[Influence of infra-red and super high frequency heating on food value of the beef meat].
Beliaeva, M A
2005-01-01
In clause results of research of influence infrared and super high frequency heating on amino acid, fatty fabric and mineral; substances fresh beef are shown meat, after infra-red and the super high frequency of processing, also are shown influence of various modes infra-red heating of processing on amino acid of meat. Advantage of an infra-red way of processing is shown in comparison with super high frequency heating.
Oblique reconstructions in tomosynthesis. II. Super-resolution
Acciavatti, Raymond J.; Maidment, Andrew D. A.
2013-01-01
Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes. Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system. Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest detectable frequency on pitch followed the same trend as the analytical model. It was demonstrated that super-resolution is not achievable if the pitch of the object approaches 90°, corresponding to the case in which the test frequency is perpendicular to the breast support. Only low frequency objects are detectable at pitches close to 90°. Conclusions: This work provides a platform for investigating super-resolution in oblique reconstructions for tomosynthesis. In breast imaging, this study should have applications in visualizing microcalcifications and other subtle signs of cancer. PMID:24320445
NASA Astrophysics Data System (ADS)
Sargent, Garrett C.; Ratliff, Bradley M.; Asari, Vijayan K.
2017-08-01
The advantage of division of focal plane imaging polarimeters is their ability to obtain temporally synchronized intensity measurements across a scene; however, they sacrifice spatial resolution in doing so due to their spatially modulated arrangement of the pixel-to-pixel polarizers and often result in aliased imagery. Here, we propose a super-resolution method based upon two previously trained extreme learning machines (ELM) that attempt to recover missing high frequency and low frequency content beyond the spatial resolution of the sensor. This method yields a computationally fast and simple way of recovering lost high and low frequency content from demosaicing raw microgrid polarimetric imagery. The proposed method outperforms other state-of-the-art single-image super-resolution algorithms in terms of structural similarity and peak signal-to-noise ratio.
Multiple-image hiding using super resolution reconstruction in high-frequency domains
NASA Astrophysics Data System (ADS)
Li, Xiao-Wei; Zhao, Wu-Xiang; Wang, Jun; Wang, Qiong-Hua
2017-12-01
In this paper, a robust multiple-image hiding method using the computer-generated integral imaging and the modified super-resolution reconstruction algorithm is proposed. In our work, the host image is first transformed into frequency domains by cellular automata (CA), to assure the quality of the stego-image, the secret images are embedded into the CA high-frequency domains. The proposed method has the following advantages: (1) robustness to geometric attacks because of the memory-distributed property of elemental images, (2) increasing quality of the reconstructed secret images as the scheme utilizes the modified super-resolution reconstruction algorithm. The simulation results show that the proposed multiple-image hiding method outperforms other similar hiding methods and is robust to some geometric attacks, e.g., Gaussian noise and JPEG compression attacks.
Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface.
Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun
2016-06-01
Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging.
NASA Astrophysics Data System (ADS)
Shi, X.; Ruohoniemi, J. M.; Baker, J. B.; Lin, D.; Bland, E. C.; Hartinger, M.; Scales, W.
2017-12-01
Ultra-low frequency (ULF: 1 mHz-10 Hz) waves are believed to play an important role in the energization and transport of plasma within the magnetosphere-ionosphere system, as well as the transfer of energy from the solar wind. Most previous statistical studies of ionospheric ULF waves using Super Dual Auroral Radar Network (SuperDARN) data have been constrained to the Pc5 band ( 1-7 mHz) and/or one or two radars covering a limited range of latitudes. This is partially due to lack of a database cataloging high time resolution data and an efficient way to identify wave events. In this study, we conducted a comprehensive survey of ULF wave signatures in the Pc3-5 band using 6 s resolution data from all SuperDARN radars in the northern hemisphere operating in THEMIS-mode from 2010 to 2016. Numerical experiments were conducted to derive dynamic thresholds for automated detection of ULF waves at different frequencies using the Lomb-Scargle periodogram technique. The spatial occurrence distribution, frequency characteristics, seasonal effects, solar wind condition and geomagnetic activity level dependence have been studied. We found Pc5 events dominate at high latitudes with a most probable frequency of 2 mHz while Pc3-4 are relatively more common at mid-latitudes on the nightside with a most probable frequency of 11 mHz. At high latitudes the occurrence rate of poloidal Pc3-5 peaks in the dusk sector and in winter while at mid-latitudes the poloidal Pc3-4 occurrence rate peaks at pre-midnight. This pre-midnight occurrence peak becomes more prominent with increasing AE index value, in equinox and during southward IMF, which suggests many of these events are most likely Pi2 pulsations associated with magnetotail dynamics during active geomagnetic intervals.
Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface
Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun
2016-01-01
Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging. PMID:27246668
2017-03-01
Communications SMC Space and Missile Systems Center SEV Space Enterprise Vision SHF Super High Frequency SINCGARS Single Channel Ground-Air Radio...Appendix D:Acronyms A2/AD Anti-Access/Area Denial ADNS Automated Digital Network System AEHF Advanced Extremely High Frequency AFSPC Air Force Space ...medium-rate modes of defense extremely high frequency (EHF) SATCOM. This reality should be considered a crisis to be dealt with immediately. In
Cygnus A super-resolved via convex optimization from VLA data
NASA Astrophysics Data System (ADS)
Dabbech, A.; Onose, A.; Abdulaziz, A.; Perley, R. A.; Smirnov, O. M.; Wiaux, Y.
2018-05-01
We leverage the Sparsity Averaging Re-weighted Analysis approach for interferometric imaging, that is based on convex optimization, for the super-resolution of Cyg A from observations at the frequencies 8.422 and 6.678 GHz with the Karl G. Jansky Very Large Array (VLA). The associated average sparsity and positivity priors enable image reconstruction beyond instrumental resolution. An adaptive Preconditioned primal-dual algorithmic structure is developed for imaging in the presence of unknown noise levels and calibration errors. We demonstrate the superior performance of the algorithm with respect to the conventional CLEAN-based methods, reflected in super-resolved images with high fidelity. The high-resolution features of the recovered images are validated by referring to maps of Cyg A at higher frequencies, more precisely 17.324 and 14.252 GHz. We also confirm the recent discovery of a radio transient in Cyg A, revealed in the recovered images of the investigated data sets. Our MATLAB code is available online on GitHub.
Single-image super-resolution based on Markov random field and contourlet transform
NASA Astrophysics Data System (ADS)
Wu, Wei; Liu, Zheng; Gueaieb, Wail; He, Xiaohai
2011-04-01
Learning-based methods are well adopted in image super-resolution. In this paper, we propose a new learning-based approach using contourlet transform and Markov random field. The proposed algorithm employs contourlet transform rather than the conventional wavelet to represent image features and takes into account the correlation between adjacent pixels or image patches through the Markov random field (MRF) model. The input low-resolution (LR) image is decomposed with the contourlet transform and fed to the MRF model together with the contourlet transform coefficients from the low- and high-resolution image pairs in the training set. The unknown high-frequency components/coefficients for the input low-resolution image are inferred by a belief propagation algorithm. Finally, the inverse contourlet transform converts the LR input and the inferred high-frequency coefficients into the super-resolved image. The effectiveness of the proposed method is demonstrated with the experiments on facial, vehicle plate, and real scene images. A better visual quality is achieved in terms of peak signal to noise ratio and the image structural similarity measurement.
Ma, Jianguo; Martin, K. Heath; Dayton, Paul A.; Jiang, Xiaoning
2014-01-01
Current intravascular ultrasound (IVUS) probes are not optimized for contrast detection because of their design for high-frequency fundamental-mode imaging. However, data from transcutaneous contrast imaging suggests the possibility of utilizing contrast ultrasound for molecular imaging or vasa vasorum assessment to further elucidate atherosclerotic plaque deposition. This paper presents the design, fabrication, and characterization of a small-aperture (0.6 × 3 mm) IVUS probe optimized for high-frequency contrast imaging. The design utilizes a dual-frequency (6.5 MHz/30 MHz) transducer arrangement for exciting microbubbles at low frequencies (near their resonance) and detecting their broadband harmonics at high frequencies, minimizing detected tissue backscatter. The prototype probe is able to generate nonlinear microbubble response with more than 1.2 MPa of rarefractional pressure (mechanical index: 0.48) at 6.5 MHz, and is also able to detect microbubble response with a broadband receiving element (center frequency: 30 MHz, −6-dB fractional bandwidth: 58.6%). Nonlinear super-harmonics from microbubbles flowing through a 200-μm-diameter micro-tube were clearly detected with a signal-to-noise ratio higher than 12 dB. Preliminary phantom imaging at the fundamental frequency (30 MHz) and dual-frequency super-harmonic imaging results suggest the promise of small aperture, dual-frequency IVUS transducers for contrast-enhanced IVUS imaging. PMID:24801226
Adaptive Markov Random Fields for Example-Based Super-resolution of Faces
NASA Astrophysics Data System (ADS)
Stephenson, Todd A.; Chen, Tsuhan
2006-12-01
Image enhancement of low-resolution images can be done through methods such as interpolation, super-resolution using multiple video frames, and example-based super-resolution. Example-based super-resolution, in particular, is suited to images that have a strong prior (for those frameworks that work on only a single image, it is more like image restoration than traditional, multiframe super-resolution). For example, hallucination and Markov random field (MRF) methods use examples drawn from the same domain as the image being enhanced to determine what the missing high-frequency information is likely to be. We propose to use even stronger prior information by extending MRF-based super-resolution to use adaptive observation and transition functions, that is, to make these functions region-dependent. We show with face images how we can adapt the modeling for each image patch so as to improve the resolution.
NASA Astrophysics Data System (ADS)
Sarno-Smith, Lois K.; Kosch, Michael J.; Yeoman, Timothy; Rietveld, Michael; Nel, Amore'; Liemohn, Michael W.
2016-08-01
Using quasi-simultaneous line-of-sight velocity measurements at multiple frequencies from the Hankasalmi Cooperative UK Twin Auroral Sounding System (CUTLASS) on the Super Dual Auroral Radar Network (SuperDARN), we calculate electron number densities using a derivation outlined in Gillies et al. (2010, 2012). Backscatter targets were generated using the European Incoherent Scatter (EISCAT) ionospheric modification facility at Tromsø, Norway. We use two methods on two case studies. The first approach is to use the dual-frequency capability on CUTLASS and compare line-of-sight velocities between frequencies with a MHz or greater difference. The other method used the kHz frequency shifts automatically made by the SuperDARN radar during routine operations. Using ray tracing to obtain the approximate altitude of the backscatter, we demonstrate that for both methods, SuperDARN significantly overestimates Ne compared to those obtained from the EISCAT incoherent scatter radar over the same time period. The discrepancy between the Ne measurements of both radars may be largely due to SuperDARN sensitivity to backscatter produced by localized density irregularities which obscure the background levels.
NASA Astrophysics Data System (ADS)
Asano, Shogo; Matsumoto, Hideki
2001-05-01
This paper describes the development process for acceleration sensors used on automobiles and an acceleration evaluation system designed specifically for acceleration at super-low-range frequencies. The features of the newly developed sensor are as follows. 1) Original piezo-bimorph design based on a disc-center-fixed structure achieves pyroeffect cancelling and stabilization of sensor characteristics and enables the detection of the acceleration of 0.0009 G at the super-low-range-frequency of 0.03 Hz. 2) The addition of a self-diagnostic function utilizing the characteristics of piezoceramics enables constant monitoring of sensor failure. The frequency range of acceleration for accurate vehicle motion control is considered to be from DC to about 50 Hz. However, the measurement of acceleration in the super-low-range frequency near DC has been difficult because of mechanical and electrical noise interruption. This has delayed the development of the acceleration sensor for automotive use. We have succeeded in the development of an acceleration evaluation system for super-low-range frequencies from 0.015 Hz to 2 Hz with detection of the acceleration range from 0.0002 G (0.2 gal) to 1 G, as well as the development of a piezoelectric-type acceleration sensor for automotive use.
Super-Planckian Thermophotovoltaics Without Vacuum Gaps
NASA Astrophysics Data System (ADS)
Mirmoosa, M. S.; Biehs, S.-A.; Simovski, C. R.
2017-11-01
We introduce the concept of a thermophotovoltaic system whose emitter is separated from the photovoltaic cell by an intermediate thick slab of gallium arsenide. Owing to the engineered structure of the emitter (a multilayer structure of negative- and positive-ɛ layers) together with a high refractiveindex and transparency of the intermediate slab, we achieve a super-Planckian and frequency-selective spectrum of radiative heat transfer which is desirable for the efficient performance of thermophotovoltaic systems.
2013-05-29
support, products, and services, as required. US Tenth Fleet is the SSE for fleet satellite (FLTSAT) and ultrahigh frequency follow-on ( UFO ). b...direct support of Navy and joint forces. These systems include FLTSAT, UFO , MUOS, and varied payloads (Interim Polar and GBS). 10. Air Force Component...33-50 GHz S S-band, 2-4 GHz SHF super high frequency UFO ultrahigh frequency (UHF) follow-on WGS Wideband Global Satellite Communications System X
The Super-Seniors Study: Phenotypic characterization of a healthy 85+ population.
Halaschek-Wiener, Julius; Tindale, Lauren C; Collins, Jennifer A; Leach, Stephen; McManus, Bruce; Madden, Kenneth; Meneilly, Graydon; Le, Nhu D; Connors, Joseph M; Brooks-Wilson, Angela R
2018-01-01
To understand why some people live to advanced age in good health and others do not, it is important to study not only disease, but also long-term good health. The Super-Seniors Study aims to identify factors associated with healthy aging. 480 healthy oldest-old 'Super-Seniors' aged 85 to 105 years and never diagnosed with cancer, cardiovascular disease, diabetes, dementia, or major pulmonary disease, were compared to 545 mid-life controls aged 41-54, who represent a group that is unselected for survival from late-life diseases. Health and lifestyle information, personal and family medical history, and blood samples were collected from all participants. Super-Seniors also underwent four geriatric tests. Super-Seniors showed high cognitive (Mini-Mental State Exam mean = 28.3) and functional capacity (Instrumental Activities of Daily Living Scale mean = 21.4), as well as high physical function (Timed Up and Go mean = 12.3 seconds) and low levels of depression (Geriatric Depression Scale mean = 1.5). Super-Seniors were less likely to be current smokers than controls, but the frequency of drinking alcohol was the same in both groups. Super-Seniors were more likely to have 4 or more offspring; controls were more likely to have no children. Female Super-Seniors had a mean age of last fertility 1.9 years older than controls, and were 2.3 times more likely to have had a child at ≥ 40 years. The parents of Super-Seniors had mean ages of deaths of 79.3 years for mothers, and 74.5 years for fathers, each exceeding the life expectancy for their era by a decade. Super-Seniors are cognitively and physically high functioning individuals who have evaded major age-related chronic diseases into old age, representing the approximately top 1% for healthspan. The familiality of long lifespan of the parents of Super-Seniors supports the hypothesis that heritable factors contribute to this desirable phenotype.
The Super-Seniors Study: Phenotypic characterization of a healthy 85+ population
Collins, Jennifer A.; Leach, Stephen; McManus, Bruce; Madden, Kenneth; Meneilly, Graydon; Le, Nhu D.; Connors, Joseph M.; Brooks-Wilson, Angela R.
2018-01-01
Background To understand why some people live to advanced age in good health and others do not, it is important to study not only disease, but also long-term good health. The Super-Seniors Study aims to identify factors associated with healthy aging. Methods 480 healthy oldest-old ‘Super-Seniors’ aged 85 to 105 years and never diagnosed with cancer, cardiovascular disease, diabetes, dementia, or major pulmonary disease, were compared to 545 mid-life controls aged 41–54, who represent a group that is unselected for survival from late-life diseases. Health and lifestyle information, personal and family medical history, and blood samples were collected from all participants. Super-Seniors also underwent four geriatric tests. Results Super-Seniors showed high cognitive (Mini-Mental State Exam mean = 28.3) and functional capacity (Instrumental Activities of Daily Living Scale mean = 21.4), as well as high physical function (Timed Up and Go mean = 12.3 seconds) and low levels of depression (Geriatric Depression Scale mean = 1.5). Super-Seniors were less likely to be current smokers than controls, but the frequency of drinking alcohol was the same in both groups. Super-Seniors were more likely to have 4 or more offspring; controls were more likely to have no children. Female Super-Seniors had a mean age of last fertility 1.9 years older than controls, and were 2.3 times more likely to have had a child at ≥ 40 years. The parents of Super-Seniors had mean ages of deaths of 79.3 years for mothers, and 74.5 years for fathers, each exceeding the life expectancy for their era by a decade. Conclusions Super-Seniors are cognitively and physically high functioning individuals who have evaded major age-related chronic diseases into old age, representing the approximately top 1% for healthspan. The familiality of long lifespan of the parents of Super-Seniors supports the hypothesis that heritable factors contribute to this desirable phenotype. PMID:29795606
Manufacturing of super-polished large aspheric/freeform optics
NASA Astrophysics Data System (ADS)
Kim, Dae Wook; Oh, Chang-jin; Lowman, Andrew; Smith, Greg A.; Aftab, Maham; Burge, James H.
2016-07-01
Several next generation astronomical telescopes or large optical systems utilize aspheric/freeform optics for creating a segmented optical system. Multiple mirrors can be combined to form a larger optical surface or used as a single surface to avoid obscurations. In this paper, we demonstrate a specific case of the Daniel K. Inouye Solar Telescope (DKIST). This optic is a 4.2 m in diameter off-axis primary mirror using ZERODUR thin substrate, and has been successfully completed in the Optical Engineering and Fabrication Facility (OEFF) at the University of Arizona, in 2016. As the telescope looks at the brightest object in the sky, our own Sun, the primary mirror surface quality meets extreme specifications covering a wide range of spatial frequency errors. In manufacturing the DKIST mirror, metrology systems have been studied, developed and applied to measure low-to-mid-to-high spatial frequency surface shape information in the 4.2 m super-polished optical surface. In this paper, measurements from these systems are converted to Power Spectral Density (PSD) plots and combined in the spatial frequency domain. Results cover 5 orders of magnitude in spatial frequencies and meet or exceed specifications for this large aspheric mirror. Precision manufacturing of the super-polished DKIST mirror enables a new level of solar science.
NASA Astrophysics Data System (ADS)
Denisova, T. V.; Kolesnikov, S. I.
2009-04-01
The effects of super-high-frequency radiation (SHF radiation) on the microflora and enzymatic activity of an ordinary chernozem, a chestnut soil, a brown forest soil, and gray sands were studied. The exposure time of the 800-W SHF radiation was 30 s, 1, 10, and 60 min. The activity of the soil enzymes (catalase and invertase) was found to be more resistant to the action of SHF radiation than the number of microorganisms (ammonifying bacteria (including sporogenous ones), bacteria of the genus Azotobacter, and micromycetes). According to the resistance of the enzymes, the soils studied form the following sequence: gray sands > ordinary chernozem ≥ chestnut soil > brown forest soil. Under the action of the SHF radiation, the number of microorganisms in the ordinary chernozem decreased to a lesser extent.
Revised Model of the Steady-state Solar Wind Halo Electron Velocity Distribution Function
NASA Astrophysics Data System (ADS)
Yoon, Peter H.; Kim, Sunjung; Choe, G. S.; moon, Y.-J.
2016-08-01
A recent study discussed the steady-state model for solar wind electrons during quiet time conditions. The electrons emanating from the Sun are treated in a composite three-population model—the low-energy Maxwellian core with an energy range of tens of eV, the intermediate ˜102-103 eV energy-range (“halo”) electrons, and the high ˜103-105 eV energy-range (“super-halo”) electrons. In the model, the intermediate energy halo electrons are assumed to be in resonance with transverse EM fluctuations in the whistler frequency range (˜102 Hz), while the high-energy super-halo electrons are presumed to be in steady-state wave-particle resonance with higher-frequency electrostatic fluctuations in the Langmuir frequency range (˜105 Hz). A comparison with STEREO and WIND spacecraft data was also made. However, ignoring the influence of Langmuir fluctuations on the halo population turns out to be an unjustifiable assumption. The present paper rectifies the previous approach by including both Langmuir and whistler fluctuations in the construction of the steady-state velocity distribution function for the halo population, and demonstrates that the role of whistler-range fluctuation is minimal unless the fluctuation intensity is arbitrarily raised. This implies that the Langmuir-range fluctuations, known as the quasi thermal noise, are important for both halo and super-halo electron velocity distribution.
Survey of Ionospheric Pc3-5 ULF Wave Signatures in SuperDARN High Time Resolution Data
NASA Astrophysics Data System (ADS)
Shi, X.; Ruohoniemi, J. M.; Baker, J. B. H.; Lin, D.; Bland, E. C.; Hartinger, M. D.; Scales, W. A.
2018-05-01
Ionospheric signatures of ultralow frequency (ULF) wave in the Pc3-5 band (1.7-40.0 mHz) were surveyed using ˜6-s resolution data from Super Dual Auroral Radar Network (SuperDARN) radars in the Northern Hemisphere from 2010 to 2016. Numerical experiments were conducted to derive wave period-dependent thresholds for automated detection of ULF waves using the Lomb-Scargle periodogram technique. The spatial occurrence distribution, frequency characteristics, seasonal effects, solar wind condition, and geomagnetic activity level dependence have been studied. Pc5 wave events were found to dominate at high and polar latitudes with a most probable frequency of 2.08 ± 0.07 mHz, while Pc3-4 waves were relatively more common at midlatitudes on the nightside with a most probable frequency of 11.39 ± 0.14 mHz. At high latitudes, the occurrence rate of Pc4-5 waves maximizes in the dusk sector and during winter. These events tend to occur during low geomagnetic activity and northward interplanetary magnetic field. For the category of radially bounded but longitudinally extended Pc4 events in the duskside ionosphere, an internal driving source is suggested. At midlatitudes, the poloidal Pc3-4 occurrence rate maximizes premidnight and during equinox. This tendency becomes more prominent with increasing auroral electrojet (AE) index and during southward interplanetary magnetic field, which suggests that many of these events are Pi2 and Pc3-4 pulsations associated with magnetotail dynamics during active geomagnetic intervals. The overall occurrence rate of Pc3-5 wave events is lowest in summer, which suggests that the ionospheric conductivity plays a role in controlling ULF wave occurrence.
Temporally flickering nanoparticles for compound cellular imaging and super resolution
NASA Astrophysics Data System (ADS)
Ilovitsh, Tali; Danan, Yossef; Meir, Rinat; Meiri, Amihai; Zalevsky, Zeev
2016-03-01
This work presents the use of flickering nanoparticles for imaging biological samples. The method has high noise immunity, and it enables the detection of overlapping types of GNPs, at significantly sub-diffraction distances, making it attractive for super resolving localization microscopy techniques. The method utilizes a lock-in technique at which the imaging of the sample is done using a time-modulated laser beam that match the number of the types of gold nanoparticles (GNPs) that label a given sample, and resulting in the excitation of the temporal flickering of the scattered light at known temporal frequencies. The final image where the GNPs are spatially separated is obtained using post processing where the proper spectral components corresponding to the different modulation frequencies are extracted. This allows the simultaneous super resolved imaging of multiple types of GNPs that label targets of interest within biological samples. Additionally applying the post-processing algorithm of the K-factor image decomposition algorithm can further improve the performance of the proposed approach.
Gholipour, Ali; Afacan, Onur; Aganj, Iman; Scherrer, Benoit; Prabhu, Sanjay P; Sahin, Mustafa; Warfield, Simon K
2015-12-01
To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane views consistently showed the superiority of SRR compared to original axial and coronal image acquisitions. Thick-slice 2D T2-weighted MRI scans are part of many routine clinical protocols due to their high signal-to-noise ratio, but are often severely affected by through-plane partial voluming effects. This study shows that while radiologic assessment is performed in 2D on thick-slice scans, super-resolution MRI reconstruction techniques can be used to fuse those scans to generate a high-resolution image with reduced partial voluming for improved postacquisition processing. Qualitative and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the slice profile, density compensation, quantization in resampling, and uncompensated motion between scans.
Measuring the performance of super-resolution reconstruction algorithms
NASA Astrophysics Data System (ADS)
Dijk, Judith; Schutte, Klamer; van Eekeren, Adam W. M.; Bijl, Piet
2012-06-01
For many military operations situational awareness is of great importance. This situational awareness and related tasks such as Target Acquisition can be acquired using cameras, of which the resolution is an important characteristic. Super resolution reconstruction algorithms can be used to improve the effective sensor resolution. In order to judge these algorithms and the conditions under which they operate best, performance evaluation methods are necessary. This evaluation, however, is not straightforward for several reasons. First of all, frequency-based evaluation techniques alone will not provide a correct answer, due to the fact that they are unable to discriminate between structure-related and noise-related effects. Secondly, most super-resolution packages perform additional image enhancement techniques such as noise reduction and edge enhancement. As these algorithms improve the results they cannot be evaluated separately. Thirdly, a single high-resolution ground truth is rarely available. Therefore, evaluation of the differences in high resolution between the estimated high resolution image and its ground truth is not that straightforward. Fourth, different artifacts can occur due to super-resolution reconstruction, which are not known on forehand and hence are difficult to evaluate. In this paper we present a set of new evaluation techniques to assess super-resolution reconstruction algorithms. Some of these evaluation techniques are derived from processing on dedicated (synthetic) imagery. Other evaluation techniques can be evaluated on both synthetic and natural images (real camera data). The result is a balanced set of evaluation algorithms that can be used to assess the performance of super-resolution reconstruction algorithms.
NASA Astrophysics Data System (ADS)
Perera, B. B. P.; Stappers, B. W.; Babak, S.; Keith, M. J.; Antoniadis, J.; Bassa, C. G.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Graikou, E.; Guillemot, L.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Lentati, L.; Liu, K.; Lyne, A. G.; McKee, J. W.; Osłowski, S.; Perrodin, D.; Sanidas, S. A.; Sesana, A.; Shaifullah, G.; Theureau, G.; Verbiest, J. P. W.; Taylor, S. R.
2018-05-01
We search for continuous gravitational waves (CGWs) produced by individual super-massive black-hole binaries (SMBHBs) in circular orbits using high-cadence timing observations of PSR J1713+0747. We observe this millisecond pulsar using the telescopes in the European Pulsar Timing Array (EPTA) with an average cadence of approximately 1.6 days over the period between April 2011 and July 2015, including an approximately daily average between February 2013 and April 2014. The high-cadence observations are used to improve the pulsar timing sensitivity across the GW frequency range of 0.008 - 5 μHz. We use two algorithms in the analysis, including a spectral fitting method and a Bayesian approach. For an independent comparison, we also use a previously published Bayesian algorithm. We find that the Bayesian approaches provide optimal results and the timing observations of the pulsar place a 95 per cent upper limit on the sky-averaged strain amplitude of CGWs to be ≲ 3.5 × 10-13 at a reference frequency of 1 μHz. We also find a 95 per cent upper limit on the sky-averaged strain amplitude of low-frequency CGWs to be ≲ 1.4 × 10-14 at a reference frequency of 20 nHz.
Multiband super-resolution imaging of graded-index photonic crystal flat lens
NASA Astrophysics Data System (ADS)
Xie, Jianlan; Wang, Junzhong; Ge, Rui; Yan, Bei; Liu, Exian; Tan, Wei; Liu, Jianjun
2018-05-01
Multiband super-resolution imaging of point source is achieved by a graded-index photonic crystal flat lens. With the calculations of six bands in common photonic crystal (CPC) constructed with scatterers of different refractive indices, it can be found that the super-resolution imaging of point source can be realized by different physical mechanisms in three different bands. In the first band, the imaging of point source is based on far-field condition of spherical wave while in the second band, it is based on the negative effective refractive index and exhibiting higher imaging quality than that of the CPC. However, in the fifth band, the imaging of point source is mainly based on negative refraction of anisotropic equi-frequency surfaces. The novel method of employing different physical mechanisms to achieve multiband super-resolution imaging of point source is highly meaningful for the field of imaging.
Global warming and tropical cyclone climate in the western North Pacific
NASA Astrophysics Data System (ADS)
Kang, Nam-Young
Violent tropical cyclones (TCs) continue to inflict serious impacts on national economies and welfare, but how they are responding to global warming has not been fully clarified. Here I construct an empirical framework that shows the observations supporting a strong link between rising global ocean warmth and increasing trade-off between TC intensity and frequency in the western North Pacific. Thermodynamic structure of the tropical western North Pacific with high global ocean warmth is characterized by convectively more unstable lower troposphere with greater heat and moisture, but this instability is simultaneously accompanied by anomalous high pressure in the middle and upper troposphere over the same region. Increasing trade-off level between TC intensity and frequency in a warmer year proves that this environment further inhibits the TC occurrences over the region, but TCs that form tend to discharge stored energy to upper troposphere with stronger intensities. By increasing the intensity threshold at higher levels we confirmed that the TC climate connection with global ocean warmth occurs throughout the strongest portion of TCs, and the environmental connection of the TC climate is more conspicuous in the extreme portion of TCs. Intensities at the strongest 10~% of the western North Pacific TCs are comparable to super typhoons on average, the increasing trade-off magnitude clearly suggests that super typhoons in a warmer year gets stronger. Conclusively, the negative collinear feature of the thermodynamics influences the portion of TCs at the highest intensities, and super typhoons are likely to become stronger at the expense of overall TC frequencies in a warmer world. The consequence of this finding is that record-breaking TC intensities occur at the expense of overall TC frequencies under global warming. TC activity is understood as a variation which is independent of global warming, and could be assumed to be an internal variability having no trend. Frequency variation and super typhoon intensity variation are regarded as the addition of global warming influence on TC activity variation. The structure depicts how a previous intensity record is overtaken and frequency falls continuously in the global warming environment in a linear perspective. A peak TC activity year when global ocean warmth is the highest ever is likely to experience a record-breaking intensity. In the same way, the least number of annual TCs may appear when a lull of TC activity occurs in the warmest year.
REVISED MODEL OF THE STEADY-STATE SOLAR WIND HALO ELECTRON VELOCITY DISTRIBUTION FUNCTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Peter H.; Kim, Sunjung; Choe, G. S.
2016-08-01
A recent study discussed the steady-state model for solar wind electrons during quiet time conditions. The electrons emanating from the Sun are treated in a composite three-population model—the low-energy Maxwellian core with an energy range of tens of eV, the intermediate ∼10{sup 2}–10{sup 3} eV energy-range (“halo”) electrons, and the high ∼10{sup 3}–10{sup 5} eV energy-range (“super-halo”) electrons. In the model, the intermediate energy halo electrons are assumed to be in resonance with transverse EM fluctuations in the whistler frequency range (∼10{sup 2} Hz), while the high-energy super-halo electrons are presumed to be in steady-state wave–particle resonance with higher-frequency electrostaticmore » fluctuations in the Langmuir frequency range (∼10{sup 5} Hz). A comparison with STEREO and WIND spacecraft data was also made. However, ignoring the influence of Langmuir fluctuations on the halo population turns out to be an unjustifiable assumption. The present paper rectifies the previous approach by including both Langmuir and whistler fluctuations in the construction of the steady-state velocity distribution function for the halo population, and demonstrates that the role of whistler-range fluctuation is minimal unless the fluctuation intensity is arbitrarily raised. This implies that the Langmuir-range fluctuations, known as the quasi thermal noise, are important for both halo and super-halo electron velocity distribution.« less
NASA Astrophysics Data System (ADS)
Logofătu, Petre C.; Damian, Victor
2018-05-01
A super-resolution terahertz imaging technique based on subpixel estimation was applied to hyperspectral beam profiling. The topic of hyperspectral beam profiling was chosen because the beam profile and its dependence on wavelength are not well known and are important for imaging applications. Super-resolution is required here to avoid diffraction effects and to provide a stronger signal. Super-resolution usually adds supplementary information to the measurement, but in this case, it is a prerequisite for it. We report that the beam profile is almost Gaussian for many frequencies; the waist of the Gaussian profile increases with frequency while the center wobbles slightly. Knowledge of the beam profile may subsequently be used as reference for imaging.
Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming
2018-01-01
There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L0 gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements. PMID:29414893
Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming
2018-02-07
There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L ₀ gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements.
VizieR Online Data Catalog: The Super-CLASS GMRT catalogue - SCG (Riseley+, 2016)
NASA Astrophysics Data System (ADS)
Riseley, C. J.; Scaife, A. M. M.; Hales, C. A.; Harrison, I.; Birkinshaw, M.; Battye, R. A.; Beswick, R. J.; Brown, M. L.; Casey, C. M.; Chapman, S. C.; Demetroullas, C.; Hung, C.-L.; Jackson, N. J.; Muxlow, T.; Watson, B.
2016-06-01
The Super-CLASS GMRT (SCG) catalogue is the low-frequency counterpart of the Super-Cluster Assisted Shear Survey. It is a survey at 13-arcsec resolution, with a limiting 5σ flux density of 170uJy. The catalogue comprises 3257 sources. (1 data file).
Engineering quadratic nonlinear photonic crystals for frequency conversion of lasers
NASA Astrophysics Data System (ADS)
Chen, Baoqin; Hong, Lihong; Hu, Chenyang; Zhang, Chao; Liu, Rongjuan; Li, Zhiyuan
2018-03-01
Nonlinear frequency conversion offers an effective way to extend the laser wavelength range. Quadratic nonlinear photonic crystals (NPCs) are artificial materials composed of domain-inversion structures whose sign of nonlinear coefficients are modulated with desire to implement quasi-phase matching (QPM) required for nonlinear frequency conversion. These structures can offer various reciprocal lattice vectors (RLVs) to compensate the phase-mismatching during the quadratic nonlinear optical processes, including second-harmonic generation (SHG), sum-frequency generation and the cascaded third-harmonic generation (THG). The modulation pattern of the nonlinear coefficients is flexible, which can be one-dimensional or two-dimensional (2D), be periodic, quasi-periodic, aperiodic, chirped, or super-periodic. As a result, these NPCs offer very flexible QPM scheme to satisfy various nonlinear optics and laser frequency conversion problems via design of the modulation patterns and RLV spectra. In particular, we introduce the electric poling technique for fabricating QPM structures, a simple effective nonlinear coefficient model for efficiently and precisely evaluating the performance of QPM structures, the concept of super-QPM and super-periodically poled lithium niobate for finely tuning nonlinear optical interactions, the design of 2D ellipse QPM NPC structures enabling continuous tunability of SHG in a broad bandwidth by simply changing the transport direction of pump light, and chirped QPM structures that exhibit broadband RLVs and allow for simultaneous radiation of broadband SHG, THG, HHG and thus coherent white laser from a single crystal. All these technical, theoretical, and physical studies on QPM NPCs can help to gain a deeper insight on the mechanisms, approaches, and routes for flexibly controlling the interaction of lasers with various QPM NPCs for high-efficiency frequency conversion and creation of novel lasers.
Kazemzadeh, Amin; Ganesan, Poo; Ibrahim, Fatimah; He, Shuisheng; Madou, Marc J
2013-01-01
This paper employs the volume of fluid (VOF) method to numerically investigate the effect of the width, height, and contact angles on burst frequencies of super hydrophilic and hydrophilic capillary valves in centrifugal microfluidic systems. Existing experimental results in the literature have been used to validate the implementation of the numerical method. The performance of capillary valves in the rectangular and the circular microfluidic structures on super hydrophilic centrifugal microfluidic platforms is studied. The numerical results are also compared with the existing theoretical models and the differences are discussed. Our experimental and computed results show a minimum burst frequency occurring at square capillaries and this result is useful for designing and developing more sophisticated networks of capillary valves. It also predicts that in super hydrophilic microfluidics, the fluid leaks consistently from the capillary valve at low pressures which can disrupt the biomedical procedures in centrifugal microfluidic platforms.
Kazemzadeh, Amin; Ganesan, Poo; Ibrahim, Fatimah; He, Shuisheng; Madou, Marc J.
2013-01-01
This paper employs the volume of fluid (VOF) method to numerically investigate the effect of the width, height, and contact angles on burst frequencies of super hydrophilic and hydrophilic capillary valves in centrifugal microfluidic systems. Existing experimental results in the literature have been used to validate the implementation of the numerical method. The performance of capillary valves in the rectangular and the circular microfluidic structures on super hydrophilic centrifugal microfluidic platforms is studied. The numerical results are also compared with the existing theoretical models and the differences are discussed. Our experimental and computed results show a minimum burst frequency occurring at square capillaries and this result is useful for designing and developing more sophisticated networks of capillary valves. It also predicts that in super hydrophilic microfluidics, the fluid leaks consistently from the capillary valve at low pressures which can disrupt the biomedical procedures in centrifugal microfluidic platforms. PMID:24069169
NASA Astrophysics Data System (ADS)
Eisenbeis, J.; Roy, C.; Bland, E. C.; Occhipinti, G.
2017-12-01
Most recent methods in ionospheric tomography are based on the inversion of the total electron content measured by ground-based GPS receivers. As a consequence of the high frequency of the GPS signal and the absence of horizontal raypaths, the electron density structure is mainly reconstructed in the F2 region (300 km), where the ionosphere reaches the maximum of ionization, and is not sensitive to the lower ionospheric structure. We propose here a new tomographic method of the lower ionosphere (Roy et al., 2014), based on the full inversion of over-the-horizon (OTH) radar data and applicable to SuperDarn data. The major advantage of our methodology is taking into account, numerically and jointly, the effect that the electron density perturbations induce not only in the speed of electromagnetic waves but also on the raypath geometry. This last point is extremely critical for OTH/SuperDarn data inversions as the emitted signal propagates through the ionosphere between a fixed starting point (the radar) and an unknown end point on the Earth surface where the signal is backscattered. We detail our ionospheric tomography method with the aid of benchmark tests in order to highlight the sensitivity of the radar related to the explored observational parameters: frequencies, elevations, azimuths. Having proved the necessity to take into account both effects simultaneously, we apply our method to real backscattered data from Super Darn and OTH radar. The preliminary solution obtained with the Hokkaido East SuperDARN with only two frequencies (10MHz and 11MHz), showed here, is stable and push us to deeply explore a more complete dataset that we will present at the AGU 2017. This is, in our knowledge, the first time that an ionospheric tomography has been estimated with SuperDarn backscattered data. Reference: Roy, C., G. Occhipinti, L. Boschi, J.-P. Moliné, and M. Wieczorek (2014), Effect of ray and speed perturbations on ionospheric tomography by over-the-horizon radar: A new method, J. Geophys. Res. Space Physics, 119, doi:10.1002/2014JA020137.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gholipour, Ali, E-mail: ali.gholipour@childrens.harvard.edu; Afacan, Onur; Scherrer, Benoit
Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) ofmore » image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane views consistently showed the superiority of SRR compared to original axial and coronal image acquisitions. Conclusions: Thick-slice 2D T2-weighted MRI scans are part of many routine clinical protocols due to their high signal-to-noise ratio, but are often severely affected by through-plane partial voluming effects. This study shows that while radiologic assessment is performed in 2D on thick-slice scans, super-resolution MRI reconstruction techniques can be used to fuse those scans to generate a high-resolution image with reduced partial voluming for improved postacquisition processing. Qualitative and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the slice profile, density compensation, quantization in resampling, and uncompensated motion between scans.« less
Gholipour, Ali; Afacan, Onur; Aganj, Iman; Scherrer, Benoit; Prabhu, Sanjay P.; Sahin, Mustafa; Warfield, Simon K.
2015-01-01
Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane views consistently showed the superiority of SRR compared to original axial and coronal image acquisitions. Conclusions: Thick-slice 2D T2-weighted MRI scans are part of many routine clinical protocols due to their high signal-to-noise ratio, but are often severely affected by through-plane partial voluming effects. This study shows that while radiologic assessment is performed in 2D on thick-slice scans, super-resolution MRI reconstruction techniques can be used to fuse those scans to generate a high-resolution image with reduced partial voluming for improved postacquisition processing. Qualitative and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the slice profile, density compensation, quantization in resampling, and uncompensated motion between scans. PMID:26632048
FinFET-based Miller encoder for UHF and SHF RFID application
NASA Astrophysics Data System (ADS)
Srinivasulu, Avireni; Sravanthi, G.; Sarada, M.; Pal, Dipankar
2018-01-01
This paper proposes a T-flip-flop and a Miller encoder design for ultra-high frequency and super high frequency, radio-frequency identification (RFID) application using FinFETs. Miller encoder is used in magnetic recording, in optical domain and also in RFID. Performance of the proposed circuit was examined by installing the model parameters of 20-nm FinFET (obtained from open source) on Cadence platform with +0.4 V supply rail at frequencies of 1, 2 and 10 GHz. Simulation results have confirmed that proposed Miller encoder offers a simpler design with reduced transistor count and gives lower power dissipation, higher frequency range of operation at lower supply rail as compared to other candidate designs. Proposed design also promises less propagation delay.
A Study of Solar Flare Effects on Mid and High Latitude Radio Wave Propagation using SuperDARN.
NASA Astrophysics Data System (ADS)
Ruohoniemi, J. M.; Chakraborty, S.; Baker, J. B.
2017-12-01
Over the Horizon (OTH) communication is strongly dependent on the state of the ionosphere, which is sensitive to solar X-ray flares. The Super Dual Auroral Radar Network (SuperDARN), whose working principle is dependent on trans-ionospheric radio communication, uses HF radio waves to remotely sense the ionosphere. The backscatter returns from the terrestrial surface (also known as ground-scatter) transit the ionosphere four times and simulate the operation of an HF communications link. SuperDARN backscatter signal properties are altered (strongly attenuated and changes apparent phase) during a sudden ionospheric disturbance following a solar flare, commonly known as Short-Wave Fadeout or SWF. During an SWF the number of SuperDARN backscatter echoes drops suddenly (≈1 min) and sharply, often to near zero, and recovers within 30 minutes to an hour. In this study HF propagation data (SuperDARN backscatter) obtained during SWF events are analyzed for the purpose of validating and improving the performance of HF absorption models, such as, Space Weather Prediction Center (SWPC) D-region Absorption model (DRAP) and CCMC physics based AbbyNormal model. We will also present preliminary results from a physics based model for the mid and high latitude ionospheric response to flare-driven space weather anomalies, which can be used to estimate different physical parameters of the ionosphere such as electron density, collision frequency, absorption coefficients, response time of D-region etc.
Zhu, Xuehua; Wang, Yulei; Lu, Zhiwei; Zhang, Hengkang
2015-09-07
A new technique for generating high energy sub-400 picosecond laser pulses is presented in this paper. The temporally super-Gaussian-shaped laser pulses are used as light source. When the forward pump is reflected by the rear window of SBS cell, the frequency component that fulfills Brillouin frequency shift in its sideband spectrum works as a seed and excites SBS, which results in efficient compression of the incident pump pulse. First the pulse compression characteristics of 20th-order super-Gaussian temporally shaped pulses with 5 ns duration are analyzed theoretically. Then experiment is carried out with a narrow-band high power Nd:glass laser system at the double-frequency and wavelength of 527 nm which delivers 5 ns super-Gaussian temporally shaped pulses with single pulse energy over 10 J. FC-40 is used as the active SBS medium for its brief phonon lifetime and high power capacity. In the experiment, the results agree well with the numerical calculations. With pump energy of 5.36J, the compression of pulse duration from 5 ns to 360 ps is obtained. The output energy is 3.02 J and the peak-power is magnified 8.3 times. Moreover, the compressed pulse shows a high stability because it is initiated by the feedback of rear window rather than the thermal noise distributing inside the medium. This technique of generating high energy hundred picosecond laser pulses has simple structure and is easy to operate, and it also can be scaled to higher energy pulse compression in the future. Meanwhile, it should also be taken into consideration that in such a nonfocusing scheme, the noise-initiated SBS would increase the distortion on the wavefront of Stokes beam to some extent, and the pump energy should be controlled below the threshold of noise-initiated SBS.
Dual-frequency super harmonic imaging piezoelectric transducers for transrectal ultrasound
NASA Astrophysics Data System (ADS)
Kim, Jinwook; Li, Sibo; Kasoji, Sandeep; Dayton, Paul A.; Jiang, Xiaoning
2015-03-01
In this paper, a 2/14 MHz dual-frequency single-element transducer and a 2/22 MHz sub-array (16/48-elements linear array) transducer were developed for contrast enhanced super-harmonic ultrasound imaging of prostate cancer with the low frequency ultrasound transducer as a transmitter for contrast agent (microbubble) excitation and the high frequency transducer as a receiver for detection of nonlinear responses from microbubbles. The 1-3 piezoelectric composite was used as active materials of the single-element transducers due to its low acoustic impedance and high coupling factor. A high dielectric constant PZT ceramic was used for the sub-array transducer due to its high dielectric property induced relatively low electrical impedance. The possible resonance modes of the active elements were estimated using finite element analysis (FEA). The pulse-echo response, peak-negative pressure and bubble response were tested, followed by in vitro contrast imaging tests using a graphite-gelatin tissue-mimicking phantom. The single-element dual frequency transducer (8 × 4 × 2 mm3) showed a -6 dB fractional bandwidth of 56.5% for the transmitter, and 41.8% for the receiver. A 2 MHz-transmitter (730 μm pitch and 6.5 mm elevation aperture) and a 22 MHz-receiver (240 μm pitch and 1.5 mm aperture) of the sub-array transducer exhibited -6 dB fractional bandwidth of 51.0% and 40.2%, respectively. The peak negative pressure at the far field was about -1.3 MPa with 200 Vpp, 1-cycle 2 MHz burst, which is high enough to excite microbubbles for nonlinear responses. The 7th harmonic responses from micro bubbles were successfully detected in the phantom imaging test showing a contrast-to-tissue ratio (CTR) of 16 dB.
Can Hall effect trigger Kelvin-Helmholtz instability in sub-Alfvénic flows?
NASA Astrophysics Data System (ADS)
Pandey, B. P.
2018-05-01
In the Hall magnetohydrodynamics, the onset condition of the Kelvin-Helmholtz instability is solely determined by the Hall effect and is independent of the nature of shear flows. In addition, the physical mechanism behind the super- and sub-Alfvénic flows becoming unstable is quite different: the high-frequency right circularly polarized whistler becomes unstable in the super-Alfvénic flows whereas low-frequency, left circularly polarized ion-cyclotron wave becomes unstable in the presence of sub-Alfvénic shear flows. The growth rate of the Kelvin-Helmholtz instability in the super-Alfvénic case is higher than the corresponding ideal magnetohydrodynamic rate. In the sub-Alfvénic case, the Hall effect opens up a new, hitherto inaccessible (to the magnetohydrodynamics) channel through which the partially or fully ionized fluid can become Kelvin-Helmholtz unstable. The instability growth rate in this case is smaller than the super-Alfvénic case owing to the smaller free shear energy content of the flow. When the Hall term is somewhat smaller than the advection term in the induction equation, the Hall effect is also responsible for the appearance of a new overstable mode whose growth rate is smaller than the purely growing Kelvin-Helmholtz mode. On the other hand, when the Hall diffusion dominates the advection term, the growth rate of the instability depends only on the Alfvén -Mach number and is independent of the Hall diffusion coefficient. Further, the growth rate in this case linearly increases with the Alfvén frequency with smaller slope for sub-Alfvénic flows.
Observations of a field-aligned ion/ion-beam instability in a magnetized laboratory plasma
NASA Astrophysics Data System (ADS)
Heuer, P. V.; Weidl, M. S.; Dorst, R. S.; Schaeffer, D. B.; Bondarenko, A. S.; Tripathi, S. K. P.; Van Compernolle, B.; Vincena, S.; Constantin, C. G.; Niemann, C.; Winske, D.
2018-03-01
Collisionless coupling between super Alfvénic ions and an ambient plasma parallel to a background magnetic field is mediated by a set of electromagnetic ion/ion-beam instabilities including the resonant right hand instability (RHI). To study this coupling and its role in parallel shock formation, a new experimental configuration at the University of California, Los Angeles utilizes high-energy and high-repetition-rate lasers to create a super-Alfvénic field-aligned debris plasma within an ambient plasma in the Large Plasma Device. We used a time-resolved fluorescence monochromator and an array of Langmuir probes to characterize the laser plasma velocity distribution and density. The debris ions were observed to be sufficiently super-Alfvénic and dense to excite the RHI. Measurements with magnetic flux probes exhibited a right-hand circularly polarized frequency chirp consistent with the excitation of the RHI near the laser target. We compared measurements to 2D hybrid simulations of the experiment.
Observations of a field-aligned ion/ion-beam instability in a magnetized laboratory plasma
Heuer, P. V.; Weidl, M. S.; Dorst, R. S.; ...
2018-03-01
Collisionless coupling between super Alfvénic ions and an ambient plasma parallel to a background magnetic field is mediated by a set of electromagnetic ion/ion-beam instabilities including the resonant right hand instability (RHI). To study this coupling and its role in parallel shock formation, a new experimental configuration at the University of California, Los Angeles utilizes high-energy and high-repetition-rate lasers to create a super-Alfvénic field-aligned debris plasma within an ambient plasma in the Large Plasma Device. We used a time-resolved fluorescence monochromator and an array of Langmuir probes to characterize the laser plasma velocity distribution and density. The debris ions weremore » observed to be sufficiently super-Alfvénic and dense to excite the RHI. Measurements with magnetic flux probes exhibited a right-hand circularly polarized frequency chirp consistent with the excitation of the RHI near the laser target. To conclude, we compared measurements to 2D hybrid simulations of the experiment.« less
Observations of a field-aligned ion/ion-beam instability in a magnetized laboratory plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heuer, P. V.; Weidl, M. S.; Dorst, R. S.
Collisionless coupling between super Alfvénic ions and an ambient plasma parallel to a background magnetic field is mediated by a set of electromagnetic ion/ion-beam instabilities including the resonant right hand instability (RHI). To study this coupling and its role in parallel shock formation, a new experimental configuration at the University of California, Los Angeles utilizes high-energy and high-repetition-rate lasers to create a super-Alfvénic field-aligned debris plasma within an ambient plasma in the Large Plasma Device. We used a time-resolved fluorescence monochromator and an array of Langmuir probes to characterize the laser plasma velocity distribution and density. The debris ions weremore » observed to be sufficiently super-Alfvénic and dense to excite the RHI. Measurements with magnetic flux probes exhibited a right-hand circularly polarized frequency chirp consistent with the excitation of the RHI near the laser target. To conclude, we compared measurements to 2D hybrid simulations of the experiment.« less
Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths
Yuan, Guanghui; Rogers, Edward T. F.; Roy, Tapashree; Adamo, Giorgio; Shen, Zexiang; Zheludev, Nikolay I.
2014-01-01
Planar optical lenses are fundamental elements of miniaturized photonic devices. However, conventional planar optical lenses are constrained by the diffraction limit in the optical far-field due to the band-limited wavevectors supported by free-space and loss of high-spatial-frequency evanescent components. As inspired by Einstein's radiation ‘needle stick', electromagnetic energy can be delivered into an arbitrarily small solid angle. Such sub-diffraction optical needles have been numerically investigated using diffractive optical elements (DOEs) together with specially polarized optical beams, but experimental demonstration is extremely difficult due to the bulky size of DOEs and the required alignment precision. Planar super-oscillatory lenses (SOLs) were proposed to overcome these constraints and demonstrated that sub-diffraction focal spots can actually be formed without any evanescent waves, making far-field, label-free super-resolution imaging possible. Here we extend the super-oscillation concept into the vectorial-field regime to work with circularly polarized light, and experimentally demonstrate, for the first time, a circularly polarized optical needle with sub-diffraction transverse spot size (0.45λ) and axial long depth of focus (DOF) of 15λ using a planar SOL at a violet wavelength of 405 nm. This sub-diffraction circularly polarized optical needle has potential applications in circular dichroism spectroscopy, super-resolution imaging, high-density optical storage, heat-assisted magnetic recording, nano-manufacturing and nano-metrology. PMID:25208611
Evanescent-Wave Filtering in Images Using Remote Terahertz Structured Illumination
NASA Astrophysics Data System (ADS)
Flammini, M.; Pontecorvo, E.; Giliberti, V.; Rizza, C.; Ciattoni, A.; Ortolani, M.; DelRe, E.
2017-11-01
Imaging with structured illumination allows for the retrieval of subwavelength features of an object by conversion of evanescent waves into propagating waves. In conditions in which the object plane and the structured-illumination plane do not coincide, this conversion process is subject to progressive filtering of the components with high spatial frequency when the distance between the two planes increases, until the diffraction-limited lateral resolution is restored when the distance exceeds the extension of evanescent waves. We study the progressive filtering of evanescent waves by developing a remote super-resolution terahertz imaging system operating at a wavelength λ =1.00 mm , based on a freestanding knife edge and a reflective confocal terahertz microscope. In the images recorded with increasing knife-edge-to-object-plane distance, we observe the transition from a super-resolution of λ /17 ≃60 μ m to the diffraction-limited lateral resolution of Δ x ≃λ expected for our confocal microscope. The extreme nonparaxial conditions are analyzed in detail, exploiting the fact that, in the terahertz frequency range, the knife edge can be positioned at a variable subwavelength distance from the object plane. Electromagnetic simulations of radiation scattering by the knife edge reproduce the experimental super-resolution achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenyon, Scott J.; Bromley, Benjamin C., E-mail: skenyon@cfa.harvard.edu, E-mail: bromley@physics.utah.edu
2014-01-01
We investigate formation mechanisms for icy super-Earth-mass planets orbiting at 2-20 AU around 0.1-0.5 M {sub ☉} stars. A large ensemble of coagulation calculations demonstrates a new formation channel: disks composed of large planetesimals with radii of 30-300 km form super-Earths on timescales of ∼1 Gyr. In other gas-poor disks, a collisional cascade grinds planetesimals to dust before the largest planets reach super-Earth masses. Once icy Earth-mass planets form, they migrate through the leftover swarm of planetesimals at rates of 0.01-1 AU Myr{sup –1}. On timescales of 10 Myr to 1 Gyr, many of these planets migrate through the diskmore » of leftover planetesimals from semimajor axes of 5-10 AU to 1-2 AU. A few percent of super-Earths might migrate to semimajor axes of 0.1-0.2 AU. When the disk has an initial mass comparable with the minimum-mass solar nebula, scaled to the mass of the central star, the predicted frequency of super-Earths matches the observed frequency.« less
Theory and observations of high frequency Alfvén eigenmodes in low aspect ratio plasmas
NASA Astrophysics Data System (ADS)
Gorelenkov, N. N.; Fredrickson, E.; Belova, E.; Cheng, C. Z.; Gates, D.; Kaye, S.; White, R.
2003-04-01
New observations of sub-cyclotron frequency instability in low aspect ratio plasmas in national spherical torus experiments are reported. The frequencies of observed instabilities correlate with the characteristic Alfvén velocity of the plasma. A theory of localized compressional Alfvén eigenmodes (CAE) and global shear Alfvén eigenmodes (GAE) in low aspect ratio plasmas is presented to explain the observed high frequency instabilities. CAEs/GAEs are driven by the velocity space gradient of energetic super-Alfvénic beam ions via Doppler shifted cyclotron resonances. One of the main damping mechanisms of GAEs, the continuum damping, is treated perturbatively within the framework of ideal MHD. Properties of these cyclotron instability ions are presented.
New learning based super-resolution: use of DWT and IGMRF prior.
Gajjar, Prakash P; Joshi, Manjunath V
2010-05-01
In this paper, we propose a new learning-based approach for super-resolving an image captured at low spatial resolution. Given the low spatial resolution test image and a database consisting of low and high spatial resolution images, we obtain super-resolution for the test image. We first obtain an initial high-resolution (HR) estimate by learning the high-frequency details from the available database. A new discrete wavelet transform (DWT) based approach is proposed for learning that uses a set of low-resolution (LR) images and their corresponding HR versions. Since the super-resolution is an ill-posed problem, we obtain the final solution using a regularization framework. The LR image is modeled as the aliased and noisy version of the corresponding HR image, and the aliasing matrix entries are estimated using the test image and the initial HR estimate. The prior model for the super-resolved image is chosen as an Inhomogeneous Gaussian Markov random field (IGMRF) and the model parameters are estimated using the same initial HR estimate. A maximum a posteriori (MAP) estimation is used to arrive at the cost function which is minimized using a simple gradient descent approach. We demonstrate the effectiveness of the proposed approach by conducting the experiments on gray scale as well as on color images. The method is compared with the standard interpolation technique and also with existing learning-based approaches. The proposed approach can be used in applications such as wildlife sensor networks, remote surveillance where the memory, the transmission bandwidth, and the camera cost are the main constraints.
