Park, Jin-Woo; Kwon, Tae-Geon; Suh, Jo-Young
2013-06-01
It is unclear whether surface bioactive chemistry or hydrophilicity plays a more dominant role in the osseointegration of micro-structured titanium implants having the same surface topography at the micrometer and submicrometer scales. To understand their comparative effect on enhancing the early osseointegration of micro-rough-surfaced implants, this study compared the bone healing-promoting effect of surface strontium (Sr) chemistry that has been shown in numerous studies to super-hydrophilicity in the early osseointegration of moderately rough-surfaced clinical oral implants (SLA(®) implant) in rabbit cancellous bone. Hydrothermal treatment was performed to incorporate Sr ions into the surface of clinical SLA implants (SLA/Sr implant). The surface characteristics were evaluated by using field emission-scanning electron microscopy, X-ray photoelectron spectroscopy and optical profilometry. Twenty screw implants (10 control and 10 experimental) were placed in the femoral condyles of 10 New Zealand White rabbits. The early osseointegration of the SLA/Sr implant was compared with a chemically modified super-hydrophilic SLA implant (SLActive(®) implant) by histomorphometric and resonance frequency analysis after 2 weeks of implantation. The SLA/Sr and SLActive implants exhibited an identical surface topography and average R(a) values at the micron and submicron scales. The SLA/Sr implant displayed a high amount of surface Sr content (15.6 at.%). There was no significant difference in the implant stability quotient (ISQ) values between the two groups. However, histomorphometric analysis revealed a significantly higher bone-to-implant contact percentage in the SLA/Sr implants compared with the SLActive implants in rabbit cancellous bone (P < 0.01). The results indicate that the surface Sr chemistry surpasses the effect of super-hydrophilicity in promoting the early bone apposition of moderately rough Ti surface in cancellous bone. © 2012 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Fadlilah, D. R.; Fajar, M. N.; Aini, A. N.; Haqqiqi, R. I.; Wirawan, P. R.; Endarko
2018-04-01
The synthesized carbon from bones of chicken, cow, and fish with the calcination temperature at 450 and 600°C have been successfully fabricated for counter electrode in the Super Low-Cost Solar Cell (SLC-LC) based the structure of Dye-Sensitized Solar Cells (DSSC). The main proposed study was to fabricate SLC-SC and investigate the influence of the synthesized carbon from animal’s bone for counter electrode towards to photovoltaic performance of SLC-SC. X-Ray Diffraction and UV-Vis was used to characterize the phase and the optical properties of TiO2 as photoanode in SLC-SC. Meanwhile, the morphology and particle size distribution of the synthesized carbon in counter electrodes were investigated by Scanning Electron Microscopy (SEM) and Particle Size Analyzer (PSA). The results showed that the TiO2 has anatase phase with the absorption wavelength of 300 to 550 nm. The calcination temperature for synthesizing of carbon could affect morphology and particle size distribution. The increasing temperature gave the effect more dense in morphology and increased the particle size of carbon in the counter electrode. Changes in morphology and particle size of carbon give effect to the performance of the SLC-SC where the increased morphology’s compact and particle size make decreased in the performance of the SLC-SC.
Wavelength scanning achieves pixel super-resolution in holographic on-chip microscopy
NASA Astrophysics Data System (ADS)
Luo, Wei; Göröcs, Zoltan; Zhang, Yibo; Feizi, Alborz; Greenbaum, Alon; Ozcan, Aydogan
2016-03-01
Lensfree holographic on-chip imaging is a potent solution for high-resolution and field-portable bright-field imaging over a wide field-of-view. Previous lensfree imaging approaches utilize a pixel super-resolution technique, which relies on sub-pixel lateral displacements between the lensfree diffraction patterns and the image sensor's pixel-array, to achieve sub-micron resolution under unit magnification using state-of-the-art CMOS imager chips, commonly used in e.g., mobile-phones. Here we report, for the first time, a wavelength scanning based pixel super-resolution technique in lensfree holographic imaging. We developed an iterative super-resolution algorithm, which generates high-resolution reconstructions of the specimen from low-resolution (i.e., under-sampled) diffraction patterns recorded at multiple wavelengths within a narrow spectral range (e.g., 10-30 nm). Compared with lateral shift-based pixel super-resolution, this wavelength scanning approach does not require any physical shifts in the imaging setup, and the resolution improvement is uniform in all directions across the sensor-array. Our wavelength scanning super-resolution approach can also be integrated with multi-height and/or multi-angle on-chip imaging techniques to obtain even higher resolution reconstructions. For example, using wavelength scanning together with multi-angle illumination, we achieved a halfpitch resolution of 250 nm, corresponding to a numerical aperture of 1. In addition to pixel super-resolution, the small scanning steps in wavelength also enable us to robustly unwrap phase, revealing the specimen's optical path length in our reconstructed images. We believe that this new wavelength scanning based pixel super-resolution approach can provide competitive microscopy solutions for high-resolution and field-portable imaging needs, potentially impacting tele-pathology applications in resource-limited-settings.
Super-Resolution Scanning Laser Microscopy Based on Virtually Structured Detection
Zhi, Yanan; Wang, Benquan; Yao, Xincheng
2016-01-01
Light microscopy plays a key role in biological studies and medical diagnosis. The spatial resolution of conventional optical microscopes is limited to approximately half the wavelength of the illumination light as a result of the diffraction limit. Several approaches—including confocal microscopy, stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, photoactivated localization microscopy, and structured illumination microscopy—have been established to achieve super-resolution imaging. However, none of these methods is suitable for the super-resolution ophthalmoscopy of retinal structures because of laser safety issues and inevitable eye movements. We recently experimentally validated virtually structured detection (VSD) as an alternative strategy to extend the diffraction limit. Without the complexity of structured illumination, VSD provides an easy, low-cost, and phase artifact–free strategy to achieve super-resolution in scanning laser microscopy. In this article we summarize the basic principles of the VSD method, review our demonstrated single-point and line-scan super-resolution systems, and discuss both technical challenges and the potential of VSD-based instrumentation for super-resolution ophthalmoscopy of the retina. PMID:27480461
Bayesian Deconvolution for Angular Super-Resolution in Forward-Looking Scanning Radar
Zha, Yuebo; Huang, Yulin; Sun, Zhichao; Wang, Yue; Yang, Jianyu
2015-01-01
Scanning radar is of notable importance for ground surveillance, terrain mapping and disaster rescue. However, the angular resolution of a scanning radar image is poor compared to the achievable range resolution. This paper presents a deconvolution algorithm for angular super-resolution in scanning radar based on Bayesian theory, which states that the angular super-resolution can be realized by solving the corresponding deconvolution problem with the maximum a posteriori (MAP) criterion. The algorithm considers that the noise is composed of two mutually independent parts, i.e., a Gaussian signal-independent component and a Poisson signal-dependent component. In addition, the Laplace distribution is used to represent the prior information about the targets under the assumption that the radar image of interest can be represented by the dominant scatters in the scene. Experimental results demonstrate that the proposed deconvolution algorithm has higher precision for angular super-resolution compared with the conventional algorithms, such as the Tikhonov regularization algorithm, the Wiener filter and the Richardson–Lucy algorithm. PMID:25806871
NASA Astrophysics Data System (ADS)
Madjarova, Violeta Dimitrova; Yasuno, Yoshiaki; Makita, Shuichi; Hori, Yasuaki; Voeffray, Jean-Baptiste; Itoh, Masahide; Yatagai, Toyohiko; Tamura, Masami; Nanbu, Toshiyuki
2006-02-01
Fourier Domain Optical Coherence Tomography (SD-OCT) systems for dental measurements are demonstrated. Two systems have been developed. The first system is fiber based Michelson interferometer with super luminescent diodes at 1310 nm and 100 nm FWHM as a light source. The sensitivity of the system was 106 dB with depth measurement range in air of 2.5 mm. The second systems is a fiber based Mach-Zehnder interferometer with wavelength scanning laser as light source at center wavelength of 1310 nm, wavelength range of 110 nm and scanning rate of 20 KHz. The sensitivity of the system is 112 dB and depth measurement range in air is 6 mm. Both systems can acquire real-time three dimensional (3-D) images in the range of several second. The systems were applied for early caries detection in tooth, for diagnostics of tooth condition after operational tooth treatment, and for diagnostics of the alveolar bone structure. In-vivo measurements were performed on two volunteers. The systems were able to detect discontinuities in tooth and resin filling after tooth treatment. In addition early carries lesion was detected in one of the volunteers. The 3-D profile of the alveolar bone was acquired for first time with non-contact method.
Is there a role of whole-body bone scan in patients with esophageal squamous cell carcinoma
2012-01-01
Background Correct detection of bone metastases in patients with esophageal squamous cell carcinoma is pivotal for prognosis and selection of an appropriate treatment regimen. Whole-body bone scan for staging is not routinely recommended in patients with esophageal squamous cell carcinoma. The aim of this study was to investigate the role of bone scan in detecting bone metastases in patients with esophageal squamous cell carcinoma. Methods We retrospectively evaluated the radiographic and scintigraphic images of 360 esophageal squamous cell carcinoma patients between 1999 and 2008. Of these 360 patients, 288 patients received bone scan during pretreatment staging, and sensitivity, specificity, positive predictive value, and negative predictive value of bone scan were determined. Of these 360 patients, surgery was performed in 161 patients including 119 patients with preoperative bone scan and 42 patients without preoperative bone scan. Among these 161 patients receiving surgery, 133 patients had stages II + III disease, including 99 patients with preoperative bone scan and 34 patients without preoperative bone scan. Bone recurrence-free survival and overall survival were compared in all 161 patients and 133 stages II + III patients, respectively. Results The diagnostic performance for bone metastasis was as follows: sensitivity, 80%; specificity, 90.1%; positive predictive value, 43.5%; and negative predictive value, 97.9%. In all 161 patients receiving surgery, absence of preoperative bone scan was significantly associated with inferior bone recurrence-free survival (P = 0.009, univariately). In multivariate comparison, absence of preoperative bone scan (P = 0.012, odds ratio: 5.053) represented the independent adverse prognosticator for bone recurrence-free survival. In 133 stages II + III patients receiving surgery, absence of preoperative bone scan was significantly associated with inferior bone recurrence-free survival (P = 0.003, univariately) and overall survival (P = 0.037, univariately). In multivariate comparison, absence of preoperative bone scan was independently associated with inferior bone recurrence-free survival (P = 0.009, odds ratio: 5.832) and overall survival (P = 0.029, odds ratio: 1.603). Conclusions Absence of preoperative bone scan was significantly associated with inferior bone recurrence-free survival, suggesting that whole-body bone scan should be performed before esophagectomy in patients with esophageal squamous cell carcinoma, especially in patients with advanced stages. PMID:22853826
Bone Densitometry (Bone Density Scan)
... News Physician Resources Professions Site Index A-Z Bone Densitometry (DEXA) Bone densitometry, also called dual-energy ... limitations of DEXA Bone Densitometry? What is a Bone Density Scan (DEXA)? Bone density scanning, also called ...
Sklaroff, R B; Sklaroff, D M
1976-07-01
Sixty-four women with Stage II breast cancer who had Sr85 bone scans at the time of radical mastectomy were followed for 8 years in a prospective study. Those women with positive scans had a slight, but statistically significant, increased incidence of metastic disease, particularly for metastases to bone.However, 40% of those women with positive bone scans and negative roentgenograms survived 8 years without evidence of any metastatic disease. Therefore, it has not been shown at this time that bone scans should be obtained in order to exclude bone metastasis before regional therapy for breast cancer is instituted. Also, a significant percentage of women with negative bone scans developed both bone and soft tissue metastases. As many as 30% of asymptomatic women with a history of breast cancer and positive bone scans and negative bone roentgenograms may still harbor disease in bone after 8 years.
Gauguet, Jean-Marc; Pace-Emerson, Tamara; Grant, Frederick D; Shusterman, Suzanne; DuBois, Steven G; Frazier, A Lindsay; Voss, Stephan D
2017-11-01
Accurate staging of neuroblastoma requires multiple imaging examinations. The purpose of this study was to determine the relative contribution of 99m Tc-methylene diphosphonate (MDP) bone scintigraphy (bone scan) versus metaiodobenzylguanidine scintigraphy (MIBG scan) for accurate staging of neuroblastoma. A medical record search by the identified patients with neuroblastoma from 1993 to 2012 who underwent both MIBG and bone scan for disease staging. Cross-sectional imaging was used to corroborate the scintigraphy results. Clinical records were used to correlate imaging findings with clinical staging and patient management. One hundred thirty-two patients underwent both MIBG and bone scan for diagnosis. All stage 1 (n = 12), 2 (n = 8), and 4S (n = 4) patients had a normal bone scan with no skeletal MIBG uptake. Six of 30 stage 3 patients had false (+) bone scans. In the 78 stage 4 patients, 58/78 (74%) were both skeletal MIBG(+)/bone scan (+). In 56 of the 58 cases, skeletal involvement detected with MIBG was equal to or greater than that detected by bone scan. Only 3/78 had (-) skeletal MIBG uptake and (+) bone scans; all 3 had other sites of metastatic disease. Five of 78 had (+) skeletal MIBG with a (-) bone scan, while 12/78 had no skeletal involvement by either MIBG or bone scan. In no case did a positive bone scan alone determine a stage 4 designation. In the staging of neuroblastoma, 99m Tc-MDP bone scintigraphy does not identify unique sites of disease that affect disease stage or clinical management, and in the majority of cases bone scans can be omitted from the routine neuroblastoma staging algorithm. © 2017 Wiley Periodicals, Inc.
Super-resolved terahertz microscopy by knife-edge scan
NASA Astrophysics Data System (ADS)
Giliberti, V.; Flammini, M.; Ciano, C.; Pontecorvo, E.; Del Re, E.; Ortolani, M.
2017-08-01
We present a compact, all solid-state THz confocal microscope operating at 0.30 THz that achieves super-resolution by using the knife-edge scan approach. In the final reconstructed image, a lateral resolution of 60 μm ≍ λ/17 is demonstrated when the knife-edge is deep in the near-field of the sample surface. When the knife-edge is lifted up to λ/4 from the sample surface, a certain degree of super-resolution is maintained with a resolution of 0.4 mm, i.e. more than a factor 2 if compared to the diffraction-limited scheme. The present results open an interesting path towards super-resolved imaging with in-depth information that would be peculiar to THz microscopy systems.
NASA Astrophysics Data System (ADS)
Chinone, N.; Yamasue, K.; Hiranaga, Y.; Honda, K.; Cho, Y.
2012-11-01
Scanning nonlinear dielectric microscopy (SNDM) can be used to visualize polarization distributions in ferroelectric materials and dopant profiles in semiconductor devices. Without using a special sharp tip, we achieved an improved lateral resolution in SNDM through the measurement of super-higher-order nonlinearity up to the fourth order. We observed a multidomain single crystal congruent LiTaO3 (CLT) sample, and a cross section of a metal-oxide-semiconductor (MOS) field-effect-transistor (FET). The imaged domain boundaries of the CLT were narrower in the super-higher-order images than in the conventional image. Compared to the conventional method, the super-higher-order method resolved the more detailed structure of the MOSFET.
Peritoneal Super Scan on 18F - FDG PET-CT in a Patient of Burkitt's Lymphoma.
Roy, Shambo Guha; Parida, Girish Kumar; Tripathy, Sarthak; Singhal, Abhinav; Shamim, Shamim Ahmed; Tripathi, Madhavi
2017-01-01
Peritoneal lymphomatosis is seen less frequently, but when seen, it is mostly associated with aggressive variants of malignancies. FDG uptake has been reported in peritoneal lymphomatosis both in DLBCL and Burkitt's lymphoma. We report a case of Burkitt's lymphoma with involvement of entire peritoneum, which looks like a "peritoneal super scan" on FDG PET-CT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falchook, Aaron D.; Salloum, Ramzi G.; Hendrix, Laura H.
Purpose: For patients with a high likelihood of having metastatic disease (high-risk prostate cancer), bone scan is the standard, guideline-recommended test to look for bony metastasis. We quantified the use of bone scans and downstream procedures, along with associated costs, in patients with high-risk prostate cancer, and their use in low- and intermediate-risk patients for whom these tests are not recommended. Methods and Materials: Patients in the Surveillance, Epidemiology, and End Results (SEER)-Medicare database diagnosed with prostate cancer from 2004 to 2007 were included. Prostate specific antigen (PSA), Gleason score, and clinical T stage were used to define D'Amico riskmore » categories. We report use of bone scans from the date of diagnosis to the earlier of treatment or 6 months. In patients who underwent bone scans, we report use of bone-specific x-ray, computed tomography (CT), and magnetic resonance imaging (MRI) scans, and bone biopsy within 3 months after bone scan. Costs were estimated using 2012 Medicare reimbursement rates. Results: In all, 31% and 48% of patients with apparent low- and intermediate-risk prostate cancer underwent a bone scan; of these patients, 21% underwent subsequent x-rays, 7% CT, and 3% MRI scans. Bone biopsies were uncommon. Overall, <1% of low- and intermediate-risk patients were found to have metastatic disease. The annual estimated Medicare cost for bone scans and downstream procedures was $11,300,000 for low- and intermediate-risk patients. For patients with apparent high-risk disease, only 62% received a bone scan, of whom 14% were found to have metastasis. Conclusions: There is overuse of bone scans in patients with low- and intermediate-risk prostate cancers, which is unlikely to yield clinically actionable information and results in a potential Medicare waste. However, there is underuse of bone scans in high-risk patients for whom metastasis is likely.« less
Radionuclide bone scanning of osteosarcoma: falsely extended uptake patterns.
Chew, F S; Hudson, T M
1982-07-01
The pathologic specimens of 18 osteosarcomas of long bones were examined to correlate histologic abnormalities with abnormalities seen on preoperative 99mTc pyrophosphate or methylene diphosphonate bone scans. Seven scans accurately represented the extent of the tumor. Eleven scans disclosed increased activity extending beyond the radiographic abnormalities. In eight of these, there was no occult tumor extension and in the other three, the scan activity did not accurately portray the skip metastases that were present. Therefore, these 11 scans demonstrated the falsely extended pattern of uptake beyond the true limits of the tumors. Pathologic slides were available for 10 of the 11 areas of bone that exhibited extended uptake. In two instances, there was no pathologic abnormality. In the other eight cases we found marrow hyperemia, medullary reactive bone, or periosteal new bone. This is the first description of these histologic abnormalities of medullary bone in areas of extended uptake on radionuclide bone scans.
Bone scan in metabolic bone diseases. Review.
Abdelrazek, Saeid; Szumowski, Piotr; Rogowski, Franciszek; Kociura-Sawicka, Agnieszka; Mojsak, Małgorzata; Szorc, Małgorzata
2012-08-25
Metabolic bone disease encompasses a number of disorders that tend to present a generalized involvement of the whole skeleton. The disorders are mostly related to increased bone turnover and increased uptake of radiolabelled diphosphonate. Skeletal uptake of 99mTc-labelled diphosphonate depends primarily upon osteoblastic activity, and to a lesser extent, skeletal vascularity. A bone scan image therefore presents a functional display of total skeletal metabolism and has valuable role to play in the assessment of patients with metabolic bone disorders. However, the bone scan appearances in metabolic bone disease are often non-specific, and their recognition depends on increased tracer uptake throughout the whole skeleton. It is the presence of local lesions, as in metastatic disease, that makes a bone scan appearance obviously abnormal. In the early stages, there will be difficulty in evaluating the bone scans from many patients with metabolic bone disease. However, in the more severe cases scan appearances can be quite striking and virtually diagnostic.
... scan is an imaging test used to diagnose bone diseases and find out how severe they are. How ... a 3-phase bone scan. To evaluate metastatic bone disease, images are taken only after the 3- to ...
Bridges, Robert L; Wiley, Chris R; Christian, John C; Strohm, Adam P
2007-06-01
Na(18)F, an early bone scintigraphy agent, is poised to reenter mainstream clinical imaging with the present generations of stand-alone PET and PET/CT hybrid scanners. (18)F PET scans promise improved imaging quality for both benign and malignant bone disease, with significantly improved sensitivity and specificity over conventional planar and SPECT bone scans. In this article, basic acquisition information will be presented along with examples of studies related to oncology, sports medicine, and general orthopedics. The use of image fusion of PET bone scans with CT and MRI will be demonstrated. The objectives of this article are to provide the reader with an understanding of the history of early bone scintigraphy in relation to Na(18)F scanning, a familiarity with basic imaging techniques for PET bone scanning, an appreciation of the extent of disease processes that can be imaged with PET bone scanning, an appreciation for the added value of multimodality image fusion with bone disease, and a recognition of the potential role PET bone scanning may play in clinical imaging.
An evaluation of bone scans as screening procedures for occult metastases in primary breast cancer.
Baker, R R; Holmes, E R; Alderson, P O; Khouri, N F; Wagner, H N
1977-01-01
Preoperative bone scans were obtained in 104 patients with operable breast cancer. Areas of increased radioactivity detected by the bone scan were correlated with appropriate radiographs. One of 64 patients (1.5%) with clinical Stage I and Stage II breast cancer had a metastatic lesion detected by the preoperative bone scan. In contrast, 10 of 41 patients (24%) with Stage III breast cancer had occult metastatic lesions detected by the preoperative bone scan. The majority of patients with abnormal bone scans and no radiographic evidence of a benign lesion to explain the cause of the increased radioactivity proved to have metastatic breast cancer on follow-examination. Even though 20% of patients with operable breast cancer will eventually develop bone metastases, our results indicate that preoperative bone scans are not an effective means of predicting which patients with Stage I and Stage II disease will develop metastatic breast cancer. Because of the considerably increased frequency of detection of occult metastases in patients with Stage III breast cancer, bone scans should be obtained routinely in the preoperative assessment of these patients. Images Figs. 1a and b. Figs. 2a and b. Figs. 3a-d. PMID:889378
Malik, Dharmender; Jois, Abhiram; Singh, Harmandeep; Bora, Girdhar S; Basher, Rajender Kumar; Mittal, Bhagwant Rai
2017-09-01
We report a case of 23-year-old man who presented with complaints of progressive abdominal distension for the past 3 months along with the loss of appetite and weight and had a large solid cystic mass in the left half of the abdominal cavity revealed on ultrasonography and contrast-enhanced CT of the abdomen. Subsequent biopsy and histopathology revealed it to be neuroblastoma. Ga-DOTANOC PET/CT scan performed to rule out distant metastasis showed intense radiotracer uptake distributed throughout the skeleton, mimicking a super scan.
Skeletal scintigraphy and quantitative tracer studies in metabolic bone disease
NASA Astrophysics Data System (ADS)
Fogelman, Ignac
Bone scan imaging with the current bone seeking radiopharmaceuticals, the technetium-99m labelled diphosphonates, has dramatically improved our ability to evaluate skeletal pathology. In this thesis, chapter 1 presents a review of the history of bone scanning, summarises present concepts as to the mechanism of uptake of bone seeking agents and briefly illustrates the role of bone scanning in clinical practice. In chapter 2 the applications of bone scan imaging and quantitative tracer techniques derived from the bone scan in the detection of metabolic bone disease are discussed. Since skeletal uptake of Tc-99m diphosphonate depends upon skeletal metabolism one might expect that the bone scan would be of considerable value in the assessment of metabolic bone disease. However in these disorders the whole skeleton is often diffusely involved by the metabolic process and simple visual inspection of the scan image may not reveal the uniformly increased uptake of tracer. Certain patterns of bone scan abnormality have, however, been reported in patients with primary hyperparathyroidism and renal osteo-dystrophy; the present studies extend these observations and introduce the concept of "metabolic features" which are often recognisable in conditions with generalised increased bone turnover. As an aid to systematic recognition of these features on a given bone scan image a semi-quantitative scoring system, the metabolic index, was introduced. The metabolic index allowed differentiation between various groups of patients with metabolic disorders and a control population. In addition, in a bone scan study of patients with acromegaly, it was found that the metabolic index correlated well with disease activity as measured by serum growth hormone levels. The metabolic index was, however, found to be a relatively insensitive means of identifying disease in individual patients. Patients with increased bone turnover will have an absolute increase in skeletal uptake of tracer. As a means of quantitating this uptake the use of bone to soft-tissue ratios derived from the bone scan image by computer was critically evaluated. The technique was shown to be observer dependent and again found to be of limited value due to the large overlap of patient results with those from control subjects. In chapter 3 the use of bone scan imaging in metabolic bone disease has been compared with radiology. Despite the difficulties mentioned above the metabolic index was employed, and the bone scan found to be the more sensitive investigation in primary hyperparathyroidism, renal osteodystrophy and osteomalacia. In osteoporosis, however, the bone scan was often unable to identify disease and radiology remains the investigation of choice. In a further study comparing bone scanning and radiology in Paget's disease, the bone scan was found to be clearly the more sensitive investigation. As a result of the work described in chapter 2 it became apparent that a sensitive means of quantitating absolute bone uptake of tracer could be of diagnostic value. In chapter 4 a promising new quantitative technique is described in which the 24-hour whole-body retention of Tc-99m diphosphonate (WBR) is measured using a shadow-shield whole-body monitor. At 24 hours after injection, diphosphonate has reached a stable equilibrium in bone reflecting skeletal metabolic activity, while tracer in the soft-tissues of the body has been largely excreted via the urinary tract. It was found that this technique provided a sensitive means of detecting patients with primary hyperparathyroidism, osteomalacia, renal osteodystrophy and Paget's disease and that in these conditions all the results from individual patients lay outside the control range. In further studies the WBR technique was shown to be highly reproducible and not subject to any significant technical errors.
Whole-Body Bone Scan Findings after High-Intensity Focused Ultrasound (HIFU) Treatment.
Seo, Ye Young; O, Joo Hyun; Sohn, Hyung Sun; Choi, Eun Kyoung; Yoo, Ik Dong; Oh, Jin Kyoung; Han, Eun Ji; Jung, Seung Eun; Kim, Sung Hoon
2011-12-01
This study aims to examine the findings of (99m)Tc-diphosphonate bone scans in cancer patients with a history of HIFU treatment. Bone scan images of patients with a history of HIFU treatment for primary or metastatic cancer from January 2006 to July 2010 were retrospectively reviewed. Cases of primary bone tumor or HIFU treatment reaching only the superficial soft tissue layer were excluded. Bone scan images of 62 patients (26 female, 36 male; mean age 57 ± 9 years) were studied. HIFU treatment was performed in the liver (n = 40), pancreas (n = 16), and breast (n = 6). Mean interval time between HIFU treatment and bone scan was 106 ± 105 days (range: 1-572 days). Of 62 scans, 43 showed diffusely decreased uptake of bone within the path of HIFU treatment: antero-axillary and/or posterior arcs of right 5th to 11th ribs in 34 cases after treatment of hepatic lesions; anterior arcs of 2nd to 5th ribs in 5 cases after treatment for breast tumors; and posterior arcs of left 9th to 11th ribs or thoraco-lumbar vertebrae in 4 cases after treatment for pancreas tumor. Of 20 patients who had bone scans more than twice, five showed recovered uptake of the radiotracer in the involved ribs in the follow-up bone scan. Of 62 bone scans in patients with a history of HIFU treatment for primary or metastatic cancer, 69% presented diffusely decreased uptake in the bone in the path of HIFU treatment.
Klatte, T; Klatte, D; Böhm, M; Allhoff, E P
2006-10-01
The indication for a radionuclide bone scan in patients with newly diagnosed, untreated prostate cancer remains controversial. In this retrospective study we examined 406 patients who had received a staging bone scan irrespective of their PSA serum level and histology. We evaluated different guidelines and recommendations with respect to their usefulness. The costs were calculated according to EBM and GOA. We evaluated the classification systems of bone metastases according to Soloway, Crawford, and Rigaud. The bone scan was positive in 41 (10%) of 406 patients. The EAU guidelines turned out to be useful with respect to both clinical value and cost efficiency. The Rigaud classification of bone metastases predicted outcome better than the Soloway or Crawford classification. The EAU guidelines from 2005 are a useful tool to decide whether to perform a bone scan in patients with newly diagnosed, untreated prostate cancer. A bone scan should be performed if PSA levels exceed 20 ng/ml in patients with a G1/G2 histology, and in patients with G3 histology and locally advanced disease irrespective of PSA level. Bone scan metastases should be classified according to Rigaud.
Bone scans after total knee arthroplasty in asymptomatic patients. Cemented versus cementless
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmann, A.A.; Wyatt, R.W.; Daniels, A.U.
1990-02-01
The natural history of bone scans after total knee arthroplasty (TKA) was studied in 26 patients with 28 cemented TKAs and 29 patients with 31 cementless TKAs. The bone scans were examined at specified postoperative intervals. Radionuclide activity of the femoral, tibial, and patellar regions was measured. Six patients who developed pain postoperatively were excluded. Bone scans immediately postoperative and at three months demonstrated increased uptake, which gradually decreased to baseline levels at ten to 12 months. Radioisotope uptake was comparable in the cemented and cementless groups, but was highly variable in individual patients and in each of the follow-upmore » periods. A single postoperative bone scan cannot differentiate component loosening from early bone remodeling. Sequential bone scans, as a supplement to the clinical examination and conventional radiography, may prove useful in the diagnosis of TKA failure.« less
Bone scan as a screening test for missed fractures in severely injured patients.
Lee, K-J; Jung, K; Kim, J; Kwon, J
2014-12-01
In many cases, patients with severe blunt trauma have multiple fractures throughout the body. These fractures are not often detectable by history or physical examination, and their diagnosis can be delayed or even missed. Thus, screening test fractures of the whole body is required after initial management. We performed this study to evaluate the reliability of bone scans for detecting missed fractures in patients with multiple severe traumas and we analyzed the causes of missed fractures by using bone scan. A bone scan is useful as a screening test for fractures of the entire body of severe trauma patients who are passed the acute phase. We reviewed the electronic medical records of severe trauma patients who underwent a bone scan from September 2009 to December 2010. Demographic and medical data were compared and statistically analyzed to determine whether missed fractures were detected after bone scan in the two groups. A total of 382 patients who had an injury severity score [ISS] greater than 16 points with multiple traumas visited the emergency room. One hundred and thirty-one patients underwent bone scan and 81 patients were identified with missed fractures by bone scan. The most frequent location for missed fractures was the rib area (55 cases, 41.98%), followed by the extremities (42 cases, 32.06%). The missed fractures that required surgery or splint were most common in extremities (11 cases). In univariate analysis, higher ISS scores and mechanism of injury were related with the probability that missed fractures would be found with a bone scan. The ISS score was statistically significant in multivariate analysis. Bone scan is an effective method of detecting missed fractures among patients with multiple severe traumas. Level IV, retrospective study. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Bone scanning in lymphoma. [/sup 99m/Tc tracer technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schechter, J.P.; Jones, S.E.; Woolfenden, J.M.
1976-09-01
The results of bone scanning with the newer technetium-99m complexes were correlated with clinical, laboratory, and radiographic findings in 26 patients with malignant lymphoma (10 with Hodgkin's disease and 16 with non-Hodgkin's lymphomas). Abnormalities on bone scan compatible with lymphomatous involvement of the skeleton appeared to occur more commonly in patients with diffuse lymphomas than in patients with nodular lymphomas and were generally observed in the setting of advanced disease (15 of 23 patients). Twenty-seven (73 percent) of the 37 scans obtained were abnormal. Although abnormal scans were observed with the greatest frequency in patients with bone pain (11 ofmore » 11), bone marrow involvement (11 of 12), abnormal skeletal radiographs (11 of 11), and elevated serum alkaline phosphatase levels (5 of 6), bone scanning also detected lymphomatous involvement in patients free of pain or with normal laboratory tests. Moreover, conventional radiography was entirely normal in six (35 percent) of 17 patients with abnormal scans and revealed only nonspecific osteopenia in another two patients (12 percent). Serial bone scans in nine patients reflected their response to chemotherapy. Of the 37 scans, only one was judged falsely positive and one falsely negative. Bone scanning with /sup 99m/Tc complexes is a safe, simple, and sensitive screening procedure for detecting both extensive and focal lymphomatous involvement of the skeletal system and is a useful means of following such involvement in response to treatment.« less
Bone scanning in severe external otitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, W.J.; Shary, J.H. 3d.; Nichols, L.T.
1986-11-01
Technetium99 Methylene Diphosphate bone scanning has been considered an early valuable tool to diagnose necrotizing progressive malignant external otitis. However, to our knowledge, no formal studies have actually compared bone scans of otherwise young, healthy patients with severe external otitis to scans of patients with clinical presentation of malignant external otitis. Twelve patients with only severe external otitis were studied with Technetium99 Diphosphate and were compared to known cases of malignant otitis. All scans were evaluated by two neuroradiologists with no prior knowledge of the clinical status of the patients. Nine of the 12 patients had positive bone scans withmore » many scans resembling those reported with malignant external otitis. Interestingly, there was no consistent correlation between the severity of clinical presentation and the amount of Technetium uptake. These findings suggest that a positive bone scan alone should not be interpreted as indicative of malignant external otitis.« less
Yap, B K; Choo, R; Deboer, G; Klotz, L; Danjoux, C; Morton, G
2003-05-01
To assess the predictive value of serial bone scans as a surveillance tool for bone metastasis in men with clinically localized prostate cancer and managed with watchful observation. A prospective single-arm study was conducted to assess the feasibility of a watchful observation protocol with selective delayed intervention for patients with clinically localized prostate cancer, i.e. T1b-T2bN0M0, a Gleason score of
Three-phase bone scan in osteomyelitis and other musculoskeletal disorders.
Sutter, C W; Shelton, D K
1996-10-01
The three-phase bone scan is very sensitive and is the study of choice in the evaluation of patients with suspected osteomyelitis and normal radiographs. If the underlying bone pathology, such as a healing fracture or degenerative disease, is detected on radiographs of the bone, the indium-111-labeled autologous leukocyte scan is the most cost-effective second study. When fracture of the long bones is clinically suspected but radiographs are normal and a delay in definitive diagnosis is acceptable, it is practical and economical to take follow-up films in 10 to 14 days. In cases requiring prompt diagnosis or when follow-up radiographic films are not diagnostic, the three-phase bone scan is the most cost-effective study. The three-phase bone scan is also used in the evaluation of occupational and sports injuries, including shin splints, stress and occult fractures, enthesiopathies and reflex sympathetic dystrophy.
Schneider, Falk; Waithe, Dominic; Galiani, Silvia; Bernardino de la Serna, Jorge; Sezgin, Erdinc; Eggeling, Christian
2018-06-19
The diffusion dynamics in the cellular plasma membrane provide crucial insights into molecular interactions, organization, and bioactivity. Beam-scanning fluorescence correlation spectroscopy combined with super-resolution stimulated emission depletion nanoscopy (scanning STED-FCS) measures such dynamics with high spatial and temporal resolution. It reveals nanoscale diffusion characteristics by measuring the molecular diffusion in conventional confocal mode and super-resolved STED mode sequentially for each pixel along the scanned line. However, to directly link the spatial and the temporal information, a method that simultaneously measures the diffusion in confocal and STED modes is needed. Here, to overcome this problem, we establish an advanced STED-FCS measurement method, line interleaved excitation scanning STED-FCS (LIESS-FCS), that discloses the molecular diffusion modes at different spatial positions with a single measurement. It relies on fast beam-scanning along a line with alternating laser illumination that yields, for each pixel, the apparent diffusion coefficients for two different observation spot sizes (conventional confocal and super-resolved STED). We demonstrate the potential of the LIESS-FCS approach with simulations and experiments on lipid diffusion in model and live cell plasma membranes. We also apply LIESS-FCS to investigate the spatiotemporal organization of glycosylphosphatidylinositol-anchored proteins in the plasma membrane of live cells, which, interestingly, show multiple diffusion modes at different spatial positions.
Bone scanning in the detection of occult fractures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batillas, J.; Vasilas, A.; Pizzi, W.F.
1981-07-01
The potential role of bone scanning in the early detection of occult fractures following acute trauma was investigated. Technetium 99m pyrophosphate bone scans were obtained in patients with major clinical findings and negative or equivocal roentgenograms following trauma. Bone scanning facilitated the prompt diagnosis of occult fractures in the hip, knee, wrist, ribs and costochondral junctions, sternum, vertebrae, sacrum, and coccyx. Several illustrative cases are presented. Roentgenographic confirmation occurred following a delay of days to weeks and, in some instances, the roentgenographic findings were subtle and could be easily overlooked. This study demonstrates bone scanning to be invaluable and definitivemore » in the prompt detection of occult fractures.« less
Sacco, Sandra M; Saint, Caitlin; Longo, Amanda B; Wakefield, Charles B; Salmon, Phil L; LeBlanc, Paul J; Ward, Wendy E
2017-01-01
Long-term effects of repeated i n vivo micro-computed tomography (μCT) scanning at key stages of growth and bone development (ages 2, 4 and 6 months) on trabecular and cortical bone structure, as well as developmental patterns, have not been studied. We determined the effect of repetitive μCT scanning at age 2, 4 and 6 months on tibia bone structure of male and female CD-1 mice and characterized developmental changes. At 2, 4 and 6 months of age, right tibias were scanned using in vivo μCT (Skyscan 1176) at one of three doses of radiation per scan: 222, 261 or 460 mGy. Left tibias of the same mice were scanned only at 6 months to serve as non-irradiated controls to determine whether recurrent radiation exposure alters trabecular and cortical bone structure at the proximal tibia. In males, eccentricity was lower ( P <0.05) in irradiated compared with non-irradiated tibias (222 mGy group). Within each sex, all other structural outcomes were similar between irradiated and non-irradiated tibias regardless of dose. Trabecular bone loss occurred in all mice due to age while cortical development continued to age 6 months. In conclusion, repetitive μCT scans at various radiation doses did not damage trabecular or cortical bone structure of proximal tibia in male and female CD-1 mice. Moreover, scanning at 2, 4 and 6 months of age highlight the different developmental time course between trabecular and cortical bone. These scanning protocols can be used to investigate longitudinal responses of bone structures to an intervention.
Technical errors in planar bone scanning.
Naddaf, Sleiman Y; Collier, B David; Elgazzar, Abdelhamid H; Khalil, Magdy M
2004-09-01
Optimal technique for planar bone scanning improves image quality, which in turn improves diagnostic efficacy. Because planar bone scanning is one of the most frequently performed nuclear medicine examinations, maintaining high standards for this examination is a daily concern for most nuclear medicine departments. Although some problems such as patient motion are frequently encountered, the degraded images produced by many other deviations from optimal technique are rarely seen in clinical practice and therefore may be difficult to recognize. The objectives of this article are to list optimal techniques for 3-phase and whole-body bone scanning, to describe and illustrate a selection of deviations from these optimal techniques for planar bone scanning, and to explain how to minimize or avoid such technical errors.
NASA Astrophysics Data System (ADS)
Allen, Samantha D. M.; Almond, Matthew J.; Bell, Martin G.; Hollins, Peter; Marks, Sonja; Mortimore, Joanne L.
2002-03-01
The mineralogy of 11 concretions from the Bronze Age settlement horizons at Brean Down near Weston-super-Mare, Somerset, UK, has been examined by infrared spectroscopy. The concretions are found to contain calcite and apatite and, in some cases, quartz. Four further concretions from the later Iron Age Meare Village, soil samples from Brean Down and mineralised samples of known faecal origin from a cesspit within the Tudor Merchant's house in Tenby have been similarly examined. It is found that all samples contain calcite, but only the concretions and the Tenby cesspit samples contain apatite. None of the soil samples contain apatite, although these are relatively high in quartz. This suggests that the concretions are coprolites and that the apatite has a biological origin in small bone fragments. The infrared study is backed up by scanning electron microscopy which confirms the presence of phosphorus in the coprolite samples and shows a morphology suggestive of the presence of bone fragments; it is likely, therefore, that the coprolites result from a carnivore—most probably from dogs. The findings show the usefulness of infrared spectroscopy for the rapid identification of mineralised coprolitic material from archaeological sites.
Radioisotope bone scanning in a case of sarcoidosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinti, D.C.; Hawkins, H.B.; Slavin, J.D. Jr.
1985-03-01
The application of radioisotope scanning to osseous involvement from systemic sarcoidosis has been infrequently described in the scientific literature. Most commonly, the small bones of the hands and feet are affected if sarcoidosis involves the skeleton. Nonetheless, there are also occasional manifestations of sarcoid in the skull, long bones, and vertebral bodies. This paper describes a case of sarcoid involving the lung parenchyma with multiple lesions in the skull and ribs demonstrated by bone scanning with Tc-99m MDP. Following treatment with steroids, the bone scan showed complete resolution of the rib lesions and almost complete resolution of the lesions inmore » the calvarium.« less
Point target detection utilizing super-resolution strategy for infrared scanning oversampling system
NASA Astrophysics Data System (ADS)
Wang, Longguang; Lin, Zaiping; Deng, Xinpu; An, Wei
2017-11-01
To improve the resolution of remote sensing infrared images, infrared scanning oversampling system is employed with information amount quadrupled, which contributes to the target detection. Generally the image data from double-line detector of infrared scanning oversampling system is shuffled to a whole oversampled image to be post-processed, whereas the aliasing between neighboring pixels leads to image degradation with a great impact on target detection. This paper formulates a point target detection method utilizing super-resolution (SR) strategy concerning infrared scanning oversampling system, with an accelerated SR strategy proposed to realize fast de-aliasing of the oversampled image and an adaptive MRF-based regularization designed to achieve the preserving and aggregation of target energy. Extensive experiments demonstrate the superior detection performance, robustness and efficiency of the proposed method compared with other state-of-the-art approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urman, M.; O'Sullivan, R.A.; Nugent, R.A.
This case concerns a patient with intracranial extramedullary hematopoiesis (EH) suspected on a CT scan and subsequently confirmed with In-111 chloride and Tc-99m SC bone marrow scans. The bone marrow scans also provided additional information by demonstrating other sites of EH in the paravertebral tissues and bone marrow expansion into the distal extremities.
Jain, Anuj; Jain, Suruchi; Agarwal, Anil; Gambhir, Sanjay; Shamshery, Chetna; Agarwal, Amita
2015-12-01
Conventional radiologic modalities provide details only about the anatomic aspect of the various structures of the spine. Frequently the structures that show abnormal morphology may not be the cause of low back pain (LBP). Functional imaging in the form of bone scan along with single photon emission computerized tomography (SPECT/CT) may be helpful in identifying structures causing pain, whether morphologically normal or not. The objective of this study is to evaluate the role of bone scan with SPECT/CT in management of patients with LBP. This is randomized double-blinded controlled study performed on 80 patients with LBP aged 20 to 80 years, ASA physical status I to III. Patients were randomized into bone scan and control groups consisting of 40 patients each. On the basis of the clinical features and radiologic findings a clinical diagnosis was made. After making a clinical diagnosis, the patients in bone scan group were subjected to bone scan with SPECT/CT. On the basis of the finding of the bone scan and SPECT/CT, a new working diagnosis was made and intervention was performed according to the new working diagnosis. Diagnostic blocks in the control group were given based on clinical diagnosis. Controlled comparative diagnostic blocks were performed with local anesthetic. The pain score just after the diagnostic block and at the time of discharge (approximately 4 h later) was recorded; the pain relief was recorded in percentage. In both the groups, sacroilitis was the most common diagnosis followed by facet joint arthropathy. The number of patients obtaining pain relief of >50% was significantly higher in the bone scan-positive group as compared with the control group. Three new clinical conditions were identified in the bone scan group. These conditions were multiple myeloma, avascular necrosis of the femoral head, and ankylosing spondylitis. Bone scan with SPECT/CT was found to complement the clinical workup of patients with LBP. Inclusion of bone scan with SPECT/CT in LBP management protocol can help in making a correct diagnosis. At times it might bring out some new information that may be vital for further management of the patients with LBP.
Zeng, Zhikai; Li, Qingyun; Tian, Qiyu; Zhao, Panfeng; Xu, Xiao; Yu, Shukun; Piao, Xiangshu
2015-11-01
This study was conducted to evaluate the efficacy of a novel Buttiauxella phytase to pigs fed P-deficient, corn-soybean meal diets. One hundred and twenty crossbred piglets (9.53 ± 0.84 kg) were allocated to one of five treatments which consisted of four low P diets (0.61 % Ca and 0.46 % total P) supplemented with 0, 500, 1,000, or 20,000 FTU/kg phytase as well as a positive control diet (0.77 % Ca and 0.62 % total P). Each treatment had six replicated pens with four pigs per pen. Pigs were fed the experimental diets for 28 days. Phytase supplementation linearly improved (P < 0.05) average daily gain (ADG), feed conversion ratio (FCR), and apparent total tract digestibility (ATTD) of dry matter, gross energy, crude protein, Ca, and P in weaned pigs. Super high dosing with phytase (20,000 FTU/kg) further increased (P < 0.05) ADG compared with 500 FTU/kg phytase inclusion group, as well as ATTD of Ca and P. Metacarpal bone characteristics and several trace mineral concentration in bone, plasma, or organ tissues were linearly (P < 0.05) improved at increasing dose of phytase. Super high dosing with phytase (20,000 FTU/kg) supplementation improved (P < 0.05) Mn and Zn concentration in bone compared to normal dose of phytase supplementation (500 or 1,000 FTU/kg). In conclusion, supplementation of 500 FTU of Buttiauxella phytase/kg and above effectively hydrolyzed phytate in a low-P corn-soybean diet for pigs. In addition, a super high dosing with phytase (20,000 FTU/kg) improved macro- or micro mineral availability and growth performance.
Radioisotope scanning in osseous sarcoidosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohatgi, P.K.
1980-01-01
Technetium-99m (/sup 99m/Tc)-labeled pyrophosphate or diphosphonate compounds and gallium-67 citrate (/sup 67/Ga) are two radionuclide scanning agents that are in widespread use in clinical practice. Technetium-99m pyrophosphate is used extensively for bone scanning to detect metastatic bone disease, benign bone tumors, osteomyelitis, benign hypertrophic osteoarthropathy, and Paget's disease. Only two reports describe abnormal /sup 99m/Tc/ pyrophosphate bone scans in four patients with osseous sarcoidosis. Gallium-67 scans are used primarily to localize neoplastic or inflammatory lesions anywhere in the body. In recent years /sup 67/Ga scans have also been used to detect the presence of both pulmonary and extrapulmonary sarcoidosis, butmore » there are no reports describing abnormal uptake of gallium in patients with osseous sarcoidosis. This report describes experience with radioisotope scanning in two patients with osseous sarcoidosis.« less
Content Validity of Temporal Bone Models Printed Via Inexpensive Methods and Materials.
Bone, T Michael; Mowry, Sarah E
2016-09-01
Computed tomographic (CT) scans of the 3-D printed temporal bone models will be within 15% accuracy of the CT scans of the cadaveric temporal bones. Previous studies have evaluated the face validity of 3-D-printed temporal bone models designed to train otolaryngology residents. The purpose of the study was to determine the content validity of temporal bone models printed using inexpensive printers and materials. Four cadaveric temporal bones were randomly selected and clinical temporal bone CT scans were obtained. Models were generated using previously described methods in acrylonitrile butadiene styrene (ABS) plastic using the Makerbot Replicator 2× and Hyrel printers. Models were radiographically scanned using the same protocol as the cadaveric bones. Four images from each cadaveric CT series and four corresponding images from the model CT series were selected, and voxel values were normalized to black or white. Scan slices were compared using PixelDiff software. Gross anatomic structures were evaluated in the model scans by four board certified otolaryngologists on a 4-point scale. Mean pixel difference between the cadaver and model scans was 14.25 ± 2.30% at the four selected CT slices. Mean cortical bone width difference and mean external auditory canal width difference were 0.58 ± 0.66 mm and 0.55 ± 0.46 mm, respectively. Expert raters felt the mastoid air cells were well represented (2.5 ± 0.5), while middle ear and otic capsule structures were not accurately rendered (all averaged <1.8). These results suggest that these models would be sufficient adjuncts to cadaver temporal bones for training residents in cortical mastoidectomies, but less effective for middle ear procedures.
Establishing a method to measure bone structure using spectral CT
NASA Astrophysics Data System (ADS)
Ramyar, M.; Leary, C.; Raja, A.; Butler, A. P. H.; Woodfield, T. B. F.; Anderson, N. G.
2017-03-01
Combining bone structure and density measurement in 3D is required to assess site-specific fracture risk. Spectral molecular imaging can measure bone structure in relation to bone density by measuring macro and microstructure of bone in 3D. This study aimed to optimize spectral CT methodology to measure bone structure in excised bone samples. MARS CT with CdTe Medipix3RX detector was used in multiple energy bins to calibrate bone structure measurements. To calibrate thickness measurement, eight different thicknesses of Aluminium (Al) sheets were scanned one in air and the other around a falcon tube and then analysed. To test if trabecular thickness measurements differed depending on scan plane, a bone sample from sheep proximal tibia was scanned in two orthogonal directions. To assess the effect of air on thickness measurement, two parts of the same human femoral head were scanned in two conditions (in the air and in PBS). The results showed that the MARS scanner (with 90μm voxel size) is able to accurately measure the Al (in air) thicknesses over 200μm but it underestimates the thicknesses below 200μm because of partial volume effect in Al-air interface. The Al thickness measured in the highest energy bin is overestimated at Al-falcon tube interface. Bone scanning in two orthogonal directions gives the same trabecular thickness and air in the bone structure reduced measurement accuracy. We have established a bone structure assessment protocol on MARS scanner. The next step is to combine this with bone densitometry to assess bone strength.
The uptake by the canine tibia of the bone-scanning agent 99mTc-MDP before and after an osteotomy.
Hughes, S; Khan, R; Davies, R; Lavender, P
1978-11-01
The residue and extraction of technetium-labelled methylene diphosphonate (99mTc-MDP), a substance used in bone scanning, was examined in the canine tibia and found to be low. Examination of washout curves suggested that there were four compartments in cortical bone, a vascular, a perivascular, a bone fluid and a bone compartment. After an osteotomy in the canine tibia the residue of 99mTc-MDP increased. This was believed to be due to an increase in the blood supply to the bone and to an associated increase in new bone available for exchange. Bone scanning in a fracture is therefore a reflection of the vascular status of the bone being examined and of the uptake by bone. This is dependent on there being an adequate blood supply to the bone and an increased number of mineral-binding sites.
Ewing sarcoma of the rib with normal blood flow and blood pool imagings on a 3-phase bone scan.
Alfeeli, Mahmoud A; Naddaf, Sleiman Y; Syed, Ghulam M S
2005-09-01
Ewing sarcoma is the second most common pediatric malignant bone tumor. It usually presents as a hot spot on a 3-phase bone scan as a result of increased vascularity of the tumor and new bone formation. However, aggressive Ewing sarcoma can also appear as a cold lesion. We present the features of a Ewing sarcoma of the rib on a 3-phase bone scan in a child who was being investigated for rib fracture after trauma.
Lu, Yongtao; Boudiffa, Maya; Dall'Ara, Enrico; Bellantuono, Ilaria; Viceconti, Marco
2015-11-01
In vivo micro-computed tomography (µCT) scanning is an important tool for longitudinal monitoring of the bone adaptation process in animal models. However, the errors associated with the usage of in vivo µCT measurements for the evaluation of bone adaptations remain unclear. The aim of this study was to evaluate the measurement errors using the bone surface distance approach. The right tibiae of eight 14-week-old C57BL/6 J female mice were consecutively scanned four times in an in vivo µCT scanner using a nominal isotropic image voxel size (10.4 µm) and the tibiae were repositioned between each scan. The repeated scan image datasets were aligned to the corresponding baseline (first) scan image dataset using rigid registration and a region of interest was selected in the proximal tibia metaphysis for analysis. The bone surface distances between the repeated and the baseline scan datasets were evaluated. It was found that the average (±standard deviation) median and 95th percentile bone surface distances were 3.10 ± 0.76 µm and 9.58 ± 1.70 µm, respectively. This study indicated that there were inevitable errors associated with the in vivo µCT measurements of bone microarchitecture and these errors should be taken into account for a better interpretation of bone adaptations measured with in vivo µCT. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Making the invisible body visible. Bone scans, osteoporosis and women's bodily experiences.
Reventlow, Susanne Dalsgaard; Hvas, Lotte; Malterud, Kirsti
2006-06-01
The imaging technology of bone scans allows visualization of the bone structure, and determination of a numerical value. Both these are subjected to professional interpretation according to medical (epidemiological) evidence to estimate the individual's risk of fractures. But when bodily experience is challenged by a visual diagnosis, what effect does this have on an individual? The aim of this study was to explore women's bodily experiences after a bone scan and to analyse how the scan affects women's self-awareness, sense of bodily identity and integrity. We interviewed 16 Danish women (aged 61-63) who had had a bone scan for osteoporosis. The analysis was based on Merleau-Ponty's perspective of perception as an embodied experience in which bodily experience is understood to be the existential ground of culture and self. Women appeared to take the scan literally and planned their lives accordingly. They appeared to believe that the 'pictures' revealed some truth in themselves. The information supplied by the scan fostered a new body image. The women interpreted the scan result (a mark on a curve) to mean bodily fragility which they incorporated into their bodily perception. The embodiment of this new body image produced new symptom interpretations and preventive actions, including caution. The result of the bone scan and its cultural interpretation triggered a reconstruction of the body self as weak with reduced capacity. Women's interpretation of the bone scan reorganized their lived space and time, and their relations with others and themselves. Technological information about osteoporosis appeared to leave most affected women more uncertain and restricted rather than empowered. The findings raise some fundamental questions concerning the use of medical technology for the prevention of asymptomatic disorders.
Utility of bone scanning in detecting occult skeletal metastases from cervical carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, R.D.; Alderson, P.O.; Rosenshein, N.B.
1979-11-01
Bone scans were obtained in 100 patients with carcinoma of the cervix in order to search for occult skeletal metastases. Scans revealed metastases in 4 patients with advanced stages of disease, but the scans in 79 patients with Stage 0, I, or II disease were negative. The scans in 14 patients showed renal asymmetry; 11 of these had obstructive uropathy due to tumor invasion or radiation therapy. Bone scanning does not seem warranted as a screening test in asymptomatic patients with Stage 0, I, or II carcinoma. If the test is done, renal symmetry should be carefully evaluated.
Technetium phosphate bone scan in the diagnosis of septic arthritis in childhood
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundberg, S.B.; Savage, J.P.; Foster, B.K.
1989-09-01
The technetium phosphate bone scans of 106 children with suspected septic arthritis were reviewed to determine whether the bone scan can accurately differentiate septic from nonseptic arthropathy. Only 13% of children with proved septic arthritis had correct blind scan interpretation. The clinically adjusted interpretation did not identify septic arthritis in 30%. Septic arthritis was incorrectly identified in 32% of children with no evidence of septic arthritis. No statistically significant differences were noted between the scan findings in the septic and nonseptic groups and no scan findings correlated specifically with the presence or absence of joint sepsis.
2011-01-01
Purpose This study was performed to evaluate the changes of jaw bone density around the dental implant after placement using computed tomography scan (CT-Scan). Materials and Methods This retrospective study consisted of 30 patients who had lost 1 posterior tooth in maxilla or mandible and installed dental implant. The patients took CT-Scan before and after implant placement. Hounsfield Unit (HU) was measured around the implants and evaluated the difference of HU before and after implant installation. Results The mean HU of jaw bone was 542.436 HU and 764.9 HU before and after implant placement, respectively (p<0.05). The means HUs for male were 632.3 HU and 932.2 HU and those for female 478.2 HU and 645.5 HU before and after implant placement, respectively (p<0.05). Also, the jaw bone with lower density needed longer period for implant procedure and the increased change of HU of jaw bone was less in the cases which needed longer period for osseointegration. Conclusion CT-Scan could be used to assess the change of bone density around dental implants. Bone density around dental implant was increased after placement. The increased rate of bone density could be determined by the quality of jaw bone before implant placement. PMID:21977476
Yunus, Barunawaty
2011-06-01
This study was performed to evaluate the changes of jaw bone density around the dental implant after placement using computed tomography scan (CT-Scan). This retrospective study consisted of 30 patients who had lost 1 posterior tooth in maxilla or mandible and installed dental implant. The patients took CT-Scan before and after implant placement. Hounsfield Unit (HU) was measured around the implants and evaluated the difference of HU before and after implant installation. The mean HU of jaw bone was 542.436 HU and 764.9 HU before and after implant placement, respectively (p<0.05). The means HUs for male were 632.3 HU and 932.2 HU and those for female 478.2 HU and 645.5 HU before and after implant placement, respectively (p<0.05). Also, the jaw bone with lower density needed longer period for implant procedure and the increased change of HU of jaw bone was less in the cases which needed longer period for osseointegration. CT-Scan could be used to assess the change of bone density around dental implants. Bone density around dental implant was increased after placement. The increased rate of bone density could be determined by the quality of jaw bone before implant placement.
Duff, W.R.D.; Björkman, K.M.; Kawalilak, C.E.; Kehrig, A.M.; Wiebe, S.; Kontulainen, S.
2017-01-01
Objectives: To define pQCT precision errors, least-significant-changes, and identify associated factors for bone outcomes at the radius and tibia in children. Methods: We obtained duplicate radius and tibia pQCT scans from 35 children (8-14yrs). We report root-mean-squared coefficient of variation (CV%RMS) and 95% limits-of-agreement to characterize repeatability across scan quality and least-significant-changes for bone outcomes at distal (total and trabecular area, content and density; and compressive bone strength) and shaft sites (total area and content; cortical area content, density and thickness; and torsional bone strength). We used Spearman’s rho to identify associations between CV% and time between measurements, child’s age or anthropometrics. Results: After excluding unanalyzable scans (6-10% of scans per bone site), CV%RMS ranged from 4% (total density) to 19% (trabecular content) at the distal radius, 4% (cortical content) to 8% (cortical thickness) at the radius shaft, 2% (total density) to 14% (trabecular content) at the distal tibia and from 2% (cortical content) to 6% (bone strength) at the tibia shaft. Precision errors were within 95% limits-of-agreement across scan quality. Age was associated (rho -0.4 to -0.5, p <0.05) with CV% at the tibia. Conclusion: Bone density outcomes and cortical bone properties appeared most precise (CV%RMS <5%) in children. PMID:28574412
NASA Technical Reports Server (NTRS)
Lomness, Janice K.; Calle, Luz Marina
2006-01-01
Super Koropon primer (MB0125-055) plays a significant role in the corrosion protection of areas throughout the Orbiter. Because the Shuttle Program relies so heavily upon the performance of the Koropon primer, it is necessary to fully understand all aspects of the behavior of the coating. One area where little understanding of the Koropon primer still exists is the level of risk associated with age related degradation. Recently, efforts were undertaken to better understand the age life of the Koropon primer and to gain some insight into the aging process of this coating. In that study, an aluminum access panel from the Orbiter Enterprise was used to investigate the performance of the old Koropon film. A control panel was also used to study the performance of new Koropon coating. Preliminary investigations into the performance of aged Super Koropon primer indicated a significant decrease in corrosion protection. This investigation serves as an example of how Focused Ion Beam/Scanning Microscopy can be used to characterize the changes that occur as coatings age.
Jeong, Chang Bu; Kim, Kwang Gi; Kim, Tae Sung; Kim, Seok Ki
2011-06-01
Whole-body bone scan is one of the most frequent diagnostic procedures in nuclear medicine. Especially, it plays a significant role in important procedures such as the diagnosis of osseous metastasis and evaluation of osseous tumor response to chemotherapy and radiation therapy. It can also be used to monitor the possibility of any recurrence of the tumor. However, it is a very time-consuming effort for radiologists to quantify subtle interval changes between successive whole-body bone scans because of many variations such as intensity, geometry, and morphology. In this paper, we present the most effective method of image enhancement based on histograms, which may assist radiologists in interpreting successive whole-body bone scans effectively. Forty-eight successive whole-body bone scans from 10 patients were obtained and evaluated using six methods of image enhancement based on histograms: histogram equalization, brightness-preserving bi-histogram equalization, contrast-limited adaptive histogram equalization, end-in search, histogram matching, and exact histogram matching (EHM). Comparison of the results of the different methods was made using three similarity measures peak signal-to-noise ratio, histogram intersection, and structural similarity. Image enhancement of successive bone scans using EHM showed the best results out of the six methods measured for all similarity measures. EHM is the best method of image enhancement based on histograms for diagnosing successive whole-body bone scans. The method for successive whole-body bone scans has the potential to greatly assist radiologists quantify interval changes more accurately and quickly by compensating for the variable nature of intensity information. Consequently, it can improve radiologists' diagnostic accuracy as well as reduce reading time for detecting interval changes.
Poco Graphite Inc. SuperSiC 0.25m Mirror Cryogenic Test Result
NASA Technical Reports Server (NTRS)
Eng, Ron; Stahl, Phil; Hogue, Bill; Hadaway, James
2004-01-01
SuperSiC, a low areal density material, developed by POCO Graphite, have been used as mirror substrate for high energy lasers, laser radar systems, surveillance, telescopes, scan mirrors and satellites. SuperSiC has excellent thermal properties and cryogenic stability. It exhibits exceptional polishability for reflective optics with high strength, stiffness, and excellent thermal conductivity. A lightweighted 0.2-diameter polished SuperSic mirror was tested at cryogenic temperature at NASMSFC. Optical test results showed 6nm cry0 deformation from ambient to 30 degrees Kelvin and little to no change in its surface figure due to cry0 cycling.
Practical use of bone scan in patients with an osteoporotic vertebral compression fracture.
Jun, Deuk Soo; An, Byoung Keun; Yu, Chang Hun; Hwang, Kyung Hoon; Paik, Je Won
2015-02-01
Rib fractures are one of main causes of chest or flank pain when related to an osteoporotic vertebral compression fracture (OVCF). The authors investigated the incidence and risk factors of rib fracture in 284 patients with OVCF using bone scans and evaluated the feasibility as to whether bone scans could be utilized as a useful screening tool. Hot uptake lesions on ribs were found in 122 cases (43.0%). The factors analyzed were age, sex, number and locations of fractured vertebrae, BMD, and compression rates as determined using initial radiography. However, no statistical significances were found. In 16 cases (5.6%), there were concurrent multiple fractures of both the thoracic and lumbar spines not detected by single site MRI. Sixty cases (21.1%) of OVCF with the a compression rate of less than 15% could not be identified definitely by initial plain radiography, but were confirmed by bone scans. It is concluded that a bone scan has outstanding ability for the screening of rib fractures associated with OVCF. Non-adjacent multiple fractures in both thoracic and lumbar spines and fractures not identified definitely by plain radiography were detected on bone scans, which provided a means for determining management strategies and predicting prognosis.
Sran, Meena M; Khan, Karim M; Keiver, Kathy; Chew, Jason B; McKay, Heather A; Oxland, Thomas R
2005-12-01
Biomechanical studies of the thoracic spine often scan cadaveric segments by dual energy X-ray absorptiometry (DXA) to obtain measures of bone mass. Only one study has reported the accuracy of lateral scans of thoracic vertebral bodies. The accuracy of DXA scans of thoracic spine segments and of anterior-posterior (AP) thoracic scans has not been investigated. We have examined the accuracy of AP and lateral thoracic DXA scans by comparison with ash weight, the gold-standard for measuring bone mineral content (BMC). We have also compared three methods of estimating volumetric bone mineral density (vBMD) with a novel standard-ash weight (g)/bone volume (cm3) as measured by computed tomography (CT). Twelve T5-T8 spine segments were scanned with DXA (AP and lateral) and CT. The T6 vertebrae were excised, the posterior elements removed and then the vertebral bodies were ashed in a muffle furnace. We proposed a new method of estimating vBMD and compared it with two previously published methods. BMC values from lateral DXA scans displayed the strongest correlation with ash weight (r=0.99) and were on average 12.8% higher (p<0.001). As expected, BMC (AP or lateral) was more strongly correlated with ash weight than areal bone mineral density (aBMD; AP: r=0.54, or lateral: r=0.71) or estimated vBMD. Estimates of vBMD with either of the three methods were strongly and similarly correlated with volumetric BMD calculated by dividing ash weight by CT-derived volume. These data suggest that readily available DXA scanning is an appropriate surrogate measure for thoracic spine bone mineral and that the lateral scan might be the scan method of choice.
Use of various diagnostic methods in a patient with Gaucher disease type I.
Farahati, J; Trenn, G; John-Mikolajewski, V; Zander, C; Pastores, G M; Sciuk, J; Reiners, C
1996-08-01
A series of plain radiographs, bone scans, bone marrow scans, and MRIs is reported in a patient with Gaucher disease type I, in whom two episodes of acute bone crisis developed during a 6-year period of follow-up. Acute bone crisis and global indolent bone marrow displacement could both be assessed by bone marrow scintigraphy, whereas MRI could better clarify the corti-comedullary alteration after bone infarction. Thus, MRI and bone marrow scintigraphy could be used as complementary imaging methods in the management of patients with Gaucher disease.
Collier, James H; Lesk, Arthur M; Garcia de la Banda, Maria; Konagurthu, Arun S
2012-07-01
Searching for well-fitting 3D oligopeptide fragments within a large collection of protein structures is an important task central to many analyses involving protein structures. This article reports a new web server, Super, dedicated to the task of rapidly screening the protein data bank (PDB) to identify all fragments that superpose with a query under a prespecified threshold of root-mean-square deviation (RMSD). Super relies on efficiently computing a mathematical bound on the commonly used structural similarity measure, RMSD of superposition. This allows the server to filter out a large proportion of fragments that are unrelated to the query; >99% of the total number of fragments in some cases. For a typical query, Super scans the current PDB containing over 80,500 structures (with ∼40 million potential oligopeptide fragments to match) in under a minute. Super web server is freely accessible from: http://lcb.infotech.monash.edu.au/super.
Microsphere-aided optical microscopy and its applications for super-resolution imaging
NASA Astrophysics Data System (ADS)
Upputuri, Paul Kumar; Pramanik, Manojit
2017-12-01
The spatial resolution of a standard optical microscope (SOM) is limited by diffraction. In visible spectrum, SOM can provide ∼ 200 nm resolution. To break the diffraction limit several approaches were developed including scanning near field microscopy, metamaterial super-lenses, nanoscale solid immersion lenses, super-oscillatory lenses, confocal fluorescence microscopy, techniques that exploit non-linear response of fluorophores like stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, etc. Recently, photonic nanojet generated by a dielectric microsphere was used to break the diffraction limit. The microsphere-approach is simple, cost-effective and can be implemented under a standard microscope, hence it has gained enormous attention for super-resolution imaging. In this article, we briefly review the microsphere approach and its applications for super-resolution imaging in various optical imaging modalities.
A study of degradation resistance and cytocompatibility of super-hydrophobic coating on magnesium.
Zhang, Yufen; Feyerabend, Frank; Tang, Shawei; Hu, Jin; Lu, Xiaopeng; Blawert, Carsten; Lin, Tiegui
2017-09-01
Calcium stearate based super-hydrophobic coating was deposited on plasma electrolytic oxidation (PEO) pre-treated magnesium substrate. The pre-treated magnesium and super-hydrophobic coating covered sample were characterized by scanning electron microscopy, X-ray diffraction and electrochemical corrosion measurements. The cytocompatibility and degradation resistance of magnesium, pre-treated magnesium and super-hydrophobic coating were analysed in terms of cell adhesion and osteoblast differentiation. The results indicate that the calcium stearate top coating shows super-hydrophobicity and that the surface is composed of micro/nanostructure. The super-hydrophobic coating covered sample shows higher barrier properties compared with the PEO pre-treated magnesium and bare magnesium. Human osteoblast proliferation, but not differentiation is enhanced by the PEO coating. Contrary, the super-hydrophobic coating reduces proliferation, but enhances differentiation of osteoblast, observable by the formation of hydroxyapatite. The combination of corrosion protection and cell reaction indicates that this system could be interesting for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Pitfalls and Limitations of Radionuclide Planar and Hybrid Bone Imaging.
Agrawal, Kanhaiyalal; Marafi, Fahad; Gnanasegaran, Gopinath; Van der Wall, Hans; Fogelman, Ignac
2015-09-01
The radionuclide (99m)Tc-MDP bone scan is one of the most commonly performed nuclear medicine studies and helps in the diagnosis of different pathologies relating to the musculoskeletal system. With its increasing utility in clinical practice, it becomes more important to be aware of various limitations of this imaging modality to avoid false interpretation. It is necessary to be able to recognize various technical, radiopharmaceutical, and patient-related artifacts that can occur while carrying out a bone scan. Furthermore, several normal variations of tracer uptake may mimic pathology and should be interpreted cautiously. There is an important limitation of a bone scan in metastatic disease evaluation as the inherent mechanism of tracer uptake is not specific for tumor but primarily relies on an osteoblastic response. Thus, it is crucial to keep in mind uptake in benign lesions, which can resemble malignant pathologies. The utility of a planar bone scan in benign orthopedic diseases, especially at sites with complex anatomy, is limited owing to lack of precise anatomical information. SPECT/CT has been significantly helpful in these cases. With wider use of PET/CT and reintroduction of the (18)F-fluoride bone scan, increasing knowledge of potential pitfalls on an (18)F-fluoride bone scan and (18)F-FDG-PET/CT will help in improving the accuracy of clinical reports. Copyright © 2015 Elsevier Inc. All rights reserved.
How Is Testicular Cancer Diagnosed?
... patients with non-seminoma. Many centers have special machines that can do both a PET and CT scan at the same time (PET/CT scan). This lets the doctor compare areas of higher radioactivity on the PET with the more detailed images of the CT. Bone scan A bone scan can help show if a ... Information, ...
NASA Astrophysics Data System (ADS)
Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng
2018-03-01
A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.
NASA Astrophysics Data System (ADS)
Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng
2018-06-01
A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.
Barwart, O; Rollinger, J M; Burger, A
1999-10-01
Differential scanning calorimetry (DSC) was used to determine the transition temperature ranges (TTR) of four types of super-elastic orthodontic nickel-titanium coil springs (Sentalloy). A knowledge of the TTR provides information on the temperature at which a NiTi wire or spring can assume superelastic properties and when this quality disappears. The spring types in this study can be distinguished from each other by their characteristic TTR during cooling and heating. For each tested spring type a characteristic TTR during heating (austenite transformation) and cooling (martensite transformation) was evaluated. The hysteresis of the transition temperature, found between cooling and heating, was 3.4-5.2 K. Depending on the spring type the austenite transformation started (As) at 9.7-17.1 degrees C and finished (Af) at 29.2-37 degrees C. The martensite transformation starting temperature (Ms) was evaluated at 32.6-25.4 degrees C, while Mf (martensite transformation finishing temperature) was 12.7-6.5 degrees C. The results show that the springs become super-elastic when the temperature increases and As is reached. They undergo a loss of super-elastic properties and a rapid decrease in force delivery when they are cooled to Mf. For the tested springs, Mf and As were found to be below room temperature. Thus, at room temperature and some degrees lower, all the tested springs exert super-elastic properties. For orthodontic treatment this means the maintenance of super-elastic behaviour, even when mouth temperature decreases to about room temperature as can occur, for example, during meals.
Strontium-85 Scanning of Suspected Bone Disease
Parsons, Victor; Williams, Margery; Hill, David; Frost, Pamela; Lapham, Avril
1969-01-01
Strontium-85 scanning of suspected bone lesions in 81 patients has added to the criteria for the diagnosis of malignant and other lesions of bone. Of 46 patients with a previous history of malignant disease and skeletal symptoms negative radiological findings were recorded in 19, but nine of these had positive scans, eight of which when followed up over periods of up to four years proved to be metastatic. A similar prevalence of positive scans occurred in patients without a previous history of malignancy. Because of the anatomical localization of lesions made possible by this technique a tissue diagnosis was made in six patients, while fields of radiotherapy were altered in another seven. This technique can improve the management of patients with suspected bone disease. PMID:5761888
Fabrication of TiO2/EP super-hydrophobic thin film on filter paper surface.
Gao, Zhengxin; Zhai, Xianglin; Liu, Feng; Zhang, Ming; Zang, Deli; Wang, Chengyu
2015-09-05
A composite filter paper with super-hydrophobicity was obtained by adhering micro/nano structure of amorphous titanium dioxide on the filter paper surface with modifying low surface energy material. By virtue of the coupling agent, which plays an important part in bonding amorphous titanium dioxide and epoxy resin, the structure of super-hydrophobic thin film on the filter paper surface is extremely stable. The microstructure of super-hydrophobic filter paper was characterized by scanning electron microscopy (SEM), the images showed that the as-prepared filter paper was covered with uniform amorphous titanium dioxide particles, generating a roughness structure on the filter paper surface. The super-hydrophobic performance of the filter paper was characterized by water contact angle measurements. The observations showed that the wettability of filter paper samples transformed from super-hydrophilicity to super-hydrophobicity with the water contact angle of 153 ± 1°. Some experiments were also designed to test the effect of water-oil separation and UV-resistant by the super-hydrophobic filter paper. The prepared super-hydrophobic filter paper worked efficiently and simply in water-oil separation as well as enduringly in anti-UV property after the experiments. This method offers an opportunity to the practical applications of the super-hydrophobic filter paper. Copyright © 2015 Elsevier Ltd. All rights reserved.
Manobhavan, M; Elangovan, A V; Sridhar, M; Shet, D; Ajith, S; Pal, D T; Gowda, N K S
2016-02-01
A feeding trial was designed to assess the effect of super dosing of phytase in corn-soya-based diets of broiler chicken. One hundred and sixty-eight day-old broilers were selected and randomly allocated to four dietary treatment groups, with 6 replicates having 7 chicks per treatment group. Two-phased diets were used. The starter and finisher diet was fed from 0 to 3 weeks and 4 to 5 weeks of age respectively. The dietary treatments were consisted of normal phosphorus (NP) group without any phytase enzyme (4.5 g/kg available/non-phytin phosphorus (P) during starter and 4.0 g/kg during finisher phase), three low-phosphorus (LP) groups (3.2 g/kg available/non-phytin P during starter and 2.8 g/kg during finisher phase) supplemented with phytase at 500, 2500, 5000 FTU/kg diet, respectively, to full fill their phosphorus requirements. The results showed that super doses of phytase (at 2500 FTU and 5000 FTU/kg) on low-phosphorus diet improved feed intake, body weight gain, ileal digestibility (serine, aspartic acid, calcium, phosphorus), blood P levels and bone minerals such as calcium (Ca), P, magnesium (Mg) and zinc (Zn) content. It could be concluded that super doses of phytase in low-phosphorus diet were beneficial than the normal standard dose (at 500 FTU/kg) of phytase in diet of broiler chicken. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.
Trapezium Bone Density-A Comparison of Measurements by DXA and CT.
