Completeness relations for Maass Laplacians and heat kernels on the super Poincaré upper half-plane
NASA Astrophysics Data System (ADS)
Oshima, Kazuto
1990-12-01
Simple completeness relations are proposed for Maass Laplacians. With the help of these completeness relations, correct heat kernels of (super) Maass Laplacians are derived on the (super) Poincaré upper half-plane.
Eigenfunctions and heat kernels of super Maass Laplacians on the super Poincaré upper half-plane
NASA Astrophysics Data System (ADS)
Oshima, Kazuto
1992-03-01
Heat kernels of ``super Maass Laplacians'' are explicitly constructed on super Poincaré upper half-plane by a serious treatment of a complete set of eigenfunctions. By component decomposition an explicit treatment can be done for arbitrary weight and a knowledge of classical Maass Laplacians becomes helpful. The result coincides with that of Aoki [Commun. Math. Phys. 117, 405 (1988)] which was obtained by solving differential equations.
A superparticle on the super Riemann surface
NASA Astrophysics Data System (ADS)
Matsumoto, Shuji; Uehara, Shozo; Yasui, Yukinori
1990-02-01
The free motion of a nonrelativistic superparticle on the super Riemann surface (SRS) of genus h≥2 is investigated. Geodesics or classical paths are given explicitly on the super Poincaré upper half-plane SH, a universal covering space of the SRS, and the paths with some suitable initial conditions yield periodic orbits on the SRS. The periodic orbits are unstable and the system is chaotic. Quantum mechanics is solved on the universal covering space SH and the heat kernel is given on the SRS. This leads to a superanalog of the Selberg trace formula. The Selberg super zeta function is introduced whose zero points and poles determine the energy spectrum on the SRS.
Complete one-loop renormalization of the Higgs-electroweak chiral Lagrangian
NASA Astrophysics Data System (ADS)
Buchalla, G.; Catà, O.; Celis, A.; Knecht, M.; Krause, C.
2018-03-01
Employing background-field method and super-heat-kernel expansion, we compute the complete one-loop renormalization of the electroweak chiral Lagrangian with a light Higgs boson. Earlier results from purely scalar fluctuations are confirmed as a special case. We also recover the one-loop renormalization of the conventional Standard Model in the appropriate limit.
Occurrence of 'super soft' wheat kernel texture in hexaploid and tetraploid wheats
USDA-ARS?s Scientific Manuscript database
Wheat kernel texture is a key trait that governs milling performance, flour starch damage, flour particle size, flour hydration properties, and baking quality. Kernel texture is commonly measured using the Perten Single Kernel Characterization System (SKCS). The SKCS returns texture values (Hardness...
[Super sweet corn hybrid sh2 adaptability for industrial canning process].
Ortiz de Bertorelli, Ligia; De Venanzi, Frank; Alfonzo, Braunnier; Camacho, Candelario
2002-12-01
The super sweet corns Krispy king, Victor and 324 (sh2 hybrids) were evaluated to determine their adaptabilities to the industrial canning process as whole kernels. All these hybrids and Bonanza (control) were sown in San Joaquín (Carabobo, Venezuela), harvested and canned. After 110 days storage at room temperature they were analyzed to be compared physically, chemically and sensorially with Bonanza hybrid. Results did not show significant differences among most of the physical characteristics, except for percentage of broken kernels which was higher in 324 hybrid. Chemical parameters showed significant differences (P < 0.05) comparing each super sweet hybrid with Bonanza. The super sweet hybrids presented a higher sugar content and soluble solid of the brine than Bonanza, also a lower pH. The super sweet whole kernel presented a lower soluble solids content than Bonanza but they were not significant (Krispy king and 324). Appearance, odor and overall quality were the same for super sweet hybrids and Bonanza (su). Color, flavor and sweetness were better for 324 than all the other hybrids. Super sweet hybrids presented a very good adaptation to the canning process, having as an advantage that doesn't require sugar addition in the brine and a very good texture (firm and crispy).
Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network
Qu, Xiaobo; He, Yifan
2018-01-01
Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods. PMID:29509666
Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network.
Du, Xiaofeng; Qu, Xiaobo; He, Yifan; Guo, Di
2018-03-06
Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods.
Mapping quantitative trait loci for a unique 'super soft' kernel trait in soft white wheat
USDA-ARS?s Scientific Manuscript database
Wheat (Triticum sp.) kernel texture is an important factor affecting milling, flour functionality, and end-use quality. Kernel texture is normally characterized as either hard or soft, the two major classes of texture. However, further variation is typically encountered in each class. Soft wheat var...
Comparative efficacy of storage bags, storability and damage potential of bruchid beetle.
Harish, G; Nataraja, M V; Ajay, B C; Holajjer, Prasanna; Savaliya, S D; Gedia, M V
2014-12-01
Groundnut during storage is attacked by number of stored grain pests and management of these insect pests particularly bruchid beetle, Caryedon serratus (Oliver) is of prime importance as they directly damage the pod and kernels. In this regard different storage bags that could be used and duration up to which we can store groundnut has been studied. Super grain bag recorded minimum number of eggs laid and less damage and minimum weight loss in pods and kernels in comparison to other storage bags. Analysis of variance for multiple regression models were found to be significant in all bags for variables viz, number of eggs laid, damage in pods and kernels, weight loss in pods and kernels throughout the season. Multiple comparison results showed that there was a high probability of eggs laid and pod damage in lino bag, fertilizer bag and gunny bag, whereas super grain bag was found to be more effective in managing the C. serratus owing to very low air circulation.
Droplet Image Super Resolution Based on Sparse Representation and Kernel Regression
NASA Astrophysics Data System (ADS)
Zou, Zhenzhen; Luo, Xinghong; Yu, Qiang
2018-02-01
Microgravity and containerless conditions, which are produced via electrostatic levitation combined with a drop tube, are important when studying the intrinsic properties of new metastable materials. Generally, temperature and image sensors can be used to measure the changes of sample temperature, morphology and volume. Then, the specific heat, surface tension, viscosity changes and sample density can be obtained. Considering that the falling speed of the material sample droplet is approximately 31.3 m/s when it reaches the bottom of a 50-meter-high drop tube, a high-speed camera with a collection rate of up to 106 frames/s is required to image the falling droplet. However, at the high-speed mode, very few pixels, approximately 48-120, will be obtained in each exposure time, which results in low image quality. Super-resolution image reconstruction is an algorithm that provides finer details than the sampling grid of a given imaging device by increasing the number of pixels per unit area in the image. In this work, we demonstrate the application of single image-resolution reconstruction in the microgravity and electrostatic levitation for the first time. Here, using the image super-resolution method based on sparse representation, a low-resolution droplet image can be reconstructed. Employed Yang's related dictionary model, high- and low-resolution image patches were combined with dictionary training, and high- and low-resolution-related dictionaries were obtained. The online double-sparse dictionary training algorithm was used in the study of related dictionaries and overcome the shortcomings of the traditional training algorithm with small image patch. During the stage of image reconstruction, the algorithm of kernel regression is added, which effectively overcomes the shortcomings of the Yang image's edge blurs.
Droplet Image Super Resolution Based on Sparse Representation and Kernel Regression
NASA Astrophysics Data System (ADS)
Zou, Zhenzhen; Luo, Xinghong; Yu, Qiang
2018-05-01
Microgravity and containerless conditions, which are produced via electrostatic levitation combined with a drop tube, are important when studying the intrinsic properties of new metastable materials. Generally, temperature and image sensors can be used to measure the changes of sample temperature, morphology and volume. Then, the specific heat, surface tension, viscosity changes and sample density can be obtained. Considering that the falling speed of the material sample droplet is approximately 31.3 m/s when it reaches the bottom of a 50-meter-high drop tube, a high-speed camera with a collection rate of up to 106 frames/s is required to image the falling droplet. However, at the high-speed mode, very few pixels, approximately 48-120, will be obtained in each exposure time, which results in low image quality. Super-resolution image reconstruction is an algorithm that provides finer details than the sampling grid of a given imaging device by increasing the number of pixels per unit area in the image. In this work, we demonstrate the application of single image-resolution reconstruction in the microgravity and electrostatic levitation for the first time. Here, using the image super-resolution method based on sparse representation, a low-resolution droplet image can be reconstructed. Employed Yang's related dictionary model, high- and low-resolution image patches were combined with dictionary training, and high- and low-resolution-related dictionaries were obtained. The online double-sparse dictionary training algorithm was used in the study of related dictionaries and overcome the shortcomings of the traditional training algorithm with small image patch. During the stage of image reconstruction, the algorithm of kernel regression is added, which effectively overcomes the shortcomings of the Yang image's edge blurs.
Chung, Moo K; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K
2015-05-01
We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel method is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, the method is applied to characterize the localized growth pattern of mandible surfaces obtained in CT images between ages 0 and 20 by regressing the length of displacement vectors with respect to a surface template. Copyright © 2015 Elsevier B.V. All rights reserved.
7 CFR 810.206 - Grades and grade requirements for barley.
Code of Federal Regulations, 2010 CFR
2010-01-01
... weight per bushel (pounds) Sound barley (percent) Maximum Limits of— Damaged kernels 1 (percent) Heat damaged kernels (percent) Foreign material (percent) Broken kernels (percent) Thin barley (percent) U.S... or otherwise of distinctly low quality. 1 Includes heat-damaged kernels. Injured-by-frost kernels and...
Chung, Moo K.; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K.
2014-01-01
We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel regression is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. Unlike many previous partial differential equation based approaches involving diffusion, our approach represents the solution of diffusion analytically, reducing numerical inaccuracy and slow convergence. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, we have applied the method in characterizing the localized growth pattern of mandible surfaces obtained in CT images from subjects between ages 0 and 20 years by regressing the length of displacement vectors with respect to the template surface. PMID:25791435
Single image super-resolution via an iterative reproducing kernel Hilbert space method.
Deng, Liang-Jian; Guo, Weihong; Huang, Ting-Zhu
2016-11-01
Image super-resolution, a process to enhance image resolution, has important applications in satellite imaging, high definition television, medical imaging, etc. Many existing approaches use multiple low-resolution images to recover one high-resolution image. In this paper, we present an iterative scheme to solve single image super-resolution problems. It recovers a high quality high-resolution image from solely one low-resolution image without using a training data set. We solve the problem from image intensity function estimation perspective and assume the image contains smooth and edge components. We model the smooth components of an image using a thin-plate reproducing kernel Hilbert space (RKHS) and the edges using approximated Heaviside functions. The proposed method is applied to image patches, aiming to reduce computation and storage. Visual and quantitative comparisons with some competitive approaches show the effectiveness of the proposed method.
7 CFR 868.210 - Grades and grade requirements for the classes of Rough Rice. (See also § 868.212.)
Code of Federal Regulations, 2013 CFR
2013-01-01
... and heat-damaged kernels Total (singly or combined) (Number in 500 grams) Heat-damaged kernels and objectionable seeds (singly or combined) (Number in 500 grams) Heat-damaged kernels (Number in 500 grams) Red...
7 CFR 868.210 - Grades and grade requirements for the classes of Rough Rice. (See also § 868.212.)
Code of Federal Regulations, 2012 CFR
2012-01-01
... and heat-damaged kernels Total (singly or combined) (Number in 500 grams) Heat-damaged kernels and objectionable seeds (singly or combined) (Number in 500 grams) Heat-damaged kernels (Number in 500 grams) Red...
7 CFR 868.210 - Grades and grade requirements for the classes of Rough Rice. (See also § 868.212.)
Code of Federal Regulations, 2014 CFR
2014-01-01
... and heat-damaged kernels Total (singly or combined) (Number in 500 grams) Heat-damaged kernels and objectionable seeds (singly or combined) (Number in 500 grams) Heat-damaged kernels (Number in 500 grams) Red...
Single image super-resolution based on convolutional neural networks
NASA Astrophysics Data System (ADS)
Zou, Lamei; Luo, Ming; Yang, Weidong; Li, Peng; Jin, Liujia
2018-03-01
We present a deep learning method for single image super-resolution (SISR). The proposed approach learns end-to-end mapping between low-resolution (LR) images and high-resolution (HR) images. The mapping is represented as a deep convolutional neural network which inputs the LR image and outputs the HR image. Our network uses 5 convolution layers, which kernels size include 5×5, 3×3 and 1×1. In our proposed network, we use residual-learning and combine different sizes of convolution kernels at the same layer. The experiment results show that our proposed method performs better than the existing methods in reconstructing quality index and human visual effects on benchmarked images.
Wilson loops and QCD/string scattering amplitudes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makeenko, Yuri; Olesen, Poul; Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen O
2009-07-15
We generalize modern ideas about the duality between Wilson loops and scattering amplitudes in N=4 super Yang-Mills theory to large N QCD by deriving a general relation between QCD meson scattering amplitudes and Wilson loops. We then investigate properties of the open-string disk amplitude integrated over reparametrizations. When the Wilson-loop is approximated by the area behavior, we find that the QCD scattering amplitude is a convolution of the standard Koba-Nielsen integrand and a kernel. As usual poles originate from the first factor, whereas no (momentum-dependent) poles can arise from the kernel. We show that the kernel becomes a constant whenmore » the number of external particles becomes large. The usual Veneziano amplitude then emerges in the kinematical regime, where the Wilson loop can be reliably approximated by the area behavior. In this case, we obtain a direct duality between Wilson loops and scattering amplitudes when spatial variables and momenta are interchanged, in analogy with the N=4 super Yang-Mills theory case.« less
7 CFR 810.802 - Definition of other terms.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Damaged kernels. Kernels and pieces of grain kernels for which standards have been established under the.... (d) Heat-damaged kernels. Kernels and pieces of grain kernels for which standards have been...
7 CFR 810.602 - Definition of other terms.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Damaged kernels. Kernels and pieces of flaxseed kernels that are badly ground-damaged, badly weather... instructions. Also, underdeveloped, shriveled, and small pieces of flaxseed kernels removed in properly... recleaning. (c) Heat-damaged kernels. Kernels and pieces of flaxseed kernels that are materially discolored...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., heat damaged, and paddy kernels (singly or combined) Total (number in 500 grams) Heat damaged kernels and objectionable seeds (number in 500 grams) Red rice and damaged kernels (singly or combined...
7 CFR 810.2202 - Definition of other terms.
Code of Federal Regulations, 2014 CFR
2014-01-01
... kernels, foreign material, and shrunken and broken kernels. The sum of these three factors may not exceed... the removal of dockage and shrunken and broken kernels. (g) Heat-damaged kernels. Kernels, pieces of... sample after the removal of dockage and shrunken and broken kernels. (h) Other grains. Barley, corn...
Heat kernel for the elliptic system of linear elasticity with boundary conditions
NASA Astrophysics Data System (ADS)
Taylor, Justin; Kim, Seick; Brown, Russell
2014-10-01
We consider the elliptic system of linear elasticity with bounded measurable coefficients in a domain where the second Korn inequality holds. We construct heat kernel of the system subject to Dirichlet, Neumann, or mixed boundary condition under the assumption that weak solutions of the elliptic system are Hölder continuous in the interior. Moreover, we show that if weak solutions of the mixed problem are Hölder continuous up to the boundary, then the corresponding heat kernel has a Gaussian bound. In particular, if the domain is a two dimensional Lipschitz domain satisfying a corkscrew or non-tangential accessibility condition on the set where we specify Dirichlet boundary condition, then we show that the heat kernel has a Gaussian bound. As an application, we construct Green's function for elliptic mixed problem in such a domain.
[Influence of infra-red and super high frequency heating on food value of the beef meat].
Beliaeva, M A
2005-01-01
In clause results of research of influence infrared and super high frequency heating on amino acid, fatty fabric and mineral; substances fresh beef are shown meat, after infra-red and the super high frequency of processing, also are shown influence of various modes infra-red heating of processing on amino acid of meat. Advantage of an infra-red way of processing is shown in comparison with super high frequency heating.
7 CFR 810.2003 - Basis of determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Basis of determination. Each determination of heat-damaged kernels, damaged kernels, material other than... shrunken and broken kernels. Other determinations not specifically provided for under the general...
A Linear Kernel for Co-Path/Cycle Packing
NASA Astrophysics Data System (ADS)
Chen, Zhi-Zhong; Fellows, Michael; Fu, Bin; Jiang, Haitao; Liu, Yang; Wang, Lusheng; Zhu, Binhai
Bounded-Degree Vertex Deletion is a fundamental problem in graph theory that has new applications in computational biology. In this paper, we address a special case of Bounded-Degree Vertex Deletion, the Co-Path/Cycle Packing problem, which asks to delete as few vertices as possible such that the graph of the remaining (residual) vertices is composed of disjoint paths and simple cycles. The problem falls into the well-known class of 'node-deletion problems with hereditary properties', is hence NP-complete and unlikely to admit a polynomial time approximation algorithm with approximation factor smaller than 2. In the framework of parameterized complexity, we present a kernelization algorithm that produces a kernel with at most 37k vertices, improving on the super-linear kernel of Fellows et al.'s general theorem for Bounded-Degree Vertex Deletion. Using this kernel,and the method of bounded search trees, we devise an FPT algorithm that runs in time O *(3.24 k ). On the negative side, we show that the problem is APX-hard and unlikely to have a kernel smaller than 2k by a reduction from Vertex Cover.
7 CFR 868.203 - Basis of determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Rough Rice Principles Governing..., heat-damaged kernels, red rice and damaged kernels, chalky kernels, other types, color, and the special grade Parboiled rough rice shall be on the basis of the whole and large broken kernels of milled rice...
7 CFR 868.203 - Basis of determination.
Code of Federal Regulations, 2011 CFR
2011-01-01
... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Rough Rice Principles Governing..., heat-damaged kernels, red rice and damaged kernels, chalky kernels, other types, color, and the special grade Parboiled rough rice shall be on the basis of the whole and large broken kernels of milled rice...
Bose–Einstein condensation temperature of finite systems
NASA Astrophysics Data System (ADS)
Xie, Mi
2018-05-01
In studies of the Bose–Einstein condensation of ideal gases in finite systems, the divergence problem usually arises in the equation of state. In this paper, we present a technique based on the heat kernel expansion and zeta function regularization to solve the divergence problem, and obtain the analytical expression of the Bose–Einstein condensation temperature for general finite systems. The result is represented by the heat kernel coefficients, where the asymptotic energy spectrum of the system is used. Besides the general case, for systems with exact spectra, e.g. ideal gases in an infinite slab or in a three-sphere, the sums of the spectra can be obtained exactly and the calculation of corrections to the critical temperatures is more direct. For a system confined in a bounded potential, the form of the heat kernel is different from the usual heat kernel expansion. We show that as long as the asymptotic form of the global heat kernel can be found, our method works. For Bose gases confined in three- and two-dimensional isotropic harmonic potentials, we obtain the higher-order corrections to the usual results of the critical temperatures. Our method can also be applied to the problem of generalized condensation, and we give the correction of the boundary on the second critical temperature in a highly anisotropic slab.
StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points.
Li, Chenhui; Baciu, George; Han, Yu
2018-03-01
Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heat-map. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.
7 CFR 868.253 - Basis of determination.
Code of Federal Regulations, 2011 CFR
2011-01-01
... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Brown Rice for Processing Principles... heat, heat-damaged kernels, parboiled kernels in nonparboiled rice, and the special grade Parboiled brown rice for processing shall be on the basis of the brown rice for processing after it has been...
7 CFR 868.253 - Basis of determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Brown Rice for Processing Principles... heat, heat-damaged kernels, parboiled kernels in nonparboiled rice, and the special grade Parboiled brown rice for processing shall be on the basis of the brown rice for processing after it has been...
Code of Federal Regulations, 2012 CFR
2012-01-01
... combined) Total (number in 500 grams) Heat-damaged kernels and objectionable seeds (number in 500 grams) Red rice and damaged kernels (singly or combined) (percent) Chalky kernels 1,3 (percent) Color...
7 CFR 810.202 - Definition of other terms.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Classes. There are two classes of barley: Malting barley and Barley. (1) Malting barley. Barley of a six...: (i) Six-rowed Malting barley. Barley that has a minimum of 95.0 percent of a six-rowed suitable...-heat kernels, and 0.1 percent heat-damaged kernels. Six-rowed Malting barley shall not be infested...
General heat kernel coefficients for massless free spin-3/2 Rarita-Schwinger field
NASA Astrophysics Data System (ADS)
Karan, Sudip; Kumar, Shashank; Panda, Binata
2018-04-01
We review the general heat kernel method for the Dirac spinor field as an elementary example in any arbitrary background. We, then compute the first three Seeley-DeWitt coefficients for the massless free spin-3/2 Rarita-Schwinger field without imposing any limitations on the background geometry.
Stochastic subset selection for learning with kernel machines.
Rhinelander, Jason; Liu, Xiaoping P
2012-06-01
Kernel machines have gained much popularity in applications of machine learning. Support vector machines (SVMs) are a subset of kernel machines and generalize well for classification, regression, and anomaly detection tasks. The training procedure for traditional SVMs involves solving a quadratic programming (QP) problem. The QP problem scales super linearly in computational effort with the number of training samples and is often used for the offline batch processing of data. Kernel machines operate by retaining a subset of observed data during training. The data vectors contained within this subset are referred to as support vectors (SVs). The work presented in this paper introduces a subset selection method for the use of kernel machines in online, changing environments. Our algorithm works by using a stochastic indexing technique when selecting a subset of SVs when computing the kernel expansion. The work described here is novel because it separates the selection of kernel basis functions from the training algorithm used. The subset selection algorithm presented here can be used in conjunction with any online training technique. It is important for online kernel machines to be computationally efficient due to the real-time requirements of online environments. Our algorithm is an important contribution because it scales linearly with the number of training samples and is compatible with current training techniques. Our algorithm outperforms standard techniques in terms of computational efficiency and provides increased recognition accuracy in our experiments. We provide results from experiments using both simulated and real-world data sets to verify our algorithm.
USDA-ARS?s Scientific Manuscript database
Solid-phase microextraction (SPME) in conjunction with GC/MS was used to distinguish non-aromatic rice (Oryza sativa, L.) kernels from aromatic rice kernels. In this method, single kernels along with 10 µl of 0.1 ng 2,4,6-Trimethylpyridine (TMP) were placed in sealed vials and heated to 80oC for 18...
A heat kernel proof of the index theorem for deformation quantization
NASA Astrophysics Data System (ADS)
Karabegov, Alexander
2017-11-01
We give a heat kernel proof of the algebraic index theorem for deformation quantization with separation of variables on a pseudo-Kähler manifold. We use normalizations of the canonical trace density of a star product and of the characteristic classes involved in the index formula for which this formula contains no extra constant factors.
7 CFR 810.1403 - Basis of determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Basis of determination. Each determination of broken kernels and foreign material is made on the basis of the grain when free from dockage. Each determination of class, damaged kernels, heat-damaged kernels, and stones is made on the basis of the grain when free from dockage and that portion of the...
Chen, Lidong; Basu, Anup; Zhang, Maojun; Wang, Wei; Liu, Yu
2014-03-20
A complementary catadioptric imaging technique was proposed to solve the problem of low and nonuniform resolution in omnidirectional imaging. To enhance this research, our paper focuses on how to generate a high-resolution panoramic image from the captured omnidirectional image. To avoid the interference between the inner and outer images while fusing the two complementary views, a cross-selection kernel regression method is proposed. First, in view of the complementarity of sampling resolution in the tangential and radial directions between the inner and the outer images, respectively, the horizontal gradients in the expected panoramic image are estimated based on the scattered neighboring pixels mapped from the outer, while the vertical gradients are estimated using the inner image. Then, the size and shape of the regression kernel are adaptively steered based on the local gradients. Furthermore, the neighboring pixels in the next interpolation step of kernel regression are also selected based on the comparison between the horizontal and vertical gradients. In simulation and real-image experiments, the proposed method outperforms existing kernel regression methods and our previous wavelet-based fusion method in terms of both visual quality and objective evaluation.
Bose-Einstein condensation on a manifold with non-negative Ricci curvature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akant, Levent, E-mail: levent.akant@boun.edu.tr; Ertuğrul, Emine, E-mail: emine.ertugrul@boun.edu.tr; Tapramaz, Ferzan, E-mail: waskhez@gmail.com
The Bose-Einstein condensation for an ideal Bose gas and for a dilute weakly interacting Bose gas in a manifold with non-negative Ricci curvature is investigated using the heat kernel and eigenvalue estimates of the Laplace operator. The main focus is on the nonrelativistic gas. However, special relativistic ideal gas is also discussed. The thermodynamic limit of the heat kernel and eigenvalue estimates is taken and the results are used to derive bounds for the depletion coefficient. In the case of a weakly interacting gas, Bogoliubov approximation is employed. The ground state is analyzed using heat kernel methods and finite sizemore » effects on the ground state energy are proposed. The justification of the c-number substitution on a manifold is given.« less
NASA Astrophysics Data System (ADS)
Kidon, Lyran; Wilner, Eli Y.; Rabani, Eran
2015-12-01
The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima-Zwanzig-Mori time-convolution (TC) and the other on the Tokuyama-Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called "memory kernel" or "generator," going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green's function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.
Effects of Amygdaline from Apricot Kernel on Transplanted Tumors in Mice.
Yamshanov, V A; Kovan'ko, E G; Pustovalov, Yu I
2016-03-01
The effects of amygdaline from apricot kernel added to fodder on the growth of transplanted LYO-1 and Ehrlich carcinoma were studied in mice. Apricot kernels inhibited the growth of both tumors. Apricot kernels, raw and after thermal processing, given 2 days before transplantation produced a pronounced antitumor effect. Heat-processed apricot kernels given in 3 days after transplantation modified the tumor growth and prolonged animal lifespan. Thermal treatment did not considerably reduce the antitumor effect of apricot kernels. It was hypothesized that the antitumor effect of amygdaline on Ehrlich carcinoma and LYO-1 lymphosarcoma was associated with the presence of bacterial genome in the tumor.
Computational investigation of intense short-wavelength laser interaction with rare gas clusters
NASA Astrophysics Data System (ADS)
Bigaouette, Nicolas
Current Very High Temperature Reactor designs incorporate TRi-structural ISOtropic (TRISO) particle fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel by dropping a cold precursor solution into a column of hot trichloroethylene (TCE). The temperature difference drives the liquid precursor solution to precipitate the metal solution into gel spheres before reaching the bottom of a production column. Over time, gelation byproducts inhibit complete gelation and the TCE must be purified or discarded. The resulting mixed-waste stream is expensive to dispose of or recycle, and changing the forming fluid to a non-hazardous alternative could greatly improve the economics of kernel production. Selection criteria for a replacement forming fluid narrowed a list of ~10,800 chemicals to yield ten potential replacements. The physical properties of the alternatives were measured as a function of temperature between 25 °C and 80 °C. Calculated terminal velocities and heat transfer rates provided an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane were selected for further testing, and surrogate yttria-stabilized zirconia (YSZ) kernels were produced using these selected fluids. The kernels were characterized for density, geometry, composition, and crystallinity and compared to a control group of kernels produced in silicone oil. Production in 1-bromotetradecane showed positive results, producing dense (93.8 %TD) and spherical (1.03 aspect ratio) kernels, but proper gelation did not occur in the other alternative forming fluids. With many of the YSZ kernels not properly gelling within the length of the column, this project further investigated the heat transfer properties of the forming fluids and precursor solution. A sensitivity study revealed that the heat transfer properties of the precursor solution have the strongest impact on gelation time. A COMSOL heat transfer model estimated an effective thermal diffusivity range for the YSZ precursor solution as 1.13x10 -8 m2/s to 3.35x10-8 m 2/s, which is an order of magnitude smaller than the value used in previous studies. 1-bromotetradecane is recommended for further investigation with the production of uranium-based kernels.
Single image super-resolution reconstruction algorithm based on eage selection
NASA Astrophysics Data System (ADS)
Zhang, Yaolan; Liu, Yijun
2017-05-01
Super-resolution (SR) has become more important, because it can generate high-quality high-resolution (HR) images from low-resolution (LR) input images. At present, there are a lot of work is concentrated on developing sophisticated image priors to improve the image quality, while taking much less attention to estimating and incorporating the blur model that can also impact the reconstruction results. We present a new reconstruction method based on eager selection. This method takes full account of the factors that affect the blur kernel estimation and accurately estimating the blur process. When comparing with the state-of-the-art methods, our method has comparable performance.
Asnaashari, Maryam; Hashemi, Seyed Mohammad Bagher; Mehr, Hamed Mahdavian; Yousefabad, Seyed Hossein Asadi
2015-03-01
In this study, in order to introduce natural antioxidative vegetable oil in food industry, the kolkhoung hull oil and kernel oil were extracted. To evaluate their antioxidant efficiency, gas chromatography analysis of the composition of kolkhoung hull and kernel oil fatty acids and high-performance liquid chromatography analysis of tocopherols were done. Also, the oxidative stability of the oil was considered based on the peroxide value and anisidine value during heating at 100, 110 and 120 °C. Gas chromatography analysis showed that oleic acid was the major fatty acid of both types of oil (hull and kernel) and based on a low content of saturated fatty acids, high content of monounsaturated fatty acids, and the ratio of ω-6 and ω-3 polyunsaturated fatty acids, they were nutritionally well--balanced. Moreover, both hull and kernel oil showed high oxidative stability during heating, which can be attributed to high content of tocotrienols. Based on the results, kolkhoung hull oil acted slightly better than its kernel oil. However, both of them can be added to oxidation-sensitive oils to improve their shelf life.
A thin gold coated hydrogen heat pipe-cryogenic target for external experiments at COSY
NASA Astrophysics Data System (ADS)
Abdel-Bary, M.; Abdel-Samad, S.; Elawadi, G. A.; Kilian, K.; Ritman, J.
2009-05-01
A gravity assisted Gold coated heat pipe (GCHP) with 5-mm diameter has been developed and tested to cool a liquid hydrogen target for external beam experiments at COSY. The need for a narrow target diameter leads us to study the effect of reducing the heat pipe diameter to 5 mm instead of 7 mm, to study the effect of coating the external surface of the heat pipe by a shiny gold layer (to decrease the radiation heat load), and to study the effect of using the heat pipe without using 20 layers of' super-insulation around it (aluminized Mylar foil) to keep the target diameter as small as possible. The developed gold coated heat pipe was tested with 20 layers of super-insulation (WI) and without super-insulation (WOI). The operating characteristics for both conditions were compared to show the advantages and disadvantages.
Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!
NASA Astrophysics Data System (ADS)
Nutku, Yavuz
2003-07-01
Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems.
NASA Technical Reports Server (NTRS)
Leimkuehler, Thomas O.; Bue, Grant C.
2009-01-01
A phase change material (PCM) heat sink using super cooled ice as a nontoxic, nonflammable PCM is being developed. The latent heat of fusion for water is approximately 70% larger than most paraffin waxes, which can provide significant mass savings. Further mass reduction is accomplished by super cooling the ice significantly below its freezing temperature for additional sensible heat storage. Expansion and contraction of the water as it freezes and melts is accommodated with the use of flexible bag and foam materials. A demonstrator unit has been designed, built, and tested to demonstrate proof of concept. Both testing and modeling results are presented along with recommendations for further development of this technology.
NASA Technical Reports Server (NTRS)
Kahler, S. W.; Petrasso, R. D.; Kane, S. R.
1976-01-01
The physical parameters for the kernels of three solar X-ray flare events have been deduced using photographic data from the S-054 X-ray telescope on Skylab as the primary data source and 1-8 and 8-20 A fluxes from Solrad 9 as the secondary data source. The kernels had diameters of about 5-7 seconds of arc and in two cases electron densities at least as high as 0.3 trillion per cu cm. The lifetimes of the kernels were 5-10 min. The presence of thermal conduction during the decay phases is used to argue: (1) that kernels are entire, not small portions of, coronal loop structures, and (2) that flare heating must continue during the decay phase. We suggest a simple geometric model to explain the role of kernels in flares in which kernels are identified with emerging flux regions.
Oil extraction from sheanut (Vitellaria paradoxa Gaertn C.F.) kernels assisted by microwaves.
Nde, Divine B; Boldor, Dorin; Astete, Carlos; Muley, Pranjali; Xu, Zhimin
2016-03-01
Shea butter, is highly solicited in cosmetics, pharmaceuticals, chocolates and biodiesel formulations. Microwave assisted extraction (MAE) of butter from sheanut kernels was carried using the Doehlert's experimental design. Factors studied were microwave heating time, temperature and solvent/solute ratio while the responses were the quantity of oil extracted and the acid number. Second order models were established to describe the influence of experimental parameters on the responses studied. Under optimum MAE conditions of heating time 23 min, temperature 75 °C and solvent/solute ratio 4:1 more than 88 % of the oil with a free fatty acid (FFA) value less than 2, was extracted compared to the 10 h and solvent/solute ratio of 10:1 required for soxhlet extraction. Scanning electron microscopy was used to elucidate the effect of microwave heating on the kernels' microstructure. Substantial reduction in extraction time and volumes of solvent used and oil of suitable quality are the main benefits derived from the MAE process.
A Concept for Measuring Electron Distribution Functions Using Collective Thomson Scattering
NASA Astrophysics Data System (ADS)
Milder, A. L.; Froula, D. H.
2017-10-01
A.B. Langdon proposed that stable non-Maxwellian distribution functions are realized in coronal inertial confinement fusion plasmas via inverse bremsstrahlung heating. For Zvosc2
Fu, Guanfu; Feng, Baohua; Zhang, Caixia; Yang, Yongjie; Yang, Xueqin; Chen, Tingting; Zhao, Xia; Zhang, Xiufu; Jin, Qianyu; Tao, Longxing
2016-01-01
In general, the fertility and kernel weight of inferior spikelets of rice (Oryza Sativa L.) are obviously lower than those of superior spikelets, especially under abiotic stress. However, different responses to heat stress are seemed to show between the superior and inferior spikelet, and this response is scarcely documented that the intrinsic factors remain elusive. In order to reveal the mechanism underlying, two rice plants with different heat tolerance were subjected to heat stress of 40°C at anthesis. The results indicated that a greater decrease in fertility and kernel weight was observed in superior spikelets compared to inferior spikelets. This decrease was primarily ascribed to their different organ temperatures, in which the temperature of the superior spikelets was significantly higher than that of inferior spikelets. We inferred the differences in canopy temperature, light intensity and panicle types, were the primary reasons for the temperature difference between superior and inferior spikelets. Under heat stress, the fertility and kernel weight of superior and inferior spikelets decreased as the panicle numbers per plant were reduced, which was accompanied by significantly increasing the canopy temperatures. Thus, it was suggested that the rice plant with characteristic features of an upright growth habit and loose panicles might be more susceptible to heat stress resulting from their higher canopy and spikelets temperatures. PMID:27877180
7 CFR 810.403 - Basis of determination.
Code of Federal Regulations, 2011 CFR
2011-01-01
... GRAIN United States Standards for Corn Principles Governing the Application of Standards § 810.403 Basis of determination. Each determination of class, damaged kernels, heat-damaged kernels, waxy corn, flint corn, and flint and dent corn is made on the basis of the grain after the removal of the broken...
7 CFR 810.403 - Basis of determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... GRAIN United States Standards for Corn Principles Governing the Application of Standards § 810.403 Basis of determination. Each determination of class, damaged kernels, heat-damaged kernels, waxy corn, flint corn, and flint and dent corn is made on the basis of the grain after the removal of the broken...
Carbon Dioxide Absorption Heat Pump
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor)
2002-01-01
A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.
Ha, Jae-Won
2015-01-01
The aim of this study was to investigate the efficacy of near-infrared radiation (NIR) heating combined with lactic acid (LA) sprays for inactivating Salmonella enterica serovar Enteritidis on almond and pine nut kernels and to elucidate the mechanisms of the lethal effect of the NIR-LA combined treatment. Also, the effect of the combination treatment on product quality was determined. Separately prepared S. Enteritidis phage type (PT) 30 and non-PT 30 S. Enteritidis cocktails were inoculated onto almond and pine nut kernels, respectively, followed by treatments with NIR or 2% LA spray alone, NIR with distilled water spray (NIR-DW), and NIR with 2% LA spray (NIR-LA). Although surface temperatures of nuts treated with NIR were higher than those subjected to NIR-DW or NIR-LA treatment, more S. Enteritidis survived after NIR treatment alone. The effectiveness of NIR-DW and NIR-LA was similar, but significantly more sublethally injured cells were recovered from NIR-DW-treated samples. We confirmed that the enhanced bactericidal effect of the NIR-LA combination may not be attributable to cell membrane damage per se. NIR heat treatment might allow S. Enteritidis cells to become permeable to applied LA solution. The NIR-LA treatment (5 min) did not significantly (P > 0.05) cause changes in the lipid peroxidation parameters, total phenolic contents, color values, moisture contents, and sensory attributes of nut kernels. Given the results of the present study, NIR-LA treatment may be a potential intervention for controlling food-borne pathogens on nut kernel products. PMID:25911473
NASA Astrophysics Data System (ADS)
Rahmani, Mehdi; Eghlimi, Abbas; Shamanian, Morteza
2014-10-01
To study the effect of chemical composition on microstructural features and mechanical properties of dissimilar joints between super duplex and austenitic stainless steels, welding was attempted by gas tungsten arc welding process with a super duplex (ER2594) and an austenitic (ER309LMo) stainless steel filler metal. While the austenitic weld metal had vermicular delta ferrite within austenitic matrix, super duplex stainless steel was mainly comprised of allotriomorphic grain boundary and Widmanstätten side plate austenite morphologies in the ferrite matrix. Also the heat-affected zone of austenitic base metal comprised of large austenite grains with little amounts of ferrite, whereas a coarse-grained ferritic region was observed in the heat-affected zone of super duplex base metal. Although both welded joints showed acceptable mechanical properties, the hardness and impact strength of the weld metal produced using super duplex filler metal were found to be better than that obtained by austenitic filler metal.
NASA Astrophysics Data System (ADS)
Qian, Kun; Zhou, Huixin; Rong, Shenghui; Wang, Bingjian; Cheng, Kuanhong
2017-05-01
Infrared small target tracking plays an important role in applications including military reconnaissance, early warning and terminal guidance. In this paper, an effective algorithm based on the Singular Value Decomposition (SVD) and the improved Kernelized Correlation Filter (KCF) is presented for infrared small target tracking. Firstly, the super performance of the SVD-based algorithm is that it takes advantage of the target's global information and obtains a background estimation of an infrared image. A dim target is enhanced by subtracting the corresponding estimated background with update from the original image. Secondly, the KCF algorithm is combined with Gaussian Curvature Filter (GCF) to eliminate the excursion problem. The GCF technology is adopted to preserve the edge and eliminate the noise of the base sample in the KCF algorithm, helping to calculate the classifier parameter for a small target. At last, the target position is estimated with a response map, which is obtained via the kernelized classifier. Experimental results demonstrate that the presented algorithm performs favorably in terms of efficiency and accuracy, compared with several state-of-the-art algorithms.
Dielectric properties of almond kernels associated with radio frequency and microwave pasteurization
NASA Astrophysics Data System (ADS)
Li, Rui; Zhang, Shuang; Kou, Xiaoxi; Ling, Bo; Wang, Shaojin
2017-02-01
To develop advanced pasteurization treatments based on radio frequency (RF) or microwave (MW) energy, dielectric properties of almond kernels were measured by using an open-ended coaxial-line probe and impedance analyzer at frequencies between 10 and 3000 MHz, moisture contents between 4.2% to 19.6% w.b. and temperatures between 20 and 90 °C. The results showed that both dielectric constant and loss factor of the almond kernels decreased sharply with increasing frequency over the RF range (10-300 MHz), but gradually over the measured MW range (300-3000 MHz). Both dielectric constant and loss factor of almond kernels increased with increasing temperature and moisture content, and largely enhanced at higher temperature and moisture levels. Quadratic polynomial equations were developed to best fit the relationship between dielectric constant or loss factor at 27, 40, 915 or 2450 MHz and sample temperature/moisture content with R2 greater than 0.967. Penetration depth of electromagnetic wave into samples decreased with increasing frequency (27-2450 MHz), moisture content (4.2-19.6% w.b.) and temperature (20-90 °C). The temperature profiles of RF heated almond kernels under three moisture levels were made using experiment and computer simulation based on measured dielectric properties. Based on the result of this study, RF treatment has potential to be practically used for pasteurization of almond kernels with acceptable heating uniformity.
Li, Rui; Zhang, Shuang; Kou, Xiaoxi; Ling, Bo; Wang, Shaojin
2017-02-10
To develop advanced pasteurization treatments based on radio frequency (RF) or microwave (MW) energy, dielectric properties of almond kernels were measured by using an open-ended coaxial-line probe and impedance analyzer at frequencies between 10 and 3000 MHz, moisture contents between 4.2% to 19.6% w.b. and temperatures between 20 and 90 °C. The results showed that both dielectric constant and loss factor of the almond kernels decreased sharply with increasing frequency over the RF range (10-300 MHz), but gradually over the measured MW range (300-3000 MHz). Both dielectric constant and loss factor of almond kernels increased with increasing temperature and moisture content, and largely enhanced at higher temperature and moisture levels. Quadratic polynomial equations were developed to best fit the relationship between dielectric constant or loss factor at 27, 40, 915 or 2450 MHz and sample temperature/moisture content with R 2 greater than 0.967. Penetration depth of electromagnetic wave into samples decreased with increasing frequency (27-2450 MHz), moisture content (4.2-19.6% w.b.) and temperature (20-90 °C). The temperature profiles of RF heated almond kernels under three moisture levels were made using experiment and computer simulation based on measured dielectric properties. Based on the result of this study, RF treatment has potential to be practically used for pasteurization of almond kernels with acceptable heating uniformity.
Photon-efficient super-resolution laser radar
NASA Astrophysics Data System (ADS)
Shin, Dongeek; Shapiro, Jeffrey H.; Goyal, Vivek K.
2017-08-01
The resolution achieved in photon-efficient active optical range imaging systems can be low due to non-idealities such as propagation through a diffuse scattering medium. We propose a constrained optimization-based frame- work to address extremes in scarcity of photons and blurring by a forward imaging kernel. We provide two algorithms for the resulting inverse problem: a greedy algorithm, inspired by sparse pursuit algorithms; and a convex optimization heuristic that incorporates image total variation regularization. We demonstrate that our framework outperforms existing deconvolution imaging techniques in terms of peak signal-to-noise ratio. Since our proposed method is able to super-resolve depth features using small numbers of photon counts, it can be useful for observing fine-scale phenomena in remote sensing through a scattering medium and through-the-skin biomedical imaging applications.
Influence of Oxides on Microstructures and Mechanical Properties of High-Strength Steel Weld Joint
NASA Astrophysics Data System (ADS)
Cai, Yangchuan; Luo, Zhen; Huang, Zunyue; Zeng, Yida
2016-11-01
A comprehensive investigation was conducted into the effect of oxides on penetrations, microstructures and mechanical properties of BS700MC super steel weld bead. Boron oxide changed the penetration of weld bead by changing the Marangoni convection in the weld pool and contracting the welding arc. Chromium oxide only changed the Marangoni convection in the weld pool to increase the penetration of super steel. Thus, the super steel weld bead has higher penetration coated with flux boron oxide than that coated with chromium oxide. In other words, the activating flux TIG (A-TIG) welding with flux boron oxide has less welding heat input than the A-TIG welding with flux chromium oxide. As a result, on the one hand, there existed more fine and homogeneous acicular ferrites in the microstructure of welding heat-affected zone when the super steel was welded by A-TIG with flux boron oxide. Thus, the weld beads have higher value of low-temperature impact toughness. On the other hand, the softening degree of welding heat-affected zone, welded by A-TIG with flux boron oxide, will be decreased for the minimum value of welding heat input.
Aflatoxin and nutrient contents of peanut collected from local market and their processed foods
NASA Astrophysics Data System (ADS)
Ginting, E.; Rahmianna, A. A.; Yusnawan, E.
2018-01-01
Peanut is succeptable to aflatoxin contamination and the sources of peanut as well as processing methods considerably affect aflatoxin content of the products. Therefore, the study on aflatoxin and nutrient contents of peanut collected from local market and their processed foods were performed. Good kernels of peanut were prepared into fried peanut, pressed-fried peanut, peanut sauce, peanut press cake, fermented peanut press cake (tempe) and fried tempe, while blended kernels (good and poor kernels) were processed into peanut sauce and tempe and poor kernels were only processed into tempe. The results showed that good and blended kernels which had high number of sound/intact kernels (82,46% and 62,09%), contained 9.8-9.9 ppb of aflatoxin B1, while slightly higher level was seen in poor kernels (12.1 ppb). However, the moisture, ash, protein, and fat contents of the kernels were similar as well as the products. Peanut tempe and fried tempe showed the highest increase in protein content, while decreased fat contents were seen in all products. The increase in aflatoxin B1 of peanut tempe prepared from poor kernels > blended kernels > good kernels. However, it averagely decreased by 61.2% after deep-fried. Excluding peanut tempe and fried tempe, aflatoxin B1 levels in all products derived from good kernels were below the permitted level (15 ppb). This suggests that sorting peanut kernels as ingredients and followed by heat processing would decrease the aflatoxin content in the products.
Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity
NASA Technical Reports Server (NTRS)
Takahashi, F.; Katta, V. R.
2001-01-01
Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.
Oskoueian, Ehsan; Abdullah, Norhani; Idrus, Zulkifli; Ebrahimi, Mahdi; Goh, Yong Meng; Shakeri, Majid; Oskoueian, Armin
2014-10-02
Palm kernel cake (PKC), the most abundant by-product of oil palm industry is believed to contain bioactive compounds with hepatoprotective potential. These compounds may serve as hepatoprotective agents which could help the poultry industry to alleviate adverse effects of heat stress on liver function in chickens. This study was performed to evaluate the hepatoprotective potential of PKC extract in heat-induced oxidative stress in chicken hepatocytes. The nature of the active metabolites and elucidation of the possible mechanism involved were also investigated. The PKC extract possessed free radical scavenging activity with values significantly (p < 0.05) lower than silymarin as the reference antioxidant. Heat-induced oxidative stress in chicken hepatocyte impaired the total protein, lipid peroxidation and antioxidant enzymes activity significantly (p < 0.05). Treatment of heat-induced hepatocytes with PKC extract (125 μg/ml) and silymarin as positive control increased these values significantly (p < 0.05). The real time PCR and western blot analyses revealed the significant (p < 0.05) up-regulation of oxidative stress biomarkers including TNF-like, IFN-γ and IL-1β genes; NF-κB, COX-2, iNOS and Hsp70 proteins expression upon heat stress in chicken hepatocytes. The PKC extract and silymarin were able to alleviate the expression of all of these biomarkers in heat-induced chicken hepatocytes. The gas chromatography-mass spectrometry analysis of PKC extract showed the presence of fatty acids, phenolic compounds, sugar derivatives and other organic compounds such as furfural which could be responsible for the observed hepatoprotective activity. Palm kernel cake extract could be a potential agent to protect hepatocytes function under heat induced oxidative stress.
Popping the Kernel Modeling the States of Matter
ERIC Educational Resources Information Center
Hitt, Austin; White, Orvil; Hanson, Debbie
2005-01-01
This article discusses how to use popcorn to engage students in model building and to teach them about the nature of matter. Popping kernels is a simple and effective method to connect the concepts of heat, motion, and volume with the different phases of matter. Before proceeding with the activity the class should discuss the nature of scientific…
NASA Astrophysics Data System (ADS)
Languirand, Eric Robert
Chemical imaging is an important tool for providing insight into function, role, and spatial distribution of analytes. This thesis describes the use of imaging fiber bundles (IFB) for super-resolution reconstruction using surface enhanced Raman scattering (SERS) showing improvement in resolution with arrayed bundles for the first time. Additionally this thesis describes characteristics of the IFB with regards to cross-talk as a function of aperture size. The first part of this thesis characterizes the IFB for both tapered and untapered bundles in terms of cross-talk. Cross-talk is defined as the amount of light leaking from a central fiber element in the imaging fiber bundle to surrounding fiber elements. To make this measurement ubiquitous for all imaging bundles, quantum dots were employed. Untapered and tapered IFB possess cross-talk of 2% or less, with fiber elements down to 32nm. The second part of this thesis employs a super resolution reconstruction algorithm using projection onto convex sets for resolution improvement. When using IFB arrays, the point spread function (PSF) of the array can be known accurately if the fiber elements over fill the pixel detector array. Therefore, the use of the known PSF compared to a general blurring kernel was evaluated. Relative increases in resolution of 12% and 2% at the 95% confidence level are found, when compared to a reference image, for the general blurring kernel and PSF, respectively. The third part of this thesis shows for the first time the use of SERS with a dithered IFB array coupled with super-resolution reconstruction. The resolution improvement across a step-edge is shown to be approximately 20% when compared to a reference image. This provides an additional means of increasing the resolution of fiber bundles beyond that of just tapering. Furthermore, this provides a new avenue for nanoscale imaging using these bundles. Lastly, synthetic data with varying degrees of signal-to-noise (S/N) were employed to explore the relationship S/N has with the reconstruction process. It is generally shown that increasing the number images used in the reconstruction process and increasing the S/N will improve the reconstruction providing larger increases in resolution.
Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions
NASA Astrophysics Data System (ADS)
Factor, Samuel M.; Kraus, Adam L.
2017-01-01
Direct detection of close in companions (exoplanets or binary systems) is notoriously difficult. While coronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast. Non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, though the mask discards ˜95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM to a diffraction limited image utilizing the full aperture. Instead of non-redundant closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I have developed my own faint companion detection pipeline which utilizes an Bayesian analysis of kernel-phases. I have used this pipeline to search for new companions in archival images from HST/NICMOS in order to constrain planet and binary formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical λ/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. This technique can easily be applied to archival data as no mask is needed and will thus make the detection of close in companions cheap and simple as no additional observations are needed. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time.
Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions
NASA Astrophysics Data System (ADS)
Factor, Samuel
2016-10-01
Direct detection of close in companions (binary systems or exoplanets) is notoriously difficult. While chronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast. While non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, the mask discards 95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM though utilizing the full aperture. Instead of closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I propose to develop my own faint companion detection pipeline which utilizes an MCMC analysis of kernel-phases. I will search for new companions in archival images from NIC1 and ACS/HRC in order to constrain binary and planet formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical l/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. This technique can easily be applied to archival data as no mask is needed and will thus make the detection of close in companions cheap and simple as no additional observations are needed. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time.
Scaling and Thermal Evolution of Internally Heated Planets: Yield Stress and Thermal History.
NASA Astrophysics Data System (ADS)
Weller, M. B.; Lenardic, A.; Moore, W. B.
2014-12-01
Using coupled 3D mantle convection and planetary tectonics models of bi-stable systems, we show how system behaviors for mobile-lid and stagnant-lid states scale as functions of internal heating rates (Q) and basal Ra (Rab). With parameter ranges for temperature- and depth-dependant viscosities: 1e4 - 3e4, Rab: 1e5- 3e5, Q: 0 - 100, and yield stress: 1e4 - 2e5, it can be shown the internal temperatures, velocities, heat fluxes, and system behaviors for mobile-lid and stagnant-lid states diverge, for equivalent parameter values, as a function of increasing Q. For the mobile-lid regime, yielding behavior in the upper boundary layer strongly influences the dynamics of the system. Internal temperatures, and consequently temperature-dependant viscosities, vary strongly as a function of yield stress for a given Q. The temperature distribution across the upper and lower mantles are sub-adiabatic for low to moderate yield stress, and adiabatic to super-adiabatic for high yield stresses. Across the parameter range considered, and for fixed yield stress, the Nu across the basal boundary (Nub) is positive and only weakly dependant on Q (varies by ~ 9%). Nub varies strongly as a function of yield stress (maximum variation of ~84%). Both mobile-lid velocities and lid-thicknesses are yield stress dependant for a given Q and Ra. In contrast to mobile-lids, the stagnant-lid regime is governed by the relative inefficiency of heat transport through the surface boundary layer. Internal temperatures are yield stress independent, and are on average 30% greater. Nub has a strong dependence on heating rates and surface boundary layer thicknesses. Within the parameter space considered, the maximum stagnant-lid Nub corresponds to the minimum mobile-lid Nub (for high yield stress), and decreases with increasing Q. For high Q, super-heated stagnant-lids may develop, with Nub< 0, and changes in trends for system behaviors. Planets with high levels of internal heating and/or high yield stresses (e.g. Super-Earths), may favor super-heated stagnant-lids early in their evolution. These regimes indicate reduced heat transport efficiencies (from the nominal stagnant-lid), and as a result, increasing heat flux into the core with increasing Q. Implications for terrestrial and Super-Earth planetary evolution will be discussed.
Increasing the Size of Microwave Popcorn
NASA Astrophysics Data System (ADS)
Smoyer, Justin
2005-03-01
Each year Americans consume approximately 17 billion quarts of popcorn. Since the 1940s, microwaves have been the heating source of choice for most. By treating the popcorn mechanism as a thermodynamic system, it has been shown mathematically and experimentally that reducing the surrounding pressure of the unpopped kernels, results in an increased volume of the kernels [Quinn et al, http://xxx.lanl.gov/abs/cond-mat/0409434 v1 2004]. In this project an alternate method of popping with the microwave was used to further test and confirm this hypothesis. Numerous experimental trials where run to test the validity of the theory. The results show that there is a significant increase in the average kernel size as well as a reduction in the number of unpopped kernels.
Heat kernel and Weyl anomaly of Schrödinger invariant theory
NASA Astrophysics Data System (ADS)
Pal, Sridip; Grinstein, Benjamín
2017-12-01
We propose a method inspired by discrete light cone quantization to determine the heat kernel for a Schrödinger field theory (Galilean boost invariant with z =2 anisotropic scaling symmetry) living in d +1 dimensions, coupled to a curved Newton-Cartan background, starting from a heat kernel of a relativistic conformal field theory (z =1 ) living in d +2 dimensions. We use this method to show that the Schrödinger field theory of a complex scalar field cannot have any Weyl anomalies. To be precise, we show that the Weyl anomaly Ad+1 G for Schrödinger theory is related to the Weyl anomaly of a free relativistic scalar CFT Ad+2 R via Ad+1 G=2 π δ (m )Ad+2 R , where m is the charge of the scalar field under particle number symmetry. We provide further evidence of the vanishing anomaly by evaluating Feynman diagrams in all orders of perturbation theory. We present an explicit calculation of the anomaly using a regulated Schrödinger operator, without using the null cone reduction technique. We generalize our method to show that a similar result holds for theories with a single time-derivative and with even z >2 .
Graphene-like carbon synthesized from popcorn flakes
NASA Astrophysics Data System (ADS)
Mendoza, D.; Flores, C. B.; Berrú, R. Y. Sato
2015-01-01
The synthesis of graphene-like carbon using popcorn kernels as a renewable resource is presented. In a first step popcorn kernels were heated to produce popcorn flakes with a spongy appearance consisting of a polygonal cellular structure. In a second step, the flakes were treated at high temperature in an inert atmosphere to produce carbonization. Raman spectroscopy shows graphene-like structure with a high degree of disorder.