2016-07-27
Transverse Acoustic Forcing in a High Pressure Environment 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Mario ...Acoustic Forcing in a High Pressure Environment Mario Roa, Sierra Lobo, Inc. Alex Schumaker, AFRL Doug Talley, AFRL 24-27 July 2016 Joint Propulsion...Distribution A: Approved for Public Release; Distribution Unlimited. PA# 16333 9 Parametric Sweep Super -Critical Results Differences between
Chow, C W; Yeh, C H; Sung, J Y; Hsu, C W
2014-12-15
We propose and demonstrate the feasibility of using all-optical orthogonal frequency division multiplexing (AO-OFDM) for the convergent optical wired and wireless access networks. AO-OFDM relies on all-optically generated orthogonal subcarriers; hence, high data rate (> 100 Gb/s) can be easily achieved without hitting the speed limit of electronic digital-to-analog and analog-to-digital converters (DAC/ADC). A proof-of-concept convergent access network using AO-OFDM super-channel (SC) is demonstrated supporting 40 - 100 Gb/s wired and gigabit/s 100 GHz millimeter-wave (MMW) ROF transmissions.
Image superresolution of cytology images using wavelet based patch search
NASA Astrophysics Data System (ADS)
Vargas, Carlos; García-Arteaga, Juan D.; Romero, Eduardo
2015-01-01
Telecytology is a new research area that holds the potential of significantly reducing the number of deaths due to cervical cancer in developing countries. This work presents a novel super-resolution technique that couples high and low frequency information in order to reduce the bandwidth consumption of cervical image transmission. The proposed approach starts by decomposing into wavelets the high resolution images and transmitting only the lower frequency coefficients. The transmitted coefficients are used to reconstruct an image of the original size. Additional details are added by iteratively replacing patches of the wavelet reconstructed image with equivalent high resolution patches from a previously acquired image database. Finally, the original transmitted low frequency coefficients are used to correct the final image. Results show a higher signal to noise ratio in the proposed method over simply discarding high frequency wavelet coefficients or replacing directly down-sampled patches from the image-database.
Long-distance super-resolution imaging assisted by enhanced spatial Fourier transform.
Tang, Heng-He; Liu, Pu-Kun
2015-09-07
A new gradient-index (GRIN) lens that can realize enhanced spatial Fourier transform (FT) over optically long distances is demonstrated. By using an anisotropic GRIN metamaterial with hyperbolic dispersion, evanescent wave in free space can be transformed into propagating wave in the metamaterial and then focused outside due to negative-refraction. Both the results based on the ray tracing and the finite element simulation show that the spatial frequency bandwidth of the spatial FT can be extended to 2.7k(0) (k(0) is the wave vector in free space). Furthermore, assisted by the enhanced spatial FT, a new long-distance (in the optical far-field region) super-resolution imaging scheme is also proposed and the super resolved capability of λ/5 (λ is the wavelength in free space) is verified. The work may provide technical support for designing new-type high-speed microscopes with long working distances.
Fast myopic 2D-SIM super resolution microscopy with joint modulation pattern estimation
NASA Astrophysics Data System (ADS)
Orieux, François; Loriette, Vincent; Olivo-Marin, Jean-Christophe; Sepulveda, Eduardo; Fragola, Alexandra
2017-12-01
Super-resolution in structured illumination microscopy (SIM) is obtained through de-aliasing of modulated raw images, in which high frequencies are measured indirectly inside the optical transfer function. Usual approaches that use 9 or 15 images are often too slow for dynamic studies. Moreover, as experimental conditions change with time, modulation parameters must be estimated within the images. This paper tackles the problem of image reconstruction for fast super resolution in SIM, where the number of available raw images is reduced to four instead of nine or fifteen. Within an optimization framework, the solution is inferred via a joint myopic criterion for image and modulation (or acquisition) parameters, leading to what is frequently called a myopic or semi-blind inversion problem. The estimate is chosen as the minimizer of the nonlinear criterion, numerically calculated by means of a block coordinate optimization algorithm. The effectiveness of the proposed method is demonstrated for simulated and experimental examples. The results show precise estimation of the modulation parameters jointly with the reconstruction of the super resolution image. The method also shows its effectiveness for thick biological samples.
NASA Astrophysics Data System (ADS)
Ding, Chenliang; Wei, Jingsong; Xiao, Mufei
2018-05-01
We herein propose a far-field super-resolution imaging with metal thin films based on the temperature-dependent electron-phonon collision frequency effect. In the proposed method, neither fluorescence labeling nor any special properties are required for the samples. The 100 nm lands and 200 nm grooves on the Blu-ray disk substrates were clearly resolved and imaged through a laser scanning microscope of wavelength 405 nm. The spot size was approximately 0.80 μm , and the imaging resolution of 1/8 of the laser spot size was experimentally obtained. This work can be applied to the far-field super-resolution imaging of samples with neither fluorescence labeling nor any special properties.
SuperDARN HF Scattering and Propagation in the Presence of Polar Patches Imaged Using RISR
NASA Astrophysics Data System (ADS)
Gillies, R. G.; Perry, G. W.; Varney, R. H.; Gillies, D. M.; Donovan, E.
2017-12-01
The global array of High Frequency (HF) Super Dual Auroral Radar Network (SuperDARN) radars continuously monitors ionospheric convection in the middle-to-high latitude region. The radars measure coherent backscatter from decameter scale field-aligned irregularities. One of the main generation mechanisms for these field-aligned irregularities is the gradient drift instability (GDI). The edges of ionospheric density structures, such as polar cap patches, provide ideal locations for GDI growth. The geometry required for GDI growth results in irregularities forming on the trailing edge of polar patches. However, irregularities generated by the non-linear evolution of the GDI can become prevalent throughout the patch within minutes. Modelling the irregularity growth and measurements of backscatter within patches have both confirmed this. One aspect that has often been overlooked in studies of coherent backscatter within patches is the effect of HF propagation on echo location. This study examines HF echo locations in the vicinity of patches that were imaged using the Resolute Bay Incoherent Scatter Radars (RISR). The effect of both vertical and lateral refraction of the HF wave on echo location is examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiswell, S
2009-01-11
Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-timemore » level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.« less
Super-Poissonian Shot Noise of Squeezed-Magnon Mediated Spin Transport.
Kamra, Akashdeep; Belzig, Wolfgang
2016-04-08
The magnetization of a ferromagnet (F) driven out of equilibrium injects pure spin current into an adjacent conductor (N). Such F|N bilayers have become basic building blocks in a wide variety of spin-based devices. We evaluate the shot noise of the spin current traversing the F|N interface when F is subjected to a coherent microwave drive. We find that the noise spectrum is frequency independent up to the drive frequency, and increases linearly with frequency thereafter. The low frequency noise indicates super-Poissonian spin transfer, which results from quasiparticles with effective spin ℏ^{*}=ℏ(1+δ). For typical ferromagnetic thin films, δ∼1 is related to the dipolar interaction-mediated squeezing of F eigenmodes.
Golner, Thomas M.; Mehta, Shirish P.
2005-07-26
A method and apparatus for connecting high voltage leads to a super-conducting transformer is provided that includes a first super-conducting coil set, a second super-conducting coil set, and a third super-conducting coil set. The first, second and third super-conducting coil sets are connected via an insulated interconnect system that includes insulated conductors and insulated connectors that are utilized to connect the first, second, and third super-conducting coil sets to the high voltage leads.
The physical demands of Super 14 rugby union.
Austin, Damien; Gabbett, Tim; Jenkins, David
2011-05-01
The purpose of the present study was to describe the match-play demands of professional rugby union players competing in Super 14 matches during the 2008 and 2009 seasons. The movements of 20 players from Super 14 rugby union team during the 2008 and 2009 seasons were video recorded. Using time-motion analysis (TMA), five players from four positional groups (front-row forwards, back-row forwards, inside backs and outside backs) were assessed. Players covered between 4218 m and 6389 m during the games. The maximum distances covered in a game by the four groups were: front row forwards (5139 m), back row forwards, (5422 m), inside backs (6389 m) and outside backs (5489 m). The back row forwards spent the greatest amount of time in high-intensity exercise (1190 s), followed by the front row forwards (1015 s), the inside backs (876 s) and the outside backs (570 s). Average distances covered in individual sprint efforts were: front row forwards (16 m), back row forwards (14 m), inside backs (17 m) and outside backs (18 m). Work to rest ratios of 1:4, 1:4, 1:5, and 1:6 were found for the front row and back row forwards, and inside and outside backs respectively. The Super 14 competition during 2008 and 2009, have resulted in an increase in total high-intensity activities, sprint frequency, and work to rest ratios across all playing positions. For players and teams to remain competitive in Super 14 rugby, training (including recovery practices) should reflect these current demands. Copyright © 2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Control of Rotational Energy and Angular Momentum Orientation with an Optical Centrifuge
NASA Astrophysics Data System (ADS)
Ogden, Hannah M.; Murray, Matthew J.; Mullin, Amy S.
2017-04-01
We use an optical centrifuge to trap and spin molecules to an angular frequency of 30 THz with oriented angular momenta and extremely high rotational energy and then investigate their subsequent collision dynamics with transient high resolution IR spectroscopy. The optical centrifuge is formed by combining oppositely-chirped pulses of 800 nm light, and overlapping them spatially and temporally. Polarization-sensitive Doppler-broadened line profiles characterize the anisotropic kinetic energy release of the super rotor molecules, showing that they behave like molecular gyroscopes. Studies are reported for collisions of CO2 super rotors with CO2, He and Ar. These studies reveal how mass, velocity and rotational adiabaticity impact the angular momentum relaxation and reorientation. Quantum scattering calculations provide insight into the J-specific collision cross sections that control the relaxation. NSF-CHE 105 8721.
NASA Astrophysics Data System (ADS)
Mahmoudian, A.; Scales, W. A.; Watkins, B. J.; Bernhardt, P. A.; Isham, B.; Vega-Cancel, O.; Ruohoniemi, J. M.
2017-01-01
This paper presents data from two campaigns at the High Frequency Active Auroral Research Program facility (HAARP) in 2011 and 2012. The measurements of stimulated radio emissions (often called stimulated electromagnetic emissions or SEE) were conducted 15 km from the HAARP site. The potential of Narrowband SEE (NSEE) as a new diagnostic tool to monitor artificial irregularities excited during HF-pump heating of the ionosphere is the main goal of this paper. This has been investigated using well established diagnostics including the Modular UHF Ionospheric Radar (MUIR) and Kodiak SuperDARN radars as well as Wideband SEE (WSEE). The measured data using these three diagnostics were compared to characterize the ionospheric parameters and study the plasma irregularities generated in the interaction region. Variation of the wideband/narrowband SEE features, SuperDARN echoes, and HF-enhanced ion lines (EHIL) were studied with pump power variation, pump frequency stepping near the third electron gyro-frequency (3fce) as well as changing beam angle relative to the magnetic zenith. In particular, electrostatic plasma waves and associated irregularities excited near the reflection resonance layer as well as the upper-hybrid resonance layer are investigated. The time evolution and growth rate of these irregularities are studied using the experimental observations. Close alignment of narrowband SEE (NSEE) with wideband SEE (WSEE) and EHIL was observed. SuperDARN radar echoes and WSEE also showed alignment as in previous investigations. Correlations between these three measurements underscore potential diagnostics by utilizing the NSEE spectrum to estimate ionospheric parameters such as electron temperature.
Frequency Management Engineering Principles--Spectrum Measurements (Reference Order 6050.23).
1982-08-01
Interference 22 (a) Dielectric Heater Example 22 (b) High Power FM Interference Examle 22 (c) Radar Interference Example 22 (d) ARSR Interference Example...Localizer 23 (i) Dielectric Heaters 23 (j) High Power TV/FM 23 (k) Power Line Noise 23 (1) Incidental Radiating Devices 23 (m) Super-regenerative...employing broad band power amplifiers or and random spectrum analyzer instabilities traveling wave tubes. The "cleanest" spectrums create drift problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takano, H.; Hosogi, K.; Kato, T.
1995-05-01
A fully ion-implanted self-aligned T-shaped gate Ga As metal-semiconductor field-effect transistor (MESFET) with high frequency and extremely low-noise performance has been successfully fabricated for super low-noise microwave monolithic integrated circuit (MMIC) amplifiers. A subhalf-micrometer gate structure composed of WSi/Ti/Mo/Au is employed to reduce gate resistance effectively. This multilayer gate structure is formed by newly developed dummy SiON self-alignment technology and a photoresist planarization process. At an operating frequency of 12 GHz, a minimum noise figure of 0.87 dB with an associated gain of 10.62 dB has been obtained. Based on the novel FET process, a low-noise single-stage MMIC amplifier withmore » an excellent low-noise figure of 1.2 dB with an associated gain of 8 dB in the 14 GHz band has been realized. This is the lowest noise figure ever reported at this frequency for low-noise MMICs based on ion-implanted self-aligned gate MESFET technology. 14 refs., 9 figs.« less
NASA Astrophysics Data System (ADS)
Denisov, Alexander; Gudkov, Alexander; Qiu, Jing Hui
2014-10-01
Josephson junction (JJ) can be used as the criterion in single-block super wide band frequency-meter and as the sensitive element in the super wide band panoramic receiver. There presented the theoretical and experimental investigations and described the innovation decision about to combine both devices in one new microwave device. JJ in this case works in self-pump mode regime. New device can be especially convenient for the experimental purposes with new generation structures when radiated power is small and frequency are unknown correctly.
NASA Astrophysics Data System (ADS)
Sun, Q. M.; Melnikov, A.; Mandelis, A.
2015-06-01
Carrierographic (spectrally gated photoluminescence) imaging of a crystalline silicon wafer using an InGaAs camera and two spread super-bandgap illumination laser beams is introduced in both low-frequency lock-in and high-frequency heterodyne modes. Lock-in carrierographic images of the wafer up to 400 Hz modulation frequency are presented. To overcome the frame rate and exposure time limitations of the camera, a heterodyne method is employed for high-frequency carrierographic imaging which results in high-resolution near-subsurface information. The feasibility of the method is guaranteed by the typical superlinearity behavior of photoluminescence, which allows one to construct a slow enough beat frequency component from nonlinear mixing of two high frequencies. Intensity-scan measurements were carried out with a conventional single-element InGaAs detector photocarrier radiometry system, and the nonlinearity exponent of the wafer was found to be around 1.7. Heterodyne images of the wafer up to 4 kHz have been obtained and qualitatively analyzed. With the help of the complementary lock-in and heterodyne modes, camera-based carrierographic imaging in a wide frequency range has been realized for fundamental research and industrial applications toward in-line nondestructive testing of semiconductor materials and devices.
NASA Astrophysics Data System (ADS)
Larquier, S.; Ponomarenko, P.; Ribeiro, A. J.; Ruohoniemi, J. M.; Baker, J. B. H.; Sterne, K. T.; Lester, M.
2013-08-01
The midlatitude Super Dual Auroral Radar Network (SuperDARN) radars regularly observe nighttime low‒velocity Sub‒Auroral Ionospheric Scatter (SAIS) from decameter‒scale ionospheric density irregularities during quiet geomagnetic conditions. To establish the origin of the density irregularities responsible for low‒velocity SAIS, it is necessary to distinguish between the effects of high frequency (HF) propagation and irregularity occurrence itself on the observed backscatter distribution. We compare range, azimuth, and elevation data from the Blackstone SuperDARN radar with modeling results from ray tracing coupled with the International Reference Ionosphere assuming a uniform irregularity distribution. The observed and modeled distributions are shown to be very similar. The spatial distribution of backscattering is consistent with the requirement that HF rays propagate nearly perpendicular to the geomagnetic field lines (aspect angle ≤1°). For the first time, the irregularities responsible for low‒velocity SAIS are determined to extend between 200 and 300 km altitude, validating previous assumptions that low‒velocity SAIS is an F‒region phenomenon. We find that the limited spatial extent of this category of ionospheric backscatter within SuperDARN radars' fields‒of‒view is a consequence of HF propagation effects and the finite vertical extent of the scattering irregularities. We conclude that the density irregularities responsible for low‒velocity SAIS are widely distributed horizontally within the midlatitude ionosphere but are confined to the bottom‒side F‒region.
Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies
Zhang, Yuping; Li, Tongtong; Chen, Qi; ...
2015-12-22
We design a dual-band absorber formed by combining two cross-shaped metallic resonators of different sizes within a super-unit-cell arranged in mirror symmetry. Simulations indicate that absorption efficiencies greater than 99% can be achieved at two different frequencies under normal incidence. We also employ a design scheme with graphene integration, which allows independent tuning of individual absorption frequencies by electrostatically changing the Fermi energy of the graphene layer. High absorbance is maintained over a wide incident angle range up to 50 degrees for both TE and TM polarizations. Thus, it enables a promising way to design electrically tunable absorbers, which maymore » contribute toward the realization of frequency selective detectors for sensing applications.« less
Observation of Dynamical Super-Efimovian Expansion in a Unitary Fermi Gas
NASA Astrophysics Data System (ADS)
Deng, Shujin; Diao, Pengpeng; Li, Fang; Yu, Qianli; Yu, Shi; Wu, Haibin
2018-03-01
We report an observation of a dynamical super Efimovian expansion in a strongly interacting Fermi gas by engineering time dependent external harmonic trap frequencies. When the trap frequency is tailored as [1 /4 t2+1 /t2λ log2(t /t*)]1/2, where t* and λ are two controllable parameters, and the change is faster than a critical value, the expansion of such a quantum gas shows novel dynamics that share the same characteristics as the super Efimov effect. A clear double-log periodicity with discrete geometric scaling emerges for the cloud size in the expansion. The universality of such scaling dynamics is verified both in the noninteracting and in the unitarity limit of Fermi gas. Moreover, the measured energy scaling reveals that the potential and internal energy also show double-log periodicity with a π /2 phase difference, but the total energy is monotonically decreased. Observing super Efimovian evolution represents a paradigm in probing universal properties and allows us in a new way to study many-body nonequilibrium dynamics with experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wollaeger, Ryan T.; Van Rossum, Daniel R., E-mail: wollaeger@wisc.edu, E-mail: daan@flash.uchicago.edu
Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) are methods used to stochastically solve the radiative transport and diffusion equations, respectively. These methods combine into a hybrid transport-diffusion method we refer to as IMC-DDMC. We explore a multigroup IMC-DDMC scheme that in DDMC, combines frequency groups with sufficient optical thickness. We term this procedure ''opacity regrouping''. Opacity regrouping has previously been applied to IMC-DDMC calculations for problems in which the dependence of the opacity on frequency is monotonic. We generalize opacity regrouping to non-contiguous groups and implement this in SuperNu, a code designed to do radiation transport inmore » high-velocity outflows with non-monotonic opacities. We find that regrouping of non-contiguous opacity groups generally improves the speed of IMC-DDMC radiation transport. We present an asymptotic analysis that informs the nature of the Doppler shift in DDMC groups and summarize the derivation of the Gentile-Fleck factor for modified IMC-DDMC. We test SuperNu using numerical experiments including a quasi-manufactured analytic solution, a simple 10 group problem, and the W7 problem for Type Ia supernovae. We find that opacity regrouping is necessary to make our IMC-DDMC implementation feasible for the W7 problem and possibly Type Ia supernova simulations in general. We compare the bolometric light curves and spectra produced by the SuperNu and PHOENIX radiation transport codes for the W7 problem. The overall shape of the bolometric light curves are in good agreement, as are the spectra and their evolution with time. However, for the numerical specifications we considered, we find that the peak luminosity of the light curve calculated using SuperNu is ∼10% less than that calculated using PHOENIX.« less
Radiation Transport for Explosive Outflows: Opacity Regrouping
NASA Astrophysics Data System (ADS)
Wollaeger, Ryan T.; van Rossum, Daniel R.
2014-10-01
Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) are methods used to stochastically solve the radiative transport and diffusion equations, respectively. These methods combine into a hybrid transport-diffusion method we refer to as IMC-DDMC. We explore a multigroup IMC-DDMC scheme that in DDMC, combines frequency groups with sufficient optical thickness. We term this procedure "opacity regrouping." Opacity regrouping has previously been applied to IMC-DDMC calculations for problems in which the dependence of the opacity on frequency is monotonic. We generalize opacity regrouping to non-contiguous groups and implement this in SuperNu, a code designed to do radiation transport in high-velocity outflows with non-monotonic opacities. We find that regrouping of non-contiguous opacity groups generally improves the speed of IMC-DDMC radiation transport. We present an asymptotic analysis that informs the nature of the Doppler shift in DDMC groups and summarize the derivation of the Gentile-Fleck factor for modified IMC-DDMC. We test SuperNu using numerical experiments including a quasi-manufactured analytic solution, a simple 10 group problem, and the W7 problem for Type Ia supernovae. We find that opacity regrouping is necessary to make our IMC-DDMC implementation feasible for the W7 problem and possibly Type Ia supernova simulations in general. We compare the bolometric light curves and spectra produced by the SuperNu and PHOENIX radiation transport codes for the W7 problem. The overall shape of the bolometric light curves are in good agreement, as are the spectra and their evolution with time. However, for the numerical specifications we considered, we find that the peak luminosity of the light curve calculated using SuperNu is ~10% less than that calculated using PHOENIX.
A search for evidence of solar rotation in Super-Kamiokande solar neutrino dataset
NASA Astrophysics Data System (ADS)
Desai, Shantanu; Liu, Dawei W.
2016-09-01
We apply the generalized Lomb-Scargle (LS) periodogram, proposed by Zechmeister and Kurster, to the solar neutrino data from Super-Kamiokande (Super-K) using data from its first five years. For each peak in the LS periodogram, we evaluate the statistical significance in two different ways. The first method involves calculating the False Alarm Probability (FAP) using non-parametric bootstrap resampling, and the second method is by calculating the difference in Bayesian Information Criterion (BIC) between the null hypothesis, viz. the data contains only noise, compared to the hypothesis that the data contains a peak at a given frequency. Using these methods, we scan the frequency range between 7-14 cycles per year to look for any peaks caused by solar rotation, since this is the proposed explanation for the statistically significant peaks found by Sturrock and collaborators in the Super-K dataset. From our analysis, we do confirm that similar to Sturrock et al, the maximum peak occurs at a frequency of 9.42/year, corresponding to a period of 38.75 days. The FAP for this peak is about 1.5% and the difference in BIC (between pure white noise and this peak) is about 4.8. We note that the significance depends on the frequency band used to search for peaks and hence it is important to use a search band appropriate for solar rotation. However, The significance of this peak based on the value of BIC is marginal and more data is needed to confirm if the peak persists and is real.
NASA Astrophysics Data System (ADS)
Lasheen, A.; Argyropoulos, T.; Bohl, T.; Esteban Müller, J. F.; Timko, H.; Shaposhnikova, E.
2018-03-01
Microwave instability in the Super Proton Synchrotron (SPS) at CERN is one of the main limitations to reach the requirements for the High Luminosity-LHC project (increased beam intensity by a factor 2). To identify the impedance source responsible of the instability, beam measurements were carried out to probe the SPS impedance. The method presented in this paper relies on measurements of the unstable spectra of single bunches, injected in the SPS with the rf voltage switched off. The modulation of the bunch profile gives information about the main impedance sources driving microwave instability, and is compared to particle simulations using the SPS impedance model to identify the most important contributions. This allowed us to identify the vacuum flanges as the main impedance source for microwave instability in the SPS, and to evaluate possible missing impedance sources.
K2 Campaign 5 observations of pulsating subdwarf B stars: binaries and super-Nyquist frequencies
NASA Astrophysics Data System (ADS)
Reed, M. D.; Armbrecht, E. L.; Telting, J. H.; Baran, A. S.; Østensen, R. H.; Blay, Pere; Kvammen, A.; Kuutma, Teet; Pursimo, T.; Ketzer, L.; Jeffery, C. S.
2018-03-01
We report the discovery of three pulsating subdwarf B stars in binary systems observed with the Kepler space telescope during Campaign 5 of K2. EPIC 211696659 (SDSS J083603.98+155216.4) is a g-mode pulsator with a white dwarf companion and a binary period of 3.16 d. EPICs 211823779 (SDSS J082003.35+173914.2) and 211938328 (LB 378) are both p-mode pulsators with main-sequence F companions. The orbit of EPIC 211938328 is long (635 ± 146 d) while we cannot constrain that of EPIC 211823779. The p modes are near the Nyquist frequency and so we investigate ways to discriminate super- from sub-Nyquist frequencies. We search for rotationally induced frequency multiplets and all three stars appear to be slow rotators with EPIC 211696659 subsynchronous to its orbit.
Are super-shedder feedlot cattle really super?
Munns, Krysty D; Selinger, Lorna; Stanford, Kim; Selinger, L Brent; McAllister, Tim A
2014-04-01
The objective of this study was to determine the frequency and duration of super-shedding in cattle by enumerating Escherichia coli O157:H7 in feces and to compare lineage and pulsed-field gel electrophoresis (PFGE) subtypes from super- and low-shedders. E. coli O157:H7 was enumerated from fecal samples obtained from the rectums of 400 feedlot cattle. Super-shedding steers (N=11) were identified, transported, and penned individually. Freshly voided fecal pats were sampled 2 h before and 6 h after feeding for 7 d, then once daily for an additional 19 d. Isolates (N=126) were subtyped using PFGE, and lineage was typed using a lineage-specific polymorphism assay. Of the 11 super-shedders identified at the commercial feedlot, only five were confirmed as super-shedders at the research feedlot, with no super-shedders identified 6 d after sampling at the commercial feedlot. Super-shedding was not consistent in fecal pats collected from the same individual at different times of the day. Isolates exhibited three distinct PFGE subtypes, with most isolates (97.6%) displaying the same subtype, including those obtained from steers that transitioned from super- to low-shedding. The short duration of super-shedding and its lack of continuance suggest that these individuals may not play as great a role in the dissemination of E. coli O157:H7 within the feedlot as previously proposed.
Passive Super-Low Frequency electromagnetic prospecting technique
NASA Astrophysics Data System (ADS)
Wang, Nan; Zhao, Shanshan; Hui, Jian; Qin, Qiming
2017-03-01
The Super-Low Frequency (SLF) electromagnetic prospecting technique, adopted as a non-imaging remote sensing tool for depth sounding, is systematically proposed for subsurface geological survey. In this paper, we propose and theoretically illustrate natural source magnetic amplitudes as SLF responses for the first step. In order to directly calculate multi-dimensional theoretical SLF responses, modeling algorithms were developed and evaluated using the finite difference method. The theoretical results of three-dimensional (3-D) models show that the average normalized SLF magnetic amplitude responses were numerically stable and appropriate for practical interpretation. To explore the depth resolution, three-layer models were configured. The modeling results prove that the SLF technique is more sensitive to conductive objective layers than high resistive ones, with the SLF responses of conductive objective layers obviously showing uprising amplitudes in the low frequency range. Afterwards, we proposed an improved Frequency-Depth transformation based on Bostick inversion to realize the depth sounding by empirically adjusting two parameters. The SLF technique has already been successfully applied in geothermal exploration and coalbed methane (CBM) reservoir interpretation, which demonstrates that the proposed methodology is effective in revealing low resistive distributions. Furthermore, it siginificantly contributes to reservoir identification with electromagnetic radiation anomaly extraction. Meanwhile, the SLF interpretation results are in accordance with dynamic production status of CBM reservoirs, which means it could provide an economical, convenient and promising method for exploring and monitoring subsurface geo-objects.
Super-emitters in natural gas infrastructure are caused by abnormal process conditions
NASA Astrophysics Data System (ADS)
Zavala-Araiza, Daniel; Alvarez, Ramón A.; Lyon, David R.; Allen, David T.; Marchese, Anthony J.; Zimmerle, Daniel J.; Hamburg, Steven P.
2017-01-01
Effectively mitigating methane emissions from the natural gas supply chain requires addressing the disproportionate influence of high-emitting sources. Here we use a Monte Carlo simulation to aggregate methane emissions from all components on natural gas production sites in the Barnett Shale production region (Texas). Our total emission estimates are two-thirds of those derived from independent site-based measurements. Although some high-emitting operations occur by design (condensate flashing and liquid unloadings), they occur more than an order of magnitude less frequently than required to explain the reported frequency at which high site-based emissions are observed. We conclude that the occurrence of abnormal process conditions (for example, malfunctions upstream of the point of emissions; equipment issues) cause additional emissions that explain the gap between component-based and site-based emissions. Such abnormal conditions can cause a substantial proportion of a site's gas production to be emitted to the atmosphere and are the defining attribute of super-emitting sites.
NASA Technical Reports Server (NTRS)
Donoughe, P. L.; Hunczak, H. R.
1977-01-01
The U.S. experiments conducted with the Communications Technology Satellite, a joint Canadian-U.S. venture launched in 1976, are discussed. The 14/12 GHz frequencies employed by the 200-W transmitter on board the satellite provide two-way television and voice communications. Applications of the satellite in the categories of health care, community services and education are considered; experiments have also made use of the special properties of the super-high frequency band (e.g. link characterization and digital communications). Time-sharing of the 14/12 GHz communication between the U.S. and Canada has functioned well.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Yin, Xiaobin; Shi, Hanqing; Wang, Zhenzhan; Xu, Qing
2018-04-01
Accurate estimations of typhoon-level winds are highly desired over the western Pacific Ocean. A wind speed retrieval algorithm is used to retrieve the wind speeds within Super Typhoon Nepartak (2016) using 6.9- and 10.7-GHz brightness temperatures from the Japanese Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor on board the Global Change Observation Mission-Water 1 (GCOM-W1) satellite. The results show that the retrieved wind speeds clearly represent the intensification process of Super Typhoon Nepartak. A good agreement is found between the retrieved wind speeds and the Soil Moisture Active Passive wind speed product. The mean bias is 0.51 m/s, and the root-mean-square difference is 1.93 m/s between them. The retrieved maximum wind speeds are 59.6 m/s at 04:45 UTC on July 6 and 71.3 m/s at 16:58 UTC on July 6. The two results demonstrate good agreement with the results reported by the China Meteorological Administration and the Joint Typhoon Warning Center. In addition, Feng-Yun 2G (FY-2G) satellite infrared images, Feng-Yun 3C (FY-3C) microwave atmospheric sounder data, and AMSR2 brightness temperature images are also used to describe the development and structure of Super Typhoon Nepartak.
Luo, Xiaomin; Gu, Shengfeng; Lou, Yidong; Xiong, Chao; Chen, Biyan; Jin, Xueyuan
2018-06-01
The geomagnetic storm, which is an abnormal space weather phenomenon, can sometimes severely affect GPS signal propagation, thereby impacting the performance of GPS precise point positioning (PPP). However, the investigation of GPS PPP accuracy over the global scale under different geomagnetic storm conditions is very limited. This paper for the first time presents the performance of GPS dual-frequency (DF) and single-frequency (SF) PPP under moderate, intense, and super storms conditions during solar cycle 24 using a large data set collected from about 500 international GNSS services (IGS) stations. The global root mean square (RMS) maps of GPS PPP results show that stations with degraded performance are mainly distributed at high-latitude, and the degradation level generally depends on the storm intensity. The three-dimensional (3D) RMS of GPS DF PPP for high-latitude during moderate, intense, and super storms are 0.393 m, 0.680 m and 1.051 m, respectively, with respect to only 0.163 m on quiet day. RMS errors of mid- and low-latitudes show less dependence on the storm intensities, with values less than 0.320 m, compared to 0.153 m on quiet day. Compared with DF PPP, the performance of GPS SF PPP is inferior regardless of quiet or disturbed conditions. The degraded performance of GPS positioning during geomagnetic storms is attributed to the increased ionospheric disturbances, which have been confirmed by our global rate of TEC index (ROTI) maps. Ionospheric disturbances not only lead to the deteriorated ionospheric correction but also to the frequent cycle-slip occurrence. Statistical results show that, compared with that on quiet day, the increased cycle-slip occurrence are 13.04%, 56.52%, and 69.57% under moderate, intense, and super storms conditions, respectively.
Quantifying the impact of weak, strong, and super ties in scientific careers
Petersen, Alexander Michael
2015-01-01
Scientists are frequently faced with the important decision to start or terminate a creative partnership. This process can be influenced by strategic motivations, as early career researchers are pursuers, whereas senior researchers are typically attractors, of new collaborative opportunities. Focusing on the longitudinal aspects of scientific collaboration, we analyzed 473 collaboration profiles using an egocentric perspective that accounts for researcher-specific characteristics and provides insight into a range of topics, from career achievement and sustainability to team dynamics and efficiency. From more than 166,000 collaboration records, we quantify the frequency distributions of collaboration duration and tie strength, showing that collaboration networks are dominated by weak ties characterized by high turnover rates. We use analytic extreme value thresholds to identify a new class of indispensable super ties, the strongest of which commonly exhibit >50% publication overlap with the central scientist. The prevalence of super ties suggests that they arise from career strategies based upon cost, risk, and reward sharing and complementary skill matching. We then use a combination of descriptive and panel regression methods to compare the subset of publications coauthored with a super tie to the subset without one, controlling for pertinent features such as career age, prestige, team size, and prior group experience. We find that super ties contribute to above-average productivity and a 17% citation increase per publication, thus identifying these partnerships—the analog of life partners—as a major factor in science career development. PMID:26261301
All-optical and broadband microwave fundamental/sub-harmonic I/Q down-converters.
Gao, Yongsheng; Wen, Aijun; Jiang, Wei; Fan, Yangyu; He, You
2018-03-19
Microwave I/Q down-converters are frequently used in image-reject super heterodyne receivers, zero intermediate frequency (zero-IF) receivers, and phase/frequency discriminators. However, due to the electronic bottleneck, conventional microwave I/Q mixers face a serious bandwidth limitation, I/Q imbalance, and even-order distortion. In this paper, photonic microwave fundamental and sub-harmonic I/Q down-converters are presented using a polarization division multiplexing dual-parallel Mach-Zehnder modulator (PDM-DPMZM). Thanks to all-optical manipulation, the proposed system features an ultra-wide operating band (7-40 GHz in the fundamental I/Q down-converter, and 10-40 GHz in the sub-harmonic I/Q down-converter) and an excellent I/Q balance (maximum 0.7 dB power imbalance and 1 degree phase imbalance). The conversion gain, noise figure (NF), even-order distortion, and spurious free dynamic range (SFDR) are also improved by LO power optimization and balanced detection. Using the proposed system, a high image rejection ratio is demonstrated for a super heterodyne receiver, and good EVMs over a wide RF power range is demonstrated for a zero-IF receiver. The proposed broadband photonic microwave fundamental and sub-harmonic I/Q down-converters may find potential applications in multi-band satellite, ultra-wideband radar and frequency-agile electronic warfare systems.
Hot super-Earths and giant planet cores from different migration histories
NASA Astrophysics Data System (ADS)
Cossou, Christophe; Raymond, Sean N.; Hersant, Franck; Pierens, Arnaud
2014-09-01
Planetary embryos embedded in gaseous protoplanetary disks undergo Type I orbital migration. Migration can be inward or outward depending on the local disk properties but, in general, only planets more massive than several M⊕ can migrate outward. Here we propose that an embryo's migration history determines whether it becomes a hot super-Earth or the core of a giant planet. Systems of hot super-Earths (or mini-Neptunes) form when embryos migrate inward and pile up at the inner edge of the disk. Giant planet cores form when inward-migrating embryos become massive enough to switch direction and migrate outward. We present simulations of this process using a modified N-body code, starting from a swarm of planetary embryos. Systems of hot super-Earths form in resonant chains with the innermost planet at or interior to the disk inner edge. Resonant chains are disrupted by late dynamical instabilities triggered by the dispersal of the gaseous disk. Giant planet cores migrate outward toward zero-torque zones, which move inward and eventually disappear as the disk disperses. Giant planet cores migrate inward with these zones and are stranded at ~1-5 AU. Our model reproduces several properties of the observed extra-solar planet populations. The frequency of giant planet cores increases strongly when the mass in solids is increased, consistent with the observed giant exoplanet - stellar metallicity correlation. The frequency of hot super-Earths is not a function of stellar metallicity, also in agreement with observations. Our simulations can reproduce the broad characteristics of the observed super-Earth population.
Translation of Japanese Noun Compounds at Super-Function Based MT System
NASA Astrophysics Data System (ADS)
Zhao, Xin; Ren, Fuji; Kuroiwa, Shingo
Noun compounds are frequently encountered construction in nature language processing (NLP), consisting of a sequence of two or more nouns which functions syntactically as one noun. The translation of noun compounds has become a major issue in Machine Translation (MT) due to their frequency of occurrence and high productivity. In our previous studies on Super-Function Based Machine Translation (SFBMT), we have found that noun compounds are very frequently used and difficult to be translated correctly, the overgeneration of noun compounds can be dangerous as it may introduce ambiguity in the translation. In this paper, we discuss the challenges in handling Japanese noun compounds in an SFBMT system, we present a shallow method for translating noun compounds by using a word level translation dictionary and target language monolingual corpus.
NASA Astrophysics Data System (ADS)
Sangha, Simran; Peltzer, Gilles; Zhang, Ailin; Meng, Lingsen; Liang, Cunren; Lundgren, Paul; Fielding, Eric
2017-03-01
Combining space-based geodetic and array seismology observations can provide detailed information about earthquake ruptures in remote regions. Here we use Landsat-8 imagery and ALOS-2 and Sentinel-1 radar interferometry data combined with data from the European seismology network to describe the source of the December 7, 2015, Mw7.2 Murghab (Tajikistan) earthquake. The earthquake reactivated a ∼79 km-long section of the Sarez-Karakul Fault, a NE oriented sinistral, trans-tensional fault in northern Pamir. Pixel offset data delineate the geometry of the surface break and line of sight ground shifts from two descending and three ascending interferograms constrain the fault dip and slip solution. Two right-stepping, NE-striking segments connected by a more easterly oriented segment, sub-vertical or steeply dipping to the west were involved. The solution shows two main patches of slip with up to 3.5 m of left lateral slip on the southern and central fault segments. The northern segment has a left-lateral and normal oblique slip of up to a meter. Back-projection of high-frequency seismic waves recorded by the European network, processed using the Multitaper-MUSIC approach, focuses sharply along the surface break. The time progression of the high-frequency radiators shows that, after a 10 second initiation phase at slow speed, the rupture progresses in 2 phases at super-shear velocity (∼4.3-5 km/s) separated by a 3 second interval of slower propagation corresponding to the passage through the restraining bend. The intensity of the high-frequency radiation reaches maxima during the initial and middle phases of slow propagation and is reduced by ∼50% during the super-shear phases of the propagation. These findings are consistent with studies of other strike-slip earthquakes in continental domain, showing the importance of fault geometric complexities in controlling the speed of fault propagation and related spatiotemporal pattern of the high-frequency radiation.
Munns, Krysty D.; Zaheer, Rahat; Xu, Yong; Stanford, Kim; Laing, Chad R.; Gannon, Victor P. J.; Selinger, L. Brent; McAllister, Tim A.
2016-01-01
Cattle are the primary reservoir of the foodborne pathogen Escherichia coli O157:H7, with the concentration and frequency of E. coli O157:H7 shedding varying substantially among individual hosts. The term ‘‘super-shedder” has been applied to cattle that shed ≥104 cfu E. coli O157:H7/g of feces. Super-shedders have been reported to be responsible for the majority of E. coli O157:H7 shed into the environment. The objective of this study was to determine if there are phenotypic and/or genotypic differences between E. coli O157:H7 isolates obtained from super-shedder compared to low-shedder cattle. From a total of 784 isolates, four were selected from low-shedder steers and six isolates from super-shedder steers (4.01–8.45 log cfu/g feces) for whole genome sequencing. Isolates were phage and clade typed, screened for substrate utilization, pH sensitivity, virulence gene profiles and Stx bacteriophage insertion (SBI) sites. A range of 89–2473 total single nucleotide polymorphisms (SNPs) were identified when sequenced strains were compared to E. coli O157:H7 strain Sakai. More non-synonymous SNP mutations were observed in low-shedder isolates. Pan-genomic and SNPs comparisons did not identify genetic segregation between super-shedder or low-shedder isolates. All super-shedder isolates and 3 of 4 of low-shedder isolates were typed as phage type 14a, SBI cluster 3 and SNP clade 2. Super-shedder isolates displayed increased utilization of galactitol, thymidine and 3-O-β-D-galactopyranosyl-D-arabinose when compared to low-shedder isolates, but no differences in SNPs were observed in genes encoding for proteins involved in the metabolism of these substrates. While genetic traits specific to super-shedder isolates were not identified in this study, differences in the level of gene expression or genes of unknown function may still contribute to some strains of E. coli O157:H7 reaching high densities within bovine feces. PMID:27018858
Munns, Krysty D; Zaheer, Rahat; Xu, Yong; Stanford, Kim; Laing, Chad R; Gannon, Victor P J; Selinger, L Brent; McAllister, Tim A
2016-01-01
Cattle are the primary reservoir of the foodborne pathogen Escherichia coli O157:H7, with the concentration and frequency of E. coli O157:H7 shedding varying substantially among individual hosts. The term ''super-shedder" has been applied to cattle that shed ≥10(4) cfu E. coli O157:H7/g of feces. Super-shedders have been reported to be responsible for the majority of E. coli O157:H7 shed into the environment. The objective of this study was to determine if there are phenotypic and/or genotypic differences between E. coli O157:H7 isolates obtained from super-shedder compared to low-shedder cattle. From a total of 784 isolates, four were selected from low-shedder steers and six isolates from super-shedder steers (4.01-8.45 log cfu/g feces) for whole genome sequencing. Isolates were phage and clade typed, screened for substrate utilization, pH sensitivity, virulence gene profiles and Stx bacteriophage insertion (SBI) sites. A range of 89-2473 total single nucleotide polymorphisms (SNPs) were identified when sequenced strains were compared to E. coli O157:H7 strain Sakai. More non-synonymous SNP mutations were observed in low-shedder isolates. Pan-genomic and SNPs comparisons did not identify genetic segregation between super-shedder or low-shedder isolates. All super-shedder isolates and 3 of 4 of low-shedder isolates were typed as phage type 14a, SBI cluster 3 and SNP clade 2. Super-shedder isolates displayed increased utilization of galactitol, thymidine and 3-O-β-D-galactopyranosyl-D-arabinose when compared to low-shedder isolates, but no differences in SNPs were observed in genes encoding for proteins involved in the metabolism of these substrates. While genetic traits specific to super-shedder isolates were not identified in this study, differences in the level of gene expression or genes of unknown function may still contribute to some strains of E. coli O157:H7 reaching high densities within bovine feces.
NASA Astrophysics Data System (ADS)
Kotrlová, Andrea; Török, Gabriel; Šrámková, Eva; Stuchlík, Zdeněk
2014-12-01
We have previously applied several models of high-frequency quasi-periodic oscillations (HF QPOs) to estimate the spin of the central Kerr black hole in the three Galactic microquasars, GRS 1915+105, GRO J1655-40, and XTE J1550-564. Here we explore the alternative possibility that the central compact body is a super-spinning object (or a naked singularity) with the external space-time described by Kerr geometry with a dimensionless spin parameter a ≡ cJ/GM2> 1. We calculate the relevant spin intervals for a subset of HF QPO models considered in the previous study. Our analysis indicates that for all but one of the considered models there exists at least one interval of a> 1 that is compatible with constraints given by the ranges of the central compact object mass independently estimated for the three sources. For most of the models, the inferred values of a are several times higher than the extreme Kerr black hole value a = 1. These values may be too high since the spin of superspinars is often assumed to rapidly decrease due to accretion when a ≫ 1. In this context, we conclude that only the epicyclic and the Keplerian resonance model provides estimates that are compatible with the expectation of just a small deviation from a = 1.
NASA Astrophysics Data System (ADS)
Ishida, Hiroki; Kyoden, Tomoaki; Furukawa, Hiroto
2018-03-01
To achieve wireless power transfer (WPT) through a stainless-steel plate, a super-low frequency (SLF) was used as a resonance frequency. In our previous study of SLF-WPT, heavy coils were prepared. In this study, we designed lightweight coils using a WPT simulator that we developed previously. As a result, the weight was reduced to 1.69 kg from 11.9 kg, the previous coil weight. At a resonance frequency of 400 Hz, the transmission efficiency and output power of advanced SLF-WPT reached 91% and 426 W, respectively, over a transmission distance of 30 mm. Furthermore, 80% efficiency and 317 W output were achieved when transmitting power through a 1 mm-thick stainless-steel plate. This performance is much better than that in previous reports. We show using both calculations and experimental results that a power-to-weight ratio of 252 W/kg is possible even when using a 400 Hz power supply frequency.
Ishida, Hiroki; Kyoden, Tomoaki; Furukawa, Hiroto
2018-03-01
To achieve wireless power transfer (WPT) through a stainless-steel plate, a super-low frequency (SLF) was used as a resonance frequency. In our previous study of SLF-WPT, heavy coils were prepared. In this study, we designed lightweight coils using a WPT simulator that we developed previously. As a result, the weight was reduced to 1.69 kg from 11.9 kg, the previous coil weight. At a resonance frequency of 400 Hz, the transmission efficiency and output power of advanced SLF-WPT reached 91% and 426 W, respectively, over a transmission distance of 30 mm. Furthermore, 80% efficiency and 317 W output were achieved when transmitting power through a 1 mm-thick stainless-steel plate. This performance is much better than that in previous reports. We show using both calculations and experimental results that a power-to-weight ratio of 252 W/kg is possible even when using a 400 Hz power supply frequency.
Spectrally Shaped DP-16QAM Super-Channel Transmission with Multi-Channel Digital Back-Propagation
Maher, Robert; Xu, Tianhua; Galdino, Lidia; Sato, Masaki; Alvarado, Alex; Shi, Kai; Savory, Seb J.; Thomsen, Benn C.; Killey, Robert I.; Bayvel, Polina
2015-01-01
The achievable transmission capacity of conventional optical fibre communication systems is limited by nonlinear distortions due to the Kerr effect and the difficulty in modulating the optical field to effectively use the available fibre bandwidth. In order to achieve a high information spectral density (ISD), while simultaneously maintaining transmission reach, multi-channel fibre nonlinearity compensation and spectrally efficient data encoding must be utilised. In this work, we use a single coherent super-receiver to simultaneously receive a DP-16QAM super-channel, consisting of seven spectrally shaped 10GBd sub-carriers spaced at the Nyquist frequency. Effective nonlinearity mitigation is achieved using multi-channel digital back-propagation (MC-DBP) and this technique is combined with an optimised forward error correction implementation to demonstrate a record gain in transmission reach of 85%; increasing the maximum transmission distance from 3190 km to 5890 km, with an ISD of 6.60 b/s/Hz. In addition, this report outlines for the first time, the sensitivity of MC-DBP gain to linear transmission line impairments and defines a trade-off between performance and complexity. PMID:25645457
Interactions between Super Typhoon Megi (2010) and the Monsoon Gyre
NASA Astrophysics Data System (ADS)
Peng, M.; Li, T.; Bi, M.; Shen, X.
2015-12-01
Accurate prediction of tropical cyclone track is critical for high-impact weather preparedness, especially as the storm is near the coastal region. The track prediction for super typhoon Megi (2010) in the western Pacific was notoriously bad as most operational models predicated a mainly westward movement while Megi actually made a northward turning after it has crossed the Philippines islands. In this study, we try to understand this rather irregular motion for Megi. Examination of NCEP reanalyzed fields indicated that during this period a low-frequency (10-60-day) monsoon gyre in the vicinity of Megi may have interactions with the latter. To understand the effect of the low-frequency mode on the movement of Megi, numerical experiments were designed and conducted. The total flow from the analyzed field is separated into 1) a slowly varying background state, 2) a 10-60-day low frequency component representing the monsoon gyre, and 3) a 10-day high-pass filtered component representing Megi. In the control experiment, the total field containing all three components is used as the initial and lateral boundary conditions, and the WRF model is able to simulate Megi's sharp northward turning successfully. In the second experiment, the 10-60-day mode is removed from the initial and lateral boundary fields. In the absence of the low-frequency mode, Megi moves westward and only slightly northwestward without turning north. When the vortex representing Megi was removed, the movement of the monsoon gyre was also affected. These experiments indicated strong interactions between Megi and the monsoon gyre. The interactions and the way the monsoon gyre actually affected the track of Megi will be discussed in the presentation.
Zaroushani, Vida; Khavanin, Ali; Jonidi Jafari, Ahmad; Mortazavi, Seyed Bagher
2016-01-01
Widespread use of X-band frequency (a part of the super high frequency microwave) in the various workplaces would contribute to occupational exposure with potential of adverse health effects. According to limited study on microwave shielding for the workplace, this study tried to prepare a new microwave shielding for this purpose. We used EI-403 epoxy thermosetting resin as a matrix and nickel oxide nanoparticle with the diameter of 15-35 nm as filler. The Epoxy/ Nickel oxide composites with 5, 7, 9 and 11 wt% were made in three different thicknesses (2, 4 and 6 mm). According to transmission / reflection method, shielding effectiveness (SE) in the X-band frequency range (8-12.5 GHz) was measured by scattering parameters directly given by the 2-port Vector Network Analyzer. The fabricated composites characterized by X-ray Diffraction and Field Emission Scanning Electron Microscope. The best average of shielding effectiveness in each thickness of fabricated composites obtained by 11%-2 mm, 7%-4 mm and 7%-6 mm composites with SE values of 46.80%, 66.72% and 64.52%, respectively. In addition, the 11%-6 mm, 5%-6 mm and 11%-4 mm-fabricated composites were able to attenuate extremely the incident microwave energy at 8.01, 8.51 and 8.53 GHz by SE of 84.14%, 83.57 and 81.30%, respectively. The 7%-4mm composite could be introduced as a suitable alternative microwave shield in radiation protection topics in order to its proper SE and other preferable properties such as low cost and weight, resistance to corrosion etc. It is necessary to develop and investigate the efficacy of the fabricated composites in the fields by future studies.
A beam radiation monitor based on CVD diamonds for SuperB
NASA Astrophysics Data System (ADS)
Cardarelli, R.; Di Ciaccio, A.
2013-08-01
Chemical Vapor Deposition (CVD) diamond particle detectors are in use in the CERN experiments at LHC and at particle accelerator laboratories in Europe, USA and Japan mainly as beam monitors. Nowadays it is considered a proven technology with a very fast signal read-out and a very high radiation tolerance suitable for measurements in high radiation environment zones i.e. near the accelerators beam pipes. The specific properties of CVD diamonds make them a prime candidate for measuring single particles as well as high-intensity particle cascades, for timing measurements on the sub-nanosecond scale and for beam protection systems in hostile environments. A single-crystalline CVD (scCVD) diamond sensor, read out with a new generation of fast and high transition frequency SiGe bipolar transistor amplifiers, has been tested for an application as radiation monitor to safeguard the silicon vertex tracker in the SuperB detector from excessive radiation damage, cumulative dose and instantaneous dose rates. Test results with 5.5 MeV alpha particles from a 241Am radioactive source and from electrons from a 90Sr radioactive source are presented in this paper.
NASA Technical Reports Server (NTRS)
Schlegel, T. T.; Arenare, B.; Greco, E. C.; DePalma, J. L.; Starc, V.; Nunez, T.; Medina, R.; Jugo, D.; Rahman, M.A.; Delgado, R.
2007-01-01
We investigated the accuracy of several conventional and advanced resting ECG parameters for identifying obstructive coronary artery disease (CAD) and cardiomyopathy (CM). Advanced high-fidelity 12-lead ECG tests (approx. 5-min supine) were first performed on a "training set" of 99 individuals: 33 with ischemic or dilated CM and low ejection fraction (EF less than 40%); 33 with catheterization-proven obstructive CAD but normal EF; and 33 age-/gender-matched healthy controls. Multiple conventional and advanced ECG parameters were studied for their individual and combined retrospective accuracies in detecting underlying disease, the advanced parameters falling within the following categories: 1) Signal averaged ECG, including 12-lead high frequency QRS (150-250 Hz) plus multiple filtered and unfiltered parameters from the derived Frank leads; 2) 12-lead P, QRS and T-wave morphology via singular value decomposition (SVD) plus signal averaging; 3) Multichannel (12-lead, derived Frank lead, SVD lead) beat-to-beat QT interval variability; 4) Spatial ventricular gradient (and gradient component) variability; and 5) Heart rate variability. Several multiparameter ECG SuperScores were derivable, using stepwise and then generalized additive logistic modeling, that each had 100% retrospective accuracy in detecting underlying CM or CAD. The performance of these same SuperScores was then prospectively evaluated using a test set of another 120 individuals (40 new individuals in each of the CM, CAD and control groups, respectively). All 12-lead ECG SuperScores retrospectively generated for CM continued to perform well in prospectively identifying CM (i.e., areas under the ROC curve greater than 0.95), with one such score (containing just 4 components) maintaining 100% prospective accuracy. SuperScores retrospectively generated for CAD performed somewhat less accurately, with prospective areas under the ROC curve typically in the 0.90-0.95 range. We conclude that resting 12-lead high-fidelity ECG employing and combining the results of several advanced ECG software techniques shows great promise as a rapid and inexpensive tool for screening of heart disease.
NASA Astrophysics Data System (ADS)
Kotrlová, A.; Šrámková, E.; Török, G.; Stuchlík, Z.; Goluchová, K.
2017-11-01
In our previous work (Paper I) we applied several models of high-frequency quasi-periodic oscillations (HF QPOs) to estimate the spin of the central compact object in three Galactic microquasars assuming the possibility that the central compact body is a super-spinning object (or a naked singularity) with external spacetime described by Kerr geometry with a dimensionless spin parameter a ≡ cJ/GM2 > 1. Here we extend our consideration, and in a consistent way investigate implications of a set of ten resonance models so far discussed only in the context of a < 1. The same physical arguments as in Paper I are applied to these models, I.e. only a small deviation of the spin estimate from a = 1, a ≳ 1, is assumed for a favoured model. For five of these models that involve Keplerian and radial epicyclic oscillations we find the existence of a unique specific QPO excitation radius. Consequently, there is a simple behaviour of dimensionless frequency M × νU(a) represented by a single continuous function having solely one maximum close to a ≳ 1. Only one of these models is compatible with the expectation of a ≳ 1. The other five models that involve the radial and vertical epicyclic oscillations imply the existence of multiple resonant radii. This signifies a more complicated behaviour of M × νU(a) that cannot be represented by single functions. Each of these five models is compatible with the expectation of a ≳ 1.
NASA Astrophysics Data System (ADS)
Liu, Xiaoqiang; Hao, Junying; Xie, Yuntao
2016-08-01
Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (<0.002) under a high vacuum were obtained through Si and Al co-doping into the films. Unconventionally, the co-doped polymeric films exhibited a superior wear resistance even though they were very soft. The relationship between the microstructure and properties of the polymeric amorphous carbon films with different elements doping are also discussed in detail.
NASA Astrophysics Data System (ADS)
Hematizadeh, Ayoob; Jazayeri, Seyed Masud; Ghafary, Bijan
2018-02-01
A scheme for excitation of terahertz (THz) radiation is presented by photo mixing of two super-Gaussian laser beams in a rippled density collisional magnetized plasma. Lasers having different frequencies and wave numbers but the same electric fields create a ponderomotive force on the electrons of plasma in the beating frequency. Super-Gaussian laser beam has the exclusive features such as steep gradient in laser intensity distribution, wider cross-section in comparison with Gaussian profiles, which make stronger ponderomotive force and higher THz radiation. The magnetic field is considered oblique to laser beams propagation direction; in this case, depending on the phase matching conditions different mode waves can propagate in plasma. It is found that amplitude and efficiency of the emitted THz radiation not only are sensitive to the beating frequency, collision frequency, and magnetic field strength but to the angle between laser beams and static magnetic field. The efficiency of THz radiation can be optimized in a certain angle.
Comparing models of the combined-stimulation advantage for speech recognition.