Breddam Mosegaard, Sebastian; Breddam Mosegaard, Kamille; Bouteldja, Nadia; Bæk Hansen, Torben; Stilling, Maiken
2018-01-18
Bone density may influence the primary fixation of cementless implants, and poor bone density may increase the risk of implant failure. Before deciding on using total joint replacement as treatment in osteoarthritis of the trapeziometacarpal joint, it is valuable to determine the trapezium bone density. The aim of this study was to: (1) determine the correlation between measurements of bone mineral density of the trapezium obtained by dual-energy X-ray absorptiometry (DXA) scans by a circumference method and a new inner-ellipse method; and (2) to compare those to measurements of bone density obtained by computerized tomography (CT)-scans in Hounsfield units (HU). We included 71 hands from 59 patients with a mean age of 59 years (43-77). All patients had Eaton-Glickel stage II-IV trapeziometacarpal (TM) joint osteoarthritis, were under evaluation for trapeziometacarpal total joint replacement, and underwent DXA and CT wrist scans. There was an excellent correlation (r = 0.94) between DXA bone mineral density measures using the circumference and the inner-ellipse method. There was a moderate correlation between bone density measures obtained by DXA- and CT-scans with (r = 0.49) for the circumference method, and (r = 0.55) for the inner-ellipse method. DXA may be used in pre-operative evaluation of the trapezium bone quality, and the simpler DXA inner-ellipse measurement method can replace the DXA circumference method in estimation of bone density of the trapezium.
Re-scan confocal microscopy: scanning twice for better resolution.
De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M
2013-01-01
We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basinger, G.T.; McCullough, D.L.; McLaughlin, A.P.
Eleven patients with urologic cancer had an abnormal /sup 99m/Tc (technetium-99m) bone scan as the sole evidence of metastatic disease. Potentially curative therapy should not be withheld on the basis of a ''positive'' bone scan if such an area is accessible to selected bone biopsy and proves to be negative for tumor histologically.
Super-resolution for scanning light stimulation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bitzer, L. A.; Neumann, K.; Benson, N., E-mail: niels.benson@uni-due.de
Super-resolution (SR) is a technique used in digital image processing to overcome the resolution limitation of imaging systems. In this process, a single high resolution image is reconstructed from multiple low resolution images. SR is commonly used for CCD and CMOS (Complementary Metal-Oxide-Semiconductor) sensor images, as well as for medical applications, e.g., magnetic resonance imaging. Here, we demonstrate that super-resolution can be applied with scanning light stimulation (LS) systems, which are common to obtain space-resolved electro-optical parameters of a sample. For our purposes, the Projection Onto Convex Sets (POCS) was chosen and modified to suit the needs of LS systems.more » To demonstrate the SR adaption, an Optical Beam Induced Current (OBIC) LS system was used. The POCS algorithm was optimized by means of OBIC short circuit current measurements on a multicrystalline solar cell, resulting in a mean square error reduction of up to 61% and improved image quality.« less
Peritoneal Super Scan on 18F - FDG PET-CT in a Patient of Burkitt's Lymphoma
Roy, Shambo Guha; Parida, Girish Kumar; Tripathy, Sarthak; Singhal, Abhinav; Shamim, Shamim Ahmed; Tripathi, Madhavi
2017-01-01
Peritoneal lymphomatosis is seen less frequently, but when seen, it is mostly associated with aggressive variants of malignancies. FDG uptake has been reported in peritoneal lymphomatosis both in DLBCL and Burkitt's lymphoma. We report a case of Burkitt's lymphoma with involvement of entire peritoneum, which looks like a “peritoneal super scan” on FDG PET-CT. PMID:28533652
Siddique, Musib; Frost, Michelle L; Moore, Amelia E B; Fogelman, Ignac; Blake, Glen M
2014-03-01
The aim of the study was to examine whether (18)F-fluoride PET ((18)F-PET) static scan measurements of bone plasma clearance (Ki) can be corrected for tracer efflux from bone from the time of injection. The efflux of tracer from bone mineral to plasma was described by a first-order rate constant kloss. A modified Patlak analysis was applied to 60-min dynamic (18)F-PET scans of the spine and hip acquired during trials on the bone anabolic agent teriparatide to find the best-fit values of kloss at the lumbar spine, total hip and femoral shaft. The resulting values of kloss were used to extrapolate the modified Patlak plots to 120 min after injection and derive a sequence of static scan estimates of Ki at 4-min intervals that were compared with the Patlak Ki values from the 60-min dynamic scans. A comparison was made with the results of the standard static scan analysis, which assumes kloss=0. The best-fit values of kloss for the spine and hip regions of interest averaged 0.006/min and did not change when patients were treated with teriparatide. Static scan values of Ki calculated using the modified analysis with kloss=0.006/min were independent of time between 10 and 120 min after injection and were in close agreement with findings from the dynamic scans. In contrast, by 2 h after injection the static scan Ki values calculated using the standard analysis underestimated the dynamic scan results by 20%. Using a modified analysis that corrects for F efflux from bone, estimates of Ki from static PET scans can be corrected for time up to 2 h after injection. This simplified approach may obviate the need to perform dynamic scans and hence shorten the scanning procedure for the patient and reduce the cost of studies. It also enables reliable estimates of Ki to be obtained from multiple skeletal sites with a single injection of tracer.
Super: a web server to rapidly screen superposable oligopeptide fragments from the protein data bank
Collier, James H.; Lesk, Arthur M.; Garcia de la Banda, Maria; Konagurthu, Arun S.
2012-01-01
Searching for well-fitting 3D oligopeptide fragments within a large collection of protein structures is an important task central to many analyses involving protein structures. This article reports a new web server, Super, dedicated to the task of rapidly screening the protein data bank (PDB) to identify all fragments that superpose with a query under a prespecified threshold of root-mean-square deviation (RMSD). Super relies on efficiently computing a mathematical bound on the commonly used structural similarity measure, RMSD of superposition. This allows the server to filter out a large proportion of fragments that are unrelated to the query; >99% of the total number of fragments in some cases. For a typical query, Super scans the current PDB containing over 80 500 structures (with ∼40 million potential oligopeptide fragments to match) in under a minute. Super web server is freely accessible from: http://lcb.infotech.monash.edu.au/super. PMID:22638586
Bahk, Yong-Whee; Jeon, Ho-Seung; Kim, Jang Min; Park, Jung Mee; Chung, Yong-An; Kim, E Edmund; Kim, Sung-Hoon; Chung, Soo-Kyo
2010-08-01
The aim of this study was to introduce gamma correction pinhole bone scan (GCPBS) to depict specific signs of knee occult fractures (OF) on (99m)Tc-hydroxydiphosphonate (HDP) scan. Thirty-six cases of six different types of knee OF in 27 consecutive patients (male = 20, female = 7, and age = 18-86 years) were enrolled. The diagnosis was made on the basis of a history of acute or subacute knee trauma, local pain, tenderness, cutaneous injury, negative conventional radiography, and positive magnetic resonance imaging (MRI). Because of the impracticability of histological verification of individual OF, MRI was utilized as a gold standard of diagnosis and classification. All patients had (99m)Tc-HDP bone scanning and supplementary GCPBS. GCPBS signs were correlated and compared with those of MRI. The efficacy of gamma correction of ordinary parallel collimator and pinhole collimator scans were collated. Gamma correction pinhole bone scan depicted the signs characteristic of six different types of OF. They were well defined stuffed globular tracer uptake in geographic I fractures (n = 9), block-like uptake in geographic II fractures (n = 7), simple or branching linear uptake in linear cancellous fractures (n = 4), compression in impacted fractures (n = 2), stippled-serpentine uptake in reticular fractures (n = 11), and irregular subcortical uptake in osteochondral fractures (n = 3). All fractures were equally well or more distinctly depicted on GCPBS than on MRI except geographic II fracture, the details of which were not appreciated on GCPBS. Parallel collimator scan also yielded to gamma correction, but the results were inferior to those of the pinhole scan. Gamma correction pinhole bone scan can depict the specific diagnostic signs in six different types of knee occult fractures. The specific diagnostic capability along with the lower cost and wider global availability of bone scanning would make GCPBS an effective alternative.
... density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis - BMD ... most common and accurate way uses a dual-energy x-ray absorptiometry (DEXA) scan. DEXA uses low- ...
Re-scan confocal microscopy: scanning twice for better resolution
De Luca, Giulia M.R.; Breedijk, Ronald M.P.; Brandt, Rick A.J.; Zeelenberg, Christiaan H.C.; de Jong, Babette E.; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A.; Stallinga, Sjoerd; Manders, Erik M.M.
2013-01-01
We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required. PMID:24298422
Bone scan features in spontaneous knee pain.
Vattimo, A; Merlo, F; Bertelli, P; Burroni, L
1992-01-01
In 21 patients with "spontaneous" knee pain, 99mTc-MDP bone scan was found to be more sensitive than clinical and radiographic examination in detecting alterations of the joint components. These alterations were shown by increased radionuclide uptake in the compartments where pain was present, which was most commonly the medial femorotibial compartment, although the femoropatellar compartment was also frequently affected. The authors conclude that bone scan should be the first imaging study performed on the knee in order to establish if further tests are necessary.
Bone scanning in the adductor insertion avulsion syndrome.
Mahajan, Madhuri Shimpi
2013-05-01
A thigh splint (adductor insertion avulsion syndrome) is a relatively uncommon diagnosis analogous to shin splints. This article reports a 19-year-old female patient NOT a regular athlete who presented with groin pain. Physical examination was non-specific; magnetic resonance imaging pelvis did not reveal any abnormality. Patient referred for whole body bone scan, especially to locate any abnormality in the spine. This study highlights the role of whole body bone scan in the evaluation of groin pain and importance of evaluation of whole lower extremity.
Radionuclide Imaging of Musculoskeletal Injuries in Athletes with Negative Radiographs.
Nagle, C E; Freitas, J E
1987-06-01
In brief: Radionuclide bone scans can be useful in the diagnostic evaluation of musculoskeletal injuries in athletes. Bone scans can detect shinsplints, stress fractures, and muscle injuries before they are detectable on radiographs. Prognosis can be accurately assessed, allowing appropriate treatment to proceed without delay. The authors discuss the use of bone scans and identify musculoskeletal injuries that are associated with specific sports, such as stress fracture of the femur (soccer), tibia (running), scapula (gymnastics), and pars interarticularis (football or lacrosse).
Erturan, Serdar; Yaman, Mustafa; Aydin, Günay; Uzel, Isil; Müsellim, Benan; Kaynak, Kamil
2005-02-01
Correct detection of bone metastases in patients with non-small cell lung cancer (NSCLC) is crucial for prognosis and selection of an appropriate treatment regimen. The aim of this study was to investigate the role of whole-body bone scanning (WBBS) and clinical factors in detecting bone metastases in NSCLC. One hundred twenty-five patients with a diagnosis made between 1998 and 2002 were recruited (squamous cell carcinoma, 54.4%; adenocarcinoma, 32.8%; non-small cell carcinoma, 8.8%; large cell carcinoma, 4%). Clinical factors suggesting bone metastasis (skeletal pain, elevated alkaline phosphatase, hypercalcemia) were evaluated. WBBS was performed in all patients, and additional MRI was ordered in 10 patients because of discordance between clinical factors and WBBS findings. Bone metastases were detected in 53% (n = 21) of 39 clinical factor-positive patients, 5.8% (n = 5) of 86 clinical factor-negative patients, and 20.8% of total patients. The existence of bone-specific clinical factors as indicators of metastasis presented 53.8% positive predictive value (PPV), 94.2% negative predictive value (NPV), and 81.6% accuracy. However, the findings of WBBS showed 73.5% PPV, 97.8% NPV, and 91.2% accuracy. Adenocarcinoma was the most common cell type found in patients with bone metastasis (39%). The routine bone scanning prevented two futile thoracotomies (8%) in 25 patients with apparently operable lung cancer. In spite of the high NPV of the bone-specific clinical factors and the high value obtained in the false-positive findings in the bone scan, the present study indicates that in patients for whom surgical therapy is an option, preoperative staging using WBBS can be helpful to avoid misstaging due to asymptomatic bone metastases.
Gholipour, Ali; Afacan, Onur; Aganj, Iman; Scherrer, Benoit; Prabhu, Sanjay P; Sahin, Mustafa; Warfield, Simon K
2015-12-01
To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane views consistently showed the superiority of SRR compared to original axial and coronal image acquisitions. Thick-slice 2D T2-weighted MRI scans are part of many routine clinical protocols due to their high signal-to-noise ratio, but are often severely affected by through-plane partial voluming effects. This study shows that while radiologic assessment is performed in 2D on thick-slice scans, super-resolution MRI reconstruction techniques can be used to fuse those scans to generate a high-resolution image with reduced partial voluming for improved postacquisition processing. Qualitative and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the slice profile, density compensation, quantization in resampling, and uncompensated motion between scans.
Niu, Qiang; Chi, Xiaoyi; Leu, Ming C; Ochoa, Jorge
2008-01-01
This paper describes image processing, geometric modeling and data management techniques for the development of a virtual bone surgery system. Image segmentation is used to divide CT scan data into different segments representing various regions of the bone. A region-growing algorithm is used to extract cortical bone and trabecular bone structures systematically and efficiently. Volume modeling is then used to represent the bone geometry based on the CT scan data. Material removal simulation is achieved by continuously performing Boolean subtraction of the surgical tool model from the bone model. A quadtree-based adaptive subdivision technique is developed to handle the large set of data in order to achieve the real-time simulation and visualization required for virtual bone surgery. A Marching Cubes algorithm is used to generate polygonal faces from the volumetric data. Rendering of the generated polygons is performed with the publicly available VTK (Visualization Tool Kit) software. Implementation of the developed techniques consists of developing a virtual bone-drilling software program, which allows the user to manipulate a virtual drill to make holes with the use of a PHANToM device on a bone model derived from real CT scan data.
Ribbing disease: Uncommon cause of a common symptom
Damle, Nishikant Avinash; Patnecha, Manish; Kumar, Praveen; Gadodia, Ankur; Subbarao, Kiran; Bal, Chandrasekhar
2011-01-01
Ribbing disease is a rare form of sclerosing dysplasia characterized by benign endosteal and periosteal bone growth confined to the diaphyses of the long bones, usually the tibiae and femora. It occurs after puberty and is more commonly seen in women. The most common presenting symptom is pain that is usually self-limited; however, progression is known. The etiology and optimal treatment for the disease are as yet undefined. We present here the case of a 31-year-old woman with clinical, radiological and bone scan manifestations of Ribbing disease corroborated by bone biopsy. Radiographs demonstrated cortical thickening of the diaphyses of both tibiae. 99mTc-methylene diphosphonate bone scan revealed intense irregular uptake in diaphyseal region of both tibiae. Magnetic resonance imaging showed cortical thickening with bone marrow edema in bilateral tibial diaphysis with minimal adjacent soft tissue edema. Bone biopsy revealed predominantly dense lamellar bone with irregular sized and spaced haversian systems. Serum and urine markers of bone metabolism were within normal limits. The patient was treated with analgesics, and had partial relief from pain. Medullary rimming is the next treatment option in case pain progresses. This report emphasizes the role of bone scan in the diagnosis of this rare condition. PMID:21969779
RF plasma based selective modification of hydrophilic regions on super hydrophobic surface
NASA Astrophysics Data System (ADS)
Lee, Jaehyun; Hwang, Sangyeon; Cho, Dae-Hyun; Hong, Jungwoo; Shin, Jennifer H.; Byun, Doyoung
2017-02-01
Selective modification and regional alterations of the surface property have gained a great deal of attention to many engineers. In this paper, we present a simple, a cost-effective, and amendable reforming method for disparate patterns of hydrophilic regions on super-hydrophobic surfaces. Uniform super-hydrophobic layer (Contact angle; CA > 150°, root mean square (RMS) roughness ∼0.28 nm) can be formed using the atmospheric radio frequency (RF) plasma on top of the selective hydrophilic (CA ∼ 70°, RMS roughness ∼0.34 nm) patterns imprinted by electrohydrodynamic (EHD) jet printing technology with polar alcohols (butyl carbitol or ethanol). The wettability of the modified surface was investigated qualitatively utilizing scanning electron microscopy (SEM), atomic force microscopy (AFM), and wavelength scanning interferometer (WSI). Secondary ion mass spectroscopy (SIMS) analysis showed that the alcohol addiction reaction changed the types of radicals on the super-hydrophobic surface. The wettability was found to depend sensitively on chemical radicals on the surface, not on surface morphology (particle size and surface roughness). Furthermore, three different kinds of representative hydrophilic samples (polystyrene nano-particle aqueous solution, Salmonella bacteria medium, and poly(3,4-ethylenediocythiophene) ink) were tested for uniform deposition onto the desired hydrophilic regions. This simple strategy would have broad applications in various research fields that require selective deposition of target materials.
Health Information in Hindi (हिन्दी)
... हिन्दी (Hindi) Bilingual PDF Health Information Translations Power Outages - English PDF Power Outages - हिन्दी (Hindi) Bilingual PDF Health Information ... हिन्दी (Hindi) Bilingual PDF Health Information Translations Nuclear Scans Bone Scan - English PDF Bone Scan - हि ...
[Scanning electron microscopy of heat-damaged bone tissue].
Harsanyl, L
1977-02-01
Parts of diaphyses of bones were exposed to high temperature of 200-1300 degrees C. Damage to the bone tissue caused by the heat was investigated. The scanning electron microscopic picture seems to be characteristic of the temperature applied. When the bones heated to the high temperature of 700 degrees C characteristic changes appear on the periostal surface, higher temperatura on the other hand causes damage to the compact bone tissue and can be observed on the fracture-surface. Author stresses the importance of this technique in the legal medicine and anthropology.
Failure of technetium bone scanning to detect pseudarthroses in spinal fusion for scoliosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannon, K.M.; Wetta, W.J.
1977-01-01
A prospective study of 11 patients suggests that present techniques of technetium bone scanning do not assist in recognizing the presence of well-established pseudarthrosis in spinal fusions for scoliosis.
Bone Scanning in the Adductor Insertion Avulsion Syndrome
Mahajan, Madhuri Shimpi
2013-01-01
A thigh splint (adductor insertion avulsion syndrome) is a relatively uncommon diagnosis analogous to shin splints. This article reports a 19-year-old female patient NOT a regular athlete who presented with groin pain. Physical examination was non-specific; magnetic resonance imaging pelvis did not reveal any abnormality. Patient referred for whole body bone scan, especially to locate any abnormality in the spine. This study highlights the role of whole body bone scan in the evaluation of groin pain and importance of evaluation of whole lower extremity. PMID:25126001
Cotter, Meghan M.; Whyms, Brian J.; Kelly, Michael P.; Doherty, Benjamin M.; Gentry, Lindell R.; Bersu, Edward T.; Vorperian, Houri K.
2015-01-01
The hyoid bone anchors and supports the vocal tract. Its complex shape is best studied in three dimensions, but it is difficult to capture on computed tomography (CT) images and three-dimensional volume renderings. The goal of this study was to determine the optimal CT scanning and rendering parameters to accurately measure the growth and developmental anatomy of the hyoid and to determine whether it is feasible and necessary to use these parameters in the measurement of hyoids from in vivo CT scans. Direct linear and volumetric measurements of skeletonized hyoid bone specimens were compared to corresponding CT images to determine the most accurate scanning parameters and three-dimensional rendering techniques. A pilot study was undertaken using in vivo scans from a retrospective CT database to determine feasibility of quantifying hyoid growth. Scanning parameters and rendering technique affected accuracy of measurements. Most linear CT measurements were within 10% of direct measurements; however, volume was overestimated when CT scans were acquired with a slice thickness greater than 1.25 mm. Slice-by-slice thresholding of hyoid images decreased volume overestimation. The pilot study revealed that the linear measurements tested correlate with age. A fine-tuned rendering approach applied to small slice thickness CT scans produces the most accurate measurements of hyoid bones. However, linear measurements can be accurately assessed from in vivo CT scans at a larger slice thickness. Such findings imply that investigation into the growth and development of the hyoid bone, and the vocal tract as a whole, can now be performed using these techniques. PMID:25810349
Cotter, Meghan M; Whyms, Brian J; Kelly, Michael P; Doherty, Benjamin M; Gentry, Lindell R; Bersu, Edward T; Vorperian, Houri K
2015-08-01
The hyoid bone anchors and supports the vocal tract. Its complex shape is best studied in three dimensions, but it is difficult to capture on computed tomography (CT) images and three-dimensional volume renderings. The goal of this study was to determine the optimal CT scanning and rendering parameters to accurately measure the growth and developmental anatomy of the hyoid and to determine whether it is feasible and necessary to use these parameters in the measurement of hyoids from in vivo CT scans. Direct linear and volumetric measurements of skeletonized hyoid bone specimens were compared with corresponding CT images to determine the most accurate scanning parameters and three-dimensional rendering techniques. A pilot study was undertaken using in vivo scans from a retrospective CT database to determine feasibility of quantifying hyoid growth. Scanning parameters and rendering technique affected accuracy of measurements. Most linear CT measurements were within 10% of direct measurements; however, volume was overestimated when CT scans were acquired with a slice thickness greater than 1.25 mm. Slice-by-slice thresholding of hyoid images decreased volume overestimation. The pilot study revealed that the linear measurements tested correlate with age. A fine-tuned rendering approach applied to small slice thickness CT scans produces the most accurate measurements of hyoid bones. However, linear measurements can be accurately assessed from in vivo CT scans at a larger slice thickness. Such findings imply that investigation into the growth and development of the hyoid bone, and the vocal tract as a whole, can now be performed using these techniques. © 2015 Wiley Periodicals, Inc.
Determination of Small Animal Long Bone Properties Using Densitometry
NASA Technical Reports Server (NTRS)
Breit, Gregory A.; Goldberg, BethAnn K.; Whalen, Robert T.; Hargens, Alan R. (Technical Monitor)
1996-01-01
Assessment of bone structural property changes due to loading regimens or pharmacological treatment typically requires destructive mechanical testing and sectioning. Our group has accurately and non-destructively estimated three dimensional cross-sectional areal properties (principal moments of inertia, Imax and Imin, and principal angle, Theta) of human cadaver long bones from pixel-by-pixel analysis of three non-coplanar densitometry scans. Because the scanner beam width is on the order of typical small animal diapbyseal diameters, applying this technique to high-resolution scans of rat long bones necessitates additional processing to minimize errors induced by beam smearing, such as dependence on sample orientation and overestimation of Imax and Imin. We hypothesized that these errors are correctable by digital image processing of the raw scan data. In all cases, four scans, using only the low energy data (Hologic QDR-1000W, small animal mode), are averaged to increase image signal-to-noise ratio. Raw scans are additionally processed by interpolation, deconvolution by a filter derived from scanner beam characteristics, and masking using a variable threshold based on image dynamic range. To assess accuracy, we scanned an aluminum step phantom at 12 orientations over a range of 180 deg about the longitudinal axis, in 15 deg increments. The phantom dimensions (2.5, 3.1, 3.8 mm x 4.4 mm; Imin/Imax: 0.33-0.74) were comparable to the dimensions of a rat femur which was also scanned. Cross-sectional properties were determined at 0.25 mm increments along the length of the phantom and femur. The table shows average error (+/- SD) from theory of Imax, Imin, and Theta) over the 12 orientations, calculated from raw and fully processed phantom images, as well as standard deviations about the mean for the femur scans. Processing of phantom scans increased agreement with theory, indicating improved accuracy. Smaller standard deviations with processing indicate increased precision and repeatability. Standard deviations for the femur are consistent with those of the phantom. We conclude that in conjunction with digital image enhancement, densitometry scans are suitable for non-destructive determination of areal properties of small animal bones of comparable size to our phantom, allowing prediction of Imax and Imin within 2.5% and Theta within a fraction of a degree. This method represents a considerable extension of current methods of analyzing bone tissue distribution in small animal bones.
Rolling and tumbling: status of the SuperAGILE experiment
NASA Astrophysics Data System (ADS)
Del Monte, E.; Costa, E.; di Persio, G.; Donnarumma, I.; Evangelista, Y.; Feroci, M.; Lapshov, I.; Lazzarotto, F.; Mastropietro, M.; Morelli, E.; Pacciani, L.; Rapisarda, M.; Rubini, A.; Soffitta, P.; Tavani, M.; Argan, A.; Trois, A.
2010-07-01
The SuperAGILE experiment is the hard X-ray monitor of the AGILE mission. It is a 2 x one-dimensional imager, with 6-arcmin angular resolution in the energy range 18 - 60 keV and a field of view in excess of 1 steradian. SuperAGILE is successfully operating in orbit since Summer 2007, providing long-term monitoring of bright sources and prompt detection and localization of gamma-ray bursts. Starting on October 2009 the AGILE mission lost its reaction wheel and the satellite attitude is no longer stabilized. The current mode of operation of the AGILE satellite is a Spinning Mode, around the Sun-pointing direction, with an angular velocity of about 0.8 degree/s (corresponding to 8 times the SuperAGILE point spread function every second). In these new conditions, SuperAGILE continuously scans a much larger fraction of the sky, with much smaller exposure to each region. In this paper we review some of the results of the first 2.5 years of "standard" operation of SuperAGILE, and show how new implementations in the data analysis software allows to continue the hard X-ray sky monitoring by SuperAGILE also in the new attitude conditions.
Bai, Rong-jie; Cong, De-gang; Shen, Bao-zhong; Han, Ming-jun; Wu, Zhen-hua
2006-08-05
Hyperparathyroidism (HPT) occurs at an early age and has a high disability rate. Unfortunately, confirmed diagnosis in most patients is done at a very late stage, when the patients have shown typical symptoms and signs, and when treatment does not produce any desirable effect. It has become urgent to find a method that would detect early bone diseases in HPT to obtain time for the ideal treatment. This study evaluated the accuracy of high field magnetic resonance imaging (MRI) combined with spiral computed tomography (SCT) scan in detecting early bone diseases in HPT, through imaging techniques and histopathological examinations on an animal model of HPT. Eighty adult rabbits were randomly divided into two groups with forty in each. The control group was fed normal diet (Ca:P = 1:0.7); the experimental group was fed high phosphate diet (Ca:P = 1:7) for 3, 4, 5, or 6-month intervals to establish the animal model of HPT. The staging and imaging findings of the early bone diseases in HPT were determined by high field MRI and SCT scan at the 3rd, 4th, 5th and 6th month. Each rabbit was sacrificed after high field MRI and SCT scan, and the parathyroid and bones were removed for pathological examination to evaluate the accuracy of imaging diagnosis. Parathyroid histopathological studies revealed hyperplasia, osteoporosis and early cortical bone resorption. The bone diseases in HPT displayed different levels of low signal intensity on T(1)WI and low to intermediate signal intensity on T(2)WI in bone of stage 0, I, II or III, but showed correspondingly absent, probable, osteoporotic and subperiosteal cortical resorption on SCT scan. High field MRI combined with SCT scan not only detects early bone diseases in HPT, but also indicates staging, and might be a reliable method of studying early bone diseases in HPT.
Wilson, J D; Castillo, M
1995-01-01
Cat-scratch disease (CSD) is a benign, self-limited cause of lymphadenitis occurring mainly in children and young adults. Its etiology is a delicate, small gram-negative pleomorphic bacillus. Less common manifestations of CSD are seen in 5% of patients and include Parinaud's oculoglandular syndrome (with enlargement of the preauricular nodes), parotid gland enlargement, encephalitis, radiculopathy, pneumonitis, erythema nodosum, thrombocytopenia, and lytic bone lesions. We describe a patient in whom magnetic resonance imaging initially detected subtle vertebral bone marrow abnormalities that correlated with the site of abnormality on a subsequent radionuclide bone scan.
NASA Astrophysics Data System (ADS)
Dunham, G.; Harding, E. C.; Loisel, G. P.; Lake, P. W.; Nielsen-Weber, L. B.
2016-11-01
Fuji TR image plate is frequently used as a replacement detector medium for x-ray imaging and spectroscopy diagnostics at NIF, Omega, and Z facilities. However, the familiar Fuji BAS line of image plate scanners is no longer supported by the industry, and so a replacement scanning system is needed. While the General Electric Typhoon line of scanners could replace the Fuji systems, the shift away from photo stimulated luminescence units to 16-bit grayscale Tag Image File Format (TIFF) leaves a discontinuity when comparing data collected from both systems. For the purposes of quantitative spectroscopy, a known unit of intensity applied to the grayscale values of the TIFF is needed. The DITABIS Super Micron image plate scanning system was tested and shown to potentially rival the resolution and dynamic range of Kodak RAR 2492 x-ray film. However, the absolute sensitivity of the scanner is unknown. In this work, a methodology to cross calibrate Fuji TR image plate and the absolutely calibrated Kodak RAR 2492 x-ray film is presented. Details of the experimental configurations used are included. An energy dependent scale factor to convert Fuji TR IP scanned on a DITABIS Super Micron scanner from 16-bit grayscale TIFF to intensity units (i.e., photons per square micron) is discussed.
An atmosphere around the super-Earth 55 Cancri e
NASA Astrophysics Data System (ADS)
Tsiaras, Angelos; Rocchetto, Marco; Waldmann, Ingo; Venot, Olivia; Varley, Rayan; Morello, Giuseppe; Damiano, Mario; Tinetti, Giovanna; Barton, Emma; Yurchenko, Sergey; Tennyson, Jonathan; ExoLights, ExoMol
2016-10-01
One of the most successful instruments for observing exoplanetary atmospheres is the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope (HST). In particular, the use of the spatial scanning technique has given us the opportunity for even more efficient observations of the brightest targets, achieving the necessary precision of 10 - 100 ppm. With such data and new advanced reduction and statistical techniques, we were able to detect modulations in the spectrum of the hot super-Earth 55 Cancri e, which suggest the existence of a light-weight atmosphere around this planet. Given the brightness of 55 Cancri, the observers adopted a very long scanning length and a very high scanning speed. We took these effects into account, as they can introduce systematics when coupled with the geometrical distortions of the instrument. Our fully Bayesian spectral retrieval code, T-REx, has identified HCN to be the most likely molecular candidate able to explain the features at 1.42 and 1.54 μm. While additional spectroscopic observations in a broader wavelength range in the infrared will be needed to confirm the HCN detection, we used a chemical model, developed with combustion specialists, to explain its pressence. This model indicates that relatively high mixing ratios of HCN may be caused by a high C/O ratio, suggesting this super-Earth is a carbon-rich environment even more exotic than previously thought.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunham, G., E-mail: gsdunha@sandia.gov; Harding, E. C.; Loisel, G. P.
Fuji TR image plate is frequently used as a replacement detector medium for x-ray imaging and spectroscopy diagnostics at NIF, Omega, and Z facilities. However, the familiar Fuji BAS line of image plate scanners is no longer supported by the industry, and so a replacement scanning system is needed. While the General Electric Typhoon line of scanners could replace the Fuji systems, the shift away from photo stimulated luminescence units to 16-bit grayscale Tag Image File Format (TIFF) leaves a discontinuity when comparing data collected from both systems. For the purposes of quantitative spectroscopy, a known unit of intensity appliedmore » to the grayscale values of the TIFF is needed. The DITABIS Super Micron image plate scanning system was tested and shown to potentially rival the resolution and dynamic range of Kodak RAR 2492 x-ray film. However, the absolute sensitivity of the scanner is unknown. In this work, a methodology to cross calibrate Fuji TR image plate and the absolutely calibrated Kodak RAR 2492 x-ray film is presented. Details of the experimental configurations used are included. An energy dependent scale factor to convert Fuji TR IP scanned on a DITABIS Super Micron scanner from 16-bit grayscale TIFF to intensity units (i.e., photons per square micron) is discussed.« less
Nuclear scanning in necrotizing progressive ''malignant'' external otitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parisier, S.C.; Lucente, F.E.; Som, P.M.
1982-09-01
The usefulness of radionuclear scanning in the treatment of 18 patients with necrotizing progressive ''malignant'' external otitis is discussed. A Tc 99-m bone scan, a valuable test since results are positive in early cases of osteomyelitis of the temporal bone and base of skull, showed increased uptake in all 18 patients. In 6 patients, Ga-67 citrate scans were obtained at the start of therapy and at 5-6 week intervals thereafter. The serial gallium scans were useful in evaluating the effectiveness of therapy since the uptake decrease with control of infection.
NASA Technical Reports Server (NTRS)
Whalen, Robert T.; Napel, Sandy; Yan, Chye H.
1996-01-01
Progress in development of the methods required to study bone remodeling as a function of time is reported. The following topics are presented: 'A New Methodology for Registration Accuracy Evaluation', 'Registration of Serial Skeletal Images for Accurately Measuring Changes in Bone Density', and 'Precise and Accurate Gold Standard for Multimodality and Serial Registration Method Evaluations.'
Magnetic resonance imaging and computerized tomography in malignant external otitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gherini, S.G.; Brackmann, D.E.; Bradley, W.G.
1986-05-01
In malignant external otitis (MEO), determining the anatomic extent of disease and evaluating the physiologic response to therapy remain a problem. Magnetic resonance imaging (MRI) has recently become available in limited clinical settings. Four patients with MEO were evaluated using MRI, computerized tomography (CT), technetium-99 (Tc-99) bone scanning, and gallium-67 citrate (Ga-67 citrate) scanning. MRI is superior to CT, Tc-99 bone scanning, and Ga-67 citrate scanning in evaluating the anatomic extent of soft tissue changes in MEO. MRI alone cannot be relied upon to determine the physiologic response to therapy. MRI can, however, serve as a valuable guide to themore » interpretation of Tc-99 bone and Ga-67 citrate scans, and in this respect, MRI is extremely useful in the treatment of MEO.« less
Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound
NASA Astrophysics Data System (ADS)
Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph
2013-11-01
Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone's mechanical strength and structural parameters, i.e., bulk Young's modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young's modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone's structural integrity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gholipour, Ali, E-mail: ali.gholipour@childrens.harvard.edu; Afacan, Onur; Scherrer, Benoit
Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) ofmore » image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane views consistently showed the superiority of SRR compared to original axial and coronal image acquisitions. Conclusions: Thick-slice 2D T2-weighted MRI scans are part of many routine clinical protocols due to their high signal-to-noise ratio, but are often severely affected by through-plane partial voluming effects. This study shows that while radiologic assessment is performed in 2D on thick-slice scans, super-resolution MRI reconstruction techniques can be used to fuse those scans to generate a high-resolution image with reduced partial voluming for improved postacquisition processing. Qualitative and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the slice profile, density compensation, quantization in resampling, and uncompensated motion between scans.« less
Gholipour, Ali; Afacan, Onur; Aganj, Iman; Scherrer, Benoit; Prabhu, Sanjay P.; Sahin, Mustafa; Warfield, Simon K.
2015-01-01
Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane views consistently showed the superiority of SRR compared to original axial and coronal image acquisitions. Conclusions: Thick-slice 2D T2-weighted MRI scans are part of many routine clinical protocols due to their high signal-to-noise ratio, but are often severely affected by through-plane partial voluming effects. This study shows that while radiologic assessment is performed in 2D on thick-slice scans, super-resolution MRI reconstruction techniques can be used to fuse those scans to generate a high-resolution image with reduced partial voluming for improved postacquisition processing. Qualitative and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the slice profile, density compensation, quantization in resampling, and uncompensated motion between scans. PMID:26632048
Bone and gallium scanning in the pre-op evaluation of the infected dysvascular foot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, C.; Sakimura, I.; Dillon, A.
1984-01-01
The purpose of this study is to determine the value of bone and gallium scans in predicting healing levels in the dysvascular foot with an infection requiring amputation. Healing requires amputation at a level both free of infection and with adequate blood flow. Forty-one such patients had bone and gallium scans and Doppler studies prior to amputation at a level selected by the surgeon. Eight patients required multiple surgeries before healing was obtained. Bone and soft tissue infections were determined from scans and healing levels predicted (SPHL) as the most distal amputation level free from infection: toectomy, Reye's, transmetatarsal, calcanectomy,more » Syme's, below knee. Doppler healing levels (DPHL) were predicted using a standard ischemic index. Doppler alone predicted the final healing level (FHL) in 41% with 59% needing more proximal amputation. Scans alone predicted FHL in 64% with 26% needing more proximal amputation. Ten percent were distal to the SPHL and all healed. These scans showed infection at transition sites between amputation levels, and the more proximal level had been predicted. Using the more proximal of the DPHL and SPHL the FHL was predicted in 78% with another 12% having more proximal amputation for nursing reasons. In 10% amputation was performed between DPHL and SPHL or at the more distal level. In no case was successful surgery performed distal to the more distal SPHL or DPHL. Bone and gallium scans used with Doppler studies are useful in optimizing the choice of amputation level in the infected, dysvascular foot.« less
Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yang; Wei Liu, Xiao; Zhang, Hai Feng, E-mail: wy3121685@163.com
We present a method to fabricate a super-hydrophobic surface with a self-healing ability on an aluminium alloy substrate. The coatings are obtained by combining a two-step process (first, the substrate is immersed in a solution of HCl, HF and H{sub 2}O, and then in boiling water) and succeeding surface fluorination with a solution of poly(vinylidene-fluoride-co-hexafluoropropylene) and a fluoroalkyl silane. The morphological features and chemical composition were studied by scanning electron micrometry and energy-dispersive X-ray spectroscopy. The prepared super-hydrophobic aluminium surfaces showed hierarchical structures forming pores, petals and particles with a contact angle of 161° and a sliding angle of 3°.
Lampi, Tiina; Dekker, Hannah; Ten Bruggenkate, Chris M; Schulten, Engelbert A J M; Mikkonen, Jopi J W; Koistinen, Arto; Kullaa, Arja M
2018-01-01
The aim of this study was to define the acid-etching technique for bone samples embedded in polymethyl metacrylate (PMMA) in order to visualize the osteocyte lacuno-canalicular network (LCN) for scanning electron microscopy (SEM). Human jaw bone tissue samples (N = 18) were collected from the study population consisting of patients having received dental implant surgery. After collection, the bone samples were fixed in 70% ethanol and non-decalcified samples embedded routinely into polymethyl metacrylate (PMMA). The PMMA embedded specimens were acid-etched in either 9 or 37% phosphoric acid (PA) and prepared for SEM for further analysis. PMMA embedded bone specimens acid-etched by 9% PA concentration accomplishes the most informative and favorable visualization of the LCN to be observed by SEM. Etching of PMMA embedded specimens is recommendable to start with 30 s or 40 s etching duration in order to find the proper etching duration for the samples examined. Visualizing osteocytes and LCN provides a tool to study bone structure that reflects changes in bone metabolism and diseases related to bone tissue. By proper etching protocol of non-decalcified and using scanning electron microscope it is possible to visualize the morphology of osteocytes and the network supporting vitality of bone tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Michael W. M.; Phillips, Nicholas W.; van Riessen, Grant A.
2016-08-11
Owing to its extreme sensitivity, quantitative mapping of elemental distributionsviaX-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both step- and fly-scanning modes, robust, simultaneous XFM-SXDM is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidtlein, CR; Hwang, S; Veeraraghavan, H
Purpose: This study demonstrates a methodology for tracking changes in metastatic bone disease using trajectories in material basis space in serial dual energy computed tomography (DECT) studies. Methods: This study includes patients with bone metastases from breast cancer that had clinical surveillance CT scans using a General Electric CT750HD in dual energy mode. A radiologist defined regions-of-interested (ROI) for bone metastasis, normal bone, and marrow across the serial DECT scans. Our approach employs a Radon transform to forward-projection the basis images, namely, water and iodine, into sinogram space. This data is then repartitioned into fat/bone and effective density/Z image pairsmore » using assumed energy spectrums for the x-ray energies. This approach both helps remove negative material densities and avoids adding spectrum-hardening artifacts. These new basis data sets were then reconstructed via filtered back-projection to create new material basis pair images. The trajectories of these pairs were then plotted in the new basis space providing a means to both visualize and quantitatively measure changes in the material properties of the tumors. Results: ROI containing radiologist defined metastatic bone disease showed well-defined trajectories in both fat/bone and effective density/Z space. ROI that contained radiologist defined normal bone and marrow did not exhibit any discernible trajectories and were stable from scan to scan. Conclusions: The preliminary results show that changes in material composition and effective density/Z image pairs were seen primarily in metastasis and not in normal tissue. This study indicates that by using routine clinical DECT it may be possible to monitor therapy response of bone metastases because healing or worsening bone metastases change material composition of bone. Additional studies are needed to further validate these results and to test for their correlation with outcome.« less
Intraoperative /sup 99m/Tc bone imaging in the treatment of benign osteoblastic tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sty, J.; Simons, G.
1982-05-01
Benign bone tumors can be successfully treated by local resection with the use of intraoperative bone imaging. Intraoperative bone imaging provided accurate localization of an osteoid osteoma in a patella of a 16-year-old girl when standard radiographs failed to demonstrate the lesion. In a case of osteoblastoma of the sacrum in a 12-year old girl, intraoperative scanning was used repeatedly to guide completeness of resection. In these cases in which routine intraoperative radiographs would have failed, intraoperative scanning proved to be essential for success.
Disorders of bone and bone mineral metabolism.
Komoroski, Monica; Azad, Nasrin; Camacho, Pauline
2014-01-01
Metabolic bone disorders are very common in the general population and untreated, they can cause a variety of neurologic symptoms. These diseases include osteoporosis, vitamin D deficiency, Paget's disease, and alterations in calcium, phosphorus, and magnesium metabolism. Diagnosis is made through analysis of metabolic bone blood chemistries as well as radiologic studies such as dual energy X-ray absorptiometry (DXA) scans, bone scans, and X-rays. Treatment options have advanced significantly in the past decade for osteoporosis and Paget's disease and mainly include antiresorptive therapy. New recommendations for treatment of primary hyperparathyroidism are discussed as well as therapy for calcium, phosphorus, and mineral disorders. © 2014 Elsevier B.V. All rights reserved.
Whitney, Colette A; Howard, Lauren E; Amling, Christopher L; Aronson, William J; Cooperberg, Matthew R; Kane, Christopher J; Terris, Martha K; Freedland, Stephen J
2016-12-15
Although race is associated with prostate cancer progression in early stage disease, once men have advanced disease, it is unclear whether race continues to predict a poor outcome. The authors hypothesized that, in an equal-access setting among patients with castration-resistant prostate cancer (CRPC) and no known metastases (M0/Mx), black men would receive imaging tests at similar rates as nonblack men (ie, there would be an equal opportunity to detect metastases) but would have a higher risk of metastatic disease. In total, 837 men who were diagnosed with M0/Mx CRPC during 2000 through 2014 from 5 Veterans Affairs hospitals in the SEARCH (Shared Equal Access Regional Cancer Hospital) database were analyzed. Data on all imaging tests after CRPC diagnosis were collected, including date, type, and outcome. Multivariable Cox models were used to test associations between race and the time to first metastasis, first bone metastasis, first bone scan, second bone scan among men who had a negative first bone scan, and overall survival. Black men (n = 306) were equally as likely as nonblack men (n = 531) to receive a first and second bone scan after a diagnosis of CRPC. There were no significant differences in the risk of developing any metastases, bone metastases, time to bone scans, or overall survival between black men and nonblack men (all P > .2). The lack of racial differences in the development of metastases and scanning practices observed in this study suggests that, once men have a diagnosis of M0/Mx CRPC, race may not be a prognostic factor. Efforts to understand prostate cancer racial disparities may derive greater benefit by focusing on the risk of developing prostate cancer and on the outcomes of men who have early stage disease. Cancer 2016;122:3848-3855. © 2016 American Cancer Society. © 2016 American Cancer Society.
Krammer, Julia; Engel, Dorothee; Schnitzer, Andreas; Kaiser, Clemens G; Dinter, Dietmar J; Brade, Joachim; Schoenberg, Stefan O; Wasser, Klaus
2013-06-01
By analyzing bone scans we aimed to determine whether the assessment of the central skeleton is sufficient for osseous staging in breast cancer patients. This might be of interest for future staging modalities, especially positron emission tomography/computed tomography, usually sparing the peripheral extremities, as well as the skull. In this retrospective study, a total of 837 bone scans for initial staging or restaging of breast cancer were included. A total of 291 bone scans in 172 patients were positive for bone metastases. The localization and distribution of the metastases were re-evaluated by two readers in consensus. The extent of the central skeleton involvement was correlated to the incidence of peripheral metastases. In all 172 patients bone metastases were seen in the central skeleton (including the proximal third of humerus and femur). In 34 patients (19.8 %) peripheral metastases of the extremities (distally of the proximal third of humerus and femur) could be detected. Sixty-four patients (37.2 %) showed metastases of the skull. Summarizing the metastases of the distal extremities and skull, 79 patients (45.9 %) had peripheral metastases. None of the patients showed peripheral metastases without any affliction of the central skeleton. The incidence of peripheral metastases significantly correlated with the extent of central skeleton involvement (p<0.001). Regarding bone scans, an isolated metastatic spread to the peripheral skeleton without any manifestation in the central skeleton seems to be the exception. Thus, the assessment of the central skeleton should be sufficient in osseous breast cancer staging and restaging. However, in case of central metastases, additional imaging of the periphery should be considered for staging and restaging.
Radiographic and scintigraphic evaluation of total knee arthroplasty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, R.; Soudry, M.
1986-04-01
Various radiographic and scintigraphic methods are used to supplement clinical findings in the evaluation of total knee arthroplasty and its complications. Serial roentgenograms offer reliable information for diagnosing mechanical loosening. Wide and extensive radiolucency at the cement-bone interface and shift in position and alignment of prosthetic components can be seen in almost all cases by the time revision is necessary. Radiographic abnormalities are usually not present in acute infection, but are often present in chronic infection. Bone scanning has a high sensitivity for diagnosis of infection or loosening, but is nonspecific because increased uptake is often present around asymptomatic totalmore » knee arthroplasties with normal radiographs. Differential bone and Gallium scanning and scanning with Indium 111-labeled leukocytes have a greater specificity for diagnosis of infection than does bone or Gallium scanning alone. Routine radiographic and scintigraphic studies have shown a high incidence of deep vein thrombosis in the calf after total knee arthroplasty. Clinically significant pulmonary embolization is infrequent.« less
On the dynamic readout characteristic of nonlinear super-resolution optical storage
NASA Astrophysics Data System (ADS)
Wei, Jingsong
2013-03-01
Researchers have developed nonlinear super-resolution optical storage for the past twenty years. However, several concerns remain, including (1) the presence of readout threshold power; (2) the increase of threshold power with the reduction of the mark size, and (3) the increase of the carrier-to-noise ratio (CNR) at the initial stage and then decrease with the increase of readout laser power or laser irradiation time. The present work calculates and analyzes the super-resolution spot formed by the thin film masks and the readout threshold power characteristic according to the derived formula and based on the nonlinear saturable absorption characteristic and threshold of structural change. The obtained theoretical calculation and experimental data answer the concerns regarding the dynamic readout threshold characteristic and CNR dependence on laser power and irradiation time. The near-field optical spot scanning experiment further verifies the super-resolution spot formation produced through the nonlinear thin film masks.
Quantitative in vivo assessment of bone microarchitecture in the human knee using HR-pQCT.
Kroker, Andres; Zhu, Ying; Manske, Sarah L; Barber, Rhamona; Mohtadi, Nicholas; Boyd, Steven K
2017-04-01
High-resolution peripheral quantitative computed tomography (HR-pQCT) is a novel imaging modality capable of visualizing bone microarchitecture in vivo at human peripheral sites such as the distal radius and distal tibia. This research has extended the technology to provide a non-invasive assessment of bone microarchitecture at the human knee by establishing new hardware, imaging protocols and data analysis. A custom leg holder was developed to stabilize a human knee centrally within a second generation HR-pQCT field of view. Five participants with anterior cruciate ligament reconstructions had their knee joint imaged in a continuous scan of 6cm axially. The nominal isotropic voxel size was 60.7μm. Bone mineral density and microarchitecture were assessed within the weight-bearing regions of medial and lateral compartments of the knee at three depths from the weight-bearing articular bone surface, including both the cortical and trabecular bone regions. Scan duration was approximately 18min per knee and produced 5GB of projection data and 10GB of reconstructed image data (2304×2304 image matrix, 1008 slices). Motion during the scan was minimized by the leg holder and was similar in magnitude as a scan of the distal tibia. Bone mineral density and microarchitectural parameters were assessed for 16 volumes of interest in the tibiofemoral joint. This is a new non-invasive in vivo assessment tool for bone microarchitecture in the human knee that provides an opportunity to gain insight into normal, injured and surgically reconstructed human knee bone architecture in cross-sectional or longitudinal studies. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Lu, Yongtao; Boudiffa, Maya; Dall'Ara, Enrico; Bellantuono, Ilaria; Viceconti, Marco
2016-07-05
In vivo micro-computed tomography (µCT) scanning of small rodents is a powerful method for longitudinal monitoring of bone adaptation. However, the life-time bone growth in small rodents makes it a challenge to quantify local bone adaptation. Therefore, the aim of this study was to develop a protocol, which can take into account large bone growth, to quantify local bone adaptations over space and time. The entire right tibiae of eight 14-week-old C57BL/6J female mice were consecutively scanned four times in an in vivo µCT scanner using a nominal isotropic image voxel size of 10.4µm. The repeated scan image datasets were aligned to the corresponding baseline (first) scan image dataset using rigid registration. 80% of tibia length (starting from the endpoint of the proximal growth plate) was selected as the volume of interest and partitioned into 40 regions along the tibial long axis (10 divisions) and in the cross-section (4 sectors). The bone mineral content (BMC) was used to quantify bone adaptation and was calculated in each region. All local BMCs have precision errors (PE%CV) of less than 3.5% (24 out of 40 regions have PE%CV of less than 2%), least significant changes (LSCs) of less than 3.8%, and 38 out of 40 regions have intraclass correlation coefficients (ICCs) of over 0.8. The proposed protocol allows to quantify local bone adaptations over an entire tibia in longitudinal studies, with a high reproducibility, an essential requirement to reduce the number of animals to achieve the necessary statistical power. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hirakuri, Ayaka; Numasawa, Kanako; Takeishi, Hideki; Satomura, Minato; Takeda, Hiromitsu; Harada, Kuniaki; Asanuma, Osamu; Sakata, Motomichi
2012-01-01
The exposure of the eye lens caused by multi-detector row computed tomography (MDCT) of the temporal bone is a serious problem. Our aim was to evaluate the radiation dose to the eye lens by different scan baselines (orbitomeatal line; OML, acanthiomeatal line; AML) and examine the difference of the depiction of the temporal bone structures. Measurement of the exposure to the eye lens was performed by means of MDCT of the temporal bone with a radio-photoluminescence glass dosimeter using a rand phantom. Moreover, we studied only one volunteer (58-year-old male) who had no symptom and was not suspected of having any ear abnormalities with a two scan baseline. Visualization of the major anatomical structures of the temporal bone (the tympanic portion of the facial nerve canal, the body of the incus, stapes superstructures, vestibule etc.) was performed on the volunteer. The average absorbed dose was 6.42 mGy by the OML and 1.59 mGy by the AML, respectively. With regard to visualization of the temporal bone structures, all structures were of equal quality with the two scan baseline. With the AML line, the radiation dose to the eye lens was reduced to 75%. Therefore, the authors recommended an AML for use for MDCT of the temporal bone. In clinical practice, the optimization of scanning factor (kVp, mAs etc.) and the use of the radio-protection should be implemented for radiation dose reduction of the eye lens by MDCT of the temporal bone.
An Intraoperative Site-specific Bone Density Device: A Pilot Test Case.
Arosio, Paolo; Moschioni, Monica; Banfi, Luca Maria; Di Stefano, Anilo Alessio
2015-08-01
This paper reports a case of all-on-four rehabilitation where bone density at implant sites was assessed both through preoperative computed tomographic (CT) scans and using a micromotor working as an intraoperative bone density measurement device. Implant-supported rehabilitation is a predictable treatment option for tooth replacement whose success depends on the clinician's experience, the implant characteristics and location and patient-related factors. Among the latter, bone density is a determinant for the achievement of primary implant stability and, eventually, for implant success. The ability to measure bone density at the placement site before implant insertion could be important in the clinical setting. A patient complaining of masticatory impairment was presented with a plan calling for extraction of all her compromised teeth, followed by implant rehabilitation. A week before surgery, she underwent CT examination, and the bone density on the CT scans was measured. When the implant osteotomies were created, the bone density was again measured with a micromotor endowed with an instantaneous torque-measuring system. The implant placement protocols were adapted for each implant, according to the intraoperative measurements, and the patient was rehabilitated following an all-on-four immediate loading protocol. The bone density device provided valuable information beyond that obtained from CT scans, allowing for site-specific, intraoperative assessment of bone density immediately before implant placement and an estimation of primary stability just after implant insertion. Measuring jaw-bone density could help clinicians to select implant-placement protocols and loading strategies based on site-specific bone features.
Super-resolution optical telescopes with local light diffraction shrinkage
Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang
2015-01-01
Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820
Accuracy of CT-based attenuation correction in PET/CT bone imaging
NASA Astrophysics Data System (ADS)
Abella, Monica; Alessio, Adam M.; Mankoff, David A.; MacDonald, Lawrence R.; Vaquero, Juan Jose; Desco, Manuel; Kinahan, Paul E.
2012-05-01
We evaluate the accuracy of scaling CT images for attenuation correction of PET data measured for bone. While the standard tri-linear approach has been well tested for soft tissues, the impact of CT-based attenuation correction on the accuracy of tracer uptake in bone has not been reported in detail. We measured the accuracy of attenuation coefficients of bovine femur segments and patient data using a tri-linear method applied to CT images obtained at different kVp settings. Attenuation values at 511 keV obtained with a 68Ga/68Ge transmission scan were used as a reference standard. The impact of inaccurate attenuation images on PET standardized uptake values (SUVs) was then evaluated using simulated emission images and emission images from five patients with elevated levels of FDG uptake in bone at disease sites. The CT-based linear attenuation images of the bovine femur segments underestimated the true values by 2.9 ± 0.3% for cancellous bone regardless of kVp. For compact bone the underestimation ranged from 1.3% at 140 kVp to 14.1% at 80 kVp. In the patient scans at 140 kVp the underestimation was approximately 2% averaged over all bony regions. The sensitivity analysis indicated that errors in PET SUVs in bone are approximately proportional to errors in the estimated attenuation coefficients for the same regions. The variability in SUV bias also increased approximately linearly with the error in linear attenuation coefficients. These results suggest that bias in bone uptake SUVs of PET tracers ranges from 2.4% to 5.9% when using CT scans at 140 and 120 kVp for attenuation correction. Lower kVp scans have the potential for considerably more error in dense bone. This bias is present in any PET tracer with bone uptake but may be clinically insignificant for many imaging tasks. However, errors from CT-based attenuation correction methods should be carefully evaluated if quantitation of tracer uptake in bone is important.
Visualization of postoperative anterior cruciate ligament reconstruction bone tunnels
2011-01-01
Background and purpose Non-anatomic bone tunnel placement is the most common cause of a failed ACL reconstruction. Accurate and reproducible methods to visualize and document bone tunnel placement are therefore important. We evaluated the reliability of standard radiographs, CT scans, and a 3-dimensional (3D) virtual reality (VR) approach in visualizing and measuring ACL reconstruction bone tunnel placement. Methods 50 consecutive patients who underwent single-bundle ACL reconstructions were evaluated postoperatively by standard radiographs, CT scans, and 3D VR images. Tibial and femoral tunnel positions were measured by 2 observers using the traditional methods of Amis, Aglietti, Hoser, Stäubli, and the method of Benereau for the VR approach. Results The tunnel was visualized in 50–82% of the standard radiographs and in 100% of the CT scans and 3D VR images. Using the intraclass correlation coefficient (ICC), the inter- and intraobserver agreement was between 0.39 and 0.83 for the standard femoral and tibial radiographs. CT scans showed an ICC range of 0.49–0.76 for the inter- and intraobserver agreement. The agreement in 3D VR was almost perfect, with an ICC of 0.83 for the femur and 0.95 for the tibia. Interpretation CT scans and 3D VR images are more reliable in assessing postoperative bone tunnel placement following ACL reconstruction than standard radiographs. PMID:21999625
Reconstruction of radial bone defect in rat by calcium silicate biomaterials.
Oryan, Ahmad; Alidadi, Soodeh
2018-05-15
Despite many attempts, an appropriate therapeutic method has not yet been found to enhance bone formation, mechanical strength and structural and functional performances of large bone defects. In the present study, the bone regenerative potential of calcium silicate (CS) biomaterials combined with chitosan (CH) as calcium silicate/chitosan (CSC) scaffold was investigated in a critical radial bone defect in a rat model. The bioimplants were bilaterally implanted in the defects of 20 adult Sprague-Dawley rats. The rats were euthanized and the bone specimens were harvested at the 56th postoperative day. The healed radial bones were evaluated by three-dimensional CT, radiology, histomorphometric analysis, biomechanics, and scanning electron microscopy. The XRD analysis of the CS biomaterial showed its similarity to wollastonite (β-SiCO 3 ). The degradation rate of the CSC scaffold was much higher and it induced milder inflammatory reaction when compared to the CH alone. More bone formation and higher biomechanical performance were observed in the CSC treated group in comparison with the CH treated ones in histological, CT scan and biomechanical examinations. Scanning electron microscopic observation demonstrated the formation of more hydroxyapatite crystals in the defects treated with CSC. This study showed that the CSC biomaterials could be used as proper biodegradable materials in the field of bone reconstruction and tissue engineering. Copyright © 2018 Elsevier Inc. All rights reserved.
Atlas of computerized blood flow analysis in bone disease.
Gandsman, E J; Deutsch, S D; Tyson, I B
1983-11-01
The role of computerized blood flow analysis in routine bone scanning is reviewed. Cases illustrating the technique include proven diagnoses of toxic synovitis, Legg-Perthes disease, arthritis, avascular necrosis of the hip, fractures, benign and malignant tumors, Paget's disease, cellulitis, osteomyelitis, and shin splints. Several examples also show the use of the technique in monitoring treatment. The use of quantitative data from the blood flow, bone uptake phase, and static images suggests specific diagnostic patterns for each of the diseases presented in this atlas. Thus, this technique enables increased accuracy in the interpretation of the radionuclide bone scan.
NASA Astrophysics Data System (ADS)
Davanageri, Mahesh; Narendranath, S.; Kadoli, Ravikiran
2017-08-01
The effect of ageing time on hardness, microstructure and wear behaviour of super duplex stainless AISI 2507 is examined. The material was solution treated at 1050 °C and water quenched, further the ageing has been carried out at 850 °C for 30 min, 60 min and 90 min. The chromium (Cr) and molybdenum (Mo) enriched intermetallic sigma phase (σ) were found to precipitate at the ferrite/austenite interface and within the ferrite region. The concentration of intermetallic sigma phase (σ), which was quantified by a combination of scanning electron microscopy and image analysis, increases with increasing ageing time, leading to significant increase in the hardness. The x-ray diffraction (XRD) and energy dispersive x-ray (EDX) was employed to investigate the element distribution and phase identification. Wear characterstics of the aged super duplex stainless steel were measured by varying normal loads, sliding speeds, sliding distance and compared with solution treated (as-cast) specimens. Scanning electron microscopy was used to assist in analysis of worn out surfaces. The outcomes suggested that the increase in percentage of sigma phase increases hardness and wear resistance in heat-treated specimens compared to solution treated specimens (as-cast).
Georgitzikis, Athanasios; Siopi, Dimitra; Doumas, Argyrios; Mitka, Ekaterini; Antoniadis, Antonios
2010-01-01
We report the unusual case of a 29 -year old woman with emotional instability who presented with acute onset chest pain after severe chronic cough. The chest X-ray and the serological tests were normal but the CT scanning, and the bone scanning revealed multiple bilateral rib stress fractures, caused by severe coughing and physical activity and worsened by the patient's emotional instability.
NASA Astrophysics Data System (ADS)
Ding, Chenliang; Wei, Jingsong; Xiao, Mufei
2018-05-01
We herein propose a far-field super-resolution imaging with metal thin films based on the temperature-dependent electron-phonon collision frequency effect. In the proposed method, neither fluorescence labeling nor any special properties are required for the samples. The 100 nm lands and 200 nm grooves on the Blu-ray disk substrates were clearly resolved and imaged through a laser scanning microscope of wavelength 405 nm. The spot size was approximately 0.80 μm , and the imaging resolution of 1/8 of the laser spot size was experimentally obtained. This work can be applied to the far-field super-resolution imaging of samples with neither fluorescence labeling nor any special properties.
Skrzat, Janusz; Spulber, Alexandru; Walocha, Jerzy
This paper presents the effects of building mesh models of the human skull and the cranial bones from a series of CT-scans. With the aid of computer so ware, 3D reconstructions of the whole skull and segmented cranial bones were performed and visualized by surface rendering techniques. The article briefly discusses clinical and educational applications of 3D cranial models created using stereolitographic reproduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Hongbo; Qiao, Zemin; Liu, Xiao
Highlights: • Sol–gel route is combined with polymerization without using modifier. • Supercritical drying control is the key to obtain super-hydrophobic surfaces. • The whole fabrication is technologically controllable and with low costs. • The production rate is higher than 90%. • The method provides a cost-effective way for industry applications. - Abstract: We successfully synthesized one type of cheap super-hydrophobic hybrid porous materials in a sol–gel process. In this route, hydrophilic polymers and TEOS-base sol are used as precursors, the ultraviolet ray-initiated polymerization and supercritical fluid drying techniques are combined together to fulfill this task. All fabricated samples exhibitmore » lotus-leaf-like surface structures with super-hydrophobicity. The underlying mechanisms are carefully investigated using a field-emission scanning electron microscopy (FESEM) and an X-ray photoelectron spectroscopy (XPS). We found that a well-controlled drying process is crucial to the formation of such super-hydrophobic surfaces. As high as 90% production rate is obtained in our route and thus, it might provide a cost-effective way to produce super-hydrophobic hybrid materials for industry applications.« less
Pre-operative simulation of pediatric mastoid surgery with 3D-printed temporal bone models.
Rose, Austin S; Webster, Caroline E; Harrysson, Ola L A; Formeister, Eric J; Rawal, Rounak B; Iseli, Claire E
2015-05-01
As the process of additive manufacturing, or three-dimensional (3D) printing, has become more practical and affordable, a number of applications for the technology in the field of pediatric otolaryngology have been considered. One area of promise is temporal bone surgical simulation. Having previously developed a model for temporal bone surgical training using 3D printing, we sought to produce a patient-specific model for pre-operative simulation in pediatric otologic surgery. Our hypothesis was that the creation and pre-operative dissection of such a model was possible, and would demonstrate potential benefits in cases of abnormal temporal bone anatomy. In the case presented, an 11-year-old boy underwent a planned canal-wall-down (CWD) tympano-mastoidectomy for recurrent cholesteatoma preceded by a pre-operative surgical simulation using 3D-printed models of the temporal bone. The models were based on the child's pre-operative clinical CT scan and printed using multiple materials to simulate both bone and soft tissue structures. To help confirm the models as accurate representations of the child's anatomy, distances between various anatomic landmarks were measured and compared to the temporal bone CT scan and the 3D model. The simulation allowed the surgical team to appreciate the child's unusual temporal bone anatomy as well as any challenges that might arise in the safety of the temporal bone laboratory, prior to actual surgery in the operating room (OR). There was minimal variability, in terms of absolute distance (mm) and relative distance (%), in measurements between anatomic landmarks obtained from the patient intra-operatively, the pre-operative CT scan and the 3D-printed models. Accurate 3D temporal bone models can be rapidly produced based on clinical CT scans for pre-operative simulation of specific challenging otologic cases in children, potentially reducing medical errors and improving patient safety. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Automatic Organ Segmentation for CT Scans Based on Super-Pixel and Convolutional Neural Networks.
Liu, Xiaoming; Guo, Shuxu; Yang, Bingtao; Ma, Shuzhi; Zhang, Huimao; Li, Jing; Sun, Changjian; Jin, Lanyi; Li, Xueyan; Yang, Qi; Fu, Yu
2018-04-20
Accurate segmentation of specific organ from computed tomography (CT) scans is a basic and crucial task for accurate diagnosis and treatment. To avoid time-consuming manual optimization and to help physicians distinguish diseases, an automatic organ segmentation framework is presented. The framework utilized convolution neural networks (CNN) to classify pixels. To reduce the redundant inputs, the simple linear iterative clustering (SLIC) of super-pixels and the support vector machine (SVM) classifier are introduced. To establish the perfect boundary of organs in one-pixel-level, the pixels need to be classified step-by-step. First, the SLIC is used to cut an image into grids and extract respective digital signatures. Next, the signature is classified by the SVM, and the rough edges are acquired. Finally, a precise boundary is obtained by the CNN, which is based on patches around each pixel-point. The framework is applied to abdominal CT scans of livers and high-resolution computed tomography (HRCT) scans of lungs. The experimental CT scans are derived from two public datasets (Sliver 07 and a Chinese local dataset). Experimental results show that the proposed method can precisely and efficiently detect the organs. This method consumes 38 s/slice for liver segmentation. The Dice coefficient of the liver segmentation results reaches to 97.43%. For lung segmentation, the Dice coefficient is 97.93%. This finding demonstrates that the proposed framework is a favorable method for lung segmentation of HRCT scans.
Al Kaissi, Ali; Chehida, Farid Ben; Ganger, Rudolf; Grill, Franz
2014-01-01
We report on a female fetus noted to have severe malformative type of skeletal dysplasia on ultrasonography done at 35 weeks gestation. The girl died shortly after birth. Clinical examination showed a fetus with severe dwarfism, extensive long and short bones, and bone deficiencies associated with multiple dislocations. Computed tomography (CT) scan-based phenotype showed a complex constellation of malformations consistent with the diagnosis of Grebe syndrome. Parents being first cousins (consanguineous marriage) strongly suggests autosomal recessive pattern of inheritance. To our knowledge, this is the first report of neonatal death dwarfism of Grebe syndrome analyzed by CT scan-based phenotype.
Giannini, C.; Siliqi, D.; Bunk, O.; Beraudi, A.; Ladisa, M.; Altamura, D.; Stea, S.; Baruffaldi, F.
2012-01-01
Scanning small and wide angle X-ray scattering (scanning SWAXS) experiments were performed on healthy and pathologic human bone sections. Via crystallographic tools the data were transformed into quantitative images and as such compared with circularly polarized light (CPL) microscopy images. SWAXS and CPL images allowed extracting information of the mineral nanocrystalline phase embedded, with and without preferred orientation, in the collagen fibrils, mapping local changes at sub-osteon resolution. This favorable combination has been applied for the first time to biopsies of dwarfism syndrome and Paget's disease to shed light onto the cortical structure of natural bone in healthy and pathologic sections. PMID:22666538
The Effect of Changing Scan Mode on Trabecular Bone Score Using Lunar Prodigy.
Chen, Weiwen; Slattery, Anthony; Center, Jacqueline; Pocock, Nicholas
2016-10-01
Trabecular bone score (TBS) is a measure of gray scale homogeneity that correlates with trabecular microarchitecture and is an independent predictor of fracture risk. TBS is being increasingly used in the assessment of patients at risk of osteoporosis and has recently been incorporated into FRAX ® . GE Lunar machines acquire spine scans using 1 of 3 acquisition modes depending on abdominal tissue thickness (thin, standard, and thick). From a database review, 30 patients (mean body mass index: 30.8, range 26.2-34.1) were identified who had undergone lumbar spine DXA scans (GE Lunar Prodigy, software 14.10; Lunar Radiation Corporation, Madison, WI) in both standard mode and thick mode, on the same day with no repositioning. Lumbar spine bone mineral density (L1-L4) and TBS were derived from the 30 paired spine scans. There was no significant difference in lumbar spine bone mineral density between the 2 scanning modes. There were, however, significant higher TBS values from the spine scans acquired in thick mode compared to the TBS values derived from spine acquisitions in standard mode (mean TBS difference: 0.24 [20%], standard deviation ±0.10). In conclusion, these preliminary data suggest that TBS values acquired in the GE Lunar Prodigy are dependent on the scanning mode used. Further evaluation is required to confirm the cause and develop appropriate protocols. Copyright © 2016 International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Super-Lie n-algebra extensions, higher WZW models and super-p-branes with tensor multiplet fields
NASA Astrophysics Data System (ADS)
Fiorenza, Domenico; Sati, Hisham; Schreiber, Urs
2015-12-01
We formalize higher-dimensional and higher gauge WZW-type sigma-model local prequantum field theory, and discuss its rationalized/perturbative description in (super-)Lie n-algebra homotopy theory (the true home of the "FDA"-language used in the supergravity literature). We show generally how the intersection laws for such higher WZW-type σ-model branes (open brane ending on background brane) are encoded precisely in (super-)L∞-extension theory and how the resulting "extended (super-)space-times" formalize spacetimes containing σ-model brane condensates. As an application we prove in Lie n-algebra homotopy theory that the complete super-p-brane spectrum of superstring/M-theory is realized this way, including the pure σ-model branes (the "old brane scan") but also the branes with tensor multiplet worldvolume fields, notably the D-branes and the M5-brane. For instance the degree-0 piece of the higher symmetry algebra of 11-dimensional (11D) spacetime with an M2-brane condensate turns out to be the "M-theory super-Lie algebra". We also observe that in this formulation there is a simple formal proof of the fact that type IIA spacetime with a D0-brane condensate is the 11D sugra/M-theory spacetime, and of (prequantum) S-duality for type IIB string theory. Finally we give the non-perturbative description of all this by higher WZW-type σ-models on higher super-orbispaces with higher WZW terms in stacky differential cohomology.
Soil solution interactions may limit Pb remediation using P amendments in an urban soil
Lead (Pb) contaminated soils are a potential exposure hazard to the public. Amending soils with phosphorus (P) may reduce Pb soil hazards. Soil from Cleveland, OH containing 726 ± 14 mg Pb kg-1 was amended in a laboratory study with bone meal and triple super phospha...
Partial growth plate closure: apex view on bone scan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howman-Giles, R.; Trochei, M.; Yeates, K.
1985-01-01
A new technique of using /sup 99m/Tc bone scan to assess partial closure of the growth plate is described. The site and degree of osseous fusion can be obtained by using the apex view. The technique has the potential of assessing serially the growth of a plate before and after surgery.
Bone scan findings in hypervitaminosis D: case report. [/sup 99m/Tc tracer technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogelman, I.; McKillop, J.H.; Cowden, E.A.
1977-12-01
Bone scans in three patients showed generalized symmetrical increased uptake of radiopharmaceutical by the skeleton and absent or faint kidney images. It is thought that these appearances may be attributable to excess vitamin D, and other possible contributing factors, including the presence of renal osteodystrophy, are discussed.
Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound
Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph
2012-01-01
Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone’s mechanical strength and structural parameters, i.e., bulk Young’s modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young’s modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone’s structural integrity. PMID:23976803
Pritchard, N Stewart; Smoliga, James M; Nguyen, Anh-Dung; Branscomb, Micah C; Sinacore, David R; Taylor, Jeffrey B; Ford, Kevin R
2017-01-01
Metatarsal fractures, especially of the fifth metatarsal, are common injuries of the foot in a young athletic population, but the risk factors for this injury are not well understood. Dual-energy x-ray absorptiometry (DXA) provides reliable measures of regional bone mineral density to predict fracture risk in the hip and lumbar spine. Recently, sub-regional metatarsal reliability was established in fresh cadaveric specimens and associated with ultimate fracture force. The purpose of this study was to assess the reliability of DXA bone mineral density measurements of sub-regions of the second and fifth metatarsals in a young, active population. Thirty two recreationally active individuals participated in the study, and the bone density of the second (2MT) and fifth (5MT) metatarsals of each subject was measured using a Hologic QDR x-ray bone densitometer. Scans were analyzed separately by two raters, and regional bone mineral density, bone mineral content, and area measurements were calculated for the proximal, shaft, and distal regions of the bone. Intra-rater, inter-rater, and scan-rescan reliability were then determined for each region. Proximal and shaft bone mineral density measurements of the second and fifth metatarsal were reliable. ICC's were variable across regions and metatarsals, with the distal region being the poorest. Bone mineral density measurements of the metatarsals may be a better indicator of fracture risk of the metatarsals than whole body measurements. A reliable method for measuring the regional bone mineral densities of the metatarsals was found. However, inter-rater reliability and scan-rescan reliability for the distal regions were poor. Future research should examine the relationship between DXA bone mineral density measurements and fracture risk at the metatarsals.
Menicucci, G; Mussano, F; Schierano, G; Rizzati, A; Aimetti, M; Gassino, G; Traini, T; Carossa, S
2013-03-01
The present prospective, randomized, double-blind study evaluated the bone-forming process around implants inserted simultaneously with anorganic bovine bone (ABB) in sinus grafting. A total of 18 threaded mini-implants with Osseotite (O) and Nanotite (N) surfaces were placed in seven patients (nine sites). After 12 months, the implants were retrieved and processed for histological analysis. A total of 18 cutting and grinding sections were investigated with bright-field light microscopy, circularly polarized light microscopy (CPLM), confocal scanning laser microscope (CSLM), and scanning electron microscope (SEM) with energy dispersive spectrometer (EDS). The bone-to-implant contact rate in native crestal bone was 62.6 ± 0.4% for N implants and 54.3 ± 0.5% for the O implants (p = 0.001). The collagen fibre density, as assessed by CPLM, was 79.8 ± 6.0 nm for the N group and 74.6 ± 4.6 nm for the O group (p < 0.05). Line scan EDS starting from ABB to newly formed bone showed a decrease in calcium content and an increase of carbon while phosphorus content was constant. While the N surface improved the peri-implant endosseous healing properties in the native bone, when compared to the O surface, it did not improve the healing properties in the bone-graft area. © 2013 Australian Dental Association.
Delage Royle, Audrey; Balg, Frédéric; Bouliane, Martin J; Canet-Silvestri, Fanny; Garant-Saine, Laurianne; Sheps, David M; Lapner, Peter; Rouleau, Dominique M
2017-10-01
Quantifying glenohumeral bone loss is key in preoperative surgical planning for a successful Bankart repair. Simple radiographs can accurately measure bone defects in cases of recurrent shoulder instability. Cohort study (diagnosis); Level of evidence, 2. A true anteroposterior (AP) view, alone and in combination with an axillary view, was used to evaluate the diagnostic properties of radiographs compared with computed tomography (CT) scan, the current gold standard, to predict significant bone defects in 70 patients. Sensitivity, specificity, and positive and negative predictive values were evaluated and compared. Detection of glenoid bone loss on plain film radiographs, with and without axillary view, had a sensitivity of 86% for both views and a specificity of 73% and 64% with and without the axillary view, respectively. For detection of humeral bone loss, the sensitivity was 8% and 17% and the specificity was 98% and 91% with and without the axillary view, respectively. Regular radiographs would have missed 1 instance of significant bone loss on the glenoid side and 20 on the humeral side. Interobserver reliabilities were moderate for glenoid detection (κ = 0.473-0.503) and poor for the humeral side (κ = 0.278-0.336). Regular radiographs showed suboptimal sensitivity, specificity, and reliability. Therefore, CT scan should be considered in the treatment algorithm for accurate quantification of bone loss to prevent high rates of recurrent instability.