Kim, Kwan-Woo; Lee, Hye-Min; An, Jeong-Hun; Chung, Dong-Chul; An, Kay-Hyeok; Kim, Byung-Joo
2017-12-01
In order to manufacture high quality recycled carbon fibers (R-CFs), carbon fiber-reinforced composite wastes were pyrolysed with super-heated steam at 550 °C in a fixed bed reactor for varying reaction times. The mechanical and surface properties of the R-CFs were characterized with a single fiber tensile test, interface shear strength (IFSS), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The surface analysis showed that there was no matrix char residue on the fiber surfaces. The tensile strength and IFSS values of the R-CFs were 90% and 115% compared to those of virgin carbon fibers (V-CFs), respectively. The recycling efficiency of the R-CFs from the composites were strongly dependent on the pyrolysis temperature, reaction time, and super-heated steam feeding rate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions
NASA Astrophysics Data System (ADS)
Factor, Samuel M.; Kraus, Adam L.
2017-06-01
Direct detection of close in companions (exoplanets or binary systems) is notoriously difficult. While coronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast near λ/D. Non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, though the mask discards ˜ 95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM to a diffraction limited image utilizing the full aperture. Instead of non-redundant closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I have developed a new, easy to use, faint companion detection pipeline which analyzes kernel-phases utilizing Bayesian model comparison. I demonstrate this pipeline on archival images from HST/NICMOS, searching for new companions in order to constrain binary formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical λ/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time. As no mask is needed, this technique can easily be applied to archival data and even target acquisition images (e.g. from JWST), making the detection of close in companions cheap and simple as no additional observations are needed.
NASA Astrophysics Data System (ADS)
Lindemer, T. B.; Voit, S. L.; Silva, C. M.; Besmann, T. M.; Hunt, R. D.
2014-05-01
The US Department of Energy is developing a new nuclear fuel that would be less susceptible to ruptures during a loss-of-coolant accident. The fuel would consist of tristructural isotropic coated particles with uranium nitride (UN) kernels with diameters near 825 μm. This effort explores factors involved in the conversion of uranium oxide-carbon microspheres into UN kernels. An analysis of previous studies with sufficient experimental details is provided. Thermodynamic calculations were made to predict pressures of carbon monoxide and other relevant gases for several reactions that can be involved in the conversion of uranium oxides and carbides into UN. Uranium oxide-carbon microspheres were heated in a microbalance with an attached mass spectrometer to determine details of calcining and carbothermic conversion in argon, nitrogen, and vacuum. A model was derived from experiments on the vacuum conversion to uranium oxide-carbide kernels. UN-containing kernels were fabricated using this vacuum conversion as part of the overall process. Carbonitride kernels of ∼89% of theoretical density were produced along with several observations concerning the different stages of the process.
Barwart, O; Rollinger, J M; Burger, A
1999-10-01
Differential scanning calorimetry (DSC) was used to determine the transition temperature ranges (TTR) of four types of super-elastic orthodontic nickel-titanium coil springs (Sentalloy). A knowledge of the TTR provides information on the temperature at which a NiTi wire or spring can assume superelastic properties and when this quality disappears. The spring types in this study can be distinguished from each other by their characteristic TTR during cooling and heating. For each tested spring type a characteristic TTR during heating (austenite transformation) and cooling (martensite transformation) was evaluated. The hysteresis of the transition temperature, found between cooling and heating, was 3.4-5.2 K. Depending on the spring type the austenite transformation started (As) at 9.7-17.1 degrees C and finished (Af) at 29.2-37 degrees C. The martensite transformation starting temperature (Ms) was evaluated at 32.6-25.4 degrees C, while Mf (martensite transformation finishing temperature) was 12.7-6.5 degrees C. The results show that the springs become super-elastic when the temperature increases and As is reached. They undergo a loss of super-elastic properties and a rapid decrease in force delivery when they are cooled to Mf. For the tested springs, Mf and As were found to be below room temperature. Thus, at room temperature and some degrees lower, all the tested springs exert super-elastic properties. For orthodontic treatment this means the maintenance of super-elastic behaviour, even when mouth temperature decreases to about room temperature as can occur, for example, during meals.
Heat damage and in vitro starch digestibility of puffed wheat kernels.
Cattaneo, Stefano; Hidalgo, Alyssa; Masotti, Fabio; Stuknytė, Milda; Brandolini, Andrea; De Noni, Ivano
2015-12-01
The effect of processing conditions on heat damage, starch digestibility, release of advanced glycation end products (AGEs) and antioxidant capacity of puffed cereals was studied. The determination of several markers arising from Maillard reaction proved pyrraline (PYR) and hydroxymethylfurfural (HMF) as the most reliable indices of heat load applied during puffing. The considerable heat load was evidenced by the high levels of both PYR (57.6-153.4 mg kg(-1) dry matter) and HMF (13-51.2 mg kg(-1) dry matter). For cost and simplicity, HMF looked like the most appropriate index in puffed cereals. Puffing influenced starch in vitro digestibility, being most of the starch (81-93%) hydrolyzed to maltotriose, maltose and glucose whereas only limited amounts of AGEs were released. The relevant antioxidant capacity revealed by digested puffed kernels can be ascribed to both the new formed Maillard reaction products and the conditions adopted during in vitro digestion. Copyright © 2015 Elsevier Ltd. All rights reserved.
On- and off-axis spectral emission features from laser-produced gas breakdown plasmas
NASA Astrophysics Data System (ADS)
Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.; Brumfield, B. E.; Phillips, M. C.; Miloshevsky, G.
2017-06-01
Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during their early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of the surrounding ambient: photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early times of their creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with a pulse duration of 6 ns are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density, and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times, while space and time resolved spectroscopy is used for evaluating the emission features and for inferring plasma physical conditions at on- and off-axis positions. The structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using the computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms, and molecules are separated in time with early time temperatures and densities in excess of 35 000 K and 4 × 1018/cm3 with an existence of thermal equilibrium. However, the emission from the off-kernel positions from the breakdown plasmas showed enhanced ultraviolet radiation with the presence of N2 bands and is represented by non-local thermodynamic equilibrium (non-LTE) conditions. Our results also highlight that the ultraviolet radiation emitted during the early time of spark evolution is the predominant source of the photo-excitation of the surrounding medium.
On- and off-axis spectral emission features from laser-produced gas breakdown plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.
Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during its early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of surrounding ambient: viz. photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early timesmore » of its creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission features of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with 6 ns pulse duration are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times while space and time resolved spectroscopy is used for evaluating the emission features as well as for inferring plasma fundaments at on- and off-axis. Structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms and molecules are separated in time with an early time temperatures and densities in excess of 35000 K and 4×10 18 /cm 3 with an existence of thermal equilibrium. However, the emission from the off-kernel positions from the breakdown plasmas showed enhanced ultraviolet radiation with the presence of N 2 bands and represented by non-LTE conditions. Finally, our results also highlight that the ultraviolet radiation emitted during early time of spark evolution is the predominant source of the photo-excitation of the surrounding medium.« less
On- and off-axis spectral emission features from laser-produced gas breakdown plasmas
Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.; ...
2017-06-01
Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during its early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of surrounding ambient: viz. photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early timesmore » of its creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission features of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with 6 ns pulse duration are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times while space and time resolved spectroscopy is used for evaluating the emission features as well as for inferring plasma fundaments at on- and off-axis. Structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms and molecules are separated in time with an early time temperatures and densities in excess of 35000 K and 4×1018 /cm3 with an existence of thermal equilibrium. However, the emission from the off-kernel positions from the breakdown plasmas showed enhanced ultraviolet radiation with the presence of N2 bands and represented by non-LTE conditions. Our results also highlight that the ultraviolet radiation emitted during early time of spark evolution is the predominant source of the photo-excitation of the surrounding medium.« less
Many Molecular Properties from One Kernel in Chemical Space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole
We introduce property-independent kernels for machine learning modeling of arbitrarily many molecular properties. The kernels encode molecular structures for training sets of varying size, as well as similarity measures sufficiently diffuse in chemical space to sample over all training molecules. Corresponding molecular reference properties provided, they enable the instantaneous generation of ML models which can systematically be improved through the addition of more data. This idea is exemplified for single kernel based modeling of internal energy, enthalpy, free energy, heat capacity, polarizability, electronic spread, zero-point vibrational energy, energies of frontier orbitals, HOMOLUMO gap, and the highest fundamental vibrational wavenumber. Modelsmore » of these properties are trained and tested using 112 kilo organic molecules of similar size. Resulting models are discussed as well as the kernels’ use for generating and using other property models.« less
NASA Astrophysics Data System (ADS)
Abdulhameed, M.; Vieru, D.; Roslan, R.
2017-10-01
This paper investigates the electro-magneto-hydrodynamic flow of the non-Newtonian behavior of biofluids, with heat transfer, through a cylindrical microchannel. The fluid is acted by an arbitrary time-dependent pressure gradient, an external electric field and an external magnetic field. The governing equations are considered as fractional partial differential equations based on the Caputo-Fabrizio time-fractional derivatives without singular kernel. The usefulness of fractional calculus to study fluid flows or heat and mass transfer phenomena was proven. Several experimental measurements led to conclusion that, in such problems, the models described by fractional differential equations are more suitable. The most common time-fractional derivative used in Continuum Mechanics is Caputo derivative. However, two disadvantages appear when this derivative is used. First, the definition kernel is a singular function and, secondly, the analytical expressions of the problem solutions are expressed by generalized functions (Mittag-Leffler, Lorenzo-Hartley, Robotnov, etc.) which, generally, are not adequate to numerical calculations. The new time-fractional derivative Caputo-Fabrizio, without singular kernel, is more suitable to solve various theoretical and practical problems which involve fractional differential equations. Using the Caputo-Fabrizio derivative, calculations are simpler and, the obtained solutions are expressed by elementary functions. Analytical solutions of the biofluid velocity and thermal transport are obtained by means of the Laplace and finite Hankel transforms. The influence of the fractional parameter, Eckert number and Joule heating parameter on the biofluid velocity and thermal transport are numerically analyzed and graphic presented. This fact can be an important in Biochip technology, thus making it possible to use this analysis technique extremely effective to control bioliquid samples of nanovolumes in microfluidic devices used for biological analysis and medical diagnosis.
Boundary conditions for gas flow problems from anisotropic scattering kernels
NASA Astrophysics Data System (ADS)
To, Quy-Dong; Vu, Van-Huyen; Lauriat, Guy; Léonard, Céline
2015-10-01
The paper presents an interface model for gas flowing through a channel constituted of anisotropic wall surfaces. Using anisotropic scattering kernels and Chapman Enskog phase density, the boundary conditions (BCs) for velocity, temperature, and discontinuities including velocity slip and temperature jump at the wall are obtained. Two scattering kernels, Dadzie and Méolans (DM) kernel, and generalized anisotropic Cercignani-Lampis (ACL) are examined in the present paper, yielding simple BCs at the wall fluid interface. With these two kernels, we rigorously recover the analytical expression for orientation dependent slip shown in our previous works [Pham et al., Phys. Rev. E 86, 051201 (2012) and To et al., J. Heat Transfer 137, 091002 (2015)] which is in good agreement with molecular dynamics simulation results. More important, our models include both thermal transpiration effect and new equations for the temperature jump. While the same expression depending on the two tangential accommodation coefficients is obtained for slip velocity, the DM and ACL temperature equations are significantly different. The derived BC equations associated with these two kernels are of interest for the gas simulations since they are able to capture the direction dependent slip behavior of anisotropic interfaces.
NASA Astrophysics Data System (ADS)
Christe, Steven; Inglis, A.; Aschwanden, M.; Dennis, B.
2011-05-01
On 2010 October 16th SDO/AIA observed its first flare using automatic exposure control. Coincidentally, this flare also exhibited a large number of interesting features. Firstly, a large ribbon significantly to the solar west of the flare kernel was ignited and was visible in all AIA wavelengths, posing the question as to how this energy was deposited and how it relates to the main flare site. A faint blast wave also emanates from the flare kernel, visible in AIA and observed traveling to the solar west at an estimated speed of 1000 km/s. This blast wave is associated with a weak white-light CME observed with STEREO B and a Type II radio burst observed from Green Bank Observatory (GBSRBS). One possibility is that this blast wave is responsible for the heating of the ribbon. However, closer scrutiny reveals that the flare site and the ribbon are in fact connected magnetically via coronal loops which are heated during the main energy release. These loops are distinct from the expected hot, post-flare loops present within the main flare kernel. RHESSI spectra indicate that these loops are heated to approximately 10 MK in the immediate flare aftermath. Using the multi-temperature capabilities of AIA in combination with RHESSI, and by employing the cross-correlation mapping technique, we are able to measure the loop temperatures as a function of time over several post-flare hours and hence measure the loop cooling rate. We find that the time delay between the appearance of loops in the hottest channel, 131 A, and the cool 171 A channel, is 70 minutes. Yet the causality of this event remains unclear. Is the ribbon heated via these interconnected loops or via a blast wave?
NASA Astrophysics Data System (ADS)
Suttle, L. G.; Hare, J. D.; Lebedev, S. V.; Ciardi, A.; Loureiro, N. F.; Burdiak, G. C.; Chittenden, J. P.; Clayson, T.; Halliday, J. W. D.; Niasse, N.; Russell, D.; Suzuki-Vidal, F.; Tubman, E.; Lane, T.; Ma, J.; Robinson, T.; Smith, R. A.; Stuart, N.
2018-04-01
This work presents a magnetic reconnection experiment in which the kinetic, magnetic, and thermal properties of the plasma each play an important role in the overall energy balance and structure of the generated reconnection layer. Magnetic reconnection occurs during the interaction of continuous and steady flows of super-Alfvénic, magnetized, aluminum plasma, which collide in a geometry with two-dimensional symmetry, producing a stable and long-lasting reconnection layer. Optical Thomson scattering measurements show that when the layer forms, ions inside the layer are more strongly heated than electrons, reaching temperatures of Ti˜Z ¯ Te≳300 eV—much greater than can be expected from strong shock and viscous heating alone. Later in time, as the plasma density in the layer increases, the electron and ion temperatures are found to equilibrate, and a constant plasma temperature is achieved through a balance of the heating mechanisms and radiative losses of the plasma. Measurements from Faraday rotation polarimetry also indicate the presence of significant magnetic field pile-up occurring at the boundary of the reconnection region, which is consistent with the super-Alfvénic velocity of the inflows.
NASA Astrophysics Data System (ADS)
Zhao, Bin
2015-02-01
Temperature-pressure coupled field analysis of liquefied petroleum gas (LPG) tank under jet fire can offer theoretical guidance for preventing the fire accidents of LPG tank, the application of super wavelet finite element on it is studied in depth. First, review of related researches on heat transfer analysis of LPG tank under fire and super wavelet are carried out. Second, basic theory of super wavelet transform is studied. Third, the temperature-pressure coupled model of gas phase and liquid LPG under jet fire is established based on the equation of state, the VOF model and the RNG k-ɛ model. Then the super wavelet finite element formulation is constructed using the super wavelet scale function as interpolating function. Finally, the simulation is carried out, and results show that the super wavelet finite element method has higher computing precision than wavelet finite element method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kidon, Lyran; The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978; Wilner, Eli Y.
2015-12-21
The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima–Zwanzig–Mori time-convolution (TC) and the other on the Tokuyama–Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called “memory kernel” or “generator,” going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operatormore » in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green’s function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.« less
On the heat trace of Schroedinger operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banuelos, R.; Sa Barreto, A.
1995-12-31
Trace formulae for heat kernels of Schroedinger operators have been widely studied in connection with spectral and scattering theory. They have been used to obtain information about a potential from its spectrum, or from its scattering data, and vice-versa. Using elementary Fourier transform methods we obtain a formula for the general coefficient in the asymptotic expansion of the trace of the heat kernel of the Schroedinger operator {minus}{Delta} + V, as t {down_arrow} 0, with V {element_of} S(R{sup n}), the class of functions with rapid decay at infinity. In dimension n = 1 a recurrent formula for the general coefficientmore » in the expansion is obtained in [6]. However the KdV methods used there do not seem to generalize to higher dimension. Using the formula of [6] and the symmetry of some integrals, Y. Colin de Verdiere has computed the first four coefficients for potentials in three space dimensions. Also in [1] a different method is used to compute heat coefficients for differential operators on manifolds. 14 refs.« less
PERI - Auto-tuning Memory Intensive Kernels for Multicore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, David H; Williams, Samuel; Datta, Kaushik
2008-06-24
We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to Sparse Matrix Vector Multiplication (SpMV), the explicit heat equation PDE on a regular grid (Stencil), and a lattice Boltzmann application (LBMHD). We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Xeon Clovertown, AMD Opteron Barcelona, Sun Victoria Falls, and the Sony-Toshiba-IBM (STI) Cell. Rather than hand-tuning each kernel for each system, we developmore » a code generator for each kernel that allows us to identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned kernel applications often achieve a better than 4X improvement compared with the original code. Additionally, we analyze a Roofline performance model for each platform to reveal hardware bottlenecks and software challenges for future multicore systems and applications.« less
Famurewa, Ademola C; Nwankwo, Onyebuchi E; Folawiyo, Abiola M; Igwe, Emeka C; Epete, Michael A; Ufebe, Odomero G
2017-01-01
The literature reports that the health benefits of vegetable oil can be deteriorated by repeated heating, which leads to lipid oxidation and the formation of free radicals. Virgin coconut oil (VCO) is emerging as a functional food oil and its health benefits are attributed to its potent polyphenolic compounds. We investigated the beneficial effect of VCO supplementation on lipid profile, liver and kidney markers in rats fed repeatedly heated palm kernel oil (HPO). Rats were divided into four groups (n = 5). The control group rats were fed with a normal diet; group 2 rats were fed a 10% VCO supplemented diet; group 3 administered 10 ml HPO/kg b.w. orally; group 4 were fed 10% VCO + 10 ml HPO/kg for 28 days. Subsequently, serum markers of liver damage (ALT, AST, ALP and albumin), kidney damage (urea, creatinine and uric acid), lipid profile and lipid ratios as cardiovascular risk indices were evaluated. HPO induced a significant increase in serum markers of liver and kidney damage as well as con- comitant lipid abnormalities and a marked reduction in serum HDL-C. The lipid ratios evaluated for atherogenic and coronary risk indices in rats administered HPO only were remarkably higher than control. It was observed that VCO supplementation attenuated the biochemical alterations, including the indices of cardiovascular risks. VCO supplementation demonstrates beneficial health effects against HPO-induced biochemical alterations in rats. VCO may serve to modulate the adverse effects associated with consumption of repeatedly heated palm kernel oil.
Bazargan, Alireza; Rough, Sarah L; McKay, Gordon
2018-04-01
Palm kernel shell biochars (PKSB) ejected as residues from a gasifier have been used for solid fuel briquette production. With this approach, palm kernel shells can be used for energy production twice: first, by producing rich syngas during gasification; second, by compacting the leftover residues from gasification into high calorific value briquettes. Herein, the process parameters for the manufacture of PKSB biomass briquettes via compaction are optimized. Two possible optimum process scenarios are considered. In the first, the compaction speed is increased from 0.5 to 10 mm/s, the compaction pressure is decreased from 80 Pa to 40 MPa, the retention time is reduced from 10 s to zero, and the starch binder content of the briquette is halved from 0.1 to 0.05 kg/kg. With these adjustments, the briquette production rate increases by more than 20-fold; hence capital and operational costs can be reduced and the service life of compaction equipment can be increased. The resulting product satisfactorily passes tensile (compressive) crushing strength and impact resistance tests. The second scenario involves reducing the starch weight content to 0.03 kg/kg, while reducing the compaction pressure to a value no lower than 60 MPa. Overall, in both cases, the PKSB biomass briquettes show excellent potential as a solid fuel with calorific values on par with good-quality coal. CHNS: carbon, hydrogen, nitrogen, sulfur; FFB: fresh fruit bunch(es); HHV: higher heating value [J/kg]; LHV: lower heating value [J/kg]; PKS: palm kernel shell(s); PKSB: palm kernel shell biochar(s); POME: palm oil mill effluent; RDF: refuse-derived fuel; TGA: thermogravimetric analysis.
A Experimental Study of the Growth of Laser Spark and Electric Spark Ignited Flame Kernels.
NASA Astrophysics Data System (ADS)
Ho, Chi Ming
1995-01-01
Better ignition sources are constantly in demand for enhancing the spark ignition in practical applications such as automotive and liquid rocket engines. In response to this practical challenge, the present experimental study was conducted with the major objective to obtain a better understanding on how spark formation and hence spark characteristics affect the flame kernel growth. Two laser sparks and one electric spark were studied in air, propane-air, propane -air-nitrogen, methane-air, and methane-oxygen mixtures that were initially at ambient pressure and temperature. The growth of the kernels was monitored by imaging the kernels with shadowgraph systems, and by imaging the planar laser -induced fluorescence of the hydroxyl radicals inside the kernels. Characteristic dimensions and kernel structures were obtained from these images. Since different energy transfer mechanisms are involved in the formation of a laser spark as compared to that of an electric spark; a laser spark is insensitive to changes in mixture ratio and mixture type, while an electric spark is sensitive to changes in both. The detailed structures of the kernels in air and propane-air mixtures primarily depend on the spark characteristics. But the combustion heat released rapidly in methane-oxygen mixtures significantly modifies the kernel structure. Uneven spark energy distribution causes remarkably asymmetric kernel structure. The breakdown energy of a spark creates a blast wave that shows good agreement with the numerical point blast solution, and a succeeding complex spark-induced flow that agrees reasonably well with a simple puff model. The transient growth rates of the propane-air, propane-air -nitrogen, and methane-air flame kernels can be interpreted in terms of spark effects, flame stretch, and preferential diffusion. For a given mixture, a spark with higher breakdown energy produces a greater and longer-lasting enhancing effect on the kernel growth rate. By comparing the growth rates of the appropriate mixtures, the positive and negative effects of preferential diffusion and flame stretch on the developing flame are clearly demonstrated.
NASA Astrophysics Data System (ADS)
Yamazaki, Masafumi; Sumino, Yutaka; Morita, Katsuaki
2017-11-01
In the aviation industry, ice accretion on the airfoil has been a hazardous issue since it greatly declines the aerodynamic performance. Electric heaters and bleed air, which utilizes a part of gas emissions from engines, are used to prevent the icing. Nowadays, a new de-icing system combining electric heaters and super hydrophobic coatings have been developed to reduce the energy consumption. In the system, the heating temperature and the coating area need to be adjusted. Otherwise, the heater excessively consumes energy when it is set too high and when the coating area is not properly located, water droplets which are once dissolved possibly adhere again to the rear part of the airfoil as runback ice In order to deal with these problems, the physical phenomena of water droplets on the hydrophobic surface demand to be figured out. However, not many investigations focused on the behavior of droplets under the icing condition have been conducted. In this research, the temperature profiling of the rolling droplet on a heated super-hydrophobic surface is experimentally observed by the dual luminescent imaging.
Excitation of Alfvén modes by energetic particles in magnetic fusion
NASA Astrophysics Data System (ADS)
Gorelenkov, N. N.
2012-09-01
Ions with energies above the plasma ion temperature (also called super thermal, hot or energetic particles - EP) are utilized in laboratory experiments as a plasma heat source to compensate for energy loss. Sources for super thermal ions are direct injection via neutral beams, RF heating and fusion reactions. Being super thermal, ions have the potential to induce instabilities of a certain class of magnetohydrodynamics (MHD) cavity modes, in particular, various Alfvén and Alfvénacoustic Eigenmodes. It is an area where ideal MHD and kinetic theories can be tested with great accuracy. This paper touches upon key motivations to study the energetic ion interactions with MHD modes. One is the possibility of controlling the heating channel of present and future tokamak reactors via EP transport. In some extreme circumstances, uncontrolled instabilities led to vessel wall damages. This paper reviews some experimental and theoretical advances and the developments of the predictive tools in the area of EP wave interactions. Some recent important results and challenges are discussed. Many predicted instabilities pose a challenge for ITER, where the alpha-particle population is likely to excite various modes.
Flat-top beam for laser-stimulated pain
NASA Astrophysics Data System (ADS)
McCaughey, Ryan; Nadeau, Valerie; Dickinson, Mark
2005-04-01
One of the main problems during laser stimulation in human pain research is the risk of tissue damage caused by excessive heating of the skin. This risk has been reduced by using a laser beam with a flattop (or superGaussian) intensity profile, instead of the conventional Gaussian beam. A finite difference approximation to the heat conduction equation has been applied to model the temperature distribution in skin as a result of irradiation by flattop and Gaussian profile CO2 laser beams. The model predicts that a 15 mm diameter, 15 W, 100 ms CO2 laser pulse with an order 6 superGaussian profile produces a maximum temperature 6 oC less than a Gaussian beam with the same energy density. A superGaussian profile was created by passing a Gaussian beam through a pair of zinc selenide aspheric lenses which refract the more intense central region of the beam towards the less intense periphery. The profiles of the lenses were determined by geometrical optics. In human pain trials the superGaussian beam required more power than the Gaussian beam to reach sensory and pain thresholds.
Super Normal Vector for Human Activity Recognition with Depth Cameras.
Yang, Xiaodong; Tian, YingLi
2017-05-01
The advent of cost-effectiveness and easy-operation depth cameras has facilitated a variety of visual recognition tasks including human activity recognition. This paper presents a novel framework for recognizing human activities from video sequences captured by depth cameras. We extend the surface normal to polynormal by assembling local neighboring hypersurface normals from a depth sequence to jointly characterize local motion and shape information. We then propose a general scheme of super normal vector (SNV) to aggregate the low-level polynormals into a discriminative representation, which can be viewed as a simplified version of the Fisher kernel representation. In order to globally capture the spatial layout and temporal order, an adaptive spatio-temporal pyramid is introduced to subdivide a depth video into a set of space-time cells. In the extensive experiments, the proposed approach achieves superior performance to the state-of-the-art methods on the four public benchmark datasets, i.e., MSRAction3D, MSRDailyActivity3D, MSRGesture3D, and MSRActionPairs3D.
NASA Astrophysics Data System (ADS)
Alavi Fazel, S. Ali
2017-09-01
A new optimized model which can predict the heat transfer in the nucleate boiling at isolated bubble regime is proposed for pool boiling on a horizontal rod heater. This model is developed based on the results of direct observations of the physical boiling phenomena. Boiling heat flux, wall temperature, bubble departing diameter, bubble generation frequency and bubble nucleation site density have been experimentally measured. Water and ethanol have been used as two different boiling fluids. Heating surface was made by several metals and various degrees of roughness. The mentioned model considers various mechanisms such as latent heat transfer due to micro-layer evaporation, transient conduction due to thermal boundary layer reformation, natural convection, heat transfer due to the sliding bubbles and bubble super-heating. The fractional contributions of individual mentioned heat transfer mechanisms have been calculated by genetic algorithm. The results show that at wall temperature difference more that about 3 K, bubble sliding transient conduction, non-sliding transient conduction, micro-layer evaporation, natural convection, radial forced convection and bubble super-heating have higher to lower fractional contributions respectively. The performance of the new optimized model has been verified by comparison of the existing experimental data.
Super-Joule heating in graphene and silver nanowire network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maize, Kerry; Das, Suprem R.; Sadeque, Sajia
Transistors, sensors, and transparent conductors based on randomly assembled nanowire networks rely on multi-component percolation for unique and distinctive applications in flexible electronics, biochemical sensing, and solar cells. While conduction models for 1-D and 1-D/2-D networks have been developed, typically assuming linear electronic transport and self-heating, the model has not been validated by direct high-resolution characterization of coupled electronic pathways and thermal response. In this letter, we show the occurrence of nonlinear “super-Joule” self-heating at the transport bottlenecks in networks of silver nanowires and silver nanowire/single layer graphene hybrid using high resolution thermoreflectance (TR) imaging. TR images at the microscopicmore » self-heating hotspots within nanowire network and nanowire/graphene hybrid network devices with submicron spatial resolution are used to infer electrical current pathways. The results encourage a fundamental reevaluation of transport models for network-based percolating conductors.« less
Black hole thermodynamics and heat engines in conformal gravity
NASA Astrophysics Data System (ADS)
Xu, Hao; Sun, Yuan; Zhao, Liu
The extended phase-space thermodynamics and heat engines for static spherically symmetric black hole solutions of four-dimensional conformal gravity are studied in detail. It is argued that the equation of states (EOS) for such black holes is always branched, any continuous thermodynamical process cannot drive the system from one branch of the EOS into another branch. Meanwhile, the thermodynamical volume is bounded from above, making the black holes always super-entropic in one branch and may also be super-entropic in another branch in certain range of the temperature. The Carnot and Stirling heat engines associated to such black holes are shown to be distinct from each other. For rectangular heat engines, the efficiency always approaches zero when the rectangle becomes extremely narrow, and given the highest and lowest working temperatures fixed, there is always a maximum for the efficiency of such engines.
Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liss, William E; Cygan, David F
2013-04-17
Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system the Super Boiler for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on naturalmore » gas with <5 ppmv NOx (referenced to 3%O2), and 50% smaller than conventional boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently up to 50% smaller in footprint, has a smaller diameter, and is up to 50% lower in weight, resulting in very compact design with reduced material cost and labor costs, while requiring less boiler room floor space. For enhanced energy efficiency, the heat recovery system uses a transport membrane condenser (TMC), a humidifying air heater (HAH), and a split-stage economizer to extract maximum energy from the flue gas. The TMC is a new innovation that pulls a major portion of water vapor produced by the combustion process from the flue gases along with its sensible and latent heat. This results in nearly 100% transfer of heat to the boiler feed water. The HAH improves the effectiveness of the TMC, particularly in steam systems that do not have a large amount of cold makeup water. In addition, the HAH humidifies the combustion air to reduce NOx formation. The split-stage economizer preheats boiler feed water in the same way as a conventional economizer, but extracts more heat by working in tandem with the TMC and HAH to reduce flue gas temperature. These components are designed to work synergistically to achieve energy efficiencies of 92-94% which is 10-15% higher than today's typical firetube boilers.« less
Wang, Gang; Wang, Yalin
2017-02-15
In this paper, we propose a heat kernel based regional shape descriptor that may be capable of better exploiting volumetric morphological information than other available methods, thereby improving statistical power on brain magnetic resonance imaging (MRI) analysis. The mechanism of our analysis is driven by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed tetrahedral meshes. In order to capture profound brain grey matter shape changes, we first use the volumetric Laplace-Beltrami operator to determine the point pair correspondence between white-grey matter and CSF-grey matter boundary surfaces by computing the streamlines in a tetrahedral mesh. Secondly, we propose multi-scale grey matter morphology signatures to describe the transition probability by random walk between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to reduce the dimensionality of the grey matter morphology signatures and generate the internal structure features. With the sparse linear discriminant analysis, we select a concise morphology feature set with improved classification accuracies. In our experiments, the proposed work outperformed the cortical thickness features computed by FreeSurfer software in the classification of Alzheimer's disease and its prodromal stage, i.e., mild cognitive impairment, on publicly available data from the Alzheimer's Disease Neuroimaging Initiative. The multi-scale and physics based volumetric structure feature may bring stronger statistical power than some traditional methods for MRI-based grey matter morphology analysis. Copyright © 2016 Elsevier Inc. All rights reserved.
Density-Aware Clustering Based on Aggregated Heat Kernel and Its Transformation
Huang, Hao; Yoo, Shinjae; Yu, Dantong; ...
2015-06-01
Current spectral clustering algorithms suffer from the sensitivity to existing noise, and parameter scaling, and may not be aware of different density distributions across clusters. If these problems are left untreated, the consequent clustering results cannot accurately represent true data patterns, in particular, for complex real world datasets with heterogeneous densities. This paper aims to solve these problems by proposing a diffusion-based Aggregated Heat Kernel (AHK) to improve the clustering stability, and a Local Density Affinity Transformation (LDAT) to correct the bias originating from different cluster densities. AHK statistically\\ models the heat diffusion traces along the entire time scale, somore » it ensures robustness during clustering process, while LDAT probabilistically reveals local density of each instance and suppresses the local density bias in the affinity matrix. Our proposed framework integrates these two techniques systematically. As a result, not only does it provide an advanced noise-resisting and density-aware spectral mapping to the original dataset, but also demonstrates the stability during the processing of tuning the scaling parameter (which usually controls the range of neighborhood). Furthermore, our framework works well with the majority of similarity kernels, which ensures its applicability to many types of data and problem domains. The systematic experiments on different applications show that our proposed algorithms outperform state-of-the-art clustering algorithms for the data with heterogeneous density distributions, and achieve robust clustering performance with respect to tuning the scaling parameter and handling various levels and types of noise.« less
Super-Eddington stellar winds driven by near-surface energy deposition
NASA Astrophysics Data System (ADS)
Quataert, Eliot; Fernández, Rodrigo; Kasen, Daniel; Klion, Hannah; Paxton, Bill
2016-05-01
We develop analytic and numerical models of the properties of super-Eddington stellar winds, motivated by phases in stellar evolution when super-Eddington energy deposition (via, e.g. unstable fusion, wave heating, or a binary companion) heats a region near the stellar surface. This appears to occur in the giant eruptions of luminous blue variables (LBVs), Type IIn supernovae progenitors, classical novae, and X-ray bursts. We show that when the wind kinetic power exceeds Eddington, the photons are trapped and behave like a fluid. Convection does not play a significant role in the wind energy transport. The wind properties depend on the ratio of a characteristic speed in the problem v_crit˜ (dot{E} G)^{1/5} (where dot{E} is the heating rate) to the stellar escape speed near the heating region vesc(rh). For vcrit ≳ vesc(rh), the wind kinetic power at large radii dot{E}_w ˜ dot{E}. For vcrit ≲ vesc(rh), most of the energy is used to unbind the wind material and thus dot{E}_w ≲ dot{E}. Multidimensional hydrodynamic simulations without radiation diffusion using FLASH and one-dimensional hydrodynamic simulations with radiation diffusion using MESA are in good agreement with the analytic predictions. The photon luminosity from the wind is itself super-Eddington but in many cases the photon luminosity is likely dominated by `internal shocks' in the wind. We discuss the application of our models to eruptive mass-loss from massive stars and argue that the wind models described here can account for the broad properties of LBV outflows and the enhanced mass-loss in the years prior to Type IIn core-collapse supernovae.
Snake River Plain Geothermal Play Fairway Analysis - Phase 1 Raster Files
John Shervais
2015-10-09
Snake River Plain Play Fairway Analysis - Phase 1 CRS Raster Files. This dataset contains raster files created in ArcGIS. These raster images depict Common Risk Segment (CRS) maps for HEAT, PERMEABILITY, AND SEAL, as well as selected maps of Evidence Layers. These evidence layers consist of either Bayesian krige functions or kernel density functions, and include: (1) HEAT: Heat flow (Bayesian krige map), Heat flow standard error on the krige function (data confidence), volcanic vent distribution as function of age and size, groundwater temperature (equivalue interval and natural breaks bins), and groundwater T standard error. (2) PERMEABILTY: Fault and lineament maps, both as mapped and as kernel density functions, processed for both dilational tendency (TD) and slip tendency (ST), along with data confidence maps for each data type. Data types include mapped surface faults from USGS and Idaho Geological Survey data bases, as well as unpublished mapping; lineations derived from maximum gradients in magnetic, deep gravity, and intermediate depth gravity anomalies. (3) SEAL: Seal maps based on presence and thickness of lacustrine sediments and base of SRP aquifer. Raster size is 2 km. All files generated in ArcGIS.
Geothermal energy control system and method
Matthews, Hugh B.
1976-01-01
A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system.
Super-Planckian far-field radiative heat transfer
NASA Astrophysics Data System (ADS)
Fernández-Hurtado, V.; Fernández-Domínguez, A. I.; Feist, J.; García-Vidal, F. J.; Cuevas, J. C.
2018-01-01
We present here a theoretical analysis that demonstrates that the far-field radiative heat transfer between objects with dimensions smaller than the thermal wavelength can overcome the Planckian limit by orders of magnitude. To guide the search for super-Planckian far-field radiative heat transfer, we make use of the theory of fluctuational electrodynamics and derive a relation between the far-field radiative heat transfer and the directional absorption efficiency of the objects involved. Guided by this relation, and making use of state-of-the-art numerical simulations, we show that the far-field radiative heat transfer between highly anisotropic objects can largely overcome the black-body limit when some of their dimensions are smaller than the thermal wavelength. In particular, we illustrate this phenomenon in the case of suspended pads made of polar dielectrics like SiN or SiO2. These structures are widely used to measure the thermal transport through nanowires and low-dimensional systems and can be employed to test our predictions. Our work illustrates the dramatic failure of the classical theory to predict the far-field radiative heat transfer between micro- and nanodevices.
77 FR 25375 - United States Standards for Wheat
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-30
...: Defects: Damaged kernels Heat (part of total) 0.2 0.2 0.5 1.0 .3.0 Total 2.0 4.0 7.0 10.0 15.0 Foreign material 0.4 0.7 1.3 3.0 5.0 Shrunken and broken kernels 2.0 4.0 8.0 12.0 20.0 Total \\1\\ 3.0 5.0 8.0 12.0 20.0 Wheat of other classes: \\2\\ Contrasting classes 1.0 2.0 3.0 10.0 10.0 Total \\3\\ 3.0 5.0 10.0 10...
Sub-to super-ambient temperature programmable microfabricated gas chromatography column
Robinson, Alex L.; Anderson, Lawrence F.
2004-03-16
A sub- to super-ambient temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by combining a thermoelectric cooler and temperature sensing on the microfabricated column. Sub-ambient temperature programming enables the efficient separation of volatile organic compounds and super-ambient temperature programming enables the elution of less volatile analytes within a reasonable time. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.
Özcan, Mehmet Musa; Juhaimi, Fahad Al; Uslu, Nurhan
2018-01-01
Brazilian peanut oil content increased with oven heating (65.08%) and decreased with microwave heating process (61.00%). While the phenolic content of untreated Brazilian nut was the highest of 68.97 mg GAE/100 g. Hazelnut (Sivri) contained the highest antioxidant activity (86.52%, untreated). Results reflected significantly differences between the antioxidant effect and total phenol contents of Brazilian nut and hazelnut (Sivri) kernels heated in the oven and microwave. Microwave heating caused a decrease in antioxidant activity of hazelnut. Gallic acid, 3,4-dihydroxybenzoic acid and (+)- and catechin were the main phenolic compounds of raw Brazilian nut with the value of 5.33, 4.33 and 4.88 mg/100 g, respectively, while the dominant phenolics of raw hazelnut (Sivri) kernels were gallic acid (4.81 mg/100 g), 3,4-dihydroxybenzoic acid (4.61 mg/100 g), (+)-catechin (6.96 mg/100 g) and 1,2-dihydroxybenzene (4.14 mg/100 g). Both conventional and microwave heating caused minor reduction in phenolic compounds. The main fatty acids of Brazilian nut oil were linoleic (44.39-48.18%), oleic (27.74-31.74%), palmitic (13.09-13.70%) and stearic (8.20-8.91%) acids, while the dominant fatty acids of hazelnut (Sivri) oil were oleic acid (80.84%), respectively. The heating process caused noticeable change in fatty acid compositions of both nut oils.
7 CFR 810.1402 - Definition of other terms.
Code of Federal Regulations, 2014 CFR
2014-01-01
... containing spots that, singly or in combination, cover 25.0 percent or less of the kernel. (4) Mixed sorghum... the 5/64 triangular-hole sieve according to procedures prescribed in FGIS instructions. (g) Heat...
7 CFR 810.1402 - Definition of other terms.
Code of Federal Regulations, 2013 CFR
2013-01-01
... containing spots that, singly or in combination, cover 25.0 percent or less of the kernel. (4) Mixed sorghum... the 5/64 triangular-hole sieve according to procedures prescribed in FGIS instructions. (g) Heat...
7 CFR 810.1402 - Definition of other terms.
Code of Federal Regulations, 2012 CFR
2012-01-01
... containing spots that, singly or in combination, cover 25.0 percent or less of the kernel. (4) Mixed sorghum... the 5/64 triangular-hole sieve according to procedures prescribed in FGIS instructions. (g) Heat...
CoRoT-7b: SUPER-EARTH OR SUPER-Io?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Rory; Kaib, Nathan A.; Raymond, Sean N.
2010-02-01
CoRoT-7b, a planet about 70% larger than the Earth orbiting a Sun-like star, is the first-discovered rocky exoplanet, and hence has been dubbed a 'super-Earth'. Some initial studies suggested that since the planet is so close to its host star, it receives enough insolation to partially melt its surface. However, these past studies failed to take into consideration the role that tides may play in this system. Even if the planet's eccentricity has always been zero, we show that tidal decay of the semimajor axis could have been large enough that the planet formed on a wider orbit which receivedmore » less insolation. Moreover, CoRoT-7b could be tidally heated at a rate that dominates its geophysics and drives extreme volcanism. In this case, CoRoT-7b is a 'super-Io' that, like Jupiter's volcanic moon, is dominated by volcanism and rapid resurfacing. Such heating could occur with an eccentricity of just 10{sup -5}. This small value could be driven by CoRoT-7c if its own eccentricity is larger than {approx}10{sup -4}. CoRoT-7b may be the first of a class of planetary super-Ios likely to be revealed by the CoRoT and Kepler spacecraft.« less
Surface nano-structure of polyamide 6 film by hydrothermal treatment
NASA Astrophysics Data System (ADS)
Wang, Xiaosong; Wang, Zhiliang; Liang, Songmiao; Jin, Yan; Lotz, Bernard; Yang, Shuguang
2018-06-01
Polyamide 6 (PA 6) melts and dissolves in super-heated water when T > 160 °C. Commercial PA 6 films were treated in super-heated water at 140 °C < T < 160 °C, i.e. below melting. Morphology, thermal behavior, mechanical properties, oxygen permeability and transparency of the film before and after hydrothermal treatment are investigated. After hydrothermal treatment, the melting temperature, crystallinity, elongation at break and toughness increase, whereas the strength decreases. The transparency and oxygen permeability decrease slightly. More interestingly, the hydrothermal treatment generates on the film surface a nano-structured layer 100 nm thick, which greatly improves adhesion and printing performance.
NASA Technical Reports Server (NTRS)
Lemsky, Joe; Gayda, John (Technical Monitor)
2005-01-01
The intent of this investigation was to demonstrate the NASA DMHT method with a tailored Ladish SuperCool(Trademark) cooling method on a Rolls-Royce AE2100, stage 3 disk shape. One disk each of two alloys, LSHR and ME3, were successfully converted as shown by macrostructure. DMHT heating time selection and cooling rate was aided by finite element modeling analysis. Residual stresses were also predicted and reported. Detailed microstructural analysis was performed by NASA and included in this report. Mechanical property characterization, also planned by NASA, is incomplete at this time and not part of this report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, Rodney Dale; Johnson, Jared A.; Collins, Jack Lee
A comparison study on carbon blacks and dispersing agents was performed to determine their impacts on the final properties of uranium fuel kernels with carbon. The main target compositions in this internal gelation study were 10 and 20 mol % uranium dicarbide (UC 2), which is UC 1.86, with the balance uranium dioxide. After heat treatment at 1900 K in flowing carbon monoxide in argon for 12 h, the density of the kernels produced using a X-energy proprietary carbon suspension, which is commercially available, ranged from 96% to 100% of theoretical density (TD), with full conversion of UC to UCmore » 2 at both carbon concentrations. However, higher carbon concentrations such as a 2.5 mol ratio of carbon to uranium in the feed solutions failed to produce gel spheres with the proprietary carbon suspension. The kernels using our former baseline of Mogul L carbon black and Tamol SN were 90–92% of TD with full conversion of UC to UC 2 at a variety of carbon levels. Raven 5000 carbon black and Tamol SN were used to produce 10 mol % UC2 kernels with 95% of TD. However, an increase in the Raven 5000 concentration led to a kernel density below 90% of TD. Raven 3500 carbon black and Tamol SN were used to make very dense kernels without complete conversion to UC 2. Lastly, the selection of the carbon black and dispersing agent is highly dependent on the desired final properties of the target kernels.« less
NASA Astrophysics Data System (ADS)
Hunt, R. D.; Johnson, J. A.; Collins, J. L.; McMurray, J. W.; Reif, T. J.; Brown, D. R.
2018-01-01
A comparison study on carbon blacks and dispersing agents was performed to determine their impacts on the final properties of uranium fuel kernels with carbon. The main target compositions in this internal gelation study were 10 and 20 mol % uranium dicarbide (UC2), which is UC1.86, with the balance uranium dioxide. After heat treatment at 1900 K in flowing carbon monoxide in argon for 12 h, the density of the kernels produced using a X-energy proprietary carbon suspension, which is commercially available, ranged from 96% to 100% of theoretical density (TD), with full conversion of UC to UC2 at both carbon concentrations. However, higher carbon concentrations such as a 2.5 mol ratio of carbon to uranium in the feed solutions failed to produce gel spheres with the proprietary carbon suspension. The kernels using our former baseline of Mogul L carbon black and Tamol SN were 90-92% of TD with full conversion of UC to UC2 at a variety of carbon levels. Raven 5000 carbon black and Tamol SN were used to produce 10 mol % UC2 kernels with 95% of TD. However, an increase in the Raven 5000 concentration led to a kernel density below 90% of TD. Raven 3500 carbon black and Tamol SN were used to make very dense kernels without complete conversion to UC2. The selection of the carbon black and dispersing agent is highly dependent on the desired final properties of the target kernels.
Hunt, Rodney Dale; Johnson, Jared A.; Collins, Jack Lee; ...
2017-10-12
A comparison study on carbon blacks and dispersing agents was performed to determine their impacts on the final properties of uranium fuel kernels with carbon. The main target compositions in this internal gelation study were 10 and 20 mol % uranium dicarbide (UC 2), which is UC 1.86, with the balance uranium dioxide. After heat treatment at 1900 K in flowing carbon monoxide in argon for 12 h, the density of the kernels produced using a X-energy proprietary carbon suspension, which is commercially available, ranged from 96% to 100% of theoretical density (TD), with full conversion of UC to UCmore » 2 at both carbon concentrations. However, higher carbon concentrations such as a 2.5 mol ratio of carbon to uranium in the feed solutions failed to produce gel spheres with the proprietary carbon suspension. The kernels using our former baseline of Mogul L carbon black and Tamol SN were 90–92% of TD with full conversion of UC to UC 2 at a variety of carbon levels. Raven 5000 carbon black and Tamol SN were used to produce 10 mol % UC2 kernels with 95% of TD. However, an increase in the Raven 5000 concentration led to a kernel density below 90% of TD. Raven 3500 carbon black and Tamol SN were used to make very dense kernels without complete conversion to UC 2. Lastly, the selection of the carbon black and dispersing agent is highly dependent on the desired final properties of the target kernels.« less
Cryogenic filter method produces super-pure helium and helium isotopes
NASA Technical Reports Server (NTRS)
Hildebrandt, A. F.
1964-01-01
Helium is purified when cooled in a low pressure environment until it becomes superfluid. The liquid helium is then filtered through iron oxide particles. Heating, cooling and filtering processes continue until the purified liquid helium is heated to a gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birmingham, D.; Kantowski, R.; Milton, K.A.
We use two methods of computing the unique logarithmically divergent part of the Casimir energy for massive scalar and spinor fields defined on even-dimensional Kaluza-Klein spaces of the form M/sup 4/ x S/sup N//sup 1/ x S/sup N//sup 2/ x xxx. Both methods (heat kernel and direct) give identical results. The first evaluates the required internal zeta function by identifying it in the asymptotic expansion of the trace of the heat kernel, and the second evaluates the zeta function directly using the Euler-Maclaurin sum formula. In Appendix C we tabulate these energies for all spaces of total internal dimension lessmore » than or equal to6. These methods are easily applied to vector and tensor fields needed in computing one-loop vacuum gravitational energies on these spaces. Stable solutions are given for internal structure S/sup 2/ x S/sup 2/.« less
Heat-transfer analysis of double-pipe heat exchangers for indirect-cycle SCW NPP
NASA Astrophysics Data System (ADS)
Thind, Harwinder
SuperCritical-Water-cooled Reactors (SCWRs) are being developed as one of the Generation-IV nuclear-reactor concepts. SuperCritical Water (SCW) Nuclear Power Plants (NPPs) are expected to have much higher operating parameters compared to current NPPs, i.e., pressure of about 25 MPa and outlet temperature up to 625 °C. This study presents the heat transfer analysis of an intermediate Heat exchanger (HX) design for indirect-cycle concepts of Pressure-Tube (PT) and Pressure-Vessel (PV) SCWRs. Thermodynamic configurations with an intermediate HX gives a possibility to have a single-reheat option for PT and PV SCWRs without introducing steam-reheat channels into a reactor. Similar to the current CANDU and Pressurized Water Reactor (PWR) NPPs, steam generators separate the primary loop from the secondary loop. In this way, the primary loop can be completely enclosed in a reactor containment building. This study analyzes the heat transfer from a SCW primary (reactor) loop to a SCW and Super-Heated Steam (SHS) secondary (turbine) loop using a double-pipe intermediate HX. The numerical model is developed with MATLAB and NIST REFPROP software. Water from the primary loop flows through the inner pipe, and water from the secondary loop flows through the annulus in the counter direction of the double-pipe HX. The analysis on the double-pipe HX shows temperature and profiles of thermophysical properties along the heated length of the HX. It was found that the pseudocritical region has a significant effect on the temperature profiles and heat-transfer area of the HX. An analysis shows the effect of variation in pressure, temperature, mass flow rate, and pipe size on the pseudocritical region and the heat-transfer area of the HX. The results from the numerical model can be used to optimize the heat-transfer area of the HX. The higher pressure difference on the hot side and higher temperature difference between the hot and cold sides reduces the pseudocritical-region length, thus decreases the heat-transfer surface area of the HX.
New textile composite materials development, production, application
NASA Technical Reports Server (NTRS)
Mikhailov, Petr Y.
1993-01-01
New textile composite materials development, production, and application are discussed. Topics covered include: super-high-strength, super-high-modulus fibers, filaments, and materials manufactured on their basis; heat-resistant and nonflammable fibers, filaments, and textile fabrics; fibers and textile fabrics based on fluorocarbon poylmers; antifriction textile fabrics based on polyfen filaments; development of new types of textile combines and composite materials; and carbon filament-based fabrics.
NASA Astrophysics Data System (ADS)
Lu, Zhanpeng; Chen, Junjie; Shoji, Tetsuo; Takeda, Yoichi; Yamazaki, Seiya
2015-10-01
With increasing the distance from the weld fusion line in an Alloy 690 heat-affected zone, micro-hardness decreases, kernel average misorientation decreases and the fraction of Σ3 boundaries increases. Chromium depletion at grain boundaries in the Alloy 690 heat-affected zone is less significant than that in an Alloy 600 heat-affected zone. Alloy 690 heat-affected zone exhibits much higher IGSCC resistance than Alloy 600 heat-affected zone in simulated pressurized water reactor primary water. Heavily cold worked Alloy 690 exhibits localized intergranular stress corrosion cracking. The effects of metallurgical and mechanical properties on stress corrosion cracking in Alloy 690 are discussed.
Mantle dynamics in super-Earths: Post-perovskite rheology and self-regulation of viscosity
NASA Astrophysics Data System (ADS)
Tackley, P. J.; Ammann, M.; Brodholt, J. P.; Dobson, D. P.; Valencia, D.
2013-07-01
The discovery of extra-solar "super-Earth" planets with sizes up to twice that of Earth has prompted interest in their possible lithosphere and mantle dynamics and evolution. Simple scalings suggest that super-Earths are more likely than an equivalent Earth-sized planet to be undergoing plate tectonics. Generally, viscosity and thermal conductivity increase with pressure while thermal expansivity decreases, resulting in lower convective vigour in the deep mantle, which, if extralopated to the largest super-Earths might, according to conventional thinking, result in no convection in their deep mantles due to the very low effective Rayleigh number. Here we evaluate this. First, as the mantle of a super-Earth is made mostly of post-perovskite we here extend the density functional theory (DFT) calculations of post-perovskite activation enthalpy of to a pressure of 1 TPa, for both slowest diffusion (upper-bound rheology) and fastest diffusion (lower-bound rheology) directions. Along a 1600 K adiabat the upper-bound rheology would lead to a post-perovskite layer of a very high (˜1030 Pa s) but relatively uniform viscosity, whereas the lower-bound rheology leads to a post-perovskite viscosity increase of ˜7 orders of magnitude with depth; in both cases the deep mantle viscosity would be too high for convection. Second, we use these DFT-calculated values in statistically steady-state numerical simulations of mantle convection and lithosphere dynamics of planets with up to ten Earth masses. The models assume a compressible mantle including depth-dependence of material properties and plastic yielding induced plate-like lithospheric behaviour. Results confirm the likelihood of plate tectonics for planets with Earth-like surface conditions (temperature and water) and show a self-regulation of deep mantle temperature. The deep mantle is not adiabatic; instead feedback between internal heating, temperature and viscosity regulates the temperature such that the viscosity has the value needed to facilitate convective loss of the radiogenic heat, which results in a very hot perovskite layer for the upper-bound rheology, a super-adiabatic perovskite layer for the lower-bound rheology, and an azimuthally-averaged viscosity of no more than 1026 Pa s. Convection in large super-Earths is characterised by large upwellings (even with zero basal heating) and small, time-dependent downwellings, which for large super-Earths merge into broad downwellings. In the context of planetary evolution, if, as is likely, a super-Earth was extremely hot/molten after its formation, it is thus likely that even after billions of years its deep interior is still extremely hot and possibly substantially molten with a "super basal magma ocean" - a larger version of the proposal of Labrosse et al. (Labrosse, S., Hernlund, J.W., Coltice, N. [2007]. Nature 450, 866-869), although this depends on presently unknown melt-solid density contrast and solidus.
NASA Astrophysics Data System (ADS)
Ngono Mbarga, M. C.; Bup Nde, D.; Mohagir, A.; Kapseu, C.; Elambo Nkeng, G.
2017-01-01
A neem tree growing abundantly in India as well as in some regions of Asia and Africa gives fruits whose kernels have about 40-50% oil. This oil has high therapeutic and cosmetic qualities and is recently projected to be an important raw material for the production of biodiesel. Its seed is harvested at high moisture contents, which leads tohigh post-harvest losses. In the paper, the sorption isotherms are determined by the static gravimetric method at 40, 50, and 60°C to establish a database useful in defining drying and storage conditions of neem kernels. Five different equations are validated for modeling the sorption isotherms of neem kernels. The properties of sorbed water, such as the monolayer moisture content, surface area of adsorbent, number of adsorbed monolayers, and the percent of bound water are also defined. The critical moisture content necessary for the safe storage of dried neem kernels is shown to range from 5 to 10% dry basis, which can be obtained at a relative humidity less than 65%. The isosteric heats of sorption at 5% moisture content are 7.40 and 22.5 kJ/kg for the adsorption and desorption processes, respectively. This work is the first, to the best of our knowledge, to give the important parameters necessary for drying and storage of neem kernels, a potential raw material for the production of oil to be used in pharmaceutics, cosmetics, and biodiesel manufacturing.