Micheyl, Christophe; Oxenham, Andrew J
2012-05-01
The "combined-stimulation advantage" refers to an improvement in speech recognition when cochlear-implant or vocoded stimulation is supplemented by low-frequency acoustic information. Previous studies have been interpreted as evidence for "super-additive" or "synergistic" effects in the combination of low-frequency and electric or vocoded speech information by human listeners. However, this conclusion was based on predictions of performance obtained using a suboptimal high-threshold model of information combination. The present study shows that a different model, based on Gaussian signal detection theory, can predict surprisingly large combined-stimulation advantages, even when performance with either information source alone is close to chance, without involving any synergistic interaction. A reanalysis of published data using this model reveals that previous results, which have been interpreted as evidence for super-additive effects in perception of combined speech stimuli, are actually consistent with a more parsimonious explanation, according to which the combined-stimulation advantage reflects an optimal combination of two independent sources of information. The present results do not rule out the possible existence of synergistic effects in combined stimulation; however, they emphasize the possibility that the combined-stimulation advantages observed in some studies can be explained simply by non-interactive combination of two information sources.
Chen, Song; Wang, Danying; Xu, Chunmei; Ji, Chenglin; Zhang, Xiaoguo; Zhao, Xia; Zhang, Xiufu; Chauhan, Bhagirath Singh
2014-01-01
To break the yield ceiling of rice production, a super rice project was developed in 1996 to breed rice varieties with super high yield. A two-year experiment was conducted to evaluate yield and nitrogen (N)-use response of super rice to different planting methods in the single cropping season. A total of 17 rice varieties, including 13 super rice and four non-super checks (CK), were grown under three N levels [0 (N0), 150 (N150), and 225 (N225) kg ha−1] and two planting methods [transplanting (TP) and direct-seeding in wet conditions (WDS)]. Grain yield under WDS (7.69 t ha−1) was generally lower than TP (8.58 t ha−1). However, grain yield under different planting methods was affected by N rates as well as variety groups. In both years, there was no difference in grain yield between super and CK varieties at N150, irrespective of planting methods. However, grain yield difference was dramatic in japonica groups at N225, that is, there was an 11.3% and 14.1% average increase in super rice than in CK varieties in WDS and TP, respectively. This suggests that high N input contributes to narrowing the yield gap in super rice varieties, which also indicates that super rice was bred for high fertility conditions. In the japonica group, more N was accumulated in super rice than in CK at N225, but no difference was found between super and CK varieties at N0 and N150. Similar results were also found for N agronomic efficiency. The results suggest that super rice varieties have an advantage for N-use efficiency when high N is applied. The response of super rice was greater under TP than under WDS. The results suggest that the need to further improve agronomic and other management practices to achieve high yield and N-use efficiency for super rice varieties in WDS. PMID:25111805
Chen, Song; Wang, Danying; Xu, Chunmei; Ji, Chenglin; Zhang, Xiaoguo; Zhao, Xia; Zhang, Xiufu; Chauhan, Bhagirath Singh
2014-01-01
To break the yield ceiling of rice production, a super rice project was developed in 1996 to breed rice varieties with super high yield. A two-year experiment was conducted to evaluate yield and nitrogen (N)-use response of super rice to different planting methods in the single cropping season. A total of 17 rice varieties, including 13 super rice and four non-super checks (CK), were grown under three N levels [0 (N0), 150 (N150), and 225 (N225) kg ha-1] and two planting methods [transplanting (TP) and direct-seeding in wet conditions (WDS)]. Grain yield under WDS (7.69 t ha-1) was generally lower than TP (8.58 t ha-1). However, grain yield under different planting methods was affected by N rates as well as variety groups. In both years, there was no difference in grain yield between super and CK varieties at N150, irrespective of planting methods. However, grain yield difference was dramatic in japonica groups at N225, that is, there was an 11.3% and 14.1% average increase in super rice than in CK varieties in WDS and TP, respectively. This suggests that high N input contributes to narrowing the yield gap in super rice varieties, which also indicates that super rice was bred for high fertility conditions. In the japonica group, more N was accumulated in super rice than in CK at N225, but no difference was found between super and CK varieties at N0 and N150. Similar results were also found for N agronomic efficiency. The results suggest that super rice varieties have an advantage for N-use efficiency when high N is applied. The response of super rice was greater under TP than under WDS. The results suggest that the need to further improve agronomic and other management practices to achieve high yield and N-use efficiency for super rice varieties in WDS.
Novel High Cooperativity Photon-Magnon Cavity QED
NASA Astrophysics Data System (ADS)
Tobar, Michael; Bourhill, Jeremy; Kostylev, Nikita; G, Maxim; Creedon, Daniel
Novel microwave cavities are presented, which couple photons and magnons in YIG spheres in a super- and ultra-strong way at around 20 mK in temperature. Few/Single photon couplings (or normal mode splitting, 2g) of more than 6 GHz at microwave frequencies are obtained. Types of cavities include multiple post reentrant cavities, which co-couple photons at different frequencies with a coupling greater that the free spectral range, as well as spherical loaded dielectric cavity resonators. In such cavities we show that the bare dielectric properties can be obtained by polarizing all magnon modes to high energy using a 7 Tesla magnet. We also show that at zero-field, collective effects of the spins significantly perturb the photon modes. Other effects like time-reversal symmetry breaking are observed.
Fromille, Samuel; Phillips, Jonathan
2014-01-01
Evidence is provided here that a class of materials with dielectric constants greater than 105 at low frequency (<10−2 Hz), herein called super dielectric materials (SDM), can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 108 in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 104. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc.), filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution), herein called New Paradigm Super (NPS) capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å) of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to “short” the individual water droplets. Potentially NPS capacitor stacks can surpass “supercapacitors” in volumetric energy density. PMID:28788298
Fromille, Samuel; Phillips, Jonathan
2014-12-22
Evidence is provided here that a class of materials with dielectric constants greater than 10⁵ at low frequency (<10 -2 Hz), herein called super dielectric materials (SDM), can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 10⁸ in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 10⁴. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc. ), filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution), herein called New Paradigm Super (NPS) capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å) of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to "short" the individual water droplets. Potentially NPS capacitor stacks can surpass "supercapacitors" in volumetric energy density.
Accurate step-FMCW ultrasound ranging and comparison with pulse-echo signaling methods
NASA Astrophysics Data System (ADS)
Natarajan, Shyam; Singh, Rahul S.; Lee, Michael; Cox, Brian P.; Culjat, Martin O.; Grundfest, Warren S.; Lee, Hua
2010-03-01
This paper presents a method setup for high-frequency ultrasound ranging based on stepped frequency-modulated continuous waves (FMCW), potentially capable of producing a higher signal-to-noise ratio (SNR) compared to traditional pulse-echo signaling. In current ultrasound systems, the use of higher frequencies (10-20 MHz) to enhance resolution lowers signal quality due to frequency-dependent attenuation. The proposed ultrasound signaling format, step-FMCW, is well-known in the radar community, and features lower peak power, wider dynamic range, lower noise figure and simpler electronics in comparison to pulse-echo systems. In pulse-echo ultrasound ranging, distances are calculated using the transmit times between a pulse and its subsequent echoes. In step-FMCW ultrasonic ranging, the phase and magnitude differences at stepped frequencies are used to sample the frequency domain. Thus, by taking the inverse Fourier transform, a comprehensive range profile is recovered that has increased immunity to noise over conventional ranging methods. Step-FMCW and pulse-echo waveforms were created using custom-built hardware consisting of an arbitrary waveform generator and dual-channel super heterodyne receiver, providing high SNR and in turn, accuracy in detection.
NASA Astrophysics Data System (ADS)
Aikawa, Satoru; Nakamura, Yasuhisa; Takanashi, Hitoshi
1994-02-01
This paper describes the performance of an outage free SXH (Synchronous Digital Hierarchy) interface 256 QAM modem. An outage free DMR (Digital Microwave Radio) is achieved by a high coding gain trellis coded SPORT QAM and Super Multicarrier modem. A new frame format and its associated circuits connect the outage free modem to the SDH interface. The newly designed VLSI's are key devices for developing the modem. As an overall modem performance, BER (bit error rate) characteristics and equipment signatures are presented. A coding gain of 4.7 dB (at a BER of 10(exp -4)) is obtained using SPORT 256 QAM and Viterbi decoding. This coding gain is realized by trellis coding as well as by increasing of transmission rate. Roll-off factor is decreased to maintain the same frequency occupation and modulation level as ordinary SDH 256 QAM modern.
Super-resolution optical telescopes with local light diffraction shrinkage
Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang
2015-01-01
Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820
Micro-power dissipation device described
NASA Astrophysics Data System (ADS)
Mao, X.; Zhou, L.; Zhou, J.
1985-11-01
The common-emitter current gain beta of a common two-pole transistor is generally below 250. They are referred to as high-beta or high gain transistors when the beta of such transistors exceeds 300. When the beta of a transistor is higher than 1,000, it is called a super-beta transistor (SBT) or supergain transistor. The micropower dissipation type has the widest applications among the high-beta. Micropower dissipation high-beta means that there is a high gain or a superhigh gain under a microcurrent. The device is widely used in small signal-detection systems and stereo audio equipment because of their characteristics of high gain, low frequency and low noise under small signals.
NASA Astrophysics Data System (ADS)
Chen, Yangyang; Huang, Guoliang
2017-04-01
A great deal of research has been devoted to controlling the dynamic behaviors of phononic crystals and metamaterials by directly tuning the frequency regions and/or widths of their inherent band gaps. Here, we present a novel approach to achieve extremely broadband flexural wave/vibration attenuation based on tunable local resonators made of piezoelectric stacks shunted by hybrid negative capacitance and negative inductance circuits with proof masses attached on a host beam. First, wave dispersion relations of the adaptive metamaterial beam are calculated analytically by using the transfer matrix method. The unique modulus tuning properties induced by the hybrid shunting circuits are then characterized conceptually, from which the frequency dependent modulus tuning curves of the piezoelectric stack located within wave attenuation frequency regions are quantitatively identified. As an example, a flexural wave high-pass band filter with a wave attenuation region from 0 to 23.0 kHz is demonstrated analytically and numerically by using the hybrid shunting circuit, in which the two electric components are connected in series. By changing the connection pattern to be parallel, another super wide wave attenuation region from 13.5 to 73.0 kHz is demonstrated to function as a low-pass filter at a subwavelength scale. The proposed adaptive metamaterial possesses a super wide band gap created both naturally and artificially. Therefore, it can be used for the transient wave mitigation at extremely broadband frequencies such as blast or impact loadings. We envision that the proposed design and approach can open many possibilities in broadband vibration and wave control.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-17
...-AA08 Special Local Regulations; Miami Super Boat Grand Prix, Atlantic Ocean; Miami Beach, FL AGENCY... Super Boat Grand Prix. The Miami Super Boat Grand Prix will consist of a series of high-speed boat races... of the participants, spectators, and the general public during the high-speed boat races. The special...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-16
...-AA08 Special Local Regulation; Emerald Coast Super Boat Grand Prix; Saint Andrew Bay; Panama City, FL... navigable waters during the Emerald Coast Super Boat Grand Prix high speed boat races. Entry into... Marine Event Permit on January 31, 2011 from Super Boat International, Inc. to conduct a high speed boat...
Super-resolved all-refocused image with a plenoptic camera
NASA Astrophysics Data System (ADS)
Wang, Xiang; Li, Lin; Hou, Guangqi
2015-12-01
This paper proposes an approach to produce the super-resolution all-refocused images with the plenoptic camera. The plenoptic camera can be produced by putting a micro-lens array between the lens and the sensor in a conventional camera. This kind of camera captures both the angular and spatial information of the scene in one single shot. A sequence of digital refocused images, which are refocused at different depth, can be produced after processing the 4D light field captured by the plenoptic camera. The number of the pixels in the refocused image is the same as that of the micro-lens in the micro-lens array. Limited number of the micro-lens will result in poor low resolution refocused images. Therefore, not enough details will exist in these images. Such lost details, which are often high frequency information, are important for the in-focus part in the refocused image. We decide to super-resolve these in-focus parts. The result of image segmentation method based on random walks, which works on the depth map produced from the 4D light field data, is used to separate the foreground and background in the refocused image. And focusing evaluation function is employed to determine which refocused image owns the clearest foreground part and which one owns the clearest background part. Subsequently, we employ single image super-resolution method based on sparse signal representation to process the focusing parts in these selected refocused images. Eventually, we can obtain the super-resolved all-focus image through merging the focusing background part and the focusing foreground part in the way of digital signal processing. And more spatial details will be kept in these output images. Our method will enhance the resolution of the refocused image, and just the refocused images owning the clearest foreground and background need to be super-resolved.
HF radar transmissions that deviate from great-circle paths: new insight from e-POP RRI
NASA Astrophysics Data System (ADS)
Perry, G. W.; Miller, E. S.; James, H. G.; Howarth, A. D.; St-Maurice, J. P.; Yau, A. W.
2016-12-01
Significant deviations of SuperDARN radar transmissions from their expected great-circle paths have been detected at ionospheric altitudes using the Radio Receiver Instrument (RRI) on the Enhanced Polar Outflow Probe (e-POP). Experiments between SuperDARN Rankin Inlet and e-POP RRI were conducted at similar local times over consecutive days. Customized experiment modes which incorporated the agile frequency switching capabilities of each system were used. The RRI measurements show deviations of radar transmissions from their expected paths by as much as 2 or 3 SuperDARN beam widths, equivalent to 6° - 10° in bearing from Rankin Inlet. The deviations displayed a dependence on the radar carrier frequency and a day-to-day variability, suggesting that the deviations were transient in nature. We will discuss the deviations in the context of 3D ray trace modeling and measurements from the Resolute Bay Incoherent Scatter Radar - North (RISR-N). The latter provided diagnostic information of the ionosphere along the ray path between RRI and Rankin Inlet during the experiments.
NASA Astrophysics Data System (ADS)
Dou, Lijun; Li, Hengxu
2017-07-01
In recent years, with the rapid development of the economy of China, the traditional building structure has not been able to meet the current people’s demands and the super high-rise building has become a symbol of a city. In the current period, the research on the super high-rise building in the architectural industry of China is late and the technical blanks exist in some construction difficulties in the super high-rise steel structures. Based on the above, a brief analysis and discussion on the difficult construction technology in the steel structures of a super high-rise building and some measures are presented for reference of the relevant personnel in this paper.
Very high-frequency gravitational waves from magnetars and gamma-ray bursts
NASA Astrophysics Data System (ADS)
Wen, Hao; Li, Fang-Yu; Li, Jin; Fang, Zhen-Yun; Beckwith, Andrew
2017-12-01
Extremely powerful astrophysical electromagnetic (EM) systems could be possible sources of high-frequency gravitational waves (HFGWs). Here, based on properties of magnetars and gamma-ray bursts (GRBs), we address “Gamma-HFGWs” (with very high-frequency around 1020 Hz) caused by ultra-strong EM radiation (in the radiation-dominated phase of GRB fireballs) interacting with super-high magnetar surface magnetic fields (˜1011 T). By certain parameters of distance and power, the Gamma-HFGWs would have far field energy density Ω gw around 10-6, and they would cause perturbed signal EM waves of ˜10-20 W/m2 in a proposed HFGW detection system based on the EM response to GWs. Specially, Gamma-HFGWs would possess distinctive envelopes with characteristic shapes depending on the particular structures of surface magnetic fields of magnetars, which could be exclusive features helpful to distinguish them from background noise. Results obtained suggest that magnetars could be involved in possible astrophysical EM sources of GWs in the very high-frequency band, and Gamma-HFGWs could be potential targets for observations in the future. Supported by National Natural Science Foundation of China (11605015, 11375279, 11205254, 11647307) and the Fundamental Research Funds for the Central Universities (106112017CDJXY300003, 106112017CDJXFLX0014)
Aiello, Christina M.; Nussear, Kenneth E.; Esque, Todd C.; Emblidge, Patrick G.; Sah, Pratha; Bansal, Shweta; Hudson, Peter J.
2016-01-01
Mean field models may misrepresent natural transmission patterns in this and other populations depending on the distribution of high-risk contact and shedding events. Rapid outbreaks in generally solitary species may result from changes to their naturally low-risk contact patterns or due to increases in the frequency of severe infections or super-shedding events – population characteristics that should be further investigated to develop effective management strategies.
Solution of non-continuum flows using BGK-type model with enforced relaxation of moments
NASA Astrophysics Data System (ADS)
Alekseenko, Alexander; Gimelshein, Sergey; Nguyen, Truong; Vedula, Prakash
2016-11-01
A BGK-type model with velocity dependent collision frequency and enforced relaxation rates for selected moments is applied to simulation of one- and two-dimensional super sonic flows. Relaxation rates of the moments are estimated by evaluating the full Boltzmann collision integral several times during the simulation. The solutions show improvements in velocity and temperature profiles as compared to the classical ES-BGK model. However, enforcement of relaxation rates for high order moments increases stiffness of the model.
Exploration of the Super H-mode regime on DIII-D and potential advantages for burning plasma devices
Solomon, W. M.; Snyder, P. B.; Bortolon, A.; ...
2016-03-25
In a new high pedestal regime ("Super H-mode") we predicted and accessed DIII-D. Super H-mode was first achieved on DIII-D using a quiescent H-mode edge, enabling a smooth trajectory through pedestal parameter space. By exploiting Super H-mode, it has been possible to access high pedestal pressures at high normalized densities. And while elimination of Edge localized modes (ELMs) is beneficial for Super H-mode, it may not be a requirement, as recent experiments have maintained high pedestals with ELMs triggered by lithium granule injection. Simulations using TGLF for core transport and the EPED model for the pedestal find that ITER canmore » benefit from the improved performance associated with Super H-mode, with increased values of fusion power and gain possible. In similar studies demonstrate that the Super H-mode pedestal can be advantageous for a steady-state power plant, by providing a path to increasing the bootstrap current while simultaneously reducing the demands on the core physics performance.« less
NASA Astrophysics Data System (ADS)
Ghosh, B.; Hazra, S.; Haldar, N.; Roy, D.; Patra, S. N.; Swarnakar, J.; Sarkar, P. P.; Mukhopadhyay, S.
2018-03-01
Since last few decades optics has already proved its strong potentiality for conducting parallel logic, arithmetic and algebraic operations due to its super-fast speed in communication and computation. So many different logical and sequential operations using all optical frequency encoding technique have been proposed by several authors. Here, we have keened out all optical dibit representation technique, which has the advantages of high speed operation as well as reducing the bit error problem. Exploiting this phenomenon, we have proposed all optical frequency encoded dibit based XOR and XNOR logic gates using the optical switches like add/drop multiplexer (ADM) and reflected semiconductor optical amplifier (RSOA). Also the operations of these gates have been verified through proper simulation using MATLAB (R2008a).
Readout electronics for CBM-TOF super module quality evaluation based on 10 Gbps ethernet
NASA Astrophysics Data System (ADS)
Jiang, D.; Cao, P.; Huang, X.; Zheng, J.; Wang, Q.; Li, B.; Li, J.; Liu, S.; An, Q.
2017-07-01
The Compressed Baryonic Matter-Time of Flight (CBM-TOF) wall uses high performance of Multi-gap Resistive Plate Chambers (MRPC) assembled in super modules to identify charged particles with high channel density and high measurement precision at high event rate. Electronics meet the challenge for reading data out from a super module at high speed of about 6 Gbps in real time. In this paper, the readout electronics for CBM-TOF super module quality evaluation is proposed based on 10 Gigabit Ethernet. The digitized TOF data from one super module will be concentrated at the front-end electronics residing on the side of the super module and transmitted to an extreme speed readout module (XSRM) housed in the backend crate through the PCI Express (PCIe) protocol via optic channels. Eventually, the XSRM transmits data to the data acquisition (DAQ) system through four 10 Gbps Ethernet ports in real time. This readout structure has advantages of high performance and expansibility. Furthermore, it is easy to operate. Test results on the prototype show that the overall data readout performance for each XSRM can reach up to 28.8 Gbps, which means XSRM can meet the requirement of reading data out from 4 super modules with 1280 channels in real time.
NASA Astrophysics Data System (ADS)
Maev, R. Gr.; Solodov, I. Yu.
2000-05-01
Classical nonlinear acoustics of solids operates with distributed material nonlinearity related to unharmonicity of molecular interaction forces. Weakening of molecular bonds in a defect area or intermittent lack of elastic coupling between the faces of a vibrating crack or unbond ("clapping") results in anomalously high local contact acoustic nonlinearity (CAN). CAN properties and spectral features are different from those of the classical analog and important to develop new acoustic NDE techniques. Three approaches to nonlinear NDE methodology have been experimentally verified: low-frequency (hundreds of Hz) vibration technique, intermediate-frequency (hundreds of kHz) standing wave and high-frequency (tens of MHz) propagation modes. Low-frequency nonlinear contact vibrations revealed multiple sub- and super-harmonics generation featuring non-monotonous (sinx/x type) spectra. Parametric instability observed in resonator with a nonlinear contact leads to the output spectrum splitting up into successive sub-harmonics as the wave amplitude increases. High-frequency experiments demonstrated abnormal increases in the third harmonic amplitude: 3 or 4 order enhancement of the 3-ω nonlinear parameter was measured for the nonlinear contact. The CAN spectral features in both acoustic and vibration modes were used for nonlinear NDE of simulated and realistic flaws in glass, metal welds, etc. The sensitivities of the techniques are compared and their practical applicability assessed.
NASA Astrophysics Data System (ADS)
Zamani, A.; Setareh, F.; Azargoshasb, T.; Niknam, E.; Mohammadhosseini, E.
2017-06-01
In this article the spin of electron as well as simultaneous effects of Rashba and Dresselhaus spin-orbit interactions are considered for a lens-shaped GaAs quantum dot and the influences of applied electric field and Zeeman effect on the electromagnetically induced transparency (EIT) of this system are investigated. To do so, the absorption, refractive index as well as the group velocity of the probe light pulse are presented and discussed. Study of the absorption and refractive index reveals that, at a particular frequency of probe field, absorption diminishes, refractive index becomes unity and so the EIT occurs. Furthermore, the investigation of group velocity show that, around such frequency the probe propagation is sub-luminal, which shifts to super-luminal for higher and lower frequencies. Our results illustrate that the EIT frequency, transparency window and sub(super)-luminal frequency intervals are strongly sensitive to applied fields in the presence of spin-orbit couplings. It is found that, in comparison with the investigations with negligence of spin, the EIT behavior under the effects of applied fields are quite different.
Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound
Tang, Yufan; Ren, Shuwei; Meng, Han; Xin, Fengxian; Huang, Lixi; Chen, Tianning; Zhang, Chuanzeng; Lu, Tian Jain
2017-01-01
A hybrid acoustic metamaterial is proposed as a new class of sound absorber, which exhibits superior broadband low-frequency sound absorption as well as excellent mechanical stiffness/strength. Based on the honeycomb-corrugation hybrid core (H-C hybrid core), we introduce perforations on both top facesheet and corrugation, forming perforated honeycomb-corrugation hybrid (PHCH) to gain super broadband low-frequency sound absorption. Applying the theory of micro-perforated panel (MPP), we establish a theoretical method to calculate the sound absorption coefficient of this new kind of metamaterial. Perfect sound absorption is found at just a few hundreds hertz with two-octave 0.5 absorption bandwidth. To verify this model, a finite element model is developed to calculate the absorption coefficient and analyze the viscous-thermal energy dissipation. It is found that viscous energy dissipation at perforation regions dominates the total energy consumed. This new kind of acoustic metamaterials show promising engineering applications, which can serve as multiple functional materials with extraordinary low-frequency sound absorption, excellent stiffness/strength and impact energy absorption. PMID:28240239
Assessing resolution in live cell structured illumination microscopy
NASA Astrophysics Data System (ADS)
Pospíšil, Jakub; Fliegel, Karel; Klíma, Miloš
2017-12-01
Structured Illumination Microscopy (SIM) is a powerful super-resolution technique, which is able to enhance the resolution of optical microscope beyond the Abbe diffraction limit. In the last decade, numerous SIM methods that achieve the resolution of 100 nm in the lateral dimension have been developed. The SIM setups with new high-speed cameras and illumination pattern generators allow rapid acquisition of the live specimen. Therefore, SIM is widely used for investigation of the live structures in molecular and live cell biology. Quantitative evaluation of resolution enhancement in a real sample is essential to describe the efficiency of super-resolution microscopy technique. However, measuring the resolution of a live cell sample is a challenging task. Based on our experimental findings, the widely used Fourier ring correlation (FRC) method does not seem to be well suited for measuring the resolution of SIM live cell video sequences. Therefore, the resolution assessing methods based on Fourier spectrum analysis are often used. We introduce a measure based on circular average power spectral density (PSDca) estimated from a single SIM image (one video frame). PSDca describes the distribution of the power of a signal with respect to its spatial frequency. Spatial resolution corresponds to the cut-off frequency in Fourier space. In order to estimate the cut-off frequency from a noisy signal, we use a spectral subtraction method for noise suppression. In the future, this resolution assessment approach might prove useful also for single-molecule localization microscopy (SMLM) live cell imaging.
NASA Technical Reports Server (NTRS)
Torres, Guillermo; Fressin, Francois; Batalha, Natalie M.; Borucki, William J.; Brown, Timothy M.; Bryson, Stephen T.; Buchhave, Lars A.; Charbonneau, David; Ciardi, David R.; Dunham, Edward W.;
2011-01-01
Light curves from the Kepler Mission contain valuable information on the nature of the phenomena producing the transit-like signals. To assist in exploring the possibility that they are due to an astrophysical false positive we describe a procedure (BLENDER) to model the photometry in terms of a blend rather than a planet orbiting a star. A blend may consist of a background or foreground eclipsing binary (or star-planet pair) whose eclipses are attenuated by the light of the candidate and possibly other stars within the photometric aperture. We apply BLENDER to the case of Kepler-9 (KIC 3323887), a target harboring two previously confirmed Saturn-size planets (Kepler-9 b and Kepler-9 c) showing transit timing variations, and an additional shallower signal with a 1.59 day period suggesting the presence of a super-Earth-size planet. Using BLENDER together with constraints from other follow-up observations we are able to rule out all blends for the two deeper signals and provide independent validation of their planetary nature. For the shallower signal, we rule out a large fraction of the false positives that might mimic the transits. The false alarm rate for remaining blends depends in part (and inversely) on the unknown frequency of small-size planets. Based on several realistic estimates of this frequency, we conclude with very high confidence that this small signal is due to a super-Earth-size planet (Kepler-9 d) in a multiple system, rather than a false positive. The radius is determined to be 1.64(exp)(sub-14),R, and current spectroscopic observations are as yet insufficient to establish its mass.
NASA Astrophysics Data System (ADS)
Frissell, N. A.; Baker, J. B. H.; Ruohoniemi, J. M.; Clausen, L. B. N.; Kale, Z. C.; Rae, I. J.; Kepko, L.; Oksavik, K.; Greenwald, R. A.; West, M. L.
2011-01-01
Recent expansion of the SuperDARN network to mid-latitudes and the addition of a new high-time resolution mode provides new opportunities to observe mid-latitude ultra-low frequency waves and other ionospheric sub-auroral features at high temporal resolution. On 22 February 2008, the Blackstone SuperDARN radar and THEMIS ground magnetometers simultaneously observed substorm Pi2 pulsations. Similarities in measurements from the Blackstone radar and a magnetometer at Remus suggest a common generating mechanism. Cross-phase analysis of magnetometer data places these measurements at the ionospheric projection of the plasmapause, while fine spatial and temporal details of the radar data show evidence of field line compressions. About 1 min prior to ground Pi2 observation, 2 Earthward-moving Bursty Bulk Flows (BBFs) were observed by THEMIS probes D and E in the near-Earth plasma sheet. We conclude that the first 2 pulses of the Pi2s observed at Blackstone and Remus result from compressional energy generated by BBFs braking against the magnetospheric dipolar region.
Vernier-like super resolution with guided correlated photon pairs.
Nespoli, Matteo; Goan, Hsi-Sheng; Shih, Min-Hsiung
2016-01-11
We describe a dispersion-enabled, ultra-low power realization of super-resolution in an integrated Mach-Zehnder interferometer. Our scheme is based on a Vernier-like effect in the coincident detection of frequency correlated, non-degenerate photon pairs at the sensor output in the presence of group index dispersion. We design and simulate a realistic integrated refractive index sensor in a silicon nitride on silica platform and characterize its performance in the proposed scheme. We present numerical results showing a sensitivity improvement upward of 40 times over a traditional sensing scheme. The device we design is well within the reach of modern semiconductor fabrication technology. We believe this is the first metrology scheme that uses waveguide group index dispersion as a resource to attain super-resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, W. M., E-mail: solomon@fusion.gat.com; Bortolon, A.; Grierson, B. A.
A new high pedestal regime (“Super H-mode”) has been predicted and accessed on DIII-D. Super H-mode was first achieved on DIII-D using a quiescent H-mode edge, enabling a smooth trajectory through pedestal parameter space. By exploiting Super H-mode, it has been possible to access high pedestal pressures at high normalized densities. While elimination of Edge localized modes (ELMs) is beneficial for Super H-mode, it may not be a requirement, as recent experiments have maintained high pedestals with ELMs triggered by lithium granule injection. Simulations using TGLF for core transport and the EPED model for the pedestal find that ITER canmore » benefit from the improved performance associated with Super H-mode, with increased values of fusion power and gain possible. Similar studies demonstrate that the Super H-mode pedestal can be advantageous for a steady-state power plant, by providing a path to increasing the bootstrap current while simultaneously reducing the demands on the core physics performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, W. M.; Snyder, P. B.; Bortolon, A.
In a new high pedestal regime ("Super H-mode") we predicted and accessed DIII-D. Super H-mode was first achieved on DIII-D using a quiescent H-mode edge, enabling a smooth trajectory through pedestal parameter space. By exploiting Super H-mode, it has been possible to access high pedestal pressures at high normalized densities. And while elimination of Edge localized modes (ELMs) is beneficial for Super H-mode, it may not be a requirement, as recent experiments have maintained high pedestals with ELMs triggered by lithium granule injection. Simulations using TGLF for core transport and the EPED model for the pedestal find that ITER canmore » benefit from the improved performance associated with Super H-mode, with increased values of fusion power and gain possible. In similar studies demonstrate that the Super H-mode pedestal can be advantageous for a steady-state power plant, by providing a path to increasing the bootstrap current while simultaneously reducing the demands on the core physics performance.« less
Soibam, Benjamin
2017-11-01
Super-enhancers are characterized by high levels of Mediator binding and are major contributors to the expression of their associated genes. They exhibit high levels of local chromatin interactions and a higher order of local chromatin organization. On the other hand, lncRNAs can localize to specific DNA sites by forming a RNA:DNA:DNA triplex, which in turn can contribute to local chromatin organization. In this paper, we characterize a new class of lncRNAs called super-lncRNAs that target super-enhancers and which can contribute to the local chromatin organization of the super-enhancers. Using a logistic regression model based on the number of RNA:DNA:DNA triplex sites a lncRNA forms within the super-enhancer, we identify 442 unique super-lncRNA transcripts in 27 different human cell and tissue types; 70% of these super-lncRNAs were tissue restricted. They primarily harbor a single triplex-forming repeat domain, which forms an RNA:DNA:DNA triplex with multiple anchor DNA sites (originating from transposable elements) within the super-enhancers. Super-lncRNAs can be grouped into 17 different clusters based on the tissue or cell lines they target. Super-lncRNAs in a particular cluster share common short structural motifs and their corresponding super-enhancer targets are associated with gene ontology terms pertaining to the tissue or cell line. Super-lncRNAs may use these structural motifs to recruit and transport necessary regulators (such as transcription factors and Mediator complexes) to super-enhancers, influence chromatin organization, and act as spatial amplifiers for key tissue-specific genes associated with super-enhancers. © 2017 Soibam; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
NASA Astrophysics Data System (ADS)
Ren, Ruizhi; Gu, Lingjia; Fu, Haoyang; Sun, Chenglin
2017-04-01
An effective super-resolution (SR) algorithm is proposed for actual spectral remote sensing images based on sparse representation and wavelet preprocessing. The proposed SR algorithm mainly consists of dictionary training and image reconstruction. Wavelet preprocessing is used to establish four subbands, i.e., low frequency, horizontal, vertical, and diagonal high frequency, for an input image. As compared to the traditional approaches involving the direct training of image patches, the proposed approach focuses on the training of features derived from these four subbands. The proposed algorithm is verified using different spectral remote sensing images, e.g., moderate-resolution imaging spectroradiometer (MODIS) images with different bands, and the latest Chinese Jilin-1 satellite images with high spatial resolution. According to the visual experimental results obtained from the MODIS remote sensing data, the SR images using the proposed SR algorithm are superior to those using a conventional bicubic interpolation algorithm or traditional SR algorithms without preprocessing. Fusion algorithms, e.g., standard intensity-hue-saturation, principal component analysis, wavelet transform, and the proposed SR algorithms are utilized to merge the multispectral and panchromatic images acquired by the Jilin-1 satellite. The effectiveness of the proposed SR algorithm is assessed by parameters such as peak signal-to-noise ratio, structural similarity index, correlation coefficient, root-mean-square error, relative dimensionless global error in synthesis, relative average spectral error, spectral angle mapper, and the quality index Q4, and its performance is better than that of the standard image fusion algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kipping, D. M.; Hartman, J.; Bakos, G. A.
2013-06-20
From the list of 2321 transiting planet candidates announced by the Kepler Mission, we select seven targets with favorable properties for the capacity to dynamically maintain an exomoon and present a detectable signal. These seven candidates were identified through our automatic target selection (TSA) algorithm and target selection prioritization (TSP) filtering, whereby we excluded systems exhibiting significant time-correlated noise and focused on those with a single transiting planet candidate of radius less than 6 R{sub Circled-Plus }. We find no compelling evidence for an exomoon around any of the seven Kepler Objects of Interest (KOIs) but constrain the satellite-to-planet massmore » ratios for each. For four of the seven KOIs, we estimate a 95% upper quantile of M{sub S} /M{sub P} < 0.04, which given the radii of the candidates, likely probes down to sub-Earth masses. We also derive precise transit times and durations for each candidate and find no evidence for dynamical variations in any of the KOIs. With just a few systems analyzed thus far in the ongoing ''Hunt for Exomoons with Kepler'' (HEK) project, projections on eta-moon would be premature, but a high frequency of large moons around Super-Earths/Mini-Neptunes would be premature, but a high frequency of large moons around Super-Earths/Mini-Neptunes would appear to be incommensurable with our results so far.« less
NASA Astrophysics Data System (ADS)
Mahmoudian, Alireza; Bernhardt, Paul; Ruohoniemi, J. Michael; Isham, Brett; Watkins, Brenton; Scales, Wayne
2016-07-01
Use of high frequency (HF) heating experiments has been extended in recent years as a useful methodology for plasma physicists wishing to remotely study the properties and behavior of the ionosphere as well as nonlinear plasma processes. Our recent work using high latitude heating experiments has lead to several important discoveries that have enabled assessment of active geomagnetic conditions, determination of minor ion species and their densities, ion mass spectrometry, electron temperature measurements in the heating ionosphere, as well a deeper understanding of physical processes associated with electron acceleration and formation of field aligned irregularities. The data recorded during two campaigns at HAARP in 2011 and 2012 will be presented. Several diagnostic instruments have been used to detect HAARP heater-generated ionospheric irregularities and plasma waves. These diagnostics include an ionosonde, MUIR (Modular UHF Ionospheric Radar at 446 MHz), SuperDARN HF backscatter radar and ground-based SEE receivers. Variation of the wideband/ narrowband SEE features, SuperDARN echoes, and enhanced ion lines were studied with pump power variation, pump frequency stepping near 3fce as well as changing beam angle relative to the magnetic zenith. In particular, formation of field-aligned irregularities (FAIs) and upper hybrid (UH) waves through oscillating two-stream instability (OSTI) and resonance instability is studied. During heating, Narrowband SEE (NSEE) showed enhancements that correlated with the enhanced MUIR radar ion lines. IA MSBS (Magnetized Stimulated Brillouin Scatter) lines are much narrower than Wideband SEE (WSEE) lines and as a result electron temperature calculated using NSEE line offset has potential to be more accurate. This technique may therefore complement the electron temperature calculation using ISR spectra. Strength of IA MSBS lines correlate with EHIL in the MUIR spectrum during HF pump frequency variation near 3fce. Therefore, NSEE could be used for similar diagnostic information, particularly temperature assessment during heating. More detailed physics-based modeling of such SEE is expected to provide further diagnostic information/capabilities. This work has demonstrated the tremendous future potential of Narrowband SEE (NSEE) as a powerful untapped ionospheric diagnostic which could provide complementary measurements for locations that ISR facilities are not available or as a complementary measurement for the waves and irregularities that cannot be observed by ISR.
Transition of multidiffusive states in a biased periodic potential
NASA Astrophysics Data System (ADS)
Zhang, Jia-Ming; Bao, Jing-Dong
2017-03-01
We study a frequency-dependent damping model of hyperdiffusion within the generalized Langevin equation. The model allows for the colored noise defined by its spectral density, assumed to be proportional to ωδ -1 at low frequencies with 0 <δ <1 (sub-Ohmic damping) or 1 <δ <2 (super-Ohmic damping), where the frequency-dependent damping is deduced from the noise by means of the fluctuation-dissipation theorem. It is shown that for super-Ohmic damping and certain parameters, the diffusive process of the particle in a titled periodic potential undergos sequentially four time regimes: thermalization, hyperdiffusion, collapse, and asymptotical restoration. For analyzing transition phenomenon of multidiffusive states, we demonstrate that the first exist time of the particle escaping from the locked state into the running state abides by an exponential distribution. The concept of an equivalent velocity trap is introduced in the present model; moreover, reformation of ballistic diffusive system is also considered as a marginal situation but does not exhibit the collapsed state of diffusion.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-11
... Change To Modify the Pricing Schedule Regarding the Co-Location Super High Density Cabinet Monthly Fee... super high-density cabinet monthly fee. The Exchange will implement the proposed change on May 1, 2012... Schedule at Section X(a) to reduce the co-location super high-density cabinet on-going monthly fee from $15...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-14
... Modify the Exchange's Co-Location Super High Density Cabinet Monthly Fee May 8, 2012. Pursuant to Section... Change The Exchange proposes to modify the Exchange's co-location super high-density cabinet monthly fee... modifying Rule 7034(a) by reducing its co-location super high-density cabinet on-going monthly fee from $15...
NASA Astrophysics Data System (ADS)
Rayson, Matthew D.; Ivey, Gregory N.; Jones, Nicole L.; Fringer, Oliver B.
2018-02-01
We apply the unstructured grid hydrodynamic model SUNTANS to investigate the internal wave dynamics around Scott Reef, Western Australia, an isolated coral reef atoll located on the edge of the continental shelf in water depths of 500,m and more. The atoll is subject to strong semi-diurnal tidal forcing and consists of two relatively shallow lagoons separated by a 500 m deep, 2 km wide and 15 km long channel. We focus on the dynamics in this channel as the internal tide-driven flow and resulting mixing is thought to be a key mechanism controlling heat and nutrient fluxes into the reef lagoons. We use an unstructured grid to discretise the domain and capture both the complex topography and the range of internal wave length scales in the channel flow. The model internal wave field shows super-tidal frequency lee waves generated by the combination of the steep channel topography and strong tidal flow. We evaluate the model performance using observations of velocity and temperature from two through water-column moorings in the channel separating the two reefs. Three different global ocean state estimate datasets (global HYCOM, CSIRO Bluelink, CSIRO climatology atlas) were used to provide the model initial and boundary conditions, and the model outputs from each were evaluated against the field observations. The scenario incorporating the CSIRO Bluelink data performed best in terms of through-water column Murphy skill scores of water temperature and eastward velocity variability in the channel. The model captures the observed vertical structure of the tidal (M2) and super-tidal (M4) frequency temperature and velocity oscillations. The model also predicts the direction and magnitude of the M2 internal tide energy flux. An energy analysis reveals a net convergence of the M2 energy flux and a divergence of the M4 energy flux in the channel, indicating the channel is a region of either energy transfer to higher frequencies or energy loss to dissipation. This conclusion is supported by the mooring observations that reveal high frequency lee waves breaking on the turning phase of the tide.
AMI-LA observations of the SuperCLASS supercluster
NASA Astrophysics Data System (ADS)
Riseley, C. J.; Grainge, K. J. B.; Perrott, Y. C.; Scaife, A. M. M.; Battye, R. A.; Beswick, R. J.; Birkinshaw, M.; Brown, M. L.; Casey, C. M.; Demetroullas, C.; Hales, C. A.; Harrison, I.; Hung, C.-L.; Jackson, N. J.; Muxlow, T.; Watson, B.; Cantwell, T. M.; Carey, S. H.; Elwood, P. J.; Hickish, J.; Jin, T. Z.; Razavi-Ghods, N.; Scott, P. F.; Titterington, D. J.
2018-03-01
We present a deep survey of the Super-Cluster Assisted Shear Survey (SuperCLASS) supercluster - a region of sky known to contain five Abell clusters at redshift z ˜ 0.2 - performed using the Arcminute Microkelvin Imager (AMI) Large Array (LA) at 15.5 GHz. Our survey covers an area of approximately 0.9 deg2. We achieve a nominal sensitivity of 32.0 μJy beam-1 towards the field centre, finding 80 sources above a 5σ threshold. We derive the radio colour-colour distribution for sources common to three surveys that cover the field and identify three sources with strongly curved spectra - a high-frequency-peaked source and two GHz-peaked-spectrum sources. The differential source count (i) agrees well with previous deep radio source counts, (ii) exhibits no evidence of an emerging population of star-forming galaxies, down to a limit of 0.24 mJy, and (iii) disagrees with some models of the 15 GHz source population. However, our source count is in agreement with recent work that provides an analytical correction to the source count from the Square Kilometre Array Design Study (SKADS) Simulated Sky, supporting the suggestion that this discrepancy is caused by an abundance of flat-spectrum galaxy cores as yet not included in source population models.
Prospects for detecting decreasing exoplanet frequency with main-sequence age using PLATO
NASA Astrophysics Data System (ADS)
Veras, Dimitri; Brown, David J. A.; Mustill, Alexander J.; Pollacco, Don
2015-10-01
The space mission PLATO will usher in a new era of exoplanetary science by expanding our current inventory of transiting systems and constraining host star ages, which are currently highly uncertain. This capability might allow PLATO to detect changes in planetary system architecture with time, particularly because planetary scattering due to Lagrange instability may be triggered long after the system was formed. Here, we utilize previously published instability time-scale prescriptions to determine PLATO's capability to detect a trend of decreasing planet frequency with age for systems with equal-mass planets. For two-planet systems, our results demonstrate that PLATO may detect a trend for planet masses which are at least as massive as super-Earths. For systems with three or more planets, we link their initial compactness to potentially detectable frequency trends in order to aid future investigations when these populations will be better characterized.
Prospects for detecting decreasing exoplanet frequency with main-sequence age using PLATO
NASA Astrophysics Data System (ADS)
Veras, D.; Brown, D. J. A.; Mustill, A. J.; Pollacco, D.
2017-09-01
The space mission PLATO will usher in a new era of exoplanetary science by expanding our current inventory of transiting systems and constraining host star ages, which are currently highly uncertain. This capability might allow PLATO to detect changes in planetary system architecture with time, particularly because planetary scattering due to Lagrange instability may be triggered long after the system was formed. Here, we utilize previously published instability time-scale prescriptions to determine PLATO's capability to detect a trend of decreasing planet frequency with age for systems with equal- mass planets. For two-planet systems, our results demonstrate that PLATO may detect a trend for planet masses which are at least as massive as super-Earths. For systems with three or more planets, we link their initial compactness to potentially detectable frequency trends in order to aid future investigations when these populations will be better characterized.
Screech tones from free and ducted supersonic jets
NASA Technical Reports Server (NTRS)
Tam, C. K. W.; Ahuja, K. K.; Jones, R. R., III
1994-01-01
It is well known that screech tones from supersonic jets are generated by a feedback loop. The loop consists of three main components. They are the downstream propagating instability wave, the shock cell structure in the jet plume, and the feedback acoustic waves immediately outside the jet. Evidence will be presented to show that the screech frequency is largely controlled by the characteristics of the feedback acoustic waves. The feedback loop is driven by the instability wave of the jet. Thus the tone intensity and its occurrence are dictated by the characteristics of the instability wave. In this paper the dependence of the instability wave spectrum on the azimuthal mode number (axisymmetric or helical/flapping mode, etc.), the jet-to-ambient gas temperature ratio, and the jet Mach number are studied. The results of this study provide an explanation for the observed screech tone mode switch phenomenon (changing from axisymmetric to helical mode as Mach number increases) and the often-cited experimental observation that tone intensity reduces with increase in jet temperature. For ducted supersonic jets screech tones can also be generated by feedback loops formed by the coupling of normal duct modes to instability waves of the jet. The screech frequencies are dictated by the frequencies of the duct modes. Super resonance, resonance involving very large pressure oscillations, can occur when the feedback loop is powered by the most amplified instability wave. It is proposed that the observed large amplitude pressure fluctuations and tone in the test cells of Arnold Engineering Development Center were generated by super resonance. Estimated super-resonance frequency for a Mach 1.3 axisymmetric jet tested in the facility agrees well with measurement.
Klimarev, S I; Siniak, Iu E
2014-01-01
The article reports the results of studying the effects on polluted water of SHF-energy together with the residual free (active) chlorine as a by-product of electrolysis action on dissolved chlorine-containing salts. Purpose of the studies was to evaluate input of these elements to the water disinfection effect. The synergy was found to kill microorganisms without impacts on the physicochemical properties of processed water or nutrient medium; therefore, it can be used for water treatment, and cultivation of microorganisms in microbiology.
NASA Astrophysics Data System (ADS)
Descloux, A.; Grußmayer, K. S.; Bostan, E.; Lukes, T.; Bouwens, A.; Sharipov, A.; Geissbuehler, S.; Mahul-Mellier, A.-L.; Lashuel, H. A.; Leutenegger, M.; Lasser, T.
2018-03-01
Super-resolution fluorescence microscopy provides unprecedented insight into cellular and subcellular structures. However, going `beyond the diffraction barrier' comes at a price, since most far-field super-resolution imaging techniques trade temporal for spatial super-resolution. We propose the combination of a novel label-free white light quantitative phase imaging with fluorescence to provide high-speed imaging and spatial super-resolution. The non-iterative phase retrieval relies on the acquisition of single images at each z-location and thus enables straightforward 3D phase imaging using a classical microscope. We realized multi-plane imaging using a customized prism for the simultaneous acquisition of eight planes. This allowed us to not only image live cells in 3D at up to 200 Hz, but also to integrate fluorescence super-resolution optical fluctuation imaging within the same optical instrument. The 4D microscope platform unifies the sensitivity and high temporal resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy.
Image quality improvement in cone-beam CT using the super-resolution technique.
Oyama, Asuka; Kumagai, Shinobu; Arai, Norikazu; Takata, Takeshi; Saikawa, Yusuke; Shiraishi, Kenshiro; Kobayashi, Takenori; Kotoku, Jun'ichi
2018-04-05
This study was conducted to improve cone-beam computed tomography (CBCT) image quality using the super-resolution technique, a method of inferring a high-resolution image from a low-resolution image. This technique is used with two matrices, so-called dictionaries, constructed respectively from high-resolution and low-resolution image bases. For this study, a CBCT image, as a low-resolution image, is represented as a linear combination of atoms, the image bases in the low-resolution dictionary. The corresponding super-resolution image was inferred by multiplying the coefficients and the high-resolution dictionary atoms extracted from planning CT images. To evaluate the proposed method, we computed the root mean square error (RMSE) and structural similarity (SSIM). The resulting RMSE and SSIM between the super-resolution images and the planning CT images were, respectively, as much as 0.81 and 1.29 times better than those obtained without using the super-resolution technique. We used super-resolution technique to improve the CBCT image quality.
Super-resolved microsphere-assisted Mirau digital holography by oblique illumination
NASA Astrophysics Data System (ADS)
Abbasian, Vahid; Ganjkhani, Yasaman; Akhlaghi, Ehsan A.; Anand, Arun; Javidi, Bahram; Moradi, Ali-Reza
2018-06-01
In this paper, oblique illumination is used to improve the lateral resolution and edge sharpness in microsphere (MS)-assisted Mirau digital holographic microscopy (Mirau-DHM). Abbe showed that tilting the illumination light allows entrance of higher spatial frequencies into the imaging system thus increasing the resolution power. We extended the idea to common-path DHM, based on Mirau objective, toward super-resolved 3D imaging. High magnification Mirau objectives are very expensive and low-magnification ones suffer from low resolution, therefore, any attempt to increase the effective resolution of the system may be of a great interest. We have already demonstrated the effective resolution increasing of a Mirau-DHM system by incorporating a transparent MS within the working distance of the objective. Here, we show that by integrating a MS-assisted Mirau-DHM with the oblique illumination even higher resolutions can be achieved. We have applied the technique for various samples and have shown the increase in the lateral resolution for the both cases of Mirau-DHM with and without the MS.
4K x 2K pixel color video pickup system
NASA Astrophysics Data System (ADS)
Sugawara, Masayuki; Mitani, Kohji; Shimamoto, Hiroshi; Fujita, Yoshihiro; Yuyama, Ichiro; Itakura, Keijirou
1998-12-01
This paper describes the development of an experimental super- high-definition color video camera system. During the past several years there has been much interest in super-high- definition images as the next generation image media. One of the difficulties in implementing a super-high-definition motion imaging system is constructing the image-capturing section (camera). Even the state-of-the-art semiconductor technology can not realize the image sensor which has enough pixels and output data rate for super-high-definition images. The present study is an attempt to fill the gap in this respect. The authors intend to solve the problem by using new imaging method in which four HDTV sensors are attached on a new color separation optics so that their pixel sample pattern forms checkerboard pattern. A series of imaging experiments demonstrate that this technique is an effective approach to capturing super-high-definition moving images in the present situation where no image sensors exist for such images.
Epstein-Barr Virus oncoprotein super-enhancers control B cell growth
Zhou, Hufeng; Schmidt, Stefanie CS; Jiang, Sizun; Willox, Bradford; Bernhardt, Katharina; Liang, Jun; Johannsen, Eric C; Kharchenko, Peter; Gewurz, Benjamin E; Kieff, Elliott; Zhao, Bo
2015-01-01
Summary Super-enhancers are clusters of gene-regulatory sites bound by multiple transcription factors that govern cell transcription, development, phenotype, and oncogenesis. By examining Epstein-Barr virus (EBV) transformed lymphoblastoid cell lines (LCLs), we identified four EBV oncoproteins and five EBV-activated NF-κB subunits co-occupying ~1800 enhancer sites. Of these, 187 had markedly higher and broader histone H3K27ac signals characteristic of super-enhancers, and were designated “EBV super-enhancers”. EBV super-enhancer-associated genes included the MYC and BCL2 oncogenes, enabling LCL proliferation and survival. EBV super-enhancers were enriched for B cell transcription factor motifs and had a high co-occupancy of the transcription factors STAT5 and NFAT. EBV super-enhancer-associated genes were more highly expressed than other LCL genes. Disrupting EBV super-enhancers by the bromodomain inhibitor, JQ1 or conditionally inactivating an EBV oncoprotein or NF-κB decreased MYC or BCL2 expression and arrested LCL growth. These findings provide insight into mechanisms of EBV-induced lymphoproliferation and identify potential therapeutic interventions. PMID:25639793
A pulsation zoo in the hot subdwarf B star KIC 10139564 observed by Kepler
NASA Astrophysics Data System (ADS)
Baran, A. S.; Reed, M. D.; Stello, D.; Østensen, R. H.; Telting, J. H.; Pakštienë, E.; O'Toole, S. J.; Silvotti, R.; Degroote, P.; Bloemen, S.; Hu, H.; Van Grootel, V.; Clarke, B. D.; Van Cleve, J.; Thompson, S. E.; Kawaler, S. D.
2012-08-01
We present our analyses of 15 months of Kepler data on KIC 10139564. We detected 57 periodicities with a variety of properties not previously observed all together in one pulsating subdwarf B (sdB) star. Ten of the periodicities were found in the low-frequency region, and we associate them with nonradial g modes. The other periodicities were found in the high-frequency region, which are likely p modes. We discovered that most of the periodicities are components of multiplets with a common spacing. Assuming that multiplets are caused by rotation, we derive a rotation period of 25.6 ± 1.8 d. The multiplets also allow us to identify the pulsations to an unprecedented extent for this class of pulsator. We also detect l ≥ 2 multiplets, which are sensitive to the pulsation inclination and can constrain limb darkening via geometric cancellation factors. While most periodicities are stable, we detected several regions that show complex patterns. Detailed analyses showed that these regions are complicated by several factors. Two are combination frequencies that originate in the super-Nyquist region and were found to be reflected below the Nyquist frequency. The Fourier peaks are clear in the super-Nyquist region, but the orbital motion of Kepler smears the Nyquist frequency in the barycentric reference frame and this effect is passed on to the sub-Nyquist reflections. Others are likely multiplets but unstable in amplitudes and/or frequencies. The density of periodicities also makes KIC 10139564 challenging to explain using published models. This menagerie of properties should provide tight constraints on structural models, making this sdB star the most promising for applying asteroseismology. To support our photometric analysis, we have obtained spectroscopic radial-velocity measurements of KIC 10139564 using low-resolution spectra in the Balmer-line region. We did not find any radial-velocity variation. We used our high signal-to-noise average spectrum to improve the atmospheric parameters of the sdB star, deriving Teff = 31 859 K and log g = 5.673 dex. Based also on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.
TIDAL DISSIPATION COMPARED TO SEISMIC DISSIPATION: IN SMALL BODIES, EARTHS, AND SUPER-EARTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Efroimsky, Michael, E-mail: michael.efroimsky@usno.navy.mil
2012-02-20
While the seismic quality factor and phase lag are defined solely by the bulk properties of the mantle, their tidal counterparts are determined by both the bulk properties and the size effect (self-gravitation of a body as a whole). For a qualitative estimate, we model the body with a homogeneous sphere, and express the tidal phase lag through the lag in a sample of material. Although simplistic, our model is sufficient to understand that the lags are not identical. The difference emerges because self-gravitation pulls the tidal bulge down. At low frequencies, this reduces strain and the damping rate, makingmore » tidal damping less efficient in larger objects. At higher frequencies, competition between self-gravitation and rheology becomes more complex, though for sufficiently large super-Earths the same rule applies: the larger the planet, the weaker the tidal dissipation in it. Being negligible for small terrestrial planets and moons, the difference between the seismic and tidal lagging (and likewise between the seismic and tidal damping) becomes very considerable for large exoplanets (super-Earths). In those, it is much lower than what one might expect from using a seismic quality factor. The tidal damping rate deviates from the seismic damping rate, especially in the zero-frequency limit, and this difference takes place for bodies of any size. So the equal in magnitude but opposite in sign tidal torques, exerted on one another by the primary and the secondary, have their orbital averages going smoothly through zero as the secondary crosses the synchronous orbit. We describe the mantle rheology with the Andrade model, allowing it to lean toward the Maxwell model at the lowest frequencies. To implement this additional flexibility, we reformulate the Andrade model by endowing it with a free parameter {zeta} which is the ratio of the anelastic timescale to the viscoelastic Maxwell time of the mantle. Some uncertainty in this parameter's frequency dependence does not influence our principal conclusions.« less
Perspectives on super-shedding of Escherichia coli O157:H7 by cattle.