Khoo, Benjamin C C; Beck, Thomas J; Qiao, Qi-Hong; Parakh, Pallav; Semanick, Lisa; Prince, Richard L; Singer, Kevin P; Price, Roger I
2005-07-01
Hip structural analysis (HSA) is a technique for extracting strength-related structural dimensions of bone cross-sections from two-dimensional hip scan images acquired by dual energy X-ray absorptiometry (DXA) scanners. Heretofore the precision of the method has not been thoroughly tested in the clinical setting. Using paired scans from two large clinical trials involving a range of different DXA machines, this study reports the first precision analysis of HSA variables, in comparison with that of conventional bone mineral density (BMD) on the same scans. A key HSA variable, section modulus (Z), biomechanically indicative of bone strength during bending, had a short-term precision percentage coefficient of variation (CV%) in the femoral neck of 3.4-10.1%, depending on the manufacturer or model of the DXA equipment. Cross-sectional area (CSA), a determinant of bone strength during axial loading and closely aligned with conventional DXA bone mineral content, had a range of CV% from 2.8% to 7.9%. Poorer precision was associated with inadequate inclusion of the femoral shaft or femoral head in the DXA-scanned hip region. Precision of HSA-derived BMD varied between 2.4% and 6.4%. Precision of DXA manufacturer-derived BMD varied between 1.9% and 3.4%, arising from the larger analysis region of interest (ROI). The precision of HSA variables was not generally dependent on magnitude, subject height, weight, or conventional femoral neck densitometric variables. The generally poorer precision of key HSA variables in comparison with conventional DXA-derived BMD highlights the critical roles played by correct limb repositioning and choice of an adequate and appropriately positioned ROI.
Seo, Minjung; Ko, Byung Kyun; Tae, Soon Young; Koh, Su-Jin; Noh, Young Ju; Choi, Hye-Jeong; Bae, Kyungkyg; Bang, Minseo; Jun, Sungmin; Park, Seol Hoon
2016-12-01
Although rib uptake is frequently detected in follow-up bone scans of breast cancer patients, few studies have assessed its clinical significance. Among 1208 breast cancer patients who underwent a bone scan between 2011 and 2014, 157 patients presented with newly detected rib uptake at follow-up. Patients who had underlying bone metastases (n=8) or had simultaneous new uptake in sites other than the rib (n=13) were excluded. The patients enrolled finally were those who had purely rib uptakes. The location, intensity, and final diagnosis of the uptake were evaluated by nuclear medicine physicians. A total of 275 new instances of rib uptake were detected in follow-up bone scans of 136 patients. These were more frequently located on the ipsilateral side of the breast cancer (61.1%) and the anterior arc (65.1%), and they presented as moderate to intense (93.1%) uptakes. Among these, 265 lesions in 130 patients turned out to be benign fractures (96.4%), whereas only 10 lesions in six patients were metastases. The proportion of metastases was significantly higher if the uptake was linear or if the patient had recurrence. It was marginally higher if the uptake was located in the posterior arc. The proportion of metastases within the radiation field was significantly lower in patients with a history of irradiation. Newly detected purely rib uptake on a follow-up bone scan in patients who have been treated for breast cancer is mostly because of fractures and rarely signals metastasis. However, if the patient has disease recurrence, metastasis should strongly be suspected, particularly when uptake is linear or located in the posterior arc.
McLoughlin, L C; Inder, S; Moran, D; O'Rourke, C; Manecksha, R P; Lynch, T H
2018-02-01
The diagnostic evaluation of a PSA recurrence after RP in the Irish hospital setting involves multimodality imaging with MRI, CT, and bone scanning, despite the low diagnostic yield from imaging at low PSA levels. We aim to investigate the value of multimodality imaging in PC patients after RP with a PSA recurrence. Forty-eight patients with a PSA recurrence after RP who underwent multimodality imaging were evaluated. Demographic data, postoperative PSA levels, and imaging studies performed at those levels were evaluated. Eight (21%) MRIs, 6 (33%) CTs, and 4 (9%) bone scans had PCa-specific findings. Three (12%) patients had a positive MRI with a PSA <1.0 ng/ml, while 5 (56%) were positive at PSA ≥1.1 ng/ml (p = 0.05). Zero patient had a positive CT TAP at a PSA level <1.0 ng/ml, while 5 (56%) were positive at levels ≥1.1 ng/ml (p = 0.03). Zero patient had a positive bone at PSA levels <1.0 ng/ml, while 4 (27%) were positive at levels ≥1.1 ng/ml (p = 0.01). The diagnostic yield from multimodality imaging, and isotope bone scanning in particular, in PSA levels <1.0 ng/ml, is low. There is a statistically significant increase in the frequency of positive findings on CT and bone scanning at PSA levels ≥1.1 ng/ml. MRI alone is of investigative value at PSA <1.0 ng/ml. The indication for CT, MRI, or isotope bone scanning should be carefully correlated with the clinical question and how it will affect further management.
TC99m MDP bone scan in evaluation of painful scoliosis
Nilegaonkar, Sujit; Sonar, Sameer; Ranade, Ashish; Khadilkar, Madhav
2010-01-01
A 18-year-old male presented with low back ache. The patient was investigated and was diagnosed to have painful scoliosis. X-ray and other examinations could not reveal any diagnosis. The patient was referred to undergo bone scan on clinical suspicion of osteoid osteoma and to rule out stress fracture if any. Planar bone scan was performed, which showed a lesion in L3 vertebra and was further evaluated with SPECT (Single photon emission computed tomography) study to characterize the lesion. On SPECT examination, the classical features of osteoid osteoma, the double density sign (11), was noted in the pars interarticularis region. These findings were confirmed by a CT scan, which showed a sclerotic lesion in pars interarticularis of L3 vertebra. The patient was posted for operation and was relieved of symptoms in the postoperative follow-up. PMID:21188068
Automating the expert consensus paradigm for robust lung tissue classification
NASA Astrophysics Data System (ADS)
Rajagopalan, Srinivasan; Karwoski, Ronald A.; Raghunath, Sushravya; Bartholmai, Brian J.; Robb, Richard A.
2012-03-01
Clinicians confirm the efficacy of dynamic multidisciplinary interactions in diagnosing Lung disease/wellness from CT scans. However, routine clinical practice cannot readily accomodate such interactions. Current schemes for automating lung tissue classification are based on a single elusive disease differentiating metric; this undermines their reliability in routine diagnosis. We propose a computational workflow that uses a collection (#: 15) of probability density functions (pdf)-based similarity metrics to automatically cluster pattern-specific (#patterns: 5) volumes of interest (#VOI: 976) extracted from the lung CT scans of 14 patients. The resultant clusters are refined for intra-partition compactness and subsequently aggregated into a super cluster using a cluster ensemble technique. The super clusters were validated against the consensus agreement of four clinical experts. The aggregations correlated strongly with expert consensus. By effectively mimicking the expertise of physicians, the proposed workflow could make automation of lung tissue classification a clinical reality.
The ''hot patella'' sign: is it of any clinical significance. Concise communication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogelman, I.; McKillop, J.H.; Gray, H.W.
1983-04-01
The presence of the ''hot patella'' sign was evaluated in a prospective study of 200 consecutive bone scans, and in a review of scans from 148 patients with various metabolic bone disorders and 61 patients with lung carcinoma. The incidence was found to be 31%, 26% and 31% respectively. This sign is an extremely common scan finding and may be seen in association with a wide variety of disorders. It is concluded that this sign cannot be considered to be of diagnostic value.
The cancellous bone multiscale morphology-elasticity relationship.
Agić, Ante; Nikolić, Vasilije; Mijović, Budimir
2006-06-01
The cancellous bone effective properties relations are analysed on multiscale across two aspects; properties of representative volume element on micro scale and statistical measure of trabecular trajectory orientation on mesoscale. Anisotropy of the microstructure is described across fabric tensor measure with trajectory orientation tensor as bridging scale connection. The scatter measured data (elastic modulus, trajectory orientation, apparent density) from compression test are fitted by stochastic interpolation procedure. The engineering constants of the elasticity tensor are estimated by last square fitt procedure in multidimensional space by Nelder-Mead simplex. The multiaxial failure surface in strain space is constructed and interpolated by modified super-ellipsoid.
Linear combination fitting results for lead speciation in amended soils
Table listing the location, amendment type, distribution (percentage) of lead phases identified, and fitting error (R-factor). BM=bone meal, FB=fish bone, DAP=diammonium phosphate, MAP=monoammonium phosphate, TSP=triple super phosphate, PL=poultry litterThis dataset is associated with the following publication:Obrycki, J., N. Basta, K. Scheckel , B. Stevens, and K. Minca. Phosphorus Amendment Efficacy for In Situ Remediation of Soil Lead Depends on the Bioaccessible Method. Elizabeth Guertal, David Myroid, and C. Wayne Smith JOURNAL OF ENVIRONMENTAL QUALITY. American Society of Agronomy, MADISON, WI, USA, 45(1): 37-44, (2016).
Three-dimensional nanometre localization of nanoparticles to enhance super-resolution microscopy
NASA Astrophysics Data System (ADS)
Bon, Pierre; Bourg, Nicolas; Lécart, Sandrine; Monneret, Serge; Fort, Emmanuel; Wenger, Jérôme; Lévêque-Fort, Sandrine
2015-07-01
Meeting the nanometre resolution promised by super-resolution microscopy techniques (pointillist: PALM, STORM, scanning: STED) requires stabilizing the sample drifts in real time during the whole acquisition process. Metal nanoparticles are excellent probes to track the lateral drifts as they provide crisp and photostable information. However, achieving nanometre axial super-localization is still a major challenge, as diffraction imposes large depths-of-fields. Here we demonstrate fast full three-dimensional nanometre super-localization of gold nanoparticles through simultaneous intensity and phase imaging with a wavefront-sensing camera based on quadriwave lateral shearing interferometry. We show how to combine the intensity and phase information to provide the key to the third axial dimension. Presently, we demonstrate even in the occurrence of large three-dimensional fluctuations of several microns, unprecedented sub-nanometre localization accuracies down to 0.7 nm in lateral and 2.7 nm in axial directions at 50 frames per second. We demonstrate that nanoscale stabilization greatly enhances the image quality and resolution in direct stochastic optical reconstruction microscopy imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, G; Zakian, K; Deasy, J
Purpose: To develop a novel super-resolution time-resolved 4DMRI technique to evaluate multi-breath, irregular and complex organ motion without respiratory surrogate for radiotherapy planning. Methods: The super-resolution time-resolved (TR) 4DMRI approach combines a series of low-resolution 3D cine MRI images acquired during free breathing (FB) with a high-resolution breath-hold (BH) 3DMRI via deformable image registration (DIR). Five volunteers participated in the study under an IRB-approved protocol. The 3D cine images with voxel size of 5×5×5 mm{sup 3} at two volumes per second (2Hz) were acquired coronally using a T1 fast field echo sequence, half-scan (0.8) acceleration, and SENSE (3) parallel imaging.more » Phase-encoding was set in the lateral direction to minimize motion artifacts. The BH image with voxel size of 2×2×2 mm{sup 3} was acquired using the same sequence within 10 seconds. A demons-based DIR program was employed to produce super-resolution 2Hz 4DMRI. Registration quality was visually assessed using difference images between TR 4DMRI and 3D cine and quantitatively assessed using average voxel correlation. The fidelity of the 3D cine images was assessed using a gel phantom and a 1D motion platform by comparing mobile and static images. Results: Owing to voxel intensity similarity using the same MRI scanning sequence, accurate DIR between FB and BH images is achieved. The voxel correlations between 3D cine and TR 4DMRI are greater than 0.92 in all cases and the difference images illustrate minimal residual error with little systematic patterns. The 3D cine images of the mobile gel phantom preserve object geometry with minimal scanning artifacts. Conclusion: The super-resolution time-resolved 4DMRI technique has been achieved via DIR, providing a potential solution for multi-breath motion assessment. Accurate DIR mapping has been achieved to map high-resolution BH images to low-resolution FB images, producing 2Hz volumetric high-resolution 4DMRI. Further validation and improvement are still required prior to clinical applications. This study is in part supported by the NIH (U54CA137788/U54CA132378).« less
[Regional blood flow and bone uptake of methylene-diphosphonate-technetium-99m].
Vattimo, A; Martini, G; Pisani, M
1983-05-30
Sudeck's atrophy of the foot is an acute, patchy osteoporosis that, on bone scan, shows an increase in both bone blood flow and local bone uptake of bone-seeking radionuclides. The purpose of this study was to evaluate the relationship between bone uptake of 99mTc-MDP and local bone blood flow. In some patients with Sudeck's atrophy of one foot we measured local bone blood flow and bone uptake of 99mTc-MDP. External counting of radioactivity, with a count-rate of 1 second was performed for 60 minutes after i.v. injection of a known dose of 99mTc-MDP in some patients with Sudeck's atrophy of the foot. The regions of interest (ROI) were selected on the basis of a bone scan performed 24 hours earlier. We assumed that the data recorded during the first seconds (7-10) reflect local blood flow and the data at 60 minutes reflect the bone uptake. The ratio between the local blood flow in the involved and healthy foot was higher than the local bone uptake ratio. The ratio between bone uptake and local bone blood flow was higher in the normal foot than in the affected one. These results suggest that the bone avidity for bone-seeking radionuclides is lower in Sudeck's atrophy than in normal bone.
Assessing stapes piston position using computed tomography: a cadaveric study.
Hahn, Yoav; Diaz, Rodney; Hartman, Jonathan; Bobinski, Matthew; Brodie, Hilary
2009-02-01
Temporal bone computed tomographic (CT) scanning in the postoperative stapedotomy patient is inaccurate in assessing stapes piston position within the vestibule. Poststapedotomy patients that have persistent vertigo may undergo CT scanning to assess the position of the stapes piston within the vestibule to rule out overly deep insertion. Vertigo is a recognized complication of the deep piston, and CT evaluation is often recommended. The accuracy of CT scan in this setting is unestablished. Stapedotomy was performed on 12 cadaver ears, and stainless steel McGee pistons were placed. The cadaver heads were then scanned using a fine-cut temporal bone protocol. Temporal bone dissection was performed with microscopic measurement of the piston depth in the vestibule. These values were compared with depth of intravestibular penetration measured on CT scan by 4 independent measurements. The intravestibular penetration as assessed by computed tomography was consistently greater than the value found on cadaveric anatomic dissection. The radiographic bias was greater when piston location within the vestibule was shallower. The axial CT scan measurement was 0.53 mm greater, on average, than the anatomic measurement. On average, the coronal CT measurement was 0.68 mm greater than the anatomic measurement. The degree of overestimation of penetration, however, was highly inconsistent. Standard temporal bone CT scan is neither an accurate nor precise examination of stapes piston depth within the vestibule. We found that CT measurement consistently overstated intravestibular piston depth. Computed tomography is not a useful study in the evaluation of piston depth for poststapedectomy vertigo and is of limited value in this setting.
Detection of an Atmosphere Around the Super-Earth 55 Cancri e
NASA Astrophysics Data System (ADS)
Tsiaras, A.; Rocchetto, M.; Waldmann, I. P.; Venot, O.; Varley, R.; Morello, G.; Damiano, M.; Tinetti, G.; Barton, E. J.; Yurchenko, S. N.; Tennyson, J.
2016-04-01
We report the analysis of two new spectroscopic observations in the near-infrared of the super-Earth 55 Cancri e, obtained with the WFC3 camera on board the Hubble Space Telescope. 55 Cancri e orbits so close to its parent star that temperatures much higher than 2000 K are expected on its surface. Given the brightness of 55 Cancri, the observations were obtained in scanning mode, adopting a very long scanning length and a very high scanning speed. We use our specialized pipeline to take into account systematics introduced by these observational parameters when coupled with the geometrical distortions of the instrument. We measure the transit depth per wavelength channel with an average relative uncertainty of 22 ppm per visit and find modulations that depart from a straight line model with a 6σ confidence level. These results suggest that 55 Cancri e is surrounded by an atmosphere, which is probably hydrogen-rich. Our fully Bayesian spectral retrieval code, { T }-REx, has identified HCN to be the most likely molecular candidate able to explain the features at 1.42 and 1.54 μm. While additional spectroscopic observations in a broader wavelength range in the infrared will be needed to confirm the HCN detection, we discuss here the implications of such a result. Our chemical model, developed with combustion specialists, indicates that relatively high mixing ratios of HCN may be caused by a high C/O ratio. This result suggests this super-Earth is a carbon-rich environment even more exotic than previously thought.
Robust isotropic super-resolution by maximizing a Laplace posterior for MRI volumes
NASA Astrophysics Data System (ADS)
Han, Xian-Hua; Iwamoto, Yutaro; Shiino, Akihiko; Chen, Yen-Wei
2014-03-01
Magnetic resonance imaging can only acquire volume data with finite resolution due to various factors. In particular, the resolution in one direction (such as the slice direction) is much lower than others (such as the in-plane direction), yielding un-realistic visualizations. This study explores to reconstruct MRI isotropic resolution volumes from three orthogonal scans. This proposed super- resolution reconstruction is formulated as a maximum a posterior (MAP) problem, which relies on the generation model of the acquired scans from the unknown high-resolution volumes. Generally, the deviation ensemble of the reconstructed high-resolution (HR) volume from the available LR ones in the MAP is represented as a Gaussian distribution, which usually results in some noise and artifacts in the reconstructed HR volume. Therefore, this paper investigates a robust super-resolution by formulating the deviation set as a Laplace distribution, which assumes sparsity in the deviation ensemble based on the possible insight of the appeared large values only around some unexpected regions. In addition, in order to achieve reliable HR MRI volume, we integrates the priors such as bilateral total variation (BTV) and non-local mean (NLM) into the proposed MAP framework for suppressing artifacts and enriching visual detail. We validate the proposed robust SR strategy using MRI mouse data with high-definition resolution in two direction and low-resolution in one direction, which are imaged in three orthogonal scans: axial, coronal and sagittal planes. Experiments verifies that the proposed strategy can achieve much better HR MRI volumes than the conventional MAP method even with very high-magnification factor: 10.
Licata, Angelo A; Binkley, Neil; Petak, Steven M; Camacho, Pauline M
2018-02-01
High-quality dual-energy X-ray absorptiometry (DXA) scans are necessary for accurate diagnosis of osteoporosis and monitoring of therapy; however, DXA scan reports may contain errors that cause confusion about diagnosis and treatment. This American Association of Clinical Endocrinologists/American College of Endocrinology consensus statement was generated to draw attention to many common technical problems affecting DXA report conclusions and provide guidance on how to address them to ensure that patients receive appropriate osteoporosis care. The DXA Writing Committee developed a consensus based on discussion and evaluation of available literature related to osteoporosis and osteodensitometry. Technical errors may include errors in scan acquisition and/or analysis, leading to incorrect diagnosis and reporting of change over time. Although the International Society for Clinical Densitometry advocates training for technologists and medical interpreters to help eliminate these problems, many lack skill in this technology. Suspicion that reports are wrong arises when clinical history is not compatible with scan interpretation (e.g., dramatic increase/decrease in a short period of time; declines in previously stable bone density after years of treatment), when different scanners are used, or when inconsistent anatomic sites are used for monitoring the response to therapy. Understanding the concept of least significant change will minimize erroneous conclusions about changes in bone density. Clinicians must develop the skills to differentiate technical problems, which confound reports, from real biological changes. We recommend that clinicians review actual scan images and data, instead of relying solely on the impression of the report, to pinpoint errors and accurately interpret DXA scan images. AACE = American Association of Clinical Endocrinologists; BMC = bone mineral content; BMD = bone mineral density; DXA = dual-energy X-ray absorptiometry; ISCD = International Society for Clinical Densitometry; LSC = least significant change; TBS = trabecular bone score; WHO = World Health Organization.
Porous polymethylmethacrylate as bone substitute in the craniofacial area.
Bruens, Marco L; Pieterman, Herman; de Wijn, Joost R; Vaandrager, J Michael
2003-01-01
In craniofacial surgery, alloplastic materials are used for correcting bony defects. Porous polymethylmethacrylate (PMMA) is a biocompatible and nondegradable bone cement. Porous PMMA is formed by the classic bone cement formulation of methylmethacrylate liquid and PMMA powder in which an aqueous biodegradable carboxymethylcellulose gel is dispersed to create pores in the cement when cured. Pores give bone the opportunity to grow in, resulting in a better fixation of the prostheses. We evaluated the long-term results (n = 14), up to 20 years, of augmentations and defect fillings in the craniofacial area, with special interest in possible side effects and bone ingrowth. The evaluation consisted of a questionnaire, a physical examination, and a computed tomography (CT) scan. There were no side effects that could be ascribed to the porous PMMA. Twelve CT scans showed bone ingrowth into the prostheses, proving the validity behind the concept of porous PMMA.
NASA Astrophysics Data System (ADS)
Pålsgård, Eva; Johansson, Carina; Li, Gang; Grime, Geoff W.; Triffitt, J. T.
1997-07-01
To respond to varying environmental demands the bone tissue in the body is under continual reconstruction throughout life. It is known that metallic elements are important for maintaining normal bone structure, but their roles are not well understood. More information about the effects of metal excess or deficiency is needed to help in the development of metallic bone implants and to improve the treatment of bone fractures and defects. The Oxford Scanning Proton Microprobe (SPM) is being applied in two studies involving metal ions in bone: (1) bone regrowth and bonding to titanium bone implants may be influenced by diffusion of Ti ions into the bone. We are using microPIXE to determine the metal ion content of bone developing in contact with implants of pure Nb, Ti and Ti alloys. (2) Bone lengthening as a surgical procedure is induced by fracturing the bone and allowing it to heal with a small gap between the fractured ends created by the use of external fixators. The gap can be slowly increased during the healing process to stimulate the production of new bone. The enzymes and other constituents of the developing bone need certain metals for their function. Using experimental animals we have studied the concentrations of the metals and whether a deficiency of trace metals limits the optimum rate of bone lengthening.
Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh
2017-01-01
99m Technetium-methylene diphosphonate ( 99m Tc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99m Tc-MDP-bone scan images. A set of 89 low contrast 99m Tc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t -test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful.
Larson, David L; Gilstrap, Jarom; Simonelic, Kevin; Carrera, Guillermo F
2011-02-01
Despite advances in managing pressure ulcers, there is still no definitive way to diagnose bone infection (osteomyelitis) short of open biopsy. An effective, less invasive diagnostic method might result in cost savings and improved care; however, needle aspiration, computed tomography scan, magnetic resonance imaging, ultrasound, and bone scans have proven unsatisfactory in predicting osteomyelitis. The authors reviewed preoperative radiologic studies of stage IV pressure ulcer patients and their bone biopsy results to determine which radiologic studies are most diagnostic for osteomyelitis. Patients (n = 44) having surgical débridement of stage IV ulcers with open bone biopsy after prior radiographic imaging (plain films, ultrasound, computed tomography, magnetic resonance imaging, and/or nuclear bone scans) were included. Studies were interpreted by a single musculoskeletal radiologist blinded to information from the medical record and following standard radiologic criteria for the diagnosis of osteomyelitis. The percentage of patients with biopsy-proven osteomyelitis identified with imaging was 50 percent using a computed tomography scan and 88 percent using a plain film of the bony area of involvement. The overall sensitivity of either radiologic study was 61 percent. The percentage of patients without osteomyelitis identified as not having the condition by imaging was 85 percent for the computed tomography scan and 32 percent for the plain film. Overall specificity of both studies was 69 percent. Preoperative radiologic studies for osteomyelitis in a pressure ulcer are far from definitive; however, if a radiologic study is used to make that diagnosis in a stage IV pressure ulcer, it would appear that a plain film would suffice.
Magnetic resonance imaging in stress fractures and shin splints.
Aoki, Yoshimitsu; Yasuda, Kazunori; Tohyama, Harukazu; Ito, Hirokazu; Minami, Akio
2004-04-01
The purpose of the current study was to determine whether stress fractures and shin splints could be discriminated with MRI in the early phase. Twenty-two athletes, who had pain in the middle or distal part of their leg during or after sports activity, were evaluated with radiographs and MRI scans. Stress fractures were diagnosed when consecutive radiographs showed local periosteal reaction or a fracture line, and shin splints were diagnosed in all the other cases. In all eight patients with stress fractures, an abnormally wide high signal in the localized bone marrow was the most detectable in the coronal fat-suppressed MRI scan. In 11 patients with shin splints, the coronal fat-suppressed MRI scans showed a linear abnormally high signal along the medial posterior surface of the tibia, and in seven patients with shin splints, the MRI scans showed a linear abnormally high signal along the medial bone marrow. No MRI scans of shin splints showed an abnormally wide high signal in the bone marrow as observed on MRI scans of stress fractures. This study showed that fat-suppressed MRI is useful for discrimination between stress fracture and shin splints before radiographs show a detectable periosteal reaction in the tibia.
Rérolle, Camille; Saint-Martin, Pauline; Dedouit, Fabrice; Rousseau, Hervé; Telmon, Norbert
2013-09-10
The first step in the identification process of bone remains is to determine whether they are of human or nonhuman origin. This issue may arise when only a fragment of bone is available, as the species of origin is usually easily determined on a complete bone. The present study aims to assess the validity of a morphometric method used by French forensic anthropologists to determine the species of origin: the corticomedullary index (CMI), defined by the ratio of the diameter of the medullary cavity to the total diameter of the bone. We studied the constancy of the CMI from measurements made on computed tomography images (CT scans) of different human bones, and compared our measurements with reference values selected in the literature. The measurements obtained on CT scans at three different sites of 30 human femurs, 24 tibias, and 24 fibulas were compared between themselves and with the CMI reference values for humans, pigs, dogs and sheep. Our results differed significantly from these reference values, with three exceptions: the proximal quarter of the femur and mid-fibular measurements for the human CMI, and the proximal quarter of the tibia for the sheep CMI. Mid-tibial, mid-femoral, and mid-fibular measurements also differed significantly between themselves. Only 22.6% of CT scans of human bones were correctly identified as human. We concluded that the CMI is not an effective method for determining the human origin of bone remains. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Bone age assessment by dual-energy X-ray absorptiometry in children: an alternative for X-ray?
Heppe, D H M; Taal, H R; Ernst, G D S; Van Den Akker, E L T; Lequin, M M H; Hokken-Koelega, A C S; Geelhoed, J J M; Jaddoe, V W V
2012-02-01
The aim of the study was to validate dual-energy X-ray absorptiometry (DXA) as a method to assess bone age in children. Paired dual-energy X-ray absorptiometry (DXA) scans and X-rays of the left hand were performed in 95 children who attended the paediatric endocrinology outpatient clinic of University Hospital Rotterdam, the Netherlands. We compared bone age assessments by DXA scan with those performed by X-ray. Bone age assessment was performed by two blinded observers according to the reference method of Greulich and Pyle. Intra-observer and interobserver reproducibility were investigated using the intraclass correlation coefficient (ICC), and agreement was tested using Bland and Altman plots. The intra-observer ICCs for both observers were 0.997 and 0.991 for X-ray and 0.993 and 0.987 for DXA assessments. The interobserver ICC was 0.993 and 0.991 for X-ray and DXA assessments, respectively. The mean difference between bone age assessed by X-ray and DXA was 0.11 years. The limits of agreement ranged from -0.82 to 1.05 years, which means that 95% of all differences between the methods were covered by this range. Results of bone age assessment by DXA scan are similar to those obtained by X-ray. The DXA method seems to be an alternative for assessing bone age in a paediatric hospital-based population.
Bernardoni, Brittney; Scerpella, Tamara A.; Rosenbaum, Paula F.; Kanaley, Jill A.; Raab, Lindsay N.; Li, Quefeng; Wang, Sijian; Dowthwaite, Jodi N.
2015-01-01
We prospectively evaluated adolescent organized physical activity (PA) as a factor in adult female bone traits. Annual DXA scans accompanied semi-annual records of anthropometry, maturity and PA for 42 participants in this preliminary analysis (criteria: appropriately timed DXA scans at ~1 year pre-menarche [predictor] and ~5 years post-menarche [dependent variable]). Regression analysis evaluated total adolescent inter-scan PA and PA over 3 maturity sub-phases as predictors of young adult bone outcomes: 1) bone mineral content (BMC), geometry and strength indices at non-dominant distal radius and femoral neck; 2) sub-head BMC; 3) lumbar spine BMC. Analyses accounted for baseline gynecological age (years pre- or post-menarche), baseline bone status, adult body size and inter-scan body size change. Gymnastics training was evaluated as a potentially independent predictor, but did not improve models for any outcomes (p<0.07). Pre-menarcheal bone traits were strong predictors of most adult outcomes (semi-partial r2 = 0.21-0.59, p≤0.001). Adult 1/3 radius and sub-head BMC were predicted by both total PA and PA 1-3 years post-menarche (p<0.03). PA 3-5 years post-menarche predicted femoral narrow neck width, endosteal diameter and buckling ratio (p<0.05). Thus, participation in organized physical activity programs throughout middle and high school may reduce lifetime fracture risk in females. PMID:25386845
A super-resolution ultrasound method for brain vascular mapping
O'Reilly, Meaghan A.; Hynynen, Kullervo
2013-01-01
Purpose: High-resolution vascular imaging has not been achieved in the brain due to limitations of current clinical imaging modalities. The authors present a method for transcranial ultrasound imaging of single micrometer-size bubbles within a tube phantom. Methods: Emissions from single bubbles within a tube phantom were mapped through an ex vivo human skull using a sparse hemispherical receiver array and a passive beamforming algorithm. Noninvasive phase and amplitude correction techniques were applied to compensate for the aberrating effects of the skull bone. The positions of the individual bubbles were estimated beyond the diffraction limit of ultrasound to produce a super-resolution image of the tube phantom, which was compared with microcomputed tomography (micro-CT). Results: The resulting super-resolution ultrasound image is comparable to results obtained via the micro-CT for small tissue specimen imaging. Conclusions: This method provides superior resolution to deep-tissue contrast ultrasound and has the potential to be extended to provide complete vascular network imaging in the brain. PMID:24320408
An Ingenious Super Light Trapping Surface Templated from Butterfly Wing Scales
NASA Astrophysics Data System (ADS)
Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan
2015-08-01
Based on the super light trapping property of butterfly Trogonoptera brookiana wings, the SiO2 replica of this bionic functional surface was successfully synthesized using a simple and highly effective synthesis method combining a sol-gel process and subsequent selective etching. Firstly, the reflectivity of butterfly wing scales was carefully examined. It was found that the whole reflectance spectroscopy of the butterfly wings showed a lower level (less than 10 %) in the visible spectrum. Thus, it was confirmed that the butterfly wings possessed a super light trapping effect. Afterwards, the morphologies and detailed architectures of the butterfly wing scales were carefully investigated using the ultra-depth three-dimensional (3D) microscope and field emission scanning electronic microscopy (FESEM). It was composed by the parallel ridges and quasi-honeycomb-like structure between them. Based on the biological properties and function above, an exact SiO2 negative replica was fabricated through a synthesis method combining a sol-gel process and subsequent selective etching. At last, the comparative analysis of morphology feature size and the reflectance spectroscopy between the SiO2 negative replica and the flat plate was conducted. It could be concluded that the SiO2 negative replica inherited not only the original super light trapping architectures, but also the super light trapping characteristics of bio-template. This work may open up an avenue for the design and fabrication of super light trapping materials and encourage people to look for more super light trapping architectures in nature.
... cross-sectional pictures of your body. Doctors use CT scans to look for Broken bones Cancers Blood clots Signs of heart disease Internal bleeding During a CT scan, you lie still on a table. The table ...
Assessment of bone health in children with disabilities.
Kecskemethy, Heidi H; Harcke, H Theodore
2014-01-01
Evaluating the bone health of children with disabilities is challenging and requires consideration of many factors in clinical decision-making. Feeding problems and growth deficits, immobility/inability to bear weight, effect of medications, and the nature of his or her disease can all directly affect a child's overall picture of bone health. Familiarity with the tools available to assess bone health is important for practitioners. The most commonly used method to assess bone density, dual energy x-ray absorptiometry, can be performed effectively when one appreciates the techniques that make scanning patients with disabilities possible. There are specific techniques that are especially useful for measuring bone density in children with disabilities; standard body sites are not always obtainable. Consideration of clinical condition and treatment must be considered when interpreting dual energy x-ray absorptiometry scans. Serial measurements have been shown to be effective in monitoring change in bone content and in providing information on which to base decisions regarding medical treatment.
Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT.
Parsa, Azin; Ibrahim, Norliza; Hassan, Bassam; van der Stelt, Paul; Wismeijer, Daniel
2015-01-01
The first purpose of this study was to analyze the correlation between bone volume fraction (BV/TV) and calibrated radiographic bone density Hounsfield units (HU) in human jaws, derived from micro-CT and multislice computed tomography (MSCT), respectively. The second aim was to assess the accuracy of cone beam computed tomography (CBCT) in evaluating trabecular bone density and microstructure using MSCT and micro-CT, respectively, as reference gold standards. Twenty partially edentulous human mandibular cadavers were scanned by three types of CT modalities: MSCT (Philips, Best, the Netherlands), CBCT (3D Accuitomo 170, J Morita, Kyoto, Japan), and micro-CT (SkyScan 1173, Kontich, Belgium). Image analysis was performed using Amira (v4.1, Visage Imaging Inc., Carlsbad, CA, USA), 3Diagnosis (v5.3.1, 3diemme, Cantu, Italy), Geomagic (studio(®) 2012, Morrisville, NC, USA), and CTAn (v1.11, SkyScan). MSCT, CBCT, and micro-CT scans of each mandible were matched to select the exact region of interest (ROI). MSCT HU, micro-CT BV/TV, and CBCT gray value and bone volume fraction of each ROI were derived. Statistical analysis was performed to assess the correlations between corresponding measurement parameters. Strong correlations were observed between CBCT and MSCT density (r = 0.89) and between CBCT and micro-CT BV/TV measurements (r = 0.82). Excellent correlation was observed between MSCT HU and micro-CT BV/TV (r = 0.91). However, significant differences were found between all comparisons pairs (P < 0.001) except for mean measurement between CBCT BV/TV and micro-CT BV/TV (P = 0.147). An excellent correlation exists between bone volume fraction and bone density as assessed on micro-CT and MSCT, respectively. This suggests that bone density measurements could be used to estimate bone microstructural parameters. A strong correlation also was found between CBCT gray values and BV/TV and their gold standards, suggesting the potential of this modality in bone quality assessment at implant site. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Confocal laser scanning microscopy in study of bone calcification
NASA Astrophysics Data System (ADS)
Nishikawa, Tetsunari; Kokubu, Mayu; Kato, Hirohito; Imai, Koichi; Tanaka, Akio
2012-12-01
Bone regeneration in mandible and maxillae after extraction of teeth or tumor resection and the use of rough surface implants in bone induction must be investigated to elucidate the mechanism of calcification. The calcified tissues are subjected to chemical decalcification or physical grinding to observe their microscopic features with light microscopy and transmission electron microscopy where the microscopic tissue morphology is significantly altered. We investigated the usefulness of confocal laser scanning microscopy (CLSM) for this purpose. After staggering the time of administration of calcein and alizarin red to experimental rats and dogs, rat alveolar bone and dog femur grafted with coral as scaffold or dental implants were observed with CLSM. In rat alveolar bone, the calcification of newly-formed bone and net-like canaliculi was observed at the mesial bone from the roots progressed at the rate of 15 μm/day. In dog femur grafted with coral, newly-formed bones along the space of coral were observed in an orderly manner. In dog femur with dental implants, after 8 weeks, newly-formed bone proceeded along the rough surface of the implants. CLSM produced high-magnification images of newly-formed bone and thin sections were not needed.
McQueen, Fiona M; Doyle, Anthony; Reeves, Quentin; Gao, Angela; Tsai, Amy; Gamble, Greg D; Curteis, Barbara; Williams, Megan; Dalbeth, Nicola
2014-01-01
Bone erosion has been linked with tophus deposition in gout but the roles of osteitis (MRI bone oedema) and synovitis remain uncertain. Our aims in this prospective 3 T MRI study were to investigate the frequency of these features in gout and determine their relation to one another. 3 T MRI scans of the wrist were obtained in 40 gout patients. Scans were scored independently by two radiologists for bone oedema, erosions, tophi and synovitis. Dual-energy CT (DECT) scans were scored for tophi in a subgroup of 10 patients. Interreader reliability was high for erosions and tophi [intraclass correlation coefficients (ICCs) 0.77 (95% CI 0.71, 0.87) and 0.71 (95% CI 0.52, 0.83)] and moderate for bone oedema [ICC = 0.60 (95% CI 0.36, 0.77)]. Compared with DECT, MRI had a specificity of 0.98 (95% CI 0.93, 0.99) and sensitivity of 0.63 (95% CI 0.48, 0.76) for tophi. Erosions were detected in 63% of patients and were strongly associated with tophi [odds ratio (OR) = 13.0 (95% CI 1.5, 113)]. In contrast, no association was found between erosions and bone oedema. Using concordant data, bone oedema was scored at 6/548 (1%) sites in 5/40 patients (12.5%) and was very mild (median carpal score = 1, maximum = 45). In logistic regression analysis across all joints nested within individuals, tophus, but not synovitis, was independently associated with erosion [OR = 156.5 (21.2, >999.9), P < 0.0001]. Erosions were strongly associated with tophi but not bone oedema or synovitis. MRI bone oedema was relatively uncommon and low grade. These findings highlight the unique nature of the osteopathology of gout.
Mirković, Sinisa; Budak, Igor; Puskar, Tatjana; Tadić, Ana; Sokac, Mario; Santosi, Zeljko; Djurdjević-Mirković, Tatjana
2015-12-01
An autologous bone (bone derived from the patient himself) is considered to be a "golden standard" in the treatment of bone defects and partial atrophic alveolar ridge. However, large defects and bone losses are difficult to restore in this manner, because extraction of large amounts of autologous tissue can cause donor-site problems. Alternatively, data from computed tomographic (CT) scan can be used to shape a precise 3D homologous bone block using a computer-aided design-computer-aided manufacturing (CAD-CAM) system. A 63-year old male patient referred to the Clinic of Dentistry of Vojvodina in Novi Sad, because of teeth loss in the right lateral region of the lower jaw. Clinical examination revealed a pronounced resorption of the residual ridge of the lower jaw in the aforementioned region, both horizontal and vertical. After clinical examination, the patient was referred for 3D cone beam (CB)CT scan that enables visualization of bony structures and accurate measurement of dimensions of the residual alveolar ridge. Considering the large extent of bone resorption, the required ridge augmentation was more than 3 mm in height and 2 mm in width along the length of some 2 cm, thus the use of granular material was excluded. After consulting prosthodontists and engineers from the Faculty of Technical Sciences in Novi Sad we decided to fabricate an individual (custom) bovine-derived bone graft designed according to the obtained-3D CBCT scan. Application of 3D CBCT images, computer-aided systems and software in manufacturing custom bone grafts represents the most recent method of guided bone regeneration. This method substantially reduces time of recovery and carries minimum risk of postoperative complications, yet the results fully satisfy the requirements of both the patient and the therapist.
Visualizing the root-PDL-bone interface using high-resolution microtomography
NASA Astrophysics Data System (ADS)
Dalstra, Michel; Cattaneo, Paolo M.; Herzen, Julia; Beckmann, Felix
2008-08-01
The root/periodontal ligament/bone (RPB) interface is important for a correct understanding of the load transfer mechanism of masticatory forces and orthodontic loads. It is the aim of this study to assess the three-dimensional structure of the RPB interface using high-resolution microtomography. A human posterior jaw segment, obtained at autopsy from a 22-year old male donor was first scanned using a tomograph at the HASYLAB/DESY synchrotron facility (Hamburg, Germany) at 31μm resolution. Afterwards the first molar and its surrounding bone were removed with a 10mm hollow core drill. From this cylindrical sample smaller samples were drilled out in the buccolingual direction with a 1.5mm hollow core drill. These samples were scanned at 4μm resolution. The scans of the entire segment showed alveolar bone with a thin lamina dura, supported by an intricate trabecular network. Although featuring numerous openings between the PDL and the bone marrow on the other side to allow blood vessels to transverse, the lamina dura seems smooth at this resolution. First at high resolution, however, it becomes evident that it is irregular with bony spiculae and pitted surfaces. Therefore the stresses in the bone during physiological or orthodontic loading are much higher than expected from a smooth continuous alveolus.
Super-family P2 C-96-125 observed by Japan-URSS Joint Emulsion Chamber Experiment
NASA Technical Reports Server (NTRS)
Shibuya, E. H.
1985-01-01
A detailed description of the event detected in the second chamber of Japan-URSS Collaboration is presented. A preliminary description was already published and from that time a careful microscopic scanning was carried out.
The effect of long-term bisphosphonate therapy on trabecular bone strength and microcrack density
Jin, A.; Cobb, J.; Hansen, U.; Bhattacharya, R.; Reinhard, C.; Vo, N.; Atwood, R.; Li, J.; Karunaratne, A.; Wiles, C.
2017-01-01
Objectives Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls. Methods Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically tested in compression. Results BP bone was 28% lower in strength than untreated hip fracture bone, and 48% lower in strength than non-fractured control bone (4.6 MPa vs 6.4 MPa vs 8.9 MPa). BP-treated bone had 24% more microcracks than naïve fractured bone and 51% more than non-fractured control (8.12/cm2 vs 6.55/cm2 vs 5.25/cm2). BP and naïve fracture bone exhibited similar trabecular microarchitecture, with significantly lower bone volume fraction and connectivity than non-fractured controls. Conclusion BP therapy had no detectable mechanical benefit in the specimens examined. Instead, its use was associated with substantially reduced bone strength. This low strength may be due to the greater accumulation of microcracks and a lack of any discernible improvement in bone volume or microarchitecture. This preliminary study suggests that the clinical impact of BP-induced microcrack accumulation may be significant. Cite this article: A. Jin, J. Cobb, U. Hansen, R. Bhattacharya, C. Reinhard, N. Vo, R. Atwood, J. Li, A. Karunaratne, C. Wiles, R. Abel. The effect of long-term bisphosphonate therapy on trabecular bone strength and microcrack density. Bone Joint Res 2017;6:602–609. DOI: 10.1302/2046-3758.610.BJR-2016-0321.R1. PMID:29066534
NASA Astrophysics Data System (ADS)
Gu, Qiang; Chen, Ying; Chen, Dong; Zhang, Zeting
2018-01-01
This paper presents a method for preparing a super hydrophobic surface with a fast, simple, low-cost, one-step reaction by immersing copper alloy in an ethanol solution containing silver nitrate and myristic acid. The effects of reaction time, reaction temperature, reactant concentration and reaction time on the wettability of the material were studied. The surface wettability, appearance, chemical composition, durability and chemical stability of the prepared samples was measured by water contact angle (CA), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results show that when the reaction time is only 10min, the surface WCA of the prepared material can reach 154.9. This study provides an effective method for the rapid preparation of stable super hydrophobic surfaces.
Healing of rabbit calvarial critical-sized defects using autogenous bone grafts and fibrin glue.
Lappalainen, Olli-Pekka; Korpi, Riikka; Haapea, Marianne; Korpi, Jarkko; Ylikontiola, Leena P; Kallio-Pulkkinen, Soili; Serlo, Willy S; Lehenkari, Petri; Sándor, George K
2015-04-01
This study aimed to evaluate ossification of cranial bone defects comparing the healing of a single piece of autogenous calvarial bone representing a bone flap as in cranioplasty compared to particulated bone slurry with and without fibrin glue to represent bone collected during cranioplasty. These defect-filling materials were then compared to empty control cranial defects. Ten White New Zealand adult male rabbits had bilateral critical-sized calvarial defects which were left either unfilled as control defects or filled with a single full-thickness piece of autogenous bone, particulated bone, or particulated bone combined with fibrin glue. The defects were left to heal for 6 weeks postoperatively before termination. CT scans of the calvarial specimens were performed. Histomorphometric assessment of hematoxylin-eosin- and Masson trichrome-stained specimens was used to analyze the proportion of new bone and fibrous tissue in the calvarial defects. There was a statistically significant difference in both bone and soft tissue present in all the autogenous bone-grafted defect sites compared to the empty negative control defects. These findings were supported by CT scan findings. While fibrin glue combined with the particulated bone seemed to delay ossification, the healing was more complete compared to empty control non-grafted defects. Autogenous bone grafts in various forms such as solid bone flaps or particulated bone treated with fibrin glue were associated with bone healing which was superior to the empty control defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yang; Liu, Xiao Wei; Zhang, Hai Feng, E-mail: wy3121685@163.com
In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE) coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM) together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guang, E-mail: lig2@mskcc.org; Wei, Jie; Kadbi, Mo
Purpose: To develop and evaluate a super-resolution approach to reconstruct time-resolved 4-dimensional magnetic resonance imaging (TR-4DMRI) with a high spatiotemporal resolution for multi-breathing cycle motion assessment. Methods and Materials: A super-resolution approach was developed to combine fast 3-dimensional (3D) cine MRI with low resolution during free breathing (FB) and high-resolution 3D static MRI during breath hold (BH) using deformable image registration. A T1-weighted, turbo field echo sequence, coronal 3D cine acquisition, partial Fourier approximation, and SENSitivity Encoding parallel acceleration were used. The same MRI pulse sequence, field of view, and acceleration techniques were applied in both FB and BH acquisitions;more » the intensity-based Demons deformable image registration method was used. Under an institutional review board–approved protocol, 7 volunteers were studied with 3D cine FB scan (voxel size: 5 × 5 × 5 mm{sup 3}) at 2 Hz for 40 seconds and a 3D static BH scan (2 × 2 × 2 mm{sup 3}). To examine the image fidelity of 3D cine and super-resolution TR-4DMRI, a mobile gel phantom with multi-internal targets was scanned at 3 speeds and compared with the 3D static image. Image similarity among 3D cine, 4DMRI, and 3D static was evaluated visually using difference image and quantitatively using voxel intensity correlation and Dice index (phantom only). Multi-breathing-cycle waveforms were extracted and compared in both phantom and volunteer images using the 3D cine as the references. Results: Mild imaging artifacts were found in the 3D cine and TR-4DMRI of the mobile gel phantom with a Dice index of >0.95. Among 7 volunteers, the super-resolution TR-4DMRI yielded high voxel-intensity correlation (0.92 ± 0.05) and low voxel-intensity difference (<0.05). The detected motion differences between TR-4DMRI and 3D cine were −0.2 ± 0.5 mm (phantom) and −0.2 ± 1.9 mm (diaphragms). Conclusion: Super-resolution TR-4DMRI has been reconstructed with adequate temporal (2 Hz) and spatial (2 × 2 × 2 mm{sup 3}) resolutions. Further TR-4DMRI characterization and improvement are necessary before clinical applications. Multi-breathing cycles can be examined, providing patient-specific breathing irregularities and motion statistics for future 4D radiation therapy.« less
Korhonen, Tommi K; Salokorpi, Niina; Niinimäki, Jaakko; Serlo, Willy; Lehenkari, Petri; Tetri, Sami
2018-02-23
OBJECTIVE Autologous bone cranioplasty after decompressive craniectomy entails a notable burden of difficult postoperative complications, such as infection and bone flap resorption (BFR), leading to mechanical failure. The prevalence and significance of asymptomatic BFR is currently unclear. The aim of this study was to radiologically monitor the long-term bone flap survival and bone quality change in patients undergoing autologous cranioplasty. METHODS The authors identified all 45 patients who underwent autologous cranioplasty at Oulu University Hospital, Finland, between January 2004 and December 2014. Using perioperative and follow-up CT scans, the volumes and radiodensities of the intact bone flap prior to surgery and at follow-up were calculated. Relative changes in bone flap volume and radiodensity were then determined to assess cranioplasty survival. Sufficient CT scans were obtainable from 41 (91.1%) of the 45 patients. RESULTS The 41 patients were followed up for a median duration of 3.79 years (25th and 75th percentiles = 1.55 and 6.66). Thirty-seven (90.2%) of the 41 patients had some degree of BFR and 13 (31.7%) had a remaining bone flap volume of less than 80%. Patients younger than 30 years of age had a mean decrease of 15.8% in bone flap volume compared with the rest of the cohort. Bone flap volume was not found to decrease linearly with the passing of time, however. The effects of lifestyle factors and comorbidities on BFR were nonsignificant. CONCLUSIONS In this study BFR was a very common phenomenon, occurring at least to some degree in 90% of the patients. Decreases in bone volume were especially prominent in patients younger than 30 years of age. Because the progression of resorption during follow-up was nonlinear, routine follow-up CT scans appear unnecessary in monitoring the progression of BFR; instead, clinical follow-up with mechanical stability assessment is advised. Partial resorption is most likely a normal physiological phenomenon during the bone revitalization process.
1977-09-30
90F ork Unit No. 76/24 (FY76, 0) An Investination of the Effect of Supplemental Oxygen on Chemically Induced Fat Embolization ...accepted as criteria for determination of the presence of fat embolism syndrome. In this study laboratory parameters and lung scans are obtained for a 5...91 Work Unit No. 76/31 (FY76, 0) Early Detection of Fatiaue Fracture by Bone Scannina with Tc-99 Bone Scan Agents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kipper, M.S.; Alazraki, N.P.; Feiglin, D.H.
1982-01-01
Increased patellar uptake on bone scans is seen quite commonly but the possible or probable etiologies of this finding have not been previously well described. A review of 100 consecutive bone scans showed that the incidence of bilateral ''hot'' patellae is 15%. Identified etiologies include osteoarthritic degenerative disease (35%), fracture, possible metastatic disease, bursitis, Paget's disease, and osteomyelitis. The value of careful history, physical examination, and radiographs is stressed.
Effect of foot shape on the three-dimensional position of foot bones.
Ledoux, William R; Rohr, Eric S; Ching, Randal P; Sangeorzan, Bruce J
2006-12-01
To eliminate some of the ambiguity in describing foot shape, we developed three-dimensional (3D), objective measures of foot type based on computerized tomography (CT) scans. Feet were classified via clinical examination as pes cavus (high arch), neutrally aligned (normal arch), asymptomatic pes planus (flat arch with no pain), or symptomatic pes planus (flat arch with pain). We enrolled 10 subjects of each foot type; if both feet were of the same foot type, then each foot was scanned (n=65 total). Partial weightbearing (20% body weight) CT scans were performed. We generated embedded coordinate systems for each foot bone by assuming uniform density and calculating the inertial matrix. Cardan angles were used to describe five bone-to-bone relationships, resulting in 15 angular measurements. Significant differences were found among foot types for 12 of the angles. The angles were also used to develop a classification tree analysis, which determined the correct foot type for 64 of the 65 feet. Our measure provides insight into how foot bone architecture differs between foot types. The classification tree analysis demonstrated that objective measures can be used to discriminate between feet with high, normal, and low arches. Copyright (c) 2006 Orthopaedic Research Society.
Method and apparatus for multiple-projection, dual-energy x-ray absorptiometry scanning
NASA Technical Reports Server (NTRS)
Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor); Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor)
2007-01-01
Methods and apparatuses for advanced, multiple-projection, dual-energy X-ray absorptiometry scanning systems include combinations of a conical collimator; a high-resolution two-dimensional detector; a portable, power-capped, variable-exposure-time power supply; an exposure-time control element; calibration monitoring; a three-dimensional anti-scatter-grid; and a gantry-gantry base assembly that permits up to seven projection angles for overlapping beams. Such systems are capable of high precision bone structure measurements that can support three dimensional bone modeling and derivations of bone strength, risk of injury, and efficacy of countermeasures among other properties.
Hassani, Hakim; Slama, Jérôme; Hayem, Gilles; Ben Ali, Khadija; Sarda-Mantel, Laure; Burg, Samuel; Le Guludec, Dominique
2012-01-01
Melorheostosis is a rare benign bone pathology which can be responsible for incapacitating pain and bone deformations. Its imaging abnormalities are often typical. We describe here the case of a patient with melorheostosis involving the lower limbs, associated with a peripheral form of inflammatory spondyloarthropathy, who underwent 18FNa positron emission tomography coupled to a computed tomography scan. Our objective is to present this new image, to show the value of this new modality and emphasize its advantages compared to the 99mTechnetium bone scan. PMID:27790007
Localization of m-lodo(/sup 131/I)benzylguanidine in neuroblastoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattner, R.S.; Huberty, J.P.; Engelstad, B.L.
1984-08-01
Patient survival and the therapeutic strategy for treatment of neuroblastoma are highly dependent on the stage of the tumor at presentation. For routine staging, the Children's Cancer Study group currently recommends a chest radiograph, abdominal CT scan, radionuclide bone scan, bone marrow biopsy, catecholamine metabolite estimations, and surgical determination of tumor extent. A noninvasive method for detectiton of neuroblastoma that avoids surgery and bone marrow biopsy would be a most welcome addition to the armamentarium of the pediatric oncologist. A case of neuroblastoma demonstrated with m-iodo(/sup 131/I)benzylguanidine (MIBG) scintigraphy is reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdez, V.A.; Jacobstein, J.G.
Bone scans were performed with Tc-99m stannous polyphosphate on four patients with thalassemia major. Three of the scans show generalized decrease in skeletal uptake of the radiopharmaceutical, associated with renal enlargement and markedly increased renal radioactivity. The skeletal findings are consistent with the known bone abnormalities in thalassemia major, which are secondary to the extensive marrow hyperplasia and include loss of trabeculae and cortical thinning with consequent loss of bone mass. The increased renal uptake is probably due in part to the increased renal excretion (secondary to the poor bone uptake) and in part to the tubular dilatation and renalmore » enlargement associated with thalassemia major. In addition, the presence of excessive amounts of iron in these patients may play a role in both the skeletal and renal findings.« less
Zacher, Denise; Liu, Jianing; Huber, Klaus; Fischer, Roland A
2009-03-07
The formation of [Cu(3)(btc)(2)] (HKUST-1; btc = 1,3,5-benzenetricarboxylate) nanocrystals from a super-saturated mother solution at room temperature was monitored by time-resolved light scattering (TLS); the system is characterized by a rapid growth up to a size limit of 200 nm within a few minutes, and the size and shape of the crystallites were also determined by scanning electron microscopy (SEM).
Tomlin, J L; Lawes, T J; Blunn, G W; Goodship, A E; Muir, P
2000-09-01
The greyhound is a fatigue fracture model of a short distance running athlete. Greyhounds have a high incidence of central (navicular) tarsal bone (CTB) fractures, which are not associated with overt trauma. We wished to determine whether these fractures occur because of accumulation of fatigue microdamage. We hypothesized that bone from racing dogs would show site-specific microdamage accumulation, causing predisposition to structural failure. We performed a fractographic examination of failure surfaces from fractured bones using scanning electron microscopy and assessed microcracking observed at the failure surface using a visual analog scale. Branching arrays of microcracks were seen in failure surfaces of CTB and adjacent tarsal bones, suggestive of compressive fatigue failure. Branching arrays of microcracks were particularly prevalent in remodeled trabecular bone that had become compact. CTB fractures showed increased microdamage when compared with other in vivo fractures (adjacent tarsal bone and long bone fractures), and ex vivo tarsal fractures induced by monotonic loading (P < 0.02). It was concluded that greyhound racing and training often results in CTB structural failure, because of accumulation and coalescence of branching arrays of fatigue microcracks, the formation of which appears to be predisposed to adapted bone.
NASA Astrophysics Data System (ADS)
Burlacu, L.; Cimpoeşu, N.; Bujoreanu, L. G.; Lohan, N. M.
2017-08-01
Ni-Ti shape memory alloys (SMAs) are intelligent alloys which demonstrate unique properties, such as shape memory effect, two-way shape memory effect, super-elasticity and vibration damping which, accompanied by good processability, excellent corrosion resistance and biocompatibility as well as fair wear resistance and cyclic stability, enabled the development of important industrial applications (such as sensors, actuators, fasteners, couplings and valves), medical applications (such as stents, bone implants, orthodontic archwires, minimal invasive surgical equipment) as well as environmental health and safety devices (anti-seismic dampers, fire safety devices). The phase transitions in Ni-Ti SMAs are strongly influenced by processing methods, chemical compositions and thermomechanical history. This paper presents a study of the effects of heat treatment on the mechanical and thermal properties of commercial Ni-Ti shape memory alloy (SMA). The experimental work involved subjecting a SMA rod to heat-treatment consisting in heating up to 500°C, 10 minutes-maintaining and water quenching. Mechanical properties were highlighted by microhardness tests while thermal characteristics were emphasized by differential scanning calorimetry (DSC). The presence of chemical composition fluctuations was checked by X-ray energy dispersive spectroscopy performed with an EDAX Bruker analyzer.
Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh
2017-01-01
Purpose of the Study: 99mTechnetium-methylene diphosphonate (99mTc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99mTc-MDP-bone scan images. Materials and Methods: A set of 89 low contrast 99mTc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. Results: This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t-test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. Conclusion: GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful. PMID:29142344
Ferrari, Robert
2015-03-01
Current Canadian osteoporosis guidelines recommend routine bone density screening of men at age 65. The purpose of this study is to determine the prevalence of osteoporosis in men aged 65-75 in after application of screening guidelines. All males aged 65-75 years who attended a large primary care clinic were advised of the 2010 Canadian osteoporosis guidelines and advised to obtain a bone density scan at or after their 65th birthday. Those who did not have a bone density scan since their 65th birthday were advised to obtain a scan, unless there was obvious reason not to do so (i.e. known osteoporosis). A record of the results for each patient were kept and tallied to determine the prevalence of osteoporosis. Osteoporosis was defined as a T-score of ≤ -2.5 in either the hip or lumbar spine. Of 574 male subjects in this clinic, between the ages of 65-75, 557 had a bone density scan, either already having done so at the time of being informed of the guidelines or obtaining a scan in the subsequent year after being informed of the guidelines. The prevalence of osteoporosis was 1.6% (9/557, 95% confidence interval 0.8-3.1%) in this sample. The average age of subjects with osteoporosis was 70.5 ± 1.4 years (range 68-75). None of the subjects under 68 years of age were found to have osteoporosis. The prevalence of osteoporosis in unselected male cohorts aged 65 may be too low to justify the routine bone density screening recommended in the 2010 Canadian osteoporosis guidelines.
NASA Astrophysics Data System (ADS)
Huang, Jia-Yann; Kao, Pan-Fu; Chen, Yung-Sheng
2007-06-01
Adjustment of brightness and contrast in nuclear medicine whole body bone scan images may confuse nuclear medicine physicians when identifying small bone lesions as well as making the identification of subtle bone lesion changes in sequential studies difficult. In this study, we developed a computer-aided diagnosis system, based on the fuzzy sets histogram thresholding method and anatomical knowledge-based image segmentation method that was able to analyze and quantify raw image data and identify the possible location of a lesion. To locate anatomical reference points, the fuzzy sets histogram thresholding method was adopted as a first processing stage to suppress the soft tissue in the bone images. Anatomical knowledge-based image segmentation method was then applied to segment the skeletal frame into different regions of homogeneous bones. For the different segmented bone regions, the lesion thresholds were set at different cut-offs. To obtain lesion thresholds in different segmented regions, the ranges and standard deviations of the image's gray-level distribution were obtained from 100 normal patients' whole body bone images and then, another 62 patients' images were used for testing. The two groups of images were independent. The sensitivity and the mean number of false lesions detected were used as performance indices to evaluate the proposed system. The overall sensitivity of the system is 92.1% (222 of 241) and 7.58 false detections per patient scan image. With a high sensitivity and an acceptable false lesions detection rate, this computer-aided automatic lesion detection system is demonstrated as useful and will probably in the future be able to help nuclear medicine physicians to identify possible bone lesions.
Hoyer-Kuhn, Heike; Knoop, Kai; Semler, Oliver; Kuhr, Kathrin; Hellmich, Martin; Schoenau, Eckhard; Koerber, Friederike
2016-01-01
Conventional lateral spine and hand radiographs are the standard tools to evaluate vertebral morphometry and bone age in children. Beside bone mineral density analyses, dual-energy X-ray absorptiometry (DXA) measurements with lower radiation exposure provide high-resolution scans which are not approved for diagnostic purposes. Data about the comparability of conventional radiographs and DXA in children are missing yet. The purpose of the trial was to evaluate whether conventional hand and spine radiographs can be replaced by DXA scans to diminish radiation exposure. Thirty-eight children with osteogenesis imperfecta or secondary osteoporosis or short stature (male, n=20; age, 5.0-17.0 yr) were included and assessed once by additional DXA (GE iDXA) of the spine or the left hand. Intraclass correlation coefficients (ICCs) were used to express agreement between X-ray and iDXA assessment. Evaluation of the spine morphometry showed reasonable agreement between iDXA and radiography (ICC for fish-shape, 0.75; for wedge-shape, 0.65; and for compression fractures, 0.70). Bone age determination showed excellent agreement between iDXA and radiography (ICC, 0.97). IDXA-scans of the spine in a pediatric population should be used not only to assess bone mineral density but also to evaluate anatomic structures and vertebral morphometry. Therefore, iDXA can replace some radiographs in children with skeletal diseases. Copyright © 2016 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Knowles, Scott M.; Tavare, Richard; Zettlitz, Kirstin A.; ...
2014-10-17
Here, prostate stem cell antigen (PSCA) is highly expressed in local prostate cancers and prostate cancer bone metastases and its expression correlates with androgen receptor activation and a poor prognosis. Here in this study, we investigate the potential clinical applications of immunoPET with the anti-PSCA A11 minibody, an antibody fragment optimized for use as an imaging agent. We compare A11 minibody immunoPET to 18F-Fluoride PET bone scans for detecting prostate cancer bone tumors and evaluate the ability of the A11 minibody to image tumor response to androgen deprivation. Osteoblastic, PSCA expressing, LAPC-9 intratibial xenografts were imaged with serial 124I-anti-PSCA A11more » minibody immunoPET and 18F-Fluoride bone scans. Mice bearing LAPC-9 subcutaneous xenografts were treated with either vehicle or MDV-3100 and imaged with A11 minibody immunoPET/CT scans pre- and post-treatment. Ex vivo flow cytometry measured the change in PSCA expression in response to androgen deprivation. A11 minibody demonstrated improved sensitivity and specificity over 18F-Fluoride bone scans for detecting LAPC-9 intratibial xenografts at all time points. Finally, LAPC-9 subcutaneous xenografts showed downregulation of PSCA when treated with MDV-3100 which A11 minibody immunoPET was able to detect in vivo.« less
Three Dimensional Cross-Sectional Properties From Bone Densitometry
NASA Technical Reports Server (NTRS)
Cleek, Tammy M.; Whalen, Robert T.; Dalton, Bonnie P. (Technical Monitor)
2001-01-01
Bone densitometry has previously been used to obtain cross-sectional properties of bone in a single scan plane. Using three non-coplanar scans, we have extended the method to obtain the principal area Moments of inertia and orientations of the principal axes at each cross-section along the length of the scan. Various 5 aluminum phantoms were used to examine scanner characteristics to develop the highest accuracy possible for in vitro non-invasive analysis of mass distribution. Factors considered included X-ray photon energy, initial scan orientation, the included angle of the 3 scans, and Imin/Imax ratios. Principal moments of inertia were accurate to within 3.1% and principal angles were within 1 deg. of the expected value for phantoms scanned with included angles of 60 deg. and 90 deg. at the higher X-ray photon energy. Low standard deviations in error also 10 indicate high precision of calculated measurements with these included angles. Accuracy and precision decreased slightly when the included angle was reduced to 30 deg. The method was then successfully applied to a pair of excised cadaveric tibiae. The accuracy and insensitivity of the algorithms to cross-sectional shape and changing isotropy (Imin/Imax) values when various included angles are used make this technique viable for future in vivo studies.
Matsumoto, Takeshi; Goto, Daichi; Sato, Syota
2013-09-01
Quantitative three-dimensional (3D) imaging of angiogenesis during bone repair remains an experimental challenge. We developed a novel contrast agent containing 0.07- to 0.1-μm particles of zirconium dioxide (ZrCA) and established subtraction μCT using synchrotron radiation (sSRCT) for quantitative imaging of angiogenesis and bone repair. This method was applied to a rat model of tibial bone repair 3 days (DAY3; n = 2), 5 days (DAY5; n = 8), or 10 days (DAY10; n = 8) after drill-hole injury. Using the same drill-hole defect model, its potential use was illustrated by comparison of bone repair between hindlimbs subjected to mechanical unloading (n = 6) and normal weight bearing (n = 6) for 10 days. Following vascular casting with ZrCA, the defect site was scanned with 17.9- and 18.1-keV X-rays. In the latter, image contrast between ZrCA-filled vasculature and bone was enhanced owing to the sharp absorption jump of zirconium dioxide at 18.0 keV (k-edge). The two scan data sets were reconstructed with 2.74-μm voxel resolution, registered by mutual information, and digitally subtracted to extract the contrast-enhanced vascular image. K2HPO4 phantom solutions were scanned at 17.9 keV for quantitative evaluation of bone mineral. Angiogenesis had already started, but new bone formation was not found on DAY3. New bone emerged near the defect boundary on DAY5 and took the form of trabecular-like structure invaded by microvessels on DAY10. Vascular and bone volume fractions, blood vessel and bone thicknesses, and mineralization were higher on DAY10 than on DAY5. All these parameters were found to be decreased after 10 days of hindlimb unloading, indicating the possible involvement of angiogenesis in bone repair impairment caused by reduced mechanical stimuli. In conclusion, the combined technique of sSRCT and ZrCA vascular casting is suitable for quantitative 3D imaging of angiogenesis and its surrounding bone regeneration. This method will be useful for better understanding the linkage between angiogenesis and bone repair.
NASA Astrophysics Data System (ADS)
Lee, Jaehyun; Hwang, Sangyeon; Prasetyo, Fariza Dian; Nguyen, Vu Dat; Hong, Jungwoo; Shin, Jennifer H.; Byun, Doyoung
2014-11-01
Selective surface modification is considered as an alternative to conventional printing techniques in high resolution patterning. Here, we present fabrication of hydrophilic patterns on the super hydrophobic surface, which makes structure on the hydrophilic region. The super hydrophobic surface is able to be chemically changed to hydrophilic with alcohols. As a consecutive process, electrohydrodynamic (EHD) jet printing was utilized to fabricate local hydrophilic craters with 30-200 μm sizes. 3 kinds of target liquids were deposited well on hydrophilic region; PEDOT (poly 3,4 ethylenediocythiophene), polystyrene nano-particles, and salmonella bacteria medium. Additionally, qualitative analysis were presented for modification mechanism and surface properties on super hydrophobic/hydrophilic by analysis of surface energy with contact angle, SEM (scanning electron microscopy) image, and SIMS (secondary ion mass spectroscopy) analysis. This new simple modification method provides possibility to be utilizing in bio-patterning engineering such as cell culturing microchip and lab on a chip. This research was supported by the Basi Science Research Program through the National Research Foundation of Korea (NRF) (Grand Number: 2014-023284).
Unicameral bone cyst in the spinous process of a thoracic vertebra.
Tsirikos, Athanasios I; Bowen, J Richard
2002-10-01
Unicameral bone cysts affecting the spine are extremely rare and tend to be misdiagnosed. We report on a 17-year-old female patient who presented with a 2-year history of persistent low back pain. The radiographic evaluation and bone scan failed to reveal a pathologic process. Magnetic resonance of the painful area and subsequent computed tomography scan showed a well-circumscribed osteolytic lesion originating from the spinous process and extending into both laminae of T9 vertebra. Aneurysmal bone cyst or osteoblastoma was considered to be the most probable diagnosis. The patient underwent excisional biopsy of the tumor. The intraoperative findings were suggestive of solitary bone cyst, a diagnosis that was confirmed histologically. Because the tumor had not invaded the articular facets, no posterolateral spine fusion was required. The patient had an unremarkable postoperative clinical course. Her symptoms resolved and she returned to her previous level of physical activities. Unicameral bone cysts, although uncommon, should be included in the differential diagnosis of an osteolytic lesion involving the spine.
Aging and loading rate effects on the mechanical behavior of equine bone
NASA Astrophysics Data System (ADS)
Kulin, Robb M.; Jiang, Fengchun; Vecchio, Kenneth S.
2008-06-01
Whether due to a sporting accident, high-speed impact, fall, or other catastrophic event, the majority of clinical bone fractures occur under dynamic loading conditions. However, although extensive research has been performed on the quasi-static fracture and mechanical behavior of bone to date, few high-quality studies on the fracture behavior of bone at high strain rates have been performed. Therefore, many questions remain regarding the material behavior, including not only the loading-rate-dependent response of bone, but also how this response varies with age. In this study, tests were performed on equine femoral bone taken post-mortem from donors 6 months to 28 years of age. Quasi-static and dynamic tests were performed to determine the fracture toughness and compressive mechanical behavior as a function of age at varying loading rates. Fracture paths were then analyzed using scanning confocal and scanning-electron microscopy techniques to assess the role of various microstructural features on toughening mechanisms.
Scanning electron microscopy of bone.
Boyde, Alan
2012-01-01
This chapter described methods for Scanning Electron Microscopical imaging of bone and bone cells. Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. This chapter considers preparing and imaging samples of unembedded bone having 3D detail in a 3D surface, topography-free, polished or micromilled, resin-embedded block surfaces, and resin casts of space in bone matrix. The chapter considers methods for fixation, drying, looking at undersides of bone cells, and coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralised matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples and recommendations for the types of resin embedding of bone for BSE imaging are given. Correlated confocal and SEM imaging of PMMA-embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualising fluorescent mineralising front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Environmental SEM (ESEM, controlled vacuum mode) is valuable in eliminating -"charging" problems which are common with complex, cancellous bone samples.
Schulte, Friederike A; Lambers, Floor M; Mueller, Thomas L; Stauber, Martin; Müller, Ralph
2014-04-01
Time-lapsed in vivo micro-computed tomography is a powerful tool to analyse longitudinal changes in the bone micro-architecture. Registration can overcome problems associated with spatial misalignment between scans; however, it requires image interpolation which might affect the outcome of a subsequent bone morphometric analysis. The impact of the interpolation error itself, though, has not been quantified to date. Therefore, the purpose of this ex vivo study was to elaborate the effect of different interpolator schemes [nearest neighbour, tri-linear and B-spline (BSP)] on bone morphometric indices. None of the interpolator schemes led to significant differences between interpolated and non-interpolated images, with the lowest interpolation error found for BSPs (1.4%). Furthermore, depending on the interpolator, the processing order of registration, Gaussian filtration and binarisation played a role. Independent from the interpolator, the present findings suggest that the evaluation of bone morphometry should be done with images registered using greyscale information.
Nurse exposure doses resulted from bone scintigraphy patient
NASA Astrophysics Data System (ADS)
Tunçman, Duygu; Kovan, Bilal; Poyraz, Leyla; ćapali, Veli; Demir, Bayram; Türkmen, Cüneyt
2016-03-01
Bone scintigraphy is used for displaying the radiologic undiagnosed bone lesions in nuclear medicine. It's general indications are researching bone metastases, detection of radiographically occult fractures, staging and follow-up in primary bone tumors, diagnosis of paget's disease, investigation of loosening and infection in orthopedic implants. It is applied with using 99mTc labeled radiopharmaceuticals (e.g 99m Tc MDP,99mTc HEDP and 99mTc HMDP). 20 -25 mCi IV radiotracer was injected into vein and radiotracer emits gamma radiation. Patient waits in isolated room for about 3 hours then a gamma camera scans radiation area and creates an image. When some patient's situation is not good, patients are hospitalized until the scanning because of patients' close contact care need. In this study, measurements were taken from ten patients using Geiger Muller counter. After these measurements, we calculated nurse's exposure radiations from patient's routine treatment, examination and emergency station.
NASA Astrophysics Data System (ADS)
Favus, Murray J.
2008-09-01
Hypercalciuria plays an important causal role in many patients with calcium oxalate (CaOx) stones. The source of the hypercalciuria includes increased intestinal Ca absorption and decreased renal tubule Ca reabsorption. In CaOx stone formers with idiopathic hypercalciuria (IH), Ca metabolic balance studies have revealed negative Ca balance and persistent hypercalciuria in the fasting state and during low dietary Ca intake. Bone resorption may also contribute to the high urine Ca excretion and increase the risk of bone loss. Indeed, low bone mass by DEXA scanning has been discovered in many IH patients. Thiazide diuretic agents reduce urine Ca excretion and may increase bone mineral density (BMD), thereby reducing fracture risk. Dietary Ca restriction that has been used unsuccessfully in the treatment of CaOx nephrolithiasis in the past may enhance negative Ca balance and accelerate bone loss. DEXA scans may demonstrate low BMD at the spine, hip, or forearm, with no predictable pattern. The unique pattern of bone histologic changes in IH differs from other causes of low DEXA bone density including postmenopausal osteoporosis, male hypogonadal osteoporosis, and glucocorticoid-induced osteoporosis. Hypercalciuria appears to play an important pathologic role in the development of low bone mass, and therefore correction of urine Ca losses should be a primary target for treatment of the bone disease accompanying IH.
To help you find the resource that is right for your organization, EPA conducted a scan of the landscape and developed summary profiles of some of the leading sources of sustainable purchasing guidance around the globe.
Wakamoto, H; Miyazaki, H; Hayashi, T; Shimamoto, Y; Ishiyama, N
1998-02-01
We report a case of a 17-year-old male who had hit the front of his head in a traffic accident. CT scan revealed contusional hemorrhage and pneumocephalus of the left frontal lobe 10 hours after the accident. A month later he complained of rhinorrhea and CT scan revealed intracerebral pneumocephalus. One day he complained of headache and began to vomit after he sneezed. CT scan revealed that the pneumocephalus had become worse and air had spread throughout the subarachnoid space. Bone CT scan revealed the air communicated from the frontal sinus to the intracerebral air cavity. 3D-CT scan revealed bone defect in the roof of the ethmoid sinus. The intraoperative findings revealed that the intracerebral air cavity communicated with the frontal sinus and ethmoid sinus. Though the brain which dropped into the paranasal sinus, adhered to the dura mater around the bone defect, a part of the brain had come off from the dura mater around the frontal sinus. We suspected that the intracerebral air cavity communicated with the frontal sinus initially. When the air cavity communicated with the ethmoid sinus secondarily, intracranial pressure abated and air came into the subarachnoid space from the frontal sinus.
