Start-to-end global imaging as a sunward propagating, SAPS-associated giant undulation event
Henderson, Michael G; Donovan, Eric F; Foster, John C; Mann, Ian R; Immel, Thomas J
2009-01-01
We present high-time resolution global imaging of a sunward propagating giant undulation event from start to finish. The event occurred on November 24, 2001 during a very disturbed storm interval. The giant undulations began to develop at around 13UT and persisted for approximately 2 hours. The sunward propagation speed was on the order of 0.6 km/s (relative to SM coordinate system). The undulations had a wavelength of {approx} 750 km, amplitudes of {approx} 890 km and produced ULF pulsations on the ground with a period of {approx} 1108s. We show that the undulations were associated with SAPs flows that were caused by the proton plasma sheet penetrating substantially farther Earthward than the electron plasma sheet on the duskside. The observations appear to be consistent with the development of a shear flow and/or ballooning type of instability at the plasmapause driven by intense SAPS-associated shear flows.
SUNWARD PROPAGATING ALFVÉN WAVES IN ASSOCIATION WITH SUNWARD DRIFTING PROTON BEAMS IN THE SOLAR WIND
He, Jiansen; Pei, Zhongtian; Wang, Linghua; Tu, Chuanyi; Zhang, Lei; Marsch, Eckart; Salem, Chadi
2015-06-01
Using measurements from the WIND spacecraft, here we report the observation of sunward propagating Alfvén waves (AWs) in solar wind that is magnetically disconnected from the Earth's bow shock. In the sunward magnetic field sector, we find a period lasting for more than three days in which there existed (during most time intervals) a negative correlation between the flow velocity and magnetic field fluctuations, thus indicating that the related AWs are mainly propagating sunward. Simultaneous observations of counter-streaming suprathermal electrons suggest that these sunward AWs may not simply be due to the deflection of an open magnetic field line. Moreover, no interplanetary coronal mass ejection appears to be associated with the counter-streaming suprathermal electrons. As the scale goes from the magnetohydrodynamic down to the ion kinetic regime, the wave vector of magnetic fluctuations usually becomes more orthogonal to the mean magnetic field direction, and the fluctuations become increasingly compressible, which are both features consistent with quasi-perpendicular kinetic AWs. However, in the case studied here, we find clear signatures of quasi-parallel sunward propagating ion-cyclotron waves. Concurrently, the solar wind proton velocity distribution reveals a sunward field-aligned beam that drifts at about the local Alfvén speed. This beam is found to run in the opposite direction of the normally observed (anti-sunward) proton beam, and is apparently associated with sunward propagating Alfvén/ion-cyclotron waves. The results and conclusions of this study enrich our knowledge of solar wind turbulence and foster our understanding of proton heating and acceleration within a complex magnetic field geometry.
NASA Astrophysics Data System (ADS)
Wu, H.; Wang, X.; Wang, L.; Tu, C.; He, J.; Marsch, E.
2015-12-01
According to several theories, the beam instability induced by shock-accelerated ions can generate upstream-propagating Alfvén waves (UPAWs) with a bump near 0.03 Hz in the power spectrum, while the nonlinear wave-wave interaction favors an inverse cascade to create a power-law spectrum. Here we present the first observational evidence for the upstream-propagating Alfvénic fluctuations (UPAFs) with power-law spectra by using measurements from the WIND spacecraft in year 1995. We utilize a new criterion to identify the upstream-propagating Alfvénic intervals: the propagation direction is opposite to that of solar wind strahl electron outflow. Besides 35 UPAWs, we find 47 UPAFs with power-law spectra, and ~47% of these UPAFs are associated with energetic ion events (>30 keV). These UPAWs and UPAFs are mostly observed in the slow solar wind. However, their occurrence rate and power behave differently in dependence on the radial distance from the Earth. The spectral indices of UPAFs are between -3 and -2. These power-law spectra cannot be explained by the linear ion-beam instability. The results provide new clues on understanding the dynamic equilibrium between the non-linear inverse cascade and the linear ion-beam instability.
Sunward convection in both polar caps
Reiff, P.H.
1982-08-01
The geomagnetic storm of July 29, 1977 has been the object of concentrated study. The latter part of the day (1800--2300 UT) is particularly interesting because it is a period of extremely strong, almost directly northward interplanetary magnetic fields (IMF). Such northward IMF's have been related to periods of reversed (i.e., sunward) convection in the polar cap, and this day is no exception. Zanetti et al. (1981), using Triad magnetometer data, show magnetic perturbations implying reversed convection in the northern polar cap, while the Birkeland currents in the southern polar cap are very weak. They give two possible interpretations: (1) merging occurs preferentially in the northern cusp region, and therefore reversed convection is restricted to the northern polar cap or (2) the currents flow predominantly in the sunlit northern polar cap because its conductivity is higher. This paper shows convection data from both the northern polar cap (S3-3) and the southern polar cap (AE-C). In both cases, regions of reversed convection are seen. Therefore the asymmetry of the Birkeland currents is more likely caused by a conductivity asymmetry than a convection asymmetry. It is likely that the low-energy ions seen deep in the polar cap may be traped on closed field lines after merging on both tail lobe boundaries.
Seasonal effect for polar cap sunward plasma flows at strongly northward IMF Bz
NASA Astrophysics Data System (ADS)
Koustov, A. V.; Yakymenko, K. N.; Ponomarenko, P. V.
2017-02-01
We use Super Dual Auroral Radar Network data to study polar cap ionospheric flow under strongly dominant positive interplanetary magnetic field Bz component. We show that the near-noon flow along the magnetic meridian is predominantly sunward in summer. The sunward velocity increase with intensification of the external driver (the reverse convection electric field) is also faster in summer, and the rate of the increase is slightly larger for the Southern Hemisphere. The sunward flows simultaneously detected in both hemispheres are faster in the summer hemisphere. In addition, while sunward flows are aligned with the midnight-noon line in a winter hemisphere, they are oriented toward earlier magnetic local hours in a summer hemisphere.
NASA Astrophysics Data System (ADS)
Zhen, C.; Nishimura, T.; Maruyama, N.; Lyons, L. R.; Fuller-Rowell, T. J.
2016-12-01
Subauroral Polarization Streams (SAPS) are strong westward flow enhancements in the pre-midnight sector equatorward of the electron aurora oval. They are closely associated with region-2 field-aligned currents in the region of low conductivity below the electron equatorward boundary. While SAPS are usually regarded as a magnetosphere-ionosphere (M-I) coupling phenomenon, recent studies have suggested a strong interaction of SAPS with the thermosphere. The March 17, 2013 storm was studied by using the near-simultaneous observations of plasma velocity and neutral wind made by the DMSP-18 and GOCE satellites to investigate the subauroral neutral wind responses to storm time sunward ion flows in the dusk local time sector, as well as the role of the thermosphere in SAPS M-I coupling. Sunward ion flows intensified and shifted equatorward as the storm progressed, and the duskside subauroral neutral wind showed a strong correlation with the sunward ion flow with 2 hours delay. Our simulation results from a coupled Magnetosphere-Ionosphere-Thermosphere (M-I-T) model that includes the self-consistent electrodynamic coupling reproduced the temporal and spatial evolution of the observed ion and neutral flow patterns fairly well with some discrepancies. The model auroral conductivity calculation has been improved by including the RCM aurora precipitation to achieve better agreement between model results and observation. The force terms in the neutral momentum equation have been analyzed to understand the cause of the observed correlation between the neutral wind and ion flow. By comparing runs with and without self-consistent I-T coupling, we found that coupling to the neutral wind increases sunward ion flows by 20% and drives ion-flow penetration to lower latitudes, suggesting that neutral wind can drive the plasma flow where the magnetospheric forcing does not exist at mid and low latitude. Furthermore, we will also address the impact of the frictional heating arising from
Spatial distribution of the neutral carboneus compounds glow in the sunward Halley comet coma
NASA Astrophysics Data System (ADS)
Guineva, V.; Stoeva, P.; Werner, R.
The C2, C3, CH and CN glow in the Halley coma in sunward direction is studied in this work. For that reason, the 1035 spectra in the in the near UV and visible region registered by the Three-Channel spectrometer on board Vega-2 station on the 9 March 1986 are used. An improved method of the dust continuum extraction in the visible region is applied. The ``dust regions'' in the Halley comet spectra are re-examined. The spectral index u and a normalization coefficient of the continuum are computed for each spectrum by the least squares method on the basis of a linear regression. The index u is obtained to lay in the interval 3div 3.4. For all the spectra the average u and du values are: uav=3.2126, duav= 0.1197. Thus, the dust continuum evaluation is more reliable which conduce to a more precise separation of the gas emissions. The radial profiles presenting the carboneous compounds column intensities as a function of the projected distance to the nucleus are examined. The obtained profiles correspond very well to the Hazer's distribution when the optical thickness in the inner coma environment is taken into account. The deviation from Hazer's model for CN and C3 in the p<1000 km region, obtained in previous investigations, is not seen now. Possibly this deviation had been the result of a not perfectly subtracted dust continuum in this zone. The observed until now peculiarities of the C2, C3, CH and CN glow are confirmed. Thanks to the scanning of the Three-Channel spectrometer in a region of 7 rows and 15 columns spatial distributions of the examined radical intensities are computed using their emissions separated from the spectra in different scanner positions. From these distributions, complex intensity distributions for each carboneous compound are constructed, covering a larger space region. The obtained distributions are similar. The intensities decrease with the increase of the distance to the nucleus. Two jets are observed and discussed.
SAPS-associated explosive brightening on the dusk-side: A new type of onset-like disturbance
NASA Astrophysics Data System (ADS)
Kepko, L.; Henderson, M. G.; Morley, S.
2016-12-01
Quasi-periodic energetic particle injections have been observed at geosynchronous orbit on the dusk-side during a steady magnetospheric convection event. We examine high resolution auroral imager data and ground magnetometer data associated with the first of these injections and conclude that it was not associated with classical substorm signatures. It is proposed that these injections are caused by the explosive non-linear growth of a shear-flow-ballooning instability in the region where sub-auroral polarization streams (SAPS) also occur. We propose that the observed particle injection signatures and auroral morphology constitute a new type of SAPS-associated explosive `onset-like' disturbance that can occur during intervals of strong convection. Several other distrubances occuring during this time period were identified as pseudo-breakups and may result from similar processes. The relationship between these observations and more recent THEMIS ASI-based results are discussed.
Alfvén Mach number and IMF clock angle dependencies of sunward flow channels in the magnetosphere
NASA Astrophysics Data System (ADS)
Eriksson, S.; RastäTter, L.
2013-04-01
Interplanetary coronal mass ejections associated with strong interplanetary magnetic field (IMF) By have been shown to enhance the neutral density in low Earth orbit. The enhancement has been linked to strong downward Poynting fluxes embedded within ionospheric channels of significant sunward ExB drift (2000-3000 m/s). Here we present MHD results describing the magnetospheric counterpart of the ionospheric flow channel that Defense Meteorological Satellite Program (DMSP) encountered on 15 May 2005. It is shown that the clock angle of maximum sunward flow (θFC) depends on the IMF clock angle θFC = α * θIMF - 1.3° with α = (0.30, 0.38, 0.43, 0.45) at X = (4, 2, 0, -2) RE. This is poleward of the magnetic null point region. The flow also depends on the solar wind Alfvén Mach number Vx = Vx0 - δv * MA. The critical MA = Vx0 / δV for Vx = 0 decreases from MA = 3.42 (X = 4 RE) to MA = 2.40 (X = -2 RE). The low MA and θIMF conditions that characterized the X = 2 RE flow and resulted in strong Poynting flux occurred for 16% of all 167 h in 1998-2008 with Dst < -180 nT.
NASA Technical Reports Server (NTRS)
Kelly, T. J.; Crooker, N. U.; Siscoe, G. L.; Russell, C. T.; Smith, E. J.
1984-01-01
Magnetospheric studies often require knowledge of the orientation of the IMF. In order to test the accuracy of using magnetometer data from a spacecraft orbiting the sunward libration point for this purpose, the angle between the IMF at ISEE 3, when it was positioned around the libration point, and at ISEE 1, orbiting Earth, has been calculated for a data set of two-hour periods covering four months. For each period, a ten-minute average of ISEE 1 data is compared with ten-minute averages of ISEE 3 data at successively lagged intervals. At the lag time equal to the time required for the solar wind to convect from ISEE 3 to ISEE 1, the median angle between the IMF orientation at the two spacecraft is 20 deg, and 80% of the cases have angles less than 38 deg. The results for the angles projected on the y-z plane are essentially the same.
He, Jiansen; Tu, Chuanyi; Wang, Linghua; Pei, Zhongtian; Marsch, Eckart; Chen, Christopher H. K.; Zhang, Lei; Salem, Chadi S.; Bale, Stuart D.
2015-11-10
Magnetohydronamic turbulence is believed to play a crucial role in heating laboratory, space, and astrophysical plasmas. However, the precise connection between the turbulent fluctuations and the particle kinetics has not yet been established. Here we present clear evidence of plasma turbulence heating based on diagnosed wave features and proton velocity distributions from solar wind measurements by the Wind spacecraft. For the first time, we can report the simultaneous observation of counter-propagating magnetohydrodynamic waves in the solar wind turbulence. As opposed to the traditional paradigm with counter-propagating Alfvén waves (AWs), anti-sunward AWs are encountered by sunward slow magnetosonic waves (SMWs) in this new type of solar wind compressible turbulence. The counter-propagating AWs and SWs correspond, respectively, to the dominant and sub-dominant populations of the imbalanced Elsässer variables. Nonlinear interactions between the AWs and SMWs are inferred from the non-orthogonality between the possible oscillation direction of one wave and the possible propagation direction of the other. The associated protons are revealed to exhibit bi-directional asymmetric beams in their velocity distributions: sunward beams appear in short, narrow patterns and anti-sunward in broad extended tails. It is suggested that multiple types of wave–particle interactions, i.e., cyclotron and Landau resonances with AWs and SMWs at kinetic scales, are taking place to jointly heat the protons perpendicular and in parallel.
NASA Technical Reports Server (NTRS)
Embleton, Tony F. W.; Daigle, Gilles A.
1991-01-01
Reviewed here is the current state of knowledge with respect to each basic mechanism of sound propagation in the atmosphere and how each mechanism changes the spectral or temporal characteristics of the sound received at a distance from the source. Some of the basic processes affecting sound wave propagation which are present in any situation are discussed. They are geometrical spreading, molecular absorption, and turbulent scattering. In geometrical spreading, sound levels decrease with increasing distance from the source; there is no frequency dependence. In molecular absorption, sound energy is converted into heat as the sound wave propagates through the air; there is a strong dependence on frequency. In turbulent scattering, local variations in wind velocity and temperature induce fluctuations in phase and amplitude of the sound waves as they propagate through an inhomogeneous medium; there is a moderate dependence on frequency.
1988-02-12
to be approximately one. 42 IV. RESULTS AND DISCUSSION To diagnose plasmold propagation , considerable emphasis was placed on downstream net current...reversel of necessary and Identify by block nutrber) FIELD GROUP SUB-GOU >Plasmoids: Charged Particle Beamsil Beam Propagation , Ion -Diodes, Pulsed Pwr 191...ABSTRACT (Conria on reverse of necessary and oalntity by block number) #6 Simple analytical considerations suggest that for certain parameter regimes
Parametric instabilities of parallel propagating incoherent Alfven waves in a finite ion beta plasma
Nariyuki, Y.; Hada, T.; Tsubouchi, K.
2007-12-15
Large amplitude, low-frequency Alfven waves constitute one of the most essential elements of magnetohydrodynamic (MHD) turbulence in the fast solar wind. Due to small collisionless dissipation rates, the waves can propagate long distances and efficiently convey such macroscopic quantities as momentum, energy, and helicity. Since loading of such quantities is completed when the waves damp away, it is important to examine how the waves can dissipate in the solar wind. Among various possible dissipation processes of the Alfven waves, parametric instabilities have been believed to be important. In this paper, we numerically discuss the parametric instabilities of coherent/incoherent Alfven waves in a finite ion beta plasma using a one-dimensional hybrid (superparticle ions plus an electron massless fluid) simulation, in order to explain local production of sunward propagating Alfven waves, as suggested by Helios/Ulysses observation results. Parameter studies clarify the dependence of parametric instabilities of coherent/incoherent Alfven waves on the ion and electron beta ratio. Parametric instabilities of coherent Alfven waves in a finite ion beta plasma are vastly different from those in the cold ions (i.e., MHD and/or Hall-MHD systems), even if the collisionless damping of the Alfven waves are neglected. Further, ''nonlinearly driven'' modulational instability is important for the dissipation of incoherent Alfven waves in a finite ion beta plasma regardless of their polarization, since the ion kinetic effects let both the right-hand and left-hand polarized waves become unstable to the modulational instability. The present results suggest that, although the antisunward propagating dispersive Alfven waves are efficiently dissipated through the parametric instabilities in a finite ion beta plasma, these instabilities hardly produce the sunward propagating waves.
2014-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Shallow Water Propagation William L. Siegmann...mechanisms of propagation . OBJECTIVES (A) Treat propagation from narrowband and broadband sources over elastic and poro-elastic sediments, and...and other sediments on propagation , and specify for one class of muds the physical variations that affect geoacoustical properties. APPROACH
Vegetative propagation [Chapter 9
Tara Luna
2009-01-01
For the past 30 years, interest in the propagation of native plants has been growing. Many desirable and ecologically important species, however, are difficult or very time consuming to propagate by seeds. Thus, nursery growers may want to investigate how to propagate a species of interest by vegetative propagation. This can be done by combining classic horticultural...
2002-09-30
Electro - Optic Propagation Stephen Doss-Hammel SPAWARSYSCEN San Diego code 2858 49170 Propagation Path San Diego, CA 92152-7385 phone: (619...OBJECTIVES The electro - optical propagation objectives are: 1) The acquisition and analysis of mid-wave and long-wave infrared transmission and...elements to the electro - optical propagation model development. The first element is the design and execution of field experiments to generate useful
2003-09-30
Electro - Optic Propagation Stephen Doss-Hammel SPAWARSYSCEN San Diego code 2858 49170 Propagation Path San Diego, CA 92152-7385 phone: (619...scenarios to extend the capabilities of TAWS to surface and low altitude situations. OBJECTIVES The electro - optical propagation objectives are: 1...development of a new propagation assessment tool called EOSTAR ( Electro - Optical Signal Transmission and Ranging). The goal of the EOSTAR project is to
NASA Propagation Studies Website
NASA Technical Reports Server (NTRS)
Angkasa, Krisjani S.
1996-01-01
The NASA propagation studies objective is to enable the development of new commercial satellite communication systems and services by providing timely data and models about propagation of satellite radio signals through the intervening environment and to support NASA missions. In partnership with industry and academia, the program leverages unique NASA assets (currently Advanced Communications Technology Satellite) to obtain propagation data. The findings of the study are disseminated through referred journals, NASA reference publications, workshops, electronic media, and direct interface with industry.
NASA Technical Reports Server (NTRS)
Wakana, Hiromitsu
1991-01-01
L-band propagation measurements for land-mobile, maritime, and aeronautical satellite communications have been carried out by using the Japanese Engineering Test Satellite-Five (ETS-5) which was launched in Aug. 1987. This paper presents propagation characteristics for each of the mobile satellite communication channels.
Limitations in scatter propagation
NASA Astrophysics Data System (ADS)
Lampert, E. W.
1982-04-01
A short description of the main scatter propagation mechanisms is presented; troposcatter, meteor burst communication and chaff scatter. For these propagation modes, in particular for troposcatter, the important specific limitations discussed are: link budget and resulting hardware consequences, diversity, mobility, information transfer and intermodulation and intersymbol interference, frequency range and future extension in frequency range for troposcatter, and compatibility with other services (EMC).
NASA Propagation Information Center
NASA Technical Reports Server (NTRS)
Smith, Ernest K.; Flock, Warren L.
1989-01-01
The NASA Propagation Information Center became formally operational in July 1988. It is located in the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. The Center is several things: a communications medium for the propagation with the outside world, a mechanism for internal communication within the program, and an aid to management.
Millimeter wavelength propagation studies
NASA Technical Reports Server (NTRS)
Hodge, D. B.
1974-01-01
The investigations conducted for the Millimeter Wavelength Propagation Studies during the period December, 1966, to June 1974 are reported. These efforts included the preparation for the ATS-5 Millimeter Wavelength Propagation Experiment and the subsequent data acquisition and data analysis. The emphasis of the OSU participation in this experiment was placed on the determination of reliability improvement resulting from the use of space diversity on a millimeter wavelength earth-space communication link. Related measurements included the determination of the correlation between radiometric temperature and attenuation along the earth-space propagation path. Along with this experimental effort a theoretical model was developed for the prediction of attenuation statistics on single and spatially separated earth space propagation paths. A High Resolution Radar/Radiometer System and Low Resolution Radar System were developed and implemented for the study of intense rain cells in preparation for the ATS-6 Millimeter Wavelength Propagation Experiment.
Simulation of Magnetic Cloud Erosion and Deformation During Propagation
NASA Astrophysics Data System (ADS)
Manchester, W.; Kozyra, J. U.; Lepri, S. T.; Lavraud, B.; Jackson, B. V.
2013-12-01
We examine a three-dimensional (3-D) numerical magnetohydrodynamic (MHD) simulation describing a very fast interplanetary coronal mass ejection (ICME) propagating from the solar corona to 1 AU. In conjunction with it's high speed, the ICME evolves in ways that give it a unique appearance at 1AU that does not resemble a typical ICME. First, as the ICME decelerates in the solar wind, filament material at the back of the flux rope pushes its way forward through the flux rope. Second, diverging nonradial flows in front of the filament transport azimuthal flux of the rope to the sides of the ICME. Third, the magnetic flux rope reconnects with the interplanetary magnetic field (IMF). As a consequence of these processes, the flux rope partially unravels and appears to evolve to an entirely open configuration near its nose. At the same time, filament material at the base of the flux rope moves forward and comes in direct contact with the shocked plasma in the CME sheath. We find evidence such remarkable behavior has occurred when we examine a very fast CME that erupted from the Sun on 2005 January 20. In situ observations of this event near 1 AU show very dense cold material impacting the Earth following immediately behind the CME sheath. Charge state analysis shows this dense plasma is filament material, and the analysis of SMEI data provides the trajectory of this dense plasma from the Sun. Consistent with the simulation, we find the azimuthal flux (Bz) to be entirely unbalanced giving the appearance that the flux rope has completely eroded on the anti-sunward side.
Gear crack propagation investigations
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Ballarini, Roberto
1996-01-01
Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.
Gear Crack Propagation Investigation
NASA Technical Reports Server (NTRS)
1995-01-01
Reduced weight is a major design goal in aircraft power transmissions. Some gear designs incorporate thin rims to help meet this goal. Thin rims, however, may lead to bending fatigue cracks. These cracks may propagate through a gear tooth or into the gear rim. A crack that propagates through a tooth would probably not be catastrophic, and ample warning of a failure could be possible. On the other hand, a crack that propagates through the rim would be catastrophic. Such cracks could lead to disengagement of a rotor or propeller from an engine, loss of an aircraft, and fatalities. To help create and validate tools for the gear designer, the NASA Lewis Research Center performed in-house analytical and experimental studies to investigate the effect of rim thickness on gear-tooth crack propagation. Our goal was to determine whether cracks grew through gear teeth (benign failure mode) or through gear rims (catastrophic failure mode) for various rim thicknesses. In addition, we investigated the effect of rim thickness on crack propagation life. A finite-element-based computer program simulated gear-tooth crack propagation. The analysis used principles of linear elastic fracture mechanics, and quarter-point, triangular elements were used at the crack tip to represent the stress singularity. The program had an automated crack propagation option in which cracks were grown numerically via an automated remeshing scheme. Crack-tip stress-intensity factors were estimated to determine crack-propagation direction. Also, various fatigue crack growth models were used to estimate crack-propagation life. Experiments were performed in Lewis' Spur Gear Fatigue Rig to validate predicted crack propagation results. Gears with various backup ratios were tested to validate crack-path predictions. Also, test gears were installed with special crack-propagation gages in the tooth fillet region to measure bending-fatigue crack growth. From both predictions and tests, gears with backup ratios
Propagation of Environmental Noise
ERIC Educational Resources Information Center
Lyon, R. H.
1973-01-01
Solutions for environmental noise pollution lie in systematic study of many basic processes such as reflection, scattering, and spreading. Noise propagation processes should be identified in different situations and assessed for their relative importance. (PS)
Propagation of Environmental Noise
ERIC Educational Resources Information Center
Lyon, R. H.
1973-01-01
Solutions for environmental noise pollution lie in systematic study of many basic processes such as reflection, scattering, and spreading. Noise propagation processes should be identified in different situations and assessed for their relative importance. (PS)
McCandless, Kathleen; Petersson, Anders; Nilsson, Stefan; Sjogreen, Bjorn
2007-01-08
WPP is a massively parallel, 3D, C++, finite-difference elastodynamic wave propagation code. Typical applications for wave propagation with WPP include: evaluation of seismic event scenarios and damage from earthquakes, non-destructive evaluation of materials, underground facility detection, oil and gas exploration, predicting the electro-magnetic fields in accelerators, and acoustic noise generation. For more information, see Users Manual [1].
Database for propagation models
NASA Technical Reports Server (NTRS)
Kantak, Anil V.
1991-01-01
A propagation researcher or a systems engineer who intends to use the results of a propagation experiment is generally faced with various database tasks such as the selection of the computer software, the hardware, and the writing of the programs to pass the data through the models of interest. This task is repeated every time a new experiment is conducted or the same experiment is carried out at a different location generating different data. Thus the users of this data have to spend a considerable portion of their time learning how to implement the computer hardware and the software towards the desired end. This situation may be facilitated considerably if an easily accessible propagation database is created that has all the accepted (standardized) propagation phenomena models approved by the propagation research community. Also, the handling of data will become easier for the user. Such a database construction can only stimulate the growth of the propagation research it if is available to all the researchers, so that the results of the experiment conducted by one researcher can be examined independently by another, without different hardware and software being used. The database may be made flexible so that the researchers need not be confined only to the contents of the database. Another way in which the database may help the researchers is by the fact that they will not have to document the software and hardware tools used in their research since the propagation research community will know the database already. The following sections show a possible database construction, as well as properties of the database for the propagation research.
NASA Propagation Studies Website
NASA Technical Reports Server (NTRS)
Angkasa, Krisjani S.
1996-01-01
This paper describes an Internet website which provides information to enable the development of new commerical satellite systems and services by providing timely data and models about the propagation of satellite radio signals. In partnership with industry and academia, the program leverages NASA assets, currently the Advanced Communications Technology Satellite (ACTS), to obtain propagation data. The findings of the study are disseminated through refereed journals, NASA reference publications, workshops, electronic media, and direct interface with industry.
NASA Astrophysics Data System (ADS)
Urrutxua, H.; Sanjurjo-Rivo, M.; Peláez, J.
2013-12-01
In year 2000 a house-made orbital propagator was developed by the SDGUPM (former Grupo de Dinámica de Tethers) based in a set of redundant variables including Euler parameters. This propagator was called DROMO. and it was mainly used in numerical simulations of electrodynamic tethers. It was presented for the first time in the international meeting V Jornadas de Trabajo en Mecánica Celeste, held in Albarracín, Spain, in 2002 (see reference 1). The special perturbation method associated with DROMO can be consulted in the paper.2 In year 1975, Andre Deprit in reference 3 proposes a propagation scheme very similar to the one in which DROMO is based, by using the ideal frame concept of Hansen. The different approaches used in references 3 and 2 gave rise to a small controversy. In this paper we carried out a different deduction of the DROMO propagator, underlining its close relation with the Hansen ideal frame concept, and also the similarities and the differences with the theory carried out by Deprit in 3. Simultaneously we introduce some improvements in the formulation that leads to a more synthetic propagator.
Comments on entanglement propagation
NASA Astrophysics Data System (ADS)
Rozali, Moshe; Vincart-Emard, Alexandre
2017-06-01
We extend our work on entanglement propagation following a local quench in 2+1 dimensional holographic conformal field theories. We find that entanglement propagates along an emergent lightcone, whose speed of propagation v E seems distinct from other measures of quantum information spreading. We compare the relations we find to information and hydrodynamic velocities in strongly coupled 2+1 dimensional theories. While early-time entanglement velocities corresponding to small entangling regions are numerically close to the butterfly velocity, late-time entanglement velocities for large regions show less regularity. We also generalize and extend our previous results regarding the late-time decay of the entanglement entropy back to its equilibrium value.
Elevated temperature crack propagation
NASA Astrophysics Data System (ADS)
Orange, Thomas W.
1994-02-01
This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.
Elevated temperature crack propagation
Orange, T.W.
1994-02-01
This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.
Elevated Temperature Crack Propagation
NASA Technical Reports Server (NTRS)
Orange, Thomas W.
1994-01-01
This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.
Turbofan Duct Propagation Model
NASA Technical Reports Server (NTRS)
Lan, Justin H.; Posey, Joe W. (Technical Monitor)
2001-01-01
The CDUCT code utilizes a parabolic approximation to the convected Helmholtz equation in order to efficiently model acoustic propagation in acoustically treated, complex shaped ducts. The parabolic approximation solves one-way wave propagation with a marching method which neglects backwards reflected waves. The derivation of the parabolic approximation is presented. Several code validation cases are given. An acoustic lining design process for an example aft fan duct is discussed. It is noted that the method can efficiently model realistic three-dimension effects, acoustic lining, and flow within the computational capabilities of a typical computer workstation.
NASA Technical Reports Server (NTRS)
Nessel, James
2013-01-01
NASA Glenn Research Center has been involved in the characterization of atmospheric effects on space communications links operating at Ka-band and above for the past 20 years. This presentation reports out on the most recent activities of propagation characterization that NASA is currently involved in.
PROPER: Optical propagation routines
NASA Astrophysics Data System (ADS)
Krist, John E.
2014-05-01
PROPER simulates the propagation of light through an optical system using Fourier transform algorithms (Fresnel, angular spectrum methods). Distributed as IDL source code, it includes routines to create complex apertures, aberrated wavefronts, and deformable mirrors. It is especially useful for the simulation of high contrast imaging telescopes (extrasolar planet imagers like TPF).
NASA Astrophysics Data System (ADS)
Urrutxua, Hodei; Sanjurjo-Rivo, Manuel; Peláez, Jesús
2016-01-01
In the year 2000 an in-house orbital propagator called DROMO (Peláez et al. in Celest Mech Dyn Astron 97:131-150, 2007. doi: 10.1007/s10569-006-9056-3) was developed by the Space Dynamics Group of the Technical University of Madrid, based in a set of redundant variables including Euler-Rodrigues parameters. An original deduction of the DROMO propagator is carried out, underlining its close relation with the ideal frame concept introduced by Hansen (Abh der Math-Phys Cl der Kon Sachs Ges der Wissensch 5:41-218, 1857). Based on the very same concept, Deprit (J Res Natl Bur Stand Sect B Math Sci 79B(1-2):1-15, 1975) proposed a formulation for orbit propagation. In this paper, similarities and differences with the theory carried out by Deprit are analyzed. Simultaneously, some improvements are introduced in the formulation, that lead to a more synthetic and better performing propagator. Also, the long-term effect of the oblateness of the primary is studied in terms of DROMO variables, and new numerical results are presented to evaluate the performance of the method.
2016-06-07
efficient performance of our propagation model for low frequency range-dependent problems in elastic media. A new PE solution [22] for gravity wave...21] J. Bruch, M. D. Collins, D. K. Dacol, J. F. Lingevitch, and W. L. Siegmann, “A parabolic equation for advected acousto- gravity waves,” (A
Propagation environments [Chapter 4
Douglass F. Jacobs; Thomas D. Landis; Tara Luna
2009-01-01
An understanding of all factors influencing plant growth in a nursery environment is needed for the successful growth and production of high-quality container plants. Propagation structures modify the atmospheric conditions of temperature, light, and relative humidity. Native plant nurseries are different from typical horticultural nurseries because plants must be...
NASA Astrophysics Data System (ADS)
Zhang, Yuzong; Kitai, Reizaburo; Narukage, Noriyuki; Matsumoto, Takuma; Ueno, Satoru; Shibata, Kazunari; Wang, Jingxiu
2011-06-01
With the Flare-Monitoring Telescope (FMT) and Solar Magnetic Activity Research Telescope (SMART) at Hida observatory of Kyoto University, 13 events of Moreton waves were captured at Hα center, Hα ±0.5 Å, and Hα ±0.8 Å wavebands since 1997. With such samples, we have studied the statistical properties of the propagation of Moreton waves. Moreton waves were all restricted in sectorial zones with a mean value of 92°. However, their accompanying EIT waves, observed simultaneously with SOHO/EIT at extreme-ultraviolet wavelength, were very isotropic with a quite extended scope of 193°. The average propagation speeds of the Moreton waves and the corresponding EIT waves were 664 km s-1 and 205 km s-1, respectively. Moreton waves propagated either under large-scale close magnetic flux loops, or firstly in the sectorial region where two sets of magnetic loops separated from each other and diverged, and then stopped before the open magnetic flux region. The location swept by Moreton waves had a relatively weak magnetic field as compared to the magnetic fields at their sidewalls. The ratio of the magnetic flux density between the sidewall and the path falls in the range of 1.4 to 3.7 at a height of 0.01 solar radii. Additionally, we roughly estimated the distribution of the fast magnetosonic speed between the propagating path and sidewalls in an event on 1997 November 3, and found a relatively low-fast magnetosonic speed in the path. We also found that the propagating direction of Moreton waves coincided with the direction of filament eruption in a few well-observed events. This favors an interpretation of the ``Piston'' model, although further studies are necessary for any definitive conclusion.
A Database for Propagation Models
NASA Technical Reports Server (NTRS)
Kantak, Anil V.; Rucker, James
1997-01-01
The Propagation Models Database is designed to allow the scientists and experimenters in the propagation field to process their data through many known and accepted propagation models. The database is an Excel 5.0 based software that houses user-callable propagation models of propagation phenomena. It does not contain a database of propagation data generated out of the experiments. The database not only provides a powerful software tool to process the data generated by the experiments, but is also a time- and energy-saving tool for plotting results, generating tables and producing impressive and crisp hard copy for presentation and filing.
Propagating Instabilities in Solids
NASA Astrophysics Data System (ADS)
Kyriakides, Stelios
1998-03-01
Instability is one of the factors which limit the extent to which solids can be loaded or deformed and plays a pivotal role in the design of many structures. Such instabilities often result in localized deformation which precipitates catastrophic failure. Some materials have the capacity to recover their stiffness following a certain amount of localized deformation. This local recovery in stiffness arrests further local deformation and spreading of the instability to neighboring material becomes preferred. Under displacement controlled loading the propagation of the transition fronts can be achieved in a steady-state manner at a constant stress level known as the propagation stress. The stresses in the transition fronts joining the highly deformed zone to the intact material overcome the instability nucleation stresses and, as a result, the propagation stress is usually much lower than the stress required to nucleate the instability. The classical example of this class of material instabilities is L/"uders bands which tend to affect mild steels and other metals. Recent work has demonstrated that propagating instabilities occur in several other materials. Experimental and analytical results from four examples will be used to illustrate this point: First the evolution of L=FCders bands in mild steel strips will be revisited. The second example involves the evolution of stress induced phase transformations (austenite to martensite phases and the reverse) in a shape memory alloy under displacement controlled stretching. The third example is the crushing behavior of cellular materials such as honeycombs and foams made from metals and polymers. The fourth example involves the axial broadening/propagation of kink bands in aligned fiber/matrix composites under compression. The microstructure and, as a result, the micromechanisms governing the onset, localization, local arrest and propagation of instabilities in each of the four materials are vastly different. Despite this
NASA Technical Reports Server (NTRS)
Cook, R. K.
1969-01-01
The propagation of sound waves at infrasonic frequencies (oscillation periods 1.0 - 1000 seconds) in the atmosphere is being studied by a network of seven stations separated geographically by distances of the order of thousands of kilometers. The stations measure the following characteristics of infrasonic waves: (1) the amplitude and waveform of the incident sound pressure, (2) the direction of propagation of the wave, (3) the horizontal phase velocity, and (4) the distribution of sound wave energy at various frequencies of oscillation. Some infrasonic sources which were identified and studied include the aurora borealis, tornadoes, volcanos, gravity waves on the oceans, earthquakes, and atmospheric instability waves caused by winds at the tropopause. Waves of unknown origin seem to radiate from several geographical locations, including one in the Argentine.
Propagation of Tau aggregates.
Goedert, Michel; Spillantini, Maria Grazia
2017-05-30
Since 2009, evidence has accumulated to suggest that Tau aggregates form first in a small number of brain cells, from where they propagate to other regions, resulting in neurodegeneration and disease. Propagation of Tau aggregates is often called prion-like, which refers to the capacity of an assembled protein to induce the same abnormal conformation in a protein of the same kind, initiating a self-amplifying cascade. In addition, prion-like encompasses the release of protein aggregates from brain cells and their uptake by neighbouring cells. In mice, the intracerebral injection of Tau inclusions induced the ordered assembly of monomeric Tau, followed by its spreading to distant brain regions. Short fibrils constituted the major species of seed-competent Tau. The existence of several human Tauopathies with distinct fibril morphologies has led to the suggestion that different molecular conformers (or strains) of aggregated Tau exist.
Preventing Unofficial Information Propagation
NASA Astrophysics Data System (ADS)
Le, Zhengyi; Ouyang, Yi; Xu, Yurong; Ford, James; Makedon, Fillia
Digital copies are susceptible to theft and vulnerable to leakage, copying, or manipulation. When someone (or some group), who has stolen, leaked, copied, or manipulated digital documents propagates the documents over the Internet and/or distributes those through physical distribution channels many challenges arise which document holders must overcome in order to mitigate the impact to their privacy or business. This paper focuses on the propagation problem of digital credentials, which may contain sensitive information about a credential holder. Existing work such as access control policies and the Platform for Privacy Preferences (P3P) assumes that qualified or certified credential viewers are honest and reliable. The proposed approach in this paper uses short-lived credentials based on reverse forward secure signatures to remove this assumption and mitigate the damage caused by a dishonest or honest but compromised viewer.
NASA Technical Reports Server (NTRS)
Helmken, Henry; Henning, Rudolf
1994-01-01
One of the key goals of the Florida Center is to obtain a maximum of useful information on propagation behavior unique to its subtropical weather and subtropical climate. Such weather data is of particular interest when it is (or has the potential to become) useful for developing and implementing techniques to compensate for adverse weather effects. Also discussed are data observations, current challenges, CDF's, sun movement, and diversity experiments.
2009-02-09
of parameters. Hence one expects that the solutions of the two equations , PES and NLS, are comparable. In Fig. 3 we plot the two solutions for...power saturated term, in the PES equation ) have stable soliton solutions or mode-locking evolution. In general the solitons are found to be unstable...literature. Generally speaking, the above lattice equations omitting nonlinear terms have solutions propagating along z direction, i.e., ψ(r, z) = e−iµzϕ(r
Transionospheric Propagation Code (TIPC)
Roussel-Dupre, R.; Kelley, T.A.
1990-10-01
The Transionospheric Propagation Code is a computer program developed at Los Alamos National Lab to perform certain tasks related to the detection of vhf signals following propagation through the ionosphere. The code is written in Fortran 77, runs interactively and was designed to be as machine independent as possible. A menu format in which the user is prompted to supply appropriate parameters for a given task has been adopted for the input while the output is primarily in the form of graphics. The user has the option of selecting from five basic tasks, namely transionospheric propagation, signal filtering, signal processing, DTOA study, and DTOA uncertainty study. For the first task a specified signal is convolved against the impulse response function of the ionosphere to obtain the transionospheric signal. The user is given a choice of four analytic forms for the input pulse or of supplying a tabular form. The option of adding Gaussian-distributed white noise of spectral noise to the input signal is also provided. The deterministic ionosphere is characterized to first order in terms of a total electron content (TEC) along the propagation path. In addition, a scattering model parameterized in terms of a frequency coherence bandwidth is also available. In the second task, detection is simulated by convolving a given filter response against the transionospheric signal. The user is given a choice of a wideband filter or a narrowband Gaussian filter. It is also possible to input a filter response. The third task provides for quadrature detection, envelope detection, and three different techniques for time-tagging the arrival of the transionospheric signal at specified receivers. The latter algorithms can be used to determine a TEC and thus take out the effects of the ionosphere to first order. Task four allows the user to construct a table of delta-times-of-arrival (DTOAs) vs TECs for a specified pair of receivers.
OPEX: (Olympus Propagation EXperiment)
NASA Technical Reports Server (NTRS)
Brussaard, Gert
1988-01-01
The Olympus-1 satellite carries four distinct payloads for experimental utilization and research in the field of satellite communications: (1) the Direct Broadcasting Service (DBS) payload; (2) the Specialized Services Payload; (3) the 20/30 GHz Advanced Communications Payload; and (4) the Propagation Payload. Experimental utilization of the first three payloads involves ground transmissions to the satellite and hence sharing of available satellite time among experimenters. This is coordinated through the Olympus Utilization Program.
Olympus propagation experiments
NASA Technical Reports Server (NTRS)
Arbesser-Rastburg, Bertram
1994-01-01
A summary of the activities of the OPEX (Olympus Propagation EXperimenters) group is given and some of the recent findings are presented. OLYMPUS, a telecommunication satellite owned by the European Space Agency, was launched on 12 June 1989. After the in-orbit tests were completed (in September 1989) the first propagation experiments started. Throughout 1990 the spacecraft functioned very well and a large number of experimenters received the beacon signals. On 29 May 1991 the spacecraft became inoperational after a major technical problem. With a series of complicated procedures OLYMPUS was recovered on 15 August 1991 - the first time in history that a civilian telecommunications satellite was brought back to service after losing power and telemetry. The propagation experiments were back on track. However, the recovery had used up so much fuel that the North-South station keeping had to be abandoned, which led to a natural increase of inclination at a rate of about 0.8 deg per year. On 10 October 1992 the second 30 GHz beacon tube failed, causing a loss of this beacon signal. The other two beacon frequencies continued to deliver a stable signal for more than two years. On 12 August 1993 the spacecraft experienced another problem with the altitude control, but this time there was not enough fuel left for a recovery maneuver and thus the mission came to an end.
High amplitude propagated contractions.
Bharucha, A E
2012-11-01
While most colonic motor activity is segmental and non-propulsive, colonic high amplitude propagated contractions (HAPC) can transfer colonic contents over long distances and often precede defecation. High amplitude propagated contractions occur spontaneously, in response to pharmacological agents or colonic distention. A subset of patients with slow transit constipation have fewer HAPC. In this issue of Neurogastroenterology and Motility, Rodriguez et al. report that anal relaxation during spontaneous and bisacodyl-induced HAPC exceeds anal relaxation during rectal distention in constipated children undergoing colonic manometry. Moreover, and consistent with a neural mechanism, anal relaxation often precedes arrival of HAPC in the left colon. High amplitude propagated contractions are also used to evaluate the motor response to a meal and pharmacological stimuli (e.g., bisacodyl, neostigmine) and to identify colonic inertia during colonic motility testing in chronic constipation. This editorial comprehensively reviews the characteristics, physiology and pharmacology of HAPC, their assessment by manometry, and relevance to constipation and diarrhea. © 2012 Blackwell Publishing Ltd.
Temporal scaling in information propagation
NASA Astrophysics Data System (ADS)
Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi
2014-06-01
For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.
Temporal scaling in information propagation.
Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi
2014-06-18
For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.
Tropospheric propagation assessment
NASA Astrophysics Data System (ADS)
Anderson, K. D.; Richter, J. H.; Hitney, H. V.
1984-02-01
It is well known that microwave propagation in a marine environment frequently exhibits unexpected behavior. The deviation from 4/3 earth propagation calculations is due to the fact that the vertical refractivity distribution of the troposphere rarely follows the standard lapse rate of -39 N/km. Instead, the troposphere is generally composed of horizontally stratified layers of differing refractivity gradients. The most striking propagation anomalies result when a layer gradient is less than -157 N/km, forming a trapping layer. In the marine environment, there are two mechanisms which produce such layers. An elevated trapping layer is created by the advection of a warm, dry air mass over a cold, moist air mass producing either a surface-based or an elevated duct which may affect frequencies as low as 100 MHz. A very persistent surface trapping layer is due to water evaporation at the air-sea interface. This surface, or evaporation duct is generally thin, on the order of 10 m in vertical extent, and is an effective trapping mechanism for frequencies greater than 3 GHz. With the introduction of the Integrated Refraction Effects Prediction System (IREPS) into the US Navy, fleet units now have the capability to evaluate accurately the performance of their EM systems when the refractive environment is known. However, these units may have to plan for operations thousands of miles away under different refractivity conditions. To assist in planning, a worldwide upper air and surface climatology has been developed for use through the IREPS programs. The IREPS concept is reviewed and a description of the tropospheric ducting data base is presented.
Beam Propagation Experimental Study.
1982-03-01
30- -40- -50 I 0 100 200 300 Time (ns) Figure 2. FX-100 diode voltage and current. The gas- insulated coax was charged to 4.2 MV in order to produce...limit the usable gradient. The voltage standoff capability will be further limited by electron bombardment of the insulators , which may lead to flashover ...the low-pressure window for stable propagation has been inferred from measurements of the time delay for the beam arrival at a given axial position. 8
HIGH AMPLITUDE PROPAGATED CONTRACTIONS
Bharucha, Adil E.
2012-01-01
While most colonic motor activity is segmental and non-propulsive, colonic high amplitude propagated contractions (HAPC) can transfer colonic contents over long distances and often precede defecation. HAPC occur spontaneously, in response to pharmacological agents or colonic distention. In this issue of Neurogastroenterology and Motility, Rodriguez and colleagues report that anal relaxation during spontaneous and bisacodyl-induced HAPC exceeds anal relaxation during rectal distention in constipated children undergoing colonic manometry. Moreover, and consistent with a neural mechanism, anal relaxation often precedes arrival of HAPC in the left colon. This editorial comprehensively reviews the characteristics, physiology and pharmacology of HAPC, their assessment by manometry, and relevance to constipation and diarrhea. PMID:23057554
Transport with Feynman propagators
White, R.H.
1990-11-06
Richard Feynman's formulation of quantum electrodynamics suggests a Monte Carlo algorithm for calculating wave propagation. We call this the Sum Over All Paths (SOAP) method. The method is applied to calculate diffraction by double slits of finite width and by a reflection grating. Calculations of reflection by plane and parabolic mirrors of finite aperture and from several figured surfaces are shown. An application to a one-dimensional scattering problem is discussed. A variation of SOAP can be applied to the diffusion equation. 2 refs., 8 figs.
Desertification by front propagation?
Zelnik, Yuval R; Uecker, Hannes; Feudel, Ulrike; Meron, Ehud
2017-04-07
Understanding how desertification takes place in different ecosystems is an important step in attempting to forecast and prevent such transitions. Dryland ecosystems often exhibit patchy vegetation, which has been shown to be an important factor on the possible regime shifts that occur in arid regions in several model studies. In particular, both gradual shifts that occur by front propagation, and abrupt shifts where patches of vegetation vanish at once, are a possibility in dryland ecosystems due to their emergent spatial heterogeneity. However, recent theoretical work has suggested that the final step of desertification - the transition from spotted vegetation to bare soil - occurs only as an abrupt shift, but the generality of this result, and its underlying origin, remain unclear. We investigate two models that detail the dynamics of dryland vegetation using a markedly different functional structure, and find that in both models the final step of desertification can only be abrupt. Using a careful numerical analysis, we show that this behavior is associated with the disappearance of confined spot-pattern domains as stationary states, and identify the mathematical origin of this behavior. Our findings show that a gradual desertification to bare soil due to a front propagation process can not occur in these and similar models, and opens the question of whether these dynamics can take place in nature.
Understanding tropscatter propagation
NASA Astrophysics Data System (ADS)
Reynolds, Joseph Henderson
Although troposcatter communications systems have shortcomings, this transmission scheme has found consistent use in several applications. Troposcatter propagation is discussed with emphasis on theory, characteristics, and prediction tools. Theoretical understanding of the troposcatter propagation mechanism is rooted in atmospheric phenomena, specifically--refractivity and turbulence. Two modes of transmission exist: incoherent scatter, if refractivity irregularities exist as turbulent blobs, and quasi-coherent scatter, if irregularities arrange themselves in layers. Frequency and meteorological parameters define the dominant mechanism. One can expect received signal levels to exhibit distance and frequency dependence; short and long-term fading; aperture-to-medium coupling loss; and diurnal, seasonal, climatic, and meteorological variations. Diversity techniques are indispensable in thwarting short-term fading. Atmospheric multipath is known to limit analog system bandwidths yet digital systems are prone to the related delay spread phenomenon which causes intersymbol interference. Adaptive processing is used to overcome this problem and can further improve digital performance through implicit diversity. Most troposcatter prediction methods are rooted in empirical expressions. Unfortunately, all the methods suffer shortcomings with reliance on surface refractivity and incorrect coupling loss calculations topping the list.
Bolt beam propagation analysis
NASA Astrophysics Data System (ADS)
Shokair, I. R.
BOLT (Beam on Laser Technology) is a rocket experiment to demonstrate electron beam propagation on a laser ionized plasma channel across the geomagnetic field in the ion focused regime (IFR). The beam parameters for BOLT are: beam current I(sub b) = 100 Amps, beam energy of 1--1.5 MeV (gamma =3-4), and a Gaussian beam and channel of radii r(sub b) = r(sub c) = 1.5 cm. The N+1 ionization scheme is used to ionize atomic oxygen in the upper atmosphere. This scheme utilizes 130 nm light plus three IR lasers to excite and then ionize atomic oxygen. The limiting factor for the channel strength is the energy of the 130 nm laser, which is assumed to be 1.6 mJ for BOLT. At a fixed laser energy and altitude (fixing the density of atomic oxygen), the range can be varied by adjusting the laser tuning, resulting in a neutralization fraction axial profile of the form: f(z) = f(sub 0) e(exp minus z)/R, where R is the range. In this paper we consider the propagation of the BOLT beam and calculate the range of the electron beam taking into account the fact that the erosion rates (magnetic and inductive) vary with beam length as the beam and channel dynamically respond to sausage and hose instabilities.
NASA Technical Reports Server (NTRS)
Bringi, V. N.; Chandrasekar, V.; Mueller, Eugene A.; Turk, Joseph; Beaver, John; Helmken, Henry F.; Henning, Rudy
1993-01-01
Papers on Ka-band propagation measurements using the ACTS propagation terminal and the Colorado State University CHILL multiparameter radar and on Space Communications Technology Center Florida Propagation Program are discussed. Topics covered include: microwave radiative transfer and propagation models; NASA propagation terminal status; ACTS channel characteristics; FAU receive only terminal; FAU terminal status; and propagation testbed.
Gauge engineering and propagators
NASA Astrophysics Data System (ADS)
Maas, Axel
2017-03-01
Beyond perturbation theory gauge-fixing becomes more involved due to the Gribov-Singer ambiguity: The appearance of additional gauge copies requires to define a procedure how to handle them. For the case of Landau gauge the structure and properties of these additional gauge copies will be investigated. Based on these properties gauge conditions are constructed to account for these gauge copies. The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.
Retroelements: propagation and adaptation.
