only use several biome dependent constants. In addition, stress functions are empirical and arbitrary in literatures. Moreover, meteorological data used are usually coarse-resolution, e.g., 1°, which could cause large errors. Finally, sunlit and shade canopy have completely different light responses but little considered. Targeting these issues, we derived a new statistical LUE model from a process-based and satellite-driven model, the Breathing Earth System Simulator (BESS). We have already derived a set of global radiation (5-km resolution), carbon and water fluxes (1-km resolution) products from 2000 to 2015 from BESS. By exploring these datasets, we found strong correlation between APAR and GPP for sunlit (R2=0.84) and shade (R2=0.96) canopy, respectively. A simple model, only driven by sunlit and shade APAR, was thus built based on linear relationships. The slopes of the linear function act as effective LUE of global ecosystem, with values of 0.0232 and 0.0128 umol C/umol quanta for sunlit and shade canopy, respectively. When compared with MPI-BGC GPP products, a global proxy of FLUXNET data, BESS-LUE achieved an overall accuracy of R2 = 0.85, whereas original BESS was R2 = 0.83 and MODIS GPP product was R2 = 0.76. We investigated spatiotemporal variations of the effective LUE. Spatially, the ratio of sunlit to shade values ranged from 0.1 (wet tropic) to 4.5 (dry inland). By using maps of sunlit and shade effective LUE the accuracy of BESS-LUE further reached R2 = 0.88. Temporally, both sunlit and shade effective LUE had seasonal peak values in NH summer, and both showed significant increasing trends. Overall, BESS-LUE exhibited promising potential in global GPP mapping. We are going to evaluate it using FLUXNET2015 database and satellite solar Induced Fluorescence (SIF) data.
Release of liquid water from the Space Shuttle
NASA Technical Reports Server (NTRS)
Pike, C. P.; Knecht, D. J.; Viereck, R. A.; Murad, E.; Kofsky, I. L.; Bagian, J. P.; Buchli, J. F.
1990-01-01
Groundbased and onboard video images of a sunlit Shuttle Orbiter water dump are interpreted as showing that the continuous 1-mm-diameter liquid stream quickly breaks up in near-vacuum to form ice/snow particles of two characteristic sizes. Discrete large droplets are most evident in the close-in photographs, and unresolved submicron 'fog' from recondensation of overexpanded evaporated water appears to dominate the ground-telescope photographs of the 2.5 km long optically detectable trail. The mean diameter of the smaller particles was estimated from the spatial distribution of visible radiance using a model of their energy balance, (small) surface roughening as they sublime, and Mie scattering of pre-dawn sunlight. The results are consistent with those from recent space-tank simulations.
Convergence Zone over the Patagonian Shelf
NASA Technical Reports Server (NTRS)
2002-01-01
The bright waters off the east coast of Argentina mark the convergence of the Malvinas and Brazil Currents. The interaction of the two currents brings nutrients from the dark ocean depths to the sunlit surface, resulting in dense blooms of phytoplankton, especially in the spring and early summer. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) imaged the area on November 29, 2001. For more information, read Convergence Zones: Where the Action Is Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
Ge, Linke; Na, Guangshui; Zhang, Siyu; Li, Kai; Zhang, Peng; Ren, Honglei; Yao, Ziwei
2015-09-15
The ubiquity and photoreactivity of fluoroquinolone antibiotics (FQs) in surface waters urge new insights into their aqueous photochemical behavior. This study concerns the photochemistry of 6 FQs: ciprofloxacin, danofloxacin, levofloxacin, sarafloxacin, difloxacin and enrofloxacin. Methods were developed to calculate their solar direct photodegradation half-lives (td,E) and hydroxyl-radical oxidation half-lives (tOH,E) in sunlit surface waters. The td,E values range from 0.56 min to 28.8 min at 45° N latitude, whereas tOH,E ranges from 3.24h to 33.6h, suggesting that most FQs tend to undergo fast direct photolysis rather than hydroxyl-radical oxidation in surface waters. However, a case study for levofloxacin and sarafloxacin indicated that the hydroxyl-radical oxidation induced risky photochlorination and resulted in multi-degradation pathways, such as piperazinyl hydroxylation and clearage. Changes in the antibacterial activity of FQs caused by photodegradation in various waters were further examined using Escherichia coli, and it was found that the activity evolution depended on primary photodegradation pathways and products. Primary intermediates with intact FQ nuclei retained significant antibacterial activity. These results are important for assessing the fate and risk of FQs in surface waters. Copyright © 2015. Published by Elsevier B.V.
CO2 AND O3 ALTER PHOTOSYNTHESIS AND WATER VAPOR EXCHANGE FOR PINUS PONDEROSA NEEDLES
1. Effects of CO2 and O3 were determined for a key component of ecosystem carbon and water cycling: needle gas exchange (photosynthesis, conductance, transpiration and water use efficiency). The measurements were made on Pinus ponderosa seedlings grown in outdoor, sunlit, mesoc...
The Turbulent Life of Phytoplankton
NASA Technical Reports Server (NTRS)
Ghosal, S.; Rogers, M.; Wray, A.
2000-01-01
Phytoplankton is a generic name for photosynthesizing microscopic organisms that inhabit the upper sunlit layer (euphotic zone) of almost all oceans and bodies of freshwater. They are agents for "primary production," the incorporation of carbon from the environment into living organisms, a process that, sustains the aquatic food web. It is estimated that phytoplankton contribute about half of the global primary production, the other half being due to terrestrial plants. By sustaining the aquatic food web and controlling the biogeochemical cycles through primary production, phytoplankton exert a dominant influence on life on earth. Turbulence influences this process in three very important ways. First, essential mineral nutrients are transported from the deeper layers to the euphotic zone through turbulence. Second, turbulence helps to suspend phytoplankton in the euphotic zone since in still water, the phytoplankton, especially the larger species, tend to settle out of the sunlit layers. Third, turbulence transports phytoplankton from the surface to the dark sterile waters, and this is an important mechanism of loss. Thus, stable phytoplankton populations are maintained through a delicate dynamic balance between the processes of turbulence, reproduction, and sinking. The first quantitative model for this was introduced by Riley, Stommel and Bumpus in 1949. This is an attempt to extend their efforts through a combination of analysis and computer simulation in order to better understand the principal qualitative aspects of the physical/biological coupling of this natural system.
Calza, Paola; Vione, Davide; Fabbri, Debora; Aigotti, Riccardo; Medana, Claudio
2015-09-15
The photoinduced transformation of two ionic liquids, 1-methylimidazolium hydrogensulfate (HMIM) and 1-ethyl-3-methylimidazolium hydrogensulfate (EMIM), was investigated under photocatalytic conditions in the presence of irradiated TiO2. We monitored substrate disappearance, transformation products (TPs), degree of mineralization, and toxicity of the irradiated systems. Acute toxicity measures suggested in both cases the occurrence of more toxic TPs than the parent molecules. A total of five TPs were detected by HPLC-HRMS from HMIM and nine from EMIM. Complete mineralization and stoichiometric release of nitrogen was achieved for both compounds within 4 h of irradiation. The photochemical transformation kinetics and pathways in surface waters (direct photolysis and indirect photoreactions) were studied for EMIM, to assess its persistence in sunlit water bodies such as rivers or lakes. Environmental phototransformation would be dominated by direct photolysis, with half-life times of up to one month under fine-weather conditions.
Potential for parasite-induced biases in aquatic invertebrate population studies
Fisher, Justin D.L.; Mushet, David M.; Stockwell, Craig A.
2014-01-01
Recent studies highlight the need to include estimates of detection/capture probability in population studies. This need is particularly important in studies where detection and/or capture probability is influenced by parasite-induced behavioral alterations. We assessed potential biases associated with sampling a population of the amphipod Gammarus lacustris in the presence of Polymorphus spp. acanthocephalan parasites shown to increase positive phototaxis in their amphipod hosts. We trapped G. lacustris at two water depths (benthic and surface) and compared number of captures and number of parasitized individuals at each depth. While we captured the greatest number of G. lacustris individuals in benthic traps, parasitized individuals were captured most often in surface traps. These results reflect the phototaxic movement of infected individuals from benthic locations to sunlit surface waters. We then explored the influence of varying infection rates on a simulated population held at a constant level of abundance. Simulations resulted in increasingly biased abundance estimates as infection rates increased. Our results highlight the need to consider parasite-induced biases when quantifying detection and/or capture probability in studies of aquatic invertebrate populations.
Szörényi, Tamás; Pereszlényi, Ádám; Gerics, Balázs; Hegedüs, Ramón; Barta, András
2017-01-01
Horseflies (Tabanidae) are polarotactic, being attracted to linearly polarized light when searching for water or host animals. Although it is well known that horseflies prefer sunlit dark and strongly polarizing hosts, the reason for this preference is unknown. According to our hypothesis, horseflies use their polarization sensitivity to look for targets with higher degrees of polarization in their optical environment, which as a result facilitates detection of sunlit dark host animals. In this work, we tested this hypothesis. Using imaging polarimetry, we measured the reflection–polarization patterns of a dark host model and a living black cow under various illumination conditions and with different vegetation backgrounds. We focused on the intensity and degree of polarization of light originating from dark patches of vegetation and the dark model/cow. We compared the chances of successful host selection based on either intensity or degree of polarization of the target and the combination of these two parameters. We show that the use of polarization information considerably increases the effectiveness of visual detection of dark host animals even in front of sunny–shady–patchy vegetation. Differentiation between a weakly polarizing, shady (dark) vegetation region and a sunlit, highly polarizing dark host animal increases the efficiency of host search by horseflies. PMID:29291065
Horváth, Gábor; Szörényi, Tamás; Pereszlényi, Ádám; Gerics, Balázs; Hegedüs, Ramón; Barta, András; Åkesson, Susanne
2017-11-01
Horseflies (Tabanidae) are polarotactic, being attracted to linearly polarized light when searching for water or host animals. Although it is well known that horseflies prefer sunlit dark and strongly polarizing hosts, the reason for this preference is unknown. According to our hypothesis, horseflies use their polarization sensitivity to look for targets with higher degrees of polarization in their optical environment, which as a result facilitates detection of sunlit dark host animals. In this work, we tested this hypothesis. Using imaging polarimetry, we measured the reflection-polarization patterns of a dark host model and a living black cow under various illumination conditions and with different vegetation backgrounds. We focused on the intensity and degree of polarization of light originating from dark patches of vegetation and the dark model/cow. We compared the chances of successful host selection based on either intensity or degree of polarization of the target and the combination of these two parameters. We show that the use of polarization information considerably increases the effectiveness of visual detection of dark host animals even in front of sunny-shady-patchy vegetation. Differentiation between a weakly polarizing, shady (dark) vegetation region and a sunlit, highly polarizing dark host animal increases the efficiency of host search by horseflies.
NASA Astrophysics Data System (ADS)
Aboutalebi, M.; Torres-Rua, A. F.; McKee, M.; Kustas, W. P.; Nieto, H.
2017-12-01
Shadows are an unavoidable component of high-resolution imagery. Although shadows can be a useful source of information about terrestrial features, they are a hindrance for image processing and lead to misclassification errors and increased uncertainty in defining surface reflectance properties. In precision agriculture activities, shadows may affect the performance of vegetation indices at pixel and plant scales. Thus, it becomes necessary to evaluate existing shadow detection and restoration methods, especially for applications that makes direct use of pixel information to estimate vegetation biomass, leaf area index (LAI), plant water use and stress, chlorophyll content, just to name a few. In this study, four high-resolution imageries captured by the Utah State University - AggieAir Unmanned Aerial Vehicle (UAV) system flown in 2014, 2015, and 2016 over a commercial vineyard located in the California for the USDA-Agricultural Research Service Grape Remote sensing Atmospheric Profile and Evapotranspiration Experiment (GRAPEX) Program are used for shadow detection and restoration. Four different methods for shadow detection are compared: (1) unsupervised classification, (2) supervised classification, (3) index-based method, and (4) physically-based method. Also, two different shadow restoration methods are evaluated: (1) linear correlation correction, and (2) gamma correction. The models' performance is evaluated over two vegetation indices: normalized difference vegetation index (NDVI) and LAI for both sunlit and shadowed pixels. Histogram and analysis of variance (ANOVA) are used as performance indicators. Results indicated that the performance of the supervised classification and the index-based method are better than other methods. In addition, there is a statistical difference between the average of NDVI and LAI on the sunlit and shadowed pixels. Among the shadow restoration methods, gamma correction visually works better than the linear correlation correction. Moreover, the statistical difference between sunlit and shadowed NDVI and LAI decreases after the application of the gamma restoration method. Potential effects of shadows on modeling surface energy balance and evapotranspiration using very high resolution UAV imagery over the GRAPEX vineyard will be discussed.
How LEND sees the water on the Moon
NASA Astrophysics Data System (ADS)
Sanin, Anton; Mitrofanov, Igor; Litvak, Maxim; Boynton, William; Bodnarik, Julia; Hamara, Dave; Harshman, Karl; Chin, Gordon; Evans, Larry; Livengood, Timothy; McClanahan, Timothy; Sagdeev, Roald; Starr, Richard
2016-04-01
The Lunar Exploration Neutron Detector (LEND) is operating on orbit around the Moon on-board the Lunar Reconnaissance Orbiter (LRO) spacecraft more than six years. LEND has been designed and manufactured to investigate presence and determine average amount of hydrogen in upper (~1 m depth) subsurface layer of the Lunar regolith with spatial resolution ~10 km from 50 km orbit and to check the hypothesis what the permanently shadowed regions (PSRs) at circumpolar regions are the main reservoirs of a large deposition of water ice on the Moon. One of most interesting and surprising LEND observations that not all large PSRs contain a detectable amount of hydrogen but there are neutron suppression regions (NSRs) with statistically significant suppression of neutron flux. The NSRs partially overlap or include PSRs in craters Cabeus, Shoemaker, Haworth (on South) and Rozhdestvensky U (on North) but significant part of their area spread out at sunlit territory. This means that hydrogen may be preserved for a long time or even accumulated at a subsurface regolith layer of sunlit areas. The majority of PSRs do not show statistically significant suppressions of neutron flux in comparison with neighbor sunlit vicinity. This implies a hypothesis what a permanent shadow is not only necessary condition for the hydrogen accumulation and preservation in the lunar subsurface. A method of water equivalent hydrogen (WEH) in top ~1 meter regolith estimation using LEND data has been developed. Maps of WEH distribution in North and South polar regions will be presented and discussed. Also, WEH estimation in case of hydrogen bearing regolith layer coverage by a dry regolith will be presented for largest NSRs.
PLANT INVASIONS IN RHODE ISLAND RIPARIAN ZONES
The vegetation in riparian zones provides valuable wildlife habitat while enhancing instream habitat and water quality. Forest fragmentation, sunlit edges, and nutrient additions from adjacent development may be sources of stress on riparian zones. Landscape plants may include no...
2017-12-08
Van Gogh from Space - July 13th, 2005 Description: In the style of Van Gogh's painting "Starry Night," massive congregations of greenish phytoplankton swirl in the dark water around Gotland, a Swedish island in the Baltic Sea. Phytoplankton are microscopic marine plants that form the first link in nearly all ocean food chains. Population explosions, or blooms, of phytoplankton, like the one shown here, occur when deep currents bring nutrients up to sunlit surface waters, fueling the growth and reproduction of these tiny plants. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
Possibility of accommodation in a satellite Europe
NASA Astrophysics Data System (ADS)
Steklov, A. F.; Vidmachenko, A. P.
2018-05-01
It is believed that the presence of liquid water below the surface makes the satellite one of the most probable potential targets in Solar system, suitable for finding life there. Taking into account the fact that the radiation of Jupiter and Sun constantly affects Europe, free oxygen and a number of other oxidants are formed in the ice. In the old days, it was active oxygen led to the emergence of multicellular life on Earth. Now we know that the oceans of Europe contain much more oxygen than previously thought. And this increases the likelihood of the existence of life in Europe. In 2010 it was pointed out the possibility of the existence in ice of Europe of extensive lenses with liquid water, whose composition is significantly different from the composition of water in the ocean. This provides a mechanism for the possible transfer of vital chemicals created in the sunlit areas on the surface, and near of it in deeper layers. That is, such lakes can be another potential place of habitations. Thus, the subsurface ocean and lakes of Europe should be considered one of the best places for the existence of some forms of life.
Avetta, Paola; Marchetti, Giulia; Minella, Marco; Pazzi, Marco; De Laurentiis, Elisa; Maurino, Valter; Minero, Claudio; Vione, Davide
2014-12-01
Dimethomorph (DMM) is a widely used fungicide that shows low toxicity for birds and mammals but can be quite toxic to aquatic organisms. The persistence of DMM in surface waters is thus of high importance, and this work modelled its water half-life time due to photochemical processes. Depending on environmental conditions (e.g. water chemistry, depth, season), DMM lifetime could vary from a few days to a few months. For lifetimes of a few weeks or shorter, photochemistry would be an important pathway for DMM attenuation in surface waters. Such conditions could be reached in summer, in shallow water bodies with low dissolved organic carbon (DOC) and high nitrate and/or nitrite. The main pathways accounting for DMM photodegradation in environmental waters would be the reactions with OH and with the triplet states of chromophoric dissolved organic matter, (3)CDOM* (under the hypothesis that (3)CDOM* reactivity is well described by the triplet state of anthraquinone-2-sulphonate), while direct photolysis would be less important. The OH pathway would be favoured in low-DOC waters, while the opposite conditions would favour (3)CDOM*. It was possible to detect and identify some intermediates formed upon reaction between DMM and (3)CDOM*, namely N-formylmorpholine, 4-chloroacetophenone and 4-chlorobenzoic acid. The transformation of DMM into the detected compounds would not increase the acute toxicity of the fungicide towards mammals, and the acute effects for freshwater organisms could be decreased significantly. Copyright © 2014 Elsevier B.V. All rights reserved.
Calza, P; Vione, D; Galli, F; Fabbri, D; Dal Bello, F; Medana, C
2016-01-01
We studied the aquatic environmental fate of 2-ethylhexyl 4-(dimethylamino)benzoate (OD-PABA), a widespread sunscreen, to assess its environmental persistence and photoinduced transformation. Direct photolysis is shown to play a key role in phototransformation, and this fast process is expected to be the main attenuation route of OD-PABA in sunlit surface waters. The generation of transformation products (TPs) was followed via HPLC/HRMS. Five (or four) TPs were detected in the samples exposed to UVB (or UVA) radiation, respectively. The main detected TPs of OD-PABA, at least as far as HPLC-HRMS peak areas are concerned, would involve a dealkylation or hydroxylation/oxidation process in both direct photolysis and indirect phototransformation. The latter was simulated by using TiO2-based heterogeneous photocatalysis, involving the formation of nine additional TPs. Most of them resulted from the further degradation of the primary TPs that can also be formed by direct photolysis. Therefore, these secondary TPs might also occur as later transformation intermediates in natural aquatic systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Radiometer footprint model to estimate sunlit and shaded components for row crops
USDA-ARS?s Scientific Manuscript database
This paper describes a geometric model for computing the relative proportion of sunlit vegetation, shaded vegetation, sunlit soil, and shaded soil appearing in a circular or elliptical radiometer footprint for row crops, where the crop rows were modeled as continuous ellipses. The model was validate...
2017-08-21
NASA's Cassini gazes across the icy rings of Saturn toward the icy moon Tethys, whose night side is illuminated by Saturnshine, or sunlight reflected by the planet. Tethys was on the far side of Saturn with respect to Cassini here; an observer looking upward from the moon's surface toward Cassini would see Saturn's illuminated disk filling the sky. Tethys was brightened by a factor of two in this image to increase its visibility. A sliver of the moon's sunlit northern hemisphere is seen at top. A bright wedge of Saturn's sunlit side is seen at lower left. This view looks toward the sunlit side of the rings from about 10 degrees above the ring plane. The image was taken in visible light with the Cassini spacecraft wide-angle camera on May 13, 2017. The view was acquired at a distance of approximately 750,000 miles (1.2 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 140 degrees. Image scale is 43 miles (70 kilometers) per pixel on Saturn. The distance to Tethys was about 930,000 miles (1.5 million kilometers). The image scale on Tethys is about 56 miles (90 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21342
NASA Astrophysics Data System (ADS)
Bonan, G. B.
2016-12-01
Soil moisture stress is a key regulator of canopy transpiration, the surface energy budget, and land-atmosphere coupling. Many land surface models used in Earth system models have an ad-hoc parameterization of soil moisture stress that decreases stomatal conductance with soil drying. Parameterization of soil moisture stress from more fundamental principles of plant hydrodynamics is a key research frontier for land surface models. While the biophysical and physiological foundations of such parameterizations are well-known, their best implementation in land surface models is less clear. Land surface models utilize a big-leaf canopy parameterization (or two big-leaves to represent the sunlit and shaded canopy) without vertical gradients in the canopy. However, there are strong biometeorological and physiological gradients in plant canopies. Are these gradients necessary to resolve? Here, I describe a vertically-resolved, multilayer canopy model that calculates leaf temperature and energy fluxes, photosynthesis, stomatal conductance, and leaf water potential at each level in the canopy. In this model, midday leaf water stress manifests in the upper canopy layers, which receive high amounts of solar radiation, have high leaf nitrogen and photosynthetic capacity, and have high stomatal conductance and transpiration rates (in the absence of leaf water stress). Lower levels in the canopy become water stressed in response to longer-term soil moisture drying. I examine the role of vertical gradients in the canopy microclimate (solar radiation, air temperature, vapor pressure, wind speed), structure (leaf area density), and physiology (leaf nitrogen, photosynthetic capacity, stomatal conductance) in determining above canopy fluxes and gradients of transpiration and leaf water potential within the canopy.
NASA Technical Reports Server (NTRS)
Cheng, Yen-Ben; Middleton, Elizabeth M.; Zhang, Qingyuan; Corp, Lawrence A.; Dandois, Jonathan; Kustas, William P.
2012-01-01
The two-layer Markov chain Analytical Canopy Reflectance Model (ACRM) was linked with in situ hyperspectral leaf optical properties to simulate the Photochemical Reflectance Index (PRI) for a corn crop canopy at three different growth stages. This is an extended study after a successful demonstration of PRI simulations for a cornfield previously conducted at an early vegetative growth stage. Consistent with previous in situ studies, sunlit leaves exhibited lower PRI values than shaded leaves. Since sunlit (shaded) foliage dominates the canopy in the reflectance hotspot (coldspot), the canopy PRI derived from field hyperspectral observations displayed sensitivity to both view zenith angle and relative azimuth angle at all growth stages. Consequently, sunlit and shaded canopy sectors were most differentiated when viewed along the azimuth matching the solar principal plane. These directional PRI responses associated with sunlit/shaded foliage were successfully reproduced by the ACRM. As before, the simulated PRI values from the current study were closer to in situ values when both sunlit and shaded leaves were utilized as model input data in a two-layer mode, instead of a one-layer mode with sunlit leaves only. Model performance as judged by correlation between in situ and simulated values was strongest for the mature corn crop (r = 0.87, RMSE = 0.0048), followed by the early vegetative stage (r = 0.78; RMSE = 0.0051) and the early senescent stage (r = 0.65; RMSE = 0.0104). Since the benefit of including shaded leaves in the scheme varied across different growth stages, a further analysis was conducted to investigate how variable fractions of sunlit/shaded leaves affect the canopy PRI values expected for a cornfield, with implications for 20 remote sensing monitoring options. Simulations of the sunlit to shaded canopy ratio near 50/50 +/- 10 (e.g., 60/40) matching field observations at all growth stages were examined. Our results suggest in the importance of the sunlit/shaded fraction and canopy structure in understanding and interpreting PRI.
Modelling the photochemical attenuation pathways of the fibrate drug gemfibrozil in surface waters.
Fabbri, Debora; Maurino, Valter; Minella, Marco; Minero, Claudio; Vione, Davide
2017-03-01
Gemfibrozil (GFZ) is a relatively persistent pollutant in surface-water environments and it is rather recalcitrant to biological degradation. The GFZ photochemical lifetimes are relatively short in shallow waters with low levels of dissolved organic carbon (DOC), but they can reach the month-year range in deep and high-DOC waters. The main reason is that GFZ undergoes negligible reaction with singlet oxygen or degradation sensitised by the triplet states of chromophoric dissolved organic matter, which are the usually prevalent photochemical pathways in deep and high-DOC sunlit waters. Nitrate and nitrite scarcely affect the overall GFZ lifetimes, but they can shift photodegradation from direct photolysis to the OH process. These two pathways are the main GFZ phototransformation routes, with the direct photolysis prevailing in shallow environments during summer. Under these conditions the GFZ photochemical lifetimes are also shorter and the environmental significance of photodegradation correspondingly higher. The direct photolysis of GFZ under UVB irradiation yielded several transformation intermediates deriving from oxidation or cleavage of the aliphatic lateral chain. A quinone derivative (2,5-dimethyl-1,4-benzoquinone), a likely oxidation product of the transformation intermediate 2,5-dimethylphenol, is expected to be the most acutely and chronically toxic compound arising from GFZ direct photolysis. Interestingly, literature evidence suggests that the same toxic intermediate would be formed upon OH reaction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Seasonal Frost in Terra Sirenum
NASA Technical Reports Server (NTRS)
2006-01-01
This image of the Terra Sirenum region of Mars was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 0918 UTC (4:18 a.m. EST) on Nov. 25, 2006, near 38.9 degrees south latitude, 195.9 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 18 meters (60 feet) across. At this time, Mars' southern hemisphere was experiencing mid-winter. During Martian southern winter, the southern polar cap is covered and surrounded by carbon dioxide frost and water frost. This is unlike Earth, whose frozen winter precipitation is made up of only one volatile -- water. The carbon dioxide frost evaporates, or sublimates, at a lower temperature than water frost. So, during spring, the carbon dioxide ice evaporates first and leaves a residue of water frost, which later sublimates as well. The image shown here covers part of a crater rim, which is illuminated from the upper left. North is at the top. The topography creates a cold microenvironment on the south side of the rim that is partially protected from solar illumination. That cold surface contains an outlier of the southern seasonal frost about 15 degrees of latitude closer to the equator than the average edge of the frost at this season. The top image was constructed from three infrared wavelengths that highlight the bluer color of frost than the background rock and soil. Note that the frost occurs both on sunlit and shaded surfaces on the south side of the rim. The shaded areas are still visible because they are illuminated indirectly by the Martian sky. The bottom image was constructed by measuring the depths of spectral absorption bands due to water frost and carbon dioxide frost, and displaying the results in image form. Blue shows strength of an absorption due to water frost near 1.50 micrometers, and green shows strength of an absorption due to carbon dioxide frost near 1.45 micrometers. Red shows brightness of the surface at 1.33 micrometers -- outside of the frost absorption bands -- in order to show the relationship of frost to the illuminated crater rim. In comparing the top and bottom images, note that water frost occurs in many locations on the south-facing side of the crater rim, both in sunlit and shaded areas. Because it faces away from the sun, this side of the crater rim is colder than the north, sun-facing side. This favors the formation of frost. In contrast, carbon dioxide frost occurs only in the coldest, most shaded areas. CRISM's mission: Find the spectral fingerprints of aqueous and hydrothermal deposits and map the geology, composition and stratigraphy of surface features. The instrument will also watch the seasonal variations in Martian dust and ice aerosols, and water content in surface materials -- leading to new understanding of the climate. The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad.Full-Particle Simulations on Electrostatic Plasma Environment near Lunar Vertical Holes
NASA Astrophysics Data System (ADS)
Miyake, Y.; Nishino, M. N.
2015-12-01
The Kaguya satellite and the Lunar Reconnaissance Orbiter have observed a number of vertical holes on the terrestrial Moon [Haruyama et al., GRL, 2009; Robinson et al., PSS, 2012], which have spatial scales of tens of meters and are possible lava tube skylights. The hole structure has recently received particular attention, because the structure gives an important clue to the complex volcanic history of the Moon. The holes also have high potential as locations for constructing future lunar bases, because of fewer extra-lunar rays/particles and micrometeorites reaching the hole bottoms. In this sense, these holes are not only interesting in selenology, but are also significant from the viewpoint of electrostatic environments. The subject can also be an interesting resource of research in comparative planetary science, because hole structures have been found in other solar system bodies such as the Mars. The lunar dayside electrostatic environment is governed by electrodynamic interactions among the solar wind plasma, photoelectrons, and the charged lunar surface, providing topologically complex boundaries to the plasma. We use the three-dimensional, massively-parallelized, particle-in-cell simulation code EMSES [Miyake and Usui, POP, 2009] to simulate the near-hole plasma environment on the Moon [Miyake and Nishino, Icarus, 2015]. We took into account the solar wind plasma downflow, photoelectron emission from the sunlit part of the lunar surface, and plasma charge deposition on the surface. The simulation domain consists of 400×400×2000 grid points and contains about 25 billion plasma macro-particles. Thus, we need to use supercomputers for the simulations. The vertical wall of the hole introduces a new boundary for both photo and solar wind electrons. The current balance condition established at a hole bottom is altered by the limited solar wind electron penetration into the hole and complex photoelectron current paths inside the hole. The self-consistent modeling not only reproduces intense differential charging between sunlit and shadowed surfaces, but also reveals the potential difference between sunlit surfaces inside and outside the hole. The results demonstrate the uniqueness of the near-hole plasma environment as well as provide useful knowledge for future landing missions.
NASA Astrophysics Data System (ADS)
Zheng, Ting; Chen, Jing M.
2017-01-01
The estimation of maximum carboxylation rate (Vcmax)-a critical determinant of the terrestrial carbon simulation-over space remains a challenging task. Inverting the Vcmax through the sunlit gross primary productivity (GPP) is a possible solution if the key parameter sunlit light use efficiency (ɛsun) could be acquired through remote sensing approaches. Previous studies have shown that the reflectance centered at 531 nm (R531) is very sensitive to variations of ɛsun and the photochemical reflectance index (PRI, the normalized difference index using R531 and R570) can be used as an indicator of ɛsun at the leaf level though little is known about the PRI-ɛsun relationship at the canopy level due to the mixing of sunlit and shaded leaves. In this study, the photochemical reflectance ratio (PRR, defined as the ratio between R531 and R570) is proposed to enable the sunlit-shaded separation of the canopy reflectance observations acquired from a tower based multi-angular platform. The canopy PRR can be expressed as the algebraic sum of sunlit PRR and shaded PRR weighted by the visible portions of the sunlit canopy and the shaded canopy respectively. The visible portions from different angles were simulated using the 4-Scale model and the sunlit (/shaded) PRR was acquired through solving a set of equations describing the canopy PRR obtained from different angles. The relationships between the sunlit PRR (PRRsun) and ɛsun were studied for a white pine stand (TP39) and a sugar maple stand (HA). At both sites, significant correlations between PRRsun and ɛsun were obtained (R2 = 0.57 (TP39), 0.585 (HA), p < 0.001), showing the ability of PRRsun to track the variation of ɛsun. Nevertheless, differences existed in the expressions of the PRRsun-ɛsun relationship between TP39 and HA, a general expression could not be found. Further studies have shown that introducing the normalized difference vegetation index (NDVI) to correct PRRsun (NDVI × PRRsun) largely removed such differences, suggesting the potential of the NDVI corrected PRRsun in estimating the ɛsun for different biomes.
A coupled photosynthesis-stomatal conductance model with single-layer sunlit and shaded leaf canopy scaling is implemented and evaluated in a diagnostic box model with the Pleim-Xiu land surface model (PX LSM) and ozone deposition model components taken directly from the meteorol...
Evidence for midwinter chemical ozone destruction over Antartica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voemel, H.; Hoffmann, D.J.; Oltmans, S.J.
1995-09-01
Two ozone profiles on June 15 and June 19, obtained over McMurdo, Antartica, showed a strong depletion in stratospheric ozone, and a simultaneous profile of water vapor on June 19 showed the first clear signs of dehydration. The observation of Polar Stratospheric Clouds (PSCs) beginning with the first sounding showing ozone depletion, the indication of rehydration layers, which could be a sign for recent dehydration, and trajectory calculations indicate that the observed low ozone was not the result of transport from lower latitudes. during this time the vortex was strongly distorted, transporting PSC processed air well into sunlit latitudes wheremore » photochemical ozone destruction may have occurred. The correlation of ozone depletion and dehydration indicates that water ice PSCs provided the dominant surface for chlorine activation. An analysis of the time when the observed air masses could have formed type II PSCs for the first time limits the time scale for the observed ozone destruction to about 4 days.« less
NASA Astrophysics Data System (ADS)
Cheng, Y.; Hilker, T.; Middleton, E. M.; Coops, N. C.; Black, T. A.; Krishnan, P.
2007-12-01
The use of remotely sensed measurements collected by satellite, aircraft, and ground instruments to improve our understanding of ecological and hydrological processes were successfully demonstrated through the First International Satellite Land Surface Climatology (ISLSCP) Field Experiment [FIFE] and the BOReal Ecosystem- Atmosphere Study [BOREAS]. Following the concept of FIFE and BOREAS, we analyzed hyperspectral reflectance measurements collected at a coastal forest in British Columbia, Canada through the 2006 growing season. Diurnal and seasonal dynamics of the Photochemical Reflectance Index (PRI), a normalized difference spectral band-ratio index based on the xanthophyll signal at 531 nm which expresses protective responses to high light stress, were studied. This index has been shown to correlate with photosynthetic light use efficiency (LUE), an essential variable to model carbon uptake efficiency by plants. The measurements were collected from an automated system mounted on a flux tower under different sun and view geometries and atmospheric conditions through the 2006 growing season. Canopy structure was modeled using Light Detection and Ranging (LiDAR) technology, from which the sunlit and shaded canopy fractions were calculated as a function of incoming photosynthetically active radiation (PAR). These automated directional observations allowed us to: 1) investigate diurnal and seasonal changes of the PRI under different sky conditions; 2) compare the PRI with tower-based micro-meteorological measurements; and 3) separately investigate the PRI dynamics for sunlit and shaded partitions of the canopy which differ in response to their light environments. The data were categorized into six different groups based on two sky conditions (sunny and cloudy) and three illumination conditions (sunlit, shaded and intermediate). PRI showed a clear correlation with the LiDAR-based shadow fraction estimates. In April, the commencement of the growing season, clear diurnal dynamics of the PRI were observed for the sunlit foliage subset which showed lower (more negative) PRI values and a more dramatic change with sun altitude than shaded leaves. This was expected since leaves exposed to direct sunlight in their natural environment are likely under higher light stress. Consequently, diurnal changes of PRI and the differences among foliage groups were less obvious on overcast days because of limited direct irradiance. In August, when water availability was at its lowest of the year, the PRI exhibited relatively constant values throughout the day but with clear distinguishable values among the three leaf groups on sunny days. For other tower based measurements, PAR and GEP both showed clear seasonal patterns. Better estimates of the actual PAR intensity illuminating the sunlit and shaded canopy fractions were retrieved using the shadow fraction to reduce the above-canopy PAR. A clear seasonal pattern emerged for this revised PAR that distinguished among the groups and was also used to estimate LUE for the leaf groups. The correlation between PRI and LUE was confirmed. From these results, better understandings of the dynamics of carbon exchange bio-indicators that can be derived from directional hyperspectral reflectance measurements were demonstrated. Keywords: PRI, photosynthesis, PAR, GEP, LUE
Testing Lunar Permanently Shadowed Regions for Water Ice: LEND Results from LRO
NASA Technical Reports Server (NTRS)
Sanin, A. B.; Mitrofanov, I. G.; Litvak, M. L.; Malakhov, A.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Golovin, D. V.;
2012-01-01
We use measurements from the Lunar Exploration Neutron Detector (LEND) collimated sensors during more than one year of the mapping phase of NASA's Lunar Reconnaissance Orbiter (LRO) mission to make estimates of the epithermal neutron flux within known large Permanently Shadowed Regions (PSRs). These are compared with the local neutron background measured outside PSRs in sunlit regions. Individual and collective analyses of PSR properties have been performed. Only three large PSRs, Shoemaker and Cabeus in the south and Rozhdestvensky U in the north, have been found to manifest significant neutron suppression. All other PSRs have much smaller suppression, only a few percent, if at all. Some even display an excess of neutron emission in comparison to the sunlit vicinity around them. Testing PSRs collectively, we have not found any average suppression for them. Only the group of 18 large PSRs, with area >200 square kilometers, show a marginal effect of small average suppression, approx. 2%, with low statistical confidence. An approx. 2% suppression corresponds to approx. 125 ppm of hydrogen taking into account the global neutron suppression near the lunar poles and assuming a homogeneous H distribution in depth in the regolith. This means that all PSRs, except those in Shoemaker, Cabeus and Rozhdestvensky U craters, do not contain any significant amount of hydrogen in comparison with sunlit areas around them at the same latitude.
NASA Technical Reports Server (NTRS)
2007-01-01
Reminiscent of the distinctive swirls in a Van Gogh painting, millions of microscopic plants color the waters of the North Atlantic with strokes of blue, turquoise, green, and brown. Fed by nutrients that have built up during the winter and the long, sunlit days of late spring and early summer, the cool waters of the North Atlantic come alive every year with a vivid display of color. The microscopic plants, called phytoplankton, that give the water this color are the base of the marine food chain. Some species of phytoplankton are coated with scales of calcium (chalk), which turn the water electric blue. Chlorophyll and other light-capturing pigments in others give the water a deep green hue. The proliferation of many different species in various stages of growth and decay provides many nuances of color in this concentrated bloom. The bloom stretches across hundreds of kilometers, well beyond the edges of this photo-like image, captured on June 23, 2007, by the Moderate Resolution Imaging Spectroradiometer (MODIS) flying aboard NASA's Aqua satellite. The upper left edge of the image is bounded by Greenland. Iceland is in the upper right. Plumes of dust are blowing off the island, probably adding nutrients to the surface waters to its south. NASA image courtesy Norman Kuring, Ocean Color Group at NASA Goddard Space Flight Center
NASA Astrophysics Data System (ADS)
Stagakis, S.; González-Dugo, V.; Cid, P.; Guillén-Climent, M. L.; Zarco-Tejada, P. J.
2012-07-01
This paper deals with the monitoring of water status and the assessment of the effect of stress on citrus fruit quality using structural and physiological remote sensing indices. Four flights were conducted over a citrus orchard in 2009 using an unmanned aerial vehicle (UAV) carrying a multispectral camera with six narrow spectral bands in the visible and near infrared. Physiological indices such as the Photochemical Reflectance Index (PRI570), a new structurally robust PRI formulation that uses the 515 nm as the reference band (PRI515), and a chlorophyll ratio (R700/R670) were compared against the Normalized Difference Vegetation Index (NDVI), Renormalized Difference Vegetation Index (RDVI) and Modified Triangular Vegetation Index (MTVI) canopy structural indices for their performance in tracking water status and the effects of sustained water stress on fruit quality at harvest. The irrigation setup in the commercial orchard was compared against a treatment scheduled to satisfy full requirements (based on estimated crop evapotranspiration) using two regulated deficit irrigation (RDI) strategies. The water status of the trees throughout the experiment was monitored with frequent field measurements of stem water potential (Ψx), while titratable acidity (TA) and total soluble solids (TSS) were measured at harvest on selected trees from each irrigation treatment. The high spatial resolution of the multispectral imagery (30 cm pixel size) enabled identification of pure tree crown components, extracting the tree reflectance from shaded, sunlit and aggregated pixels. The physiological and structural indices were then calculated from each tree at the following levels: (i) pure sunlit tree crown, (ii) entire crown, aggregating the within-crown shadows, and (iii) simulating a lower resolution pixel, including tree crown, sunlit and shaded soil pixels. The resulting analysis demonstrated that both PRI formulations were able to track water status, except when water stress altered canopy structure. In such cases, PRI570 was more affected than PRI515 by the structural changes caused by sustained water stress throughout the season. Both PRI formulations were proven to serve as pre-visual water stress indicators linked to fruit quality TSS and TA parameters (r2 = 0.69 for PRI515 vs TSS; r2 = 0.58 vs TA). In contrast, the chlorophyll (R700/R670) and structural indices (NDVI, RDVI, MTVI) showed poor relationships with fruit quality and water status levels (r2 = 0.04 for NDVI vs TSS; r2 = 0.19 vs TA). The two PRI formulations showed strong relationships with the field-measured fruit quality parameters in September, the beginning of stage III, which appeared to be the period most sensitive to water stress and the most critical for assessing fruit quality in citrus. Both PRI515 and PRI570 showed similar performance for the two scales assessed (sunlit crown and entire crown), demonstrating that within-crown component separation is not needed in citrus tree crowns where the shaded vegetation component is small. However, the simulation conducted through spatial resampling on tree + soil aggregated pixels revealed that the physiological indices were highly affected by soil reflectance and between-tree shadows, showing that for TSS vs PRI515 the relationship dropped from r2 = 0.69 to r2 = 0.38 when aggregating soil + crown components. This work confirms a previous study that demonstrated the link between PRI570, water stress, and fruit quality, while also making progress in assessing the new PRI formulation (PRI515), the within-crown shadow effects on the physiological indices, and the need for high resolution imagery to target individual tree crowns for the purpose of evaluating the effects of water stress on fruit quality in citrus.
Diurnal leaf gas exchange survey, Feb2016-May2016, PA-SLZ, PA-PNM: Panama
Rogers, Alistair [Brookhaven National Lab; Serbin, Shawn [Brookhaven National Lab; Ely, Kim [Brookhaven National Lab; Wu, Jin [BNL; Wolfe, Brett [Smithsonian; Dickman, Turin [Los Alamos National Lab; Collins, Adam [Los Alamos National Lab; Detto, Matteo [Princeton; Grossiord, Charlotte [Los Alamos National Lab; McDowell, Nate [Los Alamos National Lab; Michaletz, Sean
2017-01-01
Diurnal leaf gas exchange survey measured on sunlit canopy trees on a monthly basis from Feb to May 2016 at SLZ and PNM. This data was collected as part of the 2016 ENSO campaign. See related datasets (existing and future) for further sample details, leaf water potential, LMA, leaf spectra, other gas exchange and leaf chemistry.
Evapotranspiration (ET) is driven by evaporative demand, available solar energy and soil moisture as well as by physiological plant activity which may be substantially affected by elevated CO2 and O3. A multi-year study was conducted in outdoor sun-lit controlled-environment cha...
Evapotranspiration (ET) is driven by evaporative demand, available solar energy and soil moisture (SM) as well as by plant physiological activity which may be substantially affected by elevated CO2 and O3. A multi-year study was conducted in outdoor sunlit-controlled environment ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buie, Marc W.; Young, Eliot F.; Young, Leslie A.
We present new imaging of the surface of Pluto and Charon obtained during 2002-2003 with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) instrument. Using these data, we construct two-color albedo maps for the surfaces of both Pluto and Charon. Similar mapping techniques are used to re-process HST/Faint Object Camera (FOC) images taken in 1994. The FOC data provide information in the ultraviolet and blue wavelengths that show a marked trend of UV-bright material toward the sunlit pole. The ACS data are taken at two optical wavelengths and show widespread albedo and color variegation on the surface ofmore » Pluto and hint at a latitudinal albedo trend on Charon. The ACS data also provide evidence for a decreasing albedo for Pluto at blue (435 nm) wavelengths, while the green (555 nm) data are consistent with a static surface over the one-year period of data collection. We use the two maps to synthesize a true visual color map of Pluto's surface and investigate trends in color. The mid- to high-latitude region on the sunlit pole is, on average, more neutral in color and generally higher albedo than the rest of the surface. Brighter surfaces also tend to be more neutral in color and show minimal color variations. The darker regions show considerable color diversity arguing that there must be a range of compositional units in the dark regions. Color variations are weak when sorted by longitude. These data are also used to constrain astrometric corrections that enable more accurate orbit fitting, both for the heliocentric orbit of the barycenter and the orbit of Pluto and Charon about their barycenter.« less
2010-07-08
A propeller-shaped structure created by an unseen moon is brightly illuminated on the sunlit side of Saturn rings in this image obtained by NASA Cassini spacecraft. The moon, which is too small to be seen, is marked with a red arrow.
Photochemical attenuation of N-nitrosodimethylamine (NDMA) and other nitrosamines in surface water.
Plumlee, Megan H; Reinhard, Martin
2007-09-01
The aqueous photolysis of seven alkyl nitrosamines was studied by irradiation in a solar simulator. Nitrosamines included N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosodi-n-butylamine (NDBA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr). Direct photolysis at irradiations of 765 W/m2, representing Southern California midsummer, midday sun, resulted in half-lives of 16 min for NDMA and 12-15 min for the other nitrosamines. The quantum yield for NDMA was determined to be phi = 0.41 and phi = 0.43-0.61 for the other nitrosamines. Quantified products of NDMA photolysis included methylamine, dimethylamine, nitrite, nitrate, and formate, with nitrogen and carbon balances exceeding 98 and 79%, respectively. Indirect photolysis of nitrosamines in surface water was not observed; increasing dissolved organic carbon (DOC) slowed the NDMA photolysis rate because of light screening. Removal of NDMA measured in tertiary treated effluent flowing in a shallow, sunlit engineered channel agreed with photolysis rates predicted based on the measured quantum yield and system parameters. Because biodegradation is relatively slow, aquatic photolysis of NDMA is generally expected to be more significant even at relatively low levels of solar irradiation (t(1/2) = 8-38 h at 244-855 W/m2, 51 degrees N latitude, 1 m depth).
Worldwide Report, Epidemiology
1985-11-04
profes- sionals dispensing contact lenses — optom- etrists, ophthalmologists and dispensing op- ticians — to adopt as a precautionary measure a...development, providing conditions for the breed - ing of the malaria car- rier, the Anopheles mos- quito,’which thrives on sunlit water. "Another way...The coun- try could be a potential breeding place for AIDS, having a population who are at risk of acquiring AIDS and conditions favor- able for
Microbial control of the dark end of the biological pump
2014-01-01
A fraction of the carbon captured by phytoplankton in the sunlit surface ocean sinks to depth as dead organic matter and faecal material. The microbial breakdown of this material in the subsurface ocean generates carbon dioxide. Collectively, this microbially mediated flux of carbon from the atmosphere to the ocean interior is termed the biological pump. In recent decades it has become clear that the composition of the phytoplankton community in the surface ocean largely determines the quantity and quality of organic matter that sinks to depth. This settling organic matter, however, is not sufficient to meet the energy demands of microbes in the dark ocean. Two additional sources of organic matter have been identified: non-sinking organic particles of debated origin that escape capture by sediment traps and exhibit stable concentrations throughout the dark ocean, and microbes that convert inorganic carbon into organic matter. Whether these two sources can together account for the significant mismatch between organic matter consumption and supply in the dark ocean remains to be seen. It is clear, however, that the microbial community of the deep ocean works in a fundamentally different way from surface water communities. PMID:24707320
In 2005, plant communities were constructed in outdoor sunlit chambers that contained 3 round tubs having a surface area of 1.2 m2 and a depth of 0.6 m. Six plant types were planted in triplicate using the same spatial arrangement in each tub. Three of the six plant types were se...
NASA Astrophysics Data System (ADS)
Roth, Lorenz
2018-05-01
Far-ultraviolet observations of dwarf-planet (1) Ceres were obtained on several occasions in 2015 and 2016 by the Cosmic Origins Spectrograph (COS) and the Space Telescope Imaging Spectrograph (STIS), both on board the Hubble Space Telescope (HST). We report a search for neutral gas emissions at hydrogen, oxygen and sulfur lines around Ceres from a potential teneous exosphere. No detectable exosphere emissions are present in any of the analyzed HST observations. We apply analytical models to relate the derived upper limits for the atomic species to a water exosphere (for H and O) and a sulfur dioxide exosphere (for S and O), respectively. The H and O upper limits constrain the H2O production rate at the surface to (2 - 4) ×1026 molecules s-1 or lower, similar to or slightly larger than previous detections and upper limits. With low fluxes of energetic protons measured in the solar wind prior to the HST observations and the obtained non-detections, an assessment of the recently suggested sputter-generated water exosphere during solar energetic particle events is not possible. Investigating a sulfur dioxide-based exosphere, we find that the O and S upper limits constrain the SO2 density at the surface to values ∼ 1010 times lower than the equilibrium vapor pressure density. This result implies that SO2 is not present on Ceres' sunlit surface, contrary to previous findings in HST ultraviolet reflectance spectra but in agreement with the absence of SO2 infrared spectral features as observed by the Dawn spacecraft.
Discovery of moganite in a lunar meteorite as a trace of H2O ice in the Moon’s regolith
Seto, Yusuke; Miyake, Akira; Sekine, Toshimori; Tomeoka, Kazushige; Matsumoto, Megumi; Kobayashi, Takamichi
2018-01-01
Moganite, a monoclinic SiO2 phase, has been discovered in a lunar meteorite. Silica micrograins occur as nanocrystalline aggregates of mostly moganite and occasionally coesite and stishovite in the KREEP (high potassium, rare-earth element, and phosphorus)–like gabbroic-basaltic breccia NWA 2727, although these grains are seemingly absent in other lunar meteorites. We interpret the origin of these grains as follows: alkaline water delivery to the Moon via carbonaceous chondrite collisions, fluid capture during impact-induced brecciation, moganite precipitation from the captured H2O at pH 9.5 to 10.5 and 363 to 399 K on the sunlit surface, and meteorite launch from the Moon caused by an impact at 8 to 22 GPa and >673 K. On the subsurface, this captured H2O may still remain as ice at estimated bulk content of >0.6 weight %. This indicates the possibility of the presence of abundant available water resources underneath local sites of the host bodies within the Procellarum KREEP and South Pole Aitken terranes. PMID:29732406
NASA Astrophysics Data System (ADS)
Zhang, Qian; Chen, Jing; Zhang, Yongguang; Qiu, Feng; Fan, Weiliang; Ju, Weimin
2017-04-01
The gross primary production (GPP) of terrestrial ecosystems constitutes the largest global land carbon flux and exhibits significant spatial and temporal variations. Due to its wide spatial coverage, remote sensing technology is shown to be useful for improving the estimation of GPP in combination with light use efficiency (LUE) models. Accurate estimation of LUE is essential for calculating GPP using remote sensing data and LUE models at regional and global scales. A promising method used for estimating LUE is the photochemical reflectance index (PRI = (R531-R570)/(R531 + R570), where R531 and R570 are reflectance at wavelengths 531 and 570 nm) through remote sensing. However, it has been documented that there are certain issues with PRI at the canopy scale, which need to be considered systematically. For this purpose, an improved tower-based automatic canopy multi-angle hyperspectral observation system was established at the Qianyanzhou flux station in China since January of 2013. In each 15-minute observation cycle, PRI was observed at four view zenith angles fixed at solar zenith angle and (37°, 47°, 57°) or (42°, 52°, 62°) in the azimuth angle range from 45° to 325° (defined from geodetic north). To improve the ability of directional PRI observation to track canopy LUE, the canopy is treated as two-big leaves, i.e. sunlit and shaded leaves. On the basis of a geometrical optical model, the observed canopy reflectance for each view angle is separated to four components, i.e. sunlit and shaded leaves and sunlit and shaded backgrounds. To determine the fractions of these four components at each view angle, three models based on different theories are tested for simulating the fraction of sunlit leaves. Finally, a ratio of canopy reflectance to leaf reflectance is used to represent the fraction of sunlit leaves, and the fraction of shaded leaves is calculated with the four-scale geometrical optical model. Thus, sunlit and shaded PRI are estimated using the least squares regression with multi-angle observations. In both the half-hourly and daily time steps, the canopy-level two-leaf PRI (PRIt) can effectively enhance (>50% and >35%, respectively) the correlation between PRI and LUE derived from the tower flux measurements over the big-leaf PRI (PRIb) taken as the arithmetic average of the multi-angle measurements in a given time interval. PRIt is very effective in detecting the low-moderate drought stress on LUE at half-hourly time steps, while ineffective in detecting severe atmospheric water and heat stresses, which is probably due to alternative radiative energy sink, i.e. photorespiration. Overall, the two-leaf approach well overcomes some external effects (e.g. sun-target-view geometry) that interfere with PRI signals.
NASA Astrophysics Data System (ADS)
Chen, J. M.; He, L.; Chou, S.; Ju, W.; Zhang, Y.; Joiner, J.; Liu, J.; Mo, G.
2017-12-01
Sun-induced chlorophyll fluorescence (SIF) measured from plant canopies originates mostly from sunlit leaves. Observations of SIF by satellite sensors, such as GOME-2 and GOSAT, are often made over large view zenith angle ranges, causing large changes in the viewed sunlit leaf fraction across the scanning swath. Although observations made by OCO-2 are near nadir, the observed sunlit leaf fraction could still vary greatly due to changes in the solar zenith angle with latitude and time of overpass. To demonstrate the importance of considering the satellite-target-view geometry in using SIF for assessing vegetation productivity, we conducted multi-angle measurements of SIF using a hyperspectral sensor mounted on an automated rotating system over a rice field near Nanjing, China. A method is developed to separate SIF measurements at each angle into sunlit and shaded leaf components, and an angularly normalized canopy-level SIF is obtained as the weighted sum of sunlit and shaded SIF. This normalized SIF is shown to be a much better proxy of GPP of the rice field measured by an eddy covariance system than the unnormalized SIF observations. The same normalization scheme is also applied to the far-red GOME-2 SIF observations on sunny days, and we found that the normalized SIF is better correlated with model-simulated GPP than the original SIF observations. The coefficient of determination (R2) is improved by 0.07±0.04 on global average using the normalization scheme. The most significant improvement in R2 by 0.09±0.04 is found in deciduous broadleaf forests, where the observed sunlit leaf fraction is highly sensitive to solar zenith angle.
Progress toward ultra-stable lasers for use in space
NASA Technical Reports Server (NTRS)
Buoncristiani, A. M.; Sandford, S. P.; Amundsen, R. M.
1992-01-01
This is a summary of a research project that has come to be known as SUNLITE, initially standing for Stanford University - NASA laser in space technology experiment. It involves scientists from the NASA Langley Research Center (LaRC), Stanford University, the National Institute of Standards and Technology (NIST), and the Joint Institute for Laboratory Astrophysics (JILA), and a growing number of other institutions. The long range objective of the SUNLITE effort is to examine the fundamental linewidth and frequency stability limits of an actively stabilized laser oscillator in the microgravity and vibration-free environment of space. The ground-based SUNLITE activities supporting that objective will develop a space-qualified, self-contained and completely automated terahertz oscillator stabilized to a linewidth of less than 3 Hz, along with a measurement system capable of determining laser linewidth to one part in 10(exp 16). The purpose of this paper is to discuss the critical technologies needed to place stabilized lasers in space and to describe the progress made by the SUNLITE project to develop these technologies.
Factors controlling the photochemical degradation of methylmercury in coastal and oceanic waters
DiMento, Brian P.; Mason, Robert P.
2018-01-01
Many studies have recognized abiotic photochemical degradation as an important sink of methylmercury (CH3Hg) in sunlit surface waters, but the rate-controlling factors remain poorly understood. The overall objective of this study was to improve our understanding of the relative importance of photochemical reactions in the degradation of CH3Hg in surface waters across a variety of marine ecosystems by extending the range of water types studied. Experiments were conducted using surface water collected from coastal sites in Delaware, New Jersey, Connecticut, and Maine, as well as offshore sites on the New England continental shelf break, the equatorial Pacific, and the Arctic Ocean. Filtered water amended with additional CH3Hg at environmentally relevant concentrations was allowed to equilibrate with natural ligands before being exposed to natural sunlight. Water quality parameters – salinity, dissolved organic carbon, and nitrate – were measured, and specific UV absorbance was calculated as a proxy for dissolved aromatic carbon content. Degradation rate constants (0.87–1.67 day−1) varied by a factor of two across all water types tested despite varying characteristics, and did not correlate with initial CH3Hg concentrations or other environmental parameters. The rate constants in terms of cumulative photon flux values were comparable to, but at the high end of, the range of values reported in other studies. Further experiments investigating the controlling parameters of the reaction observed little effect of nitrate and chloride, and potential for bromide involvement. The HydroLight radiative transfer model was used to compute solar irradiance with depth in three representative water bodies – coastal wetland, estuary, and open ocean – allowing for the determination of water column integrated rates. Methylmercury loss per year due to photodegradation was also modeled across a range of latitudes from the Arctic to the Equator in the three model water types, resulting in an estimated global demethylation rate of 25.3 Mmol yr−1. The loss of CH3Hg was greatest in the open ocean due to increased penetration of all wavelengths, especially the UV portion of the spectrum which has a greater ability to degrade CH3Hg. Overall, this study provides additional insights and information to better constrain the importance of photochemical degradation in the cycling of CH3Hg in marine surface waters and its transport from coastal waters to the open ocean. PMID:29515285
Baring high-albedo soils by overgrazing: a hypothesized desertification mechanism.
Otterman, J
1974-11-08
Observations are reported of high-albedo soils denuded by overgrazing which appear bright, in high contrast to regions covered by natural vegetation. Measurements and modeling show that the denuded surfaces are cooler, when compared under sunlit conditions. This observed "thermal depression" eflect should, on theoretical grounds, result in a decreased lifting of air necessary for cloud formation and precipitation, and thus lead to regional climatic desertification.
Baring high-albedo soils by overgrazing - A hypothesized desertification mechanism
NASA Technical Reports Server (NTRS)
Otterman, J.
1974-01-01
Observations are reported of high-albedo soils denuded by overgrazing which appear bright, in high contrast to regions covered by natural vegetation. Measurements and modeling show that the denuded surfaces are cooler, when compared under sunlit conditions. This observed 'thermal depression' effect should, on theoretical grounds, result in a decreased lifting of air necessary for cloud formation and precipitation, and thus lead to regional climatic desertification.
Lunar Flashlight: Exploration and Science at the Moon with a 6U Cubesat
NASA Astrophysics Data System (ADS)
Cohen, B. A.; Hayne, P. O.; Greenhagen, B. T.; Paige, D. A.
2015-12-01
Understanding the composition, quantity, distribution, and form of water and other volatiles associated with lunar permanently shadowed regions (PSRs) is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits are also scientifically interesting, having the potential to reveal important information about the delivery of water to the Earth-Moon system. In order to address NASA's SKGs, the Lunar Flashlight mission was selected as a secondary payload on the first test flight (EM1) of the Space Launch System (SLS), currently scheduled for 2018. Recent reflectance data from LRO instruments suggest volatiles may be present on the surface, though the detection is not yet definitive. The goal of Lunar Flashlight is to determine the presence or absence of exposed water ice and map its concentration at the 1-2 kilometer scale within the PSRs. After being ejected in cislunar space by SLS, Lunar Flashlight maneuvers into a low-energy transfer to lunar orbit and then an elliptical polar orbit, spiraling down to a perilune of 10-30 km above the south pole for data collection. Lunar Flashlight will illuminate permanently shadowed regions, measuring surface albedo with point spectrometer at 1.1, 1.5 1.9, and 2.0 mm. Water ice will be distinguished from dry regolith in two ways: 1) spatial variations in absolute reflectance (water ice is much brighter in the continuum channels), and 2) reflectance ratios between absorption and continuum channels. Derived reflectance and water ice band depths will be mapped onto the lunar surface in order to distinguish the composition of the PSRs from that of the sunlit terrain, and to compare with lunar datasets such as LRO and Moon Mineralogy Mapper. Lunar Flashlight enables a low-cost path to science and in-situ resource utilization (ISRU) by identifying ice deposits (if there are any), which would be a game-changing result for expanded human exploration.
NASA Astrophysics Data System (ADS)
Cory, R. M.; Trusiak, A.; Ward, C.; Kling, G. W.; Tfaily, M.; Paša-Tolić, L.; Noel, V.; Bargar, J.
2017-12-01
The ongoing thawing of permafrost soils is the only environmental change that allows tremendous stores of organic carbon (C) to be converted into carbon dioxide (CO2) on decadal time scales, thus providing a positive and accelerating feedback to global warming. Evidence suggests that iron enhances abiotic reactions that convert dissolved organic matter (DOM) to CO2 in dark soils and in sunlit surface waters depending on its redox state and association with DOM (i.e., iron-DOM complexation). However, the complexation of iron in surface waters and soils remains too poorly understood to predict how iron influences the rates of oxidation of DOM to CO2. To address this knowledge gap, we characterized iron-DOM complexation in iron-rich soil and surface waters of the Arctic, in combination with measurements of DOM oxidation to CO2. These waters contain high concentrations of dissolved iron and DOM (up to 1 and 2 mM, respectively), and low concentrations of other potential ligands for iron such as sulfide, carbonate, chloride, or bromide. Ultra-high resolution mass spectrometry (FT-ICR MS) was used to identify ligands for iron within the DOM pool, and synchrotron based X-ray analysis (XAS and EXAFS) was used to assess iron's oxidation state, to detect iron complexation, and to constrain the chemical composition of the complexes. Across a natural gradient of dissolved iron and DOM concentrations, many potential ligands were identified within DOM that are expected to complex with iron (e.g., aromatic acids). EXAFS showed substantial complexation of reduced ferrous iron (Fe(II)) to DOM in arctic soil waters, on the basis of comparison to Fe(II)-DOM reference spectra. Identification of iron complexed to DOM in soil waters is consistent with strongly co-varying iron and DOM concentrations in arctic soil and surface waters, and supports our hypothesis that complexation of iron by DOM influences dark and light redox reactions that oxidize DOM to CO2. Understanding the molecular controls on the biogeochemical reactions that convert permafrost carbon to CO2 is critical for understanding the role of the Arctic in current and future climate change.
Briët, Olivier J T; Dossou-Yovo, Joel; Akodo, Elena; van de Giesen, Nick; Teuscher, Thomas M
2003-05-01
In 13 villages in the savannah zone and 21 villages in the forest zone of Côte d'Ivoire, the biting density of the principal malaria vector, Anopheles gambiae, was studied as a function of rice cultivation in the inland valleys in a 2-km radius around each village. In the savannah villages, during the main season cropping period, surface water on rice-cultivated and to a lesser extent on uncultivated inland valleys seems to contribute strongly to the A. gambiae population density. For the off-season cropping period (which starts after the first light rains in the savannah zone), correlations were weaker. Breeding sites other than in inland valleys may play an important role in the savannah zone. In the forest zone, however, the A. gambiae population density was strongly correlated with the surface water availability (SWA) in the rice-cultivated inland valleys, whereas the correlation with the SWA in other (uncultivated) inland valleys was weak. The requirement of sunlit breeding sites for A. gambiae might explain this difference between zones. In the forest zone, only inland valleys cleared for rice cultivation meet this requirement, whereas all other inland valleys are covered with dense vegetation. In the savannah zone, however, most undergrowth is burnt during the dry season, which permits sunlight to reach puddles resulting from the first rains.
Łukowski, Adrian; Giertych, Marian J.; Zadworny, Marcin; Mucha, Joanna; Karolewski, Piotr
2015-01-01
The monophagous beetle, Altica brevicollis coryletorum, is a major leaf pest of Corylus avellana (common hazel). In contrast to majority of the other studied species of shrubs, sunlit leaves are grazed to a much greater extent than shaded leaves. Since the observation of a link between leaf irradiance level and A. brevicollis feeding is unique, we hypothesized that feeding preference of this beetle species is related to the speed needed to escape threats i.e. faster jumping. We also hypothesized that sunlit leaves are more nutritious and easier to consume than the leaves of shaded shrubs. Results indicated that beetle mass was greater in beetles occupying sunlit leaves, which is consistent with our second hypothesis. The study also confirmed under laboratory conditions, that larvae, pupae and beetles that were fed full-light (100% of full light) leaves were significantly heavier than those fed with shaded leaves (15% of full light). In the high irradiance conditions (higher temperature) duration of larval development is also reduced. Further results indicated that neither the concentration of soluble phenols, leaf toughness, or the number of trichomes could explain the insect’s preference for sunlit leaves. Notably, measurements of jump length of beetles of this species, both in the field and under laboratory conditions, indicated that the defense pattern related to jumping was associated with light conditions. The jump length of beetles in the sun was significantly higher than in the shade. Additionally, in laboratory tests, beetle defense (jumping) was more strongly affected by temperature (15, 25, or 35°C for 24h) than by leaf type. The effect of sunlit, higher nutrient leaves (greater level of non-structural carbohydrates) on defense (jumping) appears to be indirect, having a positive effect on insect mass in all developmental stages. PMID:25927706
Ward, Collin P; Nalven, Sarah G; Crump, Byron C; Kling, George W; Cory, Rose M
2017-10-03
In sunlit waters, photochemical alteration of dissolved organic carbon (DOC) impacts the microbial respiration of DOC to CO 2 . This coupled photochemical and biological degradation of DOC is especially critical for carbon budgets in the Arctic, where thawing permafrost soils increase opportunities for DOC oxidation to CO 2 in surface waters, thereby reinforcing global warming. Here we show how and why sunlight exposure impacts microbial respiration of DOC draining permafrost soils. Sunlight significantly increases or decreases microbial respiration of DOC depending on whether photo-alteration produces or removes molecules that native microbial communities used prior to light exposure. Using high-resolution chemical and microbial approaches, we show that rates of DOC processing by microbes are likely governed by a combination of the abundance and lability of DOC exported from land to water and produced by photochemical processes, and the capacity and timescale that microbial communities have to adapt to metabolize photo-altered DOC.The role of dissolved organic carbon (DOC) photo-alteration in the microbial respiration of DOC to CO 2 is unclear. Here, the authors show that the impact of this mechanism depends on whether photo-alteration of DOC produces or removes molecules used by native microbial communities prior to light exposure.
A surface hydrology model for regional vector borne disease models
NASA Astrophysics Data System (ADS)
Tompkins, Adrian; Asare, Ernest; Bomblies, Arne; Amekudzi, Leonard
2016-04-01
Small, sun-lit temporary pools that form during the rainy season are important breeding sites for many key mosquito vectors responsible for the transmission of malaria and other diseases. The representation of this surface hydrology in mathematical disease models is challenging, due to their small-scale, dependence on the terrain and the difficulty of setting soil parameters. Here we introduce a model that represents the temporal evolution of the aggregate statistics of breeding sites in a single pond fractional coverage parameter. The model is based on a simple, geometrical assumption concerning the terrain, and accounts for the processes of surface runoff, pond overflow, infiltration and evaporation. Soil moisture, soil properties and large-scale terrain slope are accounted for using a calibration parameter that sets the equivalent catchment fraction. The model is calibrated and then evaluated using in situ pond measurements in Ghana and ultra-high (10m) resolution explicit simulations for a village in Niger. Despite the model's simplicity, it is shown to reproduce the variability and mean of the pond aggregate water coverage well for both locations and validation techniques. Example malaria simulations for Uganda will be shown using this new scheme with a generic calibration setting, evaluated using district malaria case data. Possible methods for implementing regional calibration will be briefly discussed.
Prediction of large negative shaded-side spacecraft potentials
NASA Technical Reports Server (NTRS)
Prokopenko, S. M. L.; Laframboise, J. G.
1977-01-01
A calculation by Knott, for the floating potential of a spherically symmetric synchronous-altitude satellite in eclipse, was adapted to provide simple calculations of upper bounds on negative potentials which may be achieved by electrically isolated shaded surfaces on spacecraft in sunlight. Large (approximately 60 percent) increases in predicted negative shaded-side potentials are obtained. To investigate effective potential barrier or angular momentum selection effects due to the presence of less negative sunlit-side or adjacent surface potentials, these expressions were replaced by the ion random current, which is a lower bound for convex surfaces when such effects become very severe. Further large increases in predicted negative potentials were obtained, amounting to a doubling in some cases.
Fluidized Crater Ejecta Deposit
NASA Technical Reports Server (NTRS)
1998-01-01
The Mars Orbiter Camera (MOC) onboard the Mars Global Surveyor (MGS) spacecraft continued to obtain high resolution images of the red planet into August 1998. At this time, each ground track (the portion of Mars available for MOC imaging on a given orbit) covers areas from about 40oN on the late afternoon side of the planet, up over the sunlit north polar cap, and down the early morning side of Mars to about 20oN latitude. Early morning and late afternoon views provide good shadowing to reveal subtle details on the martian surface. Views of Mars with such excellent lighting conditions will not be seen by MOC once MGS's Science Phasing Orbits end in mid-September 1998.
The image shown here, MOC image 47903, was targeted on Friday afternoon (PDT), August 7, 1998. This picture of ejecta from a nameless 9.1 kilometer (5.7 mile)-diameter crater was designed to take full advantage of the present lighting conditions. When the image was taken (around 5:38 p.m. (PDT) on Saturday, August 8, 1998), the Sun had just risen and was only about 6o above the eastern horizon. With the Sun so low in the local sky, the contrast between sunlit and shadowed surfaces allowed new, subtle details to be revealed on the surface of the crater ejecta deposit.The crater shown here has ejecta of a type that was first identified in Mariner 9 and Viking Orbiter images as 'fluidized' ejecta. Ejecta is the material that is thrown out from the crater during the explosion that results when a meteor--piece of a comet or asteroid--collides with the planet. Fluidized ejecta is characterized by its lobate appearance, and sometimes by the presence of a ridge along the margin of the ejecta deposit. In the case of the crater shown here, there are two ridges that encircle the crater ejecta--this type of ejecta deposit is sometimes called a double-lobe rampart deposit. The MOC image shows that this particular crater also has 'normal' ejecta that occurs out on the plains, beyond the outermost ridge of the main, fluidized ejecta deposit.Fluidized or 'rampart' ejecta deposits have long been thought by many Mars scientists to result from an impact into a surface that contains water. The water would have been underground, and could have been frozen or liquid. According to the prevailing model, when the meteor hit, this water was released--along with tons of rock and debris--and the ejecta flowed like mud. Images with resolutions higher than those presently attainable from the 11.6 hr elliptical orbit are needed to see the specific features (such as large boulders 'rafted' by the dense mud) that would confirm or refute this model. Such images may be acquired once MGS is in its mapping orbit.MOC image 47903 was received and processed by the MOC team at Malin Space Science Systems on Monday afternoon (PDT), August 10, 1998. The image center is located at 27.92oN latitude and 184.66oW longitude, in the northern Tartarus Montes region.Rogers, Alistair [Brookhaven National Lab; Serbin, Shawn [Brookhaven National Lab; Ely, Kim [Brookhaven National Lab; Wu, Jin [BNL; Wolfe, Brett [Smithsonian; Dickman, Turin [Los Alamos National Lab; Collins, Adam [Los Alamos National Lab; Detto, Matteo [Princeton; Grossiord, Charlotte [Los Alamos National Lab; McDowell, Nate [Los Alamos National Lab; Michaletz, Sean
2017-01-01
CO2 response (ACi) gas exchange measured on leaves collected from sunlit canopy trees on a monthly basis from Feb to May 2016 at SLZ and PNM. Dataset includes calculated Vcmax and Jmax parameters. This data was collected as part of the 2016 ENSO campaign. See related datasets (existing and future) for further sample details, leaf water potential, LMA, leaf spectra, other gas exchange and leaf chemistry.
Gedzelman, Stanley David
2017-07-01
Three scenarios that produce colored thunderstorms are simulated. In Scenario #1, the thunderstorm's sunlit face exhibits a color gradient from white or yellow at top to red at base when the sun is near the horizon. It is simulated with a second-order scattering model as a combination of sunlight and skylight reflected from the cloud face that is attenuated and reddened by Rayleigh and Mie scattering over the long optical path near sunset that increases from cloud top to base. In Scenario #2, the base of the precipitation shaft appears luminous green-blue when surrounded by a much darker arcus cloud. It is simulated as multiply scattered light transmitted through the precipitation shaft using a Monte Carlo model that includes absorption by liquid water and ice. The color occurs over a wide range of solar zenith angles with large liquid water content, but the precipitation shaft is only bright when hydrometeors are large. Attenuation of the light by Rayleigh and Mie scattering outside the precipitation shaft shifts the spectrum to green when viewed from a distance of several kilometers. In Scenario #3, the shaded cloud face exhibits a "sickly" yellow-green color. It is simulated with a second-order scattering model as the result of distant skylight that originates in the sunlit region beyond an opaque anvil of order 40 km wide but is attenuated by Rayleigh and Mie scattering in its path to the cloud and observer.
Koehler, Birgit; Barsotti, Francesco; Minella, Marco; Landelius, Tomas; Minero, Claudio; Tranvik, Lars J; Vione, Davide
2018-02-01
Lake water constituents, such as chromophoric dissolved organic matter (CDOM) and nitrate, absorb sunlight which induces an array of photochemical reactions. Although these reactions are a substantial driver of pollutant degradation in lakes they are insufficiently understood, in particular on large scales. Here, we provide for the first time comprehensive photochemical maps covering a large geographic region. Using photochemical kinetics modeling for 1048 lakes across Sweden we simulated the steady-state concentrations of four photoreactive transient species, which are continuously produced and consumed in sunlit lake waters. We then simulated the transient-induced photochemical transformation of organic pollutants, to gain insight into the relevance of the different photoreaction pathways. We found that boreal lakes were often unfavorable environments for photoreactions mediated by hydroxyl radicals (OH) and carbonate radical anions (CO 3 - ), while photoreactions mediated by CDOM triplet states ( 3 CDOM*) and, to a lesser extent, singlet oxygen ( 1 O 2 ) were the most prevalent. These conditions promote the photodegradation of phenols, which are used as plastic, medical drug and herbicide precursors. When CDOM concentrations increase, as is currently commonly the case in boreal areas such as Sweden, 3 CDOM* will also increase, promoting its importance in photochemical pathways even more. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Feaga, Lori M.; Holt, Carrie E.; Steffl, Andrew; A'Hearn, Michael F.; Bertaux, Jean-Loup; Feldman, Paul D.; Noonan, John; Parker, Joel Wm; Schindhelm, Eric; Stern, S. Alan; Weaver, Harold A.
2016-10-01
Alice, NASA's lightweight and low-power far-ultraviolet (FUV) imaging spectrograph onboard ESA's comet orbiting spacecraft Rosetta (Stern et al. 2007, Space Sci. Rev. 128, 507), has just completed its characterization of the nucleus and coma of the Jupiter family comet 67P/Churyumov-Gerasimenko (C-G). With a spectral range from 700-2050 Å, Alice was able to monitor the sunlit surface of C-G in order to establish if there was variability in the FUV reflectivity across the nucleus, determine if there were distinct spectral features associated with various morphological regions, and infer compositional makeup of the comet. Using spatially resolved pre-perihelion data, the FUV phase dependence, albedo, and spectral slope were derived for the nucleus (Feaga et al. 2015, A&A 583, A27) and were consistent with a homogeneous layer of dust covering the northern hemisphere. During the increase in activity around perihelion and change of seasons on the comet, the Rosetta suite of instruments has shown evidence of surface changes, mass movement of material, and transient patches of ice. The FUV properties of the nucleus throughout the perihelion passage inside of 3 AU, including observations during a zero phase flyby and its associated opposition surge and a search for exposed water ice on the surface, will be presented here and compared to the early pre-perihelion characteristics.
NASA Astrophysics Data System (ADS)
Lee, K.; Ko, Y. H.
2016-12-01
In the ocean without the measurable levels of nitrate, new production, i.e. the amount of carbon transported from the sunlit upper water to deep water, was estimated by summing the seasonal reduction in the total dissolved inorganic carbon (NCT = CT x 35/S) concentration in the surface mixed layer. Total reduction in the mixed layer NCT inventory in each 4o latitude by 5o longitude was calculated using an annual cycle of NCT, which was deduced from global monthly records of partial pressure of CO2 (based on more than 6.5 million data) and total alkalinity fields using thermodynamic models. The estimation of total NCT reduction for each pixel was then corrected for small changes caused by atmospheric nitrogen deposition and net air-sea CO2 exchange. This novel method yields 0.8 ± 0.3 petagrams of global new production per year (Pg C yr, Pg = 1015 grams), which is likely to be mediated exclusively by dinitrogen (N2) fixing microorganisms. These organisms utilize the inexhaustible pool of dissolved N2 and thereby circumvent nitrate limitation, particularly in the oligotrophic tropical and subtropical ocean.
Layered Outcrops in Gusev Crater
NASA Technical Reports Server (NTRS)
2004-01-01
NASA's Mars Exploration Rover Spirit collected data on morphology, composition, and mineralogy of a rock nicknamed 'Tetl' using the microscopic imager, the alpha particle X-ray spectrometer, and the Moessbauer spectrometer before moving on. Scientists are discussing a suggestion that this rock outcrop and others on the 'West Spur' of the 'Columbia Hills' in Gusev Crater on Mars may contain evidence of graded bedding, in which alternate layers of sediment are either coarser or finer depending on the turbulence of the processes that deposited them. Such layers could be deposited by water circulating in rivers or lakes, volcanic ash settling on the surface, wind carrying fine-grained sediments, or a combination of these processes. This view is a mosaic of images that Spirit took with its microscopic imager on the rover's 272nd and 273rd martian days, or sols (Oct. 7 and 8, 2004). It has been enhanced to bring out details in the shadows without washing out sunlit areas. The section of rock shown here is approximately 17 centimeters (6.7 inches) wide.Lunar Portable Life Support System Heat Rejection Study
NASA Technical Reports Server (NTRS)
Conger, Bruce; Sompayrac,Robert G.; Trevino, Luis A.; Bue, Grant C.
2009-01-01
Performing extravehicular activity (EVA) at various locations of the lunar surface presents thermal challenges that exceed those experienced in space flight to date. The lunar Portable Life Support System (PLSS) cooling unit must maintain thermal conditions within the space suit and reject heat loads generated by the crewmember and the PLSS equipment. The amount of cooling required varies based on the lunar location and terrain due to the heat transferred between the suit and its surroundings. A study has been completed which investigated the resources required to provide cooling under various lunar conditions, assuming three different thermal technology categories: 1. Spacesuit Water Membrane Evaporator (SWME) 2. Subcooled Phase Change Material (SPCM) 3. Radiators with and without heat pumps Results from the study are presented that show mass and power impacts on the cooling system as a function of the location and terrain on the lunar surface. Resources (cooling equipment mass and consumables) are greater at the equator and inside sunlit craters due to the additional heat loads on the cooling system. While radiator and SPCM technologies require minimal consumables, they come with carry-weight penalties and have limitations. A wider investigation is recommended to determine if these penalties and limitations are offset by the savings in consumables.
Influence of solar radiation on DOM release from resuspended Florida Bay sediments
NASA Astrophysics Data System (ADS)
Shank, G. C.; Evans, A.; Jaffé, R.; Yamashita, Y.
2009-12-01
This study investigated dissolved organic matter (DOM) release from resuspended Florida Bay sediments under dark and sunlit conditions. Much of Florida Bay (located between Everglades and Florida Keys) is very shallow (< 2 m) so sediment resuspension events have the potential to substantially impact the concentration and composition of DOM in the water column. For our study, sediments were collected at several sites across Florida Bay and ranged from 3-11 percent organic carbon (by weight). Sediments were resuspended in oligotrophic seawater for 48 hours in 1 L quartz flasks in the dark and under simulated solar radiation (SunTest XLS+) at concentrations of 100 mg L-1 and 1 g L-1 (wet weight). Final solutions were analyzed for DOC, chromophoric dissolved organic matter (CDOM), and Excitation Emission Matrix (EEM) fluorescence. Results showed little to no DOC increases in the resuspensions performed under dark conditions, but substantial release of DOM in irradiated resuspensions, especially at high sediment concentrations where DOC increases ranged from 100-500%. The sediments also released substantial quantities of CDOM to solution under irradiated conditions. The magnitude of DOC increases in irradiated resuspensions were well-correlated with the amount of particulate organic carbon (POC) added. Data from EEM-PARAFAC analyses suggests the photochemically produced DOM was comprised of desorbed humic material with a smaller fraction from microbial mediated processes. Our study provides evidence that sediment resuspension episodes in shallow sunlit waters such as Florida Bay have the potential to provide an important source of organic carbon to overlying waters.