Liu, Junpeng; Janjua, Zaid A; Roe, Martin; Xu, Fang; Turnbull, Barbara; Choi, Kwing-So; Hou, Xianghui
2016-12-02
A super-hydrophobic surface has been obtained from nanocomposite materials based on silica nanoparticles and self-assembled monolayers of 1 H ,1 H ,2 H ,2 H -perfluorooctyltriethoxysilane (POTS) using spin coating and chemical vapor deposition methods. Scanning electron microscope images reveal the porous structure of the silica nanoparticles, which can trap small-scale air pockets. An average water contact angle of 163° and bouncing off of incoming water droplets suggest that a super-hydrophobic surface has been obtained based on the silica nanoparticles and POTS coating. The monitored water droplet icing test results show that icing is significantly delayed by silica-based nano-coatings compared with bare substrates and commercial icephobic products. Ice adhesion test results show that the ice adhesion strength is reduced remarkably by silica-based nano-coatings. The bouncing phenomenon of water droplets, the icing delay performance and the lower ice adhesion strength suggest that the super-hydrophobic coatings based on a combination of silica and POTS also show icephobicity. An erosion test rig based on pressurized pneumatic water impinging impact was used to evaluate the durability of the super-hydrophobic/icephobic coatings. The results show that durable coatings have been obtained, although improvement will be needed in future work aiming for applications in aerospace.
... to restore the height of the vertebrae) Spinal fusion (bones of your spine are joined together so ... osteoporosis Patient Instructions Hip fracture - discharge Preventing falls Images Compression fracture Bone density scan Osteoporosis Osteoporosis Hip ...
Kim, Kwan-Woo; Lee, Hye-Min; An, Jeong-Hun; Chung, Dong-Chul; An, Kay-Hyeok; Kim, Byung-Joo
2017-12-01
In order to manufacture high quality recycled carbon fibers (R-CFs), carbon fiber-reinforced composite wastes were pyrolysed with super-heated steam at 550 °C in a fixed bed reactor for varying reaction times. The mechanical and surface properties of the R-CFs were characterized with a single fiber tensile test, interface shear strength (IFSS), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The surface analysis showed that there was no matrix char residue on the fiber surfaces. The tensile strength and IFSS values of the R-CFs were 90% and 115% compared to those of virgin carbon fibers (V-CFs), respectively. The recycling efficiency of the R-CFs from the composites were strongly dependent on the pyrolysis temperature, reaction time, and super-heated steam feeding rate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment.
Liu, Yuyang; Chen, Xianqiong; Xin, J H
2008-12-01
Inspired by the non-wetting phenomena of duck feathers, the water repellent property of duck feathers was studied at the nanoscale. The microstructures of the duck feather were investigated by a scanning electron microscope (SEM) imaging method through a step-by-step magnifying procedure. The SEM results show that duck feathers have a multi-scale structure and that this multi-scale structure as well as the preening oil are responsible for their super hydrophobic behavior. The microstructures of the duck feather were simulated on textile substrates using the biopolymer chitosan as building blocks through a novel surface solution precipitation (SSP) method, and then the textile substrates were further modified with a silicone compound to achieve low surface energy. The resultant textiles exhibit super water repellent properties, thus providing a simple bionic way to create super hydrophobic surfaces on soft substrates using flexible material as building blocks.
[Construction of a multiple-scale implant surface with super-hydrophilicity].
Luo, Qiao-jie; Li, Xiao-dong; Huang, Ying; Zhao, Shi-fang
2012-05-01
To construct a multiple-scale organized implant surface with super-hydrophilicity. The SiC paper polished titanium disc was sandblasted and treated with HF/HNO₃ and HCl/H₂SO₄, then acid-etched with H₂SO₄/H₂O₂. The physicochemical properties of the surfaces were characterized by scanning electron microscope, static state contact angle and X-ray diffraction. MC3T3-E1 cells were used to evaluate the effects of the surface on the cell adhesion, proliferation and differentiation. The acid-etching process with a mixture of H₂SO₄/H₂O₂ superimposed the nano-scale structure on the micro-scale texture. The multiple-scale implant surface promoted its hydrophilicity and was more favorable to the responses of osteoprogenitor cells, characterized by increased DNA content, enhanced ALP activity and promoted OC production. A multiple-scale implant surface with super-hydrophilicity has been constructed in this study, which facilitates cell proliferation and adhesion.
Optical super-resolution effect induced by nonlinear characteristics of graphene oxide films
NASA Astrophysics Data System (ADS)
Zhao, Yong-chuang; Nie, Zhong-quan; Zhai, Ai-ping; Tian, Yan-ting; Liu, Chao; Shi, Chang-kun; Jia, Bao-hua
2018-01-01
In this work, we focus on the optical super-resolution effect induced by strong nonlinear saturation absorption (NSA) of graphene oxide (GO) membranes. The third-order optical nonlinearities are characterized by the canonical Z-scan technique under femtosecond laser (wavelength: 800 nm, pulse width: 100 fs) excitation. Through controlling the applied femtosecond laser energy, NSA of the GO films can be tuned continuously. The GO film is placed at the focal plane as a unique amplitude filter to improve the resolution of the focused field. A multi-layer system model is proposed to present the generation of a deep sub-wavelength spot associated with the nonlinearity of GO films. Moreover, the parameter conditions to achieve the best resolution (˜λ/6) are determined entirely. The demonstrated results here are useful for high density optical recoding and storage, nanolithography, and super-resolution optical imaging.
Huang, Guofeng; Liu, Guojun; Zhang, Feng; Gao, Jianting; Wang, Jiangze; Chen, Qi; Wu, Benwen; Ding, Zhenqi; Cai, Taoyi
2017-01-01
Under physiological conditions bone defects often occur at mechanical load bearing sites and bone substitutes used for regeneration should be similarly subjected to mechanical loading stress. In this study, we investigated whether a novel heel-strike like mechanical loading method can be used as a complementary therapy to promote bone regeneration following bone substitute grafting. To test this, three groups of rabbits with segmental bone defects in the tibia were implanted with bovine deproteinized cancellous bone scaffold (DCBS), with one group also receiving heel-strike like mechanical loading generated by a rap stress stimulator. From weeks 4-12 post-operation X-ray and micro-CT scanning showed that rabbits receiving combination therapy had significantly more callus at the bone defect. Moreover, bone defects in the combination group were completely replaced with new bone at week 12, while the DCBS implantation alone group healed only partially and rabbits receiving neither DCBS nor mechanical loading developed only small calluses throughout the observation period. Analysis of micro-CT scanning results demonstrated that new bone density in the combination group was significantly higher than the DCBS only group at weeks 4 and 12 ( p <0.05). H&E staining results also indicated a significantly higher percentage of new bone in the bone defect area and a lower percentage of residual scaffold in the combination group compared to the DCBS only group ( p <0.05). Thus, this heel-strike like mechanical loading method appears to accelerate bone regeneration following substitute implantation by restoring a local mechanical loading environment in segmental bone defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehler, E; Sterling, D; Higgins, P
Purpose: 3D printed phantoms constructed of multiple tissue approximating materials could be useful in both clinical and research aspects of radiotherapy. This work describes a 3D printed phantom constructed with tissue substitute plastics for both bone and soft tissue; air cavities were included as well. Methods: 3D models of an anonymized nasopharynx patient were generated for air cavities, soft tissues, and bone, which were segmented by Hounsfield Unit (HU) thresholds. HU thresholds were chosen to define air-to-soft tissue boundaries of 0.65 g/cc and soft tissue-to-bone boundaries of 1.18 g/cc based on clinical HU to density tables. After evaluation of severalmore » composite plastics, a bone tissue substitute was identified as an acceptable material for typical radiotherapy x-ray energies, composed of iron and PLA plastic. PET plastic was determined to be an acceptable soft tissue substitute. 3D printing was performed on a consumer grade dual extrusion fused deposition model 3D printer. Results: MVCT scans of the 3D printed heterogeneous phantom were acquired. Rigid image registration of the patient and the 3D printed phantom scans was performed. The average physical density of the soft tissue and bone regions was 1.02 ± 0.08 g/cc and 1.39 ± 0.14 g/cc, respectively, for the patient kVCT scan. In the 3D printed phantom MVCT scan, the average density of the soft tissue and bone was 1.01 ± 0.09 g/cc and 1.44 ± 0.12 g/cc, respectively. Conclusion: A patient specific phantom, constructed of heterogeneous tissue substitute materials was constructed by 3D printing. MVCT of the 3D printed phantom showed realistic tissue densities were recreated by the 3D printing materials. Funding provided by intra-department grant by University of Minnesota Department of Radiation Oncology.« less
A single scan skeletonization algorithm: application to medical imaging of trabecular bone
NASA Astrophysics Data System (ADS)
Arlicot, Aurore; Amouriq, Yves; Evenou, Pierre; Normand, Nicolas; Guédon, Jean-Pierre
2010-03-01
Shape description is an important step in image analysis. The skeleton is used as a simple, compact representation of a shape. A skeleton represents the line centered in the shape and must be homotopic and one point wide. Current skeletonization algorithms compute the skeleton over several image scans, using either thinning algorithms or distance transforms. The principle of thinning is to delete points as one goes along, preserving the topology of the shape. On the other hand, the maxima of the local distance transform identifies the skeleton and is an equivalent way to calculate the medial axis. However, with this method, the skeleton obtained is disconnected so it is required to connect all the points of the medial axis to produce the skeleton. In this study we introduce a translated distance transform and adapt an existing distance driven homotopic algorithm to perform skeletonization with a single scan and thus allow the processing of unbounded images. This method is applied, in our study, on micro scanner images of trabecular bones. We wish to characterize the bone micro architecture in order to quantify bone integrity.
Rowe, Steven P; Deville, Curtiland; Paller, Channing; Cho, Steve Y; Fishman, Elliot K; Pomper, Martin G; Ross, Ashley E; Gorin, Michael A
2015-12-01
Prostate-specific membrane antigen (PSMA)-targeted PET imaging is an emerging technique for evaluating patients with prostate cancer (PCa) in a variety of clinical contexts. As with any new imaging modality, there are interpretive pitfalls that are beginning to be recognized. In this image report, we describe the findings in a 63-year-old male with biochemically recurrent PCa after radical prostatectomy who was imaged with 18 F-DCFPyL, a small molecule inhibitor of PSMA. Diffuse radiotracer uptake was noted throughout the sacrum, corresponding to imaging findings on contrast-enhanced CT, bone scan, and pelvic MRI consistent with Paget's disease of bone. The uptake of 18 F-DCFPyL in Paget's disease is most likely due to hyperemia and increased radiotracer delivery. In light of the overlap in patients affected by PCa and Paget's, it is important for nuclear medicine physicians and radiologists interpreting PSMA PET/CT scans to be aware of the potential for this diagnostic pitfall. Correlation to findings on conventional imaging such as diagnostic CT and bone scan can help confirm the diagnosis.
Osteomesopyknosis: report of a new case with bone histology.
Hardouin, P; Flautre, B; Sutter, B; Leclet, H; Grardel, B; Fauquert, P
1994-01-01
A new case of osteomesopyknosis, a rare autosomal dominant axial osteosclerosis is reported, with 4 affected members of the same family. Biochemical investigations, bone mineral content (BMC) measurement, 99mTc HMDP bone scan and microscopy of iliac crest bone and femoral head have been performed on 1 subject. A marked increase of BMC was found, without abnormality of biochemical data. Microscopy of bone showed an increase of trabecular thickness, and a low rate of bone turnover. No abnormality of mineralization was found on microradiographs.
Chaplais, Elodie; Greene, David; Hood, Anita; Telfer, Scott; du Toit, Verona; Singh-Grewal, Davinder; Burns, Joshua; Rome, Keith; Schiferl, Daniel J; Hendry, Gordon J
2014-07-19
Peripheral quantitative computed tomography (pQCT) is an established technology that allows for the measurement of the material properties of bone. Alterations to bone architecture are associated with an increased risk of fracture. Further pQCT research is necessary to identify regions of interest that are prone to fracture risk in people with chronic diseases. The second metatarsal is a common site for the development of insufficiency fractures, and as such the aim of this study was to assess the reproducibility of a novel scanning protocol of the second metatarsal using pQCT. Eleven embalmed cadaveric leg specimens were scanned six times; three times with and without repositioning. Each foot was positioned on a custom-designed acrylic foot plate to permit unimpeded scans of the region of interest. Sixty-six scans were obtained at 15% (distal) and 50% (mid shaft) of the second metatarsal. Voxel size and scan speed were reduced to 0.40 mm and 25 mm.sec(-1). The reference line was positioned at the most distal portion of the 2(nd) metatarsal. Repeated measurements of six key variables related to bone properties were subject to reproducibility testing. Data were log transformed and reproducibility of scans were assessed using intraclass correlation coefficients (ICC) and coefficients of variation (CV%). Reproducibility of the measurements without repositioning were estimated as: trabecular area (ICC 0.95; CV% 2.4), trabecular density (ICC 0.98; CV% 3.0), Strength Strain Index (SSI) - distal (ICC 0.99; CV% 5.6), cortical area (ICC 1.0; CV% 1.5), cortical density (ICC 0.99; CV% 0.1), SSI - mid shaft (ICC 1.0; CV% 2.4). Reproducibility of the measurements after repositioning were estimated as: trabecular area (ICC 0.96; CV% 2.4), trabecular density (ICC 0.98; CV% 2.8), SSI - distal (ICC 1.0; CV% 3.5), cortical area (ICC 0.99; CV%2.4), cortical density (ICC 0.98; CV% 0.8), SSI - mid shaft (ICC 0.99; CV% 3.2). The scanning protocol generated excellent reproducibility for key bone properties measured at the distal and mid-shaft regions of the 2(nd) metatarsal. This protocol extends the capabilities of pQCT to evaluate bone quality in people who may be at an increased risk of metatarsal insufficiency fractures.
2014-01-01
Background Peripheral quantitative computed tomography (pQCT) is an established technology that allows for the measurement of the material properties of bone. Alterations to bone architecture are associated with an increased risk of fracture. Further pQCT research is necessary to identify regions of interest that are prone to fracture risk in people with chronic diseases. The second metatarsal is a common site for the development of insufficiency fractures, and as such the aim of this study was to assess the reproducibility of a novel scanning protocol of the second metatarsal using pQCT. Methods Eleven embalmed cadaveric leg specimens were scanned six times; three times with and without repositioning. Each foot was positioned on a custom-designed acrylic foot plate to permit unimpeded scans of the region of interest. Sixty-six scans were obtained at 15% (distal) and 50% (mid shaft) of the second metatarsal. Voxel size and scan speed were reduced to 0.40 mm and 25 mm.sec-1. The reference line was positioned at the most distal portion of the 2nd metatarsal. Repeated measurements of six key variables related to bone properties were subject to reproducibility testing. Data were log transformed and reproducibility of scans were assessed using intraclass correlation coefficients (ICC) and coefficients of variation (CV%). Results Reproducibility of the measurements without repositioning were estimated as: trabecular area (ICC 0.95; CV% 2.4), trabecular density (ICC 0.98; CV% 3.0), Strength Strain Index (SSI) - distal (ICC 0.99; CV% 5.6), cortical area (ICC 1.0; CV% 1.5), cortical density (ICC 0.99; CV% 0.1), SSI – mid shaft (ICC 1.0; CV% 2.4). Reproducibility of the measurements after repositioning were estimated as: trabecular area (ICC 0.96; CV% 2.4), trabecular density (ICC 0.98; CV% 2.8), SSI - distal (ICC 1.0; CV% 3.5), cortical area (ICC 0.99; CV%2.4), cortical density (ICC 0.98; CV% 0.8), SSI – mid shaft (ICC 0.99; CV% 3.2). Conclusions The scanning protocol generated excellent reproducibility for key bone properties measured at the distal and mid-shaft regions of the 2nd metatarsal. This protocol extends the capabilities of pQCT to evaluate bone quality in people who may be at an increased risk of metatarsal insufficiency fractures. PMID:25037451
Mena, E; Martín-Miramon, J C; Bernà, L; Veintemillas, M; Marín, A; Valls, R; Melloni, P
2009-01-01
We report 3 cases of an unusual tumor, that is, the giant cell tumor of the tendon sheath. The patients consulted due to the appearance of a well-defined, painless, soft tissue mass with mild-to-moderate inflammation located in the thumbs or toes. These clinical data, together with the bone scan findings, oriented the diagnostic suspicion that was confirmed by a pathology study of the tumor after resection. This work has aimed to review the characteristics of the bone scan (BS) image of this tumor and its correlation with the conventional X-ray imaging and magnetic resonance imaging (MRI).
Gregson, Celia L; Hardcastle, Sarah A; Cooper, Cyrus; Tobias, Jonathan H
2013-06-01
A finding of high BMD on routine DXA scanning is not infrequent and most commonly reflects degenerative disease. However, BMD increases may also arise secondary to a range of underlying disorders affecting the skeleton. Although low BMD increases fracture risk, the converse may not hold for high BMD, since elevated BMD may occur in conditions where fracture risk is increased, unaffected or reduced. Here we outline a classification for the causes of raised BMD, based on identification of focal or generalized BMD changes, and discuss an approach to guide appropriate investigation by clinicians after careful interpretation of DXA scan findings within the context of the clinical history. We will also review the mild skeletal dysplasia associated with the currently unexplained high bone mass phenotype and discuss recent advances in osteoporosis therapies arising from improved understanding of rare inherited high BMD disorders.
Hardcastle, Sarah A.; Cooper, Cyrus; Tobias, Jonathan H.
2013-01-01
A finding of high BMD on routine DXA scanning is not infrequent and most commonly reflects degenerative disease. However, BMD increases may also arise secondary to a range of underlying disorders affecting the skeleton. Although low BMD increases fracture risk, the converse may not hold for high BMD, since elevated BMD may occur in conditions where fracture risk is increased, unaffected or reduced. Here we outline a classification for the causes of raised BMD, based on identification of focal or generalized BMD changes, and discuss an approach to guide appropriate investigation by clinicians after careful interpretation of DXA scan findings within the context of the clinical history. We will also review the mild skeletal dysplasia associated with the currently unexplained high bone mass phenotype and discuss recent advances in osteoporosis therapies arising from improved understanding of rare inherited high BMD disorders. PMID:23445662
77 FR 47852 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-10
... Beneficiaries Receiving NaF-18 Positron Emission Tomography (PET) to Identify Bone Metastasis in Cancer; Use: In... NaF-18 PET scan to identify bone metastasis in cancer is reasonable and necessary only when the... strategy by the identification, location and quantification of bone [[Page 47853
75 FR 63484 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... Bone Metastasis in Cancer; Use: In Decision Memorandum CAG-00065R, issued on February 26, 2010, the... that for Medicare beneficiaries receiving NaF-18 PET scan to identify bone metastasis in cancer is... or to guide subsequent treatment strategy by the identification, location and quantification of bone...
A composite of borohydride and super absorbent polymer for hydrogen generation
NASA Astrophysics Data System (ADS)
Li, Z. P.; Liu, B. H.; Liu, F. F.; Xu, D.
To develop a hydrogen source for underwater applications, a composite of sodium borohydride and super absorbent polymer (SAP) is prepared by ball milling sodium borohydride powder with SAP powder, and by dehydrating an alkaline borohydride gel. When sodium polyacrylate (NaPAA) is used as the SAP, the resulting composite exhibits a high rate of borohydride hydrolysis for hydrogen generation. A mechanism of hydrogen evolution from the NaBH 4-NaPAA composite is suggested based on structure analysis by X-ray diffraction and scanning electron microscopy. The effects of water and NiCl 2 content in the precursor solution on the hydrogen evolution behavior are investigated and discussed.
Transfer function characteristics of super resolving systems
NASA Technical Reports Server (NTRS)
Milster, Tom D.; Curtis, Craig H.
1992-01-01
Signal quality in an optical storage device greatly depends on the optical system transfer function used to write and read data patterns. The problem is similar to analysis of scanning optical microscopes. Hopkins and Braat have analyzed write-once-read-many (WORM) optical data storage devices. Herein, transfer function analysis of magnetooptic (MO) data storage devices is discussed with respect to improving transfer-function characteristics. Several authors have described improving the transfer function as super resolution. However, none have thoroughly analyzed the MO optical system and effects of the medium. Both the optical system transfer function and effects of the medium of this development are discussed.
NASA Astrophysics Data System (ADS)
Rusu, Laura-Cristina; Negrutiu, Meda Lavinia; Sinescu, Cosmin; Hoinoiu, Bogdan; Zaharia, Cristian; Ardelean, Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.
2014-01-01
The osteoconductive materials are important in bone regeneration procedures. Three dimensional (3D) reconstructions were obtained from the analysis. The aim of this study is to investigate the interface between the femur rat bone and the new bone that is obtained using a method of tissue engineering that is based on two artificial matrixes inserted in previously artificially induced defects. For this study, under strict supervision 20 rats were used in conformity with ethical procedures. In all the femurs a round defect was induced by drilling with a 1 mm spherical Co-Cr surgical drill. The matrixes used were IngeniOss (for ten samples) and 4Bone(for the other ten samples). These materials were inserted into the induced defects. The femurs were investigated at 1 month, after the surgical procedures. The interfaces were examined using Time Domain (TD) Optical Coherence Tomography (OCT) combined with Confocal Microscopy (CM). The scanning procedure is similar to that used in any CM, where the fast scanning is en-face (line rate) and the scanning in depth is much slower (at the frame rate). The optical configuration uses two single mode directional couplers with a superluminiscent diode as the source centered at 1300 nm. The results showed open interfaces due to the insufficient healing process, as well as closed interfaces due to a new bone formation inside the defect. The conclusion of this study is that TD-OCT can act as a valuable tool in the investigation of the interface between the old bone and the one that has been newly created due to the osteoinductive process. The TD-OCT has proven a valuable tool for the non-invasive evaluation of the matrix bone interfaces.
da Cruz, Gabriela Alessandra; de Toledo, Sérgio; Sallum, Enilson Antonio; de Lima, Antonio Fernando Martorelli
2007-01-01
This study evaluated the morphological and chemical composition of the following bone substitutes: cancellous and cortical organic bovine bone with macro and microparticle size ranging from 1.0 to 2.0 mm and 0.25 to 1.0 mm, respectively; inorganic bovine bone with particle size ranging from 0.25 to 1.0 mm; hydroxyapatite with particle size ranging from 0.75 to 1.0 mm; and demineralized freeze-dried bone allograft with particle size ranging from 0.25 to 0.5 mm. The samples were sputter-coated with gold in an ion coater, the morphology was observed and particle size was measured under vacuum by scanning electron microscopy (SEM). The chemical composition was evaluated by spectroscopy of dispersion energy (EDS) microanalysis using samples without coating. SEM analysis provided visual evidence that all examined materials have irregular shape and particle sizes larger than those informed by the manufacturer. EDS microanalysis detected the presence of sodium, calcium and phosphorus that are usual elements of the bone tissue. However, mineral elements were detected in all analyzed particles of organic bovine bone except for macro cancellous organic bovine bone. These results suggest that the examined organic bovine bone cannot be considered as a pure organic material.
Lundblad, Henrik; Karlsson-Thur, Charlotte; Maguire, Gerald Q; Jonsson, Cathrine; Noz, Marilyn E; Zeleznik, Michael P; Weidenhielm, Lars
2017-05-01
When a bone is broken for any reason, it is important for the orthopaedic surgeon to know how bone healing is progressing. There has been resurgence in the use of the fluoride ( 18 F - ) ion to evaluate various bone conditions. This has been made possible by availability of positron emission tomography (PET)/CT hybrid scanners together with cyclotrons. Absorbed on the bone surface from blood flow, 18 F - attaches to the osteoblasts in cancellous bone and acts as a pharmacokinetic agent, which reflects the local physiologic activity of bone. This is important because it shows bone formation indicating that the bone is healing or no bone formation indicating no healing. As 18 F - is extracted from blood in proportion to blood flow and bone formation, it thus enables determination of bone healing progress. The primary objective of this study was to determine whether videos showing the spatiotemporal uptake of 18 F - via PET bone scans could show problematic bone healing in patients with complex tibia conditions. A secondary objective was to determine if semiquantification of radionuclide uptake was consistent with bone healing. This study investigated measurements of tibia bone formation in patients with complex fractures, osteomyelitis, and osteotomies treated with a Taylor Spatial Frame TM (TSF) by comparing clinical healing progress with spatiotemporal fluoride ( 18 F - ) uptake and the semiquantitative standardized uptake value (SUV). This procedure included static and dynamic image acquisition. For intrapatient volumes acquired at different times, the CT and PET data were spatially registered to bring the ends of the bones that were supposed to heal into alignment. To qualitatively observe how and where bone formation was occurring, time-sequenced volumes were reconstructed and viewed as a video. To semiquantify the uptake, the mean and maximum SUVs (SUVmean, SUVmax) were calculated for the ends of the bones that were supposed to heal and for normal bone, using a spherical volume of interest drawn on the registered volumes. To make the semiquantitative data comparable for all patients with multiple examinations, the SUVmean and SUVmax difference per day (SUVmeanDPD and SUVmaxDPD) between the first PET/CT scan and each subsequent one was calculated. Indicators of poor healing progress were (1) uneven distribution of the radionuclide uptake between ends of the bones that were supposed to heal as seen in the video or, (2) low absolute magnitude of the SUV difference data. Twenty-four patients treated between October 2013 and April 2015 with a TSF gave informed consent to be examined with 18 F - PET/CT bone scans. Twenty-two patients successfully completed treatment, one of whom had only one PET/CT scan. Observation of 18 F - uptake was able to identify three patients whose healing progress was poor, indicated by uneven distribution of radionuclide uptake across the ends of the bones that were supposed to heal. An absolute magnitude of the SUVmaxDPD of 0.18 or greater indicated good bone formation progress. This was verified in 10 patients by the days between the operation to attach and to remove the TSF being less than 250 days, whereas other SUVmaxDPD values were ambiguous, with 11 patients achieving successful completion. Observation of the spatiotemporal uptake of 18 F - appears to be a promising method to enable the clinician to assess the progress of bone formation in different parts of the bone. Bone uptake which is uneven across the ends of bone that were supposed to heal or very low bone uptake might indicate impaired bone healing where early intervention may then be needed. However, semiquantification of 18 F - uptake (SUVmaxDPD), SUVmeanDPD) was ambiguous in showing consistency with the bone-healing progress. Level III, diagnostic study.
NASA Astrophysics Data System (ADS)
Nurhadi, M.; Kusumawardani, R.; Widiyowati, I. I.; Wirhanuddin; Nur, H.
2018-05-01
The performance of fish bone to adsorb Fe3+ ion in solution was studied. Powdered fish bone and carbonized fish bone were used as adsorbent. All absorbents were characterized by X-ray diffraction (XRD), IR spectroscopy, nitrogen adsorption, scanning electron microscopy (SEM) and TG analysis. Powdered fish bone and carbonized fish bone were effective as adsorbent for removing Fe3+ ion in solution. The metal adsorptions of Fe3+ ion were 94 and 98% for powdered fish bone and fish bone which carbonized at 400 and 500 °C.
NASA Technical Reports Server (NTRS)
Jergas, M.; Breitenseher, M.; Gluer, C. C.; Yu, W.; Genant, H. K.
1995-01-01
To determine whether estimates of volumetric bone density from projectional scans of the lumbar spine have weaker associations with height and weight and stronger associations with prevalent vertebral fractures than standard projectional bone mineral density (BMD) and bone mineral content (BMC), we obtained posteroanterior (PA) dual X-ray absorptiometry (DXA), lateral supine DXA (Hologic QDR 2000), and quantitative computed tomography (QCT, GE 9800 scanner) in 260 postmenopausal women enrolled in two trials of treatment for osteoporosis. In 223 women, all vertebral levels, i.e., L2-L4 in the DXA scan and L1-L3 in the QCT scan, could be evaluated. Fifty-five women were diagnosed as having at least one mild fracture (age 67.9 +/- 6.5 years) and 168 women did not have any fractures (age 62.3 +/- 6.9 years). We derived three estimates of "volumetric bone density" from PA DXA (BMAD, BMAD*, and BMD*) and three from paired PA and lateral DXA (WA BMD, WA BMDHol, and eVBMD). While PA BMC and PA BMD were significantly correlated with height (r = 0.49 and r = 0.28) or weight (r = 0.38 and r = 0.37), QCT and the volumetric bone density estimates from paired PA and lateral scans were not (r = -0.083 to r = 0.050). BMAD, BMAD*, and BMD* correlated with weight but not height. The associations with vertebral fracture were stronger for QCT (odds ratio [QR] = 3.17; 95% confidence interval [CI] = 1.90-5.27), eVBMD (OR = 2.87; CI 1.80-4.57), WA BMDHol (OR = 2.86; CI 1.80-4.55) and WA-BMD (OR = 2.77; CI 1.75-4.39) than for BMAD*/BMD* (OR = 2.03; CI 1.32-3.12), BMAD (OR = 1.68; CI 1.14-2.48), lateral BMD (OR = 1.88; CI 1.28-2.77), standard PA BMD (OR = 1.47; CI 1.02-2.13) or PA BMC (OR = 1.22; CI 0.86-1.74). The areas under the receiver operating characteristic (ROC) curves for QCT and all estimates of volumetric BMD were significantly higher compared with standard PA BMD and PA BMC. We conclude that, like QCT, estimates of volumetric bone density from paired PA and lateral scans are unaffected by height and weight and are more strongly associated with vertebral fracture than standard PA BMD or BMC, or estimates of volumetric density that are solely based on PA DXA scans.
Hidaka, Dai; Koshizuka, Hiroaki; Hiyama, Junichiro; Nakatsubo, Seita; Ikeda, Koutarou; Hayashi, Akihiro; Fujii, Akiko; Sawamoto, Ryouko; Misumi, Yukihiro; Miyagawa, Yousuke
2009-03-01
A 57-year-old man complaining of right shoulder pain was admitted. Chest enhanced CT scanning showed a mass shadow in the right upper lobe with chest wall invasion. The laboratory data on admission showed marked leukocytosis. A CT-guided lung biopsy was performed, and a histological examination of the biopsy specimen showed a spindle cell type pleomorphic carcinoma. Immunohistochemistry staining using an anti-granulocyte colony-stimulating factor (G-CSF) monoclonal antibody demonstrated many tumor cells containing G-CSF as well as an increased level of serum G-CSF. The diagnosis was determined to be lung cancer producing G-CSF. FDG-PET scanning showed a significantly high uptake in the right upper field and the bones throughout the body. After chemoradiation therapy, the patient underwent a right upper lobectomy with a chest wall resection. Since then, the leukocytosis and the high level of serum G-CSF normalized and the high uptake in the bones disappeared in the FDG-PET scan.
Mastocytosis: magnetic resonance imaging patterns of marrow disease.
Avila, N A; Ling, A; Metcalfe, D D; Worobec, A S
1998-03-01
To report the bone marrow MRI findings of patients with mastocytosis and correlate them with clinical, pathologic, and radiographic features. Eighteen patients with mastocytosis had T1-weighted spin echo and short tau inversion recovery MRI of the pelvis at 0.5 T. In each patient the MR pattern of marrow disease was classified according to intensity and uniformity and was correlated with the clinical category of mastocytosis, bone marrow biopsy results, and radiographic findings. Two patients had normal MRI scans and normal bone marrow biopsies. One patient had a normal MRI scan and a marrow biopsy consistent with mastocytosis. Fifteen patients had abnormal MRI scans and abnormal marrow biopsies. There were several different MR patterns of marrow involvement; none was specifically associated with any given clinical category of mastocytosis. Fifteen of the 18 patients had radiographs of the pelvis; of those, 13 with abnormal MRI scans and abnormal marrow biopsies had the following radiographic findings: normal (nine); sclerosis (three); diffuse osteopenia (one). While radiographs are very insensitive for the detection of marrow abnormalities in mastocytosis, MRI is very sensitive and may display several different patterns of marrow involvement.
Blood-pool SPECT in addition to bone SPECT in the viability assessment in mandibular reconstruction.
Aydogan, F; Akbay, E; Cevik, C; Kalender, E
2014-01-01
The assessment of the postoperative viability of vascularized and non-vascularized grafts used in the reconstruction of mandibular defects due to trauma and surgical reasons is a major problem in maxillofacial surgery. In the present study, we evaluated the feasibility and image quality of blood-pool SPECT, which is used for the first time in the literature here in the assessment of mandibular reconstruction, in addition to non-invasive bone scintigraphy and bone SPECT. We also evaluated whether it would be useful in clinical prediction. Micro-vascularized and non-vascularized bone grafts were used in 12 Syrian men with maxillofacial trauma. Between days 5-7 after surgery, three-phase bone scintigraphy, blood-pool SPECT and delayed bone SPECT scans were performed. After month 6, the patients were assessed by control CT scans. Of the non-vascularized grafts, one graft was reported as non-viable at week one. At month 6, graft resorption was demonstrated on the CT images. The remaining non-vascularized grafts and all of the micro-vascularized grafts were considered to be viable according to delayed bone SPECT and blood-pool SPECT images. However, only the anterior and posterior ends could be clearly assessed on delayed SPECT images, while blood-pool SPECT images allowed the clear assessment of the entire graft. The combined use of blood-pool and delayed SPECT scans could allow for better assessment of graft viability in the early period, and can provide more detailed information to clinicians about prognosis in the follow-up of patients undergoing mandibular graft reconstruction.
Metastatic pulmonary calcification in a dialysis patient: case report and a review.
Eggert, Christoph H; Albright, Robert C
2006-10-01
A 19-year-old male presented with chest pain and dyspnea. He was anephric following nephrectomy for focal segmental glomerulosclerosis, had a subsequent failed transplant, and had been dialysis dependent for 3 years. Workup revealed hyperparathyroidism and an abnormal chest X-ray and computed tomography scan, significant for massive extra-skeletal pulmonary calcification. A markedly abnormal Technitium99 methylene diphosphonate (Tc99m-MDP) bone scan confirmed the clinical suspicion of metastatic pulmonary calcification. Metastatic pulmonary calcification (MPC) is common, occurring in 60% to 80% of dialysis patients on autopsy and bone scan series. It may lead to impaired oxygenation and restrictive lung disease. Typically, the calcium crystal is whitlockite rather than hydroxyapatite, which occurs in vascular calcification. Four major predisposing factors may contribute to MPC in dialysis patients. First, chronic acidosis leaches calcium from bone. Second, intermittent alkalosis favors deposition of calcium salts. Third, hyperparathyroidism tends to cause bone resorption and intracellular hypercalcemia. Finally, low glomerular filtration rate can cause hyperphosphatemia and an elevated calcium-phosphorus product. There may be other factors. Some authors suggest that the incidence of MPC in recent years may be lower due to improved dialysis techniques. The diagnosis is confirmed by biopsy, but can be suspected by typical findings on a Tc99m-MDP bone scan. Therapy is limited to ensuring adequate dialysis, correcting calcium-phosphorus product, and hyperparathyroidism; discontinuing vitamin D analogues may help. Conflicting reports show that transplantation may either improve or worsen the situation. MPC should be considered in dialysis patients who have characteristic abnormal chest radiography and/or pulmonary symptoms.
The effect of strontium ranelate on the healing of a fractured ulna with bone gap in rabbit.
Ibrahim, Mohd Rafiq Mohd; Singh, Simmrat; Merican, Azhar Mahmood; Raghavendran, Hanumantha Rao Balaji; Murali, Malliga Raman; Naveen, Sangeetha Vasudevaraj; Kamarul, Tunku
2016-06-16
Fracture healing in bone gap is one of the major challenges encountered in Orthopedic Surgery. At present, the treatment includes bone graft, employing either internal or external fixation which has a significant impact on the patient, family and even society. New drugs are emerging in the markets such as anabolic bone-forming agents including teriparatide and strontium ranelate to stimulate bone growth. Based on the mechanism of their actions, we embarked on a study on the healing of a fractured ulna with bone gap in a rabbit model. We segregated ten rabbits into two groups: five rabbits in the test group and five rabbits in the control group. We created a 5 mm bone gap in the ulna bone, removing the periosteum as well. Rabbits in the test group received 450 mg/kg of strontium ranelate via oral administration, daily, for six weeks. The x-rays, CT scans and blood tests were performed every two weeks. At the end of six weeks, the rabbits were sacrificed, and the radius and ulna bones harvested for histopathological examination. Based on the x-rays and CT scans, fracture healing or bone formation was observed to be faster in the control group. From the x-ray findings, 80 % of the fracture united and by CT scan, 60 % of the fracture united in the control group at the end of the six-week study. None of the fractures united in the test group. However, the histopathology report showed that a callus of different stages was being formed in both groups, consisting of 80 % of bone. The serum levels of osteocalcin and alkaline phosphatase initially remained similar up to three weeks and changed slightly at the end of six weeks. We conclude that the strontium effect begins slowly, and while it may not interfere with bone cell proliferation it may interfere in the mineralization and delay the acute stage of fracture healing. We recommend that a larger sample size and a longer duration of the study period be implemented to confirm our finding.
NASA Astrophysics Data System (ADS)
Pavlychev, A. A.; Avrunin, A. S.; Vinogradov, A. S.; Filatova, E. O.; Doctorov, A. A.; Krivosenko, Yu S.; Samoilenko, D. O.; Svirskiy, G. I.; Konashuk, A. S.; Rostov, D. A.
2016-12-01
Theoretical and experimental investigations of native bone are carried out to understand relationships between its hierarchical organization and local electronic and atomic structure of the mineralized phase. The 3D superlattice model of a coplanar assembly of the hydroxyapatite (HAP) nanocrystallites separated by the hydrated nanolayers is introduced to account the interplay of short-, long- and super-range order parameters in bone tissue. The model is applied to (i) predict and rationalize the HAP-to-bone spectral changes in the electronic structure and (ii) describe the mechanisms ensuring the link of the hierarchical organization with the electronic structure of the mineralized phase in bone. To check the predictions the near-edge x-ray absorption fine structure (NEXAFS) at the Ca 2p, P 2p and O 1s thresholds is measured for native bone and compared with NEXAFS for reference compounds. The NEXAFS analysis has demonstrated the essential hierarchy induced HAP-to-bone red shifts of the Ca and P 2p-to-valence transitions. The lowest O 1s excitation line at 532.2 eV in bone is assigned with superposition of core transitions in the hydroxide OH-(H2O) m anions, Ca2+(H2O) n cations, the carboxyl groups inside the collagen and [PO4]2- and [PO4]- anions with unsaturated P-O bonds.
Miscellaneous indications in bone scintigraphy: metabolic bone diseases and malignant bone tumors.
Cook, Gary J R; Gnanasegaran, Gopinath; Chua, Sue
2010-01-01
The diphosphonate bone scan is ideally suited to assess many global, focal or multifocal metabolic bone disorders and there remains a role for conventional bone scintigraphy in metabolic bone disorders at diagnosis, investigation of complications, and treatment response assessment. In contrast, the role of bone scintigraphy in the evaluation of primary malignant bone tumors has reduced with the improvement of morphologic imaging, such as computed tomography and magnetic resonance imaging. However, an increasing role for (18)F-fluorodeoxyglucose positron emission tomography and positron emission tomography/computed tomography is emerging as a functional assessment at diagnosis, staging, and neoadjuvant treatment response assessment.
Automated Reporting of DXA Studies Using a Custom-Built Computer Program.
England, Joseph R; Colletti, Patrick M
2018-06-01
Dual-energy x-ray absorptiometry (DXA) scans are a critical population health tool and relatively simple to interpret but can be time consuming to report, often requiring manual transfer of bone mineral density and associated statistics into commercially available dictation systems. We describe here a custom-built computer program for automated reporting of DXA scans using Pydicom, an open-source package built in the Python computer language, and regular expressions to mine DICOM tags for patient information and bone mineral density statistics. This program, easy to emulate by any novice computer programmer, has doubled our efficiency at reporting DXA scans and has eliminated dictation errors.
Müller, Oliver; Nachtegaal, Maarten; Just, Justus; Lützenkirchen-Hecht, Dirk; Frahm, Ronald
2016-01-01
The quick-EXAFS (QEXAFS) method adds time resolution to X-ray absorption spectroscopy (XAS) and allows dynamic structural changes to be followed. A completely new QEXAFS setup consisting of monochromator, detectors and data acquisition system is presented, as installed at the SuperXAS bending-magnet beamline at the Swiss Light Source (Paul Scherrer Institute, Switzerland). The monochromator uses Si(111) and Si(311) channel-cut crystals mounted on one crystal stage, and remote exchange allows an energy range from 4.0 keV to 32 keV to be covered. The spectral scan range can be electronically adjusted up to several keV to cover multiple absorption edges in one scan. The determination of the Bragg angle close to the position of the crystals allows high-accuracy measurements. Absorption spectra can be acquired with fast gridded ionization chambers at oscillation frequencies of up to 50 Hz resulting in a time resolution of 10 ms, using both scan directions of each oscillation period. The carefully developed low-noise detector system yields high-quality absorption data. The unique setup allows both state-of-the-art QEXAFS and stable step-scan operation without the need to exchange whole monochromators. The long-term stability of the Bragg angle was investigated and absorption spectra of reference materials as well as of a fast chemical reaction demonstrate the overall capabilities of the new setup. PMID:26698072
Müller, Oliver; Nachtegaal, Maarten; Just, Justus; Lützenkirchen-Hecht, Dirk; Frahm, Ronald
2016-01-01
The quick-EXAFS (QEXAFS) method adds time resolution to X-ray absorption spectroscopy (XAS) and allows dynamic structural changes to be followed. A completely new QEXAFS setup consisting of monochromator, detectors and data acquisition system is presented, as installed at the SuperXAS bending-magnet beamline at the Swiss Light Source (Paul Scherrer Institute, Switzerland). The monochromator uses Si(111) and Si(311) channel-cut crystals mounted on one crystal stage, and remote exchange allows an energy range from 4.0 keV to 32 keV to be covered. The spectral scan range can be electronically adjusted up to several keV to cover multiple absorption edges in one scan. The determination of the Bragg angle close to the position of the crystals allows high-accuracy measurements. Absorption spectra can be acquired with fast gridded ionization chambers at oscillation frequencies of up to 50 Hz resulting in a time resolution of 10 ms, using both scan directions of each oscillation period. The carefully developed low-noise detector system yields high-quality absorption data. The unique setup allows both state-of-the-art QEXAFS and stable step-scan operation without the need to exchange whole monochromators. The long-term stability of the Bragg angle was investigated and absorption spectra of reference materials as well as of a fast chemical reaction demonstrate the overall capabilities of the new setup.
Li, Wenjun; Kezele, Irina; Collins, D Louis; Zijdenbos, Alex; Keyak, Joyce; Kornak, John; Koyama, Alain; Saeed, Isra; Leblanc, Adrian; Harris, Tamara; Lu, Ying; Lang, Thomas
2007-11-01
We have developed a general framework which employs quantitative computed tomography (QCT) imaging and inter-subject image registration to model the three-dimensional structure of the hip, with the goal of quantifying changes in the spatial distribution of bone as it is affected by aging, drug treatment or mechanical unloading. We have adapted rigid and non-rigid inter-subject registration techniques to transform groups of hip QCT scans into a common reference space and to construct composite proximal femoral models. We have applied this technique to a longitudinal study of 16 astronauts who on average, incurred high losses of hip bone density during spaceflights of 4-6 months on the International Space Station (ISS). We compared the pre-flight and post-flight composite hip models, and observed the gradients of the bone loss distribution. We performed paired t-tests, on a voxel by voxel basis, corrected for multiple comparisons using false discovery rate (FDR), and observed regions inside the proximal femur that showed the most significant bone loss. To validate our registration algorithm, we selected the 16 pre-flight scans and manually marked 4 landmarks for each scan. After registration, the average distance between the mapped landmarks and the corresponding landmarks in the target scan was 2.56 mm. The average error due to manual landmark identification was 1.70 mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahowald, M.L.; Raskind, J.R.; Peterson, L.
1986-08-01
Numerous clinical studies have questioned the ability of radionuclide scans to differentiate septic from aseptic joint inflammation. A clinical study may not be able to document an underlying disease process or duration of infection and, thus, may make conclusions about the accuracy of scan interpretations open to debate. In this study, the Dumonde-Glynn model of antigen-induced arthritis in rabbits was used as the experimental model to study technetium and gallium scans in Staphylococcus aureus infection of arthritic and normal joints. Gallium scans were negative in normal rabbits, usually negative in antigen-induced arthritis, but positive in septic arthritis. The bone scanmore » was usually negative in early infection but positive in late septic arthritis, a finding reflecting greater penetration of bacteria into subchondral bone because of the underlying inflammatory process.« less
Barratt, Dean C; Chan, Carolyn S K; Edwards, Philip J; Penney, Graeme P; Slomczykowski, Mike; Carter, Timothy J; Hawkes, David J
2008-06-01
Statistical shape modelling potentially provides a powerful tool for generating patient-specific, 3D representations of bony anatomy for computer-aided orthopaedic surgery (CAOS) without the need for a preoperative CT scan. Furthermore, freehand 3D ultrasound (US) provides a non-invasive method for digitising bone surfaces in the operating theatre that enables a much greater region to be sampled compared with conventional direct-contact (i.e., pointer-based) digitisation techniques. In this paper, we describe how these approaches can be combined to simultaneously generate and register a patient-specific model of the femur and pelvis to the patient during surgery. In our implementation, a statistical deformation model (SDM) was constructed for the femur and pelvis by performing a principal component analysis on the B-spline control points that parameterise the freeform deformations required to non-rigidly register a training set of CT scans to a carefully segmented template CT scan. The segmented template bone surface, represented by a triangulated surface mesh, is instantiated and registered to a cloud of US-derived surface points using an iterative scheme in which the weights corresponding to the first five principal modes of variation of the SDM are optimised in addition to the rigid-body parameters. The accuracy of the method was evaluated using clinically realistic data obtained on three intact human cadavers (three whole pelves and six femurs). For each bone, a high-resolution CT scan and rigid-body registration transformation, calculated using bone-implanted fiducial markers, served as the gold standard bone geometry and registration transformation, respectively. After aligning the final instantiated model and CT-derived surfaces using the iterative closest point (ICP) algorithm, the average root-mean-square distance between the surfaces was 3.5mm over the whole bone and 3.7mm in the region of surgical interest. The corresponding distances after aligning the surfaces using the marker-based registration transformation were 4.6 and 4.5mm, respectively. We conclude that despite limitations on the regions of bone accessible using US imaging, this technique has potential as a cost-effective and non-invasive method to enable surgical navigation during CAOS procedures, without the additional radiation dose associated with performing a preoperative CT scan or intraoperative fluoroscopic imaging. However, further development is required to investigate errors using error measures relevant to specific surgical procedures.
NASA Technical Reports Server (NTRS)
Sibonga, Jean D.; Smith, Scott A.; Hans, Didier; LeBlanc, Adrian; Spector, Elisabeth; Evans, Harlan; King, Lisa
2014-01-01
Background: Bone loss due to long-duration spaceflight has been characterized by both DXA and QCT serial scans. It is unclear if these spaceflight-induced changes in bone mineral density and structure result in increased fracture incidence. NASA astronauts currently fly on 5-6-month missions on the International Space Station (ISS) and at least one 12-month mission is planned. While NASA has measured areal BMD (by DXA) and volumetric BMD (by QCT), and has estimated hip strength (by finite element models of QCT data, no method has yet been used to examine bone microarchitecture from lumbar spine (LS). DXA scans are routinely performed pre- and post-flight on all ISS astronauts to follow BMD changes associated with space flight. Trabecular Bone Score (TBS) is a relatively new method that measures grey-scale-level texture information extracted from lumbar spine DXA images and correlates with 3D parameters of bone micro-architecture. We evaluated the ability of LS TBS to discriminate changes in astronauts who have flown on ISS missions and to determine if TBS can provide additional information compared to DXA. Methods: LS (L1-4) DXA scans from 51 astronauts (mean age, 47 +/- 4) were divided into 3 groups based on the exercise regimes performed while onboard the ISS. Pre-ARED (exercise using a load-limited resistive exercise device, <300lb), ARED (exercise with a high-load resistive exercise device, up to 600lb) and a Bisphos group (ARED exercise and a 70-mg alendronate tablet once a week before and during flight, starting 17 days before launch). DXA scans were performed and analyzed on a Hologic Discovery W using the same technician for the pre- and postflight scans. LSC for the LS in our laboratory is 0.025 g/cm2. TBS was performed at the Mercy Hospital, Cincinnati, Ohio on a similar Hologic computer. TBS precision was calculated from 16 comparable test subjects (0.0XX g/cm2). Data were preliminary analyzed using a paired, 2-tailed t-test for the difference between pre- and postflight means.
USDA-ARS?s Scientific Manuscript database
Relatively few studies have examined the effects of formula feeding relative to breast-feeding on bone in the neonate. Using peripheral quantitative CT scan and histomorphometric analysis, we demonstrated that neonatal piglets fed with soy-based formula (SF) and cow milk-based formula (MF) for 21 or...
Park, Hyun Jung; Lee, Ok Joo; Lee, Min Chae; Moon, Bo Mi; Ju, Hyung Woo; Lee, Jung min; Kim, Jung-Ho; Kim, Dong Wook; Park, Chan Hum
2015-01-01
Silk fibroin is a biomaterial being actively studied in the field of bone tissue engineering. In this study, we aimed to select the best strategy for bone reconstruction on scaffolds by changing various conditions. We compared the characteristics of each scaffold via structural analysis using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), the swelling ratio, water uptake, porosity, compressive strength, cell infiltration and cell viability (CCK-8). The scaffolds had high porosity with good inter pore connectivity and showed high compressive strength and modulus. In addition, to confirm bone reconstruction, animal studies were conducted in which samples were implanted in rat calvaria and investigated by micro-CT scans. In conclusion, the presented study indicates that using sucrose produces scaffolds showing better pore interconnectivity and cell infiltration than scaffolds made by using a salt process. In addition, in vivo experiments showed that hydroxyapatite accelerates bone reconstruction on implanted scaffolds. Accordingly, our scaffold will be expected to have a useful application in bone reconstruction. Copyright © 2015 Elsevier B.V. All rights reserved.
... your doctor might order additional imaging called single-photon emission computerized tomography (SPECT). This imaging can help ... radioactivity from the tracers is usually completely eliminated two days after the scan. Results A doctor who ...
Site specific measurements of bone formation using [18F] sodium fluoride PET/CT
Puri, Tanuj; Siddique, Musib; Frost, Michelle L.; Moore, Amelia E. B.; Fogelman, Ignac
2018-01-01
Dynamic positron emission tomography (PET) imaging with fluorine-18 labelled sodium fluoride ([18F]NaF) allows the quantitative assessment of regional bone formation by measuring the plasma clearance of fluoride to bone at any site in the skeleton. Today, hybrid PET and computed tomography (CT) dual-modality systems (PET/CT) are widely available, and [18F]NaF PET/CT offers a convenient non-invasive method of studying bone formation at the important osteoporotic fracture sites at the hip and spine, as well as sites of pure cortical or trabecular bone. The technique complements conventional measurements of bone turnover using biochemical markers or bone biopsy as a tool to investigate new therapies for osteoporosis, and has a potential role as an early biomarker of treatment efficacy in clinical trials. This article reviews methods of acquiring and analyzing dynamic [18F]NaF PET/CT scan data, and outlines a simplified approach combining venous blood sampling with a series of short (3- to 5-minute) static PET/CT scans acquired at different bed positions to estimate [18F]NaF plasma clearance at multiple sites in the skeleton with just a single injection of tracer. PMID:29541623
Development and validation of technique for in-vivo 3D analysis of cranial bone graft survival
NASA Astrophysics Data System (ADS)
Bernstein, Mark P.; Caldwell, Curtis B.; Antonyshyn, Oleh M.; Ma, Karen; Cooper, Perry W.; Ehrlich, Lisa E.
1997-05-01
Bone autografts are routinely employed in the reconstruction of facial deformities resulting from trauma, tumor ablation or congenital malformations. The combined use of post- operative 3D CT and SPECT imaging provides a means for quantitative in vivo evaluation of bone graft volume and osteoblastic activity. The specific objectives of this study were: (1) Determine the reliability and accuracy of interactive computer-assisted analysis of bone graft volumes based on 3D CT scans; (2) Determine the error in CT/SPECT multimodality image registration; (3) Determine the error in SPECT/SPECT image registration; and (4) Determine the reliability and accuracy of CT-guided SPECT uptake measurements in cranial bone grafts. Five human cadaver heads served as anthropomorphic models for all experiments. Four cranial defects were created in each specimen with inlay and onlay split skull bone grafts and reconstructed to skull and malar recipient sites. To acquire all images, each specimen was CT scanned and coated with Technetium doped paint. For purposes of validation, skulls were landmarked with 1/16-inch ball-bearings and Indium. This study provides a new technique relating anatomy and physiology for the analysis of cranial bone graft survival.
Site specific measurements of bone formation using [18F] sodium fluoride PET/CT.
Blake, Glen M; Puri, Tanuj; Siddique, Musib; Frost, Michelle L; Moore, Amelia E B; Fogelman, Ignac
2018-02-01
Dynamic positron emission tomography (PET) imaging with fluorine-18 labelled sodium fluoride ([ 18 F]NaF) allows the quantitative assessment of regional bone formation by measuring the plasma clearance of fluoride to bone at any site in the skeleton. Today, hybrid PET and computed tomography (CT) dual-modality systems (PET/CT) are widely available, and [ 18 F]NaF PET/CT offers a convenient non-invasive method of studying bone formation at the important osteoporotic fracture sites at the hip and spine, as well as sites of pure cortical or trabecular bone. The technique complements conventional measurements of bone turnover using biochemical markers or bone biopsy as a tool to investigate new therapies for osteoporosis, and has a potential role as an early biomarker of treatment efficacy in clinical trials. This article reviews methods of acquiring and analyzing dynamic [ 18 F]NaF PET/CT scan data, and outlines a simplified approach combining venous blood sampling with a series of short (3- to 5-minute) static PET/CT scans acquired at different bed positions to estimate [ 18 F]NaF plasma clearance at multiple sites in the skeleton with just a single injection of tracer.
Chiantella, Giovanni Carlo
2016-01-01
The present article describes the treatment given to a patient who underwent horizontal ridge augmentation surgery in the maxillary anterior area due to the premature loss of the maxillary central incisors. The complete dehiscence of the buccal plate was detected after elevation of mucoperiosteal flaps. The lesion was overfilled with deproteinized bovine xenograft particles combined with recombinant human platelet-derived growth factor BB (rhPDGF-BB) and covered with a porcine collagen barrier hydrated with the same growth factor. The soft tissues healed with no adverse complications. After 12 months, reentry surgery was carried out to place endosseous implants. Complete bone regeneration with the presence of bone-like tissue was observed. Cross-sectional computed tomography scan images confirmed integration of the bone graft and reconstruction of the lost hard tissue volume. The implants were inserted in an optimal three-dimensional position, thus facilitating esthetic restoration. Two years after insertion of final crowns, cone beam computed tomography scans displayed the stability of regenerated hard tissues around the implants. Controlled clinical studies are necessary to determine the benefit of hydrating bovine bone particles and collagen barriers with rhPDGF-BB for predictable bone regeneration of horizontal lesions.
Bartlett, Marissa L; Forsythe, Anna; Brady, Zoe; Mathews, John D
2018-05-01
We report data for all Australians aged 0-19 y who underwent publicly funded nuclear medicine studies between 1985 and 2005, inclusive. Radiation doses were estimated for individual patients for 95 different types of studies. There were 374 848 occasions of service for 277 511 patients with a collective effective dose of 1123 Sievert (Sv). Most services were either bone scans (45%) or renal scans (29%), with renal scans predominating at younger ages and bone scans at older ages. This pattern persisted despite a 4-fold increase in the annual number of procedures. Younger children were more likely to experience multiple scans, with the third quartile of scans per patient dropping from two to one with patient age. The median effective dose per patient ranged from 1.3 mSv (4-7 y old) to 2.8 mSv (13-16 y old). This large data set provides valuable information on nuclear medicine services for young Australians in the period 1985-2005.
Peterson, Lanell M; O'Sullivan, Janet; Wu, Qian Vicky; Novakova-Jiresova, Alena; Jenkins, Isaac; Lee, Jean H; Shields, Andrew; Montgomery, Susan; Linden, Hannah M; Gralow, Julie R; Gadi, Vijayakrishna K; Muzi, Mark; Kinahan, Paul E; Mankoff, David A; Specht, Jennifer M
2018-05-10
Assessing therapy response of breast cancer bone metastases is challenging. In retrospective studies, serial 18 F-FDG PET was predictive of time to skeletal related events (tSRE) and time-to-progression (TTP). 18 F-NaF PET improves bone metastasis detection compared to bone scans. We prospectively tested 18 F-FDG PET and 18 F-NaF PET to predict tSRE, TTP, and overall survival (OS) in patients with bone-dominant metastatic breast cancer (BD MBC). Methods: Patients with BD MBC were imaged with 18 F-FDG PET and 18 F-NaF PET prior to starting new therapy (scan1) and again at a range of times centered around approximately 4 months later (scan2). SUV max and SULpeak were recorded for a single index lesion and up to 5 most dominant lesions for each scan. tSRE, TTP, and OS were assessed exclusive of the PET images. Univariate Cox regression was performed to test the association between clinical endpoints and 18 F-FDG PET and 18 F-NaF PET measures. mPERCIST (Modified PET Response Criteria in Solid Tumors) criteria were also applied. Survival curves for mPERCIST compared response categories of Complete Response+Partial Response+Stable Disease versus Progressive Disease (CR+PR+SD vs PD) for tSRE, TTP, and OS. Results: Twenty-eight patients were evaluated. Higher FDG SULpeak at scan2 predicted shorter time to tSRE ( P = <0.001) and TTP ( P = 0.044). Higher FDG SUV max at scan2 predicted a shorter time to tSRE ( P = <0.001). A multivariable model using FDG SUV max of the index lesion at scan1 plus the difference in SUV max of up to 5 lesions between scans was predictive for tSRE and TTP. Among 24 patients evaluable by 18 F-FDG PET mPERCIST, tSRE and TTP were longer in responders (CR, PR, or stable) compared to non-responders (PD) ( P = 0.007, 0.028 respectively), with a trend toward improved survival ( P = 0.1). An increase in the uptake between scans of up to 5 lesions by 18 F-NaF PET was associated with longer OS ( P = 0.027). Conclusion: Changes in 18 F-FDG PET parameters during therapy are predictive of tSRE and TTP, but not OS. mPERCIST evaluation in bone lesions may be useful in assessing response to therapy and is worthy of evaluation in multicenter, prospective trials. Serial 18 F-NaF PET was associated with OS, but was not useful for predicting TTP or tSRE in BD MBC. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Bredow, Jan; Boese, C K; Werner, C M L; Siewe, J; Löhrer, L; Zarghooni, K; Eysel, P; Scheyerer, M J
2016-08-01
Pedicle screw fixation is the standard technique for the stabilization of the spine, a clinically relevant complication of which is screw loosening. This retrospective study investigates whether preoperative CT scanning can offer a predictor of screw loosening. CT-scan attenuation in 365 patients was evaluated to determine the mean bone density of each vertebral body. Screw loosening or dislocation was determined in CT scans postoperatively using the standard radiological criteria. Forty-five of 365 patients (12.3 %; 24 male, 21 female) suffered postoperative screw loosening (62 of 2038 screws) over a mean follow-up time of 50.8 months. Revision surgeries were necessary in 23 patients (6.3 %). The correlation between decreasing mean CT attenuation in Hounsfield Units (HU) and increasing patient age was significant (p < 0.001). Mean bone density was 116.3 (SD 53.5) HU in cases with screw loosening and 132.7 (SD 41.3) HU in cases in which screws remained fixed. The difference was statistically significant (p = 0.003). The determination of bone density with preoperative CT scanning can predict the risk of screw loosening and inform the decision to use cement augmentation to reduce the incidence of screw loosening.
NASA Technical Reports Server (NTRS)
Cameron, J. R.; Mazess, R. B.; Wilson, C. R.
1973-01-01
A device has been constructed and tested which provides immediate readout of bone mineral content and bone width from absorptiometric scans with low energy radionuclides. The basis of this analog system is a logarithmic converter-integrator coupled with a precision linear ratemeter. The system provided accurate and reliable results on standards and ashed bone sections. Clinical measurements were made on about 100 patients with the direct readout system, and these were highly correlated with the results from digital scan data on the same patients. The direct readout system has been used successfully in field studies and surveys as well as for clinical observations.
Nurse exposure doses resulted from bone scintigraphy patient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tunçman, Duygu, E-mail: duygutuncman@gmail.com; Demir, Bayram; Kovan, Bilal
Bone scintigraphy is used for displaying the radiologic undiagnosed bone lesions in nuclear medicine. It’s general indications are researching bone metastases, detection of radiographically occult fractures, staging and follow-up in primary bone tumors, diagnosis of paget’s disease, investigation of loosening and infection in orthopedic implants. It is applied with using {sup 99m}Tc labeled radiopharmaceuticals (e.g {sup 99m} Tc MDP,{sup 99m}Tc HEDP and {sup 99m}Tc HMDP). 20 -25 mCi IV radiotracer was injected into vein and radiotracer emits gamma radiation. Patient waits in isolated room for about 3 hours then a gamma camera scans radiation area and creates an image. Whenmore » some patient’s situation is not good, patients are hospitalized until the scanning because of patients’ close contact care need. In this study, measurements were taken from ten patients using Geiger Muller counter. After these measurements, we calculated nurse’s exposure radiations from patient’s routine treatment, examination and emergency station.« less
Mangano, Carlo; Piattelli, Adriano; Raspanti, Mario; Mangano, Francesco; Cassoni, Alessandra; Iezzi, Giovanna; Shibli, Jamil Awad
2011-01-01
Recent studies have shown that direct laser metal sintering (DLMS) produces structures with complex geometry and consequently that allow better osteoconductive properties. The aim of this patient report was to evaluate the early bone response to DLMS implant surface retrieved from human jaws. Four experimental DLMS implants were inserted in the posterior mandible of four patients during conventional dental implant surgery. After 8 weeks, the micro-implants and the surrounding tissue were removed and prepared for scanning electron microscopy (SEM) and histomorphometric analysis to evaluate the bone-implant interface. The SEM and EDX evaluations showed a newly formed tissue composed of calcium and phosphorus. The bone-to-implant contact presented a mean of 60.5 ± 11.6%. Within the limits of this patient report, data suggest that the DLMS surfaces presented a close contact with the human bone after a healing period of 8 weeks.
Hisatomi, Toshio; Sonoda, Koh‐hei; Ishikawa, Fumihiko; Qiao, Hong; Nakamura, Takahiro; Fukata, Mitsuhiro; Nakazawa, Toru; Noda, Kousuke; Miyahara, Shinsuke; Harada, Mine; Kinoshita, Shigeru; Hafezi‐Moghadam, Ali; Ishibashi, Tatsuro; Miller, Joan W
2007-01-01
Aims To characterise bone marrow derived cells in the sclera under normal and inflammatory conditions, we examined their differentiation after transplantation from two different sources, bone marrow and haematopoietic stem cells (HSC). Methods Bone marrow and HSC from green fluorescent protein (GFP) transgenic mice were transplanted into irradiated wild‐type mice. At 1 month after transplantation, mice were sacrificed and their sclera examined by histology, immunohistochemistry (CD11b, CD11c, CD45), and transmission and scanning electron microscopy. To investigate bone marrow derived cell recruitment under inflammatory conditions, experimental autoimmune uveitis (EAU) was induced in transplanted mice. Results GFP positive cells were distributed in the entire sclera and comprised 22.4 (2.8)% (bone marrow) and 28.4 (10.9)% (HSC) of the total cells in the limbal zone and 18.1 (6.7)% (bone marrow) and 26.3 (3.4)% (HSC) in the peripapillary zone. Immunohistochemistry showed that GFP (+) CD11c (+), GFP (+) CD11b (+) cells migrated in the sclera after bone marrow and HSC transplantation. Transmission and scanning electron microscopy revealed antigen presenting cells among the scleral fibroblasts. In EAU mice, vast infiltration of GFP (+) cells developed into the sclera. Conclusion We have provided direct and novel evidence for the migration of bone marrow and HSC cells into the sclera differentiating into macrophages and dendritic cells. Vast infiltration of bone marrow and HSC cells was found to be part of the inflammatory process in EAU. PMID:17035278
NASA Technical Reports Server (NTRS)
Spector, E.; LeBlanc, A.; Shackelford, L.
1995-01-01
This study reports on the short-term in vivo precision and absolute measurements of three combinations of whole-body scan modes and analysis software using a Hologic QDR 2000 dual-energy X-ray densitometer. A group of 21 normal, healthy volunteers (11 male and 10 female) were scanned six times, receiving one pencil-beam and one array whole-body scan on three occasions approximately 1 week apart. The following combinations of scan modes and analysis software were used: pencil-beam scans analyzed with Hologic's standard whole-body software (PB scans); the same pencil-beam analyzed with Hologic's newer "enhanced" software (EPB scans); and array scans analyzed with the enhanced software (EA scans). Precision values (% coefficient of variation, %CV) were calculated for whole-body and regional bone mineral content (BMC), bone mineral density (BMD), fat mass, lean mass, %fat and total mass. In general, there was no significant difference among the three scan types with respect to short-term precision of BMD and only slight differences in the precision of BMC. Precision of BMC and BMD for all three scan types was excellent: < 1% CV for whole-body values, with most regional values in the 1%-2% range. Pencil-beam scans demonstrated significantly better soft tissue precision than did array scans. Precision errors for whole-body lean mass were: 0.9% (PB), 1.1% (EPB) and 1.9% (EA). Precision errors for whole-body fat mass were: 1.7% (PB), 2.4% (EPB) and 5.6% (EA). EPB precision errors were slightly higher than PB precision errors for lean, fat and %fat measurements of all regions except the head, although these differences were significant only for the fat and % fat of the arms and legs. In addition EPB precision values exhibited greater individual variability than PB precision values. Finally, absolute values of bone and soft tissue were compared among the three combinations of scan and analysis modes. BMC, BMD, fat mass, %fat and lean mass were significantly different between PB scans and either of the EPB or EA scans. Differences were as large as 20%-25% for certain regional fat and BMD measurements. Additional work may be needed to examine the relative accuracy of the scan mode/software combinations and to identify reasons for the differences in soft tissue precision with the array whole-body scan mode.
T1-201 chloride scintigraphy for bone tumors and soft part sarcomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terui, S.; Oyamada, H.; Nishikawa, K.
1984-01-01
The author investigated T1-201 chloride as a tumor scanning agent of both tumors and soft part sarcomas. Six bone tumors (2 with Ewing sarcoma, 3 with osteosarcoma and 1 with giant cell tumor) and 3 soft part sarcoma (1 with liposarcoma and 2 with malignant fibrous histiocytoma (MFH)) were examined. All but one MFH were untreated primary cases. The diagnosis was determined from biopsy specimen. One patient with Ewing sarcoma had bone metastases. All cases were subsequently received chemotherpeutic agents. Surgery or local irradiation were also used in treatment. T1-201 scintigraphy were performed with intravenous administration of 2 mCi ofmore » T1-201 chloride before initiation of therapy. In addition, follow-up examinations were done in 4 patients (2 with Ewing sarcoma and 2 with osteosarcoma) to study the effect of chemotherapy on T1-201 uptake by the tumor. Tc-99m bone scans were available for comparison in 6 tumor. Ga-67 citrate scans were also examined for the 3 soft part sarcomas. The untreated tumors even in the metastatic lesions of Ewing sarcoma were distinctly visualized with T1-201 in all cases. The distribution of T1-201 in the tumors was sometimes different from that of Tc-99m and similar to that of Ga-67. Of 3 out of the 4 follow-up patients, the post-therapy scan showed reduction in T1-201 uptake more markedly than Tc-99m uptake during effective chemotherapy. The other one patient had not responded to the treatment so that the scan showed no changes in T1-201 uptake. These findings indicate that the tumor imaging with T1-201 is useful in the diagnosis of these malignant tumors and may be of value in assessing the response of bone tumors to chemotherapy.« less
Farber, Joshua M; Totterman, Saara M S; Martinez-Torteya, Antonio; Tamez-Peña, Jose G
2016-02-01
Subchondral bone (SCB) undergoes changes in the shape of the articulating bone surfaces and is currently recognized as a key target in osteoarthritis (OA) treatment. The aim of this study was to present an automated system that determines the curvature of the SCB regions of the knee and to evaluate its cross-sectional and longitudinal scan-rescan precision Six subjects with OA and six control subjects were selected from the Osteoarthritis Initiative (OAI) pilot study database. As per OAI protocol, these subjects underwent 3T MRI at baseline and every twelve months thereafter, including a 3D DESS WE sequence. We analyzed the baseline and twenty-four month images. Each subject was scanned twice at these visits, thus generating scan-rescan information. Images were segmented with an automated multi-atlas framework platform and then 3D renderings of the bone structure were created from the segmentations. Curvature maps were extracted from the 3D renderings and morphed into a reference atlas to determine precision, to generate population statistics, and to visualize cross-sectional and longitudinal curvature changes. The baseline scan-rescan root mean square error values ranged from 0.006mm(-1) to 0.013mm(-1), and from 0.007mm(-1) to 0.018mm(-1) for the SCB of the femur and the tibia, respectively. The standardized response of the mean of the longitudinal changes in curvature in these regions ranged from -0.09 to 0.02 and from -0.016 to 0.015, respectively. The fully automated system produces accurate and precise curvature maps of femoral and tibial SCB, and will provide a valuable tool for the analysis of the curvature changes of articulating bone surfaces during the course of knee OA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ir'ianov, Iu M; Ir'ianova, T Iu
2012-01-01
In the experiment conducted on 30 Wistar rats, the peculiarities of tibial bone defect replacement under conditions of transosseous osteosynthesis and implantation of titanium nickelide mesh structures were studied using the methods of scanning electron microscopy and x-ray electron probe microanalysis. It was demonstrated that implant osseointegration occured 7 days after surgery, and after 30 days the defect was replaced with bone tissue by the type of primary bone wound healing, thus the organotypical remodeling of regenerated bone took place.
What Are the Treatments for Other Symptoms of Menopause?
... vaginal dryness Treatment of sleep problems Treatment for Osteoporosis and Bone Loss Related to Menopause Because bone ... X-ray absorptiometry (DEXA) scan . If you have osteoporosis or are at risk for it, your health ...
Large-area super-resolution optical imaging by using core-shell microfibers
NASA Astrophysics Data System (ADS)
Liu, Cheng-Yang; Lo, Wei-Chieh
2017-09-01
We first numerically and experimentally report large-area super-resolution optical imaging achieved by using core-shell microfibers. The particular spatial electromagnetic waves for different core-shell microfibers are studied by using finite-difference time-domain and ray tracing calculations. The focusing properties of photonic nanojets are evaluated in terms of intensity profile and full width at half-maximum along propagation and transversal directions. In experiment, the general optical fiber is chemically etched down to 6 μm diameter and coated with different metallic thin films by using glancing angle deposition. The direct imaging of photonic nanojets for different core-shell microfibers is performed with a scanning optical microscope system. We show that the intensity distribution of a photonic nanojet is highly related to the metallic shell due to the surface plasmon polaritons. Furthermore, large-area super-resolution optical imaging is performed by using different core-shell microfibers placed over the nano-scale grating with 150 nm line width. The core-shell microfiber-assisted imaging is achieved with super-resolution and hundreds of times the field-of-view in contrast to microspheres. The possible applications of these core-shell optical microfibers include real-time large-area micro-fluidics and nano-structure inspections.
Super-Hydrophobic Surface Prepared by Lanthanide Oxide Ceramic Deposition Through PS-PVD Process
NASA Astrophysics Data System (ADS)
Li, Jie; Li, Cheng-Xin; Chen, Qing-Yu; Gao, Jiu-Tao; Wang, Jun; Yang, Guan-Jun; Li, Chang-Jiu
2017-02-01
Super-hydrophobic surface has received widespread attention in recent years. Both the surface morphology and chemical composition have significant impact on hydrophobic performance. A novel super-hydrophobic surface based on plasma spray-vapor deposition was introduced in the present paper. Samaria-doped ceria, which has been proved as an intrinsic hydrophobic material, was used as feedstock material. Additionally, in order to investigate the influence of surface free energy on the hydrophobicity, chemical modification by low surface free energy materials including stearic acid and 1,1,2,2-tetrahydroperfluorodecyltrimethoxysilane (FAS) was used on coating surface. Scanning electron microscopy and Fourier transform infrared spectroscopy were employed to characterize the coating surface. The results show that the obtained surface has a hierarchical structure composed by island-like structures agglomerated with angular-like sub-micrometer-sized particles. Moreover, with the surface free energy decreases, the hydrophobic property of the surface improves gradually. The water contact angle of the as-sprayed coating surface increases from 110° to 148° after modification by stearic acid and up to 154° by FAS. Furthermore, the resultant surface with super-hydrophobicity exhibits an excellent stability.
Super stretchable electroactive elastomer formation driven by aniline trimer self-assembly
Chen, Jing; Guo, Baolin; Eyster, Thomas W.; Ma, Peter X.
2015-01-01
Biomedical electroactive elastomers with a modulus similar to that of soft tissues are highly desirable for muscle, nerve, and other soft tissue replacement or regeneration, but have rarely been reported. In this work, superiorly stretchable electroactive polyurethane-urea elastomers were designed based on poly(lactide), poly(ethylene glycol), and aniline trimer (AT). A strain at break higher than 1600% and a modulus close to soft tissues was achieved from these copolymers. The mechanisms of super stretchability of the copolymer were systematically investigated. Crystallinity, chemical cross-linking, ionic cross-linking and hard domain formation were examined using differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), nuclear magnetic resonance (NMR) measurements and transmission electron microscopy (TEM). The sphere-like hard domains self-assembled from AT segments were found to provide the crucial physical interactions needed for the novel super elastic material formation. These super stretchable copolymers were blended with conductive fillers such as polyaniline nanofibers and nanosized carbon black to achieve a high electric conductivity of 0.1 S/cm while maintaining an excellent stretchability and a modulus similar to that of soft tissues (lower than 10 MPa). PMID:26692638
An alternative approach to account for patient organ doses from imaging guidance procedures.