Hull, R; Covey, S N
1995-01-01
Retroelements are genetic entities that exist in both DNA and RNA forms generated by cyclic alternation of transcription and reverse transcription. They have in common a genetic core (the gag-pol core), encoding conserved functions of a structural protein and a replicase. These are supplemented with a variety of cis-acting nucleic acid sequences controlling transcription and reverse transcription. Most retroelements have additional genes with regulatory or adaptive roles, both within the cell and for movement between cells and organisms. These features reflect the variety of mechanisms that have developed to ensure propagation of the elements and their ability to adapt to specific niches in their hosts with which they co-evolve.
ACTS mobile propagation campaign
NASA Technical Reports Server (NTRS)
Goldhirsh, Julius; Vogel, Wolfhard J.; Torrence, Geoffrey W.
1994-01-01
Preliminary results are presented for three propagation measurement campaigns involving a mobile receiving laboratory and 20 GHz transmissions from the Advanced Communications Technology Satellite (ACTS). Four 1994 campaigns were executed during weekly periods in and around Austin, Texas in February and May, in Central Maryland during March, and in Fairbanks, Alaska and environs in June. Measurements tested the following effects at 20 GHz: (1) attenuation due to roadside trees with and without foliage, (2) multipath effects for scenarios in which line-of-sight paths were unshadowed, (3) fades due to terrain and roadside obstacles, (4) fades due to structures in urban environs, (5) single tree attenuation, and (6) effects of fading at low elevation angles (8 deg in Fairbanks, Alaska) and high elevation angles (55 deg in Austin, Texas). Results presented here cover sampled measurements in Austin, Texas for foliage and non-foliage cases and in Central Maryland for non-foliage runs.
Propagation Terminal Design and Measurements
NASA Technical Reports Server (NTRS)
Nessel, James
2015-01-01
The NASA propagation terminal has been designed and developed by the Glenn Research Center and is presently deployed at over 5 NASA and partner ground stations worldwide collecting information on the effects of the atmosphere on Ka-band and millimeter wave communications links. This lecture provides an overview of the fundamentals and requirements of the measurement of atmospheric propagation effects and, specifically, the types of hardware and digital signal processing techniques employed by current state-of-the-art propagation terminal systems.
Interferometric Propagation Delay
NASA Technical Reports Server (NTRS)
Goldstein, Richard
1999-01-01
Radar interferometry based on (near) exact repeat passes has lately been used by many groups of scientists, worldwide, to achieve state of the art measurements of topography, glacier and ice stream motion, earthquake displacements, oil field subsidence, lava flows, crop-induced surface decorrelation, and other effects. Variations of tropospheric and ionospheric propagation delays limit the accuracy of all such measurements. We are investigating the extent of this limitation, using data from the Shuttle radar flight, SIR-C, which is sensitive to the troposphere, and the Earth Resources Satellites, ERS-1/2, which are sensitive to both the troposphere and the ionosphere. We are presently gathering statistics of the delay variations over selected, diverse areas to determine the best accuracy possible for repeat track interferometry. The phases of an interferogram depend on both the topography of the scene and variations in propagation delay. The delay variations can be caused by movement of elements in the scene, by changes in tropospheric water vapor and by changes of the charge concentrations in the ionosphere. We plan to separate these causes by using the data from a third satellite visit (three-pass interferometry). The figure gives the geometry of the three-pass observations. The page of the figure is taken to be perpendicular to the spacecraft orbits. The three observational locations are marked on the figure, giving baselines B-12 and B-13, separated by the angle alpha. These parameters are almost constant over the whole scene. However, each pixel has an individual look angle, theta, which is related to the topography, rho is the slant range. A possible spurious time delay is shown. Additional information is contained in the original.
Interferometric Propagation Delay
NASA Technical Reports Server (NTRS)
Goldstein, Richard
1999-01-01
Radar interferometry based on (near) exact repeat passes has lately been used by many groups of scientists, worldwide, to achieve state of the art measurements of topography, glacier and ice stream motion, earthquake displacements, oil field subsidence, lava flows, crop-induced surface decorrelation, and other effects. Variations of tropospheric and ionospheric propagation delays limit the accuracy of all such measurements. We are investigating the extent of this limitation, using data from the Shuttle radar flight, SIR-C, which is sensitive to the troposphere, and the Earth Resources Satellites, ERS-1/2, which are sensitive to both the troposphere and the ionosphere. We are presently gathering statistics of the delay variations over selected, diverse areas to determine the best accuracy possible for repeat track interferometry. The phases of an interferogram depend on both the topography of the scene and variations in propagation delay. The delay variations can be caused by movement of elements in the scene, by changes in tropospheric water vapor and by changes of the charge concentrations in the ionosphere. We plan to separate these causes by using the data from a third satellite visit (three-pass interferometry). The figure gives the geometry of the three-pass observations. The page of the figure is taken to be perpendicular to the spacecraft orbits. The three observational locations are marked on the figure, giving baselines B-12 and B-13, separated by the angle alpha. These parameters are almost constant over the whole scene. However, each pixel has an individual look angle, theta, which is related to the topography, rho is the slant range. A possible spurious time delay is shown. Additional information is contained in the original.
NASA Astrophysics Data System (ADS)
San-Juan, Juan Félix; Pérez, Iván; San-Martín, Montserrat; Vergara, Eliseo P.
2017-08-01
Two-Line Elements (TLEs) continue to be the sole public source of orbiter observations. The accuracy of TLE propagations through the Simplified General Perturbations-4 (SGP4) software decreases dramatically as the propagation horizon increases, and thus the period of validity of TLEs is very limited. As a result, TLEs are gradually becoming insufficient for the growing demands of Space Situational Awareness (SSA). We propose a technique, based on the hybrid propagation methodology, aimed at extending TLE validity with minimal changes to the current TLE-SGP4 system in a non-intrusive way. It requires that the institution in possession of the osculating elements distributes hybrid TLEs, HTLEs, which encapsulate the standard TLE and the model of its propagation error. The validity extension can be accomplished when the end user processes HTLEs through the hybrid SGP4 propagator, HSGP4, which comprises the standard SGP4 and an error corrector.
Join-Graph Propagation Algorithms
Mateescu, Robert; Kask, Kalev; Gogate, Vibhav; Dechter, Rina
2010-01-01
The paper investigates parameterized approximate message-passing schemes that are based on bounded inference and are inspired by Pearl's belief propagation algorithm (BP). We start with the bounded inference mini-clustering algorithm and then move to the iterative scheme called Iterative Join-Graph Propagation (IJGP), that combines both iteration and bounded inference. Algorithm IJGP belongs to the class of Generalized Belief Propagation algorithms, a framework that allowed connections with approximate algorithms from statistical physics and is shown empirically to surpass the performance of mini-clustering and belief propagation, as well as a number of other state-of-the-art algorithms on several classes of networks. We also provide insight into the accuracy of iterative BP and IJGP by relating these algorithms to well known classes of constraint propagation schemes. PMID:20740057
Modeling turbulent flame propagation
Ashurst, W.T.
1994-08-01
Laser diagnostics and flow simulation techniques axe now providing information that if available fifty years ago, would have allowed Damkoehler to show how turbulence generates flame area. In the absence of this information, many turbulent flame speed models have been created, most based on Kolmogorov concepts which ignore the turbulence vortical structure, Over the last twenty years, the vorticity structure in mixing layers and jets has been shown to determine the entrainment and mixing behavior and these effects need to be duplicated by combustion models. Turbulence simulations reveal the intense vorticity structure as filaments and simulations of passive flamelet propagation show how this vorticity Creates flame area and defines the shape of the expected chemical reaction surface. Understanding how volume expansion interacts with flow structure should improve experimental methods for determining turbulent flame speed. Since the last decade has given us such powerful new tools to create and see turbulent combustion microscopic behavior, it seems that a solution of turbulent combustion within the next decade would not be surprising in the hindsight of 2004.
Kocia, Lucas; Heller, Eric J
2015-09-28
We offer a more formal justification for the successes of our recently communicated "directed Heller-Herman-Kluk-Kay" (DHK) time propagator by examining its performance in one-dimensional bound systems which exhibit at least quasi-periodic motion. DHK is distinguished by its single one-dimensional integral--a vast simplification over the usual 2N-dimensional integral in full Heller-Herman-Kluk-Kay (for an N-dimensional system). We find that DHK accurately captures particular coherent state autocorrelations when its single integral is chosen to lie along these states' fastest growing manifold, as long as it is not perpendicular to their action gradient. Moreover, the larger the action gradient, the better DHK will perform. We numerically examine DHK's accuracy in a one-dimensional quartic oscillator and illustrate that these conditions are frequently satisfied such that the method performs well. This lends some explanation for why DHK frequently seems to work so well and suggests that it may be applicable to systems exhibiting quite strong anharmonicity.
NASA Astrophysics Data System (ADS)
Kocia, Lucas; Heller, Eric J.
2015-09-01
We offer a more formal justification for the successes of our recently communicated "directed Heller-Herman-Kluk-Kay" (DHK) time propagator by examining its performance in one-dimensional bound systems which exhibit at least quasi-periodic motion. DHK is distinguished by its single one-dimensional integral—a vast simplification over the usual 2N-dimensional integral in full Heller-Herman-Kluk-Kay (for an N-dimensional system). We find that DHK accurately captures particular coherent state autocorrelations when its single integral is chosen to lie along these states' fastest growing manifold, as long as it is not perpendicular to their action gradient. Moreover, the larger the action gradient, the better DHK will perform. We numerically examine DHK's accuracy in a one-dimensional quartic oscillator and illustrate that these conditions are frequently satisfied such that the method performs well. This lends some explanation for why DHK frequently seems to work so well and suggests that it may be applicable to systems exhibiting quite strong anharmonicity.
Seismic wave propagation modeling
Jones, E.M.; Olsen, K.B.
1998-12-31
This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A hybrid, finite-difference technique was developed for modeling nonlinear soil amplification from three-dimensional, finite-fault radiation patters for earthquakes in arbitrary earth models. The method was applied to the 17 January 1994 Northridge earthquake. Particle velocities were computed on a plane at 5-km depth, immediately above the causative fault. Time-series of the strike-perpendicular, lateral velocities then were propagated vertically in a soil column typical of the San Fernando Valley. Suitable material models were adapted from a suite used to model ground motions at the US Nevada Test Site. The effects of nonlinearity reduced relative spectral amplitudes by about 40% at frequencies above 1.5 Hz but only by 10% at lower frequencies. Runs made with source-depth amplitudes increased by a factor of two showed relative amplitudes above 1.5 Hz reduced by a total of 70% above 1.5 Hz and 20% at lower frequencies. Runs made with elastic-plastic material models showed similar behavior to runs made with Masing-Rule models.
NA
2002-03-04
The purpose of this Analysis and Model Report (AMR) supporting the Site Recommendation/License Application (SR/LA) for the Yucca Mountain Project is the development of elementary analyses of the interactions of a hypothetical dike with a repository drift (i.e., tunnel) and with the drift contents at the potential Yucca Mountain repository. This effort is intended to support the analysis of disruptive events for Total System Performance Assessment (TSPA). This AMR supports the Process Model Report (PMR) on disruptive events (CRWMS M&O 2000a). This purpose is documented in the development plan (DP) ''Coordinate Modeling of Dike Propagation Near Drifts Consequences for TSPA-SR/LA'' (CRWMS M&O 2000b). Evaluation of that Development Plan and the work to be conducted to prepare Interim Change Notice (ICN) 1 of this report, which now includes the design option of ''Open'' drifts, indicated that no revision to that DP was needed. These analyses are intended to provide reasonable bounds for a number of expected effects: (1) Temperature changes to the waste package from exposure to magma; (2) The gas flow available to degrade waste containers during the intrusion; (3) Movement of the waste package as it is displaced by the gas, pyroclasts and magma from the intruding dike (the number of packages damaged); (4) Movement of the backfill (Backfill is treated here as a design option); (5) The nature of the mechanics of the dike/drift interaction. These analyses serve two objectives: to provide preliminary analyses needed to support evaluation of the consequences of an intrusive event and to provide a basis for addressing some of the concerns of the Nuclear Regulatory Commission (NRC) expressed in the Igneous Activity Issue Resolution Status Report.
Theoretical analysis of microwave propagation
NASA Astrophysics Data System (ADS)
Parl, S.; Malaga, A.
1984-04-01
This report documents a comprehensive investigation of microwave propagation. The structure of line-of-sight multipath is determined and the impact on practical diversity is discussed. A new model of diffraction propagation for multiple rounded obstacles is developed. A troposcatter model valid at microwave frequencies is described. New results for the power impulse response, and the delay spread and Doppler spread are developed. A 2-component model separating large and small scale scatter effects is proposed. The prediction techniques for diffraction and troposcatter have been implemented in a computer program intended as a tool to analyze propagation experiments.
Laser Propagation in Uranium Hexafluoride
NASA Astrophysics Data System (ADS)
Chu, Danny
1990-01-01
Several researchers have simulated the laser pulse propagation through simple N-level systems; but, for UF _6 models, large CPU time and memory is required. In an attempt to efficiently yet accurately characterize laser pulse propagation through a UF _6 molecule, a model of UF_6 is created and analyzed by adiabatic excitation. A minimax numerical method is developed to solve the time -dependent Schrodinger equation and then applied to the study of laser excitation of UF_6 using various Gaussian pulses. The process of laser isotope separation is also discussed. The results from the laser excitation of UF_6 are used to simulate laser propagation through ^{235} UF_6.
Propagating plasmons on silver nanowires
NASA Astrophysics Data System (ADS)
He, Weidong; Wei, Hong; Li, Zhipeng; Huang, Yingzhou; Fang, Yurui; Li, Ping; Xu, Hongxing
2010-08-01
Chemically synthesized Ag nanowires (NWs) can serve as waveguides to support propagating surface plasmons (SPs). By using the propagating SPs on Ag NWs, the surface-enhanced Raman scattering of molecules, located in the nanowire-nanoparticle junction a few microns away from the laser spot on one end of the NW, was excited. The propagating SPs can excite the excitons in quantum dots, and in reverse, the decay of excitons can generate SPs. The direction and polarization of the light emitted through the Ag NW waveguide. The emission polarization depends strongly on the shape of the NW terminals. In branched NW structures, the SPs can be switched between the main NW and the branch NW, by tuning the incident polarization. The light of different wavelength can also be controlled to propagate along different ways. Thus, the branched NW structure can serve as controllable plasmonic router and multiplexer.
Review of aircraft noise propagation
NASA Technical Reports Server (NTRS)
Putnam, T. W.
1975-01-01
The current state of knowledge about the propagation of aircraft noise was reviewed. The literature on the subject is surveyed and methods for predicting the most important and best understood propagation effects are presented. Available empirical data are examined and the data's general validity is assessed. The methods used to determine the loss of acoustic energy due to uniform spherical spreading, absorption in a homogeneous atmosphere, and absorption due to ground cover are presented. A procedure for determining ground induced absorption as a function of elevation angle between source and receiver is recommended. Other factors that affect propagation, such as refraction and scattering due to turbulence, which were found to be less important for predicting the propagation of aircraft noise, are also evaluated.
Reconstruction of nonlinear wave propagation
Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie
2013-04-23
Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.
A database for propagation models
NASA Technical Reports Server (NTRS)
Kantak, Anil V.; Suwitra, Krisjani S.
1992-01-01
In June 1991, a paper at the fifteenth NASA Propagation Experimenters Meeting (NAPEX 15) was presented outlining the development of a database for propagation models. The database is designed to allow the scientists and experimenters in the propagation field to process their data through any known and accepted propagation model. The architecture of the database also incorporates the possibility of changing the standard models in the database to fit the scientist's or the experimenter's needs. The database not only provides powerful software to process the data generated by the experiments, but is also a time- and energy-saving tool for plotting results, generating tables, and producing impressive and crisp hard copy for presentation and filing.
Photon propagator for axion electrodynamics
Itin, Yakov
2007-10-15
The axion modified electrodynamics is usually used as a model for description of possible violation of Lorentz invariance in field theory. The low-energy manifestation of Lorentz violation can hopefully be observed in experiments with electromagnetic waves. It justifies the importance of studying how a small axion addition can modify the wave propagation. Although a constant axion does not contribute to the dispersion relation at all, even a slowly varying axion field destroys the light cone structure. In this paper, we study the wave propagation in the axion modified electrodynamics in the framework of the premetric approach. In addition to the modified dispersion relation, we derive the axion generalization of the photon propagator in Feynman and Landau gauge. Our consideration is free of the usual restriction to the constant gradient axion field. It is remarkable that the axion modified propagator is Hermitian. Consequently, the dissipation effects are absent even in the phenomenological model considered here.
Propagation Limitations in Remote Sensing.
Contents: Multi-sensors and systems in remote sensing ; Radar sensing systems over land; Remote sensing techniques in oceanography; Influence of...propagation media and background; Infrared techniques in remote sensing ; Photography in remote sensing ; Analytical studies in remote sensing .
Propagating rifts on midocean ridges
NASA Astrophysics Data System (ADS)
Hey, Richard; Duennebier, Frederick K.; Morgan, W. Jason
1980-07-01
Spreading center jumps identified west of the Galapagos Islands near 95°W occur in a pattern consistent with the propagating rift hypothesis. A new rift is gradually breaking through the Cocos plate. Each successive jump is slightly longer than the preceding jump. The new spreading center grows at a new azimuth toward the west as the old one dies. The jumps are a manifestation of rift propagation. We extend the analysis of propagating rifts to the case of continuous propagation and predict patterns of magnetic anomalies and bathymetry consistent with the observed patterns. In particular, we correctly predict the trends of fossil spreading centers and V patterns of magnetic anomaly offsets required by the propagating rift hypothesis. Similar V patterns have been observed on many other spreading centers and have been interpreted in various ways. The propagating rift hypothesis appears to offer a simple explanation, consistent with rigid plate tectonics, for each of these patterns. This hypothesis may also have important implications for continental rifting.
Semiclassical propagation of Wigner functions
Dittrich, T.; Gomez, E. A.; Pachon, L. A.
2010-06-07
We present a comprehensive study of semiclassical phase-space propagation in the Wigner representation, emphasizing numerical applications, in particular as an initial-value representation. Two semiclassical approximation schemes are discussed. The propagator of the Wigner function based on van Vleck's approximation replaces the Liouville propagator by a quantum spot with an oscillatory pattern reflecting the interference between pairs of classical trajectories. Employing phase-space path integration instead, caustics in the quantum spot are resolved in terms of Airy functions. We apply both to two benchmark models of nonlinear molecular potentials, the Morse oscillator and the quartic double well, to test them in standard tasks such as computing autocorrelation functions and propagating coherent states. The performance of semiclassical Wigner propagation is very good even in the presence of marked quantum effects, e.g., in coherent tunneling and in propagating Schroedinger cat states, and of classical chaos in four-dimensional phase space. We suggest options for an effective numerical implementation of our method and for integrating it in Monte-Carlo-Metropolis algorithms suitable for high-dimensional systems.
The physical theory and propagation model of THz atmospheric propagation
NASA Astrophysics Data System (ADS)
Wang, R.; Yao, J. Q.; Xu, D. G.; Wang, J. L.; Wang, P.
2011-02-01
Terahertz (THz) radiation is extensively applied in diverse fields, such as space communication, Earth environment observation, atmosphere science, remote sensing and so on. And the research on propagation features of THz wave in the atmosphere becomes more and more important. This paper firstly illuminates the advantages and outlook of THz in space technology. Then it introduces the theoretical framework of THz atmospheric propagation, including some fundamental physical concepts and processes. The attenuation effect (especially the absorption of water vapor), the scattering of aerosol particles and the effect of turbulent flow mainly influence THz atmosphere propagation. Fundamental physical laws are illuminated as well, such as Lamber-beer law, Mie scattering theory and radiative transfer equation. The last part comprises the demonstration and comparison of THz atmosphere propagation models like Moliere(V5), SARTre and AMATERASU. The essential problems are the deep analysis of physical mechanism of this process, the construction of atmospheric propagation model and databases of every kind of material in the atmosphere, and the standardization of measurement procedures.
User needs for propagation data
NASA Technical Reports Server (NTRS)
Sullivan, Thomas M.
1993-01-01
New and refined models of radio signal propagation phenomena are needed to support studies of evolving satellite services and systems. Taking an engineering perspective, applications for propagation measurements and models in the context of various types of analyses that are of ongoing interest are reviewed. Problems that were encountered in the signal propagation aspects of these analyses are reviewed, and potential solutions to these problems are discussed. The focus is on propagation measurements and models needed to support design and performance analyses of systems in the Mobile-Satellite Service (MSS) operating in the 1-3 GHz range. These systems may use geostationary or non-geostationary satellites and Frequency Division Multiple Access (FDMA), Time Division Multiple Access Digital (TDMA), or Code Division Multiple Access (CDMA) techniques. Many of the propagation issues raised in relation to MSS are also pertinent to other services such as broadcasting-satellite (sound) at 2310-2360 MHz. In particular, services involving mobile terminals or terminals with low gain antennas are of concern.
The geometry of propagating rifts
NASA Astrophysics Data System (ADS)
McKenzie, Dan
1986-03-01
The kinematics of two different processes are investigated, both of which have been described as rift propagation. Courtillot uses this term to describe the change from distributed to localised extension which occurs during the early development of an ocean basin. The term localisation is instead used here to describe this process, to distinguish it from Hey's type of propagation. Localisation generally leads to rotation of the direction of magnetisation. To Hey propagation means the extension of a rift into the undeformed plate beyond a transform fault. Detail surveys of the Galapagos rift have shown that the propagating and failing rifts are not connected by a single transform fault, but by a zone which is undergoing shear. The principal deformation is simple shear, and the kinematics of this deformation are investigated in some detail. The strike of most of the lineations observed in the area can be produced by such deformation. The mode of extension on the propagating rift appears to be localised for some periods but to be distributed for others. Neither simple kinematic arguments nor stretching of the lithosphere with conservation of crust can account for the observed variations in water depth.
Pati, Pratap Kumar; Kaur, Navtej; Sharma, Madhu; Ahuja, Paramvir Singh
2010-01-01
In vitro propagation of rose is an important tool for rapid multiplication and development of new cultivars with desirable traits. However, successful in vitro propagation requires an understanding of specific requirements and precise manipulation of various factors. Efficient protocols for different stages of micropropagation using apical buds or nodal segments are currently available. Recently, new challenges for refinements of protocols for high rate of shoot multiplication and development of cost effective methods has gained importance. Significance of the liquid static culture for shoot proliferation and root induction for rose has also gained prominence. Other distinct approaches of in vitro propagation include organogenesis and embryogenesis. These approaches are important for the successful implementation of various biotechnological techniques used for rose improvement programmes. Types of explants, media and optimization of conditions are major factors for successful regeneration of rose.
Wave propagation in ballistic gelatine.
Naarayan, Srinivasan S; Subhash, Ghatu
2017-04-01
Wave propagation characteristics in long cylindrical specimens of ballistic gelatine have been investigated using a high speed digital camera and hyper elastic constitutive models. The induced transient deformation is modelled with strain rate dependent Mooney-Rivlin parameters which are determined by modelling the stress-strain response of gelatine at a range of strain rates. The varying velocity of wave propagation through the gelatine cylinder is derived as a function of prestress or stretch in the gelatine specimen. A finite element analysis is conducted using the above constitutive model by suitably defining the impulse imparted by the polymer bar into the gelatine specimen. The model results are found to capture the experimentally observed wave propagation characteristics in gelatine effectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamical Realism and Uncertainty Propagation
NASA Astrophysics Data System (ADS)
Park, Inkwan
In recent years, Space Situational Awareness (SSA) has become increasingly important as the number of tracked Resident Space Objects (RSOs) continues their growth. One of the most significant technical discussions in SSA is how to propagate state uncertainty in a consistent way with the highly nonlinear dynamical environment. In order to keep pace with this situation, various methods have been proposed to propagate uncertainty accurately by capturing the nonlinearity of the dynamical system. We notice that all of the methods commonly focus on a way to describe the dynamical system as precisely as possible based on a mathematical perspective. This study proposes a new perspective based on understanding dynamics of the evolution of uncertainty itself. We expect that profound insights of the dynamical system could present the possibility to develop a new method for accurate uncertainty propagation. These approaches are naturally concluded in goals of the study. At first, we investigate the most dominant factors in the evolution of uncertainty to realize the dynamical system more rigorously. Second, we aim at developing the new method based on the first investigation enabling orbit uncertainty propagation efficiently while maintaining accuracy. We eliminate the short-period variations from the dynamical system, called a simplified dynamical system (SDS), to investigate the most dominant factors. In order to achieve this goal, the Lie transformation method is introduced since this transformation can define the solutions for each variation separately. From the first investigation, we conclude that the secular variations, including the long-period variations, are dominant for the propagation of uncertainty, i.e., short-period variations are negligible. Then, we develop the new method by combining the SDS and the higher-order nonlinear expansion method, called state transition tensors (STTs). The new method retains advantages of the SDS and the STTs and propagates
Wave equations for pulse propagation
Shore, B.W.
1987-06-24
Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation.
NASA Propagation Program Status and Propagation Needs of Satcom Industry
NASA Technical Reports Server (NTRS)
Golshan, Nassar
1996-01-01
The program objective is to enable the development of new commercial satellite systems and services and to support NASA's programs by providing timely data and models about propagation of satellite radio signals though the intervening environment. Provisions include new services, higher frequencies, higher data rates, different environments (mobile, indoors, fixed), and different orbits (geostationary, low earth orbit).
Gap soliton propagation in optical fiber gratings
NASA Astrophysics Data System (ADS)
Mohideen, U.; Slusher, R. E.; Mizrahi, V.; Erdogan, T.; Kuwata-Gonokami, M.; Lemaire, P. J.; Sipe, J. E.; Martijn de Sterke, C.; Broderick, Neil G. R.
1995-08-01
Intense optical pulse propagation in a GeO2 -doped silica glass fiber grating results in nonlinear pulse propagation velocities and increased transmission at wavelengths where the grating reflects light in the linear limit. These nonlinear pulse propagation effects are predicted by numerical simulations of gap soliton propagation. The large linear refractive-index variations used for the fiber gratings in these experiments permit the propagation of gap solitons in short lengths of fiber.
Microwave Propagation in Dielectric Fluids.
ERIC Educational Resources Information Center
Lonc, W. P.
1980-01-01
Describes an undergraduate experiment designed to verify quantitatively the effect of a dielectric fluid's dielectric constant on the observed wavelength of microwave radiation propagating through the fluid. The fluid used is castor oil, and results agree with the expected behavior within 5 percent. (Author/CS)
Microwave Propagation in Dielectric Fluids.
ERIC Educational Resources Information Center
Lonc, W. P.
1980-01-01
Describes an undergraduate experiment designed to verify quantitatively the effect of a dielectric fluid's dielectric constant on the observed wavelength of microwave radiation propagating through the fluid. The fluid used is castor oil, and results agree with the expected behavior within 5 percent. (Author/CS)
Fracture propagation, pipe deformation study
Aloe, A.; Di Candia, A.; Bramante, M.
1983-04-15
Shear fracture propagation has become an important research subject connected with design aspects of gas pipelines. Difficulties involved in predicting safe service conditions from pure theoretical studies require 1:1 scale experiments. Through these tests, semiempirical design criteria was formulated where the minimum level of material quality, indicated by Charpy V energy in the ductile range, is determined as a function of pipe geometry and hoop stress. Disagreements exist among these criteria. Different arrest energy predictions at high hoop stresses and different effects ascribed to the thickness have called for further research in the field. Some interesting indications were obtained about shape and size of the plastic zone ahead of the propagating crack. Burst tests have been conducted and are discussed.
Sound propagation in choked ducts
NASA Technical Reports Server (NTRS)
Hersh, A. S.; Liu, C. Y.
1976-01-01
The linearized equations describing the propagation of sound in variable area ducts containing flow are shown to be singular when the duct mean flow is sonic. The singularity is removed when previously ignored nonlinear terms are retained. The results of a numerical study, for the case of plane waves propagating in a one-dimensional converging-diverging duct, show that the sound field is adequately described by the linearized equations only when the axial mean flow Mach number at the duct throat M sub th 0.6. For M sub th 0.6, the numerical results showed that acoustic energy flux was not conserved. An attempt was made to extend the study to include the nonlinear behavior of the sound field. Meaningful results were not obtained due, primarily, to numerical difficulties.
Atmospheric propagation of THz radiation.
Wanke, Michael Clement; Mangan, Michael A.; Foltynowicz, Robert J.
2005-11-01
In this investigation, we conduct a literature study of the best experimental and theoretical data available for thin and thick atmospheres on THz radiation propagation from 0.1 to 10 THz. We determined that for thick atmospheres no data exists beyond 450 GHz. For thin atmospheres data exists from 0.35 to 1.2 THz. We were successful in using FASE code with the HITRAN database to simulate the THz transmission spectrum for Mauna Kea from 0.1 to 2 THz. Lastly, we successfully measured the THz transmission spectra of laboratory atmospheres at relative humidities of 18 and 27%. In general, we found that an increase in the water content of the atmosphere led to a decrease in the THz transmission. We identified two potential windows in an Albuquerque atmosphere for THz propagation which were the regions from 1.2 to 1.4 THz and 1.4 to 1.6 THz.
Exact propagators in harmonic superspace
NASA Astrophysics Data System (ADS)
Kuzenko, Sergei M.
2004-10-01
Within the background field formulation in harmonic superspace for quantum N = 2 super-Yang-Mills theories, the propagators of the matter, gauge and ghost superfields possess a complicated dependence on the SU(2) harmonic variables via the background vector multiplet. This dependence is shown to simplify drastically in the case of an on-shell vector multiplet. For a covariantly constant background vector multiplet, we exactly compute all the propagators. In conjunction with the covariant multi-loop scheme developed in arxiv:hep-th/0302205, these results provide an efficient (manifestly N = 2 supersymmetric) technical setup for computing multi-loop quantum corrections to effective actions in N = 2 supersymmetric gauge theories, including the N = 4 super-Yang-Mills theory.
Propagation failure in excitable media
Hagberg, A.; Meron, E.
1998-01-01
We study a mechanism of pulse propagation failure in excitable media where stable traveling pulse solutions appear via a subcritical pitchfork bifurcation. The bifurcation plays a key role in that mechanism. Small perturbations, externally applied or from internal instabilities, may cause pulse propagation failure (wave breakup) provided the system is close enough to the bifurcation point. We derive relations showing how the pitchfork bifurcation is unfolded by weak curvature or advective field perturbations and use them to demonstrate wave breakup. We suggest that the recent observations of wave breakup in the Belousov-Zhabotinsky reaction induced by either an electric field [J.J. Taboada {ital et al.}. Chaos {bold 4}, 519 (1994)] or a transverse instability [M. Markus, G. Kloss, and I. Kusch, Nature (London) {bold 371}, 402 (1994)] are manifestations of this mechanism. {copyright} {ital 1998} {ital The American Physical Society}
Quality of spatial entanglement propagation
NASA Astrophysics Data System (ADS)
Reichert, Matthew; Sun, Xiaohang; Fleischer, Jason W.
2017-06-01
We explore, both experimentally and theoretically, the propagation dynamics of spatially entangled photon pairs (biphotons). Characterization of entanglement is done via the Schmidt number, which is a universal measurement of the degree of entanglement directly related to the nonseparability of the state into its subsystems. We develop expressions for the terms of the Schmidt number that depend on the amplitude and phase of the commonly used double-Gaussian approximation for the biphoton wave function, and demonstrate migration of entanglement between amplitude and phase upon propagation. We then extend this analysis to incorporate both phase curvature in the pump beam and higher spatial frequency content of more realistic non-Gaussian wave functions. Specifically, we generalize the classical beam quality parameter M2 to the biphotons, allowing the description of more information-rich beams and more complex dynamics. Agreement is found with experimental measurements using direct imaging and Fourier optics.
Wakefield Propagation in Plasma Channels
NASA Astrophysics Data System (ADS)
Geddes, Cameron; Leemans, Wim; Esarey, Eric; Shadwick, Brad; Wurtele, Johnathan
2000-10-01
Characteristics of laser wakefields propagating in plasma channels have been studied at the l'OASIS laser facility at LBNL. Plasma channels are formed in gas jets using the ignitor-heater method[1], allowing control of channel geometry and profile. The channels are characterized by longitudinal and transverse interferometry, giving both radial and longitudinal profiles of the channel. High intensity (>5E17 W/cm^2, 50fs) pulses at 800nm are guided in these channels and are used to create plasma wakes in the channel. Laser propagation in the channel is characterized by output mode images and energies, and the wakes are profiled by longitudinal spectral interferometry. Measurements of channel and wake profiles, and studies of wake dependence on channel parameters will be presented. [1]P.Volfbeyn, E.Esarey, W.P. Leemans, Phys Plasmas 6, 2269 (1999)
Cosmic Ray Propagation and Acceleration
NASA Technical Reports Server (NTRS)
Moskalenko, Igor V.
2003-01-01
Theoretical views on particle acceleration in astrophysical sources and propagation of cosmic rays (CR) depend very much on the quality of the data, which become increasingly accurate each year and therefore more constraining. On the other hand, direct measurements of CR are possible in only one location on the outskirts of the Milky Way and present only a snapshot of very dynamic processes. The theoretical papers presented during the conference offer exciting insights into the physics of cosmic accelerators and processes which underlie the measured abundances and spectra of CR species. This paper is based on a rapporteur talk given at the 28th International Cosmic Ray Conference held on July 31-August 7, 2003 at Tsukuba. It covers the sessions OG 1.3 Cosmic ray propagation, OG 1.4 Acceleration of cosmic rays, and a part of HE 1.2 Theory and simulations (including origins of the knee).
GOES dynamic propagation of attitude
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Seidewitz, ED; Chu, Don; Rowe, John N.
1988-01-01
The spacecraft in the next series of Geostationary Operational Environmental Satellites (GOES-Next) are Earth pointing and have 5-year mission lifetimes. Because gyros can be depended on only for a few years of continuous use, they will be turned off during routine operations. This means attitude must, at times, be determined without benefit of gyros and, often, using only Earth sensor data. To minimize the interruption caused by dumping angular momentum, these spacecraft have been designed to reduce the environmental torque acting on them and incorporate an adjustable solar trim tab for fine adjustment. A new support requirement for GOES-Next is that of setting the solar trim tab. Optimizing its setting requires an estimate of the unbalanced torque on the spacecraft. These two requirements, determining attitude without gyros and estimating the external torque, are addressed by replacing or supplementing the gyro propagation with a dynamic one, that is, one that integrates the rigid body equations of motion. By processing quarter-orbit or longer batches, this approach takes advantage of roll-yaw coupling to observe attitude completely without Sun sensor data. Telemetered momentum wheel speeds are used as observations of the unbalanced external torques. GOES-Next provides a unique opportunity to study dynamic attitude propagation. The geosynchronous altitude and adjustable trim tab minimize the external torque and its uncertainty, making long-term dynamic propagation feasible. This paper presents the equations for dynamic propagation, an analysis of the environmental torques, and an estimate of the accuracies obtainable with the proposed method.
A database for propagation models
NASA Technical Reports Server (NTRS)
Kantak, Anil V.; Suwitra, Krisjani; Le, Chuong
1995-01-01
A database of various propagation phenomena models that can be used by telecommunications systems engineers to obtain parameter values for systems design is presented. This is an easy-to-use tool and is currently available for either a PC using Excel software under Windows environment or a Macintosh using Excel software for Macintosh. All the steps necessary to use the software are easy and many times self explanatory.
A database for propagation models
NASA Technical Reports Server (NTRS)
Kantak, Anil V.; Suwitra, Krisjani; Le, Choung
1994-01-01
A database of various propagation phenomena models that can be used by telecommunications systems engineers to obtain parameter values for systems design is presented. This is an easy-to-use tool and is currently available for either a PC using Excel software under Windows environment or a Macintosh using Excel software for Macintosh. All the steps necessary to use the software are easy and many times self-explanatory; however, a sample run of the CCIR rain attenuation model is presented.
UHF Radiowave Propagation through Forests
1982-09-01
sde It nece sary and Identify b block number) " A model for UHF radiowave propagation thzough a forest of tree trunks, branches, and leaves is...all having prescribed location and orientation statistics. Tree trunks are modelled as infinitely-long, circular, lossy-di- electric cylinders...results. An anisotropic half-space model of the forest is developed based upon the effective dyadic susceptibility and the direct-, reflected-, and
Interprocedural Analysis with Lazy Propagation
NASA Astrophysics Data System (ADS)
Jensen, Simon Holm; Møller, Anders; Thiemann, Peter
We propose lazy propagation as a technique for flow- and context-sensitive interprocedural analysis of programs with objects and first-class functions where transfer functions may not be distributive. The technique is described formally as a systematic modification of a variant of the monotone framework and its theoretical properties are shown. It is implemented in a type analysis tool for JavaScript where it results in a significant improvement in performance.
Light propagation through atomic vapours
NASA Astrophysics Data System (ADS)
Siddons, Paul
2014-05-01
This tutorial presents the theory necessary to model the propagation of light through an atomic vapour. The history of atom-light interaction theories is reviewed, and examples of resulting applications are provided. A numerical model is developed and results presented. Analytic solutions to the theory are found, based on approximations to the numerical work. These solutions are found to be in excellent agreement with experimental measurements.
Premixed Turbulent Flame Propagation in Microgravity
NASA Technical Reports Server (NTRS)
Menon, S.; Disseau, M.; Chakravarthy, V. K.; Jagoda, J.
1997-01-01
Papers included address the following topics: (1) Turbulent premixed flame propagation in microgravity; (2) The effect of gravity on turbulent premixed flame propagation - a preliminary cold flow study; and (3) Characteristics of a subgrid model for turbulent premixed combustion.
Turbofan Acoustic Propagation and Radiation
NASA Technical Reports Server (NTRS)
Eversman, Walter
2000-01-01
This document describes progress in the development of finite element codes for the prediction of near and far field acoustic radiation from the inlet and aft fan ducts of turbofan engines. The report consists of nine papers which have appeared in archival journals and conference proceedings, or are presently in review for publication. Topics included are: 1. Aft Fan Duct Acoustic Radiation; 2. Mapped Infinite Wave Envelope Elements for Acoustic Radiation in a Uniformly Moving Medium; 3. A Reflection Free Boundary Condition for Propagation in Uniform Flow Using Mapped Infinite Wave Envelope Elements; 4. A Numerical Comparison Between Multiple-Scales and FEM Solution for Sound Propagation in Lined Flow Ducts; 5. Acoustic Propagation at High Frequencies in Ducts; 6. The Boundary Condition at an Impedance Wall in a Nonuniform Duct with Potential Flow; 7. A Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows; 8. Reciprocity and Acoustics Power in One Dimensional Compressible Potential Flows; and 9. Numerical Experiments on Acoustic Reciprocity in Compressible Potential Flows.
Jet propagation through energetic materials
Pincosy, P; Poulsen, P
2004-01-08
In applications where jets propagate through energetic materials, they have been observed to become sufficiently perturbed to reduce their ability to effectively penetrate subsequent material. Analytical calculations of the jet Bernoulli flow provides an estimate of the onset and extent of such perturbations. Although two-dimensional calculations show the back-flow interaction pressure pulses, the symmetry dictates that the flow remains axial. In three dimensions the same pressure impulses can be asymmetrical if the jet is asymmetrical. The 3D calculations thus show parts of the jet having a significant component of radial velocity. On the average the downstream effects of this radial flow can be estimated and calculated by a 2D code by applying a symmetrical radial component to the jet at the appropriate position as the jet propagates through the energetic material. We have calculated the 3D propagation of a radio graphed TOW2 jet with measured variations in straightness and diameter. The resultant three-dimensional perturbations on the jet result in radial flow, which eventually tears apart the coherent jet flow. This calculated jet is compared with jet radiographs after passage through the energetic material for various material thickness and plate thicknesses. We noted that confinement due to a bounding metal plate on the energetic material extends the pressure duration and extent of the perturbation.
Error propagation in calculated ratios.
Holmes, Daniel T; Buhr, Kevin A
2007-06-01
Calculated quantities that combine results of multiple laboratory tests have become popular for screening, risk evaluation, and ongoing care in medicine. Many of these are ratios. In this paper, we address the specific issue of propagated random analytical error in calculated ratios. Standard error propagation theory is applied to develop an approximate formula for the mean, standard deviation (SD), and coefficient of variation (CV) of the ratio of two independent, normally distributed random variables. A method of mathematically modeling the problem by random simulations to validate these formulas is proposed and applied. Comparisons are made with the commonly quoted formula for the CV of a ratio. The approximation formula for the CV of a ratio R=X/Y of independent Gaussian random variables developed herein has an absolute percentage error less than 4% for CVs of less than 20% in Y. In contrast the commonly quoted formula has a percentage error of up to 16% for CVs of less than 20% in Y. The usual formula for the CV of a ratio functions well when the CV of the denominator is less than 10% but for larger CVs, the formula proposed here is more accurate. Random analytical error in calculated ratios may be larger than clinicians and laboratorians are aware. The magnitude of the propagated error needs to be considered when interpreting calculated ratios in the clinical laboratory, especially near medical decision limits where its effect may lead to erroneous conclusions.
Transequatorial Propagation and Depletion Precursors
NASA Astrophysics Data System (ADS)
Miller, E. S.; Bust, G. S.; Kaeppler, S. R.; Frissell, N. A.; Paxton, L. J.
2014-12-01
The bottomside equatorial ionosphere in the afternoon and evening sector frequently evolves rapidly from smoothly stratified to violently unstable with large wedges of depleted plasma growing through to the topside on timescales of a few tens of minutes. These depletions have numerous practical impacts on radio propagation, including amplitude scintillation, field-aligned irregularity scatter, HF blackouts, and long-distance transequatorial propagation at frequencies above the MUF. Practical impacts notwithstanding, the pathways and conditions under which depletions form remain a topic of vigorous inquiry some 80 years after their first report. Structuring of the pre-sunset ionosphere---morphology of the equatorial anomalies and long-wavelength undulations of the isodensity contours on the bottomside---are likely to hold some clues to conditions that are conducive to depletion formation. The Conjugate Depletion Experiment is an upcoming transequatorial forward-scatter HF/VHF experiment to investigate pre-sunset undulations and their connection with depletion formation. We will present initial results from the Conjugate Depletion Experiment, as well as a companion analysis of a massive HF propagation data set.
Sound Propagation in the Atmosphere
NASA Astrophysics Data System (ADS)
Attenborough, Keith
Propagation of sound close to the ground outdoors involves geometric spreading, air absorption, interaction with the ground, barriers, vegetation and refraction associated with wind and temperature gradients. After a brief survey of historical aspects of the study of outdoor sound and its applications, this chapter details the physical principles associated with various propagation effects, reviews data that demonstrate them and methods for predicting them. The discussion is concerned primarily with the relatively short ranges and spectra of interest when predicting and assessing community noise rather than the frequencies and long ranges of concern, for example, in infrasonic global monitoring or used for remote sensing of the atmosphere. Specific phenomena that are discussed include spreading losses, atmospheric absorption, diffraction by barriers and buildings, interaction of sound with the ground (ground waves, surface waves, ground impedance associated with porosity and roughness, and elasticity effects), propagation through crops, shrubs and trees, wind and temperature gradient effects, shadow zones and incoherence due to atmospheric turbulence. The chapter concludes by suggesting a few areas that require further research.
Wave propagation in modified gravity
NASA Astrophysics Data System (ADS)
Lindroos, Jan Ø.; Llinares, Claudio; Mota, David F.
2016-02-01
We investigate the propagation of scalar waves induced by matter sources in the context of scalar-tensor theories of gravity which include screening mechanisms for the scalar degree of freedom. The usual approach when studying these theories in the nonlinear regime of cosmological perturbations is based on the assumption that scalar waves travel at the speed of light. Within general relativity this approximation is valid and leads to no loss of accuracy in the estimation of observables. We find, however, that mass terms and nonlinearities in the equations of motion lead to propagation and dispersion velocities significantly different from the speed of light. As the group velocity is the one associated with the propagation of signals, a reduction of its value has direct impact on the behavior and dynamics of nonlinear structures within modified gravity theories with screening. For instance, the internal dynamics of galaxies and satellites submerged in large dark matter halos could be affected by the fact that the group velocity is smaller than the speed of light. It is therefore important, within such a framework, to take into account the fact that different parts of a galaxy will see changes in the environment at different times. A full nonstatic analysis may be necessary under those conditions.
Calculations of precursor propagation in dispersive dielectrics.
Bacon, Larry Donald
2003-08-01
The present study is a numerical investigation of the propagation of electromagnetic transients in dispersive media. It considers propagation in water using Debye and composite Rocard-Powles-Lorentz models for the complex permittivity. The study addresses this question: For practical transmitted spectra, does precursor propagation provide any features that can be used to advantage over conventional signal propagation in models of dispersive media of interest? A companion experimental study is currently in progress that will attempt to measure the effects studied here.
49 CFR 195.111 - Fracture propagation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Fracture propagation. 195.111 Section 195.111... PIPELINE Design Requirements § 195.111 Fracture propagation. A carbon dioxide pipeline system must be designed to mitigate the effects of fracture propagation. ...
49 CFR 195.111 - Fracture propagation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Fracture propagation. 195.111 Section 195.111... PIPELINE Design Requirements § 195.111 Fracture propagation. A carbon dioxide pipeline system must be designed to mitigate the effects of fracture propagation. [Amdt. 195-45, 56 FR 26926, June 12, 1991] ...
Japanese propagation experiments with ETS-5
NASA Technical Reports Server (NTRS)
Ikegami, Tetsushi
1989-01-01
Propagation experiments for maritime, aeronautical, and land mobile satellite communications were performed using Engineering Test Satellite-Five (ETS-5). The propagation experiments are one of major mission of Experimental Mobile Satellite System (EMSS) which is aimed for establishing basic technology for future general mobile satellite communication systems. A brief introduction is presented for the experimental results on propagation problems of ETS-5/EMSS.
49 CFR 195.111 - Fracture propagation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Fracture propagation. 195.111 Section 195.111... PIPELINE Design Requirements § 195.111 Fracture propagation. A carbon dioxide pipeline system must be designed to mitigate the effects of fracture propagation....
49 CFR 195.111 - Fracture propagation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Fracture propagation. 195.111 Section 195.111... PIPELINE Design Requirements § 195.111 Fracture propagation. A carbon dioxide pipeline system must be designed to mitigate the effects of fracture propagation....
49 CFR 195.111 - Fracture propagation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Fracture propagation. 195.111 Section 195.111... PIPELINE Design Requirements § 195.111 Fracture propagation. A carbon dioxide pipeline system must be designed to mitigate the effects of fracture propagation....
Wave Propagation in Bimodular Geomaterials
NASA Astrophysics Data System (ADS)
Kuznetsova, Maria; Pasternak, Elena; Dyskin, Arcady; Pelinovsky, Efim
2016-04-01
Observations and laboratory experiments show that fragmented or layered geomaterials have the mechanical response dependent on the sign of the load. The most adequate model accounting for this effect is the theory of bimodular (bilinear) elasticity - a hyperelastic model with different elastic moduli for tension and compression. For most of geo- and structural materials (cohesionless soils, rocks, concrete, etc.) the difference between elastic moduli is such that their modulus in compression is considerably higher than that in tension. This feature has a profound effect on oscillations [1]; however, its effect on wave propagation has not been comprehensively investigated. It is believed that incorporation of bilinear elastic constitutive equations within theory of wave dynamics will bring a deeper insight to the study of mechanical behaviour of many geomaterials. The aim of this paper is to construct a mathematical model and develop analytical methods and numerical algorithms for analysing wave propagation in bimodular materials. Geophysical and exploration applications and applications in structural engineering are envisaged. The FEM modelling of wave propagation in a 1D semi-infinite bimodular material has been performed with the use of Marlow potential [2]. In the case of the initial load expressed by a harmonic pulse loading strong dependence on the pulse sign is observed: when tension is applied before compression, the phenomenon of disappearance of negative (compressive) strains takes place. References 1. Dyskin, A., Pasternak, E., & Pelinovsky, E. (2012). Periodic motions and resonances of impact oscillators. Journal of Sound and Vibration, 331(12), 2856-2873. 2. Marlow, R. S. (2008). A Second-Invariant Extension of the Marlow Model: Representing Tension and Compression Data Exactly. In ABAQUS Users' Conference.
Resource allocation using constraint propagation
NASA Technical Reports Server (NTRS)
Rogers, John S.
1990-01-01
The concept of constraint propagation was discussed. Performance increases are possible with careful application of these constraint mechanisms. The degree of performance increase is related to the interdependence of the different activities resource usage. Although this method of applying constraints to activities and resources is often beneficial, it is obvious that this is no panacea cure for the computational woes that are experienced by dynamic resource allocation and scheduling problems. A combined effort for execution optimization in all areas of the system during development and the selection of the appropriate development environment is still the best method of producing an efficient system.
Radio Frequency Signal Propagation Study
2014-02-01
System ( AREPS ) was the best fit 60 % of the time. The modelled propagation loss was within 22 – 26 dB of the measured value 95 % of the time. The...Advanced Refractive Effects Prediction System ( AREPS ) model. This occurred 69 % of the time. 95 % of the time, AREPS was within 26 - 30 dB of the measured...scenario 1 was used with the result being that AREPS was the model with the most occurrences of being the best fit. This occurred 37 % of the time
Mode II fatigue crack propagation.
NASA Technical Reports Server (NTRS)
Roberts, R.; Kibler, J. J.
1971-01-01
Fatigue crack propagation rates were obtained for 2024-T3 bare aluminum plates subjected to in-plane, mode I, extensional loads and transverse, mode II, bending loads. These results were compared to the results of Iida and Kobayashi for in-plane mode I-mode II extensional loads. The engineering significance of mode I-mode II fatigue crack growth is considered in view of the present results. A fatigue crack growth equation for handling mode I-mode II fatigue crack growth rates from existing mode I data is also discussed.
Light Propagation through Anisotropic Turbulence
2011-03-01
Kolmogorov stratospheric turbulence on star image motion,” Proc. SPIE 3126, 113–123 (1997). 5. B. E . Stribling, B. M . Welsh, and M . C. Roggemann...746407 (2009). 10. M . Chang, C. O. Font, F. Santiago, Y. Luna, E . Roura, and S. Restaino, “Marine environment optical propagation measure- ments,” Proc...Anisotropic factor as a function of alpha for several zeta values. Toselli et al. Vol. 28, No. 3 / March 2011 / J. Opt. Soc. Am. A 487 14. M . S
ACTS and OLYMPUS propagation experiments
NASA Technical Reports Server (NTRS)
Bostian, Charles W.; Baker, Kenneth R.
1988-01-01
The OLYMPUS and ACTS satellites both provide opportunities for 10 to 30 GHz propagation measurements. The spacecraft are sufficiently alike that OLYMPUS can be used to test some prototype ACTS equipment and experiments. Data are particularly needed on short term signal behavior and in support of uplink power control and adaptive forward error correction (FEC) techniques. The Virginia Tech Satellite Communications Group has proposed a set of OLYMPUS experiments including attenuation and fade rate measurements, data communications, uplink power control, rain scatter interference, and small-scale site diversity operation. A digital signal processing receiver for the OLYMPUS and ACTS beacon signals is being developed.
LCMV: Propagation, quantitation, and storage
Seedhom, Mina O.