Research Program of a Super Fast Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie
2006-07-01
Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is notmore » breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)« less
Super energy saver heat pump with dynamic hybrid phase change material
Ally, Moonis Raza [Oak Ridge, TN; Tomlinson, John Jager [Knoxville, TN; Rice, Clifford Keith [Clinton, TN
2010-07-20
A heat pump has a refrigerant loop, a compressor in fluid communication with the refrigerant loop, at least one indoor heat exchanger in fluid communication with the refrigerant loop, and at least one outdoor heat exchanger in fluid communication with the refrigerant loop. The at least one outdoor heat exchanger has a phase change material in thermal communication with the refrigerant loop and in fluid communication with an outdoor environment. Other systems, devices, and methods are described.
Carbon Film Electrodes For Super Capacitor Applications
Tan, Ming X.
1999-07-20
A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.
Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50 nm resolution.
Yuan, Guanghui; Rogers, Edward T F; Roy, Tapashree; Shen, Zexiang; Zheludev, Nikolay I
2014-03-24
Heat-assisted magnetic recording (HAMR) is a future roadmap technology to overcome the superparamagnetic limit in high density magnetic recording. Existing HAMR schemes depend on a simultaneous magnetic stimulation and light-induced local heating of the information carrier. To achieve high-density recorded data, near-field plasmonic transducers have been proposed as light concentrators. Here we suggest and investigate in detail an alternative approach exploiting a far-field focusing device that can focus light into sub-50 nm hot-spots in the magnetic recording layer using a laser source operating at 473 nm. It is based on a recently introduced super-oscillatory flat lens improved with the use of solid immersion, giving an effective numerical aperture as high as 4.17. The proposed solution is robust and easy to integrate with the magnetic recording head thus offering a competitive advantage over plasmonic technology.
Super Energy Efficiency Design (S.E.E.D.) Home Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
German, A.; Dakin, B.; Backman, C.
This report describes the results of evaluation by the Alliance for Residential Building Innovation (ARBI) Building America team of the 'Super Energy Efficient Design' (S.E.E.D) home, a 1,935 sq. ft., single-story spec home located in Tucson, AZ. This prototype design was developed with the goal of providing an exceptionally energy efficient yet affordable home and includes numerous aggressive energy features intended to significantly reduce heating and cooling loads such as structural insulated panel (SIP) walls and roof, high performance windows, an ERV, an air-to-water heat pump with mixed-mode radiant and forced air delivery, solar water heating, and rooftop PV. Sourcemore » energy savings are estimated at 45% over the Building America B10 Benchmark. System commissioning, short term testing, long term monitoring and detailed analysis of results was conducted to identify the performance attributes and cost effectiveness of the whole house measure package.« less
Super Energy Efficient Design (S.E.E.D.) Home Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
German, A.; Dakin, B.; Backman, C.
This report describes the results of evaluation by the Alliance for Residential Building Innovation (ARBI) Building America team of the “Super Energy Efficient Design” (S.E.E.D) home, a 1,935 sq. ft., single-story spec home located in Tucson, AZ. This prototype design was developed with the goal of providing an exceptionally energy efficient yet affordable home and includes numerous aggressive energy features intended to significantly reduce heating and cooling loads such as structural insulated panel (SIP) walls and roof, high performance windows, an ERV, an air-to-water heat pump with mixed-mode radiant and forced air delivery, solar water heating, and rooftop PV. Sourcemore » energy savings are estimated at 45% over the Building America B10 Benchmark. System commissioning, short term testing, long term monitoring and detailed analysis of results was conducted to identify the performance attributes and cost effectiveness of the whole house measure package.« less
Achievement and improvement of the JT-60U negative ion source for JT-60 Super Advanced (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, A.; Hanada, M.; Tanaka, Y.
2010-02-15
Developments of the large negative ion source have been progressed in the high-energy, high-power, and long-pulse neutral beam injector for JT-60 Super Advanced. Countermeasures have been studied and tested for critical issues of grid heat load and voltage holding capability. As for the heat load of the acceleration grids, direct interception of D{sup -} ions was reduced by adjusting the beamlet steering. As a result, the heat load was reduced below an allowable level for long-pulse injections. As for the voltage holding capability, local electric field was mitigated by tuning gap lengths between large-area acceleration grids in the accelerator. Asmore » a result, the voltage holding capability was improved up to the rated value of 500 kV. To investigate the voltage holding capability during beam acceleration, the beam acceleration test is ongoing with new extended gap.« less
Lisicon Glass-Ceramics Mediated Catalysis of Oxygen Reduction
2011-06-01
submitted January 19, 2011; revised manuscript received February 23, 2011. Published March 25, 2011. The Lisicon (lithium super ionic conductor) glass...ceramics is a polycrystalline analogue of Nasicon (sodium super ionic conductor) structure. The general class of Nasicon structures consists of two...with a heating rate of 5C=min. In the BET technique a dry specimen was evacuated of all gases and cooled down to 77 K, liquid nitrogen temperature
Stability Projections for High Temperature Superconductors
1990-03-01
able data or our best estimates. 2.2.1. Specific Heat per Unit Volume - From the specific heat measurements of Junod et al. [5] and Inderhees et aL...for 77-K Super- conducting Magnets, IEEE Trans. MAG 24, 1211-14 (1988). [5] Junod , Bezinge et XVI al., Structure, Resistivity, Criti- cal Field
Phase Curve Analysis of Super-Earth 55 Cancri e
NASA Astrophysics Data System (ADS)
Angelo, Isabel; Hu, Renyu
2018-01-01
One of the primary questions when characterizing Earth-sized and super-Earth-sized exoplanets is whether they have a substantial atmosphere like Earth and Venus, or a bare-rock surface that may come with a tenuous atmosphere like Mercury. Phase curves of the planets in thermal emission provide clues to this question, because a substantial atmosphere would transport heat more efficiently than a bare-rock surface. Analyzing phase curve photometric data around secondary eclipse has previously been used to study energy transport in the atmospheres of hot Jupiters. Here we use phase curve, Spitzer time-series photometry to study the thermal emission properties of the super-Earth exoplanet 55 Cancri e. We utilize a previously developed semi-analytical framework to fit a physical model to infrared photometric data of host star 55 Cancri from the Spitzer telescope IRAC 2 band at 4.5 μm. The model uses various parameters of planetary properties including Bond albedo, heat redistribution efficiency (i.e., the ratio between the radiative timescale and advective timescale of the photosphere), and atmospheric greenhouse factor. The phase curve of 55 Cancri e is dominated by thermal emission with an eastward-shifted hot spot located on the planet surface. We determine the heat redistribution efficiency to be ≈1.47, which implies that the advective timescale is on the same order as the radiative timescale. This requirement from the phase curve cannot be met by the bare-rock planet scenario, because heat transport by currents of molten lava would be too slow. The phase curve thus favors the scenario with a substantial atmosphere. Our constraints on the heat redistribution efficiency translate to a photosphere pressure of ~1.4 bar. The Spitzer IRAC 2 band is thus a window into the deep atmosphere of the planet 55 Cancri e.
A Case for an Atmosphere on Super-Earth 55 Cancri e
NASA Astrophysics Data System (ADS)
Angelo, Isabel; Hu, Renyu
2017-12-01
One of the primary questions when characterizing Earth-sized and super-Earth-sized exoplanets is whether they have a substantial atmosphere like Earth and Venus or a bare-rock surface like Mercury. Phase curves of the planets in thermal emission provide clues to this question, because a substantial atmosphere would transport heat more efficiently than a bare-rock surface. Analyzing phase-curve photometric data around secondary eclipses has previously been used to study energy transport in the atmospheres of hot Jupiters. Here we use phase curve, Spitzer time-series photometry to study the thermal emission properties of the super-Earth exoplanet 55 Cancri e. We utilize a semianalytical framework to fit a physical model to the infrared photometric data at 4.5 μm. The model uses parameters of planetary properties including Bond albedo, heat redistribution efficiency (I.e., ratio between radiative timescale and advective timescale of the atmosphere), and the atmospheric greenhouse factor. The phase curve of 55 Cancri e is dominated by thermal emission with an eastward-shifted hotspot. We determine the heat redistribution efficiency to be {1.47}-0.25+0.30, which implies that the advective timescale is on the same order as the radiative timescale. This requirement cannot be met by the bare-rock planet scenario because heat transport by currents of molten lava would be too slow. The phase curve thus favors the scenario with a substantial atmosphere. Our constraints on the heat redistribution efficiency translate to an atmospheric pressure of ˜1.4 bar. The Spitzer 4.5 μm band is thus a window into the deep atmosphere of the planet 55 Cancri e.
Skyrmions Driven by Intrinsic Magnons
NASA Astrophysics Data System (ADS)
Psaroudaki, Christina; Loss, Daniel
2018-06-01
We study the dynamics of a Skyrmion in a magnetic insulating nanowire in the presence of time-dependent oscillating magnetic field gradients. These ac fields act as a net driving force on the Skyrmion via its own intrinsic magnetic excitations. In a microscopic quantum field theory approach, we include the unavoidable coupling of the external field to the magnons, which gives rise to time-dependent dissipation for the Skyrmion. We demonstrate that the magnetic ac field induces a super-Ohmic to Ohmic crossover behavior for the Skyrmion dissipation kernels with time-dependent Ohmic terms. The ac driving of the magnon bath at resonance results in a unidirectional helical propagation of the Skyrmion in addition to the otherwise periodic bounded motion.
The Casimir effect in rugby-ball type flux compactifications
NASA Astrophysics Data System (ADS)
Minamitsuji, M.
2008-04-01
We discuss volume stabilization in a 6D braneworld model based on 6D supergravity theory. The internal space is compactified by magnetic flux and contains codimension two 3-branes (conical singularities) as its boundaries. In general the external 4D spacetime is warped and in the unwrapped limit the shape of the internal space looks like a 'rugby ball'. The size of the internal space is not fixed due to the scale invariance of the supergravity theory. We discuss the possibility of volume stabilization by the Casimir effect for a massless, minimally coupled bulk scalar field. The main obstacle in studying this case is that the brane (conical) part of the relevant heat kernel coefficient (a6) has not been formulated. Thus as a first step, we consider the 4D analog model with boundary codimension two 1-branes. The spacetime structure of the 4D model is very similar to that of the original 6D model, where now the relevant heat kernel coefficient is well known. We derive the one-loop effective potential induced by a scalar field in the bulk by employing zeta function regularization with heat kernel analysis. As a result, the volume is stabilized for most possible choices of the parameters. Especially, for a larger degree of warping, our results imply that a large hierarchy between the mass scales and a tiny amount of effective cosmological constant can be realized on the brane. In the non-warped limit the ratio tends to converge to the same value, independently of the bulk gauge coupling constant. Finally, we will analyze volume stabilization in the original model 6D by employing the same mode-sum technique.
Blind image fusion for hyperspectral imaging with the directional total variation
NASA Astrophysics Data System (ADS)
Bungert, Leon; Coomes, David A.; Ehrhardt, Matthias J.; Rasch, Jennifer; Reisenhofer, Rafael; Schönlieb, Carola-Bibiane
2018-04-01
Hyperspectral imaging is a cutting-edge type of remote sensing used for mapping vegetation properties, rock minerals and other materials. A major drawback of hyperspectral imaging devices is their intrinsic low spatial resolution. In this paper, we propose a method for increasing the spatial resolution of a hyperspectral image by fusing it with an image of higher spatial resolution that was obtained with a different imaging modality. This is accomplished by solving a variational problem in which the regularization functional is the directional total variation. To accommodate for possible mis-registrations between the two images, we consider a non-convex blind super-resolution problem where both a fused image and the corresponding convolution kernel are estimated. Using this approach, our model can realign the given images if needed. Our experimental results indicate that the non-convexity is negligible in practice and that reliable solutions can be computed using a variety of different optimization algorithms. Numerical results on real remote sensing data from plant sciences and urban monitoring show the potential of the proposed method and suggests that it is robust with respect to the regularization parameters, mis-registration and the shape of the kernel.
Selection and properties of alternative forming fluids for TRISO fuel kernel production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, M. P.; King, J. C.; Gorman, B. P.
2013-01-01
Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardousmore » alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ~10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1- bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.« less
Selection and properties of alternative forming fluids for TRISO fuel kernel production
NASA Astrophysics Data System (ADS)
Baker, M. P.; King, J. C.; Gorman, B. P.; Marshall, D. W.
2013-01-01
Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ˜10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1-bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.
Super-Planckian Thermophotovoltaics Without Vacuum Gaps
NASA Astrophysics Data System (ADS)
Mirmoosa, M. S.; Biehs, S.-A.; Simovski, C. R.
2017-11-01
We introduce the concept of a thermophotovoltaic system whose emitter is separated from the photovoltaic cell by an intermediate thick slab of gallium arsenide. Owing to the engineered structure of the emitter (a multilayer structure of negative- and positive-ɛ layers) together with a high refractiveindex and transparency of the intermediate slab, we achieve a super-Planckian and frequency-selective spectrum of radiative heat transfer which is desirable for the efficient performance of thermophotovoltaic systems.
Sasipriya, Gopalakrishnan; Siddhuraju, Perumal
2012-08-01
The present study is proposed to determine the antioxidant activity of raw and processed samples of underutilized legumes, Entada scandens seed kernel and Canavalia gladiata seeds. The indigenous processing methods like dry heating, autoclaving and soaking followed by autoclaving in different solutions (plain water, ash, sugar and sodium bicarbonate) were adopted to seed samples. All other processing methods than dry heat showed significant reduction in phenolics (2.9-63%), tannins (26-100%) and flavonoids (14-67%). However, in processed samples of E. scandens, the hydroxyl radical scavenging activity and β-carotene bleaching inhibition activity were increased, whereas, 2,2-azinobis (3-ethyl benzothiazoline-6-sulfonic acid) diammonium salt (ABTS·(+)), ferric reducing antioxidant power (FRAP), metal chelating and superoxide anion scavenging activity were similar to unprocessed ones. In contrary, except dry heating in C. gladiata, all other processing methods significantly (P<0.05) reduced the 2,2'-diphenyl-1-picryl-hydrazyl (DPPH·) (20-35%), ABTS·(+) (22-75%), FRAP (34-74%), metal chelating (30-41%), superoxide anion radical scavenging (8-80%), hydroxyl radical scavenging (20-40%) and β-carotene bleaching inhibition activity (15-69%). In addition, the sample extracts of raw and dry heated samples protected DNA damage at 10 μg. All processing methods in E. scandens and dry heating in C. gladiata would be a suitable method for adopting in domestic or industrial processing. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir; Shamanian, Morteza; Eskandarian, Masoomeh
In the present paper, microstructural changes across an as-welded dissimilar austenitic/duplex stainless steel couple welded by a super duplex stainless steel filler metal using gas tungsten arc welding process is characterized with optical microscopy and electron back-scattered diffraction techniques. Accordingly, variations of microstructure, texture, and grain boundary character distribution of base metals, heat affected zones, and weld metal were investigated. The results showed that the weld metal, which was composed of Widmanstätten austenite side-plates and allotriomorphic grain boundary austenite morphologies, had the weakest texture and was dominated by low angle boundaries. The welding process increased the ferrite content but decreasedmore » the texture intensity at the heat affected zone of the super duplex stainless steel base metal. In addition, through partial ferritization, it changed the morphology of elongated grains of the rolled microstructure to twinned partially transformed austenite plateaus scattered between ferrite textured colonies. However, the texture of the austenitic stainless steel heat affected zone was strengthened via encouraging recrystallization and formation of annealing twins. At both interfaces, an increase in the special character coincident site lattice boundaries of the primary phase as well as a strong texture with <100> orientation, mainly of Goss component, was observed. - Graphical abstract: Display Omitted - Highlights: • Weld metal showed local orientation at microscale but random texture at macroscale. • Intensification of <100> orientated grains was observed adjacent to the fusion lines. • The austenite texture was weaker than that of the ferrite in all duplex regions. • Welding caused twinned partially transformed austenites to form at SDSS HAZ. • At both interfaces, the ratio of special CSL boundaries of the primary phase increased.« less
Sublimation of Iodine at Various Pressures
ERIC Educational Resources Information Center
Leenson, Ilya A.
2005-01-01
Various phenomena that are observed in the process of heating solid iodine in closed vessels at different pressures and temperatures are described. When solid iodine is heated in an evacuated ampoule where the pressure is less than 10(super -3), no noticeable color appears and immediate condensation of tiny iodine crystals is visible higher up on…
Memory behaviors of entropy production rates in heat conduction
NASA Astrophysics Data System (ADS)
Li, Shu-Nan; Cao, Bing-Yang
2018-02-01
Based on the relaxation time approximation and first-order expansion, memory behaviors in heat conduction are found between the macroscopic and Boltzmann-Gibbs-Shannon (BGS) entropy production rates with exponentially decaying memory kernels. In the frameworks of classical irreversible thermodynamics (CIT) and BGS statistical mechanics, the memory dependency on the integrated history is unidirectional, while for the extended irreversible thermodynamics (EIT) and BGS entropy production rates, the memory dependences are bidirectional and coexist with the linear terms. When macroscopic and microscopic relaxation times satisfy a specific relationship, the entropic memory dependences will be eliminated. There also exist initial effects in entropic memory behaviors, which decay exponentially. The second-order term are also discussed, which can be understood as the global non-equilibrium degree. The effects of the second-order term are consisted of three parts: memory dependency, initial value and linear term. The corresponding memory kernels are still exponential and the initial effects of the global non-equilibrium degree also decay exponentially.
A two-step super-Gaussian independent component analysis approach for fMRI data.
Ge, Ruiyang; Yao, Li; Zhang, Hang; Long, Zhiying
2015-09-01
Independent component analysis (ICA) has been widely applied to functional magnetic resonance imaging (fMRI) data analysis. Although ICA assumes that the sources underlying data are statistically independent, it usually ignores sources' additional properties, such as sparsity. In this study, we propose a two-step super-GaussianICA (2SGICA) method that incorporates the sparse prior of the sources into the ICA model. 2SGICA uses the super-Gaussian ICA (SGICA) algorithm that is based on a simplified Lewicki-Sejnowski's model to obtain the initial source estimate in the first step. Using a kernel estimator technique, the source density is acquired and fitted to the Laplacian function based on the initial source estimates. The fitted Laplacian prior is used for each source at the second SGICA step. Moreover, the automatic target generation process for initial value generation is used in 2SGICA to guarantee the stability of the algorithm. An adaptive step size selection criterion is also implemented in the proposed algorithm. We performed experimental tests on both simulated data and real fMRI data to investigate the feasibility and robustness of 2SGICA and made a performance comparison between InfomaxICA, FastICA, mean field ICA (MFICA) with Laplacian prior, sparse online dictionary learning (ODL), SGICA and 2SGICA. Both simulated and real fMRI experiments showed that the 2SGICA was most robust to noises, and had the best spatial detection power and the time course estimation among the six methods. Copyright © 2015. Published by Elsevier Inc.
[Super sweet corn hybrids adaptability for industrial processing. I freezing].
Alfonzo, Braunnier; Camacho, Candelario; Ortiz de Bertorelli, Ligia; De Venanzi, Frank
2002-09-01
With the purpose of evaluating adaptability to the freezing process of super sweet corn sh2 hybrids Krispy King, Victor and 324, 100 cobs of each type were frozen at -18 degrees C. After 120 days of storage, their chemical, microbiological and sensorial characteristics were compared with a sweet corn su. Industrial quality of the process of freezing and length and number of rows in cobs were also determined. Results revealed yields above 60% in frozen corns. Length and number of rows in cobs were acceptable. Most of the chemical characteristics of super sweet hybrids were not different from the sweet corn assayed at the 5% significance level. Moisture content and soluble solids of hybrid Victor, as well as total sugars of hybrid 324 were statistically different. All sh2 corns had higher pH values. During freezing, soluble solids concentration, sugars and acids decreased whereas pH increased. Frozen cobs exhibited acceptable microbiological rank, with low activities of mesophiles and total coliforms, absence of psychrophiles and fecal coliforms, and an appreciable amount of molds. In conclusion, sh2 hybrids adapted with no problems to the freezing process, they had lower contents of soluble solids and higher contents of total sugars, which almost doubled the amount of su corn; flavor, texture, sweetness and appearance of kernels were also better. Hybrid Victor was preferred by the evaluating panel and had an outstanding performance due to its yield and sensorial characteristics.
Preliminary Design of the Vacuum System for FAIR Super FRS Quadrupole Magnet Cryostat
NASA Astrophysics Data System (ADS)
Akhter, J.; Pal, G.; Datta, A.; Sarma, P. R.; Bhunia, U.; Roy, S.; Bhattacharyya, S.; Nandi, C.; Mallik, C.; Bhandari, R. K.
2012-11-01
The Super-Conducting Fragment Separator (Super FRS) of the Facility for Antiproton and Ion Research (FAIR) at GSI Darmstadt is a large-acceptance superonducting fragment separator. The separator consists of large dipole, quadrupole and hexapole superconducting magnets. The long quadrupole magnet cryostat houses the helium chamber, which has the magnet iron and NbTi superconducting coil. The magnet weighs about 30 tons. The helium chamber is enclosed in vacuum inside the magnet cryostat. Multilayer Insulation (MLI) will be wrapped around the thermal shield to reduce radiation loss. Polyster of MLI comprises the major component responsible for outgassing. In order to reduce outgassing, pumping at elevated temperatures has to be carried out. In view of the large size and weight of the magnet, a seal off approach might not be operationally feasible. Continuous pumping of the cryostat has also been examined. Pump has been kept at a distance from the magnet considering the effect of stray magnetic fields. Oil free turbo molecular pump and scroll pump combination will be used to pump down the cryostat. The ultimate heat load of the cryostat will be highly dependent on the pressure attained. Radiation and conduction plays an important role in the heat transfer at low temperatures. This paper presents the vacuum design of the long quadrupole magnet cryostat and estimates the heat load of the cryostat.
Investigation of Super Tube Structure and Performance (Postprint)
2010-04-01
thermosyphon is claimed as thermally superconductive and offers solid state mode of heat transport. A host of speculations about this claim was emerging...sealed structure and design of a conventional heat pipe or thermosyphon is claimed as thermally superconductive and offers solid state mode of heat...matrix. The tilt angle was varied to check for gravity dependence. Tests were run as step functions allowing the tube to reach steady state at a new
Rogel-Castillo, Cristian; Zuskov, David; Chan, Bronte Lee; Lee, Jihyun; Huang, Guangwei; Mitchell, Alyson E
2015-09-23
Concealed damage (CD) is a brown discoloration of nutmeat that appears only after kernels are treated with moderate heat (e.g., roasting). Identifying factors that promote CD in almonds is of significant interest to the nut industry. Herein, the effect of temperature (35 and 45 °C) and moisture (<5, 8, and 11%) on the composition of volatiles in raw almonds (Prunus dulcis var. Nonpareil) was studied using HS-SPME-GC/MS. A CIE LCh colorimetric method was developed to identify raw almonds with CD. A significant increase in CD was demonstrated in almonds exposed to moisture (8% kernel moisture content) at 45 °C as compared to 35 °C. Elevated levels of volatiles related to lipid peroxidation and amino acid degradation were observed in almonds with CD. These results suggest that postharvest moisture exposure resulting in an internal kernel moisture ≥ 8% is a key factor in the development of CD in raw almonds and that CD is accelerated by temperature.
Corn fiber gum and milk protein conjugates with improved emulsion stability
USDA-ARS?s Scientific Manuscript database
Corn fiber gum (CFG), an alkaline hydrogen peroxide extract of the corn kernel milling by-product “corn fiber” was covalently conjugated with Beta-lactoglobulin (Beta-LG) and whey protein isolate (WPI). Covalent coupling of CFG to protein was achieved by dry heating reaction (Maillard-type) of CFG ...
Fourier's law of heat conduction: quantum mechanical master equation analysis.
Wu, Lian-Ao; Segal, Dvira
2008-06-01
We derive the macroscopic Fourier's Law of heat conduction from the exact gain-loss time convolutionless quantum master equation under three assumptions for the interaction kernel. To second order in the interaction, we show that the first two assumptions are natural results of the long time limit. The third assumption can be satisfied by a family of interactions consisting of an exchange effect. The pure exchange model directly leads to energy diffusion in a weakly coupled spin- 12 chain.
NASA Astrophysics Data System (ADS)
Srinivasan, P.; Kushwaha, Shashank
2018-04-01
Super heater coils of the coal based thermal power plants and subjected to severe operating conditions from both steam side and gas side. Formation of oxide scale due to prolonged service lead to temperature raise of the tube and erosion due to fly ash present in the combusted gases leads to tube thinning. Both these factors lead to creep rupture of the coils much before the designed service life. Failure of super heater coils during service of the boiler leads to power loss and huge monitory loss to the power plants. An attempt is made to model the creep damage caused to the super heater coils using heat transfer analysis tube thinning due to erosive wear of the tubes. Combined effects of these parameters are taken into consideration to predict the life of the super heater coils. This model may be used to estimate the life of the coils operating under the severe operating conditions to prevent the unexpected failure of the coils.
Spinodal Decomposition in Functionally Graded Super Duplex Stainless Steel and Weld Metal
NASA Astrophysics Data System (ADS)
Hosseini, Vahid A.; Thuvander, Mattias; Wessman, Sten; Karlsson, Leif
2018-07-01
Low-temperature phase separations (T < 500 °C), resulting in changes in mechanical and corrosion properties, of super duplex stainless steel (SDSS) base and weld metals were investigated for short heat treatment times (0.5 to 600 minutes). A novel heat treatment technique, where a stationary arc produces a steady state temperature gradient for selected times, was employed to fabricate functionally graded materials. Three different initial material conditions including 2507 SDSS, remelted 2507 SDSS, and 2509 SDSS weld metal were investigated. Selective etching of ferrite significantly decreased in regions heat treated at 435 °C to 480 °C already after 3 minutes due to rapid phase separations. Atom probe tomography results revealed spinodal decomposition of ferrite and precipitation of Cu particles. Microhardness mapping showed that as-welded microstructure and/or higher Ni content accelerated decomposition. The arc heat treatment technique combined with microhardness mapping and electrolytical etching was found to be a successful approach to evaluate kinetics of low-temperature phase separations in SDSS, particularly at its earlier stages. A time-temperature transformation diagram was proposed showing the kinetics of 475 °C-embrittlement in 2507 SDSS.
Spinodal Decomposition in Functionally Graded Super Duplex Stainless Steel and Weld Metal
NASA Astrophysics Data System (ADS)
Hosseini, Vahid A.; Thuvander, Mattias; Wessman, Sten; Karlsson, Leif
2018-04-01
Low-temperature phase separations (T < 500 °C), resulting in changes in mechanical and corrosion properties, of super duplex stainless steel (SDSS) base and weld metals were investigated for short heat treatment times (0.5 to 600 minutes). A novel heat treatment technique, where a stationary arc produces a steady state temperature gradient for selected times, was employed to fabricate functionally graded materials. Three different initial material conditions including 2507 SDSS, remelted 2507 SDSS, and 2509 SDSS weld metal were investigated. Selective etching of ferrite significantly decreased in regions heat treated at 435 °C to 480 °C already after 3 minutes due to rapid phase separations. Atom probe tomography results revealed spinodal decomposition of ferrite and precipitation of Cu particles. Microhardness mapping showed that as-welded microstructure and/or higher Ni content accelerated decomposition. The arc heat treatment technique combined with microhardness mapping and electrolytical etching was found to be a successful approach to evaluate kinetics of low-temperature phase separations in SDSS, particularly at its earlier stages. A time-temperature transformation diagram was proposed showing the kinetics of 475 °C-embrittlement in 2507 SDSS.
2010-01-01
Background Discovering novel disease genes is still challenging for diseases for which no prior knowledge - such as known disease genes or disease-related pathways - is available. Performing genetic studies frequently results in large lists of candidate genes of which only few can be followed up for further investigation. We have recently developed a computational method for constitutional genetic disorders that identifies the most promising candidate genes by replacing prior knowledge by experimental data of differential gene expression between affected and healthy individuals. To improve the performance of our prioritization strategy, we have extended our previous work by applying different machine learning approaches that identify promising candidate genes by determining whether a gene is surrounded by highly differentially expressed genes in a functional association or protein-protein interaction network. Results We have proposed three strategies scoring disease candidate genes relying on network-based machine learning approaches, such as kernel ridge regression, heat kernel, and Arnoldi kernel approximation. For comparison purposes, a local measure based on the expression of the direct neighbors is also computed. We have benchmarked these strategies on 40 publicly available knockout experiments in mice, and performance was assessed against results obtained using a standard procedure in genetics that ranks candidate genes based solely on their differential expression levels (Simple Expression Ranking). Our results showed that our four strategies could outperform this standard procedure and that the best results were obtained using the Heat Kernel Diffusion Ranking leading to an average ranking position of 8 out of 100 genes, an AUC value of 92.3% and an error reduction of 52.8% relative to the standard procedure approach which ranked the knockout gene on average at position 17 with an AUC value of 83.7%. Conclusion In this study we could identify promising candidate genes using network based machine learning approaches even if no knowledge is available about the disease or phenotype. PMID:20840752
7 CFR 868.302 - Definition of other terms.
Code of Federal Regulations, 2012 CFR
2012-01-01
... discolored or damaged by water, insects, heat, or any other means, and parboiled kernels in nonparboiled rice... red bran. (l) Seeds. Whole or broken seeds of any plant other than rice. (m) Types of rice. There are... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Milled Rice Terms Defined § 868.302...
7 CFR 868.302 - Definition of other terms.
Code of Federal Regulations, 2014 CFR
2014-01-01
... discolored or damaged by water, insects, heat, or any other means, and parboiled kernels in nonparboiled rice... red bran. (l) Seeds. Whole or broken seeds of any plant other than rice. (m) Types of rice. There are... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Milled Rice Terms Defined § 868.302...
7 CFR 868.302 - Definition of other terms.
Code of Federal Regulations, 2013 CFR
2013-01-01
... discolored or damaged by water, insects, heat, or any other means, and parboiled kernels in nonparboiled rice... red bran. (l) Seeds. Whole or broken seeds of any plant other than rice. (m) Types of rice. There are... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Milled Rice Terms Defined § 868.302...
Rogel-Castillo, Cristian; Boulton, Roger; Opastpongkarn, Arunwong; Huang, Guangwei; Mitchell, Alyson E
2016-07-27
Concealed damage (CD) is defined as a brown discoloration of the kernel interior (nutmeat) that appears only after moderate to high heat treatment (e.g., blanching, drying, roasting, etc.). Raw almonds with CD have no visible defects before heat treatment. Currently, there are no screening methods available for detecting CD in raw almonds. Herein, the feasibility of using near-infrared (NIR) spectroscopy between 1125 and 2153 nm for the detection of CD in almonds is demonstrated. Almond kernels with CD have less NIR absorbance in the region related with oil, protein, and carbohydrates. With the use of partial least squares discriminant analysis (PLS-DA) and selection of specific wavelengths, three classification models were developed. The calibration models have false-positive and false-negative error rates ranging between 12.4 and 16.1% and between 10.6 and 17.2%, respectively. The percent error rates ranged between 8.2 and 9.2%. Second-derivative preprocessing of the selected wavelength resulted in the most robust predictive model.
Preparation of UC0.07-0.10N0.90-0.93 spheres for TRISO coated fuel particles
NASA Astrophysics Data System (ADS)
Hunt, R. D.; Silva, C. M.; Lindemer, T. B.; Johnson, J. A.; Collins, J. L.
2014-05-01
The US Department of Energy is considering a new nuclear fuel that would be less susceptible to ruptures during a loss-of-coolant accident. The fuel would consist of tristructural isotropic coated particles with dense uranium nitride (UN) kernels with diameters of 650 or 800 μm. The objectives of this effort are to make uranium oxide microspheres with adequately dispersed carbon nanoparticles and to convert these microspheres into UN spheres, which could be then sintered into kernels. Recent improvements to the internal gelation process were successfully applied to the production of uranium gel spheres with different concentrations of carbon black. After the spheres were washed and dried, a simple two-step heat profile was used to produce porous microspheres with a chemical composition of UC0.07-0.10N0.90-0.93. The first step involved heating the microspheres to 2023 K in a vacuum, and in the second step, the microspheres were held at 1873 K for 6 h in flowing nitrogen.
Establishment of a Super Small-Scale Cookoff Bomb (SSCB) Test Facility at MRL
1989-01-01
major areas of interest are cookoff of explosives and PBX formulations. CONTENTS Page 1. INTRODUCTION 7 2. EXPERIMENTAL 8 2.1 Description of SSCB Test...the slow heating rate than at the fast heating rate, in accordance with the generally accepted belief. Similarly, as the TATB content increased, the...correlation with TATB content ), and explosive surface temperatures of 187-246 *C were found at the slow heating rate, with a marked increase in the temperature
Kinetic Methods for Predicting Flow Physics of Small Thruster Expansions
2011-01-24
Zeifman, M., and Levin, D.,“Sensitivity of Water Condensation in a Super- sonic Plume to the Nucleation Rate,” Journal of Thermophysics and Heat Transfer ...M. I., and Levin, D. A., “Kinetic Model of Condensation in a Free Argon Expanding Jet,” Journal of Thermophysics and Heat Transfer , Vol. 20, No. 1...of Thermophysics and Heat Transfer , 25-28 June 2007. [44] Kumar, R. and Levin, D., “Simulation of Homogeneous Condensation of Ethanol in High
Precipitation Kinetics of M23C6 Carbides in the Super304H Austenitic Heat-Resistant Steel
NASA Astrophysics Data System (ADS)
Zhou, Qingwen; Ping, Shaobo; Meng, Xiaobo; Wang, Ruikun; Gao, Yan
2017-12-01
The precipitation kinetics of M23C6 carbides in Super304H and TP304H steels were investigated using the selective-etching method, SEM backscattered electron images and Image-Pro-Plus 6.0 software. Precipitation-temperature-time (PTT) diagrams of M23C6 carbides in the as-received Super304H (fine grains), coarsened Super304H (coarse grains) and TP304H (coarse grains) steels all show the typical C-shaped character with nose temperature range from 800 to 850 °C. Compared with the TP304H steel, the same trend is found of the PTT curve of M23C6 carbides for both kinds of Super304H steels, but their start lines move to the right and finish lines to the left. The preferential formation of Nb(C,N) phase at grain boundaries in the Super304H steels inhibited the nucleation of M23C6 carbides in the early stage of precipitation, causing the right shift of the start line of PTT curve. The main reason for the left shift of the finish line of the two Super304H steels was the quicker growing and coarsening rate of M23C6 in the later precipitation stage due to their higher C content than in TP304H. For the difference in PPT curves between the two grain sizes of the Super304H steel, the lower diffusion rate of atoms in the coarse-grained Super304H steel may explain its righter finish line than the fine-grained counterpart, while the reason for its lefter start line is due to the higher solute segregation along coarse-grained boundaries.
Super-Earths: Atmospheric Accretion, Thermal Evolution and Envelope Loss
NASA Astrophysics Data System (ADS)
Ginzburg, Sivan; Inamdar, Niraj K.; Schlichting, Hilke E.
Combined mass and radius observations have recently revealed many short-period planets a few times the size of Earth but with significantly lower densities. A natural explanation for the low density of these super Earths
SuperGaussian distribution functions in inhomogenous plasmas
NASA Astrophysics Data System (ADS)
Matte, Jean-Pierre
2008-11-01
In plasmas heated by a narrow laser beam, the shape of the distribution function is influenced by both the absorption, which tends to give a superGaussian (DLM) distribution function [1], and the effects of heat flow, which tends to make the distribution more Maxwellian, when the hot region is considerably wider than the laser beam [2]. Thus, it is only at early times that the deformation is as strong as predicted by our uniform intensity formula [1]. A large number of electron kinetic simulations of a finite width laser beam heating a uniform density plasma were performed with the electron kinetic code FPI [1] to study the competition between these two mechanisms. In some cases, the deformation is approximately given by this formula if we average the laser intensity over the entire plasma. This may explain why distributions were more Maxwellian than expected in some experiments [3]. [0pt] [1] J.-P. Matte et al., Plasma Phys. Contr. Fusion 30, 1665 (1988) [2] S. Brunner and E. Valeo, Phys. Plasmas 9, 923 (2002) [3] S.H. Glenzer et al., Phys. Rev. Lett. 82, 97 (1999).
Geothermal energy control system and method
Matthews, Hugh B.
1977-01-01
A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system. The bearing system employs liquid lubricated thrust and radial bearings with all bearing surfaces bathed in clean water serving as a lubricant and maintained under pressure to prevent entry into the bearings of contaminated geothermal fluid, an auxiliary thrust ball bearing arrangement comes into operation when starting or stopping the pumping system.
NASA Technical Reports Server (NTRS)
Ranganathan, Raj P.; Dao, Bui V.
1992-01-01
A variety of heat transfer problems arise in the design of the Superconducting Super Collider (SSC). One class of problems is to minimize heat leak from the ambient to the SSC rings, since the rings contain superconducting magnets maintained at a temperature of 4 K. Another arises from the need to dump the beam of protrons (traveling around the SSC rings) on to absorbers during an abort of the collider. Yet another category of problems is the cooling of equipment to dissipate the heat generated during operation. An overview of these problems and sample heat transfer results are given in this paper.
The Formation of Super-Earths by Tidally Forced Turbulence
NASA Astrophysics Data System (ADS)
Yu, Cong
2017-12-01
The Kepler observations indicate that many exoplanets are super-Earths, which brings about a puzzle for the core-accretion scenario. Since observed super-Earths are in the range of critical mass, they accrete gas efficiently and become gas giants. Theoretically, super-Earths are predicted to be rare in the core-accretion framework. To resolve this contradiction, we propose that the tidally forced turbulent diffusion may affect the heat transport inside the planet. Thermal feedback induced by turbulent diffusion is investigated. We find that the tidally forced turbulence generates pseudo-adiabatic regions within radiative zones, which pushes the radiative-convective boundaries inward. This decreases the cooling luminosity and enhances the Kelvin-Helmholtz (KH) timescale. For a given lifetime of protoplanetary disks (PPDs), there exists a critical threshold for the turbulent diffusivity, ν critical. If ν turb > ν critical, the KH timescale is longer than the disk lifetime and the planet becomes a super-Earth, rather than a gas giant. We find that even a small value of turbulent diffusion has influential effects on the evolution of super-Earths. The ν critical increases with the core mass. We further ascertain that, within the minimum-mass extrasolar nebula, ν critical increases with the semimajor axis. This may explain the feature that super-Earths are common in inner PPD regions, while gas giants are common in outer PPD regions. The predicted envelope mass fraction is not fully consistent with observations. We discuss physical processes, such as late core assembly and mass-loss mechanisms, that may be operating during super-Earth formation.
NASA Astrophysics Data System (ADS)
Zhou, Quanlin; Oldenburg, Curtis M.; Rutqvist, Jonny; Birkholzer, Jens T.
2017-11-01
There are two types of analytical solutions of temperature/concentration in and heat/mass transfer through boundaries of regularly shaped 1-D, 2-D, and 3-D blocks. These infinite-series solutions with either error functions or exponentials exhibit highly irregular but complementary convergence at different dimensionless times, td. In this paper, approximate solutions were developed by combining the error-function-series solutions for early times and the exponential-series solutions for late times and by using time partitioning at the switchover time, td0. The combined solutions contain either the leading term of both series for normal-accuracy approximations (with less than 0.003 relative error) or the first two terms for high-accuracy approximations (with less than 10-7 relative error) for 1-D isotropic (spheres, cylinders, slabs) and 2-D/3-D rectangular blocks (squares, cubes, rectangles, and rectangular parallelepipeds). This rapid and uniform convergence for rectangular blocks was achieved by employing the same time partitioning with individual dimensionless times for different directions and the product of their combined 1-D slab solutions. The switchover dimensionless time was determined to minimize the maximum approximation errors. Furthermore, the analytical solutions of first-order heat/mass flux for 2-D/3-D rectangular blocks were derived for normal-accuracy approximations. These flux equations contain the early-time solution with a three-term polynomial in √td and the late-time solution with the limited-term exponentials for rectangular blocks. The heat/mass flux equations and the combined temperature/concentration solutions form the ultimate kernel for fast simulations of multirate and multidimensional heat/mass transfer in porous/fractured media with millions of low-permeability blocks of varying shapes and sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Quanlin; Oldenburg, Curtis M.; Rutqvist, Jonny
There are two types of analytical solutions of temperature/concentration in and heat/mass transfer through boundaries of regularly shaped 1D, 2D, and 3D blocks. These infinite-series solutions with either error functions or exponentials exhibit highly irregular but complementary convergence at different dimensionless times, t d0. In this paper, approximate solutions were developed by combining the error-function-series solutions for early times and the exponential-series solutions for late times and by using time partitioning at the switchover time, t d0. The combined solutions contain either the leading term of both series for normal-accuracy approximations (with less than 0.003 relative error) or the firstmore » two terms for high-accuracy approximations (with less than 10-7 relative error) for 1D isotropic (spheres, cylinders, slabs) and 2D/3D rectangular blocks (squares, cubes, rectangles, and rectangular parallelepipeds). This rapid and uniform convergence for rectangular blocks was achieved by employing the same time partitioning with individual dimensionless times for different directions and the product of their combined 1D slab solutions. The switchover dimensionless time was determined to minimize the maximum approximation errors. Furthermore, the analytical solutions of first-order heat/mass flux for 2D/3D rectangular blocks were derived for normal-accuracy approximations. These flux equations contain the early-time solution with a three-term polynomial in √td and the late-time solution with the limited-term exponentials for rectangular blocks. The heat/mass flux equations and the combined temperature/concentration solutions form the ultimate kernel for fast simulations of multirate and multidimensional heat/mass transfer in porous/fractured media with millions of low-permeability blocks of varying shapes and sizes.« less
Zhou, Quanlin; Oldenburg, Curtis M.; Rutqvist, Jonny; ...
2017-10-24
There are two types of analytical solutions of temperature/concentration in and heat/mass transfer through boundaries of regularly shaped 1D, 2D, and 3D blocks. These infinite-series solutions with either error functions or exponentials exhibit highly irregular but complementary convergence at different dimensionless times, t d0. In this paper, approximate solutions were developed by combining the error-function-series solutions for early times and the exponential-series solutions for late times and by using time partitioning at the switchover time, t d0. The combined solutions contain either the leading term of both series for normal-accuracy approximations (with less than 0.003 relative error) or the firstmore » two terms for high-accuracy approximations (with less than 10-7 relative error) for 1D isotropic (spheres, cylinders, slabs) and 2D/3D rectangular blocks (squares, cubes, rectangles, and rectangular parallelepipeds). This rapid and uniform convergence for rectangular blocks was achieved by employing the same time partitioning with individual dimensionless times for different directions and the product of their combined 1D slab solutions. The switchover dimensionless time was determined to minimize the maximum approximation errors. Furthermore, the analytical solutions of first-order heat/mass flux for 2D/3D rectangular blocks were derived for normal-accuracy approximations. These flux equations contain the early-time solution with a three-term polynomial in √td and the late-time solution with the limited-term exponentials for rectangular blocks. The heat/mass flux equations and the combined temperature/concentration solutions form the ultimate kernel for fast simulations of multirate and multidimensional heat/mass transfer in porous/fractured media with millions of low-permeability blocks of varying shapes and sizes.« less
Stochastic modeling of stock price process induced from the conjugate heat equation
NASA Astrophysics Data System (ADS)
Paeng, Seong-Hun
2015-02-01
Currency can be considered as a ruler for values of commodities. Then the price is the measured value by the ruler. We can suppose that inflation and variation of exchange rate are caused by variation of the scale of the ruler. In geometry, variation of the scale means that the metric is time-dependent. The conjugate heat equation is the modified heat equation which satisfies the heat conservation law for the time-dependent metric space. We propose a new model of stock prices by using the stochastic process whose transition probability is determined by the kernel of the conjugate heat equation. Our model of stock prices shows how the volatility term is affected by inflation and exchange rate. This model modifies the Black-Scholes equation in light of inflation and exchange rate.
Rapid Online Non-Enzymatic Protein Digestion Analysis with High Pressure Superheated ESI-MS
NASA Astrophysics Data System (ADS)
Chen, Lee Chuin; Kinoshita, Masato; Noda, Masato; Ninomiya, Satoshi; Hiraoka, Kenzo
2015-07-01
Recently, we reported a new ESI ion source that could electrospray the super-heated aqueous solution with liquid temperature much higher than the normal boiling point ( J. Am. Soc. Mass Spectrom. 25, 1862-1869). The boiling of liquid was prevented by pressurizing the ion source to a pressure greater than atmospheric pressure. The maximum operating pressure in our previous prototype was 11 atm, and the highest achievable temperature was 180°C. In this paper, a more compact prototype that can operate up to 27 atm and 250°C liquid temperatures is constructed, and reproducible MS acquisition can be extended to electrospray temperatures that have never before been tested. Here, we apply this super-heated ESI source to the rapid online protein digestion MS. The sample solution is rapidly heated when flowing through a heated ESI capillary, and the digestion products are ionized by ESI in situ when the solution emerges from the tip of the heated capillary. With weak acid such as formic acid as solution, the thermally accelerated digestion (acid hydrolysis) has the selective cleavage at the aspartate (Asp, D) residue sites. The residence time of liquid within the active heating region is about 20 s. The online operation eliminates the need to transfer the sample from the digestion reactor, and the output of the digestive reaction can be monitored and manipulated by the solution flow rate and heater temperature in a near real-time basis.
Study of Super- and Subsonic Ionization Fronts in Low-Density, Soft X-Ray-Irradiated Foam Targets
NASA Astrophysics Data System (ADS)
Willi, O.; Barringer, L.; Vickers, C.; Hoarty, D.
2000-04-01
The transition from super- to subsonic propagation of an ionization front has been studied in X-ray irradiated, low-density foam targets using soft X-ray imaging and point projection absorption spectroscopy. The foams were doped with chlorine and irradiated with an intense pulse of soft X-ray radiation with a temperature up to 120 eV produced by laser heating a burnthrough converter foil. The cylindrical foam targets were radiographed side-on allowing the change in the chlorine ionization and hence the front to be observed. From the absolute target transmission the density profile was obtained. Comparison of experimental absorption spectra with simulated ones allowed the temperature of the heated material to be inferred for the first time without reliance on detailed hydrodynamic simulations to interpret the data. The experimental observations were compared to radiation hydrodynamic simulations.
Mutant maize variety containing the glt1-1 allele
Nelson, Oliver E.; Pan, David
1994-01-01
A maize plant has in its genome a non-mutable form of a mutant allele designated vitX-8132. The allele is located at a locus designated as glt which conditions kernels having an altered starch characteristic. Maize plants including such a mutant allele produce a starch that does not increase in viscosity on cooling, after heating.
Surface Hardening by Laser Skin Melting
1979-07-01
typical cross-sectional view of a melt region. Various solutions includina Murakami’s reaqent, Vilella’s reagent and an oxalic acid solution were used...each type selectively revealinq different microstructu- ral features. A second etch in an oxalic acid/hydrochloric acid solution was used in the...genization due to vigorous hydrothermal mixing and liquid super- heating. Computations by Greenwald (13) from a heat flow model are graphically represented
Sparse representation based image interpolation with nonlocal autoregressive modeling.
Dong, Weisheng; Zhang, Lei; Lukac, Rastislav; Shi, Guangming
2013-04-01
Sparse representation is proven to be a promising approach to image super-resolution, where the low-resolution (LR) image is usually modeled as the down-sampled version of its high-resolution (HR) counterpart after blurring. When the blurring kernel is the Dirac delta function, i.e., the LR image is directly down-sampled from its HR counterpart without blurring, the super-resolution problem becomes an image interpolation problem. In such cases, however, the conventional sparse representation models (SRM) become less effective, because the data fidelity term fails to constrain the image local structures. In natural images, fortunately, many nonlocal similar patches to a given patch could provide nonlocal constraint to the local structure. In this paper, we incorporate the image nonlocal self-similarity into SRM for image interpolation. More specifically, a nonlocal autoregressive model (NARM) is proposed and taken as the data fidelity term in SRM. We show that the NARM-induced sampling matrix is less coherent with the representation dictionary, and consequently makes SRM more effective for image interpolation. Our extensive experimental results demonstrate that the proposed NARM-based image interpolation method can effectively reconstruct the edge structures and suppress the jaggy/ringing artifacts, achieving the best image interpolation results so far in terms of PSNR as well as perceptual quality metrics such as SSIM and FSIM.
NASA Astrophysics Data System (ADS)
Baddeley, L. J.; Haggstrøm, I.; Yeoman, T. K.; Rietveld, M.
2012-01-01
We present the first observations of heater-induced simultaneous topside and bottomside sporadic E layer enhancements at very high latitudes (78.15°N) using the Space Plasma Exploration by Active Radar (SPEAR) heating facility and the European Incoherent Scatter (EISCAT) Svalbard Radar. During the experiment the SPEAR heating facility was transmitting with O-mode polarization in a field-aligned direction with a constant effective radiated power of ˜16 MW. Results show distinct heater-induced enhancements in both the ion and plasma line spectra. The plasma line enhancements are observed at the SPEAR heater frequency of 4.45 MHz. The plasma line observations represent the highest spatial resolution data (100 m) obtained of such heater-induced enhancements and indicate simultaneous enhancements at both the topside and bottomside of the layer, respectively (located at ˜107.5 and 109 km altitude, respectively). It is postulated that the results represent evidence of O- to Z-mode conversion of the heater wave occurring at the bottom of the E layer, allowing propagation through the layer resulting in simultaneous topside enhancements. The Z-mode enhancements are observed outside the Spitze angle, which is thought to be a result of field-aligned irregularities causing an increase in angular extent of the observations. Additional data from the Super Dual Auroral Radar Network (SuperDARN) HF Finland radar are also shown, which indicate that upon a thinning of the sporadic E layer, the heater beam propagated into the F region, where it induced artificial field-aligned irregularities.
Ultrafast demagnetization by hot electrons: Diffusion or super-diffusion?
Salvatella, G; Gort, R; Bühlmann, K; Däster, S; Vaterlaus, A; Acremann, Y
2016-09-01
Ultrafast demagnetization of ferromagnetic metals can be achieved by a heat pulse propagating in the electron gas of a non-magnetic metal layer, which absorbs a pump laser pulse. Demagnetization by electronic heating is investigated on samples with different thicknesses of the absorber layer on nickel. This allows us to separate the contribution of thermalized hot electrons compared to non-thermal electrons. An analytical model describes the demagnetization amplitude as a function of the absorber thickness. The observed change of demagnetization time can be reproduced by diffusive heat transport through the absorber layer.
Risk of Burns from Eruptions of Hot Water Overheated in Microwave Ovens
... Products Risk of Burns from Eruptions of Hot Water Overheated in Microwave Ovens Share Tweet Linkedin Pin ... What Can Consumers Do to Avoid Super-Heated Water? Follow the precautions and recommendations found in the ...
Update on specified European R and D efforts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
Information was collected for DOE on various European research programs of interest: Shell-Koppers coal gasification demonstration plant, fluidized-bed combustion pilot plant, a boiler super heat system, energy conservation on ships, waste heat utilization from large diesel engines and nuclear power plants and uranium enrichment plants, coal-water slurries with additive (CARBOGEL), electrostatic precipitators, radial inflow turbines, carbonization, heat pumps, heat exchangers, gas turbines, and research on heat resisting alloys and corrosion protection of these alloys. A number of organizations expressed a desire for creation of a formal interchange with DOE on specific subjects of mutual interest (one organization is unhappy aboutmore » furnishing information to DOE). (LTN)« less
Work function determination of promising electrode materials for thermionic energy converters
NASA Technical Reports Server (NTRS)
Jacobson, D.; Storms, E.; Skaggs, B.; Kouts, T.; Jaskie, J.; Manda, M.
1976-01-01
The work function determinations of candidate materials for low temperature (1400 K) thermionics through vacuum emission tests are discussed. Two systems, a vacuum emission test vehicle and a thermionic emission microscope are used for emission measurements. Some nickel and cobalt based super alloys were preliminarily examined. High temperature physical properties and corrosion behavior of some super alloy candidates are presented. The corrosion behavior of sodium is of particular interest since topping cycles might use sodium heat transfer loops. A Marchuk tube was designed for plasma discharge studies with the carbide and possibly some super alloy samples. A series of metal carbides and other alloys were fabricated and tested in a special high temperature mass spectrometer. This information coupled with work function determinations was evaluated in an attempt to learn how electron bonding occurs in transition alloys.
Suppression of energetic particle driven instabilities with HHFW heating
Fredrickson, E. D.; Taylor, G.; Bertelli, N.; ...
2015-01-01
In plasmas in the National Spherical Torus Experiment (NSTX) [Ono et al., Nucl. Fusion 40 (2000) 557] heated with neutral beams, the beam ions typically excite Energetic Particle Modes (EPMs or fishbones), and Toroidal, Global or Compressional Alfvén Eigenmodes (TAE, GAE, CAE). These modes can redistribute the energetic beam ions, altering the beam driven current profile and the plasma heating profile, or they may affect electron thermal transport or cause losses of the beam ions. In this paper we present experimental results where these instabilities, driven by the super-thermal beam ions, are suppressed with the application of High Harmonic Fastmore » Wave heating.« less
Mutant maize variety containing the glt1-1 allele
Nelson, O.E.; Pan, D.
1994-07-19
A maize plant has in its genome a non-mutable form of a mutant allele designated vitX-8132. The allele is located at a locus designated as glt which conditions kernels having an altered starch characteristic. Maize plants including such a mutant allele produce a starch that does not increase in viscosity on cooling, after heating. 2 figs.
Nawab, Anjum; Alam, Feroz; Haq, Mohammad Abdul; Haider, Mohammad Samee; Lutfi, Zubala; Kamaluddin, Sheikh; Hasnain, Abid
2018-07-15
In this study mango kernel starch (MKS) based heat sealable pouches were developed for packing of red chili powder. The films were prepared by casting technique using glycerol, sorbitol and 1:1 mixture of glycerol and sorbitol and were sealed. All films showed better heat sealing capacity but glycerol films plasticized exhibited higher seal strength than their counterparts. The red chili powder was packed in the MKS film pouches while commercially available polyethylene (PE) film was used as control. The pungency and color of red chili powder was monitored during six months storage at 40°C. The capsaicinoid content was extracted from the red chili with acetonitrile and evaluated quantitatively using spectrophotometric method. The extractable color was measured by ASTA method using acetone. The results showed significant differences in color and pungency of chili packed in MKS and PE pouches. The highest reduction in capsaicinoid content (pungency) of chili powder was observed in PE pouch (25.9%) while lowest was observed in MKS pouch containing sorbitol (15.7%). Similarly color loss was also highest in chili packed in PE pouch while lowest in MKS-sorbitol pouch. Copyright © 2018 Elsevier B.V. All rights reserved.
Influence of Initial Correlations on Evolution of a Subsystem in a Heat Bath and Polaron Mobility
NASA Astrophysics Data System (ADS)
Los, Victor F.