Nelson, Alan P; Ding, George X
2014-07-01
To investigate the feasibility of an alternative method of accounting for additional organ doses resulting from image guidance procedures during patient treatment planning through tabulated values based on scan protocol and scan site. Patient-specific imaging dose to 30 patients resulting from Varian OBI kV-CBCT scans using the Standard Head (17 patients), Low-dose Thorax (8 patients), and Pelvic (5 patients) scan protocols were retrospectively calculated using Monte Carlo methods. Dose dependence on scan location and patient geometry was explored. Patient organ doses were analyzed by using dose-volume histograms and expressed by the mean, minimum dose delivered to 50% of the organ volume, D50. The reported doses are dose-to-medium instead of dose-to-water. The organ doses from all patient-specific calculations show predictable and limited ranges across patients. For brain isocenters using Standard Head Scans: Bone: 0.7-1.1 cGy, Brain: 0.2-0.3 cGy, Brainstem: 0.2-0.3 cGy, Skin: 0.3-0.4 cGy, Eye: 0.03-0.3 cGy. For head and neck patients using the Standard Head Scan: Bone: 0.3-0.6 cGy, Parotids: 0.3-0.4 cGy, Spinal Cord: 0.15-0.25 cGy, Thyroid: 0.1-0.25 cGy, Skin: 0.2-0.3 cGy, Trachea-Esophagus: 0.1-0.2 cGy. For chest using Thorax Scans: Bone: 1.1-1.8 cGy, Soft tissue organs (Bowel, Lung, Heart, Kidney, Esophagus, and Spinal Cord): 0.3-0.6 cGy. For abdominal site using Pelvic Scans: Bone: 3.2-4.2 cGy. Soft tissue organs (Bladder, Bowel, Rectum, Prostate, and Skin) D50s fell between 1.2 and 2.2 cGy. Femoral Heads: 2.5-3.4 cGy. It is adequate to estimate and account for organ dose by using tabulated values based on scan procedure and site because organ doses from imaging procedures are only modestly dependent upon scan location and body size. Considering the dose variation and magnitude of dose from each scan protocol in comparison to therapeutic doses, this approach provides a simple alternative to account for additional imaging guidance doses during patient treatment planning. Clinicians can use these tabulated values to make informed decisions in selecting the appropriate imaging procedures and imaging frequency during radiotherapy treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Axillary lymph node uptake of technetium-99m-MDP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ongseng, F.; Goldfarb, C.R.; Finestone, H.
We sought to determine the frequency and significance of axillary lymph node visualization on bone scans performed with diphosphonates. Consecutive {sup 99m}Tc-methylene diphosphonate ({sup 99m}Tc-MDP) bone scans (2435) were inspected for axillary soft-tissue uptake. In positive cases, the results of physical examination, correlative imaging studies and serial bone scans were recorded, as was the site of venipuncture. Forty-eight studies (2%) showed axillary uptake ipsilateral to the injection site. Extravasation of tracer, documented by focal activity near the injection site, was present in every case. There was no association with axillary adenopathy, mass, induration of radiographically visible calcification. On some images,more » foci adjacent to the axilla were superimposed on the rib, scapula, or humerus. The bone-to-background ratio was frequently reduced; repeat imaging after 1-2 hr usually improved osseous detail. Ipsilateral axillary lymph node visualization due to extravasation of {sup 99m}Tc-MDP is frequently associated with additional foci superimposed on osseous structures simulating pathology. Delayed skeletal uptake is common in such cases and necessitates a greater time interval between injection and imaging. 7 refs., 3 figs.« less
Friedlander, A H; Chang, T I; Aghazadehsanai, N; Berenji, G R; Harada, N D; Garrett, N R
2013-01-01
Femoral neck fractures in older females resulting from decreased bone mineral density (BMD; osteopenia) are associated with increased morbidity and mortality. Bone mineralization inhibition is probably controlled by proteins which also foster vascular calcification. Therefore, we evaluated the relationship between calcified carotid artery plaque (CCAP) on panoramic images and BMD on dual energy X-ray absorptiometry (DXA) bone scans. Images and hospital records identified by dentists defined two study groups (20 white females and 24 black females) having CCAP and an incidentally obtained bone scan. Ethnically matched (age±7 years, body mass index ±3 units) control groups with panoramic images devoid of CCAP and accompanying DXA scan were likewise constituted. A physician determined the BMD on the DXA. Females with CCAP had significantly (p = 0.03) poorer BMD at the femoral neck than those without CCAP. Although mean femoral neck BMD was significantly lower (p = 0.009) for white than for black females, there was no significant interaction between race and CCAP (p = 0.80). We observed a significant inverse association between the CCAP on panoramic images and femoral neck BMD in post-menopausal white females.
2004-08-10
ISS009-E-17439 (10 August 2004) --- Astronaut Edward M. (Mike) Fincke (foreground), Expedition 9 NASA ISS science officer and flight engineer, performs an ultrasound bone scan on cosmonaut Gennady I. Padalka, commander representing Russia's Federal Space Agency. The two are using the Advanced Diagnostic Ultrasound in Micro-G (ADUM) in the Destiny laboratory of the International Space Station (ISS). The ADUM keyboard, flat screen display and front control panel are visible at right.
Assessment of alveolar bone marrow fat content using 15 T MRI.
Cortes, Arthur Rodriguez Gonzalez; Cohen, Ouri; Zhao, Ming; Aoki, Eduardo Massaharu; Ribeiro, Rodrigo Alves; Abu Nada, Lina; Costa, Claudio; Arita, Emiko Saito; Tamimi, Faleh; Ackerman, Jerome L
2018-03-01
Bone marrow fat is inversely correlated with bone mineral density. The aim of this study is to present a method to quantify alveolar bone marrow fat content using a 15 T magnetic resonance imaging (MRI) scanner. A 15 T MRI scanner with a 13-mm inner diameter loop-gap radiofrequency coil was used to scan seven 3-mm diameter alveolar bone biopsy specimens. A 3-D gradient-echo relaxation time (T1)-weighted pulse sequence was chosen to obtain images. All images were obtained with a voxel size (58 µm 3 ) sufficient to resolve trabecular spaces. Automated volume of the bone marrow fat content and derived bone volume fraction (BV/TV) were calculated. Results were compared with actual BV/TV obtained from micro-computed tomography (CT) scans. Mean fat tissue volume was 20.1 ± 11%. There was a significantly strong inverse correlation between fat tissue volume and BV/TV (r = -0.68; P = .045). Furthermore, there was a strong agreement between BV/TV derived from MRI and obtained with micro-CT (interclass correlation coefficient = 0.92; P = .001). Bone marrow fat of small alveolar bone biopsy specimens can be quantified with sufficient spatial resolution using an ultra-high-field MRI scanner and a T1-weighted pulse sequence. Copyright © 2017 Elsevier Inc. All rights reserved.
Bone mineral content in the senescent rat femur: an assessment using single photon absorptiometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiebzak, G.M.; Smith, R.; Howe, J.C.
1988-06-01
The single photon absorptiometry technique was evaluated for measuring bone mineral content (BMC) of the excised femurs of the rat, and the system was used to examine the changes in cortical and trabecular bone from young adult (6 mo), mature adult (12 mo), and senescent (24 mo) male and female animals. BMC of the femur midshaft, representing cortical bone, apparently increased progressively with advancing age. The width of the femur at the scan site also increased with age. Normalizing the midshaft BMC by width partially compensated for the age-associated increase. However, when bone mineral values were normalized by the corticalmore » area at the scan site, to take into account the geometric differences in the femurs of different aged animals, maximum bone densities were found in the mature adult and these values decreased slightly in the femurs from senescent rats. In contrast, the BMC of the femur distal metaphysis, representing trabecular bone, decreased markedly in the aged rat. The loss of trabecular bone was also evident from morphological examination of the distal metaphysis. These findings indicated that bone mineral loss with age was site specific in the rat femur. These studies provided additional evidence that the rat might serve as a useful animal model for specific experiments related to the pathogenesis of age-associated osteopenia.« less
Haptic computer-assisted patient-specific preoperative planning for orthopedic fractures surgery.
Kovler, I; Joskowicz, L; Weil, Y A; Khoury, A; Kronman, A; Mosheiff, R; Liebergall, M; Salavarrieta, J
2015-10-01
The aim of orthopedic trauma surgery is to restore the anatomy and function of displaced bone fragments to support osteosynthesis. For complex cases, including pelvic bone and multi-fragment femoral neck and distal radius fractures, preoperative planning with a CT scan is indicated. The planning consists of (1) fracture reduction-determining the locations and anatomical sites of origin of the fractured bone fragments and (2) fracture fixation-selecting and placing fixation screws and plates. The current bone fragment manipulation, hardware selection, and positioning processes based on 2D slices and a computer mouse are time-consuming and require a technician. We present a novel 3D haptic-based system for patient-specific preoperative planning of orthopedic fracture surgery based on CT scans. The system provides the surgeon with an interactive, intuitive, and comprehensive, planning tool that supports fracture reduction and fixation. Its unique features include: (1) two-hand haptic manipulation of 3D bone fragments and fixation hardware models; (2) 3D stereoscopic visualization and multiple viewing modes; (3) ligaments and pivot motion constraints to facilitate fracture reduction; (4) semiautomatic and automatic fracture reduction modes; and (5) interactive custom fixation plate creation to fit the bone morphology. We evaluate our system with two experimental studies: (1) accuracy and repeatability of manual fracture reduction and (2) accuracy of our automatic virtual bone fracture reduction method. The surgeons achieved a mean accuracy of less than 1 mm for the manual reduction and 1.8 mm (std [Formula: see text] 1.1 mm) for the automatic reduction. 3D haptic-based patient-specific preoperative planning of orthopedic fracture surgery from CT scans is useful and accurate and may have significant advantages for evaluating and planning complex fractures surgery.
Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D
2014-10-01
Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.
Sanderson, Michael J.; Smith, Ian; Parker, Ian; Bootman, Martin D.
2016-01-01
Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. PMID:25275114
Bone Ablation at 2.94 mm Using the Free-Electron Laser and Er:YAG Laser
NASA Astrophysics Data System (ADS)
Ivanov, Borislav; Hakimian, Arman; Peavy, G. M.; Haglund, Richard
2002-03-01
Bone Ablation at 2.94 microns Using the Free-Electron Laser and Er:YAG Laser in Perfluorocarbon Compounds B. Ivanov^1, A. M. Hakimian^1, G. M. Peavy^2, R. F. Haglund, Jr.1 1Department of Physics and Astronomy, W. M. Keck Foundation Free-Electron Laser Center, Vanderbilt University, Nashville, TN 37235 2Beckman Laser Institute and Medical Clinic, College of Medicine, University of California, Irvine, CA 92612 We report studies on the efficiency of mid-IR laser ablation of cow cortical bone using the Vanderbilt free-electron laser (FEL), when irrigating the ablation zone with an inert and biocompatible perfluorocarbon compounds (PFC). At 2.94 microns, the bone matrix (mainly by water) absorbs the radiation while the PFCs transmit this wavelength, dissipate heat and acoustical stress, and prevent carbonization of the bone sample. The ablation rate, as a function of laser fluence, scanning speed and the type of PFC, was investigated. The laser fluence was estimated to be 5 J/cm^2 - 100 J/cm^2 with a laser focal spot diameter of 160 microns 500 microns and a scanning speed of 40 microns/s 2960 microns/s. The ablation rate was estimated from scanning electron microscopy to be 0.5 mm/s 2.4 mm/s. Comparisons of ablation rates with the FEL and a Er:YAG laser at 2.94 microns are being evaluated.
Strategies for delivering bone morphogenetic protein for bone healing.
Begam, Howa; Nandi, Samit Kumar; Kundu, Biswanath; Chanda, Abhijit
2017-01-01
Bone morphogenetic proteins (BMPs) are the most significant growth factors that belong to the Transforming Growth Factor Beta (TGF-β) super-family. Though more than twenty members of this family have been identified so far in humans, Food and Drug Administration (FDA) approved two growth factors: BMP-2 and BMP-7 for treatments of spinal fusion and long-bone fractures with collagen carriers. Currently BMPs are clinically used in spinal fusion, oral and maxillofacial surgery and also in the repair of long bone defects. The efficiency of BMPs depends a lot on the selection of suitable carriers. At present, different types of carrier materials are used: natural and synthetic polymers, calcium phosphate and ceramic-polymer composite materials. Number of research articles has been published on the minute intricacies of the loading process and release kinetics of BMPs. Despite the significant evidence of its potential for bone healing demonstrated in animal models, future clinical investigations are needed to define dose, scaffold and route of administration. The efficacy and application of BMPs in various levels with a proper carrier and dose is yet to be established. The present article collates various aspects of success and limitation and identifies the prospects and challenges associated with the use of BMPs in orthopaedic surgery. Copyright © 2016 Elsevier B.V. All rights reserved.
Influence of bone density on the cement fixation of femoral hip resurfacing components.
Bitsch, Rudi G; Jäger, Sebastian; Lürssen, Marcus; Loidolt, Travis; Schmalzried, Thomas P; Clarius, Michael
2010-08-01
In clinical outcome studies, small component sizes, female gender, femoral shape, focal bone defects, bad bone quality, and biomechanics have been associated with failures of resurfacing arthroplasties. We used a well-established experimental setup and human bone specimens to analyze the effects of bone density on cement fixation of femoral hip resurfacing components. Thirty-one fresh frozen femora were prepared for resurfacing using the original instruments. ASR resurfacing prostheses were implanted after dual-energy X-ray densitometer scans. Real-time measurements of pressure and temperature during implantation, analyses of cement penetration, and measurements of micro motions under torque application were performed. The associations of bone density and measurement data were examined calculating regression lines and multiple correlation coefficients; acceptability was tested with ANOVA. We found significant relations between bone density and micro motion, cement penetration, cement mantle thickness, cement pressure, and interface temperature. Mean bone density of the femora was 0.82 +/- 0.13 g/cm(2), t-score was -0.7 +/- 1.0, and mean micro motion between bone and femoral resurfacing component was 17.5 +/- 9.1 microm/Nm. The regression line between bone density and micro motion was equal to -56.7 x bone density + 63.8, R = 0.815 (p < 0.001). Bone density scans are most helpful for patient selection in hip resurfacing, and a better bone quality leads to higher initial component stability. A sophisticated cementing technique is recommended to avoid vigorous impaction and incomplete seating, since increasing bone density also results in higher cement pressures, lower cement penetration, lower interface temperatures, and thicker cement mantles. Copyright 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Bagatell, Rochelle; Cohn, Susan L.; Pearson, Andrew D.; Villablanca, Judith G.; Berthold, Frank; Burchill, Susan; Boubaker, Ariane; McHugh, Kieran; Nuchtern, Jed G.; London, Wendy B.; Seibel, Nita L.; Lindwasser, O. Wolf; Maris, John M.; Brock, Penelope; Schleiermacher, Gudrun; Ladenstein, Ruth; Matthay, Katherine K.; Valteau-Couanet, Dominique
2017-01-01
Purpose More than two decades ago, an international working group established the International Neuroblastoma Response Criteria (INRC) to assess treatment response in children with neuroblastoma. However, this system requires modification to incorporate modern imaging techniques and new methods for quantifying bone marrow disease that were not previously widely available. The National Cancer Institute sponsored a clinical trials planning meeting in 2012 to update and refine response criteria for patients with neuroblastoma. Methods Multidisciplinary investigators from 13 countries reviewed data from published trials performed through cooperative groups, consortia, and single institutions. Data from both prospective and retrospective trials were used to refine the INRC. Monthly international conference calls were held from 2011 to 2015, and consensus was reached through review by working group leadership and the National Cancer Institute Clinical Trials Planning Meeting leadership council. Results Overall response in the revised INRC will integrate tumor response in the primary tumor, soft tissue and bone metastases, and bone marrow. Primary and metastatic soft tissue sites will be assessed using Response Evaluation Criteria in Solid Tumors (RECIST) and iodine-123 (123I) –metaiodobenzylguanidine (MIBG) scans or [18F]fluorodeoxyglucose–positron emission tomography scans if the tumor is MIBG nonavid. 123I-MIBG scans, or [18F]fluorodeoxyglucose–positron emission tomography scans for MIBG-nonavid disease, replace technetium-99m diphosphonate bone scintigraphy for osteomedullary metastasis assessment. Bone marrow will be assessed by histology or immunohistochemistry and cytology or immunocytology. Bone marrow with ≤ 5% tumor involvement will be classified as minimal disease. Urinary catecholamine levels will not be included in response assessment. Overall response will be defined as complete response, partial response, minor response, stable disease, or progressive disease. Conclusion These revised criteria will provide a uniform assessment of disease response, improve the interpretability of clinical trial results, and facilitate collaborative trial designs. PMID:28471719
Koczka, Charles Philip; Abramowitz, Meira; Goodman, Adam J
2012-07-01
Bone demineralization has been increasingly recognized as a disease process concurrent with inflammatory bowel disease (IBD). Racial variation in osteoporosis in IBD patients has been poorly described. We sought to identify the risk factors for demineralization in Afro-Caribbeans (AC) with IBD. A retrospective chart review was performed from a 10-year prospectively collected database of IBD patients seen at an urban medical center. Data on dual-energy X-ray absorptiometry (DXA) scanning, use of steroids, bisphosphonates, calcium, and vitamin D, as well as blood chemistries were collected. One hundred and fifteen charts of AC IBD patients were reviewed, of which 24 patients had undergone DXA scanning. Fourteen patients with a T-score of less than -1 were compared with 10 patients with DXA scores of more than -1. Two patients with T-scores of less than -1 had fractures, whereas none were observed in the comparison group (P=0.5). The mean BMI for those with T-scores of less than -1 was 23.9 kg/m compared with 31.5 kg/m in those with T-scores of more than -1 (P=0.0034). Screening for bone demineralization in ethnic populations with IBD is lacking as only 21% of AC IBD patients seen in our institution had undergone a DXA scan. Of those who were scanned, more than half of the patients had T-scores suggestive of bone demineralization. Although those who were obese did not have demineralization, our sample sizes were small and the results from this study should prompt further investigation to determine the prevalence and significance of bone demineralization in minority populations with IBD.
De Angelis, D; Gibelli, D; Palazzo, E; Sconfienza, L; Obertova, Z; Cattaneo, C
2016-07-01
Personal identification consists of the comparison of ante-mortem information from a missing person with post-mortem data obtained from an unidentified corpse. Such procedure is based on the assessment of individualizing features which may help in providing a conclusive identification between ante-mortem and post-mortem material. Anatomical variants may provide important clues to correctly identify human remains. Areas of idiopathic osteosclerosis (IO), or dense bone islands (DBIs) characterized by radiopaque areas of dense, trabeculated, non-inflamed vital bone represent one of these, potentially individualizing, anatomical features. This study presents a case where the finding of DBI was crucial for a positive identification through CT-scan. A decomposed body was found in an apartment in June 2014 in advanced decomposition and no dental records were available to perform a comparison for positive identification. Genetic tests were not applicable because of the lack of relatives in a direct line. The analysis of the only ante-mortem documentation, a CT-scan to the deceased dating back to August 2009, showed the presence of three DBIs within the trabecular bone of the proximal portion of the right femur. The same bony district was removed from the corpse during the autopsy and analysed by CT-scan, which verified the presence of the same features. Forensic practitioners should therefore be aware of the great importance of anatomical bone variants, such as dense bone islands for identification purposes, and the importance of advanced radiological technique for addressing the individualizing potential of such variants. We propose that anatomical variants of the human skeleton should be considered as being "primary identification characteristics" similar to dental status, fingerprints and DNA. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
Anthropometry of Arabian nose using computed tomography scanning.
Alharethy, Sami; Al-Quniabut, Ibrahim; Jang, Yong Ju
2017-01-01
The nose plays a critical role in determining the external appearance of an individual. We studied the craniofacial anthropometrics by CT scanning since previous studies in the field were conducted in Saudi populations using photometric analysis. Obtain objective and quantitative data that can help surgeons plan cosmetic procedures for the nose. A cross-sectional analytical study. Department of Otorhinolaryngology, Head and Neck Surgery, King Abdulaziz University Hospital, King Saud University, Riyadh, Saudi Arabia from February 2015 to December 2015. Facial CT scans were performed on native Saudis who underwent CT of the paranasal sinuses. Three anthropometric parameters: the nasofrontal angle, the pyramidal angle, and the linear distance between the nasion and the tip of the nasal bone. In 160 native Saudis (86 males and 74 females) who underwent CT, the mean nasofrontal angle was 125.3° in males and 135.6° in females. The mean linear distance between the nasion and the tip of the nasal bone was 23.0 mm for males and 20.9 mm for females. The mean nasal pyramidal angle was 110.8° in males and 111.9° for females at the level of the nasal root, 105.6° in males and 104.8° in females at the mid-level of the nasal bone, and 116.8° males and 107.9° in females at the level of the tip of the nasal bone. Nasal bone lengths and angles can be obtained accurately from CT scans. These angles differ in different ethnic groups. The sample represents native Saudis but not a cross section of the Saudi population. The relatively small sample size is a limitation of the study, but we consider these to be initial findings.
Bone pulsating metastasis due to renal cell carcinoma.
Cınar, Murat; Derincek, Alihan; Karan, Belgin; Akpınar, Sercan; Tuncay, Cengiz
2010-11-01
Pulsation on the bone cortex surface is a rare condition. Pulsative palpation of the superficial-located bone tumors can be misperceived as an aneurysm. Fifty-eight-year-old man is presented with pulsating bone mass in his proximal tibia. During angiographic examination, hypervascular masses were diagnosed both at right kidney and at right proximal tibia. Renal cell carcinoma was diagnosed after abdominal CT scan. Proximal tibia biopsy was complicated with projectile bleeding.
Far-field optical imaging with subdiffraction resolution enabled by nonlinear saturation absorption
NASA Astrophysics Data System (ADS)
Ding, Chenliang; Wei, Jingsong
2016-01-01
The resolution of far-field optical imaging is required to improve beyond the Abbe limit to the subdiffraction or even the nanoscale. In this work, inspired by scanning electronic microscopy (SEM) imaging, in which carbon (or Au) thin films are usually required to be coated on the sample surface before imaging to remove the charging effect while imaging by electrons. We propose a saturation-absorption-induced far-field super-resolution optical imaging method (SAI-SRIM). In the SAI-SRIM, the carbon (or Au) layers in SEM imaging are replaced by nonlinear-saturation-absorption (NSA) thin films, which are directly coated onto the sample surfaces using advanced thin film deposition techniques. The surface fluctuant morphologies are replicated to the NSA thin films, accordingly. The coated sample surfaces are then imaged using conventional laser scanning microscopy. Consequently, the imaging resolution is greatly improved, and subdiffraction-resolved optical images are obtained theoretically and experimentally. The SAI-SRIM provides an effective and easy way to achieve far-field super-resolution optical imaging for sample surfaces with geometric fluctuant morphology characteristics.
Super-resolved Parallel MRI by Spatiotemporal Encoding
Schmidt, Rita; Baishya, Bikash; Ben-Eliezer, Noam; Seginer, Amir; Frydman, Lucio
2016-01-01
Recent studies described an alternative “ultrafast” scanning method based on spatiotemporal (SPEN) principles. SPEN demonstrates numerous potential advantages over EPI-based alternatives, at no additional expense in experimental complexity. An important aspect that SPEN still needs to achieve for providing a competitive acquisition alternative entails exploiting parallel imaging algorithms, without compromising its proven capabilities. The present work introduces a combination of multi-band frequency-swept pulses simultaneously encoding multiple, partial fields-of-view; together with a new algorithm merging a Super-Resolved SPEN image reconstruction and SENSE multiple-receiving methods. The ensuing approach enables one to reduce both the excitation and acquisition times of ultrafast SPEN acquisitions by the customary acceleration factor R, without compromises in either the ensuing spatial resolution, SAR deposition, or the capability to operate in multi-slice mode. The performance of these new single-shot imaging sequences and their ancillary algorithms were explored on phantoms and human volunteers at 3T. The gains of the parallelized approach were particularly evident when dealing with heterogeneous systems subject to major T2/T2* effects, as is the case upon single-scan imaging near tissue/air interfaces. PMID:24120293
Wang, Peiyu; Li, Zhencheng; Pei, Yongmao
2018-04-16
An in situ high temperature microwave microscope was built for detecting surface and sub-subsurface structures and defects. This system was heated with a self-designed quartz lamp radiation module, which is capable of heating to 800°C. A line scanning of a metal grating showed a super resolution of 0.5 mm (λ/600) at 1 GHz. In situ scanning detections of surface hole defects on an aluminium plate and a glass fiber reinforced plastic (GFRP) plate were conducted at different high temperatures. A post processing algorithm was proposed to remove the background noises induced by high temperatures and the 3.0 mm-spaced hole defects were clearly resolved. Besides, hexagonal honeycomb lattices were in situ detected and clearly resolved under a 1.0 mm-thick face panel at 20°C and 50°C, respectively. The core wall positions and bonding width were accurately detected and evaluated. In summary, this in situ microwave microscope is feasible and effective in sub-surface detection and super resolution imaging at different high temperatures.
The health care provider will perform a physical exam. Tests include: Bone marrow biopsy Chest x-ray CT scan of the chest, abdomen, and pelvis Complete blood count (CBC) Examination of the spinal fluid Lymph node biopsy PET scan
Limited posterolateral surgical approach to the knee for excision of osteoid osteoma.
Minkoff, J; Jaffe, L; Menendez, L
1987-10-01
An 18-year-old man suffered four years of undiagnosed knee pain until a CAT scan revealed an epiphyseal osteoid osteoma of the tibia located subchondrally, just medial to the proximal tibiofibular joint. A nidus in this location is not easily accessible, and its proximity to the joint surface raised concerns about damage to the tibial plateau. To facilitate excision of the tumor, cadaveric dissections were performed to develop a limited posterior approach to the proximal, lateral portion of the tibia. The CAT scan was used to calculate the precise dimensions of the tumor and its relation to the posterior tibial cortex and the proximal tibiofibular joint. With the use of the exposure developed in the laboratory and the calculations derived from the CAT scan, the tumor could be excised by removing a single block of bone 15 mm3. Intraoperative radiographs confirmed the presence of the nidus within the excised block of bone. This case report reaffirms the frequent difficulties and tardiness in diagnosing osteoid osteomas and the need to include these tumors in the differential diagnosis of knee pain and epiphyseal lesions. Before CAT scans were used, the working diagnoses were torn meniscus, juvenile rheumatoid arthritis, and bone hemangiomatosis.
Malignant external otitis: early scintigraphic detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strashun, A.M.; Nejatheim, M.; Goldsmith, S.J.
1984-02-01
Pseudomonas otitis externa in elderly diabetics may extend aggressively to adjacent bone, cranial nerves, meninges, and vessels, leading to a clinical diagnosis of ''malignant'' external otitis. Early diagnosis is necessary for successful treatment. This study compares the findings of initial radiographs, thin-section tomography of temporal bone, CT scans of head and neck, technetium-99m methylene diphosphonate (MDP) and gallium-67 citrate scintigraphy, and single-photon emission computed tomography (SPECT) for detection of temporal bone osteomylitis in ten patients fulfilling the clinical diagnostic criteria of malignant external otitis. Skull radiographs were negative in all of the eight patients studied. Thin-section tomography was positive inmore » one of the seven patients studied using this modality. CT scanning suggested osteomyelitis in three of nine patients. Both Tc-99m and Ga-67 citrate scintigraphy were positive in 10 of 10 patients. These results suggest that technetium and gallium scintigraphy are more sensitive than radiographs and CT scans for early detection of malignant external otitis.« less
Stress reactions involving the pars interarticularis in young athletes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, D.W.; Wiltse, L.L.; Dingeman, R.D.
A stress reaction involving the pars interarticularis of the lumbar spine was confirmed in seven young athletes with a positive technetium pyrophosphate bone scan. No pars defects were detectable on their lumbosacral roentgenograms, which included oblique views. The return to normal levels of radioactive uptake on repeat bone scans correlated closely with their clinical course. If the bony reaction is recognized early, it may heal at a subroentgenographic level and prevent the development of lumbar spondylolysis. These early lesions usually show unilateral increased uptake at one lumbar level on the bone scan and, initially, the athlete localizes the pain tomore » the corresponding unilateral lumbar paraspinous area. The ''one-legged hyperextension test'' is positive on the ipsilateral side and aggravates the pain. Treatment consists of avoiding the aggravating activities and resting. The average time for return to pain-free competition was 7.3 months. These developing defects may be the source of considerable prolonged disability in the young athlete, particularly if undiagnosed and untreated.« less
Choukroun, Joseph; Simonpieri, Alain; Del Corso, Marco; Mazor, Ziv; Sammartino, Gilberto; Dohan Ehrenfest, David M
2008-09-01
Analysis of tomodensitometric controls following sinus grafts clearly demonstrates a quite systematic lack of homogeneity. Sinus contamination by anaerobic bacteria seems almost unavoidable during bone graft surgery, and this problem may jeopardize the healing process. The aim of this study was to characterize in a systematic way the nonhomogeneities observed at 1, 2, or 3 months postsurgery within allogenous sinus grafts, and to assess the possible influence of a 0.5% sterile solution of metronidazole incorporated in the sinus bone graft. This clinical study was conducted on 72 patients treated with single or bilateral sinus-lifts: 94 sinus elevations performed with freeze-dried bone allograft (Phoenix, TBF, Mions, France), with (test group) or without (control group) metronidazole. In the test group, each bone graft was hydrated with 2 mL of a 0.5% metronidazole solution, i.e., only 10 mg of metronidazole. All the patients went through a first presurgical computerized tomography (CT)-scan followed by a second scan performed at 1, 2, or 3 months postsurgery (which was used as the preimplant reference scan). For 11 patients, 2 postsurgical CT-scans were performed respectively at 10 days and 2 months. Using an arbitrary gray scale (Arbitrary Densitometric Unit) which functions according to the Hounsfield unit principle, the degree of radiographic homogeneity of the grafts was established. Density scattering provides some information on the homogeneity or nonhomogeneity of the bone graft. The 12 grafts performed without metronidazole show significant nonhomogeneities at 1, 2, or 3 months. Moreover, when a CT-scan is performed during the first postoperative days (at 10 days), the presence of air bubbles in the graft is confirmed. The tomodensitometric aspects of all grafts treated with metronidazole in this series are absolutely identical: they show a high degree of homogeneity. Sixty-three cases (76.8%) are homogeneous, and 19 cases (23.2%) are significantly homogeneous. The time at which the control scan is performed (10 days, 1, 2, or 3 months) does not seem to influence significantly the degree of homogeneity assessed. In the control group, some inflammatory events associated with facial oedema were observed in 25% of the cases. In the test group, no such event was recorded for the 82 sinus-lifts treated with metronidazole. A possible correlation may exist between the occurrence of non homogeneities within the bone grafts and the anaerobic bacterial contamination. The local use of a very small quantity of metronidazole (equivalent to only 1/20 of a common 200 mg oral tablet) could provide more security when performing sinus-lift procedures and an improved quality of the graft. This protocol should not be considered as an antibiotherapy, but only as way to limit the initial contamination of bone graft.
Lovera, Pierre; Creedon, Niamh; Alatawi, Hanan; Mitchell, Micki; Burke, Micheal; Quinn, Aidan J; O'Riordan, Alan
2014-05-02
In this paper, we describe the fabrication, simulation and characterization of dense arrays of freestanding silver capped polystyrene nanotubes, and demonstrate their suitability for surface enhanced Raman scattering (SERS) applications. Substrates are fabricated in a rapid, low-cost and scalable way by melt wetting of polystyrene (PS) in an anodized alumina (AAO) template, followed by silver evaporation. Scanning electron microscopy reveals that substrates are composed of a dense array of freestanding polystyrene nanotubes topped by silver nanocaps. SERS characterization of the substrates, employing a monolayer of 4-aminothiophenol (4-ABT) as a model molecule, exhibits an enhancement factor of ∼1.6 × 10(6), in agreement with 3D finite difference time domain simulations. Contact angle measurements of the substrates revealed super-hydrophobic properties, allowing pre-concentration of target analyte into a small volume. These super-hydrophobic properties of the samples are taken advantage of for sensitive detection of the organic pollutant crystal violet, with detection down to ∼400 ppt in a 2 μl aliquot demonstrated.
A simple and low temperature process for super-hydrophilic rutile TiO 2 thin films growth
NASA Astrophysics Data System (ADS)
Mane, R. S.; Joo, Oh-Shim; Min, Sun-Ki; Lokhande, C. D.; Han, Sung-Hwan
2006-11-01
We investigate an environmentally friendly aqueous solution system for rutile TiO2 violet color nanocrystalline thin films growth on ITO substrate at room temperature. Film shows considerable absorption in visible region with excitonic maxima at 434 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), UV-vis, water surface contact angle and energy dispersive X-ray analysis (EDX) techniques in addition to actual photo-image that shows purely rutile phase of TiO2 with violet color, super-hydrophilic and densely packed nanometer-sized spherical grains of approximate diameter 3.15 ± 0.4 nm, characterize the films. Band gap energy of 4.61 eV for direct transition was obtained for the rutile TiO2 films. Film surface shows super-hydrophilic behavior, as exhibited water contact angle was 7°. Strong visible absorption (not due to chlorine) leaves future challenge to use these films in extremely thin absorber (ETA) solar cells.
Label-free photoacoustic nanoscopy
Danielli, Amos; Maslov, Konstantin; Garcia-Uribe, Alejandro; Winkler, Amy M.; Li, Chiye; Wang, Lidai; Chen, Yun; Dorn, Gerald W.; Wang, Lihong V.
2014-01-01
Abstract. Super-resolution microscopy techniques—capable of overcoming the diffraction limit of light—have opened new opportunities to explore subcellular structures and dynamics not resolvable in conventional far-field microscopy. However, relying on staining with exogenous fluorescent markers, these techniques can sometimes introduce undesired artifacts to the image, mainly due to large tagging agent sizes and insufficient or variable labeling densities. By contrast, the use of endogenous pigments allows imaging of the intrinsic structures of biological samples with unaltered molecular constituents. Here, we report label-free photoacoustic (PA) nanoscopy, which is exquisitely sensitive to optical absorption, with an 88 nm resolution. At each scanning position, multiple PA signals are successively excited with increasing laser pulse energy. Because of optical saturation or nonlinear thermal expansion, the PA amplitude depends on the nonlinear incident optical fluence. The high-order dependence, quantified by polynomial fitting, provides super-resolution imaging with optical sectioning. PA nanoscopy is capable of super-resolution imaging of either fluorescent or nonfluorescent molecules. PMID:25104412
Super-hydrophobic multi-walled carbon nanotube coatings for stainless steel.
De Nicola, Francesco; Castrucci, Paola; Scarselli, Manuela; Nanni, Francesca; Cacciotti, Ilaria; De Crescenzi, Maurizio
2015-04-10
We have taken advantage of the native surface roughness and the iron content of AISI 316 stainless steel to directly grow multi-walled carbon nanotube (MWCNT) random networks by chemical vapor deposition (CVD) at low-temperature (1000°C) without the addition of any external catalysts or time-consuming pre-treatments. In this way, super-hydrophobic MWCNT films on stainless steel sheets were obtained, exhibiting high contact angle values (154°C) and high adhesion force (high contact angle hysteresis). Furthermore, the investigation of MWCNT films with scanning electron microscopy (SEM) reveals a two-fold hierarchical morphology of the MWCNT random networks made of hydrophilic carbonaceous nanostructures on the tip of hydrophobic MWCNTs. Owing to the Salvinia effect, the hydrophobic and hydrophilic composite surface of the MWCNT films supplies a stationary super-hydrophobic coating for conductive stainless steel. This biomimetical inspired surface not only may prevent corrosion and fouling, but also could provide low friction and drag reduction.
Bahk, Yong-Whee; Hwang, Seok-Ha; Lee, U-Young; Chung, Yong-An; Jung, Joo-Young; Jeong, Hyeonseok S
2017-11-01
We prospectively performed gamma correction pinhole bone scan (GCPBS) and histopathologic verification study to make simultaneous morphobiochemical diagnosis of trabecular microfractures (TMF) occurred in the femoral head as a part of femoral neck fracture.Materials consisted of surgical specimens of the femoral head in 6 consecutive patients. The specimens were imaged using Tc-99m hydroxymethylene diphosphonate (HDP) pinhole scan and processed by the gamma correction. After cleansing with 10% formalin solution, injured specimen surface was observed using a surgical microscope to record TMF. Morphological findings shown in the photograph, naive pinhole bone scan, GCPBS, and hematoxylin-eosin (H&E) stain of the specimen were reciprocally correlated for histological verification and the usefulness of suppression and enhancement of Tc-99m HDP uptake was biochemically investigated in TMF and edema and hemorrhage using gamma correction.On the one hand, GCPBS was able to depict the calcifying calluses in TMF with enhanced Tc-99m HDP uptake. They were pinpointed, speckled, round, ovoid, rod-like, geographic, and crushed in shape. The smallest callus measured was 0.23 mm in this series. On the other hand, GCPBS biochemically was able to discern the calluses with enhanced high Tc-99m HDP uptake from the normal and edema dipped and hemorrhage irritated trabeculae with washed out uptake.Morphobiochemically, GCPBS can clearly depict microfractures in the femoral head produced by femoral neck fracture. It discerns the microcalluses with enhanced Tc-99m HDP uptake from the intact and edema dipped and hemorrhage irritated trabeculae with suppressed washed out Tc-99m HDP uptake. Both conventional pinhole bone scan and gamma correction are useful imaging means to specifically diagnose the microcalluses naturally formed in TMF.
Meacock, L.; Donaldson, Ana; Isaac, A.; Briody, A.; Ramnarine, R.; Edmonds, M. E.; Elias, D. A.
2017-01-01
There are no accepted methods to grade bone marrow oedema (BMO) and fracture on magnetic resonance imaging (MRI) scans in Charcot osteoarthropathy. The aim was to devise semiquantitative BMO and fracture scores on foot and ankle MRI scans in diabetic patients with active osteoarthropathy and to assess the agreement in using these scores. Three radiologists assessed 45 scans (Siemens Avanto 1.5T, dedicated foot and ankle coil) and scored independently twenty-two bones (proximal phalanges, medial and lateral sesamoids, metatarsals, tarsals, distal tibial plafond, and medial and lateral malleoli) for BMO (0—no oedema, 1—oedema < 50% of bone volume, and 2—oedema > 50% of bone volume) and fracture (0—no fracture, 1—fracture, and 2—collapse/fragmentation). Interobserver agreement and intraobserver agreement were measured using multilevel modelling and intraclass correlation (ICC). The interobserver agreement for the total BMO and fracture scores was very good (ICC = 0.83, 95% confidence intervals (CI) 0.76, 0.91) and good (ICC = 0.62; 95% CI 0.48, 0.76), respectively. The intraobserver agreement for the total BMO and fracture scores was good (ICC = 0.78, 95% CI 0.6, 0.95) and fair to moderate (ICC = 0.44; 95% CI 0.14, 0.74), respectively. The proposed BMO and fracture scores are reliable and can be used to grade the extent of bone damage in the active Charcot foot. PMID:29230422
What Happens to bone health during and after spaceflight?
NASA Technical Reports Server (NTRS)
Sibonga, Jean D.; Evans, Harlan J.; Spector, Elisabeth R.; Maddocks, Mary J.; Smith, Scott A.; Shackelford, Linda C.; LeBlanc, Adrian D.
2006-01-01
Weightless conditions of space flight accelerate bone loss. There are no reports to date that address whether the bone that is lost during spaceflight could ever be recovered. Spaceinduced bone loss in astronauts is evaluated at the Johnson Space Center (JSC) by measurement of bone mineral density (BMD) by Dual-energy x-ray absorptiometry (DXA) scans. Astronauts are routinely scanned preflight and at various time points postflight (greater than or equal to Return+2 days). Two sets of BMD data were used to model spaceflight-induced loss and skeletal recovery in crewmembers following long-duration spaceflight missions (4-6 months). Group I was from astronauts (n=7) who were systematically scanned at multiple time points during the postflight period as part of a research protocol to investigate skeletal recovery. Group II came from a total of 49 sets of preflight and postflight data obtained by different protocols. These data were from 39 different crewmembers some of whom served on multiple flights. Changes in BMD (between pre- and postflight BMD) were plotted as a function of time (days-after-landing); plotted data were fitted to an exponential equation which enabled estimations of i) BMD change at day 0 after landing and ii) the number of days by which 50% of the lost bone is recovered (half-life). These fits were performed for BMD of the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. There was consistency between the models for BMD recovery. Based upon the exponential model of BMD restoration, recovery following long-duration missions appears to be substantially complete in crewmembers within 36 months following return to Earth.
Hydrogel-beta-TCP scaffolds and stem cells for tissue engineering bone.
Weinand, Christian; Pomerantseva, Irina; Neville, Craig M; Gupta, Rajiv; Weinberg, Eli; Madisch, Ijad; Shapiro, Frederic; Abukawa, Harutsugi; Troulis, Maria J; Vacanti, Joseph P
2006-04-01
Trabecular bone is a material of choice for reconstruction after trauma and tumor resection and for correction of congenital defects. Autologous bone grafts are available in limited shapes and sizes; significant donor site morbidity is another major disadvantage to this approach. To overcome these limitations, we used a tissue engineering approach to create bone replacements in vitro, combining bone-marrow-derived differentiated mesenchymal stem cells (MSCs) suspended in hydrogels and 3-dimensionally printed (3DP) porous scaffolds made of beta-tricalcium-phosphate (beta-TCP). The scaffolds provided support for the formation of bone tissue in collagen I, fibrin, alginate, and pluronic F127 hydrogels during culturing in oscillating and rotating dynamic conditions. Histological evaluation including toluidine blue, alkaline phosphatase, and von Kossa staining was done at 1, 2, 4, and 6 weeks. Radiographic evaluation and high-resolution volumetric CT (VCT) scanning, expression of bone-specific genes and biomechanical compression testing were performed at 6 weeks. Both culture conditions resulted in similar bone tissue formation. Histologically collagen I and fibrin hydrogels specimens had superior bone tissue, although radiopacities were detected only in collagen I samples. VCT scan revealed density values in all but the Pluronic F127 samples, with Houndsfield unit values comparable to native bone in collagen I and fibrin glue samples. Expression of bone-specific genes was significantly higher in the collagen I samples. Pluronic F127 hydrogel did not support formation of bone tissue. All samples cultured in dynamic oscillating conditions had slightly higher mechanical strength than under rotating conditions. Bone tissue can be successfully formed in vitro using constructs comprised of collagen I hydrogel, MSCs, and porous beta-TCP scaffolds.
Oryan, Ahmad; Alidadi, Soodeh; Bigham-Sadegh, Amin; Moshiri, Ali
2016-10-01
Gelatin and chitosan are natural polymers that have extensively been used in tissue engineering applications. The present study aimed to evaluate the effectiveness of chitosan and gelatin or combination of the two biopolymers (chitosan-gelatin) as bone scaffold on bone regeneration process in an experimentally induced critical sized radial bone defect model in rats. Fifty radial bone defects were bilaterally created in 25 Wistar rats. The defects were randomly filled with chitosan, gelatin and chitosan-gelatin and autograft or left empty without any treatment (n = 10 in each group). The animals were examined by radiology and clinical evaluation before euthanasia. After 8 weeks, the rats were euthanized and their harvested healing bone samples were evaluated by radiology, CT-scan, biomechanical testing, gross pathology, histopathology, histomorphometry and scanning electron microscopy. Gelatin was biocompatible and biodegradable in vivo and showed superior biodegradation and biocompatibility when compared with chitosan and chitosan-gelatin scaffolds. Implantation of both the gelatin and chitosan-gelatin scaffolds in bone defects significantly increased new bone formation and mechanical properties compared with the untreated defects (P < 0.05). Combination of the gelatin and chitosan considerably increased structural and functional properties of the healing bones when compared to chitosan scaffold (P < 0.05). However, no significant differences were observed between the gelatin and gelatin-chitosan groups in these regards (P > 0.05). In conclusion, application of the gelatin alone or its combination with chitosan had beneficial effects on bone regeneration and could be considered as good options for bone tissue engineering strategies. However, chitosan alone was not able to promote considerable new bone formation in the experimentally induced critical-size radial bone defects.
Correlations of External Landmarks With Internal Structures of the Temporal Bone.
Piromchai, Patorn; Wijewickrema, Sudanthi; Smeds, Henrik; Kennedy, Gregor; O'Leary, Stephen
2015-09-01
The internal anatomy of a temporal bone could be inferred from external landmarks. Mastoid surgery is an important skill that ENT surgeons need to acquire. Surgeons commonly use CT scans as a guide to understanding anatomical variations before surgery. Conversely, in cases where CT scans are not available, or in the temporal bone laboratory where residents are usually not provided with CT scans, it would be beneficial if the internal anatomy of a temporal bone could be inferred from external landmarks. We explored correlations between internal anatomical variations and metrics established to quantify the position of external landmarks that are commonly exposed in the operating room, or the temporal bone laboratory, before commencement of drilling. Mathematical models were developed to predict internal anatomy based on external structures. From an operating room view, the distances between the following external landmarks were observed to have statistically significant correlations with the internal anatomy of a temporal bone: temporal line, external auditory canal, mastoid tip, occipitomastoid suture, and Henle's spine. These structures can be used to infer a low lying dura mater (p = 0.002), an anteriorly located sigmoid sinus (p = 0.006), and a more lateral course of the facial nerve (p < 0.001). In the temporal bone laboratory view, the mastoid tegmen and sigmoid sinus were also regarded as external landmarks. The distances between these two landmarks and the operating view external structures were able to further infer the laterality of the facial nerve (p < 0.001) and a sclerotic mastoid (p < 0.001). Two nonlinear models were developed that predicted the distances between the following internal structures with a high level of accuracy: the distance from the sigmoid sinus to the posterior external auditory canal (p < 0.001) and the diameter of the round window niche (p < 0.001). The prospect of encountering some of the more technically challenging anatomical variants encountered in temporal bone dissection can be inferred from the distance between external landmarks found on the temporal bone. These relationships could be used as a guideline to predict challenges during drilling and choosing appropriate temporal bones for dissection.
Poort, Lucas J; Postma, Alida A; Stadler, Annika A R; Böckmann, Roland A; Hoebers, Frank J; Kessler, Peter A W H
2017-05-01
Radiotherapy in the head and neck can induce several radiologically detectable changes in bone, osteoradionecrosis (ORN) among them. The purpose is to investigate radiological changes in mandibular bone after irradiation with various doses with and without surgery and to determine imaging characteristics of radiotherapy and ORN in an animal model. Sixteen Göttingen minipigs were divided into groups and were irradiated with two fractions with equivalent doses of 0, 25, 50 and 70 Gray. Thirteen weeks after irradiation, left mandibular teeth were removed and dental implants were placed. CT-scans and MR-imaging were made before irradiation and twenty-six weeks after. Alterations in the bony structures were recorded on CT-scan and MR-imaging and scored by two head-neck radiologists. Increased signal changes on MR-imaging were associated with higher radiation doses. Two animals developed ORN clinically. Radiologically mixed signal intensities on T2-SPIR were seen. On CT-scans cortical destruction was found in three animals. Based on imaging, three animals were diagnosed with ORN. Irradiation of minipig mandibles with various doses induced damages of the mandibular bone. Imaging with CT-scan and MR-imaging showed signal and structural changes that can be interpreted as prolonged and insufficient repair of radiation induced bone damages. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Heavy ion therapy: Bevalac epoch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, J.R.
1993-10-01
An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered. (GHH)
Reza, Mariana; Jones, Robert; Aspegren, John; Massard, Christophe; Mattila, Leena; Mustonen, Mika; Wollmer, Per; Trägårdh, Elin; Bondesson, Eva; Edenbrandt, Lars; Fizazi, Karim; Bjartell, Anders
2016-12-01
ODM-201, a new-generation androgen receptor inhibitor, has shown clinical efficacy in prostate cancer (PCa). Quantitative methods are needed to accurately assess changes in bone as a measurement of treatment response. The Bone Scan Index (BSI) reflects the percentage of skeletal mass a given tumour affects. To evaluate the predictive value of the BSI in metastatic castration-resistant PCa (mCRPC) patients undergoing treatment with ODM-201. From a total of 134 mCRPC patients who participated in the Activity and Safety of ODM-201 in Patients with Progressive Metastatic Castration-resistant Prostate Cancer clinical trial and received ODM-201, we retrospectively selected all those patients who had bone scan image data of sufficient quality to allow for both baseline and 12-wk follow-up BSI-assessments (n=47). We used the automated EXINI bone BSI software (EXINI Diagnostics AB, Lund, Sweden) to obtain BSI data. We used the Cox proportional hazards model and Kaplan-Meier estimates to investigate the association among BSI, traditional clinical parameters, disease progression, and radiographic progression-free survival (rPFS). In the BSI assessments, at follow-up, patients who had a decrease or at most a 20% increase from BSI baseline had a significantly longer time to progression in bone (median not reached vs 23 wk, hazard ratio [HR]: 0.20; 95% confidence interval [CI], 0.07-0.58; p=0.003) and rPFS (median: 50 wk vs 14 wk; HR: 0.35; 95% CI, 0.17-0.74; p=0.006) than those who had a BSI increase >20% during treatment. The on-treatment change in BSI was significantly associated with rPFS in mCRPC patients, and an increase >20% in BSI predicted reduced rPFS. BSI for quantification of bone metastases may be a valuable complementary method for evaluation of treatment response in mCRPC patients. An increase in Bone Scan Index (BSI) was associated with shorter time to disease progression in patients treated with ODM-201. BSI may be a valuable method of complementing treatment response evaluation in patients with advanced prostate cancer. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Rationale for Modernising Imaging in Advanced Prostate Cancer.
Padhani, Anwar R; Lecouvet, Frederic E; Tunariu, Nina; Koh, Dow-Mu; De Keyzer, Frederik; Collins, David J; Sala, Evis; Fanti, Stefano; Vargas, H Alberto; Petralia, Giuseppe; Schlemmer, Heinz Peter; Tombal, Bertrand; de Bono, Johann
2017-04-01
To effectively manage patients with advanced prostate cancer (APC), it is essential to have accurate, reproducible, and validated methods for detecting and quantifying the burden of bone and soft tissue metastases and for assessing their response to therapy. Current standard of care imaging with bone and computed tomography (CT) scans have significant limitations for the assessment of bone metastases in particular. We aimed to undertake a critical comparative review of imaging methods used for diagnosis and disease monitoring of metastatic APC from the perspective of their availability and ability to assess disease presence, extent, and response of bone and soft tissue disease. An expert panel of radiologists, nuclear medicine physicians, and medical physicists with the greatest experience of imaging in advanced prostate cancer prepared a review of the practicalities, performance, merits, and limitations of currently available imaging methods. Meta-analyses showed that positron emission tomography (PET)/CT with different radiotracers and whole-body magnetic resonance imaging (WB-MRI) are more accurate for bone lesion detection than CT and bone scans (BSs). At a patient level, the pooled sensitivities for bone disease by using choline (CH)-PET/CT, WB-MRI, and BS were 91% (95% confidence interval [CI], 83-96%), 97% (95% CI, 91-99%), and 79% (95% CI, 73-83%), respectively. The pooled specificities for bone metastases detection using CH-PET/CT, WB-MRI, and BS were 99% (95% CI, 93-100%), 95% (95% CI, 90-97%), and 82% (95% CI, 78-85%), respectively. The ability of PET/CT and WB-MRI to assess therapeutic benefits is promising but has not been comprehensively evaluated. There is variability in the cost, availability, and quality of PET/CT and WB-MRI. Standardisation of acquisition, interpretation, and reporting of WB-MRI and PET/CT scans is required to assess the performance of these techniques in clinical trials of treatment approaches in APC. PET/CT and whole-body MRI scans have the potential to improve detection and to assess response to treatment of all states of advanced prostate cancer. Consensus recommendations on quality standards, interpretation, and reporting are needed but will require validation in clinical trials of established and new treatment approaches. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Reddy, M V; Eachempati, Krishnakiran; Gurava Reddy, A V; Mugalur, Aakash
2018-01-01
Rapid prototyping (RP) is used widely in dental and faciomaxillary surgery with anecdotal uses in orthopedics. The purview of RP in orthopedics is vast. However, there is no error analysis reported in the literature on bone models generated using office-based RP. This study evaluates the accuracy of fused deposition modeling (FDM) using standard tessellation language (STL) files and errors generated during the fabrication of bone models. Nine dry bones were selected and were computed tomography (CT) scanned. STL files were procured from the CT scans and three-dimensional (3D) models of the bones were printed using our in-house FDM based 3D printer using Acrylonitrile Butadiene Styrene (ABS) filament. Measurements were made on the bone and 3D models according to data collection procedures for forensic skeletal material. Statistical analysis was performed to establish interobserver co-relation for measurements on dry bones and the 3D bone models. Statistical analysis was performed using SPSS version 13.0 software to analyze the collected data. The inter-observer reliability was established using intra-class coefficient for both the dry bones and the 3D models. The mean of absolute difference is 0.4 that is very minimal. The 3D models are comparable to the dry bones. STL file dependent FDM using ABS material produces near-anatomical 3D models. The high 3D accuracy hold a promise in the clinical scenario for preoperative planning, mock surgery, and choice of implants and prostheses, especially in complicated acetabular trauma and complex hip surgeries.
Wei, Xiaowei; Zhao, Dewei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming
2016-03-01
Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum-host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. © 2016 by the Society for Experimental Biology and Medicine.
Bae, Ji Cheol; Lee, Jin-Ju; Shim, Jin-Hyung; Park, Keun-Ho; Lee, Jeong-Seok; Bae, Eun-Bin; Choi, Jae-Won; Huh, Jung-Bo
2017-12-16
In this study, a new concept of a 3D-printed scaffold was introduced for the accurate placement of an implant and the application of a recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded bone graft. This preliminary study was conducted using two adult beagles to evaluate the 3D-printed polycaprolactone (PCL)/ β -tricalcium phosphate ( β -TCP)/bone decellularized extracellular matrix (bdECM) scaffold conjugated with rhBMP-2 for the simultaneous use as an implant surgical guide stent and bone graft material that promotes new bone growth. Teeth were extracted from the mandible of the beagle model and scanned by computed tomography (CT) to fabricate a customized scaffold that would fit the bone defect. After positioning the implant guide scaffold, the implant was placed and rhBMP-2 was injected into the scaffold of the experimental group. The two beagles were sacrificed after three months. The specimen block was obtained and scanned by micro-CT. Histological analysis showed that the control and experimental groups had similar new bone volume (NBV, %) but the experimental group with BMP exhibited a significantly higher bone-to-implant contact ratio (BIC, %). Within the limitations of this preliminary study, a 3D-printed scaffold conjugated with rhBMP-2 can be used simultaneously as an implant surgical guide and a bone graft in a large bone defect site. Further large-scale studies will be needed to confirm these results.
Wei, Xiaowei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming
2016-01-01
Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum–host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. PMID:26843518
Discrete tomography in an in vivo small animal bone study.
Van de Casteele, Elke; Perilli, Egon; Van Aarle, Wim; Reynolds, Karen J; Sijbers, Jan
2018-01-01
This study aimed at assessing the feasibility of a discrete algebraic reconstruction technique (DART) to be used in in vivo small animal bone studies. The advantage of discrete tomography is the possibility to reduce the amount of X-ray projection images, which makes scans faster and implies also a significant reduction of radiation dose, without compromising the reconstruction results. Bone studies are ideal for being performed with discrete tomography, due to the relatively small number of attenuation coefficients contained in the image [namely three: background (air), soft tissue and bone]. In this paper, a validation is made by comparing trabecular bone morphometric parameters calculated from images obtained by using DART and the commonly used standard filtered back-projection (FBP). Female rats were divided into an ovariectomized (OVX) and a sham-operated group. In vivo micro-CT scanning of the tibia was done at baseline and at 2, 4, 8 and 12 weeks after surgery. The cross-section images were reconstructed using first the full set of projection images and afterwards reducing them in number to a quarter and one-sixth (248, 62, 42 projection images, respectively). For both reconstruction methods, similar changes in morphometric parameters were observed over time: bone loss for OVX and bone growth for sham-operated rats, although for DART the actual values were systematically higher (bone volume fraction) or lower (structure model index) compared to FBP, depending on the morphometric parameter. The DART algorithm was, however, more robust when using fewer projection images, where the standard FBP reconstruction was more prone to noise, showing a significantly bigger deviation from the morphometric parameters obtained using all projection images. This study supports the use of DART as a potential alternative method to FBP in X-ray micro-CT animal studies, in particular, when the number of projections has to be drastically minimized, which directly reduces scanning time and dose.
Jones, Ben; Till, Kevin; Barlow, Matthew; Lees, Matthew; O’Hara, John Paul; Hind, Karen
2015-01-01
Super League (SL) and Championship (RLC) rugby league players will compete against each other in 2015 and beyond. To identify possible discrepancies, this study compared the anthropometric profile and body composition of current SL (full-time professional) and RLC (part-time semi-professional) players using dual-energy X-ray absorptiometry (DXA). A cross-sectional design involved DXA scans on 67 SL (n=29 backs, n=38 forwards) and 46 RLC (n=20 backs, n=26 forwards) players during preseason. A one-way ANOVA was used to compare age, stature, body mass, soft tissue fat percentage, bone mineral content (BMC), total and regional (i.e., arms, legs and trunk) fat and lean mass between SL forwards, SL backs, RLC forwards and RLC backs. No significant differences in age, stature or body mass were observed. SL forwards and backs had relatively less soft tissue fat (17.5 ± 3.7 and 14.8 ± 3.6 vs. 21.4 ± 4.3 and 20.8 ± 3.8%), greater BMC (4,528 ± 443 and 4,230 ± 447 vs. 4,302 ± 393 and 3,971 ± 280 g), greater trunk lean mass (37.3 ± 3.0 and 35.3 ± 3.8 vs. 34.9 ± 32.3 and 32.3 ± 2.6 kg) and less trunk fat mass (8.5 ± 2.7 and 6.2 ± 2.1 vs. 10.7 ± 2.8 and 9.5 ± 2.9 kg) than RLC forwards and backs. Observed differences may reflect selection based on favourable physical attributes, or training adaptations. To reduce this discrepancy, some RLC players should reduce fat mass and increase lean mass, which may be of benefit for the 2015 season and beyond. PMID:26221720
Sparsity-Based Super Resolution for SEM Images.
Tsiper, Shahar; Dicker, Or; Kaizerman, Idan; Zohar, Zeev; Segev, Mordechai; Eldar, Yonina C
2017-09-13
The scanning electron microscope (SEM) is an electron microscope that produces an image of a sample by scanning it with a focused beam of electrons. The electrons interact with the atoms in the sample, which emit secondary electrons that contain information about the surface topography and composition. The sample is scanned by the electron beam point by point, until an image of the surface is formed. Since its invention in 1942, the capabilities of SEMs have become paramount in the discovery and understanding of the nanometer world, and today it is extensively used for both research and in industry. In principle, SEMs can achieve resolution better than one nanometer. However, for many applications, working at subnanometer resolution implies an exceedingly large number of scanning points. For exactly this reason, the SEM diagnostics of microelectronic chips is performed either at high resolution (HR) over a small area or at low resolution (LR) while capturing a larger portion of the chip. Here, we employ sparse coding and dictionary learning to algorithmically enhance low-resolution SEM images of microelectronic chips-up to the level of the HR images acquired by slow SEM scans, while considerably reducing the noise. Our methodology consists of two steps: an offline stage of learning a joint dictionary from a sequence of LR and HR images of the same region in the chip, followed by a fast-online super-resolution step where the resolution of a new LR image is enhanced. We provide several examples with typical chips used in the microelectronics industry, as well as a statistical study on arbitrary images with characteristic structural features. Conceptually, our method works well when the images have similar characteristics, as microelectronics chips do. This work demonstrates that employing sparsity concepts can greatly improve the performance of SEM, thereby considerably increasing the scanning throughput without compromising on analysis quality and resolution.
Hughes, S
1977-07-01
Technetium-labelled ethane hydroxydiphosphonate (99mTc-EHDP) is a commonly used bone-scanning agent. After injection it leaves the circulation to enter bone and to be cleared by the kidney. The transcapillary exchange of 99mTc-EHDP in bone was examined and found to be low. The capillary movement was compared with that of sucrose, a freely diffusible substance, and it was found that the permeability ratio of 99mTc-EHDP to 14C-sucrose was similar to the diffusion coefficient ratio, suggesting that 99mTc-EHDP passes through the capillaries by the process of passive diffusion. The renal clearance of 99mTc-EHDP was 24 ml/min and was unaffected by the action of parathyroid hormone. After a fracture the bone blood flow increases, although the transcapillary extraction of 99mTc-EHDP does not change. This is because there is an increase, from recruitment and dilatation of capillaries, in the surface area available for exchange. Therefore the increased isotopic activity seen on a bone scan after a fracture is primarily related to an increase in bone blood supply from capillary enhancement within the cortex.
Cross-sectional structural parameters from densitometry
NASA Technical Reports Server (NTRS)
Cleek, Tammy M.; Whalen, Robert T.
2002-01-01
Bone densitometry has previously been used to obtain cross-sectional properties of bone from a single X-ray projection across the bone width. Using three unique projections, we have extended the method to obtain the principal area moments of inertia and orientations of the principal axes at each scan cross-section along the length of the scan. Various aluminum phantoms were used to examine scanner characteristics to develop the highest accuracy possible for in vitro non-invasive analysis of cross-sectional properties. Factors considered included X-ray photon energy, initial scan orientation, the angle spanned by the three scans (included angle), and I(min)/I(max) ratios. Principal moments of inertia were accurate to within +/-3.1% and principal angles were within +/-1 degrees of the expected value for phantoms scanned with included angles of 60 degrees and 90 degrees at the higher X-ray photon energy (140 kVp). Low standard deviations in the error (0.68-1.84%) also indicate high precision of calculated measurements with these included angles. Accuracy and precision decreased slightly when the included angle was reduced to 30 degrees. The method was then successfully applied to a pair of excised cadaveric tibiae. The accuracy and insensitivity of the algorithms to cross-sectional shape and changing isotropy (I(min)/I(max)) values when various included angles are used make this technique viable for future in vivo studies.
Bone repair by periodontal ligament stem cellseeded nanohydroxyapatite-chitosan scaffold
Ge, Shaohua; Zhao, Ning; Wang, Lu; Yu, Meijiao; Liu, Hong; Song, Aimei; Huang, Jing; Wang, Guancong; Yang, Pishan
2012-01-01
Background A nanohydroxyapatite-coated chitosan scaffold has been developed in recent years, but the effect of this composite scaffold on the viability and differentiation of periodontal ligament stem cells (PDLSCs) and bone repair is still unknown. This study explored the behavior of PDLSCs on a new nanohydroxyapatite-coated genipin-chitosan conjunction scaffold (HGCCS) in vitro as compared with an uncoated genipin-chitosan framework, and evaluated the effect of PDLSC-seeded HGCCS on bone repair in vivo. Methods Human PDLSCs were cultured and identified, seeded on a HGCCS and on a genipin-chitosan framework, and assessed by scanning electron microscopy, confocal laser scanning microscopy, MTT, alkaline phosphatase activity, and quantitative real-time polymerase chain reaction at different time intervals. Moreover, PDLSC-seeded scaffolds were used in a rat calvarial defect model, and new bone formation was assessed by hematoxylin and eosin staining at 12 weeks postoperatively. Results PDLSCs were clonogenic and positive for STRO-1. They had the capacity to undergo osteogenic and adipogenic differentiation in vitro. When seeded on HGCCS, PDLSCs exhibited significantly greater viability, alkaline phosphatase activity, and upregulated the bone-related markers, bone sialoprotein, osteopontin, and osteocalcin to a greater extent compared with PDLSCs seeded on the genipin-chitosan framework. The use of PDLSC-seeded HGCCS promoted calvarial bone repair. Conclusion This study demonstrates the potential of HGCCS combined with PDLSCs as a promising tool for bone regeneration. PMID:23091383
NASA Astrophysics Data System (ADS)
Cattaneo, Paolo M.; Dalstra, Michel; Beckmann, Felix; Donath, Tilman; Melsen, Birte
2004-10-01
This study explores the application of conventional micro tomography (μCT) and synchrotron radiation (SR) based μCT to evaluate the bone around titanium dental implants. The SR experiment was performed at beamline W2 of HASYLAB at DESY using a monochromatic X-ray beam of 50 keV. The testing material consisted of undecalcified bone segments harvested from the upper jaw of a macaca fascicularis monkey each containing a titanium dental implant. The results from the two different techniques were qualitatively compared with conventional histological sections examined under light microscopy. The SR-based μCT produced images that, especially at the bone-implant interface, are less noisy and sharper than the ones obtained with conventional μCT. For the proper evaluation of the implant-bone interface, only the SR-based μCT technique is able to display the areas of bony contact and visualize the true 3D structure of bone around dental implants correctly. This investigation shows that both conventional and SR-based μCT scanning techniques are non-destructive methods, which provide detailed images of bone. However with SR-based μCT it is possible to obtain an improved image quality of the bone surrounding dental implants, which display a level of detail comparable to histological sections. Therefore, SR-based μCT scanning could represent a valid, unbiased three-dimensional alternative to evaluate osseointegration of dental implants
Cole, T. J.; Laskey, M. A.; Ceesay, M.; Mendy, M. B.; Sawo, Y.; Prentice, A.
2014-01-01
Context: Calcium intake during growth is essential for future bone health but varies widely between individuals and populations. The impact on bone of increasing calcium intake is unknown in a population where low calcium intake, stunting, and delayed puberty are common. Objective: To determine the effect of prepubertal calcium supplementation on mean age at peak velocity for bone growth and mineral accrual. Design and Setting: Prospective follow-up of boys in rural Gambia, West Africa, who had participated in a double-blind, randomized, placebo-controlled trial of calcium supplementation. Participants: Eighty boys, initially aged 8.0–11.9 years, were followed up for 12 years. Interventions: Subjects received 1 year of calcium carbonate supplementation (1000 mg daily, 5 d/wk). Main Outcome Measures: Dual-energy x-ray absorptiometry measurements were carried out for whole body (WB), lumbar spine, and total hip bone mineral content, bone area (BA), and WB lean mass. Super imposition by translation and rotation models was made to assess bone growth. Results: Age at peak velocity was consistently earlier in the calcium group compared to the placebo group, for WB bone mineral content (mean, −6.2 [SE, 3.1]; P = .05), WB BA (mean, −7.0 [SE, 3.2] mo; P = .03), lumbar spine and total hip BA. By young adulthood, supplementation did not change the amount of bone accrued (mineral or size) or the rate of bone growth. Conclusions: Twelve months of prepubertal calcium carbonate supplementation in boys with a low calcium diet advanced the adolescent growth spurt but had no lasting effect on bone mineral or bone size. There is a need for caution when applying international recommendations to different populations. PMID:24762110
Malignant external otitis: the role of computed tomography and radionuclides in evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendelson, D.S.; Som, P.M.; Mendelson, M.H.
1983-12-01
Nine patients with malignant external otitis (MEO) were evaluated with Tc-99m bone scans, Ga-67 citrate scans, pluridirectional tomography, and computed tomographic (CT) scans in order to assess the role of each in the diagnosis and management of MEO. The Tc-99m and Ga-67 citrate scans were the most accurate studies in the initial identification of disease activity, while the return to normal or improvement of the Ga-67 citrate scan has been shown to correlate best with clinical resolution of MEO. CT demonstrated soft-tissue disease and central skull base osteomyelitis better than pluridirectional tomography. CT is excellent for localizing and following themore » progression of bone disease; however, because reossification of the skull base is a very slow process, CT cannot be used to follow accurately regression or inactivity of MEO affecting this area. CT is the best modality for following soft-tissue extension of MEO.« less
Yanke, Adam B; Shin, Jason J; Pearson, Ian; Bach, Bernard R; Romeo, Anthony A; Cole, Brian J; Verma, Nikhil N
2017-04-01
To assess the ability of 3-dimensional (3D) magnetic resonance imaging (MRI, 1.5 and 3 tesla [T]) to quantify glenoid bone loss in a cadaveric model compared with the current gold standard, 3D computed tomography (CT). Six cadaveric shoulders were used to create a bone loss model, leaving the surrounding soft tissues intact. The anteroposterior (AP) dimension of the glenoid was measured at the glenoid equator and after soft tissue layer closure the specimen underwent scanning (CT, 1.5-T MRI, and 3-T MRI) with the following methods (0%, 10%, and 25% defect by area). Raw axial data from the scans were segmented using manual mask manipulation for bone and reconstructed using Mimics software to obtain a 3D en face glenoid view. Using calibrated Digital Imaging and Communications in Medicine images, the diameter of the glenoid at the equator and the area of the glenoid defect was measured on all imaging modalities. In specimens with 10% or 25% defects, no difference was detected between imaging modalities when comparing the measured defect size (10% defect P = .27, 25% defect P = .73). All 3 modalities demonstrated a strong correlation with the actual defect size (CT, ρ = .97; 1.5-T MRI, ρ = .93; 3-T MRI, ρ = .92, P < .0001). When looking at the absolute difference between the actual and measured defect area, no significance was noted between imaging modalities (10% defect P = .34, 25% defect P = .47). The error of 3-T 3D MRI increased with increasing defect size (P = .02). Both 1.5- and 3-T-based 3D MRI reconstructions of glenoid bone loss correlate with measurements from 3D CT scan data and actual defect size in a cadaveric model. Regardless of imaging modality, the error in bone loss measurement tends to increase with increased defect size. Use of 3D MRI in the setting of shoulder instability could obviate the need for CT scans. The goal of our work was to develop a reproducible method of determining glenoid bone loss from 3D MRI data and hence eliminate the need for CT scans in this setting. This will lead to decreased cost of care as well as decreased radiation exposure to patients. The long-term goal is a fully automated system that is as approachable for clinicians as current 3D CT technology. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Evaluation of interference fit and bone damage of an uncemented femoral knee implant.
Berahmani, Sanaz; Hendriks, Maartje; de Jong, Joost J A; van den Bergh, Joop P W; Maal, Thomas; Janssen, Dennis; Verdonschot, Nico
2018-01-01
During implantation of an uncemented femoral knee implant, press-fit interference fit provides the primary stability. It is assumed that during implantation a combination of elastic and plastic deformation and abrasion of the bone will occur, but little is known about what happens at the bone-implant interface and how much press-fit interference fit is eventually achieved. Five cadaveric femora were prepared and implantation was performed by an experienced surgeon. Micro-CT- and conventional CT-scans were obtained pre- and post-implantation for geometrical measurements and to measure bone mineral density. Additionally, the position of the implant with respect to the bone was determined by optical scanning of the reconstructions. By measuring the differences in surface geometry, assessments were made of the cutting error, the actual interference fit, the amount of bone damage, and the effective interference fit. Our analysis showed an average cutting error of 0.67mm (SD 0.17mm), which pointed mostly towards bone under-resections. We found an average actual AP interference fit of 1.48mm (SD 0.27mm), which was close to the nominal value of 1.5mm. We observed combinations of bone damage and elastic deformation in all bone specimens, which showed a trend to be related with bone density. Higher bone density tended to lead to lower bone damage and higher elastic deformation. The results of the current study indicate different factors that interact while implanting an uncemented femoral knee component. This knowledge can be used to fine-tune design criteria of femoral components to achieve adequate primary stability for all patients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fahmy, M A; Abdalla, E F
1998-01-01
The two pest control agents, buprofezin and petroleum oil (Super Royal), were tested to evaluate their potential mutagenicity, in comparison with the organophosphorus insecticide profenofos. Chromosomal aberration analysis was used in both somatic and germ cells of male mice. Single oral treatment at three different dose levels (1/16, 1/8 and 1/4 LD50) for each insecticide induced an increase in the percentage of chromosomal aberrations in bone-marrow cells 24 h post-treatment, indicating a dose-dependent relationship. The percentage of chromosomal aberrations reached 23 +/- 0.73, 10.5 +/- 0.64 and 15 +/- 1.4 after treatment with the highest tested dose of profenofos, buprofezin and Super Royal, respectively. Such percentages did not exceed the corresponding value of the positive control, mitomycin C (29.2 +/- 0.69). The percentage of chromosomal aberrations induced by the different doses of profenofos was still highly significant even after excluding gaps. The same trend of results was noticed only at the highest tested dose of buprofezin and Super Royal. With respect to germ cells, profenofos is also a potent inducer of chromosomal aberrations in 1ry spermatocytes, giving percentages of 14 +/- 1.3 and 19 +/- 1.6 at the two higher doses of 4.25 and 8.5 mg kg(-1) body wt., respectively. Buprofezin and Super Royal had no significant effect on mouse spermatocytes at the tested concentrations. The various types of induced aberrations were examined and recorded in both somatic and germ cells. In conclusion, the present investigation indicates that the two pest control agents buprofezin and Super Royal are relatively much safer compounds than the conventional organophosphorus insecticides.
Shabestari, M; Vik, J; Reseland, J E; Eriksen, E F
2016-10-01
Bone marrow lesions (BML), previously denoted bone marrow edema, are detected as water signals by magnetic resonance imaging (MRI). Previous histologic studies were unable to demonstrate any edematous changes at the tissue level. Therefore, our aim was to investigate the underlying biological mechanisms of the water signal in MRI scans of bone affected by BML. Tetracycline labeling in addition to water sensitive MRI scans of 30 patients planned for total hip replacement surgery was undertaken. Twenty-one femoral heads revealed BML on MRI, while nine were negative and used as controls (CON). Guided by the MRI images cylindrical biopsies were extracted from areas with BML in the femoral heads. Tissue sections from the biopsies were subjected to histomorphometric image analyses of the cancellous bone envelope. Patients with BML exhibited an average 40- and 18-fold increase of bone formation rate and mineralizing surface, respectively. Additionally, samples with BML demonstrated 2-fold reduction of marrow fat and 28-fold increase of woven bone. Immunohistochemical analysis showed a 4-fold increase of angiogenesis markers CD31 and von Willebrand Factor (vWF) in the BML-group compared to CON. This study indicates that BML are characterized by increased bone turnover, vascularity and angiogenesis in keeping with it being a reparatory process. Thus, the water signal, which is the hallmark of BML on MRI, is most probably reflecting increased tissue vascularity accompanying increased remodeling activity. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Cury, Diego Pulzatto; Dias, Fernando José; Miglino, Maria Angélica; Watanabe, Ii-sei
2016-01-01
Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis. PMID:27078690
Cury, Diego Pulzatto; Dias, Fernando José; Miglino, Maria Angélica; Watanabe, Ii-sei
2016-01-01
Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis.