2011-01-01
Lymphocytic choriomeningitis virus (LCMV) is an enveloped ambisense RNA virus and the prototypic virus of the arenavirus group. It can cause viral meningitis and other ailments in humans, but it's natural host is the mouse. The LCMV/mouse model has been useful for examining mechanisms of viral persistence and basic concepts of virus-induced immunity and immunopathology. Here we discuss strain differences and biosafety containment issues for LCMV. Recommendations are made for techniques to propagate LCMV to high titers, to quantify it by plaque assay and PCR techniques, and to preserve its infectivity by appropriate storage. PMID:18770534
Solar particle acceleration and propagation
NASA Astrophysics Data System (ADS)
Lin, R. P.
1987-04-01
Most of the papers of the 1983 - 1986 period dealt with the analyses of new observations of energetic particles and energetic secondary emissions obtained over the solar maximum (≡1980) by the SMM, Hinotori, ISEE, IMP, Helios and Voyager spacecraft. This review paper is divided into the following sections: (1) large solar energetic particle events observed in space; (2) solar gamma-rays and neutrons; (3) 3He-rich events; (4) low energy 1 - 102keV electrons; (5) interplanetary and coronal propagation; (6) theoretical work; and (7) summary.
Ultrasound propagation measurements and applications
NASA Technical Reports Server (NTRS)
Lynnworth, L. C.; Papadakis, E. P.; Fowler, K. A.
1977-01-01
This paper reviews three systems designed for accurately measuring the propagation of ultrasonic pulses. The three systems are presented in order of velocity-measuring precision: + or - 100 ns, + or - 1 ns, + or - 0.2 ns. Also included is a brief discussion of phase and group velocities, with reference to dispersive, highly attenuating materials. Measurement of attenuation by pulse-echo buffer rod techniques is described briefly. These techniques and instruments have been used to measure sound velocity and attenuation in a variety of materials and shapes, over a wide temperature range.
Ultrasound propagation measurements and applications
NASA Technical Reports Server (NTRS)
Lynnworth, L. C.; Papadakis, E. P.; Fowler, K. A.
1977-01-01
This paper reviews three systems designed for accurately measuring the propagation of ultrasonic pulses. The three systems are presented in order of velocity-measuring precision: + or - 100 ns, + or - 1 ns, + or - 0.2 ns. Also included is a brief discussion of phase and group velocities, with reference to dispersive, highly attenuating materials. Measurement of attenuation by pulse-echo buffer rod techniques is described briefly. These techniques and instruments have been used to measure sound velocity and attenuation in a variety of materials and shapes, over a wide temperature range.
Energy propagation throughout chemical networks.
Le Saux, Thomas; Plasson, Raphaël; Jullien, Ludovic
2014-06-14
In order to maintain their metabolism from an energy source, living cells rely on chains of energy transfer involving functionally identified components and organizations. However, propagation of a sustained energy flux through a cascade of reaction cycles has only been recently reproduced at a steady state in simple chemical systems. As observed in living cells, the spontaneous onset of energy-transfer chains notably drives local generation of singular dissipative chemical structures: continuous matter fluxes are dynamically maintained at boundaries between spatially and chemically segregated zones but in the absence of any membrane or predetermined material structure.
Continuous propagation of microalgae. III.
NASA Technical Reports Server (NTRS)
Hanson, D. T.; Fredrickson, A. G.; Tsuchiya, H. M.
1971-01-01
Data are presented which give the specific photosynthetic rate and the specific utilization rates of urea and carbon dioxide as functions of specific growth rate for Chlorella. A mathematical model expresses a set of mass balance relations between biotic and environmental materials. Criteria of validity are used to test this model. Predictive procedures are complemented by a particular model of microbial growth. Methods are demonstrated for predicting substrate utilization rates, production rates of extracellular metabolites, growth limiting conditions, and photosynthetic quotients from propagator variables.
Continuous propagation of microalgae. III.
NASA Technical Reports Server (NTRS)
Hanson, D. T.; Fredrickson, A. G.; Tsuchiya, H. M.
1971-01-01
Data are presented which give the specific photosynthetic rate and the specific utilization rates of urea and carbon dioxide as functions of specific growth rate for Chlorella. A mathematical model expresses a set of mass balance relations between biotic and environmental materials. Criteria of validity are used to test this model. Predictive procedures are complemented by a particular model of microbial growth. Methods are demonstrated for predicting substrate utilization rates, production rates of extracellular metabolites, growth limiting conditions, and photosynthetic quotients from propagator variables.
Quantum propagation across cosmological singularities
NASA Astrophysics Data System (ADS)
Gielen, Steffen; Turok, Neil
2017-05-01
The initial singularity is the most troubling feature of the standard cosmology, which quantum effects are hoped to resolve. In this paper, we study quantum cosmology with conformal (Weyl) invariant matter. We show that it is natural to extend the scale factor to negative values, allowing a large, collapsing universe to evolve across a quantum "bounce" into an expanding universe like ours. We compute the Feynman propagator for Friedmann-Robertson-Walker backgrounds exactly, identifying curious pathologies in the case of curved (open or closed) universes. We then include anisotropies, fixing the operator ordering of the quantum Hamiltonian by imposing covariance under field redefinitions and again finding exact solutions. We show how complex classical solutions allow one to circumvent the singularity while maintaining the validity of the semiclassical approximation. The simplest isotropic universes sit on a critical boundary, beyond which there is qualitatively different behavior, with potential for instability. Additional scalars improve the theory's stability. Finally, we study the semiclassical propagation of inhomogeneous perturbations about the flat, isotropic case, at linear and nonlinear order, showing that, at least at this level, there is no particle production across the bounce. These results form the basis for a promising new approach to quantum cosmology and the resolution of the big bang singularity.
OPEX propagation measurements and studies
NASA Technical Reports Server (NTRS)
Arbesser-Rastburg, Bertram
1990-01-01
With the launch of the telecommunications Olympus satellite a new area began for the Olympus Propagation Experiments (OPEX) group. The years of preparations are now paying off - the experiments are underway and the co-operative effort is now turning its attention to the processing and analysis of data and to the interpretation of results. The aim here is to give a short review of the accomplishments made since NAPEX 13 and the work planned for the future. When ESA's Olympus was launched in summer of 1989 it carried a payload producing three unmodulated beacons at 12.5, 19.8, and 29.7 GHz. The main purpose of these beacons is to enable scientists to carry out long term slant path propagation experiments at these frequencies. The OPEX group, which was set up under ESA auspices in 1980, had been preparing for this event very carefully. The specifications for the equipment to be used and the elaboration of standard procedures for data processing and analysis have been worked out jointly. Today the OPEX community includes approximately 30 groups of experimenters. Immediately after achieving platform stability at the orbital location at 341 degrees east, ESA performed the In-Orbit Tests. Most measurements were carried out in Belgium using terminals specially developed for this purpose. A summary of the test results is given.
Light propagation through anisotropic turbulence.
Toselli, Italo; Agrawal, Brij; Restaino, Sergio
2011-03-01
A wealth of experimental data has shown that atmospheric turbulence can be anisotropic; in this case, a Kolmogorov spectrum does not describe well the atmospheric turbulence statistics. In this paper, we show a quantitative analysis of anisotropic turbulence by using a non-Kolmogorov power spectrum with an anisotropic coefficient. The spectrum we use does not include the inner and outer scales, it is valid only inside the inertial subrange, and it has a power-law slope that can be different from a Kolmogorov one. Using this power spectrum, in the weak turbulence condition, we analyze the impact of the power-law variations α on the long-term beam spread and scintillation index for several anisotropic coefficient values ς. We consider only horizontal propagation across the turbulence cells, assuming circular symmetry is maintained on the orthogonal plane to the propagation direction. We conclude that the anisotropic coefficient influences both the long-term beam spread and the scintillation index by the factor ς(2-α).
Simplified propagation of standard uncertainties
Shull, A.H.
1997-06-09
An essential part of any measurement control program is adequate knowledge of the uncertainties of the measurement system standards. Only with an estimate of the standards` uncertainties can one determine if the standard is adequate for its intended use or can one calculate the total uncertainty of the measurement process. Purchased standards usually have estimates of uncertainty on their certificates. However, when standards are prepared and characterized by a laboratory, variance propagation is required to estimate the uncertainty of the standard. Traditional variance propagation typically involves tedious use of partial derivatives, unfriendly software and the availability of statistical expertise. As a result, the uncertainty of prepared standards is often not determined or determined incorrectly. For situations meeting stated assumptions, easier shortcut methods of estimation are now available which eliminate the need for partial derivatives and require only a spreadsheet or calculator. A system of simplifying the calculations by dividing into subgroups of absolute and relative uncertainties is utilized. These methods also incorporate the International Standards Organization (ISO) concepts for combining systematic and random uncertainties as published in their Guide to the Expression of Measurement Uncertainty. Details of the simplified methods and examples of their use are included in the paper.
Rg propagation: Scatter versus Attenuation
NASA Astrophysics Data System (ADS)
Cleveland, M.; Phillips, W. S.; MacCarthy, J.
2016-12-01
At near local distances, the Rg seismic phase is often the largest seismic arrival for shallow sources. While Rg is classically defined for the period range of 8-12 s, we use the term generically to refer to short-period observations of Rayleigh waves from shallow sources [e.g. Langston, 1987; Bonner and Russell, 2013]. There is significant interest in using Rg as a basis for seismic discrimination and magnitude (e.g. Bonner and Russell, 2013). However, the propagation of this phase is poorly understood. At Nevada National Security Site, while Rg is well observed near the source, it quickly disappears at greater distances. This observation raises the fundamental question of how much of the Rg energy is simply attenuating versus scattering into other seismic phases. Understanding this is critical to interpreting not only the observed Rg seismic energy, but also the possible enrichment of other seismic phases resulting from Rg scattering. In this study, we use waveform data from the Bighorn Arch Seismic Experiment (BASE) and Source Physics Experiment (SPE) to investigate Rg propagation, looking to identify how much energy from the phase attenuates with distance and how much scatters into other seismic phases.
Joint Acoustic Propagation Experiment (JAPE)
NASA Technical Reports Server (NTRS)
Carnes, Benny L.; Olsen, Robert O.; Kennedy, Bruce W.
1993-01-01
The Joint Acoustic Propagation Experiment (JAPE), performed under the auspices of NATO and the Acoustics Working Group, was conducted at White Sands Missile Range, New Mexico, USA, during the period 11-28 Jul. 1991. JAPE consisted of 220 trials using various acoustic sources including speakers, propane cannon, various types of military vehicles, helicopters, a 155mm howitzer, and static high explosives. Of primary importance to the performance of these tests was the intensive characterization of the atmosphere before and during the trials. Because of the wide range of interests on the part of the participants, JAPE was organized in such a manner to provide a broad cross section of test configurations. These included short and long range propagation from fixed and moving vehicles, terrain masking, and vehicle detection. A number of independent trials were also performed by individual participating agencies using the assets available during JAPE. These tests, while not documented in this report, provided substantial and important data to those groups. Perhaps the most significant feature of JAPE is the establishment of a permanent data base which can be used by not only the participants but by others interested in acoustics. A follow-on test was performed by NASA LaRC during the period 19-29 Aug. 1991 at the same location. These trials consisted of 59 overflights of supersonic aircraft in order to establish the relationship between atmospheric turbulence and the received sonic boom energy at the surface.
Microwave propagation on acupuncture channels.
Krevsky, Michael A; Zinina, Ekaterina S; Koshurinov, Yuri; Ovechkin, Aleck M; Tkachenko, Yuri A; Han, Wantaek; Lee, Sang-Min; Yoon, Gilwon
2006-01-01
Quantitative studies on functional state of acupuncture points and meridians have been done mostly by electrical measurement that requires the contact of the electrode on skin and is subject to pressure, humidity, etc. In this study, a new modality of using microwave was investigated. Microwave energy in the frequency range of 250 approximately 550MHz was irradiated on an acupuncture point. Transmitted microwave energy along the meridian was measured at the next acupuncture point of the same meridian. Diabetic and cancer patients were compared with healthy persons. Normal group consisted of 50 healthy persons. Diabetic group included 50 diabetic patients. Breast cancer group had also 50 patients. All 12 meridians on both right and left hands and feet were measured. For the diabetic group, the microwave energy propagation in this frequency range was 1.417 dB lower along Lung channel and 1.601 dB higher along Spleen channel compared with the normal group regardless of sex and diabetic types. For cancer patients, the propagation was 1.620 dB lower along Liver channel and 1.245 dB higher along Kidney channel compared with the normal group. Microwave energy proved to be a potential diagnostic method.
Propagation Of Dense Plasma Jets
NASA Astrophysics Data System (ADS)
Turchi, Peter J.; Davis, John F.
1988-05-01
A variety of schemes have been proposed over the last two decades for delivering lethal amounts of energy and/or momentum to targets such as missiles and high speed aircraft. Techniques have ranged from high energy lasers and high voltage charged-particle accelerators to less exotic but still challenging devices such as electromagnetic railguns. One class of technology involves the use of high speed plasmas. The primary attraction of such technology is the possibility of utilizing relatively compact accelerators and electrical power systems that could allow highly mobile and agile operation from rocket or aircraft platforms, or in special ordnance. Three years ago, R & D Associates examined the possibility of plasma propagation for military applications and concluded that the only viable approach consisted of long dense plasma jets, contained in radial equilibrium by the atmosphere, while propagating at speeds of about 10 km/s. Without atmospheric confinement the plasma density would diminish too rapidly for adequate range and lethality. Propagation of atmospherically-confined jets at speeds much greater than 10 km/s required significant increases in power levels and/or operating altitudes to achieve useful ranges. The present research effort has been developing the experimental conditions necessary to achieve reasonable comparison with theoretical predictions for plasma jet propagation in the atmosphere. Time-resolved measurements have been made of high speed argon plasma jets penetrating a helium background (simulating xenon jets propagating into air). Basic radial confinement of the jet has been observed by photography and spectroscopy and structures in the flow field resemble those predicted by numerical calculations. Results from our successful initial experiments have been used to design improved diagnostic procedures and arcjet source characteristics for further experiments. In experiments with a modified arcjet source, radial confinement of the jet is again
Vibration Propagation in Spider Webs
NASA Astrophysics Data System (ADS)
Hatton, Ross; Otto, Andrew; Elias, Damian
Due to their poor eyesight, spiders rely on web vibrations for situational awareness. Web-borne vibrations are used to determine the location of prey, predators, and potential mates. The influence of web geometry and composition on web vibrations is important for understanding spider's behavior and ecology. Past studies on web vibrations have experimentally measured the frequency response of web geometries by removing threads from existing webs. The full influence of web structure and tension distribution on vibration transmission; however, has not been addressed in prior work. We have constructed physical artificial webs and computer models to better understand the effect of web structure on vibration transmission. These models provide insight into the propagation of vibrations through the webs, the frequency response of the bare web, and the influence of the spider's mass and stiffness on the vibration transmission patterns. Funded by NSF-1504428.
Acoustic energy propagation around railways
NASA Astrophysics Data System (ADS)
Cizkova, Petra
2017-09-01
The article deals with the issues of acoustic energy propagation around railways. The research subject was noise emission spreading into the surroundings during the passage of trains over a directly travelled steel bridge construction. Noise emissions were measured using direct measurements in the field. The measurements were performed in two measurement profiles. The noise exposures A LAE measured near the steel bridge construction were compared against the noise exposures A LAE captured on an open track. From the difference of these data, the noise level of the steel bridge structure was determined. Part of the research was to evaluate the effect of the reconstruction of the railway track superstructure on the acoustic situation in the given section of the railway track. The article describes the methodology of measurements, including the processing and evaluation of measured data. The article points out the noise levels of the steel bridge construction and assesses changes in the acoustic situation after the reconstruction.
Critical sound propagation in mixtures
NASA Astrophysics Data System (ADS)
Folk, R.; Moser, G.
1998-01-01
We calculate critical effects in the sound propagation in mixtures near consolute or plait points within a non-asymptotic renormalization group theory and derive general expressions for the frequency-dependent sound velocity and sound attenuation. The critical non-asymptotic time scale in the sound mode in mixtures is set by an effective order parameter Onsager coefficient containing a dynamical parameter related to the enhancement of the thermal conductivity in the mixture, not considered so far. The differences in the critical behavior near the consolute and plait point are due to the different non-asymptotic behavior of the zero-frequency sound velocity. We compare our predictions for the sound velocity and sound absorption near the plait point in 3He-4He mixtures.
Light propagation in inhomogeneous universes
NASA Technical Reports Server (NTRS)
Schneider, Peter; Weiss, Achim
1988-01-01
Refsdal's (1970) method is generalized to study the propagation of light rays through an inhomogeneous universe. The probability distribution for the linear component of the cumulative shear (CS) along light rays is derived, and it is shown that the CS can be dominated by nonlinear components, espcially for light rays in empty cones. The amplification tail of the amplification probability distribution is compared with analytic results; these linear investigations are shown to underestimate the high-amplification probability and hence the importance of the amplification bias in source counts. The distribution of the ellipticity of images of infinitesimal circular sources is derived, and it is shown that this can be dominated by the nonlinear contributions to the CS.
Flame propagation through periodic vortices
Dold, J.W.; Kerr, O.S.; Nikolova, I.P.
1995-02-01
The discovery of a new class of Navier-Stokes solutions representing steady periodic stretched vortices offers a useful test-bed for examining interactions between flames and complex flow-fields. After briefly describing these vortex solutions and their wide-ranging parameterization in terms of wavelength and amplitude, this article examines their effect on flames of constant normal propagation speed as observed through numerical solutions of an eikonal equation. Over certain ranges of vortex amplitude and flame-speed, a corridor of enhanced flame passage is seen to be created as a leading flame-tip managers to leap-frog between successive vortices. However, for large enough amplitudes of vorticity or small enough flame-speeds, the flame fails to be able to benefit from the advection due to the vortices. It is shown that the leading tips of such flames are effectively trapped by the stretched vortices.
Propagation Speed in Myelinated Nerve
Hardy, W. L.
1973-01-01
The Hodgkin-Huxley (H.H.) equations modified by Dodge for Rana pipiens myelinated nerve have been solved to determine how well the theory predicts the effects of changes of temperature and [Na+]0 on propagation. Conduction speed θ was found to have an approximately exponential dependence on temperature as was found experimentally, but the theoretical temperature coefficient (Q10) was low; 1.5 compared with the experimental finding of 2.95. θ was found to be a linear function of log ([Na+]0) in contrast to the experimental finding of a square root dependence on [Na+]0. θ is 50% greater at one-fourth normal [Na+]0 than the theory predicts. The difference between the theoretical θ([Na+]0) and the experimental θ([Na+]0) is probably due to an imprecisely known variation of parameters and not to a fundamental inadequacy of the theory. PMID:4542941
ETS-V propagation experiments in Japan
NASA Technical Reports Server (NTRS)
Ohmori, Shingo
1988-01-01
Propagation experiments on ship, aircraft, and land mobile earth stations were carried out using the Engineering Test Satellite-V (ETS-V), which was launched in August 1987. The propagation experiments are one of the missions of the Experimental Mobile Satellite System (EMSS). Initial experimental results of ETS-V/EMSS on propagation using ship, aircraft, and land mobiles with ETS-V are given.
Multipath Propagation over Snow at Millimeter Wavelengths,
1980-02-01
Propagation Branch Electromagnetic Sciences Division APPROVED: ALLAN C. SCHELL , Chief Electromagnetic Sciences Division FOR THE COMANDER: JOHN P...type of snow cover. A computer program was developed in order to model the reflection as a specular process, with the underlying terrain represented...data. 2,B’ 3II Contents 1. INTRODUCTION 9 2. ANALYSIS OF MULTIPATH PROPAGATION 10 2. 1 Propagation Mechanisms 12 2.2 Model Calculations for Flat Terrain
Variance propagation by simulation (VPSim)
Burr, T.L.; Coulter, C.A.; Prommel, J.M.
1997-07-01
The application of propagation of variance (POV) for estimating the variance of a material balance is straightforward but tedious. Several computer codes exist today to help perform POV. Examples include MAWST (`materials accounting with sequential testing,` used by some Department of Energy sites) and VP (`variance propagation,` used for training). Also, some sites have such simple error models that custom `spreadsheet like` calculations are adequate. Any software to perform POV will have its strengths and weaknesses. A main disadvantage of MAWST is probably its limited form of error models. This limited form forces the user to use cryptic pseudo measurements to effectively extend the allowed error models. A common example is to include sampling error in the total random error by dividing the actual measurement into two pseudo measurements. Because POV can be tedious and input files can be presented in multiple ways to MAWST, it is valuable to have an alternative method to compare results. This paper describes a new code, VPSim, that uses Monte Carlo simulation to do POV. VPSim does not need to rely on pseudo measurements. It is written in C++, runs under Windows NT, and has a user friendly interface. VPSim has been tested on several example problems, and in this paper we compare its results to results from MAWST. We also describe its error models and indicate the structure of its input files. A main disadvantage of VPSim is its long run times. If many simulations are required (20,000 or more, repeated two or more times) and if each balance period has many (10,000 or more) measurements, then run times can be one-half hour or more. For small and modest sized problems, run times are a few minutes. The main advantage of VPSim is that its input files are simple to construct, and therefore also are relatively easy to inspect.
ACTS Propagation Measurements in Maryland and Virginia
NASA Technical Reports Server (NTRS)
Dissanayake, Asoka; Lin, Kuan-Ting
1996-01-01
Rapid growth in new satellite services incorporating very small aperture terminals (VSAT) and ultra small aperture terminals (USAT) is expected in the coming years. Small size terminals allow for widespread use of satellite services in small business and domestic applications. Due to congestion of lower frequency bands such as C and Ku, most of these services will use Ka-band (2/20 GHz) frequencies. Propagation impairments produced by the troposphere is a limiting factor for the effective use of the 20/30 GHz band and the use of smaller Earth terminals makes it difficult to provide sufficient link margins for propagation related outages. In this context, reliable prediction of propagation impairments for low margin systems becomes important. Due to the complexity of propagation phenomena propagation modeling is mainly attempted on an empirical basis. As such, the availability of reliable measured data that extend to probability levels well in excess of the traditional limit of 1 percent is of great importance in the development, validation, and refinement of propagation models. The beacon payload on the Advanced Communications Technology Satellite (ACTS) together with the propagation measurement terminals developed under the NASA ACTS propagation program provide an excellent opportunity to collect such data on a long-term basis. This paper presents the results of ACTS propagation measurements conducted in the Washington, DC metropolitan area by COMSAT Laboratories.
Summary of the First ACTS Propagation Workshop
NASA Technical Reports Server (NTRS)
Rogers, David V.
1990-01-01
The first Advanced Communications Technology Satellite (ACTS) Propagation Studies Workshop (APSW I), organized by NASA/Jet Propulsion Laboratory (JPL) to plan propagation experiments and studies with NASA's ACTS, convened in Santa Monica, California, during November 28 and 29, 1989. The objectives of APSW I were to identify general and ACTS-related propagation needs, and to prepare recommendations for a study plan incorporating scientific and systems requirements related to deployment of 8 to 10 propagation terminals in the USA in support of ACTS experimental activities. A summary of workshop activities is given.
GALPROP: New Developments in CR Propagation Code
NASA Technical Reports Server (NTRS)
Moskalenko, I. V.; Jones, F. C.; Mashnik, S. G.; Strong, A. W.; Ptuskin, V. S.
2003-01-01
The numerical Galactic CR propagation code GALPROP has been shown to reproduce simultaneously observational data of many kinds related to CR origin and propagation. It has been validated on direct measurements of nuclei, antiprotons, electrons, positrons as well as on astronomical measurements of gamma rays and synchrotron radiation. Such data provide many independent constraints on model parameters while revealing some contradictions in the conventional view of Galactic CR propagation. Using a new version of GALPROP we study new effects such as processes of wave-particle interactions in the interstellar medium. We also report about other developments in the CR propagation code.
ACTS Propagation Measurements in Maryland and Virginia
NASA Technical Reports Server (NTRS)
Dissanayake, Asoka; Lin, Kuan-Ting
1996-01-01
Rapid growth in new satellite services incorporating very small aperture terminals (VSAT) and ultra small aperture terminals (USAT) is expected in the coming years. Small size terminals allow for widespread use of satellite services in small business and domestic applications. Due to congestion of lower frequency bands such as C and Ku, most of these services will use Ka-band (2/20 GHz) frequencies. Propagation impairments produced by the troposphere is a limiting factor for the effective use of the 20/30 GHz band and the use of smaller Earth terminals makes it difficult to provide sufficient link margins for propagation related outages. In this context, reliable prediction of propagation impairments for low margin systems becomes important. Due to the complexity of propagation phenomena propagation modeling is mainly attempted on an empirical basis. As such, the availability of reliable measured data that extend to probability levels well in excess of the traditional limit of 1 percent is of great importance in the development, validation, and refinement of propagation models. The beacon payload on the Advanced Communications Technology Satellite (ACTS) together with the propagation measurement terminals developed under the NASA ACTS propagation program provide an excellent opportunity to collect such data on a long-term basis. This paper presents the results of ACTS propagation measurements conducted in the Washington, DC metropolitan area by COMSAT Laboratories.
Quench propagation velocity for highly stabilized conductors
Mints, R.G. |; Ogitsu, T. |; Devred, A.
1995-05-01
Quench propagation velocity in conductors having a large amount of stabilizer outside the multifilamentary area is considered. It is shown that the current redistribution process between the multifilamentary area and the stabilizer can strongly effect the quench propagation. A criterion is derived determining the conditions under which the current redistribution process becomes significant, and a model of effective stabilizer area is suggested to describe its influence on the quench propagation velocity. As an illustration, the model is applied to calculate the adiabatic quench propagation velocity for a conductor geometry with a multifilamentary area embedded inside the stabilizer.
A stochastic model for propagation through tissue.
Lacaze, Bernard
2009-10-01
Attenuation of ultrasonic waves is often assumed linear with respect to frequency in biological applications whereas it is considered quadratic when the propagation occurs in the atmosphere or the water. In the latter case, other studies show that a Gaussian propagation duration can explain this attenuation behavior and provide a model for the energy loss in the stationary limit. The present paper defines an equivalent random propagation duration with Cauchy distribution, which is appropriate for the propagation of ultrasound through tissue. The model adds an unobserved noise that represents the signal deterioration. In addition, the model agrees with the mode downshift in the case of a narrowband signal.
NASA Technical Reports Server (NTRS)
Christon, S. P.
1982-01-01
Attention is given to the combined, average effects of the bow shock and magnetosheath on the diffusive flow of interplanetary nuclei. The observations presented show that differences between 'connected' and 'unconnected' data subsets are apparent from the beginning of the analysis. Through an investigation of the mean unconnected diffusive anisotropy (those fluxes least affected by the earth's bow shock and magnetosheath) it is confirmed that the cross-field transport of MeV energy nuclei in interplanetary space is statistically significant and in the direction expected from the large-scale particle flux gradients. The direction of particle flow relative to the IMF is then used to show that nucleon flow characteristics on connected IMF differ from those on unconnected IMF. A scenario for producing this difference is then presented. It is concluded that the inclusion of the bow shock connected information biases measurements of the flux anisotropies of MeV energy H.
Explosion propagation in inert porous media.
Ciccarelli, G
2012-02-13
Porous media are often used in flame arresters because of the high surface area to volume ratio that is required for flame quenching. However, if the flame is not quenched, the flow obstruction within the porous media can promote explosion escalation, which is a well-known phenomenon in obstacle-laden channels. There are many parallels between explosion propagation through porous media and obstacle-laden channels. In both cases, the obstructions play a duel role. On the one hand, the obstruction enhances explosion propagation through an early shear-driven turbulence production mechanism and then later by shock-flame interactions that occur from lead shock reflections. On the other hand, the presence of an obstruction can suppress explosion propagation through momentum and heat losses, which both impede the unburned gas flow and extract energy from the expanding combustion products. In obstacle-laden channels, there are well-defined propagation regimes that are easily distinguished by abrupt changes in velocity. In porous media, the propagation regimes are not as distinguishable. In porous media the entire flamefront is affected, and the effects of heat loss, turbulence and compressibility are smoothly blended over most of the propagation velocity range. At low subsonic propagation speeds, heat loss to the porous media dominates, whereas at higher supersonic speeds turbulence and compressibility are important. This blending of the important phenomena results in no clear transition in propagation mechanism that is characterized by an abrupt change in propagation velocity. This is especially true for propagation velocities above the speed of sound where many experiments performed with fuel-air mixtures show a smooth increase in the propagation velocity with mixture reactivity up to the theoretical detonation wave velocity.
Visualizing the Propagation of Acute Lung Injury
Cereda, Maurizio; Xin, Yi; Meeder, Natalie; Zeng, Johnathan; Jiang, YunQing; Hamedani, Hooman; Profka, Harrilla; Kadlecek, Stephen; Clapp, Justin; Deshpande, Charuhas G.; Wu, Jue; Gee, James C.; Kavanagh, Brian P.; Rizi, Rahim R.
2015-01-01
Background Mechanical ventilation worsens acute respiratory distress syndrome (ARDS), but this secondary ‘ventilator-associated’ injury is variable and difficult to predict. We aimed to visualize the propagation of such ventilator-induced injury, in the presence (and absence) of a primary underlying lung injury, and to determine the predictors of propagation. Methods Anesthetized rats (n=20) received acid aspiration (HCl) followed by ventilation with moderate tidal volume (VT). In animals surviving ventilation for at least two hours, propagation of injury was quantified using serial computed tomography (CT). Baseline lung status was assessed by oxygenation, lung weight, and lung strain (VT/expiratory lung volume). Separate groups of rats without HCl aspiration were ventilated with large (n=10) or moderate (n=6) VT. Results In 15 rats surviving longer than two hours, CT opacities spread outwards from the initial site of injury. Propagation was associated with higher baseline strain (propagation vs. no propagation, mean ± SD: 1.52 ± 0.13 vs. 1.16 ± 0.20, p<0.01), but similar oxygenation and lung weight. Propagation did not occur where baseline strain <1.29. In healthy animals, large VT caused injury that was propagated inwards from the lung periphery; in the absence of preexisting injury, propagation did not occur where strain was <2.0. Conclusions Compared with healthy lungs, underlying injury causes propagation to occur at a lower strain threshold and, it originates at the site of injury; this suggests that tissue around the primary lesion is more sensitive. Understanding how injury is propagated may ultimately facilitate a more individualized monitoring or management. PMID:26536308
A basic atlas of radio-wave propagation
NASA Astrophysics Data System (ADS)
Shibuya, Shigekazu
Basic concepts in radio-wave propagation and system design are brought together in this volume along with all of the essential design elements required for VHF, UHF, and SHF radio. The basic topics addressed include free-space propagation path, reflection interference propagation path, diffraction propagation path, troposcatter propagation path, absorption propagation path, passive-relay propagation path, noise and S/N, fading estimation and system evaluation, and astronomy and geography.
Propagation testing multi-cell batteries.
Orendorff, Christopher J.; Lamb, Joshua; Steele, Leigh Anna Marie; Spangler, Scott Wilmer
2014-10-01
Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.
Rapid vegetative propagation method for carob
USDA-ARS?s Scientific Manuscript database
Many fruit species are propagated by vegetative methods such as budding, grafting, cutting, suckering, layering etc. to avoid heterozygosity. Carob trees (Ceratonia siliqua L.) are of highly economical value and it is among the most difficult-to-propagate fruit species. In this study, air-layering p...
Steps toward quantitative infrasound propagation modeling
NASA Astrophysics Data System (ADS)
Waxler, Roger; Assink, Jelle; Lalande, Jean-Marie; Velea, Doru
2016-04-01
Realistic propagation modeling requires propagation models capable of incorporating the relevant physical phenomena as well as sufficiently accurate atmospheric specifications. The wind speed and temperature gradients in the atmosphere provide multiple ducts in which low frequency sound, infrasound, can propagate efficiently. The winds in the atmosphere are quite variable, both temporally and spatially, causing the sound ducts to fluctuate. For ground to ground propagation the ducts can be borderline in that small perturbations can create or destroy a duct. In such cases the signal propagation is very sensitive to fluctuations in the wind, often producing highly dispersed signals. The accuracy of atmospheric specifications is constantly improving as sounding technology develops. There is, however, a disconnect between sound propagation and atmospheric specification in that atmospheric specifications are necessarily statistical in nature while sound propagates through a particular atmospheric state. In addition infrasonic signals can travel to great altitudes, on the order of 120 km, before refracting back to earth. At such altitudes the atmosphere becomes quite rare causing sound propagation to become highly non-linear and attenuating. Approaches to these problems will be presented.
Nondestructive evaluation of pyroshock propagation using hydrocodes
NASA Astrophysics Data System (ADS)
Lee, Juho; Hwang, Dae-Hyeon; Jang, Jae-Kyeong; Lee, Jung-Ryul; Han, Jae-Hung
2016-04-01
Pyroshock or pyrotechnic shock generated by explosive events of pyrotechnic devices can induce fatal failures in electronic payloads. Therefore, understanding and estimation of pyroshock propagation through complex structures are necessary. However, an experimental approach using real pyrotechnic devices is quite burdensome because pyrotechnic devices can damage test structures and newly manufactured test structures are necessary for each experiment. Besides, pyrotechnic experiments are quite expensive, time-consuming, and dangerous. Consequently, nondestructive evaluation (NDE) of pyroshock propagation without using real pyrotechnic devices is necessary. In this study, nondestructive evaluation technique for pyroshock propagation estimation using hydrocodes is proposed. First, pyroshock propagation is numerically analyzed using AUTODYN, a commercial hydrocodes. Hydrocodes can handle stress wave propagation including elastic, plastic, and shock wave in the time domain. Test structures are modeled and pyroshock time history is applied to where the pyroshock propagation originates. Numerical NDE results of pyroshock propagation on test structures are analyzed in terms of acceleration time histories and acceleration shock response spectra (SRS) results. To verify the proposed numerical methodology, impact tests using airsoft gun are performed. The numerical analysis results for the impact tests are compared with experimental results and they show good agreements. The proposed numerical techniques enable us to nondestructively characterize pyroshock propagation.
Propagation of almond rootstocks and trees
USDA-ARS?s Scientific Manuscript database
Millions of almond trees in production in California and elsewhere were propagated by nurseries using the grafting technique called budding. This gives a uniform orchard and allows the grower to select nut cultivar (scion) and rootstock combinations. Grafting is a form of clonal propagation and resu...
Vehicular sources in acoustic propagation experiments
NASA Technical Reports Server (NTRS)
Prado, Gervasio; Fitzgerald, James; Arruda, Anthony; Parides, George
1990-01-01
One of the most important uses of acoustic propagation models lies in the area of detection and tracking of vehicles. Propagation models are used to compute transmission losses in performance prediction models and to analyze the results of past experiments. Vehicles can also provide the means for cost effective experiments to measure acoustic propagation conditions over significant ranges. In order to properly correlate the information provided by the experimental data and the propagation models, the following issues must be taken into consideration: the phenomenology of the vehicle noise sources must be understood and characterized; the vehicle's location or 'ground truth' must be accurately reproduced and synchronized with the acoustic data; and sufficient meteorological data must be collected to support the requirements of the propagation models. The experimental procedures and instrumentation needed to carry out propagation experiments are discussed. Illustrative results are presented for two cases. First, a helicopter was used to measure propagation losses at a range of 1 to 10 Km. Second, a heavy diesel-powered vehicle was used to measure propagation losses in the 300 to 2200 m range.
Uncertainty Propagation in an Ecosystem Nutrient Budget.
New aspects and advancements in classical uncertainty propagation methods were used to develop a nutrient budget with associated error for a northern Gulf of Mexico coastal embayment. Uncertainty was calculated for budget terms by propagating the standard error and degrees of fr...
Propagation of major plant-virus hosts.
Hull, Roger
2009-08-01
Plant viruses are propagated in host plants, which are usually grown in glasshouses, screen houses, or growth cabinets. In most cases, the plants are grown from seed; in some cases, they are propagated as cuttings. This unit describes the basic techniques of growing suitable plants from seed and cuttings.
Propagation of a fluidization - combustion wave
Pron, G.P.; Gusachenko, L.K.; Zarko, V.E.
1994-05-01
A fluidization-combustion wave propagating through a fixed and initially cool bed was created by igniting coal at the top surface of the bed. The proposed physical interpretation of the phenomenon is in qualitative agreement with the experimental dependences of the characteristics of the process on determining parameters. A kindling regime with forced wave propagation is suggested.
PROPHET: An applicaton of propagation forecasting principles
NASA Technical Reports Server (NTRS)
Argo, P. E.; Rothmuller, I. J.
1979-01-01
A propagation assessment and forecasting terminal, PROPHET, is described. The terminal is a key element of the environmental prediction and assessment system which uses real time solar/geophysical data to provide real time knowledge of propagation conditions. The terminal uses models to translate data from satellite and ground based sources into performance predictions for specific systems.
Uncertainty Propagation in an Ecosystem Nutrient Budget.
New aspects and advancements in classical uncertainty propagation methods were used to develop a nutrient budget with associated error for a northern Gulf of Mexico coastal embayment. Uncertainty was calculated for budget terms by propagating the standard error and degrees of fr...
The ACTS propagation terminal delivery and support
NASA Technical Reports Server (NTRS)
Stutzman, Warren L.
1993-01-01
Viewgraphs on the Advanced Communications Technology Satellite (ACTS) propagation terminal delivery and support are included. Topics covered include: the ACTS propagation terminal (APT) development program; terminal overview; physical units; test results; status of terminals and schedule; shipping cartons; and site support.
Geometry Induced Delays of Slime Mould Propagation
NASA Astrophysics Data System (ADS)
Adamatzky, Andrew
2013-08-01
Slime mould Physarum polycephalum propagates on nutrient substrates similarly to auto-waves in nonlinear media. In experimental laboratory studies we uncover that the width of geometrically constrained substrate affects the speed of Physarum propagation. We show that Physarum slows down when the width of the substrate increases. The slime mould propagates quicker from the vertex of a triangle to its base than from the base to the vertex. Physarum grows quicker in narrow channels than in wider channels. One can also slow down Physarum propagation by making a finite size expansion of the otherwise narrow channel. In computational experiments with a binary state cellular automaton model we demonstrate that a limitation on the slime mould's body mass production rate could be an underlying mechanism for the width-dependent slowdown of Physarum propagation.
Propagation of an atmospheric pressure plasma plume
NASA Astrophysics Data System (ADS)
Lu, X.; Xiong, Q.; Xiong, Z.; Hu, J.; Zhou, F.; Gong, W.; Xian, Y.; Zou, C.; Tang, Z.; Jiang, Z.; Pan, Y.
2009-02-01
The "plasma bullet" behavior of atmospheric pressure plasma plumes has recently attracted significant interest. In this paper, a specially designed plasma jet device is used to study this phenomenon. It is found that a helium primary plasma can propagate through the wall of a dielectric tube and keep propagating inside the dielectric tube (secondary plasma). High-speed photographs show that the primary plasma disappears before the secondary plasma starts to propagate. Both plumes propagate at a hypersonic speed. Detailed studies on the dynamics of the plasma plumes show that the local electric field induced by the charges on the surface of the dielectric tube plays an important role in the ignition of the secondary plasma. This indicates that the propagation of the plasma plumes may be attributed to the local electric field induced by the charges in the bulletlike plasma volume.
Crack propagation driven by crystal growth
A. Royne; Paul Meaking; A. Malthe-Sorenssen; B. Jamtveit; D. K. Dysthe
2011-10-01
Crystals that grow in confinement may exert a force on their surroundings and thereby drive crack propagation in rocks and other materials. We describe a model of crystal growth in an idealized crack geometry in which the crystal growth and crack propagation are coupled through the stress in the surrounding bulk solid. Subcritical crack propagation takes place during a transient period, which may be very long, during which the crack velocity is limited by the kinetics of crack propagation. When the crack is sufficiently large, the crack velocity becomes limited by the kinetics of crystal growth. The duration of the subcritical regime is determined by two non-dimensional parameters, which relate the kinetics of crack propagation and crystal growth to the supersaturation of the fluid and the elastic properties of the surrounding material.
Random matrix theory for underwater sound propagation
NASA Astrophysics Data System (ADS)
Hegewisch, K. C.; Tomsovic, S.
2012-02-01
Ocean acoustic propagation can be formulated as a wave guide with a weakly random medium generating multiple scattering. Twenty years ago, this was recognized as a quantum chaos problem, and yet random matrix theory, one pillar of quantum or wave chaos studies, has never been introduced into the subject. The modes of the wave guide provide a representation for the propagation, which in the parabolic approximation is unitary. Scattering induced by the ocean's internal waves leads to a power-law random banded unitary matrix ensemble for long-range deep-ocean acoustic propagation. The ensemble has similarities, but differs, from those introduced for studying the Anderson metal-insulator transition. The resulting long-range propagation ensemble statistics agree well with those of full wave propagation using the parabolic equation.
Propagation of an atmospheric pressure plasma plume
Lu, X.; Xiong, Q.; Xiong, Z.; Hu, J.; Zhou, F.; Gong, W.; Xian, Y.; Zou, C.; Tang, Z.; Jiang, Z.; Pan, Y.
2009-02-15
The ''plasma bullet'' behavior of atmospheric pressure plasma plumes has recently attracted significant interest. In this paper, a specially designed plasma jet device is used to study this phenomenon. It is found that a helium primary plasma can propagate through the wall of a dielectric tube and keep propagating inside the dielectric tube (secondary plasma). High-speed photographs show that the primary plasma disappears before the secondary plasma starts to propagate. Both plumes propagate at a hypersonic speed. Detailed studies on the dynamics of the plasma plumes show that the local electric field induced by the charges on the surface of the dielectric tube plays an important role in the ignition of the secondary plasma. This indicates that the propagation of the plasma plumes may be attributed to the local electric field induced by the charges in the bulletlike plasma volume.
S-Band propagation measurements
NASA Technical Reports Server (NTRS)
Briskman, Robert D.
1994-01-01
A geosynchronous satellite system capable of providing many channels of digital audio radio service (DARS) to mobile platforms within the contiguous United States using S-band radio frequencies is being implemented. The system is designed uniquely to mitigate both multipath fading and outages from physical blockage in the transmission path by use of satellite spatial diversity in combination with radio frequency and time diversity. The system also employs a satellite orbital geometry wherein all mobile platforms in the contiguous United States have elevation angles greater than 20 deg to both of the diversity satellites. Since implementation of the satellite system will require three years, an emulation has been performed using terrestrial facilities in order to allow evaluation of DARS capabilities in advance of satellite system operations. The major objective of the emulation was to prove the feasibility of broadcasting from satellites 30 channels of CD quality programming using S-band frequencies to an automobile equipped with a small disk antenna and to obtain quantitative performance data on S-band propagation in a satellite spatial diversity system.
Uncertainty propagation in nuclear forensics.
Pommé, S; Jerome, S M; Venchiarutti, C
2014-07-01
Uncertainty propagation formulae are presented for age dating in support of nuclear forensics. The age of radioactive material in this context refers to the time elapsed since a particular radionuclide was chemically separated from its decay product(s). The decay of the parent radionuclide and ingrowth of the daughter nuclide are governed by statistical decay laws. Mathematical equations allow calculation of the age of specific nuclear material through the atom ratio between parent and daughter nuclides, or through the activity ratio provided that the daughter nuclide is also unstable. The derivation of the uncertainty formulae of the age may present some difficulty to the user community and so the exact solutions, some approximations, a graphical representation and their interpretation are presented in this work. Typical nuclides of interest are actinides in the context of non-proliferation commitments. The uncertainty analysis is applied to a set of important parent-daughter pairs and the need for more precise half-life data is examined.
VPSim: Variance propagation by simulation
Burr, T.; Coulter, C.A.; Prommel, J.
1997-12-01
One of the fundamental concepts in a materials control and accountability system for nuclear safeguards is the materials balance (MB). All transfers into and out of a material balance area are measured, as are the beginning and ending inventories. The resulting MB measures the material loss, MB = T{sub in} + I{sub B} {minus} T{sub out} {minus} I{sub E}. To interpret the MB, the authors must estimate its measurement error standard deviation, {sigma}{sub MB}. When feasible, they use a method usually known as propagation of variance (POV) to estimate {sigma}{sub MB}. The application of POV for estimating the measurement error variance of an MB is straightforward but tedious. By applying POV to individual measurement error standard deviations they can estimate {sigma}{sub MB} (or more generally, they can estimate the variance-covariance matrix, {Sigma}, of a sequence of MBs). This report describes a new computer program (VPSim) that uses simulation to estimate the {Sigma} matrix of a sequence of MBs. Given the proper input data, VPSim calculates the MB and {sigma}{sub MB}, or calculates a sequence of n MBs and the associated n-by-n covariance matrix, {Sigma}. The covariance matrix, {Sigma}, contains the variance of each MB in the diagonal entries and the covariance between pairs of MBs in the off-diagonal entries.
Twist Propagation in Dinucleosome Arrays
Dobrovolskaia, Irina V.; Kenward, Martin; Arya, Gaurav
2010-01-01
We present a Monte Carlo simulation study of the distribution and propagation of twist from one DNA linker to another for a two-nucleosome array subjected to externally applied twist. A mesoscopic model of the array that incorporates nucleosome geometry along with the bending and twisting mechanics of the linkers is employed and external twist is applied in stepwise increments to mimic quasistatic twisting of chromatin fibers. Simulation results reveal that the magnitude and sign of the imposed and induced twist on contiguous linkers depend strongly on their relative orientation. Remarkably, the relative direction of the induced and applied twist can become inverted for a subset of linker orientations—a phenomenon we refer to as “twist inversion”. We characterize the twist inversion, as a function of relative linker orientation, in a phase diagram and explain its key features using a simple model based on the geometry of the nucleosome/linker complex. In addition to twist inversion, our simulations reveal “nucleosome flipping”, whereby nucleosomes may undergo sudden flipping in response to applied twist, causing a rapid bending of the linker and a significant change in the overall twist and writhe of the array. Our findings shed light on the underlying mechanisms by which torsional stresses impact chromatin organization. PMID:21081084
Scaling analysis of affinity propagation.
Furtlehner, Cyril; Sebag, Michèle; Zhang, Xiangliang
2010-06-01
We analyze and exploit some scaling properties of the affinity propagation (AP) clustering algorithm proposed by Frey and Dueck [Science 315, 972 (2007)]. Following a divide and conquer strategy we setup an exact renormalization-based approach to address the question of clustering consistency, in particular, how many cluster are present in a given data set. We first observe that the divide and conquer strategy, used on a large data set hierarchically reduces the complexity O(N2) to O(N((h+2)/(h+1))) , for a data set of size N and a depth h of the hierarchical strategy. For a data set embedded in a d -dimensional space, we show that this is obtained without notably damaging the precision except in dimension d=2 . In fact, for d larger than 2 the relative loss in precision scales such as N((2-d)/(h+1)d). Finally, under some conditions we observe that there is a value s* of the penalty coefficient, a free parameter used to fix the number of clusters, which separates a fragmentation phase (for ss*) of the underlying hidden cluster structure. At this precise point holds a self-similarity property which can be exploited by the hierarchical strategy to actually locate its position, as a result of an exact decimation procedure. From this observation, a strategy based on AP can be defined to find out how many clusters are present in a given data set.
Fluctuation-controlled front propagation
NASA Astrophysics Data System (ADS)
Ridgway, Douglas Thacher
1997-09-01
the symmetry of the absorbing state, but which is unsuccessful at capturing the behavior of diffusion-limited growth. In an effort to find a simpler model system, we turned to modelling fitness increases in evolution. The work was motivated by an experiment on vesicular stomatitis virus, a short (˜9600bp) single-stranded RNA virus. A highly bottlenecked viral population increases in fitness rapidly until a certain point, after which the fitness increases at a slower rate. This is well modeled by a constant population reproducing and mutating on a smooth fitness landscape. Mean field theory of this system displays the same infinite propagation velocity blowup as mean field diffusion-limited aggregation. However, we have been able to make progress on a number of fronts. One is solving systems of moment equations, where a hierarchy of moments is truncated arbitrarily at some level. Good results for front propagation velocity are found with just two moments, corresponding to inclusion of the basic finite population clustering effect ignored by mean field theory. In addition, for small mutation rates, most of the population will be entirely on a single site or two adjacent sites, and the density of these cases can be described and solved. (Abstract shortened by UMI.)
MPPE (Multiple Pulse Propagation Experiment) results
Chambers, F.W.; Caporaso, G.J.; Chong, Y.P.; Deadrick, F.J.; Guethlein, G.; Fawley, W.M.; Orzechowski, T.J.; Renbarger, V.L.; Rogers, D. Jr.; Weir, J.T. ); Lee, P. ); Struve, K.W. ); Hubbard, R. ); Feinstein, L.; Keeley, D. (Science Applicatio
1990-10-01
The Multiple Pulse Propagation Experiment (MPPE) was conducted by the Beam Research Group of the Lawrence Livermore National Laboratory from September 1989, through January 1990, using the Advanced Test Accelerator (ATA). This experiment represents the culmination of the three previous beam propagation experiments conducted at the ATA over the past half decade. Highlights of this experiment were the multiple pulse operation of ATA, and the diagnosis of the beam propagation, and channel production at the higher repetition rates. A large database was collected on beam propagation in uniform gas and channels including m = 0 beam size and net current measurements; and m = 1 hose measurements. The generation and evolution of the electron beam driven channels was well documented. A key result of this experiment was that the beam was dominated by hose instability which limited propagation ranges. This report is organized into five sections. The experimental layout and beam parameters have been detailed in previous reports. First the beam initial conditions will be discussed in detail. Since beam injection parameters are ultimately the only variables one can specify in an atmospheric application, the control and documentation of the beam at the entrance to the gas is crucial. Next the beam lead pulse propagation in gas will be reported. Lead pulse results will be compared with past experiments. The density channel production and evolution will be briefly reported; an additional reference is available. Beam propagation in the channel will then be examined. Finally, conclusions will be presented.
The accuracy of dynamic attitude propagation
NASA Technical Reports Server (NTRS)
Harvie, E.; Chu, D.; Woodard, M.
1990-01-01
Propagating attitude by integrating Euler's equation for rigid body motion has long been suggested for the Earth Radiation Budget Satellite (ERBS) but until now has not been implemented. Because of limited Sun visibility, propagation is necessary for yaw determination. With the deterioration of the gyros, dynamic propagation has become more attractive. Angular rates are derived from integrating Euler's equation with a stepsize of 1 second, using torques computed from telemetered control system data. The environmental torque model was quite basic. It included gravity gradient and unshadowed aerodynamic torques. Knowledge of control torques is critical to the accuracy of dynamic modeling. Due to their coarseness and sparsity, control actuator telemetry were smoothed before integration. The dynamic model was incorporated into existing ERBS attitude determination software. Modeled rates were then used for attitude propagation in the standard ERBS fine-attitude algorithm. In spite of the simplicity of the approach, the dynamically propagated attitude matched the attitude propagated with good gyros well for roll and yaw but diverged up to 3 degrees for pitch because of the very low resolution in pitch momentum wheel telemetry. When control anomalies significantly perturb the nominal attitude, the effect of telemetry granularity is reduced and the dynamically propagated attitudes are accurate on all three axes.
Electromagnetic Propagation Prediction Inside Aircraft Cabins
NASA Technical Reports Server (NTRS)
Hankins, Genevieve; Vahala, Linda; Beggs, John H.
2004-01-01
Electromagnetic propagation models for signal strength prediction within aircraft cabins are essential for evaluating and designing a wireless communication system to be implemented onboard aircraft. A model was developed using Wireless Valley's SitePlanner; which is commercial grade software intended for predictions within office buildings. The performance of the model was evaluated through a comparison with test data measurements taken on several aircraft. The comparison concluded that the model can accurately predict power propagation within the cabin. This model can enhance researchers understanding of power propagation within aircraft cabins and will aid in future research.