2017-08-01
A regular approach to accounting for initial correlations, which allows to go beyond the unrealistic random phase (initial product state) approximation in deriving the evolution equations, is suggested. An exact homogeneous (time-convolution and time-convolutionless) equations for a relevant part of the two-time equilibrium correlation function for the dynamic variables of a subsystem interacting with a boson field (heat bath) are obtained. No conventional approximation like RPA or Bogoliubov's principle of weakening of initial correlations is used. The obtained equations take into account the initial correlations in the kernel governing their evolution. The solution to these equations is found in the second order of the kernel expansion in the electron-phonon interaction, which demonstrates that generally the initial correlations influence the correlation function's evolution in time. It is explicitly shown that this influence vanishes on a large timescale (actually at t→ ∞) and the evolution process enters an irreversible kinetic regime. The developed approach is applied to the Fröhlich polaron and the low-temperature polaron mobility (which was under a long-time debate) is found with a correction due to initial correlations.
NASA Astrophysics Data System (ADS)
Hsieh, Wen-Pin; Deschamps, Frédéric
2015-10-01
Thermal conductivity of H2O-volatile mixtures at extreme pressure-temperature conditions is a key factor to determine the heat flux and profile of the interior temperature in icy bodies. We use time domain thermoreflectance and stimulated Brillouin scattering combined with diamond anvil cells to study the thermal conductivity and sound velocity of water (H2O)-methanol (CH3OH) mixtures to pressures as high as 12 GPa. Compared to pure H2O, the presence of 5-20 wt % CH3OH significantly reduces the thermal conductivity and sound velocity when the mixture becomes ice VI-CH3OH and ice VII-CH3OH phases at high pressures, indicating that the heat transfer is hindered within the icy body. We then apply these results to model the heat transfer through the icy mantles of super-Earths, assuming that these mantles are animated by thermal convection. Our calculations indicate that the decrease of thermal conductivity due to the presence of 10 wt % CH3OH induces a twofold decrease of the power transported by convection.
NASA Astrophysics Data System (ADS)
Mahmoudian, Alireza; Bernhardt, Paul; Ruohoniemi, J. Michael; Isham, Brett; Watkins, Brenton; Scales, Wayne
2016-07-01
Use of high frequency (HF) heating experiments has been extended in recent years as a useful methodology for plasma physicists wishing to remotely study the properties and behavior of the ionosphere as well as nonlinear plasma processes. Our recent work using high latitude heating experiments has lead to several important discoveries that have enabled assessment of active geomagnetic conditions, determination of minor ion species and their densities, ion mass spectrometry, electron temperature measurements in the heating ionosphere, as well a deeper understanding of physical processes associated with electron acceleration and formation of field aligned irregularities. The data recorded during two campaigns at HAARP in 2011 and 2012 will be presented. Several diagnostic instruments have been used to detect HAARP heater-generated ionospheric irregularities and plasma waves. These diagnostics include an ionosonde, MUIR (Modular UHF Ionospheric Radar at 446 MHz), SuperDARN HF backscatter radar and ground-based SEE receivers. Variation of the wideband/ narrowband SEE features, SuperDARN echoes, and enhanced ion lines were studied with pump power variation, pump frequency stepping near 3fce as well as changing beam angle relative to the magnetic zenith. In particular, formation of field-aligned irregularities (FAIs) and upper hybrid (UH) waves through oscillating two-stream instability (OSTI) and resonance instability is studied. During heating, Narrowband SEE (NSEE) showed enhancements that correlated with the enhanced MUIR radar ion lines. IA MSBS (Magnetized Stimulated Brillouin Scatter) lines are much narrower than Wideband SEE (WSEE) lines and as a result electron temperature calculated using NSEE line offset has potential to be more accurate. This technique may therefore complement the electron temperature calculation using ISR spectra. Strength of IA MSBS lines correlate with EHIL in the MUIR spectrum during HF pump frequency variation near 3fce. Therefore, NSEE could be used for similar diagnostic information, particularly temperature assessment during heating. More detailed physics-based modeling of such SEE is expected to provide further diagnostic information/capabilities. This work has demonstrated the tremendous future potential of Narrowband SEE (NSEE) as a powerful untapped ionospheric diagnostic which could provide complementary measurements for locations that ISR facilities are not available or as a complementary measurement for the waves and irregularities that cannot be observed by ISR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir; Shamanian, Morteza; Eskandarian, Masoomeh
The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientationmore » relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld metal. • Weld metal had the lowest texture intensity and ratio of low angle and CSL boundaries.« less
Roughness induced transition and heat transfer augmentation in hypersonic environments
NASA Astrophysics Data System (ADS)
Wassel, A. T.; Shih, W. C. L.; Courtney, J. F.
Boundary layer transition and surface heating distributions on graphite, fine weave carbon-carbon, and metallic nosetip materials were derived from surface temperature responses measured in nitrogen environments during both free-flight and track-guided testing in hypersonic environments. Innovative test procedures were developed, and heat transfer results were validated against established theory through experiments using a super-smooth tungsten model. Quantitative definitions of mean transition front locations were established by deriving heat flux distributions from measured temperatures, and comparisons made with existing nosetip transition correlations. Qualitative transition locations were inferred directly from temperature distributions to investigate preferred orientations on fine weave nosetips. Levels of roughness augmented heat transfer were generally shown to be below values predicted by state-of-the-art methods.
Metal-Doped Silver Oxide Films as a Mask Layer for the Super-RENS Disk
NASA Astrophysics Data System (ADS)
Shima, Takayuki; Buechel, Dorothea; Mihalcea, Christophe; Kim, Jooho; Atoda, Nobufumi; Tominaga, Junji
Various kinds of metal (Co, Pd, Pt and Au) were doped into Ag2O and AgO sputtered films to study its effect on the thermal decomposition process. The oxygen composition ratio was evaluated by the X-ray fluorescence spectroscopy method after annealing up to 260,oC. The optical transmittance change was measured during heating of the film to 600,oC. Noble metal doping was found to modify the AgO decomposition process, and the oxygen content decreased gradually compared to the undoped case. Super-RENS disks with a metal-doped AgO mask were prepared, and the laser power necessary for super-resolutional readout was evaluated. It slightly shifted to the higher-power side when the noble metal was doped, and this agrees with the modification of the decomposition process.Japan Science and Technology Corporation, Domestic Research Fellow
Superconducting current injection transistor with very high critical-current-density edge-junctions
NASA Astrophysics Data System (ADS)
van Zeghbroeck, B. J.
1985-03-01
A Superconducting Current Injection Transistor (Super-CIT) was fabricated with very high critical current-density edge-junctions. The junctions have a niobium base electrode and a lead-alloy counter electrode. The length of the junctions is 30 microns and the critical-current density is 190KA/sq cm. The Super-CIT has a current gain of 2, a large signal transresistance of 100 mV/A, and the turn-on delay, inferred from the junction resonance, is 7ps. The power dissipation is 3.5 microwatts and the power-delay product is 24.5aJ. Gap reduction due to heating was observed, limiting the maximum power dissipation per unit length to 1.1 microwatt/micron. Compared to lead-alloy Super-CITs, the device is five times smaller, three times faster, and has a three times larger output voltage. The damping resistor and the contact junction could also be eliminated.
Extensive screening for herbal extracts with potent antioxidant properties
Niwano, Yoshimi; Saito, Keita; Yoshizaki, Fumihiko; Kohno, Masahiro; Ozawa, Toshihiko
2011-01-01
This paper summarizes our research for herbal extracts with potent antioxidant activity obtained from a large scale screening based on superoxide radical (O2•−) scavenging activity followed by characterization of antioxidant properties. Firstly, scavenging activity against O2•− was extensively screened from ethanol extracts of approximately 1000 kinds of herbs by applying an electron spin resonance (ESR)-spin trapping method, and we chose four edible herbal extracts with prominently potent ability to scavenge O2•−. They are the extracts from Punica granatum (Peel), Syzygium aromaticum (Bud), Mangifera indica (Kernel), and Phyllanthus emblica (Fruit). These extracts were further examined to determine if they also scavenge hydroxyl radical (•OH), by applying the ESR spin-trapping method, and if they have heat resistance as a desirable characteristic feature. Experiments with the Fenton reaction and photolysis of H2O2 induced by UV irradiation demonstrated that all four extracts have potent ability to directly scavenge •OH. Furthermore, the scavenging activities against O2•− and •OH of the extracts of P. granatum (peel), M. indica (kernel) and P. emblica (fruit) proved to be heat-resistant. The results of the review might give useful information when choosing a potent antioxidant as a foodstuff. For instance, the four herbal extracts chosen from extensive screening possess desirable antioxidant properties. In particular, the extracts of the aforementioned three herbs are expected to be suitable for food processing in which thermal devices are used, because of their heat resistance. PMID:21297917
New numerical method for radiation heat transfer in nonhomogeneous participating media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howell, J.R.; Tan, Zhiqiang
A new numerical method, which solves the exact integral equations of distance-angular integration form for radiation transfer, is introduced in this paper. By constructing and prestoring the numerical integral formulas for the distance integral for appropriate kernel functions, this method eliminates the time consuming evaluations of the kernels of the space integrals in the formal computations. In addition, when the number of elements in the system is large, the resulting coefficient matrix is quite sparse. Thus, either considerable time or much storage can be saved. A weakness of the method is discussed, and some remedies are suggested. As illustrations, somemore » one-dimensional and two-dimensional problems in both homogeneous and inhomogeneous emitting, absorbing, and linear anisotropic scattering media are studied. Some results are compared with available data. 13 refs.« less
NASA Astrophysics Data System (ADS)
Fadly Nurullah Rasedee, Ahmad; Ahmedov, Anvarjon; Sathar, Mohammad Hasan Abdul
2017-09-01
The mathematical models of the heat and mass transfer processes on the ball type solids can be solved using the theory of convergence of Fourier-Laplace series on unit sphere. Many interesting models have divergent Fourier-Laplace series, which can be made convergent by introducing Riesz and Cesaro means of the series. Partial sums of the Fourier-Laplace series summed by Riesz method are integral operators with the kernel known as Riesz means of the spectral function. In order to obtain the convergence results for the partial sums by Riesz means we need to know an asymptotic behavior of the latter kernel. In this work the estimations for Riesz means of spectral function of Laplace-Beltrami operator which guarantees the convergence of the Fourier-Laplace series by Riesz method are obtained.
2010-09-01
and y, the axial and radial coordinates respectively. Point c lies somewhere within the mesh generated by the initial expansion (the kernel). All that...and the surface will be subjected to high heat loads restricting the choice of suitable materials. Material choice has direct implications for...Some legacy trajectory codes might not be able to deal with anything other than axial forces from engines, reflecting the class of problem they were
Motives and periods in Bianchi IX gravity models
NASA Astrophysics Data System (ADS)
Fan, Wentao; Fathizadeh, Farzad; Marcolli, Matilde
2018-05-01
We show that, when considering the anisotropic scaling factors and their derivatives as affine variables, the coefficients of the heat-kernel expansion of the Dirac-Laplacian on SU(2) Bianchi IX metrics are algebro-geometric periods of motives of complements in affine spaces of unions of quadrics and hyperplanes. We show that the motives are mixed Tate and we provide an explicit computation of their Grothendieck classes.
Influence of Gold Nanoshell on Hyperthermia of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs)
Mohammad, Faruq; Balaji, Gopalan; Weber, Andrew; Uppu, Rao M.; Kumar, Challa S. S. R.
2010-01-01
Gold nanoshell around super paramagnetic iron oxide nanoparticles (SPIONs) was synthesized and small angle X-ray scattering (SAXS) analysis suggests a gold coating of approximately 0.4 to 0.5 nm thickness. On application of low frequency oscillating magnetic fields (44 – 430 Hz), a four- to five-fold increase in the amount of heat released with gold-coated SPIONs (6.3 nm size) in comparison with SPIONs (5.4 nm size) was observed. Details of the influence of frequencies of oscillating magnetic field, concentration and solvent on heat generation are presented. We also show that, in the absence of oscillating magnetic field, both SPIONs and SPIONs@Au are not particularly cytotoxic to mammalian cells (MCF-7 breast carcinoma cells and H9c2 cardiomyoblasts) in culture, as indicated by the reduction of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium by viable cells in a phenazine methosulfate-assisted reaction. PMID:21103390
Eddy current techniques for super duplex stainless steel characterization
NASA Astrophysics Data System (ADS)
Camerini, C.; Sacramento, R.; Areiza, M. C.; Rocha, A.; Santos, R.; Rebello, J. M.; Pereira, G.
2015-08-01
Super duplex stainless steel (SDSS) is a two-phase material where the microstructure consists of grains of ferrite (δ) and austenite (γ). SDSS exhibit an attractive combination of properties, such as: strength, toughness and stress corrosion cracking resistance. Nevertheless, SDSS attain these properties after a controlled solution heat treatment, leading to a similar volumetric fraction of δ and γ. Any further heat treatment, welding operation for example, can change the balance of the original phases, or may also lead to precipitation of a deleterious phase, such as sigma (σ). For these situations, the material corrosion resistance is severely impaired. In the present study, several SDSS samples with low σ phase content and non-balanced microstructure were intentionally obtained by thermally treating SDSS specimens. Electromagnetic techniques, conventional Eddy Current Testing (ECT) and Saturated Low Frequency Eddy Current (SLOFEC), were employed to characterize the SDSS samples. The results showed that ECT and SLOFEC are reliable techniques to evaluate σ phase presence in SDSS and can provide an estimation of the δ content.
NASA Astrophysics Data System (ADS)
Prabakaran, T.; Prabhakar, M.; Sathiya, P.
This paper deals with the effects of shielding gas mixtures (100% CO2, 100% Ar and 80 % Ar + 20% CO2) and heat input (3.00, 3.65 and 4.33kJ/mm) on the mechanical and metallurgical characteristics of AISI 410S (American Iron and Steel Institute) super martensitic stainless steel (SMSS) by gas metal arc welding (GMAW) process. AISI 410S SMSS with 1.2mm diameter of a 410 filler wire was used in this study. A detailed microstructural analysis of the weld region as well as the mechanical properties (impact, microhardness and tensile tests at room temperature and 800∘C) was carried out. The tensile and impact fracture surfaces were further analyzed through scanning electron microscope (SEM). 100% Ar shielded welds have a higher amount of δ ferrite content and due to this fact the tensile strength of the joints is superior to the other two shielded welds.
ZnO deposition on metal substrates: Relating fabrication, morphology, and wettability
NASA Astrophysics Data System (ADS)
Beaini, Sara S.; Kronawitter, Coleman X.; Carey, Van P.; Mao, Samuel S.
2013-05-01
It is not common practice to deposit thin films on metal substrates, especially copper, which is a common heat exchanger metal and practical engineering material known for its heat transfer properties. While single crystal substrates offer ideal surfaces with uniform structure for compatibility with oxide deposition, metallic surfaces needed for industrial applications exhibit non-idealities that complicate the fabrication of oxide nanostructure arrays. The following study explored different ZnO fabrication techniques to deposit a (super)hydrophobic thin film of ZnO on a metal substrate, specifically copper, in order to explore its feasibility as an enhanced condensing surface. ZnO was selected for its non-toxicity, ability to be made (super)hydrophobic with hierarchical roughness, and its photoinduced hydrophilicity characteristic, which could be utilized to pattern it to have both hydrophobic-hydrophilic regions. We investigated the variation of ZnO's morphology and wetting state, using SEMs and sessile drop contact angle measurements, as a function of different fabrication techniques: sputtering, pulsed laser deposition (PLD), electrodeposition and annealing Zn. We successfully fabricated (super)hydrophobic ZnO on a mirror finish, commercially available copper substrate using the scalable electrodeposition technique. PLD for ZnO deposition did not prove viable, as the ZnO samples on metal substrates were hydrophilic and the process does not lend itself to scalability. The annealed Zn sheets did not exhibit consistent wetting state results.
Magnetospheric structure and atmospheric Joule heating of habitable planets orbiting M-dwarf stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, O.; Drake, J. J.; Garraffo, C.
2014-07-20
We study the magnetospheric structure and the ionospheric Joule Heating of planets orbiting M-dwarf stars in the habitable zone using a set of magnetohydrodynamic models. The stellar wind solution is used to drive a model for the planetary magnetosphere, which is coupled with a model for the planetary ionosphere. Our simulations reveal that the space environment around close-in habitable planets is extreme, and the stellar wind plasma conditions change from sub- to super-Alfvénic along the planetary orbit. As a result, the magnetospheric structure changes dramatically with a bow shock forming in the super-Alfvénic sectors, while no bow shock forms inmore » the sub-Alfvénic sectors. The planets reside most of the time in the sub-Alfvénic sectors with poor atmospheric protection. A significant amount of Joule Heating is provided at the top of the atmosphere as a result of the intense stellar wind. For the steady-state solution, the heating is about 0.1%-3% of the total incoming stellar irradiation, and it is enhanced by 50% for the time-dependent case. The significant Joule Heating obtained here should be considered in models for the atmospheres of habitable planets in terms of the thickness of the atmosphere, the top-side temperature and density, the boundary conditions for the atmospheric pressure, and particle radiation and transport. Here we assume constant ionospheric Pedersen conductance similar to that of the Earth. The conductance could be greater due to the intense EUV radiation leading to smaller heating rates. We plan to quantify the ionospheric conductance in future study.« less
THERMODYNAMIC EVALUATION OF FIVE ALTERNATIVE REFRIGERANTS IN VAPOR-COMPRESSION CYCLES
The paper gives results of a thermodynamic evaluation of five alternative refrigerants in a vapor-compression refrigeration cycle, utilizing throttling, super-heating, and combined throttling and superheating. ive alternative refrigerants (R32, R125, R134a, R143a, and R152a) were...
Synthesis, characterization, and ion-exchange properties of colloidal zeolite nanocrystals
NASA Astrophysics Data System (ADS)
Jawor, Anna; Jeong, Byeong-Heon; Hoek, Eric M. V.
2009-10-01
Here, we present physical-chemical properties of Linde type A (LTA) zeolite crystals synthesized via conventional hydrothermal and microwave heating methods. Both heating methods produced LTA crystals that were sub-micron in size, highly negatively charged, super-hydrophilic, and stable when dispersed in water. However, microwave heating produced relatively narrow crystal size distributions, required much shorter heating times, and did not significantly change composition, crystallinity, or surface chemistry. Moreover, microwave heating allowed systematic variation of crystal size by varying heating temperature and time during the crystallization reaction, thus producing a continuous gradient of crystal sizes ranging from about 90 to 300 nm. In ion-exchange studies, colloidal zeolites exhibited excellent sorption kinetics and capacity for divalent metal ions, suggesting their potential for use in water softening, scale inhibition, and scavenging of toxic metal ions from water.
Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths
Yuan, Guanghui; Rogers, Edward T. F.; Roy, Tapashree; Adamo, Giorgio; Shen, Zexiang; Zheludev, Nikolay I.
2014-01-01
Planar optical lenses are fundamental elements of miniaturized photonic devices. However, conventional planar optical lenses are constrained by the diffraction limit in the optical far-field due to the band-limited wavevectors supported by free-space and loss of high-spatial-frequency evanescent components. As inspired by Einstein's radiation ‘needle stick', electromagnetic energy can be delivered into an arbitrarily small solid angle. Such sub-diffraction optical needles have been numerically investigated using diffractive optical elements (DOEs) together with specially polarized optical beams, but experimental demonstration is extremely difficult due to the bulky size of DOEs and the required alignment precision. Planar super-oscillatory lenses (SOLs) were proposed to overcome these constraints and demonstrated that sub-diffraction focal spots can actually be formed without any evanescent waves, making far-field, label-free super-resolution imaging possible. Here we extend the super-oscillation concept into the vectorial-field regime to work with circularly polarized light, and experimentally demonstrate, for the first time, a circularly polarized optical needle with sub-diffraction transverse spot size (0.45λ) and axial long depth of focus (DOF) of 15λ using a planar SOL at a violet wavelength of 405 nm. This sub-diffraction circularly polarized optical needle has potential applications in circular dichroism spectroscopy, super-resolution imaging, high-density optical storage, heat-assisted magnetic recording, nano-manufacturing and nano-metrology. PMID:25208611
Preliminary CFD study of Pebble Size and its Effect on Heat Transfer in a Pebble Bed Reactor
NASA Astrophysics Data System (ADS)
Jones, Andrew; Enriquez, Christian; Spangler, Julian; Yee, Tein; Park, Jungkyu; Farfan, Eduardo
2017-11-01
In pebble bed reactors, the typical pebble diameter used is 6cm, and within each pebble is are thousands of nuclear fuel kernels. However, efficiency of the reactor does not solely depend on the number of kernels of fuel within each graphite sphere, but also depends on the type and motion of the coolant within the voids between the spheres and the reactor itself. In this work a physical analysis of the pebble bed nuclear reactor's fluid dynamics is undertaken using Computational Fluid Dynamics software. The primary goal of this work is to observe the relationship between the different pebble diameters in an idealized alignment and the thermal transport efficiency of the reactor. The model constructed of our idealized argument will consist on stacked 8 pebble columns that fixed at the inlet on the reactor. Two different pebble sizes 4 cm and 6 cm will be studied and helium will be supplied as coolant with a fixed flow rate of 96 kg/s, also a fixed pebble surface temperatures will be used. Comparison will then be made to evaluate the efficiency of coolant to transport heat due to the varying sizes of the pebbles. Assistant Professor for the Department of Civil and Construction Engineering PhD.
Chromospheric Heating in Late-Type Stars: Evidence for Magnetic and Nonmagnetic Surface Structure
NASA Technical Reports Server (NTRS)
Cuntz, Manfred
1996-01-01
The aim of this paper is to evaluate recent observational and theoretical results concerning the physics of chromospheric heating as inferred from IUE, HST-GHRS and ROSAT data. These results are discussed in conjunction with theoretical model calculations based on acoustic and magnetic heating to infer some conclusions about the magnetic and non-magnetic surface structure of cool luminous stars. I find that most types of stars may exhibit both magnetic and nonmagnetic structures. Candidates for pure nonmagnetic surface structure include M-type giants and super-giants. M-type supergiants are also ideal candidates for identifying direct links between the appearance of hot spots on the stellar surface (perhaps caused by large convective bubbles) and temporarily increased chromospheric heating and emission.
NASA Astrophysics Data System (ADS)
Zhou, M.; Berchem, J.; Walker, R. J.; El-Alaoui, M.; Goldstein, M. L.; Lapenta, G.; Deng, X.; Li, J.; Le Contel, O.; Graham, D. B.; Lavraud, B.; Paterson, W. R.; Giles, B. L.; Burch, J. L.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.; Zhao, C.; Ergun, R. E.; Lindqvist, P.-A.; Marklund, G.
2018-03-01
We report Magnetospheric Multiscale (MMS) observations of a reconnecting current sheet in the presence of a weak density asymmetry with large guide field at the dayside magnetopause. An ion diffusion region (IDR) was detected associated with this current sheet. Parallel current dominated over the perpendicular current in the IDR, as found in previous studies of component reconnection. Electrons were preferentially heated parallel to the magnetic field within the IDR. The heating was manifested as a flattop distribution below 400 eV. Two types of electromagnetic electron whistler waves were observed within the regions where electrons were heated. One type of whistler wave was associated with nonlinear structures in E|| with amplitudes up to 20 mV/m. The other type was not associated with any structures in E||. Poynting fluxes of these two types of whistler waves were directed away from the X-line. We suggest that the nonlinear evolution of the oblique whistler waves gave rise to the solitary structures in E||. There was a perpendicular super-Alfvénic outflow jet that was carried by magnetized electrons. Intense electrostatic lower hybrid drift waves were localized in the current sheet center and were probably driven by the super-Alfvénic electron jet, the velocity of which was approximately equal to the diamagnetic drift of demagnetized ions. Our observations suggest that the guide field significantly modified the structures (Hall electromagnetic fields and current system) and wave properties in the IDR.
NASA Astrophysics Data System (ADS)
Ezoe, Yuichiro; Ishikawa, Kumi; Mitsuishi, Ikuyuki; Ohashi, Takaya; Mitsuda, Kazuhisa; Fujimoto, Ryuichi; Murakami, Masahide; Kanao, Kenichi; Yoshida, Seiji; Tsunematsu, Shoji; DiPirro, Michael; Shirron, Peter
2016-07-01
Suppression of super fluid helium flow is critical for the Soft X-ray Spectrometer onboard ASTRO-H (Hitomi). In nominal operation, a small helium gas flow of 30 μg/s must be safely vented and a super fluid film flow must be sufficiently small <2 μg/s. To achieve a life time of the liquid helium, a porous plug phase separator and a film flow suppression system composed of an orifice, a heat exchanger, and knife edge devices are employed. In this paper, design, on-ground testing results and in-orbit performance of the porous plug and the film flow suppression system are described.
Xiong, Lunqiao; Shuai, Jing; Hou, Zecheng; Zhu, Lin; Li, Wenzhen
2017-07-15
In order to make super-aligned carbon nanotubes (SACNT) homogeneously spread in electrolytes, a swift and effective method was devised for surface functionalization of SACNT film by ohmic heating using hydrogen peroxide solution. Controllable generation of defects and notable graft of oxygen functional groups on the sidewall of SACNTs were induced as proven by X-ray photoelectron spectroscopy and Raman spectroscopy. Differently from the harsh wet chemical oxidation, the super-aligned morphology and structural integrity of carbon nanotubes in the SACNT film were found to be well preserved by electron microscopy analysis. The functionalized treatment can remove extraneous material contaminating SACNT film and improve its conductivity. The grafting of polar ionizable groups has been proved to effectively eliminate the agglomeration of SACNTs. When the oxidized SACNT film was used as host material for electrodeposition of copper, the composite film of well-bonded SACNTs and Cu was successfully prepared. Copyright © 2017 Elsevier Inc. All rights reserved.
Structural Evolution of Q-Carbon and Nanodiamonds
NASA Astrophysics Data System (ADS)
Gupta, Siddharth; Bhaumik, Anagh; Sachan, Ritesh; Narayan, Jagdish
2018-04-01
This article provides insights pertaining to the first-order phase transformation involved in the growth of densely packed Q-carbon and nanodiamonds by nanosecond laser melting and quenching of diamond-like carbon (DLC) thin films. DLC films with different sp 3 content were melted rapidly in a controlled way in super-undercooled state and quenched, leading to formation of distinct nanostructures, i.e., nanodiamonds, Q-carbon, and Q-carbon nanocomposites. This analysis provides direct evidence of the dependence of the super-undercooling on the structural evolution of Q-carbon. Finite element heat flow calculations showed that the super-undercooling varies monotonically with the sp 3 content. The phenomenon of solid-liquid interfacial instability during directional solidification from the melt state is studied in detail. The resulting lateral segregation leads to formation of cellular filamentary Q-carbon nanostructures. The dependence of the cell size and wavelength at the onset of instability on the sp 3 content of DLC thin films was modeled based on perturbation theory.
Multiferroic composites for magnetic data storage beyond the super-paramagnetic limit
NASA Astrophysics Data System (ADS)
Vopson, M. M.; Zemaityte, E.; Spreitzer, M.; Namvar, E.
2014-09-01
Ultra high-density magnetic data storage requires magnetic grains of <5 nm diameters. Thermal stability of such small magnetic grain demands materials with very large magneto-crystalline anisotropy, which makes data write process almost impossible, even when Heat Assisted Magnetic Recording (HAMR) technology is deployed. Here, we propose an alternative method of strengthening the thermal stability of the magnetic grains via elasto-mechanical coupling between the magnetic data storage layer and a piezo-ferroelectric substrate. Using Stoner-Wohlfarth single domain model, we show that the correct tuning of this coupling can increase the effective magneto-crystalline anisotropy of the magnetic grains making them stable beyond the super-paramagnetic limit. However, the effective magnetic anisotropy can also be lowered or even switched off during the write process by simply altering the applied voltage to the substrate. Based on these effects, we propose two magnetic data storage protocols, one of which could potentially replace HAMR technology, with both schemes promising unprecedented increases in the data storage areal density beyond the super-paramagnetic size limit.
NASA Astrophysics Data System (ADS)
Wassel, A. T.; Shih, W. C. L.; Curtis, R. J.
1981-01-01
Boundary layer transition and surface heating distributions on graphite fine weave carbon-carbon, and metallic nosetip materials were derived from surface temperature responses measured in nitrogen environments during both free-flight and track-guided testing in the AEDC Hyperballistics Range/Track G. Innovative test procedures were developed, and heat transfer results were validated against established theory through experiments using a super-smooth tungsten model. Quantitative definitions of mean transition front locations were established by deriving heat flux distributions from measured temperatures, and comparisons made with existing nosetip transition correlations. Qualitative transition locations were inferred directly from temperature distributions to investigate preferred orientations on fine weave nosetips. Levels of roughness augmented heat transfer were generally shown to be below values predicted by state of the art methods.
A Semi-supervised Heat Kernel Pagerank MBO Algorithm for Data Classification
2016-07-01
financial predictions, etc. and is finding growing use in text mining studies. In this paper, we present an efficient algorithm for classification of high...video data, set of images, hyperspectral data, medical data, text data, etc. Moreover, the framework provides a way to analyze data whose different...also be incorporated. For text classification, one can use tfidf (term frequency inverse document frequency) to form feature vectors for each document
Graviton 1-loop partition function for 3-dimensional massive gravity
NASA Astrophysics Data System (ADS)
Gaberdiel, Matthias R.; Grumiller, Daniel; Vassilevich, Dmitri
2010-11-01
Thegraviton1-loop partition function in Euclidean topologically massivegravity (TMG) is calculated using heat kernel techniques. The partition function does not factorize holomorphically, and at the chiral point it has the structure expected from a logarithmic conformal field theory. This gives strong evidence for the proposal that the dual conformal field theory to TMG at the chiral point is indeed logarithmic. We also generalize our results to new massive gravity.
Numerical techniques in radiative heat transfer for general, scattering, plane-parallel media
NASA Technical Reports Server (NTRS)
Sharma, A.; Cogley, A. C.
1982-01-01
The study of radiative heat transfer with scattering usually leads to the solution of singular Fredholm integral equations. The present paper presents an accurate and efficient numerical method to solve certain integral equations that govern radiative equilibrium problems in plane-parallel geometry for both grey and nongrey, anisotropically scattering media. In particular, the nongrey problem is represented by a spectral integral of a system of nonlinear integral equations in space, which has not been solved previously. The numerical technique is constructed to handle this unique nongrey governing equation as well as the difficulties caused by singular kernels. Example problems are solved and the method's accuracy and computational speed are analyzed.
Wang, Peiyu; Li, Zhencheng; Pei, Yongmao
2018-04-16
An in situ high temperature microwave microscope was built for detecting surface and sub-subsurface structures and defects. This system was heated with a self-designed quartz lamp radiation module, which is capable of heating to 800°C. A line scanning of a metal grating showed a super resolution of 0.5 mm (λ/600) at 1 GHz. In situ scanning detections of surface hole defects on an aluminium plate and a glass fiber reinforced plastic (GFRP) plate were conducted at different high temperatures. A post processing algorithm was proposed to remove the background noises induced by high temperatures and the 3.0 mm-spaced hole defects were clearly resolved. Besides, hexagonal honeycomb lattices were in situ detected and clearly resolved under a 1.0 mm-thick face panel at 20°C and 50°C, respectively. The core wall positions and bonding width were accurately detected and evaluated. In summary, this in situ microwave microscope is feasible and effective in sub-surface detection and super resolution imaging at different high temperatures.
NASA Astrophysics Data System (ADS)
Sun, Hunying; Zhou, Zhangjian; Wang, Man; Li, Shaofu; Zhang, Liwei; Zou, Lei
2013-03-01
A new type lCr30Ni30Mo2TiZr super-austenitic stainless steel has been developed. The microstructures, precipitation phases and mechanical properties of the steel under different deformation processes and heat treatment (solution, stabilized treatment) were investigated using X-ray Diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) as well as mechanical tests. The results indicate that coarse carbides such as Cr-rich M23C6, sigma (σ), and little chi (χ) phases were formed in the steel, and large α' -Cr phases were also detected at three joint grain boundaries, and they were promoted by large strain. The precipitate phases were dissolved or transformed to intermetallic phase even at higher elevated temperature, and influenced the mechanical property obviously. These intermetallic compounds seriously reduced elongation of the rolled steel at room temperature and 700 °C, but increased the forged one at 700 °C. Impact absorbed energies of the stabilized specimens were lower than half of that solution status.
Optimized Structures for Low-Profile Phase Change Thermal Spreaders
NASA Astrophysics Data System (ADS)
Sharratt, Stephen Andrew
Thin, low-profile phase change thermal spreaders can provide cooling solutions for some of today's most pressing heat flux dissipation issues. These thermal issues are only expected to increase as future electronic circuitry requirements lead to denser and potentially 3D chip packaging. Phase change based heat spreaders, such as heat pipes or vapor chambers, can provide a practical solution for effectively dissipating large heat fluxes. This thesis reports a comprehensive study of state-of-the-art capillary pumped wick structures using computational modeling, micro wick fabrication, and experimental analysis. Modeling efforts focus on predicting the shape of the liquid meniscus inside a complicated 3D wick structure. It is shown that this liquid shape can drastically affect the wick's thermal resistance. In addition, knowledge of the liquid meniscus shape allows for the computation of key parameters such as permeability and capillary pressure which are necessary for predicting the maximum heat flux. After the model is validated by comparison to experimental results, the wick structure is optimized so as to decrease overall wick thermal resistance and increase the maximum capillary limited heat flux before dryout. The optimized structures are then fabricated out of both silicon and copper using both traditional and novel micro-fabrication techniques. The wicks are made super-hydrophilic using chemical and thermal oxidation schemes. A sintered monolayer of Cu particles is fabricated and analyzed as well. The fabricated wick structures are experimentally tested for their heat transfer performance inside a well controlled copper vacuum chamber. Heat fluxes as high as 170 W/cm2 are realized for Cu wicks with structure heights of 100 μm. The structures optimized for both minimized thermal resistance and high liquid supply ability perform much better than their non-optimized counterparts. The super-hydrophilic oxidation scheme is found to drastically increase the maximum heat flux and decrease thermal resistance. This research provides key insights as to how to optimize heat pipe structures to minimize thermal resistance and increase maximum heat flux. These thin wick structures can also be combined with a thicker liquid supply layer so that thin, low-resistance evaporator layers can be constructed and higher heat fluxes realized. The work presented in this thesis can be used to aid in the development of high-performance phase change thermal spreaders, allowing for temperature control of a variety of powerful electronic components.
The Potential for Volcanism and Tectonics on Extrasolar Terrestrial Planets
NASA Astrophysics Data System (ADS)
Quick, Lynnae C.; Roberge, Aki
2018-01-01
JWST and other next-generation space telescopes (e.g., LUVOIR, HabEx, & OST) will usher in a new era of exoplanet characterization that may lead to the identification of habitable, Earth-like worlds. Like the planets and moons in our solar system, the surfaces and interiors of terrestrial exoplanets may be shaped by volcanism and tectonics (Fu et al., 2010; van Summeren et al., 2011; Henning and Hurford, 2014). The magnitude and rate of occurrence of these dynamic processes can either facilitate or preclude the existence of habitable environments. Likewise, it has been suggested that detections of cryovolcanism on icy exoplanets, in the form of geyser-like plumes, could indicate the presence of subsurface oceans (Quick et al., 2017).The presence of volcanic and tectonic activity on solid exoplanets will be intimately linked to planet size and heat output in the form of radiogenic and/or tidal heating. In order to place bounds on the potential for such activity, we estimated the heat output of a variety of exoplanets observed by Kepler. We considered planets whose masses and radii range from 0.067 ME (super-Ganymede) to 8 ME (super-Earth), and 0.5 to 1.8 RE, respectively. These heat output estimates were then compared to those of planets, moons, and dwarf planets in our solar system for which we have direct evidence for the presence/absence of volcanic and tectonic activity. After exoplanet heating rates were estimated, depths to putative molten layers in their interiors were also calculated. For planets such as TRAPPIST-1h, whose densities, orbital parameters, and effective temperatures are consistent with the presence of significant amounts of H2O (Luger et al., 2017), these calculations reveal the depths to internal oceans which may serve as habitable niches beneath surface ice layers.
XRF inductive bead fusion and PLC based control system
NASA Astrophysics Data System (ADS)
Zhu, Jin-hong; Wang, Ying-jie; Shi, Hong-xin; Chen, Qing-ling; Chen, Yu-xi
2009-03-01
In order to ensure high-quality X-ray fluorescence spectrometry (XRF) analysis, an inductive bead fusion machine was developed. The prototype consists of super-audio IGBT induction heating power supply, rotation and swing mechanisms, and programmable logic controller (PLC). The system can realize sequence control, mechanical movement control, output current and temperature control. Experimental results show that the power supply can operate at an ideal quasi-resonant state, in which the expected power output and the required temperature can be achieved for rapid heating and the uniform formation of glass beads respectively.
Super-Earths as Failed Cores in Orbital Migration Traps
NASA Astrophysics Data System (ADS)
Hasegawa, Yasuhiro
2016-11-01
I explore whether close-in super-Earths were formed as rocky bodies that failed to grow fast enough to become the cores of gas giants before the natal protostellar disk dispersed. I model the failed cores’ inward orbital migration in the low-mass or type I regime to stopping points at distances where the tidal interaction with the protostellar disk applies zero net torque. The three kinds of migration traps considered are those due to the dead zone's outer edge, the ice line, and the transition from accretion to starlight as the disk's main heat source. As the disk disperses, the traps move toward final positions near or just outside 1 au. Planets at this location exceeding about 3 M ⊕ open a gap, decouple from their host traps, and migrate inward in the high-mass or type II regime to reach the vicinity of the star. I synthesize the population of planets that formed in this scenario, finding that a fraction of the observed super-Earths could have been failed cores. Most super-Earths that formed this way have more than 4 M ⊕, so their orbits when the disks dispersed were governed by type II migration. These planets have solid cores surrounded by gaseous envelopes. Their subsequent photoevaporative mass loss is most effective for masses originally below about 6 M ⊕. The failed core scenario suggests a division of the observed super-Earth mass-radius diagram into five zones according to the inferred formation history.
NASA Astrophysics Data System (ADS)
Tahir, N. A.; Weick, H.; Iwase, H.; Geissel, H.; Hoffmann, D. H. H.; Kindler, B.; Lommel, B.; Radon, T.; Münzenberg, G.; Shutov, A.; Sümmerer, K.; Winkler, M.
2005-06-01
A superconducting fragment separator (Super-FRS) is being designed for the production and separation of radioactive isotopes at the future FAIR (Facility for Antiprotons and Ion Research) facility at Darmstadt. This paper discusses various aspects and requirements for the high-power production target that will be used in the Super-FRS experiments. The production target must survive over an extended period of time as it will be used during the course of many experiments. The specific power deposited by the high intensity beam that will be generated at the future FAIR facility will be high enough to destroy the target in most of the cases as a result of a single shot from the new heavy ion synchrotrons SIS100/300. By using an appropriate beam intensity and focal spot parameters, the target would survive after being irradiated once. However, the heat should be dissipated efficiently before the same target area is irradiated again. We have considered a wheel shaped solid carbon target that rotates around its axis so that different areas of the target are irradiated successively. This allows for cooling of the beam heated region by thermal conduction before the same part of the target is irradiated a second time. Another attractive option is to use a liquid jet target at the Super-FRS. First calculations of a possible liquid lithium target are also presented in this paper. One of the advantages of using lithium as a target is that it will survive even if one uses a smaller focal spot, which has half the area of that used for a solid carbon target. This will significantly improve the isotope resolution. A similar problem associated with these experiments will be safe deposition of the beam energy in a beamdump after its interaction with the production target. We also present calculations to study the suitability of a proposed beamdump.
Thermal Properties of West Siberian Sediments in Application to Basin and Petroleum Systems Modeling
NASA Astrophysics Data System (ADS)
Romushkevich, Raisa; Popov, Evgeny; Popov, Yury; Chekhonin, Evgeny; Myasnikov, Artem; Kazak, Andrey; Belenkaya, Irina; Zagranovskaya, Dzhuliya
2016-04-01
Quality of heat flow and rock thermal property data is the crucial question in basin and petroleum system modeling. A number of significant deviations in thermal conductivity values were observed during our integral geothermal study of West Siberian platform reporting that the corrections should be carried out in basin models. The experimental data including thermal anisotropy and heterogeneity measurements were obtained along of more than 15 000 core samples and about 4 500 core plugs. The measurements were performed in 1993-2015 with the optical scanning technique within the Continental Super-Deep Drilling Program (Russia) for scientific super-deep well Tyumenskaya SG-6, parametric super-deep well Yen-Yakhinskaya, and deep well Yarudeyskaya-38 as well as for 13 oil and gas fields in the West Siberia. Variations of the thermal conductivity tensor components in parallel and perpendicular direction to the layer stratification (assessed for 2D anisotropy model of the rock studied), volumetric heat capacity and thermal anisotropy coefficient values and average values of the thermal properties were the subject of statistical analysis for the uppermost deposits aged by: T3-J2 (200-165 Ma); J2-J3 (165-150 Ma); J3 (150-145 Ma); K1 (145-136 Ma); K1 (136-125 Ma); K1-K2 (125-94 Ma); K2-Pg+Ng+Q (94-0 Ma). Uncertainties caused by deviations of thermal conductivity data from its average values were found to be as high as 45 % leading to unexpected errors in the basin heat flow determinations. Also, the essential spatial-temporal variations in the thermal rock properties in the study area is proposed to be taken into account in thermo-hydrodynamic modeling of hydrocarbon recovery with thermal methods. The research work was done with financial support of the Russian Ministry of Education and Science (unique identification number RFMEFI58114X0008).
Digestibility of solvent-treated Jatropha curcas kernel by broiler chickens in Senegal.
Nesseim, Thierry Daniel Tamsir; Dieng, Abdoulaye; Mergeai, Guy; Ndiaye, Saliou; Hornick, Jean-Luc
2015-12-01
Jatropha curcas is a drought-resistant shrub belonging to the Euphorbiaceae family. The kernel contains approximately 60 % lipid in dry matter, and the meal obtained after oil extraction could be an exceptional source of protein for family poultry farming, in the absence of curcin and, especially, some diterpene derivatives phorbol esters that are partially lipophilic. The nutrient digestibility of J. curcas kernel meal (JKM), obtained after partial physicochemical deoiling was thus evaluated in broiler chickens. Twenty broiler chickens, 6 weeks old, were maintained in individual metabolic cages and divided into four groups of five animals, according to a 4 × 4 Latin square design where deoiled JKM was incorporated into grinded corn at 0, 4, 8, and 12 % levels (diets 0, 4, 8, and 12 J), allowing measurement of nutrient digestibility by the differential method. The dry matter (DM) and organic matter (OM) digestibility of diets was affected to a low extent by JKM (85 and 86 % in 0 J and 81 % in 12 J, respectively) in such a way that DM and OM digestibility of JKM was estimated to be close to 50 %. The ether extract (EE) digestibility of JKM remained high, at about 90 %, while crude protein (CP) and crude fiber (CF) digestibility were largely impacted by JKM, with values closed to 40 % at the highest levels of incorporation. J. curcas kernel presents various nutrient digestibilities but has adverse effects on CP and CF digestibility of the diet. The effects of an additional heat or biological treatment on JKM remain to be assessed.
Hanft, J M; Jones, R J
1986-06-01
Kernels cultured in vitro were induced to abort by high temperature (35 degrees C) and by culturing six kernels/cob piece. Aborting kernels failed to enter a linear phase of dry mass accumulation and had a final mass that was less than 6% of nonaborting field-grown kernels. Kernels induced to abort by high temperature failed to synthesize starch in the endosperm and had elevated sucrose concentrations and low fructose and glucose concentrations in the pedicel during early growth compared to nonaborting kernels. Kernels induced to abort by high temperature also had much lower pedicel soluble acid invertase activities than did nonaborting kernels. These results suggest that high temperature during the lag phase of kernel growth may impair the process of sucrose unloading in the pedicel by indirectly inhibiting soluble acid invertase activity and prevent starch synthesis in the endosperm. Kernels induced to abort by culturing six kernels/cob piece had reduced pedicel fructose, glucose, and sucrose concentrations compared to kernels from field-grown ears. These aborting kernels also had a lower pedicel soluble acid invertase activity compared to nonaborting kernels from the same cob piece and from field-grown ears. The low invertase activity in pedicel tissue of the aborting kernels was probably caused by a lack of substrate (sucrose) for the invertase to cleave due to the intense competition for available assimilates. In contrast to kernels cultured at 35 degrees C, aborting kernels from cob pieces containing all six kernels accumulated starch in a linear fashion. These results indicate that kernels cultured six/cob piece abort because of an inadequate supply of sugar and are similar to apical kernels from field-grown ears that often abort prior to the onset of linear growth.
Radiative Heat Transfer in Finite Cylindrical Enclosures with Nonhomogeneous Participating Media
NASA Technical Reports Server (NTRS)
Hsu, Pei-Feng; Ku, Jerry C.
1994-01-01
Results of a numerical solution for radiative heat transfer in homogeneous and nonhomogeneous participating media are presented. The geometry of interest is a finite axisymmetric cylindrical enclosure. The integral formulation for radiative transport is solved by the YIX method. A three-dimensional solution scheme is applied to two-dimensional axisymmetric geometry to simplify kernel calculations and to avoid difficulties associated with treating boundary conditions. As part of the effort to improve modeling capabilities for turbulent jet diffusion flames, predicted distributions for flame temperature and soot volume fraction are used to calculate radiative heat transfer from soot particles in such flames. It is shown that the nonhomogeneity of radiative property has very significant effects. The peak value of the divergence of radiative heat flux could be underestimated by 2 factor of 7 if a mean homogeneous radiative property is used. Since recent studies have shown that scattering by soot agglomerates is significant in flames, the effect of magnitude of scattering is also investigated and found to be nonnegligible.
Tilles, Paulo F C; Petrovskii, Sergei V
2016-07-01
Patterns of individual animal movement have been a focus of considerable attention recently. Of particular interest is a question how different macroscopic properties of animal dispersal result from the stochastic processes occurring on the microscale of the individual behavior. In this paper, we perform a comprehensive analytical study of a model where the animal changes the movement velocity as a result of its behavioral response to environmental stochasticity. The stochasticity is assumed to manifest itself through certain signals, and the animal modifies its velocity as a response to the signals. We consider two different cases, i.e. where the change in the velocity is or is not correlated to its current value. We show that in both cases the early, transient stage of the animal movement is super-diffusive, i.e. ballistic. The large-time asymptotic behavior appears to be diffusive in the uncorrelated case but super-ballistic in the correlated case. We also calculate analytically the dispersal kernel of the movement and show that, whilst it converge to a normal distribution in the large-time limit, it possesses a fatter tail during the transient stage, i.e. at early and intermediate time. Since the transients are known to be highly relevant in ecology, our findings may indicate that the fat tails and superdiffusive spread that are sometimes observed in the movement data may be a feature of the transitional dynamics rather than an inherent property of the animal movement.
Villa-Rojas, Rossana; Tang, Juming; Wang, Shaojin; Gao, Mengxiang; Kang, Dong-Hyun; Mah, Jae-Hyung; Gray, Peter; Sosa-Morales, Maria Elena; López-Malo, Aurelio
2013-01-01
Salmonellosis outbreaks related to consumption of raw almonds have encouraged the scientific community to study the inactivation kinetics of pathogens in this dry commodity. However, the low moisture content of the product presents a challenge for thermal control, because the time required to achieve the desired thermal inactivation of microorganisms increases sharply with reduced moisture content and water activity. In this study, we explored and modeled the heat inactivation of Salmonella enterica serovar Enteritidis PT 30 in almond cultivar 'Nonpareil' kernel flour at four water activity (a(w)) values (0.601, 0.720, 0.888, and 0.946) using four temperatures for each a(w). The results showed that the inactivation was well fitted by both Weibull distribution (R(2) = 0.93 to 1.00) and first-order kinetics (R(2) = 0.82 to 0.96). At higher a(w) values, the rate of inactivation increased and less time was needed to achieve the required population reduction. These results suggest that, to avoid deterioration of product quality, shorter process times at lower temperatures may be used to achieve desired inactivation levels of Salmonella Enteritidis PT 30 by simply increasing the moisture content of almonds. These goals could be achieved with the use of existing procedures already practiced by the food industry, such as washing or prewetting scalding before heat inactivation.
Hanft, Jonathan M.; Jones, Robert J.
1986-01-01
Kernels cultured in vitro were induced to abort by high temperature (35°C) and by culturing six kernels/cob piece. Aborting kernels failed to enter a linear phase of dry mass accumulation and had a final mass that was less than 6% of nonaborting field-grown kernels. Kernels induced to abort by high temperature failed to synthesize starch in the endosperm and had elevated sucrose concentrations and low fructose and glucose concentrations in the pedicel during early growth compared to nonaborting kernels. Kernels induced to abort by high temperature also had much lower pedicel soluble acid invertase activities than did nonaborting kernels. These results suggest that high temperature during the lag phase of kernel growth may impair the process of sucrose unloading in the pedicel by indirectly inhibiting soluble acid invertase activity and prevent starch synthesis in the endosperm. Kernels induced to abort by culturing six kernels/cob piece had reduced pedicel fructose, glucose, and sucrose concentrations compared to kernels from field-grown ears. These aborting kernels also had a lower pedicel soluble acid invertase activity compared to nonaborting kernels from the same cob piece and from field-grown ears. The low invertase activity in pedicel tissue of the aborting kernels was probably caused by a lack of substrate (sucrose) for the invertase to cleave due to the intense competition for available assimilates. In contrast to kernels cultured at 35°C, aborting kernels from cob pieces containing all six kernels accumulated starch in a linear fashion. These results indicate that kernels cultured six/cob piece abort because of an inadequate supply of sugar and are similar to apical kernels from field-grown ears that often abort prior to the onset of linear growth. PMID:16664846
Out-of-Sample Extensions for Non-Parametric Kernel Methods.
Pan, Binbin; Chen, Wen-Sheng; Chen, Bo; Xu, Chen; Lai, Jianhuang
2017-02-01
Choosing suitable kernels plays an important role in the performance of kernel methods. Recently, a number of studies were devoted to developing nonparametric kernels. Without assuming any parametric form of the target kernel, nonparametric kernel learning offers a flexible scheme to utilize the information of the data, which may potentially characterize the data similarity better. The kernel methods using nonparametric kernels are referred to as nonparametric kernel methods. However, many nonparametric kernel methods are restricted to transductive learning, where the prediction function is defined only over the data points given beforehand. They have no straightforward extension for the out-of-sample data points, and thus cannot be applied to inductive learning. In this paper, we show how to make the nonparametric kernel methods applicable to inductive learning. The key problem of out-of-sample extension is how to extend the nonparametric kernel matrix to the corresponding kernel function. A regression approach in the hyper reproducing kernel Hilbert space is proposed to solve this problem. Empirical results indicate that the out-of-sample performance is comparable to the in-sample performance in most cases. Experiments on face recognition demonstrate the superiority of our nonparametric kernel method over the state-of-the-art parametric kernel methods.
7 CFR 810.1202 - Definition of other terms.
Code of Federal Regulations, 2010 CFR
2010-01-01
... kernels. Kernels, pieces of rye kernels, and other grains that are badly ground-damaged, badly weather.... Also, underdeveloped, shriveled, and small pieces of rye kernels removed in properly separating the...-damaged kernels. Kernels, pieces of rye kernels, and other grains that are materially discolored and...
Chen, Jiafa; Zhang, Luyan; Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang
2016-01-01
Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed.
Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang
2016-01-01
Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed. PMID:27070143
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
... specific to the Carrier Super Modular Multi-System (SMMSi) variable refrigerant flow (VRF) multi-split... in this notice to test and rate its SMMSi VRF multi-split commercial heat pumps. DATES: This Decision... its SMMSi VRF multi-split products. Carrier must use the alternate test procedure provided in this...
NASA Astrophysics Data System (ADS)
Mahmoudian, A.; Scales, W. A.; Watkins, B. J.; Bernhardt, P. A.; Isham, B.; Vega-Cancel, O.; Ruohoniemi, J. M.
2017-01-01
This paper presents data from two campaigns at the High Frequency Active Auroral Research Program facility (HAARP) in 2011 and 2012. The measurements of stimulated radio emissions (often called stimulated electromagnetic emissions or SEE) were conducted 15 km from the HAARP site. The potential of Narrowband SEE (NSEE) as a new diagnostic tool to monitor artificial irregularities excited during HF-pump heating of the ionosphere is the main goal of this paper. This has been investigated using well established diagnostics including the Modular UHF Ionospheric Radar (MUIR) and Kodiak SuperDARN radars as well as Wideband SEE (WSEE). The measured data using these three diagnostics were compared to characterize the ionospheric parameters and study the plasma irregularities generated in the interaction region. Variation of the wideband/narrowband SEE features, SuperDARN echoes, and HF-enhanced ion lines (EHIL) were studied with pump power variation, pump frequency stepping near the third electron gyro-frequency (3fce) as well as changing beam angle relative to the magnetic zenith. In particular, electrostatic plasma waves and associated irregularities excited near the reflection resonance layer as well as the upper-hybrid resonance layer are investigated. The time evolution and growth rate of these irregularities are studied using the experimental observations. Close alignment of narrowband SEE (NSEE) with wideband SEE (WSEE) and EHIL was observed. SuperDARN radar echoes and WSEE also showed alignment as in previous investigations. Correlations between these three measurements underscore potential diagnostics by utilizing the NSEE spectrum to estimate ionospheric parameters such as electron temperature.
A map of the large day-night temperature gradient of a super-Earth exoplanet.
Demory, Brice-Olivier; Gillon, Michael; de Wit, Julien; Madhusudhan, Nikku; Bolmont, Emeline; Heng, Kevin; Kataria, Tiffany; Lewis, Nikole; Hu, Renyu; Krick, Jessica; Stamenković, Vlada; Benneke, Björn; Kane, Stephen; Queloz, Didier
2016-04-14
Over the past decade, observations of giant exoplanets (Jupiter-size) have provided key insights into their atmospheres, but the properties of lower-mass exoplanets (sub-Neptune) remain largely unconstrained because of the challenges of observing small planets. Numerous efforts to observe the spectra of super-Earths--exoplanets with masses of one to ten times that of Earth--have so far revealed only featureless spectra. Here we report a longitudinal thermal brightness map of the nearby transiting super-Earth 55 Cancri e (refs 4, 5) revealing highly asymmetric dayside thermal emission and a strong day-night temperature contrast. Dedicated space-based monitoring of the planet in the infrared revealed a modulation of the thermal flux as 55 Cancri e revolves around its star in a tidally locked configuration. These observations reveal a hot spot that is located 41 ± 12 degrees east of the substellar point (the point at which incident light from the star is perpendicular to the surface of the planet). From the orbital phase curve, we also constrain the nightside brightness temperature of the planet to 1,380 ± 400 kelvin and the temperature of the warmest hemisphere (centred on the hot spot) to be about 1,300 kelvin hotter (2,700 ± 270 kelvin) at a wavelength of 4.5 micrometres, which indicates inefficient heat redistribution from the dayside to the nightside. Our observations are consistent with either an optically thick atmosphere with heat recirculation confined to the planetary dayside, or a planet devoid of atmosphere with low-viscosity magma flows at the surface.