Munns, Krysty D; Selinger, L Brent; Stanford, Kim; Guan, Leluo; Callaway, Todd R; McAllister, Tim A
2015-02-01
Escherichia coli O157:H7 is a foodborne pathogen that causes illness in humans worldwide. Cattle are the primary reservoir of this bacterium, with the concentration and frequency of E. coli O157:H7 shedding varying greatly among individuals. The term "super-shedder" has been applied to cattle that shed concentrations of E. coli O157:H7 ≥ 10⁴ colony-forming units/g feces. Super-shedders have been reported to have a substantial impact on the prevalence and transmission of E. coli O157:H7 in the environment. The specific factors responsible for super-shedding are unknown, but are presumably mediated by characteristics of the bacterium, animal host, and environment. Super-shedding is sporadic and inconsistent, suggesting that biofilms of E. coli O157:H7 colonizing the intestinal epithelium in cattle are intermittently released into feces. Phenotypic and genotypic differences have been noted in E. coli O157:H7 recovered from super-shedders as compared to low-shedding cattle, including differences in phage type (PT21/28), carbon utilization, degree of clonal relatedness, tir polymorphisms, and differences in the presence of stx2a and stx2c, as well as antiterminator Q gene alleles. There is also some evidence to support that the native fecal microbiome is distinct between super-shedders and low-shedders and that low-shedders have higher levels of lytic phage within feces. Consequently, conditions within the host may determine whether E. coli O157:H7 can proliferate sufficiently for the host to obtain super-shedding status. Targeting super-shedders for mitigation of E. coli O157:H7 has been proposed as a means of reducing the incidence and spread of this pathogen to the environment. If super-shedders could be easily identified, strategies such as bacteriophage therapy, probiotics, vaccination, or dietary inclusion of plant secondary compounds could be specifically targeted at this subpopulation. Evidence that super-shedder isolates share a commonality with isolates linked to human illness makes it imperative that the etiology of this phenomenon be characterized.
NASA Astrophysics Data System (ADS)
He, Qiang; Schultz, Richard R.; Chu, Chee-Hung Henry
2008-04-01
The concept surrounding super-resolution image reconstruction is to recover a highly-resolved image from a series of low-resolution images via between-frame subpixel image registration. In this paper, we propose a novel and efficient super-resolution algorithm, and then apply it to the reconstruction of real video data captured by a small Unmanned Aircraft System (UAS). Small UAS aircraft generally have a wingspan of less than four meters, so that these vehicles and their payloads can be buffeted by even light winds, resulting in potentially unstable video. This algorithm is based on a coarse-to-fine strategy, in which a coarsely super-resolved image sequence is first built from the original video data by image registration and bi-cubic interpolation between a fixed reference frame and every additional frame. It is well known that the median filter is robust to outliers. If we calculate pixel-wise medians in the coarsely super-resolved image sequence, we can restore a refined super-resolved image. The primary advantage is that this is a noniterative algorithm, unlike traditional approaches based on highly-computational iterative algorithms. Experimental results show that our coarse-to-fine super-resolution algorithm is not only robust, but also very efficient. In comparison with five well-known super-resolution algorithms, namely the robust super-resolution algorithm, bi-cubic interpolation, projection onto convex sets (POCS), the Papoulis-Gerchberg algorithm, and the iterated back projection algorithm, our proposed algorithm gives both strong efficiency and robustness, as well as good visual performance. This is particularly useful for the application of super-resolution to UAS surveillance video, where real-time processing is highly desired.
NASA Astrophysics Data System (ADS)
Marksteiner, Quinn R.; Treiman, Michael B.; Chen, Ching-Fong; Haynes, William B.; Reiten, M. T.; Dalmas, Dale; Pulliam, Elias
2017-06-01
A resonant cavity method is presented which can measure loss tangents and dielectric constants for materials with dielectric constant from 150 to 10 000 and above. This practical and accurate technique is demonstrated by measuring barium strontium zirconium titanate bulk ferroelectric ceramic blocks. Above the Curie temperature, in the paraelectric state, barium strontium zirconium titanate has a sufficiently low loss that a series of resonant modes are supported in the cavity. At each mode frequency, the dielectric constant and loss tangent are obtained. The results are consistent with low frequency measurements and computer simulations. A quick method of analyzing the raw data using the 2D static electromagnetic modeling code SuperFish and an estimate of uncertainties are presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-14
...-AA08 Special Local Regulations; Third Annual Space Coast Super Boat Grand Prix, Atlantic Ocean, Cocoa..., Florida during the Third Annual Space Coast Super Boat Grand Prix, a series of high-speed boat races. The event is scheduled to take place on Sunday, May 20, 2012. Approximately 30 high-speed race boats are...
Intermittent impact dynamics of a cantilever scanning a surface at high speed
NASA Astrophysics Data System (ADS)
Dey, S.; Kartik, V.
2018-03-01
In contact-mode scanning probe microscopy (SPM), the cantilever's dynamics are conventionally investigated by assuming the tip to be always in contact with the sample's surface. At high scanning speeds, however, the cantilever's inertia becomes dominant and the tip can therefore completely detach from the surface and start impacting upon it. Experiments at the macro-scale cannot emulate the complex micro-scale dynamics, as the system exhibits negligible effects due to meniscus forces and the surrounding medium's squeeze film damping; however, they can provide qualitative insight into the cantilever's dynamics at high frequencies, corresponding to those likely to be excited during video-rate SPM imaging. This paper investigates such intermittent impact dynamics for an upscaled cantilever, analytically, numerically, and experimentally. In contact-mode scanning, a critical scan speed exists beyond which the cantilever's tip loses contact with the sample's surface; a closed-form expression for this contact loss frequency is derived. At high scan speeds, impacts cause the cantilever to switch between different contact regimes: in-, off-, and grazing-contact; within each regime, the system's modal configuration is different. Experimentally-obtained Poincare maps indicate quasi-periodic behaviour at frequencies for which the response is repetitive, as is also predicted by the model. Intermittent impacts excite the sub- and super-harmonics of the excitation frequency, which are related to the natural frequencies of different system configurations based on the "effective" tip-end boundary conditions. The cantilever's response exhibits several phenomena, such as modal transition, beating, grazing, and possible chaotic behaviour, depending upon the relation between the excitation harmonics and the natural frequencies.
NASA Astrophysics Data System (ADS)
Naoe, Masayuki; Kobayashi, Nobukiyo; Ohnuma, Shigehiro; Iwasa, Tadayoshi; Arai, Ken-Ichi; Masumoto, Hiroshi
2015-10-01
Ultra-high resistive and anisotropic soft magnetic films for gigahertz applications are desirable to demonstrate the really practical films. Here we present a study of novel nanogranular films fabricated by tandem-sputtering deposition. Their electromagnetic properties and nanostructure have also been discussed. These films consisted of nanocrystallized CoPd alloy-granules and CaF2 matrix, and a specimen having a composition of (Co0.69Pd0.31)52-(Ca0.31F0.69)48 exhibited distinct in-plane uniaxial anisotropy after uniaxial field annealing with granule growth. Its complex permeability spectra have a ferromagnetic resonance frequency extending to the Super-High-Frequency band due to its higher anisotropy field, and its frequency response was quite well reproduced by a numerical calculation based on the Landau-Lifshitz-Gilbert equation. Furthermore, it was clarified that the CaF2-based nanogranular film exhibits a hundredfold higher electrical resistivity than conventional oxide or nitride-based films. Higher resistivity enables the film thickness to achieve a margin exceeding threefold against eddy current loss. The greater resistivity of nanogranular films is attributed to the wide energy bandgap and superior crystallinity of CaF2 matrix.
Prospects for Habitable World Detections Using James Webb Space Telescope (JWST)
NASA Technical Reports Server (NTRS)
Deming, Drake
2010-01-01
Doppler and transit surveys are finding extrasolar planets of ever smaller mass and radius, and are now sampling the domain of superEarths. Recent results from the Doppler surveys suggest that discovery of a transiting superEarth in the habitable zone of a lower main sequence star may be possible. We evaluate the prospects for an all-sky transit survey targeted to the brightest stars I that would find the most favorable cases for photometric and spectroscopic characterization using the James Webb Space Telescope. We use the proposed Transiting Exoplanet Survey Satellite (TESS) as representative of an all-sky survey. We couple the simulated TESS yield to a sensitivity model for the MIRI and NIRSpec instruments on JWST. Our sensitivity model includes all currently known and anticipated sources of random and systematic error for these instruments. We focus on the TESS planets with radii between Earth and Neptune. Our simulations consider secondary eclipse filter photometry using JWST/MIRI, comparing the 11- and 15- micron bands to measure carbon dioxide absorption in superEarths, as well as JWST!NIRSpec spectroscopy of water absorption from 1.7-3.0 microns, and carbon dioxide absorption at 4.3 microns. We find that JWST will be capable of characterizing dozens of TESS superEarths with temperatures above the habitable range, using both MIRI and NIRspec. We project that TESS will discover about eight nearby habitable transiting superEarths, all orbiting lower main sequence stars. The principal sources of uncertainty in the prospects for JWST characterization of habitable superEarths are superEarth frequency and the nature of superEarth atmospheres. Based on our estimates of these uncertainties, we project that JWST will be able to measure the temperature, and identify molecular absorptions (water, carbon dioxide) in one to four nearby habitable TESS superEarths orbiting lower main sequence stars.
NASA Astrophysics Data System (ADS)
Lisauskas, Alvydas; Ikamas, Kestutis; Massabeau, Sylvain; Bauer, Maris; ČibiraitÄ--, DovilÄ--; Matukas, Jonas; Mangeney, Juliette; Mittendorff, Martin; Winnerl, Stephan; Krozer, Viktor; Roskos, Hartmut G.
2018-05-01
We propose to exploit rectification in field-effect transistors as an electrically controllable higher-order nonlinear phenomenon for the convenient monitoring of the temporal characteristics of THz pulses, for example, by autocorrelation measurements. This option arises because of the existence of a gate-bias-controlled super-linear response at sub-threshold operation conditions when the devices are subjected to THz radiation. We present measurements for different antenna-coupled transistor-based THz detectors (TeraFETs) employing (i) AlGaN/GaN high-electron-mobility and (ii) silicon CMOS field-effect transistors and show that the super-linear behavior in the sub-threshold bias regime is a universal phenomenon to be expected if the amplitude of the high-frequency voltage oscillations exceeds the thermal voltage. The effect is also employed as a tool for the direct determination of the speed of the intrinsic TeraFET response which allows us to avoid limitations set by the read-out circuitry. In particular, we show that the build-up time of the intrinsic rectification signal of a patch-antenna-coupled CMOS detector changes from 20 ps in the deep sub-threshold voltage regime to below 12 ps in the vicinity of the threshold voltage.
Chemical synthesis of battery grade super-iron barium and potassium Fe(VI) ferrate compounds
NASA Astrophysics Data System (ADS)
Licht, Stuart; Naschitz, Vera; Liu, Bing; Ghosh, Susanta; Halperin, Nadezhda; Halperin, Leonid; Rozen, Dmitri
The chemical preparation of high purity potassium and barium ferrates for alkaline electrochemical storage are presented. The synthesized salts are used to demonstrate a variety of high capacity super-iron (Zn anode) alkaline AAA cell configurations which utilize these Fe(V) salts. Results of 500 days, full stability, of the synthesized K 2FeO 4 are presented. Synthetic pathways yielding 80-100 g of 96.5-99.5% pure K 2FeO 4 and BaFeO 4 are presented, and the products of these syntheses are demonstrated to provide a high energy electrochemical discharge in a variety of AAA alkaline cells. BaFeO 4 super-iron alkaline AAA cells provide over 0.8 W h during 2.8 Ω discharge, yielding over 200% higher capacity than conventional alkaline batteries. The barium super-iron cell configurations studied provide higher capacity than the potassium super-iron alkaline cell configurations studied.
Dynamics of person-to-person interactions from distributed RFID sensor networks.
Cattuto, Ciro; Van den Broeck, Wouter; Barrat, Alain; Colizza, Vittoria; Pinton, Jean-François; Vespignani, Alessandro
2010-07-15
Digital networks, mobile devices, and the possibility of mining the ever-increasing amount of digital traces that we leave behind in our daily activities are changing the way we can approach the study of human and social interactions. Large-scale datasets, however, are mostly available for collective and statistical behaviors, at coarse granularities, while high-resolution data on person-to-person interactions are generally limited to relatively small groups of individuals. Here we present a scalable experimental framework for gathering real-time data resolving face-to-face social interactions with tunable spatial and temporal granularities. We use active Radio Frequency Identification (RFID) devices that assess mutual proximity in a distributed fashion by exchanging low-power radio packets. We analyze the dynamics of person-to-person interaction networks obtained in three high-resolution experiments carried out at different orders of magnitude in community size. The data sets exhibit common statistical properties and lack of a characteristic time scale from 20 seconds to several hours. The association between the number of connections and their duration shows an interesting super-linear behavior, which indicates the possibility of defining super-connectors both in the number and intensity of connections. Taking advantage of scalability and resolution, this experimental framework allows the monitoring of social interactions, uncovering similarities in the way individuals interact in different contexts, and identifying patterns of super-connector behavior in the community. These results could impact our understanding of all phenomena driven by face-to-face interactions, such as the spreading of transmissible infectious diseases and information.
The effect of water stress on super-high- density 'Koroneiki' olive oil quality.
Dag, Arnon; Naor, Amos; Ben-Gal, Alon; Harlev, Guy; Zipori, Isaac; Schneider, Doron; Birger, Reuven; Peres, Moti; Gal, Yoni; Kerem, Zohar
2015-08-15
Over the last two decades, the area of cultivated super-high-density olive orchards has increased rapidly. Water stress is an important tool in super-high-density orchards to reduce tree growth and promote suitability for overhead mechanical harvesters. Little is known regarding the effect of water stress in super-high-density orchards on oil quality parameters. In this study the effect of irrigation rate on oil quality parameters was evaluated in a six-year-old super-high-density 'Koreneiki' olive orchard for five consecutive seasons. Five water status levels, determined by irrigating in order to maintain various midday stem water potential threshold values (-1.5, -2, -2.5, -3 and -4 MPa), were applied during the oil accumulation stage. The MUFA/PUFA ratio and free fatty acid content generally decreased as a function of increasing tree water stress. In most seasons a reduction in polyphenols was found with decreasing irrigation level. Peroxide value was not affected by the water stress level. The present study demonstrates that limiting irrigation and exposure of olive trees to water stress in a super-high-density orchard lowers free fatty acid content and therefore benefits oil quality. However, the decreased MUFA/PUFA ratio and the reduction in polyphenol content that were also found under increased water stress negatively influence oil quality. © 2014 Society of Chemical Industry.
Entanglement guarantees emergence of cooperation in quantum prisoner's dilemma games on networks.
Li, Angsheng; Yong, Xi
2014-09-05
It was known that cooperation of evolutionary prisoner's dilemma games fails to emerge in homogenous networks such as random graphs. Here we proposed a quantum prisoner's dilemma game. The game consists of two players, in which each player has three choices of strategy: cooperator (C), defector (D) and super cooperator (denoted by Q). We found that quantum entanglement guarantees emergence of a new cooperation, the super cooperation of the quantum prisoner's dilemma games, and that entanglement is the mechanism of guaranteed emergence of cooperation of evolutionary prisoner's dilemma games on networks. We showed that for a game with temptation b, there exists a threshold arccos √b/b for a measurement of entanglement, beyond which, (super) cooperation of evolutionary quantum prisoner's dilemma games is guaranteed to quickly emerge, giving rise to stochastic convergence of the cooperations, that if the entanglement degree γ is less than the threshold arccos √b/b, then the equilibrium frequency of cooperations of the games is positively correlated to the entanglement degree γ, and that if γ is less than arccos √b/b and b is beyond some boundary, then the equilibrium frequency of cooperations of the games on random graphs decreases as the average degree of the graphs increases.
NASA Astrophysics Data System (ADS)
Ruohoniemi, J. M.
2004-12-01
The SuperDARN HF radars are best known for observing the ExB drift of ionospheric plasma in the high-latitude F region. At mesospheric altitudes the trails of ionization produced by meteors provide another kind of target for radar backscatter, and the motions imparted to these trails by winds in the neutral atmosphere can be measured. In the northern hemisphere the coverage of mesospheric winds currently extends over a 180 deg longitude sector but is confined by propagation conditions to latitudes near 55 deg geographic. We have analyzed several extended periods of simultaneous observations of the neutral wind involving SuperDARN and the TIMED suite of instruments. Often, the winds show clear evidence of large-scale wave events. The quasi 2-day planetary waves are prominent and their occurrence is seen to depend on season. By comparing the wave characteristics between the satellite and ground observations we obtain a complete breakdown of the wave activity in terms of wave periods and zonal wavenumbers. In addition, the semidiurnal tide is a ubiquitous feature of the mid-latitude mesosphere. A single radar station cannot resolve the sun-synchronous component from other contributions at the semidiurnal frequency. We show that with a chain of radars along a latitude band, the true sun-synchronous, or migrating, component can be inferred. Joint analysis can be performed chiefly with data from the SABRE and TIDI instruments.
Piao, R; Iguchi, S; Hamada, M; Matsumoto, S; Suematsu, H; Saito, A T; Li, J; Nakagome, H; Takao, T; Takahashi, M; Maeda, H; Yanagisawa, Y
2016-02-01
Use of high-temperature superconducting (HTS) inner coils in combination with conventional low-temperature superconducting (LTS) outer coils for an NMR magnet, i.e. a LTS/HTS NMR magnet, is a suitable option to realize a high-resolution NMR spectrometer with operating frequency >1GHz. From the standpoint of creating a compact magnet, (RE: Rare earth) Ba2Cu3O7-x (REBCO) HTS inner coils which can tolerate a strong hoop stress caused by a Lorentz force are preferred. However, in our previous work on a first-generation 400MHz LTS/REBCO NMR magnet, the NMR resolution and sensitivity were about ten times worse than that of a conventional LTS NMR magnet. The result was caused by a large field inhomogeneity in the REBCO coil itself and the shielding effect of a screening current induced in that coil. In the present paper, we describe the operation of a modified 400MHz LTS/REBCO NMR magnet with an advanced field compensation technology using a combination of novel ferromagnetic shimming and an appropriate procedure for NMR spectrum line shape optimization. We succeeded in obtaining a good NMR line shape and 2D NOESY spectrum for a lysozyme aqueous sample. We believe that this technology is indispensable for the realization of a compact super-high-field high-resolution NMR. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Teramoto, Mariko; Nishitani, Nozomu; Nishimura, Yukitoshi; Nagatsuma, Tsutomu
2016-02-01
We herein describe a harmonic Pi2 wave that started at 09:12 UT on August 19, 2010, with data that were obtained simultaneously at 19:00-20:00 MLT by three mid-latitude Asian-Oceanian Super Dual Auroral Radar Network (SuperDARN) radars (Unwin, Tiger, and Hokkaido radars), three Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites (THEMIS A, THEMIS D, and THEMIS E), and ground-based magnetometers at low and high latitudes. All THEMIS satellites, which were located in the plasmasphere, observed Pi2 pulsations dominantly in the magnetic compressional ( B //) and electric azimuthal ( E A) components, i.e., the fast-mode component. The spectrum of Pi2 pulsations in the B // and E A components contained two spectral peaks at approximately 12 to 14 mHz ( f 1, fundamental) and 23 to 25 mHz ( f 2, second harmonic). The Poynting flux derived from the electric and magnetic fields indicated that these pulsations were waves propagating earthward and duskward. Doppler variations ( V) from the 6-s or 8-s resolution camping beams of the Tiger and Unwin SuperDARN radars, which are associated with Pi2 pulsations in the eastward electric field component in the ionosphere, observed Pi2 pulsations within and near the footprint of the plasmapause, whose location was estimated by the THEMIS satellites. The latitudinal profile of f 2 power normalized by f 1 power for Doppler velocities indicated that the enhancement of the normalized f 2 power was the largest near the plasmapause at an altitude-adjusted corrected geomagnetic (AACGM) latitude of 60° to 65°. Based on these features, we suggest that compressional waves propagate duskward away from the midnight sector, where the harmonic cavity mode is generated.
Deep learning massively accelerates super-resolution localization microscopy.
Ouyang, Wei; Aristov, Andrey; Lelek, Mickaël; Hao, Xian; Zimmer, Christophe
2018-06-01
The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many thousands of frames with a small number of observed molecules in each. Here, we present ANNA-PALM, a computational strategy that uses artificial neural networks to reconstruct super-resolution views from sparse, rapidly acquired localization images and/or widefield images. Simulations and experimental imaging of microtubules, nuclear pores, and mitochondria show that high-quality, super-resolution images can be reconstructed from up to two orders of magnitude fewer frames than usually needed, without compromising spatial resolution. Super-resolution reconstructions are even possible from widefield images alone, though adding localization data improves image quality. We demonstrate super-resolution imaging of >1,000 fields of view containing >1,000 cells in ∼3 h, yielding an image spanning spatial scales from ∼20 nm to ∼2 mm. The drastic reduction in acquisition time and sample irradiation afforded by ANNA-PALM enables faster and gentler high-throughput and live-cell super-resolution imaging.
NASA Astrophysics Data System (ADS)
Reichow, M. K.; Branney, M. J.; Knott, T.; Storey, M.; Finn, D. R.; Coe, R. S.; McCurry, M. O.; Bonnichsen, B.
2013-12-01
Although caldera-forming super-eruptions (≥450 km3) are amongst the most catastrophic events to affect the Earth's surface, we do not know how often they occur globally, and how large the individual eruptions are. This is because, with a few exceptions, the vast volcanic stratigraphies at many large igneous provinces have not yet been resolved in sufficient detail to isolate and quantify the individual events. Much progress is needed on this if we are to verify the past and potential environmental and climatic impact of these super-eruptions. We are reconstructing the history of catastrophic eruptions in the youngest and best-preserved large intra continental volcanic province worldwide, by resolving the vast Miocene rhyolitic volcanic stratigraphy of the central Snake River Plain, Idaho. Large explosive eruptions, several previously un-documented, generated an unusually hot (<1050°C) pyroclastic density current that inundated large (1000's km2) regions, which were sterilised as entire landscapes were abruptly enamelled with extensive sheets of searing-hot rhyolitic glass 5-100 m thick. The density currents also generated thermal atmospheric plumes (phoenix clouds) that dispersed 100's to 1000's of km3 rhyolitic ash 1000's of km across continental USA and beyond. High-precision chronology and quantification of the erupted volumes and the frequency of eruptions is needed to assess the likely significant wider impact of these events on climate and ecosystems. To determine the size of the individual events, we have been correlating each soil-bounded eruption-unit regionally. This is hindered by their abundance, and closely similar appearance within monotonous successions exposed in distant (50-200 km) mountain ranges. To tackle this we are employing a combination of tools to isolate and correlate individual layers: field logging coupled with characterization of the whole-rock, glass, and mineral chemistries, together with high-precision 40Ar/39Ar dating, U-Pb zircon dating, with detailed paleomagnetic characterisation of polarities and secular variations. This multidisciplinary approach is yielding robust ';fingerprints'; to distinguish individual eruptions, and facilitate robust correlations between sites spaced >100 km apart. The high-precision chronology, together with secular variations, should provide a much-needed basis for starting to assess the environmental impact of these awesome events. The study also should contribute to our understanding of the global frequency of large events.
Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157.
Chase-Topping, Margo; Gally, David; Low, Chris; Matthews, Louise; Woolhouse, Mark
2008-12-01
Cattle that excrete more Escherichia coli O157 than others are known as super-shedders. Super-shedding has important consequences for the epidemiology of E. coli O157 in cattle--its main reservoir--and for the risk of human infection, particularly owing to environmental exposure. Ultimately, control measures targeted at super-shedders may prove to be highly effective. We currently have only a limited understanding of both the nature and the determinants of super-shedding. However, super-shedding has been observed to be associated with colonization at the terminal rectum and might also occur more often with certain pathogen phage types. More generally, epidemiological evidence suggests that super-shedding might be important in other bacterial and viral infections.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-10
...-AA00 Safety Zone; Second Annual Space Coast Super Boat Grand Prix, Atlantic Ocean, Cocoa Beach, FL... Annual Space Coast Super Boat Grand Prix. The Second Annual Space Coast Super Boat Grand Prix will consist of a series of high- speed boat races. The event is scheduled to take place on Saturday, May 21...
Time multiplexing based extended depth of focus imaging.
Ilovitsh, Asaf; Zalevsky, Zeev
2016-01-01
We propose to utilize the time multiplexing super resolution method to extend the depth of focus of an imaging system. In standard time multiplexing, the super resolution is achieved by generating duplication of the optical transfer function in the spectrum domain, by the use of moving gratings. While this improves the spatial resolution, it does not increase the depth of focus. By changing the gratings frequency and, by that changing the duplication positions, it is possible to obtain an extended depth of focus. The proposed method is presented analytically, demonstrated via numerical simulations and validated by a laboratory experiment.
Super resolution reconstruction of μ-CT image of rock sample using neighbour embedding algorithm
NASA Astrophysics Data System (ADS)
Wang, Yuzhu; Rahman, Sheik S.; Arns, Christoph H.
2018-03-01
X-ray computed tomography (μ-CT) is considered to be the most effective way to obtain the inner structure of rock sample without destructions. However, its limited resolution hampers its ability to probe sub-micro structures which is critical for flow transportation of rock sample. In this study, we propose an innovative methodology to improve the resolution of μ-CT image using neighbour embedding algorithm where low frequency information is provided by μ-CT image itself while high frequency information is supplemented by high resolution scanning electron microscopy (SEM) image. In order to obtain prior for reconstruction, a large number of image patch pairs contain high- and low- image patches are extracted from the Gaussian image pyramid generated by SEM image. These image patch pairs contain abundant information about tomographic evolution of local porous structures under different resolution spaces. Relying on the assumption of self-similarity of porous structure, this prior information can be used to supervise the reconstruction of high resolution μ-CT image effectively. The experimental results show that the proposed method is able to achieve the state-of-the-art performance.
A flexible super-capacitive solid-state power supply for miniature implantable medical devices.
Meng, Chuizhou; Gall, Oren Z; Irazoqui, Pedro P
2013-12-01
We present a high-energy local power supply based on a flexible and solid-state supercapacitor for miniature wireless implantable medical devices. Wireless radio-frequency (RF) powering recharges the supercapacitor through an antenna with an RF rectifier. A power management circuit for the super-capacitive system includes a boost converter to increase the breakdown voltage required for powering device circuits, and a parallel conventional capacitor as an intermediate power source to deliver current spikes during high current transients (e.g., wireless data transmission). The supercapacitor has an extremely high area capacitance of ~1.3 mF/mm(2), and is in the novel form of a 100 μm-thick thin film with the merit of mechanical flexibility and a tailorable size down to 1 mm(2) to meet various clinical dimension requirements. We experimentally demonstrate that after fully recharging the capacitor with an external RF powering source, the supercapacitor-based local power supply runs a full system for electromyogram (EMG) recording that consumes ~670 μW with wireless-data-transmission functionality for a period of ~1 s in the absence of additional RF powering. Since the quality of wireless powering for implantable devices is sensitive to the position of those devices within the RF electromagnetic field, this high-energy local power supply plays a crucial role in providing continuous and reliable power for medical device operations.
NASA Astrophysics Data System (ADS)
Zamani, A.; Setareh, F.; Azargoshasb, T.; Niknam, E.
2018-03-01
A wide variety of semiconductor nanostructures have been fabricated and studied experimentally and alongside theoretical investigations show the great role they have in new generation opto-electronic devices. However, mathematical modeling provide important information due to their definitive goal of predicting features and understanding of such structures' behavior under different circumstances. Hence, in the current work, the effects of applied magnetic field, temperature and dimensions of the structure on the electromagnetically induced transparency (EIT) of a GaAs quantum ring are studied while both Rashba and Dresselhaus spin-orbit interactions (SOI) are taken into account. The Schrödinger equation is solved in cylindrical coordinate with axial symmetry and in order to study the EIT, the imaginary (absorption) and real (refractive index) parts of susceptibility as well as the group velocity of the probe light pulse are investigated. The absorption and refractive index plots show that, for a specific frequency of probe field the absorption vanishes and refractive index becomes unity (known as EIT) while around such frequency the group index is positive (sub-luminal probe propagation) and for higher and lower frequencies it alters to negative (super-luminal probe propagation). The numerical results reveal that the EIT frequency, transparency window and sub(super)-luminal frequency intervals shift as we change applied magnetic field, temperature and also the structure dimensions.
Super-hydrophobic, highly adhesive, polydimethylsiloxane (PDMS) surfaces.
Stanton, Morgan M; Ducker, Robert E; MacDonald, John C; Lambert, Christopher R; McGimpsey, W Grant
2012-02-01
Super-hydrophobic surfaces have been fabricated by casting polydimethylsiloxane (PDMS) on a textured substrate of known surface topography, and were characterized using contact angle, atomic force microscopy, surface free energy calculations, and adhesion measurements. The resulting PDMS has a micro-textured surface with a static contact angle of 153.5° and a hysteresis of 27° when using de-ionized water. Unlike many super-hydrophobic materials, the textured PDMS is highly adhesive, allowing water drops as large as 25.0 μL to be inverted. This high adhesion, super-hydrophobic behavior is an illustration of the "petal effect". This rapid, reproducible technique has promising applications in transport and analysis of microvolume samples. Copyright © 2011 Elsevier Inc. All rights reserved.
2017-01-26
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5514--17-9692 High Resolution Bathymetry Estimation Improvement with Single Image Super...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources...gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate
High-Efficiency Helical Coil Electromagnetic Launcher and High Power Hall-Effect Switch
2008-02-29
also given that demonstrate significant launcher performance benefits by super-cooling the armature (i.e., using liquid nitrogen ). 14. ABSTRACT... liquid nitrogen temperatures). A computer model for a magnetically-controlled Hall-effect switch is developed. The model is constructed in the PSpice...of super-cooling is demonstrated with liquid nitrogen cooling and indicates super-cooled EML operation is desirable if cryo-cooling is practical for
Image resolution enhancement via image restoration using neural network
NASA Astrophysics Data System (ADS)
Zhang, Shuangteng; Lu, Yihong
2011-04-01
Image super-resolution aims to obtain a high-quality image at a resolution that is higher than that of the original coarse one. This paper presents a new neural network-based method for image super-resolution. In this technique, the super-resolution is considered as an inverse problem. An observation model that closely follows the physical image acquisition process is established to solve the problem. Based on this model, a cost function is created and minimized by a Hopfield neural network to produce high-resolution images from the corresponding low-resolution ones. Not like some other single frame super-resolution techniques, this technique takes into consideration point spread function blurring as well as additive noise and therefore generates high-resolution images with more preserved or restored image details. Experimental results demonstrate that the high-resolution images obtained by this technique have a very high quality in terms of PSNR and visually look more pleasant.
Photoelectron interference fringes by super intense x-ray laser pulses
NASA Astrophysics Data System (ADS)
Toyota, Koudai; Tolstikhin, Oleg I.; Morishita, Toru; Watanabe, Shinichi
2009-09-01
The photoelectron spectra of H- produced by circularly polarized strong high-frequency laser pulses are theoretically studied. An oscillating substructure in the above-threshold ionization (ATI) peaks is observed, which extends the validity of the earlier findings in the 1D calculations [K. Toyota et al., Phys. Rev. A 76, 043418 (2007)] and 3D calculations for linear polarization [O. I. Tolstikhin, Phys. Rev. A 77, 032712 (2008)]. Its origin is due to an interference between a pair of photoelectron wave packets created in the rising and falling part of the pulse, which appears clearly in the stabilization regime.
Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing
NASA Technical Reports Server (NTRS)
Guo, Junpeng (Inventor)
2015-01-01
The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.
Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing
NASA Technical Reports Server (NTRS)
Guo, Junpeng (Inventor)
2016-01-01
The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.
Poco Graphite Inc. SuperSiC 0.25m Mirror Cryogenic Test Result
NASA Technical Reports Server (NTRS)
Eng, Ron; Stahl, Phil; Hogue, Bill; Hadaway, James
2004-01-01
SuperSiC, a low areal density material, developed by POCO Graphite, have been used as mirror substrate for high energy lasers, laser radar systems, surveillance, telescopes, scan mirrors and satellites. SuperSiC has excellent thermal properties and cryogenic stability. It exhibits exceptional polishability for reflective optics with high strength, stiffness, and excellent thermal conductivity. A lightweighted 0.2-diameter polished SuperSic mirror was tested at cryogenic temperature at NASMSFC. Optical test results showed 6nm cry0 deformation from ambient to 30 degrees Kelvin and little to no change in its surface figure due to cry0 cycling.
Cosmic string loops as the seeds of super-massive black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bramberger, Sebastian F.; Brandenberger, Robert H.; Jreidini, Paul
2015-06-01
Recent discoveries of super-massive black holes at high redshifts indicate a possible tension with the standard ΛCDM paradigm of early universe cosmology which has difficulties in explaining the origin of the required nonlinear compact seeds which trigger the formation of these super-massive black holes. Here we show that cosmic string loops which result from a scaling solution of strings formed during a phase transition in the very early universe lead to an additional source of compact seeds. The number density of string-induced seeds dominates at high redshifts and can help trigger the formation of the observed super-massive black holes.
Example-Based Super-Resolution Fluorescence Microscopy.
Jia, Shu; Han, Boran; Kutz, J Nathan
2018-04-23
Capturing biological dynamics with high spatiotemporal resolution demands the advancement in imaging technologies. Super-resolution fluorescence microscopy offers spatial resolution surpassing the diffraction limit to resolve near-molecular-level details. While various strategies have been reported to improve the temporal resolution of super-resolution imaging, all super-resolution techniques are still fundamentally limited by the trade-off associated with the longer image acquisition time that is needed to achieve higher spatial information. Here, we demonstrated an example-based, computational method that aims to obtain super-resolution images using conventional imaging without increasing the imaging time. With a low-resolution image input, the method provides an estimate of its super-resolution image based on an example database that contains super- and low-resolution image pairs of biological structures of interest. The computational imaging of cellular microtubules agrees approximately with the experimental super-resolution STORM results. This new approach may offer potential improvements in temporal resolution for experimental super-resolution fluorescence microscopy and provide a new path for large-data aided biomedical imaging.
Integrated Arrays on Silicon at Terahertz Frequencies
NASA Technical Reports Server (NTRS)
Chattopadhayay, Goutam; Lee, Choonsup; Jung, Cecil; Lin, Robert; Peralta, Alessandro; Mehdi, Imran; Llombert, Nuria; Thomas, Bertrand
2011-01-01
In this paper we explore various receiver font-end and antenna architecture for use in integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies and use of novel integrated antennas with silicon micromachining are reported. We report novel stacking of micromachined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages which easily leads to the development of 2- dimensioanl multi-pixel receiver front-ends in the terahertz frequency range. We also report an integrated micro-lens antenna that goes with the silicon micro-machined front-end. The micro-lens antenna is fed by a waveguide that excites a silicon lens antenna through a leaky-wave or electromagnetic band gap (EBG) resonant cavity. We utilized advanced semiconductor nanofabrication techniques to design, fabricate, and demonstrate a super-compact, low-mass submillimeter-wave heterodyne frontend. When the micro-lens antenna is integrated with the receiver front-end we will be able to assemble integrated heterodyne array receivers for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.
Radial anisotropy ambient noise tomography of volcanoes
NASA Astrophysics Data System (ADS)
Mordret, Aurélien; Rivet, Diane; Shapiro, Nikolai; Jaxybulatov, Kairly; Landès, Matthieu; Koulakov, Ivan; Sens-Schönfelder, Christoph
2016-04-01
The use of ambient seismic noise allows us to perform surface-wave tomography of targets which could hardly be imaged by other means. The frequencies involved (~ 0.5 - 20 s), somewhere in between active seismic and regular teleseismic frequency band, make possible the high resolution imaging of intermediate-size targets like volcanic edifices. Moreover, the joint inversion of Rayleigh and Love waves dispersion curves extracted from noise correlations allows us to invert for crustal radial anisotropy. We present here the two first studies of radial anisotropy on volcanoes by showing results from Lake Toba Caldera, a super-volcano in Indonesia, and from Piton de la Fournaise volcano, a hot-spot effusive volcano on the Réunion Island (Indian Ocean). We will see how radial anisotropy can be used to infer the main fabric within a magmatic system and, consequently, its dominant type of intrusion.
Super-resolution imaging applied to moving object tracking
NASA Astrophysics Data System (ADS)
Swalaganata, Galandaru; Ratna Sulistyaningrum, Dwi; Setiyono, Budi
2017-10-01
Moving object tracking in a video is a method used to detect and analyze changes that occur in an object that being observed. Visual quality and the precision of the tracked target are highly wished in modern tracking system. The fact that the tracked object does not always seem clear causes the tracking result less precise. The reasons are low quality video, system noise, small object, and other factors. In order to improve the precision of the tracked object especially for small object, we propose a two step solution that integrates a super-resolution technique into tracking approach. First step is super-resolution imaging applied into frame sequences. This step was done by cropping the frame in several frame or all of frame. Second step is tracking the result of super-resolution images. Super-resolution image is a technique to obtain high-resolution images from low-resolution images. In this research single frame super-resolution technique is proposed for tracking approach. Single frame super-resolution was a kind of super-resolution that it has the advantage of fast computation time. The method used for tracking is Camshift. The advantages of Camshift was simple calculation based on HSV color that use its histogram for some condition and color of the object varies. The computational complexity and large memory requirements required for the implementation of super-resolution and tracking were reduced and the precision of the tracked target was good. Experiment showed that integrate a super-resolution imaging into tracking technique can track the object precisely with various background, shape changes of the object, and in a good light conditions.
Low frequency electric and magnetic fields
NASA Technical Reports Server (NTRS)
Spaniol, Craig
1989-01-01
Following preliminary investigations of the low frequency electric and magnetic fields that may exists in the Earth-ionospheric cavity, measurements were taken with state-of-the art spectrum analyzers. As a follow up to this activity, an investigation was initiated to determine sources and values for possible low frequency signal that would appear in the cavity. The lowest cavity resonance is estimated at about 8 Hz, but lower frequencies may be an important component of our electromagnetic environment. The potential field frequencies produced by the electron were investigated by a classical model that included possible cross coupling of the electric and gravitation fields. During this work, an interesting relationship was found that related the high frequency charge field with the extremely low frequency of the gravitation field. The results of numerical calculations were surprisingly accurate and this area of investigation is continuing. The work toward continued development of a standardized monitoring facility is continuing with the potential of installing the prototype at West Virginia State College early in 1990. This installation would be capable of real time monitoring of ELF signals in the Earth-ionoshpere cavity and would provide some directional information. A high gain, low noise, 1/f frequency corrected preamplifier was designed and tested for the ferrite core magnetic sensor. The potential application of a super conducting sensor for the ELF magnetic field detection is under investigation. It is hoped that a fully operational monitoring network could pinpoint the location of ELF signal sources and provide new information on where these signals originate and what causes them, assuming that they are natural in origin.
Super-resolution reconstruction of MR image with a novel residual learning network algorithm
NASA Astrophysics Data System (ADS)
Shi, Jun; Liu, Qingping; Wang, Chaofeng; Zhang, Qi; Ying, Shihui; Xu, Haoyu
2018-04-01
Spatial resolution is one of the key parameters of magnetic resonance imaging (MRI). The image super-resolution (SR) technique offers an alternative approach to improve the spatial resolution of MRI due to its simplicity. Convolutional neural networks (CNN)-based SR algorithms have achieved state-of-the-art performance, in which the global residual learning (GRL) strategy is now commonly used due to its effectiveness for learning image details for SR. However, the partial loss of image details usually happens in a very deep network due to the degradation problem. In this work, we propose a novel residual learning-based SR algorithm for MRI, which combines both multi-scale GRL and shallow network block-based local residual learning (LRL). The proposed LRL module works effectively in capturing high-frequency details by learning local residuals. One simulated MRI dataset and two real MRI datasets have been used to evaluate our algorithm. The experimental results show that the proposed SR algorithm achieves superior performance to all of the other compared CNN-based SR algorithms in this work.
Iowa's High School Super Senior School-to-Work Transition Program
ERIC Educational Resources Information Center
Nietupski, John; Warth, Judy; Winslow, Amy; Johnson, Russ; Douglas, Beverly; Johnson, Maggie; Cilek, Judy
2006-01-01
This article describes an innovative school-to-work transition program incorporating identified best practices. Iowa's Super Senior program serves students in the "middle range" of the disability severity spectrum during the student's senior and 5th, or "Super Senior" year. The article describes the program elements, presents…
NASA Astrophysics Data System (ADS)
Khoshnevis, Hamed; Mint, Sandar Myo; Yedinak, Emily; Tran, Thang Q.; Zadhoush, Ali; Youssefi, Mostafa; Pasquali, Matteo; Duong, Hai M.
2018-02-01
In this study, we apply an advanced floating catalyst method to fabricate carbon nanotube (CNT) aerogels at super high deposition rate for oil spill cleaning. The aerogels consist of 3D porous network of stacking double-walled CNT bundles with low catalyst impurity (9%) and high thermal stability (650 °C). With high porosity, surface areas, and water contact angles, the CNT aerogels exhibit a high oil adsorption of up to 107 g/g and good reusability of up to four adsorption-burning cycles. This work suggests that the lightweight, porous, and super hydrophobic CNT aerogels can be promising sorbent materials for environmental applications.
High throughput laser texturing of super-hydrophobic surfaces on steel
NASA Astrophysics Data System (ADS)
Gemini, Laura; Faucon, Marc; Romoli, Luca; Kling, Rainer
2017-03-01
Super-hydrophobic surfaces are nowadays of primary interest in several application fields, as for de-icing devices in the automotive and aerospace industries. In this context, laser surface texturing has widely demonstrated to be an easy one-step method to produce super-hydrophobic surfaces on several materials. In this work, a high average power (up to 40W), high repetition-rate (up to 1MHz), femtosecond infrared laser was employed to produce super-hydrophobic surfaces on 316L steel. The set of process and laser parameters for which the super-hydrophobic behavior is optimized, was obtained by varying the laser energy and repetition rate. The morphology of the textured surfaces was firstly analyzed by SEM and confocal microscope analyses. The contact angle was measured over time in order to investigate the effect of air environment on the hydrophobic properties and define the period of time necessary for the super-hydrophobic properties to stabilize. An investigation on the effect of after-processing cleaning solvents on the CA evolution was carried to assess the influence of the after-processing sample handling on the CA evaluation. Results show that the highest values of contact angle, that is the best hydrophobic behavior, are obtained at high repetition rate and low energy, this way opening up a promising scenario in terms of upscaling for reducing the overall process takt-time.
Supporting lander and rover operation: a novel super-resolution restoration technique
NASA Astrophysics Data System (ADS)
Tao, Yu; Muller, Jan-Peter
2015-04-01
Higher resolution imaging data is always desirable to critical rover engineering operations, such as landing site selection, path planning, and optical localisation. For current Mars missions, 25cm HiRISE images have been widely used by the MER & MSL engineering team for rover path planning and location registration/adjustment. However, 25cm is not high enough resolution to be able to view individual rocks (≤2m in size) or visualise the types of sedimentary features that rover onboard cameras might observe. Nevertheless, due to various physical constraints (e.g. telescope size and mass) from the imaging instruments themselves, one needs to be able to tradeoff spatial resolution and bandwidth. This means that future imaging systems are likely to be limited to resolve features larger than 25cm. We have developed a novel super-resolution algorithm/pipeline to be able to restore higher resolution image from the non-redundant sub-pixel information contained in multiple lower resolution raw images [Tao & Muller 2015]. We will demonstrate with experiments performed using 5-10 overlapped 25cm HiRISE images for MER-A, MER-B & MSL to resolve 5-10cm super resolution images that can be directly compared to rover imagery at a range of 5 metres from the rover cameras but in our case can be used to visualise features many kilometres away from the actual rover traverse. We will demonstrate how these super-resolution images together with image understanding software can be used to quantify rock size-frequency distributions as well as measure sedimentary rock layers for several critical sites for comparison with rover orthorectified image mosaic to demonstrate optimality of using our super-resolution resolved image to better support future lander and rover operation in future. We present the potential of super-resolution for virtual exploration to the ˜400 HiRISE areas which have been viewed 5 or more times and the potential application of this technique to all of the ESA ExoMars Trace Gas orbiter CaSSiS stereo, multi-angle and colour camera images from 2017 onwards. Acknowledgements: The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement No.312377 PRoViDE.
Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate
Miyamoto, Katsuhiko; Kang, Bong Joo; Kim, Won Tae; Sasaki, Yuta; Niinomi, Hiromasa; Suizu, Koji; Rotermund, Fabian; Omatsu, Takashige
2016-01-01
Optical vortex, possessing an annular intensity profile and an orbital angular momentum (characterized by an integer termed a topological charge) associated with a helical wavefront, has attracted great attention for diverse applications due to its unique properties. In particular for terahertz (THz) frequency range, several approaches for THz vortex generation, including molded phase plates consisting of metal slit antennas, achromatic polarization elements and binary-diffractive optical elements, have been recently proposed, however, they are typically designed for a specific frequency. Here, we demonstrate highly intense broadband monocycle vortex generation near 0.6 THz by utilizing a polymeric Tsurupica spiral phase plate in combination with tilted-pulse-front optical rectification in a prism-cut LiNbO3 crystal. A maximum peak power of 2.3 MW was obtained for THz vortex output with an expected topological charge of 1.15. Furthermore, we applied the highly intense THz vortex beam for studying unique nonlinear behaviors in bilayer graphene towards the development of nonlinear super-resolution THz microscopy and imaging system. PMID:27966595
Kim, Hwa-Min; Litao, Yao; Kim, Bonghwan
2015-11-01
We have developed a surface texturing process for pyramidal surface features along with an indium tin oxide (ITO) coating process to fabricate super-hydrophilic conductive surfaces. The contact angle of a water droplet was less than 5 degrees, which means that an extremely high wettability is achievable on super-hydrophilic surfaces. We have also fabricated a super-hydrophobic conductive surface using an additional coating of polytetrafluoroethylene (PTFE) on the ITO layer coated on the textured Si surface; the ITO and PTFE films were deposited by using a conventional sputtering method. We found that a super-hydrophilic conductive surface is produced by ITO coated on the pyramidal Si surface (ITO/Si), with contact angles of approximately 0 degrees and a resistivity of 3 x 10(-4) Ω x cm. These values are highly dependent on the substrate temperature during the sputtering process. We also found that the super-hydrophobic conductive surface produced by the additional coating of PTFE on the pyramidal Si surface with an ITO layer (PTFE/ITO/Si) has a contact angle of almost 160 degrees and a resistivity of 3 x 10(-4) Ω x cm, with a reflectance lower than 9%. Therefore, these processes can be used to fabricate multifunctional features of ITO films for switchable super-hydrophilic and super-hydrophobic surfaces.
Consecutive record-breaking high temperatures marked the handover from hiatus to accelerated warming
Su, Jingzhi; Zhang, Renhe; Wang, Huijun
2017-01-01
Closely following the hiatus warming period, two astonishing high temperature records reached in 2014 and 2015 consecutively. To investigate the occurrence features of record-breaking high temperatures in recent years, a new index focusing the frequency of the top 10 high annual mean temperatures was defined in this study. Analyses based on this index shown that record-breaking high temperatures occurred over most regions of the globe with a salient increasing trend after 1960 s, even during the so-called hiatus period. Overlapped on the ongoing background warming trend and the interdecadal climate variabilities, the El Niño events, particularly the strong ones, can make a significant contribution to the occurrence of high temperatures on interannual timescale. High temperatures associated with El Niño events mainly occurred during the winter annual period. As the Pacific Decadal Oscillation (PDO) struggled back to its positive phase since 2014, the global warming returned back to a new accelerated warming period, marked by the record-breaking high temperatures in 2014. Intensified by the super strong El Niño, successive high records occurred in 2015 and 2016. Higher frequencies of record high temperatures would occur in the near future because the PDO tends to maintain a continuously positive phase. PMID:28256561
Super-resolution processing for multi-functional LPI waveforms
NASA Astrophysics Data System (ADS)
Li, Zhengzheng; Zhang, Yan; Wang, Shang; Cai, Jingxiao
2014-05-01
Super-resolution (SR) is a radar processing technique closely related to the pulse compression (or correlation receiver). There are many super-resolution algorithms developed for the improved range resolution and reduced sidelobe contaminations. Traditionally, the waveforms used for the SR have been either phase-coding (such as LKP3 code, Barker code) or the frequency modulation (chirp, or nonlinear frequency modulation). There are, however, an important class of waveforms which are either random in nature (such as random noise waveform), or randomly modulated for multiple function operations (such as the ADS-B radar signals in [1]). These waveforms have the advantages of low-probability-of-intercept (LPI). If the existing SR techniques can be applied to these waveforms, there will be much more flexibility for using these waveforms in actual sensing missions. Also, SR usually has great advantage that the final output (as estimation of ground truth) is largely independent of the waveform. Such benefits are attractive to many important primary radar applications. In this paper the general introduction of the SR algorithms are provided first, and some implementation considerations are discussed. The selected algorithms are applied to the typical LPI waveforms, and the results are discussed. It is observed that SR algorithms can be reliably used for LPI waveforms, on the other hand, practical considerations should be kept in mind in order to obtain the optimal estimation results.
Broadband low-frequency sound isolation by lightweight adaptive metamaterials
NASA Astrophysics Data System (ADS)
Liao, Yunhong; Chen, Yangyang; Huang, Guoliang; Zhou, Xiaoming
2018-03-01
Blocking broadband low-frequency airborne noises is highly desirable in lots of engineering applications, while it is extremely difficult to be realized with lightweight materials and/or structures. Recently, a new class of lightweight adaptive metamaterials with hybrid shunting circuits has been proposed, demonstrating super broadband structure-borne bandgaps. In this study, we aim at examining their potentials in broadband sound isolation by establishing an analytical model that rigorously combines the piezoelectric dynamic couplings between adaptive metamaterials and acoustics. Sound transmission loss of the adaptive metamaterial is investigated with respect to both the frequency and angular spectrum to demonstrate their sound-insulation effects. We find that efficient sound isolation can indeed be pursued in the broadband bi-spectrum for not only the case of the small resonator's periodicity where only one mode relevant to the mass-spring resonance exists, but also for the large-periodicity scenario, so that the total weight can be even lighter, in which the multiple plate-resonator coupling modes appear. In the latter case, the negative spring stiffness provided by the piezoelectric stack has been utilized to suppress the resonance-induced high acoustic transmission. Such kinds of adaptive metamaterials could open a new approach for broadband noise isolation with extremely lightweight structures.
Dynamics, morphogenesis and convergence of evolutionary quantum Prisoner's Dilemma games on networks
Yong, Xi
2016-01-01
The authors proposed a quantum Prisoner's Dilemma (PD) game as a natural extension of the classic PD game to resolve the dilemma. Here, we establish a new Nash equilibrium principle of the game, propose the notion of convergence and discover the convergence and phase-transition phenomena of the evolutionary games on networks. We investigate the many-body extension of the game or evolutionary games in networks. For homogeneous networks, we show that entanglement guarantees a quick convergence of super cooperation, that there is a phase transition from the convergence of defection to the convergence of super cooperation, and that the threshold for the phase transitions is principally determined by the Nash equilibrium principle of the game, with an accompanying perturbation by the variations of structures of networks. For heterogeneous networks, we show that the equilibrium frequencies of super-cooperators are divergent, that entanglement guarantees emergence of super-cooperation and that there is a phase transition of the emergence with the threshold determined by the Nash equilibrium principle, accompanied by a perturbation by the variations of structures of networks. Our results explore systematically, for the first time, the dynamics, morphogenesis and convergence of evolutionary games in interacting and competing systems. PMID:27118882
Distribution trend of high-rise buildings worldwide and factor exploration
NASA Astrophysics Data System (ADS)
Yu, Shao-Qiao
2017-08-01
This paper elaborates the development phenomenon of high-rise buildings nowadays. The development trend of super high-rise buildings worldwide is analyzed based on data from the Council on Tall Buildings and Urban Habitat, taking the top 100 high-rise buildings in different continents and with the time development and building type as the objects. Through analysis, the trend of flourishing of UAE super high-rise buildings and stable development of European and American high-rise buildings is obtained. The reasons for different development degrees of the regions are demonstrated from the aspects of social development, economy, culture and consciousness. This paper also presents unavoidable issues of super high-rise buildings and calls for rational treatment to these buildings.
NASA Astrophysics Data System (ADS)
Li, Zhengji; Teng, Qizhi; He, Xiaohai; Yue, Guihua; Wang, Zhengyong
2017-09-01
The parameter evaluation of reservoir rocks can help us to identify components and calculate the permeability and other parameters, and it plays an important role in the petroleum industry. Until now, computed tomography (CT) has remained an irreplaceable way to acquire the microstructure of reservoir rocks. During the evaluation and analysis, large samples and high-resolution images are required in order to obtain accurate results. Owing to the inherent limitations of CT, however, a large field of view results in low-resolution images, and high-resolution images entail a smaller field of view. Our method is a promising solution to these data collection limitations. In this study, a framework for sparse representation-based 3D volumetric super-resolution is proposed to enhance the resolution of 3D voxel images of reservoirs scanned with CT. A single reservoir structure and its downgraded model are divided into a large number of 3D cubes of voxel pairs and these cube pairs are used to calculate two overcomplete dictionaries and the sparse-representation coefficients in order to estimate the high frequency component. Future more, to better result, a new feature extract method with combine BM4D together with Laplacian filter are introduced. In addition, we conducted a visual evaluation of the method, and used the PSNR and FSIM to evaluate it qualitatively.
Image super-resolution via adaptive filtering and regularization
NASA Astrophysics Data System (ADS)
Ren, Jingbo; Wu, Hao; Dong, Weisheng; Shi, Guangming
2014-11-01
Image super-resolution (SR) is widely used in the fields of civil and military, especially for the low-resolution remote sensing images limited by the sensor. Single-image SR refers to the task of restoring a high-resolution (HR) image from the low-resolution image coupled with some prior knowledge as a regularization term. One classic method regularizes image by total variation (TV) and/or wavelet or some other transform which introduce some artifacts. To compress these shortages, a new framework for single image SR is proposed by utilizing an adaptive filter before regularization. The key of our model is that the adaptive filter is used to remove the spatial relevance among pixels first and then only the high frequency (HF) part, which is sparser in TV and transform domain, is considered as the regularization term. Concretely, through transforming the original model, the SR question can be solved by two alternate iteration sub-problems. Before each iteration, the adaptive filter should be updated to estimate the initial HF. A high quality HF part and HR image can be obtained by solving the first and second sub-problem, respectively. In experimental part, a set of remote sensing images captured by Landsat satellites are tested to demonstrate the effectiveness of the proposed framework. Experimental results show the outstanding performance of the proposed method in quantitative evaluation and visual fidelity compared with the state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Shevelev, A. E.; Khilkevitch, E. M.; Lashkul, S. I.; Rozhdestvensky, V. V.; Pandya, S. P.; Plyusnin, V. V.; Altukhov, A. B.; Kouprienko, D. V.; Chugunov, I. N.; Doinikov, D. N.; Esipov, L. A.; Gin, D. B.; Iliasova, M. V.; Naidenov, V. O.; Polunovsky, I. A.; Sidorov, A. V.; Kiptily, V. G.
2018-01-01
Studies of the super-thermal and runaway electron behavior in ohmic and lower hybrid current drive FT-2 tokamak plasmas have been carried out using information obtained from measurements of hard x-ray spectra and non-thermal microwave radiation intensity at the frequency of 10 GHz and in the range of (53 ÷ 78) GHz. A gamma-ray spectrometer based on a scintillation detector with a LaBr3(Ce) crystal was used, which provides measurements at counting rates up to 107 s-1. Reconstruction of the energy distribution of RE interacting with the poloidal limiter of the tokamak chamber was made with application of the DeGaSum code. Super-thermal electrons accelerated up to 2 MeV by the LH waves at the high-frequency pumping of the plasma with low density ≤ft< {{n}e} \\right> ~ 2 × 1013 cm-3 and then up to 7 MeV by vortex electric field have been found. Experimental analysis of the runaway electron beam generation and evolution of their energy distribution in the FT-2 plasmas is presented in the article and compared with the numerical calculation of the maximum energy gained by runaway electrons for given plasma parameters. In addition, possible mechanisms for limiting the maximum energy gained by the runaway electrons are also calculated and described for a FT-2 plasma discharge.
The origin of high frequency radiation in earthquakes and the geometry of faulting
NASA Astrophysics Data System (ADS)
Madariaga, R.