Costa, Francesco; Tomei, Massimo; Sassi, Marco; Cardia, Andrea; Ortolina, Alessandro; Servello, Domenico; Fornari, Maurizio
2012-02-01
The purpose of this study was to evaluate the efficacy of intra-operative computerized tomography (CT) scanning in the analysis of bone removal accuracy during anterior cervical corpectomy, in order to allow any necessary immediate correction in the event of inadequate bone removal. From September 2009 to December 2010 we performed an intra-operative (CT) scan using the O-Arm(™) Image system to assess the rate of central and lateral decompression in all patients treated for cervical spondylotic myelopathy by anterior cervical corpectomy and fusion. Out of a population of 187 patients admitted to our department, with a diagnosis of myelopathy due to spondylotic degenerative cervical stenosis, 15 patients underwent a surgical treatment with anterior cervical corpectomy and fusion. There were nine males (60%) and six females (40%); the mean age was 52.4 years, ranging from 41 to 57 years. The pre-operative radiologic investigations (MRI and CT scans) revealed in the nine patients (60%) the extent of the compression to one vertebral body (C4 one case, C5 four cases, C6 four cases), while in the six cases (40%) the compression regarded two vertebral body (C3 and C4 one case, C4 and C5 two cases, C5 and C6 three cases). During surgery, when the decompression was judged completely, a CT scan was performed: in 11 cases (73.3%) the decompression was considered adequate, while in four cases (26.7%) it was deemed insufficient and the surgical strategy was changed in order to optimize the bone removal. In these cases an additional scan was taken to prove the efficacy of decompression, achieved in all patients. Intra-operative CT scan performed during cervical corpectomy is a really useful tool in helping to ensure complete bone removal and the adequacy of surgery. The O-arm(™) Image system grants optimal image quality, allowing correctly assessing the rate of decompression and, in any case of doubt, allows an intra-operative evaluation of the final correct positioning of the graft.
NASA Astrophysics Data System (ADS)
Jesacher, Alexander; Ritsch-Marte, Monika; Piestun, Rafael
2015-08-01
Recently we introduced RESCH microscopy [1] - a scanning microscope that allows slightly refocusing the sample after the acquisition has been performed, solely by performing appropriate data post-processing. The microscope features a double-helix phase-engineered emission point spread function in combination with camera-based detection. Based on the principle of transverse resolution enhancement in Image Scanning Microscopy [2,3], we demonstrate similar resolution improvement in RESCH. Furthermore, we outline a pathway for how the collected 3D sample information can be used to construct sharper optical sections. [1] A. Jesacher, M. Ritsch-Marte and R. Piestun, accepted for Optica. [2] C.J.R. Sheppard, "Super-resolution in Confocal imaging," Optik, 80, 53-54 (1988). [3] C.B. Müller and J. Enderlein "Image Scanning Microscopy," Phys. Rev. Lett. 104, 198101 (2010).
NASA Technical Reports Server (NTRS)
Smith, Scott A.; Watts, Nelson; Hans, Didier; LeBlanc, Adrian; Spector, Elisabeth; King, Lisa; Sibonga, Jean
2014-01-01
Bone loss due to long-duration spaceflight has been characterized by both DXA and QCT serial scans. It is unclear if these spaceflight-induced changes in bone mineral density (BMD) and structure result in increased fracture incidence. NASA astronauts currently fly 5 to 6-month missions on the International Space Station (ISS) and at least one 12-month mission is planned. While NASA has measured areal BMD (by DXA) and volumetric BMD (by QCT) and has estimated hip strength (by finite element models of QCT data, no method has yet been used to examine bone micro-architecture from lumbar spine (LS). DXA scans are routinely performed pre- and postflight on all ISS astronauts to follow BMD changes associated with spaceflight. Trabecular Bone Score (TBS) is a relatively new method that measures grey-scale-level texture information extracted from LS DXA images and correlates with 3D parameters of bone micro-architecture. We evaluated the ability of LS TBS to discriminate changes in astronauts who have flown on ISS missions and to determine if TBS can provide additional information compared to DXA. Methods: Lumbar Spine (L1-4) DXA scans from 51 astronauts (mean age, 47 +/- 4 yrs) were divided into 3 groups based on the exercise regimens performed onboard the ISS. "Pre-ARED" (exercise using a load-limited resistive exercise device, <300 lb), "ARED" (exercise with a high-load resistive exercise device, up to 600 lb) and "Bisphos+ARED" group (ARED exercise and a 70-mg alendronate tablet once a week before and during flight, starting 17 days before launch). DXA scans were performed and analyzed on a Hologic Discovery W using the same technician for the pre- and post-flight scans. LSC for the LS in our laboratory is 0.025 g/sq. cm. TBS was performed at the Mercy Hospital, Cincinnati, Ohio on a similar Hologic computer. Data were analyzed using a paired, 2-tailed Student's t-test for the difference between pre- and postflight means. Percent change and % change per month are noted. Interpretation: Our data suggest that: TBS and DXA both detected significant decrements in the LS in these pre- ARED astronauts, not unexpected given the insufficient loads provided by this early exercise device. TBS did not detect significant changes in the ARED or Bisphos+ARED groups while DXA did detect significant changes in the ARED astronauts. These findings suggest that DXA and TBS are detecting independent effects of bone loss interventions tested in ISS astronauts in space, which may be due to distinct effects of interventions on mineral content of separate cortical vs. trabecular bone. Conclusion: TBS, in conjunction with DXA BMD, may provide additional insight into the nature of changes (or lack thereof) in the microstructure of trabecular bone and the areal BMD of vertebral bodies.
Validation of Long Bone Mechanical Properties from Densitometry
NASA Technical Reports Server (NTRS)
Whalen, R.; Katz, B.; Cleek, T.; Hargens, Alan R. (Technical Monitor)
1995-01-01
The objective of this study was to assess whether cross-sectional areal properties, calculated from densitometry, correlate to the true flexural properties. Right and left male embalmed tibiae were used in the study. Prior to scanning, the proximal end of each tibia was potted in a fixture with registration pins, flushed thoroughly with water under pressure to remove trapped air, and then placed in a constant thickness water bath attached to a precision indexer. Two sets of three scans of the entire tibia were taken with an Hologic QDR 1000/W densitometer at rotations of 0, 45, and 90 degrees about the tibia long axis. An aluminum step phantom and a bone step phantom, machined from bovine cortical bone, were also in the bath and scanned separately. Pixel attenuation data from the two sets of scans were averaged to reduce noise. Pixel data from the high energy beam were then converted to equivalent thicknesses using calibration equations. Cross-sectional areal properties (centroid, principal area moments and principal angle) along the length were computed from the three registered scans using methods developed in our laboratory. Flexural rigidities. Four strain gages were bonded around the circumference of each of 5 cross-sections encompassing the entire diaphysis. A known transverse load was then applied to the distal end and the bone was rotated 360 degrees in eight increments of 45 degrees each. Strains from the eight orientations were analyzed along with the known applied bending moments at each section to compute section centroids, curvatures, principal flexural rigidities and principal angle. Reference axes between the two methods were maintained within +/- 0.5 degrees using an electronic inclinometer. Principal angles (flexural - areal) differed by -2.0 +/- 4.0 degrees, and 1.0 +/- 2.5 degrees for the right and left tibia, respectively. Section principal flexural rigidities were highly correlated to principal areal moments (right: r(sup 2)= 0.997; left: r(sup 2)= 0.978) indicating a nearly constant effective flexural modulus. Right and left tibia exhibited a very high degree of symmetry when comparing either flexural or areal properties. To our knowledge this is the first study to validate the use of densitometry (DXA) to predict three dimensional structural properties of long bones. Our initial results support the conclusion that bone mineral and its distribution are the primary determinants of flexural modulus and rigidity.
Accuracy assessment of 3D bone reconstructions using CT: an intro comparison.
Lalone, Emily A; Willing, Ryan T; Shannon, Hannah L; King, Graham J W; Johnson, James A
2015-08-01
Computed tomography provides high contrast imaging of the joint anatomy and is used routinely to reconstruct 3D models of the osseous and cartilage geometry (CT arthrography) for use in the design of orthopedic implants, for computer assisted surgeries and computational dynamic and structural analysis. The objective of this study was to assess the accuracy of bone and cartilage surface model reconstructions by comparing reconstructed geometries with bone digitizations obtained using an optical tracking system. Bone surface digitizations obtained in this study determined the ground truth measure for the underlying geometry. We evaluated the use of a commercially available reconstruction technique using clinical CT scanning protocols using the elbow joint as an example of a surface with complex geometry. To assess the accuracies of the reconstructed models (8 fresh frozen cadaveric specimens) against the ground truth bony digitization-as defined by this study-proximity mapping was used to calculate residual error. The overall mean error was less than 0.4 mm in the cortical region and 0.3 mm in the subchondral region of the bone. Similarly creating 3D cartilage surface models from CT scans using air contrast had a mean error of less than 0.3 mm. Results from this study indicate that clinical CT scanning protocols and commonly used and commercially available reconstruction algorithms can create models which accurately represent the true geometry. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Brown, Matthew S; Kim, Grace Hyun J; Chu, Gregory H; Ramakrishna, Bharath; Allen-Auerbach, Martin; Fischer, Cheryce P; Levine, Benjamin; Gupta, Pawan K; Schiepers, Christiaan W; Goldin, Jonathan G
2018-01-01
A clinical validation of the bone scan lesion area (BSLA) as a quantitative imaging biomarker was performed in metastatic castration-resistant prostate cancer (mCRPC). BSLA was computed from whole-body bone scintigraphy at baseline and week 12 posttreatment in a cohort of 198 mCRPC subjects (127 treated and 71 placebo) from a clinical trial involving a different drug from the initial biomarker development. BSLA computation involved automated image normalization, lesion segmentation, and summation of the total area of segmented lesions on bone scan AP and PA views as a measure of tumor burden. As a predictive biomarker, treated subjects with baseline BSLA [Formula: see text] had longer survival than those with higher BSLA ([Formula: see text] and [Formula: see text]). As a surrogate outcome biomarker, subjects were categorized as progressive disease (PD) if the BSLA increased by a prespecified 30% or more from baseline to week 12 and non-PD otherwise. Overall survival rates between PD and non-PD groups were statistically different ([Formula: see text] and [Formula: see text]). Subjects without PD at week 12 had longer survival than subjects with PD: median 398 days versus 280 days. BSLA has now been demonstrated to be an early surrogate outcome for overall survival in different prostate cancer drug treatments.
Friedlander, AH; Chang, TI; Aghazadehsanai, N; Berenji, GR; Harada, ND; Garrett, NR
2013-01-01
Objectives: Femoral neck fractures in older females resulting from decreased bone mineral density (BMD; osteopenia) are associated with increased morbidity and mortality. Bone mineralization inhibition is probably controlled by proteins which also foster vascular calcification. Therefore, we evaluated the relationship between calcified carotid artery plaque (CCAP) on panoramic images and BMD on dual energy X-ray absorptiometry (DXA) bone scans. Methods: Images and hospital records identified by dentists defined two study groups (20 white females and 24 black females) having CCAP and an incidentally obtained bone scan. Ethnically matched (age±7 years, body mass index ±3 units) control groups with panoramic images devoid of CCAP and accompanying DXA scan were likewise constituted. A physician determined the BMD on the DXA. Results: Females with CCAP had significantly (p = 0.03) poorer BMD at the femoral neck than those without CCAP. Although mean femoral neck BMD was significantly lower (p = 0.009) for white than for black females, there was no significant interaction between race and CCAP (p = 0.80). Conclusion: We observed a significant inverse association between the CCAP on panoramic images and femoral neck BMD in post-menopausal white females. PMID:23571481
2009-10-06
When talking about superresolution we always mean to recover the level of resolution set by the microscope, but by using a time series of low...on low resolution possibly very noisy data, is not feasible. Thus, standard superresolution concepts as described above that are based on registration
Bone remodelling of a proximal femur with the thrust plate prosthesis: an in vitro case.
Taylor, W R; Ploeg, H; Hertig, D; Warner, M D; Clift, S E
2004-06-01
The key to the development of a successful implant is an understanding of the effect of bone remodelling on its long-term fixation. In this study, clinically observed patterns of bone remodelling have been compared with computer-based predictions for one particular design of prosthesis, the Thrust Plate Prosthesis (Centerpulse Orthopedics, Winterthur, Switzerland). Three-dimensional finite-element models were created using geometrical and bone density data obtained from CT scanning. Results from the bone remodelling simulation indicated that varying the relative rate of bone deposition/resorption and the interfacial conditions between the bone and the implant could produce the trend towards the two clinically observed patterns of remodelling.
Mineral content changes in bone associated with damage induced by the electron beam.
Bloebaum, Roy D; Holmes, Jennifer L; Skedros, John G
2005-01-01
Energy-dispersive x-ray (EDX) spectroscopy and backscattered electron (BSE) imaging are finding increased use for determining mineral content in microscopic regions of bone. Electron beam bombardment, however, can damage the tissue, leading to erroneous interpretations of mineral content. We performed elemental (EDX) and mineral content (BSE) analyses on bone tissue in order to quantify observable deleterious effects in the context of (1) prolonged scanning time, (2) scan versus point (spot) mode, (3) low versus high magnification, and (4) embedding in poly-methylmethacrylate (PMMA). Undemineralized cortical bone specimens from adult human femora were examined in three groups: 200x embedded, 200x unembedded, and 1000x embedded. Coupled BSE/EDX analyses were conducted five consecutive times, with no location analyzed more than five times. Variation in the relative proportions of calcium (Ca), phosphorous (P), and carbon (C) were measured using EDX spectroscopy, and mineral content variations were inferred from changes in mean gray levels ("atomic number contrast") in BSE images captured at 20 keV. In point mode at 200x, the embedded specimens exhibited a significant increase in Ca by the second measurement (7.2%, p < 0.05); in scan mode, a small and statistically nonsignificant increase (1.0%) was seen by the second measurement. Changes in P were similar, although the increases were less. The apparent increases in Ca and P likely result from decreases in C: -3.2% (p < 0.05) in point mode and -0.3% in scan mode by the second measurement. Analysis of unembedded specimens showed similar results. In contrast to embedded specimens at 200x, 1000x data showed significantly larger variations in the proportions of Ca, P, and C by the second or third measurement in scan and point mode. At both magnifications, BSE image gray level values increased (suggesting increased mineral content) by the second measurement, with increases up to 23% in point mode. These results show that mineral content measurements can be reliable when using coupled BSE/EDX analyses in PMMA-embedded bone if lower magnifications are used in scan mode and if prolonged exposure to the electron beam is avoided. When point mode is used to analyze minute regions, adjustments in accelerating voltages and probe current may be required to minimize damage.
X-Ray Diffraction Wafer Mapping Method for Rhombohedral Super-Hetero-Epitaxy
NASA Technical Reports Server (NTRS)
Park, Yoonjoon; Choi, Sang Hyouk; King, Glen C.; Elliott, James R.; Dimarcantonio, Albert L.
2010-01-01
A new X-ray diffraction (XRD) method is provided to acquire XY mapping of the distribution of single crystals, poly-crystals, and twin defects across an entire wafer of rhombohedral super-hetero-epitaxial semiconductor material. In one embodiment, the method is performed with a point or line X-ray source with an X-ray incidence angle approximating a normal angle close to 90 deg, and in which the beam mask is preferably replaced with a crossed slit. While the wafer moves in the X and Y direction, a narrowly defined X-ray source illuminates the sample and the diffracted X-ray beam is monitored by the detector at a predefined angle. Preferably, the untilted, asymmetric scans are of {440} peaks, for twin defect characterization.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Yin, Xiaobin; Shi, Hanqing; Wang, Zhenzhan; Xu, Qing
2018-04-01
Accurate estimations of typhoon-level winds are highly desired over the western Pacific Ocean. A wind speed retrieval algorithm is used to retrieve the wind speeds within Super Typhoon Nepartak (2016) using 6.9- and 10.7-GHz brightness temperatures from the Japanese Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor on board the Global Change Observation Mission-Water 1 (GCOM-W1) satellite. The results show that the retrieved wind speeds clearly represent the intensification process of Super Typhoon Nepartak. A good agreement is found between the retrieved wind speeds and the Soil Moisture Active Passive wind speed product. The mean bias is 0.51 m/s, and the root-mean-square difference is 1.93 m/s between them. The retrieved maximum wind speeds are 59.6 m/s at 04:45 UTC on July 6 and 71.3 m/s at 16:58 UTC on July 6. The two results demonstrate good agreement with the results reported by the China Meteorological Administration and the Joint Typhoon Warning Center. In addition, Feng-Yun 2G (FY-2G) satellite infrared images, Feng-Yun 3C (FY-3C) microwave atmospheric sounder data, and AMSR2 brightness temperature images are also used to describe the development and structure of Super Typhoon Nepartak.
NASA Astrophysics Data System (ADS)
Apostolos, John; Mouyos, William; Feng, Judy; Chase, Walter
2015-05-01
The need for advanced techniques to detect improvised explosive devices (IED) at stand-off distances greater than ten (10) meters has driven AMI Research and Development (AMI) to develop a solution to detect and identify the threat utilizing a forward looking Synthetic Aperture Radar (SAR) combined with our CW radar technology Nuclear Quadrupole Resonance (NQR) detection system. The novel features include a near-field sub-wavelength focusing antenna, a wide band 300 KHz to 300 MHz rapidly scanning CW radar facilitated by a high Q antenna/tuner, and an advanced processor utilizing Rabi transitions where the nucleus oscillates between states under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. AMI's Sub-wavelength Focusing Wide Band Super Lens uses a Near-Field SAR, making detection possible at distances greater than ten (10) meters. This super lens is capable of operating on the near-field and focusing electromagnetic waves to resolutions beyond the diffraction limit. When applied to the case of a vehicle approaching an explosive hazard the methodologies of synthetic aperture radar is fused with the array based super resolution and the NQR data processing detecting the explosive hazard.
Coronal CT scan measurements and hearing evolution in enlarged vestibular aqueduct syndrome.
Saliba, Issam; Gingras-Charland, Marie-Eve; St-Cyr, Karine; Décarie, Jean-Claude
2012-04-01
To assess the correlation between the enlarged vestibular aqueduct (EVA) diameter and (1) the hearing loss level (mild, moderate, severe and profound and (2) the hearing evolution. The secondary objective was to obtain measurement limits on the coronal plane of the temporal bone CT scan for the diagnosis of EVA. Retrospective study in a tertiary pediatric center. Mastoid CT scans were reviewed to measure the VA diameter at its midpoint and operculum on axial and coronal planes in a pathologic and normal population. We used their serial audiograms to assess the evolution of hearing. 101 EVA was identified out of 1812 temporal bones CT scan from our radiologic database in 8 years. Bone conduction was stable after a mean follow-up of 40.9 ± 32.9 months. PTA has been the most affected in time by the EVA (p=0.006). No correlation was identified between impedancemetry and the diameter of the EVA. On the diagnostic audiogram, 61% of hearing loss were in the mild and moderate hearing levels; at the end of the follow-up 64% of hearing loss are still in the mild and moderate hearing levels. The cut-off values for the coronal midpoint and operculum planes on the CT scan to diagnose an EVA are 2.4 mm and 4.34 mm respectively. Conductive or mixed hearing loss might be the first manifestation of EVA. Coronal CT scan cuts can provide additional information to evaluate EVA especially when axial cuts are not conclusive. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Dall'Ara, E; Barber, D; Viceconti, M
2014-09-22
The accurate measurement of local strain is necessary to study bone mechanics and to validate micro computed tomography (µCT) based finite element (FE) models at the tissue scale. Digital volume correlation (DVC) has been used to provide a volumetric estimation of local strain in trabecular bone sample with a reasonable accuracy. However, nothing has been reported so far for µCT based analysis of cortical bone. The goal of this study was to evaluate accuracy and precision of a deformable registration method for prediction of local zero-strains in bovine cortical and trabecular bone samples. The accuracy and precision were analyzed by comparing scans virtually displaced, repeated scans without any repositioning of the sample in the scanner and repeated scans with repositioning of the samples. The analysis showed that both precision and accuracy errors decrease with increasing the size of the region analyzed, by following power laws. The main source of error was found to be the intrinsic noise of the images compared to the others investigated. The results, once extrapolated for larger regions of interest that are typically used in the literature, were in most cases better than the ones previously reported. For a nodal spacing equal to 50 voxels (498 µm), the accuracy and precision ranges were 425-692 µε and 202-394 µε, respectively. In conclusion, it was shown that the proposed method can be used to study the local deformation of cortical and trabecular bone loaded beyond yield, if a sufficiently high nodal spacing is used. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaabar, Wejdan; Gundogdu, O.; Tzaphlidou, M.; Janousch, M.; Attenburrow, D.; Bradley, D. A.
2008-05-01
In articular cartilage, Ca, P, K and S are among some of the well known co-factors of the metalloproteinases enzymatic family, the latter playing a pivotal role in the growth and degeneration of the collagenous bone-cartilage interface of articulating joints. Current study forms part of a larger investigation concerning the distribution of these and other key elements in such media. For the purpose of evaluating these low atomic number elements (Z⩽20), use was made of the capabilities of the LUCIA Station, located at the synchrotron facility of the Paul Scherrer Institute (PSI). Using an incident radiation energy of 4.06 keV, a synchrotron radiation micro x-ray fluorescence (SR-μXRF) technique was applied in examining the distribution of the essential elements Ca, P, K and S in the bone-cartilage interface of both healthy and diseased (osteoarthritic) areas of an equine metacarpophalangeal joint. The SR-μXRF mappings and line profile patterns have revealed remarkable changes in both the pattern and absolute distributions of these elements, agreeing with the findings of others. The elemental presence shown in the individual area scans encompassing the lesion each reflect the visibly abraded outer surface of the cartilage and change in shape of the bone surface. One of the area scans for the bone-cartilage interface shows a marked change in both the pattern and absolute elemental presence for all three elements compared to that observed at two other scan sites. The observation of change in bone cartilage composition around the surface of the articulating joint is thought to be novel, the variation being almost certainly due to the differing weight-bearing role of the subchondral bone at each location.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaabar, Wejdan; Gundogdu, O.; Attenburrow, D.
2008-05-20
In articular cartilage, Ca, P, K and S are among some of the well known co-factors of the metalloproteinases enzymatic family, the latter playing a pivotal role in the growth and degeneration of the collagenous bone-cartilage interface of articulating joints. Current study forms part of a larger investigation concerning the distribution of these and other key elements in such media. For the purpose of evaluating these low atomic number elements (Z{<=}20), use was made of the capabilities of the LUCIA Station, located at the synchrotron facility of the Paul Scherrer Institute (PSI). Using an incident radiation energy of 4.06 keV,more » a synchrotron radiation micro x-ray fluorescence (SR-{mu}XRF) technique was applied in examining the distribution of the essential elements Ca, P, K and S in the bone-cartilage interface of both healthy and diseased (osteoarthritic) areas of an equine metacarpophalangeal joint. The SR-{mu}XRF mappings and line profile patterns have revealed remarkable changes in both the pattern and absolute distributions of these elements, agreeing with the findings of others. The elemental presence shown in the individual area scans encompassing the lesion each reflect the visibly abraded outer surface of the cartilage and change in shape of the bone surface. One of the area scans for the bone-cartilage interface shows a marked change in both the pattern and absolute elemental presence for all three elements compared to that observed at two other scan sites. The observation of change in bone cartilage composition around the surface of the articulating joint is thought to be novel, the variation being almost certainly due to the differing weight-bearing role of the subchondral bone at each locati0008.« less
Hopper, Richard A; Sandercoe, Gavin; Woo, Albert; Watts, Robyn; Kelley, Patrick; Ettinger, Russell E; Saltzman, Babette
2010-11-01
Le Fort III distraction requires generation of bone in the pterygomaxillary region. The authors performed retrospective digital analysis on temporal fine-cut computed tomographic images to quantify both radiographic evidence of pterygomaxillary region bone formation and relative maxillary stability. Fifteen patients with syndromic midface hypoplasia were included in the study. The average age of the patients was 8.7 years; 11 had either Crouzon or Apert syndrome. The average displacement of the maxilla during distraction was 16.2 mm (range, 7 to 31 mm). Digital analysis was performed on fine-cut computed tomographic scans before surgery, at device removal, and at annual follow-up. Seven patients also had mid-consolidation computed tomographic scans. Relative maxillary stability and density of radiographic bone in the pterygomaxillary region were calculated between each scan. There was no evidence of clinically significant maxillary relapse, rotation, or growth between the end of consolidation and 1-year follow-up, other than a relatively small 2-mm subnasal maxillary vertical growth. There was an average radiographic ossification of 0.5 mm/mm advancement at the time of device removal, with a 25th percentile value of 0.3 mm/mm. The time during consolidation that each patient reached the 25th percentile of pterygomaxillary region bone density observed in this series of clinically stable advancements ranged from 1.3 to 9.8 weeks (average, 3.7 weeks). There was high variability in the amount of bone formed in the pterygomaxillary region associated with clinical stability of the advanced Le Fort III segment. These data suggest that a subsection of patients generate the minimal amount of pterygomaxillary region bone formation associated with advancement stability as early as 4 weeks into consolidation.
Bio-inspired Nano-capillary Self-powered Fluid Transport in Nanocomposite (NBIT III)
2017-02-22
steel , ceramic axes and ball-bearing turbos exhibit less deformation at contact points and therefore a greater stress under the same load. Combined with...metal wedge, made from stainless steel (SUS310S) or super alloy (HAYNES230), was placed atop the HAP-PEG pellet to provide a pressure gradient that...between our team and Iljin materials, a Korean company, about development and commercialization of hydroxyl apatite bone cement . -We submitted a
Pietschmann, Matthias F; Froehlich, Valerie; Ficklscherer, Andreas; Wegener, Bernd; Jansson, Volkmar; Müller, Peter E
2008-01-01
Various suture anchors are available for rotator cuff repair. For arthroscopic application, a knotless anchor was developed to simplify the intra-operative handling. We compared the new knotless anchor (BIOKNOTLESStrade mark RC; DePuy Mitek, Raynham, MA) with established absorbable and titanium suture anchors (UltraSorbtrade mark and Super Revo 5mmtrade mark; ConMed Linvatec, Utica, NY). Each anchor was tested on 6 human cadaveric shoulders. The anchors were inserted into the greater tuberosity. An incremental cyclic loading was performed. Ultimate failure loads, anchor displacement, and mode of failure were recorded. The anchor displacement of the BIOKNOTLESStrade mark RC (15.3 +/- 5.3 mm) after the first cycle with 75 N was significantly higher than with the two other anchors (Super Revo 2.1 +/- 1.6 mm, UltraSorb: 2.7 +/- 1.1 mm). There was no significant difference in the ultimate failure loads of the 3 anchors. Although the Bioknotlesstrade mark RC indicated comparable maximal pullout strength, it bares the risk of losing contact between the tendon-bone-interface due to a significantly higher system displacement. Therefore, gap formation between the bone and the soft tissue fixation jeopardizes the repair. Bioknotlesstrade mark RC should be used in the lateral row only when a double row technique for rotator cuff repair is performed, and is not appropriate for rotator cuff repair if used on its own.
A study on porous super austenitic stainless steel coating for improvement of bone ingrowth
NASA Astrophysics Data System (ADS)
Oh, Keun Taek; Park, Yong Soo
1998-02-01
In this study, the prostheses were provided with the bone ingrowth site by coating the super stainless steel powder on the same substrate (S32050) using plasma spraying method. Plasma current and powder feed rate varied in this study based on the optimum conditions of previous experiments. The optimum conditions for satisfying the requirements of the porous coatings were found. The characteristics of the coatings were observed according to the experimental parameters. It was found that plasma current influenced the chemical composition (the oxides, Cr component), melting and flattening degree of the sprayed particle (surface roughness, thickness of the splat, pores) and corrosion -resistance. The powder feed rate also influenced the coating thickness and efficiency. The amount of Cr was increased, but Ni, Mo, Fe were decreased with plasma current. An increase of Cr in the coating surface corresponded to an increase in the amount of the formed oxides. The coated specimen in 400A had a high corrosion-resistance owing to a dense coating. The coated specimen in 500A formed many types of oxides. In 300A current, the coating was rough with many pores, and corrosion-resistance of the coating showed a large variation according to the oxidation and compositional change. Specifically at 100 g/min powder feed rate in a 300A current, the coating was rough and porous, nevertheless, it had high corrosion resistance.
Van Dessel, Jeroen; Nicolielo, Laura Ferreira Pinheiro; Huang, Yan; Coudyzer, Walter; Salmon, Benjamin; Lambrichts, Ivo; Jacobs, Reinhilde
The aim of this study was to assess whether cone beam computed tomography (CBCT) may be used for clinically reliable alveolar bone quality assessment in comparison to its clinical alternatives, multislice computed tomography and the gold standard (micro-CT). Six dentate mandibular bone samples were scanned with seven CBCT devices (ProMax 3D Max, NewTom GiANO, Cranex 3D, 3D Accuitomo 170, Carestream 9300, Scanora 3D, I-CAT Next generation), one micro-CT scanner (SkyScan 1174) and one MSCT machine (Somatom Definition Flash) using two protocols (standard and high-resolution). MSCT and CBCT images were automatically spatially aligned on the micro-CT scan of the corresponding sample. A volume of interest was manually delineated on the micro-CT image and overlaid on the other scanning devices. Alveolar bone structures were automatically extracted using the adaptive thresholding algorithm. Based on the resulting binary images, an automatic 3D morphometric quantification was performed in a CT-Analyser (Bruker, Kontich, Belgium). The reliability and measurement errors were calculated for each modality compared to the gold standard micro-CT. Both MSCT and CBCT were associated with a clinically and statistically (P <0.05) significant measurement error. Bone quantity-related morphometric indices (bone volume fraction 8.41% min to 17.90% max, bone surface density -0.47 mm-1 min to 0.16 mm-1 max and trabecular thickness 0.15 mm min to 0.31 mm max) were significantly (P <0.05) overestimated, resulting in significantly (P <0.05) closer trabecular pores (total porosity percentage -8.41% min to -17.90% max and fractal dimension 0.08 min to 0.17 max) in all scanners compared to micro-CT. However, the structural pattern of the alveolar bone remained similar compared to that of the micro-CT for the ProMax 3D Max, NewTom GiANO, Cranex 3D, 3D Accuitomo 170 and Carestream 9300. On the other hand, the Scanora 3D, i-CAT Next Generation, standard and high-resolution MSCT displayed an overrated bone quantity and aberrant structural pattern compared to other scanning devices. The calculation of morphometric indices had an overall high reliability (intraclass correlation coefficient [ICC] 0.62 min to 0.99 max), except for the i-CAT Next Generation CBCT (ICC 0.26 min to 0.86 max) and standard resolution MSCT (ICC 0.10 min to 0.62 max). This study demonstrated that most CBCT machines may be able to quantitatively assess alveolar bone quality, with a level of accuracy and reliability that approaches micro-CT. One may therefore propose to extrapolate this to clinical CBCT imaging, certainly when there is a need for implant rehabilitation in dentate jaw bones. Conflict-of-interest statement: There is no conflict of interest to declare. Fellowship support was received from Research Foundation Flanders (FWO) from the Belgian government and from the Coordination for the Improvement of Higher Education Personnel (CAPES) programme, Science without Borders, from the Brazilian government.
Das Neves Borges, Patricia; Vincent, Tonia L; Marenzana, Massimo
2017-01-01
The degradation of articular cartilage, which characterises osteoarthritis (OA), is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal changes in periarticular bone in murine OA by novel, automated micro-CT methods. OA was induced by destabilisation of the medial meniscus (DMM) in 10-week old male mice and disease assessed cross-sectionally from 1- to 20-weeks post-surgery. A novel approach was developed to automatically segment subchondral bone compartments into plate and trabecular bone in micro-CT scans of tibial epiphyses. Osteophyte volume, as assessed by shape differences using 3D image registration, and by measuring total epiphyseal volume was performed. Significant linear and volumetric structural modifications in subchondral bone compartments and osteophytes were measured from 4-weeks post-surgery and showed progressive changes at all time points; by 20 weeks, medial subchondral bone plate thickness increased by 160±19.5 μm and the medial osteophyte grew by 0.124±0.028 μm3. Excellent agreement was found when automated measurements were compared with manual assessments. Our automated methods for assessing bone changes in murine periarticular bone are rapid, quantitative, and highly accurate, and promise to be a useful tool in future preclinical studies of OA progression and treatment. The current approaches were developed specifically for cross-sectional micro-CT studies but could be applied to longitudinal studies.
Vincent, Tonia L.; Marenzana, Massimo
2017-01-01
Objective The degradation of articular cartilage, which characterises osteoarthritis (OA), is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal changes in periarticular bone in murine OA by novel, automated micro-CT methods. Methods OA was induced by destabilisation of the medial meniscus (DMM) in 10-week old male mice and disease assessed cross-sectionally from 1- to 20-weeks post-surgery. A novel approach was developed to automatically segment subchondral bone compartments into plate and trabecular bone in micro-CT scans of tibial epiphyses. Osteophyte volume, as assessed by shape differences using 3D image registration, and by measuring total epiphyseal volume was performed. Results Significant linear and volumetric structural modifications in subchondral bone compartments and osteophytes were measured from 4-weeks post-surgery and showed progressive changes at all time points; by 20 weeks, medial subchondral bone plate thickness increased by 160±19.5 μm and the medial osteophyte grew by 0.124±0.028 μm3. Excellent agreement was found when automated measurements were compared with manual assessments. Conclusion Our automated methods for assessing bone changes in murine periarticular bone are rapid, quantitative, and highly accurate, and promise to be a useful tool in future preclinical studies of OA progression and treatment. The current approaches were developed specifically for cross-sectional micro-CT studies but could be applied to longitudinal studies. PMID:28334010
Krishnan, Ullas Chandrika; Byanyima, Rosemary Kusaba; Faith, Ameda; Kamulegeya, Adriane
2017-01-01
The aim of this study was to investigate epidemiological features of maxillofacial fractures within trauma patients who had head and neck computed tomography (CT) scan at the Mulago National referral hospital. CT scan records of trauma patients who had head scans at the Department of Radiology over 1-year period were accessed. Data collected included sociodemographic factors, type and etiology of injury, and concomitant maxillofacial injuries. A total of 1330 trauma patients underwent head and neck CT scan in the 1-year study period. Out of these, 130 were excluded due to incomplete or unclear records and no evidence of injury. Of the remaining 1200, 32% (387) had maxillofacial fractures. The median age of the patients with maxillofacial fractures was 28 (range = 18-80) years and 18-27 age group was most common at 47.5%. Road traffic accidents constituted 49.1% of fractures. The single most affected isolated bone was the frontal bone (23%). The number of maxillofacial bones fractured was predicted by age group (df = 3 F = 5.358, P = 0.001), association with other fractures (df = 1 F = 5.317, P = 0.03). Good matched case-control prospective studies are needed to enable us tease out the finer difference in the circumstances and pattern of injury if we are to design appropriate preventive measures.
Moon, Woo J.; Scheller, Erica L.; Suneja, Anupam; Livermore, Jacob A.; Malani, Anurag N.; Moudgal, Varsha; Kerr, Lisa E.; Ferguson, Eric; Vandenberg, David M.
2014-01-01
Background. Voriconazole is a triazole antifungal medication used for prophylaxis or to treat invasive fungal infections. Inflammation of the periosteum resulting in skeletal pain, known as periostitis, is a reported side effect of long-term voriconazole therapy. The trifluorinated molecular structure of voriconazole suggests a possible link between excess fluoride and periostitis, as elevated blood fluoride has been reported among patients with periostitis who received voriconazole. Methods. Two hundred sixty-four patients from Michigan were impacted by the multistate outbreak of fungal infections as a result of contaminated methylprednisolone injections. A retrospective study was conducted among 195 patients who received voriconazole therapy at St Joseph Mercy Hospital during this outbreak. Twenty-eight patients who received both bone scan and plasma fluoride measurements for skeletal pain were included in the statistical analyses. Increased tracer uptake on bone scan was considered positive for periostitis. The primary outcome measure was the correlation between plasma fluoride and bone scan results. Results. Blood fluoride (P < .001), alkaline phosphatase (P = .020), daily voriconazole dose (P < .001), and cumulative voriconazole dose (P = .027) were significantly elevated in patients who had periostitis compared with those who did not. Discontinuation or dose reduction of voriconazole resulted in improvement of pain in 89% of patients. Conclusions. High plasma fluoride levels coupled with skeletal pain among patients who are on long-term voriconazole therapy is highly suggestive of periostitis. Initial measurement of fluoride may be considered when bone scan is not readily available. Early detection should be sought, as discontinuation of voriconazole is effective at reversing the disease. PMID:24992954
Acute venous thrombosis as complication and clue to diagnose a SAPHO syndrome case. A case report.
Rosero, A; Ruano, R; Martin, M; Hidalgo, C; Garcia-Talavera, J
2013-01-01
This report concerns a male adult admitted for sternal and left arm pain, who was diagnosed and treated for acute deep venous thrombosis in the left subclavian and axillary veins. X-ray and a hybrid single photon emission tomography and computed tomography (SPECT-CT) scintigraphy scan revealed high intensity uptake in both sternoclavicular joints, which corresponded to hyperostosis, thereby suggesting a SAPHO syndrome. Upon reviewing the patient's medical history, we found dermatological pustulosis disease and an intermittent sternal chest pain untreated since 10 years ago. In the biochemical study we found erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) elevation, hyperglobulinemia, and mild anaemia. Initial treatment included nonsteroidal anti-inflammatory drugs (NSAIDs) with low response, which then changed to methotrexate, sulfasalazine, and prednisone. The patient's pain was controlled almost completely in 10 months. A control bone scan revealed a marked decrease in intensity of bone deposits according to clinical response. To our knowledge, there are only a few cases of SAPHO and thrombosis and none are followed up with a bone SPECT-CT scan.
NASA Astrophysics Data System (ADS)
Iurino, Dawid Adam; Sardella, Raffaele
2014-12-01
CT scanning analysis applied to vertebrate palaeontology is providing an increasing number of data of great interest. This method can be used in many branches of palaeontology such as the investigation of all the fossilized elements in a hard matrix and the hidden structures in the bones. A large number of pathologies are "hidden", completely or partially invisible on the external surface of the bones because their development took place within the bones. However, the study of these diseases and abnormalities plays a crucial role in our understanding of evolutionary and adaptive processes of extinct taxa. The analysis of a partial skeleton of the sabre-toothed felid Megantereon whitei from the Early Pleistocene karst filling deposits of Monte Argentario (Tuscany, Italy) has been carried out. The CT scanning analysis put in evidence the presence of supernumerary teeth (P2) and the absence of P3 in the mandible. The occurrence of P2 can be considered as an evidence of atavism. Such an archaic feature is recorded for the first time in Megantereon.
NASA Astrophysics Data System (ADS)
Duke, P. J.; Montufar-Solis, D.; Nguyen, H. C.; Cody, D. D.
2008-06-01
Using cartilage to replace/repair bone is advantageous as no scaffolding is required to form the implant which disappears as bone is formed during the endochondral process. Previously, we demonstrated that cartilage spheroids, grown in a rotating bioreactor, (Synthecon, Inc.) and implanted into a 2 mm skull defect, contributed to healing of the defect. In this report, skulls with or without implants were subjected to microCT scans, and sections from these scans were compared to histological sections of the defect region of demineralized skulls from the same experiment. The area of the defect staining for bone in histological sections of demineralized skulls was the same region shown as mineralized in CT sections. Defects without implants were shown in serial CT sections and histological sections, to be incompletely healed. This study demonstrates that microCT scans are an important corollary to histological studies evaluating the use of implants in healing of bony defects. Supported in part by NIH/NIDCR Training Grant T35 DE07252 and by Cancer Center Support Grant (CA-16672).
Alexander, Benjamin; Daulton, Tyrone L.; Genin, Guy M.; Lipner, Justin; Pasteris, Jill D.; Wopenka, Brigitte; Thomopoulos, Stavros
2012-01-01
The nanometre-scale structure of collagen and bioapatite within bone establishes bone's physical properties, including strength and toughness. However, the nanostructural organization within bone is not well known and is debated. Widely accepted models hypothesize that apatite mineral (‘bioapatite’) is present predominantly inside collagen fibrils: in ‘gap channels’ between abutting collagen molecules, and in ‘intermolecular spaces’ between adjacent collagen molecules. However, recent studies report evidence of substantial extrafibrillar bioapatite, challenging this hypothesis. We studied the nanostructure of bioapatite and collagen in mouse bones by scanning transmission electron microscopy (STEM) using electron energy loss spectroscopy and high-angle annular dark-field imaging. Additionally, we developed a steric model to estimate the packing density of bioapatite within gap channels. Our steric model and STEM results constrain the fraction of total bioapatite in bone that is distributed within fibrils at less than or equal to 0.42 inside gap channels and less than or equal to 0.28 inside intermolecular overlap regions. Therefore, a significant fraction of bone's bioapatite (greater than or equal to 0.3) must be external to the fibrils. Furthermore, we observe extrafibrillar bioapatite between non-mineralized collagen fibrils, suggesting that initial bioapatite nucleation and growth are not confined to the gap channels as hypothesized in some models. These results have important implications for the mechanics of partially mineralized and developing tissues. PMID:22345156
Larsson Wexell, C.; Thomsen, P.; Aronsson, B.-O.; Tengvall, P.; Rodahl, M.; Lausmaa, J.; Kasemo, B.; Ericson, L. E.
2013-01-01
In a series of experimental studies, the bone formation around systematically modified titanium implants is analyzed. In the present study, three different surface modifications were prepared and evaluated. Glow-discharge cleaning and oxidizing resulted in a highly stoichiometric TiO2 surface, while a glow-discharge treatment in nitrogen gas resulted in implants with essentially a surface of titanium nitride, covered with a very thin titanium oxide. Finally, hydrogen peroxide treatment of implants resulted in an almost stoichiometric TiO2, rich in hydroxyl groups on the surface. Machined commercially pure titanium implants served as controls. Scanning Auger Electron Spectroscopy, Scanning Electron Microscopy, and Atomic Force Microscopy revealed no significant differences in oxide thickness or surface roughness parameters, but differences in the surface chemical composition and apparent topography were observed. After surface preparation, the implants were inserted in cortical bone of rabbits and evaluated after 1, 3, and 6 weeks. Light microscopic evaluation of the tissue response showed that all implants were in contact with bone and had a large proportion of newly formed bone within the threads after 6 weeks. There were no morphological differences between the four groups. Our study shows that a high degree of bone contact and bone formation can be achieved with titanium implants of different surface composition and topography. PMID:24174936
30years of DXA technology innovations.
Glüer, Claus-C
2017-11-01
As the successor of Dual Photon Absorptiometry (DPA), Dual X-ray Absorptiometry (DXA) has seen 30years of continuous technological innovations. Implementation of measures for standardization and quality assurance made DXA a reliable and clinically useful approach. Its use in clinical multicenter drug studies in osteoporosis lead to general acceptance as the standard technique of bone densitometry. The limitations of DXA are well established. As a measure of areal bone mineral density (aBMD) it depends on bone size and is biased by overlaying soft tissue and calcified structures. To some extent these errors can be reduced by estimation of bone depth and/or lateral imaging. DXA based aBMD can be supplemented by additional information obtainable from DXA scans: geometric indices such as hip axis length or complex models like 2-D finite element analysis have been developed and tested. Given the drastic improvement in image quality current DXA scans can be used for Vertebral Fracture Analysis (VFA) or grading of Abdominal Aortic Calcifications. A textural measure, Trabecular Bone Score (TBS) provides independent information on fracture risk. DXA devices can also be used for assessments beyond bone density. Periprosthetic aBMD changes can be monitored to study the mechanical fitting of bone implants. Total body composition measurements are increasingly being used in studies on nutrition, obesity, and sarcopenia. 30years after its inception DXA is the undisputed standard imaging technique for the assessment of osteoporotic fracture risk with new applications beyond bone densitometry adding to its value. Copyright © 2017 Elsevier Inc. All rights reserved.
Hanyok, Brian T; Howard, Lauren E; Amling, Christopher L; Aronson, William J; Cooperberg, Matthew R; Kane, Christopher J; Terris, Martha K; Posadas, Edwin M; Freedland, Stephen J
2016-01-15
Metastatic lesions in prostate cancer beyond the bone have prognostic importance and affect clinical therapeutic decisions. Few data exist regarding the prevalence of soft-tissue metastases at the initial diagnosis of metastatic castration-resistant prostate cancer (mCRPC). This study analyzed 232 men with nonmetastatic (M0) castration-resistant prostate cancer (CRPC) who developed metastases detected by a bone scan or computed tomography (CT). All bone scans and CT scans within the 30 days before or after the mCRPC diagnosis were reviewed. The rate of soft-tissue metastases among those undergoing CT was determined. Then, predictors of soft-tissue metastases and visceral and lymph node metastases were identified. Compared with men undergoing CT (n = 118), men undergoing only bone scans (n = 114) were more likely to have received primary treatment (P = .048), were older (P = .013), and less recently developed metastases (P = .018). Among those undergoing CT, 52 (44%) had soft-tissue metastases, including 20 visceral metastases (17%) and 41 lymph node metastases (35%), whereas 30% had no bone involvement. In a univariable analysis, only prostate-specific antigen (PSA) predicted soft-tissue metastases (odds ratio [OR], 1.27; P = .047), and no statistically significant predictors of visceral metastases were found. A higher PSA level was associated with an increased risk of lymph node metastases (OR, 1.38; P = .014), whereas receiving primary treatment was associated with decreased risk (OR, 0.36; P = .015). The data suggest that there is a relatively high rate of soft-tissue metastasis (44%) among CRPC patients undergoing CT at the initial diagnosis of metastases, including some men with no bone involvement. Therefore, forgoing CT during a metastatic evaluation may lead to an underdiagnosis of soft-tissue metastases and an underdiagnosis of metastases in general. Cancer 2015. © 2015 American Cancer Society. Cancer 2016;122:222-229. © 2015 American Cancer Society. © 2015 American Cancer Society.
Abdelhamid, Alaa; Omran, Mostafa; Bakhshalian, Neema; Tarnow, Dennis; Zadeh, Homayoun H
2016-06-01
The aims of this study were (i) to evaluate the efficacy of ridge preservation and repair procedures involving the application of SocketKAP(™) and SocketKAGE(™) devices following tooth removal and (ii) to evaluate alveolar bone volumetric changes at 6 months post-extraction in intact sockets or those with facial wall dehiscence defects using 3-dimensional pre- and postoperative CBCT data. Thirty-six patients required 61 teeth extracted. Five cohorts were established: Group A: Intact Socket Negative Control Group B: Intact Socket + SocketKAP(™) Group C: Intact Socket Filled with Anorganic Bovine Bone Mineral (ABBM) + SocketKAP(™) Group D: Facial Dehiscence Socket Negative Control Group E: Facial Dehiscence Socket Filled with ABBM + SocketKAP(™) + SocketKAGE(™) . Preoperative CBCT scans were obtained followed by digital subtraction of the test teeth. At 6 months post-extraction, another CBCT scan was obtained. The pre- and postoperative scans were then superimposed, allowing highly accurate quantitative determination of the 3D volumetric alveolar bone volume changes from baseline through 6 months. Significant volumetric bone loss occurred in all sockets, localized mainly in the 0-3 mm zone apical to the ridge crest. For intact sockets, SocketKAP(™) + ABBM treatment led to a statistically significant greater percentage of remaining mineralized tissue volume when compared to negative control group. A significant difference favoring SocketKAP(™) + SocketKAGE(™) + ABBM treatment was observed for sockets with facial dehiscence defects compared to the negative control group. SocketKAP(™) , with ABBM, appears effective in limiting post-extraction volumetric bone loss in intact sockets, while SocketKAP(™) + SocketKAGE + ABBM appears effective in limiting post-extraction bone loss in sockets with dehiscence defects. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The Physics of Physical Examinations.
ERIC Educational Resources Information Center
Patterson, James D.
1989-01-01
Discussed are several topics on medical imaging including x-rays and Computer Assisted Tomography (CAT) scans, magnetic resonance imaging, fiber optics endoscopy, nuclear medicine and bone scans, positron-emission tomography, and ultrasound. The concepts of radiation dosage, electrocardiograms, and laser therapy are included. (YP)
A myostatin and activin decoy receptor enhances bone formation in mice.
Bialek, P; Parkington, J; Li, X; Gavin, D; Wallace, C; Zhang, J; Root, A; Yan, G; Warner, L; Seeherman, H J; Yaworsky, P J
2014-03-01
Myostatin is a member of the bone morphogenetic protein/transforming growth factor-β (BMP/TGFβ) super-family of secreted differentiation factors. Myostatin is a negative regulator of muscle mass as shown by increased muscle mass in myostatin deficient mice. Interestingly, these mice also exhibit increased bone mass suggesting that myostatin may also play a role in regulating bone mass. To investigate the role of myostatin in bone, young adult mice were administered with either a myostatin neutralizing antibody (Mstn-mAb), a soluble myostatin decoy receptor (ActRIIB-Fc) or vehicle. While both myostatin inhibitors increased muscle mass, only ActRIIB-Fc increased bone mass. Bone volume fraction (BV/TV), as determined by microCT, was increased by 132% and 27% in the distal femur and lumbar vertebrae, respectively. Histological evaluation demonstrated that increased BV/TV in both locations was attributed to increased trabecular thickness, trabecular number and bone formation rate. Increased BV/TV resulted in enhanced vertebral maximum compressive force compared to untreated animals. The fact that ActRIIB-Fc, but not Mstn-mAb, increased bone volume suggested that this soluble decoy receptor may be binding a ligand other than myostatin, that plays a role in regulating bone mass. This was confirmed by the significant increase in BV/TV in myostatin deficient mice treated with ActRIIB-Fc. Of the other known ActRIIB-Fc ligands, BMP3 has been identified as a negative regulator of bone mass. However, BMP3 deficient mice treated with ActRIIB-Fc showed similar increases in BV/TV as wild type (WT) littermates treated with ActRIIB-Fc. This result suggests that BMP3 neutralization is not the mechanism responsible for increased bone mass. The results of this study demonstrate that ActRIIB-Fc increases both muscle and bone mass in mice. Therefore, a therapeutic that has this dual activity represents a potential approach for the treatment of frailty. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Slimani, Samy; Nezzar, Adlen; Makhloufi, Hachemi
2013-06-21
Melorheostosis is a very rare sclerosing bone disorder that involves frequently one limb. It may be asymptomatic, but pain and limb deformity may occur and can be very debilitating. Different reports have indicated efficacy of bisphosphonates (pamidronate and etidronate) on symptoms. We report an adult patient with a very painful melorheostosis, who improved after treatment with zoledronate, either on symptoms or on bone scans.
Bone chip-induced rhinosinusitis.
Reilly, Brian K; Conley, David B
2009-12-01
This case report describes both the pathophysiology and management of chronic rhinosinusitis (CRS). Specifically, we report a case of chronic maxillary rhinosinusitis with a free-floating maxillary sinus calcification (bone chip). After obtaining the computed tomography scan, the patient underwent endoscopic sinus surgery, with removal of the uncinate, enlargement of the diseased natural ostium of the maxillary sinus, and removal of the diseased bone chip. This eliminated the nidus for infection, ultimately restoring mucociliary flow.
Anné, Jennifer; Edwards, Nicholas P.; Wogelius, Roy A.; Tumarkin-Deratzian, Allison R.; Sellers, William I.; van Veelen, Arjen; Bergmann, Uwe; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Ignatyev, Konstantin; Egerton, Victoria M.; Manning, Phillip L.
2014-01-01
Current understanding of bone healing and remodelling strategies in vertebrates has traditionally relied on morphological observations through the histological analysis of thin sections. However, chemical analysis may also be used in such interpretations, as different elements are known to be absorbed and used by bone for different physiological purposes such as growth and healing. These chemical signatures are beyond the detection limit of most laboratory-based analytical techniques (e.g. scanning electron microscopy). However, synchrotron rapid scanning–X-ray fluorescence (SRS–XRF) is an elemental mapping technique that uniquely combines high sensitivity (ppm), excellent sample resolution (20–100 µm) and the ability to scan large specimens (decimetre scale) approximately 3000 times faster than other mapping techniques. Here, we use SRS–XRF combined with microfocus elemental mapping (2–20 µm) to determine the distribution and concentration of trace elements within pathological and normal bone of both extant and extinct archosaurs (Cathartes aura and Allosaurus fragilis). Results reveal discrete chemical inventories within different bone tissue types and preservation modes. Chemical inventories also revealed detail of histological features not observable in thin section, including fine structures within the interface between pathological and normal bone as well as woven texture within pathological tissue. PMID:24806709
Perdikouri, Christina; Tägil, Magnus; Isaksson, Hanna
2015-01-01
About 5-10% of all bone fractures suffer from delayed healing, which may lead to non-union. Bone morphogenetic proteins (BMPs) can be used to induce differentiation of osteoblasts and enhance the formation of the bony callus, and bisphosphonates help to retain the newly formed callus. The aim of this study was to investigate if scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) can identify differences in the mineral composition of the newly formed bone compared to cortical bone from a non-fractured control. Moreover, we investigate whether the use of BMPs and bisphosphonates-alone or combined-may have an effect on bone mineralization and composition. Twelve male Sprague-Dawley rats at 9 weeks of age were randomly divided into four groups and treated with (A) saline, (B) BMP-7, (C) bisphosphonates (Zoledronate), and (D) BMP-7 + Zoledronate. The rats were sacrificed after 6 weeks. All samples were imaged using SEM and chemically analyzed with EDS to quantify the amount of C, N, Ca, P, O, Na, and Mg. The Ca/P ratio was the primary outcome. In the fractured samples, two areas of interest were chosen for chemical analysis with EDS: the callus and the cortical bone. In the non-fractured samples, only the cortex was analyzed. Our results showed that the element composition varied to a small extent between the callus and the cortical bone in the fractured bones. However, the Ca/P ratio did not differ significantly, suggesting that the mineralization at all sites is similar 6 weeks post-fracture in this rat model.
Enevoldsen, Lotte Hahn; Heaf, James; Højgaard, Liselotte; Zerahn, Bo; Hasbak, Philip
2017-03-01
In bone scan patients with dialysis-treated chronic kidney disease (CKD) and hyperparathyroidism, soft tissue accumulation of technetium-99 m hydroxy/methylene diphosphonate (Tc-99 m-HDP/MDP) has been reported primarily in case reports and usually explained by hypercalcaemia and/or hyperphosphataemia. As human vascular smooth muscle cells produce hydroxyapatite during cell culture with increased phosphate levels and as Tc-99 m-HDP/MDP primarily binds to hydroxyapatite, we hypothesized that soft tissue accumulation would be found in patients with hyperphosphataemia. We identified 63 CKD patients diagnosed with secondary hyperparathyroidism admitted for Tc-99 m-HDP bone scan. Baseline characteristics and mean concentrations of biochemical markers (including P-calcium and P-phosphate) taken 0-3 months prior to the bone scans were collected. Soft tissue uptake was detected on bone scans in 37 of 63 (59%) patients. Primary locations were in the heart (27/37 = 73%), muscles (12/37 = 32%), lung (9/37 = 24%) and gastrointestinal tract (6/37 = 16%), and 13 of 37 (35%) patients had simultaneous uptake in more than one location. Regarding biochemical markers, patients with soft tissue uptake only differed from patients without in terms of plasma phosphate levels (1·95 ± 0·15 (n = 37) versus 1·27 ± 0·08 (n = 26), P = 0·0012). All patients with myocardial uptake (n = 27) had a coronary arteriography-verified history of coronary artery disease (CAD), whereas CAD was only present in six of the 36 patients without myocardial uptake. In conclusion, dialysis-treated CKD patients with secondary hyperparathyroidism have a high incidence of soft tissue uptake, and this finding is strongly correlated with elevated phosphate, but not calcium values. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Autoradiographic method for quantitation of deposition and distribution of radiocalcium in bone
Lawrence Riggs, B; Bassingthwaighte, James B.; Jowsey, Jenifer; Peter Pequegnat, E
2010-01-01
A method is described for quantitating autoradiographs of bone-seeking isotopes in microscopic sections of bone. Autoradiographs of bone sections containing 45Ca and internal calibration standards are automatically scanned with a microdensitometer. The digitized optical density output is stored on magnetic tape and is converted by computer to equivalent activity of 45Ca per gram of bone. The computer determines the total 45Ca uptake in the bone section and, on the basis of optical density and anatomic position, quantitatively divides the uptake into 4 components, each representing a separate physiologic process (bone formation, secondary mineralization, diffuse long-term exchange, and surface short-term exchange). The method is also applicable for quantitative analysis of microradiographs of bone sections for mineral content and density. PMID:5416906
Prado Wohlwend, S; Sánchez Vaño, R; Sopena Novales, P; Uruburu García, E; Aparisi Rodríguez, F; Martínez Carsí, C
The coexistence of different bone diseases in the same patient involves a complex differential diagnosis. A patient is presented who was studied due to a renal mass that showed many sclerotic lesions in spine and limbs in conventional radiology and CT. These lesions were evaluated with 99m TC-HDP bone scintigraphy and 18 F-FDG PET/CT, which helped to obtain the definitive pathological diagnosis of osteopoikilosis (OP) co-existing with gastric cancer bone metastases. Of the different imaging scans performed, bone scintigraphy was particularly relevant due to its ability to discriminate between benign and metastatic bone disease. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
NASA Astrophysics Data System (ADS)
Hasslinger, Patricia; Vass, Viktoria; Dejaco, Alexander; Blanchard, Romane; Örlygsson, Gissur; Gargiulo, Paolo; Hellmich, Christian
2016-05-01
Due to its high resolution, micro-CT (Computed Tomograph) scanning is the key to assess bone quality of sham and OVX (ovariectomized) rats. Combination of basic X-ray physics, such as the energy- and chemistry-dependence of attenuation coefficients, with results from ashing tests on rat bones, delivers mineral, organic, and water volume fractions within the voxels. Additional use of a microelastic model for bone provides voxel-specific elastic properties. The new method delivers realistic bone mass densities, and reveals that OVX protocols may indeed induce some bone mass loss, while the average composition of the bone tissue remains largely unaltered.
NASA Astrophysics Data System (ADS)
Qiu, Yuchen; Wang, Xingwei; Chen, Xiaodong; Li, Yuhua; Liu, Hong; Li, Shibo; Zheng, Bin
2010-02-01
Visually searching for analyzable metaphase chromosome cells under microscopes is quite time-consuming and difficult. To improve detection efficiency, consistency, and diagnostic accuracy, an automated microscopic image scanning system was developed and tested to directly acquire digital images with sufficient spatial resolution for clinical diagnosis. A computer-aided detection (CAD) scheme was also developed and integrated into the image scanning system to search for and detect the regions of interest (ROI) that contain analyzable metaphase chromosome cells in the large volume of scanned images acquired from one specimen. Thus, the cytogeneticists only need to observe and interpret the limited number of ROIs. In this study, the high-resolution microscopic image scanning and CAD performance was investigated and evaluated using nine sets of images scanned from either bone marrow (three) or blood (six) specimens for diagnosis of leukemia. The automated CAD-selection results were compared with the visual selection. In the experiment, the cytogeneticists first visually searched for the analyzable metaphase chromosome cells from specimens under microscopes. The specimens were also automated scanned and followed by applying the CAD scheme to detect and save ROIs containing analyzable cells while deleting the others. The automated selected ROIs were then examined by a panel of three cytogeneticists. From the scanned images, CAD selected more analyzable cells than initially visual examinations of the cytogeneticists in both blood and bone marrow specimens. In general, CAD had higher performance in analyzing blood specimens. Even in three bone marrow specimens, CAD selected 50, 22, 9 ROIs, respectively. Except matching with the initially visual selection of 9, 7, and 5 analyzable cells in these three specimens, the cytogeneticists also selected 41, 15 and 4 new analyzable cells, which were missed in initially visual searching. This experiment showed the feasibility of applying this CAD-guided high-resolution microscopic image scanning system to prescreen and select ROIs that may contain analyzable metaphase chromosome cells. The success and the further improvement of this automated scanning system may have great impact on the future clinical practice in genetic laboratories to detect and diagnose diseases.
Prevalence of Poor Bone Quality in Women Undergoing Spinal Fusion Using Biomechanical-CT Analysis.
Burch, Shane; Feldstein, Michael; Hoffmann, Paul F; Keaveny, Tony M
2016-02-01
Retrospective, cross-sectional analysis of vertebral bone quality in spine-fusion patients at a single medical center. To characterize the prevalence of osteoporosis and fragile bone strength in a spine-fusion population of women with an age range of 50 years to 70 years. Fragile bone strength is defined as the level of vertebral strength below which a patient is at as high a risk of future vertebral fracture as a patient having bone density-defined osteoporosis. Poor bone quality--defined here as the presence of either osteoporosis or fragile bone strength--is a risk factor for spine-fusion patients that often goes undetected but can now be assessed preoperatively by additional postprocessing of computed tomography (CT) scans originally ordered for perioperative clinical assessment. Utilizing such perioperative CT scans for a cohort of 98 women (age range: 51-70 yr) about to undergo spine fusion, we retrospectively used a phantomless calibration technique and biomechanical-CT postprocessing analysis to measure vertebral trabecular bone mineral density (BMD) (in mg/cm³) and by nonlinear finite element analysis, vertebral compressive strength (in Newtons, N) in the L1 or L2 vertebra. Preestablished validated threshold values were used to define the presence of osteoporosis (trabecular BMD of 80 mg/cm³ or lower) and fragile bone strength (vertebral strength of 4500 N or lower). Fourteen percent of the women tested positive for osteoporosis, 27% tested positive for fragile bone strength, and 29% were classified as having poor bone quality (either osteoporosis or fragile bone strength). Over this narrow age range, neither BMD nor vertebral strength were significantly correlated with age, weight, height, or body mass index (P values 0.14-0.97 for BMD; 0.13-0.51 for strength). Poor bone quality appears to be common in women between ages 50 years and 70 years undergoing spinal fusion surgery. 3.
Genetic influences on bone loss in the San Antonio Family Osteoporosis Study
Shaffer, John R.; Kammerer, Candace M.; Bruder, Jan M.; Cole, Shelley A.; Dyer, Thomas D.; Almasy, Laura; MacCluer, Jean W.; Blangero, John; Bauer, Richard L.; Mitchell, Braxton D.
2009-01-01
Summary The genetic contribution to age-related bone loss is not well understood. We estimated that genes accounted for 25–45% of variation in 5-year change in bone mineral density in men and women. An autosome-wide linkage scan yielded no significant evidence for chromosal regions implicated in bone loss. Introduction The contribution of genetics to acquisition of peak bone mass is well documented, but little is know about the influence of genes on subsequent bone loss with age. We therefore measured 5-year change in bone mineral density (BMD) in 300 Mexican Americans (>45 years of age) from the San Antonio Family Osteoporosis Study to identify genetic factors influencing bone loss. Methods Annualized change in BMD was calculated from measurements taken 5.5 years apart. Heritability (h2) of BMD change was estimated using variance components methods and autosome-wide linkage analysis was carried out using 460 microsatellite markers at a mean 7.6 cM interval density. Results Rate of BMD change was heritable at the forearm (h2=0.31, p=0.021), hip (h2 =0.44, p=0.017), spine (h2=0.42, p=0.005), but not whole body (h2=0.18, p=0.123). Covariates associated with rapid bone loss (advanced age, baseline BMD, female sex, low baseline weight, postmenopausal status, and interim weight loss) accounted for 10% to 28% of trait variation. No significant evidence of linkage was observed at any skeletal site. Conclusions This is one of the first studies to report significant heritability of BMD change for weight-bearing and non-weight-bearing bones in an unselected population and the first linkage scan for change in BMD. PMID:18414963
Novotny, Vojtech; Nacu, Aliona; Kvistad, Christopher E; Fromm, Annette; Neckelmann, Gesche F; Khanevski, Andrej N; Tobro, Haakon; Waje-Andreassen, Ulrike; Naess, Halvor; Thomassen, Lars; Logallo, Nicola
2017-11-08
Contrast-enhanced sonothrombolysis (CEST) seems to be a safe and promising treatment in acute ischemic stroke. It remains unknown if temporal bone features may influence the efficacy of CEST. We investigated the association between different temporal bone features on admission computed tomography (CT) scan and the outcome in acute ischemic stroke patients included in the randomized Norwegian Sonothrombolysis in Acute Stroke Study (NOR-SASS). Patients diagnosed as stroke mimics and those with infratentorial stroke or with incorrect insonation were excluded. We retrospectively assessed temporal bone heterogeneity (presence of diploë), diploë ratio, thickness, and density on admission CT scans. National institute of Health Stroke Scale (NIHSS) at 24 h and modified Rankin Scale (mRS) at 3 months were correlated with CT findings both in CEST and sham CEST patients. A total of 99 patients were included of which 52 were assigned to CEST and 47 to sham CEST. Approximately 20% patients had a heterogeneous temporal bone in both the CEST and sham CEST group. All temporal bone CT features studied were associated with female sex. In the CEST group, temporal bone heterogeneity (p = 0.006) and higher temporal bone diploë ratio (p = 0.002) were associated with higher NIHSS at 24 h. There was no association between temporal bone features and mRS at 3 months. Approximately 20% of acute ischemic stroke patients have heterogeneous temporal bone and may be resistant to standard 2-MHz transcranial Doppler ultrasound treatment. Sonothrombolysis resistance may easily be predicted by admission CT for better selection.
Mei, Kai; Kopp, Felix K; Bippus, Rolf; Köhler, Thomas; Schwaiger, Benedikt J; Gersing, Alexandra S; Fehringer, Andreas; Sauter, Andreas; Münzel, Daniela; Pfeiffer, Franz; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B; Baum, Thomas
2017-12-01
Osteoporosis diagnosis using multidetector CT (MDCT) is limited to relatively high radiation exposure. We investigated the effect of simulated ultra-low-dose protocols on in-vivo bone mineral density (BMD) and quantitative trabecular bone assessment. Institutional review board approval was obtained. Twelve subjects with osteoporotic vertebral fractures and 12 age- and gender-matched controls undergoing routine thoracic and abdominal MDCT were included (average effective dose: 10 mSv). Ultra-low radiation examinations were achieved by simulating lower tube currents and sparse samplings at 50%, 25% and 10% of the original dose. BMD and trabecular bone parameters were extracted in T10-L5. Except for BMD measurements in sparse sampling data, absolute values of all parameters derived from ultra-low-dose data were significantly different from those derived from original dose images (p<0.05). BMD, apparent bone fraction and trabecular thickness were still consistently lower in subjects with than in those without fractures (p<0.05). In ultra-low-dose scans, BMD and microstructure parameters were able to differentiate subjects with and without vertebral fractures, suggesting osteoporosis diagnosis is feasible. However, absolute values differed from original values. BMD from sparse sampling appeared to be more robust. This dose-dependency of parameters should be considered for future clinical use. • BMD and quantitative bone parameters are assessable in ultra-low-dose in vivo MDCT scans. • Bone mineral density does not change significantly when sparse sampling is applied. • Quantitative trabecular bone microstructure measurements are sensitive to dose reduction. • Osteoporosis subjects could be differentiated even at 10% of original dose. • Radiation exposure should be considered when comparing quantitative bone parameters.
Campbell, Graeme M; Sophocleous, Antonia
2014-01-01
Micro-computed tomography (micro-CT) is a high-resolution imaging modality that is capable of analysing bone structure with a voxel size on the order of 10 μm. With the development of in vivo micro-CT, where disease progression and treatment can be monitored in a living animal over a period of time, this modality has become a standard tool for preclinical assessment of bone architecture during disease progression and treatment. For meaningful comparison between micro-CT studies, it is essential that the same parameters for data acquisition and analysis methods be used. This protocol outlines the common procedures that are currently used for sample preparation, scanning, reconstruction and analysis in micro-CT studies. Scan and analysis methods for trabecular and cortical bone are covered for the femur, tibia, vertebra and the full neonate body of small rodents. The analysis procedures using the software provided by ScancoMedical and Bruker are discussed, and the routinely used bone architectural parameters are outlined. This protocol also provides a section dedicated to in vivo scanning and analysis, which covers the topics of anaesthesia, radiation dose and image registration. Because of the expanding research using micro-CT to study other skeletal sites, as well as soft tissues, we also provide a review of current techniques to examine the skull and mandible, adipose tissue, vasculature, tumour severity and cartilage. Lists of recommended further reading and literature references are included to provide the reader with more detail on the methods described. PMID:25184037
Sohbatzadeh, F; Eshghabadi, M; Mohsenpour, T
2018-06-29
The surface modification of cotton samples was carried out using a liquid (ethanol) electrospray-assisted atmospheric pressure plasma jet. X-ray photoelectron spectroscopy (XPS) and Raman analysis confirmed the successful deposition of diamond like carbon (DLC) nano structures on the cotton surface. The super hydrophobic state of the samples was probed by contact angle measurements. The water repellency of the layers was tuned by controlling the voltage applied to the electrospray electrode. An investigation of the morphological and chemical structures of the samples by field emission scanning microscopy, atomic force microscopy (AFM) and XPS indicated that the physical shape, distribution and amorphization of the DLC structures were successfully adjusted and improved by applying a voltage to the electrospray electrode. Finally wash durability of the best sample was tested for 35 cycles. In this work, the use of a well-developed atmospheric pressure plasma jet for DLC nano structures deposition can enable a promising environmentally friendly and low-cost approach for modifying cotton fabrics for super water-repellent fabric applications.
Preparation of anticoagulant PyC biomaterials with super-hydrophobic surface.
Ze, Wang; Wen-Sheng, Tan; Ye-Xia; Ming, Zhang; Xiao-Ping, Li; Jian-Guo, Qiu; Xiao-Hong, Yang
2018-01-01
Pyrolytic carbon (PyC) is a kind of biomaterial which is chemically inert and has excellent biocompatibility. In order to obtain a super-hydrophobic PyC surface to improve anticoagulation and inhibit thrombus, this study prepares grating pair structure, microhole array structure, helix structure on PyC surface by nanoseconds laser etching. Rod-like ZnO film and ball-like ZnO film are prepared on the PyC surface by the hydrothermal method; polyvinyl pyrrolidone (PVP) nanofiber film and PVP/TiO 2 complex nanofiber film are prepared on the PyC surface by the electrospinning method; the PyC surface is silanized. Finally, surface microstructure and surface energy are characterized by scanning electron microscopy and contact angle meter (OCA20, German DataPhysics Co.). The periodical microstructures are formed respectively by nanoseconds laser etching. The surface roughness is increased by the hydrothermal and electrospinning method. Through infiltration experiment on rough and smooth PyC surfaces, rough PyC surface with microstructure is super-hydrophobic and has greater than 150° contact angle, which decreases blood flow resistance and inhibits thrombus.
NASA Astrophysics Data System (ADS)
Sohbatzadeh, F.; Eshghabadi, M.; Mohsenpour, T.
2018-06-01
The surface modification of cotton samples was carried out using a liquid (ethanol) electrospray-assisted atmospheric pressure plasma jet. X-ray photoelectron spectroscopy (XPS) and Raman analysis confirmed the successful deposition of diamond like carbon (DLC) nano structures on the cotton surface. The super hydrophobic state of the samples was probed by contact angle measurements. The water repellency of the layers was tuned by controlling the voltage applied to the electrospray electrode. An investigation of the morphological and chemical structures of the samples by field emission scanning microscopy, atomic force microscopy (AFM) and XPS indicated that the physical shape, distribution and amorphization of the DLC structures were successfully adjusted and improved by applying a voltage to the electrospray electrode. Finally wash durability of the best sample was tested for 35 cycles. In this work, the use of a well-developed atmospheric pressure plasma jet for DLC nano structures deposition can enable a promising environmentally friendly and low-cost approach for modifying cotton fabrics for super water-repellent fabric applications.
Markert, Sebastian Matthias; Britz, Sebastian; Proppert, Sven; Lang, Marietta; Witvliet, Daniel; Mulcahy, Ben; Sauer, Markus; Zhen, Mei; Bessereau, Jean-Louis; Stigloher, Christian
2016-10-01
Correlating molecular labeling at the ultrastructural level with high confidence remains challenging. Array tomography (AT) allows for a combination of fluorescence and electron microscopy (EM) to visualize subcellular protein localization on serial EM sections. Here, we describe an application for AT that combines near-native tissue preservation via high-pressure freezing and freeze substitution with super-resolution light microscopy and high-resolution scanning electron microscopy (SEM) analysis on the same section. We established protocols that combine SEM with structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM). We devised a method for easy, precise, and unbiased correlation of EM images and super-resolution imaging data using endogenous cellular landmarks and freely available image processing software. We demonstrate that these methods allow us to identify and label gap junctions in Caenorhabditis elegans with precision and confidence, and imaging of even smaller structures is feasible. With the emergence of connectomics, these methods will allow us to fill in the gap-acquiring the correlated ultrastructural and molecular identity of electrical synapses.
Evidence for arrested bone formation during spaceflight
NASA Technical Reports Server (NTRS)
Turner, R. T.; Bobyn, J. D.; Duvall, P.; Morey, E. R.; Baylink, D. J.; Spector, M.
1982-01-01
Addressing the question of whether the bone formed in space is unusual, the morphology of bone made at the tibial diaphysis of rats before, during, and after spaceflight is studied. Evidence of arrest lines in the bone formed in space is reported suggesting that bone formation ceases along portions of the periosteum during spaceflight. Visualized by microradiography, the arrest lines are shown to be less mineralized than the surrounding bone matrix. When viewed by scanning electron microscopy, it is seen that bone fractures more readily at the site of an arrest line. These observations are seen as suggesting that arrest lines are a zone of weakness and that their formation may result in decreased bone strength in spite of normalization of bone formation after flight. The occurrence, location, and morphology of arrest lines are seen as suggesting that they are a visible result of the phenomenon of arrested bone formation.
NASA Technical Reports Server (NTRS)
1996-01-01
NASA studies for astronaut health in long-term space missions led to the development of the Mechanical Response Tissue Analyzer (MRTA), a research tool for astronaut disuse, osteoporosis and related bone disorders among the general population. Ames Research Center and Stanford University generated a workable device and with Gait Scan, Inc., refined and commercialized it. The MRTA is a portable dsinstrument that measures the bending stiffness of bones using electrically-induced vibration and detects and analyzes the frequencies of the resonating bone. Unlike some other methods, the MRTA uses no radiation and is fast, simple and relatively inexpensive.