A map of the large day-night temperature gradient of a super-Earth exoplanet
NASA Astrophysics Data System (ADS)
Demory, Brice-Olivier; Gillon, Michael; de Wit, Julien; Madhusudhan, Nikku; Bolmont, Emeline; Heng, Kevin; Kataria, Tiffany; Lewis, Nikole; Hu, Renyu; Krick, Jessica; Stamenković, Vlada; Benneke, Björn; Kane, Stephen; Queloz, Didier
2016-04-01
Over the past decade, observations of giant exoplanets (Jupiter-size) have provided key insights into their atmospheres, but the properties of lower-mass exoplanets (sub-Neptune) remain largely unconstrained because of the challenges of observing small planets. Numerous efforts to observe the spectra of super-Earths—exoplanets with masses of one to ten times that of Earth—have so far revealed only featureless spectra. Here we report a longitudinal thermal brightness map of the nearby transiting super-Earth 55 Cancri e (refs 4, 5) revealing highly asymmetric dayside thermal emission and a strong day-night temperature contrast. Dedicated space-based monitoring of the planet in the infrared revealed a modulation of the thermal flux as 55 Cancri e revolves around its star in a tidally locked configuration. These observations reveal a hot spot that is located 41 ± 12 degrees east of the substellar point (the point at which incident light from the star is perpendicular to the surface of the planet). From the orbital phase curve, we also constrain the nightside brightness temperature of the planet to 1,380 ± 400 kelvin and the temperature of the warmest hemisphere (centred on the hot spot) to be about 1,300 kelvin hotter (2,700 ± 270 kelvin) at a wavelength of 4.5 micrometres, which indicates inefficient heat redistribution from the dayside to the nightside. Our observations are consistent with either an optically thick atmosphere with heat recirculation confined to the planetary dayside, or a planet devoid of atmosphere with low-viscosity magma flows at the surface.
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2014 CFR
2014-01-01
... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2011 CFR
2011-01-01
... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2012 CFR
2012-01-01
... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2013 CFR
2013-01-01
... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...
Surface engineering of low enriched uranium-molybdenum
NASA Astrophysics Data System (ADS)
Leenaers, A.; Van den Berghe, S.; Detavernier, C.
2013-09-01
Recent attempts to qualify the LEU(Mo) dispersion plate fuel with Si addition to the Al matrix up to high power and burn-up have not yet been successful due to unacceptable fuel plate swelling at a local burn-up above 60% 235U. The root cause of the failures is clearly related directly to the formation of the U(Mo)-Al(Si) interaction layer. Excessive formation of these layers around the fuel kernels severely weakens the local mechanical integrity and eventually leads to pillowing of the plate. In 2008, SCK·CEN has launched the SELENIUM U(Mo) dispersion fuel development project in an attempt to find an alternative way to reduce the interaction between U(Mo) fuel kernels and the Al matrix to a significantly low level: by applying a coating on the U(Mo) kernels. Two fuel plates containing 8gU/cc U(Mo) coated with respectively 600 nm Si and 1000 nm ZrN in a pure Al matrix were manufactured. These plates were irradiated in the BR2 reactor up to a maximum heat flux of 470 W/cm2 until a maximum local burn-up of approximately 70% 235U (˜50% plate average) was reached. Awaiting the PIE results, the advantages of applying a coating are discussed in this paper through annealing experiments and TRIM (the Transport of Ions in Matter) calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rank
1942-03-26
When the oven was disassembled after the test, small kernels of porous material were found in both the upper and lower portion of the oven to a depth of about 2 m. The kernels were of various sizes up to 4 mm. From 1,300 metric ..cap alpha..ons of dry coal, there were 330 kg or the residue of 0.025% of the coal input. These kernels brought to mind deposits of spheroidal material termed ''caviar'', since they had rounded tops. However, they were irregularly long. After multiaxis micrography, no growth rings were found as in Leuna's lignite caviar. So, it wasmore » a question of small particles consisting almost totally of ash. The majority of the composition was Al, Fe, Na, silicic acid, S and Cl. The sulfur was found to be in sulfide form and Cl in a volatile form. The remains did not turn to caviar form since the CaO content was slight. The Al, Fe, Na, silicic acid, S and Cl were concentrated in comparison to coal ash and originate apparently from the catalysts (FeSO/sub 4/, Bayermasse, and Na/sub 2/S). It was notable that the Cl content was so high. 2 graphs, 1 table« less
Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong
2017-06-19
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.
Classification With Truncated Distance Kernel.
Huang, Xiaolin; Suykens, Johan A K; Wang, Shuning; Hornegger, Joachim; Maier, Andreas
2018-05-01
This brief proposes a truncated distance (TL1) kernel, which results in a classifier that is nonlinear in the global region but is linear in each subregion. With this kernel, the subregion structure can be trained using all the training data and local linear classifiers can be established simultaneously. The TL1 kernel has good adaptiveness to nonlinearity and is suitable for problems which require different nonlinearities in different areas. Though the TL1 kernel is not positive semidefinite, some classical kernel learning methods are still applicable which means that the TL1 kernel can be directly used in standard toolboxes by replacing the kernel evaluation. In numerical experiments, the TL1 kernel with a pregiven parameter achieves similar or better performance than the radial basis function kernel with the parameter tuned by cross validation, implying the TL1 kernel a promising nonlinear kernel for classification tasks.
Nanoplasmon-enabled macroscopic thermal management
Jonsson, Gustav Edman; Miljkovic, Vladimir; Dmitriev, Alexandre
2014-01-01
In numerous applications of energy harvesting via transformation of light into heat the focus recently shifted towards highly absorptive nanoplasmonic materials. It is currently established that noble metals-based absorptive plasmonic platforms deliver significant light-capturing capability and can be viewed as super-absorbers of optical radiation. Naturally, approaches to the direct experimental probing of macroscopic temperature increase resulting from these absorbers are welcomed. Here we derive a general quantitative method of characterizing heat-generating properties of optically absorptive layers via macroscopic thermal imaging. We further monitor macroscopic areas that are homogeneously heated by several degrees with nanostructures that occupy a mere 8% of the surface, leaving it essentially transparent and evidencing significant heat generation capability of nanoplasmon-enabled light capture. This has a direct bearing to a large number of applications where thermal management is crucial. PMID:24870613
ON THE VIGOR OF MANTLE CONVECTION IN SUPER-EARTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyagoshi, Takehiro; Tachinami, Chihiro; Kameyama, Masanori
2014-01-01
Numerical models are presented to clarify how adiabatic compression affects thermal convection in the mantle of super-Earths ten times the Earth's mass. The viscosity strongly depends on temperature, and the Rayleigh number is much higher than that of the Earth's mantle. The strong effect of adiabatic compression reduces the activity of mantle convection; hot plumes ascending from the bottom of the mantle lose their thermal buoyancy in the middle of the mantle owing to adiabatic decompression, and do not reach the surface. A thick lithosphere, as thick as 0.1 times the depth of the mantle, develops along the surface boundary, and themore » efficiency of convective heat transport measured by the Nusselt number is reduced by a factor of about four compared with the Nusselt number for thermal convection of incompressible fluid. The strong effect of adiabatic decompression is likely to inhibit hot spot volcanism on the surface and is also likely to affect the thermal history of the mantle, and hence, the generation of magnetic field in super-Earths.« less
NASA Technical Reports Server (NTRS)
1995-01-01
The Apollo and subsequent spacecraft have had highly effective radiation barriers; made of aluminized polymer film, they bar or let in heat to maintain consistent temperatures inside. Tech 2000, formerly Quantum International Corporation used the NASA technology in its insulating materials, Super "Q" Radiant Barrier, for home, industry and mobile applications. The insulation combines industrial aluminum foil overlaid around a core of another material, usually propylene or mylar. The outer layer reflects up to 97 percent of heat; the central layer creates a thermal break in the structure and thus allows low radiant energy emission. The Quantum Cool Wall, used in cars and trucks, takes up little space while providing superior insulation, thus reducing spoilage and costs. The panels can also dampen sound and engine, exhaust and solar heat.
Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong
2017-01-01
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification. PMID:28629202
Exact RG flow equations and quantum gravity
NASA Astrophysics Data System (ADS)
de Alwis, S. P.
2018-03-01
We discuss the different forms of the functional RG equation and their relation to each other. In particular we suggest a generalized background field version that is close in spirit to the Polchinski equation as an alternative to the Wetterich equation to study Weinberg's asymptotic safety program for defining quantum gravity, and argue that the former is better suited for this purpose. Using the heat kernel expansion and proper time regularization we find evidence in support of this program in agreement with previous work.
Gabor-based kernel PCA with fractional power polynomial models for face recognition.
Liu, Chengjun
2004-05-01
This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.
A multi-label learning based kernel automatic recommendation method for support vector machine.
Zhang, Xueying; Song, Qinbao
2015-01-01
Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance.
A Multi-Label Learning Based Kernel Automatic Recommendation Method for Support Vector Machine
Zhang, Xueying; Song, Qinbao
2015-01-01
Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance. PMID:25893896
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Edible kernel. 981.7 Section 981.7 Agriculture... Regulating Handling Definitions § 981.7 Edible kernel. Edible kernel means a kernel, piece, or particle of almond kernel that is not inedible. [41 FR 26852, June 30, 1976] ...
Kernel K-Means Sampling for Nyström Approximation.
He, Li; Zhang, Hong
2018-05-01
A fundamental problem in Nyström-based kernel matrix approximation is the sampling method by which training set is built. In this paper, we suggest to use kernel -means sampling, which is shown in our works to minimize the upper bound of a matrix approximation error. We first propose a unified kernel matrix approximation framework, which is able to describe most existing Nyström approximations under many popular kernels, including Gaussian kernel and polynomial kernel. We then show that, the matrix approximation error upper bound, in terms of the Frobenius norm, is equal to the -means error of data points in kernel space plus a constant. Thus, the -means centers of data in kernel space, or the kernel -means centers, are the optimal representative points with respect to the Frobenius norm error upper bound. Experimental results, with both Gaussian kernel and polynomial kernel, on real-world data sets and image segmentation tasks show the superiority of the proposed method over the state-of-the-art methods.
NASA Technical Reports Server (NTRS)
Frederking, T. H. K.
1989-01-01
In the area of basic mechanisms of helium heat transfer and related influence on super-conducting magnet stability, thermal boundary conditions are important constraints. Characteristic lengths are considered along with other parameters of the superconducting composite-coolant system. Based on helium temperature range developments, limiting critical current densities are assessed at low fields for high transition temperature superconductors.
DOE Zero Energy Ready Home Case Study: Alliance Green Builders, Casa Aguila
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacific Northwest National Laboratory
Alliance Green Builders built this 3,129-ft2 home in the hills above Ramona, California, to the high-performance criteria of the DOE Zero Energy Ready Home (ZERH) program. The home should perform far better than net zero thanks to a super-efficient building shell, a wind turbine, three suntracking solar photovoltaic arrays, and solar thermal water heating.
NASA Astrophysics Data System (ADS)
Wunderman, Irwin; Siegel, Edward Carl-Ludwig; Lewis, Thomas; Young, Frederic; Smith, Adolph; Dresschhoff-Zeller, Gieselle
2013-03-01
SHMUTZ: ``wet-graphite''Scheike-....[Adv.Mtls.(7/16/12)]hyper/super-SCHMUTZ-conductor(S!!!) = ``wet''(?)-``graphite''(?) = ``graphene''(?) = water(?) = hydrogen(?) =ultra-heavy proton-bands(???) = ...(???) claimed room/high-Tc/high-Jc superconductOR ``p''-``wave''/ BAND(!!!) superconductIVITY and actualized/ instantiated MgB2 high-Tc superconductors and their BCS- superconductivity: Tc Siegel[ICMAO(77);JMMM 7,190(78)] connection to SiegelJ.Nonxline-Sol.40,453(80)] disorder/amorphous-superconductivity in nano-powders mechanical bulk/shear(?)-moduli/hardness: proton-irradiated diamond, powders TiB2, TiC,{Siegel[Semis. & Insuls.5:39,47, 62 (79)])-...``VS''/concommitance with Siegel[Phys.Stat.Sol.(a)11,45(72)]-Dempsey [Phil.Mag. 8,86,285(63)]-Overhauser-(Little!!!)-Seitz-Smith-Zeller-Dreschoff-Antonoff-Young-...proton-``irradiated''/ implanted/ thermalized-in-(optimal: BOTH heat-capacity/heat-sink & insulator/maximal dielectric-constant) diamond: ``VS'' ``hambergite-borate-mineral transformable to Overhauser optimal-high-Tc-LiBD2 in Overhauser-(NW-periodic-table)-Land: CO2/CH4-ETERNAL-sequestration by-product: WATER!!!: physics lessons from
Anomalous Epitaxial Growth in Thermally Sprayed YSZ and LZ Splats
NASA Astrophysics Data System (ADS)
Chen, Lin; Yang, Guan-Jun
2017-08-01
Thermally sprayed coatings are essentially layered materials, and lamellar interfaces are of great importance to coatings' performances. In the present study, to investigate the microstructures and defect features at thermally sprayed coating interfaces, homoepitaxial 8 mol.% yttria-stabilized zirconia (YSZ) and heteroepitaxial lanthanum zirconia (LZ) films were fabricated. The epitaxial interfaces were examined by high-resolution transmission electron microscope (HR-TEM) in detail. As a result, we report, for the first time, an anomalous incommensurate homoepitaxial growth with mismatch-induced dislocations in thermally sprayed YSZ splats to create a homointerface. We also find the anomalous heteroepitaxial growth in thermally sprayed LZ splats. The mechanism of the anomalous incommensurate growth was analyzed in detail. Essentially, it is a pseudo-heteroepitaxy because of the lattice mismatch between the film and the locally heated substrate, as the locally heated substrate is significantly strained by its cold surroundings. Moreover, the super-high-density dislocations were found in the interfacial region, which resulted from sufficient thermal fluctuations and extremely rapid cooling rates. Both the anomalous lattice mismatch and super-high-density dislocations lead to weak interfaces and violent cracking in thermally sprayed coatings. These were also the essential differences between the conventional and the present epitaxy by thermal spray technique.
NASA Astrophysics Data System (ADS)
Narayan, Jagdish; Bhaumik, Anagh
2016-04-01
We review the discovery of new phases of carbon (Q-carbon) and BN (Q-BN) and address critical issues related to direct conversion of carbon into diamond and hBN into cBN at ambient temperatures and pressures in air without any need for catalyst and the presence of hydrogen. The Q-carbon and Q-BN are formed as a result of quenching from super undercooled state by using high-power nanosecond laser pulses. We discuss the equilibrium phase diagram ( P vs T) of carbon, and show that by rapid quenching, kinetics can shift thermodynamic graphite/diamond/liquid carbon triple point from 5000 K/12 GPa to super undercooled carbon at atmospheric pressure in air. Similarly, the hBN-cBN-Liquid triple point is shifted from 3500 K/9.5 GPa to as low as 2800 K and atmospheric pressure. It is shown that nanosecond laser heating of amorphous carbon and nanocrystalline BN on sapphire, glass, and polymer substrates can be confined to melt in a super undercooled state. By quenching this super undercooled state, we have created a new state of carbon (Q-carbon) and BN (Q-BN) from which nanocrystals, microcrystals, nanoneedles, microneedles, and thin films are formed depending upon the nucleation and growth times allowed and the presence of growth template. The large-area epitaxial diamond and cBN films are formed, when appropriate planar matching or lattice matching template is provided for growth from super undercooled liquid. The Q-phases have unique atomic structure and bonding characteristics as determined by high-resolution SEM and backscatter diffraction, HRTEM, STEM-Z, EELS, and Raman spectroscopy, and exhibit new and improved mechanical hardness, electrical conductivity, and chemical and physical properties, including room-temperature ferromagnetism and enhanced field emission. The Q-carbon exhibits robust bulk ferromagnetism with estimated Curie temperature of about 500 K and saturation magnetization value of 20 emu g-1. We have also deposited diamond on cBN by using a novel pulsed laser evaporation of carbon and obtained cBN/diamond composites, where cBN acts as template for diamond growth. Both diamond and cBN grown from super undercooled liquid can be alloyed with both p- and n-type dopants. This process allows carbon to diamond and hBN to cBN conversions and formation of useful nanostructures and microstructures at ambient temperatures in air at atmospheric pressure on practical and heat-sensitive substrates in a controlled way without need for any catalysts and hydrogen to stabilize sp3 bonding for diamond and cBN phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikoma, M.; Hori, Y., E-mail: ikoma@eps.s.u-tokyo.ac.jp, E-mail: yasunori.hori@nao.ac.jp
2012-07-01
Motivated by recent discoveries of low-density super-Earths with short orbital periods, we have investigated in situ accretion of H-He atmospheres on rocky bodies embedded in dissipating warm disks, by simulating quasi-static evolution of atmospheres that connect to the ambient disk. We have found that the atmospheric evolution has two distinctly different outcomes, depending on the rocky body's mass: while the atmospheres on massive rocky bodies undergo runaway disk-gas accretion, those on light rocky bodies undergo significant erosion during disk dispersal. In the atmospheric erosion, the heat content of the rocky body that was previously neglected plays an important role. Wemore » have also realized that the atmospheric mass is rather sensitive to disk temperature in the mass range of interest in this study. Our theory is applied to recently detected super-Earths orbiting Kepler-11 to examine the possibility that the planets are rock-dominated ones with relatively thick H-He atmospheres. The application suggests that the in situ formation of the relatively thick H-He atmospheres inferred by structure modeling is possible only under restricted conditions, namely, relatively slow disk dissipation and/or cool environments. This study demonstrates that low-density super-Earths provide important clues to understanding of planetary accretion and disk evolution.« less
Exploiting graph kernels for high performance biomedical relation extraction.
Panyam, Nagesh C; Verspoor, Karin; Cohn, Trevor; Ramamohanarao, Kotagiri
2018-01-30
Relation extraction from biomedical publications is an important task in the area of semantic mining of text. Kernel methods for supervised relation extraction are often preferred over manual feature engineering methods, when classifying highly ordered structures such as trees and graphs obtained from syntactic parsing of a sentence. Tree kernels such as the Subset Tree Kernel and Partial Tree Kernel have been shown to be effective for classifying constituency parse trees and basic dependency parse graphs of a sentence. Graph kernels such as the All Path Graph kernel (APG) and Approximate Subgraph Matching (ASM) kernel have been shown to be suitable for classifying general graphs with cycles, such as the enhanced dependency parse graph of a sentence. In this work, we present a high performance Chemical-Induced Disease (CID) relation extraction system. We present a comparative study of kernel methods for the CID task and also extend our study to the Protein-Protein Interaction (PPI) extraction task, an important biomedical relation extraction task. We discuss novel modifications to the ASM kernel to boost its performance and a method to apply graph kernels for extracting relations expressed in multiple sentences. Our system for CID relation extraction attains an F-score of 60%, without using external knowledge sources or task specific heuristic or rules. In comparison, the state of the art Chemical-Disease Relation Extraction system achieves an F-score of 56% using an ensemble of multiple machine learning methods, which is then boosted to 61% with a rule based system employing task specific post processing rules. For the CID task, graph kernels outperform tree kernels substantially, and the best performance is obtained with APG kernel that attains an F-score of 60%, followed by the ASM kernel at 57%. The performance difference between the ASM and APG kernels for CID sentence level relation extraction is not significant. In our evaluation of ASM for the PPI task, ASM performed better than APG kernel for the BioInfer dataset, in the Area Under Curve (AUC) measure (74% vs 69%). However, for all the other PPI datasets, namely AIMed, HPRD50, IEPA and LLL, ASM is substantially outperformed by the APG kernel in F-score and AUC measures. We demonstrate a high performance Chemical Induced Disease relation extraction, without employing external knowledge sources or task specific heuristics. Our work shows that graph kernels are effective in extracting relations that are expressed in multiple sentences. We also show that the graph kernels, namely the ASM and APG kernels, substantially outperform the tree kernels. Among the graph kernels, we showed the ASM kernel as effective for biomedical relation extraction, with comparable performance to the APG kernel for datasets such as the CID-sentence level relation extraction and BioInfer in PPI. Overall, the APG kernel is shown to be significantly more accurate than the ASM kernel, achieving better performance on most datasets.
NASA Astrophysics Data System (ADS)
Popov, Aleksey
2013-04-01
The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws of electromagnetism. According to a rule of the left hand: if the magnetic field in a kernel is directed to drawing, electric current are directed to an axis of rotation of the Earth, - a action of force clockwise (to West). Definition of the force causing drift a kernel according to the law of Ampere F = IBlsin. Powerful force 3,5 × 1012 Nyton, what makes drift of the central part of a kernel of the Earth on 0,2 the longitude in year to West, and also it is engine of the mechanism of movement of slabs together with continents. Movement of a core of the Earth carry out around of a terrestrial axis one circulation in the western direction in 2000 of years. Linear speed of rotation of a kernel concerning a mantle on border the mantle a kernel: V = × 3,471 × 10 = 3,818 × 10 m/s = 33 m/day = 12 km/years. Considering greater viscosity of a mantle, the powerful energy at rotation of a kernel seize a mantle and lithospheric slabs and makes their collisions as a result of which there are earthquakes and volcano. Continents Northern and Southern America every year separate from the Europe and Africa on several centimeters. Atlantic ocean as a result of movement of these slabs with such speed was formed for 200 million years, that in comparison with the age of the Earth - several billions years, not so long time. Drift of a kernel in the western direction is a principal cause of delay of speed of rotation of the Earth. Flow of radial electric currents allot according to the law of Joule - Lenz, the quantity of warmth : Q = I2Rt = IUt, of thermal energy 6,92 × 1017 calories/year. This defines heating of a kernel and the Earth as a whole. In the valley of the median-Atlantic ridge having numerous volcanos, the lava flow constantly thus warm up waters of Atlantic ocean. It is a fact the warm current Gulf Stream. Thawing of a permafrost and ices of Arctic ocean, of glaciers of Greenland and Antarctica is acknowledgement: the warmth of earth defines character of thawing of glaciers and a permafrost. This is a global warming. The version of the author: the periods of inversion of a magnetic field of the Earth determine cycles of the Ice Age. At inversions of a magnetic field when B=0, radial electric currents are small or are absent, excretion of thermal energy minimally or an equal to zero,it is the beginning of the cooling the Earth and offensive of the Ice Age. Disappearance warm current Gulf Stream warming the north of the Europe and Canada. Drift of a magnetic dipole of the Earth in a rotation the opposite to rotation of the Earth, is acknowledgement of drift of a kernel of the Earth in a rotation the opposite to rotation of the Earth and is acknowledgement of the theory « the Magnetic field of the Earth ». The author continues to develop the theory « the Magnetic field of the Earth » and invites geophysicists to accept in it participation in it.
7 CFR 981.8 - Inedible kernel.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Inedible kernel. 981.8 Section 981.8 Agriculture... Regulating Handling Definitions § 981.8 Inedible kernel. Inedible kernel means a kernel, piece, or particle of almond kernel with any defect scored as serious damage, or damage due to mold, gum, shrivel, or...
7 CFR 51.1415 - Inedible kernels.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Inedible kernels. 51.1415 Section 51.1415 Agriculture... Standards for Grades of Pecans in the Shell 1 Definitions § 51.1415 Inedible kernels. Inedible kernels means that the kernel or pieces of kernels are rancid, moldy, decayed, injured by insects or otherwise...
An Approximate Approach to Automatic Kernel Selection.
Ding, Lizhong; Liao, Shizhong
2016-02-02
Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.
Coupling individual kernel-filling processes with source-sink interactions into GREENLAB-Maize.
Ma, Yuntao; Chen, Youjia; Zhu, Jinyu; Meng, Lei; Guo, Yan; Li, Baoguo; Hoogenboom, Gerrit
2018-02-13
Failure to account for the variation of kernel growth in a cereal crop simulation model may cause serious deviations in the estimates of crop yield. The goal of this research was to revise the GREENLAB-Maize model to incorporate source- and sink-limited allocation approaches to simulate the dry matter accumulation of individual kernels of an ear (GREENLAB-Maize-Kernel). The model used potential individual kernel growth rates to characterize the individual potential sink demand. The remobilization of non-structural carbohydrates from reserve organs to kernels was also incorporated. Two years of field experiments were conducted to determine the model parameter values and to evaluate the model using two maize hybrids with different plant densities and pollination treatments. Detailed observations were made on the dimensions and dry weights of individual kernels and other above-ground plant organs throughout the seasons. Three basic traits characterizing an individual kernel were compared on simulated and measured individual kernels: (1) final kernel size; (2) kernel growth rate; and (3) duration of kernel filling. Simulations of individual kernel growth closely corresponded to experimental data. The model was able to reproduce the observed dry weight of plant organs well. Then, the source-sink dynamics and the remobilization of carbohydrates for kernel growth were quantified to show that remobilization processes accompanied source-sink dynamics during the kernel-filling process. We conclude that the model may be used to explore options for optimizing plant kernel yield by matching maize management to the environment, taking into account responses at the level of individual kernels. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Unconventional protein sources: apricot seed kernels.
Gabrial, G N; El-Nahry, F I; Awadalla, M Z; Girgis, S M
1981-09-01
Hamawy apricot seed kernels (sweet), Amar apricot seed kernels (bitter) and treated Amar apricot kernels (bitterness removed) were evaluated biochemically. All kernels were found to be high in fat (42.2--50.91%), protein (23.74--25.70%) and fiber (15.08--18.02%). Phosphorus, calcium, and iron were determined in all experimental samples. The three different apricot seed kernels were used for extensive study including the qualitative determination of the amino acid constituents by acid hydrolysis, quantitative determination of some amino acids, and biological evaluation of the kernel proteins in order to use them as new protein sources. Weanling albino rats failed to grow on diets containing the Amar apricot seed kernels due to low food consumption because of its bitterness. There was no loss in weight in that case. The Protein Efficiency Ratio data and blood analysis results showed the Hamawy apricot seed kernels to be higher in biological value than treated apricot seed kernels. The Net Protein Ratio data which accounts for both weight, maintenance and growth showed the treated apricot seed kernels to be higher in biological value than both Hamawy and Amar kernels. The Net Protein Ratio for the last two kernels were nearly equal.
Heat pump study: Tricks of the trade that can pump up efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, V.
Two years ago, many homeowners in an area near Auburn, California were unhappy with their heat pumps. The local utility, Pacific Gas Electric (PG E), received unusually large numbers of complaints from them of high electricity bills and poor system operation. PG E wanted to know whether correctable mechanical problems were to blame. It hired John Proctor, then of Building Resources Management Corp., to design and implement a study to address the heat pump customers' complaints. The Pacific Gas Electric Heat Pump Efficiency and Super Weatherization Pilot Project was the result. The first objective of the Pilot Project was tomore » identify the major problems and their prevalence in the existing residential heat pump installations. The second was to design a correction strategy that would cost PG E $400 or less per site. Participating homeowners would also share some of the costs. Project goals were improved homeowner comfort and satisfaction, increased energy efficiency of mechanical systems, and 10-20% space heating energy savings. By improving system operations, the project wished to increase customer acceptance of heat pumps in general.« less
Direct-Drive Gas-Cooled Reactor Power System: Concept and Preliminary Testing
NASA Technical Reports Server (NTRS)
Wright, S. A.; Lipinski, R. J.; Godfroy, T. J.; Bragg-Sitton, S. M.; VanDyke, M. K.
2002-01-01
This paper describes the concept and preliminary component testing of a gas-cooled, UN-fueled, pin-type reactor which uses He/Xe gas that goes directly into a recuperated Brayton system to produce electricity for nuclear electric propulsion. This Direct-Drive Gas-Cooled Reactor (DDG) is designed to be subcritical under water or wet- sand immersion in case of a launch accident. Because the gas-cooled reactor can directly drive the Brayton turbomachinery, it is possible to configure the system such that there are no external surfaces or pressure boundaries that are refractory metal, even though the gas delivered to the turbine is 1144 K. The He/Xe gas mixture is a good heat transport medium when flowing, and a good insulator when stagnant. Judicious use of stagnant cavities as insulating regions allows transport of the 1144-K gas while keeping all external surfaces below 900 K. At this temperature super-alloys (Hastelloy or Inconel) can be used instead of refractory metals. Super-alloys reduce the technology risk because they are easier to fabricate than refractory metals, we have a much more extensive knowledge base on their characteristics, and, because they have a greater resistance to oxidation, system testing is eased. The system is also relatively simple in its design: no additional coolant pumps, heat exchanger, or freeze-thaw systems are required. Key to success of this concept is a good knowledge of the heat transfer between the fuel pins and the gas, as well as the pressure drop through the system. This paper describes preliminary testing to obtain this key information, as well as experience in demonstrating electrically heated testing of simulated reactor components.
An introduction to kernel-based learning algorithms.
Müller, K R; Mika, S; Rätsch, G; Tsuda, K; Schölkopf, B
2001-01-01
This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods. We first give a short background about Vapnik-Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis.
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Inedible kernel. 981.408 Section 981.408 Agriculture... Administrative Rules and Regulations § 981.408 Inedible kernel. Pursuant to § 981.8, the definition of inedible kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as...
Design of CT reconstruction kernel specifically for clinical lung imaging
NASA Astrophysics Data System (ADS)
Cody, Dianna D.; Hsieh, Jiang; Gladish, Gregory W.
2005-04-01
In this study we developed a new reconstruction kernel specifically for chest CT imaging. An experimental flat-panel CT scanner was used on large dogs to produce 'ground-truth" reference chest CT images. These dogs were also examined using a clinical 16-slice CT scanner. We concluded from the dog images acquired on the clinical scanner that the loss of subtle lung structures was due mostly to the presence of the background noise texture when using currently available reconstruction kernels. This qualitative evaluation of the dog CT images prompted the design of a new recon kernel. This new kernel consisted of the combination of a low-pass and a high-pass kernel to produce a new reconstruction kernel, called the 'Hybrid" kernel. The performance of this Hybrid kernel fell between the two kernels on which it was based, as expected. This Hybrid kernel was also applied to a set of 50 patient data sets; the analysis of these clinical images is underway. We are hopeful that this Hybrid kernel will produce clinical images with an acceptable tradeoff of lung detail, reliable HU, and image noise.
Quality changes in macadamia kernel between harvest and farm-gate.
Walton, David A; Wallace, Helen M
2011-02-01
Macadamia integrifolia, Macadamia tetraphylla and their hybrids are cultivated for their edible kernels. After harvest, nuts-in-shell are partially dried on-farm and sorted to eliminate poor-quality kernels before consignment to a processor. During these operations, kernel quality may be lost. In this study, macadamia nuts-in-shell were sampled at five points of an on-farm postharvest handling chain from dehusking to the final storage silo to assess quality loss prior to consignment. Shoulder damage, weight of pieces and unsound kernel were assessed for raw kernels, and colour, mottled colour and surface damage for roasted kernels. Shoulder damage, weight of pieces and unsound kernel for raw kernels increased significantly between the dehusker and the final silo. Roasted kernels displayed a significant increase in dark colour, mottled colour and surface damage during on-farm handling. Significant loss of macadamia kernel quality occurred on a commercial farm during sorting and storage of nuts-in-shell before nuts were consigned to a processor. Nuts-in-shell should be dried as quickly as possible and on-farm handling minimised to maintain optimum kernel quality. 2010 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Frissell, N. A.; Baker, J. B.; Ruohoniemi, J. M.; Greenwald, R. A.; Gerrard, A. J.; Miller, E. S.; West, M. L.
2015-12-01
Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are wave-like perturbations of the F-region ionosphere with horizontal wavelengths on the order of several hundred kilometers, and periods between 15 - 60 min. In SuperDARN radar data, MSTID signatures are manifested as quasi-periodic enhancements of ground backscatter (i.e. skip focusing) which propagate through the radar field-of-view. At high latitudes, SuperDARN observations of MSTIDs have generally been attributed to atmospheric gravity waves (AGWs) launched by auroral sources (e.g. Joule heating). However, recent studies with newer mid-latitude radars have shown MSTIDs are routinely observed in the subauroral ionosphere as well. To develop a more complete picture of MSTID activity, we have surveyed observations from four high latitude and six mid latitude SuperDARN radars located in the North American sector collected between 2011 and 2015 during the months of November to May. Consistent with previous SuperDARN MSTID studies, all radars observed MSTIDs with horizontal wavelengths between ~250 - 500 km and horizontal velocities between ~100 - 250 m/s. The majority of the MSTIDs were observed to propagate in a predominantly southward direction, with bearings ranging from ~135 ̊ - 250 ̊ geographic azimuth. This is highly suggestive of high latitude auroral sources; however, no apparent correlation with geomagnetic or space weather activity could be identified. Rather, comparison of the SuperDARN MSTID time-series data with northern hemisphere geopotential data from the European Center for Medium Range Weather Forecasting (ECMWF) operational model reveals a strong correlation of MSTID activity with dynamics in the polar vortex structure on two primary time scales. First, a seasonal effect manifests as enhanced MSTID activity from November through January, followed by a depressed period from February to May. This appears to correspond with the seasonal development and later decay of the polar vortex. A second, shorter time scale correlation occurs on a 1 to 3 week timescale with MSTID enhancements and depressions again corresponding with strong and weak polar vortex structuring. Collectively, these observations suggest the polar vortex is a more dominant source for MSTIDs observed by SuperDARN radars, rather than auroral sources.
A new discriminative kernel from probabilistic models.
Tsuda, Koji; Kawanabe, Motoaki; Rätsch, Gunnar; Sonnenburg, Sören; Müller, Klaus-Robert
2002-10-01
Recently, Jaakkola and Haussler (1999) proposed a method for constructing kernel functions from probabilistic models. Their so-called Fisher kernel has been combined with discriminative classifiers such as support vector machines and applied successfully in, for example, DNA and protein analysis. Whereas the Fisher kernel is calculated from the marginal log-likelihood, we propose the TOP kernel derived; from tangent vectors of posterior log-odds. Furthermore, we develop a theoretical framework on feature extractors from probabilistic models and use it for analyzing the TOP kernel. In experiments, our new discriminative TOP kernel compares favorably to the Fisher kernel.
Implementing Kernel Methods Incrementally by Incremental Nonlinear Projection Trick.
Kwak, Nojun
2016-05-20
Recently, the nonlinear projection trick (NPT) was introduced enabling direct computation of coordinates of samples in a reproducing kernel Hilbert space. With NPT, any machine learning algorithm can be extended to a kernel version without relying on the so called kernel trick. However, NPT is inherently difficult to be implemented incrementally because an ever increasing kernel matrix should be treated as additional training samples are introduced. In this paper, an incremental version of the NPT (INPT) is proposed based on the observation that the centerization step in NPT is unnecessary. Because the proposed INPT does not change the coordinates of the old data, the coordinates obtained by INPT can directly be used in any incremental methods to implement a kernel version of the incremental methods. The effectiveness of the INPT is shown by applying it to implement incremental versions of kernel methods such as, kernel singular value decomposition, kernel principal component analysis, and kernel discriminant analysis which are utilized for problems of kernel matrix reconstruction, letter classification, and face image retrieval, respectively.
Aluminum alloy AA-6061 and RSA-6061 heat treatment for large mirror applications
NASA Astrophysics Data System (ADS)
Newswander, T.; Crowther, B.; Gubbels, G.; Senden, R.
2013-09-01
Aluminum mirrors and telescopes can be built to perform well if the material is processed correctly and can be relatively low cost and short schedule. However, the difficulty of making high quality aluminum telescopes increases as the size increases, starting with uniform heat treatment through the thickness of large mirror substrates. A risk reduction effort was started to build and test a ½ meter diameter super polished aluminum mirror. Material selection, the heat treatment process and stabilization are the first critical steps to building a successful mirror. In this study, large aluminum blanks of both conventional AA-6061 per AMS-A-22771 and RSA AA-6061 were built, heat treated and stress relieved. Both blanks were destructively tested with a cut through the thickness. Hardness measurements and tensile tests were completed. We present our results in this paper and make suggestions for modification of procedures and future work.
Overview of KSTAR initial operation
NASA Astrophysics Data System (ADS)
Kwon, M.; Oh, Y. K.; Yang, H. L.; Na, H. K.; Kim, Y. S.; Kwak, J. G.; Kim, W. C.; Kim, J. Y.; Ahn, J. W.; Bae, Y. S.; Baek, S. H.; Bak, J. G.; Bang, E. N.; Chang, C. S.; Chang, D. H.; Chavdarovski, I.; Chen, Z. Y.; Cho, K. W.; Cho, M. H.; Choe, W.; Choi, J. H.; Chu, Y.; Chung, K. S.; Diamond, P.; Do, H. J.; Eidietis, N.; England, A. C.; Grisham, L.; Hahm, T. S.; Hahn, S. H.; Han, W. S.; Hatae, T.; Hillis, D.; Hong, J. S.; Hong, S. H.; Hong, S. R.; Humphrey, D.; Hwang, Y. S.; Hyatt, A.; In, Y. K.; Jackson, G. L.; Jang, Y. B.; Jeon, Y. M.; Jeong, J. I.; Jeong, N. Y.; Jeong, S. H.; Jhang, H. G.; Jin, J. K.; Joung, M.; Ju, J.; Kawahata, K.; Kim, C. H.; Kim, D. H.; Kim, Hee-Su; Kim, H. S.; Kim, H. K.; Kim, H. T.; Kim, J. H.; Kim, J. C.; Kim, Jong-Su; Kim, Jung-Su; Kim, Kyung-Min; Kim, K. M.; Kim, K. P.; Kim, M. K.; Kim, S. H.; Kim, S. S.; Kim, S. T.; Kim, S. W.; Kim, Y. J.; Kim, Y. K.; Kim, Y. O.; Ko, W. H.; Kogi, Y.; Kong, J. D.; Kubo, S.; Kumazawa, R.; Kwak, S. W.; Kwon, J. M.; Kwon, O. J.; LeConte, M.; Lee, D. G.; Lee, D. K.; Lee, D. R.; Lee, D. S.; Lee, H. J.; Lee, J. H.; Lee, K. D.; Lee, K. S.; Lee, S. G.; Lee, S. H.; Lee, S. I.; Lee, S. M.; Lee, T. G.; Lee, W. C.; Lee, W. L.; Leur, J.; Lim, D. S.; Lohr, J.; Mase, A.; Mueller, D.; Moon, K. M.; Mutoh, T.; Na, Y. S.; Nagayama, Y.; Nam, Y. U.; Namkung, W.; Oh, B. H.; Oh, S. G.; Oh, S. T.; Park, B. H.; Park, D. S.; Park, H.; Park, H. T.; Park, J. K.; Park, J. S.; Park, K. R.; Park, M. K.; Park, S. H.; Park, S. I.; Park, Y. M.; Park, Y. S.; Patterson, B.; Sabbagh, S.; Saito, K.; Sajjad, S.; Sakamoto, K.; Seo, D. C.; Seo, S. H.; Seol, J. C.; Shi, Y.; Song, N. H.; Sun, H. J.; Terzolo, L.; Walker, M.; Wang, S. J.; Watanabe, K.; Welander, A. S.; Woo, H. J.; Woo, I. S.; Yagi, M.; Yaowei, Y.; Yonekawa, Y.; Yoo, K. I.; Yoo, J. W.; Yoon, G. S.; Yoon, S. W.; KSTAR Team
2011-09-01
Since the successful first plasma generation in the middle of 2008, three experimental campaigns were successfully made for the KSTAR device, accompanied with a necessary upgrade in the power supply, heating, wall-conditioning and diagnostic systems. KSTAR was operated with the toroidal magnetic field up to 3.6 T and the circular and shaped plasmas with current up to 700 kA and pulse length of 7 s, have been achieved with limited capacity of PF magnet power supplies. The mission of the KSTAR experimental program is to achieve steady-state operations with high performance plasmas relevant to ITER and future reactors. The first phase (2008-2012) of operation of KSTAR is dedicated to the development of operational capabilities for a super-conducting device with relatively short pulse. Development of start-up scenario for a super-conducting tokamak and the understanding of magnetic field errors on start-up are one of the important issues to be resolved. Some specific operation techniques for a super-conducting device are also developed and tested. The second harmonic pre-ionization with 84 and 110 GHz gyrotrons is an example. Various parameters have been scanned to optimize the pre-ionization. Another example is the ICRF wall conditioning (ICWC), which was routinely applied during the shot to shot interval. The plasma operation window has been extended in terms of plasma beta and stability boundary. The achievement of high confinement mode was made in the last campaign with the first neutral beam injector and good wall conditioning. Plasma control has been applied in shape and position control and now a preliminary kinetic control scheme is being applied including plasma current and density. Advanced control schemes will be developed and tested in future operations including active profiles, heating and current drives and control coil-driven magnetic perturbation.
Increasing accuracy of dispersal kernels in grid-based population models
Slone, D.H.
2011-01-01
Dispersal kernels in grid-based population models specify the proportion, distance and direction of movements within the model landscape. Spatial errors in dispersal kernels can have large compounding effects on model accuracy. Circular Gaussian and Laplacian dispersal kernels at a range of spatial resolutions were investigated, and methods for minimizing errors caused by the discretizing process were explored. Kernels of progressively smaller sizes relative to the landscape grid size were calculated using cell-integration and cell-center methods. These kernels were convolved repeatedly, and the final distribution was compared with a reference analytical solution. For large Gaussian kernels (σ > 10 cells), the total kernel error was <10 &sup-11; compared to analytical results. Using an invasion model that tracked the time a population took to reach a defined goal, the discrete model results were comparable to the analytical reference. With Gaussian kernels that had σ ≤ 0.12 using the cell integration method, or σ ≤ 0.22 using the cell center method, the kernel error was greater than 10%, which resulted in invasion times that were orders of magnitude different than theoretical results. A goal-seeking routine was developed to adjust the kernels to minimize overall error. With this, corrections for small kernels were found that decreased overall kernel error to <10-11 and invasion time error to <5%.
Anthraquinones isolated from the browned Chinese chestnut kernels (Castanea mollissima blume)
NASA Astrophysics Data System (ADS)
Zhang, Y. L.; Qi, J. H.; Qin, L.; Wang, F.; Pang, M. X.
2016-08-01
Anthraquinones (AQS) represent a group of secondary metallic products in plants. AQS are often naturally occurring in plants and microorganisms. In a previous study, we found that AQS were produced by enzymatic browning reaction in Chinese chestnut kernels. To find out whether non-enzymatic browning reaction in the kernels could produce AQS too, AQS were extracted from three groups of chestnut kernels: fresh kernels, non-enzymatic browned kernels, and browned kernels, and the contents of AQS were determined. High performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) methods were used to identify two compounds of AQS, rehein(1) and emodin(2). AQS were barely exists in the fresh kernels, while both browned kernel groups sample contained a high amount of AQS. Thus, we comfirmed that AQS could be produced during both enzymatic and non-enzymatic browning process. Rhein and emodin were the main components of AQS in the browned kernels.
The structural significance of HAZ sigma phase formation in welded 25%Cr super duplex pipework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiesner, C.S.; Garwood, S.J.; Bowden, P.L.
1993-12-31
The welding of 25%Cr duplex stainless steel can lead to the formation of sigma phase in both weld metal and heat affected zone (HAZ) regions. It has generally been accepted that this can be avoided by the adoption of appropriate welding procedure controls, generally aimed at reducing heat input and promoting rapid cooling rates. However, experience during pipe spool fabrication for the Marathon East Brae Project has shown that it is extremely difficult to satisfy a welding specification requiring sigma free HAZs. This has proved a particular problem with thin wall pipe welds made in the 2G/5G or 6G fixedmore » positions, where the joint geometry reduces heat flow away from the weld and welding conditions tend to result in the use of higher heat inputs. This paper examines the effect of sigma phase on the fracture toughness of 25%Cr super duplex steel (UNS S32760). It is shown that the CTOD toughness at {minus}20 C decreases as soon as any sigma phase is present and continues to decrease with increasing sigma levels. The toughness of the sigmatized specimens produced by heat treatment was shown to be conservative compared to the toughness measured in the HAZ of 14.2mm and 7.1mm thick pipe weldments, made with welding parameters chosen to enhance HAZ sigma phase formation. Based on the CTOD versus percent sigma level relationship derived from the laboratory specimens, fracture assessment calculations of tolerable flaw sizes were performed. These demonstrated that under the severest design conditions, assuming the maximum flaw sizes which could remain undetected in the pipework, sigma levels up to 2.5% can be tolerated safely. The conservatism of the fracture assessments for predicting the performance of weldments was demonstrated by full scale tensile testing of 2 inch nominal bore x 2.77 mm wall thickness pipe butt welds containing through-thickness circumferential fatigue cracks located in the sigmatized HAZ.« less
A qualitative interpretation of 7 August 1972 impulsive phase flare H alpha line profiles
NASA Technical Reports Server (NTRS)
Canfield, R. C.
1982-01-01
The considered investigation shows that existing models of the formation of the H-alpha line during flares appear to provide clear qualitative evidence that heating of the H-alpha forming regions of the flare chromosphere in the bright H-alpha kernels observed during the impulsive phase of solar flares is not due primarily to heating by Coulomb collisions of a power-law distribution of 10-100 keV electrons with chromospheric material. It appears rather that some shorter-range process, involving possibly conduction or optically thick radiative transfer, is favored. Such a conclusion is clearly relevant to collisionless confinement modelling. However, much work remains to be done before there will be a basis for quantitatively testing the consistency of the considered picture with chromospheric diagnostics.
Study of flow control by localized volume heating in hypersonic boundary layers
NASA Astrophysics Data System (ADS)
Keller, M. A.; Kloker, M. J.; Kirilovskiy, S. V.; Polivanov, P. A.; Sidorenko, A. A.; Maslov, A. A.
2014-12-01
Boundary-layer flow control is a prerequisite for a safe and efficient operation of future hypersonic transport systems. Here, the influence of an electric discharge—modeled by a heat-source term in the energy equation—on laminar boundary-layer flows over a flat plate with zero pressure gradient at Mach 3, 5, and 7 is investigated numerically. The aim was to appraise the potential of electro-gasdynamic devices for an application as turbulence generators in the super- and hypersonic flow regime. The results with localized heat-source elements in boundary layers are compared to cases with roughness elements serving as classical passive trips. The numerical simulations are performed using the commercial code ANSYS FLUENT (by ITAM) and the high-order finite-difference DNS code NS3D (by IAG), the latter allowing for the detailed analysis of laminar flow instability. For the investigated setups with steady heating, transition to turbulence is not observed, due to the Reynolds-number lowering effect of heating.
Broken rice kernels and the kinetics of rice hydration and texture during cooking.
Saleh, Mohammed; Meullenet, Jean-Francois
2013-05-01
During rice milling and processing, broken kernels are inevitably present, although to date it has been unclear as to how the presence of broken kernels affects rice hydration and cooked rice texture. Therefore, this work intended to study the effect of broken kernels in a rice sample on rice hydration and texture during cooking. Two medium-grain and two long-grain rice cultivars were harvested, dried and milled, and the broken kernels were separated from unbroken kernels. Broken rice kernels were subsequently combined with unbroken rice kernels forming treatments of 0, 40, 150, 350 or 1000 g kg(-1) broken kernels ratio. Rice samples were then cooked and the moisture content of the cooked rice, the moisture uptake rate, and rice hardness and stickiness were measured. As the amount of broken rice kernels increased, rice sample texture became increasingly softer (P < 0.05) but the unbroken kernels became significantly harder. Moisture content and moisture uptake rate were positively correlated, and cooked rice hardness was negatively correlated to the percentage of broken kernels in rice samples. Differences in the proportions of broken rice in a milled rice sample play a major role in determining the texture properties of cooked rice. Variations in the moisture migration kinetics between broken and unbroken kernels caused faster hydration of the cores of broken rice kernels, with greater starch leach-out during cooking affecting the texture of the cooked rice. The texture of cooked rice can be controlled, to some extent, by varying the proportion of broken kernels in milled rice. © 2012 Society of Chemical Industry.
Super-Eddington stellar winds: unifying radiative-enthalpy versus flux-driven models
NASA Astrophysics Data System (ADS)
Owocki, Stanley P.; Townsend, Richard H. D.; Quataert, Eliot
2017-12-01
We derive semi-analytic solutions for optically thick, super-Eddington stellar winds, induced by an assumed steady energy addition Δ {\\dot{E}} concentrated around a near-surface heating radius R in a massive star of central luminosity L*. We show that obtaining steady wind solutions requires both that the resulting total luminosity L_o = L_\\ast + Δ {\\dot{E}} exceed the Eddington luminosity, Γo ≡ Lo/LEdd > 1, and that the induced mass-loss rate be such that the 'photon-tiring' parameter, m ≡ {\\dot{M}} GM/R L_o ≤ 1-1/Γ _o, ensuring the luminosity is sufficient to overcome the gravitational potential GM/R. Our analysis unifies previous super-Eddington wind models that either: (1) assumed a direct radiative flux-driving without accounting for the advection of radiative enthalpy that can become important in such an optically thick flow; or (2) assumed that such super-Eddington outflows are adiabatic, neglecting the effects of the diffusive radiative flux. We show that these distinct models become applicable in the asymptotic limits of small versus large values of mΓo, respectively. By solving the coupled differential equations for radiative diffusion and wind momentum, we obtain general solutions that effectively bridge the behaviours of these limiting models. Two key scaling results are for the terminal wind speed to escape speed, which is found to vary as v_∞^2/v_esc^2 = Γ _o/(1+m Γ _o) -1, and for the final observed luminosity Lobs, which for all allowed steady-solutions with m < 1 - 1/Γo exceeds the Eddington luminosity, Lobs > LEdd. Our super-Eddington wind solutions have potential applicability for modelling phases of eruptive mass-loss from massive stars, classical novae, and the remnants of stellar mergers.
Apparatus and method for controlling the temperature of the core of a super-conducting transformer
Golner, Thomas; Pleva, Edward; Mehta, Shirish
2006-10-10
An apparatus for controlling the temperature of a core of a transformer is provided that includes a core, a shield surrounding the core, a cast formed between the core and the shield, and tubing positioned on the shield. The cast directs heat from the core to the shield and cooling fluid is directed through the tubing to cool the shield.
Method of measuring interface area of activated carbons in condensed phase
NASA Astrophysics Data System (ADS)
Dmitriyev, D. S.; Agafonov, D. V.; Kiseleva, E. A.; Mikryukova, M. A.
2018-01-01
In this work, we investigated the correlation between the heat of wetting of super-capacitor electrode material (activated carbon) with condensed phases (electrolytes based on homologous series of phosphoric acid esters) and the capacity of the supercapacitor. The surface area of the electrode-electrolyte interface was calculated according to the obtained correlations using the conventional formula for calculating the capacitance of a capacitor.
Human health impacts avoided under the Paris Agreement on climate change
NASA Astrophysics Data System (ADS)
Mitchell, Dann
2017-04-01
This analyses makes use of the experiments and model data from the Half a degree Additional warming; Prognosis and Projected Impacts (HAPPI; www.happimip.org) analysis (Mitchell et al, 2016a). HAPPI is unique in that it is specifically designed to address the Paris Agreement priorities on climate impacts, by using equilibrated climates and super-ensembles, thereby enabling robust analysis of extremes. Here we first look at extreme hot and cold spells, and then make use of the most recent heat-mortality models, and heat stress metrics to look at any differences between 1.5C and 2C worlds compared to normal.
Zendle, R.
1983-11-03
A thermoluminescence dosimeter having a very small rate of decline of sensitivity during subsequent uses after heating is disclosed. The dosimeter includes a detector crystal and a glass enclosure in which the detector crystal is located. The glass enclosure is air tight and is filled with a super dry inert fill gas. The inert fill gas is nonreactive with the detector crystal when the detector crystal is heated to thermoluminescence. The fill gas is selected from the group consisting of air, nitrogen, and argon, suitable admixed with 5 to 25 percent helium. The detector crystal consists essentially of calcium fluoride. The fill gas is preferably contained at a subatmospheric pressure in the glass enclosure.
Zendle, Robert
1985-01-01
A thermoluminescence dosimeter having a very small rate of decline of sensitivity during subsequent uses after heating is disclosed. The dosimeter includes a detector crystal and a glass enclosure in which the detector crystal is located. The glass enclosure is air tight and is filled with a super dry inert fill gas. The inert fill gas is nonreactive with the detector crystal when the detector crystal is heated to thermoluminescence. The fill gas is selected from the group consisting of air, nitrogen, and argon, suitable admixed with 5 to 25 percent helium. The detector crystal consists essentially of calcium fluoride. The fill gas is preferably contained at a subatmospheric pressure in the glass enclosure.
Nonlinear Deep Kernel Learning for Image Annotation.
Jiu, Mingyuan; Sahbi, Hichem
2017-02-08
Multiple kernel learning (MKL) is a widely used technique for kernel design. Its principle consists in learning, for a given support vector classifier, the most suitable convex (or sparse) linear combination of standard elementary kernels. However, these combinations are shallow and often powerless to capture the actual similarity between highly semantic data, especially for challenging classification tasks such as image annotation. In this paper, we redefine multiple kernels using deep multi-layer networks. In this new contribution, a deep multiple kernel is recursively defined as a multi-layered combination of nonlinear activation functions, each one involves a combination of several elementary or intermediate kernels, and results into a positive semi-definite deep kernel. We propose four different frameworks in order to learn the weights of these networks: supervised, unsupervised, kernel-based semisupervised and Laplacian-based semi-supervised. When plugged into support vector machines (SVMs), the resulting deep kernel networks show clear gain, compared to several shallow kernels for the task of image annotation. Extensive experiments and analysis on the challenging ImageCLEF photo annotation benchmark, the COREL5k database and the Banana dataset validate the effectiveness of the proposed method.
Multineuron spike train analysis with R-convolution linear combination kernel.
Tezuka, Taro
2018-06-01
A spike train kernel provides an effective way of decoding information represented by a spike train. Some spike train kernels have been extended to multineuron spike trains, which are simultaneously recorded spike trains obtained from multiple neurons. However, most of these multineuron extensions were carried out in a kernel-specific manner. In this paper, a general framework is proposed for extending any single-neuron spike train kernel to multineuron spike trains, based on the R-convolution kernel. Special subclasses of the proposed R-convolution linear combination kernel are explored. These subclasses have a smaller number of parameters and make optimization tractable when the size of data is limited. The proposed kernel was evaluated using Gaussian process regression for multineuron spike trains recorded from an animal brain. It was compared with the sum kernel and the population Spikernel, which are existing ways of decoding multineuron spike trains using kernels. The results showed that the proposed approach performs better than these kernels and also other commonly used neural decoding methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Haryanto, B.; Bukit, R. Br; Situmeang, E. M.; Christina, E. P.; Pandiangan, F.