2004-12-01
In a seminal paper of 1967 Kei Aki discovered the scaling law of earthquake spectra and showed that, among other things, the high frequency decay was of type omega-squared. This implies that high frequency displacement amplitudes are proportional to a characteristic length of the fault, and radiated energy scales with the cube of the fault dimension, just like seismic moment. Later in the seventies, it was found out that a simple explanation for this frequency dependence of spectra was that high frequencies were generated by stopping phases, waves emitted by changes in speed of the rupture front as it propagates along the fault, but this did not explain the scaling of high frequency waves with fault length. Earthquake energy balance is such that, ignoring attenuation, radiated energy is the change in strain energy minus energy released for overcoming friction. Until recently the latter was considered to be a material property that did not scale with fault size. Yet, in another classical paper Aki and Das estimated in the late 70s that energy release rate also scaled with earthquake size, because earthquakes were often stopped by barriers or changed rupture speed at them. This observation was independently confirmed in the late 90s by Ide and Takeo and Olsen et al who found that energy release rates for Kobe and Landers were in the order of a MJ/m2, implying that Gc necessarily scales with earthquake size, because if this was a material property, small earthquakes would never occur. Using both simple analytical and numerical models developed by Addia-Bedia and Aochi and Madariaga, we examine the consequence of these observations for the scaling of high frequency waves with fault size. We demonstrate using some classical results by Kostrov, Husseiny and Freund that high frequency energy flow measures energy release rate and is generated when ruptures change velocity (both direction and speed) at fault kinks or jogs. Our results explain why super shear ruptures are only observed when faults are relatively flat and smooth, and why complex geometry inhibits fast ruptures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmoud, Mahmoud A., E-mail: mmahmoud@gatech.edu
The field coupling in highly packed plasmonic nanoparticle arrays is not localized due to the energy transport via the sub-radiant plasmon modes, which is formed in addition to the regular super-radiant plasmon mode. Unlike the sub-radiant mode, the plasmon field of the super-radiant mode cannot extend over long distances since it decays radiatively with a shorter lifetime. The coupling of the plasmon fields of gold nanocubes (AuNCs) when organized into highly packed 2D arrays was examined experimentally. Multiple plasmon resonance optical peaks are observed for the AuNC arrays and are compared to those calculated using the discrete dipole approximation. Themore » calculated electromagnetic plasmon fields of the arrays displayed high field intensity for the nanocubes located in the center of the arrays for the lower energy super-radiant mode, while the higher energy sub-radiant plasmon mode displayed high field intensity at the edges of the arrays. The Raman signal enhancement by the super-radiant plasmon mode was found to be one hundred fold greater than that by sub-radiant plasmon mode because the super-radiant mode has higher scattering and stronger plasmon field intensity relative to the sub-radiant mode.« less
Yanagisawa, Y; Piao, R; Iguchi, S; Nakagome, H; Takao, T; Kominato, K; Hamada, M; Matsumoto, S; Suematsu, H; Jin, X; Takahashi, M; Yamazaki, T; Maeda, H
2014-12-01
High-temperature superconductors (HTS) are the key technology to achieve super-high magnetic field nuclear magnetic resonance (NMR) spectrometers with an operating frequency far beyond 1GHz (23.5T). (RE)Ba 2 Cu 3 O 7- x (REBCO, RE: rare earth) conductors have an advantage over Bi 2 Sr 2 Ca 2 Cu 3 O 10- x (Bi-2223) and Bi 2 Sr 2 CaCu 2 O 8- x (Bi-2212) conductors in that they have very high tensile strengths and tolerate strong electromagnetic hoop stress, thereby having the potential to act as an ultra-compact super-high field NMR magnet. As a first step, we developed the world's first NMR magnet comprising an inner REBCO coil and outer low-temperature superconducting (LTS) coils. The magnet was successfully charged without degradation and mainly operated at 400MHz (9.39T). Technical problems for the NMR magnet due to screening current in the REBCO coil were clarified and solved as follows: (i) A remarkable temporal drift of the central magnetic field was suppressed by a current sweep reversal method utilizing ∼10% of the peak current. (ii) A Z2 field error harmonic of the main coil cannot be compensated by an outer correction coil and therefore an additional ferromagnetic shim was used. (iii) Large tesseral harmonics emerged that could not be corrected by cryoshim coils. Due to those harmonics, the resolution and sensitivity of NMR spectra are ten-fold lower than those for a conventional LTS NMR magnet. As a result, a HSQC spectrum could be achieved for a protein sample, while a NOESY spectrum could not be obtained. An ultra-compact 1.2GHz NMR magnet could be realized if we effectively take advantage of REBCO conductors, although this will require further research to suppress the effect of the screening current. Copyright © 2014 Elsevier Inc. All rights reserved.
Super-resolved refocusing with a plenoptic camera
NASA Astrophysics Data System (ADS)
Zhou, Zhiliang; Yuan, Yan; Bin, Xiangli; Qian, Lulu
2011-03-01
This paper presents an approach to enhance the resolution of refocused images by super resolution methods. In plenoptic imaging, we demonstrate that the raw sensor image can be divided to a number of low-resolution angular images with sub-pixel shifts between each other. The sub-pixel shift, which defines the super-resolving ability, is mathematically derived by considering the plenoptic camera as equivalent camera arrays. We implement simulation to demonstrate the imaging process of a plenoptic camera. A high-resolution image is then reconstructed using maximum a posteriori (MAP) super resolution algorithms. Without other degradation effects in simulation, the super resolved image achieves a resolution as high as predicted by the proposed model. We also build an experimental setup to acquire light fields. With traditional refocusing methods, the image is rendered at a rather low resolution. In contrast, we implement the super-resolved refocusing methods and recover an image with more spatial details. To evaluate the performance of the proposed method, we finally compare the reconstructed images using image quality metrics like peak signal to noise ratio (PSNR).
Wavelength scanning achieves pixel super-resolution in holographic on-chip microscopy
NASA Astrophysics Data System (ADS)
Luo, Wei; Göröcs, Zoltan; Zhang, Yibo; Feizi, Alborz; Greenbaum, Alon; Ozcan, Aydogan
2016-03-01
Lensfree holographic on-chip imaging is a potent solution for high-resolution and field-portable bright-field imaging over a wide field-of-view. Previous lensfree imaging approaches utilize a pixel super-resolution technique, which relies on sub-pixel lateral displacements between the lensfree diffraction patterns and the image sensor's pixel-array, to achieve sub-micron resolution under unit magnification using state-of-the-art CMOS imager chips, commonly used in e.g., mobile-phones. Here we report, for the first time, a wavelength scanning based pixel super-resolution technique in lensfree holographic imaging. We developed an iterative super-resolution algorithm, which generates high-resolution reconstructions of the specimen from low-resolution (i.e., under-sampled) diffraction patterns recorded at multiple wavelengths within a narrow spectral range (e.g., 10-30 nm). Compared with lateral shift-based pixel super-resolution, this wavelength scanning approach does not require any physical shifts in the imaging setup, and the resolution improvement is uniform in all directions across the sensor-array. Our wavelength scanning super-resolution approach can also be integrated with multi-height and/or multi-angle on-chip imaging techniques to obtain even higher resolution reconstructions. For example, using wavelength scanning together with multi-angle illumination, we achieved a halfpitch resolution of 250 nm, corresponding to a numerical aperture of 1. In addition to pixel super-resolution, the small scanning steps in wavelength also enable us to robustly unwrap phase, revealing the specimen's optical path length in our reconstructed images. We believe that this new wavelength scanning based pixel super-resolution approach can provide competitive microscopy solutions for high-resolution and field-portable imaging needs, potentially impacting tele-pathology applications in resource-limited-settings.
Optical Super-Resolution by High-Index Liquid-Immersed Microspheres
2012-01-01
the BD without liquid can be achieved using microspheres with small-to-moderate index of refraction such as borosilicate glass (n 1.47), soda lime ...titanate glass microspheres with diameters (D) in the range 2–220 lm and with high refractive index (n 1.9–2.1) can be used for super-resolution...achieving optical super-resolution. It has been demonstrated10 that silica spheres with refractive index (n) about 1.46 and with diame- ters (D) in the
Research on the precision measurement of super-low reflectivity
NASA Astrophysics Data System (ADS)
Yuan, Hao-yu; Lu, Zong-gui; Xia, Yan-wen; Peng, Zhi-tao; Liu, Hua; Xu, Long-bo; Sun, Zhi-hong; Tang, Jun
2010-10-01
Introduced a high-precision measurement of measured the super-low reflectivity and small sampling angle. Using single reflect way measured, and compare with re-swatch. Testing the reflectance of the sampling mirror which be used on TIL, and analyze the error. Research results indicate, the main factor which affect result is energy detector error and energy detector linearity. This methods is easy and have high-precision, it can be used to measure the super-low reflectivity sampling mirror reflectance.
Influence of Gold Nanoshell on Hyperthermia of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs)
Mohammad, Faruq; Balaji, Gopalan; Weber, Andrew; Uppu, Rao M.; Kumar, Challa S. S. R.
2010-01-01
Gold nanoshell around super paramagnetic iron oxide nanoparticles (SPIONs) was synthesized and small angle X-ray scattering (SAXS) analysis suggests a gold coating of approximately 0.4 to 0.5 nm thickness. On application of low frequency oscillating magnetic fields (44 – 430 Hz), a four- to five-fold increase in the amount of heat released with gold-coated SPIONs (6.3 nm size) in comparison with SPIONs (5.4 nm size) was observed. Details of the influence of frequencies of oscillating magnetic field, concentration and solvent on heat generation are presented. We also show that, in the absence of oscillating magnetic field, both SPIONs and SPIONs@Au are not particularly cytotoxic to mammalian cells (MCF-7 breast carcinoma cells and H9c2 cardiomyoblasts) in culture, as indicated by the reduction of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium by viable cells in a phenazine methosulfate-assisted reaction. PMID:21103390
Stochastic background from cosmic (super)strings: Popcorn-like and (Gaussian) continuous regimes
NASA Astrophysics Data System (ADS)
Regimbau, Tania; Giampanis, Stefanos; Siemens, Xavier; Mandic, Vuk
2012-03-01
In the era of the next generation of gravitational wave experiments a stochastic background from cusps of cosmic (super)strings is expected to be probed and, if not detected, to be significantly constrained. A popcornlike background can be, for part of the parameter space, as pronounced as the (Gaussian) continuous contribution from unresolved sources that overlap in frequency and time. We study both contributions from unresolved cosmic string cusps over a range of frequencies relevant to ground based interferometers, such as the LIGO/Virgo second generation and Einstein Telescope third generation detectors, the space antenna LISA, and pulsar timing arrays. We compute the sensitivity (at the 2σ level) in the parameter space for the LIGO/Virgo second generation detector, the Einstein Telescope detector, LISA, and pulsar timing arrays. We conclude that the popcorn regime is complementary to the continuous background. Its detection could therefore enhance confidence in a stochastic background detection and possibly help determine fundamental string parameters such as the string tension and the reconnection probability.
The blocking reagent optimization for the magnetoelastic biosensor
NASA Astrophysics Data System (ADS)
Hu, Jiajia; Chai, Yating; Horikawa, Shin; Wikle, Howard C.; Wang, Feng'en; Du, Songtao; Chin, Bryan A.; Hu, Jing
2015-06-01
The wireless phage-based magnetoelastic (ME) biosensor has proven to be promising for real-time detection of pathogenic bacteria on fresh produces. The ME biosensor consists of a freestanding ME resonator as the signal transducer and filamentous phage as the biomolecular-recognition element, which can specifically bind to a pathogen of interest. Due to the Joule magnetostriction effect, the biosensors can be placed into mechanical resonance when subjected to a time-varying magnetic field alternating at the sensor's resonant frequency. Upon the attachment of the target pathogen, the mass of the biosensor increases, thereby decreasing its resonant frequency. This paper presents an investigation of blocking reagents immobilization for detecting Salmonella Typhimurium on fresh food surfaces. Three different blocking reagents (BSA, SuperBlock blocking buffer, and blocker BLOTTO) were used and compared. The optical microscope was used for bacterial cells binding observation. Student t-test was used to statistically analysis the experiment results. The results shows that SuperBlock blocking buffer and blocker BLOTTO have much better blocking performance than usually used BSA.
NASA Astrophysics Data System (ADS)
Richards, Terry; Kauppi, Erik; Flanagan, Lauren; Ribeio, Eduardo A. A. G.; Nogueira, Marcos A. Stuart; McCourtney, Ian
This paper presents the advantages of replacing mild steel with high strength niobium microalloyed steel in the structure of Electric Super Scooters, Electric Cargo Motorcycles and Solar Charging Stations. The Mini-Fleet-in-a-Box concept was developed by Current Motor to guarantee mobility, efficiency and solar generated electricity. With the adoption of niobium microalloyed high strength steel for more than 90% of the Super Scooter and Motorcycle structures, it was possible to redesign the frame, resulting in a 31% weight reduction and a very modern and functional body. Together with a new powertrain, these changes were responsible for increasing Motorcycle autonomy by more than 15%, depending on average speed. The new frame design reduced the number of high strain points in the frame, increasing the safety of the project. The Solar Charging Station was built using the container concept and designed with high strength niobium microalloyed steel, which resulted in a weight reduction of 25%. CBMM's facility in Araxá, Brazil was selected in the second half of 2013 as the demonstration site to test the efficiency of the Super Scooter and Solar Charging Station. Each Super Scooter has run more than 2,000 km maintenance-free with an autonomy of more than 100 km per charge.
NASA Astrophysics Data System (ADS)
Gao, Jin-tao; Guo, Lei; Zhong, Yi-wei; Ren, Hong-ru; Guo, Zhan-cheng
2016-07-01
A new approach of removing the phosphorus-rich phase from high-phosphorous iron ore by melt separation at 1573 K in a super- gravity field was investigated. The iron-slag separation by super-gravity resulted in phosphorus being effectively removed from the iron-rich phase and concentrated as a phosphorus-rich phase at a temperature below the melting point of iron. The samples obtained by super-gravity exhibited obvious layered structures. All the iron grains concentrated at the bottom of the sample along the super-gravity direction, whereas the molten slag concentrated in the upper part of the sample along the opposite direction. Meanwhile, fine apatite crystals collided and grew into larger crystals and concentrated at the slag-iron interface. Consequently, in the case of centrifugation with a gravity coefficient of G = 900, the mass fractions of the slag phase and iron-rich phase were similar to their respective theoretical values. The mass fraction of MFe in the iron-rich phase was as high as 97.77wt% and that of P was decreased to 0.092wt%.
Acoustic response of vortex breakdown modes in a coaxial isothermal unconfined swirling jet
NASA Astrophysics Data System (ADS)
Santhosh, R.; Basu, Saptarshi
2015-03-01
The present experimental work is concerned with the study of amplitude dependent acoustic response of an isothermal coaxial swirling jet. The excitation amplitude is increased in five distinct steps at the burner's Helmholtz resonator mode (i.e., 100 Hz). Two flow states are compared, namely, sub-critical and super-critical vortex breakdown (VB) that occur before and after the critical conical sheet breakdown, respectively. The geometric swirl number is varied in the range 2.14-4.03. Under the influence of external pulsing, global response characteristics are studied based on the topological changes observed in time-averaged 2D flow field. These are obtained from high resolution 2D PIV (particle image velocimetry) in the longitudinal-mid plane. PIV results also illustrate the changes in the normalized vortex core coordinates (rvcc/(rvcc)0 Hz, yvcc/(yvcc)0 Hz) of internal recirculation zone (IRZ). A strong forced response is observed at 100 Hz (excitation frequency) in the convectively unstable region which get amplified based on the magnitude of external forcing. The radial extent of this forced response region at a given excitation amplitude is represented by the acoustic response region (b). The topological placement of the responsive convectively unstable region is a function of both the intensity of imparted swirl (characterized by swirl number) and forcing amplitude. It is observed that for sub-critical VB mode, an increase in the excitation amplitude till a critical value shifts the vortex core centre (particularly, the vortex core moves downstream and radially outwards) leading to drastic fanning-out/widening of the IRZ. This is accompanied by ˜30% reduction in the recirculation velocity of the IRZ. It is also observed that b < R (R: radial distance from central axis to outer shear layer-OSL). At super-critical amplitudes, the sub-critical IRZ topology transits back (the vortex core retracts upstream and radially inwards) and finally undergoes a transverse shrinkage ((4vcc)/(rvcc) 0 Hz decreases by ˜20%) when b ≥ R. In contrast, the vortex core of super-critical breakdown mode consistently spreads radially outwards and is displaced further downstream. Finally, the IRZ fans-out at the threshold excitation amplitude. However, the acoustic response region b is still less than R. This is explained based on the characteristic geometric swirl number (SG) of the flow regimes. The super-critical flow mode with higher SG (hence, higher radial pressure drop due to rotational effect which scales as ΔP ˜ ρuθ2 and acts inwards towards the center line) compared to sub-critical state imposes a greater resistance to the radial outward spread of b. As a result, the acoustic energy supplied to the super-critical flow mode increases the degree of acoustic response at the pulsing frequency and energizes its harmonics (evident from power spectra). As a disturbance amplifier, the stronger convective instability mode within the flow structure of super-critical VB causes the topology to widen/fan-out severely at threshold excitation amplitude.
Improving safety in high-speed work zones : a Super 70 study : [summary].
DOT National Transportation Integrated Search
2011-08-01
Highway work zones, particularly those on urban high-speed roads, require special attention and adequate traffic management to reduce the adverse impact of altered geometry and traffic that differ from typical conditions. Super 70 was an urban recons...
Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Chen, Dalei
2015-06-01
In this Letter, the optical stealth transmission carried by super-continuum spectrum optical pulses generated in highly nonlinear fiber is proposed and experimentally demonstrated. In the proposed transmission scheme, super-continuum signals are reshaped in the spectral domain through a wavelength-selective switch and are temporally spread by a chromatic dispersion device to achieve the same noise-like characteristic as the noise in optical networks, so that in both the time domain and the spectral domain, the stealth signals are hidden in public channel. Our experimental results show that compared with existing schemes where stealth channels are carried by amplified spontaneous emission noise, super-continuum signal can increase the transmission performance and robustness.
Detection of Heater Generated Super Small Scale Striations Using GPS Signal Diagnostics
NASA Astrophysics Data System (ADS)
Najmi, A. C.; Milikh, G. M.; Chiang, K.; Psiaki, M.; Secan, J. A.; Bernhardt, P. A.; Briczinski, S. J.; Siefring, C. L.; Papadopoulos, K.
2013-12-01
Recent theoretical models predict that super small striations (SSS) of the electron density, on the order of ten centimeters, can be excited by HF waves with frequency close to multiples of the electron gyro frequency [Gurevich et al., 2006]. The first experimental verification of SSS was made at HAARP [Milikh et al., 2008]. We present results of HAARP experiments that include simultaneous observations of GPS carrier phase and SEE observations of ionospheric turbulence. These observations show that SSS excited by HF frequencies near the fourth harmonic of the gyro frequency scatter GPS signals, and in three out of six experiments indicate the presence of strong turbulence, similar to that observed in descending artificial ionized layer experiments [Pedersen et al., 2010]. This turbulence is capable of generating suprathermal electrons, and in one of the experiments, the presence of fast electrons was confirmed by the HAARP incoherent scattering radar. Estimates on the SSS shows that they correspond to 3-10% electron density depletions. Such irregularities affect UHF signals including GPS, and thus can be important in applications. Gurevich, A.V. and K.P. Zybin (2006), Phys. Lett. A, 358, 159. Milikh, G., et al. (2008), Geophys. Res. Let., 35, L22102, doi:10.1029/2008GL035527. Pedersen, T. et al. (2010), Geophys. Res. Let., 37, L02106, doi:10.1029/2009GL041895.
Applied research of shaking table for scandium concentration from a silicate ore
NASA Astrophysics Data System (ADS)
Yan, P.; Zhang, G. F.; Gao, L.; Shi, B. H.; Shi, Z.; Yang, Y. D.
2018-03-01
A poor magnetite iron ore is a super large independent scandium deposit with over the multi-billion potential utilizable value. Shaking table separation is very useful for impurities removing and scandium content increasing as a follow-up step of high-intensity magnetic separation. In the present study, a satisfactory index, namely scandium content of 83.10 g/t and recovery rate of 79.45 wt%, was obtained by shaking table separation. The good result was achieved under the conditions which the parameters were feed concentrate of 18 wt%, feeding quantity of 11 L/min, stroke frequency of 275 times/min and stroke of 17mm.
Flexible OLED fabrication with ITO thin film on polymer substrate
NASA Astrophysics Data System (ADS)
Kim, Sung Il; Lee, Kyo Woong; Bhusan Sahu, Bibhuti; Geon Han, Jeon
2015-09-01
This paper reports the synthesis of flexible indium tin oxide (ITO) films in a dual pulse magnetron sputtering (DPMS) system at low temperature (<100 °C) deposition condition. This study also presents experimental demonstration of the ITO films for their possible use in the fabrication of organic light emitting diode (OLED) device, and the device performance on the super polycarbonate substrates. The presented data reveals the feasibility of ITO films, with a very low sheet resistance of ∼30 Ω/□ and high transmittance of ∼88% at 550 nm, simply by the magnetron pulse mode operations with increasing pulse frequency from 0 to 50 kHz.
Dielectric and electrical characteristics of Sr modified Ca1Cu3Ti4O12
NASA Astrophysics Data System (ADS)
Sahu, M.; Choudhary, R. N. P.; Roul, B. K.
2018-05-01
This paper mainly reports on the effect of Sr substitution on dielectric and electrical properties of CaCu3Ti4O12 at different temperature and frequency. Preliminary analysis of X-ray diffraction data of sintered samples confirms the reported cubic structure. Study of surface morphology shows that the surface of the samples contains well-defined and uniformly distributed grains. Some electrical parameters (permittivity, tangent loss and impedance) of the materials were measured and analyzed over a wide range of temperature (25 to 315 °C) and frequency (50 to 2x106 Hz). The ultra high dielectric constant and low energy dissipation have been observed in the said experimental conditions of phase-pure prepared compounds. It is expected that the addition of nano-size compounds or oxide will help to enhance the above properties useful for fabrication of super-capacitor.
Status of the Scorpion Planet Survey: Establishing the Frequency of HR8799b-Like Planets
NASA Astrophysics Data System (ADS)
Wagner, K. R.; Daniel, A.; Kasper, M.
2017-11-01
Wide-orbit giant planets will likely affect plant formation and habitability of inner planets. In this presentation we will review the existing evidence on the occurrence rates of super-Jupiters and present the status of our VLT/SPHERE survey.
NASA Astrophysics Data System (ADS)
Schneider, Thomas
2015-03-01
High-quality frequency comb sources like femtosecond-lasers have revolutionized the metrology of fundamental physical constants. The generated comb consists of frequency lines with an equidistant separation over a bandwidth of several THz. This bandwidth can be broadened further to a super-continuum of more than an octave through propagation in nonlinear media. The frequency separation between the lines is defined by the repetition rate and the width of each comb line can be below 1 Hz, even without external stabilization. By extracting just one of these lines, an ultra-narrow linewidth, tunable laser line for applications in communications and spectroscopy can be generated. If two lines are extracted, the superposition of these lines in an appropriate photo-mixer produces high-quality millimeter- and THz-waves. The extraction of several lines can be used for the creation of almost-ideally sinc-shaped Nyquist pulses, which enable optical communications with the maximum-possible baud rate. Especially combs generated by low-cost, small-footprint fs-fiber lasers are very promising. However due to the resonator length, the comb frequencies have a typical separation of 80 - 100 MHz, far too narrow for the selection of single tones with standard optical filters. Here the extraction of single lines of an fs-fiber laser by polarization pulling assisted stimulated Brillouin scattering is presented. The application of these extracted lines as ultra-narrow, stable and tunable laser lines, for the generation of very high-quality mm and THz-waves with an ultra-narrow linewidth and phase noise and for the generation of sinc-shaped Nyquist pulses with arbitrary bandwidth and repetition rate is discussed.
Process of super-black shading material applied to the star sensor based on Ni-P alloys
NASA Astrophysics Data System (ADS)
Liu, Fengdeng; Xing, Fei; Wu, Yuelong; You, Zheng
2014-12-01
Super-black materials based on Nanotechnology have very important applications in many science fields. Super-black materials which have been reported currently, although have excellent light-trapping properties, most of them need the use of sophisticated equipment , the long-time synthesis , high temperature environment and release flammable, explosive and other dangerous gases. So many kinds of problems have hindered the application of such super-black material in practice. This project had nano super-black material developed with simple equipment and process, instead of complicated and dangerous process steps in high temperature and high pressure. On the basis of literature research, we successfully worked out a set of large-area Ni-P alloy plating method through a series of experiments exploring and analyze the experimental results. In the condition of the above Ni-P alloy, we took the solution, which anodized the Ni-P alloy immersed in the non-oxidizing acid, instead of conventional blackening process. It`s a big break for changing the situation in which oxidation, corrosion, vigorous evolution of hydrogen gas in the process are performed at the same location. As a result, not only the reaction process decreased sensitivity to time error, but also the position of the bubble layer no longer located in the surface of the workpiece which may impede observing the process of reaction. Consequently, the solution improved the controllability of the blackening process. In addition, we conducted the research of nano super-black material, exploring nano-super-black material in terms of space optical sensor.
Coletta, Adriana; Bachman, Jessica; Tepper, Beverly J; Raynor, Hollie A
2013-04-01
Little is known as to how 6-n-propylthiouracil (PROP) taster status may influence changes in dietary intake in adults participating in a lifestyle intervention to assist with reducing weight. This secondary data analysis examined changes in energy, percent energy from macronutrients, and food group intake; physical activity; and body mass index (BMI) in super-tasters and non-tasters participating in two randomized controlled trials implementing a lifestyle obesity intervention. One trial focused on lowering energy density of the diet and the other trial focused on changing eating frequency. Overweight and obese participants (n = 57) who completed measures of dietary intake, physical activity, and anthropometrics at 0 and 3 months were included in the analyses. Taster status was determined at baseline: 46 non-tasters and 11 super-tasters. After controlling for condition assignment and baseline values, results indicated that a significantly greater reduction in energy intake occurred for super-tasters as compared to non-tasters (-1149 ± 561 kcal/day vs. -902 ± 660 kcal/day, p < 0.05). No other significant differences in changes in dietary intake, physical activity, or BMI were found. These results suggest that in situations of reducing energy intake, overweight and obese super-tasters may be more successful than overweight and obese non-tasters. More research is needed to understand the influence of taster-status on dietary change during a lifestyle intervention and how this may impact weight loss. Copyright © 2013 Elsevier Ltd. All rights reserved.
Longitudinal study of Escherichia coli O157 shedding and super shedding in dairy heifers.
Williams, K J; Ward, M P; Dhungyel, O P
2015-04-01
A longitudinal study was conducted to assess the methods available for detection of Escherichia coli O157 and to investigate the prevalence and occurrence of long-term shedding and super shedding in a cohort of Australian dairy heifers. Samples were obtained at approximately weekly intervals from heifers at pasture under normal management systems. Selective sampling techniques were used with the aim of identifying heifers with a higher probability of shedding or super shedding. Rectoanal mucosal swabs (RAMS) and fecal samples were obtained from each heifer. Direct culture of feces was used for detection and enumeration. Feces and RAMS were tested by enrichment culture. Selected samples were further tested retrospectively by immunomagnetic separation of enriched samples. Of 784 samples obtained, 154 (19.6%) were detected as positive using culture methods. Adjusting for selective sampling, the prevalence was 71 (15.6%) of 454. In total, 66 samples were detected as positive at >10(2) CFU/g of which 8 were >10(4) CFU/g and classed as super shedding. A significant difference was observed in detection by enriched culture of RAMS and feces. Dairy heifers within this cohort exhibited variable E. coli O157 shedding, consistent with previous estimates of shedding. Super shedding was detected at a low frequency and inconsistently from individual heifers. All detection methods identified some samples as positive that were not detected by any other method, indicating that the testing methods used will influence survey results.
SuperHERO: The Next Generation Hard X-Ray HEROES Telescope
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Gaskin, Jessica A.; Christe, Steven D.; Elsner, Ronald F.; Ramsey, Brian D.; Seller, Paul; Shih, Albert Y.; Stuchlik, David W.; Swartz, Douglas A.; Tenant, Allyn F.;
2014-01-01
SuperHERO is a new high-sensitivity Long Duration Balloon (LDB)-capable, hard-x-ray (20-75 keV) telescope for making novel astrophysics and heliophysics observations. The proposed SuperHERO payload will be developed jointly by the Astrophysics Office at NASA Marshall Space Flight Center, the Solar Physics Laboratory and Wallops Flight Facility at NASA Goddard Space Flight Center. SuperHERO is a follow-on payload to the High Energy Replicated Optics to Explore the Sun (HEROES) balloon-borne telescope that recently launched from Fort Sumner, NM in September of 2013. The HEROES core instrument is a hard x-ray telescope consisting of x-ray 109 optics configured into 8 modules. Each module is aligned to a matching gas-filled detector at a focal length of 6 m. SuperHERO will make significant improvements to the HEROES payload, including: new solid-state multi-pixel CdTe detectors, additional optics, the Wallops Arc-Second Pointer, alignment monitoring systems and lighter gondola.
SuperHERO: The Next Generation Hard X-ray HEROES Telescope
NASA Technical Reports Server (NTRS)
Gaskin, Jessica A.; Christe, Steven D.; Wilson-Hodge, Colleen; Shih, Albert Y. M.; Ramsey, Brian D.; Tennant, Allyn F.; Swartz, Douglas A.
2014-01-01
SuperHERO is a new high-sensitivity Long Duration Balloon (LDB)-capable, hard-x-ray (20-75 keV) telescope for making novel astrophysics and heliophysics observations. The proposed SuperHERO payload will be developed jointly by the Astrophysics Office at NASA Marshall Space Flight Center, the Solar Physics Laboratory and Wallops Flight Facility at NASA Goddard Space Flight Center. SuperHERO is a follow-on payload to the High Energy Replicated Optics to Explore the Sun (HEROES) balloon-borne telescope that recently launched from Fort Sumner, NM in September of 2013. The HEROES core instrument is a hard x-ray telescope consisting of x-ray 109 optics configured into 8 modules. Each module is aligned to a matching gas-filled detector at a focal length of 6 m. SuperHERO will make significant improvements to the HEROES payload, including: new solid-state multi-pixel CdTe detectors, additional optics, the Wallops Arc-Second Pointer, alignment monitoring systems and lighter gondola.
NASA Astrophysics Data System (ADS)
Thomas, E. G.; Shepherd, S. G.
2017-12-01
Global patterns of ionospheric convection have been widely studied in terms of the interplanetary magnetic field (IMF) magnitude and orientation in both the Northern and Southern Hemispheres using observations from the Super Dual Auroral Radar Network (SuperDARN). The dynamic range of driving conditions under which existing SuperDARN statistical models are valid is currently limited to periods when the high-latitude convection pattern remains above about 60° geomagnetic latitude. Cousins and Shepherd [2010] found this to correspond to intervals when the solar wind electric field Esw < 4.1 mV/m and IMF Bz is negative. Conversely, under northward IMF conditions (Bz > 0) the high-latitude radars often experience difficulties in measuring convection above about 85° geomagnetic latitude. In this presentation, we introduce a new statistical model of ionospheric convection which is valid for much more dominant IMF Bz conditions than was previously possible by including velocity measurements from the newly constructed tiers of radars in the Northern Hemisphere at midlatitudes and in the polar cap. This new model (TS17) is compared to previous statistical models derived from high-latitude SuperDARN observations (RG96, PSR10, CS10) and its impact on instantaneous Map Potential solutions is examined.
Single image super resolution algorithm based on edge interpolation in NSCT domain
NASA Astrophysics Data System (ADS)
Zhang, Mengqun; Zhang, Wei; He, Xinyu
2017-11-01
In order to preserve the texture and edge information and to improve the space resolution of single frame, a superresolution algorithm based on Contourlet (NSCT) is proposed. The original low resolution image is transformed by NSCT, and the directional sub-band coefficients of the transform domain are obtained. According to the scale factor, the high frequency sub-band coefficients are amplified by the interpolation method based on the edge direction to the desired resolution. For high frequency sub-band coefficients with noise and weak targets, Bayesian shrinkage is used to calculate the threshold value. The coefficients below the threshold are determined by the correlation among the sub-bands of the same scale to determine whether it is noise and de-noising. The anisotropic diffusion filter is used to effectively enhance the weak target in the low contrast region of the target and background. Finally, the high-frequency sub-band is amplified by the bilinear interpolation method to the desired resolution, and then combined with the high-frequency subband coefficients after de-noising and small target enhancement, the NSCT inverse transform is used to obtain the desired resolution image. In order to verify the effectiveness of the proposed algorithm, the proposed algorithm and several common image reconstruction methods are used to test the synthetic image, motion blurred image and hyperspectral image, the experimental results show that compared with the traditional single resolution algorithm, the proposed algorithm can obtain smooth edges and good texture features, and the reconstructed image structure is well preserved and the noise is suppressed to some extent.
G-band atmospheric radars: new frontiers in cloud physics
NASA Astrophysics Data System (ADS)
Battaglia, A.; Westbrook, C. D.; Kneifel, S.; Kollias, P.; Humpage, N.; Löhnert, U.; Tyynelä, J.; Petty, G. W.
2014-01-01
Clouds and associated precipitation are the largest source of uncertainty in current weather and future climate simulations. Observations of the microphysical, dynamical and radiative processes that act at cloud-scales are needed to improve our understanding of clouds. The rapid expansion of ground-based super-sites and the availability of continuous profiling and scanning multi-frequency radar observations at 35 and 94 GHz have significantly improved our ability to probe the internal structure of clouds in high temporal-spatial resolution, and to retrieve quantitative cloud and precipitation properties. However, there are still gaps in our ability to probe clouds due to large uncertainties in the retrievals. The present work discusses the potential of G-band (frequency between 110 and 300 GHz) Doppler radars in combination with lower frequencies to further improve the retrievals of microphysical properties. Our results show that, thanks to a larger dynamic range in dual-wavelength reflectivity, dual-wavelength attenuation and dual-wavelength Doppler velocity (with respect to a Rayleigh reference), the inclusion of frequencies in the G-band can significantly improve current profiling capabilities in three key areas: boundary layer clouds, cirrus and mid-level ice clouds, and precipitating snow.
G band atmospheric radars: new frontiers in cloud physics
NASA Astrophysics Data System (ADS)
Battaglia, A.; Westbrook, C. D.; Kneifel, S.; Kollias, P.; Humpage, N.; Löhnert, U.; Tyynelä, J.; Petty, G. W.
2014-06-01
Clouds and associated precipitation are the largest source of uncertainty in current weather and future climate simulations. Observations of the microphysical, dynamical and radiative processes that act at cloud scales are needed to improve our understanding of clouds. The rapid expansion of ground-based super-sites and the availability of continuous profiling and scanning multi-frequency radar observations at 35 and 94 GHz have significantly improved our ability to probe the internal structure of clouds in high temporal-spatial resolution, and to retrieve quantitative cloud and precipitation properties. However, there are still gaps in our ability to probe clouds due to large uncertainties in the retrievals. The present work discusses the potential of G band (frequency between 110 and 300 GHz) Doppler radars in combination with lower frequencies to further improve the retrievals of microphysical properties. Our results show that, thanks to a larger dynamic range in dual-wavelength reflectivity, dual-wavelength attenuation and dual-wavelength Doppler velocity (with respect to a Rayleigh reference), the inclusion of frequencies in the G band can significantly improve current profiling capabilities in three key areas: boundary layer clouds, cirrus and mid-level ice clouds, and precipitating snow.
A Silicon Disk with Sandwiched Piezoelectric Springs for Ultra-low Frequency Energy Harvesting
NASA Astrophysics Data System (ADS)
Lu, J.; Zhang, L.; Yamashita, T.; Takei, R.; Makimoto, N.; Kobayashi, T.
2015-12-01
Exploiting the sporadic availability of energy by energy harvesting devices is an attractive solution to power wireless sensor nodes and many other distributed modules for much longer operation duration and much lower maintenance cost after they are deployed. MEMS energy harvesting devices exhibit unique advantageous of super-compact size, mass productivity, and easy-integration with sensors, actuators and other integrated circuits. However, MEMS vibration energy harvesting devices are rather difficult to be used practically due to their poor response to most of the ambient vibrations at ultra-low frequency range. In this paper, a micromachined silicon disk with sandwiched piezoelectric springs was successfully developed with resonant frequency of 15.36∼42.42 Hz and quality factor of 39∼55 for energy harvesting. Footprint size of the device was 6 mm × 6 mm, which is less than half of the piezoelectric cantilevers, while the device can scavenge reasonably high power of 0.57 μW at the acceleration of 0.1 g. The evaluation results also suggested that the device was quite sensitive as a sensor for selective monitoring of vibrations at a certain frequency.
Repeated high-intensity exercise in professional rugby union.
Austin, Damien; Gabbett, Tim; Jenkins, David
2011-07-01
The aim of the present study was to describe the frequency, duration, and nature of repeated high-intensity exercise in Super 14 rugby union. Time-motion analysis was used during seven competition matches over the 2008 and 2009 Super 14 seasons; five players from each of four positional groups (front row forwards, back row forwards, inside backs, and outside backs) were assessed (20 players in total). A repeated high-intensity exercise bout was considered to involve three or more sprints, and/or tackles and/or scrum/ruck/maul activities within 21 s during the same passage of play. The range of repeated high-intensity exercise bouts for each group in a match was as follows: 11-18 for front row forwards, 11-21 for back row forwards, 13-18 for inside backs, and 2-11 for outside backs. The durations of the most intense repeated high-intensity exercise bouts for each position ranged from 53 s to 165 s and the minimum recovery periods between repeated high-intensity exercise bouts ranged from 25 s for the back row forwards to 64 s for the front row forwards. The present results show that repeated high-intensity exercise bouts vary in duration and activities relative to position but all players in a game will average at least 10 changes in activity in the most demanding bouts and complete at least one tackle and two sprints. The most intense periods of activity are likely to last as long as 120 s and as little as 25 s recovery may separate consecutive repeated high-intensity exercise bouts. The present findings can be used by coaches to prepare their players for the most demanding passages of play likely to be experienced in elite rugby union.
Zhao, Jian; Li, Zhenjiang; Zhang, Meng; Meng, Alan
2015-04-15
The interest in highly water-repellent surfaces of SiO2-coated SiC nanowires has grown in recent years due to the desire for self-cleaning and anticorrosive surfaces. It is imperative that a simple chemical treatment with fluoroalkylsilane (FAS, CF3(CF2)7CH2CH2Si(OC2H5)3) in ethanol solution at room temperature resulted in super-hydrophobic surfaces of SiO2-coated SiC nanowires. The static water contact angle of SiO2-coated SiC nanowires surfaces was changed from 0° to 153° and the morphology, microstructure and crystal phase of the products were almost no transformation before and after super-hydrophobic treatment. Moreover, a mechanism was expounded reasonably, which could elucidate the reasons for their super-hydrophobic behavior. It is important that the super-hydrophobic surfaces of SiO2-coated SiC nanowires possessed ultraviolet-durable (UV-durable) super-hydrophobicity. Copyright © 2014 Elsevier Inc. All rights reserved.
Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging
Dempsey, Graham T.; Vaughan, Joshua C.; Chen, Kok Hao; Bates, Mark; Zhuang, Xiaowei
2011-01-01
One approach to super-resolution fluorescence imaging uses sequential activation and localization of individual fluorophores to achieve high spatial resolution. Essential to this technique is the choice of fluorescent probes — the properties of the probes, including photons per switching event, on/off duty cycle, photostability, and number of switching cycles, largely dictate the quality of super-resolution images. While many probes have been reported, a systematic characterization of the properties of these probes and their impact on super-resolution image quality has been described in only a few cases. Here, we quantitatively characterized the switching properties of 26 organic dyes and directly related these properties to the quality of super-resolution images. This analysis provides a set of guidelines for characterization of super-resolution probes and a resource for selecting probes based on performance. Our evaluation identified several photoswitchable dyes with good to excellent performance in four independent spectral ranges, with which we demonstrated low crosstalk, four-color super-resolution imaging. PMID:22056676
The Super-TIGER Instrument to Probe Galactic Cosmic-Ray Origins
NASA Astrophysics Data System (ADS)
Ward, John E.
2013-04-01
Super-TIGER is a large area (5.4 m^2) balloon-borne instrument designed to measure cosmic-ray nuclei in the charge interval 30 <= Z <= 42 with individual-element resolution and high statistical precision, and make exploratory measurements through Z = 56. These measurements will provide sensitive tests of the emerging model of cosmic-ray origins in OB associations and models of the mechanism for selection of nuclei for acceleration. Furthermore, Super-TIGER will measure with high statistical accuracy the energy spectra of the more abundant elements in the interval 10 <= Z <= 28 at energies 0.8 < E < 10 GeV/nucleon to test the hypothesis that nearby micro-quasars could superpose features on the energy spectra. Super-TIGER, which builds on the heritage of the smaller TIGER, was constructed by a collaboration involving WUSTL, NASA/GSFC, Caltech, JPL and U Minn. It was successfully launched from Antarctica in December 2012, collecting high-quality data for over one month. Particle charge and energy were measured with a combination of plastic scintillators, acrylic and silica-aerogel Cherenkov detectors, and a scintillating fiber hodoscope. Details of the flight, instrument performance, data analysis and preliminary results of the Super-TIGER flight will be presented.
Park, Jin-Woo; Kwon, Tae-Geon; Suh, Jo-Young
2013-06-01
It is unclear whether surface bioactive chemistry or hydrophilicity plays a more dominant role in the osseointegration of micro-structured titanium implants having the same surface topography at the micrometer and submicrometer scales. To understand their comparative effect on enhancing the early osseointegration of micro-rough-surfaced implants, this study compared the bone healing-promoting effect of surface strontium (Sr) chemistry that has been shown in numerous studies to super-hydrophilicity in the early osseointegration of moderately rough-surfaced clinical oral implants (SLA(®) implant) in rabbit cancellous bone. Hydrothermal treatment was performed to incorporate Sr ions into the surface of clinical SLA implants (SLA/Sr implant). The surface characteristics were evaluated by using field emission-scanning electron microscopy, X-ray photoelectron spectroscopy and optical profilometry. Twenty screw implants (10 control and 10 experimental) were placed in the femoral condyles of 10 New Zealand White rabbits. The early osseointegration of the SLA/Sr implant was compared with a chemically modified super-hydrophilic SLA implant (SLActive(®) implant) by histomorphometric and resonance frequency analysis after 2 weeks of implantation. The SLA/Sr and SLActive implants exhibited an identical surface topography and average R(a) values at the micron and submicron scales. The SLA/Sr implant displayed a high amount of surface Sr content (15.6 at.%). There was no significant difference in the implant stability quotient (ISQ) values between the two groups. However, histomorphometric analysis revealed a significantly higher bone-to-implant contact percentage in the SLA/Sr implants compared with the SLActive implants in rabbit cancellous bone (P < 0.01). The results indicate that the surface Sr chemistry surpasses the effect of super-hydrophilicity in promoting the early bone apposition of moderately rough Ti surface in cancellous bone. © 2012 John Wiley & Sons A/S.
High Frequency Backscatter from the Polar and Auroral E-Region Ionosphere
NASA Astrophysics Data System (ADS)
Forsythe, Victoriya V.
The Earth's ionosphere contains collisional and partially-ionized plasma. The electric field, produced by the interaction between the Earth's magnetosphere and the solar wind, drives the plasma bulk motion, also known as convection, in the F-region of the ionosphere. It can also destabilize the plasma in the E-region, producing irregularities or waves. Intermediate-scale waves with wavelengths of hundreds of meters can cause scintillation and fading of the Global Navigation Satellite System (GNSS) signals, whereas the small-scale waves (lambda < 100 m) can scatter radar signals, making possible detection of these plasma structures and measurements of their characteristics such as their phase velocity and intensity. In this work, production of the decameter-scale (lambda ≈ 10 m) irregularities in the ionospheric E-region (100-120 km in altitude) at high latitudes is investigated both theoretically, using linear fluid theory of plasma instability processes that generate small-scale plasma waves, and experimentally, by analyzing data collected with the newly-deployed high-southern-latitude radars within the Super Dual Auroral Radar Network (SuperDARN). The theoretical part of this work focuses on symmetry properties of the general dispersion relation that describes wave propagation in the collisional plasma in the two-stream and gradient-drift instability regimes. The instability growth rate and phase velocity are examined under the presence of a background parallel electric field, whose influence is demonstrated to break the spatial symmetry of the wave propagation patterns. In the observational part of this thesis, a novel dual radar setup is used to examine E-region irregularities in the magnetic polar cap by probing the E-region along the same line from opposite directions. The phase velocity analysis together with raytracing simulations demonstrated that, in the polar cap, the radar backscatter is primarily controlled by the plasma density conditions. In particular, when the E-region layer is strong and stratified, the radar backscatter properties are controlled by the convection velocity, whereas for a tilted E-layer, the height and aspect angle conditions are more important. Finally, the fundamental dependence of the E-region irregularity phase velocity on the component of the plasma convection is investigated using two new SuperDARN radars at high southern latitudes where plasma convection estimates are accurately deduced from all SuperDARN radars in the southern hemisphere. Statistical analysis is presented showing that the predominance of the E-region echoes of a particular polarity is strongly dictated by the orientation of the convection plasma flow which itself has a significant asymmetry towards westward zonal flow.
Hyperbolic cooling of graphene Zener-Klein transistors
NASA Astrophysics Data System (ADS)
Yang, Wei; Berthou, Simon; Lu, Xiaobo; Baudin, Emmanuel; Wilmart, Quentin; Denis, Anne; Rosticher, Michael; Taniguchi, Takashi; Watanabe, Kenji; Feve, Gwendal; Berroir, Jean-Marc; Zhang, Guangyu; Voisin, Christophe; Placais, Bernard
Engineering of cooling mechanisms is a bottleneck in nanoelectroniscs. In graphene/hBN transistors, Wiedemann-Frantz cooling and supercollision-cooling prevails, and the latter is suppressed in high mobility graphene/hBN samples and substituted by the super-Planckian radiation of hyperbolic phonon-polaritons (HPPs) in the hBN substrate. Using electrical Joule heating and sensitive noise thermometry in several GHz range we report on prevailing HPP cooling in the upper Reststrahlen-band of hBN at high bias. We predict and observe its activation threshold, along with interband Zener-Klein tunneling. HPP cooling is able to evacuate at least several GW/m2 to the bottom gate, resulting in an unusual clipping of electronic temperature. As a scattering counterpart, HPPs of the lower Reststrahlen-band control current saturation at high doping. The combination of both mechanisms promotes graphene/hBN as a valuable nanotechnology for applications in the high power devices and radio frequency electronics.
RF plasma based selective modification of hydrophilic regions on super hydrophobic surface
NASA Astrophysics Data System (ADS)
Lee, Jaehyun; Hwang, Sangyeon; Cho, Dae-Hyun; Hong, Jungwoo; Shin, Jennifer H.; Byun, Doyoung
2017-02-01
Selective modification and regional alterations of the surface property have gained a great deal of attention to many engineers. In this paper, we present a simple, a cost-effective, and amendable reforming method for disparate patterns of hydrophilic regions on super-hydrophobic surfaces. Uniform super-hydrophobic layer (Contact angle; CA > 150°, root mean square (RMS) roughness ∼0.28 nm) can be formed using the atmospheric radio frequency (RF) plasma on top of the selective hydrophilic (CA ∼ 70°, RMS roughness ∼0.34 nm) patterns imprinted by electrohydrodynamic (EHD) jet printing technology with polar alcohols (butyl carbitol or ethanol). The wettability of the modified surface was investigated qualitatively utilizing scanning electron microscopy (SEM), atomic force microscopy (AFM), and wavelength scanning interferometer (WSI). Secondary ion mass spectroscopy (SIMS) analysis showed that the alcohol addiction reaction changed the types of radicals on the super-hydrophobic surface. The wettability was found to depend sensitively on chemical radicals on the surface, not on surface morphology (particle size and surface roughness). Furthermore, three different kinds of representative hydrophilic samples (polystyrene nano-particle aqueous solution, Salmonella bacteria medium, and poly(3,4-ethylenediocythiophene) ink) were tested for uniform deposition onto the desired hydrophilic regions. This simple strategy would have broad applications in various research fields that require selective deposition of target materials.
Study on design of light-weight super-abrasive wheel
NASA Astrophysics Data System (ADS)
Nohara, K.; Yanagihara, K.; Ogawa, M.
2018-01-01
Fixed-abrasive tool, also called a grinding wheel, is produced by furnacing abrasive compound which contains abrasive grains and binding powder such as vitrified materials or resins. Fixed-abrasive tool is installed on spindle of grinding machine. And it is given 1,800-2,000 min-1 of spindle rotation for the usage. The centrifugal fracture of the compound of fixed- abrasive tool is one of the careful respects in designing. In recent years, however, super-abrasive wheel as a fixed-abrasive tool has been developed and applied widely. One of the most characteristic respects is that metal is applied for the body of grinding-wheel. The strength to hold abrasive grain and the rigidity of wheel become stronger than those of general grinding wheel, also the lifespan of fixed-abrasive tool becomes longer. The weight of fixed-abrasive tool, however, becomes heavier. Therefore, when the super-abrasive wheel is used, the power consumption of spindle motor becomes larger. It also becomes difficult for the grinding-wheel to respond to sudden acceleration or deceleration. Thus, in order to reduce power consumption in grinding and to obtain quicker frequency response of super-abrasive wheel, the new wheel design is proposed. The design accomplishes 46% weight reduction. Acceleration that is one second quicker than that of conventional grinding wheel is obtained.
A Super-Resolution Algorithm for Enhancement of FLASH LIDAR Data: Flight Test Results
NASA Technical Reports Server (NTRS)
Bulyshev, Alexander; Amzajerdian, Farzin; Roback, Eric; Reisse Robert
2014-01-01
This paper describes the results of a 3D super-resolution algorithm applied to the range data obtained from a recent Flash Lidar helicopter flight test. The flight test was conducted by the NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project over a simulated lunar terrain facility at NASA Kennedy Space Center. ALHAT is developing the technology for safe autonomous landing on the surface of celestial bodies: Moon, Mars, asteroids. One of the test objectives was to verify the ability of 3D super-resolution technique to generate high resolution digital elevation models (DEMs) and to determine time resolved relative positions and orientations of the vehicle. 3D super-resolution algorithm was developed earlier and tested in computational modeling, and laboratory experiments, and in a few dynamic experiments using a moving truck. Prior to the helicopter flight test campaign, a 100mX100m hazard field was constructed having most of the relevant extraterrestrial hazard: slopes, rocks, and craters with different sizes. Data were collected during the flight and then processed by the super-resolution code. The detailed DEM of the hazard field was constructed using independent measurement to be used for comparison. ALHAT navigation system data were used to verify abilities of super-resolution method to provide accurate relative navigation information. Namely, the 6 degree of freedom state vector of the instrument as a function of time was restored from super-resolution data. The results of comparisons show that the super-resolution method can construct high quality DEMs and allows for identifying hazards like rocks and craters within the accordance of ALHAT requirements.
A super-resolution algorithm for enhancement of flash lidar data: flight test results
NASA Astrophysics Data System (ADS)
Bulyshev, Alexander; Amzajerdian, Farzin; Roback, Eric; Reisse, Robert
2013-03-01
This paper describes the results of a 3D super-resolution algorithm applied to the range data obtained from a recent Flash Lidar helicopter flight test. The flight test was conducted by the NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project over a simulated lunar terrain facility at NASA Kennedy Space Center. ALHAT is developing the technology for safe autonomous landing on the surface of celestial bodies: Moon, Mars, asteroids. One of the test objectives was to verify the ability of 3D super-resolution technique to generate high resolution digital elevation models (DEMs) and to determine time resolved relative positions and orientations of the vehicle. 3D super-resolution algorithm was developed earlier and tested in computational modeling, and laboratory experiments, and in a few dynamic experiments using a moving truck. Prior to the helicopter flight test campaign, a 100mX100m hazard field was constructed having most of the relevant extraterrestrial hazard: slopes, rocks, and craters with different sizes. Data were collected during the flight and then processed by the super-resolution code. The detailed DEM of the hazard field was constructed using independent measurement to be used for comparison. ALHAT navigation system data were used to verify abilities of super-resolution method to provide accurate relative navigation information. Namely, the 6 degree of freedom state vector of the instrument as a function of time was restored from super-resolution data. The results of comparisons show that the super-resolution method can construct high quality DEMs and allows for identifying hazards like rocks and craters within the accordance of ALHAT requirements.
Microseisms Generated by Super Typhoon Megi in the Western Pacific Ocean
NASA Astrophysics Data System (ADS)
Lin, Jianmin; Lin, Jian; Xu, Min
2017-12-01
Microseisms generated by the super typhoon Megi (13-24 October 2010) were detected on both land-based and island-based seismic stations. We applied temporal frequency spectrum analysis to investigate the temporal evolution of the microseisms. When Megi was over the deep basins of the Philippine Sea, only weak microseisms with short-period double frequency (SPDF, ˜0.20-0.40 Hz) were observed. However, after Megi traveled into the shallower waters of the South China Sea, microseisms with both long-period double frequency (LPDF, ˜0.12-0.20 Hz) and SPDF were recorded. The excitation source regions of the microseisms were analyzed using seismic waveform records and synthetic modeling in frequency domain. Results reveal that part of the LPDF microseisms were excited in coastal source regions, while the intensity of both LPDF and SPDF microseisms correlated well with the distance from seismic stations to the typhoon center. Synthetic computations of equivalent surface pressure and corresponding microseisms show that the wave-to-wave interaction induced by coastal reflection has primary effects on microseismic frequency band of ˜0.10-0.20 Hz. The coastal generation of the dispersive LPDF microseisms is also supported by the observation of ocean swells induced by Megi through the images of C-band ENVISAT-ASAR satellite during its migration process. Two source regions of the microseisms during the life span of Megi are finally distinguished: One was mainly located in the left-rear quadrant of the typhoon center that generated both LPDF and SPDF microseisms at shallow seas, while the other one was near the coasts that generated mostly LPDF microseisms.
NASA Astrophysics Data System (ADS)
Lyon, David Richard
Methane emissions from the oil and gas (O&G) supply chain reduce potential climate benefits of natural gas as a replacement for other fossil fuels that emit more carbon dioxide per energy produced. O&G facilities have skewed emission rate distributions with a small fraction of sites contributing the majority of emissions. Knowledge of the identity and cause of these high emission facilities, referred to as super-emitters or fat-tail sources, is critical for reducing supply chain emissions. This dissertation addresses the quantification of super-emitter emissions, assessment of their prevalence and relationship to site characteristics, and mitigation with continuous leak detection systems. Chapter 1 summarizes the state of the knowledge of O&G methane emissions. Chapter 2 constructs a spatially-resolved emission inventory to estimate total and O&G methane emissions in the Barnett Shale as part of a coordinated research campaign using multiple top-down and bottom-up methods to quantify emissions. The emission inventory accounts for super-emitters with two-phase Monte Carlo simulations that combine site measurements collected with two approaches: unbiased sampling and targeted sampling of super-emitters. More comprehensive activity data and the inclusion of super-emitters, which account for 19% of O&G emissions, produces a emission inventory that is not statistically different than top-down regional emission estimates. Chapter 3 describes a helicopter-based survey of over 8,000 well pads in seven basins with infrared optical gas imaging to assess high emission sources. Four percent of sites are observed to have high emissions with over 90% of observed sources from tanks. The occurrence of high emissions is weakly correlated to site parameters and the best statistical model explains only 14% of variance, which demonstrates that the occurrence of super-emitters is primarily stochastic. Chapter 4 presents a Gaussian dispersion model for optimizing the placement of continuous leak detection systems at three example well pads. The model demonstrates that large leaks can be detected quickly with first generation systems. Continuous leak detection can be used in the near future to cost-effectively mitigate methane emissions from O&G super-emitters.
Decoy-state quantum key distribution with polarized photons over 200 km.
Liu, Yang; Chen, Teng-Yun; Wang, Jian; Cai, Wen-Qi; Wan, Xu; Chen, Luo-Kan; Wang, Jin-Hong; Liu, Shu-Bin; Liang, Hao; Yang, Lin; Peng, Cheng-Zhi; Chen, Kai; Chen, Zeng-Bing; Pan, Jian-Wei
2010-04-12
We report an implementation of decoy-state quantum key distribution (QKD) over 200 km optical fiber cable through photon polarization encoding. This is achieved by constructing the whole QKD system operating at 320 MHz repetition rate, and developing high-speed transmitter and receiver modules. A novel and economic way of synchronization method is designed and incorporated into the system, which allows to work at a low frequency of 40kHz and removes the use of highly precise clock. A final key rate of 15 Hz is distributed within the experimental time of 3089 seconds, by using super-conducting single photon detectors. This is longest decoy-state QKD yet demonstrated up to date. It helps to make a significant step towards practical secure communication in long-distance scope.