NASA Astrophysics Data System (ADS)
Hegedüs, Ramón; Barta, András; Bernáth, Balázs; Benno Meyer-Rochow, Victor; Horváth, Gábor
2007-08-01
Radiance, color, and polarization of the light in forests combine to create complex optical patterns. Earlier sporadic polarimetric studies in forests were limited by the narrow fields of view of the polarimeters used in such studies. Since polarization patterns in the entire upper hemisphere of the visual environment of forests could be important for forest-inhabiting animals that make use of linearly polarized light for orientation, we measured 180° field-of-view polarization distributions in Finnish forests. From a hot air balloon we also measured the polarization patterns of Hungarian grasslands lit by the rising sun. We found that the pattern of the angle of polarization α of sunlit grasslands and sunlit tree canopies was qualitatively the same as that of the sky. We show here that contrary to an earlier assumption, the α-pattern characteristic of the sky always remains visible underneath overhead vegetation, independently of the solar elevation and the sky conditions (clear or partly cloudy with visible sun's disc), provided the foliage is sunlit and not only when large patches of the clear sky are visible through the vegetation. Since the mirror symmetry axis of the α-pattern of the sunlit foliage is the solar-antisolar meridian, the azimuth direction of the sun, occluded by vegetation, can be assessed in forests from this polarization pattern. Possible consequences of this robust polarization feature of the optical environment in forests are briefly discussed with regard to polarization-based animal navigation.
Surface charging of a crater near lunar terminator
NASA Astrophysics Data System (ADS)
Anuar, A. K.
2017-05-01
Past lunar missions have shown the presence of dust particles in the lunar exosphere. These particles originate from lunar surface and are due to the charging of lunar surface by the solar wind and solar UV flux. Near the lunar terminator region, the low conductivity of the surface and small scale variations in surface topology could cause the surface to charge to different surface potentials. This paper simulates the variation of surface potential for a crater located in the lunar terminator regions using Spacecraft Plasma Interaction Software (SPIS). SPIS employs particle in cell method to simulate the motion of solar wind particles and photoelectrons. Lunar crater has been found to create mini-wake which affects both electron and ion density and causes small scale potential differences. Simulation results show potential difference of 300 V between sunlit area and shadowed area which creates suitable condition for dust levitation to occur.
Avetta, Paola; Fabbri, Debora; Minella, Marco; Brigante, Marcello; Maurino, Valter; Minero, Claudio; Pazzi, Marco; Vione, Davide
2016-11-15
Phototransformation is important for the fate in surface waters of the pharmaceuticals diclofenac (DIC) and naproxen (NAP) and for clofibric acid (CLO), a metabolite of the drug clofibrate. The goal of this paper is to provide an overview of the prevailing photochemical processes, which these compounds undergo in the different conditions found in freshwater environments. The modelled photochemical half-life times of NAP and DIC range from a few days to some months, depending on water conditions (chemistry and depth) and on the season. The model indicates that direct photolysis is the dominant degradation pathway of DIC and NAP in sunlit surface waters, and potentially toxic cyclic amides were detected as intermediates of DIC direct phototransformation. With modelled half-life times in the month-year range, CLO is predicted to be more photostable than DIC or NAP and to be degraded mainly by reaction with the • OH radical and with the triplet states of chromophoric dissolved organic matter ( 3 CDOM*). The CLO intermediates arising from these processes and detected in this study (hydroquinone and 4-chlorophenol) are, respectively, a chronic toxicant to aquatic organisms and a possible carcinogen for humans. Hydroquinone is formed with only ∼5% yield upon CLO triplet-sensitised transformation, but it is highly toxic for algae and crustaceans. In contrast, the formation yield of 4-chlorophenol reaches ∼50% upon triplet sensitisation and ∼10% by · OH reaction. The comparison of model predictions with field data from a previous study yielded a very good agreement in the case of DIC and, when using 4-carboxybenzophenone as proxy for triplet sensitisation by CDOM, a good agreement was found for CLO as well. In the case of NAP, the comparison with field data suggests that its direct photolysis quantum yield approaches or even falls below the lower range of literature values. Copyright © 2016 Elsevier Ltd. All rights reserved.
Leaf sample detail, Feb2016-May2016, PA-SLZ, PA-PNM, PA-BCI: Panama
Ely, Kim [Brookhaven National Lab; Rogers, Alistair [Brookhaven National Lab; Serbin, Shawn [Brookhaven National Lab; Wu, Jin [BNL; Wolfe, Brett [Smithsonian; Dickman, Turin [Los Alamos National Lab; Collins, Adam [Los Alamos National Lab; Detto, Matteo [Princeton; Grossiord, Charlotte [Los Alamos National Lab; McDowell, Nate [Los Alamos National Lab; Michaletz, Sean
2017-01-01
Date, location, species and photographs of leaf samples collected on a monthly basis from Feb to May 2016 at SLZ and PNM. Data from BCI only available for March. This data was collected as part of the 2016 ENSO campaign. Data to be used as a reference to linking related datasets (existing and future) including leaf water potential, leaf spectra, LMA, gas exchange and leaf chemistry (CHN, NSC, P). Most leaves were sampled from sunlit canopy trees.
2011-12-19
CAPE CANAVERAL, Fla. -- A Florida chicken turtle basks on a sunlit log in one of the many bodies of water at NASA's Kennedy Space Center. The center shares a boundary with the Merritt Island National Wildlife Refuge, consisting of 140,000 acres. The refuge provides a wide variety of habitats -- coastal dunes, saltwater estuaries and marshes, freshwater impoundments, scrub, pine flatwoods, and hardwood hammocks -- that provide sanctuary for more than 1,500 species of plants and animals, including about 331 species of birds. Photo credit: NASA/Jim Grossmann
Radial velocity observations of the sun at night
NASA Technical Reports Server (NTRS)
Mcmillan, R. S.; Moore, T. L.; Perry, M. L.; Smith, P. H.
1993-01-01
The ability to detect planets orbiting stars has been evaluated through solar-spectrum Doppler shift measurements for 5 years, using the sunlit surface of the moon to furnish nighttime access to the solar spectrum integrated over the solar disk as though the sun were being observed at stellar distance. These lunar observations have indicated that the Doppler shift of the integrated solar photosphere disk in violet absorption lines has varied less that +/- 4 m/sec over the 1987-1992 interval studied.
Estimation of Canopy Sunlit Fraction of Leaf Area from Ground-Based Measurements
NASA Astrophysics Data System (ADS)
Yang, B.; Knyazikhin, Y.; Yan, K.; Chen, C.; Park, T.; CHOI, S.; Mottus, M.; Rautiainen, M.; Stenberg, P.; Myneni, R.; Yan, L.
2015-12-01
The sunlit fraction of leaf area (SFLA) defined as the fraction of the total hemisurface leaf area illuminated by the direct solar beam is a key structural variable in many global models of climate, hydrology, biogeochemistry and ecology. SFLAI is expected to be a standard product from the Earth Polychromatic Imaging Camera (EPIC) on board the joint NOAA, NASA and US Air Force Deep Space Climate Observatory (DSCOVR) mission, which was successfully launched from Cape Canaveral, Florida on February 11, 2015. The DSCOVR EPIC sensor orbiting the Sun-Earth Lagrange L1 point provides multispectral measurements of the radiation reflected by Earth in retro-illumination directions. This poster discusses a methodology for estimating the SFLA using LAI-2000 Canopy Analyzer, which is expected to underlie the strategy for validation of the DSCOVR EPIC land surface products. LAI-2000 data collected over 18 coniferous and broadleaf sites in Hyytiälä, Central Finland, were used to estimate the SFLA. Field data on canopy geometry were used to simulate selected sites. Their SFLAI was calculated using a Monte Carlo (MC) technique. LAI-2000 estimates of SFLA showed a very good agreement with MC results, suggesting validity of the proposed approach.
Vezzani, D; Albicócco, A P
2009-03-01
The aim of this study was to assess whether certain attributes of larval breeding sites are correlated with pupal productivity (i.e. numbers of pupae collected per sampling period), so that these could be used as the focus for control measures to enhance control efficiency. Therefore, the objectives were to identify the months of highest pupal productivity of Aedes aegypti (L.) and Culex pipiens L. (Diptera: Culicidae) in an urban temperate cemetery in Argentina where artificial containers of < 6 L (flower vases) were the predominant breeding habitats, to compare various measures of the productivity of sunlit and shaded containers and to determine whether the composition of the containers affected pupal productivity. Over a period of 9 months, 200 randomly chosen water-filled containers (100 sunlit and 100 shaded), out of approximately 3738 containers present (approximately 54% in shade), were examined each month within a cemetery (5 ha) in Buenos Aires (October 2006 to June 2007). In total, 3440 immatures of Cx pipiens and 1974 of Ae. aegypti were collected. The larvae : pupae ratio was 10 times greater for the former, indicating that larval mortality was greater for Cx pipiens. Both mosquito species showed a higher container index (CI) in shaded than in sunlit containers (Ae. aegypti: 12.8% vs. 6.9% [chi(2) = 17.6, P < 0.001]; Cx pipiens: 6.3% vs. 1.8% [chi(2) = 24, P < 0.001]). However, the number and the density of immatures per infested container and the number of pupae per pupa-positive container did not differ significantly between sunlit and shaded containers for either species. Therefore, the overall relative productivity of pupae per ha of Ae. aegypti and Cx pipiens was 2.3 and 1.8 times greater, respectively, in shaded than in sunlit areas as a result of the greater CIs of containers in shaded areas. Neither the CI nor the number of immatures per infested container differed significantly among container types of different materials in either lighting condition. The maximum CI and total pupal counts occurred in March for Ae. aegypti and in January and February for Cx pipiens. The estimated peak abundance of pupae in the whole cemetery reached a total of approximately 4388 in the middle of March for Ae. aegypti and approximately 1059 in the middle of January for Cx pipiens. Spearman's correlations between monthly total productivity and monthly CI were significant at P < 0.001 for Ae. aegypti (r(s) = 0.975) and P < 0.01 for Cx pipiens (r(s) = 0.869). Our findings indicate that the efficacy of control campaigns against the two most important mosquito vectors in temperate Argentina could be improved by targeting containers in shaded areas, with maximum effort during species-specific times of year when pupal productivity is at its peak.
Transpiration of urban trees and its cooling effect in a high latitude city.
Konarska, Janina; Uddling, Johan; Holmer, Björn; Lutz, Martina; Lindberg, Fredrik; Pleijel, Håkan; Thorsson, Sofia
2016-01-01
An important ecosystem service provided by urban trees is the cooling effect caused by their transpiration. The aim of this study was to quantify the magnitude of daytime and night-time transpiration of common urban tree species in a high latitude city (Gothenburg, Sweden), to analyse the influence of weather conditions and surface permeability on the tree transpiration, and to find out whether tree transpiration contributed to daytime or nocturnal cooling. Stomatal conductance and leaf transpiration at day and night were measured on mature street and park trees of seven common tree species in Gothenburg: Tilia europaea, Quercus robur, Betula pendula, Acer platanoides, Aesculus hippocastanum, Fagus sylvatica and Prunus serrulata. Transpiration increased with vapour pressure deficit and photosynthetically active radiation. Midday rates of sunlit leaves ranged from less than 1 mmol m(-2) s(-1) (B. pendula) to over 3 mmol m(-2) s(-1) (Q. robur). Daytime stomatal conductance was positively related to the fraction of permeable surfaces within the vertically projected crown area. A simple estimate of available rainwater, comprising of precipitation sum and fractional surface permeability within the crown area, was found to explain 68% of variation in midday stomatal conductance. Night-time transpiration was observed in all studied species and amounted to 7 and 20% of midday transpiration of sunlit and shaded leaves, respectively. With an estimated night-time latent heat flux of 24 W m(-2), tree transpiration significantly increased the cooling rate around and shortly after sunset, but not later in the night. Despite a strong midday latent heat flux of 206 W m(-2), a cooling effect of tree transpiration was not observed during the day.
Transpiration of urban trees and its cooling effect in a high latitude city
NASA Astrophysics Data System (ADS)
Konarska, Janina; Uddling, Johan; Holmer, Björn; Lutz, Martina; Lindberg, Fredrik; Pleijel, Håkan; Thorsson, Sofia
2016-01-01
An important ecosystem service provided by urban trees is the cooling effect caused by their transpiration. The aim of this study was to quantify the magnitude of daytime and night-time transpiration of common urban tree species in a high latitude city (Gothenburg, Sweden), to analyse the influence of weather conditions and surface permeability on the tree transpiration, and to find out whether tree transpiration contributed to daytime or nocturnal cooling. Stomatal conductance and leaf transpiration at day and night were measured on mature street and park trees of seven common tree species in Gothenburg: Tilia europaea, Quercus robur, Betula pendula, Acer platanoides, Aesculus hippocastanum, Fagus sylvatica and Prunus serrulata. Transpiration increased with vapour pressure deficit and photosynthetically active radiation. Midday rates of sunlit leaves ranged from less than 1 mmol m-2 s-1 ( B. pendula) to over 3 mmol m-2 s-1 ( Q. robur). Daytime stomatal conductance was positively related to the fraction of permeable surfaces within the vertically projected crown area. A simple estimate of available rainwater, comprising of precipitation sum and fractional surface permeability within the crown area, was found to explain 68 % of variation in midday stomatal conductance. Night-time transpiration was observed in all studied species and amounted to 7 and 20 % of midday transpiration of sunlit and shaded leaves, respectively. With an estimated night-time latent heat flux of 24 W m-2, tree transpiration significantly increased the cooling rate around and shortly after sunset, but not later in the night. Despite a strong midday latent heat flux of 206 W m-2, a cooling effect of tree transpiration was not observed during the day.
Enhanced Heterogeneous Nitrates Photolysis on Ice and Potential Impacts on NOx Emissions
NASA Astrophysics Data System (ADS)
Ayotte, P.; Marcotte, G.; Pronovost, S.; Marchand, P.; Laffon, C.; Parent, P.
2015-12-01
Nitrates photolysis plays a key role in the chemistry of the polar boundary layer and of the lower troposphere over snow-covered areas (1). Using a combination of vibrational (2) and photo-absorption spectroscopies (3), we show that nitric acid is mostly dissociated upon its adsorption onto, and its dissolution within ice at temperatures as low 20K. Using amorphous solid water as a model substrate for the disordered surface layer at the interstitial air-ice interface, UV irradiation in the environmentally relevant n-π* transition uncovers the fact that the photolysis rates are significantly higher for surface-bound nitrates compared to those dissolved within the bulk. The complex coupled interfacial transport and reaction kinetics result in the formation of a thin photochemically active layer at the surface of ice which may magnify the impact of surface-enhanced nitrates photolysis rates on ice thereby providing a significant contribution to the intense photochemical NOxfluxes observed to emanate from the sunlit snowpack upon polar sunrise.(4) (1) F. Dominé, P.B. Shepson, Science, 297, 1506-1510 (2002).(2) P. Marchand, G. Marcotte, and P. Ayotte, Spectroscopic Study of HNO3 Dissociation on Ice, J. Phys. Chem. A 116, 12112-12122 (2012).(3) G. Marcotte, P. Ayotte, A. Bendounan, F. Sirotti, C. Laffon and P. Parent, J. Phys. Chem. Lett. 4, 2643-2648 (2013).(4) G. Marcotte, P. Marchand, S. Pronovost, P. Ayotte, C. Laffon and P. Parent, J. Phys. Chem. A 119, 1996-2005 (2015).
United States Air Force Research Initiation Program for 1987. Volume 2
1989-04-01
is partly in darkness and partly sunlit with a low angle sun. Solar absorption was added as an additional excitation mechanism in the calculation of...34-7 Also, the sun was assumed to be above the horizon ( solar zenith angle = 880) in the calculation of sunlit vibrational temperature profiles, when...time conditions. This will involve modifying the kinetic equations to include solar pumping at higher sun angles, determining vibrational temperature
NASA Technical Reports Server (NTRS)
Strahler, Alan H.; Li, Xiao-Wen; Jupp, David L. B.
1991-01-01
The bidirectional radiance or reflectance of a forest or woodland can be modeled using principles of geometric optics and Boolean models for random sets in a three dimensional space. This model may be defined at two levels, the scene includes four components; sunlight and shadowed canopy, and sunlit and shadowed background. The reflectance of the scene is modeled as the sum of the reflectances of the individual components as weighted by their areal proportions in the field of view. At the leaf level, the canopy envelope is an assemblage of leaves, and thus the reflectance is a function of the areal proportions of sunlit and shadowed leaf, and sunlit and shadowed background. Because the proportions of scene components are dependent upon the directions of irradiance and exitance, the model accounts for the hotspot that is well known in leaf and tree canopies.
Re-Assessment of "Water on the Moon" after LCROSS
NASA Technical Reports Server (NTRS)
Gibson, Everett K.; Pillinger, Colin T.
2010-01-01
The LCROSS Mission has produced information about the possible presence of water in a permanently shaded regions of the Moon. Without the opportunity to have a controlled impact into a sun-lite site on the Moon, the LCROSS information must be carefully evaluated. The Apollo samples have provided a large amount of information on the nature of lunar hydrogen, water and other volatiles and this information must be considered in any interpretation of the observed data from the LCROSS and other lunar missions. Perhaps the volatiles seen by the LRO/LCROSS mission might be identical to lunar volatiles within ordinary lunar equatorial materials. Until the control experiment of having an impactor strike an equatorially site is carried out, caution must be taken when interpreting the results from the LCROSS mission.
Investigation of test methods, material properties, and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
Willis, P. B.
1983-01-01
A study of potentially useful low cost encapsulation materials for the Flat-Plate Solar Array project is discussed. The goal is to identify, evaluate, test and recommend encapsulant materials and processes for the production of cost-effective, long life solar cell modules. Technical investigations included studies of aging and degradation of candidate encapsulation materials, continued identification of primers for durable bonding of module interfaces, continued evaluation of soil resistant treatments for the sunlit surface of the module and testing of corrosion protective coatings for use low cost mild steel substrates.
The MODIS Vegetation Canopy Water Content product
NASA Astrophysics Data System (ADS)
Ustin, S. L.; Riano, D.; Trombetti, M.
2008-12-01
Vegetation water stress drives wildfire behavior and risk, having important implications for biogeochemical cycling in natural ecosystems, agriculture, and forestry. Water stress limits plant transpiration and carbon gain. The regulation of photosynthesis creates close linkages between the carbon, water, and energy cycles and through metabolism to the nitrogen cycle. We generated systematic weekly CWC estimated for the USA from 2000-2006. MODIS measures the sunlit reflectance of the vegetation in the visible, near-infrared, and shortwave infrared. Radiative transfer models, such as PROSPECT-SAILH, determine how sunlight interacts with plant and soil materials. These models can be applied over a range of scales and ecosystem types. Artificial Neural Networks (ANN) were used to optimize the inversion of these models to determine vegetation water content. We carried out multi-scale validation of the product using field data, airborne and satellite cross-calibration. An Algorithm Theoretical Basis Document (ATBD) of the product is under evaluation by NASA. The CWC product inputs are 1) The MODIS Terra/Aqua surface reflectance product (MOD09A1/MYD09A1) 2) The MODIS land cover map product (MOD12Q1) reclassified to grassland, shrub-land and forest canopies; 3) An ANN trained with PROSPECT-SAILH; 4) A calibration file for each land cover type. The output is an ENVI file with the CWC values. The code is written in Matlab environment and is being adapted to read not only the 8 day MODIS composites, but also daily surface reflectance data. We plan to incorporate the cloud and snow mask and generate as output a geotiff file. Vegetation water content estimates will help predicting linkages between biogeochemical cycles, which will enable further understanding of feedbacks to atmospheric concentrations of greenhouse gases. It will also serve to estimate primary productivity of the biosphere; monitor/assess natural vegetation health related to drought, pollution or diseases; improve irrigation scheduling by reducing over-watering and under-watering. These estimates will also allow researchers to identify wildfire behavior/risk: drives ignition probability and burning efficiency; to be used as an indicator of soil moisture and Leaf Area Index.
Rubio, Alejandra; Cardo, María Victoria; Vezzani, Darío
2011-09-01
Used vehicle tires are a source of mosquito vectors and a means of their introduction and expansion. With the aim of assessing the effects of urbanisation on the main mosquito vectors in temperate Argentina, the infestation levels of Aedes aegypti (L.) and Culex pipiens L. were studied in used tires from highly urbanised cities to low-urbanised small towns in Buenos Aires. Immatures of both species accounted for 96% of the 9,722 individuals collected; the total individuals collected represented seven species. The percentage of water-filled tires containing mosquitoes [container index (CI)] was 33% and the percentage of infested sites [site index (SI)] was 65.2%. These indexes decreased significantly from low to high urbanisation levels for both mosquito species. The relative abundance (RA) of Ae. aegypti immatures was slightly higher toward large cities, but showed no difference for Cx. pipiens. The CI of shaded tires was significantly higher than the CI of exposed tires for both mosquito species. There was no difference in RA values between shaded and sunlit tires. The CI and the SI were highest during the summer across the urbanisation levels, except for Cx. pipiens, which continued to increase during the autumn in small towns. Results related to urbanisation gradient, sunlit exposure and seasonality are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, Tobias; Noack, Matthias
2016-05-20
The Rosetta probe around comet 67P/Churyumov–Gerasimenko (67P) reveals an anisotropic dust distribution of the inner coma with jet-like structures. The physical processes leading to jet formation are under debate, with most models for cometary activity focusing on localized emission sources, such as cliffs or terraced regions. Here we suggest, by correlating high-resolution simulations of the dust environment around 67P with observations, that the anisotropy and the background dust density of 67P originate from dust released across the entire sunlit surface of the nucleus rather than from few isolated sources. We trace back trajectories from coma regions with high local dustmore » density in space to the non-spherical nucleus and identify two mechanisms of jet formation: areas with local concavity in either two dimensions or only one. Pits and craters are examples of the first case; the neck region of the bi-lobed nucleus of 67P is an example of the latter case. The conjunction of multiple sources, in addition to dust released from all other sunlit areas, results in a high correlation coefficient (∼0.8) of the predictions with observations during a complete diurnal rotation period of 67P.« less
NASA Astrophysics Data System (ADS)
Herman, Jay; Huang, Liang; McPeters, Richard; Ziemke, Jerry; Cede, Alexander; Blank, Karin
2018-01-01
EPIC (Earth Polychromatic Imaging Camera) on board the DSCOVR (Deep Space Climate Observatory) spacecraft is the first earth science instrument located near the earth-sun gravitational plus centrifugal force balance point, Lagrange 1. EPIC measures earth-reflected radiances in 10 wavelength channels ranging from 317.5 to 779.5 nm. Of these channels, four are in the UV range 317.5, 325, 340, and 388 nm, which are used to retrieve O3, 388 nm scene reflectivity (LER: Lambert equivalent reflectivity), SO2, and aerosol properties. These new synoptic quantities are retrieved for the entire sunlit globe from sunrise to sunset multiple times per day as the earth rotates in EPIC's field of view. Retrieved ozone amounts agree with ground-based measurements and satellite data to within 3 %. The ozone amounts and LER are combined to derive the erythemal irradiance for the earth's entire sunlit surface at a nadir resolution of 18 × 18 km2 using a computationally efficient approximation to a radiative transfer calculation of irradiance. The results show very high summertime values of the UV index (UVI) in the Andes and Himalayas (greater than 18), and high values of UVI near the Equator at equinox.
NASA Astrophysics Data System (ADS)
Beltran-Przekurat, A. B.; Pielke, R. A.; Morgan, J. A.; Burke, I. C.
2005-12-01
Coupled atmospheric-biospheric models are a particularly valuable tool for studying the potential effects of land-use and land-cover changes on the near-surface atmosphere since the atmosphere and biosphere are allowed to dynamically interact through the surface and canopy energy balance. GEMRAMS is a coupled atmospheric-biospheric model comprised of an atmospheric model, RAMS, and an ecophysiological process-based model, GEMTM. In the first part of this study, the soil-vegetation-atmosphere-transfer (SVAT) scheme, LEAF2, from RAMS, coupled with GEMTM, are used to simulate energy, water and carbon fluxes over different cropping systems (winter wheat and irrigated corn) and over a mixed C3/C4 shortgrass prairie located at the USDA-ARS Central Plains Experimental Range near Nunn, Colorado, the LTER Shortgrass Steppe site. The new SVAT scheme, GEMLEAF, is forced with air temperature and humidity, wind speed and photosynthetic active radiation (PAR). Calculated canopy temperature and relative humidity, soil moisture and temperature and PAR are used to compute sunlit/shaded leaf photosynthesis (for C3 and C4 plant types) and respiration. Photosynthate is allocated to leaves, shoots, roots and reproductive organs with variable partition coefficients, which are functions of soil water conditions. As water stress increases, the fraction of photosynthate allocated to root growth increases. Leaf area index (LAI) is estimated from daily leaf biomass growth, using the vegetation-prescribed specific leaf area. Canopy conductance, computed and based on photosynthesis and relative humidity, is used to calculate latent heat flux. Simulated energy and CO2 fluxes are compared to observations collected using Bowen ratio flux towers during two growing seasons. Seasonality of the fluxes reflecting different plant phenologies agrees well with the observed patterns. In the second part of this study, simulations for two clear days are performed with GEMRAMS over a model domain centered at the SGS site. Simulated spatial differences in the energy fluxes can be associated with the highly heterogeneous landscape in this area.
NASA Astrophysics Data System (ADS)
Luo, X.; Croft, H.; Chen, J.; Bartlett, P. A.; Staebler, R. M.; Froelich, N.
2016-12-01
Chlorophyll is the main light-harvesting pigment in leaves to support photosynthesis and also reflects the seasonal variations in the supply of nitrogen for photosynthetic enzymes. In this study, we explore the feasibility of using leaf chlorophyll content (Chlleaf) as a proxy for the leaf maximum carbonxylation rate at 25 °C ( ) for the purpose of improving carbon and water cycle estimation. Measurements of Chlleaf and were made in a decidous forest stand near Borden in Northern Ontario, Canada, which was equiped with eddy covariance instruments for measuring carbon and water fluxes. Based on the measurements from four broadleaf deciduous species, a linear relationship is develoepd between Chlleaf and . Compared to the prescribed constant values, derived from Chlleaf shows pronounced seasonal variations and improves the simulations of GPP and ET by 5% and 3%, respectively. The most significant improvements are found in spring and fall, when the errors in modelled GPP are reduced from 4.71 to 0.69 g/m2/day and from 2.4 to 1.16 g/m2/day, respecively. Errors in ET estimation are correspondingly reduced from 0.85 to 0.61 mm/day and from 0.40 to 0.33 mm/day in spring and autumn, respectively. A two-leaf upscaling scheme was used to account for the uneven distribution of incoming solar irradiance inside canopies and the accompanied physiological differences between leaves. One μg/cm2 of Chlleaf corresponds to 1.3 and 0.77 μmol/m2/s of in sunlit leaves and shaded leaves, respectively. The seasonal average rate of photosynthesis, transpiration, water use efficiency and light use efficiency of sunlit leaves are 2.7, 15, 0.19 and 0.3 times those of shaded leaves. For the first time, this sutdy incorporates chlorophyll in terrestrial biosphere models at a forest stand. Since it is feasible to derive leaf chlorophyll information using remote sensing means, this study would have profound implications on large-scale carbon and water fluxes estimation.
NASA Technical Reports Server (NTRS)
Cheng, Yen-Ben; Middleton, Elizabeth M.; Huemmrich, Karl F.; Zhang, Qingyuan; Campbell, Petya K. E.; Corp, Lawrence A.; Russ, Andrew L.; Kustas, William P.
2010-01-01
Two radiative transfer canopy models, SAIL and the two-layer Markov-Chain Canopy Reflectance Model (MCRM), were coupled with in situ leaf optical properties to simulate canopy-level spectral band ratio vegetation indices with the focus on the photochemical reflectance index in a cornfield. In situ hyperspectral measurements were made at both leaf and canopy levels. Leaf optical properties were obtained from both sunlit and shaded leaves. Canopy reflectance was acquired for eight different relative azimuth angles (psi) at three different view zenith angles (Theta (sub v)), and later used to validate model outputs. Field observations of photochemical reflectance index (PRI) for sunlit leaves exhibited lower values than shaded leaves, indicating higher light stress. Canopy PRI expressed obvious sensitivity to viewing geometry, as a function of both Theta (sub v) and psi . Overall, simulations from MCRM exhibited better agreements with in situ values than SAIL. When using only sunlit leaves as input, the MCRM-simulated PRI values showed satisfactory correlation and RMSE, as compared to in situ values. However, the performance of the MCRM model was significantly improved after defining a lower canopy layer comprised of shaded leaves beneath the upper sunlit leaf layer. Four other widely used band ratio vegetation indices were also studied and compared with the PRI results. MCRM simulations were able to generate satisfactory simulations for these other four indices when using only sunlit leaves as input; but unlike PRI, adding shaded leaves did not improve the performance of MCRM. These results support the hypothesis that the PRI is sensitive to physiological dynamics while the others detect static factors related to canopy structure. Sensitivity analysis was performed on MCRM in order to better understand the effects of structure related parameters on the PRI simulations. Leaf area index (LAI) showed the most significant impact on MCRM-simulated PRI among the parameters studied. This research shows the importance of hyperspectral and narrow band sensor studies, and especially the necessity of including the green wavelengths (e.g., 531 nm) on satellites proposing to monitor carbon dynamics of terrestrial ecosystems.
Hao, Zhineng; Yin, Yongguang; Cao, Dong; Liu, Jingfu
2017-05-16
Photochemical halogenation of dissolved organic matter (DOM) may represent an important abiotic process for the formation of natural organobromine compounds (OBCs) and natural organoiodine compounds (OICs) within surface waters. Here we report the enhanced formation of OBCs and OICs by photohalogenating DOM in freshwater and seawater, as well as the noticeable difference in the distribution and composition pattern of newly formed OBCs and OICs. By using negative ion electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry, various OBCs and OICs were identified during the photohalogenation processes in sunlit waters. The respective number of OBCs and OICs formed in artificial seawater (ASW) under light radiation was higher than that in artificial freshwater (AFW), suggesting a possible role of the mixed reactive halogen species. OBCs were formed mainly via substitution reactions and addition reactions accompanied by other reactions and distributed into three classes: unsaturated hydrocarbons with relatively low oxygen content, unsaturated aliphatic compounds, and saturated fatty acids and carbohydrates with relatively high hydrogen content. Unlike the OBCs, OICs were located primarily in the region of carboxylic-rich alicyclic molecules composed of esterified phenolic, carboxylated, and fused alicyclic structures and were generated mainly through electrophilic substitution of the aromatic proton. Our findings call for further investigation on the exact structure and toxicity of the OBCs and OICs generated in the natural environment.
NASA Astrophysics Data System (ADS)
Herman, J. R.; Marshak, A.; Szabo, A.
2015-12-01
The DSCOVR mission was launched into a Sun-Earth Lagrange-1 orbit 1.5 million kilometers from earth in February 2015 onboard a SpaceX Falcon-9 rocket. The solar wind and earth science instruments were tested during the 4.5 month journey to L-1. The first data were obtained during the June-July commissioning phase, which included the first moderate resolution (10 km) color images of the entire sunlit earth, color images of the Moon, and scientific data from 10 narrow band filters (317.5, 325, 340, 388, 443, 551, 680, 687.75, 764, and 779.5 nm). Three of these filters were used to construct the color images (443, 551, 680 nm) based on the average eye response histogram of the sunlit earth. This talk will discuss some of the issues involved in deriving science quality data for global ozone, the aerosol index (dust, smoke, and volcanic ash), cloud amounts and reflectivity, and cloud height (measured from the O2 A- and B-bands). As with most new satellites, the science data are preliminary.
NASA Astrophysics Data System (ADS)
Rastaetter, L.; Kuznetsova, M. M.; Zheng, Y.; Jordanova, V.; Yu, Y.; Minow, J. I.
2016-12-01
Spacecraft surface charging in Low-Earth Orbit occurs primarily in regions of low plasma density when precipitating electrons drive the spacecraft potential. Sudden changes in electric potentials occur when a spacecraft enters and leaves the sunlit region.At the Community Coordinated Modeling Center, we can employ a multitude of models of the ionosphere-thermosphere and inner magnetosphere to identify regions where spacecraft charging can occur based on thresholds of electron precipitation flux and energy and track the proximity of those areas to positions of satellites of interest. The identified regions will be validated and refined based on satellite observations. This work is in conjunction with the Spacecraft Charging Challenge organized by the GEM Workshop in collaboration with CCMC and the SHIELDS project at LANL.
NASA Astrophysics Data System (ADS)
Livengood, T. A.; Boynton, W. V.; Sanin, A.; Chin, G.; Litvak, M.; McClanahan, T. P.; Mitrofanov, I. G.; Sagdeev, R.
2013-12-01
The Lunar Exploration Neutron Detector (LEND) on the Lunar Reconnaissance Orbiter (LRO) is tasked with evaluating the quantity of hydrogen-bearing species within the upper meter of lunar regolith; investigating the presence and distribution of possible water-ice deposits in permanently shadowed regions (PSRs) near the poles; and determining the neutron contribution to total radiation dose at 50 km altitude above the Moon. To fulfill these goals, LEND has been mapping the distribution of thermal and epithermal neutron leakage flux since LRO entered its mapping orbit in September 2009. LRO moved to an elliptical orbit in December 2011, with 30 km periselene over the south pole and aposelene above the north pole. During the commissioning phase of the mission, July-September 2009, LEND obtained preliminary mapping of hydrogen/water deposits near the south pole that contributed to site-selection for the LCROSS impact. Global maps of neutron leakage flux measured with LEND show regional variation in thermal (energy < 0.015 eV) and fast (>0.5 MeV) neutrons, and map epithermal neutron flux globally. Spatial resolution of the collimated detector is consistent with the design value of 5 km radius for half the detected lunar epithermal neutrons, with the remainder spatially diffuse. Statistically significant neutron-suppressed regions (NSRs) are not closely related to polar PSRs. Outside of the NSRs, hydrogen content increases directly with latitude at both poles. Thermal volatilization of water deposits may be responsible for increasing H concentrations nearer the poles because it is minimized at the low surface temperature of the poles. Significant neutron suppression regions (NSRs) relative to neighboring regions have been found in three large PSRs, Shoemaker and Cabeus in the south and Rozhdestvensky U in the north. Some small PSRs display excess neutron emission compared to the sunlit vicinity. On average, PSRs other than these three do not contain significantly more hydrogen than sunlit areas around them at the same latitude. Correlation between neutron suppression measured by LEND and illumination models for the Moon's polar regions suggests that insolation at the poles is an important factor in locally modulating hydrogen concentrations so that the highest concentrations of hydrogen appear to be on poleward-facing vs. equator-facing slopes. Epithermal neutron flux is slightly suppressed near the dawn terminator at near-equatorial latitude, with least suppression in local lunar mid-afternoon, implying a mobile population of hydrogen-bearing volatiles near the terminator that resides transiently in the regolith. The observed pattern supports hypothesized mineral hydration at the terminator in the form of H2O/OH.
NASA Astrophysics Data System (ADS)
Power, M. E.; Limm, M.; Finlay, J. C.; Welter, J.; Furey, P.; Lowe, R.; Hondzo, M.; Dietrich, W. E.; Bode, C. A.; National CenterEarth Surface Dynamics
2011-12-01
Riverine biota live within several networks. Organisms are embedded in food webs, whose structure and dynamics respond to environmental changes down river drainages. In sunlit rivers, food webs are fueled by attached algae. Primary producer biomass in the Eel River of Northwestern California, as in many sunlit, temperate rivers worldwide, is dominated by the macroalga Cladophora, which grows as a hierarchical, branched network. Cladophora proliferations vastly amplify the ecological surface area and the diversity microhabitats available to microbes. Environmental conditions (light, substrate age or stability, flow, redox gradients) change in partially predictable ways along both Cladophora fronds and river drainage networks, from the frond tips (or headwaters) to their base (or river mouth). We are interested in the ecological and biogeochemical consequences, at the catchment scale, of cross-scale interactions of microbial food webs on Cladophora with macro-organismal food webs, as these change down river drainages. We are beginning to explore how seasonal, hydrologic and macro-consumer control over the production and fate of Cladophora and its epiphytes could mediate ecosystem linkages of the river, its watershed, and nearshore marine ecosystems. Of the four interacting networks we consider, the web of microbial interactions is the most poorly known, and possibly the least hierarchical due to the prevalence of metabolic processing chains (waste products of some members become resources for others) and mutualisms.
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Herman, Jay
2011-01-01
In addition to 4 UV channels, the EPIC spectroradiometer will provide measurements at 6 visible (and near IR) channels (443,551,680,687.75, 764 and 779.9 nm) at roughly 10 km spatial resolution. The scattering angles are near backscattering and vary between 165 and 176 degree. Two pairs {680 and 687.75 nm} and {764 and 779.9 nm} represent 02 B- and A-bands (and their references) channels; they will be used for cloud height measurements over land and ocean. The B-band channel will contribute to the more absorbing A-band measurements over bright vegetation. A pair {680 and 779.9 nm} will be used for retrieving vegetation properties. Due to the special EPIC geometry, the illuminated part of the leaves will be always observed. As a result, in additional to the traditional Leaf Area Index (LAI), these observations for the first time will provide the sunlit fraction of LAI. Since the sunlit and shaded leaves exhibit different photosynthetic response to incident radiation, these measurements will help to improve global ecological and biogeochemistry models. Finally, a pair {443 and 551 nm} will be used for atmospheric correction. As a by-product of the atmospheric correction algorithm, we also expect to get aerosol optical thickness (AOT) and surface bidirectional reflection function (BRF). The presentation will briefly overview the proposed science algorithms.
An explanation for the 18O excess in Noelaerhabdaceae coccolith calcite
NASA Astrophysics Data System (ADS)
Hermoso, M.; Minoletti, F.; Aloisi, G.; Bonifacie, M.; McClelland, H. L. O.; Labourdette, N.; Renforth, P.; Chaduteau, C.; Rickaby, R. E. M.
2016-09-01
Coccoliths have dominated the sedimentary archive in the pelagic environment since the Jurassic. The biominerals produced by the coccolithophores are ideally placed to infer sea surface temperatures from their oxygen isotopic composition, as calcification in this photosynthetic algal group only occurs in the sunlit surface waters. In the present study, we dissect the isotopic mechanisms contributing to the "vital effect", which overprints the oceanic temperatures recorded in coccolith calcite. Applying the passive diffusion model of carbon acquisition by the marine phytoplankton widely used in biogeochemical and palaeoceanographic studies, our results suggest that the oxygen isotope offsets from inorganic calcite in fast dividing species Emiliania huxleyi and Gephyrocapsa oceanica originates from the legacy of assimilated 18O-rich CO2 that induces transient isotopic disequilibrium to the internal dissolved inorganic carbon (DIC) pool. The extent to which this intracellular isotopic disequilibrium is recorded in coccolith calcite (1.5 to +3‰ over a 10 to 25 °C temperature range) is set by the degree of isotopic re-equilibration between CO2 and water molecules before intracellular mineralisation. We show that the extent of re-equilibration is, in turn, set by temperature through both physiological (dynamics of the utilisation of the DIC pool) and thermodynamic (completeness of the re-equilibration of the relative 18O-rich CO2 influx) processes. At the highest temperature, less ambient aqueous CO2 is present for algal growth, and the consequence of carbon limitation is exacerbation of the oxygen isotope vital effect, obliterating the temperature signal. This culture dataset further demonstrates that the vital effect is variable for a given species/morphotype, and depends on the intricate relationship between the environment and the physiology of biomineralising algae.
Unexpected winter phytoplankton blooms in the North Atlantic subpolar gyre
NASA Astrophysics Data System (ADS)
Lacour, L.; Ardyna, M.; Stec, K. F.; Claustre, H.; Prieur, L.; Poteau, A.; D'Alcala, M. Ribera; Iudicone, D.
2017-11-01
In mid- and high-latitude oceans, winter surface cooling and strong winds drive turbulent mixing that carries phytoplankton to depths of several hundred metres, well below the sunlit layer. This downward mixing, in combination with low solar radiation, drastically limits phytoplankton growth during the winter, especially that of the diatoms and other species that are involved in seeding the spring bloom. Here we present observational evidence for widespread winter phytoplankton blooms in a large part of the North Atlantic subpolar gyre from autonomous profiling floats equipped with biogeochemical sensors. These blooms were triggered by intermittent restratification of the mixed layer when mixed-layer eddies led to a horizontal transport of lighter water over denser layers. Combining a bio-optical index with complementary chemotaxonomic and modelling approaches, we show that these restratification events increase phytoplankton residence time in the sunlight zone, resulting in greater light interception and the emergence of winter blooms. Restratification also caused a phytoplankton community shift from pico- and nanophytoplankton to phototrophic diatoms. We conclude that transient winter blooms can maintain active diatom populations throughout the winter months, directly seeding the spring bloom and potentially making a significant contribution to over-winter carbon export.
NASA Astrophysics Data System (ADS)
Jaccard, S. L.; Eric, G. D.; Haug, G. H.; Sigman, D. M.; Francois, R.; Dulski, P.
2006-12-01
Low-latitude Pacific Ocean records of past changes in productivity and denitrification have often been ascribed to local processes, including changes in local wind forcing, with some recent hypothesis calling on remote control by thermocline ventilation processes. Here we show that deep thermohaline circulation, a fundamentally high-latitude process, is also linked to the low-latitude thermocline biogeochemistry through its impact on nutrient and dissolved oxygen distributions. We present new, multi-proxy evidence from sediment records from the abyssal subarctic North Pacific, including sedimentary redox-sensitive trace metal distribution, Th-normalized biogenic barium, calcium carbonate, and opal mass accumulation rates, and bulk sedimentary 15N measurements. These proxies show that the abyss was significantly depleted in oxygen, and low 13C, all consistent with high DIC concentrations. Meanwhile, above a deep chemical divide, the overlying waters were relatively well-oxygenated and nutrient-poor. At the mid-point of the deglaciation, the glacial deep water mass dissipated upwards in the water column, releasing deeply-sequestered CO2 to the atmosphere and shifting nutrients into the thermocline. The flux of regenerated nutrients to the sunlit surface ocean associated with this breakdown of the deep water mass enhanced primary productivity throughout the subarctic Pacific, while records from lower latitudes of the North Pacific show a parallel boom in export production. The accelerated flux of organic matter from the surface contributed towards an intensification of the thermocline oxygen minimum zone, accelerating denitrification in the Eastern (sub)tropical North Pacific and the production of nitrous oxide. These observations, taken together with our evidence for changes in the deep North Pacific, suggest that the flux of nutrients from the deep North Pacific into the upper water column increased at the end of the ice age. This release may have occurred via the polar oceans, which today feed nutrients into the lower latitude thermocline. Alternatively, it may have occurred directly, by vertical mixing in the ocean interior. Regardless of the mechanism, this transition led to the modern configuration of a relatively well-ventilated deep sea, overlain by an oxygen minimum.
Ding, Risheng; Kang, Shaozhong; Du, Taisheng; Hao, Xinmei; Zhang, Yanqun
2014-01-01
The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET). Canopy stomatal conductance (Gsc), an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called "big-leaf" model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1) the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2) leaf area for the sunlit and shaded fractions; and (3) a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98), with RMSE of 0.6120 mm s-1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL) agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and partitioning λET.
Ding, Risheng; Kang, Shaozhong; Du, Taisheng; Hao, Xinmei; Zhang, Yanqun
2014-01-01
The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET). Canopy stomatal conductance (Gsc), an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called “big-leaf” model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1) the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2) leaf area for the sunlit and shaded fractions; and (3) a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98), with RMSE of 0.6120 mm s−1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL) agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and partitioning λET. PMID:24752329
Diviner Lunar Radiometer observations of the LCROSS impact.
Hayne, Paul O; Greenhagen, Benjamin T; Foote, Marc C; Siegler, Matthew A; Vasavada, Ashwin R; Paige, David A
2010-10-22
The Lunar Reconnaissance Orbiter (LRO) Diviner instrument detected a thermal emission signature 90 seconds after the Lunar Crater Observation and Sensing Satellite (LCROSS) Centaur impact and on two subsequent orbits. The impact heated a region of 30 to 200 square meters to at least 950 kelvin, providing a sustained heat source for the sublimation of up to ~300 kilograms of water ice during the 4 minutes of LCROSS post-impact observations. Diviner visible observations constrain the mass of the sunlit ejecta column to be ~10(-6) to 10(-5) kilograms per square meter, which is consistent with LCROSS estimates used to derive the relative abundance of the ice within the regolith.
Bidirectional reflectance effects derived from ASAS imagery of a pecan orchard
NASA Astrophysics Data System (ADS)
Staenz, Karl; Gauthier, Robert P.; Teillet, Phil M.; Williams, Daniel J.
1993-09-01
Bidirectional reflectance factors (BRF) for a pecan orchard have been studied using Advanced Solid-State Array Spectrometer (ASAS) data acquired in the solar principal plane at altitudes of 2300 m and 5300 m above ground. In particular, the angular dependency of the BRF of different targets such as sunlit and shaded portions of the pecan tree, orchard floor, and soil (road) have been studied for viewing directions between -45 degrees and +45 degrees. The results indicate in general an increasing reflectance from the forward scattering direction to the backscattering direction. In addition, an increase in pixel size has significant effects on the surface BRFs.
Analysis of Surface Fluxes at Eureka Climate Observatory in Arctic
NASA Astrophysics Data System (ADS)
Grachev, Andrey; Albee, Robert; Fairall, Christopher; Hare, Jeffrey; Persson, Ola; Uttal, Taneil
2010-05-01
The Arctic region is experiencing unprecedented changes associated with increasing average temperatures (faster than the pace of the globally-averaged increase) and significant decreases in both the areal extent and thickness of the Arctic pack ice. These changes are early warning signs of shifts in the global climate system that justifies increased scientific focus on this region. The increase in atmospheric carbon dioxide has raised concerns worldwide about future climate change. Recent studies suggest that huge stores of carbon dioxide (and other climate relevant compounds) locked up in Arctic soils could be unexpectedly released due to global warming. Observational evidence suggests that atmospheric energy fluxes are a major contributor to the decrease of the Arctic pack ice, seasonal land snow cover and the warming of the surrounding land areas and permafrost layers. To better understand the atmosphere-surface exchange mechanisms, improve models, and to diagnose climate variability in the Arctic, accurate measurements are required of all components of the net surface energy budget and the carbon dioxide cycle over representative areas and over multiple years. In this study we analyze variability of turbulent fluxes including water vapor and carbon dioxide transfer based on long-term measurements made at Eureka observatory (80.0 N, 85.9 W) located near the coast of the Arctic Ocean (Canadian territory of Nunavut). Turbulent fluxes and mean meteorological data are continuously measured and reported hourly at various levels on a 10-m flux tower. Sonic anemometers are located at 3 and 8 m heights while high-speed Licor 7500 infrared gas analyzer (water moisture and carbon dioxide measurements) at 7.5 m height. According to our data, that the sensible heat flux, carbon dioxide and water vapor fluxes exhibited clear diurnal cycles in Arctic summer. This behavior is similar to the diurnal variation of the fluxes in mid-latitudes during the plants growing season, with carbon dioxide uptake from the atmosphere during the day due to photosynthesis, and carbon dioxide loss to the atmosphere due to vegetation respiration during the night. However, at Eureka vegetation was a source of carbon dioxide during sunlit periods. Thus the sign of carbon dioxide flux was controlled by air temperature even during Arctic summer.
The Expected Performance from the NASA OCO-2 Mission
NASA Astrophysics Data System (ADS)
Crisp, D.; Eldering, A.; Gunson, M. R.; Pollock, H.
2013-12-01
The NASA Orbiting Carbon Observatory-2 (OCO-2) will be launched from Vandenberg Air Force Base on a Delta-II 7320 launch vehicle as early as 1 July 2014. Once deployed in the 705-km Afternoon Constellation (A-Train), it will collect the measurements needed to estimate the column-averaged, atmospheric carbon dioxide (CO2) dry air mole fraction (XCO2) with improved precision, resolution, and coverage. The OCO-2 spacecraft carries and points a 3-channel, imaging, grating spectrometer that collects high resolution spectra of reflected sunlight in the 765 nm O2 A-band and in the CO2 bands centered near 1610 and 2060 nm. These spectral ranges overlap those used by the Japanese Greenhouse gases Observing SATellite (GOSAT) TANSO-FTS, the current standard in space-based XCO2 measurements. The OCO-2 instrument performance was extensively characterized during pre-launch testing, facilitating comparisons with the TANSO-FTS. OCO-2 has slightly lower spectral resolution, but the far wings of its instrument line shape functions decay more rapidly, such that it yields similar spectral contrast within O2 and CO2 bands. The instruments have similar continuum signal to noise ratios (SNR) for bright scenes, but the OCO-2 instrument has higher SNR at low light levels associated with absorption lines or dark surfaces. The OCO-2 spectrometers will collect 24 soundings per second, yielding up to a million soundings per day over the sunlit hemisphere. For routine operations, the OCO-2 instrument boresight will be pointed at the local nadir or at the 'glint spot,' where sunlight is specularly reflected from the surface. Nadir observations provide the best spatial resolution and are expected to yield more cloud-free soundings. Glint observations will have much better SNR over dark, ocean surfaces. The nominal plan is to alternate between glint and nadir observations on successive 16-day ground-track repeat cycles, so that the entire sunlit hemisphere is sampled in both modes at 32-day intervals. The instrument's rapid sampling, small (< 3 km2) sounding footprint, and high SNR, combined with the spacecraft's ability to point the instrument's aperture toward the glint spot over the entire sunlit hemisphere, are expected to provide more complete coverage of the ocean, cloudy regions, and high latitude continents. While the OCO-2 measurement capabilities provide opportunities to improve the XCO2 precision, resolution, and coverage, they also pose some formidable challenges for calibration, retrieval, and validation. To fully exploit this instrument's capabilities, the 24,000 spectral/spatial channels must be cross-calibrated to within a fraction of 1%. Substantial increases in algorithm speed and more efficient data screening techniques are needed to fully utilize the much larger data volume. Finally, a comprehensive validation program will be needed to ensure the accuracy of the retrieved XCO2 estimates. This presentation will summarize the OCO-2 measurement capabilities and observation strategies, and the methods adopted to address these challenges.
Lunar Surface Potential Increases during Terrestrial Bow Shock Traversals
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Stubbs, Timothy J.; Hills, H. Kent; Halekas, Jasper; Farrell, William M.; Delory, Greg T.; Espley, Jared; Freeman, John W.; Vondrak, Richard R.; Kasper, Justin
2009-01-01
Since the Apollo era the electric potential of the Moon has been a subject of interest and debate. Deployed by three Apollo missions, Apollo 12, Apollo 14 and Apollo 15, the Suprathermal Ion Detector Experiment (SIDE) determined the sunlit lunar surface potential to be about +10 Volts using the energy spectra of lunar ionospheric thermal ions accelerated toward the Moon. We present an analysis of Apollo 14 SIDE "resonance" events that indicate the lunar surface potential increases when the Moon traverses the dawn bow shock. By analyzing Wind spacecraft crossings of the terrestrial bow shock at approximately this location and employing current balancing models of the lunar surface, we suggest causes for the increasing potential. Determining the origin of this phenomenon will improve our ability to predict the lunar surface potential in support of human exploration as well as provide models for the behavior of other airless bodies when they traverse similar features such as interplanetary shocks, both of which are goals of the NASA Lunar Science Institute's Dynamic Response of the Environment At the Moon (DREAM) team.
NASA Astrophysics Data System (ADS)
Aparecido, L. M. T.; Miller, G. R.; Cahill, A. T.; Andrews, R.; Moore, G. W.
2017-12-01
Tropical water recycling and carbon storage are dependent on canopy-atmosphere dynamics, which are substantially altered when rainfall occurs. However, models only indirectly consider leaf wetness as a driving factor for carbon and water fluxes. To better understand how leaf wetness condition affects stomatal and canopy conductance to water vapor, we tested a set of widely used models for a mature tropical forest of Costa Rica with prolonged periods of wet leaves. We relied on a year of sap flux measurements from 26 trees to estimate transpiration (Ec) and multiple micrometeorological profile measurements from a 40-m tower to be used in the models. Stomatal conductance (gs) models included those proposed by Jones (1992) (gs-J), using shaded and sunlit leaf temperatures, and Monteith and Unsworth (1990) (gs-MU), using air temperature. Canopy conductance (gc) models included those proposed by McNaughton and Jarvis (1983) (gc-MJ) and Penman-Monteith (gc-PM). Between gs and gc, gc had the largest differences within models during dry periods; while estimates were most similar during wet periods. Yet, all gc and gs estimates on wet days were at least as high as on dry days, indicative of their insensitivity to leaf wetness. Shaded leaf gs averaged 26% higher than in sunlit leaves. Additionally, the highly decoupled interface (Ω>0.90) reflected multiple environmental drivers that may influence conductance (e.g. vapor pressure deficit and leaf temperature). This was also seen through large shifts of diurnal peaks of gs and gc (up to 2 hours earlier than Ec) associated with the daily variation of air temperature and net radiation. Overall, this study led to three major insights: 1) gc and gs cannot accurately be predicted under wet conditions without accounting for leaf wetness, 2) even during dry days, low vapor pressure deficits interfere with model accuracy, and 3) intermittent rain during semi-dry and wet days cause large fluctuations in gc and gs estimates. Thus, it is advised that sub-daily scale (5- or 10-min intervals) and direct physiological measurements of conductance under wet conditions should be adopted. While methodologically challenging, improved estimates of conductance of water vapor at leaf-to-canopy scales are critical for improving the mechanistic understanding of plant water fluxes in wet environments.
Phytoplankton Bloom in the Barents Sea [Detail
2017-12-08
NASA image acquired August 31, 2010 To see the full view of this image go to: www.flickr.com/photos/gsfc/4970549945 In this natural-color image from August 31, 2010, the ocean’s canvas swirls with turquoise, teal, navy, and green, the abstract art of the natural world. The colors were painted by a massive phytoplankton bloom made up of millions of tiny, light-reflecting organisms growing in the sunlit surface waters of the Barents Sea. Such blooms peak every August in the Barents Sea. The variations in color are caused by different species and concentrations of phytoplankton. The bright blue colors are probably from coccolithophores, a type of phytoplankton that is coated in a chalky shell that reflects light, turning the ocean a milky turquoise. Coccolithophores dominate the Barents Sea in August. Shades of green are likely from diatoms, another type of phytoplankton. Diatoms usually dominate the Barents Sea earlier in the year, giving way to coccolithophores in the late summer. However, field measurements of previous August blooms have also turned up high concentrations of diatoms. The Barents Sea is a shallow sea sandwiched between the coastline of northern Russia and Scandinavia and the islands of Svalbard, Franz Josef Land, and Novaya Zemlya. Within the shallow basin, currents carrying warm, salty water from the Atlantic collide with currents carrying cold, fresher water from the Arctic. During the winter, strong winds drive the currents and mix the waters. When winter’s sea ice retreats and light returns in the spring, diatoms thrive, typically peaking in a large bloom in late May. The shift between diatoms and coccolithophores occurs as the Barents Sea changes during the summer months. Throughout summer, perpetual light falls on the waters, gradually warming the surface. Eventually, the ocean stratifies into layers, with warm water sitting on top of cooler water. The diatoms deplete most of the nutrients in the surface waters and stop growing. Coccolithophores, on the other hand, do well in warm, nutrient-depleted water with a lot of light. In the Barents Sea, these conditions are strongest in August. The shifting conditions and corresponding change in species lead to strikingly beautiful multicolored blooms such as this one. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite acquired this image. NASA image courtesy Norman Kuring, NASA Ocean Color Group. Caption by Holli Riebeek. Instrument: Aqua - MODIS Click here to see more images from NASA Goddard’s Earth Observatory NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook
Phytoplankton Bloom in the Barents Sea
2017-12-08
NASA image acquired August 31, 2010 To see a detail of this image go to: www.flickr.com/photos/gsfc/4971318856/ In this natural-color image from August 31, 2010, the ocean’s canvas swirls with turquoise, teal, navy, and green, the abstract art of the natural world. The colors were painted by a massive phytoplankton bloom made up of millions of tiny, light-reflecting organisms growing in the sunlit surface waters of the Barents Sea. Such blooms peak every August in the Barents Sea. The variations in color are caused by different species and concentrations of phytoplankton. The bright blue colors are probably from coccolithophores, a type of phytoplankton that is coated in a chalky shell that reflects light, turning the ocean a milky turquoise. Coccolithophores dominate the Barents Sea in August. Shades of green are likely from diatoms, another type of phytoplankton. Diatoms usually dominate the Barents Sea earlier in the year, giving way to coccolithophores in the late summer. However, field measurements of previous August blooms have also turned up high concentrations of diatoms. The Barents Sea is a shallow sea sandwiched between the coastline of northern Russia and Scandinavia and the islands of Svalbard, Franz Josef Land, and Novaya Zemlya. Within the shallow basin, currents carrying warm, salty water from the Atlantic collide with currents carrying cold, fresher water from the Arctic. During the winter, strong winds drive the currents and mix the waters. When winter’s sea ice retreats and light returns in the spring, diatoms thrive, typically peaking in a large bloom in late May. The shift between diatoms and coccolithophores occurs as the Barents Sea changes during the summer months. Throughout summer, perpetual light falls on the waters, gradually warming the surface. Eventually, the ocean stratifies into layers, with warm water sitting on top of cooler water. The diatoms deplete most of the nutrients in the surface waters and stop growing. Coccolithophores, on the other hand, do well in warm, nutrient-depleted water with a lot of light. In the Barents Sea, these conditions are strongest in August. The shifting conditions and corresponding change in species lead to strikingly beautiful multicolored blooms such as this one. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite acquired this image. NASA image courtesy Norman Kuring, NASA Ocean Color Group. Caption by Holli Riebeek. Instrument: Aqua - MODIS Click here to see more images from NASA Goddard’s Earth Observatory NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook
NASA Astrophysics Data System (ADS)
Westall, Frances; Foucher, Frédéric; Cavalazzi, Barbara; de Vries, Sjoukje T.; Nijman, Wouter; Pearson, Victoria; Watson, Jon; Verchovsky, Alexander; Wright, Ian; Rouzaud, Jean-Noel; Marchesini, Daniele; Anne, Severine
2011-08-01
Within the context of present and future in situ missions to Mars to investigate its habitability and to search for traces of life, we studied the habitability and traces of past life in ˜3.5 Ga-old volcanic sands deposited in littoral environments an analogue to Noachian environments on Mars. The environmental conditions on Noachian Mars (4.1-3.7 Ga) and the Early Archaean (4.0-3.3 Ga) Earth were, in many respects, similar: presence of liquid water, dense CO 2 atmosphere, availability of carbon and bio-essential elements, and availability of energy. For this reason, information contained in Early Archaean terrestrial rocks concerning habitable conditions (on a microbial scale) and traces of past life are of relevance in defining strategies to be used to identify past habitats and past life on Mars. One such example is the 3.446 Ga-old Kitty's Gap Chert in the Pilbara Craton, NW. Australia. This formation consists of volcanic sediments deposited in a coastal mudflat environment and is thus a relevant analogue for sediments deposited in shallow water environments on Noachian Mars. Two main types of habitat are represented, a volcanic (lithic) habitat and planar stabilized sediment surfaces in sunlit shallow waters. The sediments hosted small (<1 μm in size) microorganisms that formed colonies on volcanic particle surfaces and in pore waters within the volcanic sediments, as well as biofilms on stabilised sediment surfaces. The microorganisms included coccoids, filaments and rare rod-shaped organisms associated with microbial polymer (EPS). The preserved microbial community was apparently dominated by chemotrophic organisms but some locally transported filaments and filamentous mat fragments indicate that possibly photosynthetic mats formed nearby. Both microorganisms and sediments were silicified during very early diagenesis. There are no macroscopic traces of fossilised life in these volcanic sediments and sophisticated instrumentation and specialized sample preparation techniques are required to establish the biogenicity and syngenicity of the traces of past life. The fact that the traces of life are cryptic, and the necessity of using sophisticated instrumentation, reinforces the challenges and difficulties of in situ robotic missions to identify past life on Mars. We therefore recommend the return of samples from Mars to Earth for a definitive search for traces of life.
NASA Astrophysics Data System (ADS)
Crawford, Kellen Ethan
Improving water use efficiency in agriculture will become increasingly important in the face of decreasing water resources and a growing population. Increasing water use efficiency, or water productivity, has been shown to greatly reduce irrigation water usage in many orchard crops with little to no impact on yield. In some specialty crops, improving water productivity can even lead to a higher value crop. Current irrigation practices depend largely on uniform applications of water over large fields with varying degrees of heterogeneity. As a result, much of the field receives more water than it needs. A system to monitor the needs of each plant or smaller groups of plants within the field would be helpful in distributing irrigation water according to each plant or group of plants' needs. Such a system would help conserve water resources. Stomatal conductance is a good indicator of plant water-based stress, as it is the main response a plant has to limit transpiration-related water losses. The difference between leaf temperature and air temperature, when adjusted for environmental conditions, can give a good indication of stomatal conductance. Recent efforts at UC Davis have employed a handheld sensor suite to measure leaf temperature and other environmental variables like wind speed, air temperature, and humidity in almond and walnut trees. Though effective, this method requires walking or driving through the orchard and measuring several leaves on a given tree, so it is impractical for large-scale monitoring. Satellite and aircraft can measure canopy temperatures remotely, but these applications typically do not have the spatial resolution for precise monitoring or the temporal resolution necessary for irrigation decisions, and they are too expensive and impractical for smaller-scale farms. A smaller unmanned aerial vehicle (UAV) could employ the same methods as satellite and larger aircraft-based systems, but relatively inexpensively and at a scale catered to the needs of a given field for more precise monitoring. The goal of this study was to explore the feasibility of using an inexpensive temperature sensor (Melexis MLX90614; NV Melexis SA, Rozendaalstraat 12, 8900 Ieper, Belgium) on a small UAV (Mikrokopter OktoXL; Hisystems GmbH Flachsmeerstrasse 2, 26802 Moormerland, Germany) to sense the canopy temperatures of almond and walnut trees. To accomplish this goal, we installed an infrared temperature sensor and a digital camera on a small UAV. The camera provided a spatial awareness of the IR temperature measurements which would otherwise require a very expensive thermal imager to obtain. The UAV was flown above almond and walnut trees recording images and temperatures, which were aligned temporally in post-processing. The pixels of each image were classified in to four classes: sunlit leaves, shaded leaves, sunlit soil, and shaded soil. Assuming that the measured temperature could be described as a weighted sum of each class in the field of view of the IR sensor, a linear system of equations was established to estimate the temperature of each class using at least several measurements of the same tree. Results indicated a good correlation between the temperatures estimated from the linear system of equations and the temperatures of those classes sampled on the ground immediately following each flight. With leaf temperatures ranging from about 12 to 40 degrees Celsius between 23 flights over two years, the linear solver was able to estimate the temperature of the sunlit and shaded leaves to within several degrees Celsius of the sampled temperature in most cases, with a coefficient of determination (r2 value) of 0.96 during the first year, and 0.73 during the second year. An additional study was undertaken to detect spatial temperature distribution within the orchard. Ground measurements were taken of every other tree in two walnut rows and one almond row using the handheld sensor, and the UAV was flown over those rows immediately following each ground sampling. An interpolated temperature map of the UAV's temperature measurements indicated a very similar temperature distribution as that measured with the handheld sensor, but the UAV was much faster and, in parts of the rows, it provided a higher spatial resolution than the handheld sensor.
Non-random assembly of bacterioplankton communities in the subtropical north pacific ocean.
Eiler, Alexander; Hayakawa, Darin H; Rappé, Michael S
2011-01-01
The exploration of bacterial diversity in the global ocean has revealed new taxa and previously unrecognized metabolic potential; however, our understanding of what regulates this diversity is limited. Using terminal restriction fragment length polymorphism (T-RFLP) data from bacterial small-subunit ribosomal RNA genes we show that, independent of depth and time, a large fraction of bacterioplankton co-occurrence patterns are non-random in the oligotrophic North Pacific subtropical gyre (NPSG). Pair-wise correlations of all identified operational taxonomic units (OTUs) revealed a high degree of significance, with 6.6% of the pair-wise co-occurrences being negatively correlated and 20.7% of them being positive. The most abundant OTUs, putatively identified as Prochlorococcus, SAR11, and SAR116 bacteria, were among the most correlated OTUs. As expected, bacterial community composition lacked statistically significant patterns of seasonality in the mostly stratified water column except in a few depth horizons of the sunlit surface waters, with higher frequency variations in community structure apparently related to populations associated with the deep chlorophyll maximum. Communities were structured vertically into epipelagic, mesopelagic, and bathypelagic populations. Permutation-based statistical analyses of T-RFLP data and their corresponding metadata revealed a broad range of putative environmental drivers controlling bacterioplankton community composition in the NPSG, including concentrations of inorganic nutrients and phytoplankton pigments. Together, our results suggest that deterministic forces such as environmental filtering and interactions among taxa determine bacterioplankton community patterns, and consequently affect ecosystem functions in the NPSG.
NASA Technical Reports Server (NTRS)
Lei, Ning; Xiong, Xiaoxiong
2016-01-01
Using an onboard sunlit solar diffuser (SD) as the primary radiance source, the visible infrared imaging radiometer suite (VIIRS) on the Suomi National Polar-orbiting Partnership satellite regularly performs radiometric calibration of its reflective solar bands (RSBs). The SD bidirectional reflectance distribution function (BRDF) value decreases over time. A numerical degradation factor is used to quantify the degradation and is determined by an onboard SD stability monitor (SDSM), which observes the sun and the sunlit SD at almost the same time. We had shown previously that the BRDF degradation factor was angle-dependent. Consequently, due to that the SDSM and the RSB view the SD at very different angles relative to both the solar and the SD surface normal vectors, directly applying the BRDF degradation factor determined by the SDSM to the VIIRS RSB calibration can result in large systematic errors. We develop a phenomenological model to calculate the BRDF degradation factor for the RSB SD view from the degradation factor for the SDSM SD view. Using the yearly undulations observed in the VIIRS detector gains for the M1-M4 bands calculated with the SD BRDF degradation factor for the SDSM SD view and the difference between the VIIRS detector gains calculated from the SD and the lunar observations, we obtain the model parameter values and thus establish the relation between the BRDF degradation factors for the RSB and the SDSM SD view directions.
Dust motions in quasi-statically charged binary asteroid systems
NASA Astrophysics Data System (ADS)
Maruskin, Jared M.; Bellerose, Julie; Wong, Macken; Mitchell, Lara; Richardson, David; Mathews, Douglas; Nguyen, Tri; Ganeshalingam, Usha; Ma, Gina
2013-03-01
In this paper, we discuss dust motion and investigate possible mass transfer of charged particles in a binary asteroid system, in which the asteroids are electrically charged due to solar radiation. The surface potential of the asteroids is assumed to be a piecewise function, with positive potential on the sunlit half and negative potential on the shadow half. We derive the nonautonomous equations of motion for charged particles and an analytic representation for their lofting conditions. Particle trajectories and temporary relative equilibria are examined in relation to their moving forbidden regions, a concept we define and discuss. Finally, we use a Monte Carlo simulation for a case study on mass transfer and loss rates between the asteroids.
Forecasting Weather on Distant Worlds
NASA Technical Reports Server (NTRS)
2007-01-01
An artist's conception shows a gas-giant planet orbiting very close to its parent star, creating searingly hot conditions on the planet's surface. New research suggests that for three such planets lying from 50 to 150 light-years from Earth, strong winds thousands of miles per hour mix the atmosphere so that the temperature is relatively uniform from the permanently light side to the permanently dark side. This illustration represents an infrared view of a planetary system, in which brightness indicates warmer temperatures. For example, the bright band around the equator of the planet denotes warmer temperatures on both the dark and sunlit sides. The planet's poles, shown in darker colors, would be cooler.Soil, water, and vegetation conditions in south Texas
NASA Technical Reports Server (NTRS)
Wiegand, C. L.; Gausman, H. W.; Leamer, R. W.; Richardson, A. J.; Everitt, J. H.; Gerbermann, A. H. (Principal Investigator)
1976-01-01
The author has identified the following significant results. Software development for a computer-aided crop and soil survey system is nearing completion. Computer-aided variety classification accuracies using LANDSAT-1 MSS data for a 600 hectare citrus farm were 83% for Redblush grapefruit and 91% for oranges. These accuracies indicate that there is good potential for computer-aided inventories of grapefruit and orange citrus orchards with LANDSAT-type MSS data. Mean digital values of clouds differed statistically from those for crop, soil, and water entities, and those for cloud shadows were enough lower than sunlit crop and soil to be distinguishable. The standard errors of estimate for the calibration of computer compatible tape coordinate system (pixel and record) to earth coordinate system (longitude and latitude) for 6 LANDSAT scenes ranged from 0.72 to 1.50 pixels and from 0.58 to 1.75 records.
Weremijewicz, Joanna; Sternberg, Leonel da Silveira Lobo O'Reilly; Janos, David P
2016-10-01
Arbuscular mycorrhizal (AM) fungi interconnect plants in common mycorrhizal networks (CMNs) which can amplify competition among neighbors. Amplified competition might result from the fungi supplying mineral nutrients preferentially to hosts that abundantly provide fixed carbon, as suggested by research with organ-cultured roots. We examined whether CMNs supplied (15) N preferentially to large, nonshaded, whole plants. We conducted an intraspecific target-neighbor pot experiment with Andropogon gerardii and several AM fungi in intact, severed or prevented CMNs. Neighbors were supplied (15) N, and half of the target plants were shaded. Intact CMNs increased target dry weight (DW), intensified competition and increased size inequality. Shading decreased target weight, but shaded plants in intact CMNs had mycorrhizal colonization similar to that of sunlit plants. AM fungi in intact CMNs acquired (15) N from the substrate of neighbors and preferentially allocated it to sunlit, large, target plants. Sunlit, intact CMN, target plants acquired as much as 27% of their nitrogen from the vicinity of their neighbors, but shaded targets did not. These results suggest that AM fungi in CMNs preferentially provide mineral nutrients to those conspecific host individuals best able to provide them with fixed carbon or representing the strongest sinks, thereby potentially amplifying asymmetric competition below ground. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
NASA Technical Reports Server (NTRS)
2007-01-01
New Horizons took this montage of images of Jupiter's volcanic moon Io, glowing in the dark of Jupiter's shadow, as the Pluto-bound spacecraft sped through the Jupiter system on Feb. 27, 2007. (A): In this picture from the Long-Range Reconnaissance Imager (LORRI), dark blotches and straight lines are artifacts. The brightest spots (including the volcanoes Pele [P] and East Girru [EG]) are incandescent lava from active volcanoes. The more diffuse glows, and the many faint spots, are from gas in the plumes and atmosphere, glowing due to bombardment by plasma in Jupiter's magnetosphere, in a display similar to the Earth's aurorae. (B): The same image with a latitude/longitude grid, showing that the cluster of faint spots is centered near longitude 0 degrees, the point on Io that faces Jupiter. The image also shows the locations of the plumes seen in sunlit images (indicated by red diamonds), which glow with auroral emission in eclipse. (C): Simulated sunlit view of Io with the same geometry, based on sunlit LORRI images. (D): A combination of the sunlit image (in cyan) and the eclipse image (in red), showing that all point-like glows in the eclipse image arise from dark volcanoes in the eclipse image. (E): This infrared image, at a wavelength of 2.3 microns, obtained by New Horizons Linear Etalon Spectral Imaging Array (LEISA) an hour after the LORRI image, showing thermal emission from active volcanoes. Elongation of the hot spots is an artifact. (F): Combined visible albedo (cyan) and LEISA thermal emission (red) image, showing the sources of the volcanic emission. That most of the faint point-like glows near longitude zero, seen in visible light in images A, B, and D, do not appear in the infrared view of volcanic heat radiation, is one reason scientists believe that these glows are due to auroral emission, not heat radiation. This image appears in the Oct. 12, 2007, issue of Science magazine, in a paper by John Spencer, et al.NASA Astrophysics Data System (ADS)
White, A.; Bjorkman, K.; Grabowski, E.; Letelier, R. M.; Poulos, S.; Watkins, B.; Karl, D. M.
2008-12-01
In 1976, John D. Isaacs proposed to use wave energy to pump cold and nutrient-rich deep water into the sunlit surface layers. The motivation for this endeavor has taken many forms over the years, from energy production to fueling aquaculture to the more recent suggestion that artificial upwelling could be used to stimulate primary productivity and anthropogenic carbon sequestration in oligotrophic regions of the ocean. However, the potential for biological carbon sequestration in response to upwelling will depend on the concentration of nutrients relative to that of dissolved inorganic carbon in the water being upwelled and on the response of the marine microbial assemblage to this nutrient enrichment. In June 2008, we tested a commercially available wave pump in the vicinity of Station ALOHA, north of Oahu, Hawaii in order to assess the logistics of at-sea deployment and the survivability of the equipment in the open ocean. Our engineering test was also designed to evaluate a recently published hypothesis (Karl and Letelier, 2008, Marine Ecology Progress Series) that upwelling of water containing excess phosphate relative to nitrogen compared to the canonical "Redfield" molar ratio of 16N:1P, would generate a two-phased phytoplankton bloom and enhance carbon sequestration. In this presentation, we analyze the results of this field test within the context of pelagic biogeochemical cycles. Furthermore, we discuss the deployment of a 300m wave pump, efforts to sample a biochemical response, the engineering challenges faced and the practical and ethical implications of these results for future experiments aimed at stimulating the growth of phytoplankton in oligotrophic regions.
The Oceanic Cycle and Global Atmospheric Budget of Carbonyl Sulfide.
NASA Astrophysics Data System (ADS)
Weiss, Peter Scott
1995-01-01
A significant portion of stratospheric air chemistry is influenced by the existence of carbonyl sulfide (COS). This ubiquitous sulfur gas represents a major source of sulfur to the stratosphere where it is converted to sulfuric acid aerosol particles. Stratospheric aerosols are climatically important because they scatter incoming solar radiation back to space and are able to increase the catalytic destruction of ozone through gas phase reactions on particle surfaces. COS is primarily formed at the surface of the earth, in both marine and terrestrial environments, and is strongly linked to natural biological processes. However, many gaps in the understanding of the global COS cycle still exist, which has led to a global atmospheric budget that is out of balance by a factor of two or more, and a lack of understanding of how human activity has affected the cycling of this gas. The goal of this study was to focus on COS in the marine environment by investigating production/destruction mechanisms and recalculating the ocean-atmosphere flux. Analytical work was carried out using the electron capture sulfur detector (ECD-S) for gas chromatography. This system was optimized for COS so that air and seawater-equilibrated air samples could be directly injected without preconcentration. This research was carried out on two cruises aboard the NOAA ship Surveyor during long meridional transects between 55^circN and 70 ^circS along 140^circ W in the Pacific Ocean. The major findings of these research activities are: (1) Photoproduction of COS is at a maximum between 313 and 336 nm in natural sunlit waters. Tropical water surface and column production rates are 68 pM/day and 360 nmol/m^2/day, respectively. Antarctic surface and column production rates are 101 pM/day and 620 nmol/m^2/day, respectively. (2) Wide regions of the open ocean were found to be undersaturated with respect to atmospheric equilibrium of COS. The global open ocean sea-air flux of COS was found to be -0.032 (-0.010 to -0.054) which represents a very weak sink of atmospheric COS. (3) Daily COS concentration losses in surface waters were used to determine seawater lifetimes, which agreed to hydrolysis lifetimes to within 15%. (4) Atmospheric COS mixing ratios displayed <5% interhemispheric ratio. However, seasonal variation in the northern hemisphere may have been as high as 10%. (5) A simple steady-state model was developed to predict seasonal cycles of atmospheric COS.
NASA Astrophysics Data System (ADS)
Pasini, D.
2014-04-01
Previous experimental studies have demonstrated the survivability of living cells during hypervelocity impact events, testing the panspermia and litho-panspermia hypotheses [1]. It has been demonstrated by the authors that Nannochloropsis Oculata Phytoplankton, a eukaryotic photosynthesizing autotroph found in the 'euphotic zone' (sunlit surface layers of oceans [2]), survive impacts up to 6.93 km s-1 (approx. shock pressure 40 GPa) [3, 4]. Also shown to survive impacts up to 5.49 km s-1 is the tardigrade species Hypsibius dujardini (a complex micro-animal consisting of 40,000 cells) [5, 6]. It has also been shown that they can survive sustained pressures up to 600 MPa using a water filled pressure capsule [7]. Additionally bacteria can survive impacts up to 5.4 km s-1 (~30 GPa) - albeit with a low probability of survival [1], and the survivability of yeast spores in impacts up to 7.4 km s-1 (~30 GPa) has also recently been demonstrated [8]. Other groups have also reported that the lichen Xanthoria elegans is able to survive shocks in similar pressure ranges (~40 GPa) [9]. Here we present various simulated impact regimes to show which scenarios are condusive to the panspermia hypothesis of the natural transfer of life (via an icy body) through space to an extraterrestrial environment.
Sunlight Promotes Fast Release of Hazardous Cadmium from Widely-Used Commercial Cadmium Pigment.
Liu, Huiting; Gao, Han; Long, Mingce; Fu, Heyun; Alvarez, Pedro J J; Li, Qilin; Zheng, Shourong; Qu, Xiaolei; Zhu, Dongqiang
2017-06-20
Cadmium pigments are widely used in the polymer and ceramic industry. Their potential environmental risk is under debate, being the major barrier for appropriate regulation. We show that 83.0 ± 0.2% of hazardous cadmium ion (Cd 2+ ) was released from the commercial cadmium sulfoselenide pigment (i.e., cadmium red) in aqueous suspension within 24 h under simulated sunlit conditions. This photodissolution process also generated sub-20 nm pigment nanoparticles. Cd 2+ release is attributed to the reactions between photogenerated holes and the pigment lattices. The photodissolution process can be activated by both ultraviolet and visible light in the solar spectrum. Irradiation under alkaline conditions or in the presence of phosphate and carbonate species resulted in reduced charge carrier energy or the formation of insoluble and photostable cadmium precipitates on pigment surfaces, mitigating photodissolution. Tannic acid inhibited the photodissolution process by light screening and scavenging photogenerated holes. The fast release of Cd 2+ from the pigment was further confirmed in river water under natural sunlight, with 38.6 ± 0.1% of the cadmium released within 4 h. Overall, this study underscores the importance to account for photochemical effects to inform risk assessments and regulations of cadmium pigments which are currently based on their low solubility.
Lunar Flashlight: Mapping Lunar Surface Volatiles Using a Cubesat
NASA Technical Reports Server (NTRS)
Cohen, B. A.; Hayne, P. O.; Banazadeh, P.; Baker, J. D.; Staehle, R. L.; Paine, C..; Paige, D. A.