2018-02-01
The purpose of this study was to determine the performance, productivity and feasibility of the operation of palm kernel processing plant based on Energy Productivity Ratio (EPR). EPR is expressed as the ratio of output to input energy and by-product. Palm Kernel plan is process in palm kernel to become palm kernel oil. The procedure started from collecting data needed as energy input such as: palm kernel prices, energy demand and depreciation of the factory. The energy output and its by-product comprise the whole production price such as: palm kernel oil price and the remaining products such as shells and pulp price. Calculation the equality of energy of palm kernel oil is to analyze the value of Energy Productivity Ratio (EPR) bases on processing capacity per year. The investigation has been done in Kernel Oil Processing Plant PT-X at Sumatera Utara plantation. The value of EPR was 1.54 (EPR > 1), which indicated that the processing of palm kernel into palm kernel oil is feasible to be operated based on the energy productivity.
2013-01-01
Background Arguably, genotypes and phenotypes may be linked in functional forms that are not well addressed by the linear additive models that are standard in quantitative genetics. Therefore, developing statistical learning models for predicting phenotypic values from all available molecular information that are capable of capturing complex genetic network architectures is of great importance. Bayesian kernel ridge regression is a non-parametric prediction model proposed for this purpose. Its essence is to create a spatial distance-based relationship matrix called a kernel. Although the set of all single nucleotide polymorphism genotype configurations on which a model is built is finite, past research has mainly used a Gaussian kernel. Results We sought to investigate the performance of a diffusion kernel, which was specifically developed to model discrete marker inputs, using Holstein cattle and wheat data. This kernel can be viewed as a discretization of the Gaussian kernel. The predictive ability of the diffusion kernel was similar to that of non-spatial distance-based additive genomic relationship kernels in the Holstein data, but outperformed the latter in the wheat data. However, the difference in performance between the diffusion and Gaussian kernels was negligible. Conclusions It is concluded that the ability of a diffusion kernel to capture the total genetic variance is not better than that of a Gaussian kernel, at least for these data. Although the diffusion kernel as a choice of basis function may have potential for use in whole-genome prediction, our results imply that embedding genetic markers into a non-Euclidean metric space has very small impact on prediction. Our results suggest that use of the black box Gaussian kernel is justified, given its connection to the diffusion kernel and its similar predictive performance. PMID:23763755
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Kernel weight. 981.9 Section 981.9 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Regulating Handling Definitions § 981.9 Kernel weight. Kernel weight means the weight of kernels, including...
An SVM model with hybrid kernels for hydrological time series
NASA Astrophysics Data System (ADS)
Wang, C.; Wang, H.; Zhao, X.; Xie, Q.
2017-12-01
Support Vector Machine (SVM) models have been widely applied to the forecast of climate/weather and its impact on other environmental variables such as hydrologic response to climate/weather. When using SVM, the choice of the kernel function plays the key role. Conventional SVM models mostly use one single type of kernel function, e.g., radial basis kernel function. Provided that there are several featured kernel functions available, each having its own advantages and drawbacks, a combination of these kernel functions may give more flexibility and robustness to SVM approach, making it suitable for a wide range of application scenarios. This paper presents such a linear combination of radial basis kernel and polynomial kernel for the forecast of monthly flowrate in two gaging stations using SVM approach. The results indicate significant improvement in the accuracy of predicted series compared to the approach with either individual kernel function, thus demonstrating the feasibility and advantages of such hybrid kernel approach for SVM applications.
Sliding Contact Bearings for Service to 700 C
NASA Technical Reports Server (NTRS)
Sliney, Harold E.
1996-01-01
Cylindrical, sliding contact bearings made entirely of a self-lubricating powder metallurgy composite (PM212) or of super alloy shells lined with clad PM212 were tested in an oscillating mode at temperatures from 25 to 700 C. Tests of 100 hr duration or longer were conducted at a bearing unit load of 3.45 Mpa (500 psi). Shorter duration tests at various unit loads up to 24.1 Mpa (3500 psi) were also conducted. In comparison tests, bearings lubricated with PM212 had superior anti-wear characteristics compared to the baseline, unlubricated, super alloy bearings: no galling of PM212-lubricated bearings occurred, while severe surface damage including galling occurred, especially at high loads, during the baseline tests. A heat treatment procedure, which dimensionally stabilizes PM212 and thereby minimizes clearance changes during high temperature bearing operation, is described.
NASA Astrophysics Data System (ADS)
Senthur Prabu, S.; Devendranath Ramkumar, K.; Arivazhagan, N.
2017-11-01
In the present investigation an attempt has been made to join the dissimilar combination of Inconel 625 super alloy and super austenitic stainless steel (AISI 904L) using manual multi-pass continuous current gas tungsten arc (CCGTA) welding processes. Two different filler wires such as ERNiCrMo-4 and ERNiCrCoMo-1 have been used to compare the metallurgical properties of these welded joints. Both optical microscopy and scanning electron microscopy techniques were adopted to disseminate the microstructure traits of these weldments. Formation of secondary phases at the HAZ and weld interface of AISI 904L was witnessed while using the ERNiCrCoMo-1 filler, along with Solidification Grain Boundary (SGB) and Migrated Grain Boundary (MGB) were also observed at the weld zone.
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multiple kernels learning-based biological entity relationship extraction method.
Dongliang, Xu; Jingchang, Pan; Bailing, Wang
2017-09-20
Automatic extracting protein entity interaction information from biomedical literature can help to build protein relation network and design new drugs. There are more than 20 million literature abstracts included in MEDLINE, which is the most authoritative textual database in the field of biomedicine, and follow an exponential growth over time. This frantic expansion of the biomedical literature can often be difficult to absorb or manually analyze. Thus efficient and automated search engines are necessary to efficiently explore the biomedical literature using text mining techniques. The P, R, and F value of tag graph method in Aimed corpus are 50.82, 69.76, and 58.61%, respectively. The P, R, and F value of tag graph kernel method in other four evaluation corpuses are 2-5% higher than that of all-paths graph kernel. And The P, R and F value of feature kernel and tag graph kernel fuse methods is 53.43, 71.62 and 61.30%, respectively. The P, R and F value of feature kernel and tag graph kernel fuse methods is 55.47, 70.29 and 60.37%, respectively. It indicated that the performance of the two kinds of kernel fusion methods is better than that of simple kernel. In comparison with the all-paths graph kernel method, the tag graph kernel method is superior in terms of overall performance. Experiments show that the performance of the multi-kernels method is better than that of the three separate single-kernel method and the dual-mutually fused kernel method used hereof in five corpus sets.
NASA Astrophysics Data System (ADS)
Camps-Valls, G.; Gomez-Chova, L.; Mateo, G.; Laparra, V.; Perez-Suay, A.; Munoz-Mari, J.
2016-12-01
Current Earth-observation (EO) applications for image classification have to deal with an unprecedented big amount of heterogeneous and complex data sources. Spatio-temporally explicit classification methods are a requirement in a variety of Earth system data processing applications. Upcoming missions such as the super-spectral Copernicus Sentinels EnMAP and FLEX will soon provide unprecedented data streams. Very high resolution (VHR) sensors like Worldview-3 also pose big challenges to data processing. The challenge is not only attached to optical sensors but also to infrared sounders and radar images which increased in spectral, spatial and temporal resolution. Besides, we should not forget the availability of the extremely large remote sensing data archives already collected by several past missions, such ENVISAT, Cosmo-SkyMED, Landsat, SPOT, or Seviri/MSG. These large-scale data problems require enhanced processing techniques that should be accurate, robust and fast. Standard parameter retrieval and classification algorithms cannot cope with this new scenario efficiently. In this work, we review the field of large scale kernel methods for both atmospheric parameter retrieval and cloud detection using infrared sounding IASI data and optical Seviri/MSG imagery. We propose novel Gaussian Processes (GPs) to train problems with millions of instances and high number of input features. Algorithms can cope with non-linearities efficiently, accommodate multi-output problems, and provide confidence intervals for the predictions. Several strategies to speed up algorithms are devised: random Fourier features and variational approaches for cloud classification using IASI data and Seviri/MSG, and engineered randomized kernel functions and emulation in temperature, moisture and ozone atmospheric profile retrieval from IASI as a proxy to the upcoming MTG-IRS sensor. Excellent compromise between accuracy and scalability are obtained in all applications.
Large Scale Gaussian Processes for Atmospheric Parameter Retrieval and Cloud Screening
NASA Astrophysics Data System (ADS)
Camps-Valls, G.; Gomez-Chova, L.; Mateo, G.; Laparra, V.; Perez-Suay, A.; Munoz-Mari, J.
2017-12-01
Current Earth-observation (EO) applications for image classification have to deal with an unprecedented big amount of heterogeneous and complex data sources. Spatio-temporally explicit classification methods are a requirement in a variety of Earth system data processing applications. Upcoming missions such as the super-spectral Copernicus Sentinels EnMAP and FLEX will soon provide unprecedented data streams. Very high resolution (VHR) sensors like Worldview-3 also pose big challenges to data processing. The challenge is not only attached to optical sensors but also to infrared sounders and radar images which increased in spectral, spatial and temporal resolution. Besides, we should not forget the availability of the extremely large remote sensing data archives already collected by several past missions, such ENVISAT, Cosmo-SkyMED, Landsat, SPOT, or Seviri/MSG. These large-scale data problems require enhanced processing techniques that should be accurate, robust and fast. Standard parameter retrieval and classification algorithms cannot cope with this new scenario efficiently. In this work, we review the field of large scale kernel methods for both atmospheric parameter retrieval and cloud detection using infrared sounding IASI data and optical Seviri/MSG imagery. We propose novel Gaussian Processes (GPs) to train problems with millions of instances and high number of input features. Algorithms can cope with non-linearities efficiently, accommodate multi-output problems, and provide confidence intervals for the predictions. Several strategies to speed up algorithms are devised: random Fourier features and variational approaches for cloud classification using IASI data and Seviri/MSG, and engineered randomized kernel functions and emulation in temperature, moisture and ozone atmospheric profile retrieval from IASI as a proxy to the upcoming MTG-IRS sensor. Excellent compromise between accuracy and scalability are obtained in all applications.
NASA Astrophysics Data System (ADS)
Sachtler, W. M. H.
1984-11-01
In equilibrium, the composition of the surface of an alloy will, in general, differ from that of the bulk. The broken-bond model is applicable to alloys with atoms of virtually equal size. If the heat of alloy formation is zero, the component of lower heat of atomization is found enriched in the surface. If both partners have equal heats of sublimination, the surface of a diluted alloy is enriched with the minority component. Size effects can enhance or weaken the electronic effects. In general, lattice strain can be relaxed by precipitating atoms of deviating size on the surface. Two-phase alloys are described by the "cherry model", i.e. one alloy phase, the "kernel" is surrounded by another alloy, the "flesh", and the surface of the outer phase, the "skin" displays a deviating surface composition as in monophasic alloys. In the presence of molecules capable of forming chemical bonds with individual metal atoms, "chemisorption induced surface segregation" can be observed at low temperatures, i.e. the surface becomes enriched with the metal forming the stronger chemisorption bonds.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Half kernel. 51.2295 Section 51.2295 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2295 Half kernel. Half kernel means the separated half of a kernel with not more than one-eighth broken off. ...
Zheng, Chong; Hu, Anming; Kihm, Kenneth D; Ma, Qian; Li, Ruozhou; Chen, Tao; Duley, W W
2015-07-01
Since microlenses have to date been fabricated primarily by surface manufacturing, they are highly susceptible to surface damage, and their microscale size makes it cumbersome to handle. Thus, cavity lenses are preferred, as they alleviate these difficulties associated with the surface-manufactured microlenses. Here, it is shown that a high repetition femtosecond laser can effectively fabricate cavity microball lenses (CMBLs) inside a polymethyl methacrylate slice. Optimal CMBL fabrication conditions are determined by examining the pertinent parameters, including the laser processing time, the average irradiation power, and the pulse repetition rates. In addition, a heat diffusion modeling is developed to better understand the formation of the spherical cavity and the slightly compressed affected zone surrounding the cavity. A micro-telescope consisting of a microscope objective and a CMBL demonstrates a super-wide field-of-view imaging capability. Finally, detailed optical characterizations of CMBLs are elaborated to account for the refractive index variations of the affected zone. The results presented in the current study demonstrate that a femtosecond laser-fabricated CMBL can be used for robust and super-wide viewing micro imaging applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Slavov, Chavdar; Schrameyer, Verena; Reus, Michael; Ralph, Peter J; Hill, Ross; Büchel, Claudia; Larkum, Anthony W D; Holzwarth, Alfred R
2016-06-01
The global rise in sea surface temperatures causes regular exposure of corals to high temperature and high light stress, leading to worldwide disastrous coral bleaching events (loss of symbiotic dinoflagellates (Symbiodinium) from reef-building corals). Our picosecond chlorophyll fluorescence experiments on cultured Symbiodinium clade C cells exposed to coral bleaching conditions uncovered the transformations of the alga's photosynthetic apparatus (PSA) that activate an extremely efficient non-photochemical "super-quenching" mechanism. The mechanism is associated with a transition from an initially heterogeneous photosystem II (PSII) pool to a homogeneous "spillover" pool, where nearly all excitation energy is transferred to photosystem I (PSI). There, the inherently higher stability of PSI and high quenching efficiency of P(700)(+) allow dumping of PSII excess excitation energy into heat, resulting in almost complete cessation of photosynthetic electron transport (PET). This potentially reversible "super-quenching" mechanism protects the PSA against destruction at the cost of a loss of photosynthetic activity. We suggest that the inhibition of PET and the consequent inhibition of organic carbon production (e.g. sugars) in the symbiotic Symbiodinium provide a trigger for the symbiont expulsion, i.e. bleaching. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Davanageri, Mahesh; Narendranath, S.; Kadoli, Ravikiran
2017-08-01
The effect of ageing time on hardness, microstructure and wear behaviour of super duplex stainless AISI 2507 is examined. The material was solution treated at 1050 °C and water quenched, further the ageing has been carried out at 850 °C for 30 min, 60 min and 90 min. The chromium (Cr) and molybdenum (Mo) enriched intermetallic sigma phase (σ) were found to precipitate at the ferrite/austenite interface and within the ferrite region. The concentration of intermetallic sigma phase (σ), which was quantified by a combination of scanning electron microscopy and image analysis, increases with increasing ageing time, leading to significant increase in the hardness. The x-ray diffraction (XRD) and energy dispersive x-ray (EDX) was employed to investigate the element distribution and phase identification. Wear characterstics of the aged super duplex stainless steel were measured by varying normal loads, sliding speeds, sliding distance and compared with solution treated (as-cast) specimens. Scanning electron microscopy was used to assist in analysis of worn out surfaces. The outcomes suggested that the increase in percentage of sigma phase increases hardness and wear resistance in heat-treated specimens compared to solution treated specimens (as-cast).
Entanglement entropy of electromagnetic edge modes.
Donnelly, William; Wall, Aron C
2015-03-20
The vacuum entanglement entropy of Maxwell theory, when evaluated by standard methods, contains an unexpected term with no known statistical interpretation. We resolve this two-decades old puzzle by showing that this term is the entanglement entropy of edge modes: classical solutions determined by the electric field normal to the entangling surface. We explain how the heat kernel regularization applied to this term leads to the negative divergent expression found by Kabat. This calculation also resolves a recent puzzle concerning the logarithmic divergences of gauge fields in 3+1 dimensions.
Nonrelativistic trace and diffeomorphism anomalies in particle number background
NASA Astrophysics Data System (ADS)
Auzzi, Roberto; Baiguera, Stefano; Nardelli, Giuseppe
2018-04-01
Using the heat kernel method, we compute nonrelativistic trace anomalies for Schrödinger theories in flat spacetime, with a generic background gauge field for the particle number symmetry, both for a free scalar and a free fermion. The result is genuinely nonrelativistic, and it has no counterpart in the relativistic case. Contrary to naive expectations, the anomaly is not gauge invariant; this is similar to the nongauge covariance of the non-Abelian relativistic anomaly. We also show that, in the same background, the gravitational anomaly for a nonrelativistic scalar vanishes.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Kernel which is “dark amber” or darker color; (e) Kernel having more than one dark kernel spot, or one dark kernel spot more than one-eighth inch in greatest dimension; (f) Shriveling when the surface of the kernel is very conspicuously wrinkled; (g) Internal flesh discoloration of a medium shade of gray...
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Kernel which is “dark amber” or darker color; (e) Kernel having more than one dark kernel spot, or one dark kernel spot more than one-eighth inch in greatest dimension; (f) Shriveling when the surface of the kernel is very conspicuously wrinkled; (g) Internal flesh discoloration of a medium shade of gray...
7 CFR 51.2125 - Split or broken kernels.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Split or broken kernels. 51.2125 Section 51.2125 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... kernels. Split or broken kernels means seven-eighths or less of complete whole kernels but which will not...
7 CFR 51.2296 - Three-fourths half kernel.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Three-fourths half kernel. 51.2296 Section 51.2296 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards...-fourths half kernel. Three-fourths half kernel means a portion of a half of a kernel which has more than...
The Classification of Diabetes Mellitus Using Kernel k-means
NASA Astrophysics Data System (ADS)
Alamsyah, M.; Nafisah, Z.; Prayitno, E.; Afida, A. M.; Imah, E. M.
2018-01-01
Diabetes Mellitus is a metabolic disorder which is characterized by chronicle hypertensive glucose. Automatics detection of diabetes mellitus is still challenging. This study detected diabetes mellitus by using kernel k-Means algorithm. Kernel k-means is an algorithm which was developed from k-means algorithm. Kernel k-means used kernel learning that is able to handle non linear separable data; where it differs with a common k-means. The performance of kernel k-means in detecting diabetes mellitus is also compared with SOM algorithms. The experiment result shows that kernel k-means has good performance and a way much better than SOM.
UNICOS Kernel Internals Application Development
NASA Technical Reports Server (NTRS)
Caredo, Nicholas; Craw, James M. (Technical Monitor)
1995-01-01
Having an understanding of UNICOS Kernel Internals is valuable information. However, having the knowledge is only half the value. The second half comes with knowing how to use this information and apply it to the development of tools. The kernel contains vast amounts of useful information that can be utilized. This paper discusses the intricacies of developing utilities that utilize kernel information. In addition, algorithms, logic, and code will be discussed for accessing kernel information. Code segments will be provided that demonstrate how to locate and read kernel structures. Types of applications that can utilize kernel information will also be discussed.
Detection of maize kernels breakage rate based on K-means clustering
NASA Astrophysics Data System (ADS)
Yang, Liang; Wang, Zhuo; Gao, Lei; Bai, Xiaoping
2017-04-01
In order to optimize the recognition accuracy of maize kernels breakage detection and improve the detection efficiency of maize kernels breakage, this paper using computer vision technology and detecting of the maize kernels breakage based on K-means clustering algorithm. First, the collected RGB images are converted into Lab images, then the original images clarity evaluation are evaluated by the energy function of Sobel 8 gradient. Finally, the detection of maize kernels breakage using different pixel acquisition equipments and different shooting angles. In this paper, the broken maize kernels are identified by the color difference between integrity kernels and broken kernels. The original images clarity evaluation and different shooting angles are taken to verify that the clarity and shooting angles of the images have a direct influence on the feature extraction. The results show that K-means clustering algorithm can distinguish the broken maize kernels effectively.
Modeling adaptive kernels from probabilistic phylogenetic trees.
Nicotra, Luca; Micheli, Alessio
2009-01-01
Modeling phylogenetic interactions is an open issue in many computational biology problems. In the context of gene function prediction we introduce a class of kernels for structured data leveraging on a hierarchical probabilistic modeling of phylogeny among species. We derive three kernels belonging to this setting: a sufficient statistics kernel, a Fisher kernel, and a probability product kernel. The new kernels are used in the context of support vector machine learning. The kernels adaptivity is obtained through the estimation of the parameters of a tree structured model of evolution using as observed data phylogenetic profiles encoding the presence or absence of specific genes in a set of fully sequenced genomes. We report results obtained in the prediction of the functional class of the proteins of the budding yeast Saccharomyces cerevisae which favorably compare to a standard vector based kernel and to a non-adaptive tree kernel function. A further comparative analysis is performed in order to assess the impact of the different components of the proposed approach. We show that the key features of the proposed kernels are the adaptivity to the input domain and the ability to deal with structured data interpreted through a graphical model representation.
Partial Deconvolution with Inaccurate Blur Kernel.
Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei
2017-10-17
Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.
NASA Astrophysics Data System (ADS)
Kartohardjono, Sutrasno; Alexander, Kevin; Larasati, Annisa; Sihombing, Ivander Christian
2018-03-01
Carbon dioxide is pollutant in natural gas that could reduce the heating value of the natural gas and cause problem in transportation due to corrosive to the pipeline. This study aims to evaluate the effects of feed gas flow rate on CO2 absorption through super hydrophobic hollow fiber contactor. Polyethyleneglycol-300 (PEG-300) solution was used as absorbent in this study, whilst the feed gas used in the experiment was a mixture of 30% CO2 and 70% CH4. There are three super hydrophobic hollow fiber contactors sized 6 cm and 25 cm in diameter and length used in this study, which consists of 1000, 3000 and 5000 fibers, respectively. The super hydrophobic fiber membrane used is polypropylene-based with outer and inner diameter of about 525 and 235 μm, respectively. In the experiments, the feed gas was sent through the shell side of the membrane contactor, whilst the absorbent solution was pumped through the lumen fibers. The experimental results showed that the mass transfer coefficient, flux, absorption efficiency for CO2-N2 system and CO2 loading increased with the feed gas flow rate, but the absorption efficiency for CO2-N2 system decreased. The mass transfer coefficient and the flux, at the same feed gas flow rate, decreased with the number of fibers in the membrane contactor, but the CO2 absorption efficiency and the CO2 loading increased.
NASA Astrophysics Data System (ADS)
Jouyandeh, Maryam; Jazani, Omid Moini; Navarchian, Amir H.; Shabanian, Meisam; Vahabi, Henri; Saeb, Mohammad Reza
2018-07-01
Curing behavior of epoxy-based nanocomposites depends on dispersion state of nanofillers and their physical and chemical interactions with the curing moieties. In this work, a systematic approach was introduced for chemical functionalization of nanoparticles with macromolecules in order to enrich crosslinking potential of epoxy/amine systems, particularly at late stages of cure where the curing is diffusion-controlled. Super-reactive hyperbranched polyethylenimine (PEI)-attached nanosilica was materialized in this work to facilitate epoxy-amine curing. Starting from coupling [3-(2,3-epoxypropoxy) propyl] trimethoxysilane (EPPTMS) with hyperbranched PEI, a super-reactive macromolecule was obtained and subsequently grafted onto the nanosilica surface. Eventually, a thermally-stable highly-curable nanocomposite was attained by replacement of amine and imine groups of the PEI with imide and amide groups through the reaction with pyromellitic acid dianhydride. Fourier-transform infrared spectrophotometry, X-ray diffractometry, X-ray photoelectron spectroscopy and transmission electron microscopy approved successful grafting of polymer chains onto the nanosilica surface. Thermogravimetric analyses approved a relatively high grafting ratio of ca. 21%. Curing potential of the developed super-reactive nanoparticle was uncovered through nonisothermal differential scanning calorimetry signifying an enthalpy rise of ca. 120 J/g by addition of 2 wt.% to epoxy at 5 °C/min heating rate. Even at low concentration of 0.5 wt.%, the glass transition temperature of epoxy increased from 128 to 156 °C, demonstrating prolonged crosslinking.
Harnessing AIA Diffraction Patterns to Determine Flare Footpoint Temperatures
NASA Astrophysics Data System (ADS)
Bain, H. M.; Schwartz, R. A.; Torre, G.; Krucker, S.; Raftery, C. L.
2014-12-01
In the "Standard Flare Model" energy from accelerated electrons is deposited at the footpoints of newly reconnected flare loops, heating the surrounding plasma. Understanding the relation between the multi-thermal nature of the footpoints and the energy flux from accelerated electrons is therefore fundamental to flare physics. Extreme ultraviolet (EUV) images of bright flare kernels, obtained from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory, are often saturated despite the implementation of automatic exposure control. These kernels produce diffraction patterns often seen in AIA images during the most energetic flares. We implement an automated image reconstruction procedure, which utilizes diffraction pattern artifacts, to de-saturate AIA images and reconstruct the flare brightness in saturated pixels. Applying this technique to recover the footpoint brightness in each of the AIA EUV passbands, we investigate the footpoint temperature distribution. Using observations from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), we will characterize the footpoint accelerated electron distribution of the flare. By combining these techniques, we investigate the relation between the nonthermal electron energy flux and the temperature response of the flare footpoints.
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2012 CFR
2012-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2011 CFR
2011-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2013 CFR
2013-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2010 CFR
2010-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2014 CFR
2014-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Half-kernel. 51.1441 Section 51.1441 Agriculture... Standards for Grades of Shelled Pecans Definitions § 51.1441 Half-kernel. Half-kernel means one of the separated halves of an entire pecan kernel with not more than one-eighth of its original volume missing...
7 CFR 51.1403 - Kernel color classification.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Kernel color classification. 51.1403 Section 51.1403... STANDARDS) United States Standards for Grades of Pecans in the Shell 1 Kernel Color Classification § 51.1403 Kernel color classification. (a) The skin color of pecan kernels may be described in terms of the color...
7 CFR 51.1450 - Serious damage.
Code of Federal Regulations, 2010 CFR
2010-01-01
...; (c) Decay affecting any portion of the kernel; (d) Insects, web, or frass or any distinct evidence of insect feeding on the kernel; (e) Internal discoloration which is dark gray, dark brown, or black and...) Dark kernel spots when more than three are on the kernel, or when any dark kernel spot or the aggregate...
7 CFR 51.1450 - Serious damage.
Code of Federal Regulations, 2011 CFR
2011-01-01
...; (c) Decay affecting any portion of the kernel; (d) Insects, web, or frass or any distinct evidence of insect feeding on the kernel; (e) Internal discoloration which is dark gray, dark brown, or black and...) Dark kernel spots when more than three are on the kernel, or when any dark kernel spot or the aggregate...
7 CFR 51.1450 - Serious damage.
Code of Federal Regulations, 2012 CFR
2012-01-01
...; (c) Decay affecting any portion of the kernel; (d) Insects, web, or frass or any distinct evidence of insect feeding on the kernel; (e) Internal discoloration which is dark gray, dark brown, or black and...) Dark kernel spots when more than three are on the kernel, or when any dark kernel spot or the aggregate...
NASA Astrophysics Data System (ADS)
Du, Peijun; Tan, Kun; Xing, Xiaoshi
2010-12-01
Combining Support Vector Machine (SVM) with wavelet analysis, we constructed wavelet SVM (WSVM) classifier based on wavelet kernel functions in Reproducing Kernel Hilbert Space (RKHS). In conventional kernel theory, SVM is faced with the bottleneck of kernel parameter selection which further results in time-consuming and low classification accuracy. The wavelet kernel in RKHS is a kind of multidimensional wavelet function that can approximate arbitrary nonlinear functions. Implications on semiparametric estimation are proposed in this paper. Airborne Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing image with 64 bands and Reflective Optics System Imaging Spectrometer (ROSIS) data with 115 bands were used to experiment the performance and accuracy of the proposed WSVM classifier. The experimental results indicate that the WSVM classifier can obtain the highest accuracy when using the Coiflet Kernel function in wavelet transform. In contrast with some traditional classifiers, including Spectral Angle Mapping (SAM) and Minimum Distance Classification (MDC), and SVM classifier using Radial Basis Function kernel, the proposed wavelet SVM classifier using the wavelet kernel function in Reproducing Kernel Hilbert Space is capable of improving classification accuracy obviously.
A trace ratio maximization approach to multiple kernel-based dimensionality reduction.
Jiang, Wenhao; Chung, Fu-lai
2014-01-01
Most dimensionality reduction techniques are based on one metric or one kernel, hence it is necessary to select an appropriate kernel for kernel-based dimensionality reduction. Multiple kernel learning for dimensionality reduction (MKL-DR) has been recently proposed to learn a kernel from a set of base kernels which are seen as different descriptions of data. As MKL-DR does not involve regularization, it might be ill-posed under some conditions and consequently its applications are hindered. This paper proposes a multiple kernel learning framework for dimensionality reduction based on regularized trace ratio, termed as MKL-TR. Our method aims at learning a transformation into a space of lower dimension and a corresponding kernel from the given base kernels among which some may not be suitable for the given data. The solutions for the proposed framework can be found based on trace ratio maximization. The experimental results demonstrate its effectiveness in benchmark datasets, which include text, image and sound datasets, for supervised, unsupervised as well as semi-supervised settings. Copyright © 2013 Elsevier Ltd. All rights reserved.
Murugesan, Gurusamy; Abdulkadhar, Sabenabanu; Natarajan, Jeyakumar
2017-01-01
Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a widely examined task in biological information extraction. Currently, many kernel based approaches such as linear kernel, tree kernel, graph kernel and combination of multiple kernels has achieved promising results in PPI task. However, most of these kernel methods fail to capture the semantic relation information between two entities. In this paper, we present a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK comprises of distributed trees with syntactic information along with distributional semantic vectors representing semantic information of the sentences or phrases. To generate robust machine learning model composition of feature based kernel and DSTK were combined using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experimental results show that our system achieves better f-score with five different corpora compared to other state-of-the-art systems. PMID:29099838
Hadamard Kernel SVM with applications for breast cancer outcome predictions.
Jiang, Hao; Ching, Wai-Ki; Cheung, Wai-Shun; Hou, Wenpin; Yin, Hong
2017-12-21
Breast cancer is one of the leading causes of deaths for women. It is of great necessity to develop effective methods for breast cancer detection and diagnosis. Recent studies have focused on gene-based signatures for outcome predictions. Kernel SVM for its discriminative power in dealing with small sample pattern recognition problems has attracted a lot attention. But how to select or construct an appropriate kernel for a specified problem still needs further investigation. Here we propose a novel kernel (Hadamard Kernel) in conjunction with Support Vector Machines (SVMs) to address the problem of breast cancer outcome prediction using gene expression data. Hadamard Kernel outperform the classical kernels and correlation kernel in terms of Area under the ROC Curve (AUC) values where a number of real-world data sets are adopted to test the performance of different methods. Hadamard Kernel SVM is effective for breast cancer predictions, either in terms of prognosis or diagnosis. It may benefit patients by guiding therapeutic options. Apart from that, it would be a valuable addition to the current SVM kernel families. We hope it will contribute to the wider biology and related communities.
Murugesan, Gurusamy; Abdulkadhar, Sabenabanu; Natarajan, Jeyakumar
2017-01-01
Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a widely examined task in biological information extraction. Currently, many kernel based approaches such as linear kernel, tree kernel, graph kernel and combination of multiple kernels has achieved promising results in PPI task. However, most of these kernel methods fail to capture the semantic relation information between two entities. In this paper, we present a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK comprises of distributed trees with syntactic information along with distributional semantic vectors representing semantic information of the sentences or phrases. To generate robust machine learning model composition of feature based kernel and DSTK were combined using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experimental results show that our system achieves better f-score with five different corpora compared to other state-of-the-art systems.
Heat Measurements in Electrolytic Metal-Deuteride Experiments
2015-10-16
zirconia, and zeolites ) prepared by Dr. D. Kidwell at NRL, we attempted to measure excess energy and He production. After operating tens of experiments...we have found that D2 exposure to Pd-filled zeolites and PdNiZrOx catalysts leads to higher temperatures than does H2 exposure. However, we have not...Reactions, SuperWave™, electrolysis, deuterium, zeolite , silica, yttria stabilized zirconia, palladium. 16. SECURITY CLASSIFICATION OF
The Israeli-American International Conference on Applied Metallurgy
1976-08-30
conclusions of this study points to the role of molybdenum in improving the corrosion resistance of stainless steels in H 2SO and HCl. These workers feel...density of dislocations and precipitates . Boulger reviewed experience with aluminum and titanium alloys, super-alloys and steels . The demand for higher...available equipment. N. Atzmon and A. Rosen (Technion) applied combined heat treatment and plastic deformation to a maraging (300) steel , and studied
Electrical potential induced switchable wettability of super-aligned carbon nanotube films
NASA Astrophysics Data System (ADS)
Zhang, Guang; Duan, Zheng; Wang, Qinggong; Li, Long; Yao, Wei; Liu, Changhong
2018-01-01
Controlling of the wettability of micro-nano scale surfaces not only plays important roles in basic science but also presents some significant applications in interference shielding materials, microfluidics and phase-change heat transfer enhancement, etc. Here, the superhydrophobic super-aligned carbon nanotube (SACNT) films are firstly obtained by the chemical vapor deposition method and the annealing process. Then their wettabilities are in-situ switched by the electrowetting strategy. Specifically, the fascinating transformation of superhydrophobicity to the superhydrophilicity is achieved by exerting external DC voltages across the CNT-liquid interfaces, and the transitions of Cassie-to-Wenzel states are observed on the multilayer SACNT films. In addition, the electrowetting induced salt absorption of the porous SACNT is also reported here. Finally, the threshold voltages of the electrowetting behaviors for different liquids on the SACNT films and unit capacitances across the CNT-liquid interfaces are obtained, which reveal that the SACNT films have much more outstanding electrowetting properties than the previously reported works. Our approach reported here demonstrates that the wettability of SACNT films could be simply, effectively and in-situ controlled by the electrowetting method, which will have many profound implications in numerous applications such as phase-change heat transfer enhancement, optical lens with variable focal length and microfluidics, etc.
Study of corrosion-related defects of zirconium alloys with slow positron beam
NASA Astrophysics Data System (ADS)
Zhu, Zhejie; Yao, Meiyi; Shi, Jianjian; Yao, Chunlong; Lu, Eryang; Cao, Xingzhong; Wang, Baoyi; Wu, Yichu
2018-09-01
The corrosion behavior of Zr-4 and N5 alloy specimens corroded in 0.01 mol/L LiOH aqueous solution at 360 °C/18.6 MPa and in super heated steam at 400 °C/10.3 MPa for 1, 3 and 14 days were investigated by slow positron beam based Doppler broadening spectroscopy. Results showed that there was an evident interfacial layer with pre-existed vacancies and voids in uncorroded Zr-4 specimens, while in uncorroded N5 specimen, the interfacial defect layer can not be identified or a thin interfacial layer was only contained. When the specimens were corroded in super heated steam at 400 °C/10.3 MPa for a few days, the existence of the interface layer in the Zr-4 specimen would delay the diffusion rate of the oxygen atoms and decelerated the oxidation rate of the corrosion process. However, at very early stage of the corrosion, as Zr-4 and N5 specimens were corrded in 0.01 mol/L LiOH aqueous solution at 360 °C/18.6 MPa, the effect of Li+ accelerated the diffusion rate of the oxygen atoms, while the effect of the interface defect layer became a minor effect.
Filatov, Gleb; Bauwens, Bruno; Kertész-Farkas, Attila
2018-05-07
Bioinformatics studies often rely on similarity measures between sequence pairs, which often pose a bottleneck in large-scale sequence analysis. Here, we present a new convolutional kernel function for protein sequences called the LZW-Kernel. It is based on code words identified with the Lempel-Ziv-Welch (LZW) universal text compressor. The LZW-Kernel is an alignment-free method, it is always symmetric, is positive, always provides 1.0 for self-similarity and it can directly be used with Support Vector Machines (SVMs) in classification problems, contrary to normalized compression distance (NCD), which often violates the distance metric properties in practice and requires further techniques to be used with SVMs. The LZW-Kernel is a one-pass algorithm, which makes it particularly plausible for big data applications. Our experimental studies on remote protein homology detection and protein classification tasks reveal that the LZW-Kernel closely approaches the performance of the Local Alignment Kernel (LAK) and the SVM-pairwise method combined with Smith-Waterman (SW) scoring at a fraction of the time. Moreover, the LZW-Kernel outperforms the SVM-pairwise method when combined with BLAST scores, which indicates that the LZW code words might be a better basis for similarity measures than local alignment approximations found with BLAST. In addition, the LZW-Kernel outperforms n-gram based mismatch kernels, hidden Markov model based SAM and Fisher kernel, and protein family based PSI-BLAST, among others. Further advantages include the LZW-Kernel's reliance on a simple idea, its ease of implementation, and its high speed, three times faster than BLAST and several magnitudes faster than SW or LAK in our tests. LZW-Kernel is implemented as a standalone C code and is a free open-source program distributed under GPLv3 license and can be downloaded from https://github.com/kfattila/LZW-Kernel. akerteszfarkas@hse.ru. Supplementary data are available at Bioinformatics Online.
A framework for optimal kernel-based manifold embedding of medical image data.
Zimmer, Veronika A; Lekadir, Karim; Hoogendoorn, Corné; Frangi, Alejandro F; Piella, Gemma
2015-04-01
Kernel-based dimensionality reduction is a widely used technique in medical image analysis. To fully unravel the underlying nonlinear manifold the selection of an adequate kernel function and of its free parameters is critical. In practice, however, the kernel function is generally chosen as Gaussian or polynomial and such standard kernels might not always be optimal for a given image dataset or application. In this paper, we present a study on the effect of the kernel functions in nonlinear manifold embedding of medical image data. To this end, we first carry out a literature review on existing advanced kernels developed in the statistics, machine learning, and signal processing communities. In addition, we implement kernel-based formulations of well-known nonlinear dimensional reduction techniques such as Isomap and Locally Linear Embedding, thus obtaining a unified framework for manifold embedding using kernels. Subsequently, we present a method to automatically choose a kernel function and its associated parameters from a pool of kernel candidates, with the aim to generate the most optimal manifold embeddings. Furthermore, we show how the calculated selection measures can be extended to take into account the spatial relationships in images, or used to combine several kernels to further improve the embedding results. Experiments are then carried out on various synthetic and phantom datasets for numerical assessment of the methods. Furthermore, the workflow is applied to real data that include brain manifolds and multispectral images to demonstrate the importance of the kernel selection in the analysis of high-dimensional medical images. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evaluating the Gradient of the Thin Wire Kernel
NASA Technical Reports Server (NTRS)
Wilton, Donald R.; Champagne, Nathan J.
2008-01-01
Recently, a formulation for evaluating the thin wire kernel was developed that employed a change of variable to smooth the kernel integrand, canceling the singularity in the integrand. Hence, the typical expansion of the wire kernel in a series for use in the potential integrals is avoided. The new expression for the kernel is exact and may be used directly to determine the gradient of the wire kernel, which consists of components that are parallel and radial to the wire axis.
Kernel Machine SNP-set Testing under Multiple Candidate Kernels
Wu, Michael C.; Maity, Arnab; Lee, Seunggeun; Simmons, Elizabeth M.; Harmon, Quaker E.; Lin, Xinyi; Engel, Stephanie M.; Molldrem, Jeffrey J.; Armistead, Paul M.
2013-01-01
Joint testing for the cumulative effect of multiple single nucleotide polymorphisms grouped on the basis of prior biological knowledge has become a popular and powerful strategy for the analysis of large scale genetic association studies. The kernel machine (KM) testing framework is a useful approach that has been proposed for testing associations between multiple genetic variants and many different types of complex traits by comparing pairwise similarity in phenotype between subjects to pairwise similarity in genotype, with similarity in genotype defined via a kernel function. An advantage of the KM framework is its flexibility: choosing different kernel functions allows for different assumptions concerning the underlying model and can allow for improved power. In practice, it is difficult to know which kernel to use a priori since this depends on the unknown underlying trait architecture and selecting the kernel which gives the lowest p-value can lead to inflated type I error. Therefore, we propose practical strategies for KM testing when multiple candidate kernels are present based on constructing composite kernels and based on efficient perturbation procedures. We demonstrate through simulations and real data applications that the procedures protect the type I error rate and can lead to substantially improved power over poor choices of kernels and only modest differences in power versus using the best candidate kernel. PMID:23471868
Takagi, Satoshi; Nagase, Hiroyuki; Hayashi, Tatsuya; Kita, Tamotsu; Hayashi, Katsumi; Sanada, Shigeru; Koike, Masayuki
2014-01-01
The hybrid convolution kernel technique for computed tomography (CT) is known to enable the depiction of an image set using different window settings. Our purpose was to decrease the number of artifacts in the hybrid convolution kernel technique for head CT and to determine whether our improved combined multi-kernel head CT images enabled diagnosis as a substitute for both brain (low-pass kernel-reconstructed) and bone (high-pass kernel-reconstructed) images. Forty-four patients with nondisplaced skull fractures were included. Our improved multi-kernel images were generated so that pixels of >100 Hounsfield unit in both brain and bone images were composed of CT values of bone images and other pixels were composed of CT values of brain images. Three radiologists compared the improved multi-kernel images with bone images. The improved multi-kernel images and brain images were identically displayed on the brain window settings. All three radiologists agreed that the improved multi-kernel images on the bone window settings were sufficient for diagnosing skull fractures in all patients. This improved multi-kernel technique has a simple algorithm and is practical for clinical use. Thus, simplified head CT examinations and fewer images that need to be stored can be expected.
Tidal Heating in Multilayered Terrestrial Exoplanets
NASA Technical Reports Server (NTRS)
Henning, Wade G.; Hurford, Terry
2014-01-01
The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R(sub E) is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.
Effects of Bulk Composition on the Atmospheric Dynamics on Close-in Exoplanets
NASA Astrophysics Data System (ADS)
Zhang, Xi; Showman, Adam P.
2017-02-01
Super Earths and mini Neptunes likely have a wide range of atmospheric compositions, ranging from low molecular mass atmospheres of H2 to higher molecular atmospheres of water, CO2, N2, or other species. Here we systematically investigate the effects of atmospheric bulk compositions on temperature and wind distributions for tidally locked sub-Jupiter-sized planets, using an idealized 3D general circulation model (GCM). The bulk composition effects are characterized in the framework of two independent variables: molecular weight and molar heat capacity. The effect of molecular weight dominates. As the molecular weight increases, the atmosphere tends to have a larger day-night temperature contrast, a smaller eastward phase shift in the thermal phase curve, and a smaller zonal wind speed. The width of the equatorial super-rotating jet also becomes narrower, and the “jet core” region, where the zonal-mean jet speed maximizes, moves to a greater pressure level. The zonal-mean zonal wind is more prone to exhibit a latitudinally alternating pattern in a higher molecular weight atmosphere. We also present analytical theories that quantitatively explain the above trends and shed light on the underlying dynamical mechanisms. Those trends might be used to indirectly determine the atmospheric compositions on tidally locked sub-Jupiter-sized planets. The effects of the molar heat capacity are generally small. But if the vertical temperature profile is close to adiabatic, molar heat capacity will play a significant role in controlling the transition from a divergent flow in the upper atmosphere to a jet-dominated flow in the lower atmosphere.
Hyperheat: a thermal signature model for super- and hypersonic missiles
NASA Astrophysics Data System (ADS)
van Binsbergen, S. A.; van Zelderen, B.; Veraar, R. G.; Bouquet, F.; Halswijk, W. H. C.; Schleijpen, H. M. A.
2017-10-01
In performance prediction of IR sensor systems for missile detection, apart from the sensor specifications, target signatures are essential variables. Very often, for velocities up to Mach 2-2.5, a simple model based on the aerodynamic heating of a perfect gas was used to calculate the temperatures of missile targets. This typically results in an overestimate of the target temperature with correspondingly large infrared signatures and detection ranges. Especially for even higher velocities, this approach is no longer accurate. Alternatives like CFD calculations typically require more complex sets of inputs and significantly more computing power. The MATLAB code Hyperheat was developed to calculate the time-resolved skin temperature of axisymmetric high speed missiles during flight, taking into account the behaviour of non-perfect gas and proper heat transfer to the missile surface. Allowing for variations in parameters like missile shape, altitude, atmospheric profile, angle of attack, flight duration and super- and hypersonic velocities up to Mach 30 enables more accurate calculations of the actual target temperature. The model calculates a map of the skin temperature of the missile, which is updated over the flight time of the missile. The sets of skin temperature maps are calculated within minutes, even for >100 km trajectories, and can be easily converted in thermal infrared signatures for further processing. This paper discusses the approach taken in Hyperheat. Then, the thermal signature of a set of typical missile threats is calculated using both the simple aerodynamic heating model and the Hyperheat code. The respective infrared signatures are compared, as well as the difference in the corresponding calculated detection ranges.
7 CFR 810.202 - Definition of other terms.
Code of Federal Regulations, 2014 CFR
2014-01-01
... barley kernels, other grains, and wild oats that are badly shrunken and distinctly discolored black or... kernels. Kernels and pieces of barley kernels that are distinctly indented, immature or shrunken in...
7 CFR 810.202 - Definition of other terms.
Code of Federal Regulations, 2013 CFR
2013-01-01
... barley kernels, other grains, and wild oats that are badly shrunken and distinctly discolored black or... kernels. Kernels and pieces of barley kernels that are distinctly indented, immature or shrunken in...
7 CFR 810.202 - Definition of other terms.
Code of Federal Regulations, 2012 CFR
2012-01-01
... barley kernels, other grains, and wild oats that are badly shrunken and distinctly discolored black or... kernels. Kernels and pieces of barley kernels that are distinctly indented, immature or shrunken in...
graphkernels: R and Python packages for graph comparison
Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten
2018-01-01
Abstract Summary Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. Availability and implementation The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. Contact mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch Supplementary information Supplementary data are available online at Bioinformatics. PMID:29028902
Aflatoxin variability in pistachios.
Mahoney, N E; Rodriguez, S B
1996-01-01
Pistachio fruit components, including hulls (mesocarps and epicarps), seed coats (testas), and kernels (seeds), all contribute to variable aflatoxin content in pistachios. Fresh pistachio kernels were individually inoculated with Aspergillus flavus and incubated 7 or 10 days. Hulled, shelled kernels were either left intact or wounded prior to inoculation. Wounded kernels, with or without the seed coat, were readily colonized by A. flavus and after 10 days of incubation contained 37 times more aflatoxin than similarly treated unwounded kernels. The aflatoxin levels in the individual wounded pistachios were highly variable. Neither fungal colonization nor aflatoxin was detected in intact kernels without seed coats. Intact kernels with seed coats had limited fungal colonization and low aflatoxin concentrations compared with their wounded counterparts. Despite substantial fungal colonization of wounded hulls, aflatoxin was not detected in hulls. Aflatoxin levels were significantly lower in wounded kernels with hulls than in kernels of hulled pistachios. Both the seed coat and a water-soluble extract of hulls suppressed aflatoxin production by A. flavus. PMID:8919781
graphkernels: R and Python packages for graph comparison.
Sugiyama, Mahito; Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten
2018-02-01
Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch. Supplementary data are available online at Bioinformatics. © The Author(s) 2017. Published by Oxford University Press.
Huang, Jessie Y.; Eklund, David; Childress, Nathan L.; Howell, Rebecca M.; Mirkovic, Dragan; Followill, David S.; Kry, Stephen F.
2013-01-01
Purpose: Several simplifications used in clinical implementations of the convolution/superposition (C/S) method, specifically, density scaling of water kernels for heterogeneous media and use of a single polyenergetic kernel, lead to dose calculation inaccuracies. Although these weaknesses of the C/S method are known, it is not well known which of these simplifications has the largest effect on dose calculation accuracy in clinical situations. The purpose of this study was to generate and characterize high-resolution, polyenergetic, and material-specific energy deposition kernels (EDKs), as well as to investigate the dosimetric impact of implementing spatially variant polyenergetic and material-specific kernels in a collapsed cone C/S algorithm. Methods: High-resolution, monoenergetic water EDKs and various material-specific EDKs were simulated using the EGSnrc Monte Carlo code. Polyenergetic kernels, reflecting the primary spectrum of a clinical 6 MV photon beam at different locations in a water phantom, were calculated for different depths, field sizes, and off-axis distances. To investigate the dosimetric impact of implementing spatially variant polyenergetic kernels, depth dose curves in water were calculated using two different implementations of the collapsed cone C/S method. The first method uses a single polyenergetic kernel, while the second method fully takes into account spectral changes in the convolution calculation. To investigate the dosimetric impact of implementing material-specific kernels, depth dose curves were calculated for a simplified titanium implant geometry using both a traditional C/S implementation that performs density scaling of water kernels and a novel implementation using material-specific kernels. Results: For our high-resolution kernels, we found good agreement with the Mackie et al. kernels, with some differences near the interaction site for low photon energies (<500 keV). For our spatially variant polyenergetic kernels, we found that depth was the most dominant factor affecting the pattern of energy deposition; however, the effects of field size and off-axis distance were not negligible. For the material-specific kernels, we found that as the density of the material increased, more energy was deposited laterally by charged particles, as opposed to in the forward direction. Thus, density scaling of water kernels becomes a worse approximation as the density and the effective atomic number of the material differ more from water. Implementation of spatially variant, polyenergetic kernels increased the percent depth dose value at 25 cm depth by 2.1%–5.8% depending on the field size, while implementation of titanium kernels gave 4.9% higher dose upstream of the metal cavity (i.e., higher backscatter dose) and 8.2% lower dose downstream of the cavity. Conclusions: Of the various kernel refinements investigated, inclusion of depth-dependent and metal-specific kernels into the C/S method has the greatest potential to improve dose calculation accuracy. Implementation of spatially variant polyenergetic kernels resulted in a harder depth dose curve and thus has the potential to affect beam modeling parameters obtained in the commissioning process. For metal implants, the C/S algorithms generally underestimate the dose upstream and overestimate the dose downstream of the implant. Implementation of a metal-specific kernel mitigated both of these errors. PMID:24320507
ERIC Educational Resources Information Center
Lee, Yi-Hsuan; von Davier, Alina A.
2008-01-01
The kernel equating method (von Davier, Holland, & Thayer, 2004) is based on a flexible family of equipercentile-like equating functions that use a Gaussian kernel to continuize the discrete score distributions. While the classical equipercentile, or percentile-rank, equating method carries out the continuization step by linear interpolation,…
Code of Federal Regulations, 2010 CFR
2010-01-01
...— Damaged kernels 1 (percent) Foreign material (percent) Other grains (percent) Skinned and broken kernels....0 10.0 15.0 1 Injured-by-frost kernels and injured-by-mold kernels are not considered damaged kernels or considered against sound barley. Notes: Malting barley shall not be infested in accordance with...
Code of Federal Regulations, 2013 CFR
2013-01-01
... well cured; (e) Poorly developed kernels; (f) Kernels which are dark amber in color; (g) Kernel spots when more than one dark spot is present on either half of the kernel, or when any such spot is more...
Code of Federal Regulations, 2014 CFR
2014-01-01
... well cured; (e) Poorly developed kernels; (f) Kernels which are dark amber in color; (g) Kernel spots when more than one dark spot is present on either half of the kernel, or when any such spot is more...
7 CFR 810.205 - Grades and grade requirements for Two-rowed Malting barley.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (percent) Maximum limits of— Wild oats (percent) Foreign material (percent) Skinned and broken kernels... Injured-by-frost kernels and injured-by-mold kernels are not considered damaged kernels or considered...
STS operations planning - Current status and outlook for the future
NASA Technical Reports Server (NTRS)
Lee, C. M.
1981-01-01
Consideration is given to the status of Space Shuttle operations planning and outlook for the period 1982-94, with some speculations on Shuttle-related space operations early in the next century. Attention is given to the evolution of Shuttle payload capabilities over the next five years. The following list of near-earth environment factors to be exploited by the Space Shuttle is given: (1) easy control of gravity; (2) absence of atmosphere; (3) a comprehensive view of the earth's surface and atmosphere; (4) isolation of hazardous processes from earth biosphere; (5) freely available light, heat and photovoltaic power; (6) an infinite natural reservoir for the disposal of radioactive waste products; and (7) a super-cold heat sink.
NASA Astrophysics Data System (ADS)
Surzhikov, S. T.
2018-02-01
The problem of the radiation gas dynamics of super-orbital entry into dense layers of the Earth's atmosphere of the command module of Apollo 4 is solved numerically in the two-dimensional formulation of the flow around an aerodynamic frontal shield at the velocity V∞= 10.7 km/s in the altitude range H = 91.5‒76.2 km. The density distributions of the spectral and integral radiation heat fluxes on the surface flowed around are obtained. The considerable role of atomic spectral lines in the radiation heating of the surface is shown. The results of calculations are compared with the flight experimental data and the calculated data of other authors.
Study on Utilization of Super Grade Plutonium in Molten Salt Reactor FUJI-U3 using CITATION Code
NASA Astrophysics Data System (ADS)
Wulandari, Cici; Waris, Abdul; Pramuditya, Syeilendra; Asril, Pramutadi AM; Novitrian
2017-07-01
FUJI-U3 type of Molten Salt Reactor (MSR) has a unique design since it consists of three core regions in order to avoid the replacement of graphite as moderator. MSR uses floride as a nuclear fuel salt with the most popular chemical composition is LiF-BeF2-ThF4-233UF4. ThF4 and 233UF4 are the fertile and fissile materials, respectively. On the other hand, LiF and BeF2 working as both fuel and heat transfer medium. In this study, the super grade plutonium will be utilized as substitution of 233U since plutonium is easier to be obtained compared to 233U as main fuel. Neutronics calculation was performed by using PIJ and CITATION modules of SRAC 2002 code with JENDL 3.2 as nuclear data library.
Synchronization Experiments With A Global Coupled Model of Intermediate Complexity
NASA Astrophysics Data System (ADS)
Selten, Frank; Hiemstra, Paul; Shen, Mao-Lin
2013-04-01
In the super modeling approach an ensemble of imperfect models are connected through nudging terms that nudge the solution of each model to the solution of all other models in the ensemble. The goal is to obtain a synchronized state through a proper choice of connection strengths that closely tracks the trajectory of the true system. For the super modeling approach to be successful, the connections should be dense and strong enough for synchronization to occur. In this study we analyze the behavior of an ensemble of connected global atmosphere-ocean models of intermediate complexity. All atmosphere models are connected to the same ocean model through the surface fluxes of heat, water and momentum, the ocean is integrated using weighted averaged surface fluxes. In particular we analyze the degree of synchronization between the atmosphere models and the characteristics of the ensemble mean solution. The results are interpreted using a low order atmosphere-ocean toy model.
NASA Astrophysics Data System (ADS)
Narsinga Rao, G.; Sankar, R.; Panneer Muthuselvam, I.; Chou, F. C.
2014-12-01
We have investigated the magnetic ordering of the RCrTeO6 (R=Y, La, Tb and Er) samples comprising Cr3+ (S=3/2). The X-ray diffraction structure analysis revealed that all samples are a hexagonal structure with the space group P 3bar. The magnetic susceptibility χ(T) and heat capacity CP(T) measurement results reveal that both short range and long range antiferromagnetic (AFM) orderings exist in non-magnetic rare earth R=Y and La compounds. For isostructural compounds of R=Tb and Er, CP(T) curves show long range ordering at the same temperature as non-magnetic R=Y, which indicates that the super-super exchange of Cr spins dominates. For R elements of Tb and Er with large spins sitting between honeycomb sublattices composed of CrO6-TeO6 octahedra, the two sublattices of R and Cr appear to be independently magnetic.