Gil, Tae Young; Lee, Do Kyung; Lee, Jung Min; Yoo, Eun Sun; Ryu, Kyung-Ha
2014-06-01
To evaluate the potential utility of (123)I-metaiodobenzylguanine ((123)I-MIBG) scintigraphy and (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) for the detection of primary and metastatic lesions in pediatric neuroblastoma (NBL) patients, and to determine whether (18)F-FDG PET is as beneficial as (123)I-MIBG imaging. We selected 8 NBL patients with significant residual mass after operation and who had paired (123)I-MIBG and (18)F-FDG PET images that were obtained during the follow-up. We retrospectively reviewed the clinical charts and the findings of 45 paired scans. Both scans correlated relatively well with the disease status as determined by standard imaging modalities during follow-up; the overall concordance rates were 32/45 (71.1%) for primary tumor sites and 33/45 (73.3%) for bone-bone marrow (BM) metastatic sites. In detecting primary tumor sites, (123)I-MIBG might be superior to (18)F-FDG PET. The sensitivity of (123)I-MIBG and (18)F-FDG PET were 96.7% and 70.9%, respectively, and their specificity were 85.7% and 92.8%, respectively. (18)F-FDG PET failed to detect 9 true NBL lesions in 45 follow-up scans (false negative rate, 29%) with positive (123)I-MIBG. For bone-BM metastatic sites, the sensitivity of (123)I-MIBG and (18)F-FDG PET were 72.7% and 81.8%, respectively, and the specificity were 79.1% and 100%, respectively. (123)I-MIBG scan showed higher false positivity (20.8%) than (18)F-FDG PET (0%). (123)I-MIBG is superior for delineating primary tumor sites, and (18)F-FDG PET could aid in discriminating inconclusive findings on bony metastatic NBL. Both scans can be complementarily used to clearly determine discrepancies or inconclusive findings on primary or bone-BM metastatic NBL during follow-up.
Yovich, S; Seydel, U; Papadimitriou, J M; Nicholson, G C; Wood, D J; Zheng, M H
1998-04-01
Osteoclasts resorb bone by a complex dynamic process that initially involves attachment, polarization and enzyme secretion, followed by their detachment and migration to new sites. In this study, we postulated that mineralized and osteoid bone matrix signal osteoclasts differently, resulting in the resorption of mineralized bone matrix only. We, therefore, compared the cytoplasmic distribution of cytoskeletal proteins F-actin and vinculin using confocal laser-scanning microscopy in osteoclasts cultured on mineralized and demineralized bone slices and correlated the observations with their functional activity. Our results have demonstrated significant differences in F-actin and vinculin staining patterns between osteoclasts cultured on mineralized bone matrix and those on demineralized bone matrix. In addition, the structural variations were accompanied by significant differences in bone resorbing activity between osteoclasts grown on mineralized bone matrix and those on demineralized bone matrix after 24 h of culture --resorption only occurring in mineralized bone but not in demineralized bone. These results indicated that failure of osteoid bone resorption is caused by perturbation of osteoclast polarization.
Duran, I; Martakis, K; Hamacher, S; Stark, C; Semler, O; Schoenau, E
2018-05-01
The aim was to describe the effect of age, gender, height, different stages of human life, and body fat on the functional muscle-bone unit. All these factors had a significant effect on the functional muscle-bone unit and should be addressed when assessing functional muscle-bone unit in children and adults. For the clinical evaluation of the functional muscle-bone unit, it was proposed to evaluate the adaptation of the bone to the acting forces. A frequently used parameter for this is the total body less head bone mineral content (TBLH-BMC) determined by dual-energy X-ray absorptiometry (DXA) in relation to the lean body mass (LBM by DXA). LBM correlates highly with muscle mass. Therefore, LBM is a surrogate parameter for the muscular forces acting in everyday life. The aim of the study was to describe the effect of age and gender on the TBLH-BMC for LBM and to evaluate the impact of other factors, such as height, different stages of human life, and of body fat. As part of the National Health and Nutrition Examination Survey (NHANES) study, between the years 1999-2006 whole-body DXA scans on randomly selected Americans from 8 years of age were carried out. From all eligible DXA scans (1999-2004), three major US ethnic groups were evaluated (non-Hispanic Whites, non-Hispanic Blacks, and Mexican Americans) for further statistical analysis. For the statistical analysis, the DXA scans of 8190 non-Hispanic White children and adults (3903 female), of 4931 non-Hispanic Black children and adults (2250 female) and 5421 of Mexican-American children and adults (2424 female) were eligible. Age, gender, body height, and especially body fat had a significant effect on the functional muscle-bone unit. When assessing TBLH-BMC for LBM in children and adults, the effects of age, gender, body fat, and body height should be addressed. These effects were analyzed for the first time in such a large cohort.
Hangartner, T N; Short, D F; Eldar-Geva, T; Hirsch, H J; Tiomkin, M; Zimran, A; Gross-Tsur, V
2016-12-01
Anthropometric adjustments of bone measurements are necessary in Prader-Willi syndrome patients to correctly assess the bone status of these patients. This enables physicians to get a more accurate diagnosis of normal versus abnormal bone, allow for early and effective intervention, and achieve better therapeutic results. Bone mineral density (BMD) is decreased in patients with Prader-Willi syndrome (PWS). Because of largely abnormal body height and weight, traditional BMD Z-scores may not provide accurate information in this patient group. The goal of the study was to assess a cohort of individuals with PWS and characterize the development of low bone density based on two adjustment models applied to a dataset of BMD and bone mineral content (BMC) from dual-energy X-ray absorptiometry (DXA) measurements. Fifty-four individuals, aged 5-20 years with genetically confirmed PWS, underwent DXA scans of spine and hip. Thirty-one of them also underwent total body scans. Standard Z-scores were calculated for BMD and BMC of spine and total hip based on race, sex, and age for all patients, as well as of whole body and whole-body less head for those patients with total-body scans. Additional Z-scores were generated based on anthropometric adjustments using weight, height, and percentage body fat and a second model using only weight and height in addition to race, sex, and age. As many PWS patients have abnormal anthropometrics, addition of explanatory variables weight, height, and fat resulted in different bone classifications for many patients. Thus, 25-70 % of overweight patients, previously diagnosed as normal, were subsequently diagnosed as below normal, and 40-60 % of patients with below-normal body height changed from below normal to normal depending on bone parameter. This is the first study to include anthropometric adjustments into the interpretation of BMD and BMC in children and adolescents with PWS. This enables physicians to get a more accurate diagnosis of normal versus abnormal BMD and BMC and allows for early and effective intervention.
Development and evaluation of an articulated registration algorithm for human skeleton registration
NASA Astrophysics Data System (ADS)
Yip, Stephen; Perk, Timothy; Jeraj, Robert
2014-03-01
Accurate registration over multiple scans is necessary to assess treatment response of bone diseases (e.g. metastatic bone lesions). This study aimed to develop and evaluate an articulated registration algorithm for the whole-body skeleton registration in human patients. In articulated registration, whole-body skeletons are registered by auto-segmenting into individual bones using atlas-based segmentation, and then rigidly aligning them. Sixteen patients (weight = 80-117 kg, height = 168-191 cm) with advanced prostate cancer underwent the pre- and mid-treatment PET/CT scans over a course of cancer therapy. Skeletons were extracted from the CT images by thresholding (HU>150). Skeletons were registered using the articulated, rigid, and deformable registration algorithms to account for position and postural variability between scans. The inter-observers agreement in the atlas creation, the agreement between the manually and atlas-based segmented bones, and the registration performances of all three registration algorithms were all assessed using the Dice similarity index—DSIobserved, DSIatlas, and DSIregister. Hausdorff distance (dHausdorff) of the registered skeletons was also used for registration evaluation. Nearly negligible inter-observers variability was found in the bone atlases creation as the DSIobserver was 96 ± 2%. Atlas-based and manual segmented bones were in excellent agreement with DSIatlas of 90 ± 3%. Articulated (DSIregsiter = 75 ± 2%, dHausdorff = 0.37 ± 0.08 cm) and deformable registration algorithms (DSIregister = 77 ± 3%, dHausdorff = 0.34 ± 0.08 cm) considerably outperformed the rigid registration algorithm (DSIregsiter = 59 ± 9%, dHausdorff = 0.69 ± 0.20 cm) in the skeleton registration as the rigid registration algorithm failed to capture the skeleton flexibility in the joints. Despite superior skeleton registration performance, deformable registration algorithm failed to preserve the local rigidity of bones as over 60% of the skeletons were deformed. Articulated registration is superior to rigid and deformable registrations by capturing global flexibility while preserving local rigidity inherent in skeleton registration. Therefore, articulated registration can be employed to accurately register the whole-body human skeletons, and it enables the treatment response assessment of various bone diseases.
Berg, Britt-Isabelle; Dagassan-Berndt, Dorothea; Goldblum, David; Kunz, Christoph
2015-04-01
The aim of this study was to investigate the feasibility and effectiveness of cone-beam computed tomography (CBCT) in the planning, assessment, and follow-up for osteo-odonto-keratoprosthesis (OOKP). Six OOKP patients received a CBCT scan. CBCT scans were performed before and/or between ∼5 and 504 months after the primary OOKP intervention. Preoperative and postoperative results of the CBCT were assessed, regarding the available teeth and to assess the loss of bone in 1 patient, respectively. Resorption of the osteo-odonto-lamina was measured and graded. Five different measurements (I-V) were performed in the coronal and transversal views of CBCT. Four CBCT scans were performed preoperatively and 4 postoperatively. The follow-up time of the patients is between ∼1 to 528 months. Visualization of the potential donor teeth resulted in accurate 3-dimensional visualization of the tooth-lamina-bone complex. CBCT was found to help in the preoperative decision-making process (diameter of optical implant) and in enabling accurate postoperative evaluation of the bone volume and resorption zones of the OOKP. Loss of bone could be measured in a precise range and showed in the completed cases an average loss of 20.2%. The use of CBCT simplifies the preoperative decision making and ordering process. It also helps in determining the postoperative structure and resorption of the prosthesis.
Vertebral sarcoidosis: demonstration of bone involvement by computerized axial tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinerstein, S.L.; Kovarsky, J.
1984-08-01
A report is given of a rare case of vertebral sarcoidosis with negative conventional spinal x-ray films, yet with typical cystic lesions of the spine found incidentally during abdominal computerized axial tomography (CAT). The patient was a 28-year-old black man, who was admitted for evaluation of a 1 1/2-year history of diffuse myalgias, intermittent fever to 102 F orally, bilateral hilar adenopathy, and leukopenia. A technetium polyphosphate bone scan revealed diffuse areas of increased uptake over the sternum, entire vertebral column, and pelvis. Conventional x-ray films of the cervical, thoracic, and lumbar spine, and an AP view of the pelvismore » were all normal. Chest x-ray film revealed only bilateral hilar adenopathy. During the course of an extensive negative evaluation for infection, an abdominal CAT scan was done, showing multiple, small, sclerotic-rimmed cysts at multiple levels of the lower thoracic and lumbar spine. Bone marrow biopsy revealed only changes consistent with anemia of chronic disease. Mediastinal lymph node biopsy revealed noncaseating granulomas. A tentative diagnosis of sarcoidosis was made, and treatment with prednisone, isoniazid and rifampin was begun. Within two weeks of initiation of prednisone therapy, the patient was symptom-free. A repeat technetium polyphosphate bone scan revealed only a small residual area of mildly increased uptake over the upper thoracic vertebrae.« less
Jung, Joo-Young; Cheon, Gi Jeong; Lee, Yun-Sang; Ha, Seunggyun; Chae, Mi-Hye; Chung, Yong-An; Yoon, Do Kyun; Bahk, Yong-Whee
2016-09-01
Currently, traumatic bone diseases are diagnosed by assessing the micro (99m)Tc-hydroxymethylene diphosphonate (HDP) uptake in injured trabeculae with ongoing osteoneogenesis demonstrated by gamma correction pinhole scan (GCPS). However, the mathematic size quantification of micro-uptake is not yet available. We designed and performed this phantom-based study to set up an in-vitro model of the mathematical calculation of micro-uptake by the pixelized measurement. The micro (99m)Tc-HDP deposits used in this study were spontaneously formed both in a large standard flood and small house-made dish phantoms. The processing was as follows: first, phantoms were flooded with distilled water and (99m)Tc-HDP was therein injected to induce micro (99m)Tc-HDP deposition; second, the deposits were scanned using parallel-hole and pinhole collimator to generally survey (99m)Tc-HDP deposition pattern; and third, the scans underwent gamma correction (GC) to discern individual deposits for size measurement. In original naïve scans, tracer distribution was simply nebulous in appearance and, hence, could not be measured. Impressively, however, GCPS could discern individual micro deposits so that they were calculated by pixelized measurement. Phantoms naturally formed micro (99m)Tc-HDP deposits that are analogous to (99m)Tc-HDP uptake on in-vivo bone scan. The smallest one we measured was 0.414 mm. Flooded phantoms and therein injected (99m)Tc-HDP form nebulous micro (99m)Tc-HDP deposits that are rendered discernible by GCPB and precisely calculable using pixelized measurement. This method can be used for precise quantitative and qualitative diagnosis of bone and joint diseases at the trabecular level.
Utilization of nuclear medicine scintigraphy in Taiwan, 1997-2009.
Hung, Mao-Chin; Hsieh, Wanhua Annie; Chang, Peter Wushou; Hwang, Jeng-Jong
2011-12-01
To analyze the utilization of nuclear medicine scintigraphy in the Taiwanese population within the national health-care system between 1997 and 2009. Based on the Taiwan's National Health Insurance Research Database of 1997-2009, a retrospective population-based analysis was conducted. Descriptive statistics and regression analysis were employed to analyze the frequencies and longitudinal trends in the utilization of diagnostic nuclear medicine procedures during the period. In addition, correlation analysis was applied to determine the correlated factors in the utility of nuclear medicine scintigraphy. The annual total nuclear medicine scintigraphy was estimated to be 256,389 on average in 1997-2009 and 11.7 per 1,000 population over the period. The frequency had increased by 67% over the years, from 8.2 per 1,000 population in 1997 to 13.7 per 1,000 population in 2009. The most frequently performed procedures were whole-body bone scans (33.4% of total) and myocardial perfusion scans (29.4% of total), with 4,615 and 5,620 increments per year, respectively. Most patients were in the age group of 41-65 years old when taking examinations. In addition, male subjects were slightly more than female patients (51.5 vs. 48.5%). Furthermore, the frequencies of whole-body bone scans and PET scans were proportional to the incidences of cancers (correlation coefficients were 0.96 and 0.94, respectively). The utilization of nuclear medicine scintigraphy with the National Health Insurance system in Taiwan has been changed considerably in the past 13 years. Both whole-body bone scan and myocardial perfusion scan were performed most often with significantly increases. The trend of nuclear medicine scintigraphy may have potential impact on making health-care policy in Taiwan.
USDA-ARS?s Scientific Manuscript database
Hydroxyapatite was prepared from catfish bones, called catfish hydroxyapatite (CFHA), by mechanical and chemical treatment methods and was characterized by x-ray diffraction (X-RD) and scanning electron microscope (SEM) techniques to confirm the presence of hydroxyapatite. The ability of CFHA to rem...
Nanotubular polyaniline electrode for supercapacitor application
NASA Astrophysics Data System (ADS)
Athira, A. R.; Vimuna, V. M.; Vidya, K.; Xavier, T. S.
2018-05-01
Polyaniline(PANI) nanotubes have been successfully synthesised at room temperature by the chemical oxidative polymerization of aniline with Ammoniumpersulphate(APS) in aqueous acetic acid. Chemically synthesised PANI nanotubes were characterized using Field emission scanning electron microscopy(FESEM), Brunauer - Emmett-Teller (BET) analysis, X ray diffraction analysis (XRD) and Fourier transform infrared spectroscopy (FTIR). The super capacitive performance of the synthesised PANI nanotubes was tested using cyclic voltammetry (CV) technique in H2SO4 electrolyte with in potential range of -0.2 to 0.8V. The effect of scan rates on specific capacitance of PANI electrode was studied. The highest specific capacitance of 232.2Fg-1 was obtained for the scan rate of 5mVs-1. This study suggests that the synthesized PANI nanotubes are excellent candidate for developing electrode materials for supercapacitors.
The Skeletal Biology of Hibernating Woodchucks (Marmota monax)
NASA Astrophysics Data System (ADS)
Doherty, Alison H.
Long periods of inactivity in most mammals lead to significant bone loss that may not be completely recovered during an individual's lifetime regardless of future activity. Extended bouts of inactivity are the norm for hibernating mammals. It remains largely unknown, however, how these animals avoid adversely affecting bone, their quality, and ultimately survival given the challenges posed to their skeletons by inactivity and nutritional deprivation during hibernation. The primary goal of this project was to identify the physiological mechanisms regulating bone density, area and strength during extended periods of annual inactivity in hibernating woodchucks (Marmota monax). The overall hypothesis that bone integrity is unaffected by several months of inactivity during hibernation in woodchucks was tested across multiple levels of biological function. To gain a holistic assessment of seasonal bone integrity, the locomotor behavior and estimated stresses acting on woodchuck bones were investigated in conjunction with computed tomography scans and three-point bending tests to determine bone density, geometry, and mechanical properties of the long bones throughout the year. In addition, serum protein expression was examined to ascertain bone resorption and formation processes indicative of overall annual skeletal health. It was determined that woodchucks avoid significant changes in gait preference, but experience a decrease in bending stresses acting on distal limb bones following hibernation. Computed tomography scans indicated that bone mass, distribution, and trabecular structure are maintained in these animals throughout the year. Surprisingly, cortical density increased significantly posthibernation. Furthermore, three-point bending tests revealed that although less stiff, woodchuck femora were just as tough during the hibernation season, unlike brittle bones associated with osteoporosis. Finally, bone serum markers suggested a net maintenance of bone resorption and formation processes throughout the year. Taken together, these findings strongly suggest that woodchucks do not lose bone to the extent that would be expected from a non-hibernating animal during four months of inactivity. It is concluded that bone integrity is not adversely affected by hibernation in woodchucks. The results of this work have several broader implications toward skeletal biology research, the evolution of skeletal plasticity, and biomedical applications to osteoporosis prevention and treatment.
Slimani, Samy; Nezzar, Adlen; Makhloufi, Hachemi
2013-01-01
Melorheostosis is a very rare sclerosing bone disorder that involves frequently one limb. It may be asymptomatic, but pain and limb deformity may occur and can be very debilitating. Different reports have indicated efficacy of bisphosphonates (pamidronate and etidronate) on symptoms. We report an adult patient with a very painful melorheostosis, who improved after treatment with zoledronate, either on symptoms or on bone scans. PMID:23813581
NASA Technical Reports Server (NTRS)
Bhatt, R. T.
2017-01-01
To determine the influence of fiber types on creep durability, 3D SiC/SiC CMCs were fabricated with Sylramic-iBN, super Sylramic-iBN and Hi-Nicalon-S fibers and the composite specimens were then tested under isothermal tensile creep at 14820C at 69, 103 and 138 MPa for up to 300hrs in air. The failed specimens were examined by scanning electron microscopy (SEM) and computed tomography (CT) for fracture mode analysis. The creep data of these composites are compared with those of other SiC/SiC composites in the literature. The results of this study will be presented.
NASA Astrophysics Data System (ADS)
Ajay, K. M.; Dinesh, M. N.
2018-02-01
Various activated carbon based electrode materials with different surface areas was prepared on stainless steel based refillable super capacitor model using spin coating. Bio Synthesized Activated Carbon (BSAC), Activated Carbon (AC) and Graphite powder are chosen as electrode materials in this paper. Electrode materials prepared using binder solution which is 6% by wt. polyvinylidene difluoride, 94% by wt. dimethyl fluoride. 3M concentrated KOH solution is used as aqueous electrolyte with PVDF thin film as separator. It is tested for electrochemical characterizations and material characterizations. It is observed that the Specific capacitance of Graphite, Biosynthesized active carbon and Commercially available activated carbon are 16.1F g-1, 53.4F g-1 and 107.6F g-1 respectively at 5mV s-1 scan rate.
Ultrafast photon counting applied to resonant scanning STED microscopy.
Wu, Xundong; Toro, Ligia; Stefani, Enrico; Wu, Yong
2015-01-01
To take full advantage of fast resonant scanning in super-resolution stimulated emission depletion (STED) microscopy, we have developed an ultrafast photon counting system based on a multigiga sample per second analogue-to-digital conversion chip that delivers an unprecedented 450 MHz pixel clock (2.2 ns pixel dwell time in each scan). The system achieves a large field of view (∼50 × 50 μm) with fast scanning that reduces photobleaching, and advances the time-gated continuous wave STED technology to the usage of resonant scanning with hardware-based time-gating. The assembled system provides superb signal-to-noise ratio and highly linear quantification of light that result in superior image quality. Also, the system design allows great flexibility in processing photon signals to further improve the dynamic range. In conclusion, we have constructed a frontier photon counting image acquisition system with ultrafast readout rate, excellent counting linearity, and with the capacity of realizing resonant-scanning continuous wave STED microscopy with online time-gated detection. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Cost-Effectiveness of Diagnostic Strategies for Suspected Scaphoid Fractures.
Yin, Zhong-Gang; Zhang, Jian-Bing; Gong, Ke-Tong
2015-08-01
The aim of this study was to assess the cost effectiveness of multiple competing diagnostic strategies for suspected scaphoid fractures. With published data, the authors created a decision-tree model simulating the diagnosis of suspected scaphoid fractures. Clinical outcomes, costs, and cost effectiveness of immediate computed tomography (CT), day 3 magnetic resonance imaging (MRI), day 3 bone scan, week 2 radiographs alone, week 2 radiographs-CT, week 2 radiographs-MRI, week 2 radiographs-bone scan, and immediate MRI were evaluated. The primary clinical outcome was the detection of scaphoid fractures. The authors adopted societal perspective, including both the costs of healthcare and the cost of lost productivity. The incremental cost-effectiveness ratio (ICER), which expresses the incremental cost per incremental scaphoid fracture detected using a strategy, was calculated to compare these diagnostic strategies. Base case analysis, 1-way sensitivity analyses, and "worst case scenario" and "best case scenario" sensitivity analyses were performed. In the base case, the average cost per scaphoid fracture detected with immediate CT was $2553. The ICER of immediate MRI and day 3 MRI compared with immediate CT was $7483 and $32,000 per scaphoid fracture detected, respectively. The ICER of week 2 radiographs-MRI was around $170,000. Day 3 bone scan, week 2 radiographs alone, week 2 radiographs-CT, and week 2 radiographs-bone scan strategy were dominated or extendedly dominated by MRI strategies. The results were generally robust in multiple sensitivity analyses. Immediate CT and MRI were the most cost-effective strategies for diagnosing suspected scaphoid fractures. Economic and Decision Analyses Level II. See Instructions for Authors for a complete description of levels of evidence.
Akoto, Ralph; Müller-Hübenthal, Jonas; Balke, Maurice; Albers, Malte; Bouillon, Bertil; Helm, Philip; Banerjee, Marc; Höher, Jürgen
2015-08-19
Bone tunnel enlargement is a phenomenon present in all anterior cruciate ligament (ACL)- reconstruction techniques. It was hypothesized that press-fit fixation using a free autograft bone plug reduces the overall tunnel size in the tibial tunnel. In a prospective cohort study twelve patients who underwent primary ACL reconstruction using an autologous quadriceps tendon graft and adding a free bone block for press-fit fixation (PF) in the tibial tunnel were matched to twelve patients who underwent ACL reconstruction with a hamstring graft and interference screw fixation (IF). The diameters of the bone tunnels were analysed by a multiplanar reconstruction technique (MPR) in a CT scan three months postoperatively. Manual and instrumental laxity (Lachman test, Pivot-shift test, Rolimeter) and functional outcome scores (International Knee Documentation Committee sore, Tegner activity level) were measured after one year follow up. In the PF group the mean bone tunnel diameter at the level of the joint entrance was not significantly enlarged. One and two centimeter distal to the bone tunnel diameter was reduced by 15% (p = .001). In the IF group the bone tunnel at the level of the joint entrance was enlarged by 14% (p = .001). One and two centimeter distal to the joint line the IF group showed a widening of the bone tunnel by 21% (p < .001) One and two centimeter below the joint line the bone tunnel was smaller in the PF group when compared to the IF group (p < .001). No significant difference for laxity test and functional outcome scores could be shown. This study demonstrates that press-fit fixation with free autologous bone plugs in the tibial tunnel results in significantly smaller diameter of the tibial tunnel compared to interference screw fixation.
Nogueira, Luísa; Quatrehomme, Gérald; Bertrand, Marie-France; Rallon, Christophe; Ceinos, Romain; du Jardin, Philippe; Adalian, Pascal; Alunni, Véronique
2017-03-01
This experimental study examined the lesions produced by a hatchet on human bones (tibiae). A total of 30 lesions were produced and examined macroscopically (naked eye) and by stereomicroscopy. 13 of them were also analyzed using scanning electron microscopy. The general shape of the lesion, both edges, both walls, the kerf floor and the extremities were described. The length and maximum width of the lesions were also recorded. The microscopic analysis of the lesions led to the description of a sharp-blunt mechanism. Specific criteria were identified (lateral pushing back, fragmentation of the upraising, fossa dug laterally to the edge and vertical striae) enabling the forensic expert to conclude that a hacking instrument was used. These criteria are easily identifiable using scanning electron microscopy, but can also be observed with stereomicroscopy. Overall, lateral pushing back and vertical striae visible using stereomicroscopy and scanning electron microscopy signal the use of a hacking tool.
Krishnan, Ullas Chandrika; Byanyima, Rosemary Kusaba; Faith, Ameda; Kamulegeya, Adriane
2017-01-01
Aim: The aim of this study was to investigate epidemiological features of maxillofacial fractures within trauma patients who had head and neck computed tomography (CT) scan at the Mulago National referral hospital. Methods: CT scan records of trauma patients who had head scans at the Department of Radiology over 1-year period were accessed. Data collected included sociodemographic factors, type and etiology of injury, and concomitant maxillofacial injuries. Results: A total of 1330 trauma patients underwent head and neck CT scan in the 1-year study period. Out of these, 130 were excluded due to incomplete or unclear records and no evidence of injury. Of the remaining 1200, 32% (387) had maxillofacial fractures. The median age of the patients with maxillofacial fractures was 28 (range = 18–80) years and 18–27 age group was most common at 47.5%. Road traffic accidents constituted 49.1% of fractures. The single most affected isolated bone was the frontal bone (23%). The number of maxillofacial bones fractured was predicted by age group (df = 3 F = 5.358, P = 0.001), association with other fractures (df = 1 F = 5.317, P = 0.03). Conclusions: Good matched case–control prospective studies are needed to enable us tease out the finer difference in the circumstances and pattern of injury if we are to design appropriate preventive measures. PMID:29291177
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oswald, S.G.; Van Nostrand, D.; Savory, C.G.
1989-08-01
Although few reports address the use of three-phase bone scanning (TPBS) and {sup 111}In-labeled white blood cell (In-WBC) scintigraphy in hip arthroplasty utilizing a porous coated prosthesis, the literature suggests that scintigraphic patterns in the uncomplicated patient may differ from that seen in the cemented prosthesis. In an attempt to determine the scintigraphic natural history, 25 uncomplicated porous coated hip arthroplasties in 21 patients were prospectively studied with serial TPBS and In-WBC at approximately 7 days, and at 3, 6, 12, 18, and 24 mo postoperatively. This report deals with findings related to the prosthetic tip. Only one of 136more » flow studies were abnormal and only two of 136 blood-pool images demonstrated focally increased activity. All 25 prostheses (120 of 143 scans) demonstrated increased uptake on the bone phase images. The area about the tip was divided into three segments; increased uptake at 24 mo was noted in the medial, distal, and lateral segments in 16%, 72%, and 56% of prostheses, respectively. Twenty of 25 prostheses (82 of 142 scans) showed uptake on In-WBC scintigraphy, being noted in 48% of prostheses at 24 mo. We conclude that scintigraphic patterns in the uncomplicated patient with a porous coated prosthesis appear to differ from patterns described in cemented prostheses.« less
A fundamental study of cryoablation on normal bone: diagnostic imaging and histopathology.
Yoshimoto, Yuta; Azuma, Kazuo; Miya, Atsushi; Makino, Eiichi; Nakamoto, Hidekazu; Abe, Nobutaka; Kaburagi, Masashi; Ueda, Hisaki; Kuroda, Kohei; Tsuka, Takeshi; Sugiyama, Akihiko; Imagawa, Tomohiro; Murahata, Yusuke; Itoh, Norihiko; Osaki, Tomohiro; Shimizu, Tadashi; Okamoto, Yoshiharu
2014-10-01
Cryoablation is a minimally invasive cancer treatment. In this study, the effects of cryoablation on normal rabbit bone were evaluated using imaging and histopathological examinations. Cryoablation was performed using a Cryo-Hit (Galil Medical, Yokneam, Israel). Under anesthesia, one cryoablation needle was inserted at the center of the femur (day 0). To create an ice ball (2 x 3 cm), two 10-min freeze cycles were performed, separated by a 5-min thaw cycle. During cryoablation, changes in the bone and regional tissue were monitored using magnetic resonance imaging (MRI). MRI scans, computed tomography (CT) scans, and collections from the femur (for histopathological evaluation) were performed on days 7, 14, 28, and 56. In terms of the all rabbits' general conditions, we did not observe lameness, decreased appetite, or any other side effects during the experimental periods. Histopathological evaluations of the femur were performed using hematoxylin and eosin staining. MRI indicated inflammation around the ice ball on day 7. Subsequently, the area of inflammation gradually decreased from days 14 to 56. In the histopathological examination, necrosis of bone marrow cells and endosteum were observed from days 7 to 56. No regeneration of bone marrow cells was observed during the experimental period. On the other hand, cryoablation did not influence osteoblasts. Furthermore, there was no pathologic fracture during the experimental period. Our results suggest that cryoablation does not induce severe adverse effects on normal bone, and therefore has potential as a therapeutic option for bone tumors, including metastatic tumors to bone. Copyright © 2014 Elsevier Inc. All rights reserved.
Bieńko, Marek; Radzki, Radosław Piotr; Wolski, Dariusz
2017-09-21
This study evaluates the effects of three different doses of chromium sulphate on bone density and the tomographic parameters of skeletal tissue of rats. The experiment was performed on 40 male Wistar rats which received, by gavage, during 90 days, a chromium sulphate in either a daily dose of 400, 600 or 800 µg/kg BW. At the end of experiment, the rats were scanned using the densitometry method (DXA) to determine the bone mineral density, bone mineral content of total skeleton and vertebral column (L2-L4) and parameters of body composition (Lean Mass and Fat Mass). The isolated femora were scanned using peripheral a quantitative computed tomography method (pQCT) for a separate analysis of the trabecular and cortical bone tissue. The ultimate strength, work to ultimate and the Young modulus of femora was also investigated by the three-point bending test. The negative impact of chromium was observed in relation to bone tissue. All doses significantly decreased total skeleton density and mineral content, and also had impact upon the isolated femora and vertebral column. Trabecular volumetric bone mineral density and trabecular bone mineral content measured by pQCT in distal femur metaphysis were significantly lower in the experimental groups than in the control. Higher doses of chromium also significantly decreased values of ultimate strength and Young modulus in the investigated femora. The results of the experiment demonstrate that chromium sulphate is dose dependent, and exerts a disadvantageous effect on the skeleton, as it decreases bone density and resistance.
Barngkgei, Imad; Al Haffar, Iyad; Shaarani, Eyad; Khattab, Razan; Mashlah, Ammar
2016-11-01
To assess the trabecular bone structure of jawbones and the dens (the odontoid process of the second cervical vertebra) amongst osteoporotic and nonosteoporotic women using cone-beam computed tomography (CBCT). Analysis of the dens trabecular bone structure aimed to test the validity of CBCT in such analysis. Thirty-eight women who went under dual-energy X-ray absorptiometry (DXA) examination were scanned by CBCT. Cuboids from different areas of jawbones and the dens were extracted from each scan. Trabecular thickness (Tb.Th), trabecular separation (Tb.S), bone volume fraction (BV/TV), specific bone surface (BS/TV) and connectivity density were calculated. Student's t-test, Pearson correlation, and logistic regression analysis were used to explore differences in these measures between groups. Jawbone-derived measures showed insignificant differences (P > 0.05) between osteoporotic and non-osteoporotic groups, and weak correlations with femoral neck and lumbar vertebrae T-scores (r ≤ 0.4). Dens-derived measures, however, resulted in the opposite (r = 0.34-0.38 [P value = 0.02-0.036] and r = 0.48-0.61 [P value ≤ 0.003]) and the highest accuracy of osteoporosis prediction: 84.2% and 78.9% respectively. Trabecular bone structure of the mandible and maxilla is not affected in osteoporosis as assessed by CBCT. Dens trabecular bone analysis revealed the opposite, so some trabecular bone measures may be assessed by CBCT, which may aid in predicting osteoporosis. © 2015 Wiley Publishing Asia Pty Ltd.
Growth, body composition, and bone density following pediatric liver transplantation.
Sheikh, Amin; Cundy, Tim; Evans, Helen Maria
2018-04-24
Patients transplanted for cholestatic liver disease are often significantly fat-soluble vitamin deficient and malnourished pretransplant, with significant corticosteroid exposure post-transplant, with increasing evidence of obesity and metabolic syndrome post-LT. Our study aimed to assess growth, body composition, and BMD in patients post-pediatric LT. Body composition and bone densitometry scans were performed on 21 patients. Pre- and post-transplant anthropometric data were analyzed. Bone health was assessed using serum ALP, calcium, phosphate, and procollagen-1-N-peptide levels. Median ages at transplant and at this assessment were 2.7 and 10.6 years, respectively. Physiological markers of bone health, median z-scores for total body, and lumbar spine aBMD were normal. Bone area was normal for height and BMAD at L3 was normal for age, indicating, respectively, normal cortical and trabecular bone accrual. Median z-scores for weight, height, and BMI were 0.6, -0.9, 1.8 and 0.6, 0.1, 0.8 pre- and post-transplant, respectively. Total body fat percentages measured on 21 body composition scans revealed 2 underweight, 7 normal, 6 overweight, and 6 obese. Bone mass is preserved following pediatric LT with good catch-up height. About 52% of patients were either overweight/obese post-transplant, potentially placing them at an increased risk of metabolic syndrome and its sequelae in later life. BMI alone is a poor indicator of nutritional status post-transplant. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Heterotopic ossification revisited.
Mavrogenis, Andreas F; Soucacos, Panayotis N; Papagelopoulos, Panayiotis J
2011-03-11
Heterotopic ossification is the abnormal formation of mature lamellar bone within extraskeletal soft tissues where bone does not exist. Heterotopic ossification has been classified into posttraumatic, nontraumatic or neurogenic, and myositis ossificans progressiva or fibrodysplasia ossificans progressive. The pathophysiology is unknown. Anatomically, heterotopic ossification occurs outside the joint capsule without disrupting it. The new bone can be contiguous with the skeleton but generally does not involve the periosteum. Three-phase technetium-99m (99mTc) methylene diphosphonate bone scan is the most sensitive imaging modality for early detection and assessing the maturity of heterotopic ossification. Nonsurgical treatment with indomethacin and radiation therapy is appropriate for prophylaxis or early treatment of heterotopic ossification. Although bisphosphonates are effective prophylaxis if initiated shortly after the trauma, mineralization of the bone matrix resumes after drug discontinuation. During the acute inflammatory stage, the patient should rest the involved joint in a functional position; once acute inflammatory signs subside, passive range of motion exercises and continued mobilization are indicated. Surgical indications for excision of heterotopic ossification include improvement of function, standing posture, sitting or ambulation, independent dressing, feeding and hygiene, and repeated pressure sores from underlying bone mass. The optimal timing of surgery has been suggested to be a delay of 12 to 18 months until radiographic evidence of heterotopic ossification maturation and maximal recovery after neurological injury. The ideal candidate for surgical treatment before 18 months should have no joint pain or swelling, a normal alkaline phosphatase level, and 3-phase bone scan indicating mature heterotopic ossification. Copyright 2011, SLACK Incorporated.
NASA Technical Reports Server (NTRS)
Sibonga, J. D.; Evans, H. J.; Sung, H. G.; Spector, E. R.; Lang, T. F.; Oganov, V. S.; Bakulin, A. V.; Shackelford, L. C.; LeBlanc, A. D.
2006-01-01
Introduction: The loss of bone mineral in astronauts during spaceflight has been investigated throughout the more than 40 years of bone research in space. Consequently, it is a medical requirement at NASA that changes in bone mass be monitored in crew members by measurements of bone mineral density (BMD) with dual-energy x-ray absorptiometry (DXA). This report is the first to evaluate medical data to address the recovery of bone mineral that is lost during spaceflight. Methods: DXA scans are performed before and after flight in astronauts who serve on long-duration missions (4-6 months) to ensure that medical standards for flight certification are met, to evaluate the effects of spaceflight and to monitor the restoration to preflight BMD status after return to Earth. Through cooperative agreements with the Russian Space Agency, the Bone and Mineral Lab at NASA Johnson Space Center (Houston, TX), also had access to BMD data from cosmonauts who had flown on long-duration missions yielding data from a total of 45 individual crew members. Changes in BMD (between 56 different sets of pre- and postflight measurements) were plotted as a function of time (days after landing); plotted data were fitted to an exponential mathematical model that determined i) BMD change at day 0 after landing and ii) the number of days after which 50% of the lost bone was recovered ("Recovery Half-Life"). These fits were performed for BMD of the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. Results: In sum, averaged losses of bone mineral after spaceflight ranged between 2-9% for sites in the axial and appendicular skeleton. The fitted postflight BMD values predicted a 50% recovery of bone loss for all sites within 9 months.
Ni, Jianlong; Li, Dichen; Mao, Mao; Dang, Xiaoqian; Wang, Kunzheng; He, Jiankang; Shi, Zhibin
2018-02-01
To explore a method of bone tunnel placement for anterior cruciate ligament (ACL) reconstruction based on 3-dimensional (3D) printing technology and to assess its accuracy. Twenty human cadaveric knees were scanned by thin-layer computed tomography (CT). To obtain data on bones used to establish a knee joint model by computer software, customized bone anchors were installed before CT. The reference point was determined at the femoral and tibial footprint areas of the ACL. The site and direction of the bone tunnels of the femur and tibia were designed and calibrated on the knee joint model according to the reference point. The resin template was designed and printed by 3D printing. Placement of the bone tunnels was accomplished by use of templates, and the cadaveric knees were scanned again to compare the concordance of the internal opening of the bone tunnels and reference points. The twenty 3D printing templates were designed and printed successfully. CT data analysis between the planned and actual drilled tunnel positions showed mean deviations of 0.57 mm (range, 0-1.5 mm; standard deviation, 0.42 mm) at the femur and 0.58 mm (range, 0-1.5 mm; standard deviation, 0.47 mm) at the tibia. The accuracy of bone tunnel placement for ACL reconstruction in cadaveric adult knees based on 3D printing technology is high. This method can improve the accuracy of bone tunnel placement for ACL reconstruction in clinical sports medicine. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Caglar, M; Kupik, O; Karabulut, E; Høilund-Carlsen, P F
2016-01-01
To examine the value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) for the detection of bone metastasis in breast cancer patients and assess whether whole body bone scan (BS) with (99m)Tc-methylene diphosphonate provides any additional information. Study group comprised 150 patients, mean age 52 years (range 27-85) with breast cancer, suspected of having bone metastases. All patients had undergone both FDG-PET/CT and BS with or without single photon emission tomography/computed tomography (SPECT/CT) within a period of 6 weeks. The final diagnosis of bone metastasis was established by histopathological findings, additional imaging, or clinical follow-up longer than 10 months. Cancer antigen 15-3 (CA15-3) and carcinoembryogenic antigen (CEA) were measured in all patients. Histologically 83%, 7% and 10% had infiltrating ductal, lobular and mixed carcinoma respectively. Confirmed bone metastases were present in 86 patients (57.3%) and absent in 64 (42.7%). Mean CA15-3 and CEA values in patients with bone metastases were 74.6ng/mL and 60.4U/mL respectively, compared to 21.3ng/mL and 3.2U/mL without metastases (p<0.001). The sensitivity of FDG-PET/CT for the detection of bone metastases was 97.6% compared to 89.5% with SPECT/CT. In 57 patients, FDG-PET/CT correctly identified additional pulmonary, hepatic, nodal and other soft tissue metastases, not detected by BS. Our findings suggest that FDG-PET/CT is superior to BS with or without SPECT/CT. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.
Additional Results of Glaze Icing Scaling in SLD Conditions
NASA Technical Reports Server (NTRS)
Tsao, Jen-Ching
2016-01-01
New guidance of acceptable means of compliance with the super-cooled large drops (SLD) conditions has been issued by the U.S. Department of Transportation's Federal Aviation Administration (FAA) in its Advisory Circular AC 25-28 in November 2014. The Part 25, Appendix O is developed to define a representative icing environment for super-cooled large drops. Super-cooled large drops, which include freezing drizzle and freezing rain conditions, are not included in Appendix C. This paper reports results from recent glaze icing scaling tests conducted in NASA Glenn Icing Research Tunnel (IRT) to evaluate how well the scaling methods recommended for Appendix C conditions might apply to SLD conditions. The models were straight NACA 0012 wing sections. The reference model had a chord of 72 inches and the scale model had a chord of 21 inches. Reference tests were run with airspeeds of 100 and 130.3 knots and with MVD's of 85 and 170 microns. Two scaling methods were considered. One was based on the modified Ruff method with scale velocity found by matching the Weber number W (sub eL). The other was proposed and developed by Feo specifically for strong glaze icing conditions, in which the scale liquid water content and velocity were found by matching reference and scale values of the non-dimensional water-film thickness expression and the film Weber number W (sub ef). All tests were conducted at 0 degrees angle of arrival. Results will be presented for stagnation freezing fractions of 0.2 and 0.3. For non-dimensional reference and scale ice shape comparison, a new post-scanning ice shape digitization procedure was developed for extracting 2-dimensional ice shape profiles at any selected span-wise location from the high fidelity 3-dimensional scanned ice shapes obtained in the IRT.
Additional Results of Glaze Icing Scaling in SLD Conditions
NASA Technical Reports Server (NTRS)
Tsao, Jen-Ching
2016-01-01
New guidance of acceptable means of compliance with the super-cooled large drops (SLD) conditions has been issued by the U.S. Department of Transportation's Federal Aviation Administration (FAA) in its Advisory Circular AC 25-28 in November 2014. The Part 25, Appendix O is developed to define a representative icing environment for super-cooled large drops. Super-cooled large drops, which include freezing drizzle and freezing rain conditions, are not included in Appendix C. This paper reports results from recent glaze icing scaling tests conducted in NASA Glenn Icing Research Tunnel (IRT) to evaluate how well the scaling methods recommended for Appendix C conditions might apply to SLD conditions. The models were straight NACA 0012 wing sections. The reference model had a chord of 72 in. and the scale model had a chord of 21 in. Reference tests were run with airspeeds of 100 and 130.3 kn and with MVD's of 85 and 170 micron. Two scaling methods were considered. One was based on the modified Ruff method with scale velocity found by matching the Weber number WeL. The other was proposed and developed by Feo specifically for strong glaze icing conditions, in which the scale liquid water content and velocity were found by matching reference and scale values of the nondimensional water-film thickness expression and the film Weber number Wef. All tests were conducted at 0 deg AOA. Results will be presented for stagnation freezing fractions of 0.2 and 0.3. For nondimensional reference and scale ice shape comparison, a new post-scanning ice shape digitization procedure was developed for extracting 2-D ice shape profiles at any selected span-wise location from the high fidelity 3-D scanned ice shapes obtained in the IRT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sy, W.M.; Westring, D.W.; Weinberger, G.
1975-11-01
Photon-deficient foci or cold lesions were demonstrated on /sup 99m/Tc- polyphosphate bone imaging in eight individuals with various malignancies and one in sickle cell crisis. The bone radiographs of five of these persons failed to show corresponding bony changes at the time of the imaging. Most of the cold lesions observed on bone imaging were located in the denser and tubular bones. A postulate has been advanced regarding the factors that might influence the different gamma-imaging manifestations of radiographically demonstrable lytic lesions. The cases presented herein further emphasize the importance of recognizing the existence of cold areas in the imagesmore » of bones and the need to place these in proper perspective when interpreting scans. (auth)« less
Spaceflight-induced Bone Loss: Is there a Risk for Accelerated Osteoporosis after Return?
NASA Technical Reports Server (NTRS)
Sibonga, Jean
2008-01-01
The evidence-to to-date suggests that the rapid rate of site-specific bone loss in space, due to the unbalanced stimulation of bone resorption, may predispose crew members to irreversible changes in bone structure and microarchitecture. No analyses conducted in the postflight period to assess microarchitectural changes. There is no complete analysis of skeletal recovery in the postflight period to evaluate the structural changes that accompany increases in DXA aBMD. Postflight analyses based upon QCT scans performed on limited crew members indicate reductions in hip bone strength and incomplete recovery at 1 year. No recovery of trabecular vBMD after 1 year return (HRP IWG). Time course of bone loss in space unknown.
Lessons from Immune 1-3: what did we learn and what do we need to do in the future?
NASA Technical Reports Server (NTRS)
Chapes, Stephen Keith
2004-01-01
Sprague-Dawley rats were subjected to three 8-to-10 day space flights on the Space Shuttle. Housed in NASA's Animal Enclosure Modules, rats were flown to test the hypotheses that therapy with pegylated interleukin-2 or insulin-like growth factor-1 would ameliorate some of the effects of space flight on the immune system. As part of these experiments, we measured body and organ weights, blood cell differentials, plasma corticosterone, macrophage colony forming units, lymphocyte mitogenic, super-antigenic and interferon-gamma responses, bone marrow cell and peritoneal macrophage cytokine secretion and bone strength and mass. This paper compares some of the immunophysiological parameters of the control animals used in the Immune1-3 flight series and presents data from an animal infection model for use during space flight.
Gibelli, Daniele; Poppa, Pasquale; Cummaudo, Marco; Mattia, Mirko; Cappella, Annalisa; Mazzarelli, Debora; Zago, Matteo; Sforza, Chiarella; Cattaneo, Cristina
2017-11-01
Sexual dimorphism is a crucial characteristic of skeleton. In the last years, volumetric and surface 3D acquisition systems have enabled anthropologists to assess surfaces and volumes, whose potential still needs to be verified. This article aimed at assessing volume and linear parameters of the first metatarsal bone through 3D acquisition by laser scanning. Sixty-eight skeletons underwent 3D scan through laser scanner: Seven linear measurements and volume from each bone were assessed. A cutoff value of 13,370 mm 3 was found, with an accuracy of 80.8%. Linear measurements outperformed volume: metatarsal length and mediolateral width of base showed higher cross-validated accuracies (respectively, 82.1% and 79.1%, raising at 83.6% when both of them were included). Further studies are needed to verify the real advantage for sex assessment provided by volume measurements. © 2017 American Academy of Forensic Sciences.
TOMOGRAPHIC MORPHOLOGICAL STUDY OF THE CRANIUM AND ITS CORRELATION WITH CRANIAL HALO USE IN ADULTS
ALMEIDA, TIAGO FERREIRA DE; CHARAFEDDINE, HOMAR TOLEDO; ARAÚJO, FERNANDO FLORES DE; CRISTANTE, ALEXANDRE FOGAÇA; MARCON, RAPHAEL MARTUS; LETAIF, OLAVO BIRAGHI
2017-01-01
ABSTRACT Objective: To evaluate using tomographic study the thickness of the cranial board at the insertions points of the cranial halo pins in adults Methods: This is a retrospective, cross-sectional, descriptive analysis of Computed Tomography (CT) scans of adult patients' crania. The study included adults between 20 and 50 years without cranial abnormalities. We excluded any exam with cranial abnormalities Results: We analyzed 50 CT scans, including 27 men and 23 women, at the original insertion points and alternative points (1 and 2 cm above the frontal and parietal bones). The average values were 7.4333 mm in the frontal bone and 6.0290 mm in the parietal bone Conclusion: There was no statistically significant difference between the classical and alternative points, making room for alternative fixings and safer introduction of the pins, if necessary.Level of Evidence II, Retrospective Study. PMID:28642643
Tumoral calcinosis associated with sarcoidosis and positive bone and gallium imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolpe, F.M.; Khedkar, N.Y.; Gordon, D.
1987-07-01
A 63-year-old female with biopsy proven tumoral calcinosis presented with progressive and recurrent swelling and tenderness of the right hip, thigh, elbow, and wrist. Both gallium and bone imaging demonstrated intense, congruent uptake in these areas. This is the third case of tumoral calcinosis with sarcoidosis documented in the literature. However, these are the first published bone and gallium scans in a patient with a history of sarcoidosis and tumoral calcinosis.
Permeability study of cancellous bone and its idealised structures.
Syahrom, Ardiyansyah; Abdul Kadir, Mohammed Rafiq; Harun, Muhamad Nor; Öchsner, Andreas
2015-01-01
Artificial bone is a suitable alternative to autografts and allografts, however their use is still limited. Though there were numerous reports on their structural properties, permeability studies of artificial bones were comparably scarce. This study focused on the development of idealised, structured models of artificial cancellous bone and compared their permeability values with bone surface area and porosity. Cancellous bones from fresh bovine femur were extracted and cleaned following an established protocol. The samples were scanned using micro-computed tomography (μCT) and three-dimensional models of the cancellous bones were reconstructed for morphology study. Seven idealised and structured cancellous bone models were then developed and fabricated via rapid prototyping technique. A test-rig was developed and permeability tests were performed on the artificial and real cancellous bones. The results showed a linear correlation between the permeability and the porosity as well as the bone surface area. The plate-like idealised structure showed a similar value of permeability to the real cancellous bones. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Al-Akhras, M.-Ali H.; Hasan Qaseer, M. K.; Albiss, B. A.; Alebrhim, M. Anwar; Gezawa, Umar S.
2018-02-01
Valuable structural and chemical features can be obtained for spongy and hard bone by infrared spectroscopy and X-ray diffraction. A better understanding of chemical and structural differences between spongy and hard bone is a very important contributor to bone quality. Our data according to IR data showed that the collagen cross-links occurred to be higher in spongy bone, and crystallinity was lower in spongy bone. Deconvolution of the infrared band near 870 cm-1 reveals evidence for A2-type carbonate substitution on hydroxyapatite of spongy bone in addition to the A and B type carbonate substitution that are also found in hard bone. IR and XRD data confirmed the results of each other since full width at half maximum of 002-apatite pattern of XRD showed that the crystallinity was lower in spongy bone. The microstructure was examined by using scanning electron microscope and the result showed that the lattice of thin threads in spongy bone and is less dense than hard bone.
Ferraro, Vincenza; Gaillard-Martinie, Brigitte; Sayd, Thierry; Chambon, Christophe; Anton, Marc; Santé-Lhoutellier, Véronique
2017-04-01
Natural collagen is easily available from animal tissues such as bones. Main limitations reported in the use of natural collagen are heterogeneity and loss of integrity during recovery. However, its natural complexity, functionality and bioactivity still remain to be achieved through synthetic and recombinant ways. Variability of physicochemical properties of collagen extracted from bovine bone by acetic acid was then investigated taking into account endogenous and exogenous factors. Endogenous: bovine's bones age (4 and 7 years) and anatomy (femur and tibia); exogenous: thermal treatments (spray-drying and lyophilisation). Scanning electron microscopy, spectroscopy (EDS, FTIR, UV/Vis and CD), differential scanning calorimetry (DSC), centesimal composition, mass spectrometry, amino acids and zeta-potential analysis were used for the purpose. Age correlated negatively with yield of recovery and positively with minerals and proteoglycans content. Comparing the anatomy, higher yields were found for tibias, and higher stability of tibias collagen in solution was noticed. Whatever the age and the anatomy, collagens were able to renature and to self-assemble into tri-dimensional structures. Nonetheless thermal stability and kinetics of renaturation were different. Variability of natural collagen with bone age and anatomy, and drying methodology, may be a crucial advantage to conceive tailor-made applications in either the biological or technical sector. Copyright © 2016 Elsevier B.V. All rights reserved.
Hydrogen-rich saline prevents bone loss in diabetic rats induced by streptozotocin.
Guo, Jialiang; Dong, Weichong; Jin, Lin; Wang, Pengcheng; Hou, Zhiyong; Zhang, Yingze
2017-10-01
As an antioxidant molecule, hydrogen has been received much more attention and reported to be used as the treatment strategy for various diseases. In this study, we hypothesize that systemic delivery of hydrogen saline water may improve the reservation of bone tissue in the tibias and femurs of osteoporotic rats caused by diabetes mellitus (DM), which is characterized by increased levels of oxidative stress and overproducing reactive oxygen species (ROS). The animals were divided into three groups of 12 animals and lavaged with normal saline (normal control and DM), or hydrogen saline water (DM + HRS). General status, blood glucose level, tibial and femoral mechanical strength, and micro-CT scans of the proximal tibia were recorded and analyzed. After 12 weeks, the glucose level was significantly decreased in the DM + HRS group compared with that of the DM group. Micro-CT scans showed that bone volume/total volume, connectivity density, trabecular thickness, and trabecular number were significantly increased compared with the DM group. Mechanical results of energy, stiffness and elastic modulus in the DM + HRS group were significantly higher than in the other groups for the tibia and femur. The results indicate that the systemic delivery of hydrogen saline water, which is safe and well tolerated, preserves bone volume and decreases fracture risks in streptozotocin-induced diabetic status rats, whose bone structure or inherent material properties of bone tissues are changed.
Fatima, Farah; Fei, Ying; Ali, Abukar; Mohammad, Majd; Erlandsson, Malin C.; Bokarewa, Maria I.; Nawaz, Muhammad; Valadi, Hadi; Na, Manli
2017-01-01
Background Permanent joint dysfunction due to bone destruction occurs in up to 50% of patients with septic arthritis. Recently, imaging technologies such as micro computed tomography (μCT) scan have been widely used for preclinical models of autoimmune joint disorders. However, the radiological features of septic arthritis in mice are still largely unknown. Methods NMRI mice were intravenously or intra-articularly inoculated with S. aureus Newman or LS-1 strain. The radiological and clinical signs of septic arthritis were followed for 10 days using μCT. We assessed the correlations between joint radiological changes and clinical signs, histological changes, and serum levels of cytokines. Results On days 5–7 after intravenous infection, bone destruction verified by μCT became evident in most of the infected joints. Radiological signs of bone destruction were dependent on the bacterial dose. The site most commonly affected by septic arthritis was the distal femur in knees. The bone destruction detected by μCT was positively correlated with histological changes in both local and hematogenous septic arthritis. The serum levels of IL-6 were significantly correlated with the severity of joint destruction. Conclusion μCT is a sensitive method for monitoring disease progression and determining the severity of bone destruction in a mouse model of septic arthritis. IL-6 may be used as a biomarker for bone destruction in septic arthritis. PMID:28152087
Manhard, Mary Kate; Harkins, Kevin D; Gochberg, Daniel F; Nyman, Jeffry S; Does, Mark D
2017-03-01
MRI of cortical bone has the potential to offer new information about fracture risk. Current methods are typically performed with 3D acquisitions, which suffer from long scan times and are generally limited to extremities. This work proposes using 2D UTE with half pulses for quantitatively mapping bound and pore water in cortical bone. Half-pulse 2D UTE methods were implemented on a 3T Philips Achieva scanner using an optimized slice-select gradient waveform, with preparation pulses to selectively image bound or pore water. The 2D methods were quantitatively compared with previously implemented 3D methods in the tibia in five volunteers. The mean difference between bound and pore water concentration acquired from 3D and 2D sequences was 0.6 and 0.9 mol 1 H/L bone (3 and 12%, respectively). While 2D pore water methods tended to slightly overestimate concentrations relative to 3D methods, differences were less than scan-rescan uncertainty and expected differences between healthy and fracture-prone bones. Quantitative bound and pore water concentration mapping in cortical bone can be accelerated by 2 orders of magnitude using 2D protocols with optimized half-pulse excitation. Magn Reson Med 77:945-950, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oswald, S.G.; Van Nostrand, D.; Savory, C.G.
1990-03-01
Although few studies address the use of three-phase bone scanning (TPBS) and indium-111-labeled white blood cell scintigraphy ({sup 111}In-WBC) in hip arthroplasty utilizing a porous-coated prosthesis, the literature suggests that scintigraphic patterns in the uncomplicated patient may differ from that seen with the cemented prosthesis. In an attempt to determine the scintigraphic natural history, 25 uncomplicated porous-coated hip arthroplasties in 21 patients were prospectively studied with serial TPBS and {sup 111I}n-WBC at approximately 7 days, and 3, 6, 12, 18, and 24 mo postoperatively. This report deals with findings related to the acetabulum. All 25 prostheses (144 of 144 scans)more » demonstrated increased uptake on the bone-phase images. Although this activity decreased with time, 76% had persistent uptake at 24 mo. Twenty-three of 25 prostheses (126 of 140 scans) showed increased uptake on {sup 111}In-WBC scintigraphy, invariably decreasing with time, but with 37% having significant uptake at 24 mo. Scintigraphic patterns in the uncomplicated porous-coated hip arthroplasty patient appear to differ from patterns described in cemented prostheses.« less
Scheiner, Jonathan; Farid, Karen; Raden, Mark; Demisse, Seleshi
2017-03-01
Stage 4 pressure ulcers (PUs) start with tissue death at the level of the bone, also known as deep tissue injury (DTI). Studies have shown the appearance of DTI on the skin is delayed for several days after the original pressure-related injury to the deep soft tissues. Studies also suggest DTI can be seen using ultrasound (US) technology. A prospective, descriptive, correlational pilot study was conducted to evaluate the use of US technology to detect DTI in the soft tissues that are not visible on the skin upon hospital admission. Study participants included a convenience sample of 33 persons at risk for PUs (ie, Braden score <18) admitted through the emergency department. Each participant had US scans of 13 common PU body sites. All scans were documented in the radiologist report in the electronic medical record. Creatinine phosphokinase, calcium levels, and urine myoglobin levels also were assessed upon enrollment. Skin failure risk factors (SFRFs), including fever, hypotension, weight loss, coagulopathy, and acidosis/respiratory failure, also were documented. Patients were examined for skin PUs every day for 7 days after US scan. Twenty-three (23) patients completed the study. US scans identified pressure necrosis at 2 levels: bone (54 positive [US+]) and subcutaneous (SC); 79 US+, respectively). US+ bone sites resulted in 5 PUs appearing 6 to 7 days post-admission (sensitivity = 100%, specificity 84.7%, positive predictive value 10%, and negative predictive value 100%), indicating all DTI that later became purple skin DTI were detected by the US. US+ SC sites, located immediately under the skin, yielded 5 PUs appearing on day 2 after admission (sensitivity 100%, specificity 74.8%, positive predictive value 6.3%, and negative predictive value 100%). The participants with PU occurrence in both bone and SC groups had low Braden scores (bone group mean = 13.25, SC group mean = 11.2). Study patients who were positive for PU also had >4 SFRFs. Creatinine phosphokinase, calcium, and myoglobin levels were inconsistent and did not correlate with US+ scans. These observations warrant larger studies to confirm findings and optimize the validity of US screening for DTI in select populations, which may help improve protocols of care and PU admission documentation. The preliminary results suggest inclusion of the Braden Scale score and known PU risk factors may improve the positive predictive value of this test.
Dzyubachyk, Oleh; Khmelinskii, Artem; Plenge, Esben; Kok, Peter; Snoeks, Thomas J A; Poot, Dirk H J; Löwik, Clemens W G M; Botha, Charl P; Niessen, Wiro J; van der Weerd, Louise; Meijering, Erik; Lelieveldt, Boudewijn P F
2014-01-01
In small animal imaging studies, when the locations of the micro-structures of interest are unknown a priori, there is a simultaneous need for full-body coverage and high resolution. In MRI, additional requirements to image contrast and acquisition time will often make it impossible to acquire such images directly. Recently, a resolution enhancing post-processing technique called super-resolution reconstruction (SRR) has been demonstrated to improve visualization and localization of micro-structures in small animal MRI by combining multiple low-resolution acquisitions. However, when the field-of-view is large relative to the desired voxel size, solving the SRR problem becomes very expensive, in terms of both memory requirements and computation time. In this paper we introduce a novel local approach to SRR that aims to overcome the computational problems and allow researchers to efficiently explore both global and local characteristics in whole-body small animal MRI. The method integrates state-of-the-art image processing techniques from the areas of articulated atlas-based segmentation, planar reformation, and SRR. A proof-of-concept is provided with two case studies involving CT, BLI, and MRI data of bone and kidney tumors in a mouse model. We show that local SRR-MRI is a computationally efficient complementary imaging modality for the precise characterization of tumor metastases, and that the method provides a feasible high-resolution alternative to conventional MRI.
Vivekanandhan, Sapthagirivasan; Subramaniam, Janarthanam; Mariamichael, Anburajan
2016-10-01
Hip fractures due to osteoporosis are increasing progressively across the globe. It is also difficult for those fractured patients to undergo dual-energy X-ray absorptiometry scans due to its complicated protocol and its associated cost. The utilisation of computed tomography for the fracture treatment has become common in the clinical practice. It would be helpful for orthopaedic clinicians, if they could get some additional information related to bone strength for better treatment planning. The aim of our study was to develop an automated system to segment the femoral neck region, extract the cortical and trabecular bone parameters, and assess the bone strength using an isotropic volume construction from clinical computed tomography images. The right hip computed tomography and right femur dual-energy X-ray absorptiometry measurements were taken from 50 south-Indian females aged 30-80 years. Each computed tomography image volume was re-constructed to form isotropic volumes. An automated system by incorporating active contour models was used to segment the neck region. A minimum distance boundary method was applied to isolate the cortical and trabecular bone components. The trabecular bone was enhanced and segmented using trabecular enrichment approach. The cortical and trabecular bone features were extracted and statistically compared with dual-energy X-ray absorptiometry measured femur neck bone mineral density. The extracted bone measures demonstrated a significant correlation with neck bone mineral density (r > 0.7, p < 0.001). The inclusion of cortical measures, along with the trabecular measures extracted after isotropic volume construction and trabecular enrichment approach procedures, resulted in better estimation of bone strength. The findings suggest that the proposed system using the clinical computed tomography images scanned with low dose could eventually be helpful in osteoporosis diagnosis and its treatment planning. © IMechE 2016.
Nauer, Claude Bertrand; Zubler, Christoph; Weisstanner, Christian; Stieger, Christof; Senn, Pascal; Arnold, Andreas
2012-03-01
The purpose of this experimental study was to investigate the effect of tube tension reduction on image contrast and image quality in pediatric temporal bone computed tomography (CT). Seven lamb heads with infant-equivalent sizes were scanned repeatedly, using four tube tensions from 140 to 80 kV while the CT-Dose Index (CTDI) was held constant. Scanning was repeated with four CTDI values from 30 to 3 mGy. Image contrast was calculated for the middle ear as the Hounsfield unit (HU) difference between bone and air and for the inner ear as the HU difference between bone and fluid. The influence of tube tension on high-contrast detail delineation was evaluated using a phantom. The subjective image quality of eight middle and inner ear structures was assessed using a 4-point scale (scores 1-2 = insufficient; scores 3-4 = sufficient). Middle and inner ear contrast showed a near linear increase with tube tension reduction (r = -0.94/-0.88) and was highest at 80 kV. Tube tension had no influence on spatial resolution. Subjective image quality analysis showed significantly better scoring at lower tube tensions, with highest image quality at 80 kV. However, image quality improvement was most relevant for low-dose scans. Image contrast in the temporal bone is significantly higher at low tube tensions, leading to a better subjective image quality. Highest contrast and best quality were found at 80 kV. This image quality improvement might be utilized to further reduce the radiation dose in pediatric low-dose CT protocols.
Validation of CBCT for the computation of textural biomarkers
NASA Astrophysics Data System (ADS)
Paniagua, Beatriz; Ruellas, Antonio C.; Benavides, Erika; Marron, Steve; Wolford, Larry; Cevidanes, Lucia
2015-03-01
Osteoarthritis (OA) is associated with significant pain and 42.6% of patients with TMJ disorders present with evidence of TMJ OA. However, OA diagnosis and treatment remain controversial, since there are no clear symptoms of the disease. The subchondral bone in the TMJ is believed to play a major role in the progression of OA. We hypothesize that the textural imaging biomarkers computed in high resolution Conebeam CT (hr- CBCT) and μCT scans are comparable. The purpose of this study is to test the feasibility of computing textural imaging biomarkers in-vivo using hr-CBCT, compared to those computed in μCT scans as our Gold Standard. Specimens of condylar bones obtained from condylectomies were scanned using μCT and hr- CBCT. Nine different textural imaging biomarkers (four co-occurrence features and five run-length features) from each pair of μCT and hr-CBCT were computed and compared. Pearson correlation coefficients were computed to compare textural biomarkers values of μCT and hr-CBCT. Four of the nine computed textural biomarkers showed a strong positive correlation between biomarkers computed in μCT and hr-CBCT. Higher correlations in Energy and Contrast, and in GLN (grey-level non-uniformity) and RLN (run length non-uniformity) indicate quantitative texture features can be computed reliably in hr-CBCT, when compared with μCT. The textural imaging biomarkers computed in-vivo hr-CBCT have captured the structure, patterns, contrast between neighboring regions and uniformity of healthy and/or pathologic subchondral bone. The ability to quantify bone texture non-invasively now makes it possible to evaluate the progression of subchondral bone alterations, in TMJ OA.
Pandey, Anil K; Bisht, Chandan S; Sharma, Param D; ArunRaj, Sreedharan Thankarajan; Taywade, Sameer; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh
2017-11-01
Tc-methylene diphosphonate (Tc-MDP) bone scintigraphy images have limited number of counts per pixel. A noise filtering method based on local statistics of the image produces better results than a linear filter. However, the mask size has a significant effect on image quality. In this study, we have identified the optimal mask size that yields a good smooth bone scan image. Forty four bone scan images were processed using mask sizes 3, 5, 7, 9, 11, 13, and 15 pixels. The input and processed images were reviewed in two steps. In the first step, the images were inspected and the mask sizes that produced images with significant loss of clinical details in comparison with the input image were excluded. In the second step, the image quality of the 40 sets of images (each set had input image, and its corresponding three processed images with 3, 5, and 7-pixel masks) was assessed by two nuclear medicine physicians. They selected one good smooth image from each set of images. The image quality was also assessed quantitatively with a line profile. Fisher's exact test was used to find statistically significant differences in image quality processed with 5 and 7-pixel mask at a 5% cut-off. A statistically significant difference was found between the image quality processed with 5 and 7-pixel mask at P=0.00528. The identified optimal mask size to produce a good smooth image was found to be 7 pixels. The best mask size for the John-Sen Lee filter was found to be 7×7 pixels, which yielded Tc-methylene diphosphonate bone scan images with the highest acceptable smoothness.
Validation of CBCT for the computation of textural biomarkers
Paniagua, Beatriz; Ruellas, Antonio Carlos; Benavides, Erika; Marron, Steve; Woldford, Larry; Cevidanes, Lucia
2015-01-01
Osteoarthritis (OA) is associated with significant pain and 42.6% of patients with TMJ disorders present with evidence of TMJ OA. However, OA diagnosis and treatment remain controversial, since there are no clear symptoms of the disease. The subchondral bone in the TMJ is believed to play a major role in the progression of OA. We hypothesize that the textural imaging biomarkers computed in high resolution Conebeam CT (hr-CBCT) and μCT scans are comparable. The purpose of this study is to test the feasibility of computing textural imaging biomarkers in-vivo using hr-CBCT, compared to those computed in μCT scans as our Gold Standard. Specimens of condylar bones obtained from condylectomies were scanned using μCT and hr-CBCT. Nine different textural imaging biomarkers (four co-occurrence features and five run-length features) from each pair of μCT and hr-CBCT were computed and compared. Pearson correlation coefficients were computed to compare textural biomarkers values of μCT and hr-CBCT. Four of the nine computed textural biomarkers showed a strong positive correlation between biomarkers computed in μCT and hr-CBCT. Higher correlations in Energy and Contrast, and in GLN (grey-level non-uniformity) and RLN (run length non-uniformity) indicate quantitative texture features can be computed reliably in hr-CBCT, when compared with μCT. The textural imaging biomarkers computed in-vivo hr-CBCT have captured the structure, patterns, contrast between neighboring regions and uniformity of healthy and/or pathologic subchondral bone. The ability to quantify bone texture non-invasively now makes it possible to evaluate the progression of subchondral bone alterations, in TMJ OA. PMID:26085710
Validation of CBCT for the computation of textural biomarkers.
Paniagua, Beatriz; Ruellas, Antonio Carlos; Benavides, Erika; Marron, Steve; Woldford, Larry; Cevidanes, Lucia
2015-03-17
Osteoarthritis (OA) is associated with significant pain and 42.6% of patients with TMJ disorders present with evidence of TMJ OA. However, OA diagnosis and treatment remain controversial, since there are no clear symptoms of the disease. The subchondral bone in the TMJ is believed to play a major role in the progression of OA. We hypothesize that the textural imaging biomarkers computed in high resolution Conebeam CT (hr-CBCT) and μCT scans are comparable. The purpose of this study is to test the feasibility of computing textural imaging biomarkers in-vivo using hr-CBCT, compared to those computed in μCT scans as our Gold Standard. Specimens of condylar bones obtained from condylectomies were scanned using μCT and hr-CBCT. Nine different textural imaging biomarkers (four co-occurrence features and five run-length features) from each pair of μCT and hr-CBCT were computed and compared. Pearson correlation coefficients were computed to compare textural biomarkers values of μCT and hr-CBCT. Four of the nine computed textural biomarkers showed a strong positive correlation between biomarkers computed in μCT and hr-CBCT. Higher correlations in Energy and Contrast, and in GLN (grey-level non-uniformity) and RLN (run length non-uniformity) indicate quantitative texture features can be computed reliably in hr-CBCT, when compared with μCT. The textural imaging biomarkers computed in-vivo hr-CBCT have captured the structure, patterns, contrast between neighboring regions and uniformity of healthy and/or pathologic subchondral bone. The ability to quantify bone texture non-invasively now makes it possible to evaluate the progression of subchondral bone alterations, in TMJ OA.
Synthesis of β-tricalcium phosphate.
Chaair, H; Labjar, H; Britel, O
2017-09-01
Ceramics play a key role in several biomedical applications. One of them is bone grafting, which is used for treating bone defects caused by injuries or osteoporosis. Calcium-phosphate based ceramic are preferred as bone graft biomaterials in hard tissue surgery because their chemical composition is close to the composition of human bone. They also have a marked bioresorbability and bioactivity. In this work, we have developed methods for synthesis of β-tricalcium phosphate apatite (β-TCP). These products were characterized by different techniques such as X-ray diffraction, infrared spectroscopy, scanning electron microscopy and chemical analysis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans
NASA Astrophysics Data System (ADS)
Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj
2016-06-01
This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.
Osteoid osteoma of the foot: presentation following trauma.
Ambrosia, J M; Kernek, C B
1985-05-01
A 15 year old black boy presented with a seven-month history of apparent post traumatic foot pain. Radiologic workup including bone scan, tomograms, and CT scan showed osteoid osteoma, which was treated by surgical excision. This treatment resulted in complete pain relief and return to full activities.
2012-01-01
Background Mollusc shells are commonly investigated using high-resolution imaging techniques based on cryo-fixation. Less detailed information is available regarding the light-optical properties. Sea shells of Haliotis pulcherina were embedded for polishing in defined orientations in order to investigate the interface between prismatic calcite and nacreous aragonite by standard materialographic methods. A polished thin section of the interface was prepared with a defined thickness of 60 μm for quantitative birefringence analysis using polarized light and LC-PolScope microscopy. Scanning electron microscopy images were obtained for comparison. In order to study structural-mechanical relationships, nanoindentation experiments were performed. Results Incident light microscopy revealed a super-structure in semi-transparent regions of the polished cross-section under a defined angle. This super-structure is not visible in transmitted birefringence analysis due to the blurred polarization of small nacre platelets and numerous organic interfaces. The relative orientation and homogeneity of calcite prisms was directly identified, some of them with their optical axes exactly normal to the imaging plane. Co-oriented "prism colonies" were identified by polarized light analyses. The nacreous super-structure was also visualized by secondary electron imaging under defined angles. The domains of the super-structure were interpreted to consist of crystallographically aligned platelet stacks. Nanoindentation experiments showed that mechanical properties changed with the same periodicity as the domain size. Conclusions In this study, we have demonstrated that insights into the growth mechanisms of nacre can be obtained by conventional light-optical methods. For example, we observed super-structures formed by co-oriented nacre platelets as previously identified using X-ray Photo-electron Emission Microscopy (X-PEEM) [Gilbert et al., Journal of the American Chemical Society 2008, 130:17519–17527]. Polarized optical microscopy revealed unprecedented super-structures in the calcitic shell part. This bears, in principle, the potential for in vivo studies, which might be useful for investigating the growth modes of nacre and other shell types. PMID:22967319
The dosimetric impact of including the patient table in CT dose estimates
NASA Astrophysics Data System (ADS)
Nowik, Patrik; Bujila, Robert; Kull, Love; Andersson, Jonas; Poludniowski, Gavin
2017-12-01
The purpose of this study was to evaluate the dosimetric impact of including the patient table in Monte Carlo CT dose estimates for both spiral scans and scan projection radiographs (SPR). CT scan acquisitions were simulated for a Siemens SOMATOM Force scanner (Siemens Healthineers, Forchheim, Germany) with and without a patient table present. An adult male, an adult female and a pediatric female voxelized phantom were simulated. The simulated scans included tube voltages of 80 and 120 kVp. Spiral scans simulated without a patient table resulted in effective doses that were overestimated by approximately 5% compared to the same simulations performed with the patient table present. Doses in selected individual organs (breast, colon, lung, red bone marrow and stomach) were overestimated by up to 8%. Effective doses from SPR acquired with the x-ray tube stationary at 6 o’clock (posterior-anterior) were overestimated by 14-23% when the patient table was not included, with individual organ dose discrepancies (breast, colon, lung red bone marrow and stomach) all exceeding 13%. The reference entrance skin dose to the back were in this situation overestimated by 6-15%. These results highlight the importance of including the patient table in patient dose estimates for such scan situations.
Fang, Ning; Sun, Wei
2015-04-21
A method, apparatus, and system for improved VA-TIRFM microscopy. The method comprises automatically controlled calibration of one or more laser sources by precise control of presentation of each laser relative a sample for small incremental changes of incident angle over a range of critical TIR angles. The calibration then allows precise scanning of the sample for any of those calibrated angles for higher and more accurate resolution, and better reconstruction of the scans for super resolution reconstruction of the sample. Optionally the system can be controlled for incident angles of the excitation laser at sub-critical angles for pseudo TIRFM. Optionally both above-critical angle and sub critical angle measurements can be accomplished with the same system.