2014-01-01
Water ice and other volatiles may be located in the Moon's polar regions, with sufficient quantities for in situ extraction and utilization by future human and robotic missions. Evidence from orbiting spacecraft and the LCROSS impactor suggests the presence of surface and/or nearsurface volatiles, including water ice. These deposits are of interest to human exploration to understand their potential for use by astronauts. Understanding the composition, quantity, distribution, and form of water/H species and other volatiles associated with lunar cold traps is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits could also reveal important information about the delivery of water to the Earth- Moon system, so are of scientific interest. The scientific exploration of the lunar polar regions was one of the key recommendations of the Planetary Science Decadal Survey. In order to address NASA's SKGs, the Advanced Exploration Systems (AES) program selected three lowcost 6-U CubeSat missions for launch as secondary payloads on the first test flight (EM1) of the Space Launch System (SLS) scheduled for 2017. The Lunar Flashlight mission was selected as one of these missions, specifically to address the SKG associated with lunar volatiles. Development of the Lunar Flashlight CubeSat concept leverages JPL's Interplanetary Nano- Spacecraft Pathfinder In Relevant Environment (INSPIRE) mission, MSFC's intimate knowledge of the Space Launch System and EM-1 mission, small business development of solar sail and electric propulsion hardware, and JPL experience with specialized miniature sensors. The goal of Lunar Flashlight is to determine the presence or absence of exposed water ice and its physical state, and map its concentration at the kilometer scale within the permanently shadowed regions of the lunar south pole. After being ejected in cislunar space by SLS, Lunar Flashlight deploys its solar panels and solar sail and maneuvers into a low-energy transfer to lunar orbit. The solar sail and attitude control system work to bring the satellite into an elliptical polar orbit spiraling down to a perilune of 30-10 km above the south pole for data collection. Lunar Flashlight uses its solar sail to shine reflected sunlight into permanently shadowed regions, measuring surface albedo with a four-filter point spectrometer at 1.1, 1.5 1.9, and 2.0 microns. Water ice will be distinguished from dry regolith from these measurements in two ways: 1) spatial variations in absolute reflectance (water ice is much brighter in the continuum channels), and 2) reflectance ratios between absorption and continuum channels. Derived reflectance and reflectance ratios will be mapped onto the lunar surface in order to distinguish the composition of the PSRs from that of the sunlit terrain. Lunar Flashlight enables a low-cost path to in-situ resource utilization (ISRU) by identifying operationally useful deposits (if there are any), which is a game-changing capability for expanded human exploration.
NASA Astrophysics Data System (ADS)
Powell, R. L.; Goulden, M.; Peterson, S.; Roberts, D. A.; Still, C. J.
2015-12-01
Temperature is a primary environmental control on biological systems and processes at a range of spatial and temporal scales, from controlling biochemical processes such as photosynthesis to influencing continental-scale species distribution. The Landsat satellite series provides a long record (since the mid-1980s) of relatively high spatial resolution thermal infrared (TIR) imagery, from which we derive land surface temperature (LST) grids. Here, we investigate fine spatial resolution factors that influence Landsat-derived LST over a spectrally and spatially heterogeneous landscape. We focus on paired sites (inside/outside a 1994 fire scar) within a pinyon-juniper scrubland in Southern California. The sites have nearly identical micro-meteorology and vegetation species composition, but distinctly different vegetation abundance and structure. The tower at the unburned site includes a number of in-situ imaging tools to quantify vegetation properties, including a thermal camera on a pan-tilt mount, allowing hourly characterization of landscape component temperatures (e.g., sunlit canopy, bare soil, leaf litter). We use these in-situ measurements to assess the impact of fine-scale landscape heterogeneity on estimates of LST, including sensitivity to (i) the relative abundance of component materials, (ii) directional effects due to solar and viewing geometry, (iii) duration of sunlit exposure for each compositional type, and (iv) air temperature. To scale these properties to Landsat spatial resolution (~100-m), we characterize the sub-pixel composition of landscape components (in addition to shade) by applying spectral mixture analysis (SMA) to the Landsat Operational Land Imager (OLI) spectral bands and test the sensitivity of the relationships established with the in-situ data at this coarser scale. The effects of vegetation abundance and cover height versus other controls on satellite-derived estimates of LST will be assessed by comparing estimates at the burned vs. unburned sites across multiple seasons (~30 dates).
NASA Astrophysics Data System (ADS)
Aiken, Jim; Brewin, Robert J. W.; Dufois, Francois; Polimene, Luca; Hardman-Mountford, Nick J.; Jackson, Thomas; Loveday, Ben; Hoya, Silvana Mallor; Dall'Olmo, Giorgio; Stephens, John; Hirata, Takafumi
2017-11-01
Anthropogenically-induced global warming is expected to decrease primary productivity in the subtropical oceans by strengthening stratification of the water column and reducing the flux of nutrients from deep-waters to the sunlit surface layers. Identification of such changes is hindered by a paucity of long-term, spatially-resolved, biological time-series data at the basin scale. This paper exploits Atlantic Meridional Transect (AMT) data on physical and biogeochemical properties (1995-2014) in synergy with a wide range of remote-sensing (RS) observations from ocean colour, Sea Surface Temperature (SST), Sea Surface Salinity (SSS) and altimetry (surface currents), combined with different modelling approaches (both empirical and a coupled 1-D Ecosystem model), to produce a synthesis of the seasonal functioning of the North and South Atlantic Sub-Tropical Gyres (STGs), and assess their response to longer-term changes in climate. We explore definitive characteristics of the STGs using data of physical (SST, SSS and peripheral current systems) and biogeochemical variables (chlorophyll and nitrate), with inherent criteria (permanent thermal stratification and oligotrophy), and define the gyre boundary from a sharp gradient in these physical and biogeochemical properties. From RS data, the seasonal cycles for the period 1998-2012 show significant relationships between physical properties (SST and PAR) and gyre area. In contrast to expectations, the surface layer chlorophyll concentration from RS data (CHL) shows an upward trend for the mean values in both subtropical gyres. Furthermore, trends in physical properties (SST, PAR, gyre area) differ between the North and South STGs, suggesting the processes responsible for an upward trend in CHL may vary between gyres. There are significant anomalies in CHL and SST that are associated with El Niño events. These conclusions are drawn cautiously considering the short length of the time-series (1998-2012), emphasising the need to sustain spatially-extensive surveys such as AMT and integrate such observations with models, autonomous observations and RS data, to help address fundamental questions about how our planet is responding to climate change. A small number of dedicated AMT cruises in the keystone months of January and July would complement our understanding of seasonal cycles in the STGs.
Southern Ocean biogeochemical control of glacial/interglacial carbon dioxide change
NASA Astrophysics Data System (ADS)
Sigman, D. M.
2014-12-01
In the effort to explain the lower atmospheric CO2 concentrations observed during ice ages, two of the first hypotheses involved redistributing dissolved inorganic carbon (DIC) within the ocean. Broecker (1982) proposed a strengthening of the ocean's biological pump during ice ages, which increased the dissolved inorganic carbon gradient between the dark, voluminous ocean interior and the surface ocean's sun-lit, wind-mixed layer. Boyle (1988) proposed a deepening in the ocean interior's pool of DIC associated with organic carbon regeneration, with its concentration maximum shifting from intermediate to abyssal depths. While not irrefutable, evidence has arisen that these mechanisms can explain much of the ice age CO2 reduction and that both were activated by changes in the Southern Ocean. In the Antarctic Zone, reduced exchange of water between the surface and the underlying ocean sequestered more DIC in the ocean interior (the biological pump mechanism). Dust-borne iron fertilization of the Subantarctic surface lowered CO2 partly by the biological pump mechanism and partly by Boyle's carbon deepening. Each mechanism owes a part of its CO2 effect to a transient increase in seafloor calcium carbonate dissolution, which raised the ice age ocean's alkalinity, causing it to absorb more CO2. However, calcium carbonate cycling also sets limits on these mechanisms and their CO2 effects, such that the combination of Antarctic and Subantarctic changes is needed to achieve the full (80-100 ppm) ice age CO2 decline. Data suggest that these changes began at different phases in the development of the last ice age, 110 and 70 ka, respectively, explaining a 40 ppm CO2 drop at each time. We lack a robust understanding of the potential causes for both the implied reduction in Antarctic surface/deep exchange and the increase in Subantarctic dust supply during ice ages. Thus, even if the evidence for these Southern Ocean changes were to become incontrovertible, conceptual gaps stand in the way of a theory of glacial cycles that includes Southern Ocean-driven CO2 change. There are more compelling proposals for the causes of deglacial change, with a sharp reduction in North Atlantic deep water formation implicated as a trigger of increased surface/deep exchange in the Antarctic and the resulting release of CO2 to the atmosphere.
NASA Astrophysics Data System (ADS)
Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan
2015-10-01
The impact of haze-fog on surface temperature, flow pattern, pollutant dispersion and pedestrian thermal comfort are investigated using computational fluid dynamics (CFD) approach based on a three-dimensional street canyon model under different haze-fog conditions. In this study, light extinction coefficient (Kex) is adopted to represent haze-fog pollution level. Numerical simulations are performed for different Kex values at four representative time events (1000 LST, 1300 LST, 1600 LST and 2000 LST). The numerical results suggest that the surface temperature is strongly affected by the haze-fog condition. Surface heating induced by the solar radiation is enhanced by haze-fog, as higher surface temperature is observed under thicker haze-fog condition. Moreover, the temperature difference between sunlit and shadow surfaces is reduced, while that for the two shadow surfaces is slightly increased. Therefore, the surface temperature among street canyon facets becomes more evenly distributed under heavy haze-fog conditions. In addition, flow patterns are considerably altered by different haze-fog conditions, especially for the afternoon (1600 LST) case, in which thermal-driven flow has opposite direction as that of the wind-driven flow direction. Consequently, pollutants such as vehicular emissions will accumulate at pedestrian level, and pedestrian thermal comfort may lower under thicker haze-fog condition.
Paltineanu, Cristian; Septar, Leinar; Chitu, Emil
2016-03-01
The paper describes the temperature profiles determined by thermal imagery in apricot tree canopies under the semi-arid conditions of the Black Sea Coast in a chernozem of Dobrogea Region, Romania. The study analyzes the thermal vertical profile of apricot orchards for three representative cultivars during summertime. Measurements were done when the soil water content (SWC) was at field capacity (FC) within the rooting depth, after intense sprinkler irrigation applications. Canopy temperature was measured during clear sky days at three heights for both sides of the apricot trees, sunlit (south), and shaded (north). For the SWC studied, i.e., FC, canopy height did not induce a significant difference between the temperature of apricot tree leaves (Tc) and the ambient air temperature (Ta) within the entire vertical tree profile, and temperature measurements by thermal imagery can therefore be taken at any height on the tree crown leaves. Differences between sunlit and shaded sides of the canopy were significant. Because of these differences for Tc-Ta among the apricot tree cultivars studied, lower base lines (LBLs) should be determined for each cultivar separately. The use of thermal imagery technique under the conditions of semi-arid coastal areas with low range of vapor pressure deficit could be useful in irrigation scheduling of apricot trees. The paper discusses the implications of the data obtained in the experiment under the conditions of the coastal area of the Black Sea, Romania, and neighboring countries with similar climate, such as Bulgaria and Turkey.
Effects of meteoric smoke particles on the D region ion chemistry
NASA Astrophysics Data System (ADS)
Baumann, Carsten; Rapp, Markus; Anttila, Milla; Kero, Antti; Verronen, Pekka T.
2015-12-01
This study focuses on meteor smoke particle (MSP) induced effects on the D region ion chemistry. Hereby, MSPs, represented with an 11 bin size distribution, have been included as an active component into the Sodankyä Ion and Neutral Chemistry model. By doing that, we model the diurnal variation of the negatively and positively charged MSPs as well as ions and the electron density under quiet ionospheric conditions. Two distinct points in time are studied in more detail, i.e., one for sunlit conditions (Solar zenith angle is 72°) and one for dark conditions (Solar zenith angle is 103°). We find nightly decrease of free electrons and negative ions, the positive ion density is enhanced at altitudes above 80 km and reduced below. During sunlit conditions the electron density is enhanced between 60 and 70 km altitude, while there is a reduction in negative and positive ions densities. In general, the MSP influence on the ion chemistry is caused by changes in the electron density. On the one hand, these changes occur due to nightly electron scavenging by MSPs resulting in a reduced electron-ion recombination. As a consequence positive ion density increase, especially water cluster ions are highly affected. On the other hand, the electron density is slightly increased during daytime by a MSP-related production due to solar radiation. Thus, more electrons attach to neutrals and short-lived negative ions increase in number density. The direct attachment of ions to MSPs is a minor process, but important for long living ions.
Barta, András; Farkas, Alexandra; Száz, Dénes; Egri, Ádám; Barta, Pál; Kovács, József; Csák, Balázs; Jankovics, István; Szabó, Gyula; Horváth, Gábor
2014-08-10
Using full-sky imaging polarimetry, we measured the celestial distribution of polarization during sunset and sunrise at partial (78% and 72%) and full (100%) moon in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We investigated the temporal change of the patterns of degree p and angle α of linear polarization of sunlit and moonlit skies at dusk and dawn. We describe here the position change of the neutral points of sky polarization, and present video clips about the celestial polarization transition at moonlit twilight. We found that at partial moon and at a medium latitude (47° 15.481' N) during this transition there is a relatively short (10-20 min) period when (i) the maximum of p of skylight decreases, and (ii) from the celestial α pattern neither the solar-antisolar nor the lunar-antilunar meridian can be unambiguously determined. These meridians can serve as reference directions of animal orientation and Viking navigation based on sky polarization. The possible influence of these atmospheric optical phenomena during the polarization transition between sunlit and moonlit skies on the orientation of polarization-sensitive crepuscular/nocturnal animals and the hypothesized navigation of sunstone-aided Viking seafarers is discussed.
NASA Astrophysics Data System (ADS)
Chen, M.; Butler, E. E.; Wythers, K. R.; Kattge, J.; Ricciuto, D. M.; Thornton, P. E.; Atkin, O. K.; Flores-Moreno, H.; Reich, P. B.
2017-12-01
In order to better estimate the carbon budget of the globe, accurately simulating gross primary productivity (GPP) in earth system models is critical. When upscaling leaf level photosynthesis to the canopy, climate models uses different big-leaf schemes. About half of the state-of-the-art earth system models use a "two-big-leaf" scheme that partitions canopies into direct and diffusively illuminated fractions to reduce high bias of GPP simulated by one-big-leaf models. Some two-big-leaf models, such as ACME (identical in this respect to CLM 4.5) add leaf area index (LAI) and stem area index (SAI) together when calculating canopy radiation transfer. This treatment, however, will result in higher fraction of sunlit leaves. It will also lead to an artificial overestimation of canopy nitrogen content. Here we introduce a new algorithm of simulating SAI in a two-big-leaf model. The new algorithm reduced the sunlit leave fraction of the canopy and conserved the nitrogen content from leaf to canopy level. The lower fraction of sunlit leaves reduced global GPP especially in tropical area. Compared to the default model, for the past 100 years (1909-2009), the averaged global annual GPP is lowered by 4.11 PgC year-1 using this new algorithm.
The Effect of Topographic Shadowing by Ice on Irradiance in the Greenland Ice Sheet Ablation Zone
NASA Astrophysics Data System (ADS)
Leidman, S. Z.; Rennermalm, A. K.; Ryan, J.; Cooper, M. G.; Smith, L. C.
2017-12-01
Accurately predicting runoff contributions to global sea level rise requires more refined surface mass balance (SMB) models of the Greenland Ice Sheet (GrIS). Topographic shadowing has shown to be important in the SMB of snow-covered regions, yet SMB models for the GrIS generally ignore how surface topography affects spatial variability of incoming solar radiation on a surface. In the ablation zone of Southwest Greenland, deeply incised supraglacial drainage features, fracturing, and large-scale bed deformation result in extensive areas of rough surface topography. This topography blocks direct radiation such that shadowed areas receive less energy for melting while other topographic features such as peaks recieve more energy. In this study, we quantify how shadowing from local topography features changes incoming solar radiation. We apply the ArcGIS Pro Solar Radiation Toolset to calculate the direct and diffuse irradiance in sunlit and shadowed areas by determining the sun's movement for every half hour increment of 2016. Multiple digital elevation models (DEMs) with spatial resolutions ranging from 0.06 to 5m were derived from fixed wing and quadcopter UAV imagery collected in summer 2016 and the ArcticDEM dataset. Our findings show that shadowing significantly decreases irradiance compared to smoothed surfaces where local topography is removed. This decrease is exponentially proportional to the DEM pixel sized with 5m DEMs only able to capture a small percentage of the effect. Applying these calculations to the ArcticDEM to cover a larger study area indicates that decreases in irradiance are nonlinearly proportional to elevation with highly crevassed areas showing a larger effect from shadowing. Even so, shading at higher elevations reduces irradiance enough to result in several centimeters snow water equivalence (SWE) per year of over-prediction of runoff in SMB models. Furthermore, analysis of solar radiation products shows that shadowing predicts albedo variability far better than a range of variables derived from UAV imagery mosaics including slope, aspect, elevation, or the distance to dark surface features. In summary, implementation of the effect of shadowing on irradiance should therefore be considered for accurate surface mass balance calculations for the Greenland ice sheet.
Phytoplankton are free-floating, microscopic algae that inhabit the sunlit, upper layer of most freshwater and marine environments. They are usually responsible for the color and clarity of lakes, wetlands, rivers, streams and estuaries.
Thermospheric O/N2 in the Sunlit Disk From More Than Five Years of GUVI/TIMED Observations
NASA Astrophysics Data System (ADS)
Craven, J. D.; Christensen, A. B.; Paxton, L. J.
2007-12-01
GUVI indirect observations of the thermospheric column density ratio, O/N2, in the sunlit hemisphere have been made on a nearly continuous basis from day 50 of 2002 to the present as part of the TIMED spacecraft mission. The basic large-scale spatial structure includes variations with local time (greater values in the morning), Universal Time (modulation at high latitudes due to the offset magnetic dipole), and season (greater values in the local winter hemisphere). These differences are seen to fade in the approach to solar minimum. Superposed on this reasonably well-behaved background structure are the complex, transient perturbations driven by auroral substorms and geomagnetic storms. The spatial and temporal variations are summarized in part by time-lapse movies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigren, E.; Galand, M.; Shebanits, O.
2014-05-01
We combine derived ion-electron pair formation rates with Cassini Radio Plasma Wave Science Langmuir Probe measurements of electron and positive ion number densities in Titan's sunlit ionosphere. We show that positive ion number densities in Titan's sunlit ionosphere can increase toward significantly lower altitudes than the peak of ion-electron pair formation despite that the effective ion-electron recombination coefficient increases. This is explained by the increased mixing ratios of negative ions, which are formed by electron attachment to neutrals. While such a process acts as a sink for free electrons, the positive ions become longer-lived as the rate coefficients for ion-anionmore » neutralization reactions are smaller than those for ion-electron dissociative recombination reactions.« less
NASA Astrophysics Data System (ADS)
Williams, B.; Thibodeau, B.; Chikaraishi, Y.; Ohkouchi, N.; Grottoli, A. G.
2014-12-01
Instrumental and proxy data and global climate model experiments indicate a multi-decadal shoaling of the western tropical Pacific (WTP) thermocline potentially related to a shift in ENSO frequency. In the WTP, the nutricline coincides with the thermocline, and a shoaling of the nutricline brings more nitrate-rich seawater higher in the water column and within the sunlit euphotic zone. In the nutrient-poor WTP, this incursion of nitrate-rich water at the bottom of the euphotic zone may stimulate productivity in the water column. However, there is a general paucity of measurements below the surface with which to investigate recent changes in seawater chemistry. Nitrogen isotope (δ15N) measurements of particulate organic matter (POM) can elucidate the source of nitrogen to the WTP and related trophic dynamics. This POM is the food source to the long-lived proteinaceous corals, and drives the nitrogen isotopic composition of their skeleton. Here, we report time series δ15N values from the banded skeletons of proteinaceous corals from offshore Palau in the WTP that provide proxy information about past changes in euphotic zone nitrogen dynamics. Bulk skeletal δ15N values declined between 1977 and 2010 suggesting a progressively increasing contribution of deep water with isotopically-light nitrate to the euphotic zone and/or a shortening of the planktonic food web. Since only some amino acids are enriched in δ15N with each trophic transfer in a food web, we measured the δ15N composition of seven individual amino acids in the same coral skeleton. The δ15N time series of the individual amino acids also declined over time, mirroring the bulk values. These new data indicate that the changes in the source nitrogen to the base of the euphotic zone drives a decline in coral skeletal δ15N values, consistent with the shoaling nutricline, with no coinciding alteration of the trophic structure in the WTP.
Pattern Recognition in Optical Remote Sensing Data Processing
NASA Astrophysics Data System (ADS)
Kozoderov, Vladimir; Kondranin, Timofei; Dmitriev, Egor; Kamentsev, Vladimir
Computational procedures of the land surface biophysical parameters retrieval imply that modeling techniques are available of the outgoing radiation description together with monitoring techniques of remote sensing data processing using registered radiances between the related optical sensors and the land surface objects called “patterns”. Pattern recognition techniques are a valuable approach to the processing of remote sensing data for images of the land surface - atmosphere system. Many simplified codes of the direct and inverse problems of atmospheric optics are considered applicable for the imagery processing of low and middle spatial resolution. Unless the authors are not interested in the accuracy of the final information products, they utilize these standard procedures. The emerging necessity of processing data of high spectral and spatial resolution given by imaging spectrometers puts forward the newly defined pattern recognition techniques. The proposed tools of using different types of classifiers combined with the parameter retrieval procedures for the forested environment are maintained to have much wider applications as compared with the image features and object shapes extraction, which relates to photometry and geometry in pixel-level reflectance representation of the forested land cover. The pixel fraction and reflectance of “end-members” (sunlit forest canopy, sunlit background and shaded background for a particular view and solar illumination angle) are only a part in the listed techniques. It is assumed that each pixel views collections of the individual forest trees and the pixel-level reflectance can thus be computed as a linear mixture of sunlit tree tops, sunlit background (or understory) and shadows. Instead of these photometry and geometry constraints, the improved models are developed of the functional description of outgoing spectral radiation, in which such parameters of the forest canopy like the vegetation biomass density for particular forest species and age are embedded. This permits us to calculate the relationships between the registered radiances and the biomass densities (the direct problem of atmospheric optics). The next stage is to find solutions of this problem as cross-sections of the related curves in the multi-dimensional space given by the parameters of these models (the inverse problem). The typical solutions may not be mathematically unique and the computational procedure is undertaken to their regularization by finding minima of the functional called “the energy for the particular class of forests”. The relevant optimization procedures serve to identify the likelihood between any registered set of data and the theoretical distributions as well as to regularize the solution by employing the derivative functions characterizing the neighborhood of the pixels for the related classes. As a result, we have elaborated a rigorous approach to optimize spectral channels based on searching their most informative sets by combining the channels and finding correlations between them. A successive addition method is used with the calculation of the total probability error. The step up method consists in fixing the level of the probability error that is not improved by further adding the channels in the calculation scheme of the pattern recognition. The best distinguishable classes are recognized at the first stage of this procedure. The analytical technique called “cross-validation” is used at its second stage. This procedure is in removing some data before the classifier training begins employing, for instance, the known “leaving-out-one” strategy. This strategy serves to explain the accuracy category additionally to the standard confusion matrix between the modeling approach and the available ground-based observations, once the employed validation map may not be perfect or needs renewal. Such cross-validation carried out for ensembles of airborne data from the imaging spectrometer produced in Russia enables to conclude that the forest classes on a test area are separated with high accuracy. The proposed approach is recommended to account for the needed set of ground-based measurements during field campaigns for the validation purposes of remote sensing data processing and for the retrieval procedures of such parameters of forests like Net Primary Productivity with an ensured accuracy that results from the described here computational procedures.
Comets, Asteroids, and the Origin of the Biosphere
NASA Technical Reports Server (NTRS)
Hoover, Richard B.
2006-01-01
During the past few decades, the role of comets in the delivery of water, organics, and prebiotic chemicals to the Biosphere of Earth during the Hadean (4.5-3.8 Ga) period of heavy bombardment has become more widely accepted. However comets are still largely regarded as frigid, pristine bodies of protosolar nebula material that are entirely devoid of liquid water and consequently unsuitable for life in any form. Complex organic compounds have been observed comets and on the water rich asteroid 1998 KY26, which has color and radar reflectivity similar to the carbonaceous meteorites. Near infrared observations have indicated the presence of crystalline water ice and ammonia hydrate on the large Kuiper Belt object (50000) Quaoar with resurfacing that may indicate cryovolcanic outgassing and the Cassini spacecraft has detected water-ice geysers on Saturn s moon Enceladus. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1) have now firmly established that comets contain a suite of complex organic chemicals; water is the predominant volatile; and that extremely high temperatures (approx.350-400 K) can be reached on the surface of the very black (albedo-0.03) nuclei when the comets are with 1.5 AU from the Sun. Impact craters and pinnacles observed on comet Wild 2 suggest a thick crust and episodic outbursts and jets observed on the nuclei of several comets are interpreted as indications that localized regimes of liquid water and water vapor can periodically exist beneath the crust of some comets. The Deep Impact observations indicate that the temperature on the nucleus of of comet Tempel 1 at 1.5 AU varied from 330K on the sunlit side to a minimum of 280+/-8 K. It is interesting that even the coldest region of the comet surface was slightly above the ice/liquid water phase transition temperature. These results suggest that pools and films of liquid water can exist in a wide range of temperatures in cavities and voids at different depths just beneath the crust of a comet. The possibility that liquid water may exist over a wide range of temperatures on comets significantly enhances the possibility that these bodies may harbor niches suitable for microbial communities and ecosystems. Such niches would by ideal for the growth of psychrophilic, mesophilic, and possibly even thermophilic chemolithotrophs and photoautotrophs such as the motile filamentous cyanobacteria (e.g., Calothrix, Oscillatoria, Phormidium, and Spirulina) that can grow in geothermal springs and geysers at temperatures ranging from 320K to 345K and in cold polar desert soils. This paper reviews the observational data in support of the hypothesis that liquid water can exist in permafrost-like active regions just beneath the surface of comets when near perihelion and provides additional arguments in support of the hypothesis that comets, carbonaceous meteorites, and asteroids may have played a significant role in the origin and evolution of the Biosphere and in the distribution of microbial life throughout the Solar System.
MGS Thermal Emission Spectrometer Image
1997-09-24
This image shows the temperature of the martian surface measured by the Mars Global Surveyor Thermal Emission Spectrometer (TES) instrument. On September 15, 3 hours and 48 minutes after the spacecrafts third close approach to the planet, the TES instrument was commanded to point at Mars and measure the temperature of the surface during a four minute scan. At this time MGS was approximately 15,000 miles (~24,000 km) from the planet, with a view looking up from beneath the planet at the south polar region. The circular blue region (- 198 F) is the south polar cap of Mars that is composed of CO2 ice. The night side of the planet, shown with crosses, is generally cool (green). The sunlit side of the planet reaches temperatures near 15 F (yellow). Each square represents an individual observation acquired in 2 seconds with a ground resolution of ~125 miles (~200 km). The TES instrument will remain on and collect similar images every 100 minutes to monitor the temperature of the surface and atmosphere throughout the aerobraking phase of the MGS mission. http://photojournal.jpl.nasa.gov/catalog/PIA00937
Rare observation of daytime whistlers at very low latitude (L = 1.08)
NASA Astrophysics Data System (ADS)
Gokani, Sneha A.; Singh, Rajesh; Tulasi Ram, S.; Venkatesham, K.; Veenadhari, B.; Kumar, Sandeep; Selvakumaran, R.
2018-04-01
The source region and propagation mechanism of low latitude whistlers (Geomag. lat. <30°) have puzzled scientific community for last many decades. In view of recent reports, there is consensus on the source region of low latitude whistlers in the vicinity of the conjugate point. But the plausible conditions of ionospheric medium through which they travel are still uncertain. In addition to that, the whistlers in daytime are never observed at geomagnetic latitudes less than 20°. Here, for the first time, we present a rare observations of whistlers during sunlit hours from a very low-latitude station Allahabad (Geomag. Lat: 16.79°N, L = 1.08) in India on 04 February 2011. More than 90 whistlers are recorded during 1200-1300 UT during which the whole propagation path from lightning source region to whistler observation site is under sunlit. The favorable factors that facilitated the whistlers prior to the sunset are investigated in terms of source lightning characteristics, geomagnetic and background ionospheric medium conditions. The whistler activity period was found to be geomagnetically quiet. However, a significant suppression in ionospheric total electron content (TEC) compared to its quiet day average is found. This shows that background ionospheric conditions may play a key role in low latitude whistler propagation. This study reveals that whistlers can occur under sunlit hours at latitudes as low as L = 1.08 when the source lightning and ionospheric medium characteristics are optimally favorable.
Aurora on Uranus - A Faraday disc dynamo mechanism
NASA Technical Reports Server (NTRS)
Hill, T. W.; Rassbach, M. E.; Dessler, A. J.
1983-01-01
A mechanism is proposed whereby the solar wind flowing past the magnetosphere of Uranus causes a Faraday disk dynamo topology to be established and power to be extracted from the kinetic energy of rotation of Uranus. An immediate consequence of this dynamo is the generation of Birkeland currents that flow in and out of the sunlit polar cap with the accompanying production of polar aurora. The power extracted from planetary rotation is calculated as a function of planetary dipole magnetic moment and the ionospheric conductivity of Uranus. For plausible values of ionospheric conductivity, the observed auroral power requires a magnetic moment corresponding to a surface equatorial field of the order of 4 Gauss, slightly larger than the value 1.8 Gauss given by the empirical 'magnetic Bodes law'.
A multilayer model for inferring dry deposition using standard meteorological measurements
NASA Astrophysics Data System (ADS)
Meyers, Tilden P.; Finkelstein, Peter; Clarke, John; Ellestad, Thomas G.; Sims, Pamela F.
1998-09-01
In this paper, we describe the latest version of the dry deposition inferential model, which is used to estimate the deposition velocities (Vd) for SO2, O3, HNO3, and particles with diameters less than 2 μm. The dry deposition networks operated by the National Oceanic and Atmospheric Administration (NOAA) and the Environmental Protection Agency (EPA) use this model to estimate dry deposition on a weekly basis. This model uses a multilayer approach, discretizing the vegetated canopy into 20 layers. The use of canopy radiative transfer and simple wind profile models allows for estimates of stomatal (rs) and leaf boundary layer (rb) resistances to be determined at each layer in the plant canopy for both sunlit and shaded leaves. The effect of temperature, water stress, and vapor pressure deficits on the stomatal resistance (rs) have been included. Comparisons of modeled deposition velocities are made with extensive direct measurements performed at three different locations with different crops. The field experiment is discussed in some detail. Overall, modeled O3 deposition velocities are in good agreement with measured values with the average mean bias for all surfaces of the order of 0.01 cm/s or less. For SO2, mean biases range from -0.05 for corn to 0.15 cm/s for soybeans, while for HNO3, they range from 0.09 for corn to 0.47 cm/s for pasture.
Net production of oxygen in the subtropical ocean.
Riser, Stephen C; Johnson, Kenneth S
2008-01-17
The question of whether the plankton communities in low-nutrient regions of the ocean, comprising 80% of the global ocean surface area, are net producers or consumers of oxygen and fixed carbon is a key uncertainty in the global carbon cycle. Direct measurements in bottle experiments indicate net oxygen consumption in the sunlit zone, whereas geochemical evidence suggests that the upper ocean is a net source of oxygen. One possible resolution to this conflict is that primary production in the gyres is episodic and thus difficult to observe: in this model, oligotrophic regions would be net consumers of oxygen during most of the year, but strong, brief events with high primary production rates might produce enough fixed carbon and dissolved oxygen to yield net production as an average over the annual cycle. Here we examine the balance of oxygen production over three years at sites in the North and South Pacific subtropical gyres using the new technique of oxygen sensors deployed on profiling floats. We find that mixing events during early winter homogenize the upper water column and cause low oxygen concentrations. Oxygen then increases below the mixed layer at a nearly constant rate that is similar to independent measures of net community production. This continuous oxygen increase is consistent with an ecosystem that is a net producer of fixed carbon (net autotrophic) throughout the year, with episodic events not required to sustain positive oxygen production.
Antarctic Ultraviolet Radiation Climatology from Total Ozone Mapping Spectrometer Data
NASA Technical Reports Server (NTRS)
Lubin, Dan
2004-01-01
This project has successfully produced a climatology of local noon spectral surface irradiance covering the Antarctic continent and the Southern Ocean, the spectral interval 290-700 nm (UV-A, UV-B, and photosynthetically active radiation, PAR), and the entire sunlit part of the year for November 1979-December 1999. Total Ozone Mapping Spectrometer (TOMS) data were used to specify column ozone abundance and UV-A (360- or 380-nm) reflectivity, and passive microwave (MW) sea ice concentrations were used to specify the surface albedo over the Southern Ocean. For this latter task, sea ice concentration retrievals from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) and its successor, the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) were identified with ultraviolet/visible-wavelength albedos based on an empirical TOMS/MW parameterization developed for this purpose (Lubin and Morrow, 2001). The satellite retrievals of surface albedo and UV-A reflectivity were used in a delta-Eddington radiative transfer model to estimate cloud effective optical depth. These optical depth estimates were then used along with the total ozone and surface albedo to calculate the downwelling spectral UV and PAR irradiance at the surface. These spectral irradiance maps were produced for every usable day of TOMS data between 1979-1999 (every other day early in the TOMS program, daily later on).
The Light and Dark Sides of a Distant Planet
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Poster Version The top graph consists of infrared data from NASA's Spitzer Space Telescope. It tells astronomers that a distant planet, called Upsilon Andromedae b, always has a giant hot spot on the side that faces the star, while the other side is cold and dark. The artist's concepts above the graph illustrate how the planet might look throughout its orbit if viewed up close with infrared eyes. Spitzer was able to determine the difference in temperature between the two sides of this planet by measuring the planet's infrared light, or heat, at five points during its 4.6-day-long trip around its star. The temperature rose and fell depending on which face, the sunlit or dark, was pointed toward Spitzer's cameras. Those temperature oscillations are traced by the wavy orange curve. They indicate that Upsilon Andromedae b has an extreme range of temperatures across its surface, about 1,400 degrees Celsius (2,550 degrees Fahrenheit). This means that hot gas moving across the bright side of the planet cools off by the time it reaches the dark side. The bottom graph and artist's concepts represent what astronomers might have seen if the planet had bands of different temperatures girdling it, like Jupiter. Some astronomers had speculated that 'hot-Jupiter' planets like Upsilon Andromedae b, which circle very closely around their stars, might resemble Jupiter in this way. If Upsilon Andromedae b had been like this, there would have been no difference between the average temperatures of the sunlit and dark sides to detect, and Spitzer's data would have appeared as a flat line.2010-02-18
Saturn moon Enceladus orbits serenely before a backdrop of clouds roiling the atmosphere the planet in this image taken by NASA Cassini spacecraft. This view looks toward the northern, sunlit side of the rings from just above the ringplane.
Process Model for Studying Regional 13C Stable Isotope Exchange between Vegetation and Atmosphere
NASA Astrophysics Data System (ADS)
Chen, J. M.; Chen, B.; Huang, L.; Tans, P.; Worthy, D.; Ishizawa, M.; Chan, D.
2007-12-01
The variation of the stable isotope 13CO2 in the air in exchange with land ecosystems results from fractionation processes in both plants and soil during photosynthesis and respiration. Its diurnal and seasonal variations therefore contain information on the carbon cycle. We developed a model (BEPS-iso) to simulate its exchange between vegetation and the atmosphere. To be useful for regional carbon cycle studies, the model has the following characteristics: (i) it considers the turbulent mixing in the vertical profile from the soil surface to the top of the planetary boundary layer (PBL); (ii) it scales individual leaf photosynthetic discrimination to the whole canopy through the separation of sunlit and shaded leaf groups; (iii) through simulating leaf-level photosynthetic processes, it has the capacity to mechanistically examine isotope discrimination resulting from meteorological forcings, such as radiation, precipitation and humidity; and (iv) through complete modeling of radiation, energy and water fluxes, it also simulates soil moisture and temperature needed for estimating ecosystem respiration and the 13C signal from the soil. After validation using flask data acquired at 20 m level on a tower near Fraserdale, Ontario, Canada, during intensive campaigns (1998-2000), the model has been used for several purposes: (i) to investigate the diurnal and seasonal variations in the disequilibrium in 13C fractionation between ecosystem respiration and photosynthesis, which is an important step in using 13C measurements to separate these carbon cycle components; (ii) to quantify the 13C rectification in the PBL, which differs significantly from CO2 rectification because of the diurnal and seasonal disequilibriums; and (iii) to model the 13C spatial and temporal variations over the global land surface for the purpose of CO2 inversion using 13C as an additional constraint.
Earth Observation and Science: Monitoring Vegetation Dynamics from Deep Space Gateway
NASA Astrophysics Data System (ADS)
Knyazikhin, Y.; Park, T.; Hu, B.
2018-02-01
Retrieving diurnal courses of sunlit (SLAI) and shaded (ShLAI) leaf area indices, fraction of photosynthetically active radiation (PAR) absorbed by vegetation (FPAR), and Normalized Difference Vegetation Index (NDVI) from Deep Space Gateway data.
Thermal design and test results for SUNLITE ultra-stable reference cavity
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.
1991-01-01
SUNLITE (Stanford University-NASA Laser In-Space Technology Experiment) is a space-based experiment which uses a reference cavity to provide a stable frequency reference for a terahertz laser oscillator. Thermal stability of the cavity is a key factor in attaining a stable narrow-linewidth laser beam. The mount which is used to support and align the cavity will provide thermal isolation from the environment. The baseline requirement for thermal stability of the cavity is 0.025 C/min, but the design is directed toward achieving stability well beyond this requirement to improve the science data gained. A prototype of the cavity mount was fabricated and tested to characterize the thermal performance. The thermal vacuum test involved stable high-resolution temperature measurements and stable baseplate temperature control over long durations. Based on test data, the cavity mount design satisfies the severe requirement for the cavity thermal stability.
Analysis of data from LEND instrument on LRO: May water deposits be expected on poles of Mercury?
NASA Astrophysics Data System (ADS)
Mitrofanov, I.
2012-04-01
Lunar Exploration Neutron Detector (LEND) of LRO measured the flux of epithermal neutrons with high spatial resolution ˜10 km for the amplitude of 50 km. The LEND data from the polar caps above 80° latitude were tested for the presence of local spots of epithermal Neutron Suppression Regions (NSRs), which have been identified with wa-ter ice permafrost. The model has been proposed, which explains the origin of water at lunar poles by chemical reactions between hydrogen of solar wind with oxygen of lunar regolith. The so-called solar water could be produced under the sunlit surface, and than migrate either at cold traps in he local vicinity from the irradiated spot of origin, or at cold subsur-face layer just below of the uppermost layer of origin. Similarly to the Moon, there are data of radio sensing of Mercury, which points out that this planet might have the water ice deposits at poles. Therefore, one may suspect that the main physics could also be similar at poles of the Moon and the Mercury: - if the water ice deposits are on the lunar poles, they should be at the Hermean poles as well; - if comets are not the main source for the water at lunar poles, they should not also be the main source for the polar water deposits on the Mercury. However, one should also take into account that the Moon and the Mercury have rather different physics of inter-action between the plasma of solar wind and the surface: - the Mercury have the dipole magnetic field, which is large enough to shield the equatorial belt of the planet from the direct interaction with the plasma of solar wind; - flux of solar wind and solar radiation at the orbit of Mercury are much larger than they are at the Earth orbit; - the average temperature of illuminated spots at Hermean poles is much larger than the temperature of illuminated spots at poles of the Moon. In addition to current neutron data from LRO, the data from MESSENGER should be studied for better under-standing of polar water ice deposits at the Moon and at the Mercury. Additional data will be provided by neutron mapping from the BeppiColombo spacecraft, which will map neutron albedo of bother Hermean poles (the MESSENGER maps only the southern hemisphere). First of all, one have to test that Mercury have extended suppression regions of epithermal neutrons around both poles, as the Moon has. If hydrogen at polar regolith is delivered by the solar wind, the polar suppression of Mercury should be rather different from one of the Moon, because Hermean magnetosphere should chanelize the plasma of solar wind plasma toward the poles. Second, one have to test the presence of local NSEs at the Hermean poles and to compare them with the lunar NSRs. If NSRs at both celestial bodies are associated with deposits of solar water, one could expect to find more water rich permafrost on the Mercury than on the Moon at areas with similarly cold surfaces, because at the same thermal conditions production rate of water molecules from the solar wind should be higher on Mercury than on the Moon.
Estimation of leaf area index and its sunlit portion from DSCOVR EPIC data: Theoretical basis
Yang, Bin; Knyazikhin, Yuri; Mõttus, Matti; Rautiainen, Miina; Stenberg, Pauline; Yan, Lei; Chen, Chi; Yan, Kai; Choi, Sungho; Park, Taejin; Myneni, Ranga B.
2017-01-01
This paper presents the theoretical basis of the algorithm designed for the generation of leaf area index and diurnal course of its sunlit portion from NASA’s Earth Polychromatic Imaging Camera (EPIC) onboard NOAA’s Deep Space Climate Observatory (DSCOVR). The Look-up-Table (LUT) approach implemented in the MODIS operational LAI/FPAR algorithm is adopted. The LUT, which is the heart of the approach, has been significantly modified. First, its parameterization incorporates the canopy hot spot phenomenon and recent advances in the theory of canopy spectral invariants. This allows more accurate decoupling of the structural and radiometric components of the measured Bidirectional Reflectance Factor (BRF), improves scaling properties of the LUT and consequently simplifies adjustments of the algorithm for data spatial resolution and spectral band compositions. Second, the stochastic radiative transfer equations are used to generate the LUT for all biome types. The equations naturally account for radiative effects of the three-dimensional canopy structure on the BRF and allow for an accurate discrimination between sunlit and shaded leaf areas. Third, the LUT entries are measurable, i.e., they can be independently derived from both below canopy measurements of the transmitted and above canopy measurements of reflected radiation fields. This feature makes possible direct validation of the LUT, facilitates identification of its deficiencies and development of refinements. Analyses of field data on canopy structure and leaf optics collected at 18 sites in the Hyytiälä forest in southern boreal zone in Finland and hyperspectral images acquired by the EO-1 Hyperion sensor support the theoretical basis. PMID:28867834
On modelling the relationship between vegetation greenness and water balance and land use change.
Berry, Sandra L; Mackey, Brendan
2018-06-13
Here we sought a biologically meaningful, climate variable that captures water-energy availability and is suitable for high resolution (250 m × 250 m) modelling of the fraction of photosynthetically active radiation intercepted by the sunlit canopy (F V ) derived from a 10-year (July 2000 - June 2010) time series of Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized difference vegetation index (NDVI) satellite imagery for Australia. The long-term mean annual evaporation deficit, and mean annual water availability indices all yielded strong linear relationships with mean F V ([Formula: see text], %). We hypothesised whether some of the scatter about the relationships was related to land-use changes that have disrupted the vegetation-climate-soil equilibrium. Using continental-scale spatial data layers of protected area status and vegetation condition classes we repeated our analyses with restricted datasets. [Formula: see text] of intact native vegetation within protected areas was greater than all modified vegetation classes. There was a consistent decline in the slopes of the regression relationships with increasing intensity of woody vegetation clearing and livestock grazing. Where native vegetation has been transformed by land use there was a 25% reduction in predicted [Formula: see text].
A Terminator View from Mercury Flyby 2
2009-04-21
This high-resolution NAC image shows a view of Mercury dawn terminator, the division between the sunlit dayside and dark nightside of the planet, as seen as the MESSENGER spacecraft departed the planet during the mission second Mercury flyby.
2010-01-13
Dione shadow is elongated as it is cast onto the round shape of Saturn in this image taken by NASA Cassini spacecraft. The moon is not visible here. This view looks toward the northern, sunlit side of the rings from just above the ringplane.
Characterizing the effects of regolith surface roughness on photoemission from surfaces in space
NASA Astrophysics Data System (ADS)
Dove, A.; Horanyi, M.; Wang, X.
2017-12-01
Surfaces of airless bodies and spacecraft in space are exposed to a variety of charging environments. A balance of currents due to plasma bombardment, photoemission, electron and ion emission and collection, and secondary electron emission determines the surface's charge. Photoelectron emission is the dominant charging process on sunlit surfaces in the inner solar system due to the intense solar UV radiation. This can result in a net positive surface potential, with a cloud of photoelectrons immediately above the surface, called the photoelectron sheath. Conversely, the unlit side of the body will charge negatively due the collection of the fast-moving solar wind electrons. The interaction of charged dust grains with these positively and negatively charged surfaces, and within the photoelectron and plasma sheaths may explain the occurrence of dust lofting, levitation and transport above the lunar surface. The surface potential of exposed objects is also dependent on the material properties of their surfaces. Composition and particle size primarily affect the quantum efficiency of photoelectron generation; however, surface roughness can also control the charging process. In order to characterize these effects, we have conducted laboratory experiments to examine the role of surface roughness in generating photoelectrons in dedicated laboratory experiments using solid and dusty surfaces of the same composition (CeO2), and initial comparisons with JSC-1 lunar simulant. Using Langmuir probe measurements, we explore the measured potentials above insulating surfaces exposed to UV and an electric field, and we show that the photoemission current from a dusty surface is largely reduced due to its higher surface roughness, which causes a significant fraction of the emitted photoelectrons to be re-absorbed within the surface. We will discuss these results in context of similar situations on planetary surfaces.
2014-09-29
Saturn many cloud patterns, swept along by high-speed winds, look as if they were painted on by some eager alien artist in this image from NASA Cassini spacecraft. With no real surface features to slow them down, wind speeds on Saturn can top 1,100 mph (1,800 kph), more than four times the top speeds on Earth. This view looks toward the sunlit side of the rings from about 29 degrees above the ringplane. The image was taken with the Cassini spacecraft wide-angle camera on April 4, 2014 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 752 nanometers. The view was obtained at a distance of approximately 1.1 million miles (1.8 million kilometers) from Saturn. Image scale is 68 miles (109 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18280
NASA Technical Reports Server (NTRS)
1986-01-01
The terminator region of Titania, one of Uranus' five large moons, was captured in this Voyager 2 image obtained in the early morning hours of Jan. 24, 1986. Voyager was about 500,000 kilometers (300,000 miles) from Titania and inbound toward closest approach. This clear-filter, narrow-angle view is along the terminator -- the line between the sunlit and darkened parts of the moon. The low-angle illumination shows the shape of the surface very clearly. Among the features visible are long linear valleys perhaps 50-100 km (30-60 mi) wide and several hundred km (or mi) long. At least two directions of faulting are visible, as are many circular impact craters attributed to cosmic debris. The resolution of this image is about 9 km (6 mi). The Voyager project is managed for NASA by the Jet Propulsion Laboratory.
NASA Technical Reports Server (NTRS)
Middleton, Elizabeth M.; Cheng, Yen-Ben; Hilker, Thomas; Huemmrich, Karl F.; Black, T. Andrew; Krishnan, Praveena; Coops, Nicholas C.
2008-01-01
As part of the North American Carbon Program effort to quantify the terrestrial carbon budget of North America, we have been examining the possibility of retrieving ecosystem light use efficiency (LUE, the carbon sequestered per unit photosynthetically active radiation) directly from satellite observations. Our novel approach has been to compare LUE derived from tower fluxes with LUE estimated using spectral indices computed from MODIS satellite observations over forests in the Fluxnet-Canada Research Network, using the MODIS narrow ocean bands acquired over land. We matched carbon flux data collected around the time of the MODIS mid-day overpass for over one hundred relatively clear days in five years (2001-2006) from a mature Douglas fir forest in British Columbia. We also examined hyperspectral reflectance data collected diurnally from the tower in conjunction with the eddy correlation fluxes and meteorological measurements made throughout the 2006 growing season at this site. The tower-based flux data provided an opportunity to examine diurnal and seasonal LUE processes and their relationship to spectral indices at the scale of the forest stand. We evaluated LUE in conjunction with the Photochemical Reflectance Index (PRI), a normalized difference spectral index that uses 531 nm and a reference band to capture responses to high light induced stress afforded by the xanthophyll cycle. Canopy structure information, retrieved from airborne laser scanning radar (LiDAR) observations, was used to partition the forest canopy into sunlit and shaded fractions throughout the day, on numerous days during 2006. At each observation period throughout a day, the PRI was examined for the sunlit, shaded, and intermediate canopy segments defined by their instantaneous position relative to the solar principal plane (SPP). The sunlit sector was associated with the illumination "hotspot" (the reflectance backscatter maximum), the shaded sector with the "cold or dark spot" (the reflectance forward scatter minimum), while the intermediate, mixed sunlit/shade sector was located in the cross-plane to the SPP. The PRI indices clearly captured the differences in leaf groups, with sunlit foliage exhibiting the lowest values on sunny days throughout the 2006 season. When tower-based canopy-level LUE was recalculated to estimate foliage-based values (LUE(sub foilage) for the three foliage groups under their incident light environments, a strong linear relationship for PRI:LUE(sub foilage) was demonstrated (0.6 less than or equal to r(sup 2) less than or equal to 0.8, n=822, P<0.0001). The MODIS data represent relatively large areas when acquired at nadir (approx.1 sq km) or at variable off-nadir view angles (greater than or equal to 1 sq km) looking forward or aft. Nevertheless, a similar relationship between MODIS PRI and tower-based LUE was obtained from satellite observations (r(sup 2) = 0.76, n=105, P= 0.026) when the azimuth offsets from the SPP for off-nadir observations were considered. At this relatively high latitude of 50 degrees, the MODIS directional observations were offset from the SPP by approximately 50 degrees, but still represented backscatter or forward scatter sectors of the bidirectional reflectance distribution function (BRDF). The backscatter observations sampled the sunlit forest and provided lower PRI values, in general, than the forward scatter observations from the shaded forest. Since the hotspot and darkspot were not typically directly observed, the dynamic range for MODIS PRI was less than that observed in the SPP at the canopy level; therefore, MODIS PRI values were more similar to those observed in sifu in the BRDF cross-plane. While not ideal in terms of spatial resolution or optimal viewing configuration, the MODIS observations nevertheless provide a means to monitor forest under stress using narrow spectral band indices and off-nadir observations. This research has stimulated several spin-off studies for remote sensinf LUE, and demonstrates the importance of the connection between ecosystem structure and physiological function.
What is MISR? MISR Instrument? MISR Project?
Atmospheric Science Data Center
2014-12-08
... to improve our understanding of the Earth's environment and climate. Viewing the sunlit Earth simultaneously at nine widely-spaced angles, ... types of atmospheric particles and clouds on climate. The change in reflection at different view angles affords the means to distinguish ...
ERIC Educational Resources Information Center
Schiffbauer, Pam
2000-01-01
School buildings ideally would have few exterior access points, no isolated hallways, and sunlit classrooms. A safety checklist recommends locating offices near main doors, monitoring hallway traffic, enhancing communications, updating crisis-management plans, teaching coping skills, standardizing dismissal policies, and ensuring legal compliance…
Energetic Neutral Atom Imaging of the Lunar Poles and Night-Side
NASA Astrophysics Data System (ADS)
Vorburger, Audrey; Wurz, Peter; Barabash, Stas; Wieser, Martin; Futaana, Yoshifumi; Bhardwaj, Anil; Dhanya, Mb; Asamura, Kazushi
2016-04-01
So far all reported scientific results derived from measurements of the Chandrayaan-1 Energetic Neutral Analyzer (CENA) on board the Indian lunar mission Chandrayaan-1 focused on the sun-lit part of the Moon. Here, for the first time, we present the analysis of the Moon - solar wind interaction in Energetic Neutral Atoms (ENAs) from measurements over the poles and the night-side of the Moon. The Moon, not being protected by a global magnetic field or an atmosphere, is constantly bombarded by solar wind ions. Until recently, it was tacitly assumed that the solar wind ions that impinge onto the lunar surface are almost completely absorbed ( < 1% reflection) by the lunar surface (e.g. Crider and Vondrak [Adv. Space Res., 2002]; Feldman et al. [J. Geophys. Res., 2000]). However, recent observations conducted by the two ENA sensors of NASA's Interstellar Boundary Explorer and by Chandrayaan-1/CENA showed an average global energetic neutral atom (ENA) albedo of 10% - 20% (e.g. McComas et al. [Geophys. Res. Lett., 2009], Wieser et al. [Planet. Space Sci., 2009], Vorburger et al. [J. Geophys. Res., 2013]). In the past 6 years, several studies have closely investigated this solar wind - lunar surface interaction from various viewpoints. The main findings of these studies include (1) the dependency of the hydrogen reflection ratio on the local crustal magnetic fields (e.g., Wieser et al. [Geophys. Res. Lett. ,2010] and Vorburger et al. [J. Geophys. Res., 2012]), (2) the determination of the energy spectra of backscattered neutralized solar wind protons (Futaana et al. [J. Geophys. Res., 2012]) (3) the use of the spectra shape to remotely define an electric potential above a lunar magnetic anomaly (Futaana et al. [Geophys. Res. Lett., 2012]), (4) the favouring of backscattering over forward-scattering of impinging solar wind hydrogen particles (Vorburger et al. [Geophys. Res. Lett., 2011]), (5) the first-ever measurements of sputtered lunar oxygen (Vorburger et al. [J. Geophys. Res., 2012]), (6) the first-ever observation of backscattered solar wind helium (Vorburger et al. [J. Geophys. Res., 2012]), and (7) the determination of the scattering properties of backscattered solar wind hydrogen measured when the Moon transversed Earth's magneto-sheath (Lue et al. [J. Geophys. Res., 2016]). All findings above are based on measurements from the sun-lit side of the Moon's surface, where solar wind particles can impinge freely onto the lunar surface. On the night-side, in contrast, a large scale wake structure is formed as a result of the high absorption of solar wind plasma on the lunar day-side. Very recent ion measurements of Chandrayaan-1's Solar Wind Monitor (SWIM) have revealed the presence of protons in the near-lunar wake, though (Dhanya et al., [Icarus 2016 (submitted)]). The presence of protons in the near lunar wake implies that there is also some sort of solar wind - lunar surface interaction on the lunar night-side. A complete analysis of this interaction will be presented herein.
Tuberculosis: A Problem for Lifeguards?
ERIC Educational Resources Information Center
Skaros, Susan
1996-01-01
Lifeguards run the risk of workplace infection by tuberculosis-carrying swimmers. Even if they work in ventilated, sunlit areas (which reduces risk), they can contract tuberculosis when performing respiratory resuscitation. Without appropriate precautions, lifeguards may be unnecessarily exposed. A tuberculosis infection control plan is needed in…
Biophysical control of leaf temperature
NASA Astrophysics Data System (ADS)
Dong, N.; Prentice, I. C.; Wright, I. J.
2014-12-01
In principle sunlit leaves can maintain their temperatures within a narrower range than ambient temperatures. This is an important and long-known (but now overlooked) prediction of energy balance theory. Net radiation at leaf surface in steady state (which is reached rapidly) must be equal to the combination of sensible and latent heat exchanges with surrounding air, the former being proportional to leaf-to-air temperature difference (ΔT), the latter to the transpiration rate. We present field measurements of ΔT which confirm the existence of a 'crossover temperature' in the 25-30˚C range for species in a tropical savanna and a tropical rainforest environment. This finding is consistent with a simple representation of transpiration as a function of net radiation and temperature (Priestley-Taylor relationship) assuming an entrainment factor (ω) somewhat greater than the canonical value of 0.26. The fact that leaves in tropical forests are typically cooler than surrounding air, often already by solar noon, is consistent with a recently published comparison of MODIS day-time land-surface temperatures with air temperatures. Theory further predicts a strong dependence of leaf size (which is inversely related to leaf boundary-layer conductance, and therefore to absolute magnitude of ΔT) on moisture availability. Theoretically, leaf size should be determined by either night-time constraints (risk of frost damage to active leaves) or day-time constraints (risk of heat stress damage),with the former likely to predominate - thereby restricting the occurrence of large leaves - at high latitudes. In low latitudes, daytime maximum leaf size is predicted to increase with temperature, provided that water is plentiful. If water is restricted, however, transpiration cannot proceed at the Priestley-Taylor rate, and it quickly becomes advantageous for plants to have small leaves, which do not heat up much above the temperature of their surroundings. The difference between leaf and air temperature is generally neglected in terrestrial ecosystem and carbon cycle models. This is a significant omission that could lead to an over-estimation of the heat-stress vulnerability of carbon uptake in the wet tropics. Leaf energy balance theory is well established, and should be included in the next generation of models.
De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio; Mailhot, Gilles; Sarakha, Mohamed; Brigante, Marcello; Vione, Davide
2012-11-15
The triplet state of anthraquinone-2-sulphonate (AQ2S) is able to oxidise bromide to Br(•)/Br(2)(-•), with rate constant (2-4)⋅10(9)M(-1)s(-1) that depends on the pH. Similar processes are expected to take place between bromide and the triplet states of naturally occurring chromophoric dissolved organic matter ((3)CDOM*). The brominating agent Br(2)(-•) could thus be formed in natural waters upon oxidation of bromide by both (•)OH and (3)CDOM*. Br(2)(-•) would be consumed by disproportionation into bromide and bromine, as well as upon reaction with nitrite and most notably with dissolved organic matter (DOM). By using the laser flash photolysis technique, and phenol as model organic molecule, a second-order reaction rate constant of ~3⋅10(2)L(mg C)(-1)s(-1) was measured between Br(2)(-•) and DOM. It was thus possible to model the formation and reactivity of Br(2)(-•) in natural waters, assessing the steady-state [Br(2)(-•)]≈10(-13)-10(-12)M. It is concluded that bromide oxidation by (3)CDOM* would be significant compared to oxidation by (•)OH. The (3)CDOM*-mediated process would prevail in DOM-rich and bromide-rich environments, the latter because elevated bromide would completely scavenge (•)OH. Under such conditions, (•)OH-assisted formation of Br(2)(-•) would be limited by the formation rate of the hydroxyl radical. In contrast, the formation rate of (3)CDOM* is much higher compared to that of (•)OH in most surface waters and would provide a large (3)CDOM* reservoir for bromide to react with. A further issue is that nitrite oxidation by Br(2)(-•) could be an important source of the nitrating agent (•)NO(2) in bromide-rich, nitrite-rich and DOM-poor environments. Such a process could possibly account for significant aromatic photonitration observed in irradiated seawater and in sunlit brackish lagoons. Copyright © 2012 Elsevier B.V. All rights reserved.
Vegetation Earth System Data Record from DSCOVR EPIC Observations
NASA Astrophysics Data System (ADS)
Knyazikhin, Y.; Song, W.; Yang, B.; Mottus, M.; Rautiainen, M.; Stenberg, P.
2017-12-01
The NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR) mission was launched on February 11, 2015 to the Sun-Earth Lagrangian L1 point where it began to collect radiance data of the entire sunlit Earth every 65 to 110 min in June 2015. It provides imageries in near backscattering directions with the scattering angle between 168° and 176° at ten ultraviolet to near infrared (NIR) narrow spectral bands centered at 317.5 (band width 1.0) nm, 325.0 (2.0) nm, 340.0 (3.0) nm, 388.0 (3.0) nm, 433.0 (3.0) nm, 551.0 (3.0) nm, 680.0 (3.0) nm, 687.8 (0.8) nm, 764.0 (1.0) nm and 779.5 (2.0) nm. This poster presents current status of the Vegetation Earth System Data Record of global Leaf Area Index (LAI), solar zenith angle dependent Sunlit Leaf Area Index (SLAI), Fraction vegetation absorbed Photosynthetically Active Radiation (FPAR) and Normalized Difference Vegetation Index (NDVI) derived from the DSCOVR EPIC observations. Whereas LAI is a standard product of many satellite missions, the SLAI is a new satellite-derived parameter. Sunlit and shaded leaves exhibit different radiative response to incident Photosynthetically Active Radiation (400-700 nm), which in turn triggers various physiological and physical processes required for the functioning of plants. FPAR, LAI and SLAI are key state parameters in most ecosystem productivity models and carbon/nitrogen cycle. The product at 10 km sinusoidal grid and 65 to 110 min temporal frequency as well as accompanying Quality Assessment (QA) variables will be publicly available from the NASA Langley Atmospheric Science Data Center. The Algorithm Theoretical Basis (ATBD) and product validation strategy are also discussed in this poster.
Hemispheric Asymmetries in Substorm Recovery Time Scales
NASA Technical Reports Server (NTRS)
Fillingim, M. O.; Chua, D H.; Germany, G. A.; Spann, James F.
2009-01-01
Previous statistical observations have shown that the recovery time scales of substorms occurring in the winter and near equinox (when the nighttime auroral zone was in darkness) are roughly twice as long as the recovery time scales for substorms occurring in the summer (when the nighttime auroral region was sunlit). This suggests that auroral substorms in the northern and southern hemispheres develop asymmetrically during solstice conditions with substorms lasting longer in the winter (dark) hemisphere than in the summer (sunlit) hemisphere. Additionally, this implies that more energy is deposited by electron precipitation in the winter hemisphere than in the summer one during substorms. This result, coupled with previous observations that have shown that auroral activity is more common when the ionosphere is in darkness and is suppressed when the ionosphere is in daylight, strongly suggests that the ionospheric conductivity plays an important role governing how magnetospheric energy is transferred to the ionosphere during substorms. Therefore, the ionosphere itself may dictate how much energy it will accept from the magnetosphere during substorms rather than this being an externally imposed quantity. Here, we extend our earlier work by statistically analyzing the recovery time scales for a large number of substorms observed in the conjugate hemispheres simultaneously by two orbiting global auroral imagers: Polar UVI and IMAGE FUV. Our current results are consistent with previous observations. The recovery time scales are observed to be longer in the winter (dark) hemisphere while the auroral activity has a shorter duration in the summer (sunlit) hemisphere. This leads to an asymmetric energy input from the magnetosphere to the ionosphere with more energy being deposited in the winter hemisphere than in the summer hemisphere.
Ecological effects of feral biofuel crops in constructed oak savannah communities
The effects of elevated temperatures and drought on constructed oak savannahs were studied to determine the interactive effects of potentially invasive feral biofuel species and climate change on native grassland communities. A total of 12 sunlit mesocosm were used. Each mesoco...
Deep Space Earth Observations from DSCOVR
NASA Astrophysics Data System (ADS)
Marshak, A.; Herman, J.
2018-02-01
The Deep Space Climate Observatory (DSCOVR) at Sun-Earth L1 orbit observes the full sunlit disk of Earth. There are two Earth science instruments on board DSCOVR — EPIC and NISTAR. We discuss if EPIC and NISAR-like instruments can be used in Deep Space Gateway.
2015-09-14
The night sides of Saturn and Tethys are dark places indeed. We know that shadows are darker areas than sunlit areas, and in space, with no air to scatter the light, shadows can appear almost totally black. Tethys (660 miles or 1,062 kilometers across) is just barely seen in the lower left quadrant of this image below the ring plane and has been brightened by a factor of three to increase its visibility. The wavy outline of Saturn's polar hexagon is visible at top center. This view looks toward the sunlit side of the rings from about 10 degrees above the ring plane. The image was taken with the Cassini spacecraft wide-angle camera on Jan. 15, 2015 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 752 nanometers. The view was obtained at a distance of approximately 1.5 million miles (2.4 million kilometers) from Saturn. Image scale is 88 miles (141 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18333
Velocity-resolved observations of water in Comet Halley
NASA Technical Reports Server (NTRS)
Larson, Harold P.; Davis, D. Scott; Mumma, Michael J.; Weaver, Harold A.
1986-01-01
High resolution (lambda/delta lambda approx. = 3 x 10 to the 5th power) near-infrared observations of H2O emission from Comet Halley were acquired at the time of maximum post-perihelion geocentric Doppler shift. The observed widths and absolute positions of the H2O line profiles reveal characteristics of the molecular velocity field in the coma. These results support H2O outflow from a Sun-lit hemisphere or the entire nucleus, but not from a single, narrow jet emanating from the nucleus. The measured pre- and post-perihelion outflow velocities were 0.9 + or - 0.2 and 1.4 + or - 0.2 km/s, respectively. Temporal variations in the kinematic properties of the outflow were inferred from changes in the spectral line shapes. These results are consistent with the release of H2O into the coma from multiple jets.
2014-11-17
Nature is an artist, and this time she seems to have let her paints swirl together a bit. What the viewer might perceive to be Saturn's surface is really just the tops of its uppermost cloud layers. Everything we see is the result of fluid dynamics. Astronomers study Saturn's cloud dynamics in part to test and improve our understanding of fluid flows. Hopefully, what we learn will be useful for understanding our own atmosphere and that of other planetary bodies. This view looks toward the sunlit side of the rings from about 25 degrees above the ringplane. The image was taken in red light with the Cassini spacecraft narrow-angle camera on Aug. 23, 2014. The view was obtained at a distance of approximately 1.1 million miles (1.7 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 23 degrees. Image scale is 63 miles (102 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18290
2015-05-04
Saturn's surface is painted with swirls and shadows. Each swirl here is a weather system, reminding us of how dynamic Saturn's atmosphere is. Images taken in the near-infrared (like this one) permit us to peer through Saturn's methane haze layer to the clouds below. Scientists track the clouds and weather systems in the hopes of better understanding Saturn's complex atmosphere - and thus Earth's as well. This view looks toward the sunlit side of the rings from about 17 degrees above the ringplane. The image was taken with the Cassini spacecraft wide-angle camera on Feb. 8, 2015 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 752 nanometers. The view was obtained at a distance of approximately 794,000 miles (1.3 million kilometers) from Saturn. Image scale is 47 miles (76 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/pia18311
Infrared reflectance spectra (4-12 micron) of lunar samples
NASA Technical Reports Server (NTRS)
Nash, Douglas B.
1991-01-01
Presented here are infrared reflectance spectra of a typical set of Apollo samples to illustrate spectral character in the mid-infrared (4 to 12 microns) of lunar materials and how the spectra varies among three main forms: soil, breccia, and igneous rocks. Reflectance data, to a close approximation, are the inverse of emission spectra; thus, for a given material the spectral reflectance (R) at any given wavelength is related to emission (E) by 1 - R equals E. Therefore, one can use reflectance spectra of lunar samples to predict how emission spectra of material on the lunar surface will appear to spectrometers on orbiting spacecraft or earthbound telescopes. Spectra were measured in the lab in dry air using a Fourier Transform Infrared spectrometer. Shown here is only the key portion (4 to 12 microns) of each spectrum relating to the principal spectral emission region for sunlit lunar materials and to where the most diagnostic spectral features occur.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B at Cape Canaveral Air Force Station, the second stage of the Boeing Delta II rocket arrives at the top of the mobile service tower. The element will be mated to the Delta II, which will launch NASAs Deep Impact spacecraft. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing an impactor on a course to hit the comets sunlit side, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measure the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determine the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.
Analysis of photoelectron effect on the antenna impedance via Particle-In-Cell simulation
NASA Astrophysics Data System (ADS)
Miyake, Y.; Usui, H.
2008-08-01
We present photoelectron effects on the impedance of electric field antennas used for plasma wave investigations. To illustrate the photoelectron effects, we applied electromagnetic Particle-In-Cell simulation to the self-consistent antenna impedance analysis. We confirmed the formation of a dense photoelectron region around the sunlit surfaces of the antenna and the spacecraft. The dense photoelectrons enhance the real part, and decrease the absolute value of the imaginary part, of antenna impedance at low frequencies. We also showed that the antenna conductance can be analytically calculated from simulation results of the electron current flowing into or out of the antenna. The antenna impedance in the photoelectron environment is represented by a parallel equivalent circuit consisting of a capacitance and a resistance, which is consistent with empirical knowledge. The results also imply that the impedance varies with the spin of the spacecraft, which causes the variation of the photoelectron density around the antenna.
The Impact of Radiation Changes on the Terrestrial Carbon Sink over the Post Pinatubo Period
NASA Astrophysics Data System (ADS)
Sitch, S.; Mercado, L. M.; Bellouin, N.; Boucher, O.; Huntingford, C.; Cox, P. M.
2008-12-01
The amount of solar radiation reaching the earth surface is one of the major drivers of plant photosynthesis and therefore changes in radiation are likely to indirectly have an effect on the terrestrial carbon cycle. For example, changes in surface radiation that lead to increasing diffuse surface irradiance are reported to enhance plant photosynthesis (Gu et al., 2003, Niyogi et al., 2004, Oliveira et al., 2007, Roderick et al., 2001). Solar radiation reaching the land surface has changed over the industrial era due to aerosols emitted from volcanoes and various anthropogenic sources (Kvalevag and Myhre, 2007). Such changes in total surface radiation are accompanied by changes in direct and diffuse surface solar radiation. Recent major volcanic events include the eruptions of el Chichón in 1986 and Mount Pinatubo in 1991. In this study we estimate the impact of changes in surface radiation on photosynthetic carbon uptake during the Post Pinatubo period. We use an offline version of the Hadley Centre land surface scheme (Mercado et al., 2007) modified to account for variations in direct and diffuse radiation on sunlit and shaded canopy photosynthesis. We use meteorological forcing from the Climate Research Unit Data set. Additionally short wave and photosynthetic active radiation are reconstructed from the Hadley centre climate model, which accounts for the scattering and absorption of light by tropospheric and stratospheric aerosols. We describe the development of the land carbon cycle through the Pinatubo event and diagnose the impact of changes in diffuse radiation on the atmospheric [CO2] growth-rate
ELEVATED CO2 AND TEMPERATURE ALTER NITROGEN ALLOCATION IN DOUGLAS-FIR
The effects of elevated CO2 and temperature on principal carbon constituents (PCC) and C and N allocation between needle, woody (stem and branches) and root tissue of Pseudotsuga menziesii Mirb. Franco seedlings were determined. The seedlings were grown in sun-lit controlled-envi...
Ecological effects of feral biofuel crops in constructed oak savannah communities - June 2012
The effects of elevated temperatures and drought on constructed oak savannahs were studied to determine the interactive effects of potentially invasive feral biofuel species and climate change on native grassland communities. A total of 12 sunlit mesocosm were used. Each mesoco...
NASA Technical Reports Server (NTRS)
Langel, R. A.
1973-01-01
Variations in the scalar magnetic field (delta B) from the polar orbiting OGO 2, 4, and 6 spacecraft are examined as a function of altitude for times when the interplanetary magnetic field is toward the sun and for times when the interplanetary magnetic field away from the sun. This morphology is basically the same as that found when all data, irrespective of interplanetary magnetic sector, are averaged together. Differences in delta B occur, both between sectors and between seasons, which are similar in nature to variations in the surface delta Z found by Langel (1973c). The altitude variation of delta B at sunlit local times, together with delta Z at the earth's surface, demonstrates that the delta Z and delta B which varies with sector has an ionospheric source. Langel (1973b) showed that the positive delta B region in the dark portion of the hemisphere is due to at least two sources, the westward electrojet and an unidentified non-ionospheric source(s). Comparison of magnetic variations between season/sector at the surface and at the satellite, in the dark portion of the hemisphere, indicates that these variations are caused by variations in the latitudinally narrow electrojet currents and not by variations in the non-ionospheric source of delta B.
NASA Astrophysics Data System (ADS)
Poveda, GermáN.; Jaramillo, Alvaro; Gil, Marta MaríA.; Quiceno, Natalia; Mantilla, Ricardo I.
2001-08-01
An analysis of hydrologic variability in Colombia shows different seasonal effects associated with El Niño/Southern Oscillation (ENSO) phenomenon. Spectral and cross-correlation analyses are developed between climatic indices of the tropical Pacific Ocean and the annual cycle of Colombia's hydrology: precipitation, river flows, soil moisture, and the Normalized Difference Vegetation Index (NDVI). Our findings indicate stronger anomalies during December-February and weaker during March-May. The effects of ENSO are stronger for streamflow than for precipitation, owing to concomitant effects on soil moisture and evapotranspiration. We studied time variability of 10-day average volumetric soil moisture, collected at the tropical Andes of central Colombia at depths of 20 and 40 cm, in coffee growing areas characterized by shading vegetation ("shaded coffee"), forest, and sunlit coffee. The annual and interannual variability of soil moisture are highly intertwined for the period 1997-1999, during strong El Niño and La Niña events. Soil moisture exhibited greater negative anomalies during 1997-1998 El Niño, being strongest during the two dry seasons that normally occur in central Colombia. Soil moisture deficits were more drastic at zones covered by sunlit coffee than at those covered by forest and shaded coffee. Soil moisture responds to wetter than normal precipitation conditions during La Niña 1998-1999, reaching maximum levels throughout that period. The probability density function of soil moisture records is highly skewed and exhibits different kinds of multimodality depending upon land cover type. NDVI exhibits strong negative anomalies throughout the year during El Niños, in particular during September-November (year 0) and June-August (year 0). The strong negative relation between NDVI and El Niño has enormous implications for carbon, water, and energy budgets over the region, including the tropical Andes and Amazon River basin.
Background/Questions/Methods Biofuel crops, proposed as a means to reduce dependence on fossil fuels, raise concerns regarding ecological risks of their escape from cultivation. We report here second year results of our study on potential effects of feral biofuel crops on nati...
2016-10-19
This image of the sunlit part of Jupiter and its swirling atmosphere was created by a citizen scientist (Alex Mai) using data from Juno's JunoCam instrument. JunoCam's raw images are available at www.missionjuno.swri.edu/junocam for the public to peruse and process into image products. http://photojournal.jpl.nasa.gov/catalog/PIA21108
MORPHOGENESIS OF DOUGLAS-FIR BUDS IN ALTERED AT ELEVATED TEMPERATURE BUT NOT AT ELEVATED CO21
Global climatic change as expressed by increased CO2 and temperature has the potential for dramatic effects on trees. To determine what its effects may be on Pacific Northwest forests, Douglas-fir (Pseudotsuga menziesii) seedlings were grown in sun-lit controlled environment cham...
Topography of the 81/P Wild 2 Nucleus Derived from Stardust Stereoimages
NASA Technical Reports Server (NTRS)
Kirk, R. L.; Duxbury, T. C.; Horz, F.; Brownlee, D. E.; Newburn, R. L.; Tsou, P.
2005-01-01
On 2 January, 2004, the Stardust spacecraft flew by the nucleus of comet 81P/Wild 2 with a closest approach distance of approx. 240 km. During the encounter, the Stardust Optical Navigation Camera (ONC) obtained 72 images of the nucleus with exposure times alternating between 10 ms (near-optimal for most of the nucleus surface) and 100 ms (used for navigation, and revealing additional details in the coma and dark portions of the surface. Phase angles varied from 72 deg. to near zero to 103 deg. during the encounter, allowing the entire sunlit portion of the surface to be imaged. As many as 20 of the images near closest approach are of sufficiently high resolution to be used in mapping the nucleus surface; of these, two pairs of short-exposure images were used to create the nucleus shape model and derived products reported here. The best image resolution obtained was approx. 14 m/pixel, resulting in approx. 300 pixels across the nucleus. The Stardust Wild 2 dataset is therefore markedly superior from a stereomapping perspective to the Deep Space 1 MICAS images of comet Borrelly. The key subset of the latter (3 images) covered only about a quarter of the surface at phase angles approx. 50 - 60 and less than 50 x 160 pixels across the nucleus, yet it sufficed for groups at the USGS and DLR to produce digital elevation models (DEMs) and study the morphology and photometry of the nucleus in detail.
Multiple scattering in the remote sensing of natural surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wen-Hao; Weeks, R.; Gillespie, A.R.
1996-07-01
Radiosity models predict the amount of light scattered many times (multiple scattering) among scene elements in addition to light interacting with a surface only once (direct reflectance). Such models are little used in remote sensing studies because they require accurate digital terrain models and, typically, large amounts of computer time. We have developed a practical radiosity model that runs relatively quickly within suitable accuracy limits, and have used it to explore problems caused by multiple-scattering in image calibration, terrain correction, and surface roughness estimation for optical images. We applied the radiosity model to real topographic surfaces sampled at two verymore » different spatial scales: 30 m (rugged mountains) and 1 cm (cobbles and gravel on an alluvial fan). The magnitude of the multiple-scattering (MS) effect varies with solar illumination geometry, surface reflectivity, sky illumination and surface roughness. At the coarse scale, for typical illumination geometries, as much as 20% of the image can be significantly affected (>5%) by MS, which can account for as much as {approximately}10% of the radiance from sunlit slopes, and much more for shadowed slopes, otherwise illuminated only by skylight. At the fine scale, radiance from as much as 30-40% of the scene can have a significant MS component, and the MS contribution is locally as high as {approximately}70%, although integrating to the meter scale reduces this limit to {approximately}10%. Because the amount of MS increases with reflectivity as well as roughness, MS effects will distort the shape of reflectance spectra as well as changing their overall amplitude. The change is proportional to surface roughness. Our results have significant implications for determining reflectivity and surface roughness in remote sensing.« less
Derivation of martian surface slope characteristics from directional thermal infrared radiometry
NASA Astrophysics Data System (ADS)
Bandfield, Joshua L.; Edwards, Christopher S.
2008-01-01
Directional thermal infrared measurements of the martian surface is one of a variety of methods that may be used to characterize surface roughness and slopes at scales smaller than can be obtained by orbital imagery. Thermal Emission Spectrometer (TES) emission phase function (EPF) observations show distinct apparent temperature variations with azimuth and emission angle that are consistent with the presence of warm, sunlit and cool, shaded slopes at typically ˜0.1 m scales. A surface model of a Gaussian distribution of azimuth independent slopes (described by θ-bar) is combined with a thermal model to predict surface temperature from each viewing angle and azimuth of the TES EPF observation. The models can be used to predict surface slopes using the difference in measured apparent temperature from 2 separate 60-70° emission angle observations taken ˜180° in azimuth relative to each other. Most martian surfaces are consistent with low to moderate slope distributions. The slope distributions display distinct correlations with latitude, longitude, and albedo. Exceptionally smooth surfaces are located at lower latitudes in both the southern highlands as well as in high albedo dusty terrains. High slopes are associated with southern high-latitude patterned ground and north polar sand dunes. There is little apparent correlation between high resolution imagery and the derived θ-bar, with exceptions such as duneforms. This method can be used to characterize potential landing sites by assuming fractal scaling behavior to meter scales. More precisely targeted thermal infrared observations from other spacecraft instruments are capable of significantly reducing uncertainty as well as reducing measurement spot size from 10s of kilometers to sub-kilometer scales.
New Horizons science update on This Week @NASA – July 24, 2015
2015-07-24
A July 24 update at NASA headquarters, featured new surprising imagery and science results from the recent flyby of Pluto, by the New Horizons spacecraft. These included an image from the Long Range Reconnaissance Imager or (LORRI) – looking back at Pluto – hours after the historic flyby that revealed a haze in the planet’s sunlit atmosphere that extends as high as 80 miles above Pluto’s surface – much higher than expected. Models suggest that the hazes form when ultraviolet sunlight breaks apart methane gas. LORRI images also show evidence that exotic ices have flowed – and may still be flowing across Pluto’s surface, similar to glacial movement on Earth. This unpredicted sign of present-day geologic activity was detected in Sputnik Planum – an area in the western part of Pluto’s heart-shaped Tombaugh Regio. Additionally, new compositional data from New Horizons’ Ralph instrument indicate that the center of Sputnik Planum is rich in nitrogen, carbon monoxide, and methane ices. Also, Kepler discovers Earth’s “bigger cousin”, New crew launches to space station, EPIC view of Earth, Newman continues NASA center visits and Small Class Vehicle launch pad complete!