Computing Propagation Of Sound In Engine Ducts
NASA Technical Reports Server (NTRS)
Saylor, Silvia
1995-01-01
Frequency Domain Propagation Model (FREDOM) computer program accounts for acoustic loads applied to components of engines. Models propagation of noise through fluids in ducts between components and through passages within components. Used not only to analyze hardware problems, but also for design purposes. Updated version of FREQPL program easier to use. Devised specifically for use in analyzing acoustic loads in rocket engines. Underlying physical and mathematical concepts implemented also applicable to acoustic propagation in other enclosed spaces; analyzing process plumbing and ducts in industrial buildings with view toward reducing noise in work areas.
Inward propagating chemical waves in Taylor vortices.
Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F
2010-04-01
Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.
Propagating confined states in phase dynamics
NASA Technical Reports Server (NTRS)
Brand, Helmut R.; Deissler, Robert J.
1992-01-01
Theoretical treatment is given to the possibility of the existence of propagating confined states in the nonlinear phase equation by generalizing stationary confined states. The nonlinear phase equation is set forth for the case of propagating patterns with long wavelengths and low-frequency modulation. A large range of parameter values is shown to exist for propagating confined states which have spatially localized regions which travel on a background with unique wavelengths. The theoretical phenomena are shown to correspond to such physical systems as spirals in Taylor instabilities, traveling waves in convective systems, and slot-convection phenomena for binary fluid mixtures.
Propagation of Light Elements in the Galaxy
NASA Technical Reports Server (NTRS)
Moskalenko, I. V.; Strong, A. W.; Mashnik, S. G.; Jones, F. C.
2003-01-01
The origin and evolution of isotopes of the lightest elements d, He-3, Li, Be, and B in the universe is a key problem in such fields as astrophysics of CR, Galactic evolution, non-thermal nucleosynthesis, and cosmological studies. One of the major sources of these species is spallation by CR nuclei in the interstellar medium. On the other hand, it is the Boron/Carbon ratio in CR and Be-10 abundance which are used to fix the propagation parameters and thus spallation rate. We study production and Galactic propagation of these species using the numerical propagation code GALPROP and updated production cross sections.
Propagating confined states in phase dynamics
NASA Technical Reports Server (NTRS)
Brand, Helmut R.; Deissler, Robert J.
1992-01-01
Theoretical treatment is given to the possibility of the existence of propagating confined states in the nonlinear phase equation by generalizing stationary confined states. The nonlinear phase equation is set forth for the case of propagating patterns with long wavelengths and low-frequency modulation. A large range of parameter values is shown to exist for propagating confined states which have spatially localized regions which travel on a background with unique wavelengths. The theoretical phenomena are shown to correspond to such physical systems as spirals in Taylor instabilities, traveling waves in convective systems, and slot-convection phenomena for binary fluid mixtures.
GALPROP: New Developments in CR Propagation Code
NASA Astrophysics Data System (ADS)
Moskalenko, I. V.; Jones, F. C.; Mashnik, S. G.; Ptuskin, V. S.; Strong, A. W.
2003-07-01
The numerical Galactic CR propagation code GALPROP has been shown to repro duce simultaneously observational data of many kinds related to CR origin and propagation. Its ability to propagate all CR species in a self-consistent way has led to new results and also revealed new puzzles. We report on the latest up dates of GALPROP, development of a Web-based user interface to facilitate the access to the results of our models, and a library of evaluated isotopic production cross sections. Using an up dated version of GALPROP we study effects of waveparticle interactions in the interstellar medium (ISM).
Asymmetric counter propagation of domain walls
NASA Astrophysics Data System (ADS)
Andrade-Silva, I.; Clerc, M. G.; Odent, V.
2016-07-01
Far from equilibrium systems show different states and domain walls between them. These walls, depending on the type of connected equilibria, exhibit a rich spatiotemporal dynamics. Here, we investigate the asymmetrical counter propagation of domain walls in an in-plane-switching cell filled with a nematic liquid crystal. Experimentally, we characterize the shape and speed of the domain walls. Based on the molecular orientation, we infer that the counter propagative walls have different elastic deformations. These deformations are responsible of the asymmetric counter propagating fronts. Theoretically, based on symmetry arguments, we propose a simple bistable model under the influence of a nonlinear gradient, which qualitatively describes the observed dynamics.
Photon propagator in light-shell gauge
NASA Astrophysics Data System (ADS)
Georgi, Howard; Kestin, Greg; Sajjad, Aqil
2016-05-01
We derive the photon propagator in light-shell gauge (LSG) vμAμ=0 , where vμ=(1,r ^ ) μ . This gauge is an important ingredient of the light-shell effective theory—an effective theory for describing high energy jet processes on a 2-dimensional spherical shell expanding at the speed of light around the point of the initial collision producing the jets. Since LSG is a noncovariant gauge, we cannot calculate the LSG propagator by using the standard procedure for covariant gauges. We therefore employ a new technique for computing the propagator, which we hope may be of relevance in other gauges as well.
Propagation of Light Elements in the Galaxy
NASA Technical Reports Server (NTRS)
Moskalenko, I. V.; Strong, A. W.; Mashnik, S. G.; Jones, F. C.
2003-01-01
The origin and evolution of isotopes of the lightest elements d, He-3, Li, Be, and B in the universe is a key problem in such fields as astrophysics of CR, Galactic evolution, non-thermal nucleosynthesis, and cosmological studies. One of the major sources of these species is spallation by CR nuclei in the interstellar medium. On the other hand, it is the Boron/Carbon ratio in CR and Be-10 abundance which are used to fix the propagation parameters and thus spallation rate. We study production and Galactic propagation of these species using the numerical propagation code GALPROP and updated production cross sections.
Propagating edge states in strained honeycomb lattices
NASA Astrophysics Data System (ADS)
Salerno, Grazia; Ozawa, Tomoki; Price, Hannah M.; Carusotto, Iacopo
2017-06-01
We investigate the helically propagating edge states associated with pseudo-Landau levels in strained honeycomb lattices. We exploit chiral symmetry to derive a general criterion for the existence of these propagating edge states in the presence of only nearest-neighbor hoppings and we verify our criterion using numerical simulations of both uniaxially and trigonally strained honeycomb lattices. We show that the propagation of the helical edge state can be controlled by engineering the shape of the edges. Sensitivity to chiral-symmetry-breaking next-nearest-neighbor hoppings is assessed. Our result opens up an avenue toward the precise control of edge modes through manipulation of the edge shape.
Surface acoustic wave propagation in graphene
NASA Astrophysics Data System (ADS)
Thalmeier, Peter; Dóra, Balázs; Ziegler, Klaus
2010-01-01
Surface acoustic wave (SAW) propagation is a powerful method to investigate two-dimensional (2D) electron systems. We show how SAW observables are influenced by coupling to the 2D massless Dirac electrons of graphene and argue that Landau oscillations in SAW propagation can be observed as function of gate voltage for constant field. Contrary to other transport measurements, the zero-field SAW propagation gives the wave-vector dependence of graphene conductivity for small wave numbers. We predict a crossover from Schrödinger to Dirac-like behavior as a function of gate voltage, with no attenuation in the latter for clean samples.
Wavepacket revivals via complex trajectory propagation
NASA Astrophysics Data System (ADS)
Koch, Werner; Tannor, David J.
2017-09-01
Complex-valued semiclassical methods hold out the promise of treating classically allowed and classically forbidden processes on the same footing. In addition, they provide a natural way to describe optical excitation with complex fields within the trajectory framework. Despite their promise, these methods have until now been limited to short time propagation, due to the numerical difficulties introduced by the complexification. Using a new Final Value Representation of the Coherent State Propagator (FINCO), combined with an analysis of the complex classical phase space, we achieve accurate wavepacket propagation all the way to the revival time of a strongly anharmonic system.
Propagation considerations in land mobile satellite transmission
NASA Technical Reports Server (NTRS)
Vogel, W. J.; Smith, E. K.
1985-01-01
It appears likely that the Land Mobile Satellite Services (LMSS) will be authorized by the FCC for operation in the 800 to 900 MHz (UHF) and possibly near 1500 MHz (L-band). Propagation problems are clearly an important factor in the effectiveness of this service, but useful measurements are few, and produced contradictory interpretations. A first order overview of existing measurements is presented with particular attention to the first two NASA balloon to mobile vehicle propagation experiments. Some physical insight into the interpretation of propagation effects in LMSS transmissions is provided.
Horizontal atmospheric turbulence, beam propagation, and modeling
NASA Astrophysics Data System (ADS)
Wilcox, Christopher C.; Santiago, Freddie; Martinez, Ty; Judd, K. Peter; Restaino, Sergio R.
2017-05-01
The turbulent effect from the Earth's atmosphere degrades the performance of an optical imaging system. Many studies have been conducted in the study of beam propagation in a turbulent medium. Horizontal beam propagation and correction presents many challenges when compared to vertical due to the far harsher turbulent conditions and increased complexity it induces. We investigate the collection of beam propagation data, analysis, and use for building a mathematical model of the horizontal turbulent path and the plans for an adaptive optical system to use this information to correct for horizontal path atmospheric turbulence.
Propagation of sound through a sheared flow
NASA Technical Reports Server (NTRS)
Woolley, J. P.; Smith, C. A.; Karamcheti, K.
1978-01-01
Sound generated in a moving fluid must propagate through a shear layer in order to be measured by a fixed instrument. These propagation effects were evaluated for noise sources typically associated with single and co-flowing subsonic jets and for subcritical flow over airfoils in such jets. The techniques for describing acoustic propagation fall into two categories: geometric acoustics and wave acoustics. Geometric acoustics is most convenient and accurate for high frequency sound. In the frequency range of interest to the present study (greater than 150 Hz), the geometric acoustics approach was determined to be most useful and practical.
Inward propagating chemical waves in Taylor vortices
NASA Astrophysics Data System (ADS)
Thompson, Barnaby W.; Novak, Jan; Wilson, Mark C. T.; Britton, Melanie M.; Taylor, Annette F.
2010-04-01
Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses—also observed experimentally.
Computing Propagation Of Sound In Engine Ducts
NASA Technical Reports Server (NTRS)
Saylor, Silvia
1995-01-01
Frequency Domain Propagation Model (FREDOM) computer program accounts for acoustic loads applied to components of engines. Models propagation of noise through fluids in ducts between components and through passages within components. Used not only to analyze hardware problems, but also for design purposes. Updated version of FREQPL program easier to use. Devised specifically for use in analyzing acoustic loads in rocket engines. Underlying physical and mathematical concepts implemented also applicable to acoustic propagation in other enclosed spaces; analyzing process plumbing and ducts in industrial buildings with view toward reducing noise in work areas.
Debris Flow Distributed Propagation Model
NASA Astrophysics Data System (ADS)
Gregoretti, C.
The debris flow distributed propagation model is a DEM-based model. The fan is dis- cretized by square cells and each cell is assigned an altitude on the sea level. The cells of the catchment are distinguished in two categories: the source cells and the stripe cells. The source cells receive the input hydograph: the cells close to the torrent which are flooded by the debris flow overflowing the torrent embankment are source cells. The stripes cells are the cells flooded by debris flow coming from the surrounding cells. At the first time step only the source cells are flooded by debris flow coming from the torrent. At the second time step a certain number of cells are flooded by de- bris flow coming from the source cells. These cells constitute a stripe of cells and are assigned order two. At the third time step another group of cells are flooded by the debris flow coming from the cells whose order is two. These cells constitute another stripe and are assigned order three. The cell order of a stripe is the time step number corresponding to the transition from dry to flooded state. The mass transfer or mo- mentum exchange between cells is governed by two different mechanisms. The mass transfer is allowed only by a positive or equal to zero flow level difference between the drained cell and the receiving cell. The mass transfer is limited by a not negative final flow level difference between the drained cell and the receiving cells. This limitation excludes the case of possible oscillations in the mass transfer. Another limitation is that the mass drained by a cell should be less than the available mass in that cell. This last condition provides the respect of mass conservation. The first mechanism of mass transfer is the gravity. The mass in a cell is transferred to the neighbouring cells with lower altitude and flow level according to an uniform flow law: The second mecha- nism of mass transfer is the broad crested weir. The mass in a cell is transferred to the
A solid state lightning propagation speed sensor
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Rust, W. David
1989-01-01
A device to measure the propagation speeds of cloud-to-ground lightning has been developed. The lightning propagation speed (LPS) device consists of eight solid state silicon photodetectors mounted behind precision horizontal slits in the focal plane of a 50-mm lens on a 35-mm camera. Although the LPS device produces results similar to those obtained from a streaking camera, the LPS device has the advantages of smaller size, lower cost, mobile use, and easier data collection and analysis. The maximum accuracy for the LPS is 0.2 microsec, compared with about 0.8 microsecs for the streaking camera. It is found that the return stroke propagation speed for triggered lightning is different than that for natural lightning if measurements are taken over channel segments less than 500 m. It is suggested that there are no significant differences between the propagation speeds of positive and negative flashes. Also, differences between natural and triggered dart leaders are discussed.
ACTS Project and Propagation Program Update
NASA Technical Reports Server (NTRS)
Bauer, Robert
1996-01-01
Spacecraft operations continue to be nominal and the sixth eclipse season completed. Battery reconditioning to be re-evaluated before the fall eclipse. Other topics covered include: Inclined orbit; Experiments program; Reorganizations; Program timeline; and propagation program status.
Propagation Regime of Iron Dust Flames
NASA Technical Reports Server (NTRS)
Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew J.
2012-01-01
A flame propagating through an iron-dust mixture can propagate in two asymptotic regimes. When the characteristic time of heat transfer between particles is much smaller than the characteristic time of particle combustion, the flame propagates in the continuum regime where the heat released by reacting particles can be modelled as a space-averaged function. In contrast, when the characteristic time of heat transfer is much larger than the particle reaction time, the flame can no longer be treated as a continuum due to dominating effects associated with the discrete nature of the particle reaction. The discrete regime is characterized by weak dependence of the flame speed on the oxygen concentration compared to the continuum regime. The discrete regime is observed in flames propagating through an iron dust cloud within a gas mixture containing xenon, while the continuum regime is obtained when xenon is substituted with helium.
The ghost propagator in Coulomb gauge
Watson, P.; Reinhardt, H.
2011-05-23
We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until 'forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.
Fick's Law Assisted Propagation for Semisupervised Learning.
Gong, Chen; Tao, Dacheng; Fu, Keren; Yang, Jie
2015-09-01
How to propagate the label information from labeled examples to unlabeled examples is a critical problem for graph-based semisupervised learning. Many label propagation algorithms have been developed in recent years and have obtained promising performance on various applications. However, the eigenvalues of iteration matrices in these algorithms are usually distributed irregularly, which slow down the convergence rate and impair the learning performance. This paper proposes a novel label propagation method called Fick's law assisted propagation (FLAP). Unlike the existing algorithms that are directly derived from statistical learning, FLAP is deduced on the basis of the theory of Fick's First Law of Diffusion, which is widely known as the fundamental theory in fluid-spreading. We prove that FLAP will converge with linear rate and show that FLAP makes eigenvalues of the iteration matrix distributed regularly. Comprehensive experimental evaluations on synthetic and practical datasets reveal that FLAP obtains encouraging results in terms of both accuracy and efficiency.
Radio wave propagation and acoustic sounding
NASA Astrophysics Data System (ADS)
Singal, S. P.
Radio wave propagation of the decimetric and centimetric waves depends to a large extent on the boundary layer meteorological conditions which give rise to severe fadings, very often due to multipath propagation. Sodar is one of the inexpensive remote sensing techniques which can be employed to probe the boundary layer structure. In the paper a historical perspective has been given of the simultaneously conducted studies on radio waves and sodar at various places. The radio meteorological information needed for propagation studies has been clearly spelt out and conditions of a ray path especially in the presence of a ducting layer have been defined as giving rise to fading or signal enhancement conditions. Finally the potential of the sodar studies to obtain information about the boundary layer phenomena has been stressed, clearly spelling out the use of acoustic sounding in radio wave propagation studies.
In vitro propagation of Paphiopedilum orchids.
Zeng, Songjun; Huang, Weichang; Wu, Kunlin; Zhang, Jianxia; da Silva, Jaime A Teixeira; Duan, Jun
2016-01-01
Paphiopedilum is one of the most popular and rare orchid genera. Members of the genus are sold and exhibited as pot plants and cut flowers. Wild populations of Paphiopedilum are under the threat of extinction due to over-collection and loss of suitable habitats. A reduction in their commercial value through large-scale propagation in vitro is an option to reduce pressure from illegal collection, to attempt to meet commercial needs and to re-establish threatened species back into the wild. Although they are commercially propagated via asymbiotic seed germination, Paphiopedilum are considered to be difficult to propagate in vitro, especially by plant regeneration from tissue culture. This review aims to cover the most important aspects and to provide an up-to-date research progress on in vitro propagation of Paphiopedilum and to emphasize the importance of further improving tissue culture protocols for ex vitro-derived explants.
Promoted Combustion Test Propagation Rate Data
NASA Technical Reports Server (NTRS)
Borstorff, J.; Jones, P.; Lowery, F.
2002-01-01
Combustion propagation rate data were examined for potential use in benchmarking a thermal model of the Promoted Combustion Test (PCT), and also for potential use in measuring the repeatability of PCT results.
Electromagnetic wave propagation characteristics in unimolecular reactions
NASA Astrophysics Data System (ADS)
Liu, Xingpeng; Huang, Kama
2016-01-01
Microwave-assisted chemical reactions have attracted interests because of their benefits for enhancement of reaction rates. However, the problems, such as hot spots and thermal runaway, limit the application of microwaves in the chemical industry. To study the characteristics of electromagnetic wave propagation in a chemical reaction is critical to solve the problems. The research on the characteristics of electromagnetic wave propagation in the unimolecular reaction that is a simple model reaction, can be generalized to the research in a chemical reaction. The approximate expressions of the attenuation and dispersion characteristics of electromagnetic wave propagation in the unimolecular reaction are derived by the nonlinear propagation theory. Specially, when the reaction rate is zero, the derived approximate expressions can be reduced to the formulas in low-loss dispersive media. Moreover, a 1D mold is used to validate the feasibility of the approximate expressions. The influences of the reaction rate and initial reactant concentration on the characteristics are obtained.
The ghost propagator in Coulomb gauge
NASA Astrophysics Data System (ADS)
Watson, P.; Reinhardt, H.
2011-05-01
We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until `forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.
Noise propagation in urban and industrial areas
NASA Technical Reports Server (NTRS)
Davies, H. G.
1976-01-01
Noise propagation in streets and the discrepancies between theoretical analyses and field measurements are discussed. A cell-model is used to estimate the general background level of noise due to vehicular sources distributed over the urban area.
Gram-Schmidt algorithms for covariance propagation
NASA Technical Reports Server (NTRS)
Thornton, C. L.; Bierman, G. J.
1977-01-01
This paper addresses the time propagation of triangular covariance factors. Attention is focused on the square-root free factorization, P = UD(transpose of U), where U is unit upper triangular and D is diagonal. An efficient and reliable algorithm for U-D propagation is derived which employs Gram-Schmidt orthogonalization. Partitioning the state vector to distinguish bias and coloured process noise parameters increase mapping efficiency. Cost comparisons of the U-D, Schmidt square-root covariance and conventional covariance propagation methods are made using weighted arithmetic operation counts. The U-D time update is shown to be less costly than the Schmidt method; and, except in unusual circumstances, it is within 20% of the cost of conventional propagation.
Propagation effects on attosecond pulse generation
NASA Astrophysics Data System (ADS)
Lorin, E.; Chelkowski, S.; Bandrauk, A.
2007-06-01
This paper is devoted to the dynamics of attosecond pulses created during the high order harmonic generation process. In this goal we study Ti:sapphir laser pulses propagating in a H II + gas. The dynamics and propagation of the incident pulse is obtained by solving the macroscopic Maxwell equations. The molecular gas reaction on the electric field, the polarization, is derived from TDSE's following the model presented in [9], [10]. We are especially interested in this work, in the attosecond pulse dynamics and the intensity of the first harmonics dependently of the propagation length inside the gas, on the attosecond pulse generation and propagation and the energy of return graphs in function of the driver phase.
Error Propagation in a System Model
NASA Technical Reports Server (NTRS)
Schloegel, Kirk (Inventor); Bhatt, Devesh (Inventor); Oglesby, David V. (Inventor); Madl, Gabor (Inventor)
2015-01-01
Embodiments of the present subject matter can enable the analysis of signal value errors for system models. In an example, signal value errors can be propagated through the functional blocks of a system model to analyze possible effects as the signal value errors impact incident functional blocks. This propagation of the errors can be applicable to many models of computation including avionics models, synchronous data flow, and Kahn process networks.
Ultrashort Laser Pulse Propagation in Water
2009-01-01
method now called steepest descent. Their analysis was based on a step- modulated field propagating through a Lorentz dielectric which is nothing more...propagation through 6 m of water when compared to BLB. They also found that BLB was not violated for pulses with varying bandwidth with temporal widths...pulses in a Lorentz medium, the so-called generalized Sommerfeld and Brillouin precursor method. We were able to show, for the first time, that the
POPPY: Physical Optics Propagation in PYthon
NASA Astrophysics Data System (ADS)
Perrin, Marshall; Long, Joseph; Douglas, Ewan; Sivaramakrishnan, Anand; Slocum, Christine
2016-02-01
POPPY (Physical Optics Propagation in PYthon) simulates physical optical propagation including diffraction. It implements a flexible framework for modeling Fraunhofer and Fresnel diffraction and point spread function formation, particularly in the context of astronomical telescopes. POPPY provides the optical modeling framework for WebbPSF (ascl:1504.007) and was developed as part of a simulation package for JWST, but is available separately and is broadly applicable to many kinds of imaging simulations.
A Chebychev propagator for inhomogeneous Schroedinger equations
Ndong, Mamadou; Koch, Christiane P.; Tal-Ezer, Hillel; Kosloff, Ronnie
2009-03-28
A propagation scheme for time-dependent inhomogeneous Schroedinger equations is presented. Such equations occur in time dependent optimal control theory and in reactive scattering. A formal solution based on a polynomial expansion of the inhomogeneous term is derived. It is subjected to an approximation in terms of Chebychev polynomials. Different variants for the inhomogeneous propagator are demonstrated and applied to two examples from optimal control theory. Convergence behavior and numerical efficiency are analyzed.
Molecular dynamics simulation of propagating cracks
NASA Technical Reports Server (NTRS)
Mullins, M.
1982-01-01
Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.
Propagation measurements in Alaska using ACTS beacons
NASA Technical Reports Server (NTRS)
Mayer, Charles E.
1991-01-01
The placement of an ACTS propagation terminal in Alaska has several distinct advantages. First is the inclusion of a new and important climatic zone to the global propagation model. Second is the low elevation look angle from Alaska to ACTS. These two unique opportunities also present problems unique to the location, such as extreme temperatures and lower power levels. These problems are examined and compensatory solutions are presented.
Tropospheric Propagation Modelling with the Parabolic Equation
1990-09-01
raised cosine window to the imaginary part of the square of the refractive index term. From the fust exponential term of (29) it is evident that this...the present implementation of the model, this low pass filtering of spatial frequency is achieved by applying a simple raised cosine window to the...range in thickness from a few metres (these tend to affect propagation above microwave frequencies) up to hundreds of metres (affecting propagation at
Managing Mobile/Satellite Propagation Data
NASA Technical Reports Server (NTRS)
Kantak, Anil V.
1990-01-01
"Data Management System for Mobile Satellite Propagation" software package collection of FORTRAN programs and UNIX shell scripts designed to handle huge amounts of data resulting from mobile/satellite radio-propagation experiments. Data from experiments converted into standard and more useful forms. Software package contains program to convert binary format of data into standard ASCII format suitable for use with wide variety of computing-machine architectures. Written in either FORTRAN 77 or UNIX shell scripts.
Spark channel propagation in a microbubble liquid
Panov, V. A.; Vasilyak, L. M. Vetchinin, S. P.; Pecherkin, V. Ya.; Son, E. E.
2016-11-15
Experimental study on the development of the spark channel from the anode needle under pulsed electrical breakdown of isopropyl alcohol solution in water with air microbubbles has been performed. The presence of the microbubbles increases the velocity of the spark channel propagation and increases the current in the discharge gap circuit. The observed rate of spark channel propagation in microbubble liquid ranges from 4 to 12 m/s, indicating the thermal mechanism of the spark channel development in a microbubble liquid.
Molecular dynamics simulation of propagating cracks
NASA Technical Reports Server (NTRS)
Mullins, M.
1982-01-01
Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.
Premixed flame propagation in vertical tubes
NASA Astrophysics Data System (ADS)
Kazakov, Kirill A.
2016-04-01
Analytical treatment of the premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations for a quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by a strong gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are identified. Acceleration of methane-air flames in open tubes is shown to be a combined effect of the hydrostatic pressure difference produced by the ambient cold air and the difference of dynamic gas pressure at the tube ends. On the other hand, a strong spontaneous acceleration of the fast methane-oxygen flames at the initial stage of their evolution in open-closed tubes is conditioned by metastability of the quasi-steady propagation regimes. An extensive comparison of the obtained results with the experimental data is made.
Rumor propagation on networks with community structure
NASA Astrophysics Data System (ADS)
Zhang, Ruixia; Li, Deyu
2017-10-01
In this paper, based on growth and preferential attachment mechanism, we give a network generation model aiming at generating networks with community structure. There are three characteristics for the networks generated by the generation model. The first is that the community sizes can be nonuniform. The second is that there are bridge hubs in each community. The third is that the strength of community structure is adjustable. Next, we investigate rumor propagation behavior on the generated networks by performing Monte Carlo simulations to reveal the influence of bridge hubs, nonuniformity of community sizes and the strength of community structure on the dynamic behavior of the rumor propagation. We find that bridge hubs have outstanding performance in propagation speed and propagation size, and larger modularity can reduce rumor propagation. Furthermore, when the decay rate of rumor spreading β is large, the final density of the stiflers is larger if the rumor originates in larger community. Additionally, when on networks with different strengths of community structure, rumor propagation exhibits greater difference in the density of stiflers and in the peak prevalence if the decay rate β is larger.
Labeling Nodes Using Three Degrees of Propagation
Mostafavi, Sara; Goldenberg, Anna; Morris, Quaid
2012-01-01
The properties (or labels) of nodes in networks can often be predicted based on their proximity and their connections to other labeled nodes. So-called “label propagation algorithms” predict the labels of unlabeled nodes by propagating information about local label density iteratively through the network. These algorithms are fast, simple and scale to large networks but nonetheless regularly perform better than slower and much more complex algorithms on benchmark problems. We show here, however, that these algorithms have an intrinsic limitation that prevents them from adapting to some common patterns of network node labeling; we introduce a new algorithm, 3Prop, that retains all their advantages but is much more adaptive. As we show, 3Prop performs very well on node labeling problems ill-suited to label propagation, including predicting gene function in protein and genetic interaction networks and gender in friendship networks, and also performs slightly better on problems already well-suited to label propagation such as labeling blogs and patents based on their citation networks. 3Prop gains its adaptability by assigning separate weights to label information from different steps of the propagation. Surprisingly, we found that for many networks, the third iteration of label propagation receives a negative weight. Availability The code is available from the authors by request. PMID:23284828
Making and Propagating Elastic Waves: Overview of the new wave propagation code WPP
McCandless, K P; Petersson, N A; Nilsson, S; Rodgers, A; Sjogreen, B; Blair, S C
2006-05-09
We are developing a new parallel 3D wave propagation code at LLNL called WPP (Wave Propagation Program). WPP is being designed to incorporate the latest developments in embedded boundary and mesh refinement technology for finite difference methods, as well as having an efficient portable implementation to run on the latest supercomputers at LLNL. We are currently exploring seismic wave applications, including a recent effort to compute ground motions for the 1906 Great San Francisco Earthquake. This paper will briefly describe the wave propagation problem, features of our numerical method to model it, implementation of the wave propagation code, and results from the 1906 Great San Francisco Earthquake simulation.
Radiowave propagation measurements in Nigeria (preliminary reports)
NASA Astrophysics Data System (ADS)
Falodun, S. E.; Okeke, P. N.
2013-07-01
International conferences on frequency coordination have, in recent years, required new information on radiowave propagation in tropical regions and, in particular, on propagation in Africa. The International Telecommunications Union (ITU-R) initiated `radio-wave propagation measurement campaign' in some African countries some years back. However, none of the ITU-initiated experiments were mounted in Nigeria, and hence, there is lack of adequate understanding of the propagation mechanisms associated with this region of the tropics. The Centre for Basic Space Science (CBSS) of NASRDA has therefore embarked on propagation data collection from the different climatic zones of Nigeria (namely Coastal, Guinea Savannah, Midland, and Sahelian) with the aim of making propagation data available to the ITU, for design and prediction purposes in order to ensure a qualitative and effective communication system in Nigeria. This paper focuses on the current status of propagation data from Nigeria (collected by CBSS), identifying other parameters that still need to be obtained. The centre has deployed weather stations to different locations in the country for refractivity measurements in clear atmosphere, at the ground surface and at an altitude of 100 m, being the average height of communication mast in Nigeria. Other equipments deployed are Micro Rain Radar and Nigerian Environmental and Climatic Observing Program equipments. Some of the locations of the measurement stations are Nsukka (7.4° E, 6.9° N), Akure (5.12° E, 7.15° N), Minna (6.5° E, 9.6° N), Sokoto (5.25° E, 13.08° N), Jos (8.9° E, 9.86° N), and Lagos (3.35° E, 6.6° N). The results obtained from the data analysis have shown that the refractivity values vary with climatic zones and seasons of the year. Also, the occurrence probability of abnormal propagation events, such as super refraction, sub-refraction, and ducting, depends on the location as well as the local time. We have also attempted to identify
NLO error propagation exercise: statistical results
Pack, D.J.; Downing, D.J.
1985-09-01
Error propagation is the extrapolation and cumulation of uncertainty (variance) above total amounts of special nuclear material, for example, uranium or /sup 235/U, that are present in a defined location at a given time. The uncertainty results from the inevitable inexactness of individual measurements of weight, uranium concentration, /sup 235/U enrichment, etc. The extrapolated and cumulated uncertainty leads directly to quantified limits of error on inventory differences (LEIDs) for such material. The NLO error propagation exercise was planned as a field demonstration of the utilization of statistical error propagation methodology at the Feed Materials Production Center in Fernald, Ohio from April 1 to July 1, 1983 in a single material balance area formed specially for the exercise. Major elements of the error propagation methodology were: variance approximation by Taylor Series expansion; variance cumulation by uncorrelated primary error sources as suggested by Jaech; random effects ANOVA model estimation of variance effects (systematic error); provision for inclusion of process variance in addition to measurement variance; and exclusion of static material. The methodology was applied to material balance area transactions from the indicated time period through a FORTRAN computer code developed specifically for this purpose on the NLO HP-3000 computer. This paper contains a complete description of the error propagation methodology and a full summary of the numerical results of applying the methodlogy in the field demonstration. The error propagation LEIDs did encompass the actual uranium and /sup 235/U inventory differences. Further, one can see that error propagation actually provides guidance for reducing inventory differences and LEIDs in future time periods.
Accurate orbit propagation with planetary close encounters
NASA Astrophysics Data System (ADS)
Baù, Giulio; Milani Comparetti, Andrea; Guerra, Francesca
2015-08-01
We tackle the problem of accurately propagating the motion of those small bodies that undergo close approaches with a planet. The literature is lacking on this topic and the reliability of the numerical results is not sufficiently discussed. The high-frequency components of the perturbation generated by a close encounter makes the propagation particularly challenging both from the point of view of the dynamical stability of the formulation and the numerical stability of the integrator. In our approach a fixed step-size and order multistep integrator is combined with a regularized formulation of the perturbed two-body problem. When the propagated object enters the region of influence of a celestial body, the latter becomes the new primary body of attraction. Moreover, the formulation and the step-size will also be changed if necessary. We present: 1) the restarter procedure applied to the multistep integrator whenever the primary body is changed; 2) new analytical formulae for setting the step-size (given the order of the multistep, formulation and initial osculating orbit) in order to control the accumulation of the local truncation error and guarantee the numerical stability during the propagation; 3) a new definition of the region of influence in the phase space. We test the propagator with some real asteroids subject to the gravitational attraction of the planets, the Yarkovsky and relativistic perturbations. Our goal is to show that the proposed approach improves the performance of both the propagator implemented in the OrbFit software package (which is currently used by the NEODyS service) and of the propagator represented by a variable step-size and order multistep method combined with Cowell's formulation (i.e. direct integration of position and velocity in either the physical or a fictitious time).
Prediction of nonlinear jet noise propagation
NASA Astrophysics Data System (ADS)
Gee, Kent L.
The role of nonlinearity in the propagation of noise radiated from high-performance jet aircraft has not been a well-understood phenomenon in the past. To address the problem of finite-amplitude noise propagation, a hybrid time-frequency domain model has been developed to numerically solve the generalized Mendousse-Burgers equation, which is a parabolic model equation that includes effects of quadratic nonlinearity, atmospheric absorption and dispersion, and geometrical spreading. The algorithm has been compared against analytical theory and numerical issues have been discussed. Three sets of experimental data have been used to evaluate the model: model-scale laboratory jet data, field data using a large loudspeaker, and static engine run-up measurements of the F/A-22 Raptor. Comparison of linearly- and nonlinearly-predicted spectra demonstrates that nonlinearity does, in fact, impact the noise propagation in all three sets of data. Additionally, the extensive comparison with the Raptor data shows that the model is successful in predicting the measured spectrum over multiple angles and engine conditions, demonstrating that the model captures much of the physics of the propagation, despite its current neglect of multipath interference and atmospheric refraction and turbulence effects. Two additional studies have been carried out in order to address fundamental questions relevant to the nonlinear propagation of jet noise: ''What is the impact of nonlinearity on perceived levels?" and ''At what point does the propagation become linear?" An investigation of the perceived impact of nonlinearity shows that there are only minor differences between nonlinear and linear predictions in calculations of power-based, single-number metrics, such as A-weighted overall sound pressure level. On the other hand, the actual perceived differences between nonlinear and linear waveforms are substantially greater and consequently do not correlate well with calculated metrics. This
Effects of fluctuations on propagating fronts
NASA Astrophysics Data System (ADS)
Panja, Debabrata
Propagating fronts are seen in varieties of nonequilibrium pattern forming systems in Physics, Chemistry and Biology. In the last two decades, many researchers have contributed to the understanding of the underlying dynamics of the propagating fronts. Of these, the deterministic and mean-field dynamics of the fronts were mostly understood in late 1980s and 1990s. On the other hand, although the earliest work on the effect of fluctuations on propagating fronts dates back to early 1980s, the subject of fluctuating fronts did not reach its adolescence until the mid 1990s. From there onwards the last few years witnessed a surge in activities in the effect of fluctuations on propagating fronts. Scores of papers have been written on this subject since then, contributing to a significant maturity of our understanding, and only recently a full picture of fluctuating fronts has started to emerge. This review is an attempt to collect all the works on fluctuating (propagating) fronts in a coherent and cogent manner in proper perspective. It is based on the idea of making our knowledge in this field available to a broader audience, and it is also expected to help to collect bits and pieces of loose thread-ends together for possible further investigation.
Classification of neocortical interneurons using affinity propagation.
Santana, Roberto; McGarry, Laura M; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael
2013-01-01
In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits.
Slow wave propagation in soft adhesive interfaces.
Viswanathan, Koushik; Sundaram, Narayan K; Chandrasekar, Srinivasan
2016-11-16
Stick-slip in sliding of soft adhesive surfaces has long been associated with the propagation of Schallamach waves, a type of slow surface wave. Recently it was demonstrated using in situ experiments that two other kinds of slow waves-separation pulses and slip pulses-also mediate stick-slip (Viswanathan et al., Soft Matter, 2016, 12, 5265-5275). While separation pulses, like Schallamach waves, involve local interface detachment, slip pulses are moving stress fronts with no detachment. Here, we present a theoretical analysis of the propagation of these three waves in a linear elastodynamics framework. Different boundary conditions apply depending on whether or not local interface detachment occurs. It is shown that the interface dynamics accompanying slow waves is governed by a system of integral equations. Closed-form analytical expressions are obtained for the interfacial pressure, shear stress, displacements and velocities. Separation pulses and Schallamach waves emerge naturally as wave solutions of the integral equations, with oppositely oriented directions of propagation. Wave propagation is found to be stable in the stress regime where linearized elasticity is a physically valid approximation. Interestingly, the analysis reveals that slow traveling wave solutions are not possible in a Coulomb friction framework for slip pulses. The theory provides a unified picture of stick-slip dynamics and slow wave propagation in adhesive contacts, consistent with experimental observations.
Negative propagation effect in nonparaxial Airy beams.
Vaveliuk, Pablo; Martinez-Matos, Oscar
2012-11-19
Negative propagation is an unusual effect concerning the local sign change in the Poynting vector components of an optical beam under free propagation. We report this effect for finite-energy Airy beams in a subwavelength nonparaxial regime. This effect is due to a coupling process between propagating and evanescent plane waves forming the beam in the spectral domain and it is demonstrated for a single TE or TM mode. This is contrary to what happens for vector Bessel beams and vector X-waves, for which a complex superposition of TE and TM modes is mandatory. We also show that evanescent waves cannot contribute to the energy flux density by themselves such that a pure evanescent Airy beam is not physically realizable. The break of the shape-preserving and diffraction-free properties of Airy beams in a nonparaxial regime is exclusively caused by the propagating waves. The negative propagation effect in subwavelength nonparaxial Airy beams opens new capabilities in optical traps and tweezers, optical detection of invisibility cloacks and selective on-chip manipulation of nanoparticles.
Propagation in polymer parameterised field theory
NASA Astrophysics Data System (ADS)
Varadarajan, Madhavan
2017-01-01
The Hamiltonian constraint operator in loop quantum gravity acts ultralocally. Smolin has argued that this ultralocality seems incompatible with the existence of a quantum dynamics which propagates perturbations between macroscopically seperated regions of quantum geometry. We present evidence to the contrary within an LQG type ‘polymer’ quantization of two dimensional parameterised field theory (PFT). PFT is a generally covariant reformulation of free field propagation on flat spacetime. We show explicitly that while, as in LQG, the Hamiltonian constraint operator in PFT acts ultralocally, states in the joint kernel of the Hamiltonian and diffeomorphism constraints of PFT necessarily describe propagation effects. The particular structure of the finite triangulation Hamiltonian constraint operator plays a crucial role, as does the necessity of imposing (the continuum limit of) its kinematic adjoint as a constraint. Propagation is seen as a property encoded by physical states in the kernel of the constraints rather than that of repeated actions of the finite triangulation Hamiltonian constraint on kinematic states. The analysis yields robust structural lessons for putative constructions of the Hamiltonian constraint in LQG for which ultralocal action co-exists with a description of propagation effects by physical states.
Classification of neocortical interneurons using affinity propagation
Santana, Roberto; McGarry, Laura M.; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael
2013-01-01
In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339
Shock unsteadiness creation and propagation: experimental analysis
NASA Astrophysics Data System (ADS)
Benay, R.; Alaphilippe, M.; Severac, N.
2012-09-01
The possibility of creating unsteady distortions of the tip shock by waves emitted from an aircraft is assessed experimentally. The model chosen is a cylindrical fore body equipped with a spike. This configuration is known for generating an important level of unsteadiness around the spike in supersonic regime. The wind tunnel Mach number is equal to 2. The experiments show that waves emitted from this source propagate along the tip shock and interact with it. It is then assessed that this interaction produces a periodic distortion of the shock that propagates to the external flow. Unsteady pressure sensors, high speed schlieren films, hot wire probing and laser Doppler velocimetry are used as complementary experimental means. The final result is a coherent representation of the complex mechanism of wave propagation that has been evidenced. The principle of creating unsteady shock deformation by onboard equipments could be examined as a possibly promising method of sonic boom control.
Analytic form for the nonrelativistic Coulomb propagator
NASA Astrophysics Data System (ADS)
Blinder, S. M.
1991-01-01
An analytic form for the nonrelativistic Coulomb propagator is derived, thus resolving a long-standing problem in Feynman's path-integral formulation of quantum mechanics. Hostler's formula for the Coulomb Green's function is expanded according to the theorem of Mittag-Leffler, then Fourier transformed term by term to give the Coulomb propagator. The result is a discrete summation over the principal quantum number n, involving Whittaker, Laguerre, Hermite, and error functions. As is the case for other nonquadratic potentials, the Coulomb propagator does not have the canonical structure K=F exp(iS/ħ). Part of the expansion resembles a form derived by Crandall [J. Phys. A 16, 3005 (1983)] for the case of reflectionless potentials.
Propagation studies using a theoretical ionosphere model
NASA Technical Reports Server (NTRS)
Lee, M.
1973-01-01
The mid-latitude ionospheric and neutral atmospheric models are coupled with an advanced three dimensional ray tracing program to see what success would be obtained in predicting the wave propagation conditions and to study to what extent the use of theoretical ionospheric models is practical. The Penn State MK 1 ionospheric model, the Mitra-Rowe D region model, and the Groves' neutral atmospheric model are used throughout this work to represent the real electron densities and collision frequencies. The Faraday rotation and differential Doppler velocities from satellites, the propagation modes for long distance high frequency propagation, the group delays for each mode, the ionospheric absorption, and the spatial loss are all predicted.
Propagating unstable wavelets in cardiac tissue
NASA Astrophysics Data System (ADS)
Boyle, Patrick M.; Madhavan, Adarsh; Reid, Matthew P.; Vigmond, Edward J.
2012-01-01
Solitonlike propagating modes have been proposed for excitable tissue, but have never been measured in cardiac tissue. In this study, we simulate an experimental protocol to elicit these propagating unstable wavelets (PUWs) in a detailed three-dimensional ventricular wedge preparation. PUWs appear as fixed-shape wavelets that propagate only in the direction of cardiac fibers, with conduction velocity approximately 40% slower than normal action potential excitation. We investigate their properties, demonstrating that PUWs are not true solitons. The range of stimuli for which PUWs were elicited was very narrow (several orders of magnitude lower than the stimulus strength itself), but increased with reduced sodium conductance and reduced coupling in nonlongitudinal directions. We show that the phenomenon does not depend on the particular membrane representation used or the shape of the stimulating electrode.
Wave propagation into the middle atmosphere
NASA Technical Reports Server (NTRS)
Hirota, I.
1989-01-01
Recent observations of various types of waves propagating into the middle atmosphere are reviewed. Emphasis is made on the excitation processes in the lower atmosphere and their vertical propagation through the background flow as a function of the latitude, height and season. The following subjects are discussed: (1) Vertical propagation of quasi-stationary forced Rossby waves into the winter stratosphere in connection with the sudden warming; (2) Spectral distribution and seasonal characteristics of normal mode (free) Rossby waves and the asymmetry of the Northern and Southern Hemispheres; and (3) Seasonal variation of internal gravity waves in the middle atmosphere. Further discussions are presented for future studies based on accumulated observational data during the MAP period.
Polarization Shaping for Control of Nonlinear Propagation
NASA Astrophysics Data System (ADS)
Bouchard, Frédéric; Larocque, Hugo; Yao, Alison M.; Travis, Christopher; De Leon, Israel; Rubano, Andrea; Karimi, Ebrahim; Oppo, Gian-Luca; Boyd, Robert W.
2016-12-01
We study the nonlinear optical propagation of two different classes of light beams with space-varying polarization—radially symmetric vector beams and Poincaré beams with lemon and star topologies—in a rubidium vapor cell. Unlike Laguerre-Gauss and other types of beams that quickly experience instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that, by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.
Surface Plasmon Propagation in Nanostructured Metallic Waveguides
NASA Astrophysics Data System (ADS)
Calm, Y. M.; Merlo, J. M.; Rose, A. H.; Nesbitt, N. T.; Boyce, A. M.; McMahon, G.; Burns, M. J.; Kempa, K.; Naughton, M. J.
2015-03-01
Visible frequencies of light can be routed on subwavelength scales with nanostructured, metallic waveguides by coupling optical energy to surface plasmon (SP) modes at a metal-insulator interface. Epitaxially-grown Ag nanowires and nanocoaxes provide a low-loss, ``model'' system to characterize the propagation of SP waves. We have studied these structures by electron, focused ion, scanning probe, and optical microscopies, and have observed propagation lengths exceeding 15λvac with confinement on the order of 0 . 07(λvac) 2 . Experimental efforts towards lithographically-fabricated metal-insulator-metal waveguides are discussed. Finally, an architecture for a nanocoax-based optical microscope, which extracts near-field (evanescent) information and propagates it into the far-field, is presented. Supported by the W.M. Keck Foundation.
Coherent structures for front propagation in fluids
NASA Astrophysics Data System (ADS)
Mitchell, Kevin; Mahoney, John
2014-03-01
Our goal is to characterize the nature of reacting flows by identifying important ``coherent'' structures. We follow the recent work by Haller, Beron-Vera, and Farazmand which formalized the notion of lagrangian coherent structures (LCSs) in fluid flows. In this theory, LCSs were derived from the Cauchy-Green strain tensor. We adapt this perspective to analogously define coherent structures in reacting flows. By this we mean a fluid flow with a reaction front propagating through it such that the propagation does not affect the underlying flow. A reaction front might be chemical (Belousov-Zhabotinsky, flame front, etc.) or some other type of front (electromagnetic, acoustic, etc.). While the recently developed theory of burning invariant manifolds (BIMs) describes barriers to front propagation in time-periodic flows, this current work provides an important complement by extending to the aperiodic setting. Funded by NSF Grant CMMI-1201236.
Coronal Structures Observed by Radio Propagation Measurements
NASA Technical Reports Server (NTRS)
Woo, R.
1995-01-01
This paper summarizes (1) advances in our knowledge of coronal structures inferred from radio propagation measurements, and (2) gains in our understanding of the relationship between radio propagation and white-light coronagraph measurements. Radio propagation measurements confirm that streamers are ray-like structures as depicted in coronagraph pictures, but also reveal a hierarchy of filamentary structures throughout the corona, extending from the size of streamers down to scale sizes as small as about 1 km at the Sun (10(ghe) arcsec). Doppler scintillation measurements, therefore, open a new window on small-scale structure that has long eluded coronagraph measurements. In addition, high precision ranging measurements make it possible to investigate large-scale structures not yet observed in corona graphs, such as plumes in equatorial coronal regions.
Three-Dimensional Gear Crack Propagation Studies
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Sane, Ashok D.; Drago, Raymond J.; Wawrzynek, Paul A.
1998-01-01
Three-dimensional crack growth simulation was performed on a split-tooth gear design using boundary element modeling and linear elastic fracture mechanics. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth simulation was performed on a case study to evaluate crack propagation paths. Tooth fracture was predicted from the crack growth simulation for an initial crack in the tooth fillet region. Tooth loads on the uncracked mesh of the split-tooth design were up to five times greater than those on the cracked mesh if equal deflections of the cracked and uncracked teeth were considered. Predicted crack shapes as well as crack propagation life are presented based on calculated stress intensity factors, mixed-mode crack propagation trajectory theories, and fatigue crack growth theories.
Asymptotic wave propagation in excitable media.
Bernus, Olivier; Vigmond, Edward
2015-07-01
Wave shape and velocity are important issues in reaction-diffusion systems, and are often the result of competition in media with heterogeneous conduction properties. Asymptotic wave front propagation at maximal conduction velocity has been previously reported in the context of anisotropic cardiac tissue, but it is unknown whether this is a universal property of excitable tissues where conduction velocity can be locally modulated by mechanisms other than anisotropy. Here, we investigate the impact of conduction heterogeneities and boundary effects on wave propagation in excitable media. Following a theoretical analysis, we find that wave-front cusps occur where local velocity is reduced and that asymptotic wave fronts propagate at the maximal translational conduction velocity. Simulations performed in different reaction-diffusion systems, including cardiac tissue, confirm our theoretical findings. We conclude that this property can be found in a wide range of reaction-diffusion systems with excitable dynamics and that asymptotic wave-front shapes can be predicted.
Lattice Boltzmann method for electromagnetic wave propagation
NASA Astrophysics Data System (ADS)
Hanasoge, S. M.; Succi, S.; Orszag, S. A.
2011-10-01
We present a new Lattice Boltzmann (LB) formulation to solve the Maxwell equations for electromagnetic (EM) waves propagating in a heterogeneous medium. By using a pseudo-vector discrete Boltzmann distribution, the scheme is shown to reproduce the continuum Maxwell equations. The technique compares well with a pseudo-spectral method at solving for two-dimensional wave propagation in a heterogeneous medium, which by design contains substantial contrasts in the refractive index. The extension to three dimensions follows naturally and, owing to the recognized efficiency of LB schemes for parallel computation in irregular geometries, it gives a powerful method to numerically simulate a wide range of problems involving EM wave propagation in complex media.
Heat pulse propagation studies in TFTR
Fredrickson, E.D.; Callen, J.D.; Colchin, R.J.; Efthimion, P.C.; Hill, K.W.; Izzo, R.; Mikkelsen, D.R.; Monticello, D.A.; McGuire, K.; Bell, J.D.
1986-02-01
The time scales for sawtooth repetition and heat pulse propagation are much longer (10's of msec) in the large tokamak TFTR than in previous, smaller tokamaks. This extended time scale coupled with more detailed diagnostics has led us to revisit the analysis of the heat pulse propagation as a method to determine the electron heat diffusivity, chi/sub e/, in the plasma. A combination of analytic and computer solutions of the electron heat diffusion equation are used to clarify previous work and develop new methods for determining chi/sub e/. Direct comparison of the predicted heat pulses with soft x-ray and ECE data indicates that the space-time evolution is diffusive. However, the chi/sub e/ determined from heat pulse propagation usually exceeds that determined from background plasma power balance considerations by a factor ranging from 2 to 10. Some hypotheses for resolving this discrepancy are discussed. 11 refs., 19 figs., 1 tab.
Large scale propagation intermittency in the atmosphere
NASA Astrophysics Data System (ADS)
Mehrabi, Ali
2000-11-01
Long-term (several minutes to hours) amplitude variations observed in outdoor sound propagation experiments at Disneyland, California, in February 1998 are explained in terms of a time varying index of refraction. The experimentally propagated acoustic signals were received and recorded at several locations ranging from 300 meters to 2,800 meters. Meteorological data was taken as a function of altitude simultaneously with the received signal levels. There were many barriers along the path of acoustic propagation that affected the received signal levels, especially at short ranges. In a downward refraction situation, there could be a random change of amplitude in the predicted signals. A computer model based on the Fast Field Program (FFP) was used to compute the signal loss at the different receiving locations and to verify that the variations in the received signal levels can be predicted numerically. The calculations agree with experimental data with the same trend variations in average amplitude.
Anisotropic Shock Propagation in Single Crystals
Eggert, J; Hicks, D; Celliers, P; Bradley, D; Cox, J; Unites, W; Collins, G; McWilliams, R; Jeanloz, R; Bruygoo, S; Loubeyre, P
2005-05-26
Most single-crystal shock experiments have been performed in high-symmetry directions while the nature of shock propagation in low-symmetry directions remains relatively unstudied. It is well known that small-amplitude, linear acoustic waves propagating in low-symmetry directions can focus and/or form caustics (Wolfe, 1995). In this report we provide evidence for similar focusing behavior in nonlinear (shock) waves propagating in single crystals of silicon and diamond. Using intense lasers, we have driven non-planar (divergent geometry) shock waves through single-crystals of silicon or diamond and into an isotropic backing plate. On recovery of the backing plates we observe a depression showing evidence of anisotropic plastic strain with well-defined crystallographic registration. We observe 4-, 2-, and 3-fold symmetric impressions for [100], [110], and [111] oriented crystals respectively.