Ober, Ciprian; Pestean, Cosmin; Bel, Lucia; Taulescu, Marian; Milgram, Joshua; Todor, Adrian; Ungur, Rodica; Leșu, Mirela; Oana, Liviu
2018-05-10
Femoral head and neck ostectomy (FHNO) is a salvage surgical procedure intended to eliminate hip joint laxity associated pain in the immature dog, or pain due to secondary osteoarthritis in the mature dog. The outcome of the procedure is associated with the size of the dog but the cause of a generally poorer outcome in larger breeds has not been determined. The objective of this study was to assess the long-term results of FHNO associated with unsatisfactory functional outcome by means of clinical examination and computed tomography (CT) scanning. Four large mixed breed dogs underwent FHNO in different veterinary clinics. Clinical and CT scanning evaluations were carried out long time after the procedures had been done. Hip pain, muscle atrophy, decreased range of motion and chronic lameness were observed at clinical examination. Extensive remodelling, unacceptable bone-on-bone contact with bony proliferation involving the femoral neck and acetabulum, but also excessive removal with bone lysis were observed by CT scanning. Revision osteotomy was performed in one dog. Deep gluteal muscle interposition was used, but no improvements were observed postoperatively. This is the first report on the evaluation of three-dimensional CT reconstructions of the late bone remodelling associated with poor clinical outcome in large dogs. The study shows that FHNO could lead to severe functional deficits in large breed dogs. An extensive follow-study is necessary to more accurately determine the frequency of such complications.
Adiposity and TV viewing are related to less bone accrual in young children.
Wosje, Karen S; Khoury, Philip R; Claytor, Randal P; Copeland, Kristen A; Kalkwarf, Heidi J; Daniels, Stephen R
2009-01-01
To examine the relation between baseline fat mass and gain in bone area and bone mass in preschoolers studied prospectively for 4 years, with a focus on the role of physical activity and TV viewing. Children were part of a longitudinal study in which measures of fat, lean and bone mass, height, weight, activity, and diet were taken every 4 months from ages 3 to 7 years. Activity was measured by accelerometer and TV viewing by parent checklist. We included 214 children with total body dual energy x-ray absorptiometry (Hologic 4500A) scans at ages 3.5 and 7 years. Higher baseline fat mass was associated with smaller increases in bone area and bone mass over the next 3.5 years (P < .001). More TV viewing was related to smaller gains in bone area and bone mass accounting for race, sex, and height. Activity by accelerometer was not associated with bone gains. Adiposity and TV viewing are related to less bone accrual in preschoolers.
Bernardoni, Brittney; Scerpella, Tamara A; Rosenbaum, Paula F; Kanaley, Jill A; Raab, Lindsay N; Li, Quefeng; Wang, Sijian; Dowthwaite, Jodi N
2015-05-01
We prospectively evaluated adolescent organized physical activity (PA) as a factor in adult female bone traits. Annual DXA scans accompanied semiannual records of anthropometry, maturity, and PA for 42 participants in this preliminary analysis (criteria: appropriately timed DXA scans at ~1 year premenarche [predictor] and ~5 years postmenarche [dependent variable]). Regression analysis evaluated total adolescent interscan PA and PA over 3 maturity subphases as predictors of young adult bone outcomes: 1) bone mineral content (BMC), geometry, and strength indices at nondominant distal radius and femoral neck; 2) subhead BMC; 3) lumbar spine BMC. Analyses accounted for baseline gynecological age (years pre- or postmenarche), baseline bone status, adult body size and interscan body size change. Gymnastics training was evaluated as a potentially independent predictor, but did not improve models for any outcomes (p > .07). Premenarcheal bone traits were strong predictors of most adult outcomes (semipartial r2 = .21-0.59, p ≤ .001). Adult 1/3 radius and subhead BMC were predicted by both total PA and PA 1-3 years postmenarche (p < .03). PA 3-5 years postmenarche predicted femoral narrow neck width, endosteal diameter, and buckling ratio (p < .05). Thus, participation in organized physical activity programs throughout middle and high school may reduce lifetime fracture risk in females.
Vaccaro, Calogero; Busetto, Roberto; Bernardini, Daniele; Anselmi, Carlo; Zotti, Alessandro
2012-03-01
To evaluate the precision and accuracy of assessing bone mineral density (BMD) by use of mean gray value (MGV) on digitalized and digital images of conventional and digital radiographs, respectively, of ex vivo bovine and equine bone specimens in relation to the gold-standard technique of dual-energy x-ray absorptiometry (DEXA). Left and right metatarsal bones from 11 beef cattle and right femurs from 2 horses. Bovine specimens were imaged by use of conventional radiography, whereas equine specimens were imaged by use of computed radiography (digital radiography). Each specimen was subsequently scanned by use of the same DEXA equipment. The BMD values resulting from each DEXA scan were paired with the MGVs obtained by use of software on the corresponding digitalized or digital radiographic image. The MGV analysis of digitalized and digital x-ray images was a precise (coefficient of variation, 0.1 and 0.09, respectively) and highly accurate method for assessing BMD, compared with DEXA (correlation coefficient, 0.910 and 0.937 for conventional and digital radiography, respectively). The high correlation between MGV and BMD indicated that MGV analysis may be a reliable alternative to DEXA in assessing radiographic bone density. This may provide a new, inexpensive, and readily available estimate of BMD.
WE-FG-202-05: Quantification of Bone Flare On [F-18] NaF PET/CT in Metastatic Prostate Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisman, A; Harmon, S; Perk, T
Purpose: Bone flare has been observed on Tc-99m bone scans during early assessment in metastatic Castration-Resistant Prostate Cancer (mCRPC) patients receiving select androgen-signaling pathway (AR) targeted treatments, including CYP17-inhibitor Abiraterone. This study investigates the appearance and potential clinical impact of bone flare in mCRPC patients receiving CYP17-inhibitors using {sup 18}F-NaF PET/CT. Methods: Twenty-three mCRPC patients being treated with CYP17-inhibitors received NaF PET/CT scans at baseline, week 6, and week 12 of treatment. Individual lesions were identified using a SUV>15 threshold within skeletal regions and articulated bone registration was used to track lesions between scans. Standard SUV metrics were extracted globallymore » for each patient (pSUV) and for each individual lesion (iSUV). Differences in metrics across time-points were compared using Wilcoxon signed-rank tests. Cox proportional hazard regression analyses were conducted between global metrics and progression-free survival (PFS). Results: Nineteen patients (83%) showed increasing NaF PET global metrics at week 6, with pSUV{sub total} reflecting consensus change across other global metrics with median increase +33% (range +2 to 205%). Of these patients, 14 showed subsequent decrease in pSUV{sub total}, with a median of −17% (range −76 to −1%), indicating flare phenomenon. Increasing pSUV{sub mean} at week 6 correlated with extended clinical PFS (HR = 0.58, p=0.02). New lesions did not account for the initial increase in global NaF metrics. Lesion-level analysis reveals 316 lesions in the 14 patients exhibiting global flare. On average, 75% (sd: 22%) of lesions follow global trends with iSUV{sub total} increasing at week 6 and 65% (sd: 17%) showing iSUV{sub total} decrease at week 12. Conclusion: Bone flare was detected on NaF PET/CT in the first 6 weeks of treatment for mCRPC patients receiving CYP17-inhibitors, subsiding by week 12. Characterization provided in this study suggests prolonged PFS in patients showing bone flare early in select AR-directed treatments. Prostate Cancer Foundation.« less
Super-micron Particles over US Coastal Region: Seasonal Changes from TCAP data
NASA Astrophysics Data System (ADS)
Kassianov, E.; Pekour, M. S.; Flynn, C. J.; Berg, L. K.; Fast, J. D.; Zelenyuk, A.; Tomlinson, J. M.; Chand, D.; Barnard, J.; Jefferson, A.
2016-12-01
Numerous studies have demonstrated that wind-blown dust and ocean wave breaking are two major sources of atmospheric super-micron particles. However, the fate of generated super-micron particles and their relative contribution to the aerosol microphysical and optical properties is not well understood especially for coastal regions with complex interplay of local and large-scale flow patterns. To estimate this contribution, we take advantage of an integrated dataset collected from ground-based observations during the recent Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/) over the North Atlantic Ocean and US coastal region (Cape Cod, MA, USA). This region represents a crossroads of flow patterns with pronounced seasonal changes. Conducted from June 2012 through June 2013, TCAP involved one-month summer and winter periods of intensive aircraft observations that included the U.S. Department of Energy (DOE) Gulfstream-159 (G-1) aircraft. Aerosol size spectra, chemical composition and total scattering data were collected with high temporal resolution (<1 min) during the TCAP flights. The twelve-month TCAP dataset integrates ground-based observations from a suite of instruments for measuring cloud, aerosol and radiative properties, including the Multi-Filter Rotating Shadowband Radiometer (MFRSR), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS) and a three-wavelength nephelometer. To demonstrate the importance of super-micron particles on the climate-relevant aerosol microphysical and optical properties, we examine data from the ground-based and airborne instruments. In particular, we show that the contribution of super-micron particles to the total scattering can be large (up to 50%) during winter period and this large contribution is mostly associated with sea-salt particles. The expected application of our results to the evaluation and improvement of regional and global climate models will be discussed as well.
Li, Cheng; Jin, Dakai; Chen, Cheng; Letuchy, Elena M.; Janz, Kathleen F.; Burns, Trudy L.; Torner, James C; Levy, Steven M.; Saha, Punam K
2015-01-01
Purpose: Cortical bone supports and protects human skeletal functions and plays an important role in determining bone strength and fracture risk. Cortical bone segmentation at a peripheral site using multirow-detector CT (MD-CT) imaging is useful for in vivo assessment of bone strength and fracture risk. Major challenges for the task emerge from limited spatial resolution, low signal-to-noise ratio, presence of cortical pores, and structural complexity over the transition between trabecular and cortical bones. An automated algorithm for cortical bone segmentation at the distal tibia from in vivo MD-CT imaging is presented and its performance and application are examined. Methods: The algorithm is completed in two major steps—(1) bone filling, alignment, and region-of-interest computation and (2) segmentation of cortical bone. After the first step, the following sequence of tasks is performed to accomplish cortical bone segmentation—(1) detection of marrow space and possible pores, (2) computation of cortical bone thickness, detection of recession points, and confirmation and filling of true pores, and (3) detection of endosteal boundary and delineation of cortical bone. Effective generalizations of several digital topologic and geometric techniques are introduced and a fully automated algorithm is presented for cortical bone segmentation. Results: An accuracy of 95.1% in terms of volume of agreement with manual outlining of cortical bone was observed in human MD-CT scans, while an accuracy of 88.5% was achieved when compared with manual outlining on postregistered high resolution micro-CT imaging. An intraclass correlation coefficient of 0.98 was obtained in cadaveric repeat scans. A pilot study was conducted to describe gender differences in cortical bone properties. This study involved 51 female and 46 male participants (age: 19–20 yr) from the Iowa Bone Development Study. Results from this pilot study suggest that, on average after adjustment for height and weight differences, males have thicker cortex (mean difference 0.33 mm and effect size 0.92 at the anterior region) with lower bone mineral density (mean difference −28.73 mg/cm3 and effect size 1.35 at the posterior region) as compared to females. Conclusions: The algorithm presented is suitable for fully automated segmentation of cortical bone in MD-CT imaging of the distal tibia with high accuracy and reproducibility. Analysis of data from a pilot study demonstrated that the cortical bone indices allow quantification of gender differences in cortical bone from MD-CT imaging. Application to larger population groups, including those with compromised bone, is needed. PMID:26233184
The Mechanics of Long Bone Fractures.
1981-01-31
r = .99) between wet density and ultimate bending strength for 37 specimens of human femoral bone. Evans (1973) studied embalmed human tibial...Work 2 2.2 Methods 6 2.2.1 Torsional Loading 6 2.2.2 The Effects of Combined Loading 10 2.2.3 Cancellous Bone Effects 11 2.3 Results 11 2.3.1...PROPERTIES 21 3.1 Previous Work 22 3.2 Methods 26 3.2.1 Cross Sectional Property Software 26 3.2.2 CT Scanning Procedure 28 3.2.3 Linear Dependency of
Enhancement of valve metal osteoconductivity by one-step hydrothermal treatment.
Zuldesmi, Mansjur; Waki, Atsushi; Kuroda, Kensuke; Okido, Masazumi
2014-09-01
In this study, we produced super-hydrophilic surfaces of valve metals (Ti, Nb, Ta and Zr) by one-step hydrothermal treatment. Their surface characteristics and osteoconductivity using an in vivo test were then assessed. These data were compared with that of as-polished, as-anodized and both anodized+hydrothermally treated samples. Changes in surface chemistry, surface morphology and structure were investigated by X-ray photoelectron spectroscopy, scanning electron microscopy, and X-ray diffractometry. The results revealed that the water contact angles of valve metals were decreased by hydrothermal treatment and continued to reduce dramatically until lower than 10° after being immersed in phosphate buffered solution. By producing super-hydrophilic surfaces, the osteoconductivity of these hydrothermally treated valve metals was enhanced by up to 55%. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Senthur Prabu, S.; Devendranath Ramkumar, K.; Arivazhagan, N.
2017-11-01
In the present investigation an attempt has been made to join the dissimilar combination of Inconel 625 super alloy and super austenitic stainless steel (AISI 904L) using manual multi-pass continuous current gas tungsten arc (CCGTA) welding processes. Two different filler wires such as ERNiCrMo-4 and ERNiCrCoMo-1 have been used to compare the metallurgical properties of these welded joints. Both optical microscopy and scanning electron microscopy techniques were adopted to disseminate the microstructure traits of these weldments. Formation of secondary phases at the HAZ and weld interface of AISI 904L was witnessed while using the ERNiCrCoMo-1 filler, along with Solidification Grain Boundary (SGB) and Migrated Grain Boundary (MGB) were also observed at the weld zone.
The long range voice coil atomic force microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnard, H.; Randall, C.; Bridges, D.
2012-02-15
Most current atomic force microscopes (AFMs) use piezoelectric ceramics for scan actuation. Piezoelectric ceramics provide precision motion with fast response to applied voltage potential. A drawback to piezoelectric ceramics is their inherently limited ranges. For many samples this is a nonissue, as imaging the nanoscale details is the goal. However, a key advantage of AFM over other microscopy techniques is its ability to image biological samples in aqueous buffer. Many biological specimens have topography for which the range of piezoactuated stages is limiting, a notable example of which is bone. In this article, we present the use of voice coilsmore » in scan actuation for an actuation range in the Z-axis an order of magnitude larger than any AFM commercially available today. The increased scan size will allow for imaging an important new variety of samples, including bone fractures.« less
Trends of radiopharmaceutical use at Mayo Clinic Rochester.
Mroczenski, Ashley A; Berent, Stephanie M; Hall, Alice A; Hung, Joseph C; Herold, Thomas J; Mullan, Brian P
2007-09-01
The field of radiology is continuously changing. The purpose of this study was to identify the effect of technologic advances on nuclear medicine during the past 15 y. The number of radiopharmaceutical doses dispensed at Mayo Clinic (Rochester, Minnesota) from 1990 through 2004 was tracked. The number of doses was equivalent to the number of scans performed. Since 1990, the number of bone scans decreased by 38%. Brain scans using (99m)Tc have increased by 166%. The number of cardiac doses dispensed increased 184% from 1990 through 1999 but decreased 3% between 2000 and 2004. The number of lung scans decreased 52% from 1992 through 1999 and increased 66% from 1999 through 2004. The number of kidney scans decreased 67% since 1990. Since its introduction in 1993, the use of (111)In-pentetreotide has increased 16-fold. PET data showed a 602% increase in the number of procedures from 2001 through 2004. The number of bone, lung, and kidney scans has decreased because of advances in other imaging modalities. Although the number of cardiac imaging scans increased during most of the study period, the recent rate of growth has declined, possibly because of the availability of alternative procedures such as stress echocardiography. The number of brain and lung scans performed has increased, partially because of the development of new protocols. PET and tumor imaging have shown a substantial increase because of increasing numbers of approved indications and Medicare reimbursement.
Brenner, Arnold I; Koshy, June; Morey, Jose; Lin, Cheryl; DiPoce, Jason
2012-01-01
Bone imaging continues to be the second greatest-volume nuclear imaging procedure, offering the advantage of total body examination, low cost, and high sensitivity. Its power rests in the physiological uptake and pathophysiologic behavior of 99m technetium (99m-Tc) diphosphonates. The diagnostic utility, sensitivity, specificity, and predictive value of 99m-Tc bone imaging for benign conditions and tumors was established when only planar imaging was available. Currently, nearly all bone scans are performed as a planar study (whole-body, 3-phase, or regional), with the radiologist often adding single-photon emission computed tomography (SPECT) imaging. Here we review many current indications for planar bone imaging, highlighting indications in which the planar data are often diagnostically sufficient, although diagnosis may be enhanced by SPECT. (18)F sodium fluoride positron emission tomography (PET) is also re-emerging as a bone agent, and had been considered interchangeable with 99m-Tc diphosphonates in the past. In addition to SPECT, new imaging modalities, including (18)F fluorodeoxyglucose, PET/CT, CT, magnetic resonance, and SPECT/CT, have been developed and can aid in evaluating benign and malignant bone disease. Because (18)F fluorodeoxyglucose is taken up by tumor cells and Tc diphosphonates are taken up in osteoblastic activity or osteoblastic healing reaction, both modalities are complementary. CT and magnetic resonance may supplement, but do not replace, bone imaging, which often detects pathology before anatomic changes are appreciated. We also stress the importance of dose reduction by reducing the dose of 99m-Tc diphosphonates and avoiding unnecessary CT acquisitions. In addition, we describe an approach to image interpretation that emphasizes communication with referring colleagues and correlation with appropriate history to significantly improve our impact on patient care. Copyright © 2012 Elsevier Inc. All rights reserved.
Bone geometry profiles in women with and without SLE.
Alele, Jimmy D; Kamen, Diane L; Hunt, Kelly J; Ramsey-Goldman, Rosalind
2011-11-01
Recent studies have reported an increased risk of fracture among patients with systemic lupus erythematosus (SLE) in comparison with the general population. The aim of this study was to examine associations between SLE status and bone geometry in white and African-American women. We compared hip BMD and bone geometry parameters among SLE women and control individuals using hip structure analysis (HSA). One-hundred and fifty-three dual-energy X-ray absorptiometry (DXA) scans from the Study of Lupus Vascular and Bone Long Term Endpoints (68.7% white and 31.3% African American) and 4920 scans from the Third National Health and Nutrition Examination Survey (59.3% white and 40.7% African American) were analyzed. Linear regression was used to examine BMD and bone geometry differences by SLE status and by race/ethnicity after adjusting for age and BMI. Significant differences were detected between SLE and control women. Among white women, age-adjusted BMD (g/cm(2)), section modulus (cm(3)), and cross-sectional areas (cm(2)) were lower among SLE women than among control women at the narrow neck (0.88 versus 0.83 g/cm(2), 1.31 versus 1.11 cm(2), and 2.56 versus 2.40 cm(2), p < 0.001, p < 0.01, and p < 0.0001, respectively), whereas buckling ratio was increased (10.0 versus 10.6, p < 0.01). Likewise, BMD, section modulus, and cross-sectional areas were decreased among African-American SLE women at all subregions, whereas buckling ratios were increased. There were significant bone geometry differences between SLE and control women at all hip subregions. Bone geometry profiles among SLE women were suggestive of increased fragility. Copyright © 2011 American Society for Bone and Mineral Research.
Agostinete, Ricardo R; Duarte, João P; Valente-Dos-Santos, João; Coelho-E-Silva, Manuel J; Tavares, Oscar M; Conde, Jorge M; Fontes-Ribeiro, Carlos A; Condello, Giancarlo; Capranica, Laura; Caires, Suziane U; Fernandes, Rômulo A
2017-01-01
Exploring the effect of non-impact and impact sports is particular relevant to understand the interaction between skeletal muscle and bone health during growth. The current study aimed to compare total and regional bone and soft-tissue composition, in parallel to measurements of blood lipid and inflammatory profiles between adolescent athletes and non-athletes. Anthropometry, biological maturity, dual energy X-ray absorptiometry (DXA) scans, training load and lipid and inflammatory profiles were assessed in a cross-sectional sample of 53 male adolescents (20 non-athletes, 15 swimmers and 18 basketball players) aged 12-19 years. Multiple comparisons between groups were performed using analysis of variance, covariance and magnitude effects (ES-r and Cohen's d). The comparisons of controls with other groups were very large for high-sensitivity C-reactive protein (d range: 2.17-2.92). The differences between sports disciplines, regarding tissue outputs obtained from DXA scan were moderate for all variables except fat tissue (d = 0.4). It was possible to determine small differences (ES-r = 0.17) between controls and swimmers for bone area at the lower limbs (13.0%). In parallel, between swimmers and basketball players, the gradient of the differences was small (ES-r range: 0.15-0.23) for bone mineral content (24.6%), bone area (11.3%) and bone mineral density (11.1%) at the lower limbs, favoring the basketball players. These observations highlight that youth male athletes presented better blood and soft tissues profiles with respect to controls. Furthermore, sport-specific differences emerged for the lower limbs, with basketball players presenting higher bone mineral content, area and density than swimmers.
Agostinete, Ricardo R.; Duarte, João P.; Valente-dos-Santos, João; Tavares, Oscar M.; Conde, Jorge M.; Fontes-Ribeiro, Carlos A.; Condello, Giancarlo; Capranica, Laura; Caires, Suziane U.; Fernandes, Rômulo A.
2017-01-01
Exploring the effect of non-impact and impact sports is particular relevant to understand the interaction between skeletal muscle and bone health during growth. The current study aimed to compare total and regional bone and soft-tissue composition, in parallel to measurements of blood lipid and inflammatory profiles between adolescent athletes and non-athletes. Anthropometry, biological maturity, dual energy X-ray absorptiometry (DXA) scans, training load and lipid and inflammatory profiles were assessed in a cross-sectional sample of 53 male adolescents (20 non-athletes, 15 swimmers and 18 basketball players) aged 12–19 years. Multiple comparisons between groups were performed using analysis of variance, covariance and magnitude effects (ES-r and Cohen’s d). The comparisons of controls with other groups were very large for high-sensitivity C-reactive protein (d range: 2.17–2.92). The differences between sports disciplines, regarding tissue outputs obtained from DXA scan were moderate for all variables except fat tissue (d = 0.4). It was possible to determine small differences (ES-r = 0.17) between controls and swimmers for bone area at the lower limbs (13.0%). In parallel, between swimmers and basketball players, the gradient of the differences was small (ES-r range: 0.15–0.23) for bone mineral content (24.6%), bone area (11.3%) and bone mineral density (11.1%) at the lower limbs, favoring the basketball players. These observations highlight that youth male athletes presented better blood and soft tissues profiles with respect to controls. Furthermore, sport-specific differences emerged for the lower limbs, with basketball players presenting higher bone mineral content, area and density than swimmers. PMID:28662190
Dalstra, M; Cattaneo, P M; Laursen, M G; Beckmann, F; Melsen, B
2015-03-18
Multilevel synchrotron radiation-based microtomography has been performed on a human jaw segment obtained at autopsy by cutting increasingly smaller samples from the original segment. The focus of this study lay on the microstructure of the interface between root, periodontal ligament (PDL) and alveolar bone in order to find an answer to the question why alveolar bone remodels during orthodontic loading, when the associated stress and strain levels calculated with finite element analyses are well below the established threshold levels for bone remodeling. While the inner surface of the alveolus appears to be rather smooth on the lower resolution scans, detailed scans of the root-PDL-bone interface reveal that on a microscopical scale it is actually quite rough and uneven with bony spiculae protruding into the PDL space. Any external (orthodontic) loading applied to the root, when transferred through the PDL to the alveolar bone, will cause stress concentrations in these spiculae, rather than be distributed over a "smooth surface". As osteocyte lacunae are shown to be present in these spiculae, the local amplified stresses and strain can well be registered by the mechano-sensory network of osteocytes. In addition, a second stress amplification mechanism, due to the very presence of the lacunae themselves, is evidence that stresses and strains calculated with FE analyses, based on macroscopical scale models of teeth and their supporting structures, grossly underestimate the actual mechanical loading of alveolar bone at tissue level. It is therefore hypothesized that remodeling of alveolar bone is subject to the same biological regulatory process as remodeling in other bones. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Sibonga, J. D.; Truskowski, P.
2010-01-01
This slide presentation reviews the concerns that astronauts in long duration flights might have a greater risk of bone fracture as they age than the general population. A panel of experts was convened to review the information and recommend mechanisms to monitor the health of bones in astronauts. The use of Quantitative Computed Tomography (QCT) scans for risk surveillance to detect the clinical trigger and to inform countermeasure evaluation is reviewed. An added benefit of QCT is that it facilitates an individualized estimation of bone strength by Finite Element Modeling (FEM), that can inform approaches for bone rehabilitation. The use of FEM is reviewed as a process that arrives at a composite number to estimate bone strength, because it integrates multiple factors.
Ghose, Soumya; Greer, Peter B; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A
2017-10-27
In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most 'similar' to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be [Formula: see text] (mean ± standard deviation) for 39 patients. The 3D Gamma pass rate was [Formula: see text] (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.
NASA Astrophysics Data System (ADS)
Ghose, Soumya; Greer, Peter B.; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A.
2017-11-01
In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most ‘similar’ to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be 0.3%+/-0.9% (mean ± standard deviation) for 39 patients. The 3D Gamma pass rate was 99.8+/-0.00 (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.
Does peripheral quantitative computed tomography ignore tissue density of cancellous bone?
Banse, X; Devogelaer, J P
2002-01-01
The purpose of this work was to determine the capacity of peripheral quantitative computed tomography (pQCT) to accurately measure the true physical properties of vertebral cancellous bone samples and to predict their stiffness. pQCT bone mineral density (BMD) was first measured in ideal conditions. Ten cubic specimens of vertebral cancellous bone (10 x 10 x 10 mm) were washed with a water jet, defatted, and scanned in saline after elimination of air bubbles; thirteen slices were obtained. Seventy-one unprepared cylindrical samples were scanned in more realistic conditions, which allow further biomechanical testing. After extraction from the vertebral body, the samples were pushed into a plastic tube (no effort was made to remove the marrow or air bubbles), and only four slices were obtained to reduce the duration of scan. For the 81 samples, the true bone volume fraction (BV/TV, %), true apparent density (rho(app), g/cm(3)), and tissue density (rho(tiss), g/cm(3)) (an indicator of the degree of mineralization of the matrix) were then measured using Archimedes principle. rho(app) was closely correlated to BV/TV (r(2) = 0.97). rho(tiss) (1.58 +/- 0.08 g/cm(2)) was almost constant but had some influence on rho(app) (r(2) = 0.03, p < 0.001). The pQCT BMD predicted accurately rho(app) (r(2) = 0.96) and BV/TV (r(2) = 0.93) for the cylinders. For the cubes, in ideal conditions, the same correlations were even better (r(2) > 0.99, both). Analysis of covariance indicated no difference (p > 0.05) in the regressions due to preparation of the samples. The stiffness was better predicted by the true rho(app) (r(2) = 0.87) than by BV/TV (r(2) = 0.83), indicating that stiffness was influenced by small differences in the tissue density. Consequently, the correlation between pQCT BMD and stiffness was excellent (r(2) = 0.84). The fact that pQCT did not ignore this tissue density information compensated for the inaccuracies linked to realistic scanning conditions of the cylinder.
Two-photon speckle illumination for super-resolution microscopy.
Negash, Awoke; Labouesse, Simon; Chaumet, Patrick C; Belkebir, Kamal; Giovannini, Hugues; Allain, Marc; Idier, Jérôme; Sentenac, Anne
2018-06-01
We present a numerical study of a microscopy setup in which the sample is illuminated with uncontrolled speckle patterns and the two-photon excitation fluorescence is collected on a camera. We show that, using a simple deconvolution algorithm for processing the speckle low-resolution images, this wide-field imaging technique exhibits resolution significantly better than that of two-photon excitation scanning microscopy or one-photon excitation bright-field microscopy.
Van Steenkiste, Gwendolyn; Jeurissen, Ben; Veraart, Jelle; den Dekker, Arnold J; Parizel, Paul M; Poot, Dirk H J; Sijbers, Jan
2016-01-01
Diffusion MRI is hampered by long acquisition times, low spatial resolution, and a low signal-to-noise ratio. Recently, methods have been proposed to improve the trade-off between spatial resolution, signal-to-noise ratio, and acquisition time of diffusion-weighted images via super-resolution reconstruction (SRR) techniques. However, during the reconstruction, these SRR methods neglect the q-space relation between the different diffusion-weighted images. An SRR method that includes a diffusion model and directly reconstructs high resolution diffusion parameters from a set of low resolution diffusion-weighted images was proposed. Our method allows an arbitrary combination of diffusion gradient directions and slice orientations for the low resolution diffusion-weighted images, optimally samples the q- and k-space, and performs motion correction with b-matrix rotation. Experiments with synthetic data and in vivo human brain data show an increase of spatial resolution of the diffusion parameters, while preserving a high signal-to-noise ratio and low scan time. Moreover, the proposed SRR method outperforms the previous methods in terms of the root-mean-square error. The proposed SRR method substantially increases the spatial resolution of MRI that can be obtained in a clinically feasible scan time. © 2015 Wiley Periodicals, Inc.
Effect of Cold-Drawn Fibers on the Self-Reinforcement of PP/LDPE Composites
NASA Astrophysics Data System (ADS)
Zhou, Ying-Guo; Su, Bei; Wu, Hai-Hong
2017-08-01
In our previous study, a method to fabricate super-ductile polypropylene/low-density polyethylene (PP/LDPE) blends was proposed, and a fiber-shape structure was shown to be formed, presenting necking propagation during tensile testing. In this study, the mechanical properties and thermal behavior of the necking region of tested super-ductile PP/LDPE samples were carefully investigated and further compared with the melt-stretched, untested, and thermo-mechanical-history-removed samples by differential scanning calorimetry and tensile testing. The results suggest that the tested samples have high mechanical properties and are more thermo-mechanically stable than the common PP/LDPE blends and melt-stretched samples. Additionally, to investigate their structure-property relationship, the necking region of the tested samples was further characterized by scanning electron microscopy and hot-stage polarized light microscopy. It can be concluded that the variation of the microstructure can be attributed to the cold-drawn fibers (CDFs), which were more stable thermally, formed during the tensile test. Furthermore, the CDFs were used for the filler in PP/LDPE blends. The experimental results of the different PP/LDPE composites indicate that the CDFs are a good reinforcement candidate and have the ability to improve the mechanical properties of the PP/LDPE blends.
Kubota, Hisashi; Sanada, Yasuhiro; Murakami, Saori; Miyauchi, Masaharu; Iwakura, Michihiro; Nagatsuka, Kazuhiro; Furukawa, Kentaro; Kato, Amami; Fujita, Mitsugu
2017-01-01
The demand of a burr hole surgery for chronic subdural hematoma (CSDH) is increasing in the global aging society. Burr hole-derived autologous bone dusts are not associated with extra costs compared with other commonly used synthetic materials. In addition, postoperative calvarium ossification requires periosteum-mediated blood supply, which is lacking after using avascular synthetic materials. Based on these findings, we hypothesized that the combination of the bone plugs and the preserved periosteum during burr hole surgeries for CSDH would induce efficient calvarium ossification. We evaluated the long-term effects of bone plugs on the degree of ossification and cosmetic appearance of the skin covering the burr hole sites. We included 8 patients (9 burr holes) who received the autologous bone dust derived from burr holes. As the control group, 9 burr holes that did not receive any burr hole plugs were retrospectively selected. These burr holes were evaluated by computed tomography (CT) scan for the calvarium defect ratios, CT value-based ossification, and the degree of skin sinking. Ossification was observed in all the bone plugs by the bone density CT scans; they maintained their volume at 12 months after the surgeries. The calvarium defect ratios (volume ratios of the unossified parts in the burr holes) gradually increased during the first 6 months and reached 0.44 at 12 months. The mean CT values also increased from 527 HU to 750 HU for the first 6 months and reached 905 HU at 12 months. The degrees of skin sinking at the burr hole sites with the bone plugs were 1.24 mm whereas those without the bone plugs were 2.69 mm ( P = 0.004). Application of burr hole-derived autologous bone dust is associated with better ossification and objective cosmetic result following burr hole surgery after CSDH.
Underbjerg, Line; Malmstroem, Sofie; Sikjaer, Tanja; Rejnmark, Lars
2018-03-01
Nonsurgical hypoparathyroidism (Ns-HypoPT) and pseudohypoparathyroidism (PHP) are both rare diseases, characterized by hypocalcemia. In Ns-HypoPT, PTH levels are low, whereas patients with PHP often have very high levels due to receptor-insensitivity to PTH (PTH-resistance). Accordingly, we hypothesized that indices of bone turnover and bone mineralization/architecture are similar in Ns-HypoPT and PHP despite marked differences in PTH levels. We studied 62 patients with Ns-HypoPT and 31 with PHP as well as a group of age- and sex-matched healthy controls. We found a significantly higher areal BMD (aBMD) by DXA among patients with Ns-HypoPT, both compared with PHP and the background population. Compared with Ns-HypoPT, PHP patients had significantly lower total and trabecular volumetric BMD (vBMD) assessed by quantitative computed tomography (QCT) scans at the spine and hip. High-resolution peripheral quantitative computed tomography (HRpQCT) scans showed a lower trabecular area and vBMD as well as a lower trabecular number at the tibia in PHP compared to Ns-HypoPT and matched controls. In PHP, PTH levels correlated with levels of markers of bone formation (osteocalcin, bone-specific alkaline phosphatase, P1NP), and bone resorption (CTx). In adult males, levels of bone markers were significantly higher in PHP compared with Ns-HypoPT. Levels of procalcitonin and calcitonin were significantly higher in PHP compared with Ns-HypoPT. In conclusion, indices of bone turnover, density, and microarchitecture differ between patients with Ns-HypoPT and PHP. Our data suggest that patients with PHP do not have a complete skeletal resistance to PTH and that the effects of chronically high PTH levels in PHP are mostly confined to the trabecular tissue. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
Windolf, Markus; Muths, Raphael; Braunstein, Volker; Gueorguiev, Boyko; Hänni, Markus; Schwieger, Karsten
2009-01-01
Compaction of cancellous bone is believed to prevent cut-out. This in vitro study quantified the compaction in the femoral head due to insertion of a dynamic hip screw-blade with and without predrilling and investigated the resulting implant anchorage under cyclic loading. Eight pairs of human cadaveric femoral heads were instrumented with a dynamic hip screw-blade made of Polyetheretherketon. Pairwise instrumentation was performed either with or without predrilling the specimens. CT scanning was performed before and after implantation, to measure bone-compaction. Subsequently the implant was removed and a third scan was performed to analyze the relaxation of the bone structure. Commercial implants were reinserted and the specimens were cyclically loaded until onset of cut-out occurred. The bone-implant interface was monitored by means of fluoroscopic imaging throughout the experiment. Paired t-tests were performed to identify differences regarding compaction, relaxation and cycles to failure. Bone density in the surrounding of the implant increased about 30% for the non-predrilled and 20% for the predrilled group when inserting the implant. After implant removal the predrilled specimens fully relaxed; the non-predrilled group showed about 10% plastic deformation. No differences were found regarding cycles to failure (P=0.32). Significant bone-compaction due to blade insertion was verified. Even though compaction was lower when predrilling the specimens, mainly elastic deformation was present, which is believed to primarily enhance the implant anchorage. Cyclic loading tests confirmed this thesis. The importance of the implantation technique with regard to predrilling is therefore decreased.
Intema, F.; Thomas, T.P.; Anderson, D.D.; Elkins, J.M.; Brown, T.D.; Amendola, A.; Lafeber, F.P.J.G.; Saltzman, C.L.
2011-01-01
Objective In osteoarthritis (OA), subchondral bone changes alter the joint’s mechanical environment and potentially influence progression of cartilage degeneration. Joint distraction as a treatment for OA has been shown to provide pain relief and functional improvement through mechanisms that are not well understood. This study evaluated whether subchondral bone remodeling was associated with clinical improvement in OA patients treated with joint distraction. Method Twenty-six patients with advanced post-traumatic ankle OA were treated with joint distraction for three months using an Ilizarov frame in a referral center. Primary outcome measure was bone density change analyzed on CT scans. Longitudinal, manually segmented CT datasets for a given patient were brought into a common spatial alignment. Changes in bone density (Hounsfield Units (HU), relative to baseline) were calculated at the weight-bearing region, extending subchondrally to a depth of 8 mm. Clinical outcome was assessed using the ankle OA scale. Results Baseline scans demonstrated subchondral sclerosis with local cysts. At one and two years of follow-up, an overall decrease in bone density (−23% and −21%, respectively) was observed. Interestingly, density in originally low-density (cystic) areas increased. Joint distraction resulted in a decrease in pain (from 60 to 35, scale of 100) and functional deficit (from 67 to 36). Improvements in clinical outcomes were best correlated with disappearance of low-density (cystic) areas (r=0.69). Conclusions Treatment of advanced post-traumatic ankle OA with three months of joint distraction resulted in bone density normalization that was associated with clinical improvement. PMID:21324372
Assessment of imaging quality in magnified phase CT of human bone tissue at the nanoscale
NASA Astrophysics Data System (ADS)
Yu, Boliang; Langer, Max; Pacureanu, Alexandra; Gauthier, Remy; Follet, Helene; Mitton, David; Olivier, Cecile; Cloetens, Peter; Peyrin, Francoise
2017-10-01
Bone properties at all length scales have a major impact on the fracture risk in disease such as osteoporosis. However, quantitative 3D data on bone tissue at the cellular scale are still rare. Here we propose to use magnified X-ray phase nano-CT to quantify bone ultra-structure in human bone, on the new setup developed on the beamline ID16A at the ESRF, Grenoble. Obtaining 3D images requires the application of phase retrieval prior to tomographic reconstruction. Phase retrieval is an ill-posed problem for which various approaches have been developed. Since image quality has a strong impact on the further quantification of bone tissue, our aim here is to evaluate different phase retrieval methods for imaging bone samples at the cellular scale. Samples from femurs of female donors were scanned using magnified phase nano-CT at voxel sizes of 120 and 30 nm with an energy of 33 keV. Four CT scans at varying sample-to-detector distances were acquired for each sample. We evaluated three phase retrieval methods adapted to these conditions: Paganin's method at single distance, Paganin's method extended to multiple distances, and the contrast transfer function (CTF) approach for pure phase objects. These methods were used as initialization to an iterative refinement step. Our results based on visual and quantitative assessment show that the use of several distances (as opposed to single one) clearly improves image quality and the two multi-distance phase retrieval methods give similar results. First results on the segmentation of osteocyte lacunae and canaliculi from such images are presented.
Radioisotope scanning of brain, liver, lung and bone with a note on tumour localizing agents
Lavender, J. P.
1973-01-01
Radioisotopic scanning of brain, liver, lungs and the skeleton is briefly reviewed with a survey of recent developments of clinical significance. In brain scanning neoplasm detection rates of greater than 90% are claimed. The true figure is probably 70-80%. Autopsy data shows a number of false negatives, particularly with vascular lesions. Attempts to make scanning more specific in differentiating neoplasm from vascular lesions by rapid sequence blood flow studies are reviewed. In liver scanning by means of colloids again high success rate is claimed but small metastases are frequently missed and the false negative scan rate is probably quite high. Lung scanning still has its main place in investigating pulmonary embolic disease. Ventilation studies using Xenon 133 are useful, particularly combined with perfusion studies. The various radiopharmaceuticals for use in bone scanning are reviewed. The appearance of technetium labelled phosphate compounds will probably allow much wider use of total skeletal scanning. Research into tumour localizing agents continues, the most recent and interesting being Gallium citrate and labelled bleomycin. Neither agent is predictable however although Gallium may have a place in Hodgkins disease and bronchogenic neoplasm and both may have a place in the detection of cerebral tumours. ImagesFig. 1Fig. 2Fig. 3p452-bFig. 3bFig. 4Fig. 5Fig. 5bFig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 12c & 12dFig. 13Fig. 13 b,c,dFig. 14Fig. 14bFig. 15Fig. 15bFig. 16Fig. 17Fig. 18 PMID:4602127
Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging
NASA Astrophysics Data System (ADS)
Wang, Feifei; Liu, Lianqing; Yu, Haibo; Wen, Yangdong; Yu, Peng; Liu, Zhu; Wang, Yuechao; Li, Wen Jung
2016-12-01
Nanoscale correlation of structural information acquisition with specific-molecule identification provides new insight for studying rare subcellular events. To achieve this correlation, scanning electron microscopy has been combined with super-resolution fluorescent microscopy, despite its destructivity when acquiring biological structure information. Here we propose time-efficient non-invasive microsphere-based scanning superlens microscopy that enables the large-area observation of live-cell morphology or sub-membrane structures with sub-diffraction-limited resolution and is demonstrated by observing biological and non-biological objects. This microscopy operates in both non-invasive and contact modes with ~200 times the acquisition efficiency of atomic force microscopy, which is achieved by replacing the point of an atomic force microscope tip with an imaging area of microspheres and stitching the areas recorded during scanning, enabling sub-diffraction-limited resolution. Our method marks a possible path to non-invasive cell imaging and simultaneous tracking of specific molecules with nanoscale resolution, facilitating the study of subcellular events over a total cell period.
Surface modification of melamine sponges for pH-responsive oil absorption and desorption
NASA Astrophysics Data System (ADS)
Lei, Zhiwen; Zhang, Guangzhao; Deng, Yonghong; Wang, Chaoyang
2017-09-01
Inspired by the development of smart oil/water separation materials, a pH responsive melamine sponge has been obtained by grafting poly (4-vinylpyridine) on the skeleton surface through atom transfer radical polymerization. Through scanning electron microscopy and x-ray photoelectron spectroscopy, the successful grafting of poly (4-vinylprridine) onto the melamine sponge has been confirmed. When contacting with different pH water droplets in air, the as-prepared product shows excellent switchable wettability between super-hydrophilicity (0°) and highly hydrophobicity (135°). Meanwhile, this responsive sponge also exhibits super-hydrophilic/oleophobic property underwater at pH = 1.0, and highly hydrophobic/super-oleophilic property in neutral solution at pH = 7.0. Furthermore, the excellent responsiveness is remained after five cycle water contact angle tests between two different pH stages at pH 1.0 and 7.0. The modified melamine sponges could not only absorb the oil from the oily water at pH = 7.0, but also quickly release the absorbed oil underwater at pH = 1.0 without leaving any residues and hurting the environment nearly, showing a good potential in controlled oil/water separation and oil recovery.
Fabrication of nano-structured super-hydrophobic film on aluminum by controllable immersing method
NASA Astrophysics Data System (ADS)
Wu, Ruomei; Liang, Shuquan; Pan, Anqiang; Yuan, Zhiqing; Tang, Yan; Tan, Xiaoping; Guan, Dikai; Yu, Ya
2012-06-01
Aluminum alloy surface can be etched easily in acid environment, but the microstructure of alloy surface hardly meets the customers' demand. In this work, a facile acidic-assistant surface oxidation technique has been employed to form reproducible super-hydrophobic surfaces on aluminum alloy plates. The samples immersed in three different acid solutions at ambient temperatures are studied and the results demonstrated that the aqueous mixture solution of oxalic acid and hydrochloric is easier to produce better faces and better stability. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectrometer, X-ray photoelectron spectroscopy (XPS) and water contact angle measurement are used to investigate the morphologies, microstructures, chemical compositions and hydrophobicity of the produced films on aluminum substrates. The surfaces, configured of a labyrinth structure with convexity and concavity, are in different roughness and gloss because of the different recipe acid solutions used. Better roughness of the surface can be obtained by adjusting the concentration of Clˉ and oxalate ions in acid solutions. The present research work provides a new strategy for the controllable preparation super-hydrophobic films of general materials on aluminum alloy for practical industrial applications.
Prospective evaluation of femoral head viability following femoral neck fracture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binkert, B.; Kroop, S.A.; Nepola, I.V.
1984-01-01
The bone scans of 33 patients (pts) with recent subcapital fractures (fx) of the femur were evaluated prospectively to determine their value in predicting femoral head visability. Each of the 33 pts (ll men, 22 women, age range 30-92) had a pre-operative bone scan within 72 hrs of the fx (23 pts within 24 hrs). Anterior and posterior planar views of both hips and pinhole views (50% of pts) were obtained 2 hrs after administration of Tc-99m HDP. The femoral head was classified as perfused if it showed the same activity as the opposite normal side or if it showedmore » only slightly decreased activity. Femoral heads showing absent activity were classified as nonperfused. Overall, 20 of the 33 pts showed a photopenic femoral head on the side of the fx. Only 2 pts showed increased activity at hte site of the fx. Internal fixation of the fx was performed in 23 pts, 12 of whom had one or more follow-up scans. Five of these 12 pts showed absent femoral head activity on their initial scan, but 2 showed later reperfusion. The other 7 pts showed good perfusion initially, with only 1 later showing decreased femoral head activity. The other 10 pts (7 of whom had absent femoral head activity) had immediate resection of the femoral head and insertion of a Cathcart prosthesis. The results suggest that femoral head activity seen on a bone scan in the immediate post-fx period is not always a reliable indicator of femoral head viability. Decreased femoral head activity may reflect, in part, compromised perfusion secondary to post-traumatic edema, with or without anatomic disruption of the blood supply.« less
Accuracy of CBCT for volumetric measurement of simulated periapical lesions.
Ahlowalia, M S; Patel, S; Anwar, H M S; Cama, G; Austin, R S; Wilson, R; Mannocci, F
2013-06-01
To compare the accuracy of cone beam computed tomography (CBCT) and micro-computed tomography (μCT) when measuring the volume of bone cavities. Ten irregular-shaped cavities of varying dimensions were created in bovine bone specimens using a rotary diamond bur. The samples were then scanned using the Accuitomo 3D CBCT scanner. The scanned information was converted to the Digital Imaging and Communication in Medicine (DICOM) format ready for analysis. Once formatted, 10 trained and calibrated examiners segmented the scans and measured the volumes of the lesions. Intra/interexaminer agreement was assessed by each examiner re-segmenting each scan after a 2-week interval. Micro-CT scans were analysed by a single examiner. To achieve a physical reading of the artificially created cavities, replicas were created using dimensionally stable silicone impression material. After measuring the mass of each impression sample, the volume was calculated by dividing the mass of each sample by the density of the set impression material. Further corroboration of these measurements was obtained by employing Archimedes' principle to measure the volume of each impression sample. Intraclass correlation was used to assess agreement. Both CBCT (mean volume: 175.9 mm3) and μCT (mean volume: 163.1 mm3) showed a high degree of agreement (intraclass correlation coefficient >0.9) when compared to both weighed and 'Archimedes' principle' measurements (mean volume: 177.7 and 182.6 mm3, respectively). Cone beam computed tomography is an accurate means of measuring volume of artificially created bone cavities in an ex vivo model. This may provide a valuable tool for monitoring the healing rate of apical periodontitis; further investigations are warranted. © 2012 International Endodontic Journal. Published by Blackwell Publishing Ltd.
Boyde, A; Vesely, P; Gray, C; Jones, S J
1994-01-01
Chick and rat bone-derived cells were mounted in sealed coverslip-covered chambers; individual osteoclasts (but also osteoblasts) were selected and studied at 37 degrees C using three different types of high-speed scanning confocal microscopes: (1) A Noran Tandem Scanning Microscope (TSM) was used with a low light level, cooled CCD camera for image transfer to a Noran TN8502 frame store-based image analysing computer to make time lapse movie sequences using 0.1 s exposure periods, thus losing some of the advantage of the high frame rate of the TSM. Rapid focus adjustment using computer controlled piezo drivers permitted two or more focus planes to be imaged sequentially: thus (with additional light-source shuttering) the reflection confocal image could be alternated with the phase contrast image at a different focus. Individual cells were followed for up to 5 days, suggesting no significant irradiation problem. (2) Exceptional temporal and spatial resolution is available in video rate laser confocal scanning microscopes (VRCSLMs). We used the Noran Odyssey unitary beam VRCSLM with an argon ion laser at 488 nm and acousto-optic deflection (AOD) on the line axis: this instrument is truly and adjustably confocal in the reflection mode. (3) We also used the Lasertec 1LM11 line scan instrument, with an He-Ne laser at 633 nm, and AOD for the frame scan. We discuss the technical problems and merits of the different approaches. The VRCSLMs documented rapid, real-time oscillatory motion: all the methods used show rapid net movement of organelles within bone cells. The interference reflection mode gives particularly strong contrasts in confocal instruments. Phase contrast and other interference methods used in the microscopy of living cells can be used simultaneously in the TSM.
Novitskaya, Ekaterina; Chen, Po-Yu; Lee, Steve; Castro-Ceseña, Ana; Hirata, Gustavo; Lubarda, Vlado A; McKittrick, Joanna
2011-08-01
The mechanical properties of fully demineralized, fully deproteinized and untreated cortical bovine femur bone were investigated by compression testing in three anatomical directions (longitudinal, radial and transverse). The weighted sum of the stress-strain curves of the treated bones was far lower than that of the untreated bone, indicating a strong molecular and/or mechanical interaction between the collagen matrix and the mineral phase. Demineralization and deproteinization of the bone demonstrated that contiguous, stand-alone structures result, showing that bone can be considered an interpenetrating composite material. Structural features of the samples from all groups were studied by optical and scanning electron microscopy. Anisotropic mechanical properties were observed: the radial direction was found to be the strongest for untreated bone, while the longitudinal one was found to be the strongest for deproteinized and demineralized bones. A possible explanation for this phenomenon is the difference in bone microstructure in the radial and longitudinal directions. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Vicente, Justo Serrano; Gómez, Alejandro Lorente; Moreno, Rafael Lorente; Torre, Jose Rafael Infante; Bernardo, Lucía García; Madrid, Juan Ignacio Rayo
2018-01-01
Gout is a common metabolic disorder, typically diagnosed in peripheral joints. Tophaceous deposits in lumbar spine are a very rare condition with very few cases reported in literature. The following is a case report of a 52-year-old patient with low back pain, left leg pain, and numbness. Serum uric acid level was in normal range. magnetic resonance imaging, bone scan, and gallium-67 images suggested an inflammatory-infectious process focus at L4. After a decompressive laminectomy at L4–L5 level, histological examination showed a chalky material with extensive deposition of amorphous gouty material surrounded by macrophages and foreign-body giant cells (tophaceous deposits). PMID:29643682
Vicente, Justo Serrano; Gómez, Alejandro Lorente; Moreno, Rafael Lorente; Torre, Jose Rafael Infante; Bernardo, Lucía García; Madrid, Juan Ignacio Rayo
2018-01-01
Gout is a common metabolic disorder, typically diagnosed in peripheral joints. Tophaceous deposits in lumbar spine are a very rare condition with very few cases reported in literature. The following is a case report of a 52-year-old patient with low back pain, left leg pain, and numbness. Serum uric acid level was in normal range. magnetic resonance imaging, bone scan, and gallium-67 images suggested an inflammatory-infectious process focus at L4. After a decompressive laminectomy at L4-L5 level, histological examination showed a chalky material with extensive deposition of amorphous gouty material surrounded by macrophages and foreign-body giant cells (tophaceous deposits).
The soleus syndrome. A cause of medial tibial stress (shin splints).
Michael, R H; Holder, L E
1985-01-01
Radionuclide bone scans have demonstrated linear uptake along the posterior medial border of the tibia in patients with shin splints. This area was investigated by anatomical dissection (14 human cadavers), electromyographic (EMG) and muscle stimulation studies (10 patients), and open biopsy (1 patient). Histologically, the increased metabolic activity manifested on the radionuclide scan is due to a periostitis with new bone formation. The soleus muscle and its investing fascia are anatomically and biomechanically implicated in the production of these stress changes, particularly when the heel is in the pronated position. The soleus muscle and fascia form a tough "soleus bridge" over the deep compartment which is thought to be important in patients requiring surgical decompression.
Modification of os calcis bone mineral profiles during bedrest
NASA Technical Reports Server (NTRS)
Vogel, J. M.
1977-01-01
The mineral content of the left central os calcis was determined using the photon absorptiometric technique modified for the space missions to permit area scanning, and was compared with total body calcium balance changes. The instrument consists of a rectilinear scanner that is programmed by a specially designed control module to move a low energy X-ray emitting radionuclide placed in opposition to a detector to scan the foot which is places between them. The foot is placed in a plexiglas box filled with water to provide tissue equivalence and to compensate for irregularities in thickness of tissue cover that surrounds the bone. The mineral content is obtained from basic attenuation equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, C; Mohamed, A; Weygand, J
2015-06-15
Purpose: Uncertainties about geometric distortion have somewhat hindered MRI simulation in radiation therapy. Most of the geometric distortion studies were performed with phantom measurements but another major aspect of MR distortion is patient related. We studied the geometric distortion in patient images by comparing their MRI scans with the corresponding CT, using CT as the non-distorted gold standard. Methods: Ten H&N cancer patients were imaged with MRI as part of a prospective IRB approved study. All patients had their treatment planning CT done on the same day or within one week of the MRI. MR Images were acquired with amore » T2 SE sequence (1×1×2.5mm voxel size) in the same immobilization position as in the CT scans. MRI to CT rigid registration was then done and geometric distortion comparison was done by measuring the corresponding anatomical landmarks on both the MRI and the CT images by two observers. Several skin to skin (9 landmarks), bone to bone (8 landmarks), and soft tissue (3 landmarks) were measured at specific levels in horizontal and vertical planes of both scans. Results: The mean distortion for all landmark measurements in all scans was 1.8±1.9mm. For each patient 11 measurements were done in the horizontal plane while 9 were done in the vertical plane. The measured geometric distortion were significantly lower in the horizontal axis compared to the vertical axis (1.3±0.16 mm vs 2.2±0.19 mm, respectively, P=0.003*). The magnitude of distortion was lower in the bone to bone landmarks compared to the combined soft tissue and skin to skin landmarks (1.2±0.19 mm vs 2.3±0.17 mm, P=0.0006*). The mean distortion measured by observer one was not significantly different compared toobserver 2 (2.3 vs 2.4 mm, P=0.4). Conclusion: MRI geometric distortions were quantified in H&N patients with mean error of less than 2 mm. JW received a corporate sponsored research grant from Elekta.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, J; Szczykutowicz, T; Bayouth, J
Purpose: To compare the ability of two dual-energy CT techniques, a novel split-filter single-source technique of superior temporal resolution against an established sequential-scan technique, to remove iodine contrast from images with minimal impact on CT number accuracy. Methods: A phantom containing 8 tissue substitute materials and vials of varying iodine concentrations (1.7–20.1 mg I /mL) was imaged using a Siemens Edge CT scanner. Dual-energy virtual non-contrast (VNC) images were generated using the novel split-filter technique, in which a 120kVp spectrum is filtered by tin and gold to create high- and low-energy spectra with < 1 second temporal separation between themore » acquisition of low- and high-energy data. Additionally, VNC images were generated with the sequential-scan technique (80 and 140kVp) for comparison. CT number accuracy was evaluated for all materials at 15, 25, and 35mGy CTDIvol. Results: The spectral separation was greater for the sequential-scan technique than the split-filter technique with dual-energy ratios of 2.18 and 1.26, respectively. Both techniques successfully removed iodine contrast, resulting in mean CT numbers within 60HU of 0HU (split-filter) and 40HU of 0HU (sequential-scan) for all iodine concentrations. Additionally, for iodine vials of varying diameter (2–20 mm) with the same concentration (9.9 mg I /mL), the system accurately detected iodine for all sizes investigated. Both dual-energy techniques resulted in reduced CT numbers for bone materials (by >400HU for the densest bone). Increasing the imaging dose did not improve the CT number accuracy for bone in VNC images. Conclusion: VNC images from the split-filter technique successfully removed iodine contrast. These results demonstrate a potential for improving dose calculation accuracy and reducing patient imaging dose, while achieving superior temporal resolution in comparison sequential scans. For both techniques, inaccuracies in CT numbers for bone materials necessitate consideration for radiation therapy treatment planning.« less
Bone mineral loss and recovery after 17 weeks of bed rest
NASA Technical Reports Server (NTRS)
Leblanc, A. D.; Schneider, V. S.; Evans, H. J.; Engelbretson, D. A.; Krebs, J. M.; LaBlanc, A. D. (Principal Investigator)
1990-01-01
The purpose of this work was to determine the rate and extent of bone loss and recovery from long-term disuse and in particular from disuse after exposure to weightlessness. For this purpose, bed rest is used to simulate the reduced stress and strain on the skeleton. This study reports on the bone loss and recovery after 17 weeks of continuous bed rest and 6 months of reambulation in six normal male volunteers. Bone regions measured were the lumbar spine, hip, tibia, forearm, calcaneus, total body, and segmental regions from the total-body scan. The total body, lumbar spine, femoral neck, trochanter, tibia, and calcaneus demonstrated significant loss, p less than 0.05. Expressed as the percentage change from baseline, these were 1.4, 3.9, 3.6, 4.6, 2.2, and 10.4, respectively. Although several areas showed positive slopes during reambulation, only the calcaneus was significant (p less than 0.05), with nearly 100% recovery. Segmental analysis of the total-body scans showed significant loss (p less than 0.05) in the lumbar spine, total spine, pelvis, trunk, and legs. During reambulation, the majority of the regions demonstrated positive slopes, although only the pelvis and trunk were significant (p less than 0.05). Potential redistribution of bone mineral was observed: during bed rest the bone mineral increased in the skull of all subjects. The change in total BMD and calcium from calcium balance were significantly (p less than 0.05) correlated, R = 0.88.
Berahmani, Sanaz; Hendriks, Maartje; Wolfson, David; Wright, Abraham; Janssen, Dennis; Verdonschot, Nico
2017-11-01
To achieve long-lasting fixation of cementless implants, an adequate primary stability is required. We aimed to compare primary stability of a new cementless femoral knee component (Attune®) against a conventional implant (LCS®) under different loading conditions. Six pairs of femora were prepared following the normal surgical procedure. Calibrated CT-scans and 3D-optical scans of the bones were obtained to measure bone mineral density (BMD) and cut accuracy, respectively. Micromotions were measured in nine regions of interest at the bone-implant interface using digital image correlation. The reconstructions were subjected to the implant-specific's peak tibiofemoral load of gait and a deep knee bend loading profiles. Afterwards, the implants were pushed-off at a flexion angle of 150°. Micromotions of Attune were significantly lower than LCS under both loading conditions (P ≤ 0.001). Cut accuracy did not affect micromotions, and BMD was only a significant factor affecting the micromotions under simplified gait loading. No significant difference was found in high-flex push-off force, but Attune required a significantly higher load to generate excessive micromotions during push-off. Parallel anterior and posterior bone cuts in the LCS versus the tapered bone cuts of the Attune may explain the difference between the two designs. Additionally, the rims at the borders of the LCS likely reduced the area of contact with the bone for the LCS, which may have affected the initial fixation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jouyandeh, Maryam; Jazani, Omid Moini; Navarchian, Amir H.; Shabanian, Meisam; Vahabi, Henri; Saeb, Mohammad Reza
2018-07-01
Curing behavior of epoxy-based nanocomposites depends on dispersion state of nanofillers and their physical and chemical interactions with the curing moieties. In this work, a systematic approach was introduced for chemical functionalization of nanoparticles with macromolecules in order to enrich crosslinking potential of epoxy/amine systems, particularly at late stages of cure where the curing is diffusion-controlled. Super-reactive hyperbranched polyethylenimine (PEI)-attached nanosilica was materialized in this work to facilitate epoxy-amine curing. Starting from coupling [3-(2,3-epoxypropoxy) propyl] trimethoxysilane (EPPTMS) with hyperbranched PEI, a super-reactive macromolecule was obtained and subsequently grafted onto the nanosilica surface. Eventually, a thermally-stable highly-curable nanocomposite was attained by replacement of amine and imine groups of the PEI with imide and amide groups through the reaction with pyromellitic acid dianhydride. Fourier-transform infrared spectrophotometry, X-ray diffractometry, X-ray photoelectron spectroscopy and transmission electron microscopy approved successful grafting of polymer chains onto the nanosilica surface. Thermogravimetric analyses approved a relatively high grafting ratio of ca. 21%. Curing potential of the developed super-reactive nanoparticle was uncovered through nonisothermal differential scanning calorimetry signifying an enthalpy rise of ca. 120 J/g by addition of 2 wt.% to epoxy at 5 °C/min heating rate. Even at low concentration of 0.5 wt.%, the glass transition temperature of epoxy increased from 128 to 156 °C, demonstrating prolonged crosslinking.
Sulfated Glycopeptide Nanostructures for Multipotent Protein Activation
Lee, Sungsoo S.; Fyrner, Timmy; Chen, Feng; Álvarez, Zaida; Sleep, Eduard; Chun, Danielle S.; Weiner, Joseph A.; Cook, Ralph W.; Freshman, Ryan D.; Schallmo, Michael S.; Katchko, Karina M.; Schneider, Andrew D.; Smith, Justin T.; Yun, Chawon; Singh, Gurmit; Hashmi, Sohaib Z.; McClendon, Mark T.; Yu, Zhilin; Stock, Stuart R.; Hsu, Wellington K.; Hsu, Erin L.; Stupp, Samuel I.
2017-01-01
Biological systems have evolved to utilize numerous proteins with capacity to bind polysaccharides for the purpose of optimizing their function. A well-known subset of these proteins with binding domains for the highly diverse sulfated polysaccharides are important growth factors involved in biological development and tissue repair. We report here on supramolecular sulfated glycopeptide nanostructures, which display a trisulfated monosaccharide on their surfaces and bind five critical proteins with very different polysaccharide binding domains. Binding does not disrupt the filamentous shape of the nanostructures or their internal β-sheet backbone, but must involve accessible adaptive configurations to interact with such different proteins. The glycopeptide nanostructures amplified signaling of bone morphogenetic protein 2 significantly more than the natural sulfated polysaccharide heparin, and promoted regeneration of bone in the spine with a protein dose that is 100-fold lower than expected. These super-bioactive nanostructures may enable many therapies in the horizon involving proteins. PMID:28650443
Zhang, Yonggang; Wang, Yan; Cheng, Jiying
2005-08-01
To investigate the long-term clinical results of treatment of adult unicameral bone cyst with cancellous allograft. From 1993 to 1998, 15 patients with unicameral bone cyst were treated by allograft with lyophilized cancellous bone. Among 15 patients, there were 5 males and 10 females, aging 19-41 years with an average of 27 years. The average follow-up time was 7.5 years (6-11 years). The X-ray films were taken and the CT scanning were carried out. The X-ray films showed that the allograft particles became vague 2-3 months after operation, that the allograft particles fused and began to form new bone and the bone density increased 5 months after operation, and that new bone formation completed after 7 months of operation. At the end of follow-up, remodelling in new bone occurred. Recurrence was not found in all patients. The symptom of pain disappeared or relieved obviously. Allograft of lyophilized cancellous bone is an effective treatment for adult unicameral bone cysts.
[Study on preparation and physicochemical properties of surface modified sintered bone].
Li, Jingfeng; Zheng, Qixin; Guo, Xiaodong
2012-06-01
The aim of this study is to investigate a new method for preparing a biomimetic bone material-surface modified sintered bovine cancellous bone, and to improve its bioactivity as a tissue engineering bone. The prepared sintered bovine cancellous bones with the same size were randomly divided into two groups, immersing in 1 and 1. 5 times simulated body fluid (SBF), respectively. The three time periods of soak time were 7, 14, and 21 days. After sintered bone was dried, the surface morphology of sintered bone and surface mineralization composition were observed under scanning electron microscopy (SEM). By comparing the effect of surface modification of sintered bone materials, we chose the most ideal material and studied its pore size, the rate of the porosity, the compress and bend intensity. And then the material and the sintered bone material without surface modification were compared. The study indicated that sintered bone material immersed in SBF (1.5 times) for 14 days showed the best effect of surface modification, retaining the original physico-chemical properties of sintered bone.
Sarikaya, Ismet; Elgazzar, Abdelhamid H; Sarikaya, Ali; Alfeeli, Mahmoud
2017-10-01
Fluorine-18-sodium fluoride (F-NaF) PET/CT is a relatively new and high-resolution bone imaging modality. Since the use of F-NaF PET/CT has been increasing, it is important to accurately assess the images and be aware of normal distribution and major artifacts. In this pictorial review article, we will describe the normal uptake patterns of F-NaF in the bone tissues, particularly in complex structures, as well as its physiologic soft tissue distribution and certain artifacts seen on F-NaF PET/CT images.
Diagnostic imaging of trabecular bone microstructure for oral implants: a literature review.
Ibrahim, N; Parsa, A; Hassan, B; van der Stelt, P; Wismeijer, D
2013-01-01
Several dental implant studies have reported that radiographic evaluation of bone quality can aid in reducing implant failure. Bone quality is assessed in terms of its quantity, density, trabecular characteristics and cells. Current imaging modalities vary widely in their efficiency in assessing trabecular structures, especially in a clinical setting. Most are very costly, require an extensive scanning procedure coupled with a high radiation dose and are only partially suitable for patient use. This review examines the current literature regarding diagnostic imaging assessment of trabecular microstructure prior to oral implant placement and suggests cone beam CT as a method of choice for evaluating trabecular bone microstructure.
Bioreactor Cultivation of Anatomically Shaped Human Bone Grafts
Temple, Joshua P.; Yeager, Keith; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana; Grayson, Warren L.
2015-01-01
In this chapter, we describe a method for engineering bone grafts in vitro with the specific geometry of the temporomandibular joint (TMJ) condyle. The anatomical geometry of the bone grafts was segmented from computed tomography (CT) scans, converted to G-code, and used to machine decellularized trabecular bone scaffolds into the identical shape of the condyle. These scaffolds were seeded with human bone marrow-derived mesenchymal stem cells (MSCs) using spinner flasks and cultivated for up to 5 weeks in vitro using a custom-designed perfusion bioreactor system. The flow patterns through the complex geometry were modeled using the FloWorks module of SolidWorks to optimize bioreactor design. The perfused scaffolds exhibited significantly higher cellular content, better matrix production, and increased bone mineral deposition relative to non-perfused (static) controls after 5 weeks of in vitro cultivation. This technology is broadly applicable for creating patient-specific bone grafts of varying shapes and sizes. PMID:24014312
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ting; Han, Shuai; Wu, Zhipeng
Bone metastasis occurs in approximately 30–40% patients with advanced non-small cell lung cancer (NSCLC), but the mechanism underlying this bone metastasis remains poorly understood. The chemokine super family is believed to play an important role in tumor metastasis in lung cancer. The chemokine receptor XCR1 has been identified to promote cell proliferation and migration in oral cancer and ovarian carcinoma, but the role of XCR1 in lung cancer has not been reported. In this study, we demonstrated for the first time that XCR1 was overexpressed in lung cancer bone metastasis as compared with that in patients with primary lung cancer.more » In addition, the XCR1 ligand XCL1 promoted the proliferation and migration of lung cancer cells markedly, and knockdown of XCR1 by siRNA abolished the effect of XCL1 in cell proliferation and migration. Furthermore, we identified JAK2/STAT3 as a novel downstream pathway of XCR1, while XCL1/XCR1 increased the mRNA level of the downstream of JAK2/STAT3 including PIM1, JunB, TTP, MMP2 and MMP9. These results indicate that XCR1 is a new potential therapeutic target for the treatment of lung cancer bone metastasis. - Highlights: • XCR1 is overexpressed in bone metastasis compared with primary NSCLC. • XCR1 activation by XCL1 promotes lung cancer cell proliferation and migration. • JAK2/STAT3 is a novel potential downstream pathway of XCR1.« less
Streamlining the Evaluation of Low Back Pain in Children
Auerbach, Joshua D.; Ahn, Jaimo; Zgonis, Miltiadis H.; Reddy, Sudheer C.; Ecker, Malcolm L.
2008-01-01
The workup of low back pain in children often results in overimaging so as not to miss organic back pain. The primary goal of this study was to identify which combination of imaging modalities provides the most sensitive and specific screening protocol for children with low back pain. Medical records from 100 consecutive patients between 2 and 18 years of age presenting with low back pain, without night pain or constitutional symptoms, were evaluated. A hyperextension test combined with a radiograph showed a negative predictive value of 0.81 and sensitivity of 0.90. The addition of a bone scan was highly effective in achieving good negative predictive value and sensitivity. Bone scans had perfect negative predictive value and sensitivity when symptom duration was less than 6 weeks. We identified a set of factors that is highly predictive for distinguishing organic back pain from mechanical back pain. Painless hyperextension combined with negative anteroposterior, lateral, and oblique lumbar radiographs and magnetic resonance images predicts mechanical back pain. For patients with nonneurologic back pain of less than 6 weeks duration, bone scan is the most useful screening test because it is accurate, accessible, inexpensive, and unlikely to require sedation. Level of Evidence: Level III, diagnostic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18553213
Modification of bone graft by blending with lecithin to improve hydrophilicity and biocompatibility.
Wang, Y; Cui, F Z; Jiao, Y P; Hu, K; Fan, D D
2008-03-01
Lecithin was blended to improve the hydrophilicity and biocompatibility of bone graft containing poly(l-lactic acid) (PLLA). Solution blending and freeze drying were used to fabricate symmetrical scaffolds containing different percentages of lecithin (lecithin: PLLA = 0, 5, 10 wt%). Scanning electron microscopy showed that the scaffolds maintained the three-dimensional porous structure. A water uptake experiment proved the significant improvement of hydrophilicity of the blend scaffold. With the addition of lecithin, the compressive strength and compressive modulus decreased. When the weight ratio of lecithin to PLLA was up to 10%, the compressive strength was still more than the lower limit of natural cancellous bone. To test the biocompatibility of the scaffolds, cell culture in vitro and subcutaneous implantation in vivo were performed. MC3T3-E1 preosteoblastic cells were cultured on the scaffolds for 7 days. Methylthiazol tetrazolium assay and laser scanning confocal microscopy were used to exhibit proliferation and morphology of the cells. The subcutaneous implantation in rats tested inflammatory response to the scaffolds. The results proved the better biocompatibility and milder inflammatory reactions of the blend scaffold (lecithin: PLLA = 5%) compared with the scaffold without lecithin. The modified scaffold containing lecithin is promising for bone tissue engineering.
Shape and site dependent in vivo degradation of Mg-Zn pins in rabbit femoral condyle.
Han, Pei; Tan, Moyan; Zhang, Shaoxiang; Ji, Weiping; Li, Jianan; Zhang, Xiaonong; Zhao, Changli; Zheng, Yufeng; Chai, Yimin
2014-02-20
A type of specially designed pin model of Mg-Zn alloy was implanted into the full thickness of lesions of New Zealand rabbits' femoral condyles. The recovery progress, outer surface healing and in vivo degradation were characterized by various methods including radiographs, Micro-CT scan with surface rendering, SEM (scanning electron microscope) with EDX (Energy Dispersive X-ray analysis) and so on. The in vivo results suggested that a few but not sufficient bridges for holding force were formed between the bone and the implant if there was a preexisting gap between them. The rapid degradation of the implantation in the condyle would result in the appearance of cavities. Morphological evaluation of the specially designed pins indicated that the cusp was the most vulnerable part during degradation. Furthermore, different implantation sites with distinct components and biological functions can lead to different degradation rates of Mg-Zn alloy. The rate of Mg-Zn alloy decreases in the following order: implantation into soft tissue, less trabecular bone, more trabecular bone, and cortical bone. Because of the complexities of in vivo degradation, it is necessary for the design of biomedical Mg-Zn devices to take into consideration the implantation sites used in clinics.
Delayed Implants Outcome in Maxillary Molar Region.
Crespi, Roberto; Capparè, Paolo; Crespi, Giovanni; Gastaldi, Giorgio; Gherlone, Enrico F
2017-04-01
The aim of the present study was to assess bone volume changes in maxillary molar regions after delayed implants placement. Patients presented large bone defects after tooth extractions. Reactive soft tissue was left into the defects. No grafts were used. Cone beam computed tomography (CBCT) scans were performed before tooth extractions, at implant placement (at 3 months from extraction) and 3 years after implant placement, bone volume measurements were assessed. Bucco-lingual width showed a statistically significant decrease (p = .013) at implant placement, 3 months after extraction. Moreover, a statistically significant increase (p < .01) was measured 3 years after implant placement. No statistically significant differences (p > .05) were found between baseline values (before extraction) and at 3 years from implant placement. Vertical dimension showed no statistically significant differences (p > .05) at implant placement, 3 months after extraction. Statistically significant differences (p < .0001) were found between baseline values (before extraction) and at 3 months from implant placement as well as between implant placement values and 3 years later. CT scans presented successful outcome of delayed implants placed in large bone defects at 3-year follow-up. © 2016 Wiley Periodicals, Inc.
Lew, Henry L; Lee, Eun Ha; Miyoshi, Yasushi; Chang, Douglas G; Date, Elaine S; Jerger, James F
2004-03-01
Because of the violent nature of traumatic brain injury, traumatic brain injury patients are susceptible to various types of trauma involving the auditory system. We report a case of a 55-yr-old man who presented with communication problems after traumatic brain injury. Initial results from behavioral audiometry and Weber/Rinne tests were not reliable because of poor cooperation. He was transferred to our service for inpatient rehabilitation, where review of the initial head computed tomographic scan showed only left temporal bone fracture. Brainstem auditory-evoked potential was then performed to evaluate his hearing function. The results showed bilateral absence of auditory-evoked responses, which strongly suggested bilateral deafness. This finding led to a follow-up computed tomographic scan, with focus on bilateral temporal bones. A subtle transverse fracture of the right temporal bone was then detected, in addition to the left temporal bone fracture previously identified. Like children with hearing impairment, traumatic brain injury patients may not be able to verbalize their auditory deficits in a timely manner. If hearing loss is suspected in a patient who is unable to participate in traditional behavioral audiometric testing, brainstem auditory-evoked potential may be an option for evaluating hearing dysfunction.
Bone mineral measurement using dual energy x ray densitometry
NASA Technical Reports Server (NTRS)
Smith, Steven W.
1989-01-01
Bone mineral measurements before and after space missions have shown that weightlessness greatly accelerates bone demineralization. Bone mineral losses as high as 1 to 3 percent per month were reported. Highly precise instrumentation is required to monitor this loss and thereby test the efficacy of treatment. During the last year, a significant improvement was made in Dual-Photon Absorptiometry by replacing the radioactive source with an x ray tube. Advantages of this system include: better precision, lower patient dose, better spacial resolution, and shorter scan times. The high precision and low radiation dose of this technique will allow detection of bone mineral changes of less than 1 percent with measurements conducted directly at the sites of interest. This will allow the required bone mineral studies to be completed in a shorter time with greater confidence.