Murray, Matthew J; Ogden, Hannah M; Mullin, Amy S
2017-10-21
An optical centrifuge is used to generate an ensemble of CO 2 super rotors with oriented angular momentum. The collision dynamics and energy transfer behavior of the super rotor molecules are investigated using high-resolution transient IR absorption spectroscopy. New multipass IR detection provides improved sensitivity to perform polarization-dependent transient studies for rotational states with 76 ≤ J ≤ 100. Polarization-dependent measurements show that the collision-induced kinetic energy release is spatially anisotropic and results from both near-resonant energy transfer between super rotor molecules and non-resonant energy transfer between super rotors and thermal molecules. J-dependent studies show that the extent and duration of the orientational anisotropy increase with rotational angular momentum. The super rotors exhibit behavior akin to molecular gyroscopes, wherein molecules with larger amounts of angular momentum are less likely to change their angular momentum orientation through collisions.
NASA Astrophysics Data System (ADS)
Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.
2017-10-01
An optical centrifuge is used to generate an ensemble of CO2 super rotors with oriented angular momentum. The collision dynamics and energy transfer behavior of the super rotor molecules are investigated using high-resolution transient IR absorption spectroscopy. New multipass IR detection provides improved sensitivity to perform polarization-dependent transient studies for rotational states with 76 ≤ J ≤ 100. Polarization-dependent measurements show that the collision-induced kinetic energy release is spatially anisotropic and results from both near-resonant energy transfer between super rotor molecules and non-resonant energy transfer between super rotors and thermal molecules. J-dependent studies show that the extent and duration of the orientational anisotropy increase with rotational angular momentum. The super rotors exhibit behavior akin to molecular gyroscopes, wherein molecules with larger amounts of angular momentum are less likely to change their angular momentum orientation through collisions.
Zirconia coating stabilized super-iron alkaline cathodes
NASA Astrophysics Data System (ADS)
Yu, Xingwen; Licht, Stuart
A low-level zirconia coating significantly stabilizes high energy alkaline super-iron cathodes, and improves the energy storage capacity of super-iron batteries. Zirconia coating is derived from ZrCl 4 in an organic medium through the conversion of ZrCl 4 to ZrO 2. In alkaline battery system, ZrO 2 provides an intact shield for the cathode materials and the hydroxide shuttle through the coating sustains alkaline cathode redox chemistry. Most super-iron cathodes are solid-state stable, such as K 2FeO 4 and Cs 2FeO 4, but tend to be passivated in alkaline electrolyte due to the formation of Fe(III) over layer. Zirconia coating effectively enhances the stability of these super-iron cathodes. However, for solid-state unstable super-iron cathode (e.g. BaFeO 4), only a little stabilization effect of zirconia coating is observed.
Super-Refractory Status Epilepticus: Report of a Case and Review of the Literature.
Lapenta, Leonardo; Frisullo, Giovanni; Vollono, Catello; Brunetti, Valerio; Giannantoni, Nadia Mariagrazia; Sandroni, Claudio; Di Lella, Giuseppe; Della Marca, Giacomo
2015-10-01
Super-refractory status epilepticus (SE; ie, SE continuing or recurring despite 24 hours of general anesthesia) is a severe condition with high percentage of mortality and morbidity. Usually, this condition occurs because of serious brain damage; nevertheless, some patients develop super-refractory SE without identifiable etiology. Although not uncommonly encountered in neurointensive care, scientific data on this condition are still lacking in terms of treatment and prognosis. Herein, we report a case of super-refractory SE with recovery after 50 days, despite electroencephalographic (EEG) and magnetic resonance imaging (MRI) signs traditionally related to poor prognosis. A review of the literature on super-refractory SE is also presented. © EEG and Clinical Neuroscience Society (ECNS) 2014.
NASA Astrophysics Data System (ADS)
Chen, Daming; Chen, Zhuo; Wang, Guijuan; Chen, Yong; Li, Yuanxun; Liu, Yingli
2017-12-01
The microstructure, magnetic and millimeter-wave properties of high oriented barium hexaferrite (BaAlxFe12-xO19) thin films with Al doping level x from 0 to 2 are reported. The films were grown on Pt/TiO2/SiO2/Si substrate by Sol-gel method. It is found that with increasing x from 0 to 2 the hexagonal grain disappear, together with Curie temperature dropped from 449 °C to 332 °C and saturated magnetization (4πMs) decreased from 3.8 kG to 1.9 kG, it is attributed to the fact that the Fe ions were substituted by non-magnetic Al ions, leading to the Fe3+-O-Fe3+ super-exchange interaction became weak. The ferromagnetic resonance (FMR) measurement showed that the FMR linewidths is as low as 113 Oe @ 58 GHz, and the FMR frequency shifted to higher frequency range when increasing Al doping level. These result offer the potential application of barium ferrite thin films in tunable millimeter wave devices such as filter, circulator and isolator.
Evaluation of super-water reducers for highway applications
NASA Astrophysics Data System (ADS)
Whiting, D.
1981-03-01
Super-water reducers were characterized and evaluated as potential candidates for production of low water to cement ratio, high strength concretes for highway construction applications. Admixtures were composed of either naphthalene or melamine sulfonated formaldehyde condensates. A mini-slump procedure was used to assess dosage requirements and behavior of workability with time of cement pastes. Required dosage was found to be a function of tricalcium aluminate content, alkali content, and fineness of the cement. Concretes exhibited high rates of slump loss when super-water reducers were used. The most promising area of application of these products appears to be in production of dense, high cement content concrete using mobile concrete mixer/transporters.
NASA Astrophysics Data System (ADS)
Baddeley, L. J.; Haggstrøm, I.; Yeoman, T. K.; Rietveld, M.
2012-01-01
We present the first observations of heater-induced simultaneous topside and bottomside sporadic E layer enhancements at very high latitudes (78.15°N) using the Space Plasma Exploration by Active Radar (SPEAR) heating facility and the European Incoherent Scatter (EISCAT) Svalbard Radar. During the experiment the SPEAR heating facility was transmitting with O-mode polarization in a field-aligned direction with a constant effective radiated power of ˜16 MW. Results show distinct heater-induced enhancements in both the ion and plasma line spectra. The plasma line enhancements are observed at the SPEAR heater frequency of 4.45 MHz. The plasma line observations represent the highest spatial resolution data (100 m) obtained of such heater-induced enhancements and indicate simultaneous enhancements at both the topside and bottomside of the layer, respectively (located at ˜107.5 and 109 km altitude, respectively). It is postulated that the results represent evidence of O- to Z-mode conversion of the heater wave occurring at the bottom of the E layer, allowing propagation through the layer resulting in simultaneous topside enhancements. The Z-mode enhancements are observed outside the Spitze angle, which is thought to be a result of field-aligned irregularities causing an increase in angular extent of the observations. Additional data from the Super Dual Auroral Radar Network (SuperDARN) HF Finland radar are also shown, which indicate that upon a thinning of the sporadic E layer, the heater beam propagated into the F region, where it induced artificial field-aligned irregularities.
NASA Astrophysics Data System (ADS)
Tang, Fei; Zou, Xiaolei
2017-12-01
The Microwave Radiation Imager (MWRI) on board Chinese Fengyun-3 (FY-3) satellites provides measurements at 10.65, 18.7, 23.8, 36.5, and 89.0 GHz with both horizontal and vertical polarization channels. Brightness temperature measurements of those channels with their central frequencies higher than 19 GHz from satellite-based microwave imager radiometers had traditionally been used to retrieve cloud liquid water path (LWP) over ocean. The results show that the lowest frequency channels are the most appropriate for retrieving LWP when its values are large. Therefore, a modified LWP retrieval algorithm is developed for retrieving LWP of different magnitudes involving not only the high frequency channels but also the lowest frequency channels of FY-3 MWRI. The theoretical estimates of the LWP retrieval errors are between 0.11 and 0.06 mm for 10.65- and 18.7-GHz channels and between 0.02 and 0.04 mm for 36.5- and 89.0-GHz channels. It is also shown that the brightness temperature observations at 10.65 GHz can be utilized to better retrieve the LWP greater than 3 mm in the eyewall region of Super Typhoon Neoguri (2014). The spiral structure of clouds within and around Typhoon Neoguri can be well captured by combining the LWP retrievals from different frequency channels.
Bahuaud, D; Mørkøre, T; Langsrud, Ø; Sinnes, K; Veiseth, E; Ofstad, R; Thomassen, M S
2008-11-15
The aim of this study was to evaluate the impact of super-chilling on the quality of Atlantic salmon (Salmo salar) pre-rigor fillets. The fillets were kept for 45min in a super-chilling tunnel at -25°C with an air speed in the tunnel at 2.5m/s, to reach a fillet core temperature of -1.5°C, prior to ice storage in a cold room for 4 weeks. Super-chilling seemed to form intra- and extracellular ice crystals in the upper layer of the fillets and prevent myofibre contraction. Lysosome breakages followed by release of cathepsin B and L during storage and myofibre-myofibre detachments were accelerated in the super-chilled fillets. Super-chilling resulted in higher liquid leakage and increased myofibre breakages in the fillets, while texture values of fillets measured instrumentally were not affected by super-chilling one week after treatment. Optimisation of the super-chilling technique is needed to avoid the formation of ice crystals, which may cause irreversible destruction of the myofibres, in order to obtain high quality products. Copyright © 2008 Elsevier Ltd. All rights reserved.
Traenkle, Bjoern; Rothbauer, Ulrich
2017-01-01
Single-domain antibodies (sdAbs) have substantially expanded the possibilities of advanced cellular imaging such as live-cell or super-resolution microscopy to visualize cellular antigens and their dynamics. In addition to their unique properties including small size, high stability, and solubility in many environments, sdAbs can be efficiently functionalized according to the needs of the respective imaging approach. Genetically encoded intrabodies fused to fluorescent proteins (chromobodies) have become versatile tools to study dynamics of endogenous proteins in living cells. Additionally, sdAbs conjugated to organic dyes were shown to label cellular structures with high density and minimal fluorophore displacement making them highly attractive probes for super-resolution microscopy. Here, we review recent advances of the chromobody technology to visualize localization and dynamics of cellular targets and the application of chromobody-based cell models for compound screening. Acknowledging the emerging importance of super-resolution microscopy in cell biology, we further discuss advantages and challenges of sdAbs for this technology.
Variable-intercept panel model for deformation zoning of a super-high arch dam.
Shi, Zhongwen; Gu, Chongshi; Qin, Dong
2016-01-01
This study determines dam deformation similarity indexes based on an analysis of deformation zoning features and panel data clustering theory, with comprehensive consideration to the actual deformation law of super-high arch dams and the spatial-temporal features of dam deformation. Measurement methods of these indexes are studied. Based on the established deformation similarity criteria, the principle used to determine the number of dam deformation zones is constructed through entropy weight method. This study proposes the deformation zoning method for super-high arch dams and the implementation steps, analyzes the effect of special influencing factors of different dam zones on the deformation, introduces dummy variables that represent the special effect of dam deformation, and establishes a variable-intercept panel model for deformation zoning of super-high arch dams. Based on different patterns of the special effect in the variable-intercept panel model, two panel analysis models were established to monitor fixed and random effects of dam deformation. Hausman test method of model selection and model effectiveness assessment method are discussed. Finally, the effectiveness of established models is verified through a case study.
Motion adaptive Kalman filter for super-resolution
NASA Astrophysics Data System (ADS)
Richter, Martin; Nasse, Fabian; Schröder, Hartmut
2011-01-01
Superresolution is a sophisticated strategy to enhance image quality of both low and high resolution video, performing tasks like artifact reduction, scaling and sharpness enhancement in one algorithm, all of them reconstructing high frequency components (above Nyquist frequency) in some way. Especially recursive superresolution algorithms can fulfill high quality aspects because they control the video output using a feed-back loop and adapt the result in the next iteration. In addition to excellent output quality, temporal recursive methods are very hardware efficient and therefore even attractive for real-time video processing. A very promising approach is the utilization of Kalman filters as proposed by Farsiu et al. Reliable motion estimation is crucial for the performance of superresolution. Therefore, robust global motion models are mainly used, but this also limits the application of superresolution algorithm. Thus, handling sequences with complex object motion is essential for a wider field of application. Hence, this paper proposes improvements by extending the Kalman filter approach using motion adaptive variance estimation and segmentation techniques. Experiments confirm the potential of our proposal for ideal and real video sequences with complex motion and further compare its performance to state-of-the-art methods like trainable filters.
Quantification of resolution in multiplanar reconstructions for digital breast tomosynthesis
NASA Astrophysics Data System (ADS)
Vent, Trevor L.; Acciavatti, Raymond J.; Kwon, Young Joon; Maidment, Andrew D. A.
2016-03-01
Multiplanar reconstruction (MPR) in digital breast tomosynthesis (DBT) allows tomographic images to be portrayed in various orientations. We have conducted research to determine the resolution of tomosynthesis MPR. We built a phantom that houses a star test pattern to measure resolution. This phantom provides three rotational degrees of freedom. The design consists of two hemispheres with longitudinal and latitudinal grooves that reference angular increments. When joined together, the hemispheres form a dome that sits inside a cylindrical encasement. The cylindrical encasement contains reference notches to match the longitudinal and latitudinal grooves that guide the phantom's rotations. With this design, any orientation of the star-pattern can be analyzed. Images of the star-pattern were acquired using a DBT mammography system at the Hospital of the University of Pennsylvania. Images taken were reconstructed and analyzed by two different methods. First, the maximum visible frequency (in line pairs per millimeter) of the star test pattern was measured. Then, the contrast was calculated at a fixed spatial frequency. These analyses confirm that resolution decreases with tilt relative to the breast support. They also confirm that resolution in tomosynthesis MPR is dependent on object orientation. Current results verify that the existence of super-resolution depends on the orientation of the frequency; the direction parallel to x-ray tube motion shows super-resolution. In conclusion, this study demonstrates that the direction of the spatial frequency relative to the motion of the x-ray tube is a determinant of resolution in MPR for DBT.
NASA Technical Reports Server (NTRS)
Clausen, L. B. N.; Baker, J. B. H.; Sazykin, S.; Ruohoniemi, J. M.; Greenwald, R. A.; Thomas, E. J.; Shepherd, S. G.; Talaat, E. R.; Bristow, W. A.; Zheng, Y.;
2012-01-01
We present simultaneous measurements of flow velocities inside a subauroral polarization stream (SAPS) made by six midlatitude high-frequency SuperDARN radars. The instantaneous observations cover three hours of universal time and six hours of magnetic local time (MLT). From velocity variations across the field-of-view of the radars we infer the local 2D flow direction at three different longitudes. We find that the local flow direction inside the SAPS channel is remarkably constant over the course of the event. The flow speed, however, shows significant temporal and spatial variations. After correcting for the radar look direction we are able to accurately determine the dependence of the SAPS velocity on magnetic local time. We find that the SAPS velocity variation with magnetic local time is best described by an exponential function. The average velocity at 00 MLT was 1.2 km/s and it decreased with a spatial e-folding scale of two hours of MLT toward the dawn sector. We speculate that the longitudinal distribution of pressure gradients in the ring current is responsible for this dependence and find these observations in good agreement with results from ring current models. Using TEC measurements we find that the high westward velocities of the SAPS are - as expected - located in a region of low TEC values, indicating low ionospheric conductivities.
The superTIGER instrument: Measurement of elemental abundances of ultra-heavy galactic cosmic rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binns, W. R.; Bose, R. G.; Braun, D. L.
2014-06-10
The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from {sub 10}Ne to {sub 40}Zr with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z ≤ 60 and measures the energy spectra of the more abundant elements for Z ≤ 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible andmore » to reach as high an altitude as possible, flying on a standard long-duration 1.11 million m{sup 3} balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 × 10{sup 6} cosmic-ray nuclei with Z ≥ 10, including ∼1300 with Z > 29 and ∼60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.« less
THE SuperTIGER Instrument: Measurement of Elemental Abundances of Ultra-Heavy Galactic Cosmic Rays
NASA Technical Reports Server (NTRS)
Binns, W. R.; Bose, R. G.; Braun, D. L.; Brandt, T. J.; Daniels, W. M.; DowKonnt, P. F.; Fitzsimmons, S. P.; Hahne, D. J.; Hams, T.; Israel, M. H.;
2014-01-01
The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from Ne-10 to Zr-40 with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z < or = 60 and measures the energy spectra of the more abundant elements for Z < or = 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible and to reach as high an altitude as possible, flying on a standard long-duration 1.11 million cu m balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 x 10(exp 6) cosmic-ray nuclei with Z > or = 10, including approx.1300 with Z > 29 and approx.60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.
Identifying Galactic Cosmic Ray Origins With Super-TIGER
NASA Technical Reports Server (NTRS)
deNolfo, Georgia; Binns, W. R.; Israel, M. H.; Christian, E. R.; Mitchell, J. W.; Hams, T.; Link, J. T.; Sasaki, M.; Labrador, A. W.; Mewaldt, R. A.;
2009-01-01
Super-TIGER (Super Trans-Iron Galactic Element Recorder) is a new long-duration balloon-borne instrument designed to test and clarify an emerging model of cosmic-ray origins and models for atomic processes by which nuclei are selected for acceleration. A sensitive test of the origin of cosmic rays is the measurement of ultra heavy elemental abundances (Z > or equal 30). Super-TIGER is a large-area (5 sq m) instrument designed to measure the elements in the interval 30 < or equal Z < or equal 42 with individual-element resolution and high statistical precision, and make exploratory measurements through Z = 60. It will also measure with high statistical accuracy the energy spectra of the more abundant elements in the interval 14 < or equal Z < or equal 30 at energies 0.8 < or equal E < or equal 10 GeV/nucleon. These spectra will give a sensitive test of the hypothesis that microquasars or other sources could superpose spectral features on the otherwise smooth energy spectra previously measured with less statistical accuracy. Super-TIGER builds on the heritage of the smaller TIGER, which produced the first well-resolved measurements of elemental abundances of the elements Ga-31, Ge-32, and Se-34. We present the Super-TIGER design, schedule, and progress to date, and discuss the relevance of UH measurements to cosmic-ray origins.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-02
... the Space Coast Super Boat Grand Prix, a series of high-speed boat races. The event is scheduled to take place on Saturday and Sunday, May 18-19, 2013, and approximately 30 high-speed race boats are... inherent dangers involved with a high-speed race and the number of vessels involved, it is in the best...
Robust video super-resolution with registration efficiency adaptation
NASA Astrophysics Data System (ADS)
Zhang, Xinfeng; Xiong, Ruiqin; Ma, Siwei; Zhang, Li; Gao, Wen
2010-07-01
Super-Resolution (SR) is a technique to construct a high-resolution (HR) frame by fusing a group of low-resolution (LR) frames describing the same scene. The effectiveness of the conventional super-resolution techniques, when applied on video sequences, strongly relies on the efficiency of motion alignment achieved by image registration. Unfortunately, such efficiency is limited by the motion complexity in the video and the capability of adopted motion model. In image regions with severe registration errors, annoying artifacts usually appear in the produced super-resolution video. This paper proposes a robust video super-resolution technique that adapts itself to the spatially-varying registration efficiency. The reliability of each reference pixel is measured by the corresponding registration error and incorporated into the optimization objective function of SR reconstruction. This makes the SR reconstruction highly immune to the registration errors, as outliers with higher registration errors are assigned lower weights in the objective function. In particular, we carefully design a mechanism to assign weights according to registration errors. The proposed superresolution scheme has been tested with various video sequences and experimental results clearly demonstrate the effectiveness of the proposed method.
Face Recognition by Metropolitan Police Super-Recognisers.
Robertson, David J; Noyes, Eilidh; Dowsett, Andrew J; Jenkins, Rob; Burton, A Mike
2016-01-01
Face recognition is used to prove identity across a wide variety of settings. Despite this, research consistently shows that people are typically rather poor at matching faces to photos. Some professional groups, such as police and passport officers, have been shown to perform just as poorly as the general public on standard tests of face recognition. However, face recognition skills are subject to wide individual variation, with some people showing exceptional ability-a group that has come to be known as 'super-recognisers'. The Metropolitan Police Force (London) recruits 'super-recognisers' from within its ranks, for deployment on various identification tasks. Here we test four working super-recognisers from within this police force, and ask whether they are really able to perform at levels above control groups. We consistently find that the police 'super-recognisers' perform at well above normal levels on tests of unfamiliar and familiar face matching, with degraded as well as high quality images. Recruiting employees with high levels of skill in these areas, and allocating them to relevant tasks, is an efficient way to overcome some of the known difficulties associated with unfamiliar face recognition.
FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data
NASA Astrophysics Data System (ADS)
Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael
2014-04-01
Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics.
FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data
Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael
2014-01-01
Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics. PMID:24694686
Hierarchy within the mammary STAT5-driven Wap super-enhancer.
Shin, Ha Youn; Willi, Michaela; HyunYoo, Kyung; Zeng, Xianke; Wang, Chaochen; Metser, Gil; Hennighausen, Lothar
2016-08-01
Super-enhancers comprise dense transcription factor platforms highly enriched for active chromatin marks. A paucity of functional data led us to investigate the role of super-enhancers in the mammary gland, an organ characterized by exceptional gene regulatory dynamics during pregnancy. ChIP-seq analysis for the master regulator STAT5A, the glucocorticoid receptor, H3K27ac and MED1 identified 440 mammary-specific super-enhancers, half of which were associated with genes activated during pregnancy. We interrogated the Wap super-enhancer, generating mice carrying mutations in STAT5-binding sites within its constituent enhancers. Individually, the most distal site displayed the greatest enhancer activity. However, combinatorial mutation analysis showed that the 1,000-fold induction in gene expression during pregnancy relied on all enhancers. Disabling the binding sites of STAT5, NFIB and ELF5 in the proximal enhancer incapacitated the entire super-enhancer. Altogether, these data suggest a temporal and functional enhancer hierarchy. The identification of mammary-specific super-enhancers and the mechanistic exploration of the Wap locus provide insights into the regulation of cell-type-specific expression of hormone-sensing genes.
Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian
2017-01-01
It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images. PMID:29062159
Super-SERS-active and highly effective antimicrobial Ag nanodendrites
NASA Astrophysics Data System (ADS)
Li, H. B.; Liu, P.; Liang, Y.; Xiao, J.; Yang, G. W.
2012-07-01
We have developed simple and green electrochemistry to synthesize Ag nanostructures with high purity, good crystallinity and smooth surface for applications as super-SERS (surface-enhanced Raman scattering), SERS-active substrates and with highly effective antimicrobial activities. This synthesis takes place in a clean and slow reaction environment without any chemical additives, which ensures an ultrahigh active surface of the as-synthesized Ag nanostructures owing to their purity, good crystallinity and smooth morphology. Using this method, we synthesized nearly perfect Ag nanodendrites (NDs), which exhibit super-SERS sensitivity when they are used to detect the SERS spectra of rhodamine 6G at concentrations as low as 5 × 10-16 M, and have an ultrahigh electromagnetic (EM) enhancement factor of the order of 1013, breaking through the theoretical limit of EM enhancement. Meanwhile, the as-synthesized Ag NDs possess highly effective antimicrobial activities for Escherichia coli, Candida albicans and Staphylococcus aureus, which are over 10 times that of silver nanoparticles. Additionally, the basic physics and chemistry involved in the fabrication of Ag nanostructures are pursued. These investigations show that silver nanostructures with highly active surfaces can make the most of Ag nanostructures functioning as super-SERS-active substrates and multiple antibiotics.
Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian
2017-03-01
It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images.
NASA Astrophysics Data System (ADS)
Nakagawa, S.; Kneafsey, T. J.; Daley, T. M.; Freifeld, B. M.
2010-12-01
Geological sequestration of CO2 requires accurate monitoring of the spatial distribution and pore-level saturation of super-critical (sc-) CO2 for both optimizing reservoir performance and satisfying regulatory requirements. Fortunately, thanks to the high compliance of sc-CO2 compared to brine under in-situ temperatures and pressures, injection of sc-CO2 into initially brine-saturated rock will lead to significant reductions in seismic velocity and increased attenuation of seismic waves. Because of the frequency-dependent nature of this relationship, its determination requires testing at low frequencies (10 Hz-10 kHz) that are not usually employed in the laboratory. In this paper, we present the changes in seismic wave velocities and attenuation in sandstone cores during sc-CO2 core flooding and during subsequent brine re-injection and CO2 removal via convection and dissolution. The experiments were conducted at frequencies near 1 kHz using a variation of the acoustic resonant bar technique, called the Split Hopkinson Resonant Bar (SHRB) method, which allows measurements under elevated temperatures and pressures (up to 120°C, 35 MPa), using a short (several cm long) core. Concurrent x-ray CT scanning reveals sc-CO2 saturation and distribution within the cores. The injection experiments revealed different CO2 patch size distributions within the cores between the injection phase and the convection/dissolution phase of the tests. The difference was reflected particularly in the P-wave velocities and attenuation. Also, compared to seismic responses, which were separately measured during a gas CO2 injection/drainage test, the seismic responses from the sc-CO2 test showed measurable changes over a wider range of brine saturation. Considering the proximity of the frequency band employed by our measurement to the field seismic measurements, this result implies that seismic monitoring of sc-CO2, if constrained by laboratory data and interpreted using a proper petrophysical model, can be conducted with greater accuracy for determining the sc-CO2 saturation and distribution within reservoir rock, than typically predicted by the Gassmann model and/or by a natural gas reservoir analogue.
Chkhalo, N I; Churin, S A; Pestov, A E; Salashchenko, N N; Vainer, Yu A; Zorina, M V
2014-08-25
The main problems and the approach used by the authors for roughness metrology of super-smooth surfaces designed for diffraction-quality X-ray mirrors are discussed. The limitations of white light interferometry and the adequacy of the method of atomic force microscopy for surface roughness measurements in a wide range of spatial frequencies are shown and the results of the studies of the effect of etching by argon and xenon ions on the surface roughness of fused quartz and optical ceramics, Zerodur, ULE and Sitall, are given. Substrates of fused quartz and ULE with the roughness, satisfying the requirements of diffraction-quality optics intended for working in the spectral range below 10 nm, are made.
Stixrude, Lars
2014-04-28
We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.
NASA Astrophysics Data System (ADS)
Ma, Hao; Li, Chen; Tang, Shixiong; Yan, Jiaqiang; Alatas, Ahmet; Lindsay, Lucas; Sales, Brian C.; Tian, Zhiting
2016-12-01
Cubic boron arsenide (BAs) was predicted to have an exceptionally high thermal conductivity (k ) ˜2000 W m-1K-1 at room temperature, comparable to that of diamond, based on first-principles calculations. Subsequent experimental measurements, however, only obtained a k of ˜200 W m-1K-1 . To gain insight into this discrepancy, we measured phonon dispersion of single-crystal BAs along high symmetry directions using inelastic x-ray scattering and compared these with first-principles calculations. Based on the measured phonon dispersion, we have validated the theoretical prediction of a large frequency gap between acoustic and optical modes and bunching of acoustic branches, which were considered the main reasons for the predicted ultrahigh k . This supports its potential to be a super thermal conductor if very-high-quality single-crystal samples can be synthesized.
Resolution enhancement of low-quality videos using a high-resolution frame
NASA Astrophysics Data System (ADS)
Pham, Tuan Q.; van Vliet, Lucas J.; Schutte, Klamer
2006-01-01
This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of corresponding LR-HR pairs of image patches from the HR still image, high-frequency details are transferred from the HR source to the LR video. The DCT-domain algorithm is much faster than example-based SR in spatial domain 6 because of a reduction in search dimensionality, which is a direct result of the compact and uncorrelated DCT representation. Fast searching techniques like tree-structure vector quantization 16 and coherence search1 are also key to the improved efficiency. Preliminary results on MJPEG sequence show promising result of the DCT-domain SR synthesis approach.
Ma, Hao; Li, Chen; Tang, Shixiong; ...
2016-12-14
Cubic boron arsenide (BAs) was predicted to have an exceptionally high thermal conductivity (k) ~2000 Wm -1K -1 at room temperature, comparable to that of diamond, based on first-principles calculations. Subsequent experimental measurements, however, only obtained a k of ~200 Wm-1K-1. To gain insight into this discrepancy, we measured phonon dispersion of single crystal BAs along high symmetry directions using inelastic x-ray scattering (IXS) and compared these with first-principles calculations. Based on the measured phonon dispersion, we have validated the theoretical prediction of a large frequency gap between acoustic and optical modes and bunching of acoustic branches, which were consideredmore » the main reasons for the predicted ultrahigh k. This supports its potential to be a super thermal conductor if very high-quality single crystal samples can be synthesized.« less
Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.
Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke
2015-06-11
The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.
NASA Astrophysics Data System (ADS)
Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars; Sesana, Alberto; Taylor, Stephen R.
2017-11-01
Pulsar timing arrays (PTAs) around the world are using the incredible consistency of millisecond pulsars to measure low-frequency gravitational waves from (super)massive black hole (MBH) binaries. We use comprehensive MBH merger models based on cosmological hydrodynamic simulations to predict the spectrum of the stochastic gravitational wave background (GWB). We use real time-of-arrival specifications from the European, NANOGrav, Parkes, and International PTA (IPTA) to calculate realistic times to detection of the GWB across a wide range of model parameters. In addition to exploring the parameter space of environmental hardening processes (in particular: stellar scattering efficiencies), we have expanded our models to include eccentric binary evolution which can have a strong effect on the GWB spectrum. Our models show that strong stellar scattering and high characteristic eccentricities enhance the GWB strain amplitude near the PTA-sensitive `sweet-spot' (near the frequency f = 1 yr-1), slightly improving detection prospects in these cases. While the GWB amplitude is degenerate between cosmological and environmental parameters, the location of a spectral turnover at low frequencies (f ≲ 0.1 yr-1) is strongly indicative of environmental coupling. At high frequencies (f ≳ 1 yr-1), the GWB spectral index can be used to infer the number density of sources and possibly their eccentricity distribution. Even with merger models that use pessimistic environmental and eccentricity parameters, if the current rate of PTA expansion continues, we find that the IPTA is highly likely to make a detection within about 10 yr.
SuperHERO: the next generation hard x-ray HEROES telescope
NASA Astrophysics Data System (ADS)
Gaskin, Jessica A.; Christe, Steven D.; Elsner, Ronald F.; Kilaru, Kiranmayee; Ramsey, Brian D.; Seller, Paul; Shih, Albert Y.; Stuchlik, David W.; Swartz, Douglas A.; Tennant, Allyn F.; Weddendorf, Bruce; Wilson, Matthew D.; Wilson-Hodge, Colleen A.
2014-07-01
SuperHERO is a new high-resolution, Long Duration Balloon-capable, hard-x-ray (20-75 keV) focusing telescope for making novel astrophysics and heliophysics observations. The SuperHERO payload, currently in its proposal phase, is being developed jointly by the Astrophysics Office at NASA Marshall Space Flight Center and the Solar Physics Laboratory and the Wallops Flight Facility at NASA Goddard Space Flight Center. SuperHERO is a follow-on payload to the High Energy Replicated Optics to Explore the Sun (HEROES) balloon-borne telescope that recently flew from Fort Sumner, NM in September of 2013, and will utilize many of the same features. Significant enhancements to the HEROES payload will be made, including the addition of optics, novel solid-state multi-pixel CdTe detectors, integration of the Wallops Arc-Second Pointer and a significantly lighter gondola suitable for Long Duration Flights.
On Super-Resolution and the MUSIC Algorithm,
1985-05-01
SUPER-RESOLUTION AND THE MUSIC ALGORITHM AUTHOR: G D de Villiers DATE: May 1985 SUMMARY Simulation results for phased array signal processing using...the MUSIC algorithm are presented. The model used is more realistic than previous ones and it gives an indication as to how the algorithm would perform...resolution ON SUPER-RESOLUTION AND THE MUSIC ALGORITHM 1. INTRODUCTION At present there is a considerable amount of interest in "high-resolution" b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Upasana; Mukhopadhyay, Banibrata, E-mail: upasana@physics.iisc.ernet.in, E-mail: bm@physics.iisc.ernet.in
The topic of magnetized super-Chandrasekhar white dwarfs is in the limelight, particularly in the last few years, since our proposal of their existence. By full-scale general relativistic magnetohydrodynamic (GRMHD) numerical analysis, we confirm in this work the existence of stable, highly magnetized, significantly super-Chandrasekhar white dwarfs with mass more than 3 solar mass. While a poloidal field geometry renders the white dwarfs oblate, a toroidal field makes them prolate retaining an overall quasi-spherical shape, as speculated in our earlier work. These white dwarfs are expected to serve as the progenitors of over-luminous type Ia supernovae.
Experimental evidence of super-resolution better than λ/105 with positive refraction
NASA Astrophysics Data System (ADS)
Miñano, Juan C.; Sánchez-Dehesa, José; González, Juan C.; Benítez, P.; Grabovičkić, D.; Carbonell, Jorge; Ahmadpanahi, H.
2014-03-01
Super-resolution (SR) systems surpassing the Abbe diffraction limit have been theoretically and experimentally demonstrated using a number of different approaches and technologies: using materials with a negative refractive index, utilizing optical super-oscillation, using a resonant metalens, etc. However, recently it has been proved theoretically that in the Maxwell fish-eye lens (MFE), a device made of positive refractive index materials, the same phenomenon takes place. Moreover, using a simpler device equivalent to the MFE called the spherical geodesic waveguide (SGW), an SR of up to λ/3000 was simulated in COMSOL. Until now, only one piece of experimental evidence of SR with positive refraction has been reported (up to λ/5) for an MFE prototype working at microwave frequencies. Here, experimental results are presented for an SGW prototype showing an SR of up to λ/105. The SGW prototype consists of two concentric metallic spheres with an air space in between and two coaxial ports acting as an emitter and a receiver. The prototype has been analyzed in the range 1 GHz to 1.3 GHz.
Gustafsson, Nils; Culley, Siân; Ashdown, George; Owen, Dylan M.; Pereira, Pedro Matos; Henriques, Ricardo
2016-01-01
Despite significant progress, high-speed live-cell super-resolution studies remain limited to specialized optical setups, generally requiring intense phototoxic illumination. Here, we describe a new analytical approach, super-resolution radial fluctuations (SRRF), provided as a fast graphics processing unit-enabled ImageJ plugin. In the most challenging data sets for super-resolution, such as those obtained in low-illumination live-cell imaging with GFP, we show that SRRF is generally capable of achieving resolutions better than 150 nm. Meanwhile, for data sets similar to those obtained in PALM or STORM imaging, SRRF achieves resolutions approaching those of standard single-molecule localization analysis. The broad applicability of SRRF and its performance at low signal-to-noise ratios allows super-resolution using modern widefield, confocal or TIRF microscopes with illumination orders of magnitude lower than methods such as PALM, STORM or STED. We demonstrate this by super-resolution live-cell imaging over timescales ranging from minutes to hours. PMID:27514992
Hierarchy within the mammary STAT5-driven Wap super-enhancer
Zeng, Xianke; Wang, Chaochen; Metser, Gil; Hennighausen, Lothar
2016-01-01
Super-enhancers comprise of dense transcription factor platforms highly enriched for active chromatin marks. A paucity of functional data led us to investigate their role in the mammary gland, an organ characterized by exceptional gene regulatory dynamics during pregnancy. ChIP-Seq for the master regulator STAT5, the glucocorticoid receptor, H3K27ac and MED1, identified 440 mammary-specific super-enhancers, half of which were associated with genes activated during pregnancy. We interrogated the Wap super-enhancer, generating mice carrying mutations in STAT5 binding sites within its three constituent enhancers. Individually, only the most distal site displayed significant enhancer activity. However, combinatorial mutations showed that the 1,000-fold gene induction relied on all enhancers. Disabling the binding sites of STAT5, NFIB and ELF5 in the proximal enhancer incapacitated the entire super-enhancer, suggesting an enhancer hierarchy. The identification of mammary-specific super-enhancers and the mechanistic exploration of the Wap locus provide insight into the complexity of cell-specific and hormone-regulated genes. PMID:27376239
Moorthy, Sakthi D.; Davidson, Scott; Shchuka, Virlana M.; Singh, Gurdeep; Malek-Gilani, Nakisa; Langroudi, Lida; Martchenko, Alexandre; So, Vincent; Macpherson, Neil N.; Mitchell, Jennifer A.
2017-01-01
Transcriptional enhancers are critical for maintaining cell-type–specific gene expression and driving cell fate changes during development. Highly transcribed genes are often associated with a cluster of individual enhancers such as those found in locus control regions. Recently, these have been termed stretch enhancers or super-enhancers, which have been predicted to regulate critical cell identity genes. We employed a CRISPR/Cas9-mediated deletion approach to study the function of several enhancer clusters (ECs) and isolated enhancers in mouse embryonic stem (ES) cells. Our results reveal that the effect of deleting ECs, also classified as ES cell super-enhancers, is highly variable, resulting in target gene expression reductions ranging from 12% to as much as 92%. Partial deletions of these ECs which removed only one enhancer or a subcluster of enhancers revealed partially redundant control of the regulated gene by multiple enhancers within the larger cluster. Many highly transcribed genes in ES cells are not associated with a super-enhancer; furthermore, super-enhancer predictions ignore 81% of the potentially active regulatory elements predicted by cobinding of five or more pluripotency-associated transcription factors. Deletion of these additional enhancer regions revealed their robust regulatory role in gene transcription. In addition, select super-enhancers and enhancers were identified that regulated clusters of paralogous genes. We conclude that, whereas robust transcriptional output can be achieved by an isolated enhancer, clusters of enhancers acting on a common target gene act in a partially redundant manner to fine tune transcriptional output of their target genes. PMID:27895109
The distinguishing signature of Magnetic Penrose Process
NASA Astrophysics Data System (ADS)
Dadhich, Naresh; Tursunov, Arman; Ahmedov, Bobomurat; Stuchlík, Zdeněk
2018-04-01
In this Letter, we wish to point out that the distinguishing feature of Magnetic Penrose process (MPP) is its super high efficiency exceeding 100% (which was established in mid 1980s for discrete particle accretion) of extraction of rotational energy of a rotating black hole electromagnetically for a magnetic field of milli Gauss order. Another similar process, which is also driven by electromagnetic field, is Blandford-Znajek mechanism (BZ), which could be envisaged as high magnetic field limit MPP as it requires threshold magnetic field of order 104G. Recent simulation studies of fully relativistic magnetohydrodynamic flows have borne out super high efficiency signature of the process for high magnetic field regime; viz BZ. We would like to make a clear prediction that similar simulation studies of MHD flows for low magnetic field regime, where BZ would be inoperative, would also have super efficiency.
Schoenly, Joshua E; Seka, Wolf; Rechmann, Peter
2010-01-01
A frequency-doubled Ti:sapphire laser is shown to selectively ablate dental calculus. The optimal transverse shape of the laser beam, including its variability under water-cooling, is determined for selective ablation of dental calculus. Intensity profiles under various water-cooling conditions were optically observed. The 400-nm laser was coupled into a multimode optical fiber using an f = 2.5-cm lens and light-shaping diffuser. Water-cooling was supplied coaxially around the fiber. Five human tooth samples (four with calculus and one pristine) were irradiated perpendicular to the tooth surface while the tooth was moved back and forth at 0.3 mm/second, varying between 20 and 180 iterations. The teeth were imaged before and after irradiation using light microscopy with a flashing blue light-emitting diode (LED). An environmental scanning electron microscope imaged each tooth after irradiation. High-order super-Gaussian intensity profiles are observed at the output of a fiber coiled around a 4-in. diameter drum. Super-Gaussian beams have a more-homogenous fluence distribution than Gaussian beams and have a higher energy efficiency for selective ablation. Coaxial water-cooling does not noticeably distort the intensity distribution within 1 mm from the optical fiber. In contrast, lasers focused to a Gaussian cross section (< or =50-microm diameter) without fiber propagation and cooled by a water spray are heavily distorted and may lead to variable ablation. Calculus is preferentially ablated at high fluences (> or =2 J/cm(2)); below this fluence, stalling occurs because of photo-bleaching of the calculus. Healthy dental hard tissue is not removed at fluences < or =3 J/cm(2). Supplying laser light to a tooth using an optical fiber with coaxial water-cooling is determined to be the most appropriate method when selectively removing calculus with a frequency-doubled Ti:sapphire laser. Fluences over 2 J/cm(2) are required to remove calculus efficiently since photo-bleaching stalls calculus removal below that value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenly, J.E.; Seka. W.; Rechmann, P.
A frequency-doubled Ti:sapphire laser is shown to selectively ablate dental calculus. The optimal transverse shape of the laser beam, including its variability under water-cooling, is determined for selective ablation of dental calculus. Intensity profiles under various water-cooling conditions were optically observed. The 400-nm laser was coupled into a multimode optical fiber using an f = 2.5-cm lens and light-shaping diffuser. Water-cooling was supplied coaxially around the fiber. Five human tooth samples (four with calculus and one pristine) were irradiated perpendicular to the tooth surface while the tooth was moved back and forth at 0.3 mm/second, varying between 20 and 180more » iterations. The teeth were imaged before and after irradiation using light microscopy with a flashing blue light-emitting diode (LED). An environmental scanning electron microscope imaged each tooth after irradiation. High-order super-Gaussian intensity profiles are observed at the output of a fiber coiled around a 4-in. diameter drum. Super-Gaussian beams have a morehomogenous fluence distribution than Gaussian beams and have a higher energy efficiency for selective ablation. Coaxial water-cooling does not noticeably distort the intensity distribution within 1 mm from the optical fiber. In contrast, lasers focused to a Gaussian cross section (<=50-mm diameter) without fiber propagation and cooled by a water spray are heavily distorted and may lead to variable ablation. Calculus is preferentially ablated at high fluences (>= 2 J/cm^2); below this fluence, stalling occurs because of photo-bleaching of the calculus. Healthy dental hard tissue is not removed at fluences <=3 J/cm^2. Supplying laser light to a tooth using an optical fiber with coaxial water-cooling is determined to be the most appropriate method when selectively removing calculus with a frequency-doubled Ti:sapphire laser. Fluences over 2 J/cm^2 are required to remove calculus efficiently since photo-bleaching stalls calculus removal below that value.« less
Super-resolution Time-Lapse Seismic Waveform Inversion
NASA Astrophysics Data System (ADS)
Ovcharenko, O.; Kazei, V.; Peter, D. B.; Alkhalifah, T.
2017-12-01
Time-lapse seismic waveform inversion is a technique, which allows tracking changes in the reservoirs over time. Such monitoring is relatively computationally extensive and therefore it is barely feasible to perform it on-the-fly. Most of the expenses are related to numerous FWI iterations at high temporal frequencies, which is inevitable since the low-frequency components can not resolve fine scale features of a velocity model. Inverted velocity changes are also blurred when there is noise in the data, so the problem of low-resolution images is widely known. One of the problems intensively tackled by computer vision research community is the recovering of high-resolution images having their low-resolution versions. Usage of artificial neural networks to reach super-resolution from a single downsampled image is one of the leading solutions for this problem. Each pixel of the upscaled image is affected by all the pixels of its low-resolution version, which enables the workflow to recover features that are likely to occur in the corresponding environment. In the present work, we adopt machine learning image enhancement technique to improve the resolution of time-lapse full-waveform inversion. We first invert the baseline model with conventional FWI. Then we run a few iterations of FWI on a set of the monitoring data to find desired model changes. These changes are blurred and we enhance their resolution by using a deep neural network. The network is trained to map low-resolution model updates predicted by FWI into the real perturbations of the baseline model. For supervised training of the network we generate a set of random perturbations in the baseline model and perform FWI on the noisy data from the perturbed models. We test the approach on a realistic perturbation of Marmousi II model and demonstrate that it outperforms conventional convolution-based deblurring techniques.
Phillips, Benjamin U; Heath, Christopher J; Ossowska, Zofia; Bussey, Timothy J; Saksida, Lisa M
2017-09-01
Operant testing is a widely used and highly effective method of studying cognition in rodents. Performance on such tasks is sensitive to reinforcer strength. It is therefore advantageous to select effective reinforcers to minimize training times and maximize experimental throughput. To quantitatively investigate the control of behavior by different reinforcers, performance of mice was tested with either strawberry milkshake or a known powerful reinforcer, super saccharin (1.5% or 2% (w/v) saccharin/1.5% (w/v) glucose/water mixture). Mice were tested on fixed (FR)- and progressive-ratio (PR) schedules in the touchscreen-operant testing system. Under an FR schedule, both the rate of responding and number of trials completed were higher in animals responding for strawberry milkshake versus super saccharin. Under a PR schedule, mice were willing to emit similar numbers of responses for strawberry milkshake and super saccharin; however, analysis of the rate of responding revealed a significantly higher rate of responding by animals reinforced with milkshake versus super saccharin. To determine the impact of reinforcer strength on cognitive performance, strawberry milkshake and super saccharin-reinforced animals were compared on a touchscreen visual discrimination task. Animals reinforced by strawberry milkshake were significantly faster to acquire the discrimination than animals reinforced by super saccharin. Taken together, these results suggest that strawberry milkshake is superior to super saccharin for operant behavioral testing and further confirms that the application of response rate analysis to multiple ratio tasks is a highly sensitive method for the detection of behavioral differences relevant to learning and motivation.
NASA Astrophysics Data System (ADS)
De Marco, Massimo; Krása, Josef; Cikhardt, Jakub; Consoli, Fabrizio; De Angelis, Riccardo; Pfeifer, Miroslav; Krůs, Miroslav; Dostál, Jan; Margarone, Daniele; Picciotto, Antonino; Velyhan, Andriy; Klír, Daniel; Dudžák, Roman; Limpouch, Jiří; Korn, Georg
2018-01-01
During the interaction of high intense laser pulse with solid target, a large amount of hot electrons is produced and a giant Electromagnetic Pulse (EMP) is generated due to the current flowing into the system target-target holder, as well as due to the escaping charged particles in vacuum. EMP production for different target materials is investigated inside and outside the target chamber, using monopole antenna, super wide-band microstrip antenna and Moebius antenna. The EMP consists in a fast transient magnetic field lasting hundreds of nanosecond with frequencies ranging from MHz to tens of GHz. Measurements of magnetic field and return target current in the range of kA were carried out by an inductive target probe (Cikhardt J. et al. Rev. Sci. Instrum. 85 (2014) 103507).
Perspectives on super-shedding of Escherichia coli O157:H7 by cattle
USDA-ARS?s Scientific Manuscript database
Escherichia coli O157:H7 is a foodborne pathogen that causes illness in humans worldwide. Cattle are the primary reservoir of this bacterium with the concentration and frequency of E. coli O157:H7 shedding varying greatly among individuals. The term “supershedder” has been applied to cattle that sh...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goode, P.R.; Barrett, B.R.; Portilho, O.
1979-02-01
The earlier calculations of Goode and Barrett are repeated using the super-soft-core potential of Gogny, Pires, and de Tourreil. The particular third-order folded diagram which they calculated now converges in its intermediate-state energy summation, because of the suppression of the strong short-range repulsive effects present in earlier calculations.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-14
... Proposed Rule Change To Modify the NASDAQ Co-Location Super High Density Cabinet Monthly Fee May 8, 2012...- density cabinet monthly fee. The Exchange will implement the proposed change on May 1, 2012. The text of... The Exchange is modifying Rule 7034(a) by reducing its co-location super high-density cabinet on-going...
Optimal physiological structure of small neurons to guarantee stable information processing
NASA Astrophysics Data System (ADS)
Zeng, S. Y.; Zhang, Z. Z.; Wei, D. Q.; Luo, X. S.; Tang, W. Y.; Zeng, S. W.; Wang, R. F.
2013-02-01
Spike is the basic element for neuronal information processing and the spontaneous spiking frequency should be less than 1 Hz for stable information processing. If the neuronal membrane area is small, the frequency of neuronal spontaneous spiking caused by ion channel noise may be high. Therefore, it is important to suppress the deleterious spontaneous spiking of the small neurons. We find by simulation of stochastic neurons with Hodgkin-Huxley-type channels that the leakage system is critical and extremely efficient to suppress the spontaneous spiking and guarantee stable information processing of the small neurons. However, within the physiological limit the potassium system cannot do so. The suppression effect of the leakage system is super-exponential, but that of the potassium system is quasi-linear. With the minor physiological cost and the minimal consumption of metabolic energy, a slightly lower reversal potential and a relatively larger conductance of the leakage system give the optimal physiological structure to suppress the deleterious spontaneous spiking and guarantee stable information processing of small neurons, dendrites and axons.
Improving safety in high-speed work zones : a Super 70 study.
DOT National Transportation Integrated Search
2011-01-01
Super 70 was an urban reconstruction project (March-November 2007) along I-70 in the central part of Indianapolis. INDOT : applied in that project several innovative and traditional solutions. This study investigates the safety effect of the solution...
Separation of Non-metallic Inclusions from a Fe-Al-O Melt Using a Super-Gravity Field
NASA Astrophysics Data System (ADS)
Song, Gaoyang; Song, Bo; Guo, Zhancheng; Yang, Yuhou; Song, Mingming
2018-02-01
An innovative method for separating non-metallic inclusions from a high temperature melt using super gravity was systematically investigated. To explore the separation behavior of inclusion particles with densities less than that of metal liquid under a super-gravity field, a Fe-Al-O melt containing Al2O3 particles was treated with different gravity coefficients. Al2O3 particles migrated rapidly towards the reverse direction of the super gravity and gathered in the upper region of the sample. It was hard to find any inclusion particles with sizes greater than 2 μm in the middle and bottom areas. Additionally, the oxygen content in the middle region of the sample could be reduced to 0.0022 mass pct and the maximum removal rate of the oxygen content reached 61.4 pct. The convection in the melt along the direction of the super gravity was not generated by the super-gravity field, and the fluid velocity in the molten melt consisted only of the rotating tangential velocity. Moreover, the motion behavior of the Al2O3 particles was approximatively determined by Stokes' law along the direction of super gravity.
Cao, Fan; Fang, Yiwen; Tan, Hong Kee; Goh, Yufen; Choy, Jocelyn Yeen Hui; Koh, Bryan Thean Howe; Hao Tan, Jiong; Bertin, Nicolas; Ramadass, Aroul; Hunter, Ewan; Green, Jayne; Salter, Matthew; Akoulitchev, Alexandre; Wang, Wilson; Chng, Wee Joo; Tenen, Daniel G; Fullwood, Melissa J
2017-05-19
Stretched histone regions, such as super-enhancers and broad H3K4me3 domains, are associated with maintenance of cell identity and cancer. We connected super-enhancers and broad H3K4me3 domains in the K562 chronic myelogenous leukemia cell line as well as the MCF-7 breast cancer cell line with chromatin interactions. Super-enhancers and broad H3K4me3 domains showed higher association with chromatin interactions than their typical counterparts. Interestingly, we identified a subset of super-enhancers that overlap with broad H3K4me3 domains and show high association with cancer-associated genes including tumor suppressor genes. Besides cell lines, we could observe chromatin interactions by a Chromosome Conformation Capture (3C)-based method, in primary human samples. Several chromatin interactions involving super-enhancers and broad H3K4me3 domains are constitutive and can be found in both cancer and normal samples. Taken together, these results reveal a new layer of complexity in gene regulation by super-enhancers and broad H3K4me3 domains.
Properties of super stainless steels for orthodontic applications.
Oh, Keun-Taek; Kim, Young-Sik; Park, Yong-Soo; Kim, Kyoung-Nam
2004-05-15
Orthodontic stainless-steel appliances are considered to be corrosion resistant, but localized corrosion can occur in the oral cavity. This study was undertaken to evaluate the properties of super stainless steels in orthodontic applications. Accordingly, the metallurgical properties, mechanical properties, corrosion resistance, amount of the released nickel, cytotoxicity, and characteristics of the passive film were investigated. Corrosion resistances of the specimens were high and in the following order: super austenitic stainless steel (SR-50A) > super ferritic stainless steel (SFSS) = super duplex stainless steel (SR-6DX) > 316L SS > super martensitic stainless steel (SR-3Mo) in artificial saliva, 37 degrees C. At 500 mV (SCE), current densities of SR-50A, SFSS, SR-6DX, 316L SS, and SR-3Mo were 5.96 microA/cm(2), 20.3 microA/cm(2), 31.9 microA/cm(2), 805 microA/cm(2), and 5.36 mA/cm(2), respectively. Open circuit potentials of SR-50A, 316L SS, SR-6DX, SR-3Mo, and SFSS were - 0.2, - 0.22, - 0.24, - 0.43, and - 0.46 V (SCE), respectively. SR-50A, SFSS, and SR-6DX released below 3 ng/ml nickel for 8 weeks, and increased a little with immersion time, and 316L SS released about 3.5 ng/ml nickel, but SR-3Mo released a large amount of nickel, which increased with immersion time. The study demonstrated that SR-50A, SR-6DX, and SFSS have high corrosion resistance and mild or no cytotoxicity, due to the passive film enhanced by synergistic effect of Mo + N or by high addition effect of Cr + W. All super stainless steels showed very low cytotoxicity regardless of their nickel contents, although SR-3Mo was found to be relatively cytotoxic. From these studies, these steels are considered suitable for orthodontic applications. Copyright 2004 Wiley Periodicals, Inc.
Szymkowiak, Dorota; Montgomery, Ann Elizabeth; Johnson, Erin E; Manning, Todd; O'Toole, Thomas P
2017-10-01
Acute health care utilization often occurs among persons experiencing homelessness. However, knowing which individuals will be persistent super-utilizers of acute care is less well understood. The objective of the study was to identify those more likely to be persistent super-utilizers of acute care services. We conducted a latent class analysis of secondary data from the Veterans Health Administration Corporate Data Warehouse, and Homeless Operations Management and Evaluation System. The study sample included 16,912 veterans who experienced homelessness and met super-utilizer criteria in any quarter between July 1, 2014 and December 31, 2015. The latent class analysis included veterans' diagnoses and acute care utilization. Medical, mental health, and substance use morbidity rates were high. More than half of the sample utilized Veterans Health Administration Homeless Programs concurrently with their super-utilization of acute care. There were 7 subgroups of super-utilizers, which varied considerably on the degree to which their super-utilization persisted over time. Approximately a third of the sample met super-utilizer criteria for ≥3 quarters; this group was older and disproportionately male, non-Hispanic white, and unmarried, with lower rates of post-9/11 service and higher rates of rural residence and service-connected disability. They were much more likely to be currently homeless with more medical, mental health, and substance use morbidity. Only a subset of homeless veterans were persistent super-utilizers, suggesting the need for more targeted interventions.
NASA Astrophysics Data System (ADS)
Frissell, N. A.; Baker, J. B.; Ruohoniemi, J. M.; Greenwald, R. A.; Gerrard, A. J.; Miller, E. S.; West, M. L.
2015-12-01
Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are wave-like perturbations of the F-region ionosphere with horizontal wavelengths on the order of several hundred kilometers, and periods between 15 - 60 min. In SuperDARN radar data, MSTID signatures are manifested as quasi-periodic enhancements of ground backscatter (i.e. skip focusing) which propagate through the radar field-of-view. At high latitudes, SuperDARN observations of MSTIDs have generally been attributed to atmospheric gravity waves (AGWs) launched by auroral sources (e.g. Joule heating). However, recent studies with newer mid-latitude radars have shown MSTIDs are routinely observed in the subauroral ionosphere as well. To develop a more complete picture of MSTID activity, we have surveyed observations from four high latitude and six mid latitude SuperDARN radars located in the North American sector collected between 2011 and 2015 during the months of November to May. Consistent with previous SuperDARN MSTID studies, all radars observed MSTIDs with horizontal wavelengths between ~250 - 500 km and horizontal velocities between ~100 - 250 m/s. The majority of the MSTIDs were observed to propagate in a predominantly southward direction, with bearings ranging from ~135 ̊ - 250 ̊ geographic azimuth. This is highly suggestive of high latitude auroral sources; however, no apparent correlation with geomagnetic or space weather activity could be identified. Rather, comparison of the SuperDARN MSTID time-series data with northern hemisphere geopotential data from the European Center for Medium Range Weather Forecasting (ECMWF) operational model reveals a strong correlation of MSTID activity with dynamics in the polar vortex structure on two primary time scales. First, a seasonal effect manifests as enhanced MSTID activity from November through January, followed by a depressed period from February to May. This appears to correspond with the seasonal development and later decay of the polar vortex. A second, shorter time scale correlation occurs on a 1 to 3 week timescale with MSTID enhancements and depressions again corresponding with strong and weak polar vortex structuring. Collectively, these observations suggest the polar vortex is a more dominant source for MSTIDs observed by SuperDARN radars, rather than auroral sources.