Displacement of squeezed propagating microwave states
NASA Astrophysics Data System (ADS)
Fedorov, Kirill G.; Zhong, Ling; Pogorzalek, Stefan; Eder, Peter; Fischer, Michael; Goetz, Jan; Wulschner, Friedrich; Xie, Edwar; Menzel, Edwin; Deppe, Frank; Marx, Achim; Gross, Rudolf
Displacement of propagating squeezed states is a fundamental operation for quantum communications. It can be applied to fundamental studies of macroscopic quantum coherence and has an important role in quantum teleportation protocols with propagating microwaves. We generate propagating squeezed states using a Josephson parametric amplifier and implement displacement using a cryogenic directional coupler. We study single- and two-mode displacement regimes. For the single-mode displacement we find that the squeezing level of the displaced squeezed state does not depend on the displacement amplitude. Also, we observe that quantum entanglement between two spatially separated channels stays constant across 4 orders of displacement power. We acknowledge support by the German Research Foundation through SFB 631 and FE 1564/1-1, the EU project PROMISCE, and Elite Network of Bavaria through the program ExQM.
Ducted propagation of chorus waves: Cluster observations
NASA Astrophysics Data System (ADS)
Yearby, K. H.; Balikhin, M. A.; Khotyaintsev, Yu. V.; Walker, S. N.; Krasnoselskikh, V. V.; Alleyne, H. St. C. K.; Agapitov, O.
2011-09-01
Ducted propagation of whistler waves in the terrestrial magnetosphere-ionosphere system was discussed and studied long before the first in-situ spacecraft measurements. While a number of implicit examples of the existence of ducted propagation have been found, direct observation of ducts has been hampered by the low sampling rates of measurements of the plasma density. The present paper is based on Cluster observations of chorus waves. The ability to use measurements of the spacecraft potential as a proxy for high time resolution electron density measurements is exploited to identify a number of cases when increased chorus wave power, observed within the radiation belts, is observed simultaneously with density enchantments. It is argued that the observation of ducted propagation of chorus implies modification of numerical models for plasma-wave interactions within the radiation belts.
The discrete regime of flame propagation
NASA Astrophysics Data System (ADS)
Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew
The propagation of laminar dust flames in iron dust clouds was studied in a low-gravity envi-ronment on-board a parabolic flight aircraft. The elimination of buoyancy-induced convection and particle settling permitted measurements of fundamental combustion parameters such as the burning velocity and the flame quenching distance over a wide range of particle sizes and in different gaseous mixtures. The discrete regime of flame propagation was observed by substitut-ing nitrogen present in air with xenon, an inert gas with a significantly lower heat conductivity. Flame propagation in the discrete regime is controlled by the heat transfer between neighbor-ing particles, rather than by the particle burning rate used by traditional continuum models of heterogeneous flames. The propagation mechanism of discrete flames depends on the spa-tial distribution of particles, and thus such flames are strongly influenced by local fluctuations in the fuel concentration. Constant pressure laminar dust flames were observed inside 70 cm long, 5 cm diameter Pyrex tubes. Equally-spaced plate assemblies forming rectangular chan-nels were placed inside each tube to determine the quenching distance defined as the minimum channel width through which a flame can successfully propagate. High-speed video cameras were used to measure the flame speed and a fiber optic spectrometer was used to measure the flame temperature. Experimental results were compared with predictions obtained from a numerical model of a three-dimensional flame developed to capture both the discrete nature and the random distribution of particles in the flame. Though good qualitative agreement was obtained between model predictions and experimental observations, residual g-jitters and the short reduced-gravity periods prevented further investigations of propagation limits in the dis-crete regime. The full exploration of the discrete flame phenomenon would require high-quality, long duration reduced gravity environment
Complex singularities in the quark propagator
Roberts, C.D.; Frank, M.R.
1995-08-01
The Dyson-Schwinger equation for the quark propagator is being studied in the rainbow approximation using a gluon propagator that incorporates asymptotic freedom and is an entire function. The gluon propagator has a number of parameters that may be varied in order to obtain a good description of low-energy pion observables; such as f{sub {pi}} and the {pi}-{pi} scattering lengths. This provides a direct means of relating hadronic observables to the form of the quark-quark interaction in the infrared and serves as an adjunct and extension of the separable Ansatz approach discussed above. It also provides a means of examining the pole structure of the quark propagator, which may hold the key to understanding quark confinement. The preliminary results are encouraging. It was demonstrated that it is possible to obtain a good description of pion observables in this approach. Further, when the strength of the quark-quark interaction in the infrared becomes larger than a given critical value, the pole in the quark propagator bifurcates into a pair of complex conjugate poles: m{sub q} = m{sub q}{sup R} {plus_minus} im{sub q}{sup I}, which is a signal of confinement. The interpretation in this case is of 1/m{sub q}{sup I} as the distance over which a quark may propagate before fragmenting. Further, there are indications from these studies that T{sub c}{sup D} < T{sub c}{sup {chi}}, where T{sub c}{sup D} is the critical temperature for deconfinement and T{sub c}{sup {chi}} is the critical temperature for chiral symmetry restoration; i.e., indications that deconfinement occurs at a lower temperature than chiral symmetry restoration. Available results from this work will be presented at the Washington meeting of the APS.
Satellite sound broadcast propagation studies and measurements
NASA Technical Reports Server (NTRS)
Vogel, Wolfhard J.; Torrence, Geoffrey W.
1990-01-01
Satellite Sound Broadcasting is an attractive satellite application. Before regulatory decisions can be made in 1992, the propagation effects encountered have to be characterized. The Electrical Engineering Research Laboratory has nearly completed a system which will allow amplitude measurements to be made over 10 MHz bandwidths in the 800 to 1800 MHz frequency range. The system uses transmission from a transportable tower, and reception inside buildings or in the shadow of trees or utility poles. The goal is to derive propagation models for use by systems engineers who are about to design satellite broadcast systems. The advance of fiber-optics technology has helped to focus future development of satellite services into areas where satellites are uniquely competitive. One of these preferred satellite applications is the broadcasting of high-quality sound for stationary or mobile reception by listeners using low-cost, consumer-grade receivers. Before such services can be provided, however, the political hurdles of spectrum allocation have to be surmounted and the technical questions of standardization for world-wide compatibility have to be resolved. In order to arrive at an optimal system design, efficient in the use of our scarce spectral resources, affordable both to the broadcaster and the listener, and providing predictable performance, the propagation effects to which the service is subjected have to be characterized. Consequently, the objective of the research project is to make basic propagation measurements for direct Satellite Sound Broadcasting Service (SSBS). The data obtained should allow the development of propagation models to be used by communications engineers designing the operational systems. Such models shall describe the effects of shadowing and multipath propagation on SSBS receivers operating in a specified environment, such as inside commercial or residential buildings of various construction and also in the shadow of trees or utility poles
Proceedings of the Thirteenth NASA Propagation Experimenters Meeting (NAPEX 13)
NASA Technical Reports Server (NTRS)
Davarian, Faramaz (Editor)
1989-01-01
The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. The meeting was organized into three technical sessions: the first focused on mobile satellite propagation; the second examined the propagation effects for frequencies above 10 GHz; and the third addressed studies devoted exclusively to the Olympus/Advanced Communications Technology Satellite (ACTS) Program.
Advances in Geometric Acoustic Propagation Modeling Methods
NASA Astrophysics Data System (ADS)
Blom, P. S.; Arrowsmith, S.
2013-12-01
Geometric acoustics provides an efficient numerical method to model propagation effects. At leading order, one can identify ensonified regions and calculate celerities of the predicted arrivals. Beyond leading order, the solution of the transport equation provides a means to estimate the amplitude of individual acoustic phases. The auxiliary parameters introduced in solving the transport equation have been found to provide a means of identifying ray paths connecting source and receiver, or eigenrays, for non-planar propagation. A detailed explanation of the eigenray method will be presented as well as an application to predicting azimuth deviations for infrasonic data recorded during the Humming Roadrunner experiment of 2012.
Propagation of sound in turbulent media
NASA Technical Reports Server (NTRS)
Wenzel, A. R.
1976-01-01
Perturbation methods commonly used to study the propagation of acoustic waves in turbulent media are reviewed. Emphasis is on those techniques which are applicable to problems involving long-range propagation in the atmosphere and ocean. Characteristic features of the various methods are illustrated by applying them to particular problems. It is shown that conventional perturbation techniques, such as the Born approximation, yield solutions which contain secular terms, and which therefore have a relatively limited range of validity. In contrast, it is found that solutions obtained with the aid of the Rytov method or the smoothing method do not contain secular terms, and consequently have a much greater range of validity.
Elementary functions: propagation of partially coherent light.
Burvall, Anna; Smith, Arlene; Dainty, Christopher
2009-07-01
The theory of propagation of partially coherent light is well known, but performing numerical calculations still presents a difficulty because of the dimensionality of the problem. We propose using a recently introduced method based on the use of elementary functions [Wald et al. Proc. SPIE6040, 59621G (2005)] to reduce the integrals to two dimensions. We formalize the method, describe its inherent assumptions and approximations, and introduce a sampling criterion for adequate interpolation. We present an analysis of some special cases, such as the Gaussian Schell-model beam, and briefly discuss generalized numerical propagation of two-dimensional field distributions.
Mapping mechanical force propagation through biomolecular complexes
Schoeler, Constantin; Bernardi, Rafael C.; Malinowska, Klara H.; Durner, Ellis; Ott, Wolfgang; Bayer, Edward A.; Schulten, Klaus; Nash, Michael A.; Gaub, Hermann E.
2015-08-11
In this paper, we employ single-molecule force spectroscopy with an atomic force microscope (AFM) and steered molecular dynamics (SMD) simulations to reveal force propagation pathways through a mechanically ultrastable multidomain cellulosome protein complex. We demonstrate a new combination of network-based correlation analysis supported by AFM directional pulling experiments, which allowed us to visualize stiff paths through the protein complex along which force is transmitted. Finally, the results implicate specific force-propagation routes nonparallel to the pulling axis that are advantageous for achieving high dissociation forces.
Atmospheric propagation effects relevant to optical communications
NASA Technical Reports Server (NTRS)
Shaik, K. S.
1988-01-01
A number of atmospheric phenomena affect the propagation of light. The effects of clear air turbulence are reviewed as well as atmospheric turbidity on optical communications. Among the phenomena considered are astronomical and random refraction, scintillation, beam broadening, spatial coherence, angle of arrival, aperture averaging, absorption and scattering, and the effect of opaque clouds. An extensive reference list is also provided for further study. Useful information on the atmospheric propagation of light in relation to optical deep space communications to an earth based receiving station is available, however, further data must be generated before such a link can be designed with committed performance.
Solidification Effect on an Upwardly Propagating Crack
NASA Astrophysics Data System (ADS)
Fargetton, T.; Taisne, B.; Tait, S.
2006-12-01
We present the results of laboratory experiments designed to study the influence of solidification on the propagation of magma-filled fractures in the Earth's lithosphere. The flows are driven both by buoyancy of the fluid with respect to the solid and a constant source overpressure; the flow Reynolds Numbers are small. Fluids are Newtonian with a well know solidification temperature and the solid hosting the fractures is gelatin with isotropic homogeneous elastic properties. Elastic modulus, fracture toughness, injection rate and temperature difference between fluid and solid vary between experiments. We highlight two results: First, even when a crack is fed with a constant volumetric flux of fluid, the crack can propagate by steps as follows: the crack tip stalls as freezing occurs at the narrow tip, the crack then undergoes a phase of inflation before the propagation can resume by fluid from the liquid interior of the crack breaking through the frozen skin. Second, the propagation does not occur necessarily from the tip, and can take place by the dyke branching out laterally, sometimes well behind the tip. The scaling law we have obtained suggests that, for given temperatures of the fluid and the solid, three behaviors are possible as a function of increasing driving force (no propagation, step like propagation, and continuous propagation). This result implies that for given rock and magma properties, there should be a minimum input flux necessary for eruption to occur. High-resolution seismic observations of propagating dykes in the literature show that the focus of seismic energy release does not migrate monotonically but that energy is also often released behind the tip, which could be explained by the phenomenon of horizontal breaking out observed in the experiments. This phenomenon also leads to a final crack structure made of overlapping segments that is geometrically comparable to overlapping dyke segments that can be observed in the field on eroded dyke
Neutrino propagation in matter with general interactions
Bergmann, S.; Grossman, Y.; Nardi, E.
1999-11-01
We present a general analysis of the effective potential for neutrino propagation in matter, assuming a generic set of Lorentz invariant non-derivative interactions. We find that in addition to the known vector and axial vector terms, in a polarized medium also tensor interactions can play an important role. We compute the effective potential arising from a tensor interaction. We show that the components of the tensor potential transverse to the direction of the neutrino propagation can induce a neutrino spin flip, similar to the one induced by a transverse magnetic field. {copyright} {ital 1999} {ital The American Physical Society}
Information propagation for interacting-particle systems
Schuch, Norbert; Harrison, Sarah K.; Osborne, Tobias J.; Eisert, Jens
2011-09-15
We study the speed at which information propagates through systems of interacting quantum particles moving on a regular lattice and show that for a certain class of initial conditions there exists a maximum speed of sound at which information can propagate. Our argument applies equally to quantum spins, bosons such as in the Bose-Hubbard model, fermions, anyons, and general mixtures thereof, on arbitrary lattices of any dimension. It also pertains to dissipative dynamics on the lattice, and generalizes to the continuum for quantum fields. Our result can be seen as an analog of the Lieb-Robinson bound for strongly correlated models.
Area change effects on shock wave propagation
NASA Astrophysics Data System (ADS)
Dowse, J.; Skews, B.
2014-07-01
Experimental testing was conducted for a planar shock wave of incident Mach number propagating through one of three compound parabolic profiles of 130, 195 or 260 mm in length, all of which exhibit an 80 % reduction in area. Both high-resolution single shot and low-resolution video were used in a schlieren arrangement. Results showed three main types of flow scenarios for propagation through a gradual area reduction, and an optimal net increase of 12.7 % in shock Mach number was determined for the longest profile, which is within 5 % of theoretical predictions using Milton's modified Chester-Chisnell-Whitham relation.
Enhancement of in vitro Guayule propagation
NASA Technical Reports Server (NTRS)
Dastoor, M. N.; Schubert, W. W.; Petersen, G. R. (Inventor)
1982-01-01
A method for stimulating in vitro propagation of Guayule from a nutrient medium containing Guayule tissue by adding a substituted trialkyl amine bioinducing agent to the nutrient medium is described. Selective or differentiated propagation of shoots or callus is obtained by varying the amounts of substituted trialky amine present in the nutrient medium. The luxuriant growth provided may be processed for its poly isoprene content or may be transferred to a rooting medium for production of whole plants as identical clones of the original tissue. The method also provides for the production of large numbers of Guayule plants having identical desirable properties such as high polyisoprene levels.
Atmospheric Propagation Effects Relevant to Optical Communications
NASA Technical Reports Server (NTRS)
Shaik, K. S.
1988-01-01
A number of atmospheric phenomena affect the propagation of light. This article reviews the effects of clear-air turbulence as well as atmospheric turbidity on optical communications. Among the phenomena considered are astronomical and random refraction, scintillation, beam broadening, spatial coherence, angle of arrival, aperture averaging, absorption and scattering, and the effect of opaque clouds. An extensive reference list is also provided for further study, Useful information on the atmospheric propagation of light in resolution to optical deep-space communications to an earth-based receiving station is available, however, further data must be generated before such a link can be designed with committed performance.
Propagation of a liquid-liquid explosion
Harlow, F.H.; Ruppel, H.M.
1981-08-01
Direct contact between two liquids, one cold and the other hot, may be precluded by the presence of a vapor film. Bridging of this film by one or both fluids results in rapid local boiling, which may initiate a propagating liquid-liquid explosion. A mechanism is discussed for the propagation that involves implosion of the film, rapid mixing of the fluids, heat exchange to warm the cold fluid above the temperature for spontaneous nucleation, and the explosive generation of vapor, which in turn continues to sustain the film implosion. Plausibility for the model is demonstrated by means of numerical studies by high-speed computer.
Nonlinear acoustic propagation in rectangular ducts
NASA Technical Reports Server (NTRS)
Nayfeh, A. H.; Tsai, M.-S.
1974-01-01
The method of multiple scales is used to obtain a second-order uniformly valid expansion for nonlinear acoustic wave propagation in a rectangular duct whose walls are treated with a nonlinear acoustic material. The wave propagation in the duct is characterized by the unsteady nonlinear Euler equations. The results show that nonlinear materials attenuate sound more than linear materials except at high acoustic frequencies. The nonlinear materials produce higher and combination tones which have higher attenuation rates than the fundamentals. Moreover, the attenuation rates of the fundamentals increase with increasing amplitude.
Underwater Sound Propagation from Marine Pile Driving.
Reyff, James A
2016-01-01
Pile driving occurs in a variety of nearshore environments that typically have very shallow-water depths. The propagation of pile-driving sound in water is complex, where sound is directly radiated from the pile as well as through the ground substrate. Piles driven in the ground near water bodies can produce considerable underwater sound energy. This paper presents examples of sound propagation through shallow-water environments. Some of these examples illustrate the substantial variation in sound amplitude over time that can be critical to understand when computing an acoustic-based safety zone for aquatic species.
Lag-driven motion in front propagation
NASA Astrophysics Data System (ADS)
Amor, Daniel R.; Fort, Joaquim
2013-10-01
Front propagation is a ubiquitous phenomenon. It arises in physical, biological and cross-disciplinary systems as diverse as flame propagation, superconductors, virus infections, cancer spread or transitions in human prehistory. Here we derive a single, approximate front speed from three rather different time-delayed reaction-diffusion models, suggesting a general law. According to our approximate speed, fronts are crucially driven by the lag times (periods during which individuals or particles do not move). Rather surprisingly, the approximate speed is able to explain the observed spread rates of completely different biophysical systems such as virus infections, the Neolithic transition in Europe, and postglacial tree recolonizations.
Measurement of low-altitude infrared propagation.
Zeisse, C R; Nener, B D; Dewees, R V
2000-02-20
Infrared propagation at low altitudes is determined by extinction that is due to molecules and aerosol particles and ray bending by refraction, three effects that control the mean value of the signal. Interference causes the signal to fluctuate, or scintillate, about the mean value. We discuss the design, calibration, and limitations of a field instrument for measuring optical propagation inside the midwave and long-wave infrared atmospheric windows. The instrument, which is accurate to ?10%, has been used to investigate aerosol, refractive, and scintillation phenomena in the marine boundary layer.
Surface acoustic wave propagation in graphene film
Roshchupkin, Dmitry Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry; Ortega, Luc; Zizak, Ivo; Erko, Alexei; Tynyshtykbayev, Kurbangali; Insepov, Zinetula
2015-09-14
Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.
Scattering and Propagation in Random Media
1988-01-01
accumulation along that ray, a U(rF) -u(r,a)exp{ik Jd~no~) (3) 0 Were, no(O) -n(0O0) (4) is the deterministic (background) part of the variable refractive index...msdium with variable background refractive index, the following equation governs the propags- tion of the TPCF r2 (see [31): 2 2 or __2___ rr2 ___ 2 h (r...mingle scattering. In the secaed variables , the propagation vroperties of the coherence function r (p,;,i) are governed by the eQuition Fr .0 (13a
Comments on 'Rapid pulsed microwave propagation'
NASA Technical Reports Server (NTRS)
Steffes, Paul G.; Rodrigue, George P.
1992-01-01
Giakos and Ishii (1991) claim conclusive experimental evidence that microwave pulse propagation in waveguides and in air occurs at velocities exceeding the free-space speed of light, and assert that it is possible to transmit both energy and information in a non-TEM waveguiding medium at the lightspeed-exceeding phase velocity. The present analysis of their results reveals several significant potential sources of error in both their laboratory findings and those findings' interpretation. Giakos and Ishii reply that the accuracy of the propagation measurements presented in their study exceeds 0.2 percent.
Launching and propagation of protostellar jets
NASA Astrophysics Data System (ADS)
Fendt, Christian; Sheikhnezami, Somayeh
2013-07-01
We present resistive MHD simulations of jet launching and propagation using the PLUTO code. The main question we address is which kind of disks launch jets and which kind of disks do not? We investigate the jet-disk interaction applying different profiles of the disk magnetic diffusivity and derive the corresponding accretion and ejection rates for bipolar outflows. We determine the launching disk area of the fast component of protostellar jets. We further investigate numerically symmetry aspects of jet and counter jet. Finally, we present a model explaining the observationally indicated jet rotation by MHD shocks of the helical magnetic field in the propagating jet.
Enhancing data locality by using terminal propagation
Hendrickson, B.; Leland, R.; Van Driessche, R.
1995-12-31
Terminal propagation is a method developed in the circuit placement community for adding constraints to graph partitioning problems. This paper adapts and expands this idea, and applies it to the problem of partitioning data structures among the processors of a parallel computer. We show how the constraints in terminal propagation can be used to encourage partitions in which messages are communicated only between architecturally near processors. We then show how these constraints can be handled in two important partitioning algorithms, spectral bisection and multilevel-KL. We compare the quality of partitions generated by these algorithms to each other and to Partitions generated by more familiar techniques.
Propagation of transients in a random medium
NASA Technical Reports Server (NTRS)
Wenzel, A. R.
1975-01-01
The propagation of transient scalar waves in a three-dimensional random medium is considered. The analysis is based on the smoothing method. An integro-differential equation for the coherent (or average) wave is derived and solved for the case of a statistically homogeneous and isotropic medium and a delta-function source. This yields the coherent Green's function of the medium. It is found that the waveform of the coherent wave depends generally on the distance from the source measured in terms of a certain dimensionless parameter. Based on the magnitude of this parameter, three propagation zones, called the near zone, the far zone, and the intermediate zone, are defined.
Surface acoustic wave propagation in graphene film
NASA Astrophysics Data System (ADS)
Roshchupkin, Dmitry; Ortega, Luc; Zizak, Ivo; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Erko, Alexei; Tynyshtykbayev, Kurbangali; Irzhak, Dmitry; Insepov, Zinetula
2015-09-01
Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.
Light propagation in the South Pole ice
Williams, Dawn; Collaboration: IceCube Collaboration
2014-11-18
The IceCube Neutrino Observatory is located in the ice near the geographic South Pole. Particle showers from neutrino interactions in the ice produce light which is detected by IceCube modules, and the amount and pattern of deposited light are used to reconstruct the properties of the incident neutrino. Since light is scattered and absorbed by ice between the neutrino interaction vertex and the sensor, IceCube event reconstruction depends on understanding the propagation of light through the ice. This paper presents the current status of modeling light propagation in South Pole ice, including the recent observation of an azimuthal anisotropy in the scattering.
Quantum theory of light propagation - Linear medium
NASA Astrophysics Data System (ADS)
Abram, I.
1987-06-01
A quantum-mechanical formalism has been developed which permits the treatment of light propagation within the conceptual framework of quantum optics. The formalism rests on the calculation of the momentum operator for the radiation field, and yields directly a description for the spatial progression of the electromagnetic waves. In this paper, a quantum-mechanical treatment for refraction and reflection is given by applying the formalism to propagation through a linear dielectric. The fidelity with which this formalism reproduces all results known from classical optics demonstrates its validity.
Microwave Propagation Through Cultural Vegetation Canopies
NASA Astrophysics Data System (ADS)
Tavakoli, Ahad
The need to understand the interaction of microwaves with vegetation canopies has markedly increased in recent years. This is due to advances made in remote sensing science, microwave technology, and signal processing circuits. One class of the earth's vegetation cover is man-made canopies, such as agricultural fields, orchards, and artificial forests. Contrary to natural vegetation terrain, location, spacing, and density of plants in a man-made vegetation canopy are deterministic quantities. As a result, the semi-deterministic nature of cultural vegetation canopies violate the random assumption of the radiative transfer theory and leads to experimented results that are in variance with model calculations. Hence, an alternative approach is needed to model the interaction of microwaves with such canopies. This thesis examines the propagation behavior through a canopy of corn plants. The corn canopy was selected as a representative of cultural vegetation canopies that are planted in parallel rows with an approximately fixed spacing between adjacent plants. Several experimental measurements were conducted to determine the transmission properties of a corn canopy in the 1-10 GHz range. The measurements which included horizontal propagation through the canopy as well as propagation at oblique incidence, were performed for defoliated canopies and for canopies with leaves. Through experimental observations and model development, the propagation behavior was found to be strongly dependent on the wavelength and the path length. At a wavelength in the neighborhood of 20 cm, for example, it was found that scattering by the stalks was coherent in nature for waves propagating horizontally through the canopy, which necessitated the development of a coherent-field model that uses Bragg scattering to account for the observed interference pattern in the transmitted beam. As the wavelength is made shorter, the semi-random spacing between plants becomes significant relative to the
A Model of Radar Propagation and Detection.
1983-12-01
1W.TI’AION N. ii.RATAGLIA P.WILLIAIMS ABSTRACT A compater model of redar propagation **d deteetios Is deseribed. The details of multipath. olutter. attemation...6§(:) U - p’)Qj1l(:) + 33(1 - PN-)( -- for I49 (0-47) The developmeat of similar reearsive expressione for other Ua criteria G-10 using Slarkov state...A Model of Wdar Propagation untL10 I and Detection b. title I7.No Refs I I I UNCLAS I I Ic. abstract 28 I II I I18. Author(s)J 9.Domnsradin8
Acoustic propagation in a thermally stratified atmosphere
NASA Technical Reports Server (NTRS)
Vanmoorhem, W. K.
1984-01-01
This report describes the activities during the fourth six month period of the investigation of acoustic propagation in the atmosphere with a realistic lapse temperature profile. A significant error was detected since the previous semi-annual report and has been corrected in both the plane wave and point source solutions. This report then describes both of these problems in some detail along with presenting some numerical results from the model. Work will begin this summer on the model of propagation in an inversion.
Atmospheric propagation issues relevant to optical communications
NASA Technical Reports Server (NTRS)
Churnside, James H.; Shaik, Kamran
1989-01-01
Atmospheric propagation issues relevant to space-to-ground optical communications for near-earth applications are studied. Propagation effects, current optical communication activities, potential applications, and communication techniques are surveyed. It is concluded that a direct-detection space-to-ground link using redundant receiver sites and temporal encoding is likely to be employed to transmit earth-sensing satellite data to the ground some time in the future. Low-level, long-term studies of link availability, fading statistics, and turbulence climatology are recommended to support this type of application.
Fundamental limitations caused by RF propagation
NASA Technical Reports Server (NTRS)
Crane, R. K.
1981-01-01
Propagation phenomena affect the design of radio frequency (RF) transmission systems. Propagation phenomena limit the suitability of portions of the frequency band for some applications, limit the reliability of RF transmission systems, and provide a means of coupling unwanted signals from one system to another with the potential of producing interference. The possibility of interference is the fundamental limitation to the unrestricted use of the frequency band. Phenomena affecting suitability, reliability, and the potential for interference are considered for frequencies in the 1- to 300-GHz range.
Propagation limits for land mobile satellite service
NASA Astrophysics Data System (ADS)
Vogel, Wolfhard J.; Goldhirsh, Julius
This paper considers propagation limits for land mobile satellite systems for providing telephone and data communications to vehicles. Results on propagation statistics from a series of measurements and modeling experiments are reviewed with the objective to characterize the signal statistics under variable conditions, such as roadside obstacles, terrain features, elevation angles, the side of a road and the direction driven, seasonal effects, unshadowed versus shadowed line-of-sight conditions, as well as high- and low-gain antennas, and cross-polarization effects.
Displacement of Propagating Squeezed Microwave States
NASA Astrophysics Data System (ADS)
Fedorov, Kirill G.; Zhong, L.; Pogorzalek, S.; Eder, P.; Fischer, M.; Goetz, J.; Xie, E.; Wulschner, F.; Inomata, K.; Yamamoto, T.; Nakamura, Y.; Di Candia, R.; Las Heras, U.; Sanz, M.; Solano, E.; Menzel, E. P.; Deppe, F.; Marx, A.; Gross, R.
2016-07-01
Displacement of propagating quantum states of light is a fundamental operation for quantum communication. It enables fundamental studies on macroscopic quantum coherence and plays an important role in quantum teleportation protocols with continuous variables. In our experiments, we have successfully implemented this operation for propagating squeezed microwave states. We demonstrate that, even for strong displacement amplitudes, there is no degradation of the squeezing level in the reconstructed quantum states. Furthermore, we confirm that path entanglement generated by using displaced squeezed states remains constant over a wide range of the displacement power.
Future changes in propagating and non-propagating diurnal rainfall over East Asia
NASA Astrophysics Data System (ADS)
Huang, Wan-Ru; Wang, S.-Y. Simon
2016-09-01
The characteristics of diurnal rainfall in the East Asian continent consist of a propagating regime over the Yangtze River and a non-propagating regime in southeast China. Simulations of these two diurnal rainfall regimes by 18 CMIP5 models were evaluated from the historical experiment of 1981-2005. The evaluation led to the identification of one model, the CMCC-CM that replicated the key characteristics of diurnal rainfall regimes including the propagation of moisture convergence. Using the CMCC-CM to assess the future (2076-2100) change of diurnal evolution and propagation projected by the RCP4.5 experiment, it was found that propagating diurnal rainfall will enhance and expand southward into the non-propagating regime in southeast China. This change in diurnal rainfall is attributed to the intensification of diurnal land-sea thermal contrast over eastern China and the southward shift of the upper-level jet stream over 20°-30°N. Similar projected changes in diurnal rainfall and associated large-scale dynamical mechanisms were also depicted by four other models (GFDL-ESM2G, GFDL-ESM2M, MRI-CGCM3, and MRI-ESM1) showing a higher skill in representing the diurnal rainfall regimes over East Asia. If such model projection holds true, southeast China will experience an increase in the eastward propagating diurnal rainfall, which could further impact Taiwan.
Future changes in propagating and non-propagating diurnal rainfall over East Asia
NASA Astrophysics Data System (ADS)
Huang, Wan-Ru; Wang, S.-Y. Simon
2017-07-01
The characteristics of diurnal rainfall in the East Asian continent consist of a propagating regime over the Yangtze River and a non-propagating regime in southeast China. Simulations of these two diurnal rainfall regimes by 18 CMIP5 models were evaluated from the historical experiment of 1981-2005. The evaluation led to the identification of one model, the CMCC-CM that replicated the key characteristics of diurnal rainfall regimes including the propagation of moisture convergence. Using the CMCC-CM to assess the future (2076-2100) change of diurnal evolution and propagation projected by the RCP4.5 experiment, it was found that propagating diurnal rainfall will enhance and expand southward into the non-propagating regime in southeast China. This change in diurnal rainfall is attributed to the intensification of diurnal land-sea thermal contrast over eastern China and the southward shift of the upper-level jet stream over 20°-30°N. Similar projected changes in diurnal rainfall and associated large-scale dynamical mechanisms were also depicted by four other models (GFDL-ESM2G, GFDL-ESM2M, MRI-CGCM3, and MRI-ESM1) showing a higher skill in representing the diurnal rainfall regimes over East Asia. If such model projection holds true, southeast China will experience an increase in the eastward propagating diurnal rainfall, which could further impact Taiwan.
Coupled Mode Propagation in Elastic Media
2007-09-30
Coupled Mode Propagation in Elastic Media Ahmad T. Abawi and Michael B. Porter Heat , Light, and Sound Research, Inc. 3366 North Torrey Pines Ct...ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Heat , Light
Detonation propagation in a high loss configuration
Jackson, Scott I; Shepherd, Joseph E
2009-01-01
This work presents an experimental study of detonation wave propagation in tubes with inner diameters (ID) comparable to the mixture cell size. Propane-oxygen mixtures were used in two test section tubes with inner diameters of 1.27 mm and 6.35 mm. For both test sections, the initial pressure of stoichiometric mixtures was varied to determine the effect on detonation propagation. For the 6.35 mm tube, the equivalence ratio {phi} (where the mixture was {phi} C{sub 3}H{sub 8} + 50{sub 2}) was also varied. Detonations were found to propagate in mixtures with cell sizes as large as five times the diameter of the tube. However, under these conditions, significant losses were observed, resulting in wave propagation velocities as slow as 40% of the CJ velocity U{sub CJ}. A review of relevant literature is presented, followed by experimental details and data. Observed velocity deficits are predicted using models that account for boundary layer growth inside detonation waves.
Radar propagation in coastal environments: Vampira results
NASA Astrophysics Data System (ADS)
Essen, Helmut; Fuchs, Hans-Hellmuth; Pagels, Anke
2006-09-01
The performance of sensors operating in coastal environments is severely influenced by the actual atmospheric conditions and the sea surface. Propagation models are in existence, which cope with the varying environment and allow a performance prediction for sensors in different bands of the electromagnetic spectrum. Model calculations give evidence for a complementary performance of sensors operating in the IR region and at radar frequencies ranging from X- to W-band. To validate existing radar propagation models like TERPEM and to compare IR with mm-wave propagation over sea under various atmospherically conditions, joint experiments with IR- and radar sensors were conducted over transmission ranges well beyond the horizon. For the measurements a naval vessel was moving on outbound and inbound courses ranging from the sensor site over the horizon, carrying corner reflectors acting as point targets at different heights above sea. This allowed a thorough investigation of duct propagation at different heights above the sea surface. The measurements were accompanied by a detailed environmental characterization of the sea surface and the atmosphere. The paper describes the experimental approach and gives representative results for measurement and simulation. The implications on performance especially for a multispectral (IR/mmW) approach are discussed.
Propagation of shock waves through clouds
NASA Astrophysics Data System (ADS)
Zhou, Xin Xin
1990-10-01
The behavior of a shock wave propagating into a cloud consisting of an inert gas, water vapor and water droplets was investigated. This has particular application to sonic bangs propagating in the atmosphere. The finite different method of MacCormack is extended to solve the one and two dimensional, two phase flow problems in which mass, momentum and energy transfers are included. The FCT (Fluid Corrected Transport) technique developed by Boris and Book was used in the basic numerical scheme as a powerful corrective procedure. The results for the transmitted shock waves propagating in a one dimensional, semi infinite cloud obtained by the finite difference approach are in good agreement with previous results by Kao using the method characteristics. The advantage of the finite difference method is its adaptability to two and three dimensional problems. Shock wave propagation through a finite cloud and into an expansion with a 90 degree corner was investigated. It was found that the transfer processes between the two phases in two dimensional flow are much more complicated than in the one dimensional flow cases. This is mainly due to the vortex and expansion wave generated at the corner. In the case considered, further complications were generated by the reflected shock wave from the floor. Good agreement with experiment was found for one phase flow but experimental data for the two phase case is not yet available to validate the two phase calculations.
Prestress mediates force propagation into the nucleus
Hu Shaohua; Chen Jianxin; Butler, James P.; Wang Ning . E-mail: nwang@hsph.harvard.edu
2005-04-08
Several reports show that the nucleus is 10 times stiffer than the cytoplasm. Hence, it is not clear if intra-nuclear structures can be directly deformed by a load of physiologic magnitudes. If a physiologic load could not directly deform intra-nuclear structures, then signaling inside the nucleus would occur only via the mechanisms of diffusion or translocation. Using a synchronous detection approach, we quantified displacements of nucleolar structures in cultured airway smooth muscle cells in response to a localized physiologic load ({approx}0.4 {mu}m surface deformation) via integrin receptors. The nucleolus exhibited significant displacements. Nucleolar structures also exhibited significant deformation, with the dominant strain being the bulk strain. Increasing the pre-existing tensile stress (prestress) in the cytoskeleton significantly increased the stress propagation efficiency to the nucleolus (defined as nucleolus displacement per surface deformation) whereas decreasing the prestress significantly lowered the stress propagation efficiency to the nucleolus. Abolishing the stress fibers/actin bundles by plating the cells on poly-L-lysine-coated dishes dramatically inhibited stress propagation to the nucleolus. These results demonstrate that the prestress in the cytoskeleton is crucial in mediating stress propagation to the nucleolus, with implications for direct mechanical regulation of nuclear activities and functions.
Simulation of action potential propagation in plants.
Sukhov, Vladimir; Nerush, Vladimir; Orlova, Lyubov; Vodeneev, Vladimir
2011-12-21
Action potential is considered to be one of the primary responses of a plant to action of various environmental factors. Understanding plant action potential propagation mechanisms requires experimental investigation and simulation; however, a detailed mathematical model of plant electrical signal transmission is absent. Here, the mathematical model of action potential propagation in plants has been worked out. The model is a two-dimensional system of excitable cells; each of them is electrically coupled with four neighboring ones. Ion diffusion between excitable cell apoplast areas is also taken into account. The action potential generation in a single cell has been described on the basis of our previous model. The model simulates active and passive signal transmission well enough. It has been used to analyze theoretically the influence of cell to cell electrical conductivity and H(+)-ATPase activity on the signal transmission in plants. An increase in cell to cell electrical conductivity has been shown to stimulate an increase in the length constant, the action potential propagation velocity and the temperature threshold, while the membrane potential threshold being weakly changed. The growth of H(+)-ATPase activity has been found to induce the increase of temperature and membrane potential thresholds and the reduction of the length constant and the action potential propagation velocity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Propagation of Innovations in Networked Groups
ERIC Educational Resources Information Center
Mason, Winter A.; Jones, Andy; Goldstone, Robert L.
2008-01-01
A novel paradigm was developed to study the behavior of groups of networked people searching a problem space. The authors examined how different network structures affect the propagation of information in laboratory-created groups. Participants made numerical guesses and received scores that were also made available to their neighbors in the…
Propagation handbook, frequencies above 10 GHz
NASA Technical Reports Server (NTRS)
Ippolito, Louis J.
1988-01-01
The progress and accomplishments in the developmet of the Fourth Edition of the NASA Propagation Effects Handbook for Satellite Systems Design, for frequencies 10 to 100 GHz, NASA Reference Publication 1082(04), dated May 1988, prepared by Westighouse Electric Corporation for the Jet Propulsion Laboratory are discussed.
Electromagnetic wave propagations in conjugate metamaterials.
Xu, Yadong; Fu, Yangyang; Chen, Huanyang
2017-03-06
In this work, by employing field transformation optics, we deduce a special kind of materials called conjugate metamaterials, which can support intriguing electromagnetic wave propagations, such as negative refractions and lasing phenomena. These materials could also serve as substrates for making a subwavelength-resolution lens, and the so-called "perfect lens" is demonstrated to be a limiting case.
Antenna Construction and Propagation of Radio Waves.
ERIC Educational Resources Information Center
Marine Corps Inst., Washington, DC.
Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…
Exact propagators for some degenerate hyperbolic operators
NASA Astrophysics Data System (ADS)
Beals, Richard; Kannai, Yakar
2006-10-01
Exact propagators are obtained for the degenerate second order hyperbolic operators ∂2 t - t 2 l Δ x , l=1,2,..., by analytic continuation from the degenerate elliptic operators ∂2 t + t 2 l Δ x . The partial Fourier transforms are also obtained in closed form, leading to integral transform formulas for certain combinations of Bessel functions and modified Bessel functions.
Space Weather Effects on RF Propagation
2006-03-15
propagation medium that are to be studied depends on the presented at B 1, namely those aspects that will be seen that are related with the Maxwell’s ... equation application, and so with the radiation characteristics of the "virtual antenna". 3- To simulate some point-to-point links using the new procedure
Vertical laser beam propagation through the troposphere
NASA Technical Reports Server (NTRS)
Minott, P. O.; Bufton, J. L.; Schaefer, W. H.; Grolemund, D. A.
1974-01-01
The characteristics of the earth's atmosphere and its effects upon laser beams was investigated in a series of balloon borne, optical propagation experiments. These experiments were designed to simulate the space to ground laser link. An experiment to determine the amplitude fluctuation, commonly called scintillation, caused by the atmosphere was described.
Vegetative Propagation of Aspen by Greenwood Cuttings
Robert E. Farmer
1963-01-01
Greenwood stem cuttings taken from root suckers of Populus tremuloides and P. grandidentata were rooted in coarse sand under both intermittent mist and polyethylene sheeting in a greenhouse and under mist in an outdoor propagation bed. Prerooting treatment of cuttings with aqueous solutions of lBA (20-100 p.p.m. ) stimulated...
Strategies for Seed Propagation of Native Forbs
Susan E. Meyer
2006-01-01
Native forbs are an increasingly important component of container production for many public and private nurseries. Propagators are often called upon to grow species with unknown requirements. A systematic approach is required to obtain plants from seeds of these species, beginning with determining what is a propagule and evaluating seed quality. Next, seed dormancy...
Propagating double layers in electronegative plasmas
Meige, A.; Plihon, N.; Hagelaar, G. J. M.; Boeuf, J.-P.; Chabert, P.; Boswell, R. W.
2007-05-15
Double layers have been observed to propagate from the source region to the diffusion chamber of a helicon-type reactor filled up with a low-pressure mixture of Ar/SF{sub 6} [N. Plihon et al., J. Appl. Phys. 98, 023306 (2005)]. In the present paper the most significant and new experimental results are reported. A fully self-consistent hybrid model in which the electron energy distribution function, the electron temperature, and the various source terms are calculated is developed to investigate these propagating double layers. The spontaneous formation of propagating double layers is only observed in the simulation for system in which the localized inductive heating is combined with small diameter chambers. The conditions of formation and the properties of the propagating double layers observed in the simulation are in good agreement with that of the experiment. By correlating the results of the experiment and the simulation, a formation mechanism compatible with ion two-stream instability is proposed.
Generation and propagation of optical vortices
NASA Astrophysics Data System (ADS)
Rozas, David
Optical vortices are singularities in phase fronts of laser beams. They are characterized by a dark core whose size (relative to the size of the background beam) may dramatically affect their behavior upon propagation. Previously, only large-core vortices have been extensively studied. The object of the research presented in this dissertation was to explore ways of generating small-core optical vortices (also called optical vortex filaments ), and to examine their propagation using analytical, numerical and experimental methods. Computer-generated holography enabled us to create arbitrary distributions of optical vortex filaments for experimental exploration. Hydrodynamic analogies were used to develop an heuristic model which described the dependence of vortex motion on other vortices and the background beam, both qualitatively and quantitatively. We predicted that pair of optical vortex filaments will rotate with angular rates inversely proportional to their separation distance (just like vortices in a fluid). We also reported the first experimental observation of this novel fluid-like effect. It was found, however, that upon propagation in linear media, the fluid-like rotation was not sustained owing to the overlap of diffracting vortex cores. Further numerical studies and experiments showed that rotation angle may be enhanced in nonlinear self-defocusing media. The results presented in this thesis offer us a better understanding of dynamics of propagating vortices which may result in applications in optical switching, optical data storage, manipulation of micro-particles and optical limiting for eye protection.
Propagating waves can explain irregular neural dynamics.
Keane, Adam; Gong, Pulin
2015-01-28
Cortical neurons in vivo fire quite irregularly. Previous studies about the origin of such irregular neural dynamics have given rise to two major models: a balanced excitation and inhibition model, and a model of highly synchronized synaptic inputs. To elucidate the network mechanisms underlying synchronized synaptic inputs and account for irregular neural dynamics, we investigate a spatially extended, conductance-based spiking neural network model. We show that propagating wave patterns with complex dynamics emerge from the network model. These waves sweep past neurons, to which they provide highly synchronized synaptic inputs. On the other hand, these patterns only emerge from the network with balanced excitation and inhibition; our model therefore reconciles the two major models of irregular neural dynamics. We further demonstrate that the collective dynamics of propagating wave patterns provides a mechanistic explanation for a range of irregular neural dynamics, including the variability of spike timing, slow firing rate fluctuations, and correlated membrane potential fluctuations. In addition, in our model, the distributions of synaptic conductance and membrane potential are non-Gaussian, consistent with recent experimental data obtained using whole-cell recordings. Our work therefore relates the propagating waves that have been widely observed in the brain to irregular neural dynamics. These results demonstrate that neural firing activity, although appearing highly disordered at the single-neuron level, can form dynamical coherent structures, such as propagating waves at the population level. Copyright © 2015 the authors 0270-6474/15/351591-15$15.00/0.
Cosmic Ray Origin, Acceleration and Propagation
NASA Technical Reports Server (NTRS)
Baring, Matthew G.
2000-01-01
This paper summarizes highlights of the OG3.1, 3.2 and 3.3 sessions of the 26th International Cosmic Ray Conference in Salt Lake City, which were devoted to issues of origin/composition, acceleration and propagation.
Using Least Squares for Error Propagation
ERIC Educational Resources Information Center
Tellinghuisen, Joel
2015-01-01
The method of least-squares (LS) has a built-in procedure for estimating the standard errors (SEs) of the adjustable parameters in the fit model: They are the square roots of the diagonal elements of the covariance matrix. This means that one can use least-squares to obtain numerical values of propagated errors by defining the target quantities as…
Application of Taylor's series to trajectory propagation
NASA Technical Reports Server (NTRS)
Stanford, R. H.; Berryman, K. W.; Breckheimer, P. J.
1986-01-01
This paper describes the propagation of trajectories by the application of the preprocessor ATOMCC which uses Taylor's series to solve initial value problems in ordinary differential equations. Comparison of the results obtained with those from other methods are presented. The current studies indicate that the ATOMCC preprocessor is an easy, yet fast and accurate method for generating trajectories.
Propagation of Innovations in Networked Groups
ERIC Educational Resources Information Center
Mason, Winter A.; Jones, Andy; Goldstone, Robert L.
2008-01-01
A novel paradigm was developed to study the behavior of groups of networked people searching a problem space. The authors examined how different network structures affect the propagation of information in laboratory-created groups. Participants made numerical guesses and received scores that were also made available to their neighbors in the…
PROPAGATION AND LINKAGE OF OCEANIC RIDGE SEGMENTS.
Pollard, David D.; Aydin, Atilla
1984-01-01
An investigation was made of spreading ridges and the development of structures that link ridge segments using an analogy between ridges and cracks in elastic plates. The ridge-propagation force and a path factor that controls propagation direction were calculated for echelon ridge segments propagating toward each other. The ridge-propagation force increases as ridge ends approach but then declines sharply as the ends pass, so ridge segments may overlap somewhat. The sign of the path factor changes as ridge ends approach and pass, so the overlapping ridge ends may diverge and then converge following a hook-shaped path. The magnitudes of shear stresses in the plane of the plate and orientations of maximum shear planes between adjacent ridge segments were calculated to study transform faulting. For different loading conditions simulating ridge push, plate pull, and ridge suction, a zone of intense mechanical interaction between adjacent ridge ends in which stresses are concentrated was identified. The magnitudes of mean stresses in the plane of the plate and orientations of principal stress planes were also calculated.
Using Least Squares for Error Propagation
ERIC Educational Resources Information Center
Tellinghuisen, Joel
2015-01-01
The method of least-squares (LS) has a built-in procedure for estimating the standard errors (SEs) of the adjustable parameters in the fit model: They are the square roots of the diagonal elements of the covariance matrix. This means that one can use least-squares to obtain numerical values of propagated errors by defining the target quantities as…
Polymer Dirac field propagator: A model
NASA Astrophysics Data System (ADS)
García-Chung, Angel A.; Morales-Técotl, Hugo A.
2014-03-01
Polymer quantum mechanics, the mechanical analogue of the loop quantization of gravity, has been applied recently to scalar field modes yielding interesting behavior for its corresponding propagator at high, possibly Planck's, energy. Clearly other matter components are worth investigating along these lines, and thus we focus here on the Dirac field. To proceed to the polymer analysis of the Dirac field, a previous canonical analysis of its modes is advantageous. We show that this yields an energy spectrum suggesting a natural Fermi oscillator decomposition and, moreover, that both Fourier modes and Fermi oscillators lead to the corresponding free propagator in flat space-time. Finally, we advance a model entailing the polymer quantization of the Fermi oscillators that make up the Dirac field. It consists of a discrete set that replaces one of the two real anticommutative lines forming the reduced phase space of a Fermi oscillator. This is in analogy to the bosonic harmonic oscillator in which the corresponding polymer quantization involves replacing the real line by a regular lattice. The resulting polymer propagator contains as its body the standard Dirac field propagator plus soul terms involving up to second-order powers in two anticommutative parameters. Some possible physical implications are mentioned in the discussion.
Blast noise propagation above a snow cover.
Albert, D G; Hole, L R
2001-06-01
A porous medium model of a snow cover, rather than a viscoelastic treatment, has been used to simulate measured, horizontally traveling acoustic waveform propagation above a dry snow cover 11-20 cm thick. The waveforms were produced by explosions of 1-kg charges at propagation distances of 100 to 1400 m. These waveforms, with a peak frequency around 30 Hz, show pulse broadening effects similar to those previously seen for higher-frequency waves over shorter propagation distances. A rigid-ice-frame porous medium ("rigid-porous") impedance model, which includes the effect of the pores within the snow but ignores any induced motion of the ice particles, is shown to produce much better agreement with the measured waveforms compared with a viscoelastic solid treatment of the snow cover. From the acoustic waveform modeling, the predicted average snow cover depth of 18 cm and effective flow resistivities of 16-31 kPa s m(-2) agree with snow pit observations and with previous acoustic measurements over snow. For propagation in the upwind direction, the pulse broadening caused by the snow cover interaction is lessened, but the overall amplitude decay is greater because of refraction of the blast waves.
Application of Taylor's series to trajectory propagation
NASA Technical Reports Server (NTRS)
Stanford, R. H.; Berryman, K. W.; Breckheimer, P. J.
1986-01-01
This paper describes the propagation of trajectories by the application of the preprocessor ATOMCC which uses Taylor's series to solve initial value problems in ordinary differential equations. Comparison of the results obtained with those from other methods are presented. The current studies indicate that the ATOMCC preprocessor is an easy, yet fast and accurate method for generating trajectories.
Clonal propagation of eucalyptus in Brazilian nurseries
Ken McNabb; Natal Goncalves; Jose Goncalves
2002-01-01
Brazil has established extensive Eucalyptus plantations to support a growing forest products industry. During the past 25 years, the country has been a pioneer in developing clonal propagation systems to regenerate these highly productive plantations. Original clonal selections optimized disease resistance, coppicing ability, and volume growth, while recent priorities...
Understanding and Predicting Urban Propagation Losses
2009-09-01
based on the Hata model which was derived from Okumura’s propagation data gathered back in the 1960s. Even if an urban environment test bed were...26 D. SOFTWARE ..........................................27 E. INPUT PARAMETERS ..................................27 1. Base Station Antenna...Height ..................27 2. Mobile Station Antenna Height ................27 viii 3. Distance Between Base Station and Mobile Station
Single cycle terahertz pulse propagation in water
NASA Astrophysics Data System (ADS)
Fox, Colleen J.
Single cycle electromagnetic pulses have been difficult to experimentally generate and to theoretically analyze. With the recent development of terahertz systems based on near infrared femtosecond lasers it has become possible to perform single cycle experiments using picosecond pulses. The work presented in this thesis lays the groundwork for the transition from investigations of ultrafast optical pulse propagation in water to similar work at terahertz frequencies. In this thesis a variety of terahertz generation and detection methods are reviewed. Two commercial terahertz spectroscopy systems are examined in detail, improved upon and put into use. The design of a sample holder for thin, variable thickness samples of water or other highly absorbing liquid is detailed and the constructed holder is utilized in preliminary pulse measurements over a range of paths lengths. How the measured terahertz pulses spectrally and temporally change as they propagate through water is analyzed and used to extract the complex refractive index and attenuation coefficient of the tested water. Current knowledge of the molecular behavior of water in the THz frequency range of 300 GHz to 3 THz is discussed and related to experimental results. This information is also used in the preliminary development of two models. One model examines the molecular energy levels in liquid water, their effect on the propagating pulse, and the potential for the formation of precursors. The other model is based on the double Debye theory and can compare the calculated and measured pulses after propagation in both the time and frequency domains.
NASA Technical Reports Server (NTRS)
Golshan, Nassar (Editor)
1996-01-01
The NASA Propagation Experimenters (NAPEX) Meeting and associated Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop convene yearly to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom)industry, academia, and government with an interest in space-ground radio wave propagation have peer discussion of work in progress, disseminate propagation results, and interact with the satcom industry. NAPEX XX, in Fairbanks, Alaska, June 4-5, 1996, had three sessions: (1) "ACTS Propagation Study: Background, Objectives, and Outcomes," covered results from thirteen station-years of Ka-band experiments; (2) "Propagation Studies for Mobile and Personal Satellite Applications," provided the latest developments in measurement, modeling, and dissemination of propagation phenomena of interest to the mobile, personal, and aeronautical satcom industry; and (3)"Propagation Research Topics," covered a range of topics including space/ground optical propagation experiments, propagation databases, the NASA Propagation Web Site, and revision plans for the NASA propagation effects handbooks. The ACTS Miniworkshop, June 6, 1996, covered ACTS status, engineering support for ACTS propagation terminals, and the ACTS Propagation Data Center. A plenary session made specific recommendations for the future direction of the program.
Longitudinal nonlinear wave propagation through soft tissue.
Valdez, M; Balachandran, B
2013-04-01
In this paper, wave propagation through soft tissue is investigated. A primary aim of this investigation is to gain a fundamental understanding of the influence of soft tissue nonlinear material properties on the propagation characteristics of stress waves generated by transient loadings. Here, for computational modeling purposes, the soft tissue is modeled as a nonlinear visco-hyperelastic material, the geometry is assumed to be one-dimensional rod geometry, and uniaxial propagation of longitudinal waves is considered. By using the linearized model, a basic understanding of the characteristics of wave propagation is developed through the dispersion relation and in terms of the propagation speed and attenuation. In addition, it is illustrated as to how the linear system can be used to predict brain tissue material parameters through the use of available experimental ultrasonic attenuation curves. Furthermore, frequency thresholds for wave propagation along internal structures, such as axons in the white matter of the brain, are obtained through the linear analysis. With the nonlinear material model, the authors analyze cases in which one of the ends of the rods is fixed and the other end is subjected to a loading. Two variants of the nonlinear model are analyzed and the associated predictions are compared with the predictions of the corresponding linear model. The numerical results illustrate that one of the imprints of the nonlinearity on the wave propagation phenomenon is the steepening of the wave front, leading to jump-like variations in the stress wave profiles. This phenomenon is a consequence of the dependence of the local wave speed on the local deformation of the material. As per the predictions of the nonlinear material model, compressive waves in the structure travel faster than tensile waves. Furthermore, it is found that wave pulses with large amplitudes and small elapsed times are attenuated over shorter spans. This feature is due to the elevated
NASA Lunar Base Wireless System Propagation Analysis
NASA Technical Reports Server (NTRS)
Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.
2007-01-01
There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The
Shock wave propagation in glow discharges
NASA Astrophysics Data System (ADS)
Ganguly, B. N.
1998-10-01
The modification of acoustic shock wave propagation characteristics in a 25 cm long positive column low pressure (10 to 50 Torr), low current density (2 to 10 mA/cm^2) argon and N2 dc discharges have been measured by laser beam deflection technique. The simultaneous multi point shock velocity, dispersion and damping have been measured both inside and outside the glow discharge region. The local shock velocity is found to increase with the increased propagation path length through the discharge; for Mach number greater than 1.7 the upstream velocity exceeded the downstream velocity in contrast to the opposite behavior in neutral gas. The damping and dispersion are also dependent on the propagation distance. The recovery of the shock dispersion and damping in the post discharge region, for a given discharge condition, are functions of the initial Mach number. The optical measurement of the wall and the gas (rotational) temperatures suggest the observed shock features can not be solely explained by the gas heating in a self sustained discharge. The results are similar for both Ar and N2 discharges showing that vibrational excitation and relaxation are not essential^1. The explanation of the observed weak shock propagation properties in a glow discharge appears to require long range cooperative interactions that enhance heavy particle collisional energy transfer rates for the measured discharge conditions. Unlike collisional shock wave propagation in highly ionized plasmas^2,3, the exact energy coupling mechanism between the nonequilibrium weakly ionized plasma and shock is not understood. 1. A.I. Osipov and A.V. Uvarov, Sov. Phys. Usp. 35, 903 (1992) and other references there in. 2. M. Casanova, O. Larroche and J-P Matte, Phys. Rev. Lett. 67, 2143 (1991). 3. M.C.M. van de Sanden, R. van den Bercken and D.C. Schram, Plasma Sources Sci.Technol. 3, 511 (1994).
The Temporal Morphology of Infrasound Propagation
NASA Astrophysics Data System (ADS)
Drob, Douglas P.; Garcés, Milton; Hedlin, Michael; Brachet, Nicolas
2010-05-01
Expert knowledge suggests that the performance of automated infrasound event association and source location algorithms could be greatly improved by the ability to continually update station travel-time curves to properly account for the hourly, daily, and seasonal changes of the atmospheric state. With the goal of reducing false alarm rates and improving network detection capability we endeavor to develop, validate, and integrate this capability into infrasound processing operations at the International Data Centre of the Comprehensive Nuclear Test-Ban Treaty Organization. Numerous studies have demonstrated that incorporation of hybrid ground-to-space (G2S) enviromental specifications in numerical calculations of infrasound signal travel time and azimuth deviation yields significantly improved results over that of climatological atmospheric specifications, specifically for tropospheric and stratospheric modes. A robust infrastructure currently exists to generate hybrid G2S vector spherical harmonic coefficients, based on existing operational and emperical models on a real-time basis (every 3- to 6-hours) (D rob et al., 2003). Thus the next requirement in this endeavor is to refine numerical procedures to calculate infrasound propagation characteristics for robust automatic infrasound arrival identification and network detection, location, and characterization algorithms. We present results from a new code that integrates the local (range-independent) τp ray equations to provide travel time, range, turning point, and azimuth deviation for any location on the globe given a G2S vector spherical harmonic coefficient set. The code employs an accurate numerical technique capable of handling square-root singularities. We investigate the seasonal variability of propagation characteristics over a five-year time series for two different stations within the International Monitoring System with the aim of understanding the capabilities of current working knowledge of the
Three-Dimensional Gear Crack Propagation Studied
NASA Technical Reports Server (NTRS)
Lewicki, David G.
1999-01-01
Gears used in current helicopters and turboprops are designed for light weight, high margins of safety, and high reliability. However, unexpected gear failures may occur even with adequate tooth design. To design an extremely safe system, the designer must ask and address the question, "What happens when a failure occurs?" With gear-tooth bending fatigue, tooth or rim fractures may occur. A crack that propagates through a rim will be catastrophic, leading to disengagement of the rotor or propeller, loss of an aircraft, and possible fatalities. This failure mode should be avoided. A crack that propagates through a tooth may or may not be catastrophic, depending on the design and operating conditions. Also, early warning of this failure mode may be possible because of advances in modern diagnostic systems. One concept proposed to address bending fatigue fracture from a safety aspect is a splittooth gear design. The prime objective of this design would be to control crack propagation in a desired direction such that at least half of the tooth would remain operational should a bending failure occur. A study at the NASA Lewis Research Center analytically validated the crack-propagation failsafe characteristics of a split-tooth gear. It used a specially developed three-dimensional crack analysis program that was based on boundary element modeling and principles of linear elastic fracture mechanics. Crack shapes as well as the crack-propagation life were predicted on the basis of the calculated stress intensity factors, mixed-mode crack-propagation trajectory theories, and fatigue crack-growth theories. The preceding figures show the effect of the location of initial cracks on crack propagation. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth was simulated in a case study to evaluate crack-propagation paths. Tooth
Intense femtosecond pulse propagation with applications
NASA Astrophysics Data System (ADS)
Moloney, J. V.
2006-05-01
The fundamental physics of high-field laser-matter interactions has driven ultrashort pulse generation to achieve record power densities of 10 22 Watts per cm2 in focal spot sizes (FWHM) of 0.8 μm1. These enormous fields are generated by compressing longer, high energy pulses to ever shorter lengths using so-called CPA compressors. Great care has to be taken to achieve such record power densities by controlling the spatio-temporal shape during pulse compression. Despite these remarkable experimental achievements, there have been relatively few developments on the theoretical side to derive realistic physical optical material models coupled to sophisticated E.M propagators. Many of the theoretical analysis tools developed in this emerging field of extreme nonlinear optics are restricted to oversimplified 1D models that completely ignore the complex vector spatio-temporal couplings occurring within such small nonlinear interaction volumes. The advent of these high power ultra-short pulsed laser systems has opened up a whole new vista of applications and computational challenges. The applications space spans relatively short propagation lengths of centimeters to meters to a target up to many kilometers in atmospheric propagation studies. The high local field intensities generated within the pulse can potentially lead to electromagnetic carrier wave shocking so it becomes necessary to fully resolve the optical carrier wave within the 3D propagating pulse envelope. High local field intensities also lead to an explosive growth of the white-light supercontinuum spectrum and the intensities of even remote spectral components can be high enough to generate nonlinear coupling to the host material. For this reason, spectrally local models of light-matter coupling are expected to fail. In this paper, we will present a fully carrier-resolved E.M. propagator that allows for few meter long propagation lengths while fully resolving the optical carrier wave. Our applications focus
Efficient Geometric Sound Propagation Using Visibility Culling
NASA Astrophysics Data System (ADS)
Chandak, Anish
2011-07-01
Simulating propagation of sound can improve the sense of realism in interactive applications such as video games and can lead to better designs in engineering applications such as architectural acoustics. In this thesis, we present geometric sound propagation techniques which are faster than prior methods and map well to upcoming parallel multi-core CPUs. We model specular reflections by using the image-source method and model finite-edge diffraction by using the well-known Biot-Tolstoy-Medwin (BTM) model. We accelerate the computation of specular reflections by applying novel visibility algorithms, FastV and AD-Frustum, which compute visibility from a point. We accelerate finite-edge diffraction modeling by applying a novel visibility algorithm which computes visibility from a region. Our visibility algorithms are based on frustum tracing and exploit recent advances in fast ray-hierarchy intersections, data-parallel computations, and scalable, multi-core algorithms. The AD-Frustum algorithm adapts its computation to the scene complexity and allows small errors in computing specular reflection paths for higher computational efficiency. FastV and our visibility algorithm from a region are general, object-space, conservative visibility algorithms that together significantly reduce the number of image sources compared to other techniques while preserving the same accuracy. Our geometric propagation algorithms are an order of magnitude faster than prior approaches for modeling specular reflections and two to ten times faster for modeling finite-edge diffraction. Our algorithms are interactive, scale almost linearly on multi-core CPUs, and can handle large, complex, and dynamic scenes. We also compare the accuracy of our sound propagation algorithms with other methods. Once sound propagation is performed, it is desirable to listen to the propagated sound in interactive and engineering applications. We can generate smooth, artifact-free output audio signals by applying
NASA Technical Reports Server (NTRS)
Davarian, Faramaz (Editor)
1993-01-01
The NASA Propagation Experimenters Meeting (NAPEX) is convened annually to discuss studies made on radio wave propagation by investors from domestic and international organizations. NAPEX 17 was held on 15 June 1993. The meeting was organized into two technical sessions. The first session was dedicated to slant path propagation studies and experiments. The second session focused on propagation studies for mobile and personal communications. Preceding NAPEX 17, the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop was held on 14 June 1993 to review ACTS propagation activities with emphasis on ACTS experiments status and data collection, processing, and exchange.
Atmospheric effects on CO2 laser propagation
NASA Technical Reports Server (NTRS)
Murty, S. S. R.; Bilbro, J. W.
1978-01-01
An investigation was made of the losses encountered in the propagation of CO2 laser radiation through the atmosphere, particularly as it applies to the NASA/Marshall Space Flight Center Pulsed Laser Doppler System. As such it addresses three major areas associated with signal loss: molecular absorption, refractive index changes in a turbulent environment, and aerosol absorption and scattering. In particular, the molecular absorption coefficients of carbon dioxide, water vapor, and nitrous oxide are calculated for various laser lines in the region of 10.6 mu m as a function of various pressures and temperatures. The current status in the physics of low-energy laser propagation through a turbulent atmosphere is presented together with the analysis and evaluation of the associated heterodyne signal power loss. Finally, aerosol backscatter and extinction coefficients are calculated for various aerosol distributions and the results incorporated into the signal-to-noise ratio equation for the Marshall Space Flight Center system.
Temporal coherence of propagating surface plasmons.
Wang, Tao; Comtet, Geneviève; Le Moal, Eric; Dujardin, Gérald; Drezet, Aurélien; Huant, Serge; Boer-Duchemin, Elizabeth
2014-12-01
The temporal coherence of propagating surface plasmons is investigated using a local, broadband plasmon source consisting of a scanning tunneling microscope. A variant of Young's experiment is performed using a sample consisting of a 200-nm-thick gold film perforated by two 1-μm-diameter holes (separated by 4 or 6 μm). The resulting interference fringes are studied as a function of hole separation and source bandwidth. From these experiments, we conclude that apart from plasmon decay in the metal, there is no further loss of plasmon coherence from propagation, scattering at holes, or other dephasing processes. As a result, the plasmon coherence time may be estimated from its spectral bandwidth.
Crack propagation and arrest in pressurized containers
NASA Technical Reports Server (NTRS)
Erdogan, F.; Delale, F.; Owczarek, J. A.
1976-01-01
The problem of crack propagation and arrest in a finite volume cylindrical container filled with pressurized gas is considered. It is assumed that the cylinder contains a symmetrically located longitudinal part-through crack with a relatively small net ligament. The net ligament suddenly ruptures initiating the process of fracture propagation and depressurization in the cylinder. Thus the problem is a coupled gas dynamics and solid mechanics problem the exact formulation of which does not seem to be possible. The problem is reduced to a proper initial value problem by introducing a dynamic fracture criterion which relates the crack acceleration to the difference between a load factor and the corresponding strength parameter. The results indicate that generally in gas filled cylinders fracture arrest is not possible unless the material behaves in a ductile manner and the container is relatively long.
Outwardly Propagating Flames at Elevated Pressures
NASA Technical Reports Server (NTRS)
Law, C. K.; Rozenchan, G.; Tse, S. D.; Zhu, D. L.
2001-01-01
Spherical, outwardly-propagating flames of CH4-O2-inert and H2-O2-inert mixtures were experimentally studied in a high pressure apparatus. Stretch-free flame speeds and Markstein lengths were extracted for a wide range of pressures and equivalence ratios for spherically-symmetric, smooth flamefronts and compared to numerical computations with detailed chemistry and transport, as well as existing data in the literature. Wrinkle development was examined for propagating flames that were unstable under our experimental conditions. Hydrodynamic cells developed for most H2-air and CH4-air flames at elevated pressures, while thermal-diffusive instabilities were also observed for lean and near-stoichiometric hydrogen flames at pressures above atmospheric. Strategies in suppressing or delaying the onset of cell formation have been assessed. Buoyancy effects affected sufficiently off-stoichiometric CH4 mixtures at high pressures.
Inferring network topology via the propagation process
NASA Astrophysics Data System (ADS)
Zeng, An
2013-11-01
Inferring the network topology from the dynamics is a fundamental problem, with wide applications in geology, biology, and even counter-terrorism. Based on the propagation process, we present a simple method to uncover the network topology. A numerical simulation on artificial networks shows that our method enjoys a high accuracy in inferring the network topology. We find that the infection rate in the propagation process significantly influences the accuracy, and that each network corresponds to an optimal infection rate. Moreover, the method generally works better in large networks. These finding are confirmed in both real social and nonsocial networks. Finally, the method is extended to directed networks, and a similarity measure specific for directed networks is designed.
Crack Propagation in Bamboo's Hierarchical Cellular Structure
Habibi, Meisam K.; Lu, Yang
2014-01-01
Bamboo, as a natural hierarchical cellular material, exhibits remarkable mechanical properties including excellent flexibility and fracture toughness. As far as bamboo as a functionally graded bio-composite is concerned, the interactions of different constituents (bamboo fibers; parenchyma cells; and vessels.) alongside their corresponding interfacial areas with a developed crack should be of high significance. Here, by using multi-scale mechanical characterizations coupled with advanced environmental electron microscopy (ESEM), we unambiguously show that fibers' interfacial areas along with parenchyma cells' boundaries were preferred routes for crack growth in both radial and longitudinal directions. Irrespective of the honeycomb structure of fibers along with cellular configuration of parenchyma ground, the hollow vessels within bamboo culm affected the crack propagation too, by crack deflection or crack-tip energy dissipation. It is expected that the tortuous crack propagation mode exhibited in the present study could be applicable to other cellular natural materials as well. PMID:24998298
Propagating Qualitative Values Through Quantitative Equations
NASA Technical Reports Server (NTRS)
Kulkarni, Deepak
1992-01-01
In most practical problems where traditional numeric simulation is not adequate, one need to reason about a system with both qualitative and quantitative equations. In this paper, we address the problem of propagating qualitative values represented as interval values through quantitative equations. Previous research has produced exponential-time algorithms for approximate solution of the problem. These may not meet the stringent requirements of many real time applications. This paper advances the state of art by producing a linear-time algorithm that can propagate a qualitative value through a class of complex quantitative equations exactly and through arbitrary algebraic expressions approximately. The algorithm was found applicable to Space Shuttle Reaction Control System model.
Joint Acoustic Propagation Experiment (JAPE-91) Workshop
NASA Technical Reports Server (NTRS)
Willshire, William L., Jr. (Compiler); Chestnutt, David (Compiler)
1993-01-01
The Joint Acoustic Propagation Experiment (JAPE), was conducted at the White Sands Missile Range, New Mexico, USA, during the period 11-28 Jul. 1991. JAPE consisted of various short and long range propagation experiments using various acoustic sources including speakers, propane cannons, helicopters, a 155 mm howitzer, and static high explosives. Of primary importance to the performance of theses tests was the extensive characterization of the atmosphere during these tests. This atmospheric characterization included turbulence measurements. A workshop to disseminate the results of JAPE-91 was held in Hampton, VA, on 28 Apr. 1993. This report is a compilation of the presentations made at the workshop along with a list of attendees and the agenda.
Propagation mechanism of polymer optical fiber fuse
Mizuno, Yosuke; Hayashi, Neisei; Tanaka, Hiroki; Nakamura, Kentaro; Todoroki, Shin-ichi
2014-01-01
A fiber fuse phenomenon in polymer optical fibers (POFs) has recently been observed, and its unique properties such as slow propagation, low threshold power density, and the formation of a black oscillatory damage curve, have been reported. However, its characterization is still insufficient to well understand the mechanism and to avoid the destruction of POFs. Here, we present detailed experimental and theoretical analyses of the POF fuse propagation. First, we clarify that the bright spot is not a plasma but an optical discharge, the temperature of which is ~3600 K. We then elucidate the reasons for the oscillation of the damage curve along with the formation of newly-observed gas bubbles as well as for the low threshold power density. We also present the idea that the POF fuse can potentially be exploited to offer a long photoelectric interaction length. PMID:24762949
High speed flight effects on noise propagation
NASA Astrophysics Data System (ADS)
Burrin, R. H.; Ahuja, K. K.; Salikuddin, M.
1987-01-01
An experimental study to investigate the effects of source motion on sound propagation at high Mach numbers was devised to determine, in particular, if the large amplifications in the forward arc to high speeds, predicted by the 'convective amplification' factors normally used for low speeds, are realistic. An acoustic point source and a microphone, both immersed in flows up to a Mach number of 0.8, were used to obtain the convective amplification factors for comparison with predictions. The results confirmed the existence of high levels of noise propagating ahead of an aircraft flying at high speed. The commonly adopted prediction formula, namely (1 - M sub 0 cos theta sub E) exp -4, was categorically confirmed by the data for frequencies up to 5 kHz and Mach numbers of 0.2 to 0.8. At higher frequencies, the predictions are followed up to emission angles of 120 deg, but then deviate downward towards the direction of flight.
Sound propagation in elongated superfluid fermionic clouds
Capuzzi, P.; Vignolo, P.; Federici, F.; Tosi, M. P.
2006-02-15
We use hydrodynamic equations to study sound propagation in a superfluid Fermi gas at zero temperature inside a strongly elongated cigar-shaped trap, with main attention to the transition from the BCS to the unitary regime. First, we treat the role of the radial density profile in the limit of a cylindrical geometry and then evaluate numerically the effect of the axial confinement in a configuration in which a hole is present in the gas density at the center of the trap. We find that in a strongly elongated trap the speed of sound in both the BCS and the unitary regime differs by a factor {radical}(3/5) from that in a homogeneous three-dimensional superfluid. The predictions of the theory could be tested by measurements of sound-wave propagation in a setup such as that exploited by Andrews et al. [Phys. Rev. Lett. 79, 553 (1997)] for an atomic Bose-Einstein condensate.
The stratospheric arrival pair in infrasound propagation.
Waxler, Roger; Evers, Läslo G; Assink, Jelle; Blom, Phillip
2015-04-01
The ideal case of a deep and well-formed stratospheric duct for long range infrasound propagation in the absence of tropospheric ducting is considered. A canonical form, that of a pair of arrivals, for ground returns of impulsive signals in a stratospheric duct is determined. The canonical form is derived from the geometrical acoustics approximation, and is validated and extended through full wave modeling. The full caustic structure of the field of ray paths is found and used to determine phase relations between the contributions to the wavetrain from different propagation paths. Finally, comparison with data collected from the 2005 fuel gas depot explosion in Buncefield, England is made. The correspondence between the theoretical results and the observations is shown to be quite good.
Ionic Wave Propagation along Actin Filaments
Tuszyński, J. A.; Portet, S.; Dixon, J. M.; Luxford, C.; Cantiello, H. F.
2004-01-01
We investigate the conditions enabling actin filaments to act as electrical transmission lines for ion flows along their lengths. We propose a model in which each actin monomer is an electric element with a capacitive, inductive, and resistive property due to the molecular structure of the actin filament and viscosity of the solution. Based on Kirchhoff's laws taken in the continuum limit, a nonlinear partial differential equation is derived for the propagation of ionic waves. We solve this equation in two different regimes. In the first, the maximum propagation velocity wave is found in terms of Jacobi elliptic functions. In the general case, we analyze the equation in terms of Fisher-Kolmogoroff modes with both localized and extended wave characteristics. We propose a new signaling mechanism in the cell, especially in neurons. PMID:15041636
Information propagation in isolated quantum systems
NASA Astrophysics Data System (ADS)
Luitz, David J.; Bar Lev, Yevgeny
2017-07-01
Entanglement growth and out-of-time-order correlators (OTOC) are used to assess the propagation of information in isolated quantum systems. In this work, using large scale exact time evolution we show that for weakly disordered nonintegrable systems information propagates behind a ballistically moving front, and the entanglement entropy growths linearly in time. For stronger disorder the motion of the information front is algebraic and subballistic and is characterized by an exponent, which depends on the strength of the disorder, similarly to the sublinear growth of the entanglement entropy. We show that the dynamical exponent associated with the information front coincides with the exponent of the growth of the entanglement entropy for both weak and strong disorder. We also demonstrate that the temporal dependence of the OTOC is characterized by a fast nonexponential growth, followed by a slow saturation after the passage of the information front. Finally, we discuss the implications of this behavioral change on the growth of the entanglement entropy.
Belief Propagation Algorithm for Portfolio Optimization Problems
2015-01-01
The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm. PMID:26305462
Belief Propagation Algorithm for Portfolio Optimization Problems.
Shinzato, Takashi; Yasuda, Muneki
2015-01-01
The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.
Experiments on the Propagation of Plasma Filaments
Katz, Noam; Egedal, Jan; Fox, Will; Le, Ari; Porkolab, Miklos
2008-07-04
We investigate experimentally the motion and structure of isolated plasma filaments propagating through neutral gas. Plasma filaments, or 'blobs,' arise from turbulent fluctuations in a range of plasmas. Our experimental geometry is toroidally symmetric, and the blobs expand to a larger major radius under the influence of a vertical electric field. The electric field, which is caused by {nabla}B and curvature drifts in a 1/R magnetic field, is limited by collisional damping on the neutral gas. The blob's electrostatic potential structure and the resulting ExB flow field give rise to a vortex pair and a mushroom shape, which are consistent with nonlinear plasma simulations. We observe experimentally this characteristic mushroom shape for the first time. We also find that the blob propagation velocity is inversely proportional to the neutral density and decreases with time as the blob cools.
Propagating Resource Constraints Using Mutual Exclusion Reasoning
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Sanchez, Romeo; Do, Minh B.; Clancy, Daniel (Technical Monitor)
2001-01-01
One of the most recent techniques for propagating resource constraints in Constraint Based scheduling is Energy Constraint. This technique focuses in precedence based scheduling, where precedence relations are taken into account rather than the absolute position of activities. Although, this particular technique proved to be efficient on discrete unary resources, it provides only loose bounds for jobs using discrete multi-capacity resources. In this paper we show how mutual exclusion reasoning can be used to propagate time bounds for activities using discrete resources. We show that our technique based on critical path analysis and mutex reasoning is just as effective on unary resources, and also shows that it is more effective on multi-capacity resources, through both examples and empirical study.
Hf propagation through actively modified ionospheres
Argo, P.E.; Fitzgerald, T.J.; Wolcott, J.H.; Simons, D.J. ); Warshaw, S.; Carlson, R. )
1990-01-01
We have developed a computer modeling capability to predict the effect of localized electron density perturbations created by chemical releases or high-power radio frequency heating upon oblique, one-hop hf propagation paths. We have included 3-d deterministic descriptions of the depleted or enhanced ionization, including formation, evolution, and drift. We have developed a homing ray trace code to calculate the path of energy propagation through the modified ionosphere in order to predict multipath effects. We also consider the effect of random index of refraction variations using a formalism to calculate the mutual coherence functions for spatial and frequency separations based upon a path integral solution of the parabolic wave equation for a single refracted path through an ionosphere which contains random electron density fluctuations. 5 refs., 8 figs.
Propagation mechanism of polymer optical fiber fuse.
Mizuno, Yosuke; Hayashi, Neisei; Tanaka, Hiroki; Nakamura, Kentaro; Todoroki, Shin-ichi
2014-04-25
A fiber fuse phenomenon in polymer optical fibers (POFs) has recently been observed, and its unique properties such as slow propagation, low threshold power density, and the formation of a black oscillatory damage curve, have been reported. However, its characterization is still insufficient to well understand the mechanism and to avoid the destruction of POFs. Here, we present detailed experimental and theoretical analyses of the POF fuse propagation. First, we clarify that the bright spot is not a plasma but an optical discharge, the temperature of which is ~3600 K. We then elucidate the reasons for the oscillation of the damage curve along with the formation of newly-observed gas bubbles as well as for the low threshold power density. We also present the idea that the POF fuse can potentially be exploited to offer a long photoelectric interaction length.
Cavitation propagation in water under tension
NASA Astrophysics Data System (ADS)
Noblin, Xavier; Yip Cheung Sang, Yann; Pellegrin, Mathieu; Materials and Complex Fluids Team
2012-11-01
Cavitation appears when pressure decreases below vapor pressure, generating vapor bubbles. It can be obtain in dynamical ways (acoustic, hydraulic) but also in quasi-static conditions. This later case is often observed in nature, in trees, or during the ejection of ferns spores. We study the cavitation bubbles nucleation dynamics and its propagation in a confined microfabricated media. This later is an ordered array of microcavities made in hydrogel filled with water. When the system is put into dry air, it dehydrates, water leaves the cavities and tension (negative pressure) builds in the cavities. This can be sustained up to a critical pressure (of order -20 MPa), then cavitation bubbles appear. We follow the dynamics using ultra high speed imaging. Events with several bubbles cavitating in a few microseconds could be observed along neighboring cells, showing a propagation phenomenon that we discuss. ANR CAVISOFT 2010-JCJC-0407 01.
Obliquely propagating dust-density waves
NASA Astrophysics Data System (ADS)
Piel, A.; Arp, O.; Klindworth, M.; Melzer, A.
2008-02-01
Self-excited dust-density waves are experimentally studied in a dusty plasma under microgravity. Two types of waves are observed: a mode inside the dust volume propagating in the direction of the ion flow and another mode propagating obliquely at the boundary between the dusty plasma and the space charge sheath. The dominance of oblique modes can be described in the frame of a fluid model. It is shown that the results fom the fluid model agree remarkably well with a kinetic electrostatic model of Rosenberg [J. Vac. Sci. Technol. A 14, 631 (1996)]. In the experiment, the instability is quenched by increasing the gas pressure or decreasing the dust density. The critical pressure and dust density are well described by the models.
Quench propagation in the SSC dipole magnets
Lopez, G.; Snitchler, G.
1990-09-01
The effects of quench propagation are modeled in 40mm and 50mm diameter collider dipole magnet designs. A comparative study of the cold diode (passive) and quench heater (active) protection schemes will be presented. The SSCQ modeling program accurately simulates the axial quench velocity and uses phenomenological time delays for turn-to-turn transverse propagation. The axial quench velocity is field dependent and consequently, each conductor's quench profile is tracked separately. No symmetry constraints are employed and the distribution of the temperatures along the conductor differs from the adiabatic approximation. A single magnet has a wide margin of self protection which suggests that passive protection schemes must be considered. 6 refs., 3 figs., 1 tab.
Graphene plasmon propagation on corrugated silicon substrates.
Kong, Xiang-Tian; Bai, Bing; Dai, Qing
2015-01-01
The scheme of graphene on a silicon substrate is potentially compatible to the microelectronic technology. But the maintained plasmons have considerable ohmic loss because of silicon's large permittivity. We introduce air grooves in the silicon surface to reduce the optical thickness of substrate and hence decrease the propagation loss. The properties of graphene plasmons on the corrugated substrates are numerically investigated, in terms of the photon frequency and the geometrical parameters of the corrugated layer, considering both ohmic loss and scattering loss. The plasmons propagation lengths for the corrugated substrates can exceed twice of those for flat silicon in a broadband in mid-infrared. This study may be useful for designing of compact mid-infrared waveguides based on graphene for future photonic integrated circuits.
Method and apparatus for charged particle propagation
Hershcovitch, A.
1996-11-26
A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator includes an evacuated chamber having a gun for discharging a beam of charged particles such as an electron beam or ion beam. The beam is discharged through a beam exit in the chamber into a higher pressure region. A plasma interface is disposed at the beam exit and includes a plasma channel for bounding a plasma maintainable between a cathode and an anode disposed at opposite ends thereof. The plasma channel is coaxially aligned with the beam exit for propagating the beam from the chamber, through the plasma, and into the higher pressure region. The plasma is effective for pumping down the beam exit for preventing pressure increase in the chamber and provides magnetic focusing of the beam discharged into the higher pressure region 24. 7 figs.
Scout trajectory error propagation computer program
NASA Technical Reports Server (NTRS)
Myler, T. R.
1982-01-01
Since 1969, flight experience has been used as the basis for predicting Scout orbital accuracy. The data used for calculating the accuracy consists of errors in the trajectory parameters (altitude, velocity, etc.) at stage burnout as observed on Scout flights. Approximately 50 sets of errors are used in Monte Carlo analysis to generate error statistics in the trajectory parameters. A covariance matrix is formed which may be propagated in time. The mechanization of this process resulted in computer program Scout Trajectory Error Propagation (STEP) and is described herein. Computer program STEP may be used in conjunction with the Statistical Orbital Analysis Routine to generate accuracy in the orbit parameters (apogee, perigee, inclination, etc.) based upon flight experience.
Crack propagation in bamboo's hierarchical cellular structure.
Habibi, Meisam K; Lu, Yang
2014-07-07
Bamboo, as a natural hierarchical cellular material, exhibits remarkable mechanical properties including excellent flexibility and fracture toughness. As far as bamboo as a functionally graded bio-composite is concerned, the interactions of different constituents (bamboo fibers; parenchyma cells; and vessels.) alongside their corresponding interfacial areas with a developed crack should be of high significance. Here, by using multi-scale mechanical characterizations coupled with advanced environmental electron microscopy (ESEM), we unambiguously show that fibers' interfacial areas along with parenchyma cells' boundaries were preferred routes for crack growth in both radial and longitudinal directions. Irrespective of the honeycomb structure of fibers along with cellular configuration of parenchyma ground, the hollow vessels within bamboo culm affected the crack propagation too, by crack deflection or crack-tip energy dissipation. It is expected that the tortuous crack propagation mode exhibited in the present study could be applicable to other cellular natural materials as well.
Human cytomegalovirus: propagation, quantification, and storage.
Britt, William J
2010-08-01
Human cytomegalovirus (HCMV) is the largest and perhaps the most structurally complex member of the family of human herpesviruses. It is the prototypic virus of the beta-herpesvirus subfamily. As with other cytomegaloviruses, HCMV is exquisitely species specific and undergoes lytic replication only in cells of human origin. In addition, its replication is limited almost entirely to primary cells and a limited number of transformed cell lines. Together with its prolonged replicative cycle of approximately 48 hr, the propagation and quantification of HCMV can present technical challenges. In this brief set of protocols, the propagation of laboratory strains of HCMV and their quantitation is described. In a third series of protocols, the concentration and gradient purification of HCMV for more specialized downstream applications is described.
Propagation of waves along an impedance boundary
NASA Technical Reports Server (NTRS)
Wenzel, A. R.
1974-01-01
A theoretical analysis of the scalar wave field due to a point source above a plane impedance boundary is presented. A surface wave is found to be an essential component of the total wave field. It is shown that, as a result of ducting of energy by the surface wave, the amplitude of the total wave near the boundary can be greater than it would be if the boundary were perfectly reflecting. Asymptotic results, valid near the boundary, are obtained both for the case of finite impedance (the soft-boundary case) and for the limiting case in which the impedance becomes infinite (the hard-boundary case). In the latter, the wave amplitude in the farfield decreases essentially inversely as the horizontal propagation distance; in the former (if the surface-wave term is neglected), it decreases inversely as the square of the horizontal propagation distance.
Whistler wave propagation in a large magnetoplasma
NASA Technical Reports Server (NTRS)
Stenzel, R. L.
1976-01-01
A large collisionless quiescent plasma source is developed for investigating the phase and amplitude distribution of antenna-launched whistler waves in a specified parameter regime relating wave frequency to electron cyclotron frequency. Wave dispersion is studied both by interferometer techniques with monochromatic waves and by propagation of short phase-coherent wave bursts. The wave damping mechanism is examined by propagating perfectly ducted whistler waves. The dispersion of single frequency waves and wave packets is demonstrated. Trough ducting for wave frequency to electron cyclotron frequency ratio greater than 1/2 is verified, and new eigenmodes in nonuniform plasmas at ratio values less than 1/2 are observed. It is shown that geometric effects due to ray divergence and wave refraction dominate over collisional damping.
Light propagation in periodically modulated complex waveguides
NASA Astrophysics Data System (ADS)
Nixon, Sean; Yang, Jianke
2015-03-01
Light propagation in optical waveguides with periodically modulated index of refraction and alternating gain and loss are investigated for linear and nonlinear systems. Based on a multiscale perturbation analysis, it is shown that for many non-parity-time- (PT -) symmetric waveguides, their linear spectrum is partially complex; thus light exponentially grows or decays upon propagation, and this growth or decay is not altered by nonlinearity. However, several classes of non-PT -symmetric waveguides are also identified to possess all-real linear spectrum. For PT -symmetric waveguides, phase transition is predicted analytically. In the nonlinear regime longitudinally periodic and transversely quasilocalized modes are found for PT -symmetric waveguides both above and below phase transition. These nonlinear modes are stable under evolution and can develop from initially weak initial conditions.
Terahertz polariton propagation in patterned materials.
Stoyanov, Nikolay S; Ward, David W; Feurer, Thomas; Nelson, Keith A
2002-10-01
Generation and control of pulsed terahertz-frequency radiation have received extensive attention, with applications in terahertz spectroscopy, imaging and ultrahigh-bandwidth electro-optic signal processing. Terahertz 'polaritonics', in which terahertz lattice waves called phonon-polaritons are generated, manipulated and visualized with femtosecond optical pulses, offers prospects for an integrated solid-state platform for terahertz signal generation and guidance. Here, we extend terahertz polaritonics methods to patterned structures. We demonstrate femtosecond laser fabrication of polaritonic waveguide structures in lithium tantalate and lithium niobate crystals, and illustrate polariton focusing into, and propagation within, the fabricated waveguide structures. We also demonstrate a 90 degrees turn within a structure consisting of two waveguides and a reflecting face, as well as a structure consisting of splitting and recombining elements that can be used as a terahertz Mach-Zehnder interferometer. The structures permit integrated terahertz signal generation, propagation through waveguide-based devices, and readout within a single solid-state platform.
Laser beam shaping profiles and propagation.
Shealy, David L; Hoffnagle, John A
2006-07-20
We consider four families of functions--the super-Gaussian, flattened Gaussian, Fermi-Dirac, and super-Lorentzian--that have been used to describe flattened irradiance profiles. We determine the shape and width parameters of the different distributions, when each flattened profile has the same radius and slope of the irradiance at its half-height point, and then we evaluate the implicit functional relationship between the shape and width parameters for matched profiles, which provides a quantitative way to compare profiles described by different families of functions. We conclude from an analysis of each profile with matched parameters using Kirchhoff-Fresnel diffraction theory and M2 analysis that the diffraction patterns as they propagate differ by small amounts, which may not be distinguished experimentally. Thus, beam shaping optics is designed to produce either of these four flattened output irradiance distributions with matched parameters will yield similar irradiance distributions as the beam propagates.
Spacetime and Quantum Propagation From Digital Clocks
NASA Astrophysics Data System (ADS)
Ord, Garnet. N.
2013-09-01
Minkowski spacetime predates quantum mechanics and is frequently regarded as an extension of the classical paradigm of Newtonian physics, rather than a harbinger of quantum mechanics. By inspecting how discrete clocks operate in a relativistic world we show that this view is misleading. Discrete relativistic clocks implicate classical spacetime provided a continuum limit is taken in such a way that successive ticks of the clock yield a smooth worldline. The classical picture emerges but does so by confining unitary propagation into spacetime regions between ticks that have zero area in the continuum limit. Clocks allowed a continuum limit that does not force inter-event intervals to zero, satisfy the Dirac equation. This strongly suggests that the origin of quantum propagation is to be found in the shift from Newton's absolute time to Minkowski's frame dependent time and is ultimately relativistic in origin.
Learning representations by back-propagating errors
NASA Astrophysics Data System (ADS)
Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J.
1986-10-01
We describe a new learning procedure, back-propagation, for networks of neurone-like units. The procedure repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector. As a result of the weight adjustments, internal `hidden' units which are not part of the input or output come to represent important features of the task domain, and the regularities in the task are captured by the interactions of these units. The ability to create useful new features distinguishes back-propagation from earlier, simpler methods such as the perceptron-convergence procedure1.
Design Against Propagating Shear Failure in Pipelines
NASA Astrophysics Data System (ADS)
Leis, B. N.; Gray, J. Malcolm
Propagating shear failure can occur in gas and certain hazardous liquid transmission pipelines, potentially leading to a large long-burning fire and/or widespread pollution, depending on the transported product. Such consequences require that the design of the pipeline and specification of the steel effectively preclude the chance of propagating shear failure. Because the phenomenology of such failures is complex, design against such occurrences historically has relied on full-scale demonstration experiments coupled with empirically calibrated analytical models. However, as economic drivers have pushed toward larger diameter higher pressure pipelines made of tough higher-strength grades, the design basis to ensure arrest has been severely compromised. Accordingly, for applications where the design basis becomes less certain, as has occurred increasing as steel grade and toughness has increased, it has become necessary to place greater reliance on the use and role of full-scale testing.
Nonlinear quantum beats of propagating polaritons
NASA Astrophysics Data System (ADS)
Pantke, K.-H.; Schillak, P.; Razbirin, B. S.; Lyssenko, V. G.; Hvam, J. M.
1993-01-01
We observe nonequidistant oscillations in the correlation trace of the nonlinear signal in a four-wave mixing experiment when exciting the upper polariton branch between the An=1 and the An=2 excitons in CdSe. The quantum beats are described qualitatively and quantitatively taking into account propagation interference effects on the third-order nonlinear polarization, and the homogeneous dampings of the exciton polaritons are determined.
Propagation and Production of Native Aquatic Plants
2005-09-01
ERDC/TN APCRP-EA-11 September 2005 Propagation and Production of Native Aquatic Plants by Gary Owen Dick , R. Michael Smart, and Joe R. Snow...small, protected plant colonies at strategic locations within unvegetated reservoirs (Smart and Dick 1999). Once successfully established, these...specific treatment of this information is given in Smart and Dick (1999). FACILITIES FOR OFF-SITE PRODUCTION: Production of aquatic plants requires
Transport Theory for Propagation and Reverberation
2014-09-30
and reverberation modeling is important for many prediction methods that are important for Navy applications and for underwater acoustics systems...development. While acoustic propagation and reverberation modeling has been extensively developed for many years, significant limitations still exist on...the acoustic field in modes, and therefore would most readily apply at mid-frequencies and below, and in relatively shallow water environments such as
On Wave Propagation in Linear Viscoelasticity.
1984-07-01
solutions to equations which model motions of viscoelastic media has received a lot of attention. In this paper , we study linear initial value problems...this paper , we study linear wave propagation in a one-dimensional viscoelastic medium. That is, we study the equation (1.1) utt(x,t) - bux,(x,t) + ft m...singularities. Throughout this paper , the operations of differentiation, convolution, and Laplace transformation should be interpreted in the sense
Bottom Interaction in Long Range Acoustic Propagation
2009-09-30
model calculations (RR, RSR, RBR, SRBR ray paths and the mode-like finale region), 2) deep shadow zone arrivals arising from the spread of energy below...arrivals near 75Hz were observed on bottom-mounted hydrophones in the shadow zone well below the SOFAR channel. Dushaw et al (1999) note: "This...explain the energy in the shadow zones: 1) energy is scattered from internal waves and fine structure in the ocean, or 2) long range sound propagation
FX-25 and FX-100 Propagation Experiments.
1982-07-01
to measure the beam-current distribution in the hose-stable propagation regime. A graphite Rogowski- surface cathode produced a beam that was injected...detector cannot be readily adapted to measurements of net current because of the vastly different sensitivities to beam and plasma currents. The...deposited on the calorimeter from the plasma was not a significant fraction of the beam energy. These calorimetric measurements of beam energy
Semisupervised kernel matrix learning by kernel propagation.
Hu, Enliang; Chen, Songcan; Zhang, Daoqiang; Yin, Xuesong
2010-11-01
The goal of semisupervised kernel matrix learning (SS-KML) is to learn a kernel matrix on all the given samples on which just a little supervised information, such as class label or pairwise constraint, is provided. Despite extensive research, the performance of SS-KML still leaves some space for improvement in terms of effectiveness and efficiency. For example, a recent pairwise constraints propagation (PCP) algorithm has formulated SS-KML into a semidefinite programming (SDP) problem, but its computation is very expensive, which undoubtedly restricts PCPs scalability in practice. In this paper, a novel algorithm, called kernel propagation (KP), is proposed to improve the comprehensive performance in SS-KML. The main idea of KP is first to learn a small-sized sub-kernel matrix (named seed-kernel matrix) and then propagate it into a larger-sized full-kernel matrix. Specifically, the implementation of KP consists of three stages: 1) separate the supervised sample (sub)set X(l) from the full sample set X; 2) learn a seed-kernel matrix on X(l) through solving a small-scale SDP problem; and 3) propagate the learnt seed-kernel matrix into a full-kernel matrix on X . Furthermore, following the idea in KP, we naturally develop two conveniently realizable out-of-sample extensions for KML: one is batch-style extension, and the other is online-style extension. The experiments demonstrate that KP is encouraging in both effectiveness and efficiency compared with three state-of-the-art algorithms and its related out-of-sample extensions are promising too.
Metamaterial hyperlens demonstration of propagation without diffraction
NASA Astrophysics Data System (ADS)
Fleming, Simon
2017-03-01
Metamaterials are a topic of much research interest because they have such extraordinary properties. Such materials are generally difficult and expensive to make and to characterize, and thus beyond the reach of undergraduate classes. This paper describes a metamaterial hyperlens, fabricated in about an hour from materials costing about one dollar, which permits an experimental demonstration of propagation without diffraction using common undergraduate laboratory microwave equipment.
Experimental study of turbulent flame kernel propagation
Mansour, Mohy; Peters, Norbert; Schrader, Lars-Uve
2008-07-15
Flame kernels in spark ignited combustion systems dominate the flame propagation and combustion stability and performance. They are likely controlled by the spark energy, flow field and mixing field. The aim of the present work is to experimentally investigate the structure and propagation of the flame kernel in turbulent premixed methane flow using advanced laser-based techniques. The spark is generated using pulsed Nd:YAG laser with 20 mJ pulse energy in order to avoid the effect of the electrodes on the flame kernel structure and the variation of spark energy from shot-to-shot. Four flames have been investigated at equivalence ratios, {phi}{sub j}, of 0.8 and 1.0 and jet velocities, U{sub j}, of 6 and 12 m/s. A combined two-dimensional Rayleigh and LIPF-OH technique has been applied. The flame kernel structure has been collected at several time intervals from the laser ignition between 10 {mu}s and 2 ms. The data show that the flame kernel structure starts with spherical shape and changes gradually to peanut-like, then to mushroom-like and finally disturbed by the turbulence. The mushroom-like structure lasts longer in the stoichiometric and slower jet velocity. The growth rate of the average flame kernel radius is divided into two linear relations; the first one during the first 100 {mu}s is almost three times faster than that at the later stage between 100 and 2000 {mu}s. The flame propagation is slightly faster in leaner flames. The trends of the flame propagation, flame radius, flame cross-sectional area and mean flame temperature are related to the jet velocity and equivalence ratio. The relations obtained in the present work allow the prediction of any of these parameters at different conditions. (author)
Quantum trajectories for propagating Fock states
NASA Astrophysics Data System (ADS)
Baragiola, Ben Q.; Combes, Joshua
2017-08-01
We derive quantum trajectories (also known as stochastic master equations) that describe an arbitrary quantum system probed by a propagating wave packet of light prepared in a continuous-mode Fock state. We consider three detection schemes of the output light: photon counting, homodyne detection, and heterodyne detection. We generalize to input field states in superpositions and mixtures of Fock states and illustrate our formalism with several examples.
Propagation Of Sound In Curved Ducts
NASA Technical Reports Server (NTRS)
Rostafinski, Wojciech
1992-01-01
Monograph presents concise, comprehensive summary of knowledge of propagation of acoustic waves in ducts and pipes including bends. Pulls together information from Lord Rayleigh's book Theory Of Sound, published in 1878, and from 33 papers scattered throughout various scientific journals published between 1945 and 1989. Monograph useful to scientists and engineers interested in such diverse topics as musical instruments, air-conditioning ducts, and jet engines. Material not available in current texts.
Enhanced Propagating Surface Plasmon Signal Detection
Gong, Y.; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.
2016-12-21
Overcoming the dissipative nature of propagating surface plasmons (PSPs) is pre-requisite to realizing functional plasmonic circuitry, in which large bandwidth signals can be manipulated over length scales far-below the diffraction limit of light. To this end, we report on a novel PSP enhanced signal detection technique achieved in an all-metallic substrate. We take advantage of two strategically spatio-temporally separated phase-locked femtosecond laser pulses, incident onto lithographically patterned PSP coupling structures. We follow PSP propagation with joint femtosecond temporal and nanometer spatial resolution in a time-resolved non-linear photoemission electron microscopy scheme. Initially, a PSP signal wave packet is launched from a hole etched into the silver surface from where it propagates through an open trench structure and is decoded through the use of a timed probe pulse. FDTD calculations demonstrate that PSP signal waves may traverse open trenches in excess of 10 microns in diameter, thereby allowing remote detection even through vacuum regions. This arrangement results in a 10X enhancement in photoemission relative to readout from the bare metal surface. The enhancement is attributed to an all-optical homodyne detection technique that mixes signal and reference PSP waves in a non-linear scheme. Larger readout trenches achieve higher readout levels, however reduced transmission through the trench limits the trench size to 6 microns for maximum readout levels. However, the use of an array of trenches increases the maximum enhancement to near 30X. The attainable enhancement factor may be harnessed to achieve extended coherent PSP propagation in ultrafast plasmonic circuitry.
47 CFR 80.767 - Propagation curve.
Code of Federal Regulations, 2013 CFR
2013-10-01
... propagation graph, § 80.767 Graph 1, must be used in computing the service area contour. The graph provides...: Transmitter output power in watts is converted to dBk by Pt=10 −30. Also see § 80.761 Graph 1 for a conversion graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the direction of each...
47 CFR 80.767 - Propagation curve.
Code of Federal Regulations, 2010 CFR
2010-10-01
... propagation graph, § 80.767 Graph 1, must be used in computing the service area contour. The graph provides...: Transmitter output power in watts is converted to dBk by Pt=10 −30. Also see § 80.761 Graph 1 for a conversion graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the direction of each...
47 CFR 80.767 - Propagation curve.
Code of Federal Regulations, 2014 CFR
2014-10-01
... propagation graph, § 80.767 Graph 1, must be used in computing the service area contour. The graph provides...: Transmitter output power in watts is converted to dBk by Pt=10 −30. Also see § 80.761 Graph 1 for a conversion graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the direction of each...
47 CFR 80.767 - Propagation curve.
Code of Federal Regulations, 2011 CFR
2011-10-01
... propagation graph, § 80.767 Graph 1, must be used in computing the service area contour. The graph provides...: Transmitter output power in watts is converted to dBk by Pt=10 −30. Also see § 80.761 Graph 1 for a conversion graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the direction of each...
47 CFR 80.767 - Propagation curve.
Code of Federal Regulations, 2012 CFR
2012-10-01
... propagation graph, § 80.767 Graph 1, must be used in computing the service area contour. The graph provides...: Transmitter output power in watts is converted to dBk by Pt=10 −30. Also see § 80.761 Graph 1 for a conversion graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the direction of each...
Combustion and Flame Propagation in Heterogeneous Systems
1976-10-29
NACIONAL DE TECNICA AEROESPACIAL MADRID, SPAIN 29 OCTOBER 1976 I A R- R7 6 14 2 j 006223 Grant Number AFOSR 72-2253 fCOMBUSTION AND FLAME PROPAGATION IN...ORGANIZATION NME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASKAREA A WORK UNIT NUMBERS INSTITUO NACIONAL DE TECNICA AEROESPACIAL 681308 DEPARTAMENTO DE CIENCIAS... AEROESPACIALES 9711-01 TORREJ6N DE ARDOZ MADRID, SPAIN 6~110?-. It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE AIR FORCE OFFICE OF
Mechanics of wave propagation in fragmented geomaterials
NASA Astrophysics Data System (ADS)
Dyskin, Arcady; Pasternak, Elena
2017-04-01
The Earth's crust has blocky or fragmented structure at different scales. Laboratory experiments and in-situ measurements reported in the literature show that the wave propagation in blocky media is characterised by the presence of unusually low frequencies in the spectrum and by low wave velocities (so-called pendulum-type waves). What was overlooked is that the fragments relatively free to move are at most held together by weak gouge. Mechanically, this implies two important phenomena. First, the large-scale stress-strain behaviour is highly non-linear and is characterised by considerably different moduli in tension and compression. In compression the resistance is controlled by contacts between the fragments and hence the corresponding moduli are determined by the deformation moduli of the fragments. In tension the moduli are determined by usually low stiffness of the gouge. We show that this leads to low wave velocities. Since in order for the wave to propagate through fragmented media, the wave lengths must be considerably larger than the dimensions of fragments, the low wave velocities only permit propagation of low frequency waves. Second, the fragments can have independent rotational degrees of freedom. Furthermore, rotations of fragments in the presence of compression (the prevalent state of stress in the Earth's crust) can exhibit the effect of negative stiffness. This changes the resonance spectrum of the fragmented medium leading to formation of low resonance frequencies. We propose simple models of these two phenomena, which can improve the understanding of the wave propagation and its utilisation for deciphering the Earth's crust structure.
Learning Internal Representations by Error Propagation
1985-09-01
Personnel & Training Researc N00014-85-K-0450 8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS Code 1142 PT PROGRAM PROJECT TASK ...of the work is the procedure called error propagation, whereby the gradient can be determined by individual units of the network based only on locally...internal representation adequate for per- forming the task at hand. One such development is presented in the discussion of Boltzmann machines in
Crack Propagation in Double-Base Propellants
1976-01-01
propagation tests were conducted on a composite modified double- base ( CMDB ) propellant with the use of center-cracked strip biaxial specimens...double-base ( CMDB ) propellant. He performed a stress analysis of small, precracked, subscale STV motors formulated in terms of stress intensity factors...assumed for Solithane 113. The present program was aimed at evaluating the Schapery theory when it was applied to a CMDB propellant under similar loading
Propagation Limits of High Pressure Cool Flames
NASA Astrophysics Data System (ADS)
Ju, Yiguang
2016-11-01
The flame speeds and propagation limits of premixed cool flames at elevated pressures with radiative heat loss are numerically modelled using dimethyl ether mixtures. The primary focus is paid on the effects of pressure, mixture dilution, flame size, and heat loss on cool flame propagation. The results showed that cool flames exist on both fuel lean and fuel rich sides and thus dramatically extend the lean and rich flammability limits. There exist three different flame regimes, hot flame, cool flame, and double flame. A new flame flammability diagram including both cool flames and hot flames is obtained at elevated pressure. The results show that pressure significantly changes cool flame propagation. It is found that the increases of pressure affects the propagation speeds of lean and rich cool flames differently due to the negative temperature coefficient effect. On the lean side, the increase of pressure accelerates the cool flame chemistry and shifts the transition limit of cool flame to hot flame to lower equivalence ratio. At lower pressure, there is an extinction transition from hot flame to cool flame. However, there exists a critical pressure above which the cool flame to hot flame transition limit merges with the lean flammability limit of the hot flame, resulting in a direct transition from hot flame to cool flame. On the other hand, the increase of dilution reduces the heat release of hot flame and promotes cool flame formation. Moreover, it is shown that a smaller flame size and a higher heat loss also extend the cool flame transition limit and promote cool flame formation.
Light propagation and interaction observed with electrons.
Word, Robert C; Fitzgerald, J P S; Könenkamp, R
2016-01-01
We discuss possibilities for a microscopic optical characterization of thin films and surfaces based on photoemission electron microscopy. We show that propagating light with wavelengths across the visible range can readily be visualized, and linear and non-linear materials properties can be evaluated non-invasively with nanometer spatial resolution. While femtosecond temporal resolution can be achieved in pump-probe-type experiments, the interferometric approach presented here has typical image frame times of ~200 fs.
Engineering Aspects of Fatigue Crack Propagation
1962-01-01
Estimating Notch-Size Effect in Fatigue Tests on Steel. NACA TN 2805, 1952. - 37 - 19. Landers, Charles B., and Hardrath, Herbert F.: Results of Axial- Load... Charles B., and Howell, F. M.: Axial-Load Fatigue Properties of 24S-T and 75S-T Aluminum Alloy as Determined in Several Laboratories. NACA TR 1190, 1954...Hardrath, Herbert F., Leybold, Herbert A., Landers, Charles B., and Hauschild, Louis W.: Fatigue-Crack Propagation in Aluminum- Alloy Box Beams. NACA
Solar wind propagation by magnetic lasso
NASA Astrophysics Data System (ADS)
Dósa, Melinda; Opitz, Andrea
2017-04-01
Concerning the increasing number of heliospheric space missions it is a key issue to foresee space weather conditions in the spacecraft's and the target object's neighborhood. Solar wind parameters are propagated to outer orbits by several ballistic and magnetohydrodynamic (MHD) methods. MHD models describe the underlying physical processes more realistic, but computations are time-demanding. Ballistic models are simple, computationally fast and need only input data. They work quite well closer to the Sun, where MHD effects have smaller amplitudes. The ballistic model presented here is enhanced by adjusting for the target movement during the propagation time through the following method: First, a dataring is created around the Sun containing solar wind parameters for each Carrington longitude, based on ACE data. It is assumed that solar wind parameters from the same source are constant for one solar rotation. The second step is the actual propagation where we are trying to find the exact magnetic field line connecting the target object with a certain longitude of the source surface at the Sun. This is carried out by a minimum variance analysis. By this step a correction is applied for the movement of the target object during solar wind travel time. Once the proper magnetic field line is found, solar wind velocity and magnetic field polarity is propagated assuming no change during travel time. The method was tested successfully during the Rosetta mission. While the spacecraft was investigating the close environment of the comet Churyumov-Gerasimenko it was necessary to know the properties of the ambient solar wind in order to evaluate data and account for the dynamic changes.
Propagation considerations for the Odyssey system design
NASA Technical Reports Server (NTRS)
Ho, Hau H.
1994-01-01
This paper presents an overview of the Odyssey system with special emphasis given to the link availability for both mobile link and feeder link. The Odyssey system design provides high link availability, typically 98 percent in the primary service areas, and better than 95 percent availability in other service areas. Strategies for overcoming Ka-band feeder link rain fades are presented. Mobile link propagation study results and summary link budgets are also presented.
Modeling propagation of coherent optical pulses through molecular vapor
Shore, B.W.; Eberly, J.H.
1982-01-01
Results of modeling the mutual coupling of coherent molecular response and coherent optical pulses during propagation are described. The propagation is treated numerically, with particular emphasis on both continuum and discrete behavior associated with the quasicontinuum model.
Microcoppice: a new strategy for red oak clonal propagation
D.E. Harper; B.H. McCown
1991-01-01
The great demand for red oak (Quercus rubra L.) has forced plant propagators to consider viable methods of mass clonal propagation for the species. A process called 'microcoppicing' is presently being developed to help meet such needs.
Wavepacket propagation using time-sliced semiclassical initial value methods.
Wallace, Brett B; Reimers, Jeffrey R
2004-12-22
A new semiclassical initial value representation (SC-IVR) propagator and a SC-IVR propagator originally introduced by Kay [J. Chem. Phys. 100, 4432 (1994)], are investigated for use in the split-operator method for solving the time-dependent Schrodinger equation. It is shown that the SC-IVR propagators can be derived from a procedure involving modified Filinov filtering of the Van Vleck expression for the semiclassical propagator. The two SC-IVR propagators have been selected for investigation because they avoid the need to perform a coherent state basis set expansion that is necessary in other time-slicing propagation schemes. An efficient scheme for solving the propagators is introduced and can be considered to be a semiclassical form of the effective propagators of Makri [Chem. Phys. Lett. 159, 489 (1989)]. Results from applications to a one-dimensional, two-dimensional, and three-dimensional Hamiltonian for a double-well potential are presented.
Vegetative Propagation and the Genetic Improvement of North American Hardwoods
R. E. Farmer
1973-01-01
Progress and problems in vegetative propagation of important North American hardwoods are reviewed with emphasis on rooting cuttings and the application of propagation techniques in breeding research. Some problems in rooting physiology are discussed.
Light propagation in the averaged universe
Bagheri, Samae; Schwarz, Dominik J. E-mail: dschwarz@physik.uni-bielefeld.de
2014-10-01
Cosmic structures determine how light propagates through the Universe and consequently must be taken into account in the interpretation of observations. In the standard cosmological model at the largest scales, such structures are either ignored or treated as small perturbations to an isotropic and homogeneous Universe. This isotropic and homogeneous model is commonly assumed to emerge from some averaging process at the largest scales. We assume that there exists an averaging procedure that preserves the causal structure of space-time. Based on that assumption, we study the effects of averaging the geometry of space-time and derive an averaged version of the null geodesic equation of motion. For the averaged geometry we then assume a flat Friedmann-Lemaître (FL) model and find that light propagation in this averaged FL model is not given by null geodesics of that model, but rather by a modified light propagation equation that contains an effective Hubble expansion rate, which differs from the Hubble rate of the averaged space-time.
Premixed Turbulent Flame Propagation in Microgravity
NASA Technical Reports Server (NTRS)
Menon, Suresh
1999-01-01
A combined numerical-experimental study has been carried out to investigate the structure and propagation characteristics of turbulent premixed flames with and without the influence of buoyancy. Experimentally, the premixed flame characteristics are studied in the wrinkled regime using a Couette flow facility and an isotropic flow facility in order to resolve the scale of flame wrinkling. Both facilities were chosen for their ability to achieve sustained turbulence at low Reynolds number. This implies that conventional diagnostics can be employed to resolve the smallest scales of wrinkling. The Couette facility was also built keeping in mind the constraints imposed by the drop tower requirements. Results showed that the flow in this Couette flow facility achieves full-developed turbulence at low Re and all turbulence statistics are in good agreement with past measurements on large-scale facilities. Premixed flame propagation studies were then carried out both using the isotropic box and the Couette facility. Flame imaging showed that fine scales of wrinkling occurs during flame propagation. Both cases in Ig showed significant buoyancy effect. To demonstrate that micro-g can remove this buoyancy effect, a small drop tower was built and drop experiments were conducted using the isotropic box. Results using the Couette facility confirmed the ability to carry out these unique reacting flow experiments at least in 1g. Drop experiments at NASA GRC were planned but were not completed due to termination of this project.
Computation of beam propagation in turbulent field
NASA Astrophysics Data System (ADS)
Yang, Yao; Cen, Zhaofeng; Li, Xiaotong
2016-10-01
The split-step Fourier method (SSFM) is introduced to analyze the beam propagation in a relatively large-sized turbulent filed, whose refractive-index profile is already detected. The numerical method is achieved by fast Fourier transform (FFT).To obtain the optimal sampling number, we propose an adaptive spread-spectrum method as an optimization. The SSFM is widely used for solving the nonlinear Schrödinger equation [1].The advantage of the SSFM is apparently its simple formalism and suitability to our situation. The direct numerical solution of the Helmholtz equation, derived from this method, yields detailed information of the spatial and angular properties of the propagation beam. On the other hand, a set of approximations restrict its applicability, the requirements for the accurate application of the method are summarized and a set of formulas is generalized in this paper. The efficiency of the SSFM depends on the sampling number, the adaptive spread-spectrum method yields optimal sampling number to increase the computational efficiency .To testify the accuracy of our algorithm, we use graded-index medium as the turbulent filed, for the reason that the beam propagation in turbulent field with random refractive-index profile is ruleless and has no unified reference. The simulation result testifies our algorithm is tremendously accurate, capable of selecting the optimal N automatically and much more computationally efficient than the original algorithm.
Modeling Light Propagation in Luminescent Media
NASA Astrophysics Data System (ADS)
Sahin, Derya
This study presents physical, computational and analytical modeling approaches for light propagation in luminescent random media. Two different approaches are used, namely (i) a statistical approach: Monte-Carlo simulations for photon transport and (ii) a deterministic approach: radiative transport theory. Both approaches account accurately for the multiple absorption and reemission of light at different wavelengths and for anisotropic luminescence. The deterministic approach is a generalization of radiative transport theory for solving inelastic scattering problems in random media. We use the radiative transport theory to study light propagation in luminescent media. Based on this theory, we also study the optically thick medium. Using perturbation methods, a corrected diffusion approximation with asymptotically accurate boundary conditions and a boundary layer solution are derived. The accuracy and the efficacy of this approach is verified for a plane-parallel slab problem. In particular, we apply these two approaches (MC and radiative transport theory) to model light propagation in semiconductor-based luminescent solar concentrators (LSCs). The computational results for both approaches are compared with each other and found to agree. The results of this dissertation present practical and reliable techniques to use for solving forward/inverse inelastic scattering problems arising in various research areas such as optics, biomedical engineering, nuclear engineering, solar science and material science.
Nonlinear guided wave propagation in prestressed plates.
Pau, Annamaria; Lanza di Scalea, Francesco
2015-03-01
The measurement of stress in a structure presents considerable interest in many fields of engineering. In this paper, the diagnostic potential of nonlinear elastic guided waves in a prestressed plate is investigated. To do so, an analytical model is formulated accounting for different aspects involved in the phenomenon. The fact that the initial strains can be finite is considered using the Green Lagrange strain tensor, and initial and final configurations are not merged, as it would be assumed in the infinitesimal strain theory. Moreover, an appropriate third-order expression of the strain energy of the hyperelastic body is adopted to account for the material nonlinearities. The model obtained enables to investigate both the linearized case, which gives the variation of phase and group velocity as a function of the initial stress, and the nonlinear case, involving second-harmonic generation as a function of the initial state of stress. The analysis is limited to Rayleigh-Lamb waves propagating in a plate. Three cases of initial prestress are considered, including prestress in the direction of the wave propagation, prestress orthogonal to the direction of wave propagation, and plane isotropic stress.
Wave Propagation in Jointed Geologic Media
Antoun, T
2009-12-17
Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.
Nonlinear propagation of light in Dirac matter.
Eliasson, Bengt; Shukla, P K
2011-09-01
The nonlinear interaction between intense laser light and a quantum plasma is modeled by a collective Dirac equation coupled with the Maxwell equations. The model is used to study the nonlinear propagation of relativistically intense laser light in a quantum plasma including the electron spin-1/2 effect. The relativistic effects due to the high-intensity laser light lead, in general, to a downshift of the laser frequency, similar to a classical plasma where the relativistic mass increase leads to self-induced transparency of laser light and other associated effects. The electron spin-1/2 effects lead to a frequency upshift or downshift of the electromagnetic (EM) wave, depending on the spin state of the plasma and the polarization of the EM wave. For laboratory solid density plasmas, the spin-1/2 effects on the propagation of light are small, but they may be significant in superdense plasma in the core of white dwarf stars. We also discuss extensions of the model to include kinetic effects of a distribution of the electrons on the nonlinear propagation of EM waves in a quantum plasma.
Pipeline damage due to wave propagation
O'Rourke, M. ); Ayala, G. . Inst. de Ingenieria)
1993-09-01
Based on data from three US earthquakes Barenberg (1988) established an empirical relation between seismic wave propagation damage to cast iron pipe and peak horizontal particle velocity, V[sub max]. Additional data from the 1983 Coalinga earthquakes and two Mexican earthquakes suggest that damage ratios in repairs per kilometer, for some other common pipe materials (specifically asbestos cement, concrete, and prestressed concrete cylinder pipe) used for water transmission and distribution follow the same general trend as that for cast iron. The authors data does not include relatively flexible pipe materials such as ductile iron (DI). One expects that the wave propagation damage ratio for these materials to be somewhat less than that for the relatively brittle materials. The best case scenario overestimates observed damage by a factor of two for some of the data points and underestimates observed damage by a factor of three for a few others. When estimating expected water system damage due to future seismic activity, it is suggested that the characteristics of the given system (brittle or flexible pipe materials, relatively uniform or variable subsurface conditions, corrosive or noncorrosive soils) be considered. Although analytical estimates exist, they do not at present cover a broad enough range of damage mechanism to be of use to water officials in estimating seismic wave propagation damage to buried pipelines. However analytical procedures that quantify damage in terms of the relative axial extension or the axial compression force at a joint may prove useful in the future in establishing design criterion for seismically resistant pipe.
Propagation of seismic waves in tall buildings
Safak, E.
1998-01-01
A discrete-time wave propagation formulation of the seismic response of tall buildings is introduced. The building is modeled as a layered medium, similar to a layered soil medium, and is subjected to vertically propagating seismic shear waves. Soil layers and the bedrock under the foundation are incorporated in the formulation as additional layers. Seismic response is expressed in terms of the wave travel times between the layers, and the wave reflection and transmission coefficients at the layer interfaces. The equations account for the frequency-dependent filtering effects of the foundation and floor masses. The calculation of seismic response is reduced to a pair of simple finite-difference equations for each layer, which can be solved recursively starting from the bedrock. Compared to the commonly used vibration formulation, the wave propagation formulation provides several advantages, including simplified calculations, better representation of damping, ability to account for the effects of the soil layers under the foundation, and better tools for identification and damage detection from seismic records. Examples presented show the versatility of the method. ?? 1998 John Wiley & Sons, Ltd.
Current understanding of SEP acceleration and propagation
NASA Astrophysics Data System (ADS)
Klecker, B.
2013-02-01
The solar energetic particle (SEP) populations of electrons and ions are highly variable in space and time, in intensity, energy, and composition. Over the last ~20 years advanced instrumentation onboard many spacecraft (e.g. ACE, Coronas, GOES, Hinode, RHESSI, SAMPEX, SDO, SOHO, STEREO, TRACE, Ulysses, Yokoh, to name a few) extended our ability to explore the characteristics of solar energetic particles by in-situ measurements in interplanetary space and by observing their source characteristics near the Sun by remote-sensing observation of electromagnetic emission over a wide frequency range. These measurements provide crucial information for understanding the sources of the particle populations and the acceleration and propagation processes involved. We are now able to measure intensity-time profiles and anisotropies, energy spectra, elemental and isotopic abundances, and the ionic charge of particles over an extended energy range of 0.01 to several 100 MeV/nuc and for a large dynamic range of particle intensities. Furthermore, multi-spacecraft in-situ observations at different solar longitudes and latitudes provide new insight into the acceleration and propagation processes of SEPs near the Sun and in interplanetary space. In this paper we present an overview of SEP observations, their implications for SEP acceleration and propagation processes, and discuss open questions.
Ultrasonic wave propagation in multilayered piezoelectric substrates
Chien, H.T.; Sheen, S.H.; Raptis, A.C.
1994-04-11
Due to the increasing demand for higher operating frequency, lower attenuation, and stronger piezoelectricity, use of the layered structure has become necessary. Theoretical studies are carried out for ultrasonic waves propagating in the multilayered piezoelectric substrates. Each layer processes up to as low as monoclinic symmetry with various thickness and orientation. A plane acoustic wave is assumed to be incident, at varied frequency and incidence angle, from a fluid upon a multilayered substrate. Simple analytical expressions for the reflection and transmission coefficients are derived from which all propagation characteristics are identified. Such expressions contain, as a by-product, the secular equation for the propagation of free harmonic waves on the multilayered piezoelectric substrates. Solutions are obtained for the individual layers which relate the field variables at the upper layer surfaces. The response of the total system proceeds by satisfying appropriate interfacial conditions across the layers. Based on the boundary conditions, two cases, {open_quotes}shorted{close_quotes} and {open_quotes}free{close_quotes}, are derived from which a so-called piezoelectric coupling factor is calculated to show the piezoelectric efficiency. Our results are rather general and show that the phase velocity is a function of frequency, layer thickness, and orientation.
Propagating synchrony in feed-forward networks
Jahnke, Sven; Memmesheimer, Raoul-Martin; Timme, Marc
2013-01-01
Coordinated patterns of precisely timed action potentials (spikes) emerge in a variety of neural circuits but their dynamical origin is still not well understood. One hypothesis states that synchronous activity propagating through feed-forward chains of groups of neurons (synfire chains) may dynamically generate such spike patterns. Additionally, synfire chains offer the possibility to enable reliable signal transmission. So far, mostly densely connected chains, often with all-to-all connectivity between groups, have been theoretically and computationally studied. Yet, such prominent feed-forward structures have not been observed experimentally. Here we analytically and numerically investigate under which conditions diluted feed-forward chains may exhibit synchrony propagation. In addition to conventional linear input summation, we study the impact of non-linear, non-additive summation accounting for the effect of fast dendritic spikes. The non-linearities promote synchronous inputs to generate precisely timed spikes. We identify how non-additive coupling relaxes the conditions on connectivity such that it enables synchrony propagation at connectivities substantially lower than required for linearly coupled chains. Although the analytical treatment is based on a simple leaky integrate-and-fire neuron model, we show how to generalize our methods to biologically more detailed neuron models and verify our results by numerical simulations with, e.g., Hodgkin Huxley type neurons. PMID:24298251
VLF/LF long wave propagation study
NASA Astrophysics Data System (ADS)
Verplanck, P.; Kahler, R. C.; Donohoe, J. B.
1981-11-01
A program of ARCAS rocket measurements provided field strength data from 0 to 75 km altitude, in both Transverse Magnetic (TM) and Transverse Electric (TE) polarizations. Sky wave parameters related to survivable ground wave communications were measured at a frequency of 100 kHz, and a method of communicating with short (ground wave) pulses was demonstrated on a 230 km propagation path. Measurements were made in New York state, and in Brazil, to further define the nature of pulse reflections from ionospheric heights below the classical D-region. Instrumentation was developed to detect small changes in 100 kHz ground wave propagation velocity which might correlate with tropospheric conditions. Preliminary mechanical considerations indicate that it might be possible to deploy long center-fed dipole antennas from an Earth satellite. The program of high-resolution ionosounding with TM pulses in Greenland was augmented by transmitting TE pulses from an unused powerline at Thule Air Base. It was demonstrated that the effects of ionospheric disturbances can now be observed simultaneously with both polarizations. Input resistances and reactances of the powerline antenna were measured as functions of frequency in preparation for a follow-on program of long range propagation tests.
Cosmic ray sources, acceleration and propagation
NASA Technical Reports Server (NTRS)
Ptuskin, V. S.
1986-01-01
A review is given of selected papers on the theory of cosmic ray (CR) propagation and acceleration. The high isotropy and a comparatively large age of galactic CR are explained by the effective interaction of relativistic particles with random and regular electromagnetic fields in interstellar medium. The kinetic theory of CR propagation in the Galaxy is formulated similarly to the elaborate theory of CR propagation in heliosphere. The substantial difference between these theories is explained by the necessity to take into account in some cases the collective effects due to a rather high density of relativisitc particles. In particular, the kinetic CR stream instability and the hydrodynamic Parker instability is studied. The interaction of relativistic particles with an ensemble of given weak random magnetic fields is calculated by perturbation theory. The theory of CR transfer is considered to be basically completed for this case. The main problem consists in poor information about the structure of the regular and the random galactic magnetic fields. An account is given of CR transfer in a turbulent medium.
Autocatalytic Reaction Front Propagation in Oscillatory Flows
NASA Astrophysics Data System (ADS)
Leconte, Marc; Martin, Jerome; Rakotomalala, Nicole; Salin, Dominique
2003-11-01
Laboratoire Fluides Automatique et Systèmes Thermiques, Universités P. et M. Curie and Paris Sud, C.N.R.S. (UMR 7608) Bâtiment 502, Campus Universitaire, 91405 Orsay Cedex, France. Autocatalytic reaction front between two reacting species is able to propagate as a solitary wave that is at a constant velocity and with a stationary concentration profile resulting from a balance between molecular diffusion and chemical reaction. On the other hand, in laminar flow the association of molecular diffusion and convection leads to an overall diffusion effect, the so-called Taylor dispersion, with a flow dependent enhanced dispersion coefficient. Previous experiments have demonstrated the dissymmetry between supportive and adverse advection flows compared to the reaction front propagation without flow. We analyze experimentally the effect of laminar oscillatory flow on the propagation and on the shape of the fronts in the Iodate-Arsenous Acid autocatalytic reaction in micro Hele-Shaw cells. We observe new solitary waves whose velocity and shape depend on the relative importance of advection, diffusion and reaction. The results are in reasonable with our lattice 3D BGK simulations.
RF Wave Propagation and Scattering in Tokamaks
NASA Astrophysics Data System (ADS)
Horton, Wendell; Goniche, Marc; Arefiev, Alex; Peysson, Yves; Ekedahl, Annika; InstituteFusion Studies Collaboration; IRFM CEA Collaboration
2016-10-01
The propagation, scattering and absorption of the lower hybrid and electron cyclotron RF waves used to control fusion plasmas is reviewed. Drift wave turbulence driven by the steep ion and electron temperature gradients in H-mode divertor tokamaks produces strong scattering of the RF waves used for heating and plasma currents drive Both the 3-5GHz lower-hybrid (LH) and the 170GHZ electron cyclotron (EC) waves experience scattering and diffraction as propagating through the statistically complex density of the plasma. Ray equations are used to calculate the spread of the rays and the associated change in the parallel phase, polarization and group velocity of the RF waves in the propagation through the fusion plasma. A Fokker Planck equation for the phase space of the RF plasmons is one method to describe the spread of the RF wave power in the complex geometry of a divertor tokamak using the ray tracing codes. The evolution of the electron distribution function from the resonant electron-wave interactions is summarized for several scenarios. The resulting X-ray spectrum is broaden giving better agreement with the measured X-ray spectrum than that calculated in the absence of the turbulent scattering of the RF waves. M. Goniche et al., and Tore Supra Team, Phys. Plasmas 21, 2014.
Wave propagation in anisotropic layered composites
NASA Astrophysics Data System (ADS)
Braga, Arthur Martins Barbosa
1990-08-01
The propagation of harmonic waves in laminated anisotropic composites is investigated. The analysis is carried out within the framework of the linear theory of elasticity. Two basic geometries are considered, namely, layered half-spaces and infinite laminated plates. The method employed in the description of the wave motion in the anisotropic composites is based on Stroh's sextic matrix formalism for anisotropic elasticity. An extension of this formalism to periodic media, in conjunction with Floquet's theorem, is applied when the layers are disposed periodically. The 'in vacuo' free motions of laminated composites are investigated. Particular attention is paid to Rayleigh and Rayleigh-Lamb wave propagation in layered media. The dynamic interaction of laminated composites with a surrounding acoustic fluid is also investigated. The concept of surface impedance tensor is introduced. It is shown that, for harmonic motions, this rank-two tensor completely characterizes the solid surface in contact with the fluid. An algorithm for the numerical computation of the surface impedance tensor of anisotropic layered composites is presented. This algorithm is numerically stable for a wide range of frequencies. Special attention is paid to the subsonic Sholte-Gogoladze-like wave, which propagates unattenuated along the planar fluid/solid interface.
Wave propagation in metamaterial lattice sandwich plates
NASA Astrophysics Data System (ADS)
Fang, Xin; Wen, Jihong; Yin, Jianfei; Yu, Dianlong
2016-04-01
This paper designed a special acoustic metamaterial 3D Kagome lattice sandwich plate. Dispersion properties and vibration responses of both traditional plate and metamaterial plate are investigated based on FEA methods. The traditional plate does not have low-frequency complete bandgaps, but the metamaterial plate has low-frequency complete bandgap (at 620Hz) coming from the symmetrical local cantilever resonators. The bandgap frequency is approximate to the first-order natural frequency of the oscillator. Complex wave modes are analyzed. The dispersion curves of longitudinal waves exist in the flexural bandgap. The dispersion properties demonstrate the metamaterial design is advantageous to suppress the low-frequency flexural wave propagation in lattice sandwich plate. The flexural vibrations near the bandgap are also suppressed efficiently. The longitudinal excitation stimulates mainly longitudinal waves and lots of low-frequency flexural vibration modes are avoided. Furthermore, the free edge effects in metamaterial plate provide new method for damping optimizations. The influences of damping on vibrations of the metamaterial sandwich plate are studied. Damping has global influence on the wave propagation; stronger damping will induce more vibration attenuation. The results enlighten us damping and metamaterial design approaches can be unite in the sandwich plates to suppress the wave propagations.
Quench propagation delay due to copper wedges
Kuchnir, M.; McInturff, A.D.; Hanft, R.W.; Mazur, P.O.
1986-01-01
The superconducting magnet design style selected for the SSC dipoles is 16.6 m long and incorporates copper wedges in the windings in order to achieve the required magnetic field uniformity. Recent studies of quench propagation in a 4 m model, SLN-012 at BNL, have been carried out in order to prove the feasibility of self-protection for these magnets in the event of a quench. This feature would dispense with an active protection system like the one used in the Fermilab Energy Saver. These studies, however, require the knowledge of how the copper wedges affect the transverse spreading of normal zones needed in the self-protecting scheme. It is not clear that such information can be obtained with the short (1 m long) prototypes about to be tested since the time for the normal zone to cross over a wedge might be of the order of or longer than the time it takes for it to reach the other side of the wedge by propagation along the cable. Well instrumented long prototype magnets are months away from availability. Calculations that take into account the effect of the Kapton insulation, helium in the interstices and other significant details do not exist or have not been tested. Therefore we have measured the delay that the copper wedges introduce in the transverse (azimuthal) propagation of the normal zone in an experimental simulation of these magnets.
Model-scale sound propagation experiment
NASA Technical Reports Server (NTRS)
Willshire, William L., Jr.
1988-01-01
The results of a scale model propagation experiment to investigate grazing propagation above a finite impedance boundary are reported. In the experiment, a 20 x 25 ft ground plane was installed in an anechoic chamber. Propagation tests were performed over the plywood surface of the ground plane and with the ground plane covered with felt, styrofoam, and fiberboard. Tests were performed with discrete tones in the frequency range of 10 to 15 kHz. The acoustic source and microphones varied in height above the test surface from flush to 6 in. Microphones were located in a linear array up to 18 ft from the source. A preliminary experiment using the same ground plane, but only testing the plywood and felt surfaces was performed. The results of this first experiment were encouraging, but data variability and repeatability were poor, particularly, for the felt surface, making comparisons with theoretical predictions difficult. In the main experiment the sound source, microphones, microphone positioning, data acquisition, quality of the anechoic chamber, and environmental control of the anechoic chamber were improved. High-quality, repeatable acoustic data were measured in the main experiment for all four test surfaces. Comparisons with predictions are good, but limited by uncertainties of the impedance values of the test surfaces.
Successive MJO propagation in MERRA-2 reanalysis
NASA Astrophysics Data System (ADS)
Powell, Scott W.
2017-05-01
Composite circumnavigating Madden-Julian oscillation (MJO) events in Version 2 of the NASA Modern Era Reanalysis for Research and Applications (MERRA-2) reanalysis propagate as convectively coupled Kelvin waves over the Western Hemisphere and moisture waves like that described by Adames and Kim (2016) over the warm pool. Estimated zonally variable phase speeds of coupled Kelvin waves in the tropics are calculated by determining the "effective static stability" experienced by the wave. The wave is structured similarly to a classically derived deep tropospheric Kelvin wave, and its phase speed is up to 33 m s-1 or 40 m s-1 over the central/eastern Pacific or Atlantic/equatorial Africa, respectively, during boreal winter. Theoretically, estimated phase speeds of convectively coupled Kelvin waves over the tropical warm pool are greater than 15 m s-1, much faster than the propagation of the reanalyzed MJO. A complete theory for MJO propagation around the globe must allow both coupled Kelvin waves and moisture waves.
Atmospheric propagation properties of various laser systems
NASA Astrophysics Data System (ADS)
Pitz, Greg A.; Glass, Sara; Kamer, Brian; Klennert, Wade L.; Hostutler, David A.
2012-06-01
Atmospheric propagation properties of various laser systems, including diode pumped alkali lasers (DPALs) and the Chemical Oxygen Iodine Laser (COIL), are of importance. However, there appears to be a lack of highly accurate transmission characteristics of these systems associated with their operating conditions. In this study laser propagation of the rubidium-based DPAL and the COIL has been simulated utilizing integrated cavity output spectroscopy. This technique allowed for the simulation of laser propagation approaching distances of 3 kilometers on a test stand only 35 cm long. The spectral output from these simulations was compared to the HITRAN database with excellent agreement. The spectral prole and proximity of the laser line to the atmospheric absorbers is shown. These low pressure spectral proles were then extrapolated to higher pressures using an in-house hyperne model. These models allowed for the comparison of proposed systems and their output spectral prole. The diode pumped rubidium laser at pressures under an atmosphere has been shown to interact with only one water absorption feature, but at pressures approaching 7 atmospheres the D1 transition may interact with more than 6 water lines depending on resonator considerations. Additionally, a low pressure system may have some slight control of the overlap of the output prole with the water line by changing the buer gases.
Modeling Propagation of Shock Waves in Metals
Howard, W M; Molitoris, J D
2005-08-19
We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P {approx} 300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and shear modulus depend on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. At melt the yield strength and shear modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that give the correct detonation velocity and C-J pressure (P {approx} 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov.
Large-scale Globally Propagating Coronal Waves.
Warmuth, Alexander
Large-scale, globally propagating wave-like disturbances have been observed in the solar chromosphere and by inference in the corona since the 1960s. However, detailed analysis of these phenomena has only been conducted since the late 1990s. This was prompted by the availability of high-cadence coronal imaging data from numerous spaced-based instruments, which routinely show spectacular globally propagating bright fronts. Coronal waves, as these perturbations are usually referred to, have now been observed in a wide range of spectral channels, yielding a wealth of information. Many findings have supported the "classical" interpretation of the disturbances: fast-mode MHD waves or shocks that are propagating in the solar corona. However, observations that seemed inconsistent with this picture have stimulated the development of alternative models in which "pseudo waves" are generated by magnetic reconfiguration in the framework of an expanding coronal mass ejection. This has resulted in a vigorous debate on the physical nature of these disturbances. This review focuses on demonstrating how the numerous observational findings of the last one and a half decades can be used to constrain our models of large-scale coronal waves, and how a coherent physical understanding of these disturbances is finally emerging.
Wave propagation in spatially modulated tubes
NASA Astrophysics Data System (ADS)
Ziepke, A.; Martens, S.; Engel, H.
2016-09-01
We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi-two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we observe finite intervals of propagation failure of waves induced by the tube's modulation and derive an analytically tractable condition for their occurrence. For the highly diffusive limit, using the Fick-Jacobs approach, we show that wave velocities within modulated tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pulse trains. We observe period changes by integer fractions dependent on the bottleneck width and the period of the entering pulse train.
Robust information propagation through noisy neural circuits
Pouget, Alexandre
2017-01-01
Sensory neurons give highly variable responses to stimulation, which can limit the amount of stimulus information available to downstream circuits. Much work has investigated the factors that affect the amount of information encoded in these population responses, leading to insights about the role of covariability among neurons, tuning curve shape, etc. However, the informativeness of neural responses is not the only relevant feature of population codes; of potentially equal importance is how robustly that information propagates to downstream structures. For instance, to quantify the retina’s performance, one must consider not only the informativeness of the optic nerve responses, but also the amount of information that survives the spike-generating nonlinearity and noise corruption in the next stage of processing, the lateral geniculate nucleus. Our study identifies the set of covariance structures for the upstream cells that optimize the ability of information to propagate through noisy, nonlinear circuits. Within this optimal family are covariances with “differential correlations”, which are known to reduce the information encoded in neural population activities. Thus, covariance structures that maximize information in neural population codes, and those that maximize the ability of this information to propagate, can be very different. Moreover, redundancy is neither necessary nor sufficient to make population codes robust against corruption by noise: redundant codes can be very fragile, and synergistic codes can—in some cases—optimize robustness against noise. PMID:28419098
Instability and Turbulence of Propagating Particulate Flows
NASA Astrophysics Data System (ADS)
Balachandar, S.
2015-11-01
Propagation of particle-laden fluid into an ambient is a common fluid mechanical process that can be observed in many industrial and environmental applications. Sedimentation fronts, volcanic plumes, dust storms, powder snow avalanches, submarine turbidity currents, explosive powder dispersal and supernovae offer fascinating examples of advancing particulate fronts. The propagating interface can undergo Rayleigh-Taylor, Kelvin-Helmholtz and double-diffusive instabilities and result in the formation of lobes and clefts, spikes and bubbles, and particulate fingers. The interplay between suspended particles and turbulence is often complex due to interaction of competing mechanisms. In problems such as turbidity currents, turbulence controls sediment concentration through resuspension and settling of particles at the bed. Also, turbulent entrainment at the propagating front is observed to be influenced by the sediments. Stable stratification due to suspended sediment concentration can damp and even kill turbulence. This complex turbulence-sediment interaction offers possible explanation for massive sediment deposits observed in nature. The talk will also address challenges and recent advancements in the modeling and simulation of such particle-laden turbulent flows.
Cosmic ray propagation with CRPropa 3
NASA Astrophysics Data System (ADS)
Alves Batista, R.; Erdmann, M.; Evoli, C.; Kampert, K.-H.; Kuempel, D.; Mueller, G.; Sigl, G.; Van Vliet, A.; Walz, D.; Winchen, T.
2015-05-01
Solving the question of the origin of ultra-high energy cosmic rays (UHECRs) requires the development of detailed simulation tools in order to interpret the experimental data and draw conclusions on the UHECR universe. CRPropa is a public Monte Carlo code for the galactic and extragalactic propagation of cosmic ray nuclei above ∼ 1017 eV, as well as their photon and neutrino secondaries. In this contribution the new algorithms and features of CRPropa 3, the next major release, are presented. CRPropa 3 introduces time-dependent scenarios to include cosmic evolution in the presence of cosmic ray deflections in magnetic fields. The usage of high resolution magnetic fields is facilitated by shared memory parallelism, modulated fields and fields with heterogeneous resolution. Galactic propagation is enabled through the implementation of galactic magnetic field models, as well as an efficient forward propagation technique through transformation matrices. To make use of the large Python ecosystem in astrophysics CRPropa 3 can be steered and extended in Python.
Fatigue crack layer propagation in silicon-iron
NASA Technical Reports Server (NTRS)
Birol, Y.; Welsch, G.; Chudnovsky, A.
1986-01-01
Fatigue crack propagation in metal is almost always accompanied by plastic deformation unless conditions strongly favor brittle fracture. The analysis of the plastic zone is crucial to the understanding of crack propagation behavior as it governs the crack growth kinetics. This research was undertaken to study the fatigue crack propagation in a silicon iron alloy. Kinetic and plasticity aspects of fatigue crack propagation in the alloy were obtained, including the characterization of damage evolution.
Coherence Effects in Light Propagation in Scattering and in Spectroscopy
2005-12-01
Gaussian Schell - model Beams Propagating in Atmospheric Turbulence", Opt. Lett. 28...generated by an electromagnetic Gaussian Schell - model source which propagates through atmospheric turbulence tends to its value at the source plane with...polarization on propagation . We illustrate the results by a numerical example relating to an electromagnetic Gaussian Schell - model beam. 17 51. H.
Clonal propagation on Eucalyptus by cuttings in France
H. Chaperon
1983-01-01
A.FO.CEL has developed a technique for mass propagation by cuttings of Eucalyptus in France. This technique is described from the selection of the ortet to the mass propagation of the clone for afforestation: the first stage is the mobilization of the ortet, the second stage is called pre-propagation which includes rejuvenating and rooting conditioning, the third stage...
Modeling UHF Radio Propagation in Buildings.
NASA Astrophysics Data System (ADS)
Honcharenko, Walter
The potential implementation of wireless Radio Local Area Networks and Personal Communication Services inside buildings requires a thorough understanding of signal propagation within buildings. This work describes a study leading to a theoretical understanding of wave propagation phenomenon inside buildings. Covered first is propagation in the clear space between the floor and ceiling, which is modeled using Kirchoff -Huygens diffraction theory. This along with ray tracing techniques are used to develop a model to predict signal coverage inside buildings. Simulations were conducted on a hotel building, two office buildings, and a university building to which measurements of CW signals were compared, with good agreement. Propagation to other floors was studied to determine the signal strength as a function of the number of floors separating transmitter and receiver. Diffraction paths and through the floor paths which carry significant power to the receivers were examined. Comparisons were made to measurements in a hotel building and an office building, in which agreements were excellent. As originally developed for Cellular Mobile Radio (CMR) systems, the sector average is obtained from the spatial average of the received signal as the mobile traverses a path of 20 or so wavelengths. This approach has also been applied indoors with the assumption that a unique average could be obtained by moving either end of the radio link. However, unlike in the CMR environment, inside buildings both ends of the radio link are in a rich multipath environment. It is shown both theoretically and experimentally that moving both ends of the link is required to achieve a unique average. Accurate modeling of the short pulse response of a signal within a building will provide insight for determining the hardware necessary for high speed data transmission and recovery, and a model for determining the impulse response is developed in detail. Lastly, the propagation characteristics of
Mineral replacement front propagation in deformed rocks
NASA Astrophysics Data System (ADS)
Beaudoin, Nicolas; Koehn, Daniel; Kelka, Ulrich
2015-04-01
Fluid migrations are a major agent of contaminant transport leading to mineral replacement in rocks, impacting their properties as porosity, permeability, and rheology. Understanding the physical and chemical mechanisms that govern mineralogical replacement during and after deformation is required to better understand complex interplays between fluid and rocks that are involved in faulting, seismic cycle, and resource distribution in the upper crust. Dolomitization process related to hydrothermal fluid flow is one of the most studied and debated replacement processes in earth sciences. Dolomitization of limestone is of economic importance as well, as it stands as unconventional oil reservoirs and is systematically observed in Mississippian-Valley Type ore deposit. Despite recent breakthrough about dolomitization processes at large-scale, the small-scale propagation of the reaction front remains unclear. It is poorly documented in the occurrence of stylolites and fractures in the medium while pressure-solution and fracture network development are the most efficient deformation accomodation mechanism in limestone from early compaction to layer-parallel shortening. Thus, the impact of such network on geometry of replaced bodies and on replacement front propagation deserves specific attention. This contribution illustrates the role of fracture and stylolites on the propagation of a reaction front. In a 2 dimensional numerical model we simulate the dolomitization front propagation in a heterogeneous porous medium. The propagation of the reaction front is governed by the competition between advection and diffusion processes, and takes into account reaction rates, disorder in the location of the potential replacement seeds, and permeability heterogeneities. We add stylolites and fractures that can act as barriers or drains to fluid flow according to their orientation and mineralogical content, which can or cannot react with the contaminant. The patterns produced from
Visual attitude propagation for small satellites
NASA Astrophysics Data System (ADS)
Rawashdeh, Samir A.
As electronics become smaller and more capable, it has become possible to conduct meaningful and sophisticated satellite missions in a small form factor. However, the capability of small satellites and the range of possible applications are limited by the capabilities of several technologies, including attitude determination and control systems. This dissertation evaluates the use of image-based visual attitude propagation as a compliment or alternative to other attitude determination technologies that are suitable for miniature satellites. The concept lies in using miniature cameras to track image features across frames and extracting the underlying rotation. The problem of visual attitude propagation as a small satellite attitude determination system is addressed from several aspects: related work, algorithm design, hardware and performance evaluation, possible applications, and on-orbit experimentation. These areas of consideration reflect the organization of this dissertation. A "stellar gyroscope" is developed, which is a visual star-based attitude propagator that uses relative motion of stars in an imager's field of view to infer the attitude changes. The device generates spacecraft relative attitude estimates in three degrees of freedom. Algorithms to perform the star detection, correspondence, and attitude propagation are presented. The Random Sample Consensus (RANSAC) approach is applied to the correspondence problem to successfully pair stars across frames while mitigating falsepositive and false-negative star detections. This approach provides tolerance to the noise levels expected in using miniature optics and no baffling, and the noise caused by radiation dose on orbit. The hardware design and algorithms are validated using test images of the night sky. The application of the stellar gyroscope as part of a CubeSat attitude determination and control system is described. The stellar gyroscope is used to augment a MEMS gyroscope attitude propagation
Turbulent flame propagation in partially premixed flames
NASA Technical Reports Server (NTRS)
Poinsot, T.; Veynante, D.; Trouve, A.; Ruetsch, G.
1996-01-01
Turbulent premixed flame propagation is essential in many practical devices. In the past, fundamental and modeling studies of propagating flames have generally focused on turbulent flame propagation in mixtures of homogeneous composition, i.e. a mixture where the fuel-oxidizer mass ratio, or equivalence ratio, is uniform. This situation corresponds to the ideal case of perfect premixing between fuel and oxidizer. In practical situations, however, deviations from this ideal case occur frequently. In stratified reciprocating engines, fuel injection and large-scale flow motions are fine-tuned to create a mean gradient of equivalence ratio in the combustion chamber which provides additional control on combustion performance. In aircraft engines, combustion occurs with fuel and secondary air injected at various locations resulting in a nonuniform equivalence ratio. In both examples, mean values of the equivalence ratio can exhibit strong spatial and temporal variations. These variations in mixture composition are particularly significant in engines that use direct fuel injection into the combustion chamber. In this case, the liquid fuel does not always completely vaporize and mix before combustion occurs, resulting in persistent rich and lean pockets into which the turbulent flame propagates. From a practical point of view, there are several basic and important issues regarding partially premixed combustion that need to be resolved. Two such issues are how reactant composition inhomogeneities affect the laminar and turbulent flame speeds, and how the burnt gas temperature varies as a function of these inhomogeneities. Knowledge of the flame speed is critical in optimizing combustion performance, and the minimization of pollutant emissions relies heavily on the temperature in the burnt gases. Another application of partially premixed combustion is found in the field of active control of turbulent combustion. One possible technique of active control consists of pulsating
Jackson, M B; Zhang, S J
1995-01-01
1. A theoretical model was developed to investigate action potential propagation in posterior pituitary nerve terminals. This model was then used to evaluate the efficacy of depolarizing and shunting GABA responses on action potential propagation. 2. Experimental data obtained from the posterior pituitary with patch clamp techniques were used to derive empirical expressions for the voltage and time dependence of the nerve terminal Na+ and K+ channels. The essential structure employed here was based on anatomical and cable data from the posterior pituitary, and consisted of a long cylindrical axon (diameter, 0.5 mm) with a large spherical swelling (diameter, 4-21 mm) in the middle. 3. In the absence of an inhibitory conductance, simulated action potentials propagated with high fidelity through the nerve terminal. Swellings could block propagation, but only when sizes exceeded those observed in the posterior pituitary. Adding axonal branches reduced the critical size only slightly. These results suggested that action potentials invade the entire posterior pituitary nerve terminal in the absence of inhibition or depression. 4. The addition of inhibitory conductance to a swelling caused simulated action potentials to fail at the swelling. Depolarizing inhibitory conductances were 1.6 times more effective than shunting inhibitory conductances in blocking propagation. 5. Inhibitory conductances within the range of experimentally observed magnitudes and localized to swellings in the observed range of sizes were too weak to block simulated action potentials. However, twofold enhancement of GABA responses by neurosteroid resulted in currents strong enough to block propagation in realistic swelling sizes. 6. GABA could block simulated propagation without neurosteroid enhancement provided that GABA was present throughout a region in the order of a few hundred micrometres. For this widespread inhibition depolarizing conductance was 2.2 times more effective than shunting
Hypersonic phonon propagation in one-dimensional surface phononic crystal
NASA Astrophysics Data System (ADS)
Graczykowski, B.; Sledzinska, M.; Kehagias, N.; Alzina, F.; Reparaz, J. S.; Sotomayor Torres, C. M.
2014-03-01
Hypersonic, thermally activated surface acoustic waves propagating in the surface of crystalline silicon patterned with periodic stripes were studied by Brillouin light scattering. Two characteristic directions (normal and parallel to the stripes) of surface acoustic waves propagation were examined exhibiting a distinctive propagation behavior. The measured phononic band structure exhibits diverse features, such as zone folding, band gap opening, and hybridization to local resonance for waves propagating normal to the stripes, and a variety of dispersive modes propagating along the stripes. Experimental results were supported by theoretical calculations performed using finite element method.
An attempt to model rift propagation
NASA Astrophysics Data System (ADS)
Zwaan, Frank; Schreurs, Guido
2017-04-01
Rift propagation is along-strike growth of an initial small rift structure. Since rift propagation is a major factor in continent-break up (e.g. the opening of the Atlantic) we started a series of models to investigate associated tectonic processes. These analogue models involve either standard extension (continuous along-strike) or scissor-like extension (with an along-strike gradient and a rotation axis). Both the standard and scissor set-ups involve a base of foam and plastic components that transfers distributed extension to the overlying model materials as the model sidewalls are moved apart. The difference between the standard set-up and the scissor set-up is that the sidewalls move apart in a parallel fashion in the former, while in the latter, the sidewalls move around a rotation axis, causing a scissor-like deformation gradient. We use quartz sand layer for the brittle upper crust and a viscous sand/silicone mixture for ductile lower crust (total 8 cm, 1 cm = 5 km). Lines of semi-circular silicone (seeds) on top of the basal viscous layer act as weak zones along deformation focuses because the stronger sand layer on top is thinner and therefore weaker. These 0.75 cm thick seeds are situated at one end of the model (ca. 20 cm long on a model length of 80-90 cm), to initiate a rift structure from which rift propagation could start. Both set-ups encounter the same problems. In contrast with our previous model series (e.g. Zwaan et al., 2016), the seeds cause little localization and almost no rift propagation. Instead, extensional faulting occurs mostly along the sidewalls, especially away from the seeds. Apparently, the models need a seed or weak zone to localize deformation, otherwise the model boundaries provide the weaknesses along which faulting occurs. Tests with lower extension velocities (which should improve rift localization due to lower brittle-ductile coupling) did not improve the results. Neither did the application of a thicker seed (ø up to 1
Orbital Propagation of Momentum Exchange Tether Systems
NASA Technical Reports Server (NTRS)
Westerhoff, John
2002-01-01
An advanced concept in in-space transportation currently being studied is the Momentum-Exchange/Electrodynamic Reboost Tether System (MXER). The system acts as a large momentum wheel, imparting a Av to a payload in low earth orbit (LEO) at the expense of its own orbital energy. After throwing a payload, the system reboosts itself using an electrodynamic tether to push against Earth's magnetic field and brings itself back up to an operational orbit to prepare for the next payload. The ability to reboost itself allows for continued reuse of the system without the expenditure of propellants. Considering the cost of lifting propellant from the ,ground to LEO to do the same Av boost at $10000 per pound, the system cuts the launch cost of the payload dramatically, and subsequently, the MXER system pays for itself after a small number of missions.1 One of the technical hurdles to be overcome with the MXER concept is the rendezvous maneuver. The rendezvous window for the capture of the payload is on the order of a few seconds, as opposed to traditional docking maneuvers, which can take as long ets necessary to complete a precise docking. The payload, therefore, must be able to match its orbit to meet up with the capture device on the end of the tether at a specific time and location in the future. In order to be able to determine that location, the MXER system must be numerically propagated forward in time to predict where the capture device will be at that instant. It should be kept in mind that the propagation computation must be done faster than real-time. This study focuses on the efforts to find and/or build the tools necessary to numerically propagate the motion of the MXER system as accurately as possible.
Calibration of seismic wave propagation in Jordan
Al-Husien, A; Amrat, A; Harris, D; Mayeda, K; Nakanishi, K; Rodgers, A; Ruppert, S; Ryall, F; Skinnell, K; Yazjeen, T
1999-07-23
The Natural Resources Authority of Jordan (NRA), the USGS and LLNL have a collaborative project to improve the calibration of seismic propagation in Jordan and surrounding regions. This project serves common goals of CTBT calibration and earthquake hazard assessment in the region. These objectives include accurate location of local and regional earthquakes, calibration of magnitude scales, and the development of local and regional propagation models. In the CTBT context, better propagation models and more accurately located events in the Dead Sea rift region can serve as (potentially GT5) calibration events for generating IMS location corrections. The detection and collection of mining explosions underpins discrimination research. The principal activity of this project is the deployment of two broadband stations at Hittiyah (south Jordan) and Ruweishid (east Jordan). These stations provide additional paths in the region to constrain structure with surface wave and body wave tomography. The Ruweishid station is favorably placed to provide constraints on Arabian platform structure. Waveform modeling with long-period observations of larger earthquakes will provide constraints on 1-D velocity models of the crust and upper mantle. Data from these stations combined with phase observations from the 26 short-period stations of the Jordan National Seismic Network (JNSN) may allow the construction of a more detailed velocity model of Jordan. The Hittiyah station is an excellent source of ground truth information for the six phosphate mines of southern Jordan and Israel. Observations of mining explosions collected by this station have numerous uses: for definition of templates for screening mining explosions, as ground truth events for calibrating travel-time models, and as explosion populations in development and testing discriminants. Following previously established procedures for identifying explosions, we have identified more than 200 explosions from the first 85 days of
Nonlinear and Dispersive Optical Pulse Propagation
NASA Astrophysics Data System (ADS)
Dijaili, Sol Peter
In this dissertation, there are basically four novel contributions to the field of picosecond pulse propagation and measurement. The first contribution is the temporal ABCD matrix which is an analog of the traditional ABCD ray matrices used in Gaussian beam propagation. The temporal ABCD matrix allows for the easy calculation of the effects of linear chirp or group velocity dispersion in the time domain. As with Gaussian beams in space, there also exists a complete Hermite-Gaussian basis in time whose propagation can be tracked with the temporal ABCD matrices. The second contribution is the timing synchronization between a colliding pulse mode-locked dye laser and a gain-switched Fabry-Perot type AlGaAs laser diode that has achieved less than 40 femtoseconds of relative timing jitter by using a pulsed optical phase lock loop (POPLL). The relative timing jitter was measured using the error voltage of the feedback loop. This method of measurement is accurate since the frequencies of all the timing fluctuations fall within the loop bandwidth. The novel element is a broad band optical cross-correlator that can resolve femtosecond time delay errors between two pulse trains. The third contribution is a novel dispersive technique of determining the nonlinear frequency sweep of a picosecond pulse with relatively good accuracy. All the measurements are made in the time domain and hence there is no time-bandwidth limitation to the accuracy. The fourth contribution is the first demonstration of cross -phase modulation in a semiconductor laser amplifier where a variable chirp was observed. A simple expression for the chirp imparted on a weak signal pulse by the action of a strong pump pulse is derived. A maximum frequency excursion of 16 GHz due to the cross-phase modulation was measured. A value of 5 was found for alpha _{xpm} which is a factor for characterizing the cross-phase modulation in a similar manner to the conventional linewidth enhancement factor, alpha.
Laminar flame propagation in a stratified charge
NASA Astrophysics Data System (ADS)
Ra, Youngchul
The propagation of laminar flame from a rich or stoichiometric mixture to a lean mixture in a stratified methane-air charge was investigated experimentally and numerically. Emphasis was on the understanding of the flame behavior in the transition region; in particular, on the mechanism of burning velocity enhancement in this region. In the experimental setup, mixtures of two different equivalence ratios were separated by a soap bubble in a spherical constant volume combustion vessel. The richer mixture inside the bubble was ignited by a focused laser beam. The flame development was observed by Schlieren technique and flame speeds were measured by heat release analysis of the pressure data. An one-dimensional, time- dependant numerical simulation of the flame propagation in a charge with step-stratification was used to interpret the experimental results. Both the experimental and numerical studies showed that the instantaneous flame speed depended on the previous flame history. Thus a `strong' (with mixture equivalence ratio close to stoichiometric) flame can sustain propagation into finite regions of substantially lean equivalence ratio. Both thermal and chemical effects were crucial for explaining the mechanism of the flame speed enhancement in the transition period. Because of the presence of this `back- support' effect, the usual concept of specifying the burning velocity as a function of the end gas state is inadequate for a stratified charge. A simple correlation for instantaneous flame velocity based on the local burned gas temperature is developed. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)
Orbital Propagation of Momentum Exchange Tether Systems
NASA Technical Reports Server (NTRS)
Westerhoff, John
2002-01-01
An advanced concept in in-space transportation currently being studied is the Momentum-Exchange/Electrodynamic Reboost Tether System (MXER). The system acts as a large momentum wheel, imparting a Av to a payload in low earth orbit (LEO) at the expense of its own orbital energy. After throwing a payload, the system reboosts itself using an electrodynamic tether to push against Earth's magnetic field and brings itself back up to an operational orbit to prepare for the next payload. The ability to reboost itself allows for continued reuse of the system without the expenditure of propellants. Considering the cost of lifting propellant from the ,ground to LEO to do the same Av boost at $10000 per pound, the system cuts the launch cost of the payload dramatically, and subsequently, the MXER system pays for itself after a small number of missions.1 One of the technical hurdles to be overcome with the MXER concept is the rendezvous maneuver. The rendezvous window for the capture of the payload is on the order of a few seconds, as opposed to traditional docking maneuvers, which can take as long ets necessary to complete a precise docking. The payload, therefore, must be able to match its orbit to meet up with the capture device on the end of the tether at a specific time and location in the future. In order to be able to determine that location, the MXER system must be numerically propagated forward in time to predict where the capture device will be at that instant. It should be kept in mind that the propagation computation must be done faster than real-time. This study focuses on the efforts to find and/or build the tools necessary to numerically propagate the motion of the MXER system as accurately as possible.
Propagation peculiarities of mean field massive gravity
Deser, S.; Waldron, A.; Zahariade, G.
2015-07-28
Massive gravity (mGR) describes a dynamical “metric” on a fiducial, background one. We investigate fluctuations of the dynamics about mGR solutions, that is about its “mean field theory”. Analyzing mean field massive gravity (m¯GR) propagation characteristics is not only equivalent to studying those of the full non-linear theory, but also in direct correspondence with earlier analyses of charged higher spin systems, the oldest example being the charged, massive spin 3/2 Rarita–Schwinger (RS) theory. The fiducial and mGR mean field background metrics in the m¯GR model correspond to the RS Minkowski metric and external EM field. The common implications in bothmore » systems are that hyperbolicity holds only in a weak background-mean-field limit, immediately ruling both theories out as fundamental theories; a situation in stark contrast with general relativity (GR) which is at least a consistent classical theory. Moreover, even though both m¯GR and RS theories can still in principle be considered as predictive effective models in the weak regime, their lower helicities then exhibit superluminal behavior: lower helicity gravitons are superluminal as compared to photons propagating on either the fiducial or background metric. Thus our approach has uncovered a novel, dispersive, “crystal-like” phenomenon of differing helicities having differing propagation speeds. As a result, this applies both to m¯GR and mGR, and is a peculiar feature that is also problematic for consistent coupling to matter.« less
Foam front propagation in anisotropic oil reservoirs.
Grassia, P; Torres-Ulloa, C; Berres, S; Mas-Hernández, E; Shokri, N
2016-04-01
The pressure-driven growth model is considered, describing the motion of a foam front through an oil reservoir during foam improved oil recovery, foam being formed as gas advances into an initially liquid-filled reservoir. In the model, the foam front is represented by a set of so-called "material points" that track the advance of gas into the liquid-filled region. According to the model, the shape of the foam front is prone to develop concave sharply curved concavities, where the orientation of the front changes rapidly over a small spatial distance: these are referred to as "concave corners". These concave corners need to be propagated differently from the material points on the foam front itself. Typically the corner must move faster than those material points, otherwise spurious numerical artifacts develop in the computed shape of the front. A propagation rule or "speed up" rule is derived for the concave corners, which is shown to be sensitive to the level of anisotropy in the permeability of the reservoir and also sensitive to the orientation of the corners themselves. In particular if a corner in an anisotropic reservoir were to be propagated according to an isotropic speed up rule, this might not be sufficient to suppress spurious numerical artifacts, at least for certain orientations of the corner. On the other hand, systems that are both heterogeneous and anisotropic tend to be well behaved numerically, regardless of whether one uses the isotropic or anisotropic speed up rule for corners. This comes about because, in the heterogeneous and anisotropic case, the orientation of the corner is such that the "correct" anisotropic speed is just very slightly less than the "incorrect" isotropic one. The anisotropic rule does however manage to keep the corner very slightly sharper than the isotropic rule does.
Speeding up tsunami wave propagation modeling
NASA Astrophysics Data System (ADS)
Lavrentyev, Mikhail; Romanenko, Alexey
2014-05-01
Trans-oceanic wave propagation is one of the most time/CPU consuming parts of the tsunami modeling process. The so-called Method Of Splitting Tsunami (MOST) software package, developed at PMEL NOAA USA (Pacific Marine Environmental Laboratory of the National Oceanic and Atmospheric Administration, USA), is widely used to evaluate the tsunami parameters. However, it takes time to simulate trans-ocean wave propagation, that is up to 5 hours CPU time to "drive" the wave from Chili (epicenter) to the coast of Japan (even using a rather coarse computational mesh). Accurate wave height prediction requires fine meshes which leads to dramatic increase in time for simulation. Computation time is among the critical parameter as it takes only about 20 minutes for tsunami wave to approach the coast of Japan after earthquake at Japan trench or Sagami trench (as it was after the Great East Japan Earthquake on March 11, 2011). MOST solves numerically the hyperbolic system for three unknown functions, namely velocity vector and wave height (shallow water approximation). The system could be split into two independent systems by orthogonal directions (splitting method). Each system can be treated independently. This calculation scheme is well suited for SIMD architecture and GPUs as well. We performed adaptation of MOST package to GPU. Several numerical tests showed 40x performance gain for NVIDIA Tesla C2050 GPU vs. single core of Intel i7 processor. Results of numerical experiments were compared with other available simulation data. Calculation results, obtained at GPU, differ from the reference ones by 10^-3 cm of the wave height simulating 24 hours wave propagation. This allows us to speak about possibility to develop real-time system for evaluating tsunami danger.
DNA motif elucidation using belief propagation.
Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei
2013-09-01
Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k=8∼10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors' websites: e.g. http://www.cs.toronto.edu/∼wkc/kmerHMM.
Modeling Local and Regional Wave Propagation
NASA Astrophysics Data System (ADS)
Apoloner, Maria-Theresia; Bokelmann, Götz
2013-04-01
Seismograms reflect the combined effects of the source, recording instrument, ambient noise, and the propagation path. Especially for recording at distances smaller then 10° the signal is affected mainly by the crustal structure, as waves propagate in the crust and/or along Moho. Therefore appearance of regional seismograms varies strongly, which complicates record interpretation and phase identification severely. However, for earthquakes with small magnitudes, close distance records are the only ones available with a sufficient signal at all. Due to sparse seismic station coverage and the use of only the most distinct phases, typically Pg and Sg, localization can not always be ensured. Yet, retrieving accurate earthquake location, including depth information and the relation with faults is important for understanding tectonic processes and for estimating seismic hazard. Prior works by e.g. Ma (2010) show the benefit of using additional regional phases for localization, in particular depth. At local and regional distances the challenge lies in robustly detecting and identifying these phases correctly, which are usually superimposed by the coda of the P- and S-phase and sometimes even arrive simultaneously. In this work we want to shed light on the different influences on seismograms at local distances < 200 km. Starting with a simple crust-mantle model we calculate seismic recordings for sources at varying distances and depths. In addition we look at the changes induced by source mechanisms at diverse azimuths surrounding the source. Particularly the change in amplitude, time and frequency induced by the varying parameters is investigated. According to the phases identified in the diverse synthetic record sections, an overview of propagation characteristics is given. Our goal is to understand the usable information content of regional phases. Based on this information the theoretical performance of methods for identification of additional regional phases can be
Simulations of Seismic Wave Propagation on Mars
NASA Astrophysics Data System (ADS)
Bozdağ, Ebru; Ruan, Youyi; Metthez, Nathan; Khan, Amir; Leng, Kuangdai; van Driel, Martin; Wieczorek, Mark; Rivoldini, Attilio; Larmat, Carène S.; Giardini, Domenico; Tromp, Jeroen; Lognonné, Philippe; Banerdt, Bruce W.
2017-03-01
We present global and regional synthetic seismograms computed for 1D and 3D Mars models based on the spectral-element method. For global simulations, we implemented a radially-symmetric Mars model with a 110 km thick crust (Sohl and Spohn in J. Geophys. Res., Planets 102(E1):1613-1635, 1997). For this 1D model, we successfully benchmarked the 3D seismic wave propagation solver SPECFEM3D_GLOBE (Komatitsch and Tromp in Geophys. J. Int. 149(2):390-412, 2002a; 150(1):303-318, 2002b) against the 2D axisymmetric wave propagation solver AxiSEM (Nissen-Meyer et al. in Solid Earth 5(1):425-445, 2014) at periods down to 10 s. We also present higher-resolution body-wave simulations with AxiSEM down to 1 s in a model with a more complex 1D crust, revealing wave propagation effects that would have been difficult to interpret based on ray theory. For 3D global simulations based on SPECFEM3D_GLOBE, we superimposed 3D crustal thickness variations capturing the distinct crustal dichotomy between Mars' northern and southern hemispheres, as well as topography, ellipticity, gravity, and rotation. The global simulations clearly indicate that the 3D crust speeds up body waves compared to the reference 1D model, whereas it significantly changes surface waveforms and their dispersive character depending on its thickness. We also perform regional simulations with the solver SES3D (Fichtner et al. Geophys. J. Int. 179:1703-1725, 2009) based on 3D crustal models derived from surface composition, thereby addressing the effects of various distinct crustal features down to 2 s. The regional simulations confirm the strong effects of crustal variations on waveforms. We conclude that the numerical tools are ready for examining more scenarios, including various other seismic models and sources.
Crack propagation modeling using Peridynamic theory
NASA Astrophysics Data System (ADS)
Hafezi, M. H.; Alebrahim, R.; Kundu, T.
2016-04-01
Crack propagation and branching are modeled using nonlocal peridynamic theory. One major advantage of this nonlocal theory based analysis tool is the unifying approach towards material behavior modeling - irrespective of whether the crack is formed in the material or not. No separate damage law is needed for crack initiation and propagation. This theory overcomes the weaknesses of existing continuum mechanics based numerical tools (e.g. FEM, XFEM etc.) for identifying fracture modes and does not require any simplifying assumptions. Cracks grow autonomously and not necessarily along a prescribed path. However, in some special situations such as in case of ductile fracture, the damage evolution and failure depend on parameters characterizing the local stress state instead of peridynamic damage modeling technique developed for brittle fracture. For brittle fracture modeling the bond is simply broken when the failure criterion is satisfied. This simulation helps us to design more reliable modeling tool for crack propagation and branching in both brittle and ductile materials. Peridynamic analysis has been found to be very demanding computationally, particularly for real-world structures (e.g. vehicles, aircrafts, etc.). It also requires a very expensive visualization process. The goal of this paper is to bring awareness to researchers the impact of this cutting-edge simulation tool for a better understanding of the cracked material response. A computer code has been developed to implement the peridynamic theory based modeling tool for two-dimensional analysis. A good agreement between our predictions and previously published results is observed. Some interesting new results that have not been reported earlier by others are also obtained and presented in this paper. The final objective of this investigation is to increase the mechanics knowledge of self-similar and self-affine cracks.
DECIMETRIC TYPE III BURSTS: GENERATION AND PROPAGATION
Li, B.; Cairns, Iver H.; Robinson, P. A.; Yan, Y. H.
2011-09-01
Simulations are presented for decimetric type III radio bursts at 2f{sub p} , where f{sub p} is the local electron plasma frequency. The simulations show that 2f{sub p} radiation can be observed at Earth in two scenarios for the radiation's generation and propagation. In Scenario A, radiation is produced and propagates in warm plasmas in the lower corona that are caused by previous magnetic reconnection outflows and/or chromospheric evaporation. In Scenario B radiation is generated in normal plasmas, then due to its natural directivity pattern and refraction, radiation partly propagates into nearby regions, which are hot because of previous reconnection/evaporation. The profiles of plasma density n{sub e} (r) and electron temperature T{sub e} (r) in the lower corona (r - R{sub sun} {approx}< 100 Mm) are found to be crucial to whether radiation can be produced and escape at observable levels against the effects of free-free absorption, where r is the heliocentric distance. Significantly, the observed wide ranges of radiation properties (e.g., drift rates) require n{sub e} (r) with a large range of scale heights h{sub s} , consistent nonetheless for Scenario B with short observed EUV loops. This is relevant to problems with large h{sub s} inferred from tall EUV loops. The simulations suggest: (1) n{sub e} (r) with small h{sub s} , such as n{sub e} (r){proportional_to}(r - R{sub sun}){sup -2.38} for flaring regions, are unexpectedly common deep in the corona. This result is consistent with recent work on n{sub e} (r) for r {approx} (1.05-2)R{sub sun} extracted from observed metric type IIIs. (2) The dominance of reverse-slope bursts over normal bursts sometimes observed may originate from asymmetric reconnection/acceleration, which favors downgoing beams.
Lazy checkpoint coordination for bounding rollback propagation
NASA Technical Reports Server (NTRS)
Wang, Yi-Min; Fuchs, W. Kent
1992-01-01
Independent checkpointing allows maximum process autonomy but suffers from potential domino effects. Coordinated checkpointing eliminates the domino effect by sacrificing a certain degree of process autonomy. In this paper, we propose the technique of lazy checkpoint coordination which preserves process autonomy while employing communication-induced checkpoint coordination for bounding rollback propagation. The introduction of the notion of laziness allows a flexible trade-off between the cost for checkpoint coordination and the average rollback distance. Worst-case overhead analysis provides a means for estimating the extra checkpoint overhead. Communication trace-driven simulation for several parallel programs is used to evaluate the benefits of the proposed scheme for real applications.
Probes of Lorentz violation in neutrino propagation
Ellis, John; Harries, Nicholas; Meregaglia, Anselmo; Sakharov, Alexander S.
2008-08-01
It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c=[1{+-}(E/M{sub {nu}}{sub QG1})] or [1{+-}(E/M{sub {nu}}{sub QG2}){sup 2}], using data from supernova explosions and the OPERA long-baseline neutrino experiment. Using the SN1987a neutrino data from the Kamioka II, IMB, and Baksan experiments, we set the limits M{sub {nu}}{sub QG1}>2.7(2.5)x10{sup 10} GeV for subluminal (superluminal) propagation and M{sub {nu}}{sub QG2}>4.6(4.1)x10{sup 4} GeV at the 95% confidence level. A future galactic supernova at a distance of 10 kpc would have sensitivity to M{sub {nu}}{sub QG1}>2(4)x10{sup 11} GeV for subluminal (superluminal) propagation and M{sub {nu}}{sub QG2}>2(4)x10{sup 5} GeV. With the current CERN neutrinos to Gran Sasso extraction spill length of 10.5 {mu}s and with standard clock synchronization techniques, the sensitivity of the OPERA experiment would reach M{sub {nu}}{sub QG1}{approx}7x10{sup 5} GeV (M{sub {nu}}{sub QG2}{approx}8x10{sup 3} GeV) after 5 years of nominal running. If the time structure of the super proton synchrotron radio frequency bunches within the extracted CERN neutrinos to Gran Sasso spills could be exploited, these figures would be significantly improved to M{sub {nu}}{sub QG1}{approx}5x10{sup 7} GeV (M{sub {nu}}{sub QG2}{approx}4x10{sup 4} GeV). These results can be improved further if a similar time resolution can be achieved with neutrino events occurring in the rock upstream of the OPERA detector: we find potential sensitivities to M{sub {nu}}{sub QG1}{approx}4x10{sup 8} GeV and M{sub {nu}}{sub QG2}{approx}7x10{sup 5} GeV.
Propagation of cosmic rays in the galaxy
NASA Technical Reports Server (NTRS)
Daniel, R. R.; Stephens, S. A.
1974-01-01
The characteristics of a model for analyzing the propagation of cosmic rays are discussed. The requirements for analyzing the relevant observational data on cosmic rays are defines as: (1) the chemical and isotopic composition of cosmic rays as a function of energy, (2) the flux and energy spectrum of the individual nucleonic components, (3) the flux and energy spectrum of the electronic component, (4) the cosmic ray prehistory, and (5) the degree of isotropy in their arrival directions as a function of energy. It is stated that the model which has been able to bring to pass the greatest measure of success is the galactic confinement model.
Target & Propagation Models for the FINDER Radar
NASA Technical Reports Server (NTRS)
Cable, Vaughn; Lux, James; Haque, Salmon
2013-01-01
Finding persons still alive in piles of rubble following an earthquake, a severe storm, or other disaster is a difficult problem. JPL is currently developing a victim detection radar called FINDER (Finding Individuals in Emergency and Response). The subject of this paper is directed toward development of propagation & target models needed for simulation & testing of such a system. These models are both physical (real rubble piles) and numerical. Early results from the numerical modeling phase show spatial and temporal spreading characteristics when signals are passed through a randomly mixed rubble pile.
On soliton propagation in biomembranes and nerves
Heimburg, Thomas; Jackson, Andrew D.
2005-01-01
The lipids of biological membranes and intact biomembranes display chain melting transitions close to temperatures of physiological interest. During this transition the heat capacity, volume and area compressibilities, and relaxation times all reach maxima. Compressibilities are thus nonlinear functions of temperature and pressure in the vicinity of the melting transition, and we show that this feature leads to the possibility of soliton propagation in such membranes. In particular, if the membrane state is above the melting transition solitons will involve changes in lipid state. We discuss solitons in the context of several striking properties of nerve membranes under the influence of the action potential, including mechanical dislocations and temperature changes. PMID:15994235
Photon Statistics of Propagating Thermal Microwaves
NASA Astrophysics Data System (ADS)
Goetz, J.; Pogorzalek, S.; Deppe, F.; Fedorov, K. G.; Eder, P.; Fischer, M.; Wulschner, F.; Xie, E.; Marx, A.; Gross, R.
2017-03-01
In experiments with superconducting quantum circuits, characterizing the photon statistics of propagating microwave fields is a fundamental task. We quantify the n2+n photon number variance of thermal microwave photons emitted from a blackbody radiator for mean photon numbers, 0.05 ≲n ≲1.5 . We probe the fields using either correlation measurements or a transmon qubit coupled to a microwave resonator. Our experiments provide a precise quantitative characterization of weak microwave states and information on the noise emitted by a Josephson parametric amplifier.
Reconstructing propagation networks with temporal similarity
Liao, Hao; Zeng, An
2015-01-01
Node similarity significantly contributes to the growth of real networks. In this paper, based on the observed epidemic spreading results we apply the node similarity metrics to reconstruct the underlying networks hosting the propagation. We find that the reconstruction accuracy of the similarity metrics is strongly influenced by the infection rate of the spreading process. Moreover, there is a range of infection rate in which the reconstruction accuracy of some similarity metrics drops nearly to zero. To improve the similarity-based reconstruction method, we propose a temporal similarity metric which takes into account the time information of the spreading. The reconstruction results are remarkably improved with the new method. PMID:26086198
Uncertainty propagation within the UNEDF models
NASA Astrophysics Data System (ADS)
Haverinen, T.; Kortelainen, M.
2017-04-01
The parameters of the nuclear energy density have to be adjusted to experimental data. As a result they carry certain uncertainty which then propagates to calculated values of observables. In the present work we quantify the statistical uncertainties of binding energies, proton quadrupole moments and proton matter radius for three UNEDF Skyrme energy density functionals by taking advantage of the knowledge of the model parameter uncertainties. We find that the uncertainty of UNEDF models increases rapidly when going towards proton or neutron rich nuclei. We also investigate the impact of each model parameter on the total error budget.
SQUARE DEAL Explosive Source (SUS) Propagation Measurements
1976-07-19
opposite. (C) One interesting feature of the SUS propagation loss measurements is that there usually is no strong convergence zone/ shadow zone...partially bounded on three sides by the mid-Atlantic Ridge (composed of the Reykjanes Ridge and the Faraday Seamount Group), the Rockall Bank, and the...Site 1B is at a depth of 2039 m., just above critical depth on a seamount along the mid-Atlantic Ridge. Event Th is a radial run at a bearing of 200
Shock propagation in locally driven granular systems
NASA Astrophysics Data System (ADS)
Joy, Jilmy P.; Pathak, Sudhir N.; Das, Dibyendu; Rajesh, R.
2017-09-01
We study shock propagation in a system of initially stationary hard spheres that is driven by a continuous injection of particles at the origin. The disturbance created by the injection of energy spreads radially outward through collisions between particles. Using scaling arguments, we determine the exponent characterizing the power-law growth of this disturbance in all dimensions. The scaling functions describing the various physical quantities are determined using large-scale event-driven simulations in two and three dimensions for both elastic and inelastic systems. The results are shown to describe well the data from two different experiments on granular systems that are similarly driven.
Nonlinear acoustic wave propagation in atmosphere
NASA Technical Reports Server (NTRS)
Hariharan, S. I.
1985-01-01
A model problem that simulates an atmospheric acoustic wave propagation situation that is nonlinear is considered. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.
Nonlinear acoustic wave propagation in atmosphere
NASA Technical Reports Server (NTRS)
Hariharan, S. I.
1986-01-01
In this paper a model problem is considered that simulates an atmospheric acoustic wave propagation situation that is nonlinear. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well-posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.
NLO error propagation exercise data collection system
Keisch, B.; Bieber, A.M. Jr.
1983-01-01
A combined automated and manual system for data collection is described. The system is suitable for collecting, storing, and retrieving data related to nuclear material control at a bulk processing facility. The system, which was applied to the NLO operated Feed Materials Production Center, was successfully demonstrated for a selected portion of the facility. The instrumentation consisted of off-the-shelf commercial equipment and provided timeliness, convenience, and efficiency in providing information for generating a material balance and performing error propagation on a sound statistical basis.
Seismotectonics of mid-ocean ridge propagation
NASA Astrophysics Data System (ADS)
Floyd, Jacqueline Suzanne
This dissertation investigates the rifting-spreading transition of two propagating mid-ocean spreading centers within actively rifting lithosphere, Woodlark Basin and Hess Deep. Hess Deep is a 5.4 km-deep oceanic rift basin at the westernmost tip of the Galapagos Spreading Center where it meets the East Pacific Rise at the Galapagos Triple Junction. Hydroacoustic seismicity data recorded over 200 earthquakes in Hess Deep that reveal earthquake and deformation patterns that are similar to those found in the process zone of laboratory-scale propagating tensile cracks. Seismicity and deformation patterns observed in Hess Deep are consistent with those from crack tip process zones Process zone deformation releases large crack tip stresses predicted by theoretical fracture mechanics and allows stable propagation to occur; thus, viscous suction or other forces are not required to balance the crack tip stress as proposed by previous investigators. The western Woodlark Basin of Papua New Guinea is the site of a major low-angle detachment fault immediately ahead of the westward propagating spreading center. We present the results of two studies of this fault: one using reflection seismology to image the fault zone velocity structure and composition, and one using deep crustal refraction seismology to image the large-scale velocity structure of the fault and surrounding crust. Results from genetic algorithm inversion of seismic reflection data show that the fault contains a frictionally weak fault gouge layer and fluids, while results from seismic tomography show that the fault is a major rift boundary between the northern and southern rift margins of the western Woodlark Basin. We conclude that favorable conditions exist for frictional slip at angles of 30° or less and that this will be the last fault to form before the crust completely rifts apart to create new oceanic crust and lithosphere. The morphology of the rifting-spreading transitions in Woodlark Basin and Hess
Parton Propagation and Fragmentation in QCD Matter
Alberto Accardi, Francois Arleo, William Brooks, David D'Enterria, Valeria Muccifora
2009-12-01
We review recent progress in the study of parton propagation, interaction and fragmentation in both cold and hot strongly interacting matter. Experimental highlights on high-energy hadron production in deep inelastic lepton-nucleus scattering, proton-nucleus and heavy-ion collisions, as well as Drell-Yan processes in hadron-nucleus collisions are presented. The existing theoretical frameworks for describing the in-medium interaction of energetic partons and the space-time evolution of their fragmentation into hadrons are discussed and confronted to experimental data. We conclude with a list of theoretical and experimental open issues, and a brief description of future relevant experiments and facilities.
On soliton propagation in biomembranes and nerves.
Heimburg, Thomas; Jackson, Andrew D
2005-07-12
The lipids of biological membranes and intact biomembranes display chain melting transitions close to temperatures of physiological interest. During this transition the heat capacity, volume and area compressibilities, and relaxation times all reach maxima. Compressibilities are thus nonlinear functions of temperature and pressure in the vicinity of the melting transition, and we show that this feature leads to the possibility of soliton propagation in such membranes. In particular, if the membrane state is above the melting transition solitons will involve changes in lipid state. We discuss solitons in the context of several striking properties of nerve membranes under the influence of the action potential, including mechanical dislocations and temperature changes.
Shallow water sound propagation with surface waves.
Tindle, Chris T; Deane, Grant B
2005-05-01
The theory of wavefront modeling in underwater acoustics is extended to allow rapid range dependence of the boundaries such as occurs in shallow water with surface waves. The theory allows for multiple reflections at surface and bottom as well as focusing and defocusing due to reflection from surface waves. The phase and amplitude of the field are calculated directly and used to model pulse propagation in the time domain. Pulse waveforms are obtained directly for all wavefront arrivals including both insonified and shadow regions near caustics. Calculated waveforms agree well with a reference solution and data obtained in a near-shore shallow water experiment with surface waves over a sloping bottom.
Turbulent Transitions in Optical Wave Propagation
NASA Astrophysics Data System (ADS)
Pierangeli, D.; Di Mei, F.; Di Domenico, G.; Agranat, A. J.; Conti, C.; DelRe, E.
2016-10-01
We report the direct observation of the onset of turbulence in propagating one-dimensional optical waves. The transition occurs as the disordered hosting material passes from being linear to one with extreme nonlinearity. As the response grows, increased wave interaction causes a modulational unstable quasihomogeneous flow to be superseded by a chaotic and spatially incoherent one. Statistical analysis of high-resolution wave behavior in the turbulent regime unveils the emergence of concomitant rogue waves. The transition, observed in a photorefractive ferroelectric crystal, introduces a new and rich experimental setting for the study of optical wave turbulence and information transport in conditions dominated by large fluctuations and extreme nonlinearity.
Probes of Lorentz violation in neutrino propagation
NASA Astrophysics Data System (ADS)
Ellis, John; Harries, Nicholas; Meregaglia, Anselmo; Rubbia, André; Sakharov, Alexander S.
2008-08-01
It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c=[1±(E/MνQG1)] or [1±(E/MνQG2)2], using data from supernova explosions and the OPERA long-baseline neutrino experiment. Using the SN1987a neutrino data from the Kamioka II, IMB, and Baksan experiments, we set the limits MνQG1>2.7(2.5)×1010GeV for subluminal (superluminal) propagation and MνQG2>4.6(4.1)×104GeV at the 95% confidence level. A future galactic supernova at a distance of 10 kpc would have sensitivity to MνQG1>2(4)×1011GeV for subluminal (superluminal) propagation and MνQG2>2(4)×105GeV. With the current CERN neutrinos to Gran Sasso extraction spill length of 10.5μs and with standard clock synchronization techniques, the sensitivity of the OPERA experiment would reach MνQG1˜7×105GeV (MνQG2˜8×103GeV) after 5 years of nominal running. If the time structure of the super proton synchrotron radio frequency bunches within the extracted CERN neutrinos to Gran Sasso spills could be exploited, these figures would be significantly improved to MνQG1˜5×107GeV (MνQG2˜4×104GeV). These results can be improved further if a similar time resolution can be achieved with neutrino events occurring in the rock upstream of the OPERA detector: we find potential sensitivities to MνQG1˜4×108GeV and MνQG2˜7×105GeV.
Earth-Space Propagation Data Bases
NASA Technical Reports Server (NTRS)
Smith, Ernest K.
1996-01-01
This paper, designed for the newcomer rather than the expert, will take a rather broad view of what is meant by 'propagation data bases' in that it will take the term to mean both the actual measurements and models of Earth-space paths. The text will largely be drawn from International Radio Consultative Committee (CCIR) reports, now annexed to the Recommendations of the International Telecommunications Union-R Study Group 3, plus some experience with a course taught at the University of Colorado.
Dynamic crack propagation in a viscoelastic strip
NASA Astrophysics Data System (ADS)
Popelar, C. H.; Atkinson, C.
1980-04-01
THE DYNAMIC PROPAGATION of a semi-infinite crack in a finite linear viscoelastic strip subjected to Mode I loading is investigated. Through the use of integral transforms the problem is reduced to solving a Wiener-Hopf equation. The asymptotic properties of the transforms are exploited to establish the stress intensity factor. Plane-stress and plane-strain stress intensity factors as a function of crack speed for both fully-clamped and shear-free lateral boundaries are presented for the standard linear viscoelastic solid. Comparisons are made with previously obtained asymptotic stress intensity factors and with stress intensity factors for the equivalent elastic strips.
Transionospheric HF Propagation Experiments at Auroral Latitudes
NASA Astrophysics Data System (ADS)
James, H. G.; Benson, R. F.
2004-05-01
High-frequency (HF) propagation experiments are planned as part of the Enhanced Polar Outflow Probe (ePOP) satellite mission to be launched for the Canadian Space Agency in 2007. Ground transmitters such as the CADI ionosondes and the SuperDARN radars will be operated collaboratively to emit waves for detection by the Radio Receiver Instrument of ePOP during passes in the vicinity. The scientific goals include improved understanding of F-region morphology and dynamics, wave scattering and microphysical plasma processes. Partly as preparation for ePOP, transionospheric HF propagation data recorded by the receivers of the ISIS-I and ISIS-II spacecraft are being analyzed. The measurements were made in spring-summer 1978. A ground transmitter was built in Ottawa especially for the project. Some of the ISIS data were obtained in digital form from http://nssdc.gsfc.nasa.gov/space/isis/isis-status.html. These digital data are being surveyed in an attempt to establish repeatable propagation characteristics. From these characteristics, the goal is to understand the processes experienced by waves passing through the ionosphere. Several tens of ISIS-II passes recorded at a fixed frequency of 9.303 MHz have been examined. Swept-frequency ionograms interleaved with these fixed-frequency measurements allow two-dimensional electron density distributions to be modeled in altitude and latitude. Computer code has been developed for three-dimensional ray tracing. The computed latitudinal extent of the zone irradiated at the ISIS-II altitude is approximately as observed. Within this "iris" of accessibility, the peak intensity of waves recorded at the spacecraft is within about 10 dB of what is computed with a link calculation. This calculation is based on a model for the 1-kW transmitter, a radiant-transfer calculation that follows the focusing/defocusing of rays using a three-ray pencil between ground and the satellite, and the orientation of the sounder receiving dipole. Poleward
Turbulent Transitions in Optical Wave Propagation.
Pierangeli, D; Di Mei, F; Di Domenico, G; Agranat, A J; Conti, C; DelRe, E
2016-10-28
We report the direct observation of the onset of turbulence in propagating one-dimensional optical waves. The transition occurs as the disordered hosting material passes from being linear to one with extreme nonlinearity. As the response grows, increased wave interaction causes a modulational unstable quasihomogeneous flow to be superseded by a chaotic and spatially incoherent one. Statistical analysis of high-resolution wave behavior in the turbulent regime unveils the emergence of concomitant rogue waves. The transition, observed in a photorefractive ferroelectric crystal, introduces a new and rich experimental setting for the study of optical wave turbulence and information transport in conditions dominated by large fluctuations and extreme nonlinearity.
Special Course on Acoustic Wave Propagation
1979-08-01
l.Recipient’s Reference 2.Originator’s Reference 3.Further Reference 4.Security Classification of Document AGARD-R-686 ISBN 92-835-0248-5 UNCLASSIFIED 5...3L t’acoustique eat d’Ariatote (384-322 av. .Y.C.) qui a effectud una classification des diffdrentes branches de l’acoustique en cansacrant une part...silence a cotia- tique at balistique. DepuiS la econde guerre mondiale de tres nombreux travaux Sur la propagation acoustique dans les fluides et das
Propagating torsion in the Einstein frame
NASA Astrophysics Data System (ADS)
Popławski, Nikodem J.
2006-11-01
The Einstein-Cartan-Saa theory of torsion modifies the spacetime volume element so that it is compatible with the connection. The condition of connection compatibility gives constraints on torsion, which are also necessary for the consistence of torsion, minimal coupling, and electromagnetic gauge invariance. To solve the problem of positivity of energy associated with the torsionic scalar, we reformulate this theory in the Einstein conformal frame. In the presence of the electromagnetic field, we obtain the Hojman-Rosenbaum-Ryan-Shepley theory of propagating torsion with a different factor in the torsionic kinetic term.
Elastic Wave Propagation and Generation in Seismology
NASA Astrophysics Data System (ADS)
Lees, Jonathan M.
The majority of mature seismologists of my generation were introduced to theoretical seismology via classic textbooks written in the early 1980s. Since this generation has matured and taken the mantle of teaching seismology to a new generation, several new books have been put forward as replacements, or alternatives, to the original classical texts. The target readers of the new texts range from beginner through intermediate to more advanced, although all have been attempts to improve upon what is now considered standard convention in quantitative seismology. To this plethora of choices we now have a new addition by Jose Pujol, titledElastic Wave Propagation and Generation in Seismology.
An Empirical Study of Infrasonic Propagation
J. Paul Mutschlecner; Rodney W. Whitaker; Lawrence H. Auer
1999-10-01
Observations of atmospheric nuclear tests carried out at the Nevada Test Site from 1951 to 1958 provided data for an empirical investigation of how infrasonic signals are propagated to distances of about 250 km. Those observations and the analysis documented in this report involved signal amplitudes and average velocities and included three classes of signals: stratospheric, thermospheric, and tropospheric/surface. The authors' analysis showed that stratospheric winds have a dominant effect upon stratospheric signal amplitudes. The report outlines a method for normalizing stratospheric signal amplitudes for the effects of upper atmospheric winds and presents equations for predicting or normalizing amplitude and average velocity for the three types of signals.
General wave optics propagation scaling law.
Shakir, Sami A; Dolash, Thomas M; Spencer, Mark; Berdine, Richard; Cargill, Daniel S; Carreras, Richard
2016-12-01
A general far-field wave propagation scaling law is developed. The formulation is simple but predicts diffraction peak irradiance accurately in the far field, regardless of the near-field beam type or geometry, including laser arrays. We also introduce the concept of the equivalent uniform circular beam that generates a far-field peak irradiance and power-in-the-bucket that are the same as an arbitrary laser source. Applications to clipped Gaussian beams with an obscuration, both as a single beam and as an array of beams, are shown.
Approximate Bruechner orbitals in electron propagator calculations
Ortiz, J.V.
1999-12-01
Orbitals and ground-state correlation amplitudes from the so-called Brueckner doubles approximation of coupled-cluster theory provide a useful reference state for electron propagator calculations. An operator manifold with hold, particle, two-hole-one-particle and two-particle-one-hole components is chosen. The resulting approximation, third-order algebraic diagrammatic construction [2ph-TDA, ADC (3)] and 3+ methods. The enhanced versatility of this approximation is demonstrated through calculations on valence ionization energies, core ionization energies, electron detachment energies of anions, and on a molecule with partial biradical character, ozone.
Neutrino propagation in a random magnetic field
Sahu, S.
1997-10-01
The active-sterile neutrino conversion probability is calculated for a neutrino propagating in a medium in the presence of random magnetic field fluctuations. A necessary condition for the probability to be positive definite is obtained for active-sterile electron neutrino conversion in the early universe hot plasma and in a supernova. The neutrino magnetic moment obtained from the positive definiteness of the conversion probability defines the range of validity of our approximation, rather than putting any physical bound on it. {copyright} {ital 1997} {ital The American Physical Society}
Nonlinear Gamow vectors in nonlocal optical propagation
NASA Astrophysics Data System (ADS)
Braidotti, M. C.; Gentilini, S.; Marcucci, G.; DelRe, E.; Conti, C.
2016-03-01
Shock waves dominate in a wide variety of fields in physics dealing with nonlinear phenomena, nevertheless the description of their evolution is not resolved for the entire dynamics. Here we propose an analytical method based on Gamow vectors, which belong to irreversible quantum mechanics. We theoretically and experimentally show the appearance of these decaying states during shock evolution allowing to describe the whole wave propagation. These results open new ways to the control of extreme nonlinear regimes such as supercontinuum generation or in the analogies of fundamental physical theories.
Modelling rock avalanche propagation onto glaciers
NASA Astrophysics Data System (ADS)
Sosio, Rosanna; Crosta, Giovanni B.; Chen, Joanna H.; Hungr, Oldrich
2012-07-01
Ice-rock avalanches which occur in glacial environments are controlled by the presence of snow and ice in the moving material and by possible propagation onto icy basal surfaces. All these factors contribute to enhancing the flow mobility. Mixing with ice and snow hampers block collisions and favours dense flow behaviour. Ice melting reduces granular friction by saturation of the basal material and fluidization effects. Propagating onto glaciers offers a smooth surface with low shear resistance. This work is a review of the best documented ice-rock avalanches and focuses on evaluating their mobility for hazard analysis purposes by providing a set of calibrated cases. The rock avalanches have volumes ranging from 5*106 m3 to 25*106 m3. We replicate these events by using SPH and FEM numerical methods, assuming frictional and Voellmy basal rheologies. The Voellmy rheology best performs at replicating the landslide propagation. Among the back analyzed cases, the frictional coefficient ranges in the interval 0.03-0.1, the turbulent coefficient within 1000 m s-2-2000 m s-2. The bulk basal friction angle ranges within 2.75° and 14° with values inversely related to event volumes. Forward selection of the basal friction angle based on event volume, allows the replication of the Mount Cook ice-rock avalanche predicting a maximum runout which is less than 4% larger than observed. In the perspective of forward modelling, large uncertainty is related to the reconstruction of the post-event topographies, particularly for the sliding surface. Mixing with ice and snow reduces basal friction proportionally to ice and snow content. Pure ice has a basal friction which is reduced by about 75% than basal friction of pure rock. Melting of ice during rock avalanche propagation has been evaluated for the Sherman event. The frictional heat generated at the glacier surface results in the melting of 86.2 ± 5.9 kg m-2, which could have contributed to a minimum 20-35% (±10%) reduction of
Implicit Spectral Methods for Wave Propagation Problems
NASA Astrophysics Data System (ADS)
Wineberg, Stephen B.; McGrath, Joseph F.; Gabl, Edward F.; Ridgway Scott, L.; Southwell, Charles E.
1991-12-01
The numerical solution of a non-linear wave equation can be obtained by using spectral methods to resolve the unknown in space and the standard Crank-Nicolson differencing scheme to advance the solution in time. We have analyzed iterative techniques for solving the non-linear equations that arise from such implicit time-stepping schemes for the K-dV and the KP equations. We derived predictor—corrector method that retain the full accuracy of the implicit method with minimal stability restrictions on the size of the time step. Some numerical examples show the propagation of interacting solitons.
Propagation characteristics of superconducting microstrip lines
Mao, S.G.; Ke, J.Y.; Chen, C.H.
1996-01-01
The modified spectral-domain approach is applied to study the propagation characteristics of high temperature superconducting microstrip lines whose signal strip and ground plane are of arbitrary thickness. In this study, numerical results for effective dielectric constant, attenuation constant, and strip current distribution are presented to discuss the effects due to frequency, temperature, strip thickness, and substrate loss tangent. In particular, the conductor and dielectric attenuation constants of superconducting microstrip line are depicted separately to discuss the mechanism of the line losses. A comparison with published theoretical and experimental results is also included to check the accuracy of the new approach`s results.
[Semiology and propagation of epileptic seizures].
Gellner, A-K; Fritsch, B
2013-06-01
The evaluation of episodic seizure-like symptoms is a common challenge in the neurologist's daily routine. The clinical signs (semiology) are the most important puzzle pieces to distinguish epileptic seizures from other episodic entities. Due to the often far-reaching health and social consequences of the diagnosis of epilepsy, the early and rigorous assessment of episodic symptoms by means of the patient history is important. This assessment is based on knowledge of the association of certain semiologies with epileptic syndromes and brain regions; however, certain limitations and pitfalls have to be considered. Typical propagation pathways of seizure activity determine the serial occurrence of semiological features and provide supplementary information.
Belief propagation in genotype-phenotype networks.
Moharil, Janhavi; May, Paul; Gaile, Daniel P; Blair, Rachael Hageman
2016-03-01
Graphical models have proven to be a valuable tool for connecting genotypes and phenotypes. Structural learning of phenotype-genotype networks has received considerable attention in the post-genome era. In recent years, a dozen different methods have emerged for network inference, which leverage natural variation that arises in certain genetic populations. The structure of the network itself can be used to form hypotheses based on the inferred direct and indirect network relationships, but represents a premature endpoint to the graphical analyses. In this work, we extend this endpoint. We examine the unexplored problem of perturbing a given network structure, and quantifying the system-wide effects on the network in a node-wise manner. The perturbation is achieved through the setting of values of phenotype node(s), which may reflect an inhibition or activation, and propagating this information through the entire network. We leverage belief propagation methods in Conditional Gaussian Bayesian Networks (CG-BNs), in order to absorb and propagate phenotypic evidence through the network. We show that the modeling assumptions adopted for genotype-phenotype networks represent an important sub-class of CG-BNs, which possess properties that ensure exact inference in the propagation scheme. The system-wide effects of the perturbation are quantified in a node-wise manner through the comparison of perturbed and unperturbed marginal distributions using a symmetric Kullback-Leibler divergence. Applications to kidney and skin cancer expression quantitative trait loci (eQTL) data from different mus musculus populations are presented. System-wide effects in the network were predicted and visualized across a spectrum of evidence. Sub-pathways and regions of the network responded in concert, suggesting co-regulation and coordination throughout the network in response to phenotypic changes. We demonstrate how these predicted system-wide effects can be examined in connection with
Cosmic ray propagation in the local superbubble
NASA Technical Reports Server (NTRS)
Steitmatter, R. E.; Balasubrahmanyan, V. K.; Protheroe, R. J.; Ormes, J. F.
1984-01-01
It is suggested that a ring of HI gas lying in the galactic plane is part of a supershell which formed some 3 x to the 7th power years ago. The consequences of a closed magnetic supershell for cosmic ray propagation are examined and it is concluded that there is no evidence which precludes the production and trapping of cosmic rays in such a region. A consequence of superbubble confinement is that the mean age of cosmic rays would be independent of energy. This can be tested by high energy observations of the isotopic composition of Be.
Seismic rupture propagation beneath potential landslide wedge
NASA Astrophysics Data System (ADS)
Sakaguchi, A.; Kawamura, K.
2011-12-01
During 2011 Tohoku earthquake (Mw 9.0), much larger slip and tsunami occurred than expectation at outer-wedge (toe of the trench landward slope) of Japan trench (eg. Ide et al., 2011). Similarly, outer-wedge deformation was pointed out in northern segment of 1986 Meiji-Sanriku earthquake (Ms 7.2), and it was discussed that earthquake-related landslide induced large tsunami (eg. Kanamori, 1972; Tanioka and Satake, 1996). Many landslides and normal faults, potential tsunami genesis, are developed at outer-wedge of Japan trench (Henry et al., 1989). Some steep normal-faults turn to horizon at deep portion, and land sliding may be prevented by basal friction. If seismic rupture propagates to basal fault of the outer-wedge, triggered gravity collapse will enlarge deformation of the outer-wedge to cause large tsunamis. It was considered that seismogenic fault locks at deep portion under inner-wedge of the plate subduction zone, and outer-wedge was classified into aseismic zone classically. Seismic rupture propagation to outer-wedge is still uncertain. Seismic slip at the outer-wedge was found from the drilled core during IODP Nankai trough seismogenic zone drilling project (NanTroSEIZE) in Nankai trough, southwest Japan. Samples were obtained from the frontal thrust (438 mbsf), which connects the deep plate boundary to the seafloor at the toe of the accretionary wedge, and from a megasplay fault (271 mbsf) that branches from the plate boundary décollement. Higher vitrinite reflectance of 0.57 % and 0.37 % than the host rock of 0.24 % were found at splay and plate boundary faults zones respectively. These correspond with 300-400 °C and > 20°C of host rock. Local high temperature zone less than several cm thick may be caused by frictional shear heat at fault zone (Sakaguchi, et al., 2011). Shear velocity and durations can be estimated from thermal property of the sediment and distribution of the vitrinite anomaly (Hamada et al., 2011). This result shows that seismic
Propagation of Evidence Through Fuzzy Rules
1993-09-01
range. Bonissone does not use the MPG used in the TV formulation; instead, the detachment operator is employed to propagate the confidence bounds ...of an S-norm is the maximum function. Thus, the lower bound on the confidence of the conclusion is vL(b) = T(suff, vL(a)) and the upper bound is...method is Piero Bonissone (references 5-7). Bounds on the premise are generated from the data using possibility theory. This interval method also can
Supersaturation of vertically propagating internal gravity waves
NASA Technical Reports Server (NTRS)
Lindzen, Richard S.
1988-01-01
The usual assumption that vertically propagating internal gravity waves will cease growing with height once their amplitudes are such as to permit convective instability anywhere within the wave is reexamined. Two factors lead to amplitude limitation: (1) wave clipping associated with convective mixing, and (2) energetic constraints associated with the rate at which the wave can supply energy to the convection. It is found that these two factors limit supersaturation to about 50 percent for waves with short horizontal wavelengths and high relative phase speeds. Usually the degree of supersaturation will be much less. These factors also lead to a gradual, rather than sudden, cessation of wave growth with height.
Lazy checkpoint coordination for bounding rollback propagation
NASA Technical Reports Server (NTRS)
Wang, Yi-Min; Fuchs, W. K.
1993-01-01
Independent checkpointing allows maximum process autonomy but suffers from potential domino effects. Coordinated checkpointing eliminates the domino effect by sacrificing a certain degree of process autonomy. In this paper, we propose the technique of lazy checkpoint coordination which preserves process autonomy while employing communication-induced checkpoint coordination for bounding rollback propagation. The introduction of the notion of laziness allows a flexible trade-off between the cost for checkpoint coordination and the average rollback distance. Worst-case overhead analysis provides a means for estimating the extra checkpoint overhead. Communication trace-driven simulation for several parallel programs is used to evaluate the benefits of the proposed scheme for real applications.
Propagation of heavy cosmic-ray nuclei
NASA Technical Reports Server (NTRS)
Letaw, J. R.; Silberberg, R.; Tsao, C. H.
1984-01-01
Techniques for modeling the propagation of heavy cosmic-ray nuclei, and the required atomic and nuclear data, are assembled in this paper. Emphasis is on understanding nuclear composition in the charge range Z = 3-83. Details of the application of 'matrix methods' above a few hundred MeV/nucleon, a new treatment of electron capture decay, and a new table of cosmic ray-stable isotopes are presented. Computation of nuclear fragmentation cross sections, stopping power, and electron stripping and attachment are briefly reviewed.