NASA Astrophysics Data System (ADS)
Bo, Jiang; Hao, Weidong; Hu, Zhihong; Liu, Fuguo
2015-12-01
In order to solve the problem of over temperature tube-burst caused by oxide scale shedding and blocking tubes of high temperature reheater of a 200MW super high pressure power plant boiler, this paper expounds the mechanism of scale forming and shedding, and analyzes the probable causes of the tube-burst failure. The results show that the root cause of scale forming is that greater steam extraction flow after reforming of the second extraction leads to less steam flow into reheater, which causes over temperature to some of the heated tubes; and the root cause of scale shedding is that long term operation in AGC-R mode brings about great fluctuations of unit load, steam temperature and pressure, accelerating scale shedding. In conclusion, preventive measures are drawn up considering the operation mode of the unit.
Modeling of the laser beam shape for high-power applications
NASA Astrophysics Data System (ADS)
Jabczyński, Jan K.; Kaskow, Mateusz; Gorajek, Lukasz; Kopczyński, Krzysztof; Zendzian, Waldemar
2018-04-01
Aperture losses and thermo-optic effects (TOE) inside optics as well as the effective beam width in far field should be taken into account in the analysis of the most appropriate laser beam profile for high-power applications. We have theoretically analyzed such a problem for a group of super-Gaussian beams taking first only diffraction limitations. Furthermore, we have investigated TOE on far-field parameters of such beams to determine the influence of absorption in optical elements on beam quality degradation. The best compromise gives the super-Gaussian profile of index p = 5, for which beam quality does not decrease noticeably and the thermo-optic higher order aberrations are compensated. The simplified formulas were derived for beam quality metrics (parameter M2 and Strehl ratio), which enable estimation of the influence of heat deposited in optics on degradation of beam quality. The method of dynamic compensation of such effect was proposed.
Sun, Li; Kong, Weibang; Wu, Hengcai; Wu, Yang; Wang, Datao; Zhao, Fei; Jiang, Kaili; Li, Qunqing; Wang, Jiaping; Fan, Shoushan
2016-01-07
Mesoporous lithium titanate (LTO) nanoclusters are in situ synthesized in a network of super aligned carbon nanotubes (SACNTs) via a solution-based method followed by heat treatment in air. In the LTO-CNT composite, SACNTs not only serve as the skeleton to support a binder-free electrode, but also render the composite with high conductivity, flexibility, and mechanical strength. The homogeneously dispersed LTO nanoclusters among the SACNTs allow each LTO grain to effectively access the electrolyte and the conductive network, benefiting both ion and electron transport. By the incorporation of LTO into the CNT network, mechanical reinforcement is also achieved. When serving as a negative electrode for lithium ion batteries, such a robust composite-network architecture provides the electrodes with effective charge transport and structural integrity, leading to high-performance flexible electrodes with high capacity, high rate capability, and excellent cycling stability.
A MEMS-based super fast dew point hygrometer—construction and medical applications
NASA Astrophysics Data System (ADS)
Jachowicz, Ryszard S.; Weremczuk, Jerzy; Paczesny, Daniel; Tarapata, Grzegorz
2009-12-01
The paper shows how MEMS (micro-electro-mechanical system) technology and a modified principle of fast temperature control (by heat injection instead of careful control of cooling) can considerably improve the dynamic parameters of dew point hygrometers. Some aspects of MEMS-type integrated sensor construction and technology, whole measurement system design, the control algorithm to run the system as well as empirical dynamic parameters from the tests are discussed too. The hygrometer can easily obtain five to six measurements per second with an uncertainty of less than 0.3 K. The meter range is between -10 °C and 40 °C dew point. In the second part of the paper (section 2), two different successful applications in medicine based on fast humidity measurements have been discussed. Some specific constructions of these super fast dew point hygrometers based on a MEMS sensor as well as limited empirical results from clinical tests have been reported too.
NASA Astrophysics Data System (ADS)
Apriani, Lestari; Satriana, Joshua; Aulian Chalik, Citra; Syahputra Mulyana, Reza; Hafidz, Muhammad; Suryantini
2017-12-01
Volcanostratigraphy study is used for supporting geothermal exploration on preliminary survey. This study is important to identify volcanic eruption center which shows potential area of geothermal heat source. The purpose of volcanostratigraphy study in research area is going to distinguish the characteristics of volcanic eruption product that construct the volcanic body. The analysis of Arjuno-Welirang volcanostratigraphy identification are based on topographic maps of Malang sheet with 1:100.000 scale, 1:50.000 scale, and a geological map. Regarding to the delineation of ridge and river, we determine five crowns, three hummocks, one brigade and one super brigade. The crowns consist of Ringgit, Welirang, Arjuno, Kawi, and Penanggungan, the hummocks comprise of Kembar III, Kembar II, and Kembar I, the brigade is Arjuno-Welirang, and the super brigade is Tengger. Based on topographic map interpretation and geothermal prospect evaluation method analysis, shows that Arjuno-Welirang prospect area have good geothermal resource potential.
The Development of Boiler Pipes Used for 700°C A-USC-PP in China
NASA Astrophysics Data System (ADS)
Liu, Zhengdong; Bao, Hansheng; Xu, Songqian; Wang, Qijiang; Yang, Yujun; Zhang, Peng; Lei, Bingwang
This paper introduces the progress of boiler pipes used for the manufacturing of 700°C advanced ultra-super-critical (A-USC) fossil fuel power plants (PP) in China, with the emphasis on the detailed advancements of G115 and CN617 pipes, including technical exploration, industrial production and microstructure-property investigation. G115 is a novel ferritic heat resistant steels developed by CISRI, which is an impressive candidate material to make pipes for the temperature up to 650°C. CN617 is a recent modification of Inconel617B and the CN617 pipe with the dimension of Φ 460 × 80 mm was successfully manufactured in China. Some newly available data associated with above materials will be released. G115 and CN617 are imposing candidate materials for the manufacturing of 700°C advanced ultra-super-critical (A-USC) fossil fuel power plants (PP) in China.
Detection of ochratoxin A contamination in stored wheat using near-infrared hyperspectral imaging
NASA Astrophysics Data System (ADS)
Senthilkumar, T.; Jayas, D. S.; White, N. D. G.; Fields, P. G.; Gräfenhan, T.
2017-03-01
Near-infrared (NIR) hyperspectral imaging system was used to detect five concentration levels of ochratoxin A (OTA) in contaminated wheat kernels. The wheat kernels artificially inoculated with two different OTA producing Penicillium verrucosum strains, two different non-toxigenic P. verrucosum strains, and sterile control wheat kernels were subjected to NIR hyperspectral imaging. The acquired three-dimensional data were reshaped into readable two-dimensional data. Principal Component Analysis (PCA) was applied to the two dimensional data to identify the key wavelengths which had greater significance in detecting OTA contamination in wheat. Statistical and histogram features extracted at the key wavelengths were used in the linear, quadratic and Mahalanobis statistical discriminant models to differentiate between sterile control, five concentration levels of OTA contamination in wheat kernels, and five infection levels of non-OTA producing P. verrucosum inoculated wheat kernels. The classification models differentiated sterile control samples from OTA contaminated wheat kernels and non-OTA producing P. verrucosum inoculated wheat kernels with a 100% accuracy. The classification models also differentiated between five concentration levels of OTA contaminated wheat kernels and between five infection levels of non-OTA producing P. verrucosum inoculated wheat kernels with a correct classification of more than 98%. The non-OTA producing P. verrucosum inoculated wheat kernels and OTA contaminated wheat kernels subjected to hyperspectral imaging provided different spectral patterns.
Application of kernel method in fluorescence molecular tomography
NASA Astrophysics Data System (ADS)
Zhao, Yue; Baikejiang, Reheman; Li, Changqing
2017-02-01
Reconstruction of fluorescence molecular tomography (FMT) is an ill-posed inverse problem. Anatomical guidance in the FMT reconstruction can improve FMT reconstruction efficiently. We have developed a kernel method to introduce the anatomical guidance into FMT robustly and easily. The kernel method is from machine learning for pattern analysis and is an efficient way to represent anatomical features. For the finite element method based FMT reconstruction, we calculate a kernel function for each finite element node from an anatomical image, such as a micro-CT image. Then the fluorophore concentration at each node is represented by a kernel coefficient vector and the corresponding kernel function. In the FMT forward model, we have a new system matrix by multiplying the sensitivity matrix with the kernel matrix. Thus, the kernel coefficient vector is the unknown to be reconstructed following a standard iterative reconstruction process. We convert the FMT reconstruction problem into the kernel coefficient reconstruction problem. The desired fluorophore concentration at each node can be calculated accordingly. Numerical simulation studies have demonstrated that the proposed kernel-based algorithm can improve the spatial resolution of the reconstructed FMT images. In the proposed kernel method, the anatomical guidance can be obtained directly from the anatomical image and is included in the forward modeling. One of the advantages is that we do not need to segment the anatomical image for the targets and background.
Credit scoring analysis using kernel discriminant
NASA Astrophysics Data System (ADS)
Widiharih, T.; Mukid, M. A.; Mustafid
2018-05-01
Credit scoring model is an important tool for reducing the risk of wrong decisions when granting credit facilities to applicants. This paper investigate the performance of kernel discriminant model in assessing customer credit risk. Kernel discriminant analysis is a non- parametric method which means that it does not require any assumptions about the probability distribution of the input. The main ingredient is a kernel that allows an efficient computation of Fisher discriminant. We use several kernel such as normal, epanechnikov, biweight, and triweight. The models accuracy was compared each other using data from a financial institution in Indonesia. The results show that kernel discriminant can be an alternative method that can be used to determine who is eligible for a credit loan. In the data we use, it shows that a normal kernel is relevant to be selected for credit scoring using kernel discriminant model. Sensitivity and specificity reach to 0.5556 and 0.5488 respectively.
Wada, Hiroshi; Masumoto-Kubo, Chisato; Gholipour, Yousef; Nonami, Hiroshi; Tanaka, Fukuyo; Erra-Balsells, Rosa; Tsutsumi, Koichi; Hiraoka, Kenzo; Morita, Satoshi
2014-01-01
Foehn-like extreme hot and dry wind conditions (34°C, >2.5 kPa vapor pressure deficit, and 7 m s(-1)) strongly affect grain quality in rice (Oryza sativa L.). This is a current concern because of the increasing frequency and intensity of combined heat and water-deficit stress under climate change. Foehn-induced dry wind conditions during the grain-filling stage increase ring-shaped chalkiness as a result of spatiotemporal reduction in starch accumulation in the endosperm, but kernel growth is sometimes maintained by osmotic adjustment. Here, we assess the effects of dry wind on chalky ring formation in environmentally controlled growth chambers. Our results showed that hot and dry wind conditions that lasted for >24 h dramatically increased chalky ring formation. Hot and dry wind conditions temporarily reduced panicle water potential to -0.65 MPa; however, kernel growth was maintained by osmotic adjustment at control levels with increased transport of assimilate to the growing kernels. Dynamic tracer analysis with a nano-electrospray-ionization Orbitrap mass spectrometer and quantitative polymerase chain reaction analysis revealed that starch degradation was negligible in the short-term treatment. Overall expression of starch synthesis-related genes was found to be down-regulated at moderately low water potential. Because the events observed at low water potential preceded the packing of starch granules in cells, we concluded that reduced rates of starch biosynthesis play a central role in the events of cellular metabolism that are altered at osmotic adjustment, which leads to chalky ring formation under short-term hot and dry wind conditions.
The flare kernel in the impulsive phase
NASA Technical Reports Server (NTRS)
Dejager, C.
1986-01-01
The impulsive phase of a flare is characterized by impulsive bursts of X-ray and microwave radiation, related to impulsive footpoint heating up to 50 or 60 MK, by upward gas velocities (150 to 400 km/sec) and by a gradual increase of the flare's thermal energy content. These phenomena, as well as non-thermal effects, are all related to the impulsive energy injection into the flare. The available observations are also quantitatively consistent with a model in which energy is injected into the flare by beams of energetic electrons, causing ablation of chromospheric gas, followed by convective rise of gas. Thus, a hole is burned into the chromosphere; at the end of impulsive phase of an average flare the lower part of that hole is situated about 1800 km above the photosphere. H alpha and other optical and UV line emission is radiated by a thin layer (approx. 20 km) at the bottom of the flare kernel. The upward rising and outward streaming gas cools down by conduction in about 45 s. The non-thermal effects in the initial phase are due to curtailing of the energy distribution function by escape of energetic electrons. The single flux tube model of a flare does not fit with these observations; instead we propose the spaghetti-bundle model. Microwave and gamma-ray observations suggest the occurrence of dense flare knots of approx. 800 km diameter, and of high temperature. Future observations should concentrate on locating the microwave/gamma-ray sources, and on determining the kernel's fine structure and the related multi-loop structure of the flaring area.
Testing of a 4 K to 2 K heat exchanger with an intermediate pressure drop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudsen, Peter N.; Ganni, Venkatarao
2015-12-01
Most large sub-atmospheric helium refrigeration systems incorporate a heat exchanger at the load, or in the distribution system, to counter-flow the sub-atmospheric return with the super-critical or liquid supply. A significant process improvement is theoretically obtainable by handling the exergy loss across the Joule-Thompson throttling valve supplying the flow to the load in a simple but different manner. As briefly outlined in previous publications, the exergy loss can be minimized by allowing the supply flow pressure to decrease to a sub-atmospheric pressure concurrent with heat exchange flow from the load. One practical implementation is to sub-divide the supply flow pressuremore » drop between two heat exchanger sections, incorporating an intermediate pressure drop. Such a test is being performed at Jefferson Lab's Cryogenic Test Facility (CTF). This paper will briefly discuss the theory, practical implementation and test results and analysis obtained to date.« less
Yao, H; Hruska, Z; Kincaid, R; Brown, R; Cleveland, T; Bhatnagar, D
2010-05-01
The objective of this study was to examine the relationship between fluorescence emissions of corn kernels inoculated with Aspergillus flavus and aflatoxin contamination levels within the kernels. Aflatoxin contamination in corn has been a long-standing problem plaguing the grain industry with potentially devastating consequences to corn growers. In this study, aflatoxin-contaminated corn kernels were produced through artificial inoculation of corn ears in the field with toxigenic A. flavus spores. The kernel fluorescence emission data were taken with a fluorescence hyperspectral imaging system when corn kernels were excited with ultraviolet light. Raw fluorescence image data were preprocessed and regions of interest in each image were created for all kernels. The regions of interest were used to extract spectral signatures and statistical information. The aflatoxin contamination level of single corn kernels was then chemically measured using affinity column chromatography. A fluorescence peak shift phenomenon was noted among different groups of kernels with different aflatoxin contamination levels. The fluorescence peak shift was found to move more toward the longer wavelength in the blue region for the highly contaminated kernels and toward the shorter wavelengths for the clean kernels. Highly contaminated kernels were also found to have a lower fluorescence peak magnitude compared with the less contaminated kernels. It was also noted that a general negative correlation exists between measured aflatoxin and the fluorescence image bands in the blue and green regions. The correlation coefficients of determination, r(2), was 0.72 for the multiple linear regression model. The multivariate analysis of variance found that the fluorescence means of four aflatoxin groups, <1, 1-20, 20-100, and >or=100 ng g(-1) (parts per billion), were significantly different from each other at the 0.01 level of alpha. Classification accuracy under a two-class schema ranged from 0.84 to 0.91 when a threshold of either 20 or 100 ng g(-1) was used. Overall, the results indicate that fluorescence hyperspectral imaging may be applicable in estimating aflatoxin content in individual corn kernels.
Classification of Phylogenetic Profiles for Protein Function Prediction: An SVM Approach
NASA Astrophysics Data System (ADS)
Kotaru, Appala Raju; Joshi, Ramesh C.
Predicting the function of an uncharacterized protein is a major challenge in post-genomic era due to problems complexity and scale. Having knowledge of protein function is a crucial link in the development of new drugs, better crops, and even the development of biochemicals such as biofuels. Recently numerous high-throughput experimental procedures have been invented to investigate the mechanisms leading to the accomplishment of a protein’s function and Phylogenetic profile is one of them. Phylogenetic profile is a way of representing a protein which encodes evolutionary history of proteins. In this paper we proposed a method for classification of phylogenetic profiles using supervised machine learning method, support vector machine classification along with radial basis function as kernel for identifying functionally linked proteins. We experimentally evaluated the performance of the classifier with the linear kernel, polynomial kernel and compared the results with the existing tree kernel. In our study we have used proteins of the budding yeast saccharomyces cerevisiae genome. We generated the phylogenetic profiles of 2465 yeast genes and for our study we used the functional annotations that are available in the MIPS database. Our experiments show that the performance of the radial basis kernel is similar to polynomial kernel is some functional classes together are better than linear, tree kernel and over all radial basis kernel outperformed the polynomial kernel, linear kernel and tree kernel. In analyzing these results we show that it will be feasible to make use of SVM classifier with radial basis function as kernel to predict the gene functionality using phylogenetic profiles.
Steckel, S; Stewart, S D
2015-06-01
Ear-feeding larvae, such as corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), can be important insect pests of field corn, Zea mays L., by feeding on kernels. Recently introduced, stacked Bacillus thuringiensis (Bt) traits provide improved protection from ear-feeding larvae. Thus, our objective was to evaluate how injury to kernels in the ear tip might affect yield when this injury was inflicted at the blister and milk stages. In 2010, simulated corn earworm injury reduced total kernel weight (i.e., yield) at both the blister and milk stage. In 2011, injury to ear tips at the milk stage affected total kernel weight. No differences in total kernel weight were found in 2013, regardless of when or how much injury was inflicted. Our data suggested that kernels within the same ear could compensate for injury to ear tips by increasing in size, but this increase was not always statistically significant or sufficient to overcome high levels of kernel injury. For naturally occurring injury observed on multiple corn hybrids during 2011 and 2012, our analyses showed either no or a minimal relationship between number of kernels injured by ear-feeding larvae and the total number of kernels per ear, total kernel weight, or the size of individual kernels. The results indicate that intraear compensation for kernel injury to ear tips can occur under at least some conditions. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piyush Sabharwall; Ali Siahpush; Michael McKellar
2012-06-01
The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondarymore » heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangers—helical coiled heat exchanger and printed circuit heat exchanger—as possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.« less
Evidence-based Kernels: Fundamental Units of Behavioral Influence
Biglan, Anthony
2008-01-01
This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior. PMID:18712600
Integrating the Gradient of the Thin Wire Kernel
NASA Technical Reports Server (NTRS)
Champagne, Nathan J.; Wilton, Donald R.
2008-01-01
A formulation for integrating the gradient of the thin wire kernel is presented. This approach employs a new expression for the gradient of the thin wire kernel derived from a recent technique for numerically evaluating the exact thin wire kernel. This approach should provide essentially arbitrary accuracy and may be used with higher-order elements and basis functions using the procedure described in [4].When the source and observation points are close, the potential integrals over wire segments involving the wire kernel are split into parts to handle the singular behavior of the integrand [1]. The singularity characteristics of the gradient of the wire kernel are different than those of the wire kernel, and the axial and radial components have different singularities. The characteristics of the gradient of the wire kernel are discussed in [2]. To evaluate the near electric and magnetic fields of a wire, the integration of the gradient of the wire kernel needs to be calculated over the source wire. Since the vector bases for current have constant direction on linear wire segments, these integrals reduce to integrals of the form
Ranking Support Vector Machine with Kernel Approximation
Dou, Yong
2017-01-01
Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms. PMID:28293256
Ranking Support Vector Machine with Kernel Approximation.
Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi
2017-01-01
Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.
New Cooperative Mechanisms of Low-Energy Nuclear Reactions Using Super Low-Energy External Field
NASA Astrophysics Data System (ADS)
Gareev, F. A.; Zhidkova, I. E.
We propose a new mechanism of LENR: cooperative processes in the whole system, nuclei + atoms + condensed matter, can occur at a smaller threshold energies than the corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low-energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of redistribution of inner energy of the whole system.
Process for fabricating continuous lengths of superconductor
Kroeger, Donald M.; List, III, Frederick A.
1998-01-01
A process for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor precursor between said first substrate ribbon and said second substrates ribbon. The layered superconductor precursor is then heat treated to form a super conductor layer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed...
Code of Federal Regulations, 2013 CFR
2013-04-01
... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed...
Code of Federal Regulations, 2012 CFR
2012-04-01
... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed...
Wigner functions defined with Laplace transform kernels.
Oh, Se Baek; Petruccelli, Jonathan C; Tian, Lei; Barbastathis, George
2011-10-24
We propose a new Wigner-type phase-space function using Laplace transform kernels--Laplace kernel Wigner function. Whereas momentum variables are real in the traditional Wigner function, the Laplace kernel Wigner function may have complex momentum variables. Due to the property of the Laplace transform, a broader range of signals can be represented in complex phase-space. We show that the Laplace kernel Wigner function exhibits similar properties in the marginals as the traditional Wigner function. As an example, we use the Laplace kernel Wigner function to analyze evanescent waves supported by surface plasmon polariton. © 2011 Optical Society of America
Online learning control using adaptive critic designs with sparse kernel machines.
Xu, Xin; Hou, Zhongsheng; Lian, Chuanqiang; He, Haibo
2013-05-01
In the past decade, adaptive critic designs (ACDs), including heuristic dynamic programming (HDP), dual heuristic programming (DHP), and their action-dependent ones, have been widely studied to realize online learning control of dynamical systems. However, because neural networks with manually designed features are commonly used to deal with continuous state and action spaces, the generalization capability and learning efficiency of previous ACDs still need to be improved. In this paper, a novel framework of ACDs with sparse kernel machines is presented by integrating kernel methods into the critic of ACDs. To improve the generalization capability as well as the computational efficiency of kernel machines, a sparsification method based on the approximately linear dependence analysis is used. Using the sparse kernel machines, two kernel-based ACD algorithms, that is, kernel HDP (KHDP) and kernel DHP (KDHP), are proposed and their performance is analyzed both theoretically and empirically. Because of the representation learning and generalization capability of sparse kernel machines, KHDP and KDHP can obtain much better performance than previous HDP and DHP with manually designed neural networks. Simulation and experimental results of two nonlinear control problems, that is, a continuous-action inverted pendulum problem and a ball and plate control problem, demonstrate the effectiveness of the proposed kernel ACD methods.
Influence of wheat kernel physical properties on the pulverizing process.
Dziki, Dariusz; Cacak-Pietrzak, Grażyna; Miś, Antoni; Jończyk, Krzysztof; Gawlik-Dziki, Urszula
2014-10-01
The physical properties of wheat kernel were determined and related to pulverizing performance by correlation analysis. Nineteen samples of wheat cultivars about similar level of protein content (11.2-12.8 % w.b.) and obtained from organic farming system were used for analysis. The kernel (moisture content 10 % w.b.) was pulverized by using the laboratory hammer mill equipped with round holes 1.0 mm screen. The specific grinding energy ranged from 120 kJkg(-1) to 159 kJkg(-1). On the basis of data obtained many of significant correlations (p < 0.05) were found between wheat kernel physical properties and pulverizing process of wheat kernel, especially wheat kernel hardness index (obtained on the basis of Single Kernel Characterization System) and vitreousness significantly and positively correlated with the grinding energy indices and the mass fraction of coarse particles (> 0.5 mm). Among the kernel mechanical properties determined on the basis of uniaxial compression test only the rapture force was correlated with the impact grinding results. The results showed also positive and significant relationships between kernel ash content and grinding energy requirements. On the basis of wheat physical properties the multiple linear regression was proposed for predicting the average particle size of pulverized kernel.
Relationship between processing score and kernel-fraction particle size in whole-plant corn silage.
Dias Junior, G S; Ferraretto, L F; Salvati, G G S; de Resende, L C; Hoffman, P C; Pereira, M N; Shaver, R D
2016-04-01
Kernel processing increases starch digestibility in whole-plant corn silage (WPCS). Corn silage processing score (CSPS), the percentage of starch passing through a 4.75-mm sieve, is widely used to assess degree of kernel breakage in WPCS. However, the geometric mean particle size (GMPS) of the kernel-fraction that passes through the 4.75-mm sieve has not been well described. Therefore, the objectives of this study were (1) to evaluate particle size distribution and digestibility of kernels cut in varied particle sizes; (2) to propose a method to measure GMPS in WPCS kernels; and (3) to evaluate the relationship between CSPS and GMPS of the kernel fraction in WPCS. Composite samples of unfermented, dried kernels from 110 corn hybrids commonly used for silage production were kept whole (WH) or manually cut in 2, 4, 8, 16, 32 or 64 pieces (2P, 4P, 8P, 16P, 32P, and 64P, respectively). Dry sieving to determine GMPS, surface area, and particle size distribution using 9 sieves with nominal square apertures of 9.50, 6.70, 4.75, 3.35, 2.36, 1.70, 1.18, and 0.59 mm and pan, as well as ruminal in situ dry matter (DM) digestibilities were performed for each kernel particle number treatment. Incubation times were 0, 3, 6, 12, and 24 h. The ruminal in situ DM disappearance of unfermented kernels increased with the reduction in particle size of corn kernels. Kernels kept whole had the lowest ruminal DM disappearance for all time points with maximum DM disappearance of 6.9% at 24 h and the greatest disappearance was observed for 64P, followed by 32P and 16P. Samples of WPCS (n=80) from 3 studies representing varied theoretical length of cut settings and processor types and settings were also evaluated. Each WPCS sample was divided in 2 and then dried at 60 °C for 48 h. The CSPS was determined in duplicate on 1 of the split samples, whereas on the other split sample the kernel and stover fractions were separated using a hydrodynamic separation procedure. After separation, the kernel fraction was redried at 60°C for 48 h in a forced-air oven and dry sieved to determine GMPS and surface area. Linear relationships between CSPS from WPCS (n=80) and kernel fraction GMPS, surface area, and proportion passing through the 4.75-mm screen were poor. Strong quadratic relationships between proportion of kernel fraction passing through the 4.75-mm screen and kernel fraction GMPS and surface area were observed. These findings suggest that hydrodynamic separation and dry sieving of the kernel fraction may provide a better assessment of kernel breakage in WPCS than CSPS. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Fengle; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Brown, Robert; Bhatnagar, Deepak; Cleveland, Thomas
2015-05-01
Aflatoxins are secondary metabolites produced by certain fungal species of the Aspergillus genus. Aflatoxin contamination remains a problem in agricultural products due to its toxic and carcinogenic properties. Conventional chemical methods for aflatoxin detection are time-consuming and destructive. This study employed fluorescence and reflectance visible near-infrared (VNIR) hyperspectral images to classify aflatoxin contaminated corn kernels rapidly and non-destructively. Corn ears were artificially inoculated in the field with toxigenic A. flavus spores at the early dough stage of kernel development. After harvest, a total of 300 kernels were collected from the inoculated ears. Fluorescence hyperspectral imagery with UV excitation and reflectance hyperspectral imagery with halogen illumination were acquired on both endosperm and germ sides of kernels. All kernels were then subjected to chemical analysis individually to determine aflatoxin concentrations. A region of interest (ROI) was created for each kernel to extract averaged spectra. Compared with healthy kernels, fluorescence spectral peaks for contaminated kernels shifted to longer wavelengths with lower intensity, and reflectance values for contaminated kernels were lower with a different spectral shape in 700-800 nm region. Principal component analysis was applied for data compression before classifying kernels into contaminated and healthy based on a 20 ppb threshold utilizing the K-nearest neighbors algorithm. The best overall accuracy achieved was 92.67% for germ side in the fluorescence data analysis. The germ side generally performed better than endosperm side. Fluorescence and reflectance image data achieved similar accuracy.
Influence of Kernel Age on Fumonisin B1 Production in Maize by Fusarium moniliforme
Warfield, Colleen Y.; Gilchrist, David G.
1999-01-01
Production of fumonisins by Fusarium moniliforme on naturally infected maize ears is an important food safety concern due to the toxic nature of this class of mycotoxins. Assessing the potential risk of fumonisin production in developing maize ears prior to harvest requires an understanding of the regulation of toxin biosynthesis during kernel maturation. We investigated the developmental-stage-dependent relationship between maize kernels and fumonisin B1 production by using kernels collected at the blister (R2), milk (R3), dough (R4), and dent (R5) stages following inoculation in culture at their respective field moisture contents with F. moniliforme. Highly significant differences (P ≤ 0.001) in fumonisin B1 production were found among kernels at the different developmental stages. The highest levels of fumonisin B1 were produced on the dent stage kernels, and the lowest levels were produced on the blister stage kernels. The differences in fumonisin B1 production among kernels at the different developmental stages remained significant (P ≤ 0.001) when the moisture contents of the kernels were adjusted to the same level prior to inoculation. We concluded that toxin production is affected by substrate composition as well as by moisture content. Our study also demonstrated that fumonisin B1 biosynthesis on maize kernels is influenced by factors which vary with the developmental age of the tissue. The risk of fumonisin contamination may begin early in maize ear development and increases as the kernels reach physiological maturity. PMID:10388675
Coal resources of the eastern regions of Russia for power plants of the Asian super ring
NASA Astrophysics Data System (ADS)
Sokolov, Aleksander; Takaishvili, Liudmila
2018-01-01
The eastern regions of Russia have a substantial potential for expansion of steaming coal production. The majority of coal deposits in the eastern regions are located close enough to the objects of the Asian super ring. The large coal reserves make it possible to consider it as a reliable fuel source for power plants for a long-term horizon. The coal reserves suitable for using at power plants of the Asian super ring are estimated in the paper by subject of the federation of the eastern regions for operating and new coal producers. The coal deposits of the eastern regions that are promising for the construction of power plants of the Asian super ring are presented. The paper describes both the coal deposits of the eastern regions that are considered in the projects for power plant construction and included in the program documents and the coal deposits that are not included in the program documents. The coal reserves of these deposits and the possible volumes of its production are estimated. The key qualitative coal characteristics of the deposits: heating value, and ash, sulfur, moisture content are presented. The mining-geological and hydrological conditions for deposit development are briefly characterized. The coals of the eastern regions are showed to contain valuable accompanying elements. It is noted that the creation of industrial clusters on the basis of the coal deposits is the most effective from the standpoints of the economy and ecology. The favorable and restraining factors in development of the described coal deposits are estimated.
THE INFLUENCE OF PRESSURE-DEPENDENT VISCOSITY ON THE THERMAL EVOLUTION OF SUPER-EARTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamenkovic, Vlada; Noack, Lena; Spohn, Tilman
2012-03-20
We study the thermal evolution of super-Earths with a one-dimensional (1D) parameterized convection model that has been adopted to account for a strong pressure dependence of the viscosity. A comparison with a 2D spherical convection model shows that the derived parameterization satisfactorily represents the main characteristics of the thermal evolution of massive rocky planets. We find that the pressure dependence of the viscosity strongly influences the thermal evolution of super-Earths-resulting in a highly sluggish convection regime in the lower mantles of those planets. Depending on the effective activation volume and for cooler initial conditions, we observe with growing planetary massmore » even the formation of a conductive lid above the core-mantle boundary (CMB), a so-called CMB-lid. For initially molten planets our results suggest no CMB-lids but instead a hot lower mantle and core as well as sluggish lower mantle convection. This implies that the initial interior temperatures, especially in the lower mantle, become crucial for the thermal evolution-the thermostat effect suggested to regulate the interior temperatures in terrestrial planets does not work for massive planets if the viscosity is strongly pressure dependent. The sluggish convection and the potential formation of the CMB-lid reduce the convective vigor throughout the mantle, thereby affecting convective stresses, lithospheric thicknesses, and heat fluxes. The pressure dependence of the viscosity may therefore also strongly affect the propensity of plate tectonics, volcanic activity, and the generation of a magnetic field of super-Earths.« less
NASA Astrophysics Data System (ADS)
Bozza, Gennaro; Malecha, Ziemowit M.; Van Weelderen, Rob
2016-12-01
The main objective of this work is to develop a robust multi-region numerical toolkit for the modeling of heat flows in combined solid-liquid systems. Specifically heat transfer in complex cryogenic system geometries involving super-fluid helium. The incentive originates from the need to support the design of superconductive magnets in the framework of the HiLumi-LHC project (Brüning and Rossi, 2015) [1]. The intent is, instead of solving heat flows in restricted domains, to be able to model a full magnet section in one go including all relevant construction details as accurately as possible. The toolkit was applied to the so-called MQXF quadrupole magnet design. Parametrisation studies were used to find a compromise in thermal design and electro-mechanical construction constraints. The cooling performance is evaluated in terms of temperature margin of the magnets under full steady state heat load conditions and in terms of maximal sustainable load. We also present transient response to pulse heat loads of varying duration and power and the system response to time-varying cold source temperatures.
Drug Release Studies from Caesalpinia pulcherrima Seed Polysaccharide.
Jeevanandham, Somasundaram; Dhachinamoorthi, Duraiswamy; Bannoth Chandra Sekhar, Kothapalli
2011-01-01
This study examines the controlled release behavior of both water-soluble (acetaminophen, caffeine, theophylline and salicylic acid) and water insoluble (indomethacin) drugs derived from Caesalpinia pulcherrima seed Gum isolated from Caesalpinia pulcherrima kernel powder. It further investigates the effect of incorporating diluents such as microcrystalline cellulose and lactose on caffeine release. In addition the effect the gum's (polysaccharide) partial cross-linking had on release of acetaminophen was examined. Applying the exponential equation, the soluble drugs mechanism of release was found to be anomalous. The insoluble drugs showed a near case II or zero order release mechanism. The rate of release in descending order was caffeine, acetaminophen, theophylline, salicylic acid and indomethacin. An increase in the release kinetics of the drug was observed on blending with diluents. However, the rate of release varied with the type and amount of blend within the matrix. The mechanism of release due to effect of diluents was found to be anomalous. The rate of drug release decreased upon partial cross-linking and the mechanism of release was found to be of super case II.
Multi-Regge kinematics and the moduli space of Riemann spheres with marked points
Del Duca, Vittorio; Druc, Stefan; Drummond, James; ...
2016-08-25
We show that scattering amplitudes in planar N = 4 Super Yang-Mills in multi-Regge kinematics can naturally be expressed in terms of single-valued iterated integrals on the moduli space of Riemann spheres with marked points. As a consequence, scattering amplitudes in this limit can be expressed as convolutions that can easily be computed using Stokes’ theorem. We apply this framework to MHV amplitudes to leading-logarithmic accuracy (LLA), and we prove that at L loops all MHV amplitudes are determined by amplitudes with up to L + 4 external legs. We also investigate non-MHV amplitudes, and we show that they canmore » be obtained by convoluting the MHV results with a certain helicity flip kernel. We classify all leading singularities that appear at LLA in the Regge limit for arbitrary helicity configurations and any number of external legs. In conclusion, we use our new framework to obtain explicit analytic results at LLA for all MHV amplitudes up to five loops and all non-MHV amplitudes with up to eight external legs and four loops.« less
NASA Astrophysics Data System (ADS)
Binol, Hamidullah; Bal, Abdullah; Cukur, Huseyin
2015-10-01
The performance of the kernel based techniques depends on the selection of kernel parameters. That's why; suitable parameter selection is an important problem for many kernel based techniques. This article presents a novel technique to learn the kernel parameters in kernel Fukunaga-Koontz Transform based (KFKT) classifier. The proposed approach determines the appropriate values of kernel parameters through optimizing an objective function constructed based on discrimination ability of KFKT. For this purpose we have utilized differential evolution algorithm (DEA). The new technique overcomes some disadvantages such as high time consumption existing in the traditional cross-validation method, and it can be utilized in any type of data. The experiments for target detection applications on the hyperspectral images verify the effectiveness of the proposed method.
Design of a multiple kernel learning algorithm for LS-SVM by convex programming.
Jian, Ling; Xia, Zhonghang; Liang, Xijun; Gao, Chuanhou
2011-06-01
As a kernel based method, the performance of least squares support vector machine (LS-SVM) depends on the selection of the kernel as well as the regularization parameter (Duan, Keerthi, & Poo, 2003). Cross-validation is efficient in selecting a single kernel and the regularization parameter; however, it suffers from heavy computational cost and is not flexible to deal with multiple kernels. In this paper, we address the issue of multiple kernel learning for LS-SVM by formulating it as semidefinite programming (SDP). Furthermore, we show that the regularization parameter can be optimized in a unified framework with the kernel, which leads to an automatic process for model selection. Extensive experimental validations are performed and analyzed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Novel near-infrared sampling apparatus for single kernel analysis of oil content in maize.
Janni, James; Weinstock, B André; Hagen, Lisa; Wright, Steve
2008-04-01
A method of rapid, nondestructive chemical and physical analysis of individual maize (Zea mays L.) kernels is needed for the development of high value food, feed, and fuel traits. Near-infrared (NIR) spectroscopy offers a robust nondestructive method of trait determination. However, traditional NIR bulk sampling techniques cannot be applied successfully to individual kernels. Obtaining optimized single kernel NIR spectra for applied chemometric predictive analysis requires a novel sampling technique that can account for the heterogeneous forms, morphologies, and opacities exhibited in individual maize kernels. In this study such a novel technique is described and compared to less effective means of single kernel NIR analysis. Results of the application of a partial least squares (PLS) derived model for predictive determination of percent oil content per individual kernel are shown.
Zhou, Qijing; Jiang, Biao; Dong, Fei; Huang, Peiyu; Liu, Hongtao; Zhang, Minming
2014-01-01
To evaluate the improvement of iterative reconstruction in image space (IRIS) technique in computed tomographic (CT) coronary stent imaging with sharp kernel, and to make a trade-off analysis. Fifty-six patients with 105 stents were examined by 128-slice dual-source CT coronary angiography (CTCA). Images were reconstructed using standard filtered back projection (FBP) and IRIS with both medium kernel and sharp kernel applied. Image noise and the stent diameter were investigated. Image noise was measured both in background vessel and in-stent lumen as objective image evaluation. Image noise score and stent score were performed as subjective image evaluation. The CTCA images reconstructed with IRIS were associated with significant noise reduction compared to that of CTCA images reconstructed using FBP technique in both of background vessel and in-stent lumen (the background noise decreased by approximately 25.4% ± 8.2% in medium kernel (P
Zhang, Guoqing; Sun, Huaijiang; Xia, Guiyu; Sun, Quansen
2016-07-07
Sparse representation based classification (SRC) has been developed and shown great potential for real-world application. Based on SRC, Yang et al. [10] devised a SRC steered discriminative projection (SRC-DP) method. However, as a linear algorithm, SRC-DP cannot handle the data with highly nonlinear distribution. Kernel sparse representation-based classifier (KSRC) is a non-linear extension of SRC and can remedy the drawback of SRC. KSRC requires the use of a predetermined kernel function and selection of the kernel function and its parameters is difficult. Recently, multiple kernel learning for SRC (MKL-SRC) [22] has been proposed to learn a kernel from a set of base kernels. However, MKL-SRC only considers the within-class reconstruction residual while ignoring the between-class relationship, when learning the kernel weights. In this paper, we propose a novel multiple kernel sparse representation-based classifier (MKSRC), and then we use it as a criterion to design a multiple kernel sparse representation based orthogonal discriminative projection method (MK-SR-ODP). The proposed algorithm aims at learning a projection matrix and a corresponding kernel from the given base kernels such that in the low dimension subspace the between-class reconstruction residual is maximized and the within-class reconstruction residual is minimized. Furthermore, to achieve a minimum overall loss by performing recognition in the learned low-dimensional subspace, we introduce cost information into the dimensionality reduction method. The solutions for the proposed method can be efficiently found based on trace ratio optimization method [33]. Extensive experimental results demonstrate the superiority of the proposed algorithm when compared with the state-of-the-art methods.
Improving prediction of heterodimeric protein complexes using combination with pairwise kernel.
Ruan, Peiying; Hayashida, Morihiro; Akutsu, Tatsuya; Vert, Jean-Philippe
2018-02-19
Since many proteins become functional only after they interact with their partner proteins and form protein complexes, it is essential to identify the sets of proteins that form complexes. Therefore, several computational methods have been proposed to predict complexes from the topology and structure of experimental protein-protein interaction (PPI) network. These methods work well to predict complexes involving at least three proteins, but generally fail at identifying complexes involving only two different proteins, called heterodimeric complexes or heterodimers. There is however an urgent need for efficient methods to predict heterodimers, since the majority of known protein complexes are precisely heterodimers. In this paper, we use three promising kernel functions, Min kernel and two pairwise kernels, which are Metric Learning Pairwise Kernel (MLPK) and Tensor Product Pairwise Kernel (TPPK). We also consider the normalization forms of Min kernel. Then, we combine Min kernel or its normalization form and one of the pairwise kernels by plugging. We applied kernels based on PPI, domain, phylogenetic profile, and subcellular localization properties to predicting heterodimers. Then, we evaluate our method by employing C-Support Vector Classification (C-SVC), carrying out 10-fold cross-validation, and calculating the average F-measures. The results suggest that the combination of normalized-Min-kernel and MLPK leads to the best F-measure and improved the performance of our previous work, which had been the best existing method so far. We propose new methods to predict heterodimers, using a machine learning-based approach. We train a support vector machine (SVM) to discriminate interacting vs non-interacting protein pairs, based on informations extracted from PPI, domain, phylogenetic profiles and subcellular localization. We evaluate in detail new kernel functions to encode these data, and report prediction performance that outperforms the state-of-the-art.
Mapping QTLs controlling kernel dimensions in a wheat inter-varietal RIL mapping population.
Cheng, Ruiru; Kong, Zhongxin; Zhang, Liwei; Xie, Quan; Jia, Haiyan; Yu, Dong; Huang, Yulong; Ma, Zhengqiang
2017-07-01
Seven kernel dimension QTLs were identified in wheat, and kernel thickness was found to be the most important dimension for grain weight improvement. Kernel morphology and weight of wheat (Triticum aestivum L.) affect both yield and quality; however, the genetic basis of these traits and their interactions has not been fully understood. In this study, to investigate the genetic factors affecting kernel morphology and the association of kernel morphology traits with kernel weight, kernel length (KL), width (KW) and thickness (KT) were evaluated, together with hundred-grain weight (HGW), in a recombinant inbred line population derived from Nanda2419 × Wangshuibai, with data from five trials (two different locations over 3 years). The results showed that HGW was more closely correlated with KT and KW than with KL. A whole genome scan revealed four QTLs for KL, one for KW and two for KT, distributed on five different chromosomes. Of them, QKl.nau-2D for KL, and QKt.nau-4B and QKt.nau-5A for KT were newly identified major QTLs for the respective traits, explaining up to 32.6 and 41.5% of the phenotypic variations, respectively. Increase of KW and KT and reduction of KL/KT and KW/KT ratios always resulted in significant higher grain weight. Lines combining the Nanda 2419 alleles of the 4B and 5A intervals had wider, thicker, rounder kernels and a 14% higher grain weight in the genotype-based analysis. A strong, negative linear relationship of the KW/KT ratio with grain weight was observed. It thus appears that kernel thickness is the most important kernel dimension factor in wheat improvement for higher yield. Mapping and marker identification of the kernel dimension-related QTLs definitely help realize the breeding goals.
Kernel learning at the first level of inference.
Cawley, Gavin C; Talbot, Nicola L C
2014-05-01
Kernel learning methods, whether Bayesian or frequentist, typically involve multiple levels of inference, with the coefficients of the kernel expansion being determined at the first level and the kernel and regularisation parameters carefully tuned at the second level, a process known as model selection. Model selection for kernel machines is commonly performed via optimisation of a suitable model selection criterion, often based on cross-validation or theoretical performance bounds. However, if there are a large number of kernel parameters, as for instance in the case of automatic relevance determination (ARD), there is a substantial risk of over-fitting the model selection criterion, resulting in poor generalisation performance. In this paper we investigate the possibility of learning the kernel, for the Least-Squares Support Vector Machine (LS-SVM) classifier, at the first level of inference, i.e. parameter optimisation. The kernel parameters and the coefficients of the kernel expansion are jointly optimised at the first level of inference, minimising a training criterion with an additional regularisation term acting on the kernel parameters. The key advantage of this approach is that the values of only two regularisation parameters need be determined in model selection, substantially alleviating the problem of over-fitting the model selection criterion. The benefits of this approach are demonstrated using a suite of synthetic and real-world binary classification benchmark problems, where kernel learning at the first level of inference is shown to be statistically superior to the conventional approach, improves on our previous work (Cawley and Talbot, 2007) and is competitive with Multiple Kernel Learning approaches, but with reduced computational expense. Copyright © 2014 Elsevier Ltd. All rights reserved.
Efficacy of heat treatment for disinfestation of concrete grain silos.
Opit, G P; Arthur, F H; Bonjour, E L; Jones, C L; Phillips, T W
2011-08-01
Field experiments were conducted in 2007 and 2008 to evaluate heat treatment for disinfestations of empty concrete elevator silos. A Mobile Heat Treatment Unit was used to introduce heat into silos to attain target conditions of 50 degrees C for at least 6 h. Ventilated plastic containers with a capacity of 100 g of wheat, Triticum aestivum L., held Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Polyvinyl chloride containers with a capacity of 300 g of wheat held adults of Liposcelis corrodens (Heymons) (Psocoptera: Liposcelididae) and Liposcelis decolor (Pearman), which were contained in 35-mm Petri dishes within the grain. Containers were fastened to a rope suspended from the top of the silo at depths of 0 m (just under the top manhole), 10 m, 20 m, and 30 m (silo floor). When the highest temperature achieved was approximately 50 degrees C for 6 h, parental mortality ofR. dominica and T. castaneum, and both psocid species was 98-100%. Progeny production of R. dominica occurred when there was parental survival, but in general R. dominica seemed less impacted by the heat treatment than T. castaneum. There was 100% mortality of L. corrodens at all depths in the heat treatments but only 92.5% mortality for L. decolor, with most survivors located in the bioassay containers at the top of the silo. Results show wheat kernels may have an insulating effect and heat treatment might be more effective when used in conjunction with sanitation and cleaning procedures.
Adaptive kernel function using line transect sampling
NASA Astrophysics Data System (ADS)
Albadareen, Baker; Ismail, Noriszura
2018-04-01
The estimation of f(0) is crucial in the line transect method which is used for estimating population abundance in wildlife survey's. The classical kernel estimator of f(0) has a high negative bias. Our study proposes an adaptation in the kernel function which is shown to be more efficient than the usual kernel estimator. A simulation study is adopted to compare the performance of the proposed estimators with the classical kernel estimators.
Kernel Partial Least Squares for Nonlinear Regression and Discrimination
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A previously proposed kernel PLS regression model was proven to be competitive with other regularized regression methods in RKHS. The family of nonlinear kernel-based PLS models is extended by considering the kernel PLS method for discrimination. Theoretical and experimental results on a two-class discrimination problem indicate usefulness of the method.
Application of ANNs approach for wave-like and heat-like equations
NASA Astrophysics Data System (ADS)
Jafarian, Ahmad; Baleanu, Dumitru
2017-12-01
Artificial neural networks are data processing systems which originate from human brain tissue studies. The remarkable abilities of these networks help us to derive desired results from complicated raw data. In this study, we intend to duplicate an efficient iterative method to the numerical solution of two famous partial differential equations, namely the wave-like and heat-like problems. It should be noted that many physical phenomena such as coupling currents in a flat multi-strand two-layer super conducting cable, non-homogeneous elastic waves in soils and earthquake stresses, are described by initial-boundary value wave and heat partial differential equations with variable coefficients. To the numerical solution of these equations, a combination of the power series method and artificial neural networks approach, is used to seek an appropriate bivariate polynomial solution of the mentioned initial-boundary value problem. Finally, several computer simulations confirmed the theoretical results and demonstrating applicability of the method.
Method for making carbon films
Tan, M.X.
1999-07-29
A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area ([approx equal]1000 m[sup 2] /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160 C for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750 C in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750--850 C for between 1--6 hours. 2 figs.
Method for making carbon films
Tan, Ming X.
1999-01-01
A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.
End-to-end plasma bubble PIC simulations on GPUs
NASA Astrophysics Data System (ADS)
Germaschewski, Kai; Fox, William; Matteucci, Jackson; Bhattacharjee, Amitava
2017-10-01
Accelerator technologies play a crucial role in eventually achieving exascale computing capabilities. The current and upcoming leadership machines at ORNL (Titan and Summit) employ Nvidia GPUs, which provide vast computational power but also need specifically adapted computational kernels to fully exploit them. In this work, we will show end-to-end particle-in-cell simulations of the formation, evolution and coalescence of laser-generated plasma bubbles. This work showcases the GPU capabilities of the PSC particle-in-cell code, which has been adapted for this problem to support particle injection, a heating operator and a collision operator on GPUs.
NASA Astrophysics Data System (ADS)
Mariño, Marcos
2015-09-01
Preface; Part I. Instantons: 1. Instantons in quantum mechanics; 2. Unstable vacua in quantum field theory; 3. Large order behavior and Borel summability; 4. Non-perturbative aspects of Yang-Mills theories; 5. Instantons and fermions; Part II. Large N: 6. Sigma models at large N; 7. The 1=N expansion in QCD; 8. Matrix models and matrix quantum mechanics at large N; 9. Large N QCD in two dimensions; 10. Instantons at large N; Appendix A. Harmonic analysis on S3; Appendix B. Heat kernel and zeta functions; Appendix C. Effective action for large N sigma models; References; Author index; Subject index.
Pollen source effects on growth of kernel structures and embryo chemical compounds in maize.
Tanaka, W; Mantese, A I; Maddonni, G A
2009-08-01
Previous studies have reported effects of pollen source on the oil concentration of maize (Zea mays) kernels through modifications to both the embryo/kernel ratio and embryo oil concentration. The present study expands upon previous analyses by addressing pollen source effects on the growth of kernel structures (i.e. pericarp, endosperm and embryo), allocation of embryo chemical constituents (i.e. oil, protein, starch and soluble sugars), and the anatomy and histology of the embryos. Maize kernels with different oil concentration were obtained from pollinations with two parental genotypes of contrasting oil concentration. The dynamics of the growth of kernel structures and allocation of embryo chemical constituents were analysed during the post-flowering period. Mature kernels were dissected to study the anatomy (embryonic axis and scutellum) and histology [cell number and cell size of the scutellums, presence of sub-cellular structures in scutellum tissue (starch granules, oil and protein bodies)] of the embryos. Plants of all crosses exhibited a similar kernel number and kernel weight. Pollen source modified neither the growth period of kernel structures, nor pericarp growth rate. By contrast, pollen source determined a trade-off between embryo and endosperm growth rates, which impacted on the embryo/kernel ratio of mature kernels. Modifications to the embryo size were mediated by scutellum cell number. Pollen source also affected (P < 0.01) allocation of embryo chemical compounds. Negative correlations among embryo oil concentration and those of starch (r = 0.98, P < 0.01) and soluble sugars (r = 0.95, P < 0.05) were found. Coincidently, embryos with low oil concentration had an increased (P < 0.05-0.10) scutellum cell area occupied by starch granules and fewer oil bodies. The effects of pollen source on both embryo/kernel ratio and allocation of embryo chemicals seems to be related to the early established sink strength (i.e. sink size and sink activity) of the embryos.
7 CFR 868.254 - Broken kernels determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Broken kernels determination. 868.254 Section 868.254 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Governing Application of Standards § 868.254 Broken kernels determination. Broken kernels shall be...
7 CFR 51.2090 - Serious damage.
Code of Federal Regulations, 2010 CFR
2010-01-01
... defect which makes a kernel or piece of kernel unsuitable for human consumption, and includes decay...: Shriveling when the kernel is seriously withered, shrunken, leathery, tough or only partially developed: Provided, that partially developed kernels are not considered seriously damaged if more than one-fourth of...
Anisotropic hydrodynamics with a scalar collisional kernel
NASA Astrophysics Data System (ADS)
Almaalol, Dekrayat; Strickland, Michael
2018-04-01
Prior studies of nonequilibrium dynamics using anisotropic hydrodynamics have used the relativistic Anderson-Witting scattering kernel or some variant thereof. In this paper, we make the first study of the impact of using a more realistic scattering kernel. For this purpose, we consider a conformal system undergoing transversally homogenous and boost-invariant Bjorken expansion and take the collisional kernel to be given by the leading order 2 ↔2 scattering kernel in scalar λ ϕ4 . We consider both classical and quantum statistics to assess the impact of Bose enhancement on the dynamics. We also determine the anisotropic nonequilibrium attractor of a system subject to this collisional kernel. We find that, when the near-equilibrium relaxation-times in the Anderson-Witting and scalar collisional kernels are matched, the scalar kernel results in a higher degree of momentum-space anisotropy during the system's evolution, given the same initial conditions. Additionally, we find that taking into account Bose enhancement further increases the dynamically generated momentum-space anisotropy.
Ideal regularization for learning kernels from labels.
Pan, Binbin; Lai, Jianhuang; Shen, Lixin
2014-08-01
In this paper, we propose a new form of regularization that is able to utilize the label information of a data set for learning kernels. The proposed regularization, referred to as ideal regularization, is a linear function of the kernel matrix to be learned. The ideal regularization allows us to develop efficient algorithms to exploit labels. Three applications of the ideal regularization are considered. Firstly, we use the ideal regularization to incorporate the labels into a standard kernel, making the resulting kernel more appropriate for learning tasks. Next, we employ the ideal regularization to learn a data-dependent kernel matrix from an initial kernel matrix (which contains prior similarity information, geometric structures, and labels of the data). Finally, we incorporate the ideal regularization to some state-of-the-art kernel learning problems. With this regularization, these learning problems can be formulated as simpler ones which permit more efficient solvers. Empirical results show that the ideal regularization exploits the labels effectively and efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Baker, M. P.; King, J. C.; Gorman, B. P.; Braley, J. C.
2015-03-01
Current methods of TRISO fuel kernel production in the United States use a sol-gel process with trichloroethylene (TCE) as the forming fluid. After contact with radioactive materials, the spent TCE becomes a mixed hazardous waste, and high costs are associated with its recycling or disposal. Reducing or eliminating this mixed waste stream would not only benefit the environment, but would also enhance the economics of kernel production. Previous research yielded three candidates for testing as alternatives to TCE: 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane. This study considers the production of yttria-stabilized zirconia (YSZ) kernels in silicone oil and the three chosen alternative formation fluids, with subsequent characterization of the produced kernels and used forming fluid. Kernels formed in silicone oil and bromotetradecane were comparable to those produced by previous kernel production efforts, while those produced in chlorooctadecane and iodododecane experienced gelation issues leading to poor kernel formation and geometry.
NASA Astrophysics Data System (ADS)
Jaravel, Thomas; Labahn, Jeffrey; Ihme, Matthias
2017-11-01
The reliable initiation of flame ignition by high-energy spark kernels is critical for the operability of aviation gas turbines. The evolution of a spark kernel ejected by an igniter into a turbulent stratified environment is investigated using detailed numerical simulations with complex chemistry. At early times post ejection, comparisons of simulation results with high-speed Schlieren data show that the initial trajectory of the kernel is well reproduced, with a significant amount of air entrainment from the surrounding flow that is induced by the kernel ejection. After transiting in a non-flammable mixture, the kernel reaches a second stream of flammable methane-air mixture, where the successful of the kernel ignition was found to depend on the local flow state and operating conditions. By performing parametric studies, the probability of kernel ignition was identified, and compared with experimental observations. The ignition behavior is characterized by analyzing the local chemical structure, and its stochastic variability is also investigated.