Face Recognition by Metropolitan Police Super-Recognisers
Robertson, David J.; Noyes, Eilidh; Dowsett, Andrew J.; Jenkins, Rob; Burton, A. Mike
2016-01-01
Face recognition is used to prove identity across a wide variety of settings. Despite this, research consistently shows that people are typically rather poor at matching faces to photos. Some professional groups, such as police and passport officers, have been shown to perform just as poorly as the general public on standard tests of face recognition. However, face recognition skills are subject to wide individual variation, with some people showing exceptional ability—a group that has come to be known as ‘super-recognisers’. The Metropolitan Police Force (London) recruits ‘super-recognisers’ from within its ranks, for deployment on various identification tasks. Here we test four working super-recognisers from within this police force, and ask whether they are really able to perform at levels above control groups. We consistently find that the police ‘super-recognisers’ perform at well above normal levels on tests of unfamiliar and familiar face matching, with degraded as well as high quality images. Recruiting employees with high levels of skill in these areas, and allocating them to relevant tasks, is an efficient way to overcome some of the known difficulties associated with unfamiliar face recognition. PMID:26918457
NASA Astrophysics Data System (ADS)
Shi, Feng; Shu, Yong; Dai, Yifan; Peng, Xiaoqiang; Li, Shengyi
2013-07-01
Based on the elastic-plastic deformation theory, status between abrasives and workpiece in magnetorheological finishing (MRF) process and the feasibility of elastic polishing are analyzed. The relationship among material removal mechanism and particle force, removal efficiency, and surface topography are revealed through a set of experiments. The chemical dominant elastic super-smooth polishing can be fulfilled by changing the components of magnetorheological (MR) fluid and optimizing polishing parameters. The MR elastic super-smooth finishing technology can be applied in polishing high-power laser-irradiated components with high efficiency, high accuracy, low damage, and high laser-induced damage threshold (LIDT). A 430×430×10 mm fused silica (FS) optic window is polished and surface error is improved from 538.241 nm [peak to valley (PV)], 96.376 nm (rms) to 76.372 nm (PV), 8.295 nm (rms) after 51.6 h rough polishing, 42.6 h fine polishing, and 54.6 h super-smooth polishing. A 50×50×10 mm sample is polished with exactly the same parameters. The roughness is improved from 1.793 nm [roughness average (Ra)] to 0.167 nm (Ra) and LIDT is improved from 9.77 to 19.2 J/cm2 after MRF elastic polishing.
Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system
NASA Astrophysics Data System (ADS)
Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi
2010-05-01
Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.
Sensing Super-position: Visual Instrument Sensor Replacement
NASA Technical Reports Server (NTRS)
Maluf, David A.; Schipper, John F.
2006-01-01
The coming decade of fast, cheap and miniaturized electronics and sensory devices opens new pathways for the development of sophisticated equipment to overcome limitations of the human senses. This project addresses the technical feasibility of augmenting human vision through Sensing Super-position using a Visual Instrument Sensory Organ Replacement (VISOR). The current implementation of the VISOR device translates visual and other passive or active sensory instruments into sounds, which become relevant when the visual resolution is insufficient for very difficult and particular sensing tasks. A successful Sensing Super-position meets many human and pilot vehicle system requirements. The system can be further developed into cheap, portable, and low power taking into account the limited capabilities of the human user as well as the typical characteristics of his dynamic environment. The system operates in real time, giving the desired information for the particular augmented sensing tasks. The Sensing Super-position device increases the image resolution perception and is obtained via an auditory representation as well as the visual representation. Auditory mapping is performed to distribute an image in time. The three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. This paper details the approach of developing Sensing Super-position systems as a way to augment the human vision system by exploiting the capabilities of the human hearing system as an additional neural input. The human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns. The known capabilities of the human hearing system to learn and understand complicated auditory patterns provided the basic motivation for developing an image-to-sound mapping system.
Asteroid spin-rate studies using large sky-field surveys
NASA Astrophysics Data System (ADS)
Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen; Prince, Thomas A.; Kulkarni, Shrinivas R.; Levitan, David; Laher, Russ; Surace, Jason
2017-12-01
Eight campaigns to survey asteroid rotation periods have been carried out using the intermediate Palomar Transient Factory in the past 3 years. 2780 reliable rotation periods were obtained, from which we identified two new super-fast rotators (SFRs), (335433) 2005 UW163 and (40511) 1999 RE88, and 23 candidate SFRs. Along with other three known super-fast rotators, there are five known SFRs so far. Contrary to the case of rubble-pile asteroids (i.e., bounded aggregations by gravity only), an internal cohesion, ranging from 100 to 1000 Pa, is required to prevent these five SFRs from flying apart because of their super-fast rotations. This cohesion range is comparable with that of lunar regolith. However, some candidates of several kilometers in size require unusually high cohesion (i.e., a few thousands of Pa). Therefore, the confirmation of these kilometer-sized candidates can provide important information about asteroid interior structure. From the rotation periods we collected, we also found that the spin-rate limit of C-type asteroids, which has a lower bulk density, is lower than for S-type asteroids. This result is in agreement with the general picture of rubble-pile asteroids (i.e., lower bulk density, lower spin-rate limit). Moreover, the spin-rate distributions of asteroids of 3< D < 15 km in size show a steady decrease along frequency for f > 5 rev/day, regardless of the location in the main belt. The YORP effect is indicated to be less efficient in altering asteroid spin rates from our results when compared with the flat distribution found by Pravec et al. (Icarus 197:497-504, 2008. doi: 10.1016/j.icarus.2008.05.012). We also found a significant number drop at f = 5 rev/day in the spin-rate distributions of asteroids of D < 3 km.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Chengguang; Drinkwater, Bruce W.
In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method.more » However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded.« less
Research on laser detonation pulse circuit with low-power based on super capacitor
NASA Astrophysics Data System (ADS)
Wang, Hao-yu; Hong, Jin; He, Aifeng; Jing, Bo; Cao, Chun-qiang; Ma, Yue; Chu, En-yi; Hu, Ya-dong
2018-03-01
According to the demand of laser initiating device miniaturization and low power consumption of weapon system, research on the low power pulse laser detonation circuit with super capacitor. Established a dynamic model of laser output based on super capacitance storage capacity, discharge voltage and programmable output pulse width. The output performance of the super capacitor under different energy storage capacity and discharge voltage is obtained by simulation. The experimental test system was set up, and the laser diode of low power pulsed laser detonation circuit was tested and the laser output waveform of laser diode in different energy storage capacity and discharge voltage was collected. Experiments show that low power pulse laser detonation based on super capacitor energy storage circuit discharge with high efficiency, good transient performance, for a low power consumption requirement, for laser detonation system and low power consumption and provide reference light miniaturization of engineering practice.
Super Lorentzian effects on the wings of self-broadened HCl and of HCl diluted in Ar
NASA Astrophysics Data System (ADS)
Tran, H.; Hartmann, J.-M.; Li, G.; Ebert, V.
2017-02-01
Super-Lorentzian effects in the troughs between HCl lines were observed long time ago [Varanasi et al., J Quant Rad Transfer, Vol. 12, pag. 857, 1972]. The observed spectral shape was then modelled by using an empirical law and there was no explanation about the mechanisms underlying these super-Lorentzian effects. In this work, new spectra of pure HCl and HCl diluted in Ar have been measured using a high resolution Fourier Transform spectrometer, for pressure from 6 to 10 bars. Spectra of pure HCl and HCl in Ar have been also computed using classical molecular dynamics simulations (CMDS). First comparisons between CMDS-calculated spectra and measured ones, for regions at the troughs between HCl lines, show that the observed super-Lorentzian behaviour is correctly reproduced by the calculations. These results thus open the paths for the determination of the origin of these super-Lorentzian effects.
SRRF: Universal live-cell super-resolution microscopy.
Culley, Siân; Tosheva, Kalina L; Matos Pereira, Pedro; Henriques, Ricardo
2018-08-01
Super-resolution microscopy techniques break the diffraction limit of conventional optical microscopy to achieve resolutions approaching tens of nanometres. The major advantage of such techniques is that they provide resolutions close to those obtainable with electron microscopy while maintaining the benefits of light microscopy such as a wide palette of high specificity molecular labels, straightforward sample preparation and live-cell compatibility. Despite this, the application of super-resolution microscopy to dynamic, living samples has thus far been limited and often requires specialised, complex hardware. Here we demonstrate how a novel analytical approach, Super-Resolution Radial Fluctuations (SRRF), is able to make live-cell super-resolution microscopy accessible to a wider range of researchers. We show its applicability to live samples expressing GFP using commercial confocal as well as laser- and LED-based widefield microscopes, with the latter achieving long-term timelapse imaging with minimal photobleaching. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hot super-Earths stripped by their host stars.
Lundkvist, M S; Kjeldsen, H; Albrecht, S; Davies, G R; Basu, S; Huber, D; Justesen, A B; Karoff, C; Silva Aguirre, V; Van Eylen, V; Vang, C; Arentoft, T; Barclay, T; Bedding, T R; Campante, T L; Chaplin, W J; Christensen-Dalsgaard, J; Elsworth, Y P; Gilliland, R L; Handberg, R; Hekker, S; Kawaler, S D; Lund, M N; Metcalfe, T S; Miglio, A; Rowe, J F; Stello, D; Tingley, B; White, T R
2016-04-11
Simulations predict that hot super-Earth sized exoplanets can have their envelopes stripped by photoevaporation, which would present itself as a lack of these exoplanets. However, this absence in the exoplanet population has escaped a firm detection. Here we demonstrate, using asteroseismology on a sample of exoplanets and exoplanet candidates observed during the Kepler mission that, while there is an abundance of super-Earth sized exoplanets with low incident fluxes, none are found with high incident fluxes. We do not find any exoplanets with radii between 2.2 and 3.8 Earth radii with incident flux above 650 times the incident flux on Earth. This gap in the population of exoplanets is explained by evaporation of volatile elements and thus supports the predictions. The confirmation of a hot-super-Earth desert caused by evaporation will add an important constraint on simulations of planetary systems, since they must be able to reproduce the dearth of close-in super-Earths.
Ding, Zhili; Kong, Youqin; Zhang, Yixiang; Li, Jingfen; Cao, Fang; Zhou, Junbo; Ye, Jinyun
2017-09-01
Feeding frequency is important for the improvement of growth performance and immunity of aquatic animals. In this study, the effect of feeding frequency on growth, body composition, antioxidant status and mRNA expression of immunodependent genes before or after ammonia-N stress was examined in Macrobrachium nipponense. Prawns were randomly assigned to one of five feeding frequencies (1, 2, 3, 4 and 6 times/day) following the same ration size over an 8-week growth trial. After the feeding trial, prawns were challenged by ammonia-N. The weight gain of prawns fed with 3-6 times/day was significantly higher than that of prawns fed with 1 time/day. The best feed conversion ratio was obtained from prawns fed with 3-6 times/day. Body crude lipid with feeding frequency of 3, 4 or 6 times/day was quite lower than that with 1 time/day. High feeding frequency (6 times/day) induced significantly elevated hepatopancreas super oxide dismutase and catalase activities. The malondialdehyde level in prawns fed with 6 times/day was also significantly increased, which was higher than that of prawns fed with other feeding frequency. mRNA expression of toll like receptor 3 and myeloid differentiation primary response protein MyD88 was promoted by feeding frequency from 3 to 4 time/day but inhibited by high or low feeding frequency. Similar mRNA expression variation trends of the two genes were observed in prawns after ammonia-N stress. After ammonia-N challenge, the highest cumulative mortality was observed in prawns fed with 6 times/day, which was significantly higher than that of prawns fed with 2-4 times/day. These findings demonstrate that (1) too high feeding frequency induced oxidative stress and malondialdehyde accumulation, negatively affecting the health status of prawns and reduced its resistance to ammonia-N stress; (2) the optimal feeding frequency to improve growth and immune response of this species at juvenile stage is 3-4 times/day; (3) considering costs of labour, a feeding frequency of 3 times/day is recommended for this prawn. Copyright © 2017 Elsevier Ltd. All rights reserved.
Single image super-resolution via an iterative reproducing kernel Hilbert space method.
Deng, Liang-Jian; Guo, Weihong; Huang, Ting-Zhu
2016-11-01
Image super-resolution, a process to enhance image resolution, has important applications in satellite imaging, high definition television, medical imaging, etc. Many existing approaches use multiple low-resolution images to recover one high-resolution image. In this paper, we present an iterative scheme to solve single image super-resolution problems. It recovers a high quality high-resolution image from solely one low-resolution image without using a training data set. We solve the problem from image intensity function estimation perspective and assume the image contains smooth and edge components. We model the smooth components of an image using a thin-plate reproducing kernel Hilbert space (RKHS) and the edges using approximated Heaviside functions. The proposed method is applied to image patches, aiming to reduce computation and storage. Visual and quantitative comparisons with some competitive approaches show the effectiveness of the proposed method.
New textile composite materials development, production, application
NASA Technical Reports Server (NTRS)
Mikhailov, Petr Y.
1993-01-01
New textile composite materials development, production, and application are discussed. Topics covered include: super-high-strength, super-high-modulus fibers, filaments, and materials manufactured on their basis; heat-resistant and nonflammable fibers, filaments, and textile fabrics; fibers and textile fabrics based on fluorocarbon poylmers; antifriction textile fabrics based on polyfen filaments; development of new types of textile combines and composite materials; and carbon filament-based fabrics.
A Search for Water in a Super-Earth Atmosphere: High-resolution Optical Spectroscopy of 55Cancri e
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esteves, Lisa J.; De Mooij, Ernst J. W.; Watson, Chris
We present the analysis of high-resolution optical spectra of four transits of 55Cnc e, a low-density super-Earth that orbits a nearby Sun-like star in under 18 hr. The inferred bulk density of the planet implies a substantial envelope, which, according to mass–radius relationships, could be either a low-mass extended or a high-mass compact atmosphere. Our observations investigate the latter scenario, with water as the dominant species. We take advantage of the Doppler cross-correlation technique, high-spectral resolution, and the large wavelength coverage of our observations to search for the signature of thousands of optical water absorption lines. Using our observations with HDSmore » on the Subaru telescope and ESPaDOnS on the Canada–France–Hawaii Telescope, we are able to place a 3 σ lower limit of 10 g mol{sup −1} on the mean-molecular weight of 55Cnc e’s water-rich (volume mixing ratio >10%), optically thin atmosphere, which corresponds to an atmospheric scale-height of ∼80 km. Our study marks the first high-spectral resolution search for water in a super-Earth atmosphere, and demonstrates that it is possible to recover known water-vapor absorption signals in a nearby super-Earth atmosphere, using high-resolution transit spectroscopy with current ground-based instruments.« less
Partitioning of a Falling Droplet's Energy After Surface Impact
NASA Astrophysics Data System (ADS)
Kern, Vanessa; Steen, Paul
2017-11-01
Understanding energy partitioning post-impact is a first step to understanding immersive flow-forming processes. Here we investigate the partitioning of kinetic energy into surface energies for capillary water droplets falling onto homogeneous prepared hydrophilic, hydrophobic and super-hydrophobic surfaces. We analyze high-speed images of the impact event. Pre-impact Weber numbers range from 0-15. After impact and initial spreading, the droplet's contact line pins. After pinning, there is a slow decay to the rest state. During this underdamped decay, the droplet's remaining kinetic energy partitions into a linear combination of mode shape energies. These mode shapes and their frequencies correspond to those of pinned sessile droplets from theory. The influence of impact energy on modes excited will be discussed.
Ryan, Denise S; Sia, Rose K; Stutzman, Richard D; Pasternak, Joseph F; Howard, Robin S; Howell, Christopher L; Maurer, Tana; Torres, Mark F; Bower, Kraig S
2017-01-01
To compare visual performance, marksmanship performance, and threshold target identification following wavefront-guided (WFG) versus wavefront-optimized (WFO) photorefractive keratectomy (PRK). In this prospective, randomized clinical trial, active duty U.S. military Soldiers, age 21 or over, electing to undergo PRK were randomized to undergo WFG (n = 27) or WFO (n = 27) PRK for myopia or myopic astigmatism. Binocular visual performance was assessed preoperatively and 1, 3, and 6 months postoperatively: Super Vision Test high contrast, Super Vision Test contrast sensitivity (CS), and 25% contrast acuity with night vision goggle filter. CS function was generated testing at five spatial frequencies. Marksmanship performance in low light conditions was evaluated in a firing tunnel. Target detection and identification performance was tested for probability of identification of varying target sets and probability of detection of humans in cluttered environments. Visual performance, CS function, marksmanship, and threshold target identification demonstrated no statistically significant differences over time between the two treatments. Exploratory regression analysis of firing range tasks at 6 months showed no significant differences or correlations between procedures. Regression analysis of vehicle and handheld probability of identification showed a significant association with pretreatment performance. Both WFG and WFO PRK results translate to excellent and comparable visual and military performance. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
Ares I-X Launch Vehicle Modal Test Measurements and Data Quality Assessments
NASA Technical Reports Server (NTRS)
Templeton, Justin D.; Buehrle, Ralph D.; Gaspar, James L.; Parks, Russell A.; Lazor, Daniel R.
2010-01-01
The Ares I-X modal test program consisted of three modal tests conducted at the Vehicle Assembly Building at NASA s Kennedy Space Center. The first test was performed on the 71-foot 53,000-pound top segment of the Ares I-X launch vehicle known as Super Stack 5 and the second test was performed on the 66-foot 146,000- pound middle segment known as Super Stack 1. For these tests, two 250 lb-peak electro-dynamic shakers were used to excite bending and shell modes with the test articles resting on the floor. The third modal test was performed on the 327-foot 1,800,000-pound Ares I-X launch vehicle mounted to the Mobile Launcher Platform. The excitation for this test consisted of four 1000+ lb-peak hydraulic shakers arranged to excite the vehicle s cantilevered bending modes. Because the frequencies of interest for these modal tests ranged from 0.02 to 30 Hz, high sensitivity capacitive accelerometers were used. Excitation techniques included impact, burst random, pure random, and force controlled sine sweep. This paper provides the test details for the companion papers covering the Ares I-X finite element model calibration process. Topics to be discussed include test setups, procedures, measurements, data quality assessments, and consistency of modal parameter estimates.
Importance of rotational adiabaticity in collisions of CO2 super rotors with Ar and He
NASA Astrophysics Data System (ADS)
Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.
2018-02-01
The collision dynamics of optically centrifuged CO2 with Ar and He are reported here. The optical centrifuge produces an ensemble of CO2 molecules in high rotational states (with J ˜ 220) with oriented angular momentum. Polarization-dependent high-resolution transient IR absorption spectroscopy was used to measure the relaxation dynamics in the presence of Ar or He by probing the CO2 J = 76 and 100 states with Er o t=2306 and 3979 cm-1, respectively. The data show that He relaxes the CO2 super rotors more quickly than Ar. Doppler-broadened line profiles show that He collisions induce substantially larger rotation-to-translation energy transfer. CO2 super rotors have greater orientational anisotropy with He collisions and the anisotropy from the He collisions persists longer than with Ar. Super rotor relaxation dynamics are discussed in terms of mass effects related to classical gyroscope physics and collisional rotational adiabaticity.
NASA Astrophysics Data System (ADS)
Baker, J. B.; Greenwald, R. A.; Yin, Y.; Ruohoniemi, J. M.; Clausen, L.; Frissell, N. A.; Ribeiro, A. J.
2009-12-01
The Super Dual Auroral Radar Network (SuperDARN) provides continuous Doppler measurements of ionospheric plasma convection over extended spatial scales with high temporal resolution. First generation SuperDARN radars were constructed at magnetic latitudes near 60 degrees to optimize coverage during periods of moderate geomagnetic activity. In recent years there has been an expansion of the network to middle latitudes to increase coverage during enhanced geomagnetic activity, such as during magnetic storms. In this paper we present measurements of prompt penetration electric fields and sub-auroral ion drift (SAID) events observed by the Wallops and Blackstone radars at middle latitudes. Together, these two radars provide a capability to continuously examine the temporal evolution of these features over an extended local time sector. We present case studies and statistical results showing that transient sub-auroral flow enhancements occur over a wide range of magnetospheric disturbance levels and are often highly correlated with activity at higher latitudes.
Lin, Zhiqiang; Gui, Xuchun; Gan, Qiming; Chen, Wenjun; Cheng, Xiaoping; Liu, Ming; Zhu, Yuan; Yang, Yanbing; Cao, Anyuan; Tang, Zikang
2015-01-01
Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72 MPa, flexural strengths up to 33 MPa, and fatigue resistance (recovery after 100,000 large-strain compression cycles at high frequency). Significant enhancement of mechanical properties is attributed to the welding-induced interconnection and reinforcement of structural units, and synergistic effects stemming from the core-shell microstructures consisting of a flexible CNT framework and a rigid amorphous carbon shell. Our results provide a simple and effective method to manufacture high-strength porous materials by nanoscale welding. PMID:26067176
Lin, Zhiqiang; Gui, Xuchun; Gan, Qiming; Chen, Wenjun; Cheng, Xiaoping; Liu, Ming; Zhu, Yuan; Yang, Yanbing; Cao, Anyuan; Tang, Zikang
2015-06-11
Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72 MPa, flexural strengths up to 33 MPa, and fatigue resistance (recovery after 100,000 large-strain compression cycles at high frequency). Significant enhancement of mechanical properties is attributed to the welding-induced interconnection and reinforcement of structural units, and synergistic effects stemming from the core-shell microstructures consisting of a flexible CNT framework and a rigid amorphous carbon shell. Our results provide a simple and effective method to manufacture high-strength porous materials by nanoscale welding.
NASA Astrophysics Data System (ADS)
Lin, Zhiqiang; Gui, Xuchun; Gan, Qiming; Chen, Wenjun; Cheng, Xiaoping; Liu, Ming; Zhu, Yuan; Yang, Yanbing; Cao, Anyuan; Tang, Zikang
2015-06-01
Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72 MPa, flexural strengths up to 33 MPa, and fatigue resistance (recovery after 100,000 large-strain compression cycles at high frequency). Significant enhancement of mechanical properties is attributed to the welding-induced interconnection and reinforcement of structural units, and synergistic effects stemming from the core-shell microstructures consisting of a flexible CNT framework and a rigid amorphous carbon shell. Our results provide a simple and effective method to manufacture high-strength porous materials by nanoscale welding.
Impact of Pre-Plasma on Electron Generation and Transport in Laser Plasma Interactions
NASA Astrophysics Data System (ADS)
Peebles, Jonathan Lee
Relativistic laser plasma interactions in conjunction with an underdense pre-plasma have been shown to generate a two temperature component electron spectrum. The lower temperature component described by "ponderomotive scaling'" is relatively well known and understood and is useful for applications such as the fast ignition inertial confinement fusion scheme. The higher energy electrons generated due to pre-plasma are denoted as "super-ponderomotive" electrons and facilitate interesting and useful applications. These include but are not limited to table top particle acceleration and generating high energy protons, x-rays and neutrons from secondary interactions. This dissertation describes experimental and particle-in-cell computational studies of the electron spectra produced from interactions between short pulse high intensity lasers and controlled pre-plasma conditions. Experiments were conducted at 3 laser labs: Texas Petawatt (University of Texas at Austin), Titan (Lawrence Livermore National Laboratory) and OMEGA-EP (University of Rochester). These lasers have different capabilities, and multiple experiments were carried out in order to fully understand super-ponderomotive electron generation and transport in the high intensity laser regime (I > 1018 W/cm2). In these experiments, an additional secondary long pulse beam was used to generate different scale lengths of "injected" pre-plasma while the pulse length and intensity of the short pulse beam were varied. The temperature and quantity of super-ponderomotive electrons were monitored with magnetic spectrometers and inferred via bremsstrahlung spectrometers while trajectory was estimated via Cu-Kalpha imaging. The experimental and simulation data show that super-ponderomotive electrons require pulse lengths of at least 450 fs to be accelerated and that higher intensity interactions generate large magnetic fields which cause severe deflection of the super-ponderomotive electrons. Laser incidence angle is shown to be extremely important in determining hot electron trajectory. Longer pulse length data taken on OMEGA-EP and Titan showed that super-ponderomotive electrons could be created without the need for an initial pre-plasma due to the underdense plasma created during the high intensity interaction alone.
Müller, Oliver; Nachtegaal, Maarten; Just, Justus; Lützenkirchen-Hecht, Dirk; Frahm, Ronald
2016-01-01
The quick-EXAFS (QEXAFS) method adds time resolution to X-ray absorption spectroscopy (XAS) and allows dynamic structural changes to be followed. A completely new QEXAFS setup consisting of monochromator, detectors and data acquisition system is presented, as installed at the SuperXAS bending-magnet beamline at the Swiss Light Source (Paul Scherrer Institute, Switzerland). The monochromator uses Si(111) and Si(311) channel-cut crystals mounted on one crystal stage, and remote exchange allows an energy range from 4.0 keV to 32 keV to be covered. The spectral scan range can be electronically adjusted up to several keV to cover multiple absorption edges in one scan. The determination of the Bragg angle close to the position of the crystals allows high-accuracy measurements. Absorption spectra can be acquired with fast gridded ionization chambers at oscillation frequencies of up to 50 Hz resulting in a time resolution of 10 ms, using both scan directions of each oscillation period. The carefully developed low-noise detector system yields high-quality absorption data. The unique setup allows both state-of-the-art QEXAFS and stable step-scan operation without the need to exchange whole monochromators. The long-term stability of the Bragg angle was investigated and absorption spectra of reference materials as well as of a fast chemical reaction demonstrate the overall capabilities of the new setup. PMID:26698072
Müller, Oliver; Nachtegaal, Maarten; Just, Justus; Lützenkirchen-Hecht, Dirk; Frahm, Ronald
2016-01-01
The quick-EXAFS (QEXAFS) method adds time resolution to X-ray absorption spectroscopy (XAS) and allows dynamic structural changes to be followed. A completely new QEXAFS setup consisting of monochromator, detectors and data acquisition system is presented, as installed at the SuperXAS bending-magnet beamline at the Swiss Light Source (Paul Scherrer Institute, Switzerland). The monochromator uses Si(111) and Si(311) channel-cut crystals mounted on one crystal stage, and remote exchange allows an energy range from 4.0 keV to 32 keV to be covered. The spectral scan range can be electronically adjusted up to several keV to cover multiple absorption edges in one scan. The determination of the Bragg angle close to the position of the crystals allows high-accuracy measurements. Absorption spectra can be acquired with fast gridded ionization chambers at oscillation frequencies of up to 50 Hz resulting in a time resolution of 10 ms, using both scan directions of each oscillation period. The carefully developed low-noise detector system yields high-quality absorption data. The unique setup allows both state-of-the-art QEXAFS and stable step-scan operation without the need to exchange whole monochromators. The long-term stability of the Bragg angle was investigated and absorption spectra of reference materials as well as of a fast chemical reaction demonstrate the overall capabilities of the new setup.
NASA Astrophysics Data System (ADS)
Lu, Chieh Han; Chen, Peilin; Chen, Bi-Chang
2017-02-01
Optical imaging techniques provide much important information in understanding life science especially cellular structure and morphology because "seeing is believing". However, the resolution of optical imaging is limited by the diffraction limit, which is discovered by Ernst Abbe, i.e. λ/2(NA) (NA is the numerical aperture of the objective lens). Fluorescence super-resolution microscopic techniques such as Stimulated emission depletion microscopy (STED), Photoactivated localization microscopy (PALM), and Stochastic optical reconstruction microscopy (STORM) are invented to have the capability of seeing biological entities down to molecular level that are smaller than the diffraction limit (around 200-nm in lateral resolution). These techniques do not physically violate the Abbe limit of resolution but exploit the photoluminescence properties and labelling specificity of fluorescence molecules to achieve super-resolution imaging. However, these super-resolution techniques limit most of their applications to the 2D imaging of fixed or dead samples due to the high laser power needed or slow speed for the localization process. Extended from 2D imaging, light sheet microscopy has been proven to have a lot of applications on 3D imaging at much better spatiotemporal resolutions due to its intrinsic optical sectioning and high imaging speed. Herein, we combine the advantage of localization microscopy and light-sheet microscopy to have super-resolved cellular imaging in 3D across large field of view. With high-density labeled spontaneous blinking fluorophore and wide-field detection of light-sheet microscopy, these allow us to construct 3D super-resolution multi-cellular imaging at high speed ( minutes) by light-sheet single-molecule localization microscopy.
A Surveillance and Targeting System for an Unmanned Ground Vehicle
1990-08-01
CHARACTERISTICS - SELECTABLE INFRASONIC AND ULTRASONIC FREQUENCY SHIFTING CAPABILITY - SUPER-BINAURAL CONFIGURATION ANGLE AND PICKUP SEPARATION GREATER THAN...HUMAN HEAD - VARIABLE GAIN WITH CLIPPING - INTEGRATABLE INTO TOV OPERATOR HELMET - CONTROL INTERFACE: VOLUME UP/DOWN, SONIC ON/OFF, ULTRA ON/OFF... INFRA ON/OFF, BOOST HI/MED/OFF ----- UGV/TOV ----- ---- AUVS/DAYTON ---- LASER SAFETY IMPLICATIONS IMPLICATIONS FOR DESIGN: - POWER UP SEQUENCE - ABORT
USDA-ARS?s Scientific Manuscript database
Cah is a calcium-binding autotransporter protein involved in autoaggregation and biofilm formation. Although cah is widespread in Shiga toxin-producing Escherichia coli (STEC), we detected mutations in cah at a frequency of 31.3% in this pathogen. In STEC O157:H7 super-shedder strain SS17, a large d...
NASA Astrophysics Data System (ADS)
Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen; iPTF Team
2016-10-01
In order to look for kilometer-sized super-fast rotators (large SFRs) and understand the spin-rate distributions of small (i.e. D of several kilometers) asteroids, we have been conducting asteroid rotation period surveys of large sky area using intermediate Palomar Transient Factory (iPTF) since 2014. So far, we have observed 261 deg2 with 20 min cadence, 188 deg2 with 10 min cadence, and 65 deg2 with 5 min cadence. From these surveys, we found that the spin-rate distributions of small asteroids at different locations in the main-belt are very similar. Moreover, the distributions of asteroids with 3 < D < 15 km show number decrease along with increase of spin rate for frequency > 5 rev/day, and that of asteroids with D < 3 km have a significant number drop at frequency = 5 rev/day. However, we only discover two new large SFRs and 24 candidates. Comparing with the ordinary asteroids, the population of large SFR seems to be far less than the whole asteroid population. This might indicate a peculiar group of asteroid for large SFRs.
STEREO observations of insitu waves in the vicinity of interplanetary shocks
NASA Astrophysics Data System (ADS)
Golla, T.; MacDowall, R. J.
2017-12-01
We present the high time resolution observations of the in situ waves obtained by the time domain sampler (TDS) of the WAVES experiment on the STEREO spacecraft in the vicinity of typical quasi-perpendicular super-critical interplanetary shocks. We show that often Langmuir waves occur as coherent one dimensional magnetic field aligned wave packets in the upstream regions and persist over large distances. The characteristics of these wave packets are consistent with those of Langmuir solitons formed as a result of oscillatting two stream instability (OTSI). Very intense high frequency waves which are completely different from Langmuir waves occur in the transition regions. These waves occur as very incoherent emissions and exhibit broad fundamental and second harmonic spectral peaks. We identify these waves as electron acoustic waves excited by the electron beams in the transition regions. We also show that very intense low frequency ion sound waves occur in the downstream regions. We discuss the implications of these observations on the theories of (1) strong Langmuir turbulence, (2) beam stabilization, (3) emission mechanisms of solar type II radio bursts, (4) wave-particle interactions responsible for collisionless dissipation, and (5) heating of the downstream plasmas.
NASA Astrophysics Data System (ADS)
Pathan, F. S.; Khan, Z.; Semwal, P.; Raval, D. C.; Joshi, K. S.; Thankey, P. L.; Dhanani, K. R.
2008-05-01
Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN2 panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN2 panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN2 panels during sniffer test and pressure drop test using helium gas.
Patch-Based Super-Resolution of MR Spectroscopic Images: Application to Multiple Sclerosis
Jain, Saurabh; Sima, Diana M.; Sanaei Nezhad, Faezeh; Hangel, Gilbert; Bogner, Wolfgang; Williams, Stephen; Van Huffel, Sabine; Maes, Frederik; Smeets, Dirk
2017-01-01
Purpose: Magnetic resonance spectroscopic imaging (MRSI) provides complementary information to conventional magnetic resonance imaging. Acquiring high resolution MRSI is time consuming and requires complex reconstruction techniques. Methods: In this paper, a patch-based super-resolution method is presented to increase the spatial resolution of metabolite maps computed from MRSI. The proposed method uses high resolution anatomical MR images (T1-weighted and Fluid-attenuated inversion recovery) to regularize the super-resolution process. The accuracy of the method is validated against conventional interpolation techniques using a phantom, as well as simulated and in vivo acquired human brain images of multiple sclerosis subjects. Results: The method preserves tissue contrast and structural information, and matches well with the trend of acquired high resolution MRSI. Conclusions: These results suggest that the method has potential for clinically relevant neuroimaging applications. PMID:28197066
NASA Technical Reports Server (NTRS)
2003-01-01
Topics covered include: Real-Time, High-Frequency QRS Electrocardiograph; Software for Improved Extraction of Data From Tape Storage; Radio System for Locating Emergency Workers; Software for Displaying High-Frequency Test Data; Capacitor-Chain Successive-Approximation ADC; Simpler Alternative to an Optimum FQPSK-B Viterbi Receiver; Multilayer Patch Antenna Surrounded by a Metallic Wall; Software To Secure Distributed Propulsion Simulations; Explicit Pore Pressure Material Model in Carbon-Cloth Phenolic; Meshed-Pumpkin Super-Pressure Balloon Design; Corrosion Inhibitors as Penetrant Dyes for Radiography; Transparent Metal-Salt-Filled Polymeric Radiation Shields; Lightweight Energy Absorbers for Blast Containers; Brush-Wheel Samplers for Planetary Exploration; Dry Process for Making Polyimide/ Carbon-and-Boron-Fiber Tape; Relatively Inexpensive Rapid Prototyping of Small Parts; Magnetic Field Would Reduce Electron Backstreaming in Ion Thrusters; Alternative Electrochemical Systems for Ozonation of Water; Interferometer for Measuring Displacement to Within 20 pm; UV-Enhanced IR Raman System for Identifying Biohazards; Prognostics Methodology for Complex Systems; Algorithms for Haptic Rendering of 3D Objects; Modeling and Control of Aerothermoelastic Effects; Processing Digital Imagery to Enhance Perceptions of Realism; Analysis of Designs of Space Laboratories; Shields for Enhanced Protection Against High-Speed Debris; Study of Dislocation-Ordered In(x)Ga(1-x)As/GaAs Quantum Dots; and Tilt-Sensitivity Analysis for Space Telescopes.
NASA Astrophysics Data System (ADS)
Bernhardt, P. A.; Siefring, C. L.; Briczinski, S. J.; Kendall, E. A.; Watkins, B. J.; Bristow, W. A.; Michell, R.
2013-12-01
The High Frequency Active Auroral Research Program (HAARP) transmitter in Alaska has been used to produce localized regions of artificial ionization at altitudes between 150 and 250 km. High power radio waves tuned near harmonics of the electron gyro frequency were discovered by Todd Pederson of the Air Force Research Laboratory to produce ionosonde traces that looked like artificial ionization layers below the natural F-region. The initial regions of artificial ionization (AI) were not stable but had moved down in altitude over a period of 15 minutes. Recently, artificial ionization has been produced by the 2nd, 3rd, 4th and 6th harmonics transmissions by the HAARP. In march 2013, the artificial ionization clouds were sustained for more the 5 hours using HAARP tuned to the 4 fce at the full power of 3.6 Mega-Watts with a twisted-beam antenna pattern. Frequency selection with narrow-band sweeps and antenna pattern shaping has been employed for optimal generation of AI. Recent research at HAARP has produced the longest lived and denser artificial ionization clouds using HF transmissions at the harmonics of the electron cyclotron frequency and ring-shaped radio beams tailored to prevent the descent of the clouds. Detection of artificial ionization employs (1) ionosonde echoes, (2) coherent backscatter from the Kodiak SuperDARN radar, (3) enhanced ion and plasma line echoes from the HAARP MUIR radar at 400 MHz, (4) high resolution optical image from ground sites, and (5) unique stimulated electromagnetic emissions, and (6) strong UHF and L-Band scintillation induced into trans-ionospheric signals from satellite radio beacons. Future HAARP experiments will determine the uses of long-sustained AI for enhanced HF communications.
SOWFA + Super Controller User's Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, P.; Gebraad, P.; Churchfield, M.
2013-08-01
SOWFA + Super Controller is a modification of the NREL's SOWFA tool which allows for a user to apply multiturbine or centralized wind plant control algorithms within the high-fidelity SOWFA simulation environment. The tool is currently a branch of the main SOWFA program, but will one day will be merged into a single version. This manual introduces the tool and provides examples such that a usercan implement their own super controller and set up and run simulations. The manual only discusses enough about SOWFA itself to allow for the customization of controllers and running of simulations, and details of SOWFAmore » itself are reported elsewhere Churchfield and Lee (2013); Churchfield et al. (2012). SOWFA + Super Controller, and this manual, are in alpha mode.« less
Yang, Liang; Jin, Di; He, Dongxiao; Fu, Huazhu; Cao, Xiaochun; Fogelman-Soulie, Francoise
2017-03-29
Due to the importance of community structure in understanding network and a surge of interest aroused on community detectability, how to improve the community identification performance with pairwise prior information becomes a hot topic. However, most existing semi-supervised community detection algorithms only focus on improving the accuracy but ignore the impacts of priors on speeding detection. Besides, they always require to tune additional parameters and cannot guarantee pairwise constraints. To address these drawbacks, we propose a general, high-speed, effective and parameter-free semi-supervised community detection framework. By constructing the indivisible super-nodes according to the connected subgraph of the must-link constraints and by forming the weighted super-edge based on network topology and cannot-link constraints, our new framework transforms the original network into an equivalent but much smaller Super-Network. Super-Network perfectly ensures the must-link constraints and effectively encodes cannot-link constraints. Furthermore, the time complexity of super-network construction process is linear in the original network size, which makes it efficient. Meanwhile, since the constructed super-network is much smaller than the original one, any existing community detection algorithm is much faster when using our framework. Besides, the overall process will not introduce any additional parameters, making it more practical.
NASA Astrophysics Data System (ADS)
Spaleta, J.; Bristow, W. A.
2013-12-01
SuperDARN radars estimate plasma drift velocities from the Doppler shift observed on signals scattered from field-aligned density irregularities. These field-aligned density irregularities are embedded in the ionospheric plasma, and move at the same velocity as background plasma. As a result, the electromagnetic signals scattered from these irregularities are Doppler shifted. The SuperDARN radars routinely observe ionospheric scatter Doppler velocities ranging from zero to thousands of meters per second. The radars determine the Doppler shift of the ionospheric scatter by linear fitting the phase of an auto correlation function derived from the radar pulse sequence. The phase fitting technique employed assumes a single dominant velocity is present in the signal. In addition, the SuperDARN radars can also observe signals scattered from the ground. Once refracted by the ionospheric plasma and bent earthward, the radar pulses eventually reach the ground where they scatter, sending signal back to the radar. This ground-scatter signal is characterized as having a low Doppler shift and low spectral width. The SuperDARN radars are able to use these signal characteristics to discriminate the ground scatter signal from the ionospheric scatter, when regions of ground scatter are isolated from ionospheric scatter returns. The phase fitting assumption of a single dominate target can easily be violated at ranges where ground and ionospheric scatter mix together. Due to the wide elevation angle extent of the SuperDARN radar design, ground and ionospheric scatter from different propagation paths can mix together in the return signal. When this happens, the fitting algorithm attempts to fit to the dominant signal, and if ground scatter dominates, information about the ionospheric scatter at that range can be unresolved. One way to address the mix scatter situation is to use a high spectral content pulse sequence together with a spectral estimation technique. The high spectral content pulse sequence consists of twice as many pulses and five times as many distinct lags over which to calculate the auto correlation function. This additional spectral information makes it possible to use spectral estimator techniques, that are robust against aperiodic time series data, to calculate the existence of multiple scatter modes in the signal. A comparison of the operation of the traditional SuperDARN pulse sequence and high spectral content pulse sequence will be presented for both synthetic examples and real SuperDARN radar mixed scatter situation.
SOWFA Super-Controller: A High-Fidelity Tool for Evaluating Wind Plant Control Approaches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, P.; Gebraad, P.; van Wingerden, J. W.
2013-01-01
This paper presents a new tool for testing wind plant controllers in the Simulator for Offshore Wind Farm Applications (SOWFA). SOWFA is a high-fidelity simulator for the interaction between wind turbine dynamics and the fluid flow in a wind plant. The new super-controller testing environment in SOWFA allows for the implementation of the majority of the wind plant control strategies proposed in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Philip B.; Solomon, Wayne M.; Burrell, Keith H.
2015-07-21
A new “Super H-mode” regime is predicted, which enables pedestal height and predicted fusion performance substantially higher than for H-mode operation. This new regime is predicted to exist by the EPED pedestal model, which calculates criticality constraints for peeling-ballooning and kinetic ballooning modes, and combines them to predict the pedestal height and width. EPED usually predicts a single (“H-mode”) pedestal solution for each set of input parameters, however, in strongly shaped plasmas above a critical density, multiple pedestal solutions are found, including the standard “Hmode” solution, and a “Super H-Mode” solution at substantially larger pedestal height and width. The Supermore » H-mode regime is predicted to be accessible by controlling the trajectory of the density, and to increase fusion performance for ITER, as well as for DEMO designs with strong shaping. A set of experiments on DIII-D has identified the predicted Super H-mode regime, and finds pedestal height and width, and their variation with density, in good agreement with theoretical predictions from the EPED model. Finally, the very high pedestal enables operation at high global beta and high confinement, including the highest normalized beta achieved on DIII-D with a quiescent edge.« less
Chen, Yang; He, Xi-Wen; Mao, Jie; Li, Wen-You; Zhang, Yu-Kui
2013-10-01
Protein-imprinted polymers with hollow cores that have a super-high imprinting factor were prepared by etching the core of the surface-imprinted polymers that used silica particles as the support. Lysozyme as template was modified onto the surface of silica particles by a covalent method, and after polymerization and the removal of template molecules, channels through the polymer layer were formed, which allowed a single-protein molecule to come into the hollow core and attach to the binding sites inside the polymer layer. The adsorption experiments demonstrated that the hollow imprinted polymers had an extremely high binding capacity and selectivity, and thus a super-high imprinting factor was obtained. The as-prepared imprinted polymers were used to separate the template lysozyme from egg white successfully, indicating its high selectivity and potential application in the field of separation of protein from real samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.
Wang, Zhenjun; Xu, Yuanming; Gu, Yuting
2015-11-01
Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate. Copyright © 2015 Elsevier B.V. All rights reserved.
A survey for pulsations in A-type stars using SuperWASP
NASA Astrophysics Data System (ADS)
Holdsworth, Daniel L.
2015-12-01
"It is sound judgement to hope that in the not too distant future we shall be competent to understand so simple a thing as a star." - Sir Arthur Stanley Eddington, The Internal Constitution of Stars, 1926 A survey of A-type stars is conducted with the SuperWASP archive in the search for pulsationally variable stars. Over 1.5 million stars are selected based on their (J-H) colour. Periodograms are calculated for light curves which have been extracted from the archive and cleaned of spurious points. Peaks which have amplitudes greater than 0.5 millimagnitude are identified in the periodograms. In total, 202 656 stars are identified to show variability in the range 5-300 c/d. Spectroscopic follow-up was obtained for 38 stars which showed high-frequency pulsations between 60 and 235 c/d, and a further object with variability at 636 c/d. In this sample, 13 were identified to be normal A-type δ Sct stars, 14 to be pulsating metallic-lined Am stars, 11 to be rapidly oscillating Ap (roAp) stars, and one to be a subdwarf B variable star. The spectra were used not only to classify the stars, but to determine an effective temperature through Balmer line fitting. Hybrid stars have been identified in this study, which show pulsations in both the high- and low-overtone domains; an observation not predicted by theory. These stars are prime targets to perform follow-up observations, as a confirmed detection of this phenomenon will have significant impact on the theory of pulsations in A-type stars. The detected number of roAp stars has expanded the known number of this pulsator class by 22 per cent. Within these results both the hottest and coolest roAp star have been identified. Further to this, one object, KIC 7582608, was observed by the Kepler telescope for 4 yr, enabling a detailed frequency analysis. This analysis has identified significant frequency variations in this star, leading to the hypothesis that this is the first close binary star of its type. The observational results presented in this thesis are able to present new challenges to the theory of pulsations in A-type stars, with potentially having the effect of further delaying the full understanding of 'so simple a thing as a star'.
Steady anti-icing coatings on weathering steel fabricated by HVOF spraying
NASA Astrophysics Data System (ADS)
Xi, Naiyuan; Liu, Yan; Zhang, Xiangning; Liu, Nan; Fu, Hao; Hang, Zongqiu; Yang, Guiying; Chen, Hui; Gao, Wei
2018-06-01
Super-hydrophobic surface has attracted much attention over the years due to their unique wettability and excellent performances like highly hydrophobic, ice-phobic, etc. A fast and straightforward fabrication method in this work was proposed to prepare super-hydrophobic coating on weathering steel substrate by high velocity oxygen-fuel (HVOF) spraying, which aimed to delay the beginning freezing time, decrease the ice accumulation amount and reduce the adhesion of ice. The resulting showed that the contact angle of the coatings was about 154.3 ± 3.0°, and the sliding angle was about 4.1 ± 0.1°. Moreover, compared with steel substrate, as-prepared super-hydrophobic coatings exhibit memorable promotion in reducing icing weight and repelling ice.
Super earth interiors and validity of Birch's Law for ultra-high pressure metals and ionic solids
NASA Astrophysics Data System (ADS)
Ware, Lucas Andrew
2015-01-01
Super Earths, recently detected by the Kepler Mission, expand the ensemble of known terrestrial planets beyond our Solar System's limited group. Birch's Law and velocity-density systematics have been crucial in constraining our knowledge of the composition of Earth's mantle and core. Recently published static diamond anvil cell experimental measurements of sound velocities in iron, a key deep element in most super Earth models, are inconsistent with each other with regard to the validity of Birch's Law. We examine the range of validity of Birch's Law for several metallic elements, including iron, and ionic solids shocked with a two-stage light gas gun into the ultra-high pressure, temperature fluid state and make comparisons to the recent static data.
Coaxial printing method for directly writing stretchable cable as strain sensor
NASA Astrophysics Data System (ADS)
Yan, Hai-liang; Chen, Yan-qiu; Deng, Yong-qiang; Zhang, Li-long; Hong, Xiao; Lau, Woon-ming; Mei, Jun; Hui, David; Yan, Hui; Liu, Yu
2016-08-01
Through applying the liquid metal and elastomer as the core and shell materials, respectively, a coaxial printing method is being developed in this work for preparing a stretchable and conductive cable. When liquid metal alloy eutectic Gallium-Indium is embedded into the elastomer matrix under optimized control, the cable demonstrates well-posed extreme mechanic performance, under stretching for more than 350%. Under developed compression test, the fabricated cable also demonstrates the ability for recovering original properties due to the high flowability of the liquid metal and super elasticity of the elastomeric shell. The written cable presents high cycling reliability regarding its stretchability and conductivity, two properties which can be clearly predicted in theoretical calculation. This work can be further investigated as a strain sensor for monitoring motion status including frequency and amplitude of a curved object, with extensive applications in wearable devices, soft robots, electronic skins, and wireless communication.
Coaxial printing method for directly writing stretchable cable as strain sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Hai-liang; Chengdu Green Energy and Green Manufacturing Technology R&D Center, 610299 Chengdu; Chen, Yan-qiu, E-mail: yu.liu@vip.163.com, E-mail: cyqleaf@qq.com, E-mail: hyan@but.ac.cn
Through applying the liquid metal and elastomer as the core and shell materials, respectively, a coaxial printing method is being developed in this work for preparing a stretchable and conductive cable. When liquid metal alloy eutectic Gallium-Indium is embedded into the elastomer matrix under optimized control, the cable demonstrates well–posed extreme mechanic performance, under stretching for more than 350%. Under developed compression test, the fabricated cable also demonstrates the ability for recovering original properties due to the high flowability of the liquid metal and super elasticity of the elastomeric shell. The written cable presents high cycling reliability regarding its stretchabilitymore » and conductivity, two properties which can be clearly predicted in theoretical calculation. This work can be further investigated as a strain sensor for monitoring motion status including frequency and amplitude of a curved object, with extensive applications in wearable devices, soft robots, electronic skins, and wireless communication.« less
Commercial Buck Converters and Custom Coil Development for the ATLAS Inner Detector Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhawan, S.; Lanni, F.; Baker, O.
2010-04-01
A new generation of higher gain commercial buck converters built using advanced short channel CMOS processes has the potential to operate in the Atlas Inner Detector at the Super Large Hadron Collider (sLHC). This approach would inherently be more efficient than the existing practice of locating the power conversion external to the detector. The converters must operate in a large magnetic field and be able to survive both high doses of ionizing radiation and large neutron fluences. The presence of a large magnetic field necessitates the use of an air core inductor which is developed and discussed here. Noise measurementsmore » will be made to investigate the effect of the high frequency switching of the buck converter on the sensitive front end electronics. Radiation hardness of selected buck converters and mosfets will also be reported.« less
Characteristics of the anomalous refractive conditions in Nigeria
NASA Astrophysics Data System (ADS)
Emmanuel, I.; Adeyemi, B.; Ogolo, E. O.; Adediji, A. T.
2017-11-01
The thirty six years (1979-2014) meteorological data needed to calculate refractivity gradient is obtained from Era interim build on IFS CY31r2 model. Diurnal cycle of ducting occurrence for four seasons in Nigeria were analysed from refractivity gradient. Percentage occurrence of anomalous propagation in thirty locations across Nigeria were estimated. It is discovered that ducting is more frequent at mid night and early morning which also vary seasonally and regionally across the country. Highest percentage of 94 % of ducting and zero occurrence of sub refractive is obtained in Lagos. Highest percentage of 34.24 % and 45.62 % of super refractive and sub refractive are obtained in Sapele and Oban hill, respectively. Minimum percentage of 21.9 % and 4.33 % of ducting and super refractive were obtained for Calabar and Gashua, respectively. The minimum frequency for a radio wave to be trapped within Nigeria troposphere varies between 0.045 GHz and 0.11 GHz. The occurrence of anomalous propagation condition, such as ducts, super refractive and sub refractive provide valuable information about the propagation of radio waves over Nigeria, which will assist the radio engineer in their planning and designing of radio circuitry.
USDA-ARS?s Scientific Manuscript database
Plants are under continuous threat of infection by pathogens endowed with diverse strategies to colonize their host. Knowledge of plant susceptibility factors and the molecular processes involved in the infection process are critical for understanding plant-pathogen interactions. We used SuperSAGE t...
Vocational Self-Concept Crystallization and Vocational Indecision
ERIC Educational Resources Information Center
Barrett, Thomas C.; Tinsley, Howard E. A.
1977-01-01
Korman and Super differ in regarding vocational self-concept crystallization of high and low self-esteem persons. This was measured by the Tennessee Self-Concept Scale using undergraduate students. A significant difference was found for both sexes in the degree of crystallization across self-esteem levels, therby supporting Super's model. (Author)
T.Node, industrial version of supernode
NASA Astrophysics Data System (ADS)
Flieller, Sylvain
1989-12-01
The Esprit I P1085 "SuperNode" project developed a modular reconfigurable archtecture, based on transputers. This highly parallel machine is now marketed by Telmat Informatique under the name T.Node. This paper presents the P1085 project, the architecture of SuperNode, its industrial implementation and its software enviroment.
Sub- and super-Maxwellian evaporation of simple gases from liquid water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kann, Z. R.; Skinner, J. L., E-mail: skinner@chem.wisc.edu
2016-04-21
Non-Maxwellian evaporation of light atoms and molecules (particles) such as He and H{sub 2} from liquids has been observed experimentally. In this work, we use simulations to study systematically the evaporation of Lennard-Jones particles from liquid water. We find instances of sub- and super-Maxwellian evaporation, depending on the mass of the particle and the particle-water interaction strength. The observed trends are in qualitative agreement with experiment. We interpret these trends in terms of the potential of mean force and the effectiveness and frequency of collisions during the evaporation process. The angular distribution of evaporating particles is also analyzed, and itmore » is shown that trends in the energy from velocity components tangential and normal to the liquid surface must be understood separately in order to interpret properly the angular distributions.« less
Rayleigh-Taylor Gravity Waves and Quasiperiodic Oscillation Phenomenon in X-ray Binaries
NASA Technical Reports Server (NTRS)
Titarchuk, Lev
2002-01-01
Accretion onto compact objects in X-ray binaries (black hole, neutron star (NS), white dwarf) is characterized by non-uniform flow density profiles. Such an effect of heterogeneity in presence of gravitational forces and pressure gradients exhibits Rayleigh-Taylor gravity waves (RTGW). They should be seen as quasiperiodic wave oscillations (QPO) of the accretion flow in the transition (boundary) layer between the Keplerian disk and the central object. In this paper the author shows that the main QPO frequency, which is very close to the Keplerian frequency, is split into separate frequencies (hybrid and low branch) under the influence of the gravitational forces in the rotational frame of reference. The RTGWs must be present and the related QPOs should be detected in any system where the gravity, buoyancy and Coriolis force effects cannot be excluded (even in the Earth and solar environments). The observed low and high QPO frequencies are an intrinsic signature of the RTGW. The author elaborates the conditions for the density profile when the RTGW oscillations are stable. A comparison of the inferred QPO frequencies with QPO observations is presented. The author finds that hectohertz frequencies detected from NS binaries can be identified as the RTGW low branch frequencies. The author also predicts that an observer can see the double NS spin frequency during the NS long (super) burst events when the pressure gradients and buoyant forces are suppressed. The Coriolis force is the only force which acts in the rotational frame of reference and its presence causes perfect coherent pulsations with a frequency twice of the NS spin. The QPO observations of neutron binaries have established that the high QPO frequencies do not go beyond of the certain upper limit. The author explains this observational effect as a result of the density profile inversions. Also the author demonstrates that a particular problem of the gravity waves in the rotational frame of reference in the approximation of very small pressure gradients is reduced to the problem of the classical oscillator in the rotational frame of reference which was previously introduced and applied for the interpretation of kHZ QPO observation by Osherovich & Titarchuk.
Air Augmented Rocket Propulsion Concepts
1988-04-01
T’S systems is hybrid lrPS systems which are a combination of external insulation with the two remaining types of TPS systems. The key considerations...atmosphere. HYBRID SYSTEMS are systems which employ high temperature external insulation in the stagnation regior of the vehicle and a metallic system...good possibility of reducing weight by up to 40% in selective high temperature areas by using the SuperA~loy and hybrid SuperAlloy/Titanium multiwall TPS
High Efficiency Thermoelectric Materials and Devices
NASA Technical Reports Server (NTRS)
Kochergin, Vladimir (Inventor)
2013-01-01
Growth of thermoelectric materials in the form of quantum well super-lattices on three-dimensionally structured substrates provide the means to achieve high conversion efficiency of the thermoelectric module combined with inexpensiveness of fabrication and compatibility with large scale production. Thermoelectric devices utilizing thermoelectric materials in the form of quantum well semiconductor super-lattices grown on three-dimensionally structured substrates provide improved thermoelectric characteristics that can be used for power generation, cooling and other applications..
Localization-based super-resolution imaging meets high-content screening.
Beghin, Anne; Kechkar, Adel; Butler, Corey; Levet, Florian; Cabillic, Marine; Rossier, Olivier; Giannone, Gregory; Galland, Rémi; Choquet, Daniel; Sibarita, Jean-Baptiste
2017-12-01
Single-molecule localization microscopy techniques have proven to be essential tools for quantitatively monitoring biological processes at unprecedented spatial resolution. However, these techniques are very low throughput and are not yet compatible with fully automated, multiparametric cellular assays. This shortcoming is primarily due to the huge amount of data generated during imaging and the lack of software for automation and dedicated data mining. We describe an automated quantitative single-molecule-based super-resolution methodology that operates in standard multiwell plates and uses analysis based on high-content screening and data-mining software. The workflow is compatible with fixed- and live-cell imaging and allows extraction of quantitative data like fluorophore photophysics, protein clustering or dynamic behavior of biomolecules. We demonstrate that the method is compatible with high-content screening using 3D dSTORM and DNA-PAINT based super-resolution microscopy as well as single-particle tracking.
Elemental Abundances of Ultra-Heavy Galactic Cosmic Rays from the SuperTIGER Instrument
NASA Astrophysics Data System (ADS)
Murphy, Ryan
2016-07-01
The SuperTIGER (Trans-Iron Galactic Element Recorder) experiment was launched on a long-duration balloon flight from Williams Field, Antarctica, on December 8, 2012. The instrument measured the relative elemental abundances of Galactic Cosmic Rays (GCR) for charge (Z) Z>10 with excellent charge resolution, displaying well resolved individual element peaks for 10 ≤ Z ≤ 40. During its record-breaking 55-day flight, SuperTIGER collected ˜4.73 x10^{6} Iron nuclei, ˜8 times as many as detected by its predecessor, TIGER, with charge resolution at iron of 0.17 cu. SuperTIGER measures charge (Z) and energy (E) using a combination of three scintillator and two Cherenkov detectors, and employs a scintillating fiber hodoscope for event trajectory determination. The SuperTIGER data have been analyzed to correct for instrument effects and remove events that underwent nuclear interactions within the instrument. The data include more than 600 events in the charge range 30 < Z ≤ 40. SuperTIGER is the first experiment to resolve elemental abundances of every element in this charge range with high statistics and single-element resolution. The relative abundances of the galactic cosmic ray source have been derived from the measured relative elemental abundances using atmospheric and interstellar propagations. The SuperTIGER measured abundances are generally consistent with previous experimental results from TIGER and ACE-CRIS, with improved statistical precision. The SuperTIGER results confirm the earlier results from TIGER, supporting a model of cosmic-ray origin in OB associations, with preferential acceleration of refractory elements over volatile elements ordered by atomic mass (A). A second SuperTIGER Antarctic flight is planned for December 2017. Details of the instrument, flight, data analysis, and ongoing preparations will be presented.
Hot super-Earths stripped by their host stars
Lundkvist, M. S.; Kjeldsen, H.; Albrecht, S.; Davies, G. R.; Basu, S.; Huber, D.; Justesen, A. B.; Karoff, C.; Silva Aguirre, V.; Van Eylen, V.; Vang, C.; Arentoft, T.; Barclay, T.; Bedding, T. R.; Campante, T. L.; Chaplin, W. J.; Christensen-Dalsgaard, J.; Elsworth, Y. P.; Gilliland, R. L.; Handberg, R.; Hekker, S.; Kawaler, S. D.; Lund, M. N.; Metcalfe, T. S.; Miglio, A.; Rowe, J. F.; Stello, D.; Tingley, B.; White, T. R.
2016-01-01
Simulations predict that hot super-Earth sized exoplanets can have their envelopes stripped by photoevaporation, which would present itself as a lack of these exoplanets. However, this absence in the exoplanet population has escaped a firm detection. Here we demonstrate, using asteroseismology on a sample of exoplanets and exoplanet candidates observed during the Kepler mission that, while there is an abundance of super-Earth sized exoplanets with low incident fluxes, none are found with high incident fluxes. We do not find any exoplanets with radii between 2.2 and 3.8 Earth radii with incident flux above 650 times the incident flux on Earth. This gap in the population of exoplanets is explained by evaporation of volatile elements and thus supports the predictions. The confirmation of a hot-super-Earth desert caused by evaporation will add an important constraint on simulations of planetary systems, since they must be able to reproduce the dearth of close-in super-Earths. PMID:27062914
Understanding the plume dynamics of explosive super-eruptions.
Costa, Antonio; J Suzuki, Yujiro; Koyaguchi, Takehiro
2018-02-13
Explosive super-eruptions can erupt up to thousands of km 3 of magma with extremely high mass flow rates (MFR). The plume dynamics of these super-eruptions are still poorly understood. To understand the processes operating in these plumes we used a fluid-dynamical model to simulate what happens at a range of MFR, from values generating intense Plinian columns, as did the 1991 Pinatubo eruption, to upper end-members resulting in co-ignimbrite plumes like Toba super-eruption. Here, we show that simple extrapolations of integral models for Plinian columns to those of super-eruption plumes are not valid and their dynamics diverge from current ideas of how volcanic plumes operate. The different regimes of air entrainment lead to different shaped plumes. For the upper end-members can generate local up-lifts above the main plume (over-plumes). These over-plumes can extend up to the mesosphere. Injecting volatiles into such heights would amplify their impact on Earth climate and ecosystems.
Super shedding of Escherichia coli O157:H7 by cattle and the impact on beef carcass contamination.
Arthur, Terrance M; Brichta-Harhay, Dayna M; Bosilevac, Joseph M; Kalchayanand, Norasak; Shackelford, Steven D; Wheeler, Tommy L; Koohmaraie, Mohammad
2010-09-01
Beef carcass contamination is a direct result of pathogen transfer from cattle hides harboring organisms such as enterohemorrhagic Escherichia coli. Hide contamination occurs from direct and indirect fecal contamination in cattle production and lairage environments. In each of these environments, individual animals shedding E. coli O157:H7 at high levels (>10(4) CFU/g of feces, hereafter referred to as "super shedders") can have a disproportionate effect on cattle hide and subsequent carcass contamination. It is not known what criteria must be met to cause an animal to shed at levels exceeding 10(4) CFU/g. Understanding the factors that play a role in super shedding will aid in minimizing or eliminating the super shedding population. Interventions that would prevent super shedding in the cattle population should reduce E. coli O157:H7 transmission in the production and lairage environments resulting in reduced risk of beef carcass contamination and a safer finished product.
Design and analysis of adaptive Super-Twisting sliding mode control for a microgyroscope.
Feng, Zhilin; Fei, Juntao
2018-01-01
This paper proposes a novel adaptive Super-Twisting sliding mode control for a microgyroscope under unknown model uncertainties and external disturbances. In order to improve the convergence rate of reaching the sliding surface and the accuracy of regulating and trajectory tracking, a high order Super-Twisting sliding mode control strategy is employed, which not only can combine the advantages of the traditional sliding mode control with the Super-Twisting sliding mode control, but also guarantee that the designed control system can reach the sliding surface and equilibrium point in a shorter finite time from any initial state and avoid chattering problems. In consideration of unknown parameters of micro gyroscope system, an adaptive algorithm based on Lyapunov stability theory is designed to estimate the unknown parameters and angular velocity of microgyroscope. Finally, the effectiveness of the proposed scheme is demonstrated by simulation results. The comparative study between adaptive Super-Twisting sliding mode control and conventional sliding mode control demonstrate the superiority of the proposed method.
NASA Astrophysics Data System (ADS)
Li, Shidong; Mo, Caisong; Wang, Junze; Zheng, Jingfu; Tian, Ruhong
2017-11-01
In this paper, a kind of cool storage clothes which can cool the human body in high temperature condition is put forward. super absorbent polymers was selected as a cold storage material, through at the normal and extreme environment simulation, the cold storage materials were prepared with different composition, and their performance was tested. Test results show that:under normal temperature conditions, the 1:50 concentration of super absorbent polymers continued to release the longest cooling time, compared with pure water, cooling time extended 43 minutes by about 30%; under the condition of 37°C, the 1:100 concentration of super absorbent polymers continued to release the longest cooling time, compared with pure water, cooling time extended 105 minutes by about 50%.
Probing Massive Star Cluster Formation with ALMA
NASA Astrophysics Data System (ADS)
Johnson, Kelsey
2015-08-01
Observationally constraining the physical conditions that give rise to massive star clusters has been a long-standing challenge. Now with the ALMA Observatory coming on-line, we can finally begin to probe the birth environments of massive clusters in a variety of galaxies with sufficient angular resolution. In this talk I will give an overview of ALMA observations of galaxies in which candidate proto-super star cluster molecular clouds have been identified. These new data probe the physical conditions that give rise to super star clusters, providing information on their densities, pressures, and temperatures. In particular, the observations indicate that these clouds may be subject to external pressures of P/k > 108 K cm-3, which is consistent with the prevalence of optically observed adolescent super star clusters in interacting galaxy systems and other high pressure environments. ALMA observations also enable an assessement of the molecular cloud chemical abundances in the regions surrounding super star clusters. Molecular clouds associated with existing super star clusters are strongly correlated with HCO+ emission, but appear to have relatively low ratio of CO/HCO+ emission compared to other clouds, indicating that the super star clusters are impacting the molecular abundances in their vicinity.
Super-resolution fluorescence microscopy by stepwise optical saturation
Zhang, Yide; Nallathamby, Prakash D.; Vigil, Genevieve D.; Khan, Aamir A.; Mason, Devon E.; Boerckel, Joel D.; Roeder, Ryan K.; Howard, Scott S.
2018-01-01
Super-resolution fluorescence microscopy is an important tool in biomedical research for its ability to discern features smaller than the diffraction limit. However, due to its difficult implementation and high cost, the super-resolution microscopy is not feasible in many applications. In this paper, we propose and demonstrate a saturation-based super-resolution fluorescence microscopy technique that can be easily implemented and requires neither additional hardware nor complex post-processing. The method is based on the principle of stepwise optical saturation (SOS), where M steps of raw fluorescence images are linearly combined to generate an image with a M-fold increase in resolution compared with conventional diffraction-limited images. For example, linearly combining (scaling and subtracting) two images obtained at regular powers extends the resolution by a factor of 1.4 beyond the diffraction limit. The resolution improvement in SOS microscopy is theoretically infinite but practically is limited by the signal-to-noise ratio. We perform simulations and experimentally demonstrate super-resolution microscopy with both one-photon (confocal) and multiphoton excitation fluorescence. We show that with the multiphoton modality, the SOS microscopy can provide super-resolution imaging deep in scattering samples. PMID:29675306
Yamamoto, Kyosuke; Togami, Takashi; Yamaguchi, Norio
2017-11-06
Unmanned aerial vehicles (UAVs or drones) are a very promising branch of technology, and they have been utilized in agriculture-in cooperation with image processing technologies-for phenotyping and vigor diagnosis. One of the problems in the utilization of UAVs for agricultural purposes is the limitation in flight time. It is necessary to fly at a high altitude to capture the maximum number of plants in the limited time available, but this reduces the spatial resolution of the captured images. In this study, we applied a super-resolution method to the low-resolution images of tomato diseases to recover detailed appearances, such as lesions on plant organs. We also conducted disease classification using high-resolution, low-resolution, and super-resolution images to evaluate the effectiveness of super-resolution methods in disease classification. Our results indicated that the super-resolution method outperformed conventional image scaling methods in spatial resolution enhancement of tomato disease images. The results of disease classification showed that the accuracy attained was also better by a large margin with super-resolution images than with low-resolution images. These results indicated that our approach not only recovered the information lost in low-resolution images, but also exerted a beneficial influence on further image analysis. The proposed approach will accelerate image-based phenotyping and vigor diagnosis in the field, because it not only saves time to capture images of a crop in a cultivation field but also secures the accuracy of these images for further analysis.
Togami, Takashi; Yamaguchi, Norio
2017-01-01
Unmanned aerial vehicles (UAVs or drones) are a very promising branch of technology, and they have been utilized in agriculture—in cooperation with image processing technologies—for phenotyping and vigor diagnosis. One of the problems in the utilization of UAVs for agricultural purposes is the limitation in flight time. It is necessary to fly at a high altitude to capture the maximum number of plants in the limited time available, but this reduces the spatial resolution of the captured images. In this study, we applied a super-resolution method to the low-resolution images of tomato diseases to recover detailed appearances, such as lesions on plant organs. We also conducted disease classification using high-resolution, low-resolution, and super-resolution images to evaluate the effectiveness of super-resolution methods in disease classification. Our results indicated that the super-resolution method outperformed conventional image scaling methods in spatial resolution enhancement of tomato disease images. The results of disease classification showed that the accuracy attained was also better by a large margin with super-resolution images than with low-resolution images. These results indicated that our approach not only recovered the information lost in low-resolution images, but also exerted a beneficial influence on further image analysis. The proposed approach will accelerate image-based phenotyping and vigor diagnosis in the field, because it not only saves time to capture images of a crop in a cultivation field but also secures the accuracy of these images for further analysis. PMID:29113104
NASA Astrophysics Data System (ADS)
Gubin, M.; Kovalchuk, E.; Petrukhin, E.; Shelkovnikov, A.; Tyurikov, D.; Gamidov, R.; Erdogan, C.; Sahin, E.; Felder, R.; Gill, P.; Lea, S. N.; Kramer, G.; Lipphardt, B.
2002-04-01
The accumulated results of absolute frequency measurements (AFM) carried out in 1997-2000 with transportable double-mode He-Ne/CH4 optical frequency standards (λ = 3 .39μm) in a collaboration of several laboratories are presented. The performance of this secondary optical frequency standard is estimated on the level of 10-13 (in repeatability), and 1 × 10-14/s (in stability). The next steps towards He-Ne/CH4 standards with one order of magnitude better performance, including devices based on monolithic zerodur resonators, are discussed. Important applications of transportable He-Ne/CH4 optical frequency standards have appeared now due to dramatic progress in the field of optical frequency measurements. Used to stabilize the repetition rate of a Ti:Sa fs laser, these compact secondary standards can transfer their performance into the whole optical range covered by a fs comb. Thus they can play the role of a narrow spectrum interrogative oscillator for super-accurate optical or microwave frequency standards substituting in some tasks a H-maser or oscillators based on cryogenic sapphire resonators.
NASA Astrophysics Data System (ADS)
Li, Jian; Wei, Yuan; Huang, Zhengyong; Wang, Feipeng; Yan, Xinzhu; Wu, Zhuolin
2017-05-01
Moisture is a significant factor that affects the insulation performance of outdoor high-voltage insulators in power systems. Accumulation of water droplets on insulators causes severe problems such as flashover of insulators and power outage. In this study, we develop a method to fabricate a micro/nano hierarchical super hydrophobic surface. The as-prepared super hydrophobic surface exhibits a water contact angle (WCA) of 160.4 ± 2°, slide angle (SA) less than 1° and surface free energy (SFE) of 5.99 mJ/m2. We investigated the electrohydropdynamic behavior of water droplet on a horizontal super hydrophobic surface compared with hydrophobic RTV silicone rubber surface which was widely used as anti-pollution coating or shed material of composite insulator. Results show that water droplet tended to a self-propelled motion on the super hydrophobic surface while it tended to elongate and break up on the RTV surface. The micro/nano hierarchical surface structure and chemical components with low surface free energy of the super hydrophobic surface jointly contributed to the reduction of skin fraction drag and subsequently made it possible for the motion of water droplet driven by electric field. Furthermore, the self-propelled motion of water droplets could also sweep away contaminations along its moving trace, which provides super hydrophobic surface a promising anti-pollution prospect in power systems.
A novel super-resolution camera model
NASA Astrophysics Data System (ADS)
Shao, Xiaopeng; Wang, Yi; Xu, Jie; Wang, Lin; Liu, Fei; Luo, Qiuhua; Chen, Xiaodong; Bi, Xiangli
2015-05-01
Aiming to realize super resolution(SR) to single image and video reconstruction, a super resolution camera model is proposed for the problem that the resolution of the images obtained by traditional cameras behave comparatively low. To achieve this function we put a certain driving device such as piezoelectric ceramics in the camera. By controlling the driving device, a set of continuous low resolution(LR) images can be obtained and stored instantaneity, which reflect the randomness of the displacements and the real-time performance of the storage very well. The low resolution image sequences have different redundant information and some particular priori information, thus it is possible to restore super resolution image factually and effectively. The sample method is used to derive the reconstruction principle of super resolution, which analyzes the possible improvement degree of the resolution in theory. The super resolution algorithm based on learning is used to reconstruct single image and the variational Bayesian algorithm is simulated to reconstruct the low resolution images with random displacements, which models the unknown high resolution image, motion parameters and unknown model parameters in one hierarchical Bayesian framework. Utilizing sub-pixel registration method, a super resolution image of the scene can be reconstructed. The results of 16 images reconstruction show that this camera model can increase the image resolution to 2 times, obtaining images with higher resolution in currently available hardware levels.
NASA Astrophysics Data System (ADS)
El-Wakil, S. A.; Abulwafa, Essam M.; Elhanbaly, Atalla A.
2017-07-01
Based on Sagdeev pseudo-potential and phase-portrait, the dynamics of four-component dust plasma with non-extensively distributed electrons and ions are investigated. Three distinct types of nonlinear waves, namely, soliton, double layer, and super-soliton, have been found. The basic features of such waves are high sensitivity to Mach number, non-extensive parameter, and dust temperature ratio. It is found that the multi-component plasma is a necessary condition for super-soliton's existence, having a wider amplitude and a larger width than the regular soliton. Super-solitons may also exist when the Sagdeev pseudo-potential curves admit at least four extrema and two roots. In our multi-component plasma system, the super-solitons can be found by increasing the Mach number and the non-extensive parameter beyond those of double-layers. On the contrary, the super-soliton can be produced by decreasing the dust temperature ratio. The conditions of the onset of such nonlinear waves and its merging to regular solitons have been studied. This work shows that the obtained nonlinear waves are found to exist only in the super-sonic Mach number regime. The obtained results may be of wide relevance in the field of space plasma and may also be helpful to better understand the nonlinear fluctuations in the Auroral-zone of the Earth's magnetosphere.
Vibration-rotation transfer in molecular super rotors
NASA Astrophysics Data System (ADS)
McCaffery, Anthony J.
2000-12-01
The collisional behavior of (X)6Li2 molecules in very high rotational levels of v=0 is considered. Highly efficient vibration-rotation transfer is predicted in these "super rotors" particularly when the conditions for quasiresonant transfer are fulfilled. This requires simultaneous near-resonance in energy and in angular momentum. Values of Δj for which quasiresonant vibration-rotation transfer (QRT) occurs become smaller as initial rotor state increases and transfer is likely to become particularly fast for Δj=2, predicted to occur when ji=130. This behavior is contrasted with the inefficiency of pure rotational transfer within the v=0 level for fast-rotating molecules. QRT will take place for quite cold collisions and thus will provide competition for the spinning-up process used to create the super rotors.
All Electric Combat Vehicles (AECV) for Future Applications
2004-07-01
includes the very high-speed travels. The Super Speed Maglev System (GE Trans-rapid RTO-TR-AVT-047 8 - 3 STANDARDIZATION AND DUAL USE International GmbH...Germany). [25] Super Speed Maglev System: Dipl Ing Gerhard Wahl (WEC, 19-21 June 2000). [26] Development of Dual Use Technologies and a Strategy for
NASA Astrophysics Data System (ADS)
Lee, Jaehyun; Hwang, Sangyeon; Prasetyo, Fariza Dian; Nguyen, Vu Dat; Hong, Jungwoo; Shin, Jennifer H.; Byun, Doyoung
2014-11-01
Selective surface modification is considered as an alternative to conventional printing techniques in high resolution patterning. Here, we present fabrication of hydrophilic patterns on the super hydrophobic surface, which makes structure on the hydrophilic region. The super hydrophobic surface is able to be chemically changed to hydrophilic with alcohols. As a consecutive process, electrohydrodynamic (EHD) jet printing was utilized to fabricate local hydrophilic craters with 30-200 μm sizes. 3 kinds of target liquids were deposited well on hydrophilic region; PEDOT (poly 3,4 ethylenediocythiophene), polystyrene nano-particles, and salmonella bacteria medium. Additionally, qualitative analysis were presented for modification mechanism and surface properties on super hydrophobic/hydrophilic by analysis of surface energy with contact angle, SEM (scanning electron microscopy) image, and SIMS (secondary ion mass spectroscopy) analysis. This new simple modification method provides possibility to be utilizing in bio-patterning engineering such as cell culturing microchip and lab on a chip. This research was supported by the Basi Science Research Program through the National Research Foundation of Korea (NRF) (Grand Number: 2014-023284).
NASA Astrophysics Data System (ADS)
Valiya Peedikakkal, Liyana; Cadby, Ashley
2017-02-01
Localization based super resolution images of a biological sample is generally achieved by using high power laser illumination with long exposure time which unfortunately increases photo-toxicity of a sample, making super resolution microscopy, in general, incompatible with live cell imaging. Furthermore, the limitation of photobleaching reduces the ability to acquire time lapse images of live biological cells using fluorescence microscopy. Digital Light Processing (DLP) technology can deliver light at grey scale levels by flickering digital micromirrors at around 290 Hz enabling highly controlled power delivery to samples. In this work, Digital Micromirror Device (DMD) is implemented in an inverse Schiefspiegler telescope setup to control the power and pattern of illumination for super resolution microscopy. We can achieve spatial and temporal patterning of illumination by controlling the DMD pixel by pixel. The DMD allows us to control the power and spatial extent of the laser illumination. We have used this to show that we can reduce the power delivered to the sample to allow for longer time imaging in one area while achieving sub-diffraction STORM imaging in another using higher power densities.
Investigations on Vibration Characteristics of Sma Embedded Horizontal Axis Wind Turbine Blade
NASA Astrophysics Data System (ADS)
Jagadeesh, V.; Yuvaraja, M.; Chandhru, A.; Viswanathan, P.; Senthil kumar, M.
2018-02-01
Vibration induced in wind turbine blade is a solemn problem as it reduces the life of the blade and also it can create critical vibration onto the tower, which may cause serious damage to the tower. The aim of this paper is to investigate the vibration characteristics of the prototype horizontal axis wind turbine blade. Shape memory alloys (SMA), with its variable physical properties, provides an alternative actuating mechanism. Heating an SMA causes a change in the elastic modulus of the material and hence SMAs are used as a damping material. A prototype blade with S1223 profile has been manufactured and the natural frequency is found. The natural frequency is found by incorporating the single SMA wire of 0.5mm diameter over the surface of the blade for a length of 240 mm. Similarly, number of SMA wires over the blade is increased up to 3 and the natural frequency is found. Frequency responses showed that the embedment of SMA over the blade’s surface will increase the natural frequency and reduce the amplitude of vibration. This is because of super elastic nature of SMA. In this paper, when SMA wire of 0.5 mm diameter and of length of 720 mm is embedded on the blade, an increase in the natural frequency by 6.3% and reducing the amplitude by 64.8%. Results of the experimental modal and harmonic indicates the effectiveness of SMA as a passive vibration absorber and that it has potential as a modest and high-performance method for controlling vibration of the blade.
High density harp for SSCL linac. [Suerconducting Super Collider Laboratory (SSCL)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritsche, C.T.; Krogh, M.L.; Crist, C.E.
1993-05-01
AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities.
Non-thermal X-ray emission from tidal disruption flares
NASA Astrophysics Data System (ADS)
Stone, Nicholas
2016-09-01
A star that passes too close to a supermassive black hole will be disrupted by the black hole's tidal gravity. The result is a flare of thermal emission at optical and X-ray frequencies. The return rate of stellar debris decreases from highly super-Eddington to sub-Eddington in a few years, making stellar tidal disruptions flares (TDFs) a unique laboratory to study accretion physics. In one class of models, the optical emission is due to reprocessing of the X-ray photons, thus explaining the lack of X-ray detections from optically selected TDFs. After a few years, the outer reprocessing regions will dilute, allowing us to observe any non-thermal emission from the inner disk. Here we propose Chandra observations to measure the luminosity of newly formed accretion disks in two known TDFs.
Clouds in Super-Earth Atmospheres: Chemical Equilibrium Calculations
NASA Astrophysics Data System (ADS)
Mbarek, Rostom; Kempton, Eliza M.-R.
2016-08-01
Recent studies have unequivocally proven the existence of clouds in super-Earth atmospheres. Here we provide a theoretical context for the formation of super-Earth clouds by determining which condensates are likely to form under the assumption of chemical equilibrium. We study super-Earth atmospheres of diverse bulk composition, which are assumed to form by outgassing from a solid core of chondritic material, following Schaefer & Fegley. The super-Earth atmospheres that we study arise from planetary cores made up of individual types of chondritic meteorites. They range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a range of atmospheric composition that is appropriate for low-mass exoplanets. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of formation for over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350-3000 K. Clouds should form along the temperature-pressure boundaries where the condensed species appear in our calculation. We find that the composition of condensate clouds depends strongly on both the H:O and C:O ratios. For the super-Earth archetype GJ 1214b, KCl and ZnS are the primary cloud-forming condensates at solar composition, in agreement with previous work. However, for oxidizing atmospheres, K2SO4 and ZnO condensates are favored instead, and for carbon-rich atmospheres with super-solar C:O ratios, graphite clouds appear. For even hotter planets, clouds form from a wide variety of rock-forming and metallic species.
NASA Astrophysics Data System (ADS)
Zhong, Xianyun; Hou, Xi; Yang, Jinshan
2016-09-01
Nickel is the unique material in the X-ray telescopes. And it has the typical soft material characteristics with low hardness high surface damage and low stability of thermal. The traditional fabrication techniques are exposed to lots of problems, including great surface scratches, high sub-surface damage and poor surface roughness and so on. The current fabrication technology for the nickel aspheric mainly adopt the single point diamond turning(SPDT), which has lots of advantages such as high efficiency, ultra-precision surface figure, low sub-surface damage and so on. But the residual surface texture of SPDT will cause great scattering losses and fall far short from the requirement in the X-ray applications. This paper mainly investigates the magnetorheological finishing (MRF) techniques for the super-smooth processing on the nickel optics. Through the study of the MRF polishing techniques, we obtained the ideal super-smooth polishing technique based on the self-controlled MRF-fluid NS-1, and finished the high-precision surface figure lower than RMS λ/80 (λ=632.8nm) and super-smooth roughness lower than Ra 0.3nm on the plane reflector and roughness lower than Ra 0.4nm on the convex cone. The studying of the MRF techniques makes a great effort to the state-of-the-art nickel material processing level for the X-ray optical systems applications.
Further developments of 8μm pitch MCT pixels at Finmeccanica (formerly Selex ES)
NASA Astrophysics Data System (ADS)
Jeckells, David; McEwen, R. Kennedy; Bains, Sudesh; Herbert, Martin
2016-05-01
Finmeccanica (formerly Selex ES) introduced high performance mercury cadmium telluride (MCT) infrared detectors on an 8μm pitch in 2015 with their SuperHawk device which builds on standard production processes already used for the manufacture of 24μm, 20μm, 16μm and 12μm pitch devices. The flexibility of the proprietary Finmeccanica designed diode structure, used in conjunction with the mature production Metal Organic Vapour Phase Epitaxy (MOVPE) MCT growth process at Finmeccanica, enables fine control of diode electrical and optical structure including free choice of cut-off wavelength. The mesa pixel design inherently provides major system performance benefits by reducing blurring mechanisms, including optical scattering, inter-pixel cross-talk and carrier diffusion, to negligible levels. The SuperHawk detector has demonstrated unrivalled MTF and NETD performance, even when operating at temperatures in excess of 120K. The SuperHawk Integrated Detector Cooler Assembly (IDCA) benefits from recent dewar developments at Finmeccanica, which have improved thermal efficiencies while maintaining mechanical integrity over a wide range of applications, enabling use of smaller cryo-coolers to reduce system SWAP-C. Performance and qualification results are presented together with example imagery. SuperHawk provides an easy high resolution upgrade for systems currently based on standard definition 16μm and 15μm infrared detector formats. The paper also addresses further work to increase the operating temperature of the established 8μm process, exploiting High Operating Temperature (HOT) MCT at Finmeccanica, as well as options for LWIR variants of the SuperHawk device.
The SuperCDMS SNOLAB Detector Tower
NASA Astrophysics Data System (ADS)
Aramaki, Tsuguo
2016-08-01
The SuperCDMS collaboration is moving forward with the design and construction of SuperCDMS SNOLAB, where the initial deployment will include ˜ 30 kg of Ge and ˜ 5 kg of Si detectors. Here, we will discuss the associated cryogenic cold hardware required for the detector readout. The phonon signals will be read out with superconducting quantum interference device arrays and the ionization signals will use high electron mobility transistor amplifiers operating at 4 K. A number of design challenges exist regarding the required wiring complex impedance, noise pickup, vibration, and thermal isolation. Our progress to date will be presented.
NASA Astrophysics Data System (ADS)
Lee, S.; Petrykin, V.; Molodyk, A.; Samoilenkov, S.; Kaul, A.; Vavilov, A.; Vysotsky, V.; Fetisov, S.
2014-04-01
The SuperOx and SuperOx Japan LLC companies were founded with the goal of developing a cost-effective technology for second generation HTS (2G HTS) tapes by utilizing a combination of the most advanced chemical and physical deposition techniques, together with implementing original tape architectures. In this paper we present a brief overview of our production and experimental facilities and recent results of 2G HTS tape fabrication, and describe the first tests of the tapes in model cables for AC and DC power application.
Localization-based super-resolution imaging of cellular structures.
Kanchanawong, Pakorn; Waterman, Clare M
2013-01-01
Fluorescence microscopy allows direct visualization of fluorescently tagged proteins within cells. However, the spatial resolution of conventional fluorescence microscopes is limited by diffraction to ~250 nm, prompting the development of super-resolution microscopy which offers resolution approaching the scale of single proteins, i.e., ~20 nm. Here, we describe protocols for single molecule localization-based super-resolution imaging, using focal adhesion proteins as an example and employing either photoswitchable fluorophores or photoactivatable fluorescent proteins. These protocols should also be easily adaptable to imaging a broad array of macromolecular assemblies in cells whose components can be fluorescently tagged and assemble into high density structures.
KML Super Overlay to WMS Translator
NASA Technical Reports Server (NTRS)
Plesea, Lucian
2007-01-01
This translator is a server-based application that automatically generates KML super overlay configuration files required by Google Earth for map data access via the Open Geospatial Consortium WMS (Web Map Service) standard. The translator uses a set of URL parameters that mirror the WMS parameters as much as possible, and it also can generate a super overlay subdivision of any given area that is only loaded when needed, enabling very large areas of coverage at very high resolutions. It can make almost any dataset available as a WMS service visible and usable in any KML application, without the need to reformat the data.
NASA Astrophysics Data System (ADS)
Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng
2018-03-01
A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.
NASA Astrophysics Data System (ADS)
Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng
2018-06-01
A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.
Hu, Ying S; Zhu, Quan; Elkins, Keri; Tse, Kevin; Li, Yu; Fitzpatrick, James A J; Verma, Inder M; Cang, Hu
2013-01-01
Heterochromatin in the nucleus of human embryonic cells plays an important role in the epigenetic regulation of gene expression. The architecture of heterochromatin and its dynamic organization remain elusive because of the lack of fast and high-resolution deep-cell imaging tools. We enable this task by advancing instrumental and algorithmic implementation of the localization-based super-resolution technique. We present light-sheet Bayesian super-resolution microscopy (LSBM). We adapt light-sheet illumination for super-resolution imaging by using a novel prism-coupled condenser design to illuminate a thin slice of the nucleus with high signal-to-noise ratio. Coupled with a Bayesian algorithm that resolves overlapping fluorophores from high-density areas, we show, for the first time, nanoscopic features of the heterochromatin structure in both fixed and live human embryonic stem cells. The enhanced temporal resolution allows capturing the dynamic change of heterochromatin with a lateral resolution of 50-60 nm on a time scale of 2.3 s. Light-sheet Bayesian microscopy opens up broad new possibilities of probing nanometer-scale nuclear structures and real-time sub-cellular processes and other previously difficult-to-access intracellular regions of living cells at the single-molecule, and single cell level.
Hu, Ying S; Zhu, Quan; Elkins, Keri; Tse, Kevin; Li, Yu; Fitzpatrick, James A J; Verma, Inder M; Cang, Hu
2016-01-01
Background Heterochromatin in the nucleus of human embryonic cells plays an important role in the epigenetic regulation of gene expression. The architecture of heterochromatin and its dynamic organization remain elusive because of the lack of fast and high-resolution deep-cell imaging tools. We enable this task by advancing instrumental and algorithmic implementation of the localization-based super-resolution technique. Results We present light-sheet Bayesian super-resolution microscopy (LSBM). We adapt light-sheet illumination for super-resolution imaging by using a novel prism-coupled condenser design to illuminate a thin slice of the nucleus with high signal-to-noise ratio. Coupled with a Bayesian algorithm that resolves overlapping fluorophores from high-density areas, we show, for the first time, nanoscopic features of the heterochromatin structure in both fixed and live human embryonic stem cells. The enhanced temporal resolution allows capturing the dynamic change of heterochromatin with a lateral resolution of 50–60 nm on a time scale of 2.3 s. Conclusion Light-sheet Bayesian microscopy opens up broad new possibilities of probing nanometer-scale nuclear structures and real-time sub-cellular processes and other previously difficult-to-access intracellular regions of living cells at the single-molecule, and single cell level. PMID:27795878
Ultrasonic inspection of rocket fuel model using laminated transducer and multi-channel step pulser
NASA Astrophysics Data System (ADS)
Mihara, T.; Hamajima, T.; Tashiro, H.; Sato, A.
2013-01-01
For the ultrasonic inspection for the packing of solid fuel in a rocket booster, an industrial inspection is difficult. Because the signal to noise ratio in ultrasonic inspection of rocket fuel become worse due to the large attenuation even using lower frequency ultrasound. For the improvement of this problem, we tried to applied the two techniques in ultrasonic inspection, one was the step function pulser system with the super wideband frequency properties and the other was the laminated element transducer. By combining these two techniques, we developed the new ultrasonic measurement system and demonstrated the advantages in ultrasonic inspection of rocket fuel model specimen.
Super-Nyquist White Dwarf Pulsations in K2 Long-Cadence Data
NASA Astrophysics Data System (ADS)
Bell, Keaton J.; Hermes, JJ; Montgomery, Michael H.; Vanderbosch, Zach
2017-06-01
The Kepler and K2 missions have recently revolutionized the field of white dwarf asteroseismology. Since white dwarfs pulsate on timescales of order 10 minutes, we aim to observe these objects at K2’s short cadence (1 minute). Occasionally we find signatures of pulsations in white dwarf targets that were only observed by K2 at long cadence (30 minute). These signals suffer extreme aliasing since the intrinsic frequencies exceed the Nyquist sampling limit. We present our work to recover accurate frequency determinations for these targets, guided by a limited amount of supplementary, ground-based photometry from McDonald Observatory.
Dynamic Analysis of a Rotor System Supported on Squeeze Film Damper with Air Entrainment
NASA Astrophysics Data System (ADS)
Zhang, Wei; Han, Bingbing; Zhang, Kunpeng; Ding, Qian
2017-12-01
Squeeze film dampers (SFDs) are widely used in compressors and turbines to suppress the vibration while traversing critical speeds. In practical applications, air ingestion from the outside environment and cavitation may lead to a foamy lubricant that weakens oil film damping and dynamic performance of rotor system. In this paper, a rigid rotor model is established considering both lateral and pitching vibration under different imbalance excitations to evaluate the effect of air entrainment on rotor system. Tests with three different imbalances are carried out on a rotor-SFD apparatus. Volume controlled air in mixture ranging from pure oil to all air are supplied to the SFD. The transient response of rotor is measured in the experiments. The results show that two-phase flow produces significant influence on the system stability and dynamical response. The damping properties are weakened by entrained air, such as the damping on high frequency components of rolling ball bearing. Super-harmonic resonance and bifurcation are observed, as well as the low frequency components due to air entrainment.
Current Noise from a Magnetic Moment in a Helical Edge
NASA Astrophysics Data System (ADS)
Väyrynen, Jukka I.; Glazman, Leonid I.
2017-03-01
We calculate the two-terminal current noise generated by a magnetic moment coupled to a helical edge of a two-dimensional topological insulator. When the system is symmetric with respect to in-plane spin rotation, the noise is dominated by the Nyquist component even in the presence of a voltage bias V . The corresponding noise spectrum S (V ,ω ) is determined by a modified fluctuation-dissipation theorem with the differential conductance G (V ,ω ) in place of the linear one. The differential noise ∂S /∂V , commonly measured in experiments, is strongly dependent on frequency on a small scale τK-1≪T set by the Korringa relaxation rate of the local moment. This is in stark contrast to the case of conventional mesoscopic conductors where ∂S /∂V is frequency independent and defined by the shot noise. In a helical edge, a violation of the spin-rotation symmetry leads to the shot noise, which becomes important only at a high bias. Uncharacteristically for a fermion system, this noise in the backscattered current is super-Poissonian.
Magnetospheric electron density measurements from upper hybrid resonance noise observed by IMP-6
NASA Technical Reports Server (NTRS)
Shaw, R. R.; Gurnett, D. A.
1972-01-01
A band of natural radio noise between the local electron plasma frequency and the upper hybrid resonance frequency is observed by the IMP-6 satellite. The band exists over a large range of geocentric radial distances extending from inside the plasmapause boundary to greater than 10 earth radii in the outer magnetosphere. The center frequency of the noise band decreases with increasing radial distance, and changes abruptly at the plasmapause boundary. The broadband electric field strength of this noise is very small, seldom exceeding 10 microvolts/meter, and probably could not be detected without using long electric antennas of IMP-6. It is believed that this noise is produced by incoherent Cerenkov emission from super-thermal electrons. In some cases a second very narrow noise band was observed at a frequency slightly above the second harmonic of the electron gyrofrequency.
The global magnitude-frequency relationship for large explosive volcanic eruptions
NASA Astrophysics Data System (ADS)
Rougier, Jonathan; Sparks, R. Stephen J.; Cashman, Katharine V.; Brown, Sarah K.
2018-01-01
For volcanoes, as for other natural hazards, the frequency of large events diminishes with their magnitude, as captured by the magnitude-frequency relationship. Assessing this relationship is valuable both for the insights it provides about volcanism, and for the practical challenge of risk management. We derive a global magnitude-frequency relationship for explosive volcanic eruptions of at least 300Mt of erupted mass (or M4.5). Our approach is essentially empirical, based on the eruptions recorded in the LaMEVE database. It differs from previous approaches mainly in our conservative treatment of magnitude-rounding and under-recording. Our estimate for the return period of 'super-eruptions' (1000Gt, or M8) is 17ka (95% CI: 5.2ka, 48ka), which is substantially shorter than previous estimates, indicating that volcanoes pose a larger risk to human civilisation than previously thought.
Wang, Wei; Jiang, Bo; Xiong, Weiyi; Sun, He; Lin, Zheshuai; Hu, Liwen; Tu, Jiguo; Hou, Jungang; Zhu, Hongmin; Jiao, Shuqiang
2013-01-01
Due to their small footprint and flexible siting, rechargeable batteries are attractive for energy storage systems. A super-valent battery based on aluminium ion intercalation and deintercalation is proposed in this work with VO2 as cathode and high-purity Al foil as anode. First-principles calculations are also employed to theoretically investigate the crystal structure change and the insertion-extraction mechanism of Al ions in the super-valent battery. Long cycle life, low cost and good capacity are achieved in this battery system. At the current density of 50 mAg−1, the discharge capacity remains 116 mAhg−1 after 100 cycles. Comparing to monovalent Li-ion battery, the super-valent battery has the potential to deliver more charges and gain higher specific capacity. PMID:24287676
Acoustic superlens using Helmholtz-resonator-based metamaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xishan; Yin, Jing; Yu, Gaokun, E-mail: gkyu@ouc.edu.cn
2015-11-09
Acoustic superlens provides a way to overcome the diffraction limit with respect to the wavelength of the bulk wave in air. However, the operating frequency range of subwavelength imaging is quite narrow. Here, an acoustic superlens is designed using Helmholtz-resonator-based metamaterials to broaden the bandwidth of super-resolution. An experiment is carried out to verify subwavelength imaging of double slits, the imaging of which can be well resolved in the frequency range from 570 to 650 Hz. Different from previous works based on the Fabry-Pérot resonance, the corresponding mechanism of subwavelength imaging is the Fano resonance, and the strong coupling between themore » neighbouring Helmholtz resonators separated at the subwavelength interval leads to the enhanced sound transmission over a relatively wide frequency range.« less
An empirical correction for moderate multiple scattering in super-heterodyne light scattering.
Botin, Denis; Mapa, Ludmila Marotta; Schweinfurth, Holger; Sieber, Bastian; Wittenberg, Christopher; Palberg, Thomas
2017-05-28
Frequency domain super-heterodyne laser light scattering is utilized in a low angle integral measurement configuration to determine flow and diffusion in charged sphere suspensions showing moderate to strong multiple scattering. We introduce an empirical correction to subtract the multiple scattering background and isolate the singly scattered light. We demonstrate the excellent feasibility of this simple approach for turbid suspensions of transmittance T ≥ 0.4. We study the particle concentration dependence of the electro-kinetic mobility in low salt aqueous suspension over an extended concentration regime and observe a maximum at intermediate concentrations. We further use our scheme for measurements of the self-diffusion coefficients in the fluid samples in the absence or presence of shear, as well as in polycrystalline samples during crystallization and coarsening. We discuss the scope and limits of our approach as well as possible future applications.
NASA Astrophysics Data System (ADS)
De Filippis, G.; Cataudella, V.; Mishchenko, A. S.; Nagaosa, N.; Fierro, A.; de Candia, A.
2015-02-01
The transport properties at finite temperature of crystalline organic semiconductors are investigated, within the Su-Schrieffer-Heeger model, by combining an exact diagonalization technique, Monte Carlo approaches, and a maximum entropy method. The temperature-dependent mobility data measured in single crystals of rubrene are successfully reproduced: a crossover from super- to subdiffusive motion occurs in the range 150 ≤T ≤200 K , where the mean free path becomes of the order of the lattice parameter and strong memory effects start to appear. We provide an effective model, which can successfully explain features of the absorption spectra at low frequencies. The observed response to slowly varying electric field is interpreted by means of a simple model where the interaction between the charge carrier and lattice polarization modes is simulated by a harmonic interaction between a fictitious particle and an electron embedded in a viscous fluid.
De Filippis, G; Cataudella, V; Mishchenko, A S; Nagaosa, N; Fierro, A; de Candia, A
2015-02-27
The transport properties at finite temperature of crystalline organic semiconductors are investigated, within the Su-Schrieffer-Heeger model, by combining an exact diagonalization technique, Monte Carlo approaches, and a maximum entropy method. The temperature-dependent mobility data measured in single crystals of rubrene are successfully reproduced: a crossover from super- to subdiffusive motion occurs in the range 150≤T≤200 K, where the mean free path becomes of the order of the lattice parameter and strong memory effects start to appear. We provide an effective model, which can successfully explain features of the absorption spectra at low frequencies. The observed response to slowly varying electric field is interpreted by means of a simple model where the interaction between the charge carrier and lattice polarization modes is simulated by a harmonic interaction between a fictitious particle and an electron embedded in a viscous fluid.
NASA Astrophysics Data System (ADS)
Granero, Luis; Ferreira, Carlos; Zalevsky, Zeev; García, Javier; Micó, Vicente
2016-07-01
Single-Exposure Super-Resolved Interferometric Microscopy (SESRIM) reports on a way to achieve one-dimensional (1-D) superresolved imaging in digital holographic microscopy (DHM) by a single illumination shot and digital recording. SESRIM provides color-coded angular multiplexing of the accessible sample's range of spatial frequencies and it allows their recording in a single CCD (color or monochrome) snapshot by adding 3 RGB coherent reference beams at the output plane. In this manuscript, we extend the applicability of SESRIM to the field of digital in-line holographic microscopy (DIHM), that is, working without lenses. As consequence of the in-line configuration, an additional restriction concerning the object field of view (FOV) must be imposed to the technique. Experimental results are reported for both a synthetic object (USAF resolution test target) and a biological sample (swine sperm sample) validating this new kind of superresolution imaging method named as lensless SESRIM (L-SESRIM).
Image super-resolution via sparse representation.
Yang, Jianchao; Wright, John; Huang, Thomas S; Ma, Yi
2010-11-01
This paper presents a new approach to single-image super-resolution, based on sparse signal representation. Research on image statistics suggests that image patches can be well-represented as a sparse linear combination of elements from an appropriately chosen over-complete dictionary. Inspired by this observation, we seek a sparse representation for each patch of the low-resolution input, and then use the coefficients of this representation to generate the high-resolution output. Theoretical results from compressed sensing suggest that under mild conditions, the sparse representation can be correctly recovered from the downsampled signals. By jointly training two dictionaries for the low- and high-resolution image patches, we can enforce the similarity of sparse representations between the low resolution and high resolution image patch pair with respect to their own dictionaries. Therefore, the sparse representation of a low resolution image patch can be applied with the high resolution image patch dictionary to generate a high resolution image patch. The learned dictionary pair is a more compact representation of the patch pairs, compared to previous approaches, which simply sample a large amount of image patch pairs, reducing the computational cost substantially. The effectiveness of such a sparsity prior is demonstrated for both general image super-resolution and the special case of face hallucination. In both cases, our algorithm generates high-resolution images that are competitive or even superior in quality to images produced by other similar SR methods. In addition, the local sparse modeling of our approach is naturally robust to noise, and therefore the proposed algorithm can handle super-resolution with noisy inputs in a more unified framework.
Will the XQ "Super Schools" Live Up to Their Name?
ERIC Educational Resources Information Center
Russo, Alexander
2017-01-01
Halfway through September 2016--roughly a year after the contest was launched--"XQ: The Super School Project" announced its 10 high school design-team winners at a "Facebook Live" event in Washington, D.C. Originally intended to result in just five winners, the XQ project was open to anyone who thought that they could…
D-Man: Teacher's Guide [and] D-Man Deaf Super-Hero Fights for Good Nutrition!
ERIC Educational Resources Information Center
Miller, Nancy Q.; And Others
The comic book featuring a deaf super-hero and the accompanying teacher guide are designed to teach junior high school students about nutrition. Section 1 of the teacher's guide outlines student activities which are grouped according to nutritional concepts. Objectives, subject areas, and resources are identified. Seven nutritional concepts,…
Malaysia's Multimedia Super Corridor and Roles of Information Professionals.
ERIC Educational Resources Information Center
Reid, Edna
In Malaysia, the government is supporting the diffusion of the Internet and is spearheading a project to bring Malaysia into the information age, by helping to design a smart city called the Multimedia Super Corridor (MSC). The MSC is being planned as a high-technology center where world-class multimedia companies can develop state-of-the-art…
Fan, Wen; Yan, Bing; Wang, Zengbo; Wu, Limin
2016-01-01
Although all-dielectric metamaterials offer a low-loss alternative to current metal-based metamaterials to manipulate light at the nanoscale and may have important applications, very few have been reported to date owing to the current nanofabrication technologies. We develop a new “nano–solid-fluid assembly” method using 15-nm TiO2 nanoparticles as building blocks to fabricate the first three-dimensional (3D) all-dielectric metamaterial at visible frequencies. Because of its optical transparency, high refractive index, and deep-subwavelength structures, this 3D all-dielectric metamaterial-based solid immersion lens (mSIL) can produce a sharp image with a super-resolution of at least 45 nm under a white-light optical microscope, significantly exceeding the classical diffraction limit and previous near-field imaging techniques. Theoretical analysis reveals that electric field enhancement can be formed between contacting TiO2 nanoparticles, which causes effective confinement and propagation of visible light at the deep-subwavelength scale. This endows the mSIL with unusual abilities to illuminate object surfaces with large-area nanoscale near-field evanescent spots and to collect and convert the evanescent information into propagating waves. Our all-dielectric metamaterial design strategy demonstrates the potential to develop low-loss nanophotonic devices at visible frequencies. PMID:27536727
A Source of Terrestrial Organic Carbon to Investigate the Browning of Aquatic Ecosystems
Lennon, Jay T.; Hamilton, Stephen K.; Muscarella, Mario E.; Grandy, A. Stuart; Wickings, Kyle; Jones, Stuart E.
2013-01-01
There is growing evidence that terrestrial ecosystems are exporting more dissolved organic carbon (DOC) to aquatic ecosystems than they did just a few decades ago. This “browning” phenomenon will alter the chemistry, physics, and biology of inland water bodies in complex and difficult-to-predict ways. Experiments provide an opportunity to elucidate how browning will affect the stability and functioning of aquatic ecosystems. However, it is challenging to obtain sources of DOC that can be used for manipulations at ecologically relevant scales. In this study, we evaluated a commercially available source of humic substances (“Super Hume”) as an analog for natural sources of terrestrial DOC. Based on chemical characterizations, comparative surveys, and whole-ecosystem manipulations, we found that the physical and chemical properties of Super Hume are similar to those of natural DOC in aquatic and terrestrial ecosystems. For example, Super Hume attenuated solar radiation in ways that will not only influence the physiology of aquatic taxa but also the metabolism of entire ecosystems. Based on its chemical properties (high lignin content, high quinone content, and low C:N and C:P ratios), Super Hume is a fairly recalcitrant, low-quality resource for aquatic consumers. Nevertheless, we demonstrate that Super Hume can subsidize aquatic food webs through 1) the uptake of dissolved organic constituents by microorganisms, and 2) the consumption of particulate fractions by larger organisms (i.e., Daphnia). After discussing some of the caveats of Super Hume, we conclude that commercial sources of humic substances can be used to help address pressing ecological questions concerning the increased export of terrestrial DOC to aquatic ecosystems. PMID:24124511
Multiframe super resolution reconstruction method based on light field angular images
NASA Astrophysics Data System (ADS)
Zhou, Shubo; Yuan, Yan; Su, Lijuan; Ding, Xiaomin; Wang, Jichao
2017-12-01
The plenoptic camera can directly obtain 4-dimensional light field information from a 2-dimensional sensor. However, based on the sampling theorem, the spatial resolution is greatly limited by the microlenses. In this paper, we present a method of reconstructing high-resolution images from the angular images. First, the ray tracing method is used to model the telecentric-based light field imaging process. Then, we analyze the subpixel shifts between the angular images extracted from the defocused light field data and the blur in the angular images. According to the analysis above, we construct the observation model from the ideal high-resolution image to the angular images. Applying the regularized super resolution method, we can obtain the super resolution result with a magnification ratio of 8. The results demonstrate the effectiveness of the proposed observation model.
Work function determination of promising electrode materials for thermionic energy converters
NASA Technical Reports Server (NTRS)
Jacobson, D.; Storms, E.; Skaggs, B.; Kouts, T.; Jaskie, J.; Manda, M.
1976-01-01
The work function determinations of candidate materials for low temperature (1400 K) thermionics through vacuum emission tests are discussed. Two systems, a vacuum emission test vehicle and a thermionic emission microscope are used for emission measurements. Some nickel and cobalt based super alloys were preliminarily examined. High temperature physical properties and corrosion behavior of some super alloy candidates are presented. The corrosion behavior of sodium is of particular interest since topping cycles might use sodium heat transfer loops. A Marchuk tube was designed for plasma discharge studies with the carbide and possibly some super alloy samples. A series of metal carbides and other alloys were fabricated and tested in a special high temperature mass spectrometer. This information coupled with work function determinations was evaluated in an attempt to learn how electron bonding occurs in transition alloys.
NASA Astrophysics Data System (ADS)
Nishizawa, Norihiko; Mitsuzawa, Hideyuki; Sumimura, Kazuhiko
2009-03-01
Visible to near-infrared widely broadened super continuum generation is demonstrated using ultrashort-pulse fiber laser system. Er-doped fiber chirped-pulse amplification system operated at 1550 nm in wavelength is used for the amplifier system, which generated ultrashort-pulse of 112 fs in FWHM with output power of 160 mW, on average. Almost pedestal free 200 fs second harmonic generation pulse is generated at 780 nm region using periodically poled LiNbO3 and conversion efficiency is as high as 37%. 0.45-1.40 μm widely broadened super continuum is generated in highly nonlinear photonic crystal fiber and spectrum flatness is within ±6 dB. All of the fiber devices are fusion spliced so that this system shows a good stability.
Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution
Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; Edwards, Thayne L.; James, Conrad D.; Lidke, Keith A.
2016-01-01
We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet. PMID:27375939
NASA Astrophysics Data System (ADS)
He, Qiang; Schultz, Richard R.; Wang, Yi; Camargo, Aldo; Martel, Florent
2008-01-01
In traditional super-resolution methods, researchers generally assume that accurate subpixel image registration parameters are given a priori. In reality, accurate image registration on a subpixel grid is the single most critically important step for the accuracy of super-resolution image reconstruction. In this paper, we introduce affine invariant features to improve subpixel image registration, which considerably reduces the number of mismatched points and hence makes traditional image registration more efficient and more accurate for super-resolution video enhancement. Affine invariant interest points include those corners that are invariant to affine transformations, including scale, rotation, and translation. They are extracted from the second moment matrix through the integration and differentiation covariance matrices. Our tests are based on two sets of real video captured by a small Unmanned Aircraft System (UAS) aircraft, which is highly susceptible to vibration from even light winds. The experimental results from real UAS surveillance video show that affine invariant interest points are more robust to perspective distortion and present more accurate matching than traditional Harris/SIFT corners. In our experiments on real video, all matching affine invariant interest points are found correctly. In addition, for the same super-resolution problem, we can use many fewer affine invariant points than Harris/SIFT corners to obtain good super-resolution results.
Atmospheric Escape from the Closest Super-Earth
NASA Astrophysics Data System (ADS)
Ehrenreich, David
2015-10-01
In July 2015, we announced the discovery of the super-Earth HD 219134b, orbiting a V = 5.57 star 6.5-pc away from us (Motalebi et al. 2015). This is the brightest and closest transiting system known so far. With Spitzer and HARPS-N, we measured the density of HD 219134b, which is compatible with a rocky planet, possibly containing a large amount of volatile species. The planet receives high stellar irradiation, which could significantly erode its atmosphere. Preliminary estimates indicate that this 4.5 Earth-mass object should nonetheless retain a substantial atmosphere. HD 219134b lies sufficiently far from its star to allow the formation of a hydrogen cloud with a detectable coma. HST is the only telescope able to detect, for the first time, atmospheric escape from a super-Earth, by observing a Lyman-alpha transit. The detection of escaping hydrogen will represent a smoking gun for the presence of water vapor in the lower atmosphere. Constraining the mass-loss rate will allow us to probe the evolution of super-Earths and assess whether hotter super-Earths can be evaporation remnants. Resolving the Lyman-alpha absorption signal will also bring new insights on the dynamics in the exospheric clouds, revealing interaction between the host star and its super-Earth through radiation pressure and stellar wind. A non-detection could hint at a CO/CO2-rich 'super-Venus' and will prepare for adapted follow-up observations. Both outcomes will thus motivate new proposals in Cycle 24.
An Ingenious Super Light Trapping Surface Templated from Butterfly Wing Scales
NASA Astrophysics Data System (ADS)
Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan
2015-08-01
Based on the super light trapping property of butterfly Trogonoptera brookiana wings, the SiO2 replica of this bionic functional surface was successfully synthesized using a simple and highly effective synthesis method combining a sol-gel process and subsequent selective etching. Firstly, the reflectivity of butterfly wing scales was carefully examined. It was found that the whole reflectance spectroscopy of the butterfly wings showed a lower level (less than 10 %) in the visible spectrum. Thus, it was confirmed that the butterfly wings possessed a super light trapping effect. Afterwards, the morphologies and detailed architectures of the butterfly wing scales were carefully investigated using the ultra-depth three-dimensional (3D) microscope and field emission scanning electronic microscopy (FESEM). It