Intensification and spatial homogenization of coastal upwelling under climate change.
Wang, Daiwei; Gouhier, Tarik C; Menge, Bruce A; Ganguly, Auroop R
2015-02-19
The timing and strength of wind-driven coastal upwelling along the eastern margins of major ocean basins regulate the productivity of critical fisheries and marine ecosystems by bringing deep and nutrient-rich waters to the sunlit surface, where photosynthesis can occur. How coastal upwelling regimes might change in a warming climate is therefore a question of vital importance. Although enhanced land-ocean differential heating due to greenhouse warming has been proposed to intensify coastal upwelling by strengthening alongshore winds, analyses of observations and previous climate models have provided little consensus on historical and projected trends in coastal upwelling. Here we show that there are strong and consistent changes in the timing, intensity and spatial heterogeneity of coastal upwelling in response to future warming in most Eastern Boundary Upwelling Systems (EBUSs). An ensemble of climate models shows that by the end of the twenty-first century the upwelling season will start earlier, end later and become more intense at high but not low latitudes. This projected increase in upwelling intensity and duration at high latitudes will result in a substantial reduction of the existing latitudinal variation in coastal upwelling. These patterns are consistent across three of the four EBUSs (Canary, Benguela and Humboldt, but not California). The lack of upwelling intensification and greater uncertainty associated with the California EBUS may reflect regional controls associated with the atmospheric response to climate change. Given the strong linkages between upwelling and marine ecosystems, the projected changes in the intensity, timing and spatial structure of coastal upwelling may influence the geographical distribution of marine biodiversity.
Mapping evapotranspiration based on remote sensing: An application to Canada's landmass
NASA Astrophysics Data System (ADS)
Liu, J.; Chen, J. M.; Cihlar, J.
2003-07-01
The evapotranspiration (ET) from all Canadian landmass in 1996 is estimated at daily steps and 1 km resolution using a process model named boreal ecosystem productivity simulator (BEPS). The model is driven by remotely sensed leaf area index and land cover maps as well as soil water holding capacity and daily meteorological data. All the major ET components are considered: transpiration from vegetation, evaporation of canopy-intercepted rainfall, evaporation from soil, sublimation of snow in winter and in permafrost and glacier areas, and sublimation of canopy-intercepted snow. In forested areas the transpiration from both the overstory and understory vegetation is modeled separately. The Penman-Monteith method was applied to sunlit and shaded leaf groups individually in modeling the canopy-level transpiration, a methodological improvement necessary for forest canopies with considerable foliage clumping. The modeled ET map displays pronounced east-west and north-south gradients as well as detailed variations with cover types and vegetation density. It is estimated that for a relative wet year of 1996, the total ET from all Canada's landmass (excluding inland waters) was 2037 km3. If compared with the total precipitation of 5351 km3 based on the data from a medium range meteorological forecast model, the ratio of ET to precipitation was 38%. The ET averaged over Canadian land surface was 228 mm/yr in 1996, partitioned into transpiration of 102 mm yr-1 and evaporation and sublimation of 126 mm yr-1. Forested areas contributed the largest fraction of the total national ET at 59%. Averaged for all cover types, transpiration accounted for 45% of the total ET, while in forested areas, transpiration contributed 51% of ET. Modeled results of daily ET are compared with eddy covariance measurements at three forested sites with a r2 value of 0.61 and a root mean square error of 0.7 mm/day.
NASA Astrophysics Data System (ADS)
Liu, J.; Chen, J.; Cihlar, J.
2004-12-01
The evapotranspiration (ET) from all Canadian landmass is estimated at daily steps and 1 km resolution using a process model named Boreal Ecosystem Productivity Simulator (BEPS). The model is driven by remotely sensed leaf area index and land cover maps, as well as soil water holding capacity and daily meteorological data. All the major ET components are considered: transpiration from vegetation, evaporation of canopy-intercepted rainfall, evaporation from soil, sublimation of snow in winter and in permafrost and glacier areas, and sublimation of canopy-intercepted snow. In forested areas, the transpiration from both the overstory and understory vegetation is modelled separately. The Penman-Monteith method was applied to sunlit and shaded leaf groups individually in modelling the canopy-level transpiration, a methodological improvement necessary for forest canopies with considerable foliage clumping. The modelled ET map displays pronounced east-west and north-south gradients as well as detailed variations with cover types and vegetation density. It is estimated that, for a relative wet year of 1996, the total ET from all Canada's landmass (excluding inland waters) was 2037 km3. If compared with the total precipitation of 5351 km3 based on the data from a medium range meteorological forecast model, the ratio of ET to precipitation was 38 %. The ET averaged over Canadian land surface was 228 mm/yr in 1996, partitioned into transpiration of 102 mm/yr and evaporation and sublimation of 126 mm/yr. Forested areas contributed the largest fraction of the total national ET at 59 %. Averaged for all cover types, transpiration accounted for 45 % of the total ET, while in forested areas, transpiration was contributed 51 % of ET. Modelled results of daily ET are compared with eddy covariance measurements at three forested sites with a r2 value of 0.61 and a root mean square error of 0.7 mm/day.
Survival of the Tardigrade Hypsibius Dujardini during Hypervelocity Impact Events up to 5.49 km s-1
NASA Astrophysics Data System (ADS)
Pasini, D.
2014-04-01
Studies have previously been conducted to verify the survivability of living cells during hypervelocity impact events to test the panspermia and lithopanspermia hypotheses [1, 2]. It has been demonstrated that bacteria survive impacts up to 5.4 km s-1 (approx. shock pressure 30 GPa) - albeit with a low probability of survival [1], whilst larger, more complex, objects (such as seeds) break up at ~1 km s-1 [2]. The survivability of yeast spores in impacts up to 7.4 km s-1 has also recently been shown [3]. Previous work by the authors demonstrated the survivability of Nannochloropsis Oculata Phytoplankton, a eukaryotic photosynthesizing autotroph found in the 'euphotic zone' (sunlit surface layers of oceans [4]), at impact velocities up to 6.07 km s-1 [5]. Other groups have also reported that lichens are able to survive shocks in similar pressure ranges [6]. However, whilst many simple single celled organisms have now been shown to survive such impacts (and the associated pressures) as those encountered during the migration of material from one planet to another [1, 3, 5], complex multicellular organisms have either largely not been tested or, those that have been, have not survived the process [2]. Hypsibius dujardini, like most species of tardigrade, are complex organisms composed of approximately 40,000 cells [7]. When humidity decreases they enter a highly dehydrated state known as a 'tun' and can survive extreme temperatures (as low as - 253°C or as high as 151°C), as well as exposure to Xrays and the vacuum of space [7]. Here we test the shock survivability of Hypsibius dujardini by firing a nylon projectile onto a frozen sample of water containing frozen tardigrades using a light gas gun (LGG) [8]. The recovered ice and water were then analysed under an optical microscope to check the viability of any remnant organisms that may have survived impact, and the pressures generated.
Comets, Asteroids, Meteorites, and the Origin of the Biosphere
NASA Technical Reports Server (NTRS)
Hoover, Richard B.
2006-01-01
During the past few decades, the delivery of water, organics, and prebiotic chemicals to the Biosphere of Earth during the Hadean (4.5-3.8 Ga) period of heavy bombardment by comets and asteroids has become more widely accepted. Comets are still largely regarded as frigid, pristine bodies of protosolar nebula material that are devoid of liquid water and therefore unsuitable for life. Complex organic compounds have been observed in comets and on the water-rich asteroid 1998 KY26 and near IR observations have indicated the presence of crystalline water ice and ammonia hydrate on the large Kuiper Belt object (50000) Quaoar that has resurfacing suggesting cryovolcanic outgassing. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1) have shown that comets contain complex organic chemicals; that water is the predominant volatile; and that extremely high temperatures (approx. 350-400 K) can be reached on the surfae of the very black (albedo approx. 0.03) nuclei of comets when they approach the Sun. Impact craters and pinnacles observed on comet Wild 2 suggest a thick crust. Episodic outbursts and jets from the nuclei of several comets indicate that localized regimes of liquid water and water vapor can periodically exist beneath the comet crust. The Deep Impact mission found the temperature of the nucleus of comet Tempel 1 at 1.5 AU varied from a minimum of 280 plus or minus 8 K the 330K (57 C) on the sunlit side. In this paper it is argued that that pools and films of liquid water exist (within a wide range of temperatures) in cavities and voids just beneath the hot, black crust. The possibility of liquid water existing over a wide range of temperatures significantly enhances the possibility that comets might contain niches suitable for the growth of microbial communities and ecosystems. These regimes would be ideal for the growth of psychrophilic, mesophilic, and thermophilic photoautotrophs and chemolithotrophs such as the motile filamentous cyanobacteria (e.g., Calothrix, Oscillatoria, Phormidium, and Spirulina) that grow in geothermal springs and geysers of Earth at temperatures ranging fiom 320K to 345K and are also found growing in cold polar desert soils. The mineralized remains of morphotypes of all of these cyanobacteria have also been found in the Orgueil CI1 and the Murchison CN2 carbonaceous meteorites that may derive from cometary parent bodies. Observational results that support the hypothesis that liquid water can in active regions just beneath the surface of comets and that comets, carbonaceous meteorites, and asteroids may have played a significant role in the origin and evolution of the Biosphere and in the distribution of microbial life throughout the Solar System.
Łukowski, Adrian; Mąderek, Ewa; Giertych, Marian J.; Karolewski, Piotr
2015-01-01
Body mass and sex ratio (F/M) of folivorous insects are easily measured parameters that are commonly used to assess the effect of food quality, living conditions, and preferences on the selection of favourable sites for offspring. A study was conducted on the polyphagous beetle, Gonioctena quinquepunctata (a pest of the native Prunus padus and alien P. serotina) and on the monophagous beetle, Altica brevicollis coryletorum (a pest of Corylus avellana). Both species have a similar life cycle with emergence of current-year adults in summer, and reproduction of 1-year-old insects in spring. A. brevicollis coryletorum feeds primarily on sunlit shrubs, while G. quinquepunctata prefers shaded leaves. The present study assessed the effect of time of occurrence (insect age) on body mass in both sexes and on the sex ratio F/M, taking into account the influence of light conditions associated with their favoured food source (sunlit vs. shaded leaves). We hypothesized that a change in body mass in current-year insects would be determined by the amount of consumed food, while the sex ratio would be stable, when in 1-year-old insects females would die shortly after oviposition, while males would be active for a prolonged time. Results confirmed the hypothesis that changes in mass of current-year beetles was determined by the amount of food intake. We also found that in spring, unfertilized females coexist with fertilized ones and that the latter females live for some time after oviposition; resulting in fluctuations of the mean mass for females. In both species, 1-year-old beetles were heavier than current-year. The preference of A. brevicollis coryletorum for sunlit leaves results in a higher body weight than in G. quinquepunctata in both seasons. The data are consistent and indicate seasonal fluctuations in body mass and changes in the sex ratio in 1-year-old beetles, due to the entrance into their reproductive period. PMID:26657564
Retkute, Renata; Townsend, Alexandra J; Murchie, Erik H; Jensen, Oliver E; Preston, Simon P
2018-05-25
Diurnal changes in solar position and intensity combined with the structural complexity of plant architecture result in highly variable and dynamic light patterns within the plant canopy. This affects productivity through the complex ways that photosynthesis responds to changes in light intensity. Current methods to characterize light dynamics, such as ray-tracing, are able to produce data with excellent spatio-temporal resolution but are computationally intensive and the resulting data are complex and high-dimensional. This necessitates development of more economical models for summarizing the data and for simulating realistic light patterns over the course of a day. High-resolution reconstructions of field-grown plants are assembled in various configurations to form canopies, and a forward ray-tracing algorithm is applied to the canopies to compute light dynamics at high (1 min) temporal resolution. From the ray-tracer output, the sunlit or shaded state for each patch on the plants is determined, and these data are used to develop a novel stochastic model for the sunlit-shaded patterns. The model is designed to be straightforward to fit to data using maximum likelihood estimation, and fast to simulate from. For a wide range of contrasting 3-D canopies, the stochastic model is able to summarize, and replicate in simulations, key features of the light dynamics. When light patterns simulated from the stochastic model are used as input to a model of photoinhibition, the predicted reduction in carbon gain is similar to that from calculations based on the (extremely costly) ray-tracer data. The model provides a way to summarize highly complex data in a small number of parameters, and a cost-effective way to simulate realistic light patterns. Simulations from the model will be particularly useful for feeding into larger-scale photosynthesis models for calculating how light dynamics affects the photosynthetic productivity of canopies.
Diurnal and Directional Responses of Chlorophyll Fluorescence and the PRI in a Cornfield
NASA Technical Reports Server (NTRS)
Middleton, Elizabeth; Cheng, Y. B.; Corp, L.; Campbell, P.; Kustas, W.
2010-01-01
Determining the health and vigor of vegetation using high spectral resolution remote sensing is an important goal which has application to monitoring agriculture and ecosystem productivity and carbon exchange. Two spectral indices used to assess whether vegetation is performing near-optimally or exhibiting symptoms of environmental stress (e.g., drought or nutrient deficiency, non-optimal temperatures, etc.) are the Photochemical Reflectance Index (PRI) and solar-induced red and far-red Chlorophyll Fluorescence (Fs). Both the PRI and Fs capture the dynamics of photoprotection mechanisms within green foliage: the PRI is based on the association of the reflected radiation in the green spectrum with the xanthophyll cycle, whereas Fs measures the emitted radiation in the red and far-red spectrum. Fs was determined from retrievals in the atmospheric oxygen absorption features centered at 688 and 760 nm using a modified Fraunhofer Line Depth (FLD) method. We previously demonstrated diurnal and seasonal PRI differences for sunlit vs. shaded foliage in a conifer forest canopy, as expressed in the hotspot and darkspot of the Bidirectional Reflectance Function (BRF). In a USDA-ARS experimental field site located in Beltsville, MD, USA, measurements were acquired over a corn crop from a nadir view in 2008 with an ASD FieldSpec Pro (Analytical Spectral Devices, Inc., Boulder, CO, USA) to study the behavior of the PRI for sunlit and shaded foliage as captured in reflectance variations associated with the BRF, in a I m tall canopy in the vegetative growth stage. Those observations were compared to simulations obtained from two radiative transfer models. Measurements were then acquired to examine whether the PRI and Fs were influenced by view zenith and azimuth geometries at different times of day. Those measurements were made in 2010 with the Ocean Optics USB4000 Miniature Fiber Optic Spectrometer (Ocean Optics Inc., Dunedin, Florida, USA) at several times during the day on multiple days throughout the growing season. We found that the PRI consistently had higher values, indicating lower stress, in the BRF darkspot associated with shaded foliage than in the hotspot associated with sunlit foliage. We also found that Fs exhibited differences associated with sunlit and shaded canopy sectors, which were most pronounced for the red/far-red Fs ratio. Values indicated greater physiological stress in afternoons compared to mornings, and in the early senescent canopy as compared to the vegetative growth stage, BRFs for both the PRI and the red/far-red Fs ratio were bowl-shaped for the full azimuth sweep of the canopy. These two spectral indices (PRI, Fs ratio) provided complementary information on the photosynthetic function of the corn canopy.
NASA Astrophysics Data System (ADS)
Hatfield, David Brooke
The vibrational distribution of N_2 triplet states in the sunlit upper thermosphere of Earth is measured and modeled for the first time. A comparison is made between measured and theoretical limb column emission rates for bands originating from each upper vibrational level of C^3Pi_ u(v) and A^3Sigma_sp {u}{+}(v). The measured column emission rates for the Second Positive (2PG) bands are 3.2 (+/-0.2), 3.2 (+/-0.2) and 0.6 (+0.0,-0.4) kRayleighs for bands originating from C^3Pi_ u(0<=qrm v<=q2) and 13.3 ( +/-0.2), 10.0 (+/-0.2), 3 (+0,-2) and 2 (+0,-2) kRayleighs for Vegard-Kaplan (VK) bands originating from A^3Sigma_sp{u}{+ }(0<=qrm v<=q3).. Predicted limb column emission rates for C ^3Pi_ u(v) are in excellent agreement with the measured 2PG intensities, but comparisons of predicted A^3Sigma_sp{u }{+}(v) column emissions to measured VK intensities are poor. Despite this discrepancy, the predicted sum of all A^3Sigma_sp {u}{+}(v) emission rates over all v compared well to the sum of measured VK intensities. This implies that the excitation rate into the N_2 triplet states is well understood, but that the cascade mechanisms are not as yet understood sufficiently to use dayglow N_2 band emissions as remote sensing probes of the sunlit thermosphere. The dayglow N_2 emissions are modeled by extending the existing auroral model to include resonance scattering of sunlight and replacing the precipitating auroral electrons with photoelectrons. The effects of solar resonance scattering on the X ^1Sigma_sp{g}{+}, A^3Sigma_sp{u }{+} and B^3Pi _ g states are presented as a function of A^3Sigma_sp{u}{+ } quenching rate. These theoretical predictions have important implications for the analysis of dayglow and auroral emissions. The effect of resonance scattering on the A^3Sigma_sp{u} {+} state is small, and will not be measurable under auroral conditions. This implies that the measured auroral vibrational population of the A^3 Sigma_sp{u}{+} state is valid for sunlit aurora. The population of B ^3Pi_ g(v = O) relative to other B^3Pi_ g(v) states is predicted to be enhanced by sunlight. A novel set of computer variables based on tree structures was created to manage the information used. These variables are described in detail and were found to be useful tools for the creation and extension of computer models treating diatomic species.
Modelling the Response of Energy, Water and CO2 Fluxes Over Forests to Climate Variability
NASA Astrophysics Data System (ADS)
Ju, W.; Chen, J.; Liu, J.; Chen, B.
2004-05-01
Understanding the response of energy, water and CO2 fluxes of terrestrial ecosystems to climate variability at various temporal scales is of interest to climate change research. To simulate carbon (C) and water dynamics and their interactions at the continental scale with high temporal and spatial resolutions, the remote sensing driven BEPS (Boreal Ecosystem Productivity Simulator) model was updated to couple with the soil model of CENTURY and a newly developed biophysical model. This coupled model separates the whole canopy into two layers. For the top layer, the leaf-level conductance is scaled up to canopy level using a sunlit and shaded leaf separation approach. Fluxes of water, and CO{2} are simulated as the sums of those from sunlit and shaded leaves separately. This new approach allows for close coupling in modeling these fluxes. The whole profile of soil under a seasonal snowpack is split into four layers for estimating soil moisture and temperature. Long-term means of the vegetation productivity and climate are employed to initialize the carbon pools for the computation of heterotrophic respiration. Validated against tower data at four forested sites, this model is able to describe these fluxes and their response to climate variability. The model captures over 55% of year-round half/one hourly variances of these fluxes. The highest agreement of model results with tower data was achieved for CO2 flux at Southern Old Aspen (SOA) (R2>0.85 and RMSE<2.37 μ mol C m-2 s-1, N=17520). However, the model slightly overestimates the diurnal amplitude of sensible heat flux in winter and sometimes underestimates that of CO2 flux in the growing season. Model simulations suggest that C uptakes of forests are controlled by climate variability and the response of C cycle to climate depends on forest type. For SOA, the annual NPP (Net Primary Productivity) is more sensitive to temperature than to precipitation. This forest usually has higher NPP in warm years than in cool years. Interannual variability of heterotrophic respiration, however, is strongly related to precipitation. The soil releases more CO2 in wet years than in dry years. Warm and relatively dry climate enhances the C uptake in this forest stand. Compared with SOA, a temperate deciduous forest in the southern part of the temperate deciduous forest biome in eastern United States responds to climate variability differently. High temperature and low precipitation in the growing season reduces NPP and consequently NEP (Net Ecosystem Productivity). In warm years, the Southern Old Jack Pine forest uptakes less C than in cool years. The modeled heterotrophic respiration and NEP are very sensitive to soil moisture and the empirical equation used to describe the effect of soil moisture on decomposition. This suggests that hydrological modelling is critical in C budget estimation. Next step, this model will be validated against more tower data and used for upscaling from site to region.
Lunar Dust: Properties and Investigation Techniques
NASA Astrophysics Data System (ADS)
Kuznetsov, I. A.; Zakharov, A. V.; Dolnikov, G. G.; Lyash, A. N.; Afonin, V. V.; Popel, S. I.; Shashkova, I. A.; Borisov, N. D.
2017-12-01
Physical conditions in the near-surface layer of the Moon are overviewed. This medium is formed in the course of the permanent micrometeoroid bombardment of the lunar regolith and due to the exposure of the regolith to solar radiation and high-energy charged particles of solar and galactic origin. During a considerable part of a lunar day (more than 20%), the Moon is passing through the Earth's magnetosphere, where the conditions strongly differ from those in the interplanetary space. The external effects on the lunar regolith form the plasma-dusty medium above the lunar surface, the so-called lunar exosphere, whose characteristic altitude may reach several tens of kilometers. Observations of the near-surface dusty exosphere were carried out with the TV cameras onboard the landers Surveyor 5, 6, and 7 (1967-1968) and with the astrophotometer of Lunokhod-2 (1973). Their results showed that the near-surface layer glows above the sunlit surface of the Moon. This was interpreted as the scattering of solar light by dust particles. Direct detection of particles on the lunar surface was made by the Lunar Ejects and Meteorite (LEAM) instrument deployed by the Apollo 17 astronauts. Recently, the investigations of dust particles were performed by the Lunar Atmosphere and Dust Environment Explorer (LADEE) instrument at an altitude of several tens of kilometers. These observations urged forward the development of theoretical models for the lunar exosphere formation, and these models are being continuously improved. However, to date, many issues related to the dynamics of dust and the near-surface electric fields remain unresolved. Further investigations of the lunar exosphere are planned to be performed onboard the Russian landers Luna-Glob and Luna-Resurs.
Effects of Electrostatic Environment on Charged Particle Transport near Lunar Holes
NASA Astrophysics Data System (ADS)
Miyake, Y.; Nishino, M. N.
2017-12-01
The Moon has neither dense atmosphere nor intrinsic magnetic field, and solar wind interactions with lunar surfaces are one of major plasma processes. The near-surface, dayside electrostatic environment is governed mainly by volume charges of solar wind plasma and photoelectrons as well as charged lunar surfaces. In fact, the electric environment strongly depends on surface topologies, as it will produce a shaded region, the electric environment of which can be very different from that in a sunlit condition. As one of high-profile terrains on the Moon, we have been focusing on the lunar vertical holes (or lunar pits), identified by the KAGUYA satellite and the Lunar Reconnaissance Orbiter. In order to model the distinctive electric and dust environments near the holes, we have started three-dimensional particle simulation analysis. The present study addresses the plasma environment of a lunar hole that is accompanied with a subsurface cavern. Besides the topographical effect of having a cavern, an investigation is focused on the following points. The first point is how deeply the solar wind protons are accessible into the hole and cavern. This point is relevant not only to an electric environment but also to possible existence of volatiles at permanently shaded regions of the hole. In order to examine the possibility, we implemented a proton scattering process at lunar surfaces into the simulation model. The other is the role of some minor current components such as secondary electrons, scattered protons, and charged dust grains at the lunar surface. Such minor currents become important for the charging of shaded surfaces, as major current components (solar wind plasma and photoelectrons) are not accessible there. We address these points based on kinetic model descriptions.
Spacecraft Charging and the Microwave Anisotropy Probe Spacecraft
NASA Technical Reports Server (NTRS)
Timothy, VanSant J.; Neergaard, Linda F.
1998-01-01
The Microwave Anisotropy Probe (MAP), a MIDEX mission built in partnership between Princeton University and the NASA Goddard Space Flight Center (GSFC), will study the cosmic microwave background. It will be inserted into a highly elliptical earth orbit for several weeks and then use a lunar gravity assist to orbit around the second Lagrangian point (L2), 1.5 million kilometers, anti-sunward from the earth. The charging environment for the phasing loops and at L2 was evaluated. There is a limited set of data for L2; the GEOTAIL spacecraft measured relatively low spacecraft potentials (approx. 50 V maximum) near L2. The main area of concern for charging on the MAP spacecraft is the well-established threat posed by the "geosynchronous region" between 6-10 Re. The launch in the autumn of 2000 will coincide with the falling of the solar maximum, a period when the likelihood of a substorm is higher than usual. The likelihood of a substorm at that time has been roughly estimated to be on the order of 20% for a typical MAP mission profile. Because of the possibility of spacecraft charging, a requirement for conductive spacecraft surfaces was established early in the program. Subsequent NASCAP/GEO analyses for the MAP spacecraft demonstrated that a significant portion of the sunlit surface (solar cell cover glass and sunshade) could have nonconductive surfaces without significantly raising differential charging. The need for conductive materials on surfaces continually in eclipse has also been reinforced by NASCAP analyses.
We examined the interactive effects of elevated atmospheric CO2 and temperature on seasonal patterns of photosynthesis in Douglas-fir (Psuedotsuga menziesii (Mirb.) Franco) seedlings. Seedlings were grown in sunlit chambers controlled to track either ambient (~400 ppm) CO2 or am...
Abstract: We investigated the effects of elevated soil temperature and atmospheric CO2 on soil CO2 efflux and system respiration responses. The study was conducted in sun-lit controlled-environment chambers using two-year-old Douglas-fir seedlings grown in reconstructed litter-so...
USDA-ARS?s Scientific Manuscript database
To understand the consequences of rising levels of Ultraviolet-B (UV-B) radiation on maize (Zea mays L.), two experiments were conducted using sunlit plant growth chambers at a wide range UV-B radiation. Maize cultivars Terral-2100 and DKC 65-44 were grown in 2003 and 2008, respectively, at four le...
EFFECTS OF CO2 AND TEMPERATURE ON FINE ROOT PRODUCTION AND MORTALITY IN DOUGLAS FIR
Little is known about the effects of global climate change on the production and mortality of fine roots. We conducted a 4-year study to determine the effects of elevated CO2 and temperature on Douglas fir fine ( 2 mm in diameter) roots. The study was conducted in sun-lit cont...
The ionosphere of Uranus - A myriad of possibilities
NASA Astrophysics Data System (ADS)
Chandler, M. O.; Waite, J. H.
1986-01-01
A one-dimensional model has been used to study the effects of exospheric temperature, methane and water influx, ionospheric outflow, and electron precipitation on the composition and structure of the ionosphere of Uranus. Peak ion concentrations range from 1000 to 1 million per cu cm with a wide variation in peak altitude, which depends strongly on the exospheric temperature. In all the cases considered, H(+) is the major ion in the topside ionosphere. At altitudes near or below the peak, H3(+) and CH5(+) can dominate, depending on the magnitude of CH4 and H2O influx. Atomic hydrogen column depths above the methane absorbing layer exceed 10 to the 17th per sq cm and can produce large (400 R) emissions of resonantly scattered Lyman-alpha. In the sunlit polar cap, electron precipitation with energy fluxes of 0.6 to 1.0 erg/sq cm s results in direct production of Lyman-alpha emissions that exceed 1 kR.
Yuan, Chenyi; Chakraborty, Mrinal; Canonica, Silvio; Weavers, Linda K; Hadad, Christopher M; Chin, Yu-Ping
2016-11-15
Isoproturon (IPU) is a phenylurea herbicide used to control broad-leaf grasses on grain fields. Photosensitized transformation induced by excited triplet states of dissolved organic matter ( 3 DOM*) has been identified as an important degradation pathway for IPU in sunlit waters, but the reappearance of IPU in the absence of light is observed after the initial photolysis. In this study, we elucidate the kinetics of this photodegradation and dark-reappearance cycling of IPU in the presence of DOM proxies (aromatic ketones and reference fulvic acids). Using mass spectrometry and nuclear magnetic resonance spectroscopic techniques, a semi-stable intermediate (IPU int ) was found to be responsible for IPU reversion and was identified as a hydroperoxyl derivative of IPU. IPU int is photogenerated from incorporation of diatomic oxygen to IPU and is subjected to thermolysis whose rate depends on temperature, pH, the presence of DOM, and inorganic ions. These results are important to understand the overall aquatic fate of IPU and structurally similar compounds under diurnal conditions.
NASA Astrophysics Data System (ADS)
He, Liming; Chen, Jing M.; Gonsamo, Alemu; Luo, Xiangzhong; Wang, Rong; Liu, Yang; Liu, Ronggao
2018-05-01
Globally shaded leaves contribute to more than a half of the total increase in gross primary production (GPP; 7.6 Pg C) for 1982-2016. During 1982-2016, the fraction of shaded GPP increases by 1.1% (p < 0.01) in tropical forests and decreases by 1.4% (p < 0.01) and 1.8% (p < 0.01) in evergreen needleleaf and deciduous needleleaf boreal forests, respectively, suggesting an ecological niche of certain canopy structure for ecosystems to achieve maximum GPP. Unlike transpiration from sunlit leaves that has a turning point in the trend in 2003, global transpiration from shaded leaves steadily increased at the rate of 34 km3/year (p < 0.0001) during 1982-2016. Our study therefore suggests that shaded leaves have an increasing role in buffering the adverse impact of climate change and extremes. Further studies are still needed to reduce the uncertainties in reported trends arisen from climate forcing data, leaf area index, and land cover and land change products.
1972-06-06
S72-40820 (21 April 1972) --- A color enhancement of a photograph taken on ultra-violet light showing the spectrum of the upper atmosphere of Earth and geocorona. The bright horizontal line is far ultra-violet emission (1216 angstrom) of hydrogen extending 10 degrees (40,000 miles) either side of Earth. The knobby vertical line shows several ultra-violet emissions from Earth's sunlit atmosphere, each "lump" being produced by one type gas (oxygen, nitrogen, helium, etc.). The spectral dispersion is about 10 angstrom per millimeter on this enlargement. The UV camera/spectrograph was operated on the lunar surface by astronaut John W. Young, commander of the Apollo 16 lunar landing mission. It was designed and built at the Naval Research Laboratory, Washington, D.C. While astronauts Young and Charles M. Duke Jr., lunar module pilot, descended in the Lunar Module (LM) "Orion" to explore the Descartes highlands region of the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.
2016-08-08
The shadow of Saturn on the rings, which stretched across all of the rings earlier in Cassini's mission (see PIA08362), now barely makes it past the Cassini division. The changing length of the shadow marks the passing of the seasons on Saturn. As the planet nears its northern-hemisphere solstice in May 2017, the shadow will get even shorter. At solstice, the shadow's edge will be about 28,000 miles (45,000 kilometers) from the planet's surface, barely making it past the middle of the B ring. The moon Mimas is a few pixels wide, near the lower left in this image. This view looks toward the sunlit side of the rings from about 35 degrees above the ring plane. The image was taken in visible light with the Cassini spacecraft wide-angle camera on May 21, 2016. The view was obtained at a distance of approximately 2.0 million miles (3.2 million kilometers) from Saturn. Image scale is 120 miles (190 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20494
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., a crane begins lifting the third in a set of three Solid Rocket Boosters (SRBs). The SRBs will be hoisted up the mobile service tower and join three others already mated to the Boeing Delta II rocket that will launch the Deep Impact spacecraft. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing an impactor on a course to hit the comets sunlit side, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measure the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determine the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.
2017-07-10
The light of a new day on Saturn illuminates the planet's wavy cloud patterns and the smooth arcs of the vast rings. The light has traveled around 80 minutes since it left the sun's surface by the time it reaches Saturn. The illumination it provides is feeble; Earth gets 100 times the intensity since it's roughly ten times closer to the sun. Yet compared to the deep blackness of space, everything at Saturn still shines bright in the sunlight, be it direct or reflected. This view looks toward the sunlit side of the rings from about 10 degrees above the ring plane. The image was taken with the Cassini spacecraft wide-angle camera on Feb. 25, 2017 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 939 nanometers. The view was obtained at a distance of approximately 762,000 miles (1.23 million kilometers) from Saturn. Image scale is 45 miles (73 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21336
Ice in the lunar polar regions
NASA Technical Reports Server (NTRS)
Arnold, J. R.
1979-01-01
The idea that ice and other trapped volatiles exist in permanently shadowed regions near the lunar poles was proposed by Watson, Murray, and Brown (1961). It is reexamined in the present paper, in the light of the vast increase of lunar knowledge. The stability of the traps and the trapping mechanism are verified. Four potential sources of lunar H2O, namely (1) solar wind reduction of Fe in the regolith, (2) H2O-containing meteoroids, (3) cometary impact, and (4) (the least certain) degassing of the interior, can supply amounts of trapped H2O estimated in the range of 10 to the 16th to 10 to the 17th g. Two important destructive mechanisms have been identified: photodissociation of H2O molecules adsorbed on the sunlit surface and sputtering or decomposition of trapped H2O by solar wind particles. The effect of impact gardening is mainly protective. The question of the presence of H2O in the traps remains open; it can be settled by experiment.
2015-02-09
The exterior of this unnamed crater is in shadow, while the inner wall and terraces bask in the sunshine. Terraces form just after the crater has been excavated, when oversteepened slopes slump back down. This image was acquired as part of the MDIS low-altitude imaging campaign. During MESSENGER's second extended mission, the spacecraft makes a progressively closer approach to Mercury's surface than at any previous point in the mission, enabling the acquisition of high-spatial-resolution data. For spacecraft altitudes below 350 kilometers, NAC images are acquired with pixel scales ranging from 20 meters to as little as 2 meters. Date acquired: January 23, 2015 Image Mission Elapsed Time (MET): 64352478 Image ID: 7849599 Instrument: Narrow Angle Camera (NAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 31.48° Center Longitude: 81.89° E Resolution: 6 meters/pixel Scale: This scene is approximately 6.3 km (3.9 miles) from top to bottom Incidence Angle: 82.6° Emission Angle: 0.1° Phase Angle: 82.7° http://photojournal.jpl.nasa.gov/catalog/PIA19196
Getting the temperature right: Understanding thermal emission from airless bodies
NASA Astrophysics Data System (ADS)
Bandfield, J.; Greenhagen, B. T.; Hayne, P. O.; Williams, J. P.; Paige, D. A.
2016-12-01
Thermal infrared measurements are crucial for understanding a wide variety of processes present on airless bodies throughout the solar system. Although these data can be complex, they also contain an enormous amount of useful information. By building a framework for understanding thermal infrared datasets, significant advances are possible in the understanding of regolith development, detection of H2O and OH-, characterizing the nature and magnitude of Yarkovsky and YORP effects, and determination of the properties of newly identified asteroids via telescopic measurements. Airless bodies can have both extremely rough and insulating surfaces. For example, these two properties allow for sunlit and shaded or buried lunar materials separated by just a few centimeters to vary by 200K. In this sense, there is no "correct" temperature interpretable from orbital, or even in-situ, measurements. The surface contains a wide mixture of temperatures in the field of view, and rougher surfaces greatly enhance this anisothermality. We have used the Lunar Reconnaissance Orbiter Diviner Radiometer to characterize these effects by developing new targeting and analysis methods, including extended off-nadir observations and combined surface roughness and thermal modeling (Fig. 1). These measurements and models have shown up to 100K brightness temperature differences from measurements that differ only in the viewing angle of the observation. In addition, the thermal emission near 3 μm can be highly dependent on the surface roughness, resulting in more extensive and prominent lunar 3 μm H2O and OH-absorptions than indicated in data corrected by isothermal models. The datasets serve as a foundation for the derivation and understanding of surface spectral and thermophysical properties. Roughness and anisothermality effects are likely to dominate infrared measurements from many spacecraft, including LRO, Dawn, BepiColombo, OSIRIS-REx, Hayabusa-2, and Europa Clipper.
NASA Technical Reports Server (NTRS)
Zimmerman, M. I.; Farrell, W. M.; Poppe, A. R.
2014-01-01
We present results from a new grid-free 2D plasma simulation code applied to a small, unmagnetized body immersed in the streaming solar wind plasma. The body was purposely modeled as an irregular shape in order to examine photoemission and solar wind plasma flow in high detail on the dayside, night-side, terminator and surface-depressed 'pocket' regions. Our objective is to examine the overall morphology of the various plasma interaction regions that form around a small body like a small near-Earth asteroid (NEA). We find that the object obstructs the solar wind flow and creates a trailing wake region downstream, which involves the interplay between surface charging and ambipolar plasma expansion. Photoemission is modeled as a steady outflow of electrons from illuminated portions of the surface, and under direct illumination the surface forms a non-monotonic or ''double-sheath'' electric potential upstream of the body, which is important for understanding trajectories and equilibria of lofted dust grains in the presence of a complex asteroid geometry. The largest electric fields are found at the terminators, where ambipolar plasma expansion in the body-sized night-side wake merges seamlessly with the thin photoelectric sheath on the dayside. The pocket regions are found to be especially complex, with nearby sunlit regions of positive potential electrically connected to unlit negative potentials and forming adjacent natural electric dipoles. For objects near the surface, we find electrical dissipation times (through collection of local environmental solar wind currents) that vary over at least 5 orders of magnitude: from 39 Micro(s) inside the near-surface photoelectron cloud under direct sunlight to less than 1 s inside the particle-depleted night-side wake and shadowed pocket regions
We examined effects of elevated CO2 and temperature on cold hardiness and bud burst of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings. Two-year-old seedlings were grown for 2.5 years in semi-closed, sunlit chambers at either ambient or elevated (ambient+apprxeq 4deg...
Taehee Hwang; Hamed Gholizadeh; Daniel A. Sims; Kimberly A. Novick; Edward R. Brzostek; Richard P. Phillips; Daniel T. Roman; Scott M. Robeson; Abdullah F. Rahman
2017-01-01
To classify trees along a spectrum of isohydric to anisohydric behavior is a promising new framework for identifying tree species' sensitivities to drought stress, directly related to the vulnerability of carbon uptake of terrestrial ecosystems with increased hydroclimate variability. Trees with isohydric strategies regulate stomatal conductance to maintain...
EFFECTS OF ELEVATED CO2 AND TEMPERATURE ON SOIL C AND N: RESULTS OF A DOUGLAS FIR MESOCOSM STUDY
We conducted a 4-year study on the effects of elevated CO2 and elevated air temperature on Douglas fir seedlings growing under controlled exposure conditions in outdoor sun-lit mesocosms. 1+1 seedlings were planted in mesocosms in Corvallis, OR in the spring of 1993 in a reconstr...
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] Figure 1 In the quest to determine if a pebble was jamming the rock abrasion tool on NASA's Mars Exploration Rover Opportunity, scientists and engineers examined this up-close, approximate true-color image of the tool. The picture was taken by the rover's panoramic camera, using filters centered at 601, 535, and 482 nanometers, at 12:47 local solar time on sol 200 (August 16, 2004).
Colored spots have been drawn on this image corresponding to regions where panoramic camera reflectance spectra were acquired (see chart in Figure 1). Those regions are: the grinding wheel heads (yellow); the rock abrasion tool magnets (green); the supposed pebble (red); a sunlit portion of the aluminum rock abrasion tool housing (purple); and a shadowed portion of the rock abrasion tool housing (brown). These spectra demonstrated that the composition of the supposed pebble was clearly different from that of the sunlit and shadowed portions of the rock abrasion tool, while similar to that of the dust-coated rock abrasion tool magnets and grinding heads. This led the team to conclude that the object disabling the rock abrasion tool was indeed a martian pebble.NASA Astrophysics Data System (ADS)
Fan, Yuanchao; Koukal, Tatjana; Weisberg, Peter J.
2014-10-01
Canopy shadowing mediated by topography is an important source of radiometric distortion on remote sensing images of rugged terrain. Topographic correction based on the sun-canopy-sensor (SCS) model significantly improved over those based on the sun-terrain-sensor (STS) model for surfaces with high forest canopy cover, because the SCS model considers and preserves the geotropic nature of trees. The SCS model accounts for sub-pixel canopy shadowing effects and normalizes the sunlit canopy area within a pixel. However, it does not account for mutual shadowing between neighboring pixels. Pixel-to-pixel shadowing is especially apparent for fine resolution satellite images in which individual tree crowns are resolved. This paper proposes a new topographic correction model: the sun-crown-sensor (SCnS) model based on high-resolution satellite imagery (IKONOS) and high-precision LiDAR digital elevation model. An improvement on the C-correction logic with a radiance partitioning method to address the effects of diffuse irradiance is also introduced (SCnS + C). In addition, we incorporate a weighting variable, based on pixel shadow fraction, on the direct and diffuse radiance portions to enhance the retrieval of at-sensor radiance and reflectance of highly shadowed tree pixels and form another variety of SCnS model (SCnS + W). Model evaluation with IKONOS test data showed that the new SCnS model outperformed the STS and SCS models in quantifying the correlation between terrain-regulated illumination factor and at-sensor radiance. Our adapted C-correction logic based on the sun-crown-sensor geometry and radiance partitioning better represented the general additive effects of diffuse radiation than C parameters derived from the STS or SCS models. The weighting factor Wt also significantly enhanced correction results by reducing within-class standard deviation and balancing the mean pixel radiance between sunlit and shaded slopes. We analyzed these improvements with model comparison on the red and near infrared bands. The advantages of SCnS + C and SCnS + W on both bands are expected to facilitate forest classification and change detection applications.
Infrared Image of Low Clouds on Venus
NASA Technical Reports Server (NTRS)
1993-01-01
This false-color image is a near-infrared map of lower-level clouds on the night side of Venus, obtained by the Near Infrared Mapping Spectrometer aboard the Galileo spacecraft as it approached the planet's night side on February 10, 1990. Bright slivers of sunlit high clouds are visible above and below the dark, glowing hemisphere. The spacecraft is about 100,000 kilometers (60,000 miles) above the planet. An infrared wavelength of 2.3 microns (about three times the longest wavelength visible to the human eye) was used. The map shows the turbulent, cloudy middle atmosphere some 50-55 kilometers (30- 33 miles) above the surface, 10-16 kilometers or 6-10 miles below the visible cloudtops. The red color represents the radiant heat from the lower atmosphere (about 400 degrees Fahrenheit) shining through the sulfuric acid clouds, which appear as much as 10 times darker than the bright gaps between clouds. This cloud layer is at about -30 degrees Fahrenheit, at a pressure about 1/2 Earth's surface atmospheric pressure. Near the equator, the clouds appear fluffy and blocky; farther north, they are stretched out into East-West filaments by winds estimated at more than 150 mph, while the poles are capped by thick clouds at this altitude.
2014-09-22
The Cassini spacecraft captures a rare family photo of three of Saturn's moons that couldn't be more different from each other! As the largest of the three, Tethys (image center) is round and has a variety of terrains across its surface. Meanwhile, Hyperion (to the upper-left of Tethys) is the "wild one" with a chaotic spin and Prometheus (lower-left) is a tiny moon that busies itself sculpting the F ring. To learn more about the surface of Tethys (660 miles, or 1,062 kilometers across), see PIA17164 More on the chaotic spin of Hyperion (168 miles, or 270 kilometers across) can be found at PIA07683 And discover more about the role of Prometheus (53 miles, or 86 kilometers across) in shaping the F ring in PIA12786. This view looks toward the sunlit side of the rings from about 1 degree above the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 14, 2014. The view was acquired at a distance of approximately 1.2 million miles (1.9 million kilometers) from Tethys and at a Sun-Tethys-spacecraft, or phase, angle of 22 degrees. Image scale is 7 miles (11 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18283
The Global Color of Pluto from New Horizons
NASA Astrophysics Data System (ADS)
Olkin, Catherine B.; Spencer, John R.; Grundy, William M.; Parker, Alex H.; Beyer, Ross A.; Schenk, Paul M.; Howett, Carly J. A.; Stern, S. Alan; Reuter, Dennis C.; Weaver, Harold A.; Young, Leslie A.; Ennico, Kimberly; Binzel, Richard P.; Buie, Marc W.; Cook, Jason C.; Cruikshank, Dale P.; Dalle Ore, Cristina M.; Earle, Alissa M.; Jennings, Donald E.; Singer, Kelsi N.; Linscott, Ivan E.; Lunsford, Allen W.; Protopapa, Silvia; Schmitt, Bernard; Weigle, Eddie; the New Horizons Science Team
2017-12-01
The New Horizons flyby provided the first high-resolution color maps of Pluto. We present here, for the first time, an analysis of the color of the entire sunlit surface of Pluto and the first quantitative analysis of color and elevation on the encounter hemisphere. These maps show the color variation across the surface from the very red terrain in the equatorial region, to the more neutral colors of the volatile ices in Sputnik Planitia, the blue terrain of East Tombaugh Regio, and the yellow hue on Pluto’s North Pole. There are two distinct color mixing lines in the color-color diagrams derived from images of Pluto. Both mixing lines have an apparent starting point in common: the relatively neutral-color volatile-ice covered terrain. One line extends to the dark red terrain exemplified by Cthulhu Regio and the other extends to the yellow hue in the northern latitudes. There is a latitudinal dependence of the predominant color mixing line with the most red terrain located near the equator, less red distributed at mid-latitudes and more neutral terrain at the North Pole. This is consistent with the seasonal cycle controlling the distribution of colors on Pluto. Additionally, the red color is consistent with tholins. The yellow terrain (in the false color images) located at the northern latitudes occurs at higher elevations.
2015-02-02
Tiny Epimetheus is dwarfed by adjacent slivers of the A and F rings. But is it really? Looks can be deceiving! There is approximately 10 to 20 times more mass in that tiny dot than in the piece of the A ring visible in this image! In total, Saturn's rings have about as much mass as a few times the mass of the moon Mimas. (This mass estimate comes from measuring the waves raised in the rings by moons like Epimetheus.) The rings look physically larger than any moon because the individual ring particles are very small, giving them a large surface area for a given mass. Epimetheus (70 miles or 113 kilometers across), on the other hand, has a small surface area per mass compared to the rings, making it look deceptively small. This view looks toward the sunlit side of the rings from about 19 degrees above the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Dec. 5, 2014. The view was obtained at a distance of approximately 1.2 million miles (2 million kilometers) from Epimetheus and at a Sun-Epimetheus-spacecraft, or phase, angle of 40 degrees. Image scale is 7 miles (12 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18302
NASA Astrophysics Data System (ADS)
Walter, M. R.; Des Marais, David J.
1993-01-01
Current interpretations of the early history of Mars suggest many similarities with the early Earth and therefore raise the possibility that the Archean and Proterozoic history of life on Earth could have a counterpart on Mars. Terrestrial experience suggests that, with techniques that can be employed remotely, ancient springs, including thermal springs, could well yield important information. By delivering water and various dissolved species to the sunlit surface of Mars, springs very likely created an environment suitable for life, which could have been difficult, if not impossible, to attain elsewhere. The chemical and temperature gradients associated with thermal springs sort organisms into sharply delineated, distinctive and different communities, and so diverse organisms are concentrated into relatively small areas in a predictable and informative fashion. A wide range of metabolic strategies are concentrated into small areas, thus furnishing a useful and representative sampling of the existing biota. Mineral-charged springwaters frequently deposit chemical precipitates of silica and/or carbonate which incorporate microorganisms and preserve them as fossils. The juxtaposition of stream valley headwaters with volcanoes and impact craters on Mars strongly implies that subsurface heating of groundwater created thermal springs. On Earth, thermal springs create distinctive geomorphic features and chemical signatures which can be detected by remote sensing. Spring deposits can be quite different chemically from adjacent rocks. Individual springs can be hundreds of meters wide, and complexes of springs occupy areas up to several kilometers wide. Benthic microbial mats and the resultant stromatolites occupy a large fraction of the available area. The relatively high densities of fossils and microbial mat fabrics within these deposits make them highly prospective in any search for morphological evidence of life, and there are examples of microbial fossils in spring deposits as old as 300 Myr.
Off-line and real-time monitoring of acetaminophen photodegradation by an electrochemical sensor.
Berto, Silvia; Carena, Luca; Chiavazza, Enrico; Marletti, Matteo; Fin, Andrea; Giacomino, Agnese; Malandrino, Mery; Barolo, Claudia; Prenesti, Enrico; Vione, Davide
2018-08-01
The photochemistry of N-acetyl-para-aminophenol (acetaminophen, APAP) is here investigated by using differential pulse voltammetry (DPV) analysis to monitor APAP photodegradation upon steady-state irradiation. The purpose of this work is to assess the applicability of DPV to monitor the photochemical behaviour of xenobiotics, along with the development of an electrochemical set-up for the real-time monitoring of APAP photodegradation. We here investigated the APAP photoreactivity towards the main photogenerated reactive transients species occurring in sunlit surface waters (hydroxyl radical HO, carbonate radical CO 3 - , excited triplet state of anthraquinone-2-sulfonate used as proxy of the chromophoric DOM, and singlet oxygen 1 O 2 ), and determined relevant kinetic parameters. A standard procedure based on UV detection coupled with liquid chromatography (HPLC-UV) was used under identical experimental conditions to compare and verify the DPV-based results. The latter were in agreement with HPLC data, with the exception of the triplet-sensitized processes. In the other cases, DPV could be used as an alternative to the well-tested but more costly and time-consuming HPLC-UV technique. We have also assessed the reaction rate constant between APAP and HO by real-time DPV, which allowed for the monitoring of APAP photodegradation inside the irradiation chamber. Unfortunately, real-time DPV measurements are likely to be affected by temperature variations of the irradiated samples. Overall, DPV appeared as a fast, cheap and reasonably reliable technique when used for the off-line monitoring of APAP photodegradation. When a suitable real-time procedure is developed, it could become a very straightforward method to study the photochemical behaviour of electroactive xenobiotics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Walter, M R; Des Marais, D J
1993-01-01
Current interpretations of the early history of Mars suggest many similarities with the early Earth and therefore raise the possibility that the Archean and Proterozoic history of life on Earth could have a counterpart on Mars. Terrestrial experience suggests that, with techniques that can be employed remotely, ancient springs, including thermal springs, could well yield important information. By delivering water and various dissolved species to the sunlit surface of Mars, springs very likely created an environment suitable for life, which could have been difficult, if not impossible, to attain elsewhere. The chemical and temperature gradients associated with thermal springs sort organisms into sharply delineated, distinctive and different communities, and so diverse organisms are concentrated into relatively small areas in a predictable and informative fashion. A wide range of metabolic strategies are concentrated into small areas, thus furnishing a useful and representative sampling of the existing biota. Mineral-charged springwaters frequently deposit chemical precipitates of silica and/or carbonate which incorporate microorganisms and preserve them as fossils. The juxtaposition of stream valley headwaters with volcanoes and impact craters on Mars strongly implies that subsurface heating of groundwater created thermal springs. On Earth, thermal springs create distinctive geomorphic features and chemical signatures which can be detected by remote sensing. Spring deposits can be quite different chemically from adjacent rocks. Individual springs can be hundreds of meters wide, and complexes of springs occupy areas up to several kilometers wide. Benthic microbial mats and the resultant stromatolites occupy a large fraction of the available area. The relatively high densities of fossils and microbial mat fabrics within these deposits make them highly prospective in any search for morphological evidence of life, and there are examples of microbial fossils in spring deposits as old as 300 Myr.
Study of the photodegradation of a fragrance ingredient for aquatic environmental fate assessment.
Lin, Jianming; Emberger, Matthew
2017-04-01
Photodegradation is an important abiotic degradation process to be taken into account for more accurate assessment of the fate of chemicals in the aquatic environment, especially those that are not readily biodegradable. Although the significant role of indirect photodegradation in the environmental fate of chemicals has been revealed in recent research, because of the many confounding factors affecting its kinetics, no straightforward approaches can be used to investigate this degradation process for environmental fate assessment. The indirect photodegradation of a fragrance ingredient named Pamplewood was studied in this work for its fate assessment. Indirect photodegradation rates under various indoor and outdoor conditions were measured by using an LC-MS method. Although the half-lives varied from 4 to 13 days, they collectively indicated that Pamplewood is intrinsically photolabile and can undergo rapid photodegradation. Results from quencher experiments revealed that ⋅OH was the main reactive intermediate responsible for indirect photodegradation, with a half-life of about 18 days in sunlit surface water, based on the experimentally determined second-order rate constant (8.48 ± 0.19 × 10 9 M -1 s -1 ). Photodegradation products of Pamplewood were also studied by GC-MS, LC-MS and total organic carbon content analyses. The results indicated that intermediates of Pamplewood photodegradation continued to photodegrade into smaller and more polar species. Complete mineralization of Pamplewood was observed when it was reacted with hydroxyl radicals in an aqueous solution. This novel approach can be applied for a more realistic environmental fate assessment of other non-readily biodegradable, hydrolysis-resistant, and non-sunlight-absorbing fragrance ingredients. Copyright © 2017 Elsevier Ltd. All rights reserved.
2017-12-08
Phytoplankton bloom in the Barents Sea captured August 14, 2011. At times nature exceeds the ability of the artist’s brush to blend brilliant colors, interweave textures and combine patterns to create stunning panoramas, while using only the palette of land, water, cloud and vegetation. This stunning and artistic image of a phytoplankton bloom in the Barents Sea was by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite was captured on August 14, 2011. The peacock-hued swirls of blues and green that paint the navy-blue sea water are created by light reflecting off of millions of phytoplankton, microscopic plants that grow in the sunlit surface water of the world’s oceans. Different types of phytoplankton reflect different colored light, so a multi-color bloom such as this typically contains multiple species. The depth of the bloom also affects coloration – the deeper the organism, the less light is reflected and the duller the color. Coccolithophores, a type of phytoplankton which flourish in nutrient-poor, sub-polar waters, have unique limestone (calcite) scales. This white coating makes the plant highly reflective, and thus a bloom can appear to be a bright, almost iridescent blue. The chalky coating can also cause whitish swirls in the water, making the blues washed out with a milky hue. August is a highly active month for phytoplankton blooms in the Barents Sea, but the timing, development, abundance and species composition is variable in this area. The distribution of phytoplankton is largely controlled by the polar front, ice cover, freshwater runoff and ice melting. Each water source – the Artic, the Atlantic and the coastal water – all bring their own characteristic species into the Barents Sea, creating a multi-specie and multi-color spectacle. Because phytoplankton are the base of the marine food chain, places were blooms are large and frequent often support a thriving marine population. This is certainly the case in the Barents Sea where the fisheries, particularly the cod fisheries, are of great importance for both Norway and Russia. The coastlines of both of these countries can be seen in the bottom of the image. Russia forms the south-eastern most coast, while the remaining three-quarters of the coastline belongs to Norway. Two fjords in the west, Porsangerfjorden and Laksefjord are tinted bright blue with phytoplankton. Just to the east of these fjords, freshwater from the Tana River flows through Tanafjord, turning the waters here are a duller blue. As fresh water flows into the Barents Sea, phytoplankton bloom is affected by the flowing water, creating paisley-like patterns in the coastal eddies. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Zheng, T.; Chen, J. M.
2016-12-01
The maximum carboxylation rate (Vcmax), despite its importance in terrestrial carbon cycle modelling, remains challenging to obtain for large scales. In this study, an attempt has been made to invert the Vcmax using the gross primary productivity from sunlit leaves (GPPsun) with the physiological basis that the photosynthesis rate for leaves exposed to high solar radiation is mainly determined by the Vcmax. Since the GPPsun can be calculated through the sunlit light use efficiency (ɛsun), the main focus becomes the acquisition of ɛsun. Previous studies using site level reflectance observations have shown the ability of the photochemical reflectance ratio (PRR, defined as the ratio between the reflectance from an effective band centered around 531nm and a reference band) in tracking the variation of ɛsun for an evergreen coniferous stand and a deciduous broadleaf stand separately and the potential of a NDVI corrected PRR (NPRR, defined as the product of NDVI and PRR) in producing a general expression to describe the NPRR-ɛsun relationship across different plant function types. In this study, a significant correlation (R2 = 0.67, p<0.001) between the MODIS derived NPRR and the site level ɛsun calculated using flux data for four Canadian flux sites has been found for the year 2010. For validation purpose, the ɛsun in 2009 for the same sites are calculated using the MODIS NPRR and the expression from 2010. The MODIS derived ɛsun matches well with the flux calculated ɛsun (R2 = 0.57, p<0.001). Same expression has then been applied over a 217 × 193 km area in Saskatchewan, Canada to obtain the ɛsun and thus GPPsun for the region during the growing season in 2008 (day 150 to day 260). The Vcmax for the region is inverted using the GPPsun and the result is validated at three flux sites inside the area. The results show that the approach is able to obtain good estimations of Vcmax values with R2 = 0.68 and RMSE = 8.8 μmol m-2 s-1.
Modeling canopy-level productivity: is the "big-leaf" simplification acceptable?
NASA Astrophysics Data System (ADS)
Sprintsin, M.; Chen, J. M.
2009-05-01
The "big-leaf" approach to calculating the carbon balance of plant canopies assumes that canopy carbon fluxes have the same relative responses to the environment as any single unshaded leaf in the upper canopy. Widely used light use efficiency models are essentially simplified versions of the big-leaf model. Despite its wide acceptance, subsequent developments in the modeling of leaf photosynthesis and measurements of canopy physiology have brought into question the assumptions behind this approach showing that big leaf approximation is inadequate for simulating canopy photosynthesis because of the additional leaf internal control on carbon assimilation and because of the non-linear response of photosynthesis on leaf nitrogen and absorbed light, and changes in leaf microenvironment with canopy depth. To avoid this problem a sunlit/shaded leaf separation approach, within which the vegetation is treated as two big leaves under different illumination conditions, is gradually replacing the "big-leaf" strategy, for applications at local and regional scales. Such separation is now widely accepted as a more accurate and physiologically based approach for modeling canopy photosynthesis. Here we compare both strategies for Gross Primary Production (GPP) modeling using the Boreal Ecosystem Productivity Simulator (BEPS) at local (tower footprint) scale for different land cover types spread over North America: two broadleaf forests (Harvard, Massachusetts and Missouri Ozark, Missouri); two coniferous forests (Howland, Maine and Old Black Spruce, Saskatchewan); Lost Creek shrubland site (Wisconsin) and Mer Bleue petland (Ontario). BEPS calculates carbon fixation by scaling Farquhar's leaf biochemical model up to canopy level with stomatal conductance estimated by a modified version of the Ball-Woodrow-Berry model. The "big-leaf" approach was parameterized using derived leaf level parameters scaled up to canopy level by means of Leaf Area Index. The influence of sunlit/shaded leaf separation on GPP prediction was evaluated accounting for the degree of the deviation of 3-dimensional leaf spatial distribution from the random case. More specifically, we compared and evaluated the behavior of both models showing the advantages of sunlit/shaded leaf separation strategy over a simplified big-leaf approach. Keywords: canopy photosynthesis, leaf area index, clumping index, remote sensing.
Comparative Studies for the Sodium and Potassium Atmospheres of the Moon and Mercury
NASA Technical Reports Server (NTRS)
Smyth, William H.
1999-01-01
A summary discussion of recent sodium and potassium observations for the atmospheres of the Moon and Mercury is presented with primary emphasis on new full-disk images that have become available for sodium. For the sodium atmosphere, image observations for both the Moon and Mercury are fitted with model calculations (1) that have the same source speed distribution, one recently measured for electron-stimulated desorption and thought to apply equally well to photon-stimulated desorption, (2) that have similar average surface sodium fluxes, about 2.8 x 10(exp 5) to 8.9 x 10(exp 5) atoms cm(exp -2)s(exp -1) for the Moon and approximately 3.5 x 10(exp 5) to 1.4 x 10(exp 6) atoms cm(exp -2)s(exp -1) for Mercury, but (3) that have very different distributions for the source surface area. For the Moon, a sunlit hemispherical surface source of between approximately 5.3 x 10(exp 22) to 1.2 x 10(exp 23) atoms/s is required with a spatial dependence at least as sharp as the square of the cosine of the solar zenith angle. For Mercury, a time dependent source that varies from 1.5 x 10(exp 22) to 5.8 x l0(exp 22) atoms/s is required which is confined to a small surface area located at, but asymmetrically distributed about, the subsolar point. The nature of the Mercury source suggest that the planetary magnetopause near the subsolar point acts as a time varying and partially protective shield through which charged particles may pass to interact with and liberate gas from the planetary surface. Suggested directions for future research activities are discussed.
Niu, Xi-Zhi; Glady-Croué, Julie; Croué, Jean-Philippe
2017-11-01
Photolysis is a core natural process impacting the fate of some sulfonamide antibiotics in sunlit waters. In this study, sunlight-induced phototransformation of sulfathiazole was investigated. A photolytic quantum yield of 0.079 was obtained in buffered water (pH = 8.0). Different natural organic matter isolates inhibited the photolysis of sulfathiazole by light screening effect. A kinetic model was developed to predict the photodegradation rate of sulfathiazole using the light screening correction factor of the water matrix in the wavelength range of 300-350 nm. An isomeric photoproduct of sulfathiazole with a longer retention time was observed on liquid chromatography. Based on its MS/MS spectra and absorption characteristics, the isomer was postulated as 2-imino-3-(p-aminobenzenesulfinyl-oxy)-thiazole. A reaction mechanism for the photo-cleavage and photo-induced structural rearrangement was proposed. The formation mechanism of the isomer was supported by photochemical experiments spiking synthetic 2-aminothiazole; while the formation kinetics were treated with a partly-diffusion-controlled model. The three identified products showed significantly enhanced photo-stability. Antimicrobial assay of irradiated sulfathiazole solutions with Escherichia coli indicated little antimicrobial potency ascribed to photoproducts. This study demonstrates the efficacy of sunlight in rapidly degrading sulfathiazole at a predictable rate, leading to photoproducts of low antimicrobial potency. The mass spectrometry and mechanistic work described here are new insights into the photochemistry of sulfonamides. Copyright © 2017 Elsevier Ltd. All rights reserved.
Feasibility and Definition of a Limited-Scale Lunar Polar Volatiles Prospecting Mission
NASA Astrophysics Data System (ADS)
Heldmann, J. L.; Elphic, R. C.; Colaprete, A.; Beyer, R. A.; Fong, T.; Cockrell, J.; Pedersen, L.
2011-12-01
The recent Lunar Crater Observing and Sensing Satellite (LCROSS) mission has provided evidence for significant amounts of cold-trapped volatiles in Cabeus crater near the Moon's south pole. Moreover, LRO/Diviner measurements of extremely cold lunar polar surface temperatures imply that volatiles can be stable outside of areas of strict permanent shadow. These discoveries hint at potentially extensive near-surface deposits at both lunar poles. The physical state, composition and distribution of these volatiles are key scientific issues that relate to source and emplacement mechanisms. These issues are also important for enabling lunar in situ resource utilization (ISRU). An assessment of the feasibility of cold-trapped volatile ISRU requires a priori information regarding the location, form, quantity, and potential for extraction of available resources. A small robotic mission to a persistently shadowed but briefly sunlit location with suitable environmental conditions (e.g., short periods of oblique sunlight and subsurface cryogenic temperatures which permit volatile trapping) can help answer these scientific and exploration questions. Key parameters must be defined in order to identify suitable landing sites, plan surface operations, and achieve mission success. To address this need, we have conducted an initial study for a lunar polar volatile prospecting mission, assuming the use of a solar-powered robotic lander and rover. Here we present the mission concept, goals and objectives, and landing site selection analysis for a short-duration, landed, solar-powered mission to a volatile-rich site.
NASA Astrophysics Data System (ADS)
Kim, Moon S.; Cecchi, Giovanna; Chappelle, Emmett W.; Bazzani, Marco; McMurtrey, James E., III; Corp, Lawrence A.; Sandu, R.; Tirelli, Daniele
1998-07-01
Terrestrial vegetation studies were carried out in the Italian Northeastern Alps in Val Visdende. The measurement site was 15 Kilometers Northeast of the town of St. Stefano di Calore (Belluno), Italy. Measurements were acquired on a wooded site at the Italian Department of Forestry Station on species native to the Italian Alps. The species included spruce (Picea abies) and alder (Alnus incana) trees. Characterization was also made of the fluorescence responses of several under-story species such as Dactylorhiza fuchsii of the Orchidaceae family, Caltha palustris and Ranunculus ficaria of the Ranuncolcee family, and Trifolium pratense and Trifolium repens of the Leguminosae family. Terrestrial vegetation monitoring was conducted with the Italian FLIDAR remote sensing instrument mounted in a mobile van, the NASA/USDA Fluorescence Imaging System (FIS), and the Spectron SE-590 for optical properties. Photosynthetic CO2 gas exchange rates we made with LI-COR 6400 infrared gas analyzer. Pigments from the samples were extracted and analyzed with a Perkin Elmer Lamda 7 Spectrometer to determine pigment concentrations. Fluorescence responses were collected from vegetation samples grown under different ambient light regimes of sun-lit versus shaded. The vegetation showed different fluorescence characteristics. A fluorescence algorithm, (F740/F680)/F550, and rate of photosynthesis showed a strong linear relationship.
Improvement in the control aspect of laser frequency stabilization for SUNLITE project
NASA Technical Reports Server (NTRS)
Zia, Omar
1992-01-01
Flight Electronics Division of Langley Research Center is developing a spaceflight experiment called the Stanford University and NASA Laser In-Space Technology (SUNLITE). The objective of the project is to explore the fundamental limits on frequency stability using an FM laser locking technique on a Nd:YAG non-planar ring (free-running linewidth of 5 KHz) oscillator in the vibration free, microgravity environment of space. Compact and automated actively stabilized terahertz laser oscillators will operate in space with an expected linewidth of less than 3 Hz. To implement and verify this experiment, NASA engineers have designed and built a state of the art, space qualified high speed data acquisition system for measuring the linewidth and stability limits of a laser oscillator. In order to achieve greater stability and better performance, an active frequency control scheme requiring the use of a feedback control loop has been applied. In the summer of 1991, the application of control theory in active frequency control as a frequency stabilization technique was investigated. The results and findings were presented in 1992 at the American Control Conference in Chicago, and have been published in Conference Proceedings. The main focus was to seek further improvement in the overall performance of the system by replacing the analogue controller by a digital algorithm.
NASA Astrophysics Data System (ADS)
Tsou, Haiping; Yan, Tsun-Yee
1999-04-01
This paper describes an extended-source spatial acquisition and tracking scheme for planetary optical communications. This scheme uses the Sun-lit Earth image as the beacon signal, which can be computed according to the current Sun-Earth-Probe angle from a pre-stored Earth image or a received snapshot taken by other Earth-orbiting satellite. Onboard the spacecraft, the reference image is correlated in the transform domain with the received image obtained from a detector array, which is assumed to have each of its pixels corrupted by an independent additive white Gaussian noise. The coordinate of the ground station is acquired and tracked, respectively, by an open-loop acquisition algorithm and a closed-loop tracking algorithm derived from the maximum likelihood criterion. As shown in the paper, the optimal spatial acquisition requires solving two nonlinear equations, or iteratively solving their linearized variants, to estimate the coordinate when translation in the relative positions of onboard and ground transceivers is considered. Similar assumption of linearization leads to the closed-loop spatial tracking algorithm in which the loop feedback signals can be derived from the weighted transform-domain correlation. Numerical results using a sample Sun-lit Earth image demonstrate that sub-pixel resolutions can be achieved by this scheme in a high disturbance environment.
Mid-Infrared OPO for High Resolution Measurements of Trace Gases in the Mars Atmosphere
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Numata,Kenji; Riris, haris; Abshire, James B.; Allan, Graham; Sun, Xiaoli; Krainak, Michael A.
2008-01-01
The Martian atmosphere is composed primarily (>95%) of CO2 and N2 gas, with CO, O2, CH4, and inert gases such as argon comprising most of the remainder. It is surprisingly dynamic with various processes driving changes in the distribution of CO2, dust, haze, clouds and water vapor on global scales in the meteorology of Mars atmosphere [I]. The trace gases and isotopic ratios in the atmosphere offer important but subtle clues as to the origins of the planet's atmosphere, hydrology, geology, and potential for biology. In the search for life on Mars, an important process is the ability of bacteria to metabolize inorganic substrates (H2, CO2 and rock) to derive energy and produce methane as a by-product of anaerobic metabolism. Trace gases have been measured in the Mars atmosphere from Earth, Mars orbit, and from the Mars surface. The concentration of water vapor and various carbon-based trace gases are observed in variable concentrations. Within the past decade multiple groups have reported detection of CH4, with concentrations in the 10's of ppb, using spectroscopic observations from Earth [2]. Passive spectrometers in the mid-infrared (MIR) are restricted to the sunlit side of the planet, generally in the mid latitudes, and have limited spectral and spatial resolution. To accurately map the global distribution and to locate areas of possibly higher concentrations of these gases such as plumes or vents requires an instrument with high sensitivity and fine spatial resolution that also has global coverage and can measure during both day and night. Our development goal is a new MIR lidar capable of measuring, on global scales, with sensitivity, resolution and precision needed to characterize the trace gases and isotopic ratios of the Martian atmosphere. An optical parametric oscillator operating in the MIR is well suited for this instrument. The sufficient wavelength tuning range of the OPO can extend the measurements to other organic molecules, CO2, atmospheric water vapor, clouds, temperature, dust, and aerosols, as well as possibly polar-cap properties. Our OPO-approach may allow a new capability for active remote sensing of the outer planets and moons, where the weaker sunlight further limit passive instruments. Here we report on the OPO development effort for this lidar instrument.
Carbon and Water Exchanges in a Chronosequence of Temperate White Pine Forest
NASA Astrophysics Data System (ADS)
Arain, M.; Restrepo, N.; Pejam, M.; Khomik, M.
2003-12-01
Quantification of carbon sink or source strengths of temperate forest ecosystems, growing in northern mid-latitudes, is essential to resolve uncertainties in carbon balance of the world's terrestrial ecosystems. Long-term flux measurements are needed to quantify seasonal and annual variability of carbon and water exchanges from these ecosystems and to relate the variability to environmental and physiological factors. Such long-term measurements are of particular interest for different stand developmental stages. An understanding of environmental control factors is necessary to improve predictive capabilities of terrestrial carbon and water cycles. A long-term year-round measurement program has been initiated to observe energy, water vapour, and carbon dioxide fluxes in a chronosequence of white pine (Pinus Strobus) forests in southeastern Canada. White pine is an important species in the North American landscape because of its ability to adapt to dry environments. White pine efficiently grows on coarse and sandy soils, where other deciduous and conifer species cannot survive. Generally, it is the first woody species to flourish after disturbances such as fire and clearing. The climate at the study site is temperate, with a mean annual temperature of 8 degree C and a mean annual precipitation of about 800 mm. The growing season is one of the longest in Canada, with at least 150 frost-free days. Measurements at the site began in June 2002 and are continuing at present. Flux measurements at the 60 year old stand are being made using a close-path eddy covariance (EC) system, while fluxes at the three younger stands (30, 15 and 1 year old) are being measured over 10 to 20 day periods using a roving open-path EC system Soil respiration is being measured every 2-weeks across 50-m transects at all four sites using a mobile chamber system (LI-COR 6400). The mature stand was a sink of carbon with annual NEP value of 140 g C m-2 from June 2002 to May 2003. Gross ecosystem productivity (GEP) and ecosystem respiration (R) for 2002-03 were 1290 and 1150 g C m-2, respectively. A processed-based carbon simulation model was created by incorporating canopy physiology (photosynthesis - sunlit and shaded leaf, conductance), plant phenology (leaf out, senescence), and carbon balance (plant and soil respiration, ecosystem productivity) algorithms in the Canadian Land Surface Scheme. In this study, we compare observed and simulated energy, water vapour, and carbon dioxide fluxes of the mature stand with those of the younger stands. This comparison will help to resolve scaling issues for estimating water and carbon budgets from stands to regions.
The Importance of Kinetics and Redox in the Biogeochemical Cycling of Iron in the Surface Ocean
Croot, Peter L.; Heller, Maija I.
2012-01-01
It is now well established that Iron (Fe) is a limiting element in many regions of the open ocean. Our current understanding of the key processes which control iron distribution in the open ocean have been largely based on thermodynamic measurements performed under the assumption of equilibrium conditions. Using this equilibrium approach, researchers have been able to detect and quantify organic complexing ligands in seawater and examine their role in increasing the overall solubility of iron. Our current knowledge about iron bioavailability to phytoplankton and bacteria is also based heavily on carefully controlled laboratory studies where it is assumed the chemical species are in equilibrium in line with the free ion association model and/or its successor the biotic ligand model. Similarly most field work on iron biogeochemistry generally consists of a single profile which is in essence a “snap-shot” in time of the system under investigation. However it is well known that the surface ocean is an extremely dynamic environment and it is unlikely if thermodynamic equilibrium between all the iron species present is ever truly achieved. In sunlit waters this is mostly due to the daily passage of the sun across the sky leading to photoredox processes which alter Fe speciation by cycling between redox states and between inorganic and organic species. Episodic deposition events, dry and wet, are also important perturbations to iron cycling as they bring in new iron to the system and alter the equilibrium between iron species and phases. Here we utilize new field data collected in the open ocean on the complexation kinetics of iron in the surface ocean to identify the important role of weak iron binding ligands (i.e., those that cannot maintain iron in solution indefinitely at seawater pH: αFeL < αFe′) in allowing transient increases in iron solubility in response to iron deposition events. Experiments with the thermal O2- source SOTS-1 also indicate the short term impact of this species on iron solubility also with relevance to the euphotic zone. This data highlights the roles of kinetics, redox, and weaker iron binding ligands in the biogeochemical cycling of iron in the ocean. PMID:22723797
Thermal Infrared Imager on Hayabusa2: Science and Development
NASA Astrophysics Data System (ADS)
Okada, Tatsuaki
2015-04-01
Thermal Infrared Imager TIR was developed and calibrated for Haya-busa2 asteroid explorer, aiming at the investigation of thermo-physical properties of C-class near-Earth sub-km sized asteroid (162173) 1999JU3. TIR is based on the 2D micro-bolometer array with germani-um lens to image the surface of asteroid in 8 to 12 μm wavelength (1), measuring the thermal emission off the asteroid surface. Its field of view is 16° x 12° with 328 x 248 pixels. At least 40 (up to 100) images will be taken during asteroid rotation once a week, mainly from the Home Position which is about 20km sunward from asteroid surface. Therefore TIR will image the whole asteroid with spatial resolution of < 20m per pixel, and the temperature profile of each site on the asteroid will be traced from dawn to dusk regions by asteroid rotation. The scien-tific objectives of TIR include the mapping of asteroid surface condi-tions (regional distribution of thermal inertia), since the surface physical conditions are strongly correlated with thermal inertia. It is so informa-tive on understanding the re-accretion or surface sedimentation process-es of the asteroid to be the current form. TIR data will be used for searching for those sites having the typical particle size of 1mm for best sample collection, and within the proper thermal condition for space-craft safe operation. After launch of Hayabusa2, TIR has been tested successfully, covering from -100 to 150 °C using a single parameter settings (2). This implies that TIR is actually able to map the surface other than the sunlit areas. Performance of TIR was found basically the same as those in the pre-launch test, when the temperature of TIR is well controlled. References: (1) Fukuhara T. et al., (2011) Earth Planet. Space 63, 1009-1018; (2) Okada T. et al., (2015) Lunar Planet. Sci. Conf. 46, #1331.
Zephyr: A Landsailing Rover for Venus
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Oleson, Steven R.; Grantier, David
2014-01-01
With an average temperature of 450C and a corrosive atmosphere at a pressure of 90 bars, the surface of Venus is the most hostile environment of any planetary surface in the solar system. Exploring the surface of Venus would be an exciting goal, since Venus is a planet with significant scientific mysteries, and interesting geology and geophysics. Technology to operate at the environmental conditions of Venus is under development. A rover on the surface of Venus with capability comparable to the rovers that have been sent to Mars would push the limits of technology in high-temperature electronics, robotics, and robust systems. Such a rover would require the ability to traverse the landscape on extremely low power levels. We have analyzed an innovative concept for a planetary rover: a sail-propelled rover to explore the surface of Venus. Such a rover can be implemented with only two moving parts; the sail, and the steering. Although the surface wind speeds are low (under 1 m/s), at Venus atmospheric density even low wind speeds develop significant force. Under funding by the NASA Innovative Advanced Concepts office, a conceptual design for such a rover has been done. Total landed mass of the system is 265 kg, somewhat less than that of the MER rovers, with a 12 square meter rigid sail. The rover folds into a 3.6 meter aeroshell for entry into the Venus atmosphere and subsequent parachute landing on the surface. Conceptual designs for a set of hightemperature scientific instruments and a UHF communication system were done. The mission design lifetime is 50 days, allowing operation during the sunlit portion of one Venus day. Although some technology development is needed to bring the high-temperature electronics to operational readiness, the study showed that such a mobility approach is feasible, and no major difficulties are seen.
Phytoplankton bloom off Newfoundland
2017-12-08
NASA image acquired August 9, 2010 Phytoplankton are microscopic organisms that live in watery environments. When conditions are right, phytoplankton undergo explosive population growth, creating blooms visible from space. Such a bloom occurred in the North Atlantic Ocean, off the coast of Newfoundland in early August 2010. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this natural-color image on August 9, 2010. The paisley pattern of peacock blue owes its color to phytoplankton. Phytoplankton thrive at high latitudes, especially in the spring and summer when abundant sunlight spurs photosynthesis, and relatively calm seas allow the tiny organisms to congregate in sunlit waters. Blooms can last for weeks even though an individual phytoplankton lifespan may be just a few days. NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team Click here to see more images from MODIS NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook
Example MODIS Global Cloud Optical and Microphysical Properties: Comparisons between Terra and Aqua
NASA Technical Reports Server (NTRS)
Hubanks, P. A.; Platnick, S.; King, M. D.; Ackerman, S. A.; Frey, R. A.
2003-01-01
MODIS observations from the NASA EOS Terra spacecraft (launched in December 1999, 1030 local time equatorial crossing) have provided a unique data set of Earth observations. With the launch of the NASA Aqua spacecraft in May 2002 (1330 local time), two MODIS daytime (sunlit) and nighttime observations are now available in a 24 hour period, allowing for some measure of diurnal variability. We report on an initial analysis of several operational global (Level-3) cloud products from the two platforms. The MODIS atmosphere Level-3 products, which include clear-sky and aerosol products in addition to cloud products, are available as three separate files providing daily, eight-day, and monthly aggregations; each temporal aggregation is spatially aggregated to a 1 degree grid. The files contain approximately 600 statisitical datasets (from simple means and standard deviations to 1 - and 2-dimensional histograms). Operational cloud products include detection (cloud fraction), cloud-top properties, and daytimeonly cloud optical thickness and particle effective radius for both water and ice clouds. We will compare example global Terra and Aqua cloud fraction, optical thickness, and effective radius aggregations.
Sources of mycosporine-like amino acids in planktonic Chlorella-bearing ciliates (Ciliophora)
SONNTAG, BETTINA; SUMMERER, MONIKA; SOMMARUGA, RUBEN
2007-01-01
Mycosporine-like amino acids (MAAs) are a family of secondary metabolites known to protect organisms exposed to solar UV radiation. We tested their distribution among several planktonic ciliates bearing Chlorella isolated from an oligo-mesotrophic lake in Tyrol, Austria. In order to test the origin of these compounds, the MAAs were assessed by high performance liquid chromatography in both the ciliates and their symbiotic algae. Considering all Chlorella-bearing ciliates, we found: (i) seven different MAAs (mycosporine-glycine, palythine, asterina-330, shinorine, porphyra-334, usujirene, palythene); (ii) one to several MAAs per species and (iii) qualitative and quantitative seasonal changes in the MAAs (e.g. in Pelagodileptus trachelioides). In all species tested, concentrations of MAAs were always <1% of ciliate dry weight. Several MAAs were also identified in the Chlorella isolated from the ciliates, thus providing initial evidence for their symbiotic origin. In Uroleptus sp., however, we found evidence for a dietary source of MAAs. Our results suggest that accumulation of MAAs in Chlorella-bearing ciliates represents an additional benefit of this symbiosis and an adaptation for survival in sunlit, UV-exposed waters.
Temporal and spatial variations of canopy temperature over a C3C4 mixture grassland
NASA Astrophysics Data System (ADS)
Shimoda, S.; Oikawa, T.
2006-10-01
This study discusses the photosynthetic pathway types involved in canopy temperature measurements on a mixed grassland consisting of C3 and C4 plants (dominant species in biomass were Solidago altissima (C3), Miscanthus sinensis (C4), and Imperata cylindrica (C4)). In the wet conditions immediately after the rainy season, the mean canopy temperature for S. altissima was the lowest among the dominant species, mainly due to its leaf conductance being twice as large as the other two species. Despite using the same C4 photosynthetic pathway, M. sinensis had a lower apparent canopy temperature than I. cylindrica due to a smaller proportion of sunlit elements in the field of view. In the dry conditions during late July, the mean canopy temperatures of the three dominant species were within 0.3 °C of one another. These results can be explained by poor water conditions for C3 species (S. altissima). The simultaneous survey of vegetation and thermal imaging can help clarify characteristics of C3 and C4 canopy temperature over complicated grassland.
2015-02-09
If your eyes could only see the color red, this is how Saturn's rings would look. Many Cassini color images, like this one, are taken in red light so scientists can study the often subtle color variations of Saturn's rings. These variations may reveal clues about the chemical composition and physical nature of the rings. For example, the longer a surface is exposed to the harsh environment in space, the redder it becomes. Putting together many clues derived from such images, scientists are coming to a deeper understanding of the rings without ever actually visiting a single ring particle. This view looks toward the sunlit side of the rings from about 11 degrees above the ringplane. The image was taken in red light with the Cassini spacecraft narrow-angle camera on Dec. 6, 2014. The view was acquired at a distance of approximately 870,000 miles (1.4 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 27 degrees. Image scale is 5 miles (8 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18301
High quantum yield of the Egyptian blue family of infrared phosphors (MCuSi4O10, M = Ca, Sr, Ba)
NASA Astrophysics Data System (ADS)
Berdahl, Paul; Boocock, Simon K.; Chan, George C.-Y.; Chen, Sharon S.; Levinson, Ronnen M.; Zalich, Michael A.
2018-05-01
The alkaline earth copper tetra-silicates, blue pigments, are interesting infrared phosphors. The Ca, Sr, and Ba variants fluoresce in the near-infrared (NIR) at 909, 914, and 948 nm, respectively, with spectral widths on the order of 120 nm. The highest quantum yield ϕ reported thus far is ca. 10%. We use temperature measurements in sunlight to determine this parameter. The yield depends on the pigment loading (mass per unit area) ω with values approaching 100% as ω → 0 for the Ca and Sr variants. Although maximum quantum yield occurs near ω = 0, maximum fluorescence occurs near ω = 70 g m-2, at which ϕ = 0.7. The better samples show fluorescence decay times in the range of 130 to 160 μs. The absorbing impurity CuO is often present. Good phosphor performance requires long fluorescence decay times and very low levels of parasitic absorption. The strong fluorescence enhances prospects for energy applications such as cooling of sunlit surfaces (to reduce air conditioning requirements) and luminescent solar concentrators.
2015-09-10
Two different versions of an image of Pluto's haze layers, taken by New Horizons as it looked back at Pluto's dark side nearly 16 hours after close approach, from a distance of 480,000 miles (770,000 kilometers), at a phase angle of 166 degrees. Pluto's north is at the top, and the sun illuminates Pluto from the upper right. These images are much higher quality than the digitally compressed images of Pluto's haze downlinked and released shortly after the July 14 encounter, and allow many new details to be seen. The left version has had only minor processing, while the right version has been specially processed to reveal a large number of discrete haze layers in the atmosphere. In the left version, faint surface details on the narrow sunlit crescent are seen through the haze in the upper right of Pluto's disk, and subtle parallel streaks in the haze may be crepuscular rays- shadows cast on the haze by topography such as mountain ranges on Pluto, similar to the rays sometimes seen in the sky after the sun sets behind mountains on Earth. http://photojournal.jpl.nasa.gov/catalog/PIA19880
Ren, Dong; Huang, Bin; Xiong, Dan; He, Huan; Meng, Xiangqi; Pan, Xuejun
2017-04-01
17α-Ethynylestradiol (EE2) in natural waters may cause adverse effects on organisms due to its high estrogenic potency. Laboratory studies were performed to study the effects of a local humic acid (LHA), fulvic acid (LFA) and Aldrich humic acid (AHA) on the photochemical behavior and estrogenic potency of EE2. Here photolytic experiments demonstrated that pure aqueous EE2 could undergo direct and self-sensitized photodegradation at a global rate of 0.0068hr -1 . Photodegradation rate of EE2 in 5.0mg/L dissolved humic substances (DHS) was determined to be 0.0274, 0.0296 and 0.0254hr -1 for LHA, LFA and AHA, respectively. Reactive oxygen species (ROS) and triplet dissolved humic substances ( 3 DHS*) scavenging experiments indicated that the promotion effect of DHS on EE2 photodegradation was mainly aroused by the reactions of HO (35%-50%), 1 O 2 (<10%) and 3 DHS* (22%-34%). However, the photodegradation of EE2 could also be inhibited when DHS exceeded the threshold of 10mg/L. Three hydroxylation products of EE2 were identified using GC-MS and their formation pathways were also proposed. In vitro estrogenicity tests showed that EE2 was transformed into chemicals without estrogenic potency. These findings could extend our knowledge on the photochemical behaviors of steroid estrogens in sunlit natural waters. Copyright © 2016. Published by Elsevier B.V.
Decay of Coliphages in Sewage-Contaminated Freshwater: Uncertainty and Seasonal Effects.
Wu, Jianyong; Cao, Yiping; Young, Brianna; Yuen, Yvonne; Jiang, Sharon; Melendez, Daira; Griffith, John F; Stewart, Jill R
2016-11-01
Understanding the fate of enteric viruses in water is vital for protection of water quality. However, the decay of enteric viruses is not well characterized, and its uncertainty has not been examined yet. In this study, the decay of coliphages, an indicator for enteric viruses, was investigated in situ under both sunlit and shaded conditions as well as in summer and winter. The decay rates of coliphages and their uncertainties were analyzed using a Bayesian approach. The results from the summer experiments revealed that the decay rates of somatic coliphages were significantly higher in sunlight (1.29 ± 0.06 day -1 ) than in shade (0.96 ± 0.04 day -1 ), but the decay rates of male-specific (F+) coliphages were not significantly different between sunlight (1.09 ± 0.09 day -1 ) and shaded treatments (1.11 ± 0.08 day -1 ). The decay rates of both F+ coliphages (0.25 ± 0.02 day -1 ) and somatic coliphages (0.12 ± 0.01 day -1 ) in winter were considerably lower than those in summer. Temperature and chlorophyll a (chla) concentration varied significantly (p < 0.001) between the two seasons, suggesting that these parameters might be important contributors to the seasonal variation of coliphage decay. Additionally, the Bayesian approach provided full distributions of decay rates and reduced the uncertainty, offering useful information for comparing decay rates under different conditions.
Temperature Behavior of Possible Cave Skylight on Mars
NASA Technical Reports Server (NTRS)
2007-01-01
[figure removed for brevity, see original site] Figure 1 Each of the three images in this set covers the same patch of Martian ground, centered on a possible cave skylight informally called 'Annie,' which has a diameter about double the length of a football field. The Thermal Emission Imaging System camera on NASA's Mars Odyssey orbiter took all three, gathering information that the hole is cooler than surrounding surface in the afternoon and warmer than the surrounding surface at night. This is thermal behavior that would be expected from an opening into an underground space. The left image was taken in visible-wavelength light (figure 1). The other two were taken in thermal infrared wavelengths, indicating the relative temperatures of features in the image. The center image is from mid-afternoon. The hole is warmer than the shadows of nearby pits to the north and south, while cooler than sunlit surfaces. The thermal image at right was taken in the pre-dawn morning, about 4 a.m. local time. At that hour, the hole is warmer than all nearby surfaces. Annie and six other features with similar thermal behavior are on the northern slope of a high Martian volcano named Arsia Mons, which is at 9 degrees south latitude, 239 degrees east longitude. Mars Odyssey is managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The orbiter's Thermal Emission Imaging System was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing, Santa Barbara, Calif., and is operated by Arizona State University.Smooth pond-like deposits on asteroid 4 Vesta: First results from the Dawn mission.
NASA Astrophysics Data System (ADS)
Hiesinger, H.; Ruesch, O.; Jaumann, R.; Nathues, A.; Raymond, C. A.; Russell, C. T.
2012-04-01
The Dawn spacecraft arrived at Vesta on July 16, 2011 to study the asteroid with a Framing Camera (FC), a Visible & Infrared Spectrometer (VIR), and a Gamma Ray and Neutron Detector (GRaND) [1]. Dawn provides the first high-resolution data from its survey orbit, high-altitude mapping orbit (HAMO), and low-altitude mapping orbit (LAMO). FC data revealed smooth pond-like deposits of ambiguous origin, similar to deposits on other asteroids, including Eros and Itokawa [2,3]. Several scenarios for the origin of these deposits can be tested with Dawn data, including volcanism, impact sedimentation, impact melt deposition, dust levitation and transport, seismic shaking, or landslides. We measured 83 small (~7 km2 average size) smooth deposits distributed across the surface of Vesta. Most ponds on Vesta occur on the floors of impact craters and in irregular depressions. We did not observe inflow of material into the depressions. Most of these deposits have well-defined geological contacts, indicating that they are younger than the surrounding terrain. However, lunar impact melt pools that formed contemporaneously with surrounding ejecta blankets show similar stratigraphic relationships. Sometimes the albedo of these ponds is lower than the surrounding terrain, in other cases the ponds are indistinguishable from the adjacent terrain. The ponds preferentially occur in a band between -10 and 30 degrees latitude with fewer ponds north of ~30 degrees and even fewer ponds in the southern hemisphere, i.e., the Rheasilvia region. The largest cluster of ponds occurs in the vicinity of the Marcia impact crater, which is part of the so-called snowman craters. Similar, but smaller (<230 m diameter) smooth ponds were also reported from the surface of asteroid Eros [2]. Robinson et al. [2] found that most smooth ponds on Eros occur in equatorial regions and concluded that the most likely process for their formation is electrostatic levitation and redistribution of the finest regolith components (<100 µm). Sierks et al. [4] argued that along the terminator, particularly strong electric fields can develop between the sun-lit and shaded areas, e.g., within craters, resulting in particle motion from sun-lit to dark regions. Dust levitation and transport was also discussed for asteroid 25143 Itokawa [3]. [1] Russell et al., (2007), Earth Moon Planets, 101; [2] Robinson et al., (2002), Met. Planet. Sci., 37; [3] Yano et al., (2006), Science, 312; [4] Sierks et al., (2011), Space Sci. Rev., doi:10.1007/s11214-011-9745-4. This research has been supported by the German Space Agency (DLR) and NASA. We would like to thank the Dawn Operations Team for their success-ful planning and acquisition of high-quality Vesta data.
Barta, András; Horváth, Gábor
2004-02-21
The perception of skylight polarization in the ultraviolet (UV) by many insect species for orientation purposes is rather surprising, because both the degree of linear polarization and the radiance of light from the clear sky are considerably lower in the UV than in the blue or green. In this work we call this the "UV-sky-pol paradox". Although in the past, several attempts have been made to resolve this paradox, none of them was convincing. We present here a possible quantitative resolution to the paradox. We show by a model calculation that if the air layer between a cloud and a ground-based observer is partly sunlit, the degree of linear polarization p of skylight originating from the cloudy region is highest in the UV, because in this spectral range the unpolarized UV-deficient cloudlight dilutes least the polarized light scattered in the air beneath the cloud. Similarly, if the air under foliage is partly sunlit, p of downwelling light from the canopied region is maximal in the UV, because in this part of spectrum the unpolarized UV-deficient green canopylight dilutes least the polarized light scattered in the air beneath the canopy. Therefore, the detection of polarization of downwelling light under clouds or canopies is most advantageous in the UV, in which spectral range the risk is the smallest that the degree of polarization p is lower than the threshold p(tr) of polarization sensitivity in animals. On the other hand, under clear skies there is no favoured wavelength for perception of celestial polarization, because p of skylight is high enough (p > p(tr)) at all wavelengths. We show that there is an analogy between the detection of UV skylight polarization and the polarotactic water detection in the UV. However, insects perceive skylight polarization by UV or blue or green receptors. The question, why they differ in the spectral channel used for the detection of celestial polarization cannot be answered at the present time, because data are insufficient. Nevertheless, we present here one possible atmospheric optical reason why certain visual systems involved in detecting celestial polarization, are specifically tuned to the UV part of the spectrum.
Location and size of flux ropes in Titan's ionosphere
NASA Astrophysics Data System (ADS)
Martin, C.; Arridge, C. S.; Badman, S. V.; Dieval, C.
2017-12-01
Cassini magnetometer data was surveyed during Titan flybys to find 73 instances of flux rope signatures. A force free flux rope model was utilised to obtain the radii, maximum magnetic field and flux content of flux ropes that adhere to the force-free assumptions. We find that flux ropes at Titan are similar in size in km and flux content to the giant flux ropes identified at Venus, with a median radii of 280 km and an inter-quartile range of 270 km, a median maximum magnetic field of 8 nT with an inter-quartile range of 7 nT and a median flux content of 76 Wb with a large inter-quartile range of 250 Wb. We additionally investigate the occurrence of flux ropes with respect to the Sun-lit facing hemisphere (zenith angle) and the ram-side of Titan within Saturn's corotating magnetosphere (angle of attack of the incoming plasma flow). We find that flux ropes are more commonly detected in Sun-lit areas of Titan's ionosphere, as well as the ram-side of Titan. We see a statistically-significant absence of flux ropes in all SLT sectors in the night side of Titan and the anti-ram side of Titan. We also comment on the physical mechanisms associated with the production of these flux ropes, with particular attention on the variability of Titan's environment in Saturn's magnetosphere.
Sugiura, D; Tateno, M
2013-08-01
We investigated the nitrogen and carbohydrate allocation patterns of trees under heterogeneous light environments using saplings of the devil maple tree (Acer diabolicum) with Y-shaped branches. Different branch groups were created: all branches of a sapling exposed to full light (L-branches), all branches exposed to full shade (S-branches), and half of the branches of a sapling exposed to light (HL-branches) and the other half exposed to shade (HS-branches). Throughout the growth period, nitrogen was preferentially allocated to HL-branches, whereas nitrogen allocation to HS-branches was suppressed compared to L- and S-branches. HL-branches with the highest leaf nitrogen content (N(area)) also had the highest rates of growth, and HS-branches with the lowest N(area) had the lowest observed growth rates. In addition, net nitrogen assimilation, estimated using a photosynthesis model, was strongly correlated with branch growth and whole-plant growth. In contrast, patterns of photosynthate allocation to branches and roots were not affected by the light conditions of the other branch. These observations suggest that tree canopies develop as a result of resource allocation patterns, where the growth of sun-lit branches is favoured over shaded branches, which leads to enhanced whole-plant growth in heterogeneous light environments. Our results indicate that whole-plant growth is enhanced by the resource allocation patterns created for saplings in heterogeneous light environments.
NASA Astrophysics Data System (ADS)
Yan, Hao; Wang, Shao-Qiang; Yu, Kai-Liang; Wang, Bin; Yu, Qin; Bohrer, Gil; Billesbach, Dave; Bracho, Rosvel; Rahman, Faiz; Shugart, Herman H.
2017-10-01
Diffuse radiation can increase canopy light use efficiency (LUE). This creates the need to differentiate the effects of direct and diffuse radiation when simulating terrestrial gross primary production (GPP). Here, we present a novel GPP model, the diffuse-fraction-based two-leaf model (DTEC), which includes the leaf response to direct and diffuse radiation, and treats maximum LUE for shaded leaves (ɛmsh defined as a power function of the diffuse fraction (Df)) and sunlit leaves (ɛmsu defined as a constant) separately. An Amazonian rainforest site (KM67) was used to calibrate the model by simulating the linear relationship between monthly canopy LUE and Df. This showed a positive response of forest GPP to atmospheric diffuse radiation, and suggested that diffuse radiation was more limiting than global radiation and water availability for Amazon rainforest GPP on a monthly scale. Further evaluation at 20 independent AmeriFlux sites showed that the DTEC model, when driven by monthly meteorological data and MODIS leaf area index (LAI) products, explained 70% of the variability observed in monthly flux tower GPP. This exceeded the 51% accounted for by the MODIS 17A2 big-leaf GPP product. The DTEC model's explicit accounting for the impacts of diffuse radiation and soil water stress along with its parameterization for C4 and C3 plants was responsible for this difference. The evaluation of DTEC at Amazon rainforest sites demonstrated its potential to capture the unique seasonality of higher GPP during the diffuse radiation-dominated wet season. Our results highlight the importance of diffuse radiation in seasonal GPP simulation.
NASA Astrophysics Data System (ADS)
Edwards, C. S.; Bandfield, J. L.; Christensen, P. R.
2006-12-01
It is possible to obtain surface roughness characteristics, by measuring a single surface from multiple emission angles and azimuths in the thermal infrared. Surfaces will have different temperatures depending on their orientation relative to the sun. A different proportion of sunlit versus shaded surfaces will be in the field of view based on the viewing orientation, resulting in apparent temperature differences. This difference in temperature can be utilized to calculate the slope characteristics for the observed area. This technique can be useful for determining surface slope characteristics not resolvable by orbital imagery. There are two main components to this model, a surface DEM, in this case a synthetic, two dimensional sine wave surface, and a thermal model (provided by H. Kieffer). Using albedo, solar longitude, slope, azimuth, along with several other parameters, the temperature for each cell of the DEM is calculated using the thermal model. A temperature is then predicted using the same observation geometries as the Thermal Emission Spectrometer (TES) observations. A temperature difference is calculated for the two complementary viewing azimuths and emission angles from the DEM. These values are then compared to the observed temperature difference to determine the surface slope. This method has been applied to TES Emission Phase Function (EPF) observations for both the spectrometer and bolometer data, with a footprint size of 10s of kilometers. These specialized types of TES observations measure nearly the same surface from several angles. Accurate surface kinetic temperatures are obtained after the application of an atmospheric correction for the TES bolometer and/or spectrometer. Initial results include an application to the northern circumpolar dunes. An average maximum slope of ~33 degrees has been obtained, which makes physical sense since this is near the angle of repose for sand sized particles. There is some scatter in the data from separate observations, which may be due to the large footprint size. This technique can be better understood and characterized by correlation with high resolution imagery. Several different surface maps will also be tested in addition to the two dimensional sine wave surface. Finally, by modeling the thermal effects on different particle sizes and land forms, we can further interpret the scale of these slopes.
Fine-Scale Spatial Variability of Precipitation, Soil, and Plant Water Isotopes
NASA Astrophysics Data System (ADS)
Goldsmith, G. R.; Braun, S.; Romero, C.; Engbersen, N.; Gessler, A.; Siegwolf, R. T.; Schmid, L.
2015-12-01
Introduction: The measurement of stable isotope ratios of water has become fundamental in advancing our understanding of environmental patterns and processes, particularly with respect to understanding the movement of water within the soil-plant-atmosphere continuum. While considerable research has explored the temporal variation in stable isotope ratios of water in the environment, our understanding of the spatial variability of these isotopes remains poorly understood. Methods: We collected spatially explicit samples of throughfall and soil water (n=150 locations) from a 1 ha plot delineated in a mixed deciduous forest in the northern Alps of Switzerland. We complemented this with fully sunlit branch and leaf samples (n = 60 individuals) collected from Picea abies and Fagus sylvatica between 14:00 and 16:00 on the same day by means of a helicopter. Soil and plant waters were extracted using cryogenic vacuum distillation and all samples were analyzed for δ18O using an isotope ratio mass spectrometer. Results: The mean δ18O of throughfall (-3.3 ± 0.8‰) indicated some evaporative enrichment associated with passage through the canopy, but this did not significantly differ from the precipitation collected in nearby open sites (-4.05‰). However, soil was depleted (-7.0 ± 1.8‰) compared to throughfall and there was no significant relationship between the two, suggesting that the sampling for precipitation inputs did not capture all the sources (e.g. stream water, which was -11.5‰) contributing to soil water δ18O ratios. Evaporative enrichment of δ18O was higher in leaves of Fagus (14.8 ± 1.8‰) than in leaves of Picea (11.8 ± 1.7‰). Sampling within crowns of each species (n = 5 branches each from 5 individuals) indicated that variability in a single individual is similar to that among individuals. Discussion: Stable isotopes of water are frequently engaged for studies of ecohydrology, plant ecophysiology, and paleoclimatology. Our results help constrain the variability within different water sources across space (e.g. when vizualized as isoscapes), as well as the extent of fractionation among those sources as water moves through the critical zone. In doing so, we also provide insight into how environment shapes this fine-scale variation in order to inform future applications of water isotopes.
Changes in Soil Spectral Reflectance Curves by Varying Percentages of Vegetative Cover
1981-02-27
plant species used in this study were marigold (Targetes sp.) and silver lace dusty miller (Cineraria sp.), that were green (Munsell color 7.5GY4/4...collection, pots containing the marigolds were placed in a test plot in the 12 x 12 pot matrix to form the 100% vegetative cover condition. Soil was carefully...placed around each pot, so only sunlit and shadowed plants and soil formed the target in the field-of- view (FOV). The potted marigolds were removed
1989-11-01
Technical Note I (Chapter 4), ESA Contract 8011 /88. IASB, 1989. Williams, D..., E. Keppler, T.A. Fritz, B. Wilken and G. Wibberenz, The ISEE 1 and 2...particles’ range in aluminium as calculated by the SHIELDOSE program: this shows that higher energy particles can penetrate appreciable distances before...described here is limited to the study of a shadowed or partially illuminated kapton patch on a sunlit, conducting aluminium spacecraft structure. The
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Figure 1: Temperature Map This image composite shows comet Tempel 1 in visible (left) and infrared (right) light (figure 1). The infrared picture highlights the warm, or sunlit, side of the comet, where NASA's Deep Impact probe later hit. These data were acquired about six minutes before impact. The visible image was taken by the medium-resolution camera on the mission's flyby spacecraft, and the infrared data were acquired by the flyby craft's infrared spectrometer.2017-06-26
NASA's Cassini spacecraft peers toward a sliver of Saturn's sunlit atmosphere while the icy rings stretch across the foreground as a dark band. This view looks toward the unilluminated side of the rings from about 7 degrees below the ring plane. The image was taken in green light with the Cassini spacecraft wide-angle camera on March 31, 2017. The view was obtained at a distance of approximately 620,000 miles (1 million kilometers) from Saturn. Image scale is 38 miles (61 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21334
Automated exploitation of sky polarization imagery.
Sadjadi, Firooz A; Chun, Cornell S L
2018-03-10
We propose an automated method for detecting neutral points in the sunlit sky. Until now, detecting these singularities has been done manually. Results are presented that document the application of this method on a limited number of polarimetric images of the sky captured with a camera and rotating polarizer. The results are significant because a method for automatically detecting the neutral points may aid in the determination of the solar position when the sun is obscured and may have applications in meteorology and pollution detection and characterization.
The Orbiting Carbon Observatory Mission: Watching the Earth Breathe Mapping CO2 from Space
NASA Technical Reports Server (NTRS)
Boain, Ron
2007-01-01
Approach: Collect spatially resolved, high resolution spectroscopic observations of CO2 and O2 absorption in reflected sunlight. Use these data to resolve spatial and temporal variations in the column averaged CO2 dry air mole fraction, X(sub CO2) over the sunlit hemisphere. Employ independent calibration and validation approaches to produce X(sub CO2) estimates with random errors and biases no larger than 1-2 ppm (0.3-0.5%) on regional scales at monthly intervals.
Ruiz-González, Clara; Simó, Rafel; Sommaruga, Ruben; Gasol, Josep M.
2013-01-01
Heterotrophic bacterioplankton are main consumers of dissolved organic matter (OM) in aquatic ecosystems, including the sunlit upper layers of the ocean and freshwater bodies. Their well-known sensitivity to ultraviolet radiation (UVR), together with some recently discovered mechanisms bacteria have evolved to benefit from photosynthetically available radiation (PAR), suggest that natural sunlight plays a relevant, yet difficult to predict role in modulating bacterial biogeochemical functions in aquatic ecosystems. Three decades of experimental work assessing the effects of sunlight on natural bacterial heterotrophic activity reveal responses ranging from high stimulation to total inhibition. In this review, we compile the existing studies on the topic and discuss the potential causes underlying these contrasting results, with special emphasis on the largely overlooked influences of the community composition and the previous light exposure conditions, as well as the different temporal and spatial scales at which exposure to solar radiation fluctuates. These intricate sunlight-bacteria interactions have implications for our understanding of carbon fluxes in aquatic systems, yet further research is necessary before we can accurately evaluate or predict the consequences of increasing surface UVR levels associated with global change. PMID:23734148
Evaluation of outdoor human thermal sensation of local climate zones based on long-term database
NASA Astrophysics Data System (ADS)
Unger, János; Skarbit, Nóra; Gál, Tamás
2018-02-01
This study gives a comprehensive picture on the diurnal and seasonal general outdoor human thermal sensation levels in different urban quarters based on long-term (almost 3 years) data series from urban and rural areas of Szeged, Hungary. It is supplemented with a case study dealing with an extreme heat wave period which is more and more frequent in the last decades in the study area. The intra-urban comparison is based on a thermal aspect classification of the surface, namely, the local climate zone (LCZ) system, on an urban meteorological station network and on the utilization of the physiologically equivalent temperature (PET) comfort index with categories calibrated to the local population. The selected stations represent sunlit areas well inside the LCZ areas. The results show that the seasonal and annual average magnitudes of the thermal load exerted by LCZs in the afternoon and evening follow their LCZ numbers. It is perfectly in line with the LCZ concept originally concentrating only on air temperature ( T air) differences between the zones. Our results justified the subdivision of urban areas into LCZs and give significant support to the application possibilities of the LCZ concept as a broader term covering different thermal phenomena.
Giovagnetti, Vasco; Han, Guangye; Ware, Maxwell A; Ungerer, Petra; Qin, Xiaochun; Wang, Wen-Da; Kuang, Tingyun; Shen, Jian-Ren; Ruban, Alexander V
2018-06-01
The macroalga Bryopsis corticulans relies on a sustained protective NPQ and a peculiar body architecture to efficiently adapt to the extreme light changes of intertidal shores. During low tides, intertidal algae experience prolonged high light stress. Efficient dissipation of excess light energy, measured as non-photochemical quenching (NPQ) of chlorophyll fluorescence, is therefore required to avoid photodamage. Light-harvesting regulation was studied in the intertidal macroalga Bryopsis corticulans, during high light and air exposure. Photosynthetic capacity and NPQ kinetics were assessed in different filament layers of the algal tufts and in intact chloroplasts to unravel the nature of NPQ in this siphonous green alga. We found that the morphology and pigment composition of the B. corticulans body provides functional segregation between surface sunlit filaments (protective state) and those that are underneath and undergo severe light attenuation (light-harvesting state). In the surface filaments, very high and sustained NPQ gradually formed. NPQ induction was triggered by the formation of transthylakoid proton gradient and independent of the xanthophyll cycle. PsbS and LHCSR proteins seem not to be active in the NPQ mechanism activated by this alga. Our results show that B. corticulans endures excess light energy pressure through a sustained protective NPQ, not related to photodamage, as revealed by the unusually quick restoration of photosystem II (PSII) function in the dark. This might suggest either the occurrence of transient PSII photoinactivation or a fast rate of PSII repair cycle.
Venus 2004: east and west elongations and solar transit
NASA Astrophysics Data System (ADS)
McKim, R. J.; Blaxall, K.; Heath, A.
2007-04-01
The year 2004 was exceptional in producing the first solar transit of Venus since the late Victorian era. The bright aureole and atmospheric ring were re-observed, and the entire phenomenon was witnessed for the first time ever in hydrogen alpha light. Although routine observations throughout 2004 were unexceptional, patterns of visibility of bright and dark markings, cusp extensions and cusp-caps were recorded. No correlation was found between the latitude of the sub-Earth point and the visibility of either cusp-cap, with the S. cap predominating for most of the year. It was possible to accurately follow individual ultraviolet dark markings over many consecutive rotations, extending from the E. to W. elongations, and thereby to make a current measurement of the synodic atmospheric rotation period for the near-equatorial features: 3.996 ± 0.001 days. The true Ashen Light was reported visually on only a few occasions, but these correspond closely to times when infrared emission from the surface of the dark side was recorded in 1-micron waveband images. Some of the stable dark side albedo features were also visible upon the 1-micron images, and have been tentatively identified with known surface features. Infrared imaging at the same waveband showed little detail on the sunlit disk, but a few bright spots were sufficiently well observed to suggest a synodic rotation period close to 5.0 days, not atypical for the lower cloud decks.
Gone, Terefe; Balkew, Meshesha; Gebre-Michael, Teshome
2014-10-20
Change in climatic and socio-economic situations is paving the way for the spread of malaria in highland areas which were generally known to be malaria free. Despite this, information regarding highland malaria transmission is scarce. Thus, the present study investigated entomological parameters linked to malaria transmission in the highlands of Southern Ethiopia. A longitudinal entomological study was conducted in three localities situated at different altitudes ranging between 1300 and 2650m above sea level in Derashe district, Southern Ethiopia. Larval and adult anopheline mosquitoes were collected between October 2011 and February 2012. An. arabiensis and An. funestus s.l existed at significantly higher densities in the lowland (Wozeka) in contrast to An. christyi and An. Demeilloni, which were more abundant in the highland localities (P < 0.01). Conversely, An. pharoensis and An. cinereus were scarce and only found in the lowland and highlands, respectively. Habitats of larvae of An. arabiensis were characterized as clear, sun-lit, permanent, still water (streams) without vegetation and situated close to human habitations. On the other hand, habitats of An. christyi are shaded, still, turbid and contain natural water (rain pools) with vegetation and mats of algae. The relative abundance of An. Arabiensis, which is the primary malaria vector in Ethiopia is significantly and positively correlated with water temperature, pH and average depth (P < 0.05). An. arabiensis, An. funestus s.l and An. demeilloni showed zoophilic and exophilic tendencies. None of the anophelines tested for P. falciparum and P. vivax sporozoite infections were positive. In conclusion, malaria parasites and vectors existed in the highlands of Derashe District. Therefore, appropriate disease and vector control strategies must be designed and implemented to prevent potential outbreaks.
NASA Astrophysics Data System (ADS)
Dobrowski, S. Z.; Greenberg, J. A.; Schladow, G.
2006-12-01
There is evidence from the Sierra Nevada that sub-alpine and alpine environments are currently experiencing landscape-mediated changes in growth and recruitment due to recent climate change. Understanding the biophysical controls of forest structure, growth, and recruitment in these environments is critical for interpreting and predicting the direction and magnitude of biotic responses to climate shift. We examined the abiotic controls of forest biomass within a 305 km2 region of the Carson Range on the eastern shore of Lake Tahoe, CA USA using estimates of forest structure and biophysical drivers developed continuously over the landscape. The study area ranged from 1900 m to 3400 m a.s.l. and encompassed montane, sub-alpine, and alpine environments. From hyperspatial optical imagery (IKONOS), we derived per-tree positions and crown sizes using a template matching approach applied to a pre-classified image of sunlit and shadowed vegetation pixels. From this remote sensing derived stem map, we calculated plot-level estimates of stem density, tree cover and average crown size. Additionally, we developed high resolution (30 m) estimates of climate variables within the study area using meteorological station data, topographic data, and a combination of empirical and mechanistic modeling approaches. From these climate surfaces, digital elevation data, and soil survey data, we derived estimates of direct and indirect biophysical drivers including heat loading, reference evapotranspiration, water deficit, solar radiation, topographic convergence, soil depth, and soil water holding capacity. Using these data sets, we conducted a regression tree analysis with stem density, tree cover, and average tree size as response and biophysical drivers as predictors. Trees were fit using half of the dataset randomly sampled (168,000 samples) and pruned using cost-complexity pruning based on 10-fold cross- validation. Predictions from pruned trees were then assessed against the hold-out data. Preliminary results from this analysis suggest that: 1) the relative importance and dependencies of biophysical drivers on forest structure are contingent upon the position of these forests along gradients of a limiting resource, 2) stem density shows a stronger dependence on water availability than tree size and 3) that the predictive power of abiotic variables are limited with our best models accounting for only 36-40 percent of the variance in the response. These results suggest that the response of forest structure to climate change may be highly idiosyncratic and difficult to predict using abiotic drivers alone.
Ammonium Uptake by Phytoplankton Regulates Nitrification in the Sunlit Ocean
Smith, Jason M.; Chavez, Francisco P.; Francis, Christopher A.
2014-01-01
Nitrification, the microbial oxidation of ammonium to nitrate, is a central part of the nitrogen cycle. In the ocean’s surface layer, the process alters the distribution of inorganic nitrogen species available to phytoplankton and produces nitrous oxide. A widely held idea among oceanographers is that nitrification is inhibited by light in the ocean. However, recent evidence that the primary organisms involved in nitrification, the ammonia-oxidizing archaea (AOA), are present and active throughout the surface ocean has challenged this idea. Here we show, through field experiments coupling molecular genetic and biogeochemical approaches, that competition for ammonium with phytoplankton is the strongest regulator of nitrification in the photic zone. During multiday experiments at high irradiance a single ecotype of AOA remained active in the presence of rapidly growing phytoplankton. Over the course of this three day experiment, variability in the intensity of competition with phytoplankton caused nitrification rates to decline from those typical of the lower photic zone (60 nmol L−1 d−1) to those in well-lit layers (<1 nmol L−1 d−1). During another set of experiments, nitrification rates exhibited a diel periodicity throughout much of the photic zone, with the highest rates occurring at night when competition with phytoplankton is lowest. Together, the results of our experiments indicate that nitrification rates in the photic zone are more strongly regulated by competition with phytoplankton for ammonium than they are by light itself. This finding advances our ability to model the impact of nitrification on estimates of new primary production, and emphasizes the need to more strongly consider the effects of organismal interactions on nutrient standing stocks and biogeochemical cycling in the surface of the ocean. PMID:25251022
Mapping the Topography of Mercury with MESSENGER Laser Altimetry
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Cavanaugh, John F.; Neumann, Gregory A.; Smith, David E..; Zubor, Maria T.
2012-01-01
The Mercury Laser Altimeter onboard MESSENGER involves unique design elements that deal with the challenges of being in orbit around Mercury. The Mercury Laser Altimeter (MLA) is one of seven instruments on NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. MESSENGER was launched on 3 August 2004, and entered into orbit about Mercury on 18 March 2011 after a journey through the inner solar system. This involved six planetary flybys, including three of Mercury. MLA is designed to map the topography and landforms of Mercury's surface. It also measures the planet's forced libration (motion about the spin axis), which helps constrain the state of the core. The first science measurements from orbit taken with MLA were made on 29 March 2011 and continue to date. MLA had accumulated about 8.3 million laser ranging measurements to Mercury's surface, as of 31 July 2012, i.e., over six Mercury years (528 Earth days). Although MLA is the third planetary lidar built at the NASA Goddard Space Flight Center (GSFC), MLA must endure a much harsher thermal environment near Mercury than the previous instruments on Mars and Earth satellites. The design of MLA was derived in part from that of the Mars Orbiter Laser Altimeter on Mars Global Surveyor. However, MLA must range over greater distances and often in off-nadir directions from a highly eccentric orbit. In MLA we use a single-mode diode-pumped Nd:YAG (neodymium-doped yttrium aluminum garnet) laser that is highly collimated to maintain a small footprint on the planet. The receiver has both a narrow field of view and a narrow spectral bandwidth to minimize the amount of background light detected from the sunlit hemisphere of Mercury. We achieve the highest possible receiver sensitivity by employing the minimum receiver detection threshold.
NASA Technical Reports Server (NTRS)
Halekas, J. S.; Poppe, A. R.; Farrell, W. M.; McFadden, J. P.
2016-01-01
By analyzing the trajectories of ionized constituents of the lunar exosphere in time-varying electromagnetic fields, we can place constraints on the composition, structure, and dynamics of the lunar exosphere. Heavy ions travel slower than light ions in the same fields, so by observing the lag between field rotations and the response of ions from the lunar exosphere, we can place constraints on the composition of the ions. Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) provides an ideal platform to utilize such an analysis, since its two-probe vantage allows precise timing of the propagation of field discontinuities in the solar wind, and its sensitive plasma instruments can detect the ion response. We demonstrate the utility of this technique by using fully time-dependent charged particle tracing to analyze several minutes of ion observations taken by the two ARTEMIS probes 3000-5000 km above the dusk terminator on 25 January 2014. The observations from this time period allow us to reach several interesting conclusions. The ion production at altitudes of a few hundred kilometers above the sunlit surface of the Moon has an unexpectedly significant contribution from species with masses of 40 amu or greater. The inferred distribution of the neutral source population has a large scale height, suggesting that micrometeorite impact vaporization and/or sputtering play an important role in the production of neutrals from the surface. Our observations also suggest an asymmetry in ion production, consistent with either a compositional variation in neutral vapor production or a local reduction in solar wind sputtering in magnetic regions of the surface.
Ammonium uptake by phytoplankton regulates nitrification in the sunlit ocean.
Smith, Jason M; Chavez, Francisco P; Francis, Christopher A
2014-01-01
Nitrification, the microbial oxidation of ammonium to nitrate, is a central part of the nitrogen cycle. In the ocean's surface layer, the process alters the distribution of inorganic nitrogen species available to phytoplankton and produces nitrous oxide. A widely held idea among oceanographers is that nitrification is inhibited by light in the ocean. However, recent evidence that the primary organisms involved in nitrification, the ammonia-oxidizing archaea (AOA), are present and active throughout the surface ocean has challenged this idea. Here we show, through field experiments coupling molecular genetic and biogeochemical approaches, that competition for ammonium with phytoplankton is the strongest regulator of nitrification in the photic zone. During multiday experiments at high irradiance a single ecotype of AOA remained active in the presence of rapidly growing phytoplankton. Over the course of this three day experiment, variability in the intensity of competition with phytoplankton caused nitrification rates to decline from those typical of the lower photic zone (60 nmol L-1 d-1) to those in well-lit layers (<1 nmol L-1 d-1). During another set of experiments, nitrification rates exhibited a diel periodicity throughout much of the photic zone, with the highest rates occurring at night when competition with phytoplankton is lowest. Together, the results of our experiments indicate that nitrification rates in the photic zone are more strongly regulated by competition with phytoplankton for ammonium than they are by light itself. This finding advances our ability to model the impact of nitrification on estimates of new primary production, and emphasizes the need to more strongly consider the effects of organismal interactions on nutrient standing stocks and biogeochemical cycling in the surface of the ocean.
Spectral Bio-indicator Simulations for Tracking Photosynthetic Activities in a Corn Field
NASA Technical Reports Server (NTRS)
Cheng, Yen-Ben; Middleton, Elizabeth M.; Huemmrich, K. Fred; Zhang, Qingyuan; Corp, Lawrence; Campbell, Petya; Kustas, William
2011-01-01
Accurate assessment of vegetation canopy optical properties plays a critical role in monitoring natural and managed ecosystems under environmental changes. In this context, radiative transfer (RT) models simulating vegetation canopy reflectance have been demonstrated to be a powerful tool for understanding and estimating spectral bio-indicators. In this study, two narrow band spectroradiometers were utilized to acquire observations over corn canopies for two summers. These in situ spectral data were then used to validate a two-layer Markov chain-based canopy reflectance model for simulating the Photochemical Reflectance Index (PRI), which has been widely used in recent vegetation photosynthetic light use efficiency (LUE) studies. The in situ PRI derived from narrow band hyperspectral reflectance exhibited clear responses to: 1) viewing geometry which affects the asset of light environment; and 2) seasonal variation corresponding to the growth stage. The RT model (ACRM) successfully simulated the responses to the variable viewing geometry. The best simulations were obtained when the model was set to run in the two layer mode using the sunlit leaves as the upper layer and shaded leaves as the lower layer. Simulated PRI values yielded much better correlations to in situ observations when the cornfield was dominated by green foliage during the early growth, vegetative and reproductive stages (r = 0.78 to 0.86) than in the later senescent stage (r = 0.65). Further sensitivity analyses were conducted to show the important influences of leaf area index (LAI) and the sunlit/shaded ratio on PRI observations.
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site]
Released August 11, 2004 This image shows two representations of the same infra-red image over Melas Chasma. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations. There is a distinct purple/blue layer present in the northern wall of the Chasma. Although this layer likely has a composition different than the surrounding areas, it is difficult to interpret its specific composition due to the high variability of sunlit and shaded surfaces in this area, which cause a wide range of temperatures to be present within each pixel of the image. It is possible that this layer has a unique composition due to differences in the volcanic or sedimentary environment at the time that the rock formed, or it could be a layer of magma injected between two previously existing rock layers. Another possibility is that the wall is mostly covered by dust and debris, and this portion contains the only exposed bedrock. The light blue colors present in many other areas of the Chasma are due to water ice clouds. Image information: IR instrument. Latitude -8.9, Longitude 282 East (78 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Duan, Honglang; O'Grady, Anthony P; Duursma, Remko A; Choat, Brendan; Huang, Guomin; Smith, Renee A; Jiang, Yanan; Tissue, David T
2015-07-01
Future climate regimes characterized by rising [CO2], rising temperatures and associated droughts may differentially affect tree growth and physiology. However, the interactive effects of these three factors are complex because elevated [CO2] and elevated temperature may generate differential physiological responses during drought. To date, the interactive effects of elevated [CO2] and elevated temperature on drought-induced tree mortality remain poorly understood in gymnosperm species that differ in stomatal regulation strategies. Water relations and carbon dynamics were examined in two species with contrasting stomatal regulation strategies: Pinus radiata D. Don (relatively isohydric gymnosperm; regulating stomata to maintain leaf water potential above critical thresholds) and Callitris rhomboidea R. Br (relatively anisohydric gymnosperm; allowing leaf water potential to decline as the soil dries), to assess response to drought as a function of [CO2] and temperature. Both species were grown in two [CO2] (C(a) (ambient, 400 μl l(-1)) and C(e) (elevated, 640 μl l(-1))) and two temperature (T(a) (ambient) and T(e) (ambient +4 °C)) treatments in a sun-lit glasshouse under well-watered conditions. Drought plants were then exposed to a progressive drought until mortality. Prior to mortality, extensive xylem cavitation occurred in both species, but significant depletion of non-structural carbohydrates was not observed in either species. Te resulted in faster mortality in P. radiata, but it did not modify the time-to-mortality in C. rhomboidea. C(e) did not delay the time-to-mortality in either species under drought or T(e) treatments. In summary, elevated temperature (+4 °C) had greater influence than elevated [CO2] (+240 μl l(-1)) on drought responses of the two studied gymnosperm species, while stomatal regulation strategies did not generally affect the relative contributions of hydraulic failure and carbohydrate depletion to mortality under severe drought. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Byer, R. L.
1990-01-01
Two laser pumped Nd:YAG lasers were frequency stabilized to a commercial 6.327 GHz free spectral range Fabry-Perot interferometer yielding a best case beatnote linewidth of 330 MHz. In addition, a Fabry-Perot interferometer with a free spectral range of 680 MHz, a linewidth of 25 kHz, and a finesse of 27,500 was built, and when it was substituted in place of the commercial interferometer, it produced a robust and easily repeatable beatnote linewidth of 700 MHz.
1990-02-28
or a significant amount of solar -produced ionization is convecting into the region from sunlit areas. The weak nature of the precipitation events and...8 spacecraft was located in the downstream solar wind (SM coordinates: -2 6 RE x, 2 7 RE y, -1.2 RE z). The vector components and total field stength...of the IMF for the 2 hours before and 1 hour after launch are shown in Figure 6. Assuming an average solar wind speed of 400 km/sec, IMF conditions
2015-04-15
Analysis of radio tracking data have enabled maps of the gravity field of Mercury to be derived. In this image, overlain on a mosaic obtained by MESSENGER's Mercury Dual Imaging System and illuminated with a shape model determined from stereo-photoclinometry, Mercury's gravity anomalies are depicted in colors. Red tones indicate mass concentrations, centered on the Caloris basin (center) and the Sobkou region (right limb). Such large-scale gravitational anomalies are signatures of subsurface structure and evolution. The north pole is near the top of the sunlit area in this view. http://photojournal.jpl.nasa.gov/catalog/PIA19285
Optical Polarization of Light from a Sorghum Canopy Measured Under Both a Clear and an Overcast Sky
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern; Daughtry, Craig; Biehl, Larry; Dahlgren, Robert
2014-01-01
Introduction: We tested the hypothesis that the optical polarization of the light reflected by a sorghum canopy is due to a Fresnel-type redirection, by sorghum leaf surfaces, of light from an unpolarized light source, the sun or overcast sky, toward the measuring sensor. If it can be shown that the source of the polarization of the light scattered by the sorghum canopy is a first surface, Fresnel-type reflection, then removing this surface reflected light from measurements of canopy reflectance presumably would allow better insight into the biochemical processes such as photosynthesis and metabolism that occur in the interiors of sorghum canopy leaves. Methods: We constructed a tower 5.9m tall in the center of a homogenous sorghum field. We equipped two Barnes MMR radiometers with polarization analyzers on the number 1, 3 and 7 Landsat TM wavelength bands. Positioning the radiometers atop the tower, we collected radiance data in 44 view directions on two days, one day with an overcast sky and the other, clear and sunlit. From the radiance data we calculated the linear polarization of the reflected light for each radiometer wavelength channel and view direction. Results and Discussion: Our experimental results support our hypothesis, showing that the amplitude of the linearly polarized portion of the light reflected by the sorghum canopy varied dramatically with view azimuth direction under a point source, the sun, but the amplitude varied little with view azimuth direction under the hemispherical source, the overcast sky. Under the clear sky, the angle of polarization depended upon the angle of incidence of the sunlight on the leaf, while under the overcast sky the angle of polarization depended upon the zenith view angle. These results support a polarized radiation transport model of the canopy that is based upon a first surface, Fresnel reflection from leaves in the sorghum canopy.
NASA Astrophysics Data System (ADS)
Feaga, L. M.; Holt, C. E.; Steffl, A.; Stern, S. A.; Bertaux, J. L.; Parker, J. W.; A'Hearn, M. F.; Feldman, P.; Keeney, B. A.; Knight, M. M.; Noonan, J.; Vervack, R. J., Jr.; Weaver, H. A., Jr.
2017-12-01
In 2016, Alice, NASA's lightweight and low-power far-ultraviolet (FUV) imaging spectrograph onboard ESA's comet-orbiting spacecraft Rosetta, completed a 2-year characterization of 67P/Churyumov-Gerasimenko (C-G), a bi-lobed Jupiter family comet with extreme seasons and diverse surface features. In addition to coma studies, Alice monitored the sunlit surface of C-G from 700-2050 Å to establish the FUV bidirectional reflectance properties and albedo of the surface, determine homogeneity, correlate spectral features with morphological regions, and infer the compositional makeup of the comet. The heliocentric distance coverage (3.7 AU from the Sun, through perihelion at 1.24 AU, and back out to 3.8 AU) over a period of 2 years and spatial resolution of the Alice data (e.g., 30 m by 150 m at the comet from a spacecraft distance of 30 km) resulted in the first resolved observations of a cometary nucleus in the FUV throughout much of its orbit. Upon arrival in 2014, initial characteristics and properties of the surface were derived for the northern hemisphere, revealing a dark, homogeneous, and blue-sloped surface in the FUV with an average geometric albedo of 5% at 1475 Å, consistent with a homogeneous layer of dust covering that hemisphere and similar to nucleus properties derived for this and other comets in the visible. Now, with a fully calibrated dataset, properties of the southern and northern hemispheres, before and after perihelion, have been quantified and preliminarily show minimal change in the comet's surface in the FUV through the apparition. Analyses are ongoing and we will highlight any detected variability. En-route to C-G, Alice made history during the flybys of asteroid (2867) Steins and (21) Lutetia obtaining the first global FUV reflectivity measurement and acquiring spatially resolved observations of an asteroid surface, respectively. The asteroid properties will be compared to those derived for C-G to demonstrate commonalities across small bodies in our solar system. Rosetta is an ESA mission with contributions from its member states and NASA. The Alice team acknowledges continuing support from NASA's Jet Propulsion Laboratory through contract 1336850 to the Southwest Research Institute (SwRI). This work was supported by a subcontract from SwRI to the University of Maryland.
NASA Astrophysics Data System (ADS)
Gu, Chengyan; Clevers, Jan G. P. W.; Liu, Xiao; Tian, Xin; Li, Zhouyuan; Li, Zengyuan
2018-03-01
Sloping terrain of forests is an overlooked factor in many models simulating the canopy bidirectional reflectance distribution function, which limits the estimation accuracy of forest vertical structure parameters (e.g., forest height). The primary objective of this study was to predict forest height on sloping terrain over large areas with the Geometric-Optical Model for Sloping Terrains (GOST) using airborne Light Detection and Ranging (LiDAR) data and Landsat 7 imagery in the western Greater Khingan Mountains of China. The Sequential Maximum Angle Convex Cone (SMACC) algorithm was used to generate image endmembers and corresponding abundances in Landsat imagery. Then, LiDAR-derived forest metrics, topographical factors and SMACC abundances were used to calibrate and validate the GOST, which aimed to accurately decompose the SMACC mixed forest pixels into sunlit crown, sunlit background and shade components. Finally, the forest height of the study area was retrieved based on a back-propagation neural network and a look-up table. Results showed good performance for coniferous forests on all slopes and at all aspects, with significant coefficients of determination above 0.70 and root mean square errors (RMSEs) between 0.50 m and 1.00 m based on ground observed validation data. Higher RMSEs were found in areas with forest heights below 5 m and above 17 m. For 90% of the forested area, the average RMSE was 3.58 m. Our study demonstrates the tremendous potential of the GOST for quantitative mapping of forest height on sloping terrains with multispectral and LiDAR inputs.
NASA Astrophysics Data System (ADS)
Kobayashi, H.; Yang, W.; Ichii, K.
2015-12-01
Global simulation of canopy scale sun-induced chlorophyll fluorescence with a 3 dimensional radiative transfer modelHideki Kobayashi, Wei Yang, and Kazuhito IchiiDepartment of Environmental Geochemical Cycle Research, Japan Agency for Marine-Earth Science and Technology3173-25, Showa-machi, Kanazawa-ku, Yokohama, Japan.Plant canopy scale sun-induced chlorophyll fluorescence (SIF) can be observed from satellites, such as Greenhouse gases Observation Satellite (GOSAT), Orbiting Carbon Observatory-2 (OCO-2), and Global Ozone Monitoring Experiment-2 (GOME-2), using Fraunhofer lines in the near infrared spectral domain [1]. SIF is used to infer photosynthetic capacity of plant canopy [2]. However, it is not well understoond how the leaf-level SIF emission contributes to the top of canopy directional SIF because SIFs observed by the satellites use the near infrared spectral domain where the multiple scatterings among leaves are not negligible. It is necessary to quantify the fraction of emission for each satellite observation angle. Absorbed photosynthetically active radiation of sunlit leaves are 100 times higher than that of shaded leaves. Thus, contribution of sunlit and shaded leaves to canopy scale directional SIF emission should also be quantified. Here, we show the results of global simulation of SIF using a 3 dimensional radiative transfer simulation with MODIS atmospheric (aerosol optical thickness) and land (land cover and leaf area index) products and a forest landscape data sets prepared for each land cover category. The results are compared with satellite-based SIF (e.g. GOME-2) and the gross primary production empirically estimated by FLUXNET and remote sensing data.
An Overview of Snow Photochemistry: Evidence, Mechanisms and Impacts
NASA Technical Reports Server (NTRS)
Grannas, A. M.; Jones, A. E.; Dibb, J.; Ammann, M.; Anastasio, C.; Beine, H. J.; Bergin, M.; Bottenheim, J.; Boxe, C. S.; Carver, G.;
2007-01-01
It has been shown that sunlit snow and ice plays an important role in processing atmospheric species. Photochemical production of a variety of chemicals has recently been reported to occur in snow/ice and the release of these photochemically generated species may significantly impact the chemistry of the overlying atmosphere. Nitrogen oxide and oxidant precursor fluxes have been measured in a number of snow covered environments, where in some cases the emissions significantly impact the overlying boundary layer. For example, photochemical ozone production (such as that occurring in polluted mid-latitudes) of 3-4 ppbv/day has been observed at South Pole, due to high OH and NO levels present in a relatively small boundary layer. Field and laboratory experiments have determined that the origin of the observed NOx flux is the photochemistry of nitrate within the snowpack, however some details of the mechanism have not yet been elucidated. A variety of low molecular weight organic compounds have been shown to be emitted from sunlit snowpacks, the source of which has been proposed to be either direct or indirect photo-oxidation of natural organic materials present in the snow. Although myriad studies have observed active processing of species within irradiated snowpacks, the fundamental chemistry occurring remains poorly understood. Here we consider the nature of snow at a fundamental, physical level; photochemical processes within snow and the caveats needed for comparison to atmospheric photochemistry; our current understanding of nitrogen, oxidant, halogen and organic photochemistry within snow; the current limitations faced by the field and implications for the future.
BOREAS RSS-19 1994 Seasonal Understory Reflectance Data
NASA Technical Reports Server (NTRS)
Miller, John R.; Hall, Forrest G. (Editor); Nickerson, Jaime (Editor); White, H. Peter; Peddle, Derek; Freemantle, Jim; Smith, David E. (Technical Monitor)
2000-01-01
The BOREAS RSS-19 team collected airborne remotely sensed images and ground reflectance data for characterizing the radiometric properties of the boreal forest landscape. One objective of BOREAS is to further the understanding of the spectral bidirectional reflectance of typical boreal ecosystem stands in the visible/near-infrared regime. An essential input for any canopy BRDF model is an accurate estimate of the average understory reflectance, both for sunlit and shaded conditions. These variables can be expected to vary seasonally because of species-dependent differences in the phenological cycle of foliar display. In response to these requirements, the average understory reflectance for the flux tower sites of both the NSA (Thompson, Manitoba) and the SSA (Candle Lake, Saskatchewan) was observed throughout the year during five field campaigns. This was done by measuring the nadir reflectance (400 to 850 nm) of sunlit and shaded understory (vegetation and snow cover) along a surveyed LAI transect line (Chen, RSS-07) at each site near solar noon and documenting an average site reflectance. Comparisons between sites reveal differences in the green and infrared regions of the spectra, because of the differing species in the understory for each site. Temporal (seasonal) variation for each site was also observed (06-Feb-1994 to 16-Sep-1994), indicating the changing flora mixtures and changing spectral signatures as the understory matures during the growing season. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
NASA Technical Reports Server (NTRS)
Lei, Ning; Chen, Xuexia; Xiong, Xiaoxiong
2015-01-01
The Visible Infrared Imaging Radiometer Suiteaboard the Suomi National Polar-orbiting Partnership (SNPP) satellite performs radiometric calibration of its reflective solar bands primarily through observing a sunlit onboard solar diffuser (SD). The SD bidirectional reflectance distribution function(BRDF) degradation factor is determined by an onboard SD stability monitor (SDSM), which observes the Sun through a pinhole screen and the sunlit SD. The transmittance of the SDSM pinhole screen over a range of solar angles was determined prelaunch and used initially to determine the BRDF degradation factor.The degradation-factor-versus-time curves were found to have a number of very large unphysical undulations likely due to the inaccuracy in the prelaunch determined SDSM screen transmittance.To refine the SDSM screen transmittance, satellite yaw maneuvers were carried out. With the SDSM screen relative transmittance determined from the yaw maneuver data, the computed BRDFdegradation factor curves still have large unphysical ripples, indicating that the projected solar horizontal angular step size in the yaw maneuver data is too large to resolve the transmittance at a fine angular scale. We develop a methodology to use both the yaw maneuver and a small portion of regular on-orbit data to determine the SDSM screen relative transmittance at a fine angular scale. We determine that the error standard deviation of the calculated relative transmittance ranges from 0.00030 (672 nm) to 0.00092 (926 nm). With the newly determined SDSM screen relative transmittance, the computed BRDF degradation factor behaves much more smoothly over time.
NASA Astrophysics Data System (ADS)
Miyake, Y.; Usui, H.; Kojima, H.
2010-12-01
In tenuous space plasma environment, photoelectrons emitted due to solar illumination produce a high-density photoelectron cloud localized in the vicinity of a spacecraft body and an electric field sensor. The photoelectron current emitted from the sensor has also received considerable attention because it becomes a primary factor in determining floating potentials of the sunlit spacecraft and sensor bodies. Considering the fact that asymmetric photoelectron distribution between sunlit and sunless sides of the spacecraft occasionally causes a spurious sunward electric field, we require quantitative evaluation of the photoelectron distribution around the spacecraft and its influence on electric field measurements by means of a numerical approach. In the current study, we applied the Particle-in-Cell plasma simulation to the analysis of the photoelectron environment around spacecraft. By using the PIC modeling, we can self-consistently consider the plasma kinetics. This enables us to simulate the formation of the photoelectron cloud as well as the spacecraft and sensor charging in a self-consistent manner. We report the progress of an analysis on photoelectron environment around MEFISTO, which is an electric field instrument for the BepiColombo/MMO spacecraft to Mercury’s magnetosphere. The photoelectron guard electrode is a key technology for ensuring an optimum photoelectron environment. We show some simulation results on the guard electrode effects on surrounding photoelectrons and discuss a guard operation condition for producing the optimum photoelectron environment. We also deal with another important issue, that is, how the guard electrode can mitigate an undesirable influence of an asymmetric photoelectron distribution on electric field measurements.
NASA Astrophysics Data System (ADS)
Lindberg, Fredrik; Holmer, Björn; Thorsson, Sofia; Rayner, David
2014-07-01
Knowledge of how the mean radiant temperature ( T mrt ) is affected by factors such as location, climate and urban setting contributes to the practice of climate sensitive planning. This paper examines how T mrt varies within an urban setting and how it is influenced by cloudiness. In addition, variations of T mrt in three high latitude cities are investigated in order to analyse the impact of geographical context and climate conditions. Results showed large spatial variations between sunlit and shaded areas during clear weather conditions, with the highest values of T mrt close to sunlit walls and the lowest values in the areas shaded by buildings and vegetation. As cloudiness increases, the spatial pattern is altered and the differences are reduced. The highest T mrt under cloudy conditions is instead found in open areas where the proportion of shortwave diffuse radiation from the sky vault is high. A regional comparison between three Swedish coastal cities showed that T mrt during summer is similar regardless of latitudinal location. On the other hand, large differences in T mrt during winter were found. Shadows, both from buildings and vegetation are the most effective measure to reduce extreme values of T mrt . However, extensive areas of shadow are usually not desired within outdoor urban environments at high latitude cities. One solution is to create diverse outdoor urban spaces in terms of shadow and also ventilation. This would provide individuals with access to a choice of thermal environments which they can use to assist their thermal regulation, based on personal needs and desires.
Lindberg, Fredrik; Holmer, Björn; Thorsson, Sofia; Rayner, David
2014-07-01
Knowledge of how the mean radiant temperature (T mrt ) is affected by factors such as location, climate and urban setting contributes to the practice of climate sensitive planning. This paper examines how T mrt varies within an urban setting and how it is influenced by cloudiness. In addition, variations of T mrt in three high latitude cities are investigated in order to analyse the impact of geographical context and climate conditions. Results showed large spatial variations between sunlit and shaded areas during clear weather conditions, with the highest values of T mrt close to sunlit walls and the lowest values in the areas shaded by buildings and vegetation. As cloudiness increases, the spatial pattern is altered and the differences are reduced. The highest T mrt under cloudy conditions is instead found in open areas where the proportion of shortwave diffuse radiation from the sky vault is high. A regional comparison between three Swedish coastal cities showed that T mrt during summer is similar regardless of latitudinal location. On the other hand, large differences in T mrt during winter were found. Shadows, both from buildings and vegetation are the most effective measure to reduce extreme values of T mrt. However, extensive areas of shadow are usually not desired within outdoor urban environments at high latitude cities. One solution is to create diverse outdoor urban spaces in terms of shadow and also ventilation. This would provide individuals with access to a choice of thermal environments which they can use to assist their thermal regulation, based on personal needs and desires.
Complete fluorescent fingerprints of extremophilic and photosynthetic microbes
NASA Astrophysics Data System (ADS)
Dartnell, Lewis R.; Storrie-Lombardi, Michael C.; Ward, John M.
2010-10-01
The work reported here represents a study into the total fluorescence exhibited by a broad selection of model, extremophilic and photosynthetic bacterial strains, over a great range of excitation and emission wavelengths from ultraviolet (UV) through visible to near infrared. The aim is to identify distinctive fluorescent features that may serve as detectable biosignatures of remnant microbial life on the Martian surface. A lab-bench fluorescence spectrometer was used to generate an excitation-emission matrix (EEM) for the unpigmented Escherichia coli, radiation-resistant Deinococcus radiodurans, Antarctic Dry Valley isolates Brevundimonas sp. MV.7 and Rhodococcus sp. MV.10, and the cyanobacterium Synechocystis sp. PCC 6803. Detailed EEMs, representing the fluorescence signature of each organism, are presented, and the most significant features suitable for biosignature surveys are identified, including small-molecule cellular metabolites, light-harvesting photosynthetic pigments and extracellular UV-screening compounds. E. coli exhibits the most intense emission from tryptophan, presumably due to the absence of UV-screening pigments that would shield the organism from short-wavelength light-exciting intracellular fluorescence. The efficacy of commonly available laser diodes for exciting cellular fluorescence is treated, along with the most appropriate filter wavelengths for imaging systems. The best combination of available laser diodes and PanCam filters aboard the ExoMars probe is proposed. The possibility of detecting fluorescence excited by solar UV radiation in freshly exposed surface samples by imaging when both sunlit and shadowed, perhaps by the body of the rover itself, is discussed. We also study how these biological fluorophore molecules may be degraded, and thus the potential biosignatures erased, by the high flux of far-ultraviolet light on Mars.
Multi-Spectral Cloud Retrievals from Moderate Image Spectrometer (MODIS)
NASA Technical Reports Server (NTRS)
Platnick, Steven
2004-01-01
MODIS observations from the NASA EOS Terra spacecraft (1030 local time equatorial sun-synchronous crossing) launched in December 1999 have provided a unique set of Earth observation data. With the launch of the NASA EOS Aqua spacecraft (1330 local time crossing! in May 2002: two MODIS daytime (sunlit) and nighttime observations are now available in a 24-hour period allowing some measure of diurnal variability. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate modeling, climate change studies, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. An overview of the instrument and cloud algorithms will be presented along with various examples, including an initial analysis of several operational global gridded (Level-3) cloud products from the two platforms. Statistics of cloud optical and microphysical properties as a function of latitude for land and Ocean regions will be shown. Current algorithm research efforts will also be discussed.
High-Resolution Spectroscopy of the Lunar Sodium Exosphere
NASA Technical Reports Server (NTRS)
Mierkiewicz, E. J.; Oliversen, R. J.; Roesler, F. L.; Lupie, O. L.
2014-01-01
We have applied high-resolution Fabry-Perot spectroscopy to the study of the lunar sodium exosphere for the study of exospheric effective temperature and velocity variations. Observing from the National Solar Observatory McMath-Pierce Telescope, we used a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,000 to measure line widths and Doppler shifts of the sodium D2 (5889.95 Å) emission line. Our field of view was 360 km, and measurements were made in equatorial and polar regions from 500 km to 3500 km off the limb. Data were obtained from full moon to 3 days following full moon (waning phase) in March 2009. Measured Doppler line widths within 1100 km of the sunlit east and south lunar limbs for observations between 5 and 40 deg lunar phase imply effective temperatures ranging between 3260 +/- 190 and 1000 +/- 135 K. Preliminary line center analysis indicates velocity displacements between different locations off the lunar limb ranging between 100 and 600 m/s from the lunar rest velocity with a precision of +/-20 to +/-50 m/s depending on brightness. Based on the success of these exploratory observations, an extensive program has been initiated that is expected to constrain lunar atmospheric and surface-process modeling and help quantify source and escape mechanisms.
Terrestrial hyperspectral image shadow restoration through fusion with terrestrial lidar
NASA Astrophysics Data System (ADS)
Hartzell, Preston J.; Glennie, Craig L.; Finnegan, David C.; Hauser, Darren L.
2017-05-01
Recent advances in remote sensing technology have expanded the acquisition and fusion of active lidar and passive hyperspectral imagery (HSI) from exclusively airborne observations to include terrestrial modalities. In contrast to airborne collection geometry, hyperspectral imagery captured from terrestrial cameras is prone to extensive solar shadowing on vertical surfaces leading to reductions in pixel classification accuracies or outright removal of shadowed areas from subsequent analysis tasks. We demonstrate the use of lidar spatial information for sub-pixel HSI shadow detection and the restoration of shadowed pixel spectra via empirical methods that utilize sunlit and shadowed pixels of similar material composition. We examine the effectiveness of radiometrically calibrated lidar intensity in identifying these similar materials in sun and shade conditions and further evaluate a restoration technique that leverages ratios derived from the overlapping lidar laser and HSI wavelengths. Simulations of multiple lidar wavelengths, i.e., multispectral lidar, indicate the potential for HSI spectral restoration that is independent of the complexity and costs associated with rigorous radiometric transfer models, which have yet to be developed for horizontal-viewing terrestrial HSI sensors. The spectral restoration performance of shadowed HSI pixels is quantified for imagery of a geologic outcrop through improvements in spectral shape, spectral scale, and HSI band correlation.
Cx-02 Program, workshop on modeling complex systems
Mossotti, Victor G.; Barragan, Jo Ann; Westergard, Todd D.
2003-01-01
This publication contains the abstracts and program for the workshop on complex systems that was held on November 19-21, 2002, in Reno, Nevada. Complex systems are ubiquitous within the realm of the earth sciences. Geological systems consist of a multiplicity of linked components with nested feedback loops; the dynamics of these systems are non-linear, iterative, multi-scale, and operate far from equilibrium. That notwithstanding, It appears that, with the exception of papers on seismic studies, geology and geophysics work has been disproportionally underrepresented at regional and national meetings on complex systems relative to papers in the life sciences. This is somewhat puzzling because geologists and geophysicists are, in many ways, preadapted to thinking of complex system mechanisms. Geologists and geophysicists think about processes involving large volumes of rock below the sunlit surface of Earth, the accumulated consequence of processes extending hundreds of millions of years in the past. Not only do geologists think in the abstract by virtue of the vast time spans, most of the evidence is out-of-sight. A primary goal of this workshop is to begin to bridge the gap between the Earth sciences and life sciences through demonstration of the universality of complex systems science, both philosophically and in model structures.
Peller, J.R.; Whitman, R.L.; Griffith, S.; Harris, P.; Peller, C.; Scalzitti, J.
2007-01-01
Cladophora, a nuisance and invasive, filamentous algae (Chlorophyta), massively accumulates along the shores of the lower Great Lakes each summer causing great economic damage and compromising recreational opportunity and perhaps public health. In vitro experiments showed that Cladophora samples were physically and biologically degraded when subjected to TiO2-mediated photocatalysis. For the most successful photocatalytic process, TiO2 was immobilized on a glass surface and used in combination with either sunlight or artificial UV light. The loss of vital algal pigments was monitored using UV–vis spectrophotometry, and cell structural changes were determined by microscopic observation. Cladophora, in the presence of TiO2-covered glass beads, experienced a loss of chloroplast pigments after 2 h of UV lamp light irradiation. In a separate experiment, sunlight exposure over 4 days (∼24 h) resulted in the complete oxidative degradation of the green chloroplast pigments, verified by the UV spectra of the algal extracts. These results suggest that TiO2, mobilized on sunlit silicates may be useful in controlling growth and survival of this alga in the Great Lakes, thus mitigating many of the economic, aesthetic ecological impacts of this invasive alga.
NASA Astrophysics Data System (ADS)
Srinivasan, V.; Pignon, C.
2017-12-01
C4 plants have a carbon concentrating mechanism that has evolved under historically low CO2 concentrations of around 200 ppm. However, increases in global CO2 concentrations in recent times (current CO2 concentrations are at 400 ppm and it is projected to be 550 ppm by mid-century) have diminished the relative advantage of C4 plants over C3 plants, which lack the expensive carbon concentrating machinery. Here we show by employing model simulations that under pre-historic CO2 concentrations, C4 plants are near optimal in their stomatal behavior and nitrogen partitioning between carbon concentrating machinery and carboxylation machinery, and they are significantly supra-optimal under current and future elevated CO2 concentrations. Model simulations performed at current CO2 concentrations of 400 ppm show that, under high light conditions, decreasing stomatal conductance by 20% results in a 15% increase in water use efficiency with negligible loss in photosynthesis. Under future elevated CO2 concentrations of 550 ppm, a 40% decrease in stomatal conductance produces a 35% increase in water use efficiency. Furthermore, stomatal closure is shown to be more effective in decreasing whole canopy transpiration compared to canopy top leaf transpiration, since shaded leaves are more supra-optimal than sunlit leaves. Model simulations for optimizing nitrogen distribution in C4 leaves show that under high light conditions, C4 plants over invest in carbon concentrating machinery and under invest in carboxylation machinery. A 20% redistribution in leaf nitrogen results in a 10% increase in leaf carbon assimilation without significant increases in transpiration under current CO2 concentrations of 400 ppm. Similarly, a 40% redistribution in leaf nitrogen results in a 15% increase in leaf carbon assimilation without significant increases in transpiration under future elevated CO2 concentrations of 550 ppm. Our model optimality simulations show that C4 leaves a supra optimal in their stomatal behavior and leaf nitrogen distribution and by decreasing stomatal conductance and redistributing nitrogen away from carbon concentrating mechanism and towards carboxylation machinery, we can significantly decrease transpiration and increase carbon assimilation thereby increasing water use efficiency.
NASA Astrophysics Data System (ADS)
Hénon, A.; Mestayer, P.; Lagouarde, J.-P.; Lee, J. H.
2009-09-01
Due to the morphological complexity of the urban canopy and to the variability in thermal properties of the building materials, the heterogeneity of the surface temperatures generates a strong directional anisotropy of thermal infrared remote sensing signal. Thermal infrared (TIR) data obtained with an airborne FLIR camera over Toulouse (France) city centre during the CAPITOUL experiment (feb. 2004 - feb. 2005) show brightness temperature anisotropies ranging from 3 °C by night to more than 10 °C by sunny days. These data have been analyzed in view of developing a simple approach to correct TIR satellite remote sensing from the canopy-generated anisotropy, and to further evaluate the sensible heat fluxes. The methodology is based on the identification of 6 different classes of surfaces: roofs, walls and grounds, sunlit or shaded, respectively. The thermo-radiative model SOLENE is used to simulate, with a 1 m resolution computational grid, the surface temperatures of an 18000 m² urban district, in the same meteorological conditions as during the observation. A pixel-by-pixel comparison with both hand-held temperature measurements and airborne camera images allows to assess the actual values of the radiative and thermal parameters of the scene elements. SOLENE is then used to simulate a generic street-canyon geometry, whose sizes average the morphological parameters of the actual streets in the district, for 18 different geographical orientations. The simulated temperatures are then integrated for different viewing positions, taking into account shadowing and masking, and directional temperatures are determined for the 6 surface classes. The class ratios in each viewing direction are derived from images of the district generated by using the POVRAY software, and used to weigh the temperatures of each class and to compute the resulting directional brightness temperature at the district scale for a given sun direction (time in the day). Simulated and measured anisotropies are finally compared for several flights over Toulouse in summer and winter. An inverse method is further proposed to obtain the surface temperatures from the directional brightness temperatures, which may be extended to deduce the sensible heat fluxes separately from the buildings and from the ground.
Perennial Lakeshores as an Exploration Target for Microbial Remains on Mars Based on Earth Analogs
NASA Astrophysics Data System (ADS)
Blair, T. C.
2013-12-01
Exploring for evidence of present or past life is a key part of the NASA Mars program. Satellite data show the existence on the Martian surface of several types of potentially habitable settings for past microbial life if it existed, including remnants of former environments still in morphologic context. Of these environments, lakeshores are a prime target for future rover missions because they manifest a past critical interface between atmosphere, sunlit water, and a solid substrate. Case studies were made of possible analog remnants from now desiccated late Pleistocene perennial lakes of the western Basin and Range province, USA, to better understand microbial remains in this setting. These case studies show that the best preserved and most concentrated records of fossil microbial life developed in the upper photic zone of former shorezones where: 1) coeval clastic sedimentation was low; 2) a solid substrate such as coarse clasts or bedrock was present for colonization; 3) lake level was relatively stable for at least a few thousand years; and 4) chemical conditions promoted some mineral precipitation, such as of calcite. Although not a prerequisite, microbial accumulations also are common in the studied Pleistocene lakes where effluent from piedmont groundwater mixed with chemically different lake water either diffusely in the beachface or at springs in the shoreface. Martian river deltas with discernible multi-sequence deposits are a good indicator of past stable levels in associated lakes because such deltaic intervals record a sustained history. An example is the Eberswalde delta. River discharge delivered sediment to build the deltas and concurrently added water to maintain the lakes. A distinction between river deltas and alluvial fans or fan deltas is necessary to identify these targets, and this can easily be achieved using Earth case studies. An appreciation that river deltas are not reclassified as alluvial fans simply because they were abandoned also is needed. Although Martian river delta plain, delta front, and prodelta deposits may contain the remains of microbial life if it existed at the time of deposition, the studied western Basin and Range lakes show that such remains are most abundant and concentrated along former coarse gravelly or rocky shorelines away from the delta, where clear water and a stable substrate prevailed, and fossil dilution by detrital input was low. The elevations of the delta plains provide the target levels for shoreline exploration elsewhere along the lake. The extinct western Basin and Range lakes, such as Lake Manly in Death Valley, further teach that former shorelines readily apparent on satellite imagery may lack a biological or sedimentary record, whereas less obvious or unapparent shoreline segments at key levels may have a bounty of microbial remains. The latter scenario results from partial obscuration of the former shoreline by post-lake weathering, including through erosion or the partial cover by eolian or gravity-driven colluvial sediment.
NASA Astrophysics Data System (ADS)
Zhou, Yanlian; Wu, Xiaocui; Ju, Weimin; Chen, Jing M.; Wang, Shaoqiang; Wang, Huimin; Yuan, Wenping; Andrew Black, T.; Jassal, Rachhpal; Ibrom, Andreas; Han, Shijie; Yan, Junhua; Margolis, Hank; Roupsard, Olivier; Li, Yingnian; Zhao, Fenghua; Kiely, Gerard; Starr, Gregory; Pavelka, Marian; Montagnani, Leonardo; Wohlfahrt, Georg; D'Odorico, Petra; Cook, David; Arain, M. Altaf; Bonal, Damien; Beringer, Jason; Blanken, Peter D.; Loubet, Benjamin; Leclerc, Monique Y.; Matteucci, Giorgio; Nagy, Zoltan; Olejnik, Janusz; Paw U, Kyaw Tha; Varlagin, Andrej
2016-04-01
Light use efficiency (LUE) models are widely used to simulate gross primary production (GPP). However, the treatment of the plant canopy as a big leaf by these models can introduce large uncertainties in simulated GPP. Recently, a two-leaf light use efficiency (TL-LUE) model was developed to simulate GPP separately for sunlit and shaded leaves and has been shown to outperform the big-leaf MOD17 model at six FLUX sites in China. In this study we investigated the performance of the TL-LUE model for a wider range of biomes. For this we optimized the parameters and tested the TL-LUE model using data from 98 FLUXNET sites which are distributed across the globe. The results showed that the TL-LUE model performed in general better than the MOD17 model in simulating 8 day GPP. Optimized maximum light use efficiency of shaded leaves (ɛmsh) was 2.63 to 4.59 times that of sunlit leaves (ɛmsu). Generally, the relationships of ɛmsh and ɛmsu with ɛmax were well described by linear equations, indicating the existence of general patterns across biomes. GPP simulated by the TL-LUE model was much less sensitive to biases in the photosynthetically active radiation (PAR) input than the MOD17 model. The results of this study suggest that the proposed TL-LUE model has the potential for simulating regional and global GPP of terrestrial ecosystems, and it is more robust with regard to usual biases in input data than existing approaches which neglect the bimodal within-canopy distribution of PAR.
SUPRATHERMAL ELECTRONS IN TITAN’S SUNLIT IONOSPHERE: MODEL–OBSERVATION COMPARISONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigren, E.; Edberg, N. J. T.; Wahlund, J.-E.
2016-08-01
The dayside ionosphere of the Saturnian satellite Titan is generated mainly from photoionization of N{sub 2} and CH{sub 4}. We compare model-derived suprathermal electron intensities with spectra measured by the Cassini Plasma Spectrometer/Electron Spectrometer (CAPS/ELS) in Titan's sunlit ionosphere (altitudes of 970–1250 km) focusing on the T40, T41, T42, and T48 Titan flybys by the Cassini spacecraft. The model accounts only for photoelectrons and associated secondary electrons, with a main input being the impinging solar EUV spectra as measured by the Thermosphere Ionosphere Mesosphere Energy and Dynamics/Solar EUV Experiment and extrapolated to Saturn. Associated electron-impact electron production rates have beenmore » derived from ambient number densities of N{sub 2} and CH{sub 4} (measured by the Ion Neutral Mass Spectrometer/Closed Source Neutral mode) and related energy-dependent electron-impact ionization cross sections. When integrating up to electron energies of 60 eV, covering the bulk of the photoelectrons, the model-based values exceed the observationally based values typically by factors of ∼3 ± 1. This finding is possibly related to current difficulties in accurately reproducing the observed electron number densities in Titan's dayside ionosphere. We compare the utilized dayside CAPS/ELS spectra with ones measured in Titan's nightside ionosphere during the T55–T59 flybys. The investigated nightside locations were associated with higher fluxes of high-energy (>100 eV) electrons than the dayside locations. As expected, for similar neutral number densities, electrons with energies <60 eV give a higher relative contribution to the total electron-impact ionization rates on the dayside (due to the contribution from photoelectrons) than on the nightside.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yanlian; Wu, Xiaocui; Ju, Weimin
2016-04-06
Light use efficiency (LUE) models are widely used to simulate gross primary production (GPP). However, the treatment of the plant canopy as a big leaf by these models can introduce large uncertainties in simulated GPP. Recently, a two-leaf light use efficiency (TL-LUE) model was developed to simulate GPP separately for sunlit and shaded leaves and has been shown to outperform the big-leaf MOD17 model at 6 FLUX sites in China. In this study we investigated the performance of the TL-LUE model for a wider range of biomes. For this we optimized the parameters and tested the TL-LUE model using datamore » from 98 FLUXNET sites which are distributed across the globe. The results showed that the TL-LUE model performed in general better than the MOD17 model in simulating 8-day GPP. Optimized maximum light use efficiency of shaded leaves (εmsh) was 2.63 to 4.59 times that of sunlit leaves (εmsu). Generally, the relationships of εmsh and εmsu with εmax were well described by linear equations, indicating the existence of general patterns across biomes. GPP simulated by the TL-LUE model was much less sensitive to biases in the photosynthetically active radiation (PAR) input than the MOD17 model. The results of this study suggest that the proposed TL-LUE model has the potential for simulating regional and global GPP of terrestrial ecosystems and it is more robust with regard to usual biases in input data than existing approaches which neglect the bi-modal within-canopy distribution of PAR.« less
Chapman Solar Zenith Angle variations at Titan
NASA Astrophysics Data System (ADS)
Royer, Emilie M.; Ajello, Joseph; Holsclaw, Gregory; West, Robert; Esposito, Larry W.; Bradley, Eric Todd
2016-10-01
Solar XUV photons and magnetospheric particles are the two main sources contributing to the airglow in the Titan's upper atmosphere. We are focusing here on the solar XUV photons and how they influence the airglow intensity. The Cassini-UVIS observations analyzed in this study consist each in a partial scan of Titan, while the center of the detector stays approximately at the same location on Titan's disk. We used observations from 2008 to 2012, which allow for a wide range of Solar Zenith Angle (SZA). Spectra from 800 km to 1200 km of altitude have been corrected from the solar spectrum using TIMED/SEE data. We observe that the airglow intensity varies as a function of the SZA and follows a Chapman curve. Three SZA regions are identified: the sunlit region ranging from 0 to 50 degrees. In this region, the intensity of the airglow increases, while the SZA decreases. Between SZA 50 and 100 degrees, the airglow intensity decreases from it maximum to its minimum. In this transition region the upper atmosphere of Titan changes from being totally sunlit to being in the shadow of the moon. For SZA 100 to 180 degrees, we observe a constant airglow intensity close to zero. The behavior of the airglow is also similar to the behavior of the electron density as a function of the SZA as observed by Ågren at al (2009). Both variables exhibit a decrease intensity with increasing SZA. The goal of this study is to understand such correlation. We demonstrate the importance of the solar XUV photons contribution to the Titan airglow and prove that the strongest contribution to the Titan dayglow occurs by solar fluorescence rather than the particle impact that predominates at night.
CloudSat Anomaly Recovery and Operational Lessons Learned
NASA Technical Reports Server (NTRS)
Witkowski, Mona; Vane, Deborah; Livermore, Thomas; Rokey, Mark; Barthuli, Marda; Gravseth, Ian J.; Pieper, Brian; Rodzinak, Aaron; Silva, Steve; Woznick, Paul;
2012-01-01
In April 2011, NASA's pioneering cloud profiling radar satellite, CloudSat, experienced a battery anomaly that placed it into emergency mode and rendered it operations incapable. All initial attempts to recover the spacecraft failed as the resultant power limitations could not support even the lowest power mode. Originally part of a six-satellite constellation known as the "A-Train", CloudSat was unable to stay within its assigned control box, posing a threat to other A-Train satellites. CloudSat needed to exit the constellation, but with the tenuous power profile, conducting maneuvers was very risky. The team was able to execute a complex sequence of operations which recovered control, conducted an orbit lower maneuver, and returned the satellite to safe mode, within one 65 minute sunlit period. During the course of the anomaly recovery, the team developed several bold, innovative operational strategies. Details of the investigation into the root-cause and the multiple approaches to revive CloudSat are examined. Satellite communication and commanding during the anomaly are presented. A radical new system of "Daylight Only Operations" (DO-OP) was developed, which cycles the payload and subsystem components off in tune with earth eclipse entry and exit in order to maintain positive power and thermal profiles. The scientific methodology and operational results behind the graduated testing and ramp-up to DO-OP are analyzed. In November 2011, the CloudSat team successfully restored the vehicle to consistent operational collection of cloud radar data during sunlit portions of the orbit. Lessons learned throughout the six-month return-to-operations recovery effort are discussed and offered for application to other R&D satellites, in the context of on-orbit anomaly resolution efforts.
A Relationship Between Visible and Near-IR Global Spectral Reflectance based on DSCOVR/EPIC
NASA Astrophysics Data System (ADS)
Wen, G.; Marshak, A.; Song, W.; Knyazikhin, Y.
2017-12-01
The launch of Deep Space Climate Observatory (DSCOVR) to the Earth's first Lagrange point (L1) allows us to see a new perspective of the Earth. The Earth Polychromatic Imaging Camera (EPIC) on the DSCOVR measures the back scattered radiation of the entire sunlit side of the Earth at 10 narrow band wavelengths ranging from ultraviolet to visible and near-infrared. We analyzed EPIC global averaged reflectance data. We found that the global averaged visible reflectance has a unique non-linear relationship with near infrared (NIR) reflectance. This non-linear relationship was not observed by any other satellite observations due to a limited spatial and temporal coverage of either low earth orbit (LEO) or geostationary satellite. The non-linear relationship is associated with the changing in the coverages of ocean, cloud, land, and vegetation as the Earth rotates. We used Terra and Aqua MODIS daily global radiance data to simulate EPIC observations. Since MODIS samples the Earth in a limited swath (2330km cross track) at a specific local time (10:30 am for Terra, 1:30 pm for Aqua) with approximately 15 orbits per day, the global average reflectance at a given time may be approximated by averaging the reflectance in the MODIS nearest-time swaths in the sunlit hemisphere. We found that MODIS simulated global visible and NIR spectral reflectance captured the major feature of the EPIC observed non-linear relationship with some errors. The difference between the two is mainly due to the sampling limitation of polar satellite. This suggests that that EPIC observations can be used to reconstruct MODIS global average reflectance time series for studying Earth system change in the past decade.
NASA Astrophysics Data System (ADS)
Yan, Hao; Wang, Shao-Qiang; da Rocha, Humberto R.; Rap, Alexandru; Bonal, Damien; Butt, Nathalie; Coupe, Natalia Restrepo; Shugart, Herman H.
2017-11-01
Understanding the mechanism of photosynthetic seasonality in Amazonian evergreen forests is critical for its formulation in global climate and carbon cycle models. However, the control of the unexpected photosynthetic seasonality is highly uncertain. Here we use eddy-covariance data across a network of Amazonian research sites and a novel evapotranspiration (E) and two-leaf-photosynthesis-coupled model to investigate links between photosynthetic seasonality and climate factors on monthly scales. It reproduces the GPP seasonality (R2 = 0.45-0.69) with a root-mean-square error (RMSE) of 0.67-1.25 g C m-2 d-1 and a Bias of -0.03-1.04 g C m-2 d-1 for four evergreen forest sites. We find that the proportion of diffuse and direct sunlight governs the photosynthetic seasonality via their interaction with sunlit and shaded leaves, supported by a proof that canopy light use efficiency (LUE) has a strong linear relationship with the fraction of diffuse sunlight for Amazonian evergreen forests. In the transition from dry season to rainy season, incident total radiation (Q) decreased while LUE and diffuse fraction increased, which produced the large seasonal increase ( 34%) in GPP of evergreen forests. We conclude that diffuse radiation is an important environmental driver of the photosynthetic seasonality in tropical Amazon forests yet depending on light utilization by sunlit and shaded leaves. Besides, the GPP model simulates the precipitation-dominated GPP seasonality (R2 = 0.40-0.69) at pasture and savanna sites. These findings present an improved physiological method to relate light components with GPP in tropical Amazon.
Theoretical overview and modeling of the sodium and potassium atmospheres of mercury
NASA Technical Reports Server (NTRS)
Smyth, William H.; Marconi, M. L.
1995-01-01
A general theoretical overview for the sources, sinks, gas-surface interactions, and transport dynamics of sodium and potassium in the exospheric atmsophere of Mercury is given. Information for these four factors, which control the spatial distribution of these two alkali-group gases about the planet, is incorporated in numerical models. The spatial nature and relative importance of the initial source atom atmosphere and the ambient (ballistic hopping) atom atmosphere are then examined and are shown to be controlled and coupled to a great extent by the extremely large and variable solar radiation acceleration experienced by sodium and potassium as they resonantly scatter solar photons. The lateral (antisunward) transport rate of thermally accommodated sodium and potassium ambient atoms is shown to be driven by the solar radiation acceleration and, over a significant portion of Mercury's orbit about the Sun, is sufficiently rapid to be competitive with the short photoionization lifetimes for these atoms when they are located on the summit surface near or within about 30 deg of the terminator. The lateral transport rate is characterized by a migration time determined by model calculations for an ensemble of atoms initially starting at a point source on the surface (i.e., a numerical spacetime dependent Green's function). Four animations for the spacetime evolution of the sodium (or potassium) atmosphere produced by a point source on the surface are presented on a videotape format. For extended surface sources for sodium and potassium, the local column density is determined by competition between the photoionization lifetimes and the lateral transport times of atoms originating from different surface source locations. Sodium surface source fluxes (referenced to Mercury at perihelion) that are required on the sunlit hemisphere to reproduce the typically observed several megarayleighs of D2 emission-line brightness and the inferred column densities of 1-2 x 10(exp 11) atoms per sq cm range from approximately 2-5 x 10(exp 7) atoms/sq cm/sec. The sodium model is applied to study observational data that document an anticorrelation in the average sodium column density and solar radiation acceleration. Lateral transport driven by the solar radiation acceleration is shown to produce this behavior for combinations of different sources and surface accomodation coefficients. The best fit model fits to the observational data require a significant degree of thermal accommodation of the ambient sodium atoms to the surface and a source rate that decreases as an inverse power of 1.5 to 2 in heliocentric distance.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Tian, F.; Hu, H.
2013-12-01
A multi-scale, multi-technique study was conducted to measure evapotranspiration and its components in a cotton field under mulched drip irrigation conditions in northwestern China. Three measurement techniques at different scales were used: photosynthesis system (leaf scale), sap flow (plant scale), and eddy covariance (field scale). The experiment was conducted from July to September 2012. For upscaling the evapotranspiration from the leaf to the plant scale, an approach that incorporated the canopy structure and the relationships between sunlit and shaded leaves was proposed. For upscaling the evapotranspiration from the plant to the field scale, an approach based on the transpiration per unit leaf area was adopted and modified to incorporate the temporal variability in the relationships between the leaf area and the stem diameter. At the plant scale, the estimate of the transpiration based on the photosynthesis system with upscaling is slightly higher (18%) than that obtained by sap flow. At the field scale, the estimate of the transpiration obtained by upscaling the estimate based on sap flow measurements is also systematically higher (10%) compared to that obtained through eddy covariance during the cotton open boll growth stage when soil evaporation can be neglected. Nevertheless, the results derived from these three distinct methods show reasonable consistency at the field scale, which indicates that the upscaling approaches are reasonable and valid. Based on the measurements and the upscaling approaches, the evapotranspiration components were analyzed under mulched drip irrigation. During the cotton flower and bolling stages in July and August, the evapotranspiration are 3.94 and 4.53 mm day-1, respectively. The proportion of transpiration to evapotranspiration reaches 87.1% before drip irrigation and 82.3% after irrigation. The high water use efficiency is principally due to the mulched film above the drip pipe, the low soil water content in the inter-film zone,the well-closed canopy, and the high water requirement of the crop
Particle-In-Cell Analysis of an Electric Antenna for the BepiColombo/MMO spacecraft
NASA Astrophysics Data System (ADS)
Miyake, Yohei; Usui, Hideyuki; Kojima, Hirotsugu
The BepiColombo/MMO spacecraft is planned to provide a first electric field measurement in Mercury's magnetosphere by mounting two types of the electric antennas: WPT and MEFISTO. The sophisticated calibration of such measurements should be performed based on precise knowledge of the antenna characteristics in space plasma. However, it is difficult to know prac-tical antenna characteristics considering the plasma kinetics and spacecraft-plasma interactions by means of theoretical approaches. Furthermore, some modern antenna designing techniques such as a "hockey puck" principle is applied to MEFISTO, which introduces much complexity in its overall configuration. Thus a strong demand arises regarding the establishment of a nu-merical method that can solve the complex configuration and plasma dynamics for evaluating the electric properties of the modern instrument. For the self-consistent antenna analysis, we have developed a particle simulation code named EMSES based on the particle-in-cell technique including a treatment antenna conductive sur-faces. In this paper, we mainly focus on electrostatic (ES) features and photoelectron distri-bution in the vicinity of MEFISTO. Our simulation model includes (1) a photoelectron guard electrode, (2) a bias current provided from the spacecraft body to the sensing element, (3) a floating potential treatment for the spacecraft body, and (4) photoelectron emission from sunlit surfaces of the conductive bodies. Of these, the photoelectron guard electrode is a key technol-ogy for producing an optimal condition of plasma environment around MEFISTO. Specifically, we introduced a pre-amplifier housing called puck located between the conductive boom and the sensor wire. The photoelectron guard is then simulated by forcibly fixing the potential difference between the puck surface and the spacecraft body. For the modeling, we use the Capacity Matrix technique in order to assure the conservation condition of total charge owned by the entire spacecraft body. We report some numerical analyses on the influence of the guard electrode on the surrounding plasma environment by using the developed model.
Galileo observations of volcanic plumes on Io
Geissler, P.E.; McMillan, M.T.
2008-01-01
Io's volcanic plumes erupt in a dazzling variety of sizes, shapes, colors and opacities. In general, the plumes fall into two classes, representing distinct source gas temperatures. Most of the Galileo imaging observations were of the smaller, more numerous Prometheus-type plumes that are produced when hot flows of silicate lava impinge on volatile surface ices of SO2. Few detections were made of the giant, Pele-type plumes that vent high temperature, sulfur-rich gases from the interior of Io; this was partly because of the insensitivity of Galileo's camera to ultraviolet wavelengths. Both gas and dust spout from plumes of each class. Favorably located gas plumes were detected during eclipse, when Io was in Jupiter's shadow. Dense dust columns were imaged in daylight above several Prometheus-type eruptions, reaching heights typically less than 100 km. Comparisons between eclipse observations, sunlit images, and the record of surface changes show that these optically thick dust columns are much smaller in stature than the corresponding gas plumes but are adequate to produce the observed surface deposits. Mie scattering calculations suggest that these conspicuous dust plumes are made up of coarse grained “ash” particles with radii on the order of 100 nm, and total masses on the order of 106 kg per plume. Long exposure images of Thor in sunlight show a faint outer envelope apparently populated by particles small enough to be carried along with the gas flow, perhaps formed by condensation of sulfurous “snowflakes” as suggested by the plasma instrumentation aboard Galileo as it flew through Thor's plume [Frank, L.A., Paterson, W.R., 2002. J. Geophys. Res. (Space Phys.) 107, doi:10.1029/2002JA009240. 31-1]. If so, the total mass of these fine, nearly invisible particles may be comparable to the mass of the gas, and could account for much of Io's rapid resurfacing.
Near-surface Thermal Infrared Imaging of a Mixed Forest
NASA Astrophysics Data System (ADS)
Aubrecht, D. M.; Helliker, B. R.; Richardson, A. D.
2014-12-01
Measurement of an organism's temperature is of basic physiological importance and therefore necessary for ecosystem modeling, yet most models derive leaf temperature from energy balance arguments or assume it is equal to air temperature. This is because continuous, direct measurement of leaf temperature outside of a controlled environment is difficult and rarely done. Of even greater challenge is measuring leaf temperature with the resolution required to understand the underlying energy balance and regulation of plant processes. To measure leaf temperature through the year, we have mounted a high-resolution, thermal infrared camera overlooking the canopy of a temperate deciduous forest. The camera is co-located with an eddy covariance system and a suite of radiometric sensors. Our camera measures longwave thermal infrared (λ = 7.5-14 microns) using a microbolometer array. Suspended in the canopy within the camera FOV is a matte black copper plate instrumented with fine wire thermocouples that acts as a thermal reference for each image. In this presentation, I will discuss the challenges of continuous, long-term field operation of the camera, as well as measurement sensitivity to physical and environmental parameters. Based on this analysis, I will show that the uncertainties in converting radiometric signal to leaf temperature are well constrained. The key parameter for minimizing uncertainty is the emissivity of the objects being imaged: measuring the emissivity to within 0.01 enables leaf temperature to be calculated to within 0.5°C. Finally, I will present differences in leaf temperature observed amongst species. From our two-year record, we characterize high frequency, daily, and seasonal thermal signatures of leaves and crowns, in relation to environmental conditions. Our images are taken with sufficient spatial and temporal resolution to quantify the preferential heating of sunlit portions of the canopy and the cooling effect of wind gusts. Future work will be focused on correlations between hyperspectral vegetation indices, fluxes, and thermal signatures to characterize vegetation stress. As water stress increases, causing photosynthesis and transpiration to shutdown, heat fluxes, leaf temperature, and narrow band vegetation indices should report signatures of the affected processes.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Tian, F.; Hu, H.; Yang, P.
2014-03-01
A multi-scale, multi-technique study was conducted to measure evapotranspiration and its components in a cotton field under mulched drip irrigation conditions in northwestern China. Three measurement techniques at different scales were used: a photosynthesis system (leaf scale), sap flow (plant scale), and eddy covariance (field scale). The experiment was conducted from July to September 2012. To upscale the evapotranspiration from the leaf to plant scale, an approach that incorporated the canopy structure and the relationships between sunlit and shaded leaves was proposed. To upscale the evapotranspiration from the plant to field scale, an approach based on the transpiration per unit leaf area was adopted and modified to incorporate the temporal variability in the relationship between leaf areas and stem diameter. At the plant scale, the estimate of the transpiration based on the photosynthesis system with upscaling was slightly higher (18%) than that obtained by sap flow. At the field scale, the estimates of transpiration derived from sap flow with upscaling and eddy covariance showed reasonable consistency during the cotton's open-boll growth stage, during which soil evaporation can be neglected. The results indicate that the proposed upscaling approaches are reasonable and valid. Based on the measurements and upscaling approaches, evapotranspiration components were analyzed for a cotton field under mulched drip irrigation. During the two analyzed sub-periods in July and August, evapotranspiration rates were 3.94 and 4.53 m day-1, respectively. The fraction of transpiration to evapotranspiration reached 87.1% before drip irrigation and 82.3% after irrigation. The high fraction of transpiration over evapotranspiration was principally due to the mulched film above the drip pipe, low soil water content in the inter-film zone, well-closed canopy, and high water requirement of the crop.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Tian, F.; Hu, H. C.; Hu, H. P.
2013-11-01
A multi-scale, multi-technique study was conducted to measure evapotranspiration and its components in a cotton field under mulched drip irrigation conditions in northwestern China. Three measurement techniques at different scales were used: photosynthesis system (leaf scale), sap flow (plant scale), and eddy covariance (field scale). The experiment was conducted from July to September 2012. To upscale the evapotranspiration from the leaf to the plant scale, an approach that incorporated the canopy structure and the relationships between sunlit and shaded leaves was proposed. To upscale the evapotranspiration from the plant to the field scale, an approach based on the transpiration per unit leaf area was adopted and modified to incorporate the temporal variability in the relationships between leaf area and stem diameter. At the plant scale, the estimate of the transpiration based on the photosynthesis system with upscaling was slightly higher (18%) than that obtained by sap flow. At the field scale, the estimates of transpiration derived from sap flow with upscaling and eddy covariance shown reasonable consistency during the cotton open boll growth stage when soil evaporation can be neglected. The results indicate that the upscaling approaches are reasonable and valid. Based on the measurements and upscaling approaches, evapotranspiration components were analyzed under mulched drip irrigation. During the two analysis sub-periods in July and August, evapotranspiration rates were 3.94 and 4.53 mm day-1, respectively. The fraction of transpiration to evapotranspiration reached 87.1% before drip irrigation and 82.3% after irrigation. The high fraction of transpiration over evapotranspiration was principally due to the mulched film above drip pipe, low soil water content in the inter-film zone, well-closed canopy, and high water requirement of the crop.
NASA Astrophysics Data System (ADS)
Mõttus, Matti; Takala, Tuure
2014-12-01
Fertility, or the availability of nutrients and water, controls forest productivity. It affects its carbon sequestration, and thus the forest's effect on climate, as well as its commercial value. Although the availability of nutrients cannot be measured directly using remote sensing methods, fertility alters several vegetation traits detectable from the reflectance spectra of the forest stand, including its pigment content and water stress. However, forest reflectance is also influenced by other factors, such as species composition and stand age. Here, we present a case study demonstrating how data obtained using imaging spectroscopy is correlated with site fertility. The study was carried out in Hyytiälä, Finland, in the southern boreal forest zone. We used a database of state-owned forest stands including basic forestry variables and a site fertility index. To test the suitability of imaging spectroscopy with different spatial and spectral resolutions for site fertility mapping, we performed two airborne acquisitions using different sensor configurations. First, the sensor was flown at a high altitude with high spectral resolution resulting in a pixel size in the order of a tree crown. Next, the same area was flown to provide reflectance data with sub-meter spatial resolution. However, to maintain usable signal-to-noise ratios, several spectral channels inside the sensor were combined, thus reducing spectral resolution. We correlated a number of narrowband vegetation indices (describing canopy biochemical composition, structure, and photosynthetic activity) on site fertility. Overall, site fertility had a significant influence on the vegetation indices but the strength of the correlation depended on dominant species. We found that high spatial resolution data calculated from the spectra of sunlit parts of tree crowns had the strongest correlation with site fertility.
Scott, Durelle T.; Runkel, Robert L.; McKnight, Diane M.; Voelker, Bettina M.; Kimball, Briant A.; Carraway, Elizabeth R.
2003-01-01
An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.
Microbial communities and organic biomarkers in a Proterozoic-analog sinkhole.
Hamilton, T L; Welander, P V; Albrecht, H L; Fulton, J M; Schaperdoth, I; Bird, L R; Summons, R E; Freeman, K H; Macalady, J L
2017-11-01
Little Salt Spring (Sarasota County, FL, USA) is a sinkhole with groundwater vents at ~77 m depth. The entire water column experiences sulfidic (~50 μM) conditions seasonally, resulting in a system poised between oxic and sulfidic conditions. Red pinnacle mats occupy the sediment-water interface in the sunlit upper basin of the sinkhole, and yielded 16S rRNA gene clones affiliated with Cyanobacteria, Chlorobi, and sulfate-reducing clades of Deltaproteobacteria. Nine bacteriochlorophyll e homologues and isorenieratene indicate contributions from Chlorobi, and abundant chlorophyll a and pheophytin a are consistent with the presence of Cyanobacteria. The red pinnacle mat contains hopanoids, including 2-methyl structures that have been interpreted as biomarkers for Cyanobacteria. A single sequence of hpnP, the gene required for methylation of hopanoids at the C-2 position, was recovered in both DNA and cDNA libraries from the red pinnacle mat. The hpnP sequence was most closely related to cyanobacterial hpnP sequences, implying that Cyanobacteria are a source of 2-methyl hopanoids present in the mat. The mats are capable of light-dependent primary productivity as evidenced by 13 C-bicarbonate photoassimilation. We also observed 13 C-bicarbonate photoassimilation in the presence of DCMU, an inhibitor of electron transfer to Photosystem II. Our results indicate that the mats carry out light-driven primary production in the absence of oxygen production-a mechanism that may have delayed the oxygenation of the Earth's oceans and atmosphere during the Proterozoic Eon. Furthermore, our observations of the production of 2-methyl hopanoids by Cyanobacteria under conditions of low oxygen and low light are consistent with the recovery of these structures from ancient black shales as well as their paucity in modern marine environments. © 2017 The Authors. Geobiology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Hendriks, D.; Ball, S. M.; Van der Wegen, M.; Verkaik, J.; van Dam, A.
2016-12-01
We present a coupled groundwater-surface water model for the San Francisco Bay and Sacramento Valley that consists of a combination of a spatially-distributed groundwater model (Modflow) based on the USGS Central Valley model(1) and the Flexible Mesh (FM) surface water model of the Bay Area(2). With this coupled groundwater-surface water model, we assessed effects of climate, surface water abstractions and groundwater pumping on surface water and groundwater levels, groundwater-surface water interaction and infiltration/seepage fluxes. Results show that the effect of climate (high flow and low flow) on surface water and groundwater is significant and most prominent in upstream areas. The surface water abstractions cause significant local surface water levels decrease (over 2 m), which may cause inflow of bay water during low flow periods, resulting in salinization of surface water in more upstream areas. Groundwater level drawdown due to surface water withdrawal is moderate and limited to the area of the withdrawals. The groundwater pumping causes large groundwater level drawdowns (up to 0.8 m) and significant changes in seepage/infiltration fluxes in the model. However, the effect on groundwater-surface water exchange is relatively small. The presented model instrument gives a sound first impression of the effects of climate and water abstraction on both surface water and groundwater. The combination of Modflow and Flexible Mesh has potential for modelling of groundwater-surface water exchange in deltaic areas, also in other parts of the world. However, various improvements need to be made in order to make the simulation results useful in practice. In addition, a water quality aspect could be added to assess salinization processes as well as groundwater-surface water aspects of water and soil pollution. (1) http://ca.water.usgs.gov/projects/central-valley/central-valley-hydrologic-model.html (2) www.d3d-baydelta.org
NASA Technical Reports Server (NTRS)
Sun, X.; Jester, P. L.; Palm, S. P.; Abshire, J. B.; Spinhime, J. D.; Krainak, M. A.
2006-01-01
Si avalanche photodiode (APD) single photon counting modules (SPCMs) are used in the Geoscience Laser Altimeter System (GLAS) on Ice, Cloud, anti land Elevation Satellite (ICESat), currently in orbit measuring Earth surface elevation and atmosphere backscattering. These SPCMs are used to measure cloud and aerosol backscatterings to the GLAS laser light at 532-nm wavelength with 60-70% quantum efficiencies and up to 15 millions/s maximum count rates. The performance of the SPCMs has been closely monitored since ICESat launch on January 12, 2003. There has been no measurable change in the quantum efficiency, as indicated by the average photon count rates in response to the background light from the sunlit earth. The linearity and the afterpulsing seen from the cloud and surface backscatterings profiles have been the same as those during ground testing. The detector dark count rates monitored while the spacecraft was in the dark side of the globe have increased almost linearly at about 60 counts/s per day due to space radiation damage. The radiation damage appeared to be independent of the device temperature and power states. There was also an abrupt increase in radiation damage during the solar storm in 28-30 October 2003. The observed radiation damage is a factor of two to three lower than the expected and sufficiently low to provide useful atmosphere backscattering measurements through the end of the ICESat mission. To date, these SPCMs have been in orbit for more than three years. The accumulated operating time to date has reached 290 days (7000 hours). These SPCMs have provided unprecedented receiver sensitivity and dynamic range in ICESat atmosphere backscattering measurements.
Effects of Solar Dimming and Brightening on the Terrestrial Carbon Sink
NASA Astrophysics Data System (ADS)
Mercado, L. M.; Bellouin, N.; Sitch, S.; Boucher, O.; Huntingford, C.; Cox, P. M.
2008-12-01
A decrease in total solar radiation (Liepert, 2002, Stanhill and Cohen, 2001, Wild et al., 2005) has been observed at the earth surface over the 1950-1990 period, called solar dimming. Such dimming gradually started to transform into brightening in some regions of the world since the late 1980s (Wild et al. 2005). Both dimming and brightening are likely to be linked to an increase and decrease in cloud cover and scattering and absorption of light by tropospheric and stratospheric aerosols respectively (Kvalevag and Myhre, 2007). Theoretical and observational studies have shown that plant photosynthesis of forest and crop ecosystems is more efficient under diffuse light conditions (Gu et al., 2003, Niyogi et al., 2004, Oliveira et al., 2007, Roderick et al., 2001). However, this effect has not yet been accounted for in global carbon cycle simulations because such models lack the mechanism that includes the diffuse irradiance effects on photosynthesis. The aim of this study is to estimate the impact of changes in radiation during the 1900-2100 period on land productivity and carbon storage. We use an offline version of the land surface scheme of the Hadley centre model (Mercado et al., 2007) which has been modified to account for variations of direct and diffuse radiation on sunlit and shaded canopy photosynthesis. Additionally, we use short wave and photosynthetic active radiation fields reconstructed from the Hadley centre climate model which takes into account the scattering and absorption of light by tropospheric and stratospheric aerosols. We describe the simulation of the land carbon cycle through the dimming-brightening periods, and diagnose the impact that changes in diffuse radiation had on the land carbon sink. We also discuss the implications of these results for the future land carbon-sink, under likely changes in the atmospheric aerosol loading.
Io's Sodium Cloud (Clear and Green-Yellow Filters)
NASA Technical Reports Server (NTRS)
1997-01-01
The green-yellow filter and clear filter images of Io which were released over the past two days were originally exposed on the same frame. The camera pointed in slightly different directions for the two exposures, placing a clear filter image of Io on the top half of the frame, and a green-yellow filter image of Io on the bottom half of the frame. This picture shows that entire original frame in false color, the most intense emission appearing white.
East is to the right. Most of Io's visible surface is in shadow, though one can see part of an illuminated crescent on its western side. The burst of white light near Io's eastern equatorial edge (most distinctive in the green filter image) is sunlight scattered by the plume of the volcano Prometheus.There is much more bright light near Io in the clear filter image, since that filter's wider wavelength range admits more scattered light from Prometheus' sunlit plume and Io's illuminated crescent. Thus in the clear filter image especially, Prometheus's plume was bright enough to produce several white spikes which extend radially outward from the center of the plume emission. These spikes are artifacts produced by the optics of the camera. Two of the spikes in the clear filter image appear against Io's shadowed surface, and the lower of these is pointing towards a bright round spot. That spot corresponds to thermal emission from the volcano Pele.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.2007-07-26
A surge in brightness appears on the rings directly opposite the Sun from the Cassini spacecraft. This "opposition surge" travels across the rings as the spacecraft watches. This view looks toward the sunlit side of the rings from about 9 degrees below the ringplane. The image was taken in visible light with the Cassini spacecraft wide-angle camera on June 12, 2007 using a spectral filter sensitive to wavelengths of infrared light centered at 853 nanometers. The view was acquired at a distance of approximately 524,374 kilometers (325,830 miles) from Saturn. Image scale is 31 kilometers (19 miles) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA08992
Deep Space Detection of Oriented Ice Crystals
NASA Astrophysics Data System (ADS)
Marshak, A.; Varnai, T.; Kostinski, A. B.
2017-12-01
The deep space climate observatory (DSCOVR) spacecraft resides at the first Lagrangian point about one million miles from Earth. A polychromatic imaging camera onboard delivers nearly hourly observations of the entire sun-lit face of the Earth. Many images contain unexpected bright flashes of light over both ocean and land. We constructed a yearlong time series of flash latitudes, scattering angles and oxygen absorption to demonstrate conclusively that the flashes over land are specular reflections off tiny ice crystals floating in the air nearly horizontally. Such deep space detection of tropospheric ice can be used to constrain the likelihood of oriented crystals and their contribution to Earth albedo.
Radiation transfer and stellar atmospheres
NASA Astrophysics Data System (ADS)
Swihart, T. L.
This is a revised and expanded version of the author's Basic Physics of Stellar Atmospheres, published in 1971. The equation of transfer is considered, taking into account the intensity and derived quantities, the absorption coefficient, the emission coefficient, the source function, and special integrals for plane media. The gray atmosphere is discussed along with the nongray atmosphere, and aspects of line formation. Topics related to polarization are explored, giving attention to pure polarized radiation, general polarized radiation, transfer in a magnetic plasma, and Rayleigh scattering and the sunlit sky. Physical and astronomical constants, and a number of problems related to the subjects of the book are presented in an appendix.
Spectral line discriminator for passive detection of fluorescence
NASA Technical Reports Server (NTRS)
Kebabian, Paul L. (Inventor)
1996-01-01
A method and apparatus for detecting fluorescence from sunlit plants is based on spectral line discrimination using the A-band and B-band absorption of atmospheric oxygen. Light from a plant including scattered sunlight and the fluorescence from chlorophyll is passed through a chopper into a cell containing low-pressure, high-purity oxygen. A-band or B-band wavelengths present in the light are absorbed by the oxygen in the cell. When the chopper is closed, the absorbed light is remitted as fluorescence into a detector. The intensity of the fluorescence from the oxygen is proportional to the intensity of fluorescence from the plant.
NASA Astrophysics Data System (ADS)
Gholizadeh, Hamed
Photosynthesis in aquatic and terrestrial ecosystems is the key component of the food chain and the most important driver of the global carbon cycle. Therefore, estimation of photosynthesis at large spatial scales is of great scientific importance and can only practically be achieved by remote sensing data and techniques. In this dissertation, remotely sensed information and techniques, as well as field measurements, are used to improve current approaches of assessing photosynthetic processes. More specifically, three topics are the focus here: (1) investigating the application of spectral vegetation indices as proxies for terrestrial chlorophyll in a mangrove ecosystem, (2) evaluating and improving one of the most common empirical ocean-color algorithms (OC4), and (3) developing an improved approach based on sunlit-to-shaded scaled photochemical reflectance index (sPRI) ratios for detecting drought signals in a deciduous forest at eastern United States. The results indicated that although the green normalized difference vegetation index (GNDVI) is an efficient proxy for terrestrial chlorophyll content, there are opportunities to improve the performance of vegetation indices by optimizing the band weights. In regards to the second topic, we concluded that the parameters of the OC4 algorithm and similar empirical models should be tuned regionally and the addition of sea-surface temperature makes the global ocean-color approaches more valid. Results obtained from the third topic showed that considering shaded and sunlit portions of the canopy (i.e., two-leaf models instead of single big leaf models) and taking into account the divergent stomatal behavior of the species (i.e. isohydric and anisohydric) can improve the capability of sPRI in detecting drought. In addition to investigating the photosynthetic processes, the other common theme of the three research topics is the evaluation of "off- the-shelf" solutions to remote-sensing problems. Although widely used approaches such as normalized difference vegetation index (NDVI) are easy to apply and are often efficient choices in remote sensing applications, the use of these approaches should be justified and their shortcomings need to be considered in the context of the research application. When developing new remote sensing approaches, special attention should be paid to (1) initial data analysis such as statistical data transformations (e.g. Tukey ladder-of-powers transformation) and (2) rigorous validation design by creating separate training and validation data sets preferably using both field measurements and satellite-based data. Developing a sound approach and applying a rigorous validation methodology go hand in hand. In sum, all approaches have advantages and disadvantages or as George Box puts it, "all models are wrong but some are useful".
Electrostatic Levitation of Fines on Asteroids
NASA Astrophysics Data System (ADS)
Lee, P.
1995-09-01
Electrostatic fields can develop at the surface of resistive asteroids exposed directly to solar radiation and to the solar wind. As on the Moon (e.g., [1-3]), the process may lead to the levitation and transport of charged grains, and contribute to winnowing asteroidal regoliths of their finest particle size fraction. Two commonly proposed mechanisms for the levitation of dust on the Moon are applied to asteroids. The first depends on global scale electrostatic fields and involves the development of a near-surface photoelectron layer over the asteroid's sunlit hemisphere [4,5] ; the second involves local fields near the terminator and particle charging by higher-energy photoelectron emission on the sunlit faces of blocks and other small-scale prominences [6,7]. Preliminary modeling results suggest that on a sufficiently resistive and slow-rotating asteroid at a heliocentric distance of 3 AU, the subsolar region evolves surface electrostatic fields of ~5 V/m^-1, while field intensities in the terminator zone may reach ~10^5 V/m^-1. Charged regolithic fines are easily levitated, their fate being a function of their charge and size. On a 20 km-radius chondritic main belt asteroid, particles up to ~100 microns across may be electro- statically accelerated to escape. Fines <=1 micron across are subject to radiation pressure and/or to solar wind drag as soon as they are lofted, and may be quickly entrained to escape even if initially launched at sub-escape velocities. Larger particles levitated in the sub-escape regime remain gravitationally bound to the asteroid and experience lateral transport along local electrostatic and gravity gradients. The particles may migrate across the asteroid's surface indefinitely or, more likely, until they settle in perenially shadowed areas and/or topographic lows (craters or grooves), thus smoothing the asteroid's topography and minimizing shadows. They will remain on the asteroid until ejected by impacts or until the particles are further comminuted by micrometeoritic sandblasting. Remote-sensing studies of asteroids and the examination of meteorite regolithic breccias indicate that, in comparison to the lunar regolith, asteroidal regoliths are generally deficient in fine-grained material <=100 microns across (i.e. in dust and agglutinates) (e.g., [8,9]). This characteristic, usually attributed to the preferential loss of smaller particles by micrometeoritic bombardment [10], may be in part due to electrostatic winnowing. Surface features on Phobos, Deimos and on asteroids 951 Gaspra and 243 Ida (regional albedo-topography relationships [11-13], dark-floored craters [11,14], grooves [11,15], blocks with possible basal debris aprons [16]) appear consistent with an electrophysical mobilization of fines. The inference from polarimetry [17] that the surfaces of M-type asteroids, which are thought to be metal-rich and thus unlikely to evolve strong fields, are finer-grained than most other types of asteroid surfaces suggests that the size of the smallest particles retained on asteroids may indeed be related to their electrophysical properties. Although many unknowns remain with regard to the actual electrophysical properties of asteroid surfaces and to the true effectiveness of the levitation mechanisms invoked, the available models predict interesting results. Electrostatic levitation offers an additional means of particle segregation, transport, and removal on asteroids. The process is expected to be more effective closer to the sun, on less massive objects, on asteroids with a slower spin rate, on the more resistive surfaces, over the more rugged terrain, for less dense particles, and for smaller grains. References: [1] Rennilson J. J. and Criswell D. R. (1974) Moon, 10, 121-142. [2] Berg O. E. et al. (1974) GRL, 1, 289. [3] Whipple E. C. (1981) Rept. Prog. Phys., 44, 1197-1250. [4] Singer S. F. and Walker E. H. (1962) Icarus, 1, 7-12. [5] Mendis D. A. et al. (1981) Astrophys. J., 249, 789-797. [6] Criswell D. R. (1973) in Photons and Particle Interactions with Surfaces in Space (R. Grard, ed.), 545-556. [7] De B. R. and Criswell D. R. (1977) JGR, 82, 999-1004. [8] McKay D. S. et al. (1989) in Asteroids II (R. Binzel et al., eds.), 617-642. [9] Bunch T. E. and Rajan R. S. (1988) in Meteorites and the Early Solar System (J. Kerridge and M. Matthews, eds.), 144-164. [10] Matson D. L. et al. (1977). Proc. LSC 8th, 1001-1011. [11] Thomas P. and Veverka J. (1979) in Asteroids (T. Gehrels, ed.), 628-651. [12] Helfenstein P. et al. (1994) Icarus, 107, 37-60. [13] Helfenstein P. et al. (1995) Icarus, submitted. [14] Sullivan R. et al. (1995) Icarus, submitted. [15] Veverka J. et al. (1994) Icarus, 107, 72-83. [16] Lee P. et al. (1995) Icarus, submitted. [17] Dollfus A. et al. (1989) in Asteroids II (R. Binzel et al., eds.), 594-616.
Xu, Zhijun; Yang, Xiao; Wei, Qichao; Zhao, Weilong; Cui, Beiliang; Yang, Xiaoning; Sahai, Nita
2018-06-11
Understanding the molecular mechanism of protein adsorption on solids is critical to their applications in materials synthesis and tissue engineering. Though the water phase at the surface/water interface has been recognized as three types: free water in the bulk region, intermediate water phase and surface-bound water layers adjacent to the surface, the roles of the water and surface in determining the protein adsorption are not clearly identified, particularly at the quantitative level. Herein, we provide a methodology involving the combination of microsecond strengthen sampling simulation and force integration to quantitatively characterize the water-induced contribution and the peptide-surface interactions into the adsorption free energy. Using hydroxyapatite and graphene surfaces as examples, we demonstrate how the distinct interfacial features dominate the delicate force balance between these two thermodynamics parameters, leading to surface preference/resistance to peptide adsorption. Specifically, the water layer provides sustained repelling force against peptide adsorption, as indicated by a monotonic increase in the water-induced free energy profile, whereas the contribution to the free energy from the surface effect is thermodynamically favorable, thus acting as the dominant driving force for peptide adsorptions. More importantly, the revealed adsorption mechanism is critically dictated by the distribution of water phase at the solid/water interface, which plays a crucial role in establishing the force balance between the interactions of the peptide with the water layer and the surface. For the HAP surface, the charged peptide exhibits strong binding affinity to the surface, which is ascribed to the controlling contribution of peptide-surface interaction in the intermediate water phase and the surface-bound water layers are observed as the origin of bioresistance of solid surfaces towards the adsorption of charge-neutral peptides. The preferred peptide adsorption on the graphene, however, is dominated by the surface-induced component at the water layers adjacent to the surface. Our results further elucidate that the intermediate water phase significantly shortens the effective range of the surface dispersion force to guide the diffusion of the peptide to the interface, in sharp contrast to the observation in interfacial systems involving the strong water-surface interaction.
NASA Astrophysics Data System (ADS)
De Haan, D. O.; Galloway, M. M.; Sharp, K. D.; Jiménez, N. G.
2014-12-01
The chemistry of water-soluble carbonyl compounds in clouds is now acknowledged as an important source of secondary organic aerosol. These reactive carbonyl compounds are oxidized to carboxylic acids and form oligomers by radical-radical reactions and by "dark reactions" with ammonium salts (AS) and/or amines. The latter class of reactions also produces light-absorbing brown carbon compounds, especially reactions involving methylglyoxal or glyoxal and amines. However, recent work has found that UV light fades the color of glyoxal + AS and methylgyloxal + AS reaction mixtures. We recently studied aldehyde-AS-amine reactions in sunlight and in control vessels at the same temperature to determine the effects of solar radiation on the aqueous-phase production of brown carbon. In sunlight, methylglyoxal reaction mixtures lost their initial color and failed to brown, indicating the photolytic loss of reactants and/or pre-brown intermediates. In many other reactions, brown products are lost to photolysis, reducing the overall browning of solutions exposed to sunlight. In other experiments, hydrogen peroxide was added to generate OH radicals by photolysis. In the presence of OH radicals, some carbonyl compound mixtures (e.g. those containing hydroxyacetone or glycolaldehyde) browned more rapidly when exposed to sunlight. This indicates the existence of uncharacterized photooxidative browning pathways involving aqueous-phase OH radicals, carbonyls, ammonium salts, and/or amine compounds.
NASA Technical Reports Server (NTRS)
Russell, P.; Livingston, J.; Schmid, B.; Eilers, J.; Kolyer, R.; Redemann, J.; Yee, J.-H.; Trepte, C.; Thomason, L.; Zawodny, J.
2003-01-01
The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) was operated aboard the NASA DC-8 during the Second SAGE III Ozone Loss and Validation Experiment (SOLVE II) and obtained successful measurements during the sunlit segments of eight science flights. These included six flights out of Kiruna, Sweden, one flight out of NASA Dryden Flight Research Center (DFRC), and the Kiruna-DFRC return transit flight. Values of spectral aerosol optical depth (AOD), columnar ozone and columnar water vapor have been derived from the AATS-14 measurements. In this paper, we focus on AATS-14 AOD data. In particular, we compare AATS-14 AOD spectra with temporally and spatially near-coincident measurements by the Stratospheric Aerosol and Gas Experiment III (SAGE III) and the Polar Ozone and Aerosol Measurement III (POAM III) satellite sensors. We examine the effect on retrieved AOD of uncertainties in relative optical airmass (the ratio of AOD along the instrument-to-sun slant path to that along the vertical path) at large solar zenith angles. Airmass uncertainties result fiom uncertainties in requisite assumed vertical profiles of aerosol extinction due to inhomogeneity along the viewing path or simply to lack of available data. We also compare AATS-14 slant path solar transmission measurements with coincident measurements acquired from the DC-8 by the NASA Langley Research Center Gas and Aerosol Measurement Sensor (GAMS).
Vinogradova, E B
2003-01-01
Seasonal patterns of oviposition in a synanthropic unautogenous population of Culex pipiens pipiens mosquitoes from 69 suburban settlements (60 degrees 30' N, 30 degrees E') of the Leningrad province were studied during the period 1998-2002 years. The numbers of egg rafts laid in six artificial pools (barrels) were counted every day; altogether 692 rafts were collected. The general patterns of oviposition activity were similar for all studied years, in spite of their differences in the summer temperature regimes. The first peak of oviposition was observed during the second decade of July, the second peak--during the third decade of July--the first decade of August. The first and second summer generations of mosquitoes were responsible for these oviposition peaks, whereas the third generation completely entered the reproductive diapause. Thus, the oviposition activity was successfully used for populational monitoring of C. p. pipiens, that was for the first time recommended by Madder and co-authors (1980), taking into consideration the simplicity and economy of this technique. The differences in the attractiveness of distinct reservoirs for oviposition were recorded. The females preferred the barrels located on open sun-lit space and waters with organic pollution settled by mosquito larvae. Windly and rainy weather and also low (below 10 degrees C) night temperatures suppressed mosquito oviposition.
MODFLOW-based coupled surface water routing and groundwater-flow simulation
Hughes, Joseph D.; Langevin, Christian D.; White, Jeremy T.
2015-01-01
In this paper, we present a flexible approach for simulating one- and two-dimensional routing of surface water using a numerical surface water routing (SWR) code implicitly coupled to the groundwater-flow process in MODFLOW. Surface water routing in SWR can be simulated using a diffusive-wave approximation of the Saint-Venant equations and/or a simplified level-pool approach. SWR can account for surface water flow controlled by backwater conditions caused by small water-surface gradients or surface water control structures. A number of typical surface water control structures, such as culverts, weirs, and gates, can be represented, and it is possible to implement operational rules to manage surface water stages and streamflow. The nonlinear system of surface water flow equations formulated in SWR is solved by using Newton methods and direct or iterative solvers. SWR was tested by simulating the (1) Lal axisymmetric overland flow, (2) V-catchment, and (3) modified Pinder-Sauer problems. Simulated results for these problems compare well with other published results and indicate that SWR provides accurate results for surface water-only and coupled surface water/groundwater problems. Results for an application of SWR and MODFLOW to the Snapper Creek area of Miami-Dade County, Florida, USA are also presented and demonstrate the value of coupled surface water and groundwater simulation in managed, low-relief coastal settings.
Morning Transition Tracer Experiments in a Deep Narrow Valley.
NASA Astrophysics Data System (ADS)
Whiteman, C. David
1989-07-01
Three sulfur hexafluoride atmospheric tracer experiments were conducted during the post-sunrise temperature inversion breakup period in the deep, narrow Brush Creek Valley of Colorado. Experiments were conducted under clear, undisturbed weather conditions.A continuous elevated tracer plume was produced along the axis of the valley before sunrise and the behavior of the plume during the inversion breakup period was detected down-valley from the release point using an array of radio-controlled sequential bag samplers, a vertical SF6 profiling system carried on a tethered balloon, two portable gas chromatographs operated on a sidewall of the valley, and a continuous real-time SF6 monitor operated from a research aircraft. Supporting meteorological data came primarily from tethered balloon profilers. The nocturnal elevated plume was carried and diffused in down-valley flows. After sunrise, convective boundary layers grew upward from the sunlit valley surfaces, fumigating the elevated plume onto the valley floor and sidewalls. Upslope flow developed in the growing convective boundary layers, carrying fumigated SF6 up the sidewalls and causing a compensating subsidence over the valley center. High post-sunrise SF6 concentrations were experienced on the northeast-facing sidewall of the northwest-southeast oriented valley as a result of cross-valley flow, which developed due to differential solar heating of the sidewalls. Reversal of the down-valley wind system brought air with lower SF6 concentrations into the lower valley.
A photosynthesis-based two-leaf canopy stomatal ...
A coupled photosynthesis-stomatal conductance model with single-layer sunlit and shaded leaf canopy scaling is implemented and evaluated in a diagnostic box model with the Pleim-Xiu land surface model (PX LSM) and ozone deposition model components taken directly from the meteorology and air quality modeling system—WRF/CMAQ (Weather Research and Forecast model and Community Multiscale Air Quality model). The photosynthesis-based model for PX LSM (PX PSN) is evaluated at a FLUXNET site for implementation against different parameterizations and the current PX LSM approach with a simple Jarvis function (PX Jarvis). Latent heat flux (LH) from PX PSN is further evaluated at five FLUXNET sites with different vegetation types and landscape characteristics. Simulated ozone deposition and flux from PX PSN are evaluated at one of the sites with ozone flux measurements. Overall, the PX PSN simulates LH as well as the PX Jarvis approach. The PX PSN, however, shows distinct advantages over the PX Jarvis approach for grassland that likely result from its treatment of C3 and C4 plants for CO2 assimilation. Simulations using Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) rather than LAI measured at each site assess how the model would perform with grid averaged data used in WRF/CMAQ. MODIS LAI estimates degrade model performance at all sites but one site having exceptionally old and tall trees. Ozone deposition velocity and ozone flux along with LH
Chlorophyll content retrieval from hyperspectral remote sensing imagery.
Yang, Xiguang; Yu, Ying; Fan, Wenyi
2015-07-01
Chlorophyll content is the essential parameter in the photosynthetic process determining leaf spectral variation in visible bands. Therefore, the accurate estimation of the forest canopy chlorophyll content is a significant foundation in assessing forest growth and stress affected by diseases. Hyperspectral remote sensing with high spatial resolution can be used for estimating chlorophyll content. In this study, the chlorophyll content was retrieved step by step using Hyperion imagery. Firstly, the spectral curve of the leaf was analyzed, 25 spectral characteristic parameters were identified through the correlation coefficient matrix, and a leaf chlorophyll content inversion model was established using a stepwise regression method. Secondly, the pixel reflectance was converted into leaf reflectance by a geometrical-optical model (4-scale). The three most important parameters of reflectance conversion, including the multiple scattering factor (M 0 ), and the probability of viewing the sunlit tree crown (P T ) and the background (P G ), were estimated by leaf area index (LAI), respectively. The results indicated that M 0 , P T , and P G could be described as a logarithmic function of LAI, with all R (2) values above 0.9. Finally, leaf chlorophyll content was retrieved with RMSE = 7.3574 μg/cm(2), and canopy chlorophyll content per unit ground surface area was estimated based on leaf chlorophyll content and LAI. Chlorophyll content mapping can be useful for the assessment of forest growth stage and diseases.
Wetlands inform how climate extremes influence surface water expansion and contraction
NASA Astrophysics Data System (ADS)
Vanderhoof, Melanie K.; Lane, Charles R.; McManus, Michael G.; Alexander, Laurie C.; Christensen, Jay R.
2018-03-01
Effective monitoring and prediction of flood and drought events requires an improved understanding of how and why surface water expansion and contraction in response to climate varies across space. This paper sought to (1) quantify how interannual patterns of surface water expansion and contraction vary spatially across the Prairie Pothole Region (PPR) and adjacent Northern Prairie (NP) in the United States, and (2) explore how landscape characteristics influence the relationship between climate inputs and surface water dynamics. Due to differences in glacial history, the PPR and NP show distinct patterns in regards to drainage development and wetland density, together providing a diversity of conditions to examine surface water dynamics. We used Landsat imagery to characterize variability in surface water extent across 11 Landsat path/rows representing the PPR and NP (images spanned 1985-2015). The PPR not only experienced a 2.6-fold greater surface water extent under median conditions relative to the NP, but also showed a 3.4-fold greater change in surface water extent between drought and deluge conditions. The relationship between surface water extent and accumulated water availability (precipitation minus potential evapotranspiration) was quantified per watershed and statistically related to variables representing hydrology-related landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density). To investigate the influence stream connectivity has on the rate at which surface water leaves a given location, we modeled stream-connected and stream-disconnected surface water separately. Stream-connected surface water showed a greater expansion with wetter climatic conditions in landscapes with greater total wetland area, but lower total wetland density. Disconnected surface water showed a greater expansion with wetter climatic conditions in landscapes with higher wetland density, lower infiltration and less anthropogenic drainage. From these findings, we can expect that shifts in precipitation and evaporative demand will have uneven effects on surface water quantity. Accurate predictions regarding the effect of climate change on surface water quantity will require consideration of hydrology-related landscape characteristics including wetland storage and arrangement.
Albedo of Permanently Shadowed Regions of the Lunar Poles
NASA Astrophysics Data System (ADS)
Riner, M. A.; Lucey, P. G.; Bussey, B.; Cahill, J. T.; McGovern, A.
2012-12-01
Due to the slight tilt in the Moon's spin axis, some topographic depressions near the lunar poles experience permanent shadow and may serve as cold traps, harboring water ice and/or other volatile compounds [1]. Permanently shadowed regions (PSRs) provide an opportunity toward understanding the amount, nature and transport of volatiles on the Moon and may also be a potential resource for human exploration. While many different data sets have suggested the presence of water ice in PSRs near the lunar poles many questions remain. For example, ice does not appear to be uniformly distributed across identified PSRs. More work is needed to understand the distribution of ice in PSRs and how delivery and retention mechanisms influence the distribution. The active illumination of the Lunar Orbiter Laser Altimeter (LOLA) provides a unique contribution toward exploration PSR exploration. While LOLA is principally a laser altimeter used for quantitative topography and related cartographic and geodetic applications [2], LOLA also measures the intensity and width of the return laser pulse (1064 nm) from the surface. Here we use a global mosaic (4 pixels per degree) of LOLA albedo data corrected for instrumental drift, irregular variations, and calibrated to normal albedo using local equatorial measurements of normal albedo obtained by the Kaguya Multiband Imager [3]. Recent work using LOLA albedo shows the floor of Shackleton crater, near the lunar south pole, is brighter than the surrounding terrain (and the interior of nearby craters) at 1064 nm [4]. This albedo difference may be due to decreased space weathering due to shadowing from the Sun or to a 1 μm thick layer with 20% water ice a the surface of the crater floor [4]. Here we use LOLA dayside reflectance measurements to examine the albedo of PSRs catalogued by [5] derived from illumination modeling of a hybrid 100 m/pixel LOLA-LROC digital terrain model (DTM) up to 83° north and south latitudes. The upper latitude limit is due to a complete loss of received laser signal as the spacecraft crosses the terminator due to thermal contraction of insulating blankets that pull the LOLA telescope out of alignment with the detectors. Fortuitously, two of the five laser spots reposition onto detectors after a transition period, so good laser range is obtained on a portion of the lunar night side. Additional calibration of night side reflectance data pole ward of 83° is ongoing [4]. The albedo of measured permanently shaded regions is 0.31 +/- 0.031 (1σ) compared to 0.31 +/- 0.033 (1σ) for measured sunlit regions from 60-80° north and south latitudes. This suggests that the high albedo of the floor of Shackleton is either unique or that the cause of the high albedo only acts at higher latitudes. Additional study of PSRs pole ward of 83° from LOLA night side data and examination of individual orbit tracks through PSRs may help elucidate the relationship between PSRs and albedo and contribute to understanding of these unique thermal environments, distribution of ice in PSRs, and volatile delivery and retention mechanisms. [1] Ingersoll et al. (1992) Icarus, 100, 40-47. [2] Smith et al. (2010) Space Sci. Rev., 150, 209-241. [3] Riner and Lucey (2011) AGU Fall Meeting, #P13D-1707. [4] Zuber et al. (2012) Nature, 486, 378-381. [5] McGovern et al. (2012), Icarus, accepted pending final review.
Gonthier, G.J.; Kleiss, B.A.
1996-01-01
The U.S. Geological Survey, working in cooperation with the U.S. Army Corps of Engineers, Waterways Experiment Station, collected surface-water and ground-water data from 119 wells and 13 staff gages from September 1989 to September 1992 to describe ground-water flow patterns and water budget in the Black Swamp, a bottomland forested wetland in eastern Arkansas. The study area was between two streamflow gaging stations located about 30.5 river miles apart on the Cache River. Ground-water flow was from northwest to southeast with some diversion toward the Cache River. Hydraulic connection between the surface water and the alluvial aquifer is indicated by nearly equal changes in surface-water and ground-water levels near the Cache River. Diurnal fluctuations of hydraulic head ranged from more than 0 to 0.38 feet and were caused by evapotranspiration. Changes in hydraulic head of the alluvial aquifer beneath the wetland lagged behind stage fluctuations and created the potential for changes in ground-water movement. Differences between surface-water levels in the wetland and stage of the Cache River created a frequently occurring local ground-water flow condition in which surface water in the wetland seeped into the upper part of the alluvial aquifer and then seeped into the Cache River. When the Cache River flooded the wetland, ground water consistently seeped to the surface during falling surface-water stage and surface water seeped into the ground during rising surface-water stage. Ground-water flow was a minor component of the water budget, accounting for less than 1 percent of both inflow and outflow. Surface-water drainage from the study area through diversion canals was not accounted for in the water budget and may be the reason for a surplus of water in the budget. Even though ground-water flow volume is small compared to other water budget components, ground-water seepage to the wetland surface may still be vital to some wetland functions.
MODFLOW-Based Coupled Surface Water Routing and Groundwater-Flow Simulation.
Hughes, J D; Langevin, C D; White, J T
2015-01-01
In this paper, we present a flexible approach for simulating one- and two-dimensional routing of surface water using a numerical surface water routing (SWR) code implicitly coupled to the groundwater-flow process in MODFLOW. Surface water routing in SWR can be simulated using a diffusive-wave approximation of the Saint-Venant equations and/or a simplified level-pool approach. SWR can account for surface water flow controlled by backwater conditions caused by small water-surface gradients or surface water control structures. A number of typical surface water control structures, such as culverts, weirs, and gates, can be represented, and it is possible to implement operational rules to manage surface water stages and streamflow. The nonlinear system of surface water flow equations formulated in SWR is solved by using Newton methods and direct or iterative solvers. SWR was tested by simulating the (1) Lal axisymmetric overland flow, (2) V-catchment, and (3) modified Pinder-Sauer problems. Simulated results for these problems compare well with other published results and indicate that SWR provides accurate results for surface water-only and coupled surface water/groundwater problems. Results for an application of SWR and MODFLOW to the Snapper Creek area of Miami-Dade County, Florida, USA are also presented and demonstrate the value of coupled surface water and groundwater simulation in managed, low-relief coastal settings. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Vanderhoof, M.; Lane, C.; McManus, M.; Alexander, L. C.; Christensen, J.
2017-12-01
Surface-water extent, duration and movement will depend not only on climatic inputs but also the relative importance of different hydrologic pathways (e.g., surface storage, infiltration, evapotranspiration, stream outflows). We mapped surface-water extent from historic drought years to historic wet years spanning 1985 - 2015 across eleven Landsat path/rows representing the Prairie Pothole Region (PPR) and adjacent Northern Prairie of the United States. The PPR not only experienced a greater surface water extent under median conditions (2.6 times more) relative to the adjacent Northern Prairie, but showed a greater difference between drought and deluge conditions as well (range averaged 8.5 ha surface water km-2 relative to 2.5 ha surface water km-2 for the PPR and Northern Prairie, respectively). To explain the spatial variability in the amount of surface water expansion and contraction we used a two-stage modeling approach. First, surface-water extent was regressed on accumulated water availability (precipitation minus potential evapotranspiration). The slope of surface-water extent to climate inputs (per watershed) was our dependent variable in the second stage. That slope was regressed against independent variables representing hydrology-related landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density). Stream-connected surface water can leave via stream flow, influencing the rate at which surface-water may leave a location, therefore stream-connected and disconnected surface water were analyzed separately. Stream-connected surface water responded more strongly to wetter climatic conditions (i.e., accumulated) in landscapes with more lakes and less artificial drainage (e.g., ditching, tile drainage). Disconnected surface water responded more strongly to wetter climatic conditions when landscapes contained greater wetland density, fewer streams and a lower predicted rate of infiltration. From these findings, we can expect that the relationship between upstream and downstream waters will require consideration of hydrology-related landscape characteristics, and that climate-change related shifts in precipitation and evaporative demand will have an uneven effect on surface water expansion and contraction across the landscape.
NASA Astrophysics Data System (ADS)
Ito, Shunya; Kasuya, Motohiro; Kurihara, Kazue; Nakagawa, Masaru
2018-02-01
We measured the surface forces generated between fused silica surfaces in a low-viscosity oleophilic diacrylate monomer for reliably repeated ultraviolet (UV) nanoimprinting, and studied the influence of water in monomer liquids on the forces. Fused silica surfaces, with a static contact angle of 52.6 ± 1.7° for water, owing to the low degree of hydroxylation, hardly showed reproducible surface forces with repeated scan cycles, comprising approach and separation, even in an identical liquid monomer medium with both of low and high water content. The monomer liquid with a high water content of approximately 420 ppm showed a greater tendency to increase the surface forces at longer surface-surface distances compared with the monomer liquid with a low water content of approximately 60 ppm. On the other hand, silica surfaces with a water contact angle of < 5° after exposure to vacuum UV (VUV) light under a reduced air pressure showed reproducible profiles of surfaces forces using the monomer with a low water concentration of approximately 60 ppm for repeated surface forces scan cycles even in separately prepared silica surfaces, whilst they showed less reproducible profiles in the liquids with high water content of 430 ppm. These results suggested that water possibly adsorbed on the hydrophilic and hydrophobic silica surfaces in the monomer liquid of the high water concentration influenced the repeatability of the surface forces profiles.
NASA Astrophysics Data System (ADS)
Speyerer, E.; Koeber, S.; Robinson, M. S.
2010-12-01
The spin axis of the Moon is tilted by only 1.5° (compared with the Earth's 23.5°), leaving some areas near the poles in permanent shadow while other nearby regions remain sunlit for a majority of the year. Theory, radar data, neutron measurements, and Lunar CRater Observation and Sensing Satellite (LCROSS) observations suggest that volatiles may be present in the cold traps created inside these permanently shadowed regions. While areas of near permanent illumination are prime locations for future lunar outposts due to benign thermal conditions and near constant solar power. The Lunar Reconnaissance Orbiter (LRO) has two imaging systems that provide medium and high resolution views of the poles. During almost every orbit the LROC Wide Angle Camera (WAC) acquires images at 100 m/pixel of the polar region (80° to 90° north and south latitude). In addition, the LROC Narrow Angle Camera (NAC) targets selected regions of interest at 0.7 to 1.5 m/pixel [Robinson et al., 2010]. During the first 11 months of the nominal mission, LROC acquired almost 6,000 WAC images and over 7,300 NAC images of the polar region (i.e., within 2° of pole). By analyzing this time series of WAC and NAC images, regions of permanent shadow and permanent, or near-permanent illumination can be quantified. The LROC Team is producing several reduced data products that graphically illustrate the illumination conditions of the polar regions. Illumination movie sequences are being produced that show how the lighting conditions change over a calendar year. Each frame of the movie sequence is a polar stereographic projected WAC image showing the lighting conditions at that moment. With the WAC’s wide field of view (~100 km at an altitude of 50 km), each frame has repeat coverage between 88° and 90° at each pole. The same WAC images are also being used to develop multi-temporal illumination maps that show the percent each 100 m × 100 m area is illuminated over a period of time. These maps are derived by stacking all the WAC frames, selecting a threshold to determine if the surface is illuminated, and summing the resulting binary images. In addition, mosaics of NAC images are also being produced for regions of interest at a scale of 0.7 to 1.5 m/pixel. The mosaics produced so far have revealed small illuminated surfaces on the tens of meters scale that were previously thought to be shadowed during that time. The LROC dataset of the polar regions complements previous illumination analysis of Clementine images [Bussey et al., 1999], Kaguya topography [Bussey et al., 2010], and the current efforts underway by the Lunar Orbiter Laser Altimeter (LOLA) Team [Mazarico et al., 2010] and provide an important new dataset for science and exploration. References: Bussey et al. (1999), Illumination conditions at the lunar south pole, Geophysical Research Letters, 26(9), 1187-1190. Bussey et al. (2010), Illumination conditions of the south pole of the Moon derived from Kaguya topography, Icarus, 208, 558-564. Mazarico et al. (2010), Illumination of the lunar poles from the Lunar Orbiter Laser Altimeter (LOLA) Topography Data, paper presented at 41st LPSC, Houston, TX. Robinson et al. (2010), Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview, Space Sci Rev, 150, 81-124.
NASA Astrophysics Data System (ADS)
Harbeitner, R.; Sudek, S.; Choi, C. J.; Bird, L.; Worden, A. Z.
2016-12-01
We are investigating variability in marine microbial communities in the sunlit photic zone, the mesopelagic "twilight" zone, and the deep sea. To establish an understanding that allows assessment of future change, consistent methods are being used across three North Pacific Ocean cruises. We will characterize vertical distributions and temporal variability by flow cytometry and 16S rRNA gene sequencing (V1-V2 Illumina amplicons). Stations were sampled in the Monterey Bay Canyon, including a shallow depth station (600 m) with relatively high terrestrial input, deeper stations (1000 and 1800 m), and above an offshore seamount (1400 m). At all stations, the cyanobacterium Synechococcus was more abundant than Prochlorococcus in the photic zone and at the shallowest station, photosynthetic eukaryotes dominated. Heterotrophic bacteria abundances were similar (1,132,886 ± 316,914 ml-1) at the chlorophyll maximum in photic zone samples. Within the mesopelagic, at 600 m depth, bacterial abundances were similar (98,632-104,075 ml-1). Below 600 m, the seamount station had lower abundances (49,050 ± 8,473 ml-1) than canyon stations (71,799 ± 10,425 ml-1). We also performed experiments in newly designed gas permeable in situ incubators using water from just above the sediment-seawater interface at canyon sites of 1000 and 1800 m depth. Organic matter (OM)-amended treatments and controls were sampled at 0, 1, 5, and 24 days. Bacteria abundance increased with OM addition after 1 day (e.g. control 68,856 ± 6,826 ml-1, amended 98,088 ± 199 ml-1) and by 24 days increased 6-fold, with no statistical difference between controls and OM treatments. The results that will be presented from these experiments and ongoing diversity analyses are providing new insights into microbial distributions and activities over vertical gradients in the ocean. We are investigating variability in marine microbial communities in the sunlit photic zone, the mesopelagic "twilight" zone, and the deep sea. To establish an understanding that allows assessment of future change, consistent methods are being used across three North Pacific Ocean cruises. We will characterize vertical distributions and temporal variability by flow cytometry and 16S rRNA gene sequencing (V1-V2 Illumina amplicons). Stations were sampled in the Monterey Bay Canyon, including a shallow depth station (600 m) with relatively high terrestrial input, deeper stations (1000 and 1800 m), and above an offshore seamount (1400 m). At all stations, the cyanobacterium Synechococcus was more abundant than Prochlorococcus in the photic zone and at the shallowest station, photosynthetic eukaryotes dominated. Heterotrophic bacteria abundances were similar (1,132,886 ± 316,914 ml-1) at the chlorophyll maximum in photic zone samples. Within the mesopelagic, at 600 m depth, bacterial abundances were similar (98,632-104,075 ml-1). Below 600 m, the seamount station had lower abundances (49,050 ± 8,473 ml-1) than canyon stations (71,799 ± 10,425 ml-1). We also performed experiments in newly designed gas permeable in situ incubators using water from just above the sediment-seawater interface at canyon sites of 1000 and 1800 m depth. Organic matter (OM)-amended treatments and controls were sampled at 0, 1, 5, and 24 days. Bacteria abundance increased with OM addition after 1 day (e.g. control 68,856 ± 6,826 ml-1, amended 98,088 ± 199 ml-1 ) and by 24 days increased 6-fold, with no statistical difference between controls and OM treatments. The results that will be presented from these experiments and ongoing diversity analyses are providing new insights into microbial distributions and activities over vertical gradients in the ocean.
Ozbilgin, M.M.; Dickerman, D.C.
1984-01-01
The two-dimensional finite-difference model for simulation of groundwater flow was modified to enable simulation of surface-water/groundwater interactions during periods of low streamflow. Changes were made to the program code in order to calculate surface-water heads for, and flow either to or from, contiguous surface-water bodies; and to allow for more convenient data input. Methods of data input and output were modified and entries (RSORT and HDRIVER) were added to the COEF and CHECKI subroutines to calculate surface-water heads. A new subroutine CALC was added to the program which initiates surface-water calculations. If CALC is not specified as a simulation option, the program runs the original version. The subroutines which solve the ground-water flow equations were not changed. Recharge, evapotranspiration, surface-water inflow, number of wells, pumping rate, and pumping duration can be varied for any time period. The Manning formula was used to relate stream depth and discharge in surface-water streams. Interactions between surface water and ground water are represented by the leakage term in the ground-water flow and surface-water mass balance equations. Documentation includes a flow chart, data deck instructions, input data, output summary, and program listing. Numerical results from the modified program are in good agreement with published analytical results. (USGS)
Wetlands inform how climate extremes influence surface water expansion and contraction
Vanderhoof, Melanie; Lane, Charles R.; McManus, Michael L.; Alexander, Laurie C.; Christensen, Jay R.
2018-01-01
Effective monitoring and prediction of flood and drought events requires an improved understanding of how and why surface water expansion and contraction in response to climate varies across space. This paper sought to (1) quantify how interannual patterns of surface water expansion and contraction vary spatially across the Prairie Pothole Region (PPR) and adjacent Northern Prairie (NP) in the United States, and (2) explore how landscape characteristics influence the relationship between climate inputs and surface water dynamics. Due to differences in glacial history, the PPR and NP show distinct patterns in regards to drainage development and wetland density, together providing a diversity of conditions to examine surface water dynamics. We used Landsat imagery to characterize variability in surface water extent across 11 Landsat path/rows representing the PPR and NP (images spanned 1985–2015). The PPR not only experienced a 2.6-fold greater surface water extent under median conditions relative to the NP, but also showed a 3.4-fold greater change in surface water extent between drought and deluge conditions. The relationship between surface water extent and accumulated water availability (precipitation minus potential evapotranspiration) was quantified per watershed and statistically related to variables representing hydrology-related landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density). To investigate the influence stream connectivity has on the rate at which surface water leaves a given location, we modeled stream-connected and stream-disconnected surface water separately. Stream-connected surface water showed a greater expansion with wetter climatic conditions in landscapes with greater total wetland area, but lower total wetland density. Disconnected surface water showed a greater expansion with wetter climatic conditions in landscapes with higher wetland density, lower infiltration and less anthropogenic drainage. From these findings, we can expect that shifts in precipitation and evaporative demand will have uneven effects on surface water quantity. Accurate predictions regarding the effect of climate change on surface water quantity will require consideration of hydrology-related landscape characteristics including wetland storage and arrangement.
NASA Technical Reports Server (NTRS)
Segal, M.; Pielke, R. A.
1985-01-01
Simulations of the thermally induced breeze involved with a relatively narrow, elongated water body is presented in conjunction with evaluations of sensible heat fluxes in a stable marine atmospheric surface layer. The effect of the water surface temperature and of the large-scale synoptic winds on the development of surface flows over the water is examined. As implied by the sensible heat flux patterns, the simulation results reveal the following trends: (1) when the synoptic flow is absent or light, the induced surface breeze is not affected noticeably by a reduction of the water surface temperature; and (2) for stronger synoptic flow, the resultant surface flow may be significantly affected by the water surface temperature.
First-principles study of water desorption from montmorillonite surface.
Zhang, Yao; Meng, Yingfeng; Liu, Houbin; Yang, Mingli
2016-05-01
Knowledge about water desorption is important to give a full picture of water diffusion in montmorillonites (MMT), which is a driving factor in MMT swelling. The desorption paths and energetics of water molecules from the surface of MMT with trapped Li(+), Na(+) or K(+) counterions were studied using periodic density functional theory calculations. Two paths--surface and vacuum desorption--were designed for water desorption starting from a stationary structure in which water bonds with both the counterion and the MMT surface. Surface desorption is energetically more favorable than vacuum desorption due to water-surface hydrogen bonds that help stabilize the intermediate structure of water released from the counterion. The energy barriers of water desorption are in the order of Li(+) > Na(+) > K(+), which can be attributed to the short ionic radius of Li(+), which favors strong binding with the water molecule. The temperature dependence of water adsorption and desorption rates were compared based on the computed activation energies. Our calculations reveal that the water desorption on the MMT surface has a different mechanism from water adsorption, which results from surface effects favoring stabilization of water conformers during the desorption process.
Long, Jiangyou; Fan, Peixun; Gong, Dingwei; Jiang, Dafa; Zhang, Hongjun; Li, Lin; Zhong, Minlin
2015-05-13
Superhydrophobic surfaces with tunable water adhesion have attracted much interest in fundamental research and practical applications. In this paper, we used a simple method to fabricate superhydrophobic surfaces with tunable water adhesion. Periodic microstructures with different topographies were fabricated on copper surface via femtosecond (fs) laser irradiation. The topography of these microstructures can be controlled by simply changing the scanning speed of the laser beam. After surface chemical modification, these as-prepared surfaces showed superhydrophobicity combined with different adhesion to water. Surfaces with deep microstructures showed self-cleaning properties with extremely low water adhesion, and the water adhesion increased when the surface microstructures became flat. The changes in surface water adhesion are attributed to the transition from Cassie state to Wenzel state. We also demonstrated that these superhydrophobic surfaces with different adhesion can be used for transferring small water droplets without any loss. We demonstrate that our approach provides a novel but simple way to tune the surface adhesion of superhydrophobic metallic surfaces for good potential applications in related areas.
Chen, Ying; Bylaska, Eric J; Weare, John H
2017-03-31
Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite [α-Fe(OOH)]. Ab initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Several exchange correlation functionals were employed (PBE96, PBE96 + Grimme, and PBE0) in the simulations of a (3 × 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a = 30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick). The lowest energy goethite (100) surface termination model was determined to have an exposed surface Fe 3+ that was loosely capped by a water molecule and a shared hydroxide with a neighboring surface Fe 3+ . The water molecules capping surface Fe 3+ ions were found to be loosely bound at all DFT levels with and without Grimme corrections, indicative that each surface Fe 3+ was coordinated with only five neighbors. These long bonds were supported by bond valence theory calculations, which showed that the bond valence of the surface Fe 3+ was saturated and surface has a neutral charge. The polarization of the water layer adjacent to the surface was found to be small and affected only the nearest water. Analysis by density difference plots and localized Boys orbitals identified three types of water molecules: those loosely bound to the surface Fe 3+ , those hydrogen bonded to the surface hydroxyl, and bulk water with tetrahedral coordination. Boys orbital analysis showed that the spin down lone pair orbital of the weakly absorbed water interact more strongly with the spin up Fe 3+ ion. These weakly bound surface water molecules were found to rapidly exchange with the second water layer (~0.025 exchanges/ps) using a dissociative mechanism. Water molecules adjacent to the surface were found to only weakly interact with the surface and as a result were readily able to exchange with the bulk water. To account for the large surface Fe-OH 2 distances in the DFT calculations it was proposed that the surface Fe 3+ atoms, which already have their bond valence fully satisfied with only five neighbors, are under-coordinated with respect to the bulk coordination. Graphical abstract All first principle calculations, at all practically achievable levels, for the goethite 100 aqueous interface support a long bond and weak interaction between the exposed surface Fe 3+ and water molecules capping the surface. This result is supported by bond valence theory calculations and is indicative that each surface Fe 3+ is coordinated with only 5 neighbors.
Emission of dimers from a free surface of heated water
NASA Astrophysics Data System (ADS)
Bochkarev, A. A.; Polyakova, V. I.
2014-09-01
The emission rate of water dimers from a free surface and a wetted solid surface in various cases was calculated by a simplified Monte Carlo method with the use of the binding energy of water molecules. The binding energy of water molecules obtained numerically assuming equilibrium between the free surface of water and vapor in the temperature range of 298-438 K corresponds to the coordination number for liquid water equal to 4.956 and is close to the reference value. The calculation results show that as the water temperature increases, the free surface of water and the wetted solid surface become sources of free water dimers. At a temperature of 438 K, the proportion of dimers in the total flow of water molecules on its surface reaches 1%. It is found that in the film boiling mode, the emission rate of dimers decreases with decreasing saturation vapor. Two mechanisms of the emission are described.
Lunar Reconnaissance Orbiter Camera (LROC) instrument overview
Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; Caplinger, M.A.; Ghaemi, F.T.; Schaffner, J.A.; Malin, M.C.; Mahanti, P.; Bartels, A.; Anderson, J.; Tran, T.N.; Eliason, E.M.; McEwen, A.S.; Turtle, E.; Jolliff, B.L.; Hiesinger, H.
2010-01-01
The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) and Narrow Angle Cameras (NACs) are on the NASA Lunar Reconnaissance Orbiter (LRO). The WAC is a 7-color push-frame camera (100 and 400 m/pixel visible and UV, respectively), while the two NACs are monochrome narrow-angle linescan imagers (0.5 m/pixel). The primary mission of LRO is to obtain measurements of the Moon that will enable future lunar human exploration. The overarching goals of the LROC investigation include landing site identification and certification, mapping of permanently polar shadowed and sunlit regions, meter-scale mapping of polar regions, global multispectral imaging, a global morphology base map, characterization of regolith properties, and determination of current impact hazards.
2018-01-15
In this view, individual layers of haze can be distinguished in the upper atmosphere of Titan, Saturn's largest moon. Titan's atmosphere features a rich and complex chemistry originating from methane and nitrogen and evolving into complex molecules, eventually forming the smog that surrounds the moon. This natural color image was taken in visible light with the Cassini spacecraft wide-angle camera on March 31, 2005, at a distance of approximately 20,556 miles (33,083 kilometers) from Titan. The view looks toward the north polar region on the moon's night side. Part of Titan's sunlit crescent is visible at right. The Cassini spacecraft ended its mission on Sept. 15, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21902
NASA Technical Reports Server (NTRS)
1998-01-01
The STS-95 patch, designed by the crew, is intended to reflect the scientific, engineering, and historic elements of the mission. The Space Shuttle Discovery is shown rising over the sunlit Earth limb, representing the global benefits of the mission science and the solar science objectives of the Spartan Satellite. The bold number '7' signifies the seven members of Discovery's crew and also represents a historical link to the original seven Mercury astronauts. The STS-95 crew member John Glenn's first orbital flight is represented by the Friendship 7 capsule. The rocket plumes symbolize the three major fields of science represented by the mission payloads: microgravity material science, medical research for humans on Earth and in space, and astronomy.
Earth - South America (first frame of Earth Spin Movie)
NASA Technical Reports Server (NTRS)
1990-01-01
This color image of the Earth was obtained by Galileo at about 6:10 a.m. Pacific Standard Time on Dec. 11, 1990, when the spacecraft was about 1.3 million miles from the planet during the first of two Earth flybys on its way to Jupiter. The color composite used images taken through the red, green and violet filters. South America is near the center of the picture, and the white, sunlit continent of Antarctica is below. Picturesque weather fronts are visible in the South Atlantic, lower right. This is the first frame of the Galileo Earth spin movie, a 500- frame time-lapse motion picture showing a 25-hour period of Earth's rotation and atmospheric dynamics.
The dissociative recombination of O2/+/ in the ionosphere
NASA Technical Reports Server (NTRS)
Torr, M. R.; Torr, D. G.
1981-01-01
Aeronomical determinations of the dissociative recombination reaction rate coefficient for O2(+) and alpha depend directly on a knowledge of the rate coefficient for the charge exchange of O(+) with O2 and k. The aeronomical determination of alpha is reevaluated using Atmosphere Explorer satellite data in light of a subsequent laboratory measurement of k (Chen et al., 1978). The results are found to be in good agreement with laboratory determinations of the coefficient for night-time conditions. For data obtained under sunlit conditions, however, the results differed significantly with those of the laboratory measurements. These results imply that the state of the O2(+) molecule major thermospheric processes needs to be examined in greater detail.
1998-06-08
The STS-95 patch, designed by the crew, is intended to reflect the scientific, engineering, and historic elements of the mission. The Space Shuttle Discovery is shown rising over the sunlit Earth limb, representing the global benefits of the mission science and the solar science objectives of the Spartan Satellite. The bold number '7' signifies the seven members of Discovery's crew and also represents a historical link to the original seven Mercury astronauts. The STS-95 crew member John Glenn's first orbital flight is represented by the Friendship 7 capsule. The rocket plumes symbolize the three major fields of science represented by the mission payloads: microgravity material science, medical research for humans on Earth and in space, and astronomy.
Water resources of the Prairie Island Indian Reservation, Minnesota, 1994-97
Cowdery, Timothy K.
1999-01-01
The only surface-water constituents exceeding U.S. Environmental Protection Agency drinking water standards was coliform or fecal streptococci bacteria, which was exceeded in all samples. Thirteen percent of ground-water samples exceeded the nitrate maximum contaminant level (MCL), but this is probably higher than the percentage of the aquifer exceeding the nitrate MCL because most of the wells sampled were shallow. Surface-water recharge to and ground-water discharge from the surficial aquifer influence the water quality in both the aquifer and the surrounding surface water. However, surface water probably influences ground-water quality more because of the greater amount of surface water flowing through the study area.
NASA Astrophysics Data System (ADS)
Zhang, Shuping; Foerster, Saskia; Medeiros, Pedro; de Araújo, José Carlos; Waske, Bjoern
2018-07-01
Water supplies in northeastern Brazil strongly depend on the numerous surface water reservoirs of various sizes there. However, the seasonal and long-term water surface dynamics of these reservoirs, particularly the large number of small ones, remain inadequately known. Remote sensing techniques have shown great potentials in water bodies mapping. Yet, the widespread presence of macrophytes in most of the reservoirs often impedes the delineation of the effective water surfaces. Knowledge of the dynamics of the effective water surfaces in the reservoirs is essential for understanding, managing, and modelling the local and regional water resources. In this study, a two-year time series of TerraSAR-X (TSX) satellite data was used to monitor the effective water surface areas in nine reservoirs in NE Brazil. Calm open water surfaces were obtained by segmenting the backscattering coefficients of TSX images with minimum error thresholding. Linear unmixing was implemented on the distributions of gray-level co-occurrence matrix (GLCM) variance in the reservoirs to quantify the proportions of sub-populations dominated by different types of scattering along the TSX time series. By referring to the statistics and the seasonal proportions of the GLCM variance sub-populations the GLCM variance was segmented to map the vegetated water surfaces. The effective water surface areas that include the vegetation-covered waters as well as calm open water in the reservoirs were mapped with accuracies >77%. The temporal and spatial change patterns of water surfaces in the nine reservoirs over a period of two consecutive dry and wet seasons were derived. Precipitation-related soil moisture changes, topography and the dense macrophyte canopies are the main sources of errors in the such-derived effective water surfaces. Independent from in-situ data, the approach employed in this study shows great potential in monitoring water surfaces of different complexity and macrophyte coverage. The effective water surface areas obtained for the reservoirs can provide valuable input for efficient water management and improve the hydrological modelling in this region.
Evaporation of tiny water aggregation on solid surfaces with different wetting properties.
Wang, Shen; Tu, Yusong; Wan, Rongzheng; Fang, Haiping
2012-11-29
The evaporation of a tiny amount of water on the solid surface with different wettabilities has been studied by molecular dynamics simulations. From nonequilibrium MD simulations, we found that, as the surface changed from hydrophobic to hydrophilic, the evaporation speed did not show a monotonic decrease as intuitively expected, but increased first, and then decreased after it reached a maximum value. The analysis of the simulation trajectory and calculation of the surface water interaction illustrate that the competition between the number of water molecules on the water-gas surface from where the water molecules can evaporate and the potential barrier to prevent those water molecules from evaporating results in the unexpected behavior of the evaporation. This finding is helpful in understanding the evaporation on biological surfaces, designing artificial surfaces of ultrafast water evaporating, or preserving water in soil.
Tadayon, Saeid
1995-01-01
Physical and chemical data were collected from four surface-water sites, six ground-water sites, and two bottom-sediment sites during 1992-93. Specific conductance, hardness, alkalinity, and dissolved- solids concentrations generally were higher in ground water than in surface water. The median concentrations of dissolved major ions, with the exception of potassium, were higher in ground water than in surface water. In surface water and ground water, calcium was the dominant cation, and bicarbonate was the dominant anion. Concentrations of dissolved nitrite and nitrite plus nitrate in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels of 1 and 10 milligrams per liter for drinking water, respectively. Ammonium plus organic nitrogen in bottom sediment was detected at the highest concentration of any nitrogen species. Median values for most of the dissolved trace elements in surface water and ground water were below the detection levels. Dissolved trace elements in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels for drinking water. Trace-element concentrations in bottom sediment were similar to trace-element concentrations reported for soils of the western conterminous United States. Several organochlorine pesticides and priority pollutants were detected in surface-water and bottom-sediment samples; however, they did not exceed water-quality standards. Pesticides or priority pollutants were not detected in ground-water samples.
Permitted water use in Iowa, 1985
Runkle, D.L.; Newman, J.L.; Shields, E.M.
1985-01-01
This report summarizes where, how much and for what purpose water is allocated for use in Iowa with permits issued by the Department of Water, Air and Waste Management. In Iowa, from a total permitted water use of 855,175.45 million gallons per year, about 58 percent is from surface-water sources and about 42 percent is from ground-water sources. Streams are 80.5 percent of the total surface-water use and wells make up 80.1 percent of the total ground-water use, with 65.4 percent of ground water coming from surficial aquifers. Power generation is the use category that is permitted the largest amount of total water use, 46.6 percent, with surface water being the source of 96.7 percent and 77.9 percent of the surface water is from streams. The public water suppliers' category is the next largest use type with 15.7 percent of the total permitted water. Ground water constitutes 74.4 percent of the public water supplier category with 51.7 percent from surficial aquifers. Surface water makes up 25.6 percent of this category with 83.0 percent of the surface water withdrawn from streams. Mining comprises 13.4 percent of the total water use and is the third largest water-use category. Ground water is the source of 63.3 percent of permitted mining water use with 94.3 percent of this from quarries and sand and gravel pits. Surface water is the source of 36.7 percent of the permitted mining water use with 97.6 percent from streams. Irrigation is the fourth largest permitted use type using 12.0 percent of the total water use. Eighty-eight percent of irrigation is from ground-water sources where surficial aquifers account for 94.7 percent. Streams are 81.1 percent of irrigational surface-water use. Self-supplied industrial users are permitted 10.6 percent of the total permitted water use with 85.5 percent of this from ground-water sources and 14.5 percent from surface-water sources. Of the self-supplied industrial ground-water use, 47.9 percent comes from surficial aquifers and of the self-supplied industrial surface-water use 86.1 percent is from streams. Self-supplied commercial use is allocated 1.5 percent of the total permitted water. Surface-water is the source of 37.7 percent of this and 62.3 percent is from ground-water sources. Agricultural (non-irrigation) use is 0.3 percent of the total permitted water with 73.3 percent from groundwater sources and 26.7 percent from surface-water sources. The areas that are allocated the most water permits are east-central Iowa and west-central Iowa.
Convergent surface water distributions in U.S. cities
M.K. Steele; J.B. Heffernan; N. Bettez; J. Cavender-Bares; P.M. Groffman; J.M. Grove; S. Hall; S.E. Hobbie; K. Larson; J.L. Morse; C. Neill; K.C. Nelson; J. O' Neil-Dunne; L. Ogden; D.E. Pataki; C. Polsky; R. Roy Chowdhury
2014-01-01
Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and...
NASA Astrophysics Data System (ADS)
Wang, Xiaobiao; Xie, Shunping; Zhang, Xueliang; Chen, Cheng; Guo, Hao; Du, Jinkang; Duan, Zheng
2018-06-01
Surface water is vital resources for terrestrial life, while the rapid development of urbanization results in diverse changes in sizes, amounts, and quality of surface water. To accurately extract surface water from remote sensing imagery is very important for water environment conservations and water resource management. In this study, a new Multi-Band Water Index (MBWI) for Landsat 8 Operational Land Imager (OLI) images is proposed by maximizing the spectral difference between water and non-water surfaces using pure pixels. Based on the MBWI map, the K-means cluster method is applied to automatically extract surface water. The performance of MBWI is validated and compared with six widely used water indices in 29 sites of China. Results show that our proposed MBWI performs best with the highest accuracy in 26 out of the 29 test sites. Compared with other water indices, the MBWI results in lower mean water total errors by a range of 9.31%-25.99%, and higher mean overall accuracies and kappa coefficients by 0.87%-3.73% and 0.06-0.18, respectively. It is also demonstrated for MBWI in terms of robustly discriminating surface water from confused backgrounds that are usually sources of surface water extraction errors, e.g., mountainous shadows and dark built-up areas. In addition, the new index is validated to be able to mitigate the seasonal and daily influences resulting from the variations of the solar condition. MBWI holds the potential to be a useful surface water extraction technology for water resource studies and applications.
Long Term 2 Second Round Source Water Monitoring and Bin Placement Memo
The Long Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR) applies to all public water systems served by a surface water source or public water systems served by a ground water source under the direct influence of surface water.
Katz, B.G.; Coplen, T.B.; Bullen, T.D.; Hal, Davis J.
1997-01-01
In the mantled karst terrane of northern Florida, the water quality of the Upper Floridan aquifer is influenced by the degree of connectivity between the aquifer and the surface. Chemical and isotopic analyses [18O/16O (??18O), 2H/1H (??D), 13C/12C (??13C), tritium(3H), and strontium-87/strontium-86(87Sr/86Sr)]along with geochemical mass-balance modeling were used to identify the dominant hydrochemical processes that control the composition of ground water as it evolves downgradient in two systems. In one system, surface water enters the Upper Floridan aquifer through a sinkhole located in the Northern Highlands physiographic unit. In the other system, surface water enters the aquifer through a sinkhole lake (Lake Bradford) in the Woodville Karst Plain. Differences in the composition of water isotopes (??18O and ??D) in rainfall, ground water, and surface water were used to develop mixing models of surface water (leakage of water to the Upper Floridan aquifer from a sinkhole lake and a sinkhole) and ground water. Using mass-balance calculations, based on differences in ??18O and ??D, the proportion of lake water that mixed with meteoric water ranged from 7 to 86% in water from wells located in close proximity to Lake Bradford. In deeper parts of the Upper Floridan aquifer, water enriched in 18O and D from five of 12 sampled municipal wells indicated that recharge from a sinkhole (1 to 24%) and surface water with an evaporated isotopic signature (2 to 32%) was mixing with ground water. The solute isotopes, ??13C and 87Sr/86Sr, were used to test the sensitivity of binary and ternary mixing models, and to estimate the amount of mass transfer of carbon and other dissolved species in geochemical reactions. In ground water downgradient from Lake Bradford, the dominant processes controlling carbon cycling in ground water were dissolution of carbonate minerals, aerobic degradation of organic matter, and hydrolysis of silicate minerals. In the deeper parts of the Upper Floridan aquifer, the major processes controlling the concentrations of major dissolved species included dissolution of calcite and dolomite, and degradation of organic matter under oxic conditions. The Upper Floridan aquifer is highly susceptible to contamination from activities at the land surface in the Tallahassee area. The presence of post-1950s concentrations of 3H in ground water from depths greater than 100 m below land surface indicates that water throughout much of the Upper Floridan aquifer has been recharged during the last 40 years. Even though mixing is likely between ground water and surface water in many parts of the study area, the Upper Floridan aquifer produces good quality water, which due to dilution effects shows little if any impact from trace elements or nutrients that are present in surface waters.The water quality of the Upper Floridan aquifer is influenced by the degree of connectivity between the aquifer and the surface water. Chemical and isotopic analyses, tritium, and strontium-87/strontium-86 along with geochemical mass-balance modeling were used to identify the dominant hydrochemical processes that control the composition of groundwater. Differences in the composition of water isotopes in rainfall, groundwater and surface water were used to develop mixing models of surface water and groundwater. Even though mixing is likely between groundwater and surface water in many parts of the study area, the Upper Floridan aquifer produces good quality water, showing little impact from trace elements present in surface waters.
NASA Astrophysics Data System (ADS)
Ferguson, I. M.; Boyce, S. E.; Hanson, R. T.; Llewellyn, D.
2014-12-01
It is well established that groundwater pumping affects surface-water availability by intercepting groundwater that would otherwise discharge to streams and/or by increasing seepage from surface-water channels. Conversely, surface-water management operations effect groundwater availability by altering the timing, location, and quantity of groundwater recharge and demand. Successful conjunctive use may require analysis with an integrated approach that accounts for the many interactions and feedbacks between surface-water and groundwater availability and their joint management. In order to improve simulation and analysis of conjunctive use, Bureau of Reclamation and USGS are collaborating to develop a surface-water operations module within MODFLOW One Water Hydrologic Flow Model (MF-OWHM), a new version of the USGS Modular Groundwater Flow Model (MODFLOW). Here we describe the development and application of the surface-water operations module. We provide an overview of the conceptual approach used to simulate surface-water operations—including surface-water storage, allocation, release, diversion, and delivery on monthly to seasonal time frames—in a fully-integrated manner. We then present results from a recent case study analysis of the Rio Grande Project, a large-scale irrigation project located in New Mexico and Texas, under varying surface-water operations criteria and climate conditions. Case study results demonstrate the importance of integrated hydrologic simulation of surface water and groundwater operations in analysis and management of conjunctive-use systems.
Bexfield, Laura M.; Anderholm, Scott K.
2008-01-01
Chemical modeling was used by the U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority (henceforth, Authority), to gain insight into the potential chemical effects that could occur in the Authority's water distribution system as a result of changing the source of water used for municipal and industrial supply from ground water to surface water, or to some mixture of the two sources. From historical data, representative samples of ground-water and surface-water chemistry were selected for modeling under a range of environmental conditions anticipated to be present in the distribution system. Mineral phases calculated to have the potential to precipitate from ground water were compared with the compositions of precipitate samples collected from the current water distribution system and with mineral phases calculated to have the potential to precipitate from surface water and ground-water/surface-water mixtures. Several minerals that were calculated to have the potential to precipitate from ground water in the current distribution system were identified in precipitate samples from pipes, reservoirs, and water heaters. These minerals were the calcium carbonates aragonite and calcite, and the iron oxides/hydroxides goethite, hematite, and lepidocrocite. Several other minerals that were indicated by modeling to have the potential to precipitate were not found in precipitate samples. For most of these minerals, either the kinetics of formation were known to be unfavorable under conditions present in the distribution system or the minerals typically are not formed through direct precipitation from aqueous solutions. The minerals with potential to precipitate as simulated for surface-water samples and ground-water/surface-water mixtures were quite similar to the minerals with potential to precipitate from ground-water samples. Based on the modeling results along with kinetic considerations, minerals that appear most likely to either dissolve or newly precipitate when surface water or ground-water/surface-water mixtures are delivered through the Authority's current distribution system are carbonates (particularly aragonite and calcite). Other types of minerals having the potential to dissolve or newly precipitate under conditions present throughout most of the distribution system include a form of silica, an aluminum hyroxide (gibbsite or diaspore), or the Fe-containing mineral Fe3(OH)8. Dissolution of most of these minerals (except perhaps the Fe-containing minerals) is not likely to substantially affect trace-element concentrations or aesthetic characteristics of delivered water, except perhaps hardness. Precipitation of these minerals would probably be of concern only if the quantities of material involved were large enough to clog pipes or fixtures. The mineral Fe3(OH)8 was not found in the current distribution system. Some Fe-containing minerals that were identified in the distribution system were associated with relatively high contents of selected elements, including As, Cr, Cu, Mn, Pb, and Zn. However, these Fe-containing minerals were not identified as minerals likely to dissolve when the source of water was changed from ground water to surface water or a ground-water/surface-water mixture. Based on the modeled potential for calcite precipitation and additional calculations of corrosion indices ground water, surface water, and ground-water/surface-water mixtures are not likely to differ greatly in corrosion potential. In particular, surface water and ground-water/surface-water mixtures do not appear likely to dissolve large quantities of existing calcite and expose metal surfaces in the distribution system to substantially increased corrosion. Instead, modeling calculations indicate that somewhat larger masses of material would tend to precipitate from surface water or ground-water/surface-water mixtures compared to ground water alone.
Legleiter, Carl; Mobley, Curtis D.; Overstreet, Brandon
2017-01-01
This paper introduces a framework for examining connections between the flow field, the texture of the air-water interface, and the reflectance of the water surface and thus evaluating the potential to infer hydraulic information from remotely sensed observations of surface reflectance. We used a spatial correlation model describing water surface topography to illustrate the application of our framework. Nondimensional relations between model parameters and flow intensity were established based on a prior flume study. Expressing the model in the spatial frequency domain allowed us to use an efficient Fourier transform-based algorithm for simulating water surfaces. Realizations for both flume and field settings had water surface slope distributions positively correlated with velocity and water surface roughness. However, most surface facets were gently sloped and thus unlikely to yield strong specular reflections; the model exaggerated the extent of water surface features, leading to underestimation of facet slopes. A ray tracing algorithm indicated that reflectance was greatest when solar and view zenith angles were equal and the sensor scanned toward the Sun to capture specular reflections of the solar beam. Reflected energy was concentrated in a small portion of the sky, but rougher water surfaces reflected rays into a broader range of directions. Our framework facilitates flight planning to avoid surface-reflected radiance while mapping other river attributes, or to maximize this component to exploit relationships between hydraulics and surface reflectance. This initial analysis also highlighted the need for improved models of water surface topography in natural rivers.
Escape jumping by three age-classes of water striders from smooth, wavy and bubbling water surfaces.
Ortega-Jimenez, Victor Manuel; von Rabenau, Lisa; Dudley, Robert
2017-08-01
Surface roughness is a ubiquitous phenomenon in both oceanic and terrestrial waters. For insects that live at the air-water interface, such as water striders, non-linear and multi-scale perturbations produce dynamic surface deformations which may impair locomotion. We studied escape jumps of adults, juveniles and first-instar larvae of the water strider Aquarius remigis on smooth, wave-dominated and bubble-dominated water surfaces. Effects of substrate on takeoff jumps were substantial, with significant reductions in takeoff angles, peak translational speeds, attained heights and power expenditure on more perturbed water surfaces. Age effects were similarly pronounced, with the first-instar larvae experiencing the greatest degradation in performance; age-by-treatment effects were also significant for many kinematic variables. Although commonplace in nature, perturbed water surfaces thus have significant and age-dependent effects on water strider locomotion, and on behavior more generally of surface-dwelling insects. © 2017. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Li, Yanrong; Wang, Jinxia
2018-06-01
Surface water, as the largest part of water resources, plays an important role on China's agricultural production and food security. And surface water is vulnerable to climate change. This paper aims to examine the status of the supply reliability of surface water irrigation, and discusses how it is affected by climate change in rural China. The field data we used in this study was collected from a nine-province field survey during 2012 and 2013. Climate data are offered by China's National Meteorological Information Center which contains temperature and precipitation in the past 30 years. A Tobit model (or censored regression model) was used to estimate the influence of climate change on supply reliability of surface water irrigation. Descriptive results showed that, surface water supply reliability was 74 % in the past 3 years. Econometric results revealed that climate variables significantly influenced the supply reliability of surface water irrigation. Specifically, temperature is negatively related with the supply reliability of surface water irrigation; but precipitation positively influences the supply reliability of surface water irrigation. Besides, climate influence differs by seasons. In a word, this paper improves our understanding of the impact of climate change on agriculture irrigation and water supply reliability in the micro scale, and provides a scientific basis for relevant policy making.
A deformable surface model for real-time water drop animation.
Zhang, Yizhong; Wang, Huamin; Wang, Shuai; Tong, Yiying; Zhou, Kun
2012-08-01
A water drop behaves differently from a large water body because of its strong viscosity and surface tension under the small scale. Surface tension causes the motion of a water drop to be largely determined by its boundary surface. Meanwhile, viscosity makes the interior of a water drop less relevant to its motion, as the smooth velocity field can be well approximated by an interpolation of the velocity on the boundary. Consequently, we propose a fast deformable surface model to realistically animate water drops and their flowing behaviors on solid surfaces. Our system efficiently simulates water drop motions in a Lagrangian fashion, by reducing 3D fluid dynamics over the whole liquid volume to a deformable surface model. In each time step, the model uses an implicit mean curvature flow operator to produce surface tension effects, a contact angle operator to change droplet shapes on solid surfaces, and a set of mesh connectivity updates to handle topological changes and improve mesh quality over time. Our numerical experiments demonstrate a variety of physically plausible water drop phenomena at a real-time rate, including capillary waves when water drops collide, pinch-off of water jets, and droplets flowing over solid materials. The whole system performs orders-of-magnitude faster than existing simulation approaches that generate comparable water drop effects.
Water at protein surfaces studied with femtosecond nonlinear spectroscopy
NASA Astrophysics Data System (ADS)
Bakker, Huib J.
We report on an investigation of the structure and dynamics of water molecules near protein surfaces with femtosecond nonlinear spectroscopic techniques. We measured the reorientation dynamics of water molecules near the surface of several globular protein surfaces, using polarization-resolved femtosecond infrared spectroscopy. We found that water molecules near the protein surface have a much slower reorientation than water molecules in bulk liquid water. The number of slow water molecules scales scales with the size of the hydrophobic surface of the protein. When we denature the proteins by adding an increasing amount of urea to the protein solution, we observe that the water-exposed surface increases by 50% before the secondary structure of the proteins changes. This finding indicates that protein unfolding starts with the protein structure becoming less tight, thereby allowing water to enter. With surface vibrational sum frequency generation (VSFG) spectroscopy, we studied the structure of water at the surface of antifreeze protein III. The measured VSFG spectra showed the presence of ice-like water layers at the ice-binding site of the protein in aqueous solution, at temperatures well above the freezing point. This ordered ice-like hydration layers at the protein surface likely plays an important role in the specific recognition and binding of anti-freeze protein III to nascent ice crystallites, and thus in its anti-freeze mechanism. This research is supported by the ''Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO).
Monitoring monthly surface water dynamics of Dongting Lake using Sentinel-1 data at 10 m.
Xing, Liwei; Tang, Xinming; Wang, Huabin; Fan, Wenfeng; Wang, Guanghui
2018-01-01
High temporal resolution water distribution maps are essential for surface water monitoring because surface water exhibits significant inner-annual variation. Therefore, high-frequency remote sensing data are needed for surface water mapping. Dongting Lake, the second-largest freshwater lake in China, is famous for the seasonal fluctuations of its inundation extents in the middle reaches of the Yangtze River. It is also greatly affected by the Three Gorges Project. In this study, we used Sentinel-1 data to generate surface water maps of Dongting Lake at 10 m resolution. First, we generated the Sentinel-1 time series backscattering coefficient for VH and VV polarizations at 10 m resolution by using a monthly composition method. Second, we generated the thresholds for mapping surface water at 10 m resolution with monthly frequencies using Sentinel-1 data. Then, we derived the monthly surface water distribution product of Dongting Lake in 2016, and finally, we analyzed the inner-annual surface water dynamics. The results showed that: (1) The thresholds were -21.56 and -15.82 dB for the backscattering coefficients for VH and VV, respectively, and the overall accuracy and Kappa coefficients were above 95.50% and 0.90, respectively, for the VH backscattering coefficient, and above 94.50% and 0.88, respectively, for the VV backscattering coefficient. The VV backscattering coefficient achieved lower accuracy due to the effect of the wind causing roughness on the surface of the water. (2) The maximum and minimum areas of surface water were 2040.33 km 2 in July, and 738.89 km 2 in December. The surface water area of Dongting Lake varied most significantly in April and August. The permanent water acreage in 2016 was 556.35 km 2 , accounting for 19.65% of the total area of Dongting Lake, and the acreage of seasonal water was 1525.21 km 2 . This study proposed a method to automatically generate monthly surface water at 10 m resolution, which may contribute to monitoring surface water in a timely manner.
NASA Astrophysics Data System (ADS)
Troy, T. J.; Zhang, J.
2017-12-01
Balancing irrigated water demands and surface water availability is critical for sustainable water resources management. In China, irrigation is the largest water user, and there is concern that irrigated water demands will be affected by climate change. If the relationship between climate change, irrigated water demands and surface water availability is quantified, then effective measures can be developed to maintain food production while ensuring water sustainability. This research focuses on the Yellow River, the second longest in China, and analyzes the impact of historical and projected climate change on agricultural water demands and surface water availability. Corn and wheat are selected as representative crops to estimate the effect of temperature and precipitin changes on irrigated water demands. The VIC model is used to simulate daily streamflow throughout the Yellow River, providing estimates of surface water availability. Overall, results indicate the irrigated water need and surface water availability are impacted by climate change, with spatially varying impacts depending on spatial patterns of climate trends and river network position. This research provides insight into water security in the Yellow River basin, indicating where water efficiency measures are needed and where they are not.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jin; Serbin, Shawn P.; Xu, Xiangtao
Leaf quantity (i.e., canopy leaf area index, LAI), quality (i.e., per-area photosynthetic capacity), and longevity all influence the photosynthetic seasonality of tropical evergreen forests. However, these components of tropical leaf phenology are poorly represented in most terrestrial biosphere models (TBMs). Here in this paper, we explored alternative options for the representation of leaf phenology effects in TBMs that employ the Farquahar, von Caemmerer & Berry (FvCB) representation of CO 2 assimilation. We developed a two-fraction leaf (sun and shade), two-layer canopy (upper and lower) photosynthesis model to evaluate different modeling approaches and assessed three components of phenological variations (i.e., leafmore » quantity, quality, and within-canopy variation in leaf longevity). Our model was driven by the prescribed seasonality of leaf quantity and quality derived from ground-based measurements within an Amazonian evergreen forest. Modeled photosynthetic seasonality was not sensitive to leaf quantity, but was highly sensitive to leaf quality and its vertical distribution within the canopy, with markedly more sensitivity to upper canopy leaf quality. This is because light absorption in tropical canopies is near maximal for the entire year, implying that seasonal changes in LAI have little impact on total canopy light absorption; and because leaf quality has a greater effect on photosynthesis of sunlit leaves than light limited, shade leaves and sunlit foliage are more abundant in the upper canopy. Our two-fraction leaf, two-layer canopy model, which accounted for all three phenological components, was able to simulate photosynthetic seasonality, explaining ~90% of the average seasonal variation in eddy covariance-derived CO 2 assimilation. This work identifies a parsimonious approach for representing tropical evergreen forest photosynthetic seasonality in TBMs that utilize the FvCB model of CO 2 assimilation and highlights the importance of incorporating more realistic phenological mechanisms in models that seek to improve the projection of future carbon dynamics in tropical evergreen forests.« less
Mapping urban forest tree species using IKONOS imagery: preliminary results.
Pu, Ruiliang
2011-01-01
A stepwise masking system with high-resolution IKONOS imagery was developed to identify and map urban forest tree species/groups in the City of Tampa, Florida, USA. The eight species/groups consist of sand live oak (Quercus geminata), laurel oak (Quercus laurifolia), live oak (Quercus virginiana), magnolia (Magnolia grandiflora), pine (species group), palm (species group), camphor (Cinnamomum camphora), and red maple (Acer rubrum). The system was implemented with soil-adjusted vegetation index (SAVI) threshold, textural information after running a low-pass filter, and brightness threshold of NIR band to separate tree canopies from non-vegetated areas from other vegetation types (e.g., grass/lawn) and to separate the tree canopies into sunlit and shadow areas. A maximum likelihood classifier was used to identify and map forest type and species. After IKONOS imagery was preprocessed, a total of nine spectral features were generated, including four spectral bands, three hue-intensity-saturation indices, one SAVI, and one texture image. The identified and mapped results were examined with independent ground survey data. The experimental results indicate that when classifying all the eight tree species/ groups with the high-resolution IKONOS image data, the identifying accuracy was very low and could not satisfy a practical application level, and when merging the eight species/groups into four major species/groups, the average accuracy is still low (average accuracy = 73%, overall accuracy = 86%, and κ = 0.76 with sunlit test samples). Such a low accuracy of identifying and mapping the urban tree species/groups is attributable to low spatial resolution IKONOS image data relative to tree crown size, to complex and variable background spectrum impact on crown spectra, and to shadow/shaded impact. The preliminary results imply that to improve the tree species identification accuracy and achieve a practical application level in urban area, multi-temporal (multi-seasonal) or hyperspectral data image data should be considered for use in the future.
Sunlit Io Atmospheric [O I] 6300 A and the Plasma Torus
NASA Technical Reports Server (NTRS)
Oliversen, Ronald J.; Scherb, Frank; Smyth, William H.; Freed, Melanie E.; Woodward, R. Carey, Jr.; Marcone, Maximus L.; Retherford, Kurt D.; Lupie, Olivia L.; Morgenthaler, Jeffrey P.; Fisher, Richard R. (Technical Monitor)
2001-01-01
A large database of sunlit Io [O I] 6300A emission, acquired over the period 1990-1999, with extensive coverage of Io orbital phase angle phi and System III longitude lambda(sub III), exhibits significant long-term and short-term variations in [O I] 6300A emission intensities. The long-term average intensity shows a clear dependence on lambda(sub III), which establishes conclusively that the emission is produced by the interaction between Io's atmosphere and the plasma torus. Two prominent average intensity maxima, 70 deg to 90 deg wide, are centered at lambda(sub III) about 130deg. and about 295 deg. A comparison of data from October 1998 with a three-dimensional plasma torus model, based upon electron impact excitation of atomic oxygen, suggests a basis for study of the torus interaction with Io's atmosphere. The observed short-term, erratic [O I] 6300A intensity variations fluctuate approximately 20% to 50% on time scale of tens of minutes with less frequent fluctuations of a factor of about 2. The most likely candidate to produce these fluctuations is a time-variable energy flux of field-aligned nonthermal electrons identified recently in Galileo PLS data. If true, the short-term [O I] intensity fluctuations may be related to variable field-aligned currents driven by inward and outward torus plasma transport and/or transient high-latitude, field-aligned potential drops. A correlation between the intensity and emission line width indicates molecular dissociation may contribute significantly to the [O I] 6300A emission. The nonthermal electron energy flux may produce O(1-D) by electron impact dissociation of SO2 and SO, with the excess energy going into excitation of O and its kinetic energy. The [O I] 6300A emission database establishes Io as a valuable probe of the torus, responding to local conditions at Io's position.
Effects of foliage clumping on the estimation of global terrestrial gross primary productivity
NASA Astrophysics Data System (ADS)
Chen, Jing M.; Mo, Gang; Pisek, Jan; Liu, Jane; Deng, Feng; Ishizawa, Misa; Chan, Douglas
2012-03-01
Sunlit and shaded leaf separation proposed by Norman (1982) is an effective way to upscale from leaf to canopy in modeling vegetation photosynthesis. The Boreal Ecosystem Productivity Simulator (BEPS) makes use of this methodology, and has been shown to be reliable in modeling the gross primary productivity (GPP) derived from CO2flux and tree ring measurements. In this study, we use BEPS to investigate the effect of canopy architecture on the global distribution of GPP. For this purpose, we use not only leaf area index (LAI) but also the first ever global map of the foliage clumping index derived from the multiangle satellite sensor POLDER at 6 km resolution. The clumping index, which characterizes the degree of the deviation of 3-dimensional leaf spatial distributions from the random case, is used to separate sunlit and shaded LAI values for a given LAI. Our model results show that global GPP in 2003 was 132 ± 22 Pg C. Relative to this baseline case, our results also show: (1) global GPP is overestimated by 12% when accurate LAI is available but clumping is ignored, and (2) global GPP is underestimated by 9% when the effective LAI is available and clumping is ignored. The clumping effects in both cases are statistically significant (p < 0.001). The effective LAI is often derived from remote sensing by inverting the measured canopy gap fraction to LAI without considering the clumping. Global GPP would therefore be generally underestimated when remotely sensed LAI (actually effective LAI by our definition) is used. This is due to the underestimation of the shaded LAI and therefore the contribution of shaded leaves to GPP. We found that shaded leaves contribute 50%, 38%, 37%, 39%, 26%, 29% and 21% to the total GPP for broadleaf evergreen forest, broadleaf deciduous forest, evergreen conifer forest, deciduous conifer forest, shrub, C4 vegetation, and other vegetation, respectively. The global average of this ratio is 35%.
Wu, Jin; Serbin, Shawn P.; Xu, Xiangtao; ...
2017-04-18
Leaf quantity (i.e., canopy leaf area index, LAI), quality (i.e., per-area photosynthetic capacity), and longevity all influence the photosynthetic seasonality of tropical evergreen forests. However, these components of tropical leaf phenology are poorly represented in most terrestrial biosphere models (TBMs). Here in this paper, we explored alternative options for the representation of leaf phenology effects in TBMs that employ the Farquahar, von Caemmerer & Berry (FvCB) representation of CO 2 assimilation. We developed a two-fraction leaf (sun and shade), two-layer canopy (upper and lower) photosynthesis model to evaluate different modeling approaches and assessed three components of phenological variations (i.e., leafmore » quantity, quality, and within-canopy variation in leaf longevity). Our model was driven by the prescribed seasonality of leaf quantity and quality derived from ground-based measurements within an Amazonian evergreen forest. Modeled photosynthetic seasonality was not sensitive to leaf quantity, but was highly sensitive to leaf quality and its vertical distribution within the canopy, with markedly more sensitivity to upper canopy leaf quality. This is because light absorption in tropical canopies is near maximal for the entire year, implying that seasonal changes in LAI have little impact on total canopy light absorption; and because leaf quality has a greater effect on photosynthesis of sunlit leaves than light limited, shade leaves and sunlit foliage are more abundant in the upper canopy. Our two-fraction leaf, two-layer canopy model, which accounted for all three phenological components, was able to simulate photosynthetic seasonality, explaining ~90% of the average seasonal variation in eddy covariance-derived CO 2 assimilation. This work identifies a parsimonious approach for representing tropical evergreen forest photosynthetic seasonality in TBMs that utilize the FvCB model of CO 2 assimilation and highlights the importance of incorporating more realistic phenological mechanisms in models that seek to improve the projection of future carbon dynamics in tropical evergreen forests.« less
Gellenbeck, Dorinda J.; Anning, David W.
2002-01-01
Samples of ground water and surface water from the Sierra Vista subbasin, the Upper Santa Cruz Basin, and the West Salt River Valley were collected and analyzed to determine the occurrence and distribution of pesticides and volatile organic compounds in central Arizona. The study was done during 1996-98 within the Central Arizona Basins study unit of the National Water-Quality Assessment program. This study included 121 wells and 4 surface-water sites in the 3 basins and the analyses of samples from 4 sites along the Santa Cruz River that were part of a separate study. Samples were collected from 121 wells and 3 surface-water sites for pesticide analyses, and samples were collected from 109 wells and 3 surface-water sites for volatile organic compound analyses. Certain pesticides detected in ground water and surface water can be related specifically to agricultural or urban uses; others can be related to multiple land uses. Effects from historical agriculture are made evident by detections of DDE in ground-water and surface-water samples collected in the West Salt River Valley and detections of atrazine and deethylatrazine in the ground water in the Upper Santa Cruz Basin. Effects from present agriculture are evident in the seasonal variability in concentrations of pre-emergent pesticides in surface-water samples from the West Salt River Valley. Several detections of DDE and dieldrin in surface water were higher than established water-quality limits. Effects of urban land use are made evident by detections of volatile organic compounds in ground water and surface water from the West Salt River Valley. Detections of volatile organic compounds in surface water from the Santa Cruz River near Nogales, Arizona, also are indications of the effects of urban land use. One detection of tetrachloroethene in ground water was higher than established water-quality limits. Water reuse is an important conservation technique in the Southwest; however, the reuse of water provides a transport mechanism for pesticides and volatile organic compounds to reach areas that are not normally affected by manmade compounds from specific land-use activities. The most complex mixture of pesticides and volatile organic compounds is in the West Salt River Valley and is the result of water-management practices and the combination of land uses in this basin throughout history.
Calcium carbonate nucleation in an alkaline lake surface water, Pyramid Lake, Nevada, USA
Reddy, Michael M.; Hoch, Anthony
2012-01-01
Calcium concentration and calcite supersaturation (Ω) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has Ω values of 10-16. Notwithstanding high Ω, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean Ω at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water Ω. Calcium concentration and Ω regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower Ω than filtered samples. Calcium concentration and Ω at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (Ω) + B. The best fit rate equation "Rate (Δ mM/Δ min) = -0.0026 Ω + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, Ω at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors.
Calcium Carbonate Nucleation in an Alkaline Lake Surface Water, Pyramid Lake, Nevada, USA
Reddy, M.M.; Hoch, A.
2012-01-01
Calcium concentration and calcite supersaturation (??) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has ?? values of 10-16. Notwithstanding high ??, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean ?? at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water ??. Calcium concentration and ?? regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower ?? than filtered samples. Calcium concentration and ?? at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (??) + B. The best fit rate equation "Rate (?? mM/?? min) = -0.0026 ?? + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, ?? at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors. ?? 2011 U.S. Government.
NASA Astrophysics Data System (ADS)
Yang, Xiucheng; Chen, Li
2017-04-01
Urban surface water is characterized by complex surface continents and small size of water bodies, and the mapping of urban surface water is currently a challenging task. The moderate-resolution remote sensing satellites provide effective ways of monitoring surface water. This study conducts an exploratory evaluation on the performance of the newly available Sentinel-2A multispectral instrument (MSI) imagery for detecting urban surface water. An automatic framework that integrates pixel-level threshold adjustment and object-oriented segmentation is proposed. Based on the automated workflow, different combinations of visible, near infrared, and short-wave infrared bands in Sentinel-2 image via different water indices are first compared. Results show that object-level modified normalized difference water index (MNDWI with band 11) and automated water extraction index are feasible in urban surface water mapping for Sentinel-2 MSI imagery. Moreover, comparative results are obtained utilizing optimal MNDWI from Sentinel-2 and Landsat 8 images, respectively. Consequently, Sentinel-2 MSI achieves the kappa coefficient of 0.92, compared with that of 0.83 from Landsat 8 operational land imager.
Hydrogen Isotopic Constraints on the Evolution of Surface and Subsurface Water on Mars
NASA Technical Reports Server (NTRS)
Usui, T.; Kurokawa, H.; Wang, J.; Alexander, C. M. O’D.; Simon, J. I.; Jones, J. H.
2017-01-01
The geology and geomorphology of Mars provide clear evidence for the presence of liquid water on its surface during the Noachian and Hesperien eras (i.e., >3 Ga). In contrast to the ancient watery environment, today the surface of Mars is relatively dry. The current desert-like surface conditions, however, do not necessarily indicate a lack of surface or near-surface water/ice. In fact, massive deposits of ground ice and/or icy sediments have been proposed based on subsurface radar sounder observations. Hence, accurate knowledge of both the evolution of the distribution of water and of the global water inventory is crucial to our understanding of the evolution of the climate and near-surface environments and the potential habitability of Mars. This study presents insights from hydrogen isotopes for the interactive evolution of Martian water reservoirs. In particular, based on our new measurement of the D/H ratio of 4 Ga-old Noachian water, we constrain the atmospheric loss and possible exchange of surface and subsurface water through time.
Numerical simulation of hydrodynamic processes beneath a wind-driven water surface
NASA Astrophysics Data System (ADS)
Tsai, Wu-ting
Turbulent flow driven by a constant wind stress acting at the water surface was simulated numerically to gain a better understanding of the hydrodynamic processes governing the transfer of slightly soluble gases across the atmosphere-water interfaces. Simulation results show that two distinct flow features, attributed to subsurface surface renewal eddies, appear at the water surface. The first characteristic feature is surface streaming, which consists of high-speed streaks aligned with the wind stress. Floating Lagrangian particles, which are distributed uniformly at the water surface, merge to the predominantly high-speed streaks and form elongated streets immediately after they are released. The second characteristic surface signatures are localized low-speed spots which emerge randomly at the water surface. A high-speed streak bifurcates and forms a dividing flow when it encounters a low-speed surface spot. These coherent surface flow structures are qualitatively identical to those observed in the experiment of Melville et al. [1998]. The persistence of these surface features also suggests that there must exist organized subsurface vortical structures that undergo autonomous generation cycles maintained by self-sustaining mechanisms. These coherent vortical flows serve as the renewal eddies that pump the submerged fluids toward the water surface and bring down the upper fluids, and therefore enhance the scalar exchange between the atmosphere and the water body.
NASA Astrophysics Data System (ADS)
Mayer, A. S.; Ruddell, B. L.; Mubako, S. T.
2016-12-01
The Great Lakes basin hosts the world's most abundant surface fresh water reserve. Historically an industrial and natural resource powerhouse, the region has suffered economic stagnation in recent decades. Meanwhile, growing water resource scarcity around the world is creating pressure on water-intensive human activities. This situation creates the potential for the Great Lakes region to sustainably utilize its relative water wealth for economic benefit. We combine economic production and trade datasets with water consumption data and models of surface water depletion in the region. We find that, on average, the current economy does not create significant impacts on surface waters, but there is some risk that unregulated large water uses can create environmental flow impacts if they are developed in the wrong locations. Water uses drawing on deep groundwater or the Great Lakes themselves are unlikely to create a significant depletion, and discharge of groundwater withdrawals to surface waters offsets most surface water depletion. This relative abundance of surface water means that science-based management of large water uses to avoid accidentally creating "hotspots" is likely to be successful in avoiding future impacts, even if water use is significantly increased. Commercial water uses are the most productive, with thermoelectric, mining, and agricultural water uses in the lowest tier of water productivity. Surprisingly for such a water-abundant economy, the region is a net importer of water-derived goods and services. This, combined with the abundance of surface water, suggests that the region's water-based economy has room to grow in the 21st century.
Evaluation of surface water resources from machine-processing of ERTS multispectral data
NASA Technical Reports Server (NTRS)
Mausel, P. W.; Todd, W. J.; Baumgardner, M. F.; Mitchell, R. A.; Cook, J. P.
1976-01-01
The surface water resources of a large metropolitan area, Marion County (Indianapolis), Indiana, are studied in order to assess the potential value of ERTS spectral analysis to water resources problems. The results of the research indicate that all surface water bodies over 0.5 ha were identified accurately from ERTS multispectral analysis. Five distinct classes of water were identified and correlated with parameters which included: degree of water siltiness; depth of water; presence of macro and micro biotic forms in the water; and presence of various chemical concentrations in the water. The machine processing of ERTS spectral data used alone or in conjunction with conventional sources of hydrological information can lead to the monitoring of area of surface water bodies; estimated volume of selected surface water bodies; differences in degree of silt and clay suspended in water and degree of water eutrophication related to chemical concentrations.
Water-Use Estimates for West Virginia, 2004
Atkins, John T.
2007-01-01
This study estimates the quantity of surface water and ground water used within West Virginia. About 4,787 million gallons per day (Mgal/d) of water were withdrawn from West Virginia surface-water and ground-water sources in 2004, with about 4,641 Mgal/d (97 percent) from surface-water sources and about 146 Mgal/d (3 percent) from ground water sources. The largest surface-water withdrawals were in Grant and Mason Counties and were about 1,156 and 1,090 Mgal/d, respectively. The largest ground-water withdrawals were in Berkeley and Wood Counties and were about 12.0 and 12.8 Mgal/d, respectively. Estimates were determined for surface-water and ground-water withdrawals in seven water-use categories: public supply, domestic, thermoelectric power, industrial, irrigation, commercial, and mining. Instream water uses, including hydroelectric power generation, were not considered. Total withdrawals for public supply were 189 Mgal/d, of which 152 Mgal/d were from surface-water sources and 37 Mgal/d were from ground-water sources. Kanawha County withdrew 34 Mgal/d of surface water for public supply, which is more than any other county in the state. Wood County withdrew more ground water for public supply than any other county in the state, about 7.59 Mgal/d. The total domestic (non-publicly supplied) water withdrawal was estimated at 33.5 Mgal/d, with 98 percent from ground water and 2 percent from surface water. There were 17 fossil-fuel, steam-generating thermoelectric power plants operated in the state, 10 plants with once-through cooling systems and 7 plants with recirculation cooling systems. Thermoelectric power used the greatest amount of water compared to the other water-use categories, and water withdrawal from surface-water sources was about 3,406 Mgal/d for plants with once-through cooling systems and about 145 Mgal/d for plants with recirculation cooling systems. Only a trace of water was withdrawn from ground-water sources for plants with once-through cooling systems and about 0.20 Mgal/d for plants with recirculation cooling systems. Water withdrawal by industries was about 911 Mgal/d from surface-water sources and about 54 Mgal/d from ground-water sources. West Virginia had the lowest estimated irrigation of any state or territory of the United States, with only about 0.036 Mgal/d withdrawn from surface-water sources and 0.036 Mgal/d withdrawn from ground-water sources. Water withdrawal for commercial use was about 16.7 Mgal/d from surface-water sources and about 16.0 Mgal/d from ground-water sources. Water withdrawal for mining was about 9.78 Mgal/d from surface-water sources and about 4.89 Mgal/d from ground-water sources. The proportions of surface-water and ground-water withdrawals were similar in 1995 and 2004 (at about 3 percent ground water). Public-supply withdrawal for 2004 was about the same as for 2000 and 7 percent greater than the 1995 estimate. Domestic withdrawal for 2004 was about 18 percent less than the 1995 estimate. Withdrawal for thermoelectric power for 2004 was about 10 percent less than the 2000 estimate and about 18 percent greater than the 1995 estimate. Industrial withdrawal for 2004 was about 27 percent less than the estimate for 1995 and about the same as the estimate for 2000. Irrigation withdrawal for 2004 was about double that estimated for 2000. Commercial withdrawal for 2004 was down 28 percent from 1995. Mining withdrawals for 2004 were about 31 and 32 percent greater for surface and ground water, respectively, than estimates for 1995.
NASA Astrophysics Data System (ADS)
Friedel, M. J.; Daughney, C.
2016-12-01
The development of a successful surface-groundwater management strategy depends on the quality of data provided for analysis. This study evaluates the statistical robustness when using a modified self-organizing map (MSOM) technique to estimate missing values for three hypersurface models: synoptic groundwater-surface water hydrochemistry, time-series of groundwater-surface water hydrochemistry, and mixed-survey (combination of groundwater-surface water hydrochemistry and lithologies) hydrostratigraphic unit data. These models of increasing complexity are developed and validated based on observations from the Southland region of New Zealand. In each case, the estimation method is sufficiently robust to cope with groundwater-surface water hydrochemistry vagaries due to sample size and extreme data insufficiency, even when >80% of the data are missing. The estimation of surface water hydrochemistry time series values enabled the evaluation of seasonal variation, and the imputation of lithologies facilitated the evaluation of hydrostratigraphic controls on groundwater-surface water interaction. The robust statistical results for groundwater-surface water models of increasing data complexity provide justification to apply the MSOM technique in other regions of New Zealand and abroad.
Investigation of surface water behavior during glaze ice accretion
NASA Technical Reports Server (NTRS)
Hansman, R. John, Jr.; Turnock, Stephen R.
1990-01-01
A series of experimental investigations that focused on isolating the primary factors that control the behavior of unfrozen surface water during glaze ice accretion were conducted. Detailed microvideo observations were made of glaze ice accretions on 2.54 cm diam cylinders in a closed-loop refrigerated wind tunnel. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film, a rough zone where surface tension effects caused coalescence of surface water into stationary beads, and a zone where surface water ran back as rivulets. The location of the transition from the smooth to the rough zone was found to migrate towards the stagnation point with time. Comparative tests were conducted to study the effect of the substrate thermal and roughness properties on ice accretion. The importance of surface water behavior was evaluated by the addition of a surface tension reducing agent to the icing tunnel water supply, which significantly altered the accreted glaze ice shape. Measurements were made to determine the contact angle behavior of water droplets on ice. A simple multizone modification to current glaze ice accretion models was proposed to include the observed surface roughness behavior.
Dynamics of water confined on the surface of titania and cassiterite nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Dr. Nancy; Spencer, Elinor; Levchenko, Andrey A.
2011-01-01
We present low-temperature inelastic neutron scattering spectra collected on two metal oxide nanoparticle systems, isostructural TiO2 rutile and SnO2 cassiterite, between 0-550 meV. Data were collected on samples with varying levels of water coverage, and in the case of SnO2, particles of different sizes. This study provides a comprehensive understanding of the structure and dynamics of the water confined on the surface of these particles. The translational movement of water confined on the surface of these nanoparticles is suppressed relative to that in ice-Ih and water molecules on the surface of rutile nanoparticles are more strongly restrained that molecules residingmore » on the surface of cassiterite nanoparticles. The INS spectra also indicate that the hydrogen bond network within the hydration layers on rutile is more perturbed than for water on cassiterite. This result is indicative of stronger water-surface interactions between water on the rutile nanoparticles than for water confined on the surface of cassiterite nanoparticles. These differences are consistent with the recently reported differences in the surface energy of these two nanoparticle systems. The results of this study also support previous studies that suggest that water dissociation is more prevalent on the surface of SnO2 than TiO2.« less
Liu, Benhua; Chen, Liang; Huang, Linxian; Wang, Yongseng; Li, Yuehua
2015-01-01
This paper focuses on the distribution of volatile organic compounds (VOCs) in the surface water, soil, and groundwater within a chemical industry park in Eastern China. At least one VOC was detected in each of the 20 sampling sites, and the maximum number of VOCs detected in the surface water, groundwater, and soil were 13, 16, and 14, respectively. Two of the 10 VOCs with elevated concentrations detected in surface water, groundwater, and soil were chloroform and 1,2-dichloroethane. The characteristics of VOCs, which include volatility, boiling point, and solubility, could significantly affect their distribution in surface water, soil, and groundwater. However, due to the direct discharging of chemical industry wastewater into surface water, higher concentrations of VOCs (except chloroform) were detected in surface water than in soil and groundwater. Fortunately, the higher volatility of VOCs prevents the VOCs from impacting groundwater, which helps to maintain a lower concentration of VOCs in the groundwater than in both surface water and soil. This is because pollutants with relatively higher boiling points and lower solubilities have higher detection frequencies in soil, and contaminants with relatively lower boiling points and higher solubilities have higher detection frequencies in water, notably in surface water.
Seo, Donghyun; Lee, Junghun; Lee, Choongyeop; Nam, Youngsuk
2016-01-01
The efficient water harvesting from air-laden moisture has been a subject of great interest to address world-wide water shortage issues. Recently, it has been shown that tailoring surface wettability can enhance the moisture harvesting performance. However, depending on the harvesting condition, a different conclusion has often been reported and it remains unclear what type of surface wettability would be desirable for the efficient water harvesting under the given condition. Here we compare the water harvesting performance of the surfaces with various wettability under two different harvesting conditions–dewing and fogging, and show that the different harvesting efficiency of each surface under these two conditions can be understood by considering the relative importance of the water capturing and removal efficiency of the surface. At fogging, the moisture harvesting performance is determined by the water removal efficiency of the surface with the oil-infused surfaces exhibiting the best performance. Meanwhile, at dewing, both the water capturing and removal efficiency are crucial to the harvesting performance. And well-wetting surfaces with a lower barrier to nucleation of condensates exhibit a better harvesting performance due to the increasing importance of the water capture efficiency over the water removal efficiency at dewing. PMID:27063149
Liu, Haizhou; Schonberger, Kenneth D; Peng, Ching-Yu; Ferguson, John F; Desormeaux, Erik; Meyerhofer, Paul; Luckenbach, Heidi; Korshin, Gregory V
2013-07-01
This study examined effects of blending desalinated water with conventionally treated surface water on iron corrosion and release from corroding metal surfaces and pre-existing scales exposed to waters having varying fractions of desalinated water, alkalinities, pH values and orthophosphate levels. The presence of desalinated water resulted in markedly decreased 0.45 μm-filtered soluble iron concentrations. However, higher fractions of desalinated water in the blends were also associated with more fragile corroding surfaces, lower retention of iron oxidation products and release of larger iron particles in the bulk water. SEM, XRD and XANES data showed that in surface water, a dense layer of amorphous ferrihydrite phase predominated in the corrosion products. More crystalline surface phases developed in the presence of desalinated water. These solid phases transformed from goethite to lepidocrocite with increased fraction of desalinated water. These effects are likely to result from a combination of chemical parameters, notably variations of the concentrations of natural organic matter, calcium, chloride and sulfate when desalinated and conventionally treated waters are blended. Copyright © 2013 Elsevier Ltd. All rights reserved.
Quantifying the Contribution of Regional Aquifers to Stream Flow in the Upper Colorado River Basin
NASA Astrophysics Data System (ADS)
Masbruch, M.; Dickinson, J.
2017-12-01
The growing population of the arid and semiarid southwestern U.S. relies on over-allocated surface water resources and poorly quantified groundwater resources. In the Upper Colorado River Basin, recent studies have found that about 50 percent of the surface water at U.S. Geological Survey (USGS) stream gages is derived from groundwater contributions as base flow. Prior USGS and other studies for the Colorado Plateau region have mainly examined groundwater and surface water as separate systems, and there has yet to be regional synthesis of groundwater availability in aquifers that contribute to surface water. A more physically based representation of groundwater flow could improve simulations of surface-water capture by groundwater pumping, and changes of groundwater discharge to surface water caused by possible shifts in the distribution, magnitude, and timing of recharge in the future. We seek to improve conceptual and numerical models of groundwater and surface-water interactions in the Colorado Plateau region as part of a USGS regional groundwater availability assessment. Numerical modeling is used to simulate and quantify the base flow from groundwater to the Colorado River and its major tributaries. Groundwater/surface-water interactions will be simulated using the USGS code GSFLOW, which couples the Precipitation Runoff Modeling System (PRMS) to the groundwater flow model MODFLOW. Initial results suggest that interactions between groundwater and surface water are important for projecting long-term changes in surface water budgets.
The glass-liquid transition of water on hydrophobic surfaces
NASA Astrophysics Data System (ADS)
Souda, Ryutaro
2008-09-01
Interactions of thin water films with surfaces of graphite and vitrified room-temperature ionic liquid [1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6])] were investigated using time-of-flight secondary ion mass spectrometry as a function of temperature and annealing time to elucidate the glass-liquid transition of water at the molecular level. Surface diffusion of water occurs at temperatures higher than 120K, thereby forming three-dimensional clusters (a two-dimensional layer) on the [bmim][PF6] (graphite) surface. The hydrophobic effect of the surface decreases with increasing coverage of water; the bulklike properties evolve up to 40 ML, as evidenced by the occurrence of film dewetting at around the conventional glass transition temperature (140K). Results also showed that aging is necessary for the water monolayer (a 40 ML water film) to dewet the graphite ([bmim][PF6]) surface. The occurrence of aging is explainable by the successive evolution of two distinct liquids during the glass-liquid transition: low density liquid is followed by supercooled liquid water. The water monolayer on graphite is characterized by the preferred orientation of unpaired OH groups toward the surface; this structure is arrested during the aging time despite the occurrence of surface diffusion. However, the water monolayer formed on the [bmim][PF6] surface agglomerates immediately after the commencement of surface diffusion. The structure of low density liquid tends to be arrested by the attractive interaction with the neighbors.
Modulators of heterogeneous protein surface water dynamics
NASA Astrophysics Data System (ADS)
Han, Songi
The hydration water that solvates proteins is a major factor in driving or enabling biological events, including protein-protein and protein-ligand interactions. We investigate the role of the protein surface in modulating the hydration water fluctuations on both the picosecond and nanosecond timescale with an emerging experimental NMR technique known as Overhauser Dynamic Nuclear Polarization (ODNP). We carry out site-specific ODNP measurements of the hydration water fluctuations along the surface of Chemotaxis Y (CheY), and correlate the measured fluctuations to hydropathic and topological properties of the CheY surface as derived from molecular dynamics (MD) simulation. Furthermore, we compare hydration water fluctuations measured on the CheY surface to that of other globular proteins, as well as intrinsically disordered proteins, peptides, and liposome surfaces to systematically test characteristic effects of the biomolecular surface on the hydration water dynamics. Our results suggest that the labile (ps) hydration water fluctuations are modulated by the chemical nature of the surface, while the bound (ns) water fluctuations are present on surfaces that feature a rough topology and chemical heterogeneity such as the surface of a folded and structured protein. In collaboration with: Ryan Barnes, Dept of Chemistry and Biochemistry, University of California Santa Barbara
Ground-water situation in Oregon
Newcomb, R.C.
1951-01-01
The water that occurs beneath the land surface follows definite and well-known rules of hydraulics, the same as water on the surface. However, ground water must be studied by methods, some of which are unique to that type of water occurrence, in order to evaluate the part it plays in the over-all water scheme.Water that falls on the land surface as rain or snow and water that rests upon the surface may in places pass laterally or downward through the pores of the earth materials. There it may take one or more of a variety of paths before again flowing out on the surface or being expelled to the atmosphere by evaporation and by the transpiration of plants. Water so diverted underground is delayed or diverted from its course toward the sea and that digression results in many services of prime importance to mankind. Underground, the water generally exceeds in total quantity the water present on the land surface at any one time.The discussion of ground water can be clarified somewhat by a description of the major parts or phases of the normal path of water underground.
Insight into Chemistry on Cloud/Aerosol Water Surfaces.
Zhong, Jie; Kumar, Manoj; Francisco, Joseph S; Zeng, Xiao Cheng
2018-05-15
Cloud/aerosol water surfaces exert significant influence over atmospheric chemical processes. Atmospheric processes at the water surface are observed to follow mechanisms that are quite different from those in the gas phase. This Account summarizes our recent findings of new reaction pathways on the water surface. We have studied these surface reactions using Born-Oppenheimer molecular dynamics simulations. These studies provide useful information on the reaction time scale, the underlying mechanism of surface reactions, and the dynamic behavior of the product formed on the aqueous surface. According to these studies, the aerosol water surfaces confine the atmospheric species into a specific orientation depending on the hydrophilicity of atmospheric species or the hydrogen-bonding interactions between atmospheric species and interfacial water. As a result, atmospheric species are activated toward a particular reaction on the aerosol water surface. For example, the simplest Criegee intermediate (CH 2 OO) exhibits high reactivity toward the interfacial water and hydrogen sulfide, with the reaction times being a few picoseconds, 2-3 orders of magnitude faster than that in the gas phase. The presence of interfacial water molecules induces proton-transfer-based stepwise pathways for these reactions, which are not possible in the gas phase. The strong hydrophobicity of methyl substituents in larger Criegee intermediates (>C1), such as CH 3 CHOO and (CH 3 ) 2 COO, blocks the formation of the necessary prereaction complexes for the Criegee-water reaction to occur at the water droplet surface, which lowers their proton-transfer ability and hampers the reaction. The aerosol water surface provides a solvent medium for acids (e.g., HNO 3 and HCOOH) to participate in reactions via mechanisms that are different from those in the gas and bulk aqueous phases. For example, the anti-CH 3 CHOO-HNO 3 reaction in the gas phase follows a direct reaction between anti-CH 3 CHOO and HNO 3 , whereas on a water surface, the HNO 3 -mediated stepwise hydration of anti-CH 3 CHOO is dominantly observed. The high surface/volume ratio of interfacial water molecules at the aerosol water surface can significantly lower the energy barriers for the proton transfer reactions in the atmosphere. Such catalysis by the aerosol water surface is shown to cause the barrier-less formation of ammonium bisulfate from hydrated NH 3 and SO 3 molecules rather than from the reaction of H 2 SO 4 with NH 3 . Finally, an aerosol water droplet is a polar solvent, which would favorably interact with high polarity substrates. This can accelerate interconversion of different conformers (e.g., anti and syn) of atmospheric species, such as glyoxal, depending on their polarity. The results discussed here enable an improved understanding of atmospheric processes on the aerosol water surface.
Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface
2008-08-01
seepage is occurring in a freshwater lake environment and to map the lateral extent of any subsurface contamination at the groundwater –surface water ...and Contaminant Migration at the Groundwater -Surface Water Interface August 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Monitoring of Water and Contaminant Migration at the Groundwater -Surface Water Interface 5a. CONTRACT NUMBER 5b. GRANT NUMBER
Shin, Sucheol; Willard, Adam P
2018-06-05
We combine all-atom molecular dynamics simulations with a mean field model of interfacial hydrogen bonding to analyze the effect of surface-water interactions on the structural and energetic properties of the liquid water interface. We show that the molecular structure of water at a weakly interacting ( i.e., hydrophobic) surface is resistant to change unless the strength of surface-water interactions are above a certain threshold. We find that below this threshold water's interfacial structure is homogeneous and insensitive to the details of the disordered surface, however, above this threshold water's interfacial structure is heterogeneous. Despite this heterogeneity, we demonstrate that the equilibrium distribution of molecular orientations can be used to quantify the energetic component of the surface-water interactions that contribute specifically to modifying the interfacial hydrogen bonding network. We identify this specific energetic component as a new measure of hydrophilicity, which we refer to as the intrinsic hydropathy.
Reilly, Timothy J.; Walker, Christopher E.; Baehr, Arthur L.; Schrock, Robin M.; Reinfelder, John R.
2006-01-01
In a novel approach for detecting ground-water/surface-water interaction, diatoms were used as an indicator that surface water affects ground-water quality in lakeside communities in northern New Jersey. The presence of diatoms, which are abundant in lakes, in adjacent domestic wells demonstrated that ground water in these lakeside communities was under the direct influence of surface water. Entire diatom frustules were present in 17 of 18 water samples collected in August 1999 from domestic wells in communities surrounding Cranberry Lake and Lake Lackawanna. Diatoms in water from the wells were of the same genus as those found in the lakes. The presence of diatoms in the wells, together with the fact that most static and stressed water levels in wells were below the elevation of the lake surfaces, indicates that ground-water/surface-water interaction is likely. Ground-water/surface-water interaction also probably accounts for the previously documented near-ubiquitous presence of methyl tertiary-butyl ether in the ground-water samples. Recreational use of lakes for motor boating and swimming, the application of herbicides for aquatic weed control, runoff from septic systems and roadways, and the presence of waterfowl all introduce contaminants to the lake. Samples from 4 of the 18 wells contained Navicula spp., a documented significant predictor of Giardia and Cryptosporidium. Because private well owners in New Jersey generally are not required to regularly monitor their wells, and tests conducted by public-water suppliers may not be sensitive to indicators of ground-water/surface-water interaction, these contaminants may remain undetected. The presence of diatoms in wells in similar settings can warn of lake/well interactions in the absence of other indicators.
Hydrologic effects of impoundments in Sherburne National Wildlife Refuge, Minnesota
Brown, R.G.
1984-01-01
The hydrologic effects of proposed impoundments in Sherburne National Wildlife Refuge were found to be insignificant with respect to both ground- and surface-water flow patterns and water quality. Monitoring of water levels in 23 observation wells and of discharge in the St. Francis River during 1980 and 1981 has shown that ground water in the surf icial aquifer responds quickly to areal recharge and subsequently discharges to the St. Francis River. The impoundment of surface water in the refuge was not found to affect water levels in the refuge significantly. The impoundments may affect ground-water-flow systems beneath and adjacent to the impoundments. Quality of ground and surface water was found to be similar except ground water contained higher concentrations of dissolved nitrite plus nitrate nitrogen than surface water. Phytoplankton removed dissolved nitrite plus nitrate nitrogen from surface water. The effects of impoundments on water quality are expected to be minor.
The Interaction of Water with Solid Surfaces: Fundamental Aspects Revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Michael A.
2002-05-01
Water is perhaps the most important and most pervasive chemical on our planet. The influence of water permeates virtually all areas of biochemical, chemical and physical importance, and is especially evident in phenomena occurring at the interfaces of solid surfaces. Since 1987, when Thiel and Madey (TM) published their review titled "The Interaction of Water with Solid Surfaces: Fundamental Aspects" in Surface Science Reports, there has been considerable progress made in further understanding the fundamental interactions of water with solid surfaces. In the decade and a half, the increased capability of surface scientists to probe at the molecular-level has resultedmore » in more detailed information of the properties of water on progressively more complicated materials and under more stringent conditions. This progress in understanding the properties of water on solid surfaces is evident both in areas for which surface science methodology has traditionally been strong (catalysis and electronic materials) and also in new areas not traditionally studied by surface scientists, such as electrochemistry, photoconversion, mineralogy, adhesion, sensors, atmospheric chemistry, and tribology. Researchers in all these fields grapple with very basic questions regarding the interactions of water with solid surfaces, such as how is water adsorbed, what are the chemical and electrostatic forces that constitute the adsorbed layer, how is water thermally or non-thermally activated, and how do coadsorbates influence these properties of water. The attention paid to these and other fundamental questions in the past decade and a half has been immense. In this review, experimental studies published since the TM review are assimilated with those covered by TM to provide a current picture of the fundamental interactions of water with solid surfaces.« less
Winter diversity and expression of proteorhodopsin genes in a polar ocean
Nguyen, Dan; Maranger, Roxane; Balagué, Vanessa; Coll-Lladó, Montserrat; Lovejoy, Connie; Pedrós-Alió, Carlos
2015-01-01
Mixotrophy is a valuable functional trait used by microbes when environmental conditions vary broadly or resources are limited. In the sunlit waters of the ocean, photoheterotrophy, a form of mixotrophy, is often mediated by proteorhodopsin (PR), a seven helices transmembrane protein binding the retinal chromophore. Altogether, they allow bacteria to capture photic energy for sensory and proton gradient formation cell functions. The seasonal occurrence and diversity of the gene coding for PR in cold oligotrophic polar oceans is not known and PR expression has not yet been reported. Here we show that PR is widely distributed among bacterial taxa, and that PR expression decreased markedly during the winter months in the Arctic Ocean. Gammaproteobacteria-like PR sequences were always dominant. However, within the second most common affiliation, there was a transition from Flavobacteria-like PR in early winter to Alphaproteobacteria-like PR in late winter. The phylogenetic shifts followed carbon dynamics, where patterns in expression were consistent with community succession, as identified by DNA community fingerprinting. Although genes for PR were always present, the trend in decreasing transcripts from January to February suggested reduced functional utility of PR during winter. Under winter darkness, sustained expression suggests that PR may continue to be useful for non-ATP forming functions, such as environmental sensing or small solute transport. The persistence of PR expression in winter among some bacterial groups may offer a competitive advantage, where its multifunctionality enhances microbial survival under harsh polar conditions. PMID:25700336
Winter diversity and expression of proteorhodopsin genes in a polar ocean.
Nguyen, Dan; Maranger, Roxane; Balagué, Vanessa; Coll-Lladó, Montserrat; Lovejoy, Connie; Pedrós-Alió, Carlos
2015-08-01
Mixotrophy is a valuable functional trait used by microbes when environmental conditions vary broadly or resources are limited. In the sunlit waters of the ocean, photoheterotrophy, a form of mixotrophy, is often mediated by proteorhodopsin (PR), a seven helices transmembrane protein binding the retinal chromophore. Altogether, they allow bacteria to capture photic energy for sensory and proton gradient formation cell functions. The seasonal occurrence and diversity of the gene coding for PR in cold oligotrophic polar oceans is not known and PR expression has not yet been reported. Here we show that PR is widely distributed among bacterial taxa, and that PR expression decreased markedly during the winter months in the Arctic Ocean. Gammaproteobacteria-like PR sequences were always dominant. However, within the second most common affiliation, there was a transition from Flavobacteria-like PR in early winter to Alphaproteobacteria-like PR in late winter. The phylogenetic shifts followed carbon dynamics, where patterns in expression were consistent with community succession, as identified by DNA community fingerprinting. Although genes for PR were always present, the trend in decreasing transcripts from January to February suggested reduced functional utility of PR during winter. Under winter darkness, sustained expression suggests that PR may continue to be useful for non-ATP forming functions, such as environmental sensing or small solute transport. The persistence of PR expression in winter among some bacterial groups may offer a competitive advantage, where its multifunctionality enhances microbial survival under harsh polar conditions.
NASA Astrophysics Data System (ADS)
de Boeck, H. J.; Lemmens, C. M. H. M.; Gielen, B.; Malchair, S.; Carnol, M.; Merckx, R.; van den Berge, J.; Ceulemans, R.; Nijs, I.
2007-12-01
Here we report on the single and combined impacts of climate warming and species richness on the biomass production in experimental grassland communities. Projections of a future warmer climate have stimulated studies on the response of terrestrial ecosystems to this global change. Experiments have likewise addressed the importance of species numbers for ecosystem functioning. There is, however, little knowledge on the interplay between warming and species richness. During three years, we grew experimental plant communities containing one, three or nine grassland species in 12 sunlit, climate-controlled chambers in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3°C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration was higher. Biomass production was decreased due to warming, both aboveground (-29%) and belowground (-25%), as negative impacts of increased heat and drought stress in summer prevailed. Increased resource partitioning, likely mostly through spatial complementarity, led to higher shoot and root biomass in multi-species communities, regardless of the induced warming. Surprisingly, warming suppressed productivity the most in 9-species communities, which may be attributed to negative impacts of intense interspecific competition for resources under conditions of high abiotic stress. Our results suggest that warming and the associated soil drying could reduce primary production in many temperate grasslands, and that this will not necessarily be mitigated by efforts to maintain or increase species richness.
Widespread anatoxin-a detection in benthic cyanobacterial mats throughout a river network
Kudela, Raphael M.; Power, Mary E.
2018-01-01
Benthic algae fuel summer food webs in many sunlit rivers, and are hotspots for primary and secondary production and biogeochemical cycling. Concerningly, riverine benthic algal assemblages can become dominated by toxic cyanobacteria, threatening water quality and public health. In the Eel River in Northern California, over a dozen dog deaths have been attributed to cyanotoxin poisonings since 2000. During the summers of 2013–2015, we documented spatial and temporal patterns of cyanotoxin concentrations in the watershed, showing widespread distribution of anatoxin-a in benthic cyanobacterial mats. Solid phase adsorption toxin tracking (SPATT) samplers were deployed weekly to record dissolved microcystin and anatoxin-a levels at 10 sites throughout the watershed, and 187 Anabaena-dominated or Phormidium-dominated cyanobacterial mat samples were collected from 27 locations to measure intracellular anatoxin-a (ATX) and microcystins (MCY). Anatoxin-a levels were higher than microcystin for both SPATT (mean MCY = 0.8 and ATX = 4.8 ng g resin-1 day-1) and cyanobacterial mat samples (mean MCY = 0.074 and ATX = 1.89 μg g-1 DW). Of the benthic mats sampled, 58.9% had detectable anatoxin-a (max = 70.93 μg g-1 DW), while 37.6% had detectable microcystins (max = 2.29 μg g-1 DW). SPATT cyanotoxin levels peaked in mid-summer in warm mainstem reaches of the watershed. This is one of the first documentations of widespread anatoxin-a occurrence in benthic cyanobacterial mats in a North American watershed. PMID:29775481
Liu, Jian; Wang, Chunlei; Guo, Pan; Shi, Guosheng; Fang, Haiping
2013-12-21
Using molecular dynamics simulations, we show a fine linear relationship between surface energies and microscopic Lennard-Jones parameters of super-hydrophilic surfaces. The linear slope of the super-hydrophilic surfaces is consistent with the linear slope of the super-hydrophobic, hydrophobic, and hydrophilic surfaces where stable water droplets can stand, indicating that there is a universal linear behavior of the surface energies with the water-surface van der Waals interaction that extends from the super-hydrophobic to super-hydrophilic surfaces. Moreover, we find that the linear relationship exists for various substrate types, and the linear slopes of these different types of substrates are dependent on the surface atom density, i.e., higher surface atom densities correspond to larger linear slopes. These results enrich our understanding of water behavior on solid surfaces, especially the water wetting behaviors on uncharged super-hydrophilic metal surfaces.
Cowdery, Timothy K.
2005-01-01
Long-term withdrawals of water for public supplies may cause a net decrease in ground-water discharge to surface water. Water that does not evaporate, or that is not exported, is discharged to the Des Moines River but with changed water quality. Because ground-water and surface-water qualities in the study area are similar, the ground-water discharge probably has little effect on river water quality.
A conceptual model for the analysis of multi-stressors in linked groundwater-surface water systems.
Kaandorp, Vince P; Molina-Navarro, Eugenio; Andersen, Hans E; Bloomfield, John P; Kuijper, Martina J M; de Louw, Perry G B
2018-06-15
Groundwater and surface water are often closely coupled and are both under the influence of multiple stressors. Stressed groundwater systems may lead to a poor ecological status of surface waters but to date no conceptual framework to analyse linked multi-stressed groundwater - surface water systems has been developed. In this paper, a framework is proposed showing the effect of groundwater on surface waters in multiple stressed systems. This framework will be illustrated by applying it to four European catchments, the Odense, Denmark, the Regge and Dinkel, Netherlands, and the Thames, UK, and by assessing its utility in analysing the propagation or buffering of multi-stressors through groundwater to surface waters in these catchments. It is shown that groundwater affects surface water flow, nutrients and temperature, and can both propagate stressors towards surface waters and buffer the effect of stressors in space and time. The effect of groundwater on drivers and states depends on catchment characteristics, stressor combinations, scale and management practises. The proposed framework shows how groundwater in lowland catchments acts as a bridge between stressors and their effects within surface waters. It shows water managers how their management areas might be influenced by groundwater, and helps them to include this important, but often overlooked part of the water cycle in their basin management plans. The analysis of the study catchments also revealed a lack of data on the temperature of both groundwater and surface water, while it is an important parameter considering future climate warming. Copyright © 2018. Published by Elsevier B.V.
Active molecular iodine photochemistry in the Arctic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raso, Angela R. W.; Custard, Kyle D.; May, Nathaniel W.
During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I 2) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I2 and snowpack iodide (I-) measurements, which were conducted near Utqiagvik, AK, in Februarymore » 2014. Using chemical ionization mass spectrometry, I2 was observed in the atmosphere at mole ratios of 0.3–1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I-measurements showed enrichments of up to ~1,900 times above the seawater ratio of I-/Na+, consistent with iodine activation and recycling. Modeling shows that observed I 2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. These results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I 2 is likely a dominant source of iodine atoms in the Arctic.« less
NASA Astrophysics Data System (ADS)
Patra, P. K.; Crisp, D.; W Kaiser, J.; Wunch, D.; Saeki, T.; Ichii, K.; Sekiya, T.; Wenneberg, P.; Griffith, D. W. T.; Feist, D. G.; Pollard, D.; Velazco, V. A.; De Maziere, M.; Sha, M. K.; Roehl, C. M.; Chatterjee, A.
2016-12-01
Uncertainties in estimates of regional fluxes of carbon dioxide (CO2) and other greenhouse gases derived from direct inventory methods or inferred from atmospheric observations has hindered the implementation of effective policy for reduction of emissions from anthropogenic activity. To improve the resolution and coverage of the atmospheric CO2 measurements for reducing CO2 flux uncertainty, NASA launched the OCO-2 satellite in 2014, and OCO-2 has been routinely returning almost one million soundings each day over the sunlit hemisphere. A powerful El Niño event in 2015-2016 - the third most intense since the 1950s - has exerted a large impact on the Earth's natural climate system. Here, we analyze column-averaged CO2 dry-air mole fraction (XCO2) observations during the period from September 2014 to February 2016 (18 months) together with ground-based remote sensing and in situ observations. From the differences between observations and simulations from an atmospheric chemistry-transport model, we estimated, that relative to the mean annual fluxes for 2011-2013, this El Niño has contributed to an excess CO2 flux from the Earth's surface (land+ocean) to the atmosphere in the range of 2.24-3.32 PgC (1 Pg = 1015 g). This anomalous CO2 flux results primarily from reduction in vegetation uptake due to drought and biomass burning. Improvements in modeling atmospheric-CO2 are required to attribute CO2 source changes at regional scales.
Early Results from the NASA Orbiting Carbon Observatory-2 (OCO-2)
NASA Astrophysics Data System (ADS)
Crisp, David; Eldering, Annmarie
2015-04-01
The Orbiting Carbon Observatory-2 (OCO-2) is NASA's first satellite designed to collect the measurements needed to estimate the column-averaged carbon dioxide (CO2) dry air mole fraction, XCO2, with the sensitivity, accuracy, and resolution needed to characterize the CO2 sources and sinks on regional scales over the globe. OCO-2 was successfully launched from Vandenberg Air Force Base in California on July 2, 2014 and joined the 705-km Afternoon Constellation (A-Train) on August 3, 2014. The three-channel imaging grating spectrometer was then cooled to its operating temperatures and a comprehensive series of characterization and calibration activities were initiated. Since early October 2014, the observatory has been routinely collecting almost 1 million soundings over the sunlit hemisphere each day. Early cloud screening results indicate that 15-30% of these measurements may be sufficiently cloud free to yield precise estimates of XCO2. Initial deliveries of calibrated, geo-located OCO-2 spectra to the NASA Goddard Earth Science Data and Information Services Center (GES DISC) began on December 30, 2014. Preliminary estimates of XCO2 retrieved from these data are currently being validated against observations from the Total Carbon Column Observing Network (TCCON) and other standards. Routine deliveries XCO2 and other products, including surface pressure and chlorophyll fluorescence, to the GES DISC are expected to begin before the end of March, 2015. This presentation will summarize the status of the OCO-2 mission and the coverage, resolution, and accuracy of its early results.
NASA Astrophysics Data System (ADS)
Yetzer, Kenneth H.
A new one-dimensional (1D) soil-vegetation-atmospheric transport (SVAT) scheme is coupled to a nonlocal turbulence closure model in order to simulate the interactions between a forested canopy and the planetary boundary layer. The SVAT consists of mechanistic models for both physiological (photosynthesis, stomatal conductance and soil/root and bole respiration) and micrometeorological (radiative transfer and surface energy exchanges) processes. The turbulence closure model is a first-order, nonlocal turbulence closure called transilient turbulence theory (Stull, 1993; Inclan et al., 1995) which includes the effects of form drag, wake turbulence, and interference to vertical mixing by the plant elements. The submodel that accounts for radiative transfer inside the forest has been taken from Norman (1979) and Baldocchi (1989). It includes the effect of varying mean leaf inclination angle with height and it also accounts for leaf clumping The photosynthesis submodel is taken from Nikolov and others (1995). It accounts for both differences between shaded and sunlit leaves and the variation of photosynthetic capacity with height. The model was tested with data obtained from a deciduous forest in Pennsylvania. The results show reasonable agreement with the observations. They also demonstrate the model's ability to simulate phenomena that is characteristic of tall canopies like forests, including counter gradient-fluxes and local wind speed maxima in the trunk space.
Active molecular iodine photochemistry in the Arctic
Raso, Angela R. W.; Custard, Kyle D.; May, Nathaniel W.; ...
2017-09-05
During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I 2) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I 2 and snowpack iodide (I -) measurements, which were conducted near Utqiagvik, AK,more » in February 2014. Using chemical ionization mass spectrometry, I 2 was observed in the atmosphere at mole ratios of 0.3–1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I-measurements showed enrichments of up to ~1,900 times above the seawater ratio of I-/Na +, consistent with iodine activation and recycling. Modeling shows that observed I 2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. Furthermore, these results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I 2 is likely a dominant source of iodine atoms in the Arctic.« less
Li, Yanjie; Li, Yifan; Pan, Xiang; Li, Qing X; Chen, Ronghua; Li, Xuesheng; Pan, Canping; Song, Jianli
2018-02-01
Plant protection products (PPPs) are applied in China and many other developing countries with knapsack sprayers at high volumes with coarse spray quality, resulting in a high percentage of pesticide losses. In this study, a new air-assisted electric knapsack sprayer and two conventional knapsack sprayers were evaluated in terms of pesticide deposition, residues and loss into the soil. Artificial targets fixed to the upper side and underside of the leaf surface in six zones (at two depths and three heights) were used to collect the deposition, which were analyzed by liquid chromatography triple-quadrupole mass spectrometry. The air-assisted electric knapsack sprayer produced more deposition and better penetrability and uniformity than the two traditional spraying methods. In particular, the air-assisted electric knapsack sprayer reduced pesticide losses to the soil by roughly 37% to 75% and deposited 1.18 and 1.24 times more pesticide than the manual air-pressure and battery-powered knapsack sprayers, respectively. The residues of azoxystrobin and tebuconazole in tomato and cucumber were below the maximum residue limits (MRLs). In general, use of the the air-assisted electric knapsack sprayer in tomato and cucumber crops could improve the effectiveness of PPPs, reduce the risk of contamination and protect food safety. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Active molecular iodine photochemistry in the Arctic
NASA Astrophysics Data System (ADS)
Raso, Angela R. W.; Custard, Kyle D.; May, Nathaniel W.; Tanner, David; Newburn, Matt K.; Walker, Lawrence; Moore, Ronald J.; Huey, L. G.; Alexander, Liz; Shepson, Paul B.; Pratt, Kerri A.
2017-09-01
During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I2) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I2 and snowpack iodide (I-) measurements, which were conducted near Utqiaġvik, AK, in February 2014. Using chemical ionization mass spectrometry, I2 was observed in the atmosphere at mole ratios of 0.3-1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I- measurements showed enrichments of up to ˜1,900 times above the seawater ratio of I-/Na+, consistent with iodine activation and recycling. Modeling shows that observed I2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. These results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I2 is likely a dominant source of iodine atoms in the Arctic.
Active molecular iodine photochemistry in the Arctic.
Raso, Angela R W; Custard, Kyle D; May, Nathaniel W; Tanner, David; Newburn, Matt K; Walker, Lawrence; Moore, Ronald J; Huey, L G; Alexander, Liz; Shepson, Paul B; Pratt, Kerri A
2017-09-19
During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I 2 ) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I 2 and snowpack iodide (I - ) measurements, which were conducted near Utqiaġvik, AK, in February 2014. Using chemical ionization mass spectrometry, I 2 was observed in the atmosphere at mole ratios of 0.3-1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I - measurements showed enrichments of up to ∼1,900 times above the seawater ratio of I - /Na + , consistent with iodine activation and recycling. Modeling shows that observed I 2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. These results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I 2 is likely a dominant source of iodine atoms in the Arctic.
The effects of large-scale pumping and diversion on the water resources of Dane County, Wisconsin
Hunt, Randall J.; Bradbury, Kenneth R.; Krohelski, James T.
2001-01-01
Throughout many parts of the U.S., there is growing concern over the effects of rapid urban growth and development on water resources. Ground- water and surface-water systems (which comprise the hydrologic system) are linked in much of Wisconsin, and ground water can be utilized both for drinking water and as a source of water for sustaining lakes, streams, springs, and wetlands. Ground water is important for surface-water systems because it commonly has greater dissolved solids and more acid-neutraliz- ing capacity than surface water or precipitation. The supplies of ground water are finite, however, and, in many cases ground water used for one purpose cannot be used for another. Moreover, ground-water use and withdrawal patterns may not be easy to alter once established. Thus, urban and rural planners are faced with decisions that balance the need for ground- water withdrawals while maintaining the quantity and quality of ground water for sustaining surface-water resources. Science-based information on the ground-water system and the connections to surface-water systems provides valuable insight for such decisions.
Seenama, Chakkraphong; Tachasirinugune, Peenithi; Jintanothaitavorn, Duangporn; Kachintorn, Kanchana; Thamlikitkul, Visanu
2013-02-01
To determine the effectiveness of Virusolve+ disinfectant wipes and PAL disinfectant wipes for decontamination of inoculated bacteria on patients' environmental and medical equipment surfaces at Siriraj Hospital. Tryptic soy broths containing MRSA and XDR A. baumannii were painted onto the surfaces of patient's stainless steel bed rail, patient's fiber footboard, control panel of infusion pump machine and control panel of respirator. The contaminated surfaces were cleaned by either tap water, tap water containing detergent, Virusolve+ disinfectant wipes or PAL disinfectant wipes. The surfaces without any cleaning procedures served as the control surface. The contaminated surfaces cleaned with the aforementioned procedures and control surfaces were swabbed with cotton swabs. The swabs were streaked on agar plates to determine the presence of MRSA and XDR A. baumannii. MRSA and XDR A. baumannii were recovered from all control surfaces. All surfaces cleaned with tap water or tap water containing detergent revealed presence of both MRSA and XDR A. baumannii. However the amounts of bacteria on the surfaces cleaned with tap water containing detergent were less than those cleaned with tap water alone. All surfaces cleaned with PAL disinfectant wipes also revealed presence of both MRSA and XDR A. baumannii. However the amounts of bacteria on the surfaces cleaned with PAL disinfectant wipes were less than those cleaned with tap water containing detergent. No bacteria were recovered from all surfaces cleaned with Virusolve+ disinfectant wipes. Virusolve+ disinfectant wipes were more effective than tap water; tap water containing detergent and PAL disinfectant wipes for decontamination of bacteria inoculated on patients environmental and medical equipment surfaces at Siriraj Hospital.
Bacterial community diversity and variation in spray water sources and the tomato fruit surface.
Telias, Adriana; White, James R; Pahl, Donna M; Ottesen, Andrea R; Walsh, Christopher S
2011-04-21
Tomato (Solanum lycopersicum) consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water) when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an important step forward towards the development of science-based metrics for Good Agricultural Practices.
Cool, Geneviève; Lebel, Alexandre; Sadiq, Rehan; Rodriguez, Manuel J
2014-08-15
Dissolved organic carbon (DOC) is a recognized indicator of natural organic matter (NOM) in surface waters. The aim of this paper is twofold: to evaluate the impact of geophysical characteristics, climate and ecological zones on DOC concentrations in surface waters and, to develop a statistical model to estimate the regional variability of these concentrations. In this study, multilevel statistical analysis was used to achieve three specific objectives: (1) evaluate the influence of climate and geophysical characteristics on DOC concentrations in surface waters; (2) compare the influence of geophysical characteristics and ecological zones on DOC concentrations in surface waters; and (3) develop a model to estimate the most accurate DOC concentrations in surface waters. The case study involved 115 catchments from surface waters in the Province of Quebec, Canada. Results showed that mean temperatures recorded 60 days prior to sampling, total precipitation 10 days prior to sampling and percentages of wetlands, coniferous forests and mixed forests have a significant positive influence on DOC concentrations in surface waters. The catchment mean slope had a significant negative influence on DOC concentrations in surface waters. Water type (lake or river) and deciduous forest variables were not significant. The ecological zones had a significant influence on DOC concentrations. However, geophysical characteristics (wetlands, forests and slope) estimated DOC concentrations more accurately. A model describing the variability of DOC concentrations was developed and can be used, in future research, for estimating DBPs in drinking water as well evaluating the impact of climate change on the quality of surface waters and drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Chengchu; Duan, Jingyun; Su, Yi-Cheng
2006-02-15
The effects of electrolyzed oxidizing (EO) water on reducing Listeria monocytogenes contamination on seafood processing surfaces were studied. Chips (5 x 5 cm(2)) of stainless steel sheet (SS), ceramic tile (CT), and floor tile (FT) with and without crabmeat residue on the surface were inoculated with L. monocytogenes and soaked in tap or EO water for 5 min. Viable cells of L. monocytogenes were detected on all chip surfaces with or without crabmeat residue after being held at room temperature for 1 h. Soaking contaminated chips in tap water resulted in small-degree reductions of the organism (0.40-0.66 log cfu/chip on clean surfaces and 0.78-1.33 log cfu/chip on dirty surfaces). Treatments of EO water significantly (p<0.05) reduced L. monocytogenes on clean surfaces (3.73 log on SS, 4.24 log on CT, and 5.12 log on FT). Presence of crabmeat residue on chip surfaces reduced the effectiveness of EO water on inactivating Listeria cells. However, treatments of EO water also resulted in significant reductions of L. monocytogenes on dirty surfaces (2.33 log on SS and CT and 1.52 log on FT) when compared with tap water treatments. The antimicrobial activity of EO water was positively correlated with its chlorine content. High oxidation-reduction potential (ORP) of EO water also contributed significantly to its antimicrobial activity against L. monocytogenes. EO water was more effective than chlorine water on inactivating L. monocytogenes on surfaces and could be used as a chlorine alternative for sanitation purpose. Application of EO water following a thorough cleaning process could greatly reduce L. monocytogenes contamination in seafood processing environments.
NASA Astrophysics Data System (ADS)
Benavides, Mar; Shoemaker, Katyanne M.; Moisander, Pia H.; Niggemann, Jutta; Dittmar, Thorsten; Duhamel, Solange; Grosso, Olivier; Pujo-Pay, Mireille; Hélias-Nunige, Sandra; Fumenia, Alain; Bonnet, Sophie
2018-05-01
The western tropical South Pacific (WTSP) Ocean has been recognized as a global hot spot of dinitrogen (N2) fixation. Here, as in other marine environments across the oceans, N2 fixation studies have focused on the sunlit layer. However, studies have confirmed the importance of aphotic N2 fixation activity, although until now only one had been performed in the WTSP. In order to increase our knowledge of aphotic N2 fixation in the WTSP, we measured N2 fixation rates and identified diazotrophic phylotypes in the mesopelagic layer along a transect spanning from New Caledonia to French Polynesia. Because non-cyanobacterial diazotrophs presumably need external dissolved organic matter (DOM) sources for their nutrition, we also identified DOM compounds using Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) with the aim of searching for relationships between the composition of DOM and non-cyanobacterial N2 fixation in the aphotic ocean. N2 fixation rates were low (average 0.63 ± 0.07 nmol N L-1 d-1) but consistently detected across all depths and stations, representing ˜ 6-88 % of photic N2 fixation. N2 fixation rates were not significantly correlated with DOM compounds. The analysis of nifH gene amplicons revealed a wide diversity of non-cyanobacterial diazotrophs, mostly matching clusters 1 and 3. Interestingly, a distinct phylotype from the major nifH subcluster 1G dominated at 650 dbar, coinciding with the oxygenated Subantarctic Mode Water (SAMW). This consistent pattern suggests that the distribution of aphotic diazotroph communities is to some extent controlled by water mass structure. While the data available are still too scarce to elucidate the distribution and controls of mesopelagic non-cyanobacterial diazotrophs in the WTSP, their prevalence in the mesopelagic layer and the consistent detection of active N2 fixation activity at all depths sampled during our study suggest that aphotic N2 fixation may contribute significantly to fixed nitrogen inputs in this area and/or areas downstream of water mass circulation.
Study on the species composition and ecology of anophelines in Addis Zemen, South Gondar, Ethiopia.
Kindu, Mizan; Aklilu, Esayas; Balkew, Meshesha; Gebre-Michael, Teshome
2018-03-27
Malaria is a public health problem in Ethiopia and its transmission is generally unstable and seasonal. For the selection of the most appropriate vector control measures, knowledge on the ecology of the vector is necessary at a local level. Therefore, the objectives of this study were to document the species composition, breeding habitat characteristics and occurrence of anopheline larva in Sheni stream and the vectorial role of the prevailing Anopheles in relation to malaria transmission in Addis Zemen, Ethiopia. Immature anophelines were sampled from breeding habitats and characteristics, such as water temperature, turbidity, water current, water pH and other variables, of the habitats were measured from October 2011 to February 2012. Adult anophelines were sampled inside human dwellings using space spray and Center for Disease Control light traps. Artificial pit shelters and clay pots were also used for outdoor adult collections. Anophelines collected were identified using morphological key. The enzyme-linked immunosorbent assay was applied to detect circumsporozoite proteins of Plasmodium and source of blood meals. A total of 6258 Anopheles larvae were collected and identified morphologically. Five anopheline species were found: An. gambiae (s.l.), An. cinereus, An. demeilloni, An. christi and An. pretoriensis. Anopheles gambiae (s.l.) existed in most of the habitats investigated. Only the former three species were captured in the adult collections. Sun-lit Sheni stream, rain pools, hoof prints, drainage and irrigation canals were found to be habitats of larvae. Anopheles gambiae (s.l.) larvae were most abundantly sampled from sand mining and natural sand pools of Sheni stream. Multiple regression analysis showed that clear, permanent and temporary habitats devoid of mats of algae were the best predictors of An. gambiae (s.l.) larval abundance. It is also the responsible malaria vector in the study area and exhibits anthropophilic and endophagic behaviour. The malaria vector An. gambiae (s.l.) was found in Addis Zemen throughout the study period from both adult and larval collections. Sheni stream is the main larval habitat responsible for the occurrence of anopheline larvae during the dry season of the study area when other breeding sites perish.
Franklin, Marvin A.
2000-01-01
The U.S. Geological Survey, Water Resources Division, has a policy that requires each District office to prepare a Surface Water Quality-Assurance Plan. The plan for each District describes the policies and procedures that ensure high quality in the collection, processing, analysis, computer storage, and publication of surface-water data. The North Florida Program Office Surface Water Quality-Assurance Plan documents the standards, policies, and procedures used by the North Florida Program office for activities related to the collection, processing, storage, analysis, and publication of surface-water data.
Thermophoretically driven water droplets on graphene and boron nitride surfaces
NASA Astrophysics Data System (ADS)
Rajegowda, Rakesh; Kannam, Sridhar Kumar; Hartkamp, Remco; Sathian, Sarith P.
2018-05-01
We investigate thermally driven water droplet transport on graphene and hexagonal boron nitride (h-BN) surfaces using molecular dynamics simulations. The two surfaces considered here have different wettabilities with a significant difference in the mode of droplet transport. The water droplet travels along a straighter path on the h-BN sheet than on graphene. The h-BN surface produced a higher driving force on the droplet than the graphene surface. The water droplet is found to move faster on h-BN surface compared to graphene surface. The instantaneous contact angle was monitored as a measure of droplet deformation during thermal transport. The characteristics of the droplet motion on both surfaces is determined through the moment scaling spectrum. The water droplet on h-BN surface showed the attributes of the super-diffusive process, whereas it was sub-diffusive on the graphene surface.
NASA Technical Reports Server (NTRS)
Mikhaylov, Rebecca; Kwack, Eug; Stegman, Matthew; Dawson, Douglas; Hoffman, Pamela
2015-01-01
NASA's SMAP Mission launched in January 2015 into a 685 km near-polar, sun-synchronous orbit. The SMAP instrument architecture incorporates an L-band radar and radiometer which share a common feedhorn and mesh reflector. The instrument rotates about the nadir axis at approximately 15 rpm, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within three days. The radiometer and its associated electronics have tight thermal stability requirements in order to meet the required surface emittance measurement precision from space. Maintaining the thermal stabilities is quite challenging because the radiometer is located on a spinning platform that can either be in full sunlight or eclipse, and thus exposed to a highly transient environment. Stability requirements were met by integrating a light-weight Expanded Polystyrene (EPS) radome into the design to prevent solar illumination of the feed horn interior. The radome was painted white since the thermo-optical properties of bare sunlit EPS degrade rapidly over the three-year mission. Milling of the EPS and solvent within the white paint created cavities on the EPS surface which may introduce localized hot spots possibly violating the EPS glass transition temperature of 96degC and leading to structural integrity concerns. A three-day thermal test was conducted in a vacuum chamber to verify survivability of the radome during a simulated non-spin fault condition at end of mission. A portable solar simulator illuminated the test article and the beam irradiance was kept nearly constant during the entire 50 hour test, except during the first hour which simulated the expected 79degC on-orbit surface temperature of the radome. The test article survived based on the established pass criteria for three separate metrics: dimensional, optical property, and color. If any hot spots exist locally, they did not cause any observable permanent deformation when compared to pre- and post-test images. The test results increase confidence that there is a high probability that the radome will survive the worst-case scenario of a no-spin fault condition at the end of mission.
The physics of water droplets on surfaces: exploring the effects of roughness and surface chemistry
NASA Astrophysics Data System (ADS)
Eid, K. F.; Panth, M.; Sommers, A. D.
2018-03-01
This paper explores the fluid property commonly called surface tension, its effect on droplet shape and contact angle, and the major influences of contact angle behaviour (i.e. surface roughness and surface chemistry). Images of water droplets placed on treated copper surfaces are used to measure the contact angles between the droplets and the surface. The surface wettability is manipulated either by growing a self-assembled monolayer on the surface to make it hydrophobic or by changing the surface roughness. The main activities in this experiment, then, are (1) preparing and studying surfaces with different surface wettability and roughness; (2) determining the shape and contact angles of water droplets on these surfaces; and (3) demonstrating the spontaneous motion of water droplets using surface tension gradients.
Vicariance biogeography of the open-ocean Pacific
NASA Astrophysics Data System (ADS)
White, Brian N.
The first cladogram to treat oceanic water masses as distinct geographic units presents a ‘hydrotectonic’ history of Pacific surface water masses. It is used to test the idea that the oceanographic subdivision of the surface waters of the Pacific Basin into separate water masses shaped pelagic biogeographic patterns in much the same way that the tectonic fragmentation of Pangea influenced biogeographic patterns on land. The historical water-mass relationships depicted by the surface water-mass cladogram resemble modern pelagic biogeographic regions. The prediction that the cladistic phylogenies of monophyletic groups having allopatric taxa in three or more surface water masses will be consistent with the topology of the surface water-mass cladogram is met by the pelagic fish genera Stomias and Evermanella.
NASA Astrophysics Data System (ADS)
Lei, J.; Wang, W.; Burns, A. G.; Yue, X.
2014-12-01
The total electron content (TEC) data measured by the Jason, CHAMP, GRACE and SAC-C satellites, the in-situ electron densities from CHAMP and GRACE, and the vertical E×B drifts from the ROCSAT satellite are utilized to examine the ionospheric response to superstorms. The combination of observations from multiple satellites provides a unique global view of positive ionospheric storm effect at low and middle latitudes, especially over Oceans and under sunlit conditions during the main phases of the storms. In this talk, we will focus on the morphology, evolution and driving mechanisms of the storm-time ionosphere and explore the relative contributions of the horizontal and vertical transport effects to the observed positive storm phase at different latitudes.
2017-07-31
Saturn's northern hemisphere reached its summer solstice in mid-2017, bringing continuous sunshine to the planet's far north. The solstice took place on May 24, 2017. The Cassini mission is using the unparalleled opportunity to observe changes that occur on the planet as the Saturnian seasons turn. This view looks toward the sunlit side of the rings from about 17 degrees above the ring plane. The image was taken with the Cassini spacecraft wide-angle camera on April 17, 2017 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 939 nanometers. The view was acquired at a distance of approximately 733,000 miles (1.2 million kilometers) from Saturn. Image scale is 44 miles (70 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21337
Storm-time variations of atomic nitrogen 149.3 nm emission
NASA Astrophysics Data System (ADS)
Zhang, Y.; Paxton, L. J.; Morrison, D.; Schaefer, B.
2018-04-01
Net radiances of atomic nitrogen emission line (N-149.3 nm) from the thermosphere are extracted from the FUV spectra observed by TIMED/GUVI on dayside at sunlit latitudes. During geomagnetic storms, the N-149.3 nm intensity is clearly enhanced in the locations where O/N2 depletion and nitric oxide (NO) enhancement are observed. The N-149.3 nm intensity is linearly and tightly correlated with N2 LBHS (140-150 nm) radiance with a fixed LBHS/149.3 nm ratio of ∼4.5, suggesting that dissociation of N2 is the dominant source of the N-149.3 nm emission. In the regions without storm disturbances, the N-149.3 nm intensities are closely correlated with solar EUV flux.
EMI from Spacecraft Docking Systems Spacecraft Charging - Plasma Contact Potentials
NASA Technical Reports Server (NTRS)
Norgard, John D.; Scully, Robert; Musselman, Randall
2012-01-01
The plasma contact potential of a visiting vehicle (VV), such as the Orion Service Module (SM), is determined while docking at the Orion Crew Exploration Vehicle (CEV). Due to spacecraft charging effects on-orbit, the potential difference between the CEV and the VV can be large at docking, and an electrostatic discharge (ESD) could occur at capture, which could degrade, disrupt, damage, or destroy sensitive electronic equipment on the CEV and/or VV. Analytical and numerical models of the CEV are simulated to predict the worst-case potential difference between the CEV and the VV when the CEV is unbiased (solar panels unlit: eclipsed in the dark and inactive) or biased (solar panels sunlit: in the light and active).
Geology and biology of North Pacific cold seep communities
NASA Astrophysics Data System (ADS)
Robison, Bruce H.; Greene, H. Gary
Because of crushing pressure, low temperature, and stygian darkness, the floor of the deep sea is one of the most hostile habitats on Earth. Until recently it was widely believed that the base of the food chain for all deep-sea communities was plant life in the ocean's sunlit upper layer. With the discovery of hydrothermal vent and cold-seep communities, which are based on chemical rather than solar energy, those beliefs were overturned. New studies focused on the animals that inhabit cold seep regions have begun to throw light on the geological basis of chemosynthetic communities. The initial results suggest a strong relationship between geologically determined fluid flux, and the diversity and abundance of animals at the seeps.
2017-01-16
No Earth-based telescope could ever capture a view quite like this. Earth-based views can only show Saturn's daylit side, from within about 25 degrees of Saturn's equatorial plane. A spacecraft in orbit, like Cassini, can capture stunning scenes that would be impossible from our home planet. This view looks toward the sunlit side of the rings from about 25 degrees (if Saturn is dominant in image) above the ring plane. The image was taken in violet light with the Cassini spacecraft wide-angle camera on Oct. 28, 2016. The view was obtained at a distance of approximately 810,000 miles (1.3 million kilometers) from Saturn. Image scale is 50 miles (80 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20517
Plumes Provide New Insight Into the Physis of Mars' Atmosphere.
NASA Astrophysics Data System (ADS)
Andersson, L.; Ergun, R.; Malaspina, D.; Thayer, F.; Yelle, R. V.; Merkel, A. W.; Stevens, M.; Mitchell, D. L.; McFadden, J. P.; Horanyi, M.; Jakosky, B. M.; Fowler, C. M.; Pilinski, M.
2017-12-01
Low-resolution time series data measured by the Langmuir Probe and Waves (LPW) instrument on the Mars Atmosphere and Volatile EvolutioN spacecraft suggest the existence of a low-density dayside `dust' cloud stretching into the night side. At the poles, along the sunlit-shadow line, plumes of high concentration (1 #/m3) `dust particles' are observed. During one periapsis, the LPW instrument operated in a high-resolution dust mode to verify that the observed plumes in the low-resolution data are indeed created by dust particles impacting the spacecraft. This presentation will describe the observations and propose the cause of the plumes. These observations suggest that we do not yet fully understand the dust environment of Mars' atmosphere.
Space fireworks for upper atmospheric wind measurements by sounding rocket experiments
NASA Astrophysics Data System (ADS)
Yamamoto, M.
2016-01-01
Artificial meteor trains generated by chemical releases by using sounding rockets flown in upper atmosphere were successfully observed by multiple sites on ground and from an aircraft. We have started the rocket experiment campaign since 2007 and call it "Space fireworks" as it illuminates resonance scattering light from the released gas under sunlit/moonlit condition. By using this method, we have acquired a new technique to derive upper atmospheric wind profiles in twilight condition as well as in moonlit night and even in daytime. Magnificent artificial meteor train images with the surrounding physics and dynamics in the upper atmosphere where the meteors usually appear will be introduced by using fruitful results by the "Space firework" sounding rocket experiments in this decade.
SOLAR - ASTRONOMY (APOLLO-SATURN [AS]-16)
1972-05-09
S72-36972 (21 April 1972) --- A color enhancement of a far-ultraviolet photo of Earth taken by astronaut John W. Young, commander, with the ultraviolet camera on April 21, 1972. The original black and white photo was printed on Agfacontour film three times, each exposure recording only one light level. The three light levels were then colored blue (dimmest), green (next brightest), and red (brightest). The three auroral belts, the sunlit atmosphere and the background stars (one very close to Earth, on left) can be studied quantitatively fro brightness. The UV camera was designed and built at the Naval Research Laboratory, Washington, D.C. EDITOR'S NOTE: The photographic number of the original black & white UV camera photograph from which this enhancement was made is AS16-123-19657.
Tadayon, Saeid; Smith, C.F.
1994-01-01
Data were collected on physical properties and chemistry of 4 surface water, l4 ground water, and 4 bottom sediment sites in the Rillito Creek basin where artificial recharge of surface runoff is being considered. Concentrations of suspended sediment in streams generally increased with increases in streamflow and were higher during the summer. The surface water is a calcium and bicarbonate type, and the ground water is calcium sodium and bicarbonate type. Total trace ek=nents in surface water that exceeded the U.S. Environmental Protection Agency primary maximum contaminant levels for drinking-water standards were barium, beryllium, cadmium, chromium, lead, mercury and nickel. Most unfiltered samples for suspended gross alpha as uranium, and unadjusted gross alpha plus gross beta in surface water exceeded the U.S. Environmental Protection Agency and the State of Arizona drinking-water standards. Comparisons of trace- element concentrations in bottom sediment with those in soils of the western conterminous United States generally indicate similar concentrations for most of the trace elements, with the exceptions of scandium and tin. The maximum concentration of total nitrite plus nitrate as nitrogen in three ground- samples and total lead in one ground-water sample exceeded U.S. Environmental Protection Agency primary maximum contaminant levels for drinking- water standards, respectively. Seven organochlorine pesticides were detected in surface-water samples and nine in bottom-sediment samples. Three priority pollutants were detected in surface water, two were detected in ground water, and eleven were detected in bottom sediment. Low concentrations of oil and grease were detected in surface-water and bottom- sediment samples.
Planetary-scale surface water detection from space
NASA Astrophysics Data System (ADS)
Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.
2017-12-01
Accurate, efficient and high-resolution methods of surface water detection are needed for a better water management. Datasets on surface water extent and dynamics are crucial for a better understanding of natural and human-made processes, and as an input data for hydrological and hydraulic models. In spite of considerable progress in the harmonization of freely available satellite data, producing accurate and efficient higher-level surface water data products remains very challenging. This presentation will provide an overview of existing methods for surface water extent and change detection from multitemporal and multi-sensor satellite imagery. An algorithm to detect surface water changes from multi-temporal satellite imagery will be demonstrated as well as its open-source implementation (http://aqua-monitor.deltares.nl). This algorithm was used to estimate global surface water changes at high spatial resolution. These changes include climate change, land reclamation, reservoir construction/decommissioning, erosion/accretion, and many other. This presentation will demonstrate how open satellite data and open platforms such as Google Earth Engine have helped with this research.
Surface restructuring behavior of various types of poly(dimethylsiloxane) in water detected by SFG.
Chen, Chunyan; Wang, Jie; Chen, Zhan
2004-11-09
Surface structures of several different poly(dimethylsiloxane) (PDMS) materials, tetraethoxysilane-cured hydroxy-terminated PDMS (TEOS-PDMS), platinum-cured vinyl-terminated PDMS (Pt-PDMS), platinum-cured vinyl-terminated poly(diphenylsiloxane)-co-poly(dimethylsiloxane) (PDPS-co-PDMS), and PDMS-co-polystyrene (PDMS-co-PS) copolymer in air and water have been investigated by sum frequency generation (SFG) vibrational spectroscopy. The SFG spectra collected from all PDMS surfaces in both air and water are dominated by methyl group stretches, indicating that all the surfaces are mainly covered by methyl groups. Other than surface-dominating methyl groups, some -Si-CH2-CH2- moieties on the Pt-PDMS surface have also been detected in air, which are present at cross-linking points. Information about the average orientation angle and angle distribution of the methyl groups on the PDMS surface has been evaluated. Surface restructuring of the methyl groups has been observed for all PDMS surfaces in water. Upon contacting water, the methyl groups on all PDMS surfaces tilt more toward the surface. The detailed restructuring behaviors of several PDMS surfaces in water and the effects of molecular weight on restructuring behaviors have been investigated. For comparison, in addition to air and water, surface structures of PDMS materials mentioned above in a nonpolar solvent, FC-75, have also been studied. By comparing the different response of phenyl groups to water on both PDPS-co-PDMS and PS-co-PDMS surfaces, we have demonstrated how the restructuring behaviors of surface phenyl groups are affected by the structural flexibility of the molecular chains where they are attached.
Ahkola, Heidi; Tuominen, Sirkku; Karlsson, Sanja; Perkola, Noora; Huttula, Timo; Saraperä, Sami; Artimo, Aki; Korpiharju, Taina; Äystö, Lauri; Fjäder, Päivi; Assmuth, Timo; Rosendahl, Kirsi; Nysten, Taina
2017-12-01
Anthropogenic chemicals in surface water and groundwater cause concern especially when the water is used in drinking water production. Due to their continuous release or spill-over at waste water treatment plants, active pharmaceutical ingredients (APIs) are constantly present in aquatic environment and despite their low concentrations, APIs can still cause effects on the organisms. In the present study, Chemcatcher passive sampling was applied in surface water, surface water intake site, and groundwater observation wells to estimate whether the selected APIs are able to end up in drinking water supply through an artificial groundwater recharge system. The API concentrations measured in conventional wastewater, surface water, and groundwater grab samples were assessed with the results obtained with passive samplers. Out of the 25 APIs studied with passive sampling, four were observed in groundwater and 21 in surface water. This suggests that many anthropogenic APIs released to waste water proceed downstream and can be detectable in groundwater recharge. Chemcatcher passive samplers have previously been used in monitoring several harmful chemicals in surface and wastewaters, but the path of chemicals to groundwater has not been studied. This study provides novel information on the suitability of the Chemcatcher passive samplers for detecting APIs in groundwater wells.
Water vapor adsorption on goethite.
Song, Xiaowei; Boily, Jean-François
2013-07-02
Goethite (α-FeOOH) is an important mineral contributing to processes of atmospheric and terrestrial importance. Their interactions with water vapor are particularly relevant in these contexts. In this work, molecular details of water vapor (0.0-19.0 Torr; 0-96% relative humidity at 25 °C) adsorption at surfaces of synthetic goethite nanoparticles reacted with and without HCl and NaCl were resolved using vibrational spectroscopy. This technique probed interactions between surface (hydr)oxo groups and liquid water-like films. Molecular dynamics showed that structures and orientations adopted by these waters are comparable to those adopted at the interface with liquid water. Particle surfaces reacted with HCl accumulated less water than acid-free surfaces due to disruptions in hydrogen bond networks by chemisorbed waters and chloride. Particles reacted with NaCl had lower loadings below ∼10 Torr water vapor but greater loadings above this value than salt-free surfaces. Water adsorption reactions were here affected by competitive hydration of coexisting salt-free surface regions, adsorbed chloride and sodium, as well as precipitated NaCl. Collectively, the findings presented in this study add further insight into the initial mechanisms of thin water film formation at goethite surfaces subjected to variations in water vapor pressure that are relevant to natural systems.
Contamination levels of human pharmaceutical compounds in French surface and drinking water.
Mompelat, S; Thomas, O; Le Bot, B
2011-10-01
The occurrence of 20 human pharmaceutical compounds and metabolites from 10 representative therapeutic classes was analysed from resource and drinking water in two catchment basins located in north-west France. 98 samples were analysed from 63 stations (surface water and drinking water produced from surface water). Of the 20 human pharmaceutical compounds selected, 16 were quantified in both the surface water and drinking water, with 22% of the values above the limit of quantification for surface water and 14% for drinking water). Psychostimulants, non-steroidal anti-inflammatory drugs, iodinated contrast media and anxiolytic drugs were the main therapeutic classes of human pharmaceutical compounds detected in the surface water and drinking water. The results for surface water were close to results from previous studies in spite of differences in prescription rates of human pharmaceutical compounds in different countries. The removal rate of human pharmaceutical compounds at 11 water treatment units was also determined. Only caffeine proved to be resistant to drinking water treatment processes (with a minimum rate of 5%). Other human pharmaceutical compounds seemed to be removed more efficiently (average elimination rate of over 50%) by adsorption onto activated carbon and oxidation/disinfection with ozone or chlorine (not taking account of the disinfection by-products). These results add to the increasing evidence of the occurrence of human pharmaceutical compounds in drinking water that may represent a threat to human beings exposed to a cocktail of human pharmaceutical compounds and related metabolites and by-products in drinking water.
NASA Astrophysics Data System (ADS)
Liu, C.; Liu, J.; Hu, Y.; Zheng, C.
2015-05-01
Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.
Morteani, Giulio; Möller, Peter; Fuganti, Andrea; Paces, Tomas
2006-06-01
The concentration of the estrogens 17beta-estradiol, estriol, estrone, 17alpha-ethinylestradiol, mestranol and norethisterone and of the anthropogenic gadolinium (Gd(ant)) has been determined in the creeks and rivers, sewage treatment plants and water works of the city of Prague. The rapid degradation of estrogens in surface water allows the estrogen concentration gradient to be used as a very precise and sensitive guideline by which to pin-point sewage leaks into surface run-off water. The rather conservative behavior of Gd(ant) in surface and ground water documents in the present case the presence of sewage water in the surface water cycle.
Kenmoe, Stephane; Lisovski, Oleg; Piskunov, Sergei; Bocharov, Dmitry; Zhukovskii, Yuri F; Spohr, Eckhard
2018-05-31
We use ab initio molecular dynamics simulations to study the adsorption of thin water films with 1 and 2 ML coverage on anatase TiO 2 (001) nanotubes. The nanotubes are modeled as 2D slabs, which consist of partially constrained and partially relaxed structural motifs from nanotubes. The effect of anion doping on the adsorption is investigated by substituting O atoms with N and S impurities on the nanotube slab surface. Due to strain-induced curvature effects, water adsorbs molecularly on defect-free surfaces via weak bonds on Ti sites and H bonds to surface oxygens. While the introduction of an S atom weakens the interaction of the surface with water, which adsorbs molecularly, the presence of an N impurity renders the surface more reactive to water, with a proton transfer from the water film and the formation of an NH group at the N site. At 2 ML coverage, a further surface-assisted proton transfer takes place in the water film, resulting in the formation of an OH - group and an NH 2 + cationic site on the surface.
Transfer of Materials from Water to Solid Surfaces Using Liquid Marbles.
Kawashima, Hisato; Paven, Maxime; Mayama, Hiroyuki; Butt, Hans-Jürgen; Nakamura, Yoshinobu; Fujii, Syuji
2017-09-27
Remotely controlling the movement of small objects is desirable, especially for the transportation and selection of materials. Transfer of objects between liquid and solid surfaces and triggering their release would allow for development of novel material transportation technology. Here, we describe the remote transport of a material from a water film surface to a solid surface using quasispherical liquid marbles (LMs). A light-induced Marangoni flow or an air stream is used to propel the LMs on water. As the LMs approach the rim of the water film, gravity forces them to slide down the water rim and roll onto the solid surface. Through this method, LMs can be efficiently moved on water and placed on a solid surface. The materials encapsulated within LMs can be released at a specific time by an external stimulus. We analyzed the velocity, acceleration, and force of the LMs on the liquid and solid surfaces. On water, the sliding friction due to the drag force resists the movement of the LMs. On a solid surface, the rolling distance is affected by the surface roughness of the LMs.
NASA Astrophysics Data System (ADS)
Coridan, Robert H.; Schmidt, Nathan W.; Lai, Ghee Hwee; Abbamonte, Peter; Wong, Gerard C. L.
2012-03-01
Nanoconfined water and surface-structured water impacts a broad range of fields. For water confined between hydrophilic surfaces, measurements and simulations have shown conflicting results ranging from “liquidlike” to “solidlike” behavior, from bulklike water viscosity to viscosity orders of magnitude higher. Here, we investigate how a homogeneous fluid behaves under nanoconfinement using its bulk response function: The Green's function of water extracted from a library of S(q,ω) inelastic x-ray scattering data is used to make femtosecond movies of nanoconfined water. Between two confining surfaces, the structure undergoes drastic changes as a function of surface separation. For surface separations of ≈9 Å, although the surface-associated hydration layers are highly deformed, they are separated by a layer of bulklike water. For separations of ≈6 Å, the two surface-associated hydration layers are forced to reconstruct into a single layer that modulates between localized “frozen’ and delocalized “melted” structures due to interference of density fields. These results potentially reconcile recent conflicting experiments. Importantly, we find a different delocalized wetting regime for nanoconfined water between surfaces with high spatial frequency charge densities, where water is organized into delocalized hydration layers instead of localized hydration shells, and are strongly resistant to `freezing' down to molecular distances (<6 Å).
Summary of pesticide data from streams and wells in the Potomac River Basin, 1993-96
Donnelly, Colleen A.; Ferrari, Matthew J.
1998-01-01
Eighty-five water-soluble pesticides and pesticide degradation products were analyzed in 384 surface-water and ground-water samples collected from the Potomac River Basin during March 1993 through September 1996. Thirty-nine of these compounds were detected in surface-water samples and 16 were detected in ground-water samples. At least one pesticide was detected in 86 percent of the streams sampled and 45 percent of the wells sampled. Pesticides were detected more frequently and at higher concentrations in surface water than in ground water. The following four herbicides and one degradation product were the most frequently detected pesticides in both surface water and ground water: atrazine and metolachlor, which are used primarily on corn and soybean crops; prometon, which is used primarily in nonagricultural (urban and suburban) areas; simazine, which is used in both agricultural and nonagricultural areas, and desethylatrazine, which is one of the degradation products of atrazine. Insecticides were detected more frequently in surface water than in ground water. Diazinon, chlorpyrifos, and gamma-HCH (Undone) were found in more than 10 percent of surface-water samples, but in none of the ground-water samples.
Mondal, Bikash; Mac Giolla Eain, Marc; Xu, QianFeng; Egan, Vanessa M; Punch, Jeff; Lyons, Alan M
2015-10-28
Condensation of water vapor is an essential process in power generation, water collection, and thermal management. Dropwise condensation, where condensed droplets are removed from the surface before coalescing into a film, has been shown to increase the heat transfer efficiency and water collection ability of many surfaces. Numerous efforts have been made to create surfaces which can promote dropwise condensation, including superhydrophobic surfaces on which water droplets are highly mobile. However, the challenge with using such surfaces in condensing environments is that hydrophobic coatings can degrade and/or water droplets on superhydrophobic surfaces transition from the mobile Cassie to the wetted Wenzel state over time and condensation shifts to a less-effective filmwise mechanism. To meet the need for a heat-transfer surface that can maintain stable dropwise condensation, we designed and fabricated a hybrid superhydrophobic-hydrophilic surface. An array of hydrophilic needles, thermally connected to a heat sink, was forced through a robust superhydrophobic polymer film. Condensation occurs preferentially on the needle surface due to differences in wettability and temperature. As the droplet grows, the liquid drop on the needle remains in the Cassie state and does not wet the underlying superhydrophobic surface. The water collection rate on this surface was studied using different surface tilt angles, needle array pitch values, and needle heights. Water condensation rates on the hybrid surface were shown to be 4 times greater than for a planar copper surface and twice as large for silanized silicon or superhydrophobic surfaces without hydrophilic features. A convection-conduction heat transfer model was developed; predicted water condensation rates were in good agreement with experimental observations. This type of hybrid superhydrophobic-hydrophilic surface with a larger array of needles is low-cost, robust, and scalable and so could be used for heat transfer and water collection applications.
NASA Astrophysics Data System (ADS)
Wada, Y.; Wisser, D.; Bierkens, M. F. P.
2013-02-01
To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over a large scale, a number of macro-scale hydrological models (MHMs) have been developed over the recent decades. However, few models consider the feedback between water availability and water demand, and even fewer models explicitly incorporate water allocation from surface water and groundwater resources. Here, we integrate a global water demand model into a global water balance model, and simulate water withdrawal and consumptive water use over the period 1979-2010, considering water allocation from surface water and groundwater resources and explicitly taking into account feedbacks between supply and demand, using two re-analysis products: ERA-Interim and MERRA. We implement an irrigation water scheme, which works dynamically with daily surface and soil water balance, and include a newly available extensive reservoir data set. Simulated surface water and groundwater withdrawal show generally good agreement with available reported national and sub-national statistics. The results show a consistent increase in both surface water and groundwater use worldwide, but groundwater use has been increasing more rapidly than surface water use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and inter-annual variability. The alteration is particularly large over the heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.
Jones, Perry M.
2006-01-01
Knowledge of general water-flow directions in lake watersheds and how they may change seasonally can help water-quality specialists and lake managers address a variety of water-quality and aquatic habitat protection issues for lakes. Results from this study indicate that ground-water and surface-water interactions at the study lakes are complex, and the ability of the applied techniques to identify ground-water inflow and surface-water outseepage locations varied among the lakes. Measurement of lake-sediment temperatures proved to be a reliable and relatively inexpensive reconnaissance technique that lake managers may apply in complex settings to identify general areas of ground-water inflow and surface-water outseepage.
Orientation-dependent hydration structures at yttria-stabilized cubic zirconia surfaces
Hou, Binyang; Kim, Seunghyun; Kim, Taeho; ...
2016-11-30
Water interaction with surfaces is very important and plays key roles in many natural and technological processes. Because the experimental challenges that arise when studying the interaction water with specific crystalline surfaces, most studies on metal oxides have focused on powder samples, which averaged the interaction over different crystalline surfaces. As a result, studies on the crystal orientation-dependent interaction of water with metal oxides are rarely available in the literature. In this work, water adsorption at 8 mol % yttria-stabilized cubic single crystal zirconia (100) and (111) surfaces was studied in terms of interfacial hydration structures using high resolution X-raymore » reflectivity measurements. The interfacial electron density profiles derived from the structure factor analysis of the measured data show the existence of multiple layers of adsorbed water with additional peculiar metal adsorption near the oxide surfaces.Surface relaxation, depletion, and interaction between the adsorbed layers and bulk water are found to vary greatly between the two surfaces and are also different when compared to the previously studied (110) surface. The fractional ratio between chemisorbed and physisorbed water species were also quantitatively estimated, which turned out to vary dramatically from surface to surface. Finally, the result gives us a unique opportunity to reconsider the simplified 2:1 relation between chemisorption and physisorption, originally proposed by Morimoto et al. based on the adsorption isotherms of water on powder metal oxide samples.« less
Thermophoretically driven water droplets on graphene and boron nitride surfaces.
Rajegowda, Rakesh; Kannam, Sridhar Kumar; Hartkamp, Remco; Sathian, Sarith P
2018-05-25
We investigate thermally driven water droplet transport on graphene and hexagonal boron nitride (h-BN) surfaces using molecular dynamics simulations. The two surfaces considered here have different wettabilities with a significant difference in the mode of droplet transport. The water droplet travels along a straighter path on the h-BN sheet than on graphene. The h-BN surface produced a higher driving force on the droplet than the graphene surface. The water droplet is found to move faster on h-BN surface compared to graphene surface. The instantaneous contact angle was monitored as a measure of droplet deformation during thermal transport. The characteristics of the droplet motion on both surfaces is determined through the moment scaling spectrum. The water droplet on h-BN surface showed the attributes of the super-diffusive process, whereas it was sub-diffusive on the graphene surface.
NASA Astrophysics Data System (ADS)
Rajab, Fatema H.; Whitehead, David; Liu, Zhu; Li, Lin
2017-12-01
Laser surface texturing or micro/nano surface structuring in the air has been extensively studied. However, until now, there are very few studies on the characteristics of laser-textured surfaces in water, and there was no reported work on picosecond laser surface micro/nano-structuring in water. In this work, the surface properties of picosecond laser surface texturing in water and air were analysed and compared. 316L stainless steel substrates were textured using a picosecond laser. The surface morphology and the chemical composition were characterised using Philips XL30 FEG-SEM, EDX and confocal laser microscopy. The wettability of the textured surfaces was determined using a contact angle analyser FTA 188. Results showed that a variety of hierarchical micro/nano surface patterns could be controlled by a suitable adjustment of laser parameters. Not only surface morphology but also remarkable differences in wettability, optical reflectivity and surface oxygen content were observed for different types of surface textures produced by laser surface texture in water and air. The possible mechanisms of the changes in the behaviour of laser-textured surfaces are discussed.
Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water
Rosenberry, Donald O.; LaBaugh, James W.
2008-01-01
This report focuses on measuring the flow of water across the interface between surface water and ground water, rather than the hydrogeological or geochemical processes that occur at or near this interface. The methods, however, that use hydrogeological and geochemical evidence to quantify water fluxes are described herein. This material is presented as a guide for those who have to examine the interaction of surface water and ground water. The intent here is that both the overview of the many available methods and the in-depth presentation of specific methods will enable the reader to choose those study approaches that will best meet the requirements of the environments and processes they are investigating, as well as to recognize the merits of using more than one approach. This report is designed to make the reader aware of the breadth of approaches available for the study of the exchange between surface and ground water. To accomplish this, the report is divided into four chapters. Chapter 1 describes many well-documented approaches for defining the flow between surface and ground waters. Subsequent chapters provide an in-depth presentation of particular methods. Chapter 2 focuses on three of the most commonly used methods to either calculate or directly measure flow of water between surface-water bodies and the ground-water domain: (1) measurement of water levels in well networks in combination with measurement of water level in nearby surface water to determine water-level gradients and flow; (2) use of portable piezometers (wells) or hydraulic potentiomanometers to measure hydraulic gradients; and (3) use of seepage meters to measure flow directly. Chapter 3 focuses on describing the techniques involved in conducting water-tracer tests using fluorescent dyes, a method commonly used in the hydrogeologic investigation and characterization of karst aquifers, and in the study of water fluxes in karst terranes. Chapter 4 focuses on heat as a tracer in hydrological investigations of the near-surface environment.
Critical Dipole Length for the Wetting Transition Due to Collective Water-dipoles Interactions
Wang, Chunlei; Zhou, Bo; Tu, Yusong; Duan, Manyi; Xiu, Peng; Li, Jingye; Fang, Haiping
2012-01-01
The wetting behavior of water on the solid surfaces is fundamental to various physical, chemical and biological processes. Conventionally, the surface with charges or charge dipoles is hydrophilic, whereas the non-polar surface is hydrophobic though some exceptions were recently reported. Using molecular dynamics simulations, we show that there is a critical length of the charge dipoles on the solid surface. The solid surface still exhibited hydrophobic behavior when the dipole length was less than the critical value, indicating that the water molecules on the solid surface seemed not “feel” attractive interactions from the charge dipoles on the solid surface. Those unexpected observations result from the collective interactions between the water molecules and charge dipoles on the solid surface, where the steric exclusion effect between water molecules greatly reduces the water-dipole interactions. Remarkably, the steric exclusion effect is also important for surfaces with charge dipole lengths greater than this critical length. PMID:22496954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, E.L.; Calvert, J.M.; Koloski, T.
1997-02-01
We report on the results of a project using surface characterization and novel surface-modification techniques to address the issues of developing a minimally fouling ceramic membrane filter. We have studied the physical characteristics of a synthetic bilge water mixture, examined the surfaces of the ceramic filters for evidence of fouling, and identified several surface modifications that, under laboratory conditions, work well in prevention of foulants. These surfaces include hydrophobic as well as polar coatings. For the bilge water, it was discovered that detergent, at certain concentrations, may be useful in separating and coalescing oil droplets from the bilge water. Basedmore » on the results of the studies, several strategies for optimizing the removal of oil from water are suggested.« less
Gondal, Mohammed A; Sadullah, Muhammad S; Dastageer, Mohamed A; McKinley, Gareth H; Panchanathan, Divya; Varanasi, Kripa K
2014-08-27
Surfaces which possess extraordinary water attraction or repellency depend on surface energy, surface chemistry, and nano- and microscale surface roughness. Synergistic superhydrophilic-underwater superoleophobic surfaces were fabricated by spray deposition of nanostructured TiO2 on stainless steel mesh substrates. The coated meshes were then used to study gravity driven oil-water separation, where only the water from the oil-water mixture is allowed to permeate through the mesh. Oil-water separation efficiencies of up to 99% could be achieved through the coated mesh of pore sizes 50 and 100 μm, compared to no separation at all, that was observed in the case of uncoated meshes of the same material and pore sizes. An adsorbed water on the TiO2 coated surface, formation of a water-film between the wires that form the mesh and the underwater superoleophobicity of the structured surface are the key factors that contribute to the enhanced efficiency observed in oil-water separation. The nature of the oil-water separation process using this coated mesh (in which the mesh allows water to pass through the porous structure but resists wetting by the oil phase) minimizes the fouling of mesh so that the need for frequent replacement of the separating medium is reduced. The fabrication approach presented here can be applied for coating large surface areas and to develop a large-scale oil-water separation facility for oil-field applications and petroleum industries.
Reaction of water with MgO(100) surfaces: Part III. X-ray standing wave studies
NASA Astrophysics Data System (ADS)
Liu, P.; Kendelewicz, T.; Nelson, E. J.; Brown, G. E.
1998-09-01
Clean MgO(100) surfaces cleaved in vacuum and exposed to water vapor or bulk water were studied using the X-ray standing wave (XSW) technique in back reflection mode and surface sensitive, element specific O KLL and Mg KLL Auger electron yield detection. The effects of surface charging were mitigated, but not entirely eliminated, by using a low-energy electron flood gun. Simulation of the XSW signal showed that the effect of surface charging on the XSW data could be minimized with careful experimental design. We demonstrate that the XSW method can be applied to studies of insulating surfaces, and our results for MgO(100) surfaces exposed to water vapor or bulk water indicate the following: (1) the vacuum-cleaved clean surface undergoes no surface reconstruction or significant relaxation perpendicular to the surface; (2) Mg-OH distances on surfaces exposed to water vapor or bulk water measured perpendicular to the (100) surface are the same as in bulk MgO; and (3) the z-position of the surface Mg atoms does not change within the estimated error [±2% of the (200) spacing] after the surface is fully hydroxylated. Our results for the clean, vacuum-cleaved surface disagree with results from impact collision ion-scattering spectroscopy and surface-extended electron-loss fine structure for MgO(100), which indicate 15 and 17% inward relaxation, respectively, and they support results from low-energy electron diffraction, reflection high-energy electron diffraction, and photoelectron diffraction that show little, if any, relaxation or rumpling of the surface.
Some Preliminary Scientific Results of Chang'E-3 Mission
NASA Astrophysics Data System (ADS)
Zou, Y.; Li, W.; Zheng, Y.; Li, H.
2015-12-01
Chang'E-3 mission is the main task of Phase two of China Lunar Exploration Program (CLEP), and also is Chinese first probe of landing, working and roving on the moon. Chang'E-3 craft composed of a lander and a rover, and each of them carry four scientific payloads respectively. The landing site of Chang'E-3 was located at 44.12 degrees north latitude and 19.51 degrees west longitude, where is in the northern part of Imbrium Which the distance in its west direction from the landing site of former Soviet probe Luna-17 is about 400 km, and about 780km far from the landing site of Appolo-17 in its southeast direction. Unfortunately, after a series of scientific tests and exploration on the surface of the moon, the motor controller communication of the rover emerged a breakdown on January 16, 2014, which leaded the four payloads onboard the rover can't obtain data anymore. However, we have received some interesting scientific data which have been studied by Chinese scientists. During the landing process of Chang'E-3, the Landing camera got total 4673 images with the Resolution in millimeters to meters, and the lander and rover took pictures for each other at different point with Topography camera and Panoramic camera. We can find characteristic changes in celestial brightness with time by analyzing image data from Lunar-based Ultraviolet Telescope (LUT) and an unprecedented constraint on water content in the sunlit lunar exosphere seen by LUT). The figure observed by EUV camera (EUVC) shows that there is a transient weak area of the Earth's plasma sphere; This event took place about three hours. The scientists think that it might be related to the change of the particle density of mid-latitude ionosphere. The preliminary spectral and mineralogical results from the landing site are derived according to the data of Visible and Near-infrared Imaging Spectrometer (VNIS). Seven major elements including Mg, Al, Si, K, Ca, Ti and Fe have been identified by the Active Particle-induced X-ay Spectrometer (APXS). The observations of Lunar Penetrating Radar (LPR) have revealed the con-figuration of regolith where the thickness of regolith varies from about 4m to 6m, and on layer of lunar rock was detected, which is about 330m deep and might have been accumulated during the depositional hiatus of mare basalts.
Munday, Cathy; Domagalski, Joseph L.
2003-01-01
Evaluating the extent that bias and variability affect the interpretation of ground- and surface-water data is necessary to meet the objectives of the National Water-Quality Assessment (NAWQA) Program. Quality-control samples used to evaluate the bias and variability include annual equipment blanks, field blanks, field matrix spikes, surrogates, and replicates. This report contains quality-control results for the constituents critical to the ground- and surface-water components of the Sacramento River Basin study unit of the NAWQA Program. A critical constituent is one that was detected frequently (more than 50 percent of the time in blank samples), was detected at amounts exceeding water-quality standards or goals, or was important for the interpretation of water-quality data. Quality-control samples were collected along with ground- and surface-water samples during the high intensity phase (cycle 1) of the Sacramento River Basin NAWQA beginning early in 1996 and ending in 1998. Ground-water field blanks indicated contamination of varying levels of significance when compared with concentrations detected in environmental ground-water samples for ammonia, dissolved organic carbon, aluminum, and copper. Concentrations of aluminum in surface-water field blanks were significant when compared with environmental samples. Field blank samples collected for pesticide and volatile organic compound analyses revealed no contamination in either ground- or surface-water samples that would effect the interpretation of environmental data, with the possible exception of the volatile organic compound trichloromethane (chloroform) in ground water. Replicate samples for ground water and surface water indicate that variability resulting from sample collection, processing, and analysis was generally low. Some of the larger maximum relative percentage differences calculated for replicate samples occurred between samples having lowest absolute concentration differences and(or) values near the reporting limit. Surrogate recoveries for pesticides analyzed by gas chromatography/mass spectrometry (GC/MS), pesticides analyzed by high performance liquid chromatography (HPLC), and volatile organic compounds in ground- and surface-water samples were within the acceptable limits of 70 to 130 percent and median recovery values between 82 and 113 percent. The recovery percentages for surrogate compounds analyzed by HPLC had the highest standard deviation, 20 percent for ground-water samples and 16 percent for surface-water samples, and the lowest median values, 82 percent for ground-water samples and 91 percent for surface-water samples. Results were consistent with the recovery results described for the analytical methods. Field matrix spike recoveries for pesticide compounds analyzed using GC/MS in ground- and surface-water samples were comparable with published recovery data. Recoveries of carbofuran, a critical constituent in ground- and surface-water studies, and desethyl atrazine, a critical constituent in the ground-water study, could not be calculated because of problems with the analytical method. Recoveries of pesticides analyzed using HPLC in ground- and surface-water samples were generally low and comparable with published recovery data. Other methodological problems for HPLC analytes included nondetection of the spike compounds and estimated values of spike concentrations. Recovery of field matrix spikes for volatile organic compounds generally were within the acceptable range, 70 and 130 percent for both ground- and surface-water samples, and median recoveries from 62 to 127 percent. High or low recoveries could be related to errors in the field, such as double spiking or using spike solution past its expiration date, rather than problems during analysis. The methodological changes in the field spike protocol during the course of the Sacramento River Basin study, which included decreasing the amount of spike solu
Vining, Kevin C.; Cates, Steven W.
2006-01-01
Available surface-water quality, ground-water quality, and water-withdrawal data for the Spirit Lake Reservation were summarized. The data were collected intermittently from 1948 through 2004 and were compiled from U.S. Geological Survey databases, North Dakota State Water Commission databases, and Spirit Lake Nation tribal agencies. Although the quality of surface water on the reservation generally is satisfactory, no surface-water sources are used for consumable water supplies. Ground water on the reservation is of sufficient quality for most uses. The Tokio and Warwick aquifers have better overall water quality than the Spiritwood aquifer. Water from the Spiritwood aquifer is used mostly for irrigation. The Warwick aquifer provides most of the consumable water for the reservation and for the city of Devils Lake. Annual water withdrawals from the Warwick aquifer by the Spirit Lake Nation ranged from 71 million gallons to 122 million gallons during 2000-04.
Xie, Shao-Hua; Liu, Ai-Lin; Chen, Yan-Yan; Zhang, Li; Zhang, Hui-Juan; Jin, Bang-Xiong; Lu, Wen-Hong; Li, Xiao-Yan; Lu, Wen-Qing
2010-04-01
Because of the daily and life-long exposure to disinfection by-products formed during drinking water treatment, potential adverse human health risk of drinking water disinfection is of great concern. Toxicological studies have shown that drinking water treatment increases the genotoxicity of surface water. Drinking water treatment is comprised of different potabilization steps, which greatly influence the levels of genotoxic products in the surface water and thus may alter the toxicity and genotoxicity of surface water. The aim of the present study was to understand the influence of specific steps on toxicity and genotoxicity during the treatment of surface water in a water treatment plant using liquid chlorine as the disinfectant in China. An integrated approach of the comet and oxidative stress assays was used in the study, and the results showed that both the prechlorination and postchlorination steps increased DNA damage and oxidative stress caused by water extracts in human derived L-02 cells while the tube settling and filtration steps had the opposite effect. This research also highlighted the usefulness of an integrated approach of the comet and oxidative stress assays in evaluating the genotoxicity of surface water during drinking water treatment. Copyright 2009 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Yu, Liang; Rozemeijer, Joachim; van Breukelen, Boris M.; Ouboter, Maarten; van der Vlugt, Corné; Broers, Hans Peter
2018-01-01
The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN), total phosphorus (TP), NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type) for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban-agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs) in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88) between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate from the decomposition of organic matter in subsurface sediments coupled to sulfate reduction and possibly methanogenesis. The large loads of nutrient-rich groundwater seepage into the deepest polders indirectly affect surface water quality in the surrounding area, because excess water from the deep polders is pumped out and used to supply water to the surrounding infiltrating polders in dry periods. The study shows the importance of the connection between groundwater and surface water nutrient chemistry in the greater Amsterdam area. We expect that taking account of groundwater-surface water interaction is also important in other subsiding and urbanising deltas around the world, where water is managed intensively in order to enable agricultural productivity and achieve water-sustainable cities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Lance; Beste, Ariana; Chen, Banghao
1H nuclear magnetic resonance (NMR) spectroscopy was used to study hydroxylic surface species on ceria nanocubes, a crystalline, high-surface-area CeO 2 that presents mostly (100) facets. Water adsorption and desorption experiments in combination with fast magic angle spinning (MAS, 20–40 kHz) 1H NMR provide high-resolution 1H spectra that allow the observation of ten resonance bands (water or hydroxyl) on or under the (100) surface. Assignments were made using a combination of adsorption and temperature-programmed desorption, quantitative spin counting, deuterium exchange, spin–lattice (T 1) and spin–spin (T 2) relaxation, and DFT calculations. In air, the (100) surface exists as a fullymore » hydroxylated surface. Water adsorption and dissociation on dry ceria surfaces occur first at oxygen vacancies, but Ce 3+ centers are not required since water dissociation is barrier-less on the fully oxidized surface. Surface $-$OH functionality occurs in two resolved bands representing isolated $-$OH (1 ppm) and hydrogen-bonded $-$OH (9 ppm), the latter being dominant. Deuterium exchange of surface hydroxyls with D 2O does not occur under mild or forcing conditions. Despite large differences in the T 1 of surface hydroxyls and physisorbed water, surface hydroxyl T 1 values are independent of the presence or absence of physisorbed water, demonstrating that the protons within these two functional group pools are not in intimate contact. These observations show that, once hydroxylated, the surface $-$OH functionality preferentially forms hydrogen bonds with surface lattice oxygen, i.e., the hydroxylated (100) surface of ceria is hydrophobic. Near this surface it is energetically more favorable for physisorbed water to hydrogen bond to itself rather than to the surface. DFT calculations support this notion. Impurity Na + remaining in incompletely washed ceria nanocubes increases the surface hydrophilicity. In conclusion, sharp, low-field resonances observed in spectra of noncalcined nanocubes arise from kinetically trapped subsurface $-$OH.« less
Gill, Lance; Beste, Ariana; Chen, Banghao; ...
2017-03-22
1H nuclear magnetic resonance (NMR) spectroscopy was used to study hydroxylic surface species on ceria nanocubes, a crystalline, high-surface-area CeO 2 that presents mostly (100) facets. Water adsorption and desorption experiments in combination with fast magic angle spinning (MAS, 20–40 kHz) 1H NMR provide high-resolution 1H spectra that allow the observation of ten resonance bands (water or hydroxyl) on or under the (100) surface. Assignments were made using a combination of adsorption and temperature-programmed desorption, quantitative spin counting, deuterium exchange, spin–lattice (T 1) and spin–spin (T 2) relaxation, and DFT calculations. In air, the (100) surface exists as a fullymore » hydroxylated surface. Water adsorption and dissociation on dry ceria surfaces occur first at oxygen vacancies, but Ce 3+ centers are not required since water dissociation is barrier-less on the fully oxidized surface. Surface $-$OH functionality occurs in two resolved bands representing isolated $-$OH (1 ppm) and hydrogen-bonded $-$OH (9 ppm), the latter being dominant. Deuterium exchange of surface hydroxyls with D 2O does not occur under mild or forcing conditions. Despite large differences in the T 1 of surface hydroxyls and physisorbed water, surface hydroxyl T 1 values are independent of the presence or absence of physisorbed water, demonstrating that the protons within these two functional group pools are not in intimate contact. These observations show that, once hydroxylated, the surface $-$OH functionality preferentially forms hydrogen bonds with surface lattice oxygen, i.e., the hydroxylated (100) surface of ceria is hydrophobic. Near this surface it is energetically more favorable for physisorbed water to hydrogen bond to itself rather than to the surface. DFT calculations support this notion. Impurity Na + remaining in incompletely washed ceria nanocubes increases the surface hydrophilicity. In conclusion, sharp, low-field resonances observed in spectra of noncalcined nanocubes arise from kinetically trapped subsurface $-$OH.« less
NASA Astrophysics Data System (ADS)
Normandin, Cassandra; Frappart, Frédéric; Lubac, Bertrand; Bélanger, Simon; Marieu, Vincent; Blarel, Fabien; Robinet, Arthur; Guiastrennec-Faugas, Léa
2018-02-01
Quantification of surface water storage in extensive floodplains and their dynamics are crucial for a better understanding of global hydrological and biogeochemical cycles. In this study, we present estimates of both surface water extent and storage combining multi-mission remotely sensed observations and their temporal evolution over more than 15 years in the Mackenzie Delta. The Mackenzie Delta is located in the northwest of Canada and is the second largest delta in the Arctic Ocean. The delta is frozen from October to May and the recurrent ice break-up provokes an increase in the river's flows. Thus, this phenomenon causes intensive floods along the delta every year, with dramatic environmental impacts. In this study, the dynamics of surface water extent and volume are analysed from 2000 to 2015 by combining multi-satellite information from MODIS multispectral images at 500 m spatial resolution and river stages derived from ERS-2 (1995-2003), ENVISAT (2002-2010) and SARAL (since 2013) altimetry data. The surface water extent (permanent water and flooded area) peaked in June with an area of 9600 km2 (±200 km2) on average, representing approximately 70 % of the delta's total surface. Altimetry-based water levels exhibit annual amplitudes ranging from 4 m in the downstream part to more than 10 m in the upstream part of the Mackenzie Delta. A high overall correlation between the satellite-derived and in situ water heights (R > 0.84) is found for the three altimetry missions. Finally, using altimetry-based water levels and MODIS-derived surface water extents, maps of interpolated water heights over the surface water extents are produced. Results indicate a high variability of the water height magnitude that can reach 10 m compared to the lowest water height in the upstream part of the delta during the flood peak in June. Furthermore, the total surface water volume is estimated and shows an annual variation of approximately 8.5 km3 during the whole study period, with a maximum of 14.4 km3 observed in 2006. The good agreement between the total surface water volume retrievals and in situ river discharges (R = 0.66) allows for validation of this innovative multi-mission approach and highlights the high potential to study the surface water extent dynamics.
Water Cycling in the North Polar Region of Mars
NASA Technical Reports Server (NTRS)
Tamppari, L. K.; Smith, M. D.; Bass, D. S.
2003-01-01
To date, there has been no comprehensive study to understand the partitioning of water into vapor and ice clouds, and the associated effects of dust and surface temperature in the north polar region. Ascertaining the degree to which water is transported out of the cap region versus within the cap region will give much needed insight into the overall story of water cycling on a seasonal basis. In particular, understanding the mechanism for the polar cap surface albedo changes would go along way in comprehending the sources and sinks of water in the northern polar region. We approach this problem by examining Thermal Emission Spectrometer (TES) atmospheric and surface data acquired in the northern summer season and comparing it to Viking data when possible. Because the TES instrument spans the absorption bands of water vapor, water ice, dust, and measures surface temperature, all three aerosols and surface temperature can be retrieved simultaneously. This presentation will show our latest results on the water vapor, water-ice clouds seasonal and spatial distributions, as well as surface temperatures and dust distribution which may lend insight into where the water is going.
Surface-water quality-assurance plan for the U.S. Geological Survey Washington Water Science Center
Mastin, Mark C.
2016-02-19
This Surface-Water Quality-Assurance Plan documents the standards, policies, and procedures used by the U.S. Geological Survey Washington Water Science Center (WAWSC) for activities related to the collection, processing, storage, analysis, and publication of surface-water data. This plan serves as a guide to all WAWSC personnel involved in surface-water data activities, and changes as the needs and requirements of the WAWSC change. Regular updates to this plan represent an integral part of the quality-assurance process. In the WAWSC, direct oversight and responsibility by the hydrographer(s) assigned to a surface-water station, combined with team approaches in all work efforts, assure highquality data, analyses, reviews, and reports for cooperating agencies and the public.
Gan, Zhiwei; Sun, Hongwen; Feng, Biting; Wang, Ruonan; Zhang, Yanwei
2013-09-15
Seventy water samples, including wastewaters, tap waters, fresh surface waters, coastal waters, groundwaters, and precipitation samples, from Tianjin, China, were analyzed for seven commonly used artificial sweeteners (ASs). The concentrations of the investigated ASs were generally in the order of wastewater treatment plant (WWTP) influent > WWTP effluent > surface water > tap water > groundwater ≈ precipitation, while the composition profiles of ASs varied in different waters. Acesulfame, sucralose, cyclamate, and saccharin were consistently detected in surface waters and ranged from 50 ng/L to 0.12 mg/L, while acesulfame was the dominant AS in surface and tap waters. Aspartame was found in all of the surface waters at a concentration up to 0.21 μg/L, but was not found in groundwaters and tap waters. Neotame and neohesperidin dihydrochalcone were less frequently detected and the concentrations were low. The concentrations of the ASs in some of the surface waters were of the same order with those in the WWTP influents, but not with the effluents, indicating there are probably untreated discharges into the surface waters. The ASs were detected in precipitation samples with high frequency, and acesulfame, saccharin, and cyclamate were the predominant ASs, with concentrations ranging from 3.5 ng/L to 1.3 μg/L. A gross estimation revealed that precipitation may act as a source for saccharin and cyclamate in the surface environment of Tianjin city. Moreover, the presence of ASs in the atmosphere was primarily assessed by taking 4 air samples to evaluate their potential source in precipitation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hydrologic considerations in defining isolated wetlands
Winter, T.C.; LaBaugh, J.W.
2003-01-01
Wetlands that are not connected by streams to other surface-water bodies are considered to be isolated. Although the definition is based on surface-water connections to other water bodies, isolated wetlands commonly are integral parts of extensive ground-water flow systems, and isolated wetlands can spill over their surface divides into adjacent surface-water bodies during periods of abundant precipitation and high water levels. Thus, characteristics of ground-water flow and atmospheric-water flow affect the isolation of wetlands. In general, the degree that isolated wetlands are connected through the ground-water system to other surface-water bodies depends to a large extent on the rate that ground water moves and the rate that hydrologic stresses can be transmitted through the ground-water system. Water that seeps from an isolated wetland into a gravel aquifer can travel many kilometers through the ground-water system in one year. In contrast, water that seeps from an isolated wetland into a clayey or silty substrate may travel less than one meter in one year. For wetlands that can spill over their surface watersheds during periods of wet climate conditions, their isolation is related to the height to a spill elevation above normal wetland water level and the recurrence interval of various magnitudes of precipitation. The concepts presented in this paper indicate that the entire hydrologic system needs to be considered in establishing a definition of hydrologic isolation.
Tsui, Clement K.-M.; Hsiao, William W. L.; Uyaguari-Diaz, Miguel I.; Ho, Jordan; Tang, Patrick; Isaac-Renton, Judith
2015-01-01
Giardia is the most common parasitic cause of gastrointestinal infections worldwide, with transmission through surface water playing an important role in various parts of the world. Giardia duodenalis (synonyms: G. intestinalis and G. lamblia), a multispecies complex, has two zoonotic subtypes, assemblages A and B. When British Columbia (BC), a western Canadian province, experienced several waterborne giardiasis outbreaks due to unfiltered surface drinking water in the late 1980s, collection of isolates from surface water, as well as from humans and beavers (Castor canadensis), throughout the province was carried out. To better understand Giardia in surface water, 71 isolates, including 29 from raw surface water samples, 29 from human giardiasis cases, and 13 from beavers in watersheds from this historical library were characterized by PCR. Study isolates also included isolates from waterborne giardiasis outbreaks. Both assemblages A and B were identified in surface water, human, and beavers samples, including a mixture of both assemblages A and B in waterborne outbreaks. PCR results were confirmed by whole-genome sequencing (WGS) for one waterborne outbreak and supported the clustering of human, water, and beaver isolates within both assemblages. We concluded that contamination of surface water by Giardia is complex, that the majority of our surface water isolates were assemblage B, and that both assemblages A and B may cause waterborne outbreaks. The higher-resolution data provided by WGS warrants further study to better understand the spread of Giardia. PMID:25956776
An ontology design pattern for surface water features
Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre
2014-01-01
Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.
Ray, Dhiman; Ghosh, Smita; Tiwari, Ashwani Kumar
2018-06-07
Copper-Nickel bimetallic alloys are emerging heterogeneous catalysts for water dissociation which is the rate determining step of industrially important Water Gas Shift (WGS) reaction. Yet, the detailed quantum dynamics studies of water-surface scattering in literature are limited to pure metal surfaces. We present here, a three dimensional wave-packet dynamics study of water dissociation on Cu-Ni alloy surfaces, using a pseudo diatomic model of water on a London-Eyring-Polanyi-Sato (LEPS) potential energy surface in order to study the effect of initial vibration, rotation and orientation of water molecule on reactivity. For all the chosen surfaces reactivity increases significantly with vibrational excitation. In general, for lower vibrational states the reactivity increases with increasing rotational excitation but it decreases in higher vibrational states. Molecular orientation strongly affects reactivity by helping the molecule to align along the reaction path at higher vibrational states. For different alloys, the reaction probability follows the trend of barrier heights and the surfaces having all Ni atoms in the uppermost layer are much more reactive than the ones with Cu atoms. Hence the nature of the alloy surface and initial quantum state of the incoming molecule significantly influence the reactivity in surface catalyzed water dissociation.
Jones, Perry M.; Trost, Jared J.; Erickson, Melinda L.
2016-10-19
OverviewThis study assessed lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes applying three approaches: statistical analysis, field study, and groundwater-flow modeling. Statistical analyses of lake levels were completed to assess the effect of physical setting and climate on lake-level fluctuations of selected lakes. A field study of groundwater and surface-water interactions in selected lakes was completed to (1) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (2) estimate general ages for waters extracted from the wells, and (3) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake. Groundwater flow was simulated using a steady-state, groundwater-flow model to assess regional groundwater and surface-water exchanges and the effects of groundwater withdrawals, climate, and other factors on water levels of northeast Twin Cities Metropolitan Area lakes.
Patterns and drivers for wetland connections in the Prairie Pothole Region, United States
Vanderhoof, Melanie; Christensen, Jay R.; Alexander, Laurie C.
2017-01-01
Ecosystem function in rivers, lakes and coastal waters depends on the functioning of upstream aquatic ecosystems, necessitating an improved understanding of watershed-scale interactions including variable surface-water flows between wetlands and streams. As surface water in the Prairie Pothole Region expands in wet years, surface-water connections occur between many depressional wetlands and streams. Minimal research has explored the spatial patterns and drivers for the abundance of these connections, despite their potential to inform resource management and regulatory programs including the U.S. Clean Water Act. In this study, wetlands were identified that did not intersect the stream network, but were shown with Landsat images (1990–2011) to become merged with the stream network as surface water expanded. Wetlands were found to spill into or consolidate with other wetlands within both small (2–10 wetlands) and large (>100 wetlands) wetland clusters, eventually intersecting a stream channel, most often via a riparian wetland. These surface-water connections occurred over a wide range of wetland distances from streams (averaging 90–1400 m in different ecoregions). Differences in the spatial abundance of wetlands that show a variable surface-water connection to a stream were best explained by smaller wetland-to-wetland distances, greater wetland abundance, and maximum surface-water extent. This analysis demonstrated that wetland arrangement and surface water expansion are important mechanisms for depressional wetlands to connect to streams and provides a first step to understanding the frequency and abundance of these surface-water connections across the Prairie Pothole Region.
Estimated use of water in South Dakota, 2005
Carter, Janet M.; Neitzert, Kathleen M.
2008-01-01
During 2005, withdrawals from ground-water and surface-water sources in South Dakota for the eight categories of offstream use totaled about 500 million gallons per day (Mgal/d). Of total withdrawals, about 271 Mgal/d was withdrawn from ground water and about 230 Mgal/d was withdrawn from surface water. The largest use of water in South Dakota during 2005 was irrigation, which accounted for about 58 percent of the total water withdrawn, followed by public supply, which accounted for about 20 percent of withdrawals. Public-supply systems served about 666,210 people, or about 86 percent of South Dakota's population in 2005. Public-supply systems withdrew about 100 Mgal/d in 2005. Ground-water withdrawals accounted for about 66 percent of the total withdrawals (66 Mgal/d), and surface-water withdrawals accounted for about 34 percent of total withdrawals (35 Mgal/d). Total public-supply withdrawals averaged about 151 gallons per day (gal/d) per capita. About 65 percent of the public-supply water was used for domestic purposes, and the average per capita domestic use was 99 gal/d. Self-supplied domestic withdrawals were about 8 Mgal/d, all of which was from ground water. About 109,750 people obtained household water from private wells in 2005, and per capita use was about 70 gal/d. Industrial self-supplied water use during 2005 was about 4 Mgal/d, of which about 98 percent was from ground water and about 2 percent was from surface water. Total withdrawals for thermoelectric use were about 5 Mgal/d, of which about 1 Mgal/d was from ground water and about 4 Mgal/d was from surface water. Total mining water use was about 10 Mgal/d, of which about 5 Mgal/d came from ground water and about 6 Mgal/d came from surface water. Total livestock water use was about 48 Mgal/d, of which about 19 Mgal/d came from ground water and about 28 Mgal/d came from surface water. Total aquaculture use was about 33 Mgal/d, of which about 19 Mgal/d came from ground water and about 14 Mgal/d came from surface water. Irrigation withdrawals during 2005 totaled about 292 Mgal/d, of which about 149 Mgal/d was from ground-water sources and about 143 Mgal/d was from surface-water sources. An estimated 421,830 acres was irrigated during 2005. Of the total acres irrigated, 298,160 acres was irrigated by sprinkler application and 123,670 acres was irrigated by surface (or flood) application. The only instream use reported for South Dakota was for hydroelectric power generation. During 2005, about 68,400 Mgal/d was used by the hydroelectric powerplants to generate about 3,688 gigawatt-hours of electricity. Total water use in South Dakota decreased by about 25 percent (175 Mgal/d) between 1985 and 2005 despite an increase in the State's population of about 70,000 people. Total ground-water use increased slightly (about 21 Mgal/d) between 1985 and 2005, whereas surface-water use decreased by about 195 Mgal/d. The decreases in both total use and surface-water use are mostly attributable to decreases in irrigation water use. Total irrigation water use decreased by about 168 Mgal/d between 1985 and 2005, and surface-water irrigation use decreased by about 204 Mgal/d. Ground-water irrigation use increased by about 36 Mgal/d between 1985 and 2005. Water use for public supply increased about 20 Mgal/d between 1985 and 2005, and the population served by public suppliers increased by about 118,000 people. In contrast, the number of people relying on private wells for domestic use decreased by about 48,000 between 1985 and 2005. All self-supplied domestic water use in 2005 was supplied by ground water. Total domestic use decreased about 8 Mgal/d between 1985 and 2005.
Kuroda, Keisuke; Nakada, Norihide; Hanamoto, Seiya; Inaba, Manami; Katayama, Hiroyuki; Do, An Thuan; Nga, Tran Thi Viet; Oguma, Kumiko; Hayashi, Takeshi; Takizawa, Satoshi
2015-02-15
We analyzed pepper mild mottle virus (PMMoV) in 36 samples taken from surface water, wastewater, groundwater, tap water and bottled water in Hanoi, Vietnam. We then compared the occurrence and fates of PMMoV with pharmaceuticals and personal care products (PPCPs), which are known wastewater tracers. PMMoV was detected in 94% of the surface water samples (ponds, water from irrigated farmlands and rivers) and in all the wastewater samples. The PMMoV concentration ranged from 5.5×10(6)-7.2×10(6)copies/L in wastewater treatment plant (WWTP) influents, 6.5×10(5)-8.5×10(5)copies/L in WWTP effluents and 1.0×10(4)-1.8×10(6)copies/L in surface water. Among the sixty PPCPs analyzed, caffeine and carbamazepine had high detection rates in surface water (100% and 88%, respectively). In surface water, the concentration ratio of PMMoV to caffeine remained unchanged than that in WWTP influents, suggesting that the persistence of PMMoV in surface water was comparable to that of caffeine. The persistence and the large concentration ratio of PMMoV in WWTP influents to the method detection limit would account for its ubiquitous detection in surface water. In comparison, human enteric viruses (HEV) were less frequently detected (18-59%) than PMMoV in surface water, probably because of their faster decay. Together with the reported high human feces-specificity, our results suggested that PMMoV is useful as a sensitive fecal indicator for evaluating the potential occurrence of pathogenic viruses in surface water. Moreover, PMMoV can be useful as a moderately conservative fecal tracer for specifically tracking fecal pollution of surface water. PMMoV was detected in 38% of the groundwater samples at low concentrations (up to 19copies/L). PMMoV was not detected in the tap water and bottled water samples. In groundwater, tap water and bottled water samples, the occurrence of PPCPs and HEV disagreed with that of PMMoV, suggesting that PMMoV is not suitable as an indicator or a tracer in those waters. Copyright © 2014 Elsevier B.V. All rights reserved.
Water surface capturing by image processing
USDA-ARS?s Scientific Manuscript database
An alternative means of measuring the water surface interface during laboratory experiments is processing a series of sequentially captured images. Image processing can provide a continuous, non-intrusive record of the water surface profile whose accuracy is not dependent on water depth. More trad...