The site, size, spatial stability, and energetics of an X-ray flare kernel
NASA Technical Reports Server (NTRS)
Petrasso, R.; Gerassimenko, M.; Nolte, J.
1979-01-01
The site, size evolution, and energetics of an X-ray kernel that dominated a solar flare during its rise and somewhat during its peak are investigated. The position of the kernel remained stationary to within about 3 arc sec over the 30-min interval of observations, despite pulsations in the kernel X-ray brightness in excess of a factor of 10. This suggests a tightly bound, deeply rooted magnetic structure, more plausibly associated with the near chromosphere or low corona rather than with the high corona. The H-alpha flare onset coincided with the appearance of the kernel, again suggesting a close spatial and temporal coupling between the chromospheric H-alpha event and the X-ray kernel. At the first kernel brightness peak its size was no larger than about 2 arc sec, when it accounted for about 40% of the total flare flux. In the second rise phase of the kernel, a source power input of order 2 times 10 to the 24th ergs/sec is minimally required.
Simultaneous observations of traveling convection vortices: Ionosphere-thermosphere coupling
NASA Astrophysics Data System (ADS)
Kim, Hyomin; Lessard, Marc R.; Jones, Sarah L.; Lynch, Kristina A.; Fernandes, Philip A.; Aruliah, Anasuya L.; Engebretson, Mark J.; Moen, Jøran I.; Oksavik, Kjellmar; Yahnin, Alexander G.; Yeoman, Timothy K.
2017-05-01
We present simultaneous observations of magnetosphere-ionosphere-thermosphere coupling over Svalbard during a traveling convection vortex (TCV) event. Various spaceborne and ground-based instruments made coordinated measurements, including magnetometers, particle detectors, an all-sky camera, European Incoherent Scatter (EISCAT) Svalbard Radar, Super Dual Auroral Radar Network (SuperDARN), and SCANning Doppler Imager (SCANDI). The instruments recorded TCVs associated with a sudden change in solar wind dynamic pressure. The data display typical features of TCVs including vortical ionospheric convection patterns seen by the ground magnetometers and SuperDARN radars and auroral precipitation near the cusp observed by the all-sky camera. Simultaneously, electron and ion temperature enhancements with corresponding density increase from soft precipitation are also observed by the EISCAT Svalbard Radar. The ground magnetometers also detected electromagnetic ion cyclotron waves at the approximate time of the TCV arrival. This implies that they were generated by a temperature anisotropy resulting from a compression on the dayside magnetosphere. SCANDI data show a divergence in thermospheric winds during the TCVs, presumably due to thermospheric heating associated with the current closure linked to a field-aligned current system generated by the TCVs. We conclude that solar wind pressure impulse-related transient phenomena can affect even the upper atmospheric dynamics via current systems established by a magnetosphere-ionosphere-thermosphere coupling process.
Quantitative model of super-Arrhenian behavior in glass forming materials
NASA Astrophysics Data System (ADS)
Caruthers, J. M.; Medvedev, G. A.
2018-05-01
The key feature of glass forming liquids is the super-Arrhenian temperature dependence of the mobility, where the mobility can increase by ten orders of magnitude or more as the temperature is decreased if crystallization does not intervene. A fundamental description of the super-Arrhenian behavior has been developed; specifically, the logarithm of the relaxation time is a linear function of 1 /U¯x , where U¯x is the independently determined excess molar internal energy and B is a material constant. This one-parameter mobility model quantitatively describes data for 21 glass forming materials, which are all the materials where there are sufficient experimental data for analysis. The effect of pressure on the loga mobility is also described using the same U¯x(T ,p ) function determined from the difference between the liquid and crystalline internal energies. It is also shown that B is well correlated with the heat of fusion. The prediction of the B /U¯x model is compared to the Adam and Gibbs 1 /T S¯x model, where the B /U¯x model is significantly better in unifying the full complement of mobility data. The implications of the B /U¯x model for the development of a fundamental description of glass are discussed.
GIANT IMPACT: AN EFFICIENT MECHANISM FOR THE DEVOLATILIZATION OF SUPER-EARTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shang-Fei; Hori, Yasunori; Lin, D. N. C.
Mini-Neptunes and volatile-poor super-Earths coexist on adjacent orbits in proximity to host stars such as Kepler-36 and Kepler-11. Several post-formation processes have been proposed for explaining the origin of the compositional diversity between neighboring planets: mass loss via stellar XUV irradiation, degassing of accreted material, and in situ accumulation of the disk gas. Close-in planets are also likely to experience giant impacts during the advanced stage of planet formation. This study examines the possibility of transforming volatile-rich super-Earths/mini-Neptunes into volatile-depleted super-Earths through giant impacts. We present the results of three-dimensional hydrodynamic simulations of giant impacts in the accretionary and disruptivemore » regimes. Target planets are modeled with a three-layered structure composed of an iron core, silicate mantle, and hydrogen/helium envelope. In the disruptive case, the giant impact can remove most of the H/He atmosphere immediately and homogenize the refractory material in the planetary interior. In the accretionary case, the planet is able to retain more than half of the original gaseous envelope, while a compositional gradient suppresses efficient heat transfer as the planetary interior undergoes double-diffusive convection. After the giant impact, a hot and inflated planet cools and contracts slowly. The extended atmosphere enhances the mass loss via both a Parker wind induced by thermal pressure and hydrodynamic escape driven by the stellar XUV irradiation. As a result, the entire gaseous envelope is expected to be lost due to the combination of those processes in both cases. Based on our results, we propose that Kepler-36b may have been significantly devolatilized by giant impacts, while a substantial fraction of Kepler-36c’s atmosphere may remain intact. Furthermore, the stochastic nature of giant impacts may account for the observed large dispersion in the mass–radius relationship of close-in super-Earths and mini-Neptunes (at least to some extent)« less
The pre-image problem in kernel methods.
Kwok, James Tin-yau; Tsang, Ivor Wai-hung
2004-11-01
In this paper, we address the problem of finding the pre-image of a feature vector in the feature space induced by a kernel. This is of central importance in some kernel applications, such as on using kernel principal component analysis (PCA) for image denoising. Unlike the traditional method which relies on nonlinear optimization, our proposed method directly finds the location of the pre-image based on distance constraints in the feature space. It is noniterative, involves only linear algebra and does not suffer from numerical instability or local minimum problems. Evaluations on performing kernel PCA and kernel clustering on the USPS data set show much improved performance.
Development of a kernel function for clinical data.
Daemen, Anneleen; De Moor, Bart
2009-01-01
For most diseases and examinations, clinical data such as age, gender and medical history guides clinical management, despite the rise of high-throughput technologies. To fully exploit such clinical information, appropriate modeling of relevant parameters is required. As the widely used linear kernel function has several disadvantages when applied to clinical data, we propose a new kernel function specifically developed for this data. This "clinical kernel function" more accurately represents similarities between patients. Evidently, three data sets were studied and significantly better performances were obtained with a Least Squares Support Vector Machine when based on the clinical kernel function compared to the linear kernel function.
Manycore Performance-Portability: Kokkos Multidimensional Array Library
Edwards, H. Carter; Sunderland, Daniel; Porter, Vicki; ...
2012-01-01
Large, complex scientific and engineering application code have a significant investment in computational kernels to implement their mathematical models. Porting these computational kernels to the collection of modern manycore accelerator devices is a major challenge in that these devices have diverse programming models, application programming interfaces (APIs), and performance requirements. The Kokkos Array programming model provides library-based approach to implement computational kernels that are performance-portable to CPU-multicore and GPGPU accelerator devices. This programming model is based upon three fundamental concepts: (1) manycore compute devices each with its own memory space, (2) data parallel kernels and (3) multidimensional arrays. Kernel executionmore » performance is, especially for NVIDIA® devices, extremely dependent on data access patterns. Optimal data access pattern can be different for different manycore devices – potentially leading to different implementations of computational kernels specialized for different devices. The Kokkos Array programming model supports performance-portable kernels by (1) separating data access patterns from computational kernels through a multidimensional array API and (2) introduce device-specific data access mappings when a kernel is compiled. An implementation of Kokkos Array is available through Trilinos [Trilinos website, http://trilinos.sandia.gov/, August 2011].« less
Wang, Shunfang; Nie, Bing; Yue, Kun; Fei, Yu; Li, Wenjia; Xu, Dongshu
2017-12-15
Kernel discriminant analysis (KDA) is a dimension reduction and classification algorithm based on nonlinear kernel trick, which can be novelly used to treat high-dimensional and complex biological data before undergoing classification processes such as protein subcellular localization. Kernel parameters make a great impact on the performance of the KDA model. Specifically, for KDA with the popular Gaussian kernel, to select the scale parameter is still a challenging problem. Thus, this paper introduces the KDA method and proposes a new method for Gaussian kernel parameter selection depending on the fact that the differences between reconstruction errors of edge normal samples and those of interior normal samples should be maximized for certain suitable kernel parameters. Experiments with various standard data sets of protein subcellular localization show that the overall accuracy of protein classification prediction with KDA is much higher than that without KDA. Meanwhile, the kernel parameter of KDA has a great impact on the efficiency, and the proposed method can produce an optimum parameter, which makes the new algorithm not only perform as effectively as the traditional ones, but also reduce the computational time and thus improve efficiency.
NASA Astrophysics Data System (ADS)
Jin, Hyeongmin; Heo, Changyong; Kim, Jong Hyo
2018-02-01
Differing reconstruction kernels are known to strongly affect the variability of imaging biomarkers and thus remain as a barrier in translating the computer aided quantification techniques into clinical practice. This study presents a deep learning application to CT kernel conversion which converts a CT image of sharp kernel to that of standard kernel and evaluates its impact on variability reduction of a pulmonary imaging biomarker, the emphysema index (EI). Forty cases of low-dose chest CT exams obtained with 120kVp, 40mAs, 1mm thickness, of 2 reconstruction kernels (B30f, B50f) were selected from the low dose lung cancer screening database of our institution. A Fully convolutional network was implemented with Keras deep learning library. The model consisted of symmetric layers to capture the context and fine structure characteristics of CT images from the standard and sharp reconstruction kernels. Pairs of the full-resolution CT data set were fed to input and output nodes to train the convolutional network to learn the appropriate filter kernels for converting the CT images of sharp kernel to standard kernel with a criterion of measuring the mean squared error between the input and target images. EIs (RA950 and Perc15) were measured with a software package (ImagePrism Pulmo, Seoul, South Korea) and compared for the data sets of B50f, B30f, and the converted B50f. The effect of kernel conversion was evaluated with the mean and standard deviation of pair-wise differences in EI. The population mean of RA950 was 27.65 +/- 7.28% for B50f data set, 10.82 +/- 6.71% for the B30f data set, and 8.87 +/- 6.20% for the converted B50f data set. The mean of pair-wise absolute differences in RA950 between B30f and B50f is reduced from 16.83% to 1.95% using kernel conversion. Our study demonstrates the feasibility of applying the deep learning technique for CT kernel conversion and reducing the kernel-induced variability of EI quantification. The deep learning model has a potential to improve the reliability of imaging biomarker, especially in evaluating the longitudinal changes of EI even when the patient CT scans were performed with different kernels.
Metabolic network prediction through pairwise rational kernels.
Roche-Lima, Abiel; Domaratzki, Michael; Fristensky, Brian
2014-09-26
Metabolic networks are represented by the set of metabolic pathways. Metabolic pathways are a series of biochemical reactions, in which the product (output) from one reaction serves as the substrate (input) to another reaction. Many pathways remain incompletely characterized. One of the major challenges of computational biology is to obtain better models of metabolic pathways. Existing models are dependent on the annotation of the genes. This propagates error accumulation when the pathways are predicted by incorrectly annotated genes. Pairwise classification methods are supervised learning methods used to classify new pair of entities. Some of these classification methods, e.g., Pairwise Support Vector Machines (SVMs), use pairwise kernels. Pairwise kernels describe similarity measures between two pairs of entities. Using pairwise kernels to handle sequence data requires long processing times and large storage. Rational kernels are kernels based on weighted finite-state transducers that represent similarity measures between sequences or automata. They have been effectively used in problems that handle large amount of sequence information such as protein essentiality, natural language processing and machine translations. We create a new family of pairwise kernels using weighted finite-state transducers (called Pairwise Rational Kernel (PRK)) to predict metabolic pathways from a variety of biological data. PRKs take advantage of the simpler representations and faster algorithms of transducers. Because raw sequence data can be used, the predictor model avoids the errors introduced by incorrect gene annotations. We then developed several experiments with PRKs and Pairwise SVM to validate our methods using the metabolic network of Saccharomyces cerevisiae. As a result, when PRKs are used, our method executes faster in comparison with other pairwise kernels. Also, when we use PRKs combined with other simple kernels that include evolutionary information, the accuracy values have been improved, while maintaining lower construction and execution times. The power of using kernels is that almost any sort of data can be represented using kernels. Therefore, completely disparate types of data can be combined to add power to kernel-based machine learning methods. When we compared our proposal using PRKs with other similar kernel, the execution times were decreased, with no compromise of accuracy. We also proved that by combining PRKs with other kernels that include evolutionary information, the accuracy can also also be improved. As our proposal can use any type of sequence data, genes do not need to be properly annotated, avoiding accumulation errors because of incorrect previous annotations.
Differential metabolome analysis of field-grown maize kernels in response to drought stress
USDA-ARS?s Scientific Manuscript database
Drought stress constrains maize kernel development and can exacerbate aflatoxin contamination. In order to identify drought responsive metabolites and explore pathways involved in kernel responses, a metabolomics analysis was conducted on kernels from a drought tolerant line, Lo964, and a sensitive ...
7 CFR 868.304 - Broken kernels determination.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 7 2011-01-01 2011-01-01 false Broken kernels determination. 868.304 Section 868.304 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Application of Standards § 868.304 Broken kernels determination. Broken kernels shall be determined by the use...
7 CFR 868.304 - Broken kernels determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Broken kernels determination. 868.304 Section 868.304 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Application of Standards § 868.304 Broken kernels determination. Broken kernels shall be determined by the use...
Biasing anisotropic scattering kernels for deep-penetration Monte Carlo calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, L.L.; Hendricks, J.S.
1983-01-01
The exponential transform is often used to improve the efficiency of deep-penetration Monte Carlo calculations. This technique is usually implemented by biasing the distance-to-collision kernel of the transport equation, but leaving the scattering kernel unchanged. Dwivedi obtained significant improvements in efficiency by biasing an isotropic scattering kernel as well as the distance-to-collision kernel. This idea is extended to anisotropic scattering, particularly the highly forward Klein-Nishina scattering of gamma rays.
Performance Characteristics of a Kernel-Space Packet Capture Module
2010-03-01
Defense, or the United States Government . AFIT/GCO/ENG/10-03 PERFORMANCE CHARACTERISTICS OF A KERNEL-SPACE PACKET CAPTURE MODULE THESIS Presented to the...3.1.2.3 Prototype. The proof of concept for this research is the design, development, and comparative performance analysis of a kernel level N2d capture...changes to kernel code 5. Can be used for both user-space and kernel-space capture applications in order to control comparative performance analysis to
Makanza, R; Zaman-Allah, M; Cairns, J E; Eyre, J; Burgueño, J; Pacheco, Ángela; Diepenbrock, C; Magorokosho, C; Tarekegne, A; Olsen, M; Prasanna, B M
2018-01-01
Grain yield, ear and kernel attributes can assist to understand the performance of maize plant under different environmental conditions and can be used in the variety development process to address farmer's preferences. These parameters are however still laborious and expensive to measure. A low-cost ear digital imaging method was developed that provides estimates of ear and kernel attributes i.e., ear number and size, kernel number and size as well as kernel weight from photos of ears harvested from field trial plots. The image processing method uses a script that runs in a batch mode on ImageJ; an open source software. Kernel weight was estimated using the total kernel number derived from the number of kernels visible on the image and the average kernel size. Data showed a good agreement in terms of accuracy and precision between ground truth measurements and data generated through image processing. Broad-sense heritability of the estimated parameters was in the range or higher than that for measured grain weight. Limitation of the method for kernel weight estimation is discussed. The method developed in this work provides an opportunity to significantly reduce the cost of selection in the breeding process, especially for resource constrained crop improvement programs and can be used to learn more about the genetic bases of grain yield determinants.
A Kernel-based Lagrangian method for imperfectly-mixed chemical reactions
NASA Astrophysics Data System (ADS)
Schmidt, Michael J.; Pankavich, Stephen; Benson, David A.
2017-05-01
Current Lagrangian (particle-tracking) algorithms used to simulate diffusion-reaction equations must employ a certain number of particles to properly emulate the system dynamics-particularly for imperfectly-mixed systems. The number of particles is tied to the statistics of the initial concentration fields of the system at hand. Systems with shorter-range correlation and/or smaller concentration variance require more particles, potentially limiting the computational feasibility of the method. For the well-known problem of bimolecular reaction, we show that using kernel-based, rather than Dirac delta, particles can significantly reduce the required number of particles. We derive the fixed width of a Gaussian kernel for a given reduced number of particles that analytically eliminates the error between kernel and Dirac solutions at any specified time. We also show how to solve for the fixed kernel size by minimizing the squared differences between solutions over any given time interval. Numerical results show that the width of the kernel should be kept below about 12% of the domain size, and that the analytic equations used to derive kernel width suffer significantly from the neglect of higher-order moments. The simulations with a kernel width given by least squares minimization perform better than those made to match at one specific time. A heuristic time-variable kernel size, based on the previous results, performs on par with the least squares fixed kernel size.
Optimized Kernel Entropy Components.
Izquierdo-Verdiguier, Emma; Laparra, Valero; Jenssen, Robert; Gomez-Chova, Luis; Camps-Valls, Gustau
2017-06-01
This brief addresses two main issues of the standard kernel entropy component analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of variance, as in the kernel principal components analysis. In this brief, we propose an extension of the KECA method, named optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular, it is based on the independent component analysis framework, and introduces an extra rotation to the eigen decomposition, which is optimized via gradient-ascent search. This maximum entropy preservation suggests that OKECA features are more efficient than KECA features for density estimation. In addition, a critical issue in both the methods is the selection of the kernel parameter, since it critically affects the resulting performance. Here, we analyze the most common kernel length-scale selection criteria. The results of both the methods are illustrated in different synthetic and real problems. Results show that OKECA returns projections with more expressive power than KECA, the most successful rule for estimating the kernel parameter is based on maximum likelihood, and OKECA is more robust to the selection of the length-scale parameter in kernel density estimation.
Brain tumor image segmentation using kernel dictionary learning.
Jeon Lee; Seung-Jun Kim; Rong Chen; Herskovits, Edward H
2015-08-01
Automated brain tumor image segmentation with high accuracy and reproducibility holds a big potential to enhance the current clinical practice. Dictionary learning (DL) techniques have been applied successfully to various image processing tasks recently. In this work, kernel extensions of the DL approach are adopted. Both reconstructive and discriminative versions of the kernel DL technique are considered, which can efficiently incorporate multi-modal nonlinear feature mappings based on the kernel trick. Our novel discriminative kernel DL formulation allows joint learning of a task-driven kernel-based dictionary and a linear classifier using a K-SVD-type algorithm. The proposed approaches were tested using real brain magnetic resonance (MR) images of patients with high-grade glioma. The obtained preliminary performances are competitive with the state of the art. The discriminative kernel DL approach is seen to reduce computational burden without much sacrifice in performance.
SEMI-SUPERVISED OBJECT RECOGNITION USING STRUCTURE KERNEL
Wang, Botao; Xiong, Hongkai; Jiang, Xiaoqian; Ling, Fan
2013-01-01
Object recognition is a fundamental problem in computer vision. Part-based models offer a sparse, flexible representation of objects, but suffer from difficulties in training and often use standard kernels. In this paper, we propose a positive definite kernel called “structure kernel”, which measures the similarity of two part-based represented objects. The structure kernel has three terms: 1) the global term that measures the global visual similarity of two objects; 2) the part term that measures the visual similarity of corresponding parts; 3) the spatial term that measures the spatial similarity of geometric configuration of parts. The contribution of this paper is to generalize the discriminant capability of local kernels to complex part-based object models. Experimental results show that the proposed kernel exhibit higher accuracy than state-of-art approaches using standard kernels. PMID:23666108
The field theory of specific heat
NASA Astrophysics Data System (ADS)
Gusev, Yu. V.
2016-01-01
Finite temperature quantum field theory in the heat kernel method is used to study the heat capacity of condensed matter. The lattice heat is treated à la P. Debye as energy of the elastic (sound) waves. The dimensionless functional of free energy is re-derived with a cut-off parameter and used to obtain the specific heat of crystal lattices. The new dimensionless thermodynamical variable is formed as Planck's inverse temperature divided by the lattice constant. The dimensionless constant, universal for the class of crystal lattices, which determines the low temperature region of molar specific heat, is introduced and tested with the data for diamond lattice crystals. The low temperature asymptotics of specific heat is found to be the fourth power in temperature instead of the cubic power law of the Debye theory. Experimental data for the carbon group elements (silicon, germanium) and other materials decisively confirm the quartic law. The true low temperature regime of specific heat is defined by the surface heat, therefore, it depends on the geometrical characteristics of the body, while the absolute zero temperature limit is geometrically forbidden. The limit on the growth of specific heat at temperatures close to critical points, known as the Dulong-Petit law, appears from the lattice constant cut-off. Its value depends on the lattice type and it is the same for materials with the same crystal lattice. The Dulong-Petit values of compounds are equal to those of elements with the same crystal lattice type, if one mole of solid state matter were taken as the Avogadro number of the composing atoms. Thus, the Neumann-Kopp law is valid only in some special cases.
Chapin, Jay W; Thomas, James S
2003-08-01
Pitfall traps placed in South Carolina peanut, Arachis hypogaea (L.), fields collected three species of burrower bugs (Cydnidae): Cyrtomenus ciliatus (Palisot de Beauvois), Sehirus cinctus cinctus (Palisot de Beauvois), and Pangaeus bilineatus (Say). Cyrtomenus ciliatus was rarely collected. Sehirus cinctus produced a nymphal cohort in peanut during May and June, probably because of abundant henbit seeds, Lamium amplexicaule L., in strip-till production systems. No S. cinctus were present during peanut pod formation. Pangaeus bilineatus was the most abundant species collected and the only species associated with peanut kernel feeding injury. Overwintering P. bilineatus adults were present in a conservation tillage peanut field before planting and two to three subsequent generations were observed. Few nymphs were collected until the R6 (full seed) growth stage. Tillage and choice of cover crop affected P. bilineatus populations. Peanuts strip-tilled into corn or wheat residue had greater P. bilineatus populations and kernel-feeding than conventional tillage or strip-tillage into rye residue. Fall tillage before planting a wheat cover crop also reduced burrower bug feeding on peanut. At-pegging (early July) granular chlorpyrifos treatments were most consistent in suppressing kernel feeding. Kernels fed on by P. bilineatus were on average 10% lighter than unfed on kernels. Pangaeus bilineatus feeding reduced peanut grade by reducing individual kernel weight, and increasing the percentage damaged kernels. Each 10% increase in kernels fed on by P. bilineatus was associated with a 1.7% decrease in total sound mature kernels, and kernel feeding levels above 30% increase the risk of damaged kernel grade penalties.
Toews, Michael D; Pearson, Tom C; Campbell, James F
2006-04-01
Computed tomography, an imaging technique commonly used for diagnosing internal human health ailments, uses multiple x-rays and sophisticated software to recreate a cross-sectional representation of a subject. The use of this technique to image hard red winter wheat, Triticum aestivm L., samples infested with pupae of Sitophilus oryzae (L.) was investigated. A software program was developed to rapidly recognize and quantify the infested kernels. Samples were imaged in a 7.6-cm (o.d.) plastic tube containing 0, 50, or 100 infested kernels per kg of wheat. Interkernel spaces were filled with corn oil so as to increase the contrast between voids inside kernels and voids among kernels. Automated image processing, using a custom C language software program, was conducted separately on each 100 g portion of the prepared samples. The average detection accuracy in the five infested kernels per 100-g samples was 94.4 +/- 7.3% (mean +/- SD, n = 10), whereas the average detection accuracy in the 10 infested kernels per 100-g sample was 87.3 +/- 7.9% (n = 10). Detection accuracy in the 10 infested kernels per 100-g samples was slightly less than the five infested kernels per 100-g samples because of some infested kernels overlapping with each other or air bubbles in the oil. A mean of 1.2 +/- 0.9 (n = 10) bubbles (per tube) was incorrectly classed as infested kernels in replicates containing no infested kernels. In light of these positive results, future studies should be conducted using additional grains, insect species, and life stages.
Relationship of source and sink in determining kernel composition of maize
Seebauer, Juliann R.; Singletary, George W.; Krumpelman, Paulette M.; Ruffo, Matías L.; Below, Frederick E.
2010-01-01
The relative role of the maternal source and the filial sink in controlling the composition of maize (Zea mays L.) kernels is unclear and may be influenced by the genotype and the N supply. The objective of this study was to determine the influence of assimilate supply from the vegetative source and utilization of assimilates by the grain sink on the final composition of maize kernels. Intermated B73×Mo17 recombinant inbred lines (IBM RILs) which displayed contrasting concentrations of endosperm starch were grown in the field with deficient or sufficient N, and the source supply altered by ear truncation (45% reduction) at 15 d after pollination (DAP). The assimilate supply into the kernels was determined at 19 DAP using the agar trap technique, and the final kernel composition was measured. The influence of N supply and kernel ear position on final kernel composition was also determined for a commercial hybrid. Concentrations of kernel protein and starch could be altered by genotype or the N supply, but remained fairly constant along the length of the ear. Ear truncation also produced a range of variation in endosperm starch and protein concentrations. The C/N ratio of the assimilate supply at 19 DAP was directly related to the final kernel composition, with an inverse relationship between the concentrations of starch and protein in the mature endosperm. The accumulation of kernel starch and protein in maize is uniform along the ear, yet adaptable within genotypic limits, suggesting that kernel composition is source limited in maize. PMID:19917600
Genomic Prediction of Genotype × Environment Interaction Kernel Regression Models.
Cuevas, Jaime; Crossa, José; Soberanis, Víctor; Pérez-Elizalde, Sergio; Pérez-Rodríguez, Paulino; Campos, Gustavo de Los; Montesinos-López, O A; Burgueño, Juan
2016-11-01
In genomic selection (GS), genotype × environment interaction (G × E) can be modeled by a marker × environment interaction (M × E). The G × E may be modeled through a linear kernel or a nonlinear (Gaussian) kernel. In this study, we propose using two nonlinear Gaussian kernels: the reproducing kernel Hilbert space with kernel averaging (RKHS KA) and the Gaussian kernel with the bandwidth estimated through an empirical Bayesian method (RKHS EB). We performed single-environment analyses and extended to account for G × E interaction (GBLUP-G × E, RKHS KA-G × E and RKHS EB-G × E) in wheat ( L.) and maize ( L.) data sets. For single-environment analyses of wheat and maize data sets, RKHS EB and RKHS KA had higher prediction accuracy than GBLUP for all environments. For the wheat data, the RKHS KA-G × E and RKHS EB-G × E models did show up to 60 to 68% superiority over the corresponding single environment for pairs of environments with positive correlations. For the wheat data set, the models with Gaussian kernels had accuracies up to 17% higher than that of GBLUP-G × E. For the maize data set, the prediction accuracy of RKHS EB-G × E and RKHS KA-G × E was, on average, 5 to 6% higher than that of GBLUP-G × E. The superiority of the Gaussian kernel models over the linear kernel is due to more flexible kernels that accounts for small, more complex marker main effects and marker-specific interaction effects. Copyright © 2016 Crop Science Society of America.
Zhang, Zhanhui; Wu, Xiangyuan; Shi, Chaonan; Wang, Rongna; Li, Shengfei; Wang, Zhaohui; Liu, Zonghua; Xue, Yadong; Tang, Guiliang; Tang, Jihua
2016-02-01
Kernel development is an important dynamic trait that determines the final grain yield in maize. To dissect the genetic basis of maize kernel development process, a conditional quantitative trait locus (QTL) analysis was conducted using an immortalized F2 (IF2) population comprising 243 single crosses at two locations over 2 years. Volume (KV) and density (KD) of dried developing kernels, together with kernel weight (KW) at different developmental stages, were used to describe dynamic changes during kernel development. Phenotypic analysis revealed that final KW and KD were determined at DAP22 and KV at DAP29. Unconditional QTL mapping for KW, KV and KD uncovered 97 QTLs at different kernel development stages, of which qKW6b, qKW7a, qKW7b, qKW10b, qKW10c, qKV10a, qKV10b and qKV7 were identified under multiple kernel developmental stages and environments. Among the 26 QTLs detected by conditional QTL mapping, conqKW7a, conqKV7a, conqKV10a, conqKD2, conqKD7 and conqKD8a were conserved between the two mapping methodologies. Furthermore, most of these QTLs were consistent with QTLs and genes for kernel development/grain filling reported in previous studies. These QTLs probably contain major genes associated with the kernel development process, and can be used to improve grain yield and quality through marker-assisted selection.
Image quality of mixed convolution kernel in thoracic computed tomography.
Neubauer, Jakob; Spira, Eva Maria; Strube, Juliane; Langer, Mathias; Voss, Christian; Kotter, Elmar
2016-11-01
The mixed convolution kernel alters his properties geographically according to the depicted organ structure, especially for the lung. Therefore, we compared the image quality of the mixed convolution kernel to standard soft and hard kernel reconstructions for different organ structures in thoracic computed tomography (CT) images.Our Ethics Committee approved this prospective study. In total, 31 patients who underwent contrast-enhanced thoracic CT studies were included after informed consent. Axial reconstructions were performed with hard, soft, and mixed convolution kernel. Three independent and blinded observers rated the image quality according to the European Guidelines for Quality Criteria of Thoracic CT for 13 organ structures. The observers rated the depiction of the structures in all reconstructions on a 5-point Likert scale. Statistical analysis was performed with the Friedman Test and post hoc analysis with the Wilcoxon rank-sum test.Compared to the soft convolution kernel, the mixed convolution kernel was rated with a higher image quality for lung parenchyma, segmental bronchi, and the border between the pleura and the thoracic wall (P < 0.03). Compared to the hard convolution kernel, the mixed convolution kernel was rated with a higher image quality for aorta, anterior mediastinal structures, paratracheal soft tissue, hilar lymph nodes, esophagus, pleuromediastinal border, large and medium sized pulmonary vessels and abdomen (P < 0.004) but a lower image quality for trachea, segmental bronchi, lung parenchyma, and skeleton (P < 0.001).The mixed convolution kernel cannot fully substitute the standard CT reconstructions. Hard and soft convolution kernel reconstructions still seem to be mandatory for thoracic CT.
21 CFR 176.350 - Tamarind seed kernel powder.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing, manufacturing, packing, processing, preparing, treating...
Local Observed-Score Kernel Equating
ERIC Educational Resources Information Center
Wiberg, Marie; van der Linden, Wim J.; von Davier, Alina A.
2014-01-01
Three local observed-score kernel equating methods that integrate methods from the local equating and kernel equating frameworks are proposed. The new methods were compared with their earlier counterparts with respect to such measures as bias--as defined by Lord's criterion of equity--and percent relative error. The local kernel item response…
Code of Federal Regulations, 2010 CFR
2010-01-01
... which have been broken to the extent that the kernel within is plainly visible without minute... discoloration beneath, but the peanut shall be judged as it appears with the talc. (c) Kernels which are rancid or decayed. (d) Moldy kernels. (e) Kernels showing sprouts extending more than one-eighth inch from...
7 CFR 981.61 - Redetermination of kernel weight.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Redetermination of kernel weight. 981.61 Section 981... GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.61 Redetermination of kernel weight. The Board, on the basis of reports by handlers, shall redetermine the kernel weight of almonds...
7 CFR 981.60 - Determination of kernel weight.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Determination of kernel weight. 981.60 Section 981.60... Regulating Handling Volume Regulation § 981.60 Determination of kernel weight. (a) Almonds for which settlement is made on kernel weight. All lots of almonds, whether shelled or unshelled, for which settlement...
Genome-wide Association Analysis of Kernel Weight in Hard Winter Wheat
USDA-ARS?s Scientific Manuscript database
Wheat kernel weight is an important and heritable component of wheat grain yield and a key predictor of flour extraction. Genome-wide association analysis was conducted to identify genomic regions associated with kernel weight and kernel weight environmental response in 8 trials of 299 hard winter ...
7 CFR 999.400 - Regulation governing the importation of filberts.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Definitions. (1) Filberts means filberts or hazelnuts. (2) Inshell filberts means filberts, the kernels or edible portions of which are contained in the shell. (3) Shelled filberts means the kernels of filberts... Filbert kernels or portions of filbert kernels shall meet the following requirements: (1) Well dried and...
Code of Federal Regulations, 2010 CFR
2010-01-01
.... (2) For kernel defects, by count. (i) 12 percent for pecans with kernels which fail to meet the... kernels which are seriously damaged: Provided, That not more than six-sevenths of this amount, or 6 percent, shall be allowed for kernels which are rancid, moldy, decayed or injured by insects: And provided...
Enhanced gluten properties in soft kernel durum wheat
USDA-ARS?s Scientific Manuscript database
Soft kernel durum wheat is a relatively recent development (Morris et al. 2011 Crop Sci. 51:114). The soft kernel trait exerts profound effects on kernel texture, flour milling including break flour yield, milling energy, and starch damage, and dough water absorption (DWA). With the caveat of reduce...
End-use quality of soft kernel durum wheat
USDA-ARS?s Scientific Manuscript database
Kernel texture is a major determinant of end-use quality of wheat. Durum wheat has very hard kernels. We developed soft kernel durum wheat via Ph1b-mediated homoeologous recombination. The Hardness locus was transferred from Chinese Spring to Svevo durum wheat via back-crossing. ‘Soft Svevo’ had SKC...
Code of Federal Regulations, 2014 CFR
2014-01-01
... are excessively thin kernels and can have black, brown or gray surface with a dark interior color and the immaturity has adversely affected the flavor of the kernel. (2) Kernel spotting refers to dark brown or dark gray spots aggregating more than one-eighth of the surface of the kernel. (g) Serious...
Code of Federal Regulations, 2013 CFR
2013-01-01
... are excessively thin kernels and can have black, brown or gray surface with a dark interior color and the immaturity has adversely affected the flavor of the kernel. (2) Kernel spotting refers to dark brown or dark gray spots aggregating more than one-eighth of the surface of the kernel. (g) Serious...
7 CFR 51.1416 - Optional determinations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... throughout the lot. (a) Edible kernel content. A minimum sample of at least 500 grams of in-shell pecans shall be used for determination of edible kernel content. After the sample is weighed and shelled... determine edible kernel content for the lot. (b) Poorly developed kernel content. A minimum sample of at...
Thermally Simulated Testing of a Direct-Drive Gas-Cooled Nuclear Reactor
NASA Technical Reports Server (NTRS)
Godfroy, Thomas; Bragg-Sitton, Shannon; VanDyke, Melissa
2003-01-01
This paper describes the concept and preliminary component testing of a gas-cooled, UN-fueled, pin-type reactor which uses He/Xe gas that goes directly into a recuperated Brayton system to produce electricity for nuclear electric propulsion. This Direct-Drive Gas-Cooled Reactor (DDG) is designed to be subcritical under water or wet-sand immersion in case of a launch accident. Because the gas-cooled reactor can directly drive the Brayton turbomachinery, it is possible to configure the system such that there are no external surfaces or pressure boundaries that are refractory metal, even though the gas delivered to the turbine is 1144 K. The He/Xe gas mixture is a good heat transport medium when flowing, and a good insulator when stagnant. Judicious use of stagnant cavities as insulating regions allows transport of the 1144-K gas while keeping all external surfaces below 900 K. At this temperature super-alloys (Hastelloy or Inconel) can be used instead of refractory metals. Super-alloys reduce the technology risk because they are easier to fabricate than refractory metals, we have a much more extensive knowledge base on their characteristics, and, because they have a greater resistance to oxidation, system testing is eased. The system is also relatively simple in its design: no additional coolant pumps, heat exchanger, or freeze-thaw systems are required. Key to success of this concept is a good knowledge of the heat transfer between the fuel pins and the gas, as well as the pressure drop through the system. This paper describes preliminary testing to obtain this key information, as well as experience in demonstrating electrical thermal simulation of reactor components and concepts.
NASA Technical Reports Server (NTRS)
Lickly, Ben
2005-01-01
Data from all current JPL missions are stored in files called SPICE kernels. At present, animators who want to use data from these kernels have to either read through the kernels looking for the desired data, or write programs themselves to retrieve information about all the needed objects for their animations. In this project, methods of automating the process of importing the data from the SPICE kernels were researched. In particular, tools were developed for creating basic scenes in Maya, a 3D computer graphics software package, from SPICE kernels.
Method and apparatus for heat extraction by controlled spray cooling
Edwards, Christopher Francis; Meeks, Ellen; Kee, Robert; McCarty, Kevin
1999-01-01
Two solutions to the problem of cooling a high temperature, high heat flux surface using controlled spray cooling are presented for use on a mandrel. In the first embodiment, spray cooling is used to provide a varying isothermal boundary layer on the side portions of a mandrel by providing that the spray can be moved axially along the mandrel. In the second embodiment, a spray of coolant is directed to the lower temperature surface of the mandrel. By taking advantage of super-Leidenfrost cooling, the temperature of the high temperature surface of the mandrel can be controlled by varying the mass flux rate of coolant droplets. The invention has particular applicability to the field of diamond synthesis using chemical vapor deposition techniques.
The Phenomenon of Superheat of Liquids: In Memory of Vladimir P. Skripov
NASA Astrophysics Data System (ADS)
Skripov, P. V.; Skripov, A. P.
2010-05-01
This article is devoted to the memory of Vladimir P. Skripov (1927-2006). He has received worldwide recognition for his monograph on metastable liquids published in 1972 (the English edition was published in 1974). We briefly discuss some studies deal with the phenomenon of attainable superheat of liquids and with measurements of thermophysical properties of liquids under conditions of a moderate degree of superheat. Main attention is paid to the studies performed by V.P. Skripov and his research group in the 1960s and 1970s. Experimental methods which provided break-throughs in research on both spontaneous boiling-up kinetics and substance properties (the specific volume, isobaric heat capacity, ultrasound speed, and viscosity) in super-heated states are presented.
Generalization Performance of Regularized Ranking With Multiscale Kernels.
Zhou, Yicong; Chen, Hong; Lan, Rushi; Pan, Zhibin
2016-05-01
The regularized kernel method for the ranking problem has attracted increasing attentions in machine learning. The previous regularized ranking algorithms are usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we go beyond this framework by investigating the generalization performance of the regularized ranking with multiscale kernels. A novel ranking algorithm with multiscale kernels is proposed and its representer theorem is proved. We establish the upper bound of the generalization error in terms of the complexity of hypothesis spaces. It shows that the multiscale ranking algorithm can achieve satisfactory learning rates under mild conditions. Experiments demonstrate the effectiveness of the proposed method for drug discovery and recommendation tasks.
Zhang, Shiwei; Wang, Shifeng; Huang, Jingmin; Lai, Xintian; Du, Yegang; Liu, Xiaoqing; Li, Bifang; Feng, Ronghu; Yang, Guowu
2016-03-01
A highly specific competitive enzyme-linked immunosorbent assay (ELISA) protocol has been developed to identify and classify almond products based on differential proteomic analysis. We applied two-dimensional electrophoresis to compare the differences between almond and apricot kernels to search for almond-specific proteins. The amino acid of apricot Pru-1 was sequenced and aligned to almond Pru-1. One peptide, RQGRQQGRQQQEEGR, which exists in almond but not in apricot, was used as hapten to prepare monoclonal antibody against almond Pru-1. An optimized ELISA method was established using this antibody. The assay did not exhibit cross-reactivity with the tested apricot kernels and other edible plant seeds. The limit of detection (LOD) was 2.5-100μg/g based on different food samples. The recoveries of fortified samples at levels of twofold and eightfold LOD ranged from 82% to 96%. The coefficients of variation were less than 13.0%. Using 7M urea as extracting solution, the heat-treated protein loss ratios were 2%, 5% and 15% under pasteurization (65°C for 30min), baking (150°C for 30min) and autoclaved sterilization (120°C for 15min), respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Graph wavelet alignment kernels for drug virtual screening.
Smalter, Aaron; Huan, Jun; Lushington, Gerald
2009-06-01
In this paper, we introduce a novel statistical modeling technique for target property prediction, with applications to virtual screening and drug design. In our method, we use graphs to model chemical structures and apply a wavelet analysis of graphs to summarize features capturing graph local topology. We design a novel graph kernel function to utilize the topology features to build predictive models for chemicals via Support Vector Machine classifier. We call the new graph kernel a graph wavelet-alignment kernel. We have evaluated the efficacy of the wavelet-alignment kernel using a set of chemical structure-activity prediction benchmarks. Our results indicate that the use of the kernel function yields performance profiles comparable to, and sometimes exceeding that of the existing state-of-the-art chemical classification approaches. In addition, our results also show that the use of wavelet functions significantly decreases the computational costs for graph kernel computation with more than ten fold speedup.
Anato, F M; Sinzogan, A A C; Offenberg, J; Adandonon, A; Wargui, R B; Deguenon, J M; Ayelo, P M; Vayssières, J-F; Kossou, D K
2017-06-01
Weaver ants, Oecophylla spp., are known to positively affect cashew, Anacardium occidentale L., raw nut yield, but their effects on the kernels have not been reported. We compared nut size and the proportion of marketable kernels between raw nuts collected from trees with and without ants. Raw nuts collected from trees with weaver ants were 2.9% larger than nuts from control trees (i.e., without weaver ants), leading to 14% higher proportion of marketable kernels. On trees with ants, the kernel: raw nut ratio from nuts damaged by formic acid was 4.8% lower compared with nondamaged nuts from the same trees. Weaver ants provided three benefits to cashew production by increasing yields, yielding larger nuts, and by producing greater proportions of marketable kernel mass. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kernel-aligned multi-view canonical correlation analysis for image recognition
NASA Astrophysics Data System (ADS)
Su, Shuzhi; Ge, Hongwei; Yuan, Yun-Hao
2016-09-01
Existing kernel-based correlation analysis methods mainly adopt a single kernel in each view. However, only a single kernel is usually insufficient to characterize nonlinear distribution information of a view. To solve the problem, we transform each original feature vector into a 2-dimensional feature matrix by means of kernel alignment, and then propose a novel kernel-aligned multi-view canonical correlation analysis (KAMCCA) method on the basis of the feature matrices. Our proposed method can simultaneously employ multiple kernels to better capture the nonlinear distribution information of each view, so that correlation features learned by KAMCCA can have well discriminating power in real-world image recognition. Extensive experiments are designed on five real-world image datasets, including NIR face images, thermal face images, visible face images, handwritten digit images, and object images. Promising experimental results on the datasets have manifested the effectiveness of our proposed method.
Small convolution kernels for high-fidelity image restoration
NASA Technical Reports Server (NTRS)
Reichenbach, Stephen E.; Park, Stephen K.
1991-01-01
An algorithm is developed for computing the mean-square-optimal values for small, image-restoration kernels. The algorithm is based on a comprehensive, end-to-end imaging system model that accounts for the important components of the imaging process: the statistics of the scene, the point-spread function of the image-gathering device, sampling effects, noise, and display reconstruction. Subject to constraints on the spatial support of the kernel, the algorithm generates the kernel values that restore the image with maximum fidelity, that is, the kernel minimizes the expected mean-square restoration error. The algorithm is consistent with the derivation of the spatially unconstrained Wiener filter, but leads to a small, spatially constrained kernel that, unlike the unconstrained filter, can be efficiently implemented by convolution. Simulation experiments demonstrate that for a wide range of imaging systems these small kernels can restore images with fidelity comparable to images restored with the unconstrained Wiener filter.
Kernels, Degrees of Freedom, and Power Properties of Quadratic Distance Goodness-of-Fit Tests
Lindsay, Bruce G.; Markatou, Marianthi; Ray, Surajit
2014-01-01
In this article, we study the power properties of quadratic-distance-based goodness-of-fit tests. First, we introduce the concept of a root kernel and discuss the considerations that enter the selection of this kernel. We derive an easy to use normal approximation to the power of quadratic distance goodness-of-fit tests and base the construction of a noncentrality index, an analogue of the traditional noncentrality parameter, on it. This leads to a method akin to the Neyman-Pearson lemma for constructing optimal kernels for specific alternatives. We then introduce a midpower analysis as a device for choosing optimal degrees of freedom for a family of alternatives of interest. Finally, we introduce a new diffusion kernel, called the Pearson-normal kernel, and study the extent to which the normal approximation to the power of tests based on this kernel is valid. Supplementary materials for this article are available online. PMID:24764609
21 CFR 176.350 - Tamarind seed kernel powder.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...
21 CFR 176.350 - Tamarind seed kernel powder.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...
21 CFR 176.350 - Tamarind seed kernel powder.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...
21 CFR 176.350 - Tamarind seed kernel powder.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...
7 CFR 51.1403 - Kernel color classification.
Code of Federal Regulations, 2013 CFR
2013-01-01
... generally conforms to the “light” or “light amber” classification, that color classification may be used to... 7 Agriculture 2 2013-01-01 2013-01-01 false Kernel color classification. 51.1403 Section 51.1403... Color Classification § 51.1403 Kernel color classification. (a) The skin color of pecan kernels may be...
7 CFR 51.1403 - Kernel color classification.
Code of Federal Regulations, 2014 CFR
2014-01-01
... generally conforms to the “light” or “light amber” classification, that color classification may be used to... 7 Agriculture 2 2014-01-01 2014-01-01 false Kernel color classification. 51.1403 Section 51.1403... Color Classification § 51.1403 Kernel color classification. (a) The skin color of pecan kernels may be...
Nutrition quality of extraction mannan residue from palm kernel cake on brolier chicken
NASA Astrophysics Data System (ADS)
Tafsin, M.; Hanafi, N. D.; Kejora, E.; Yusraini, E.
2018-02-01
This study aims to find out the nutrient residue of palm kernel cake from mannan extraction on broiler chicken by evaluating physical quality (specific gravity, bulk density and compacted bulk density), chemical quality (proximate analysis and Van Soest Test) and biological test (metabolizable energy). Treatment composed of T0 : palm kernel cake extracted aquadest (control), T1 : palm kernel cake extracted acetic acid (CH3COOH) 1%, T2 : palm kernel cake extracted aquadest + mannanase enzyme 100 u/l and T3 : palm kernel cake extracted acetic acid (CH3COOH) 1% + enzyme mannanase 100 u/l. The results showed that mannan extraction had significant effect (P<0.05) in improving the quality of physical and numerically increase the value of crude protein and decrease the value of NDF (Neutral Detergent Fiber). Treatments had highly significant influence (P<0.01) on the metabolizable energy value of palm kernel cake residue in broiler chickens. It can be concluded that extraction with aquadest + enzyme mannanase 100 u/l yields the best nutrient quality of palm kernel cake residue for broiler chicken.
Oil point and mechanical behaviour of oil palm kernels in linear compression
NASA Astrophysics Data System (ADS)
Kabutey, Abraham; Herak, David; Choteborsky, Rostislav; Mizera, Čestmír; Sigalingging, Riswanti; Akangbe, Olaosebikan Layi
2017-07-01
The study described the oil point and mechanical properties of roasted and unroasted bulk oil palm kernels under compression loading. The literature information available is very limited. A universal compression testing machine and vessel diameter of 60 mm with a plunger were used by applying maximum force of 100 kN and speed ranging from 5 to 25 mm min-1. The initial pressing height of the bulk kernels was measured at 40 mm. The oil point was determined by a litmus test for each deformation level of 5, 10, 15, 20, and 25 mm at a minimum speed of 5 mmmin-1. The measured parameters were the deformation, deformation energy, oil yield, oil point strain and oil point pressure. Clearly, the roasted bulk kernels required less deformation energy compared to the unroasted kernels for recovering the kernel oil. However, both kernels were not permanently deformed. The average oil point strain was determined at 0.57. The study is an essential contribution to pursuing innovative methods for processing palm kernel oil in rural areas of developing countries.
Jia, Xiaodong; Luo, Huiting; Xu, Mengyang; Zhai, Min; Guo, Zhongren; Qiao, Yushan; Wang, Liangju
2018-02-16
Pecan ( Carya illinoinensis ) kernels have a high phenolics content and a high antioxidant capacity compared to other nuts-traits that have attracted great interest of late. Changes in the total phenolic content (TPC), condensed tannins (CT), total flavonoid content (TFC), five individual phenolics, and antioxidant capacity of five pecan cultivars were investigated during the process of kernel ripening. Ultra-performance liquid chromatography coupled with quadruple time-of-flight mass (UPLC-Q/TOF-MS) was also used to analyze the phenolics profiles in mixed pecan kernels. TPC, CT, TFC, individual phenolics, and antioxidant capacity were changed in similar patterns, with values highest at the water or milk stages, lowest at milk or dough stages, and slightly varied at kernel stages. Forty phenolics were tentatively identified in pecan kernels, of which two were first reported in the genus Carya , six were first reported in Carya illinoinensis , and one was first reported in its kernel. The findings on these new phenolic compounds provide proof of the high antioxidant capacity of pecan kernels.
Lu, Zhao; Sun, Jing; Butts, Kenneth
2016-02-03
A giant leap has been made in the past couple of decades with the introduction of kernel-based learning as a mainstay for designing effective nonlinear computational learning algorithms. In view of the geometric interpretation of conditional expectation and the ubiquity of multiscale characteristics in highly complex nonlinear dynamic systems [1]-[3], this paper presents a new orthogonal projection operator wavelet kernel, aiming at developing an efficient computational learning approach for nonlinear dynamical system identification. In the framework of multiresolution analysis, the proposed projection operator wavelet kernel can fulfill the multiscale, multidimensional learning to estimate complex dependencies. The special advantage of the projection operator wavelet kernel developed in this paper lies in the fact that it has a closed-form expression, which greatly facilitates its application in kernel learning. To the best of our knowledge, it is the first closed-form orthogonal projection wavelet kernel reported in the literature. It provides a link between grid-based wavelets and mesh-free kernel-based methods. Simulation studies for identifying the parallel models of two benchmark nonlinear dynamical systems confirm its superiority in model accuracy and sparsity.
Novel characterization method of impedance cardiography signals using time-frequency distributions.
Escrivá Muñoz, Jesús; Pan, Y; Ge, S; Jensen, E W; Vallverdú, M
2018-03-16
The purpose of this document is to describe a methodology to select the most adequate time-frequency distribution (TFD) kernel for the characterization of impedance cardiography signals (ICG). The predominant ICG beat was extracted from a patient and was synthetized using time-frequency variant Fourier approximations. These synthetized signals were used to optimize several TFD kernels according to a performance maximization. The optimized kernels were tested for noise resistance on a clinical database. The resulting optimized TFD kernels are presented with their performance calculated using newly proposed methods. The procedure explained in this work showcases a new method to select an appropriate kernel for ICG signals and compares the performance of different time-frequency kernels found in the literature for the case of ICG signals. We conclude that, for ICG signals, the performance (P) of the spectrogram with either Hanning or Hamming windows (P = 0.780) and the extended modified beta distribution (P = 0.765) provided similar results, higher than the rest of analyzed kernels. Graphical abstract Flowchart for the optimization of time-frequency distribution kernels for impedance cardiography signals.
Lu, Zhao; Sun, Jing; Butts, Kenneth
2014-05-01
Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.
New Fukui, dual and hyper-dual kernels as bond reactivity descriptors.
Franco-Pérez, Marco; Polanco-Ramírez, Carlos-A; Ayers, Paul W; Gázquez, José L; Vela, Alberto
2017-06-21
We define three new linear response indices with promising applications for bond reactivity using the mathematical framework of τ-CRT (finite temperature chemical reactivity theory). The τ-Fukui kernel is defined as the ratio between the fluctuations of the average electron density at two different points in the space and the fluctuations in the average electron number and is designed to integrate to the finite-temperature definition of the electronic Fukui function. When this kernel is condensed, it can be interpreted as a site-reactivity descriptor of the boundary region between two atoms. The τ-dual kernel corresponds to the first order response of the Fukui kernel and is designed to integrate to the finite temperature definition of the dual descriptor; it indicates the ambiphilic reactivity of a specific bond and enriches the traditional dual descriptor by allowing one to distinguish between the electron-accepting and electron-donating processes. Finally, the τ-hyper dual kernel is defined as the second-order derivative of the Fukui kernel and is proposed as a measure of the strength of ambiphilic bonding interactions. Although these quantities have never been proposed, our results for the τ-Fukui kernel and for τ-dual kernel can be derived in zero-temperature formulation of the chemical reactivity theory with, among other things, the widely-used parabolic interpolation model.
Urrutia, Eugene; Lee, Seunggeun; Maity, Arnab; Zhao, Ni; Shen, Judong; Li, Yun; Wu, Michael C
Analysis of rare genetic variants has focused on region-based analysis wherein a subset of the variants within a genomic region is tested for association with a complex trait. Two important practical challenges have emerged. First, it is difficult to choose which test to use. Second, it is unclear which group of variants within a region should be tested. Both depend on the unknown true state of nature. Therefore, we develop the Multi-Kernel SKAT (MK-SKAT) which tests across a range of rare variant tests and groupings. Specifically, we demonstrate that several popular rare variant tests are special cases of the sequence kernel association test which compares pair-wise similarity in trait value to similarity in the rare variant genotypes between subjects as measured through a kernel function. Choosing a particular test is equivalent to choosing a kernel. Similarly, choosing which group of variants to test also reduces to choosing a kernel. Thus, MK-SKAT uses perturbation to test across a range of kernels. Simulations and real data analyses show that our framework controls type I error while maintaining high power across settings: MK-SKAT loses power when compared to the kernel for a particular scenario but has much greater power than poor choices.
Cid, Jaime A; von Davier, Alina A
2015-05-01
Test equating is a method of making the test scores from different test forms of the same assessment comparable. In the equating process, an important step involves continuizing the discrete score distributions. In traditional observed-score equating, this step is achieved using linear interpolation (or an unscaled uniform kernel). In the kernel equating (KE) process, this continuization process involves Gaussian kernel smoothing. It has been suggested that the choice of bandwidth in kernel smoothing controls the trade-off between variance and bias. In the literature on estimating density functions using kernels, it has also been suggested that the weight of the kernel depends on the sample size, and therefore, the resulting continuous distribution exhibits bias at the endpoints, where the samples are usually smaller. The purpose of this article is (a) to explore the potential effects of atypical scores (spikes) at the extreme ends (high and low) on the KE method in distributions with different degrees of asymmetry using the randomly equivalent groups equating design (Study I), and (b) to introduce the Epanechnikov and adaptive kernels as potential alternative approaches to reducing boundary bias in smoothing (Study II). The beta-binomial model is used to simulate observed scores reflecting a range of different skewed shapes.
Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies
Manitz, Juliane; Burger, Patricia; Amos, Christopher I.; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike
2017-01-01
The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility. PMID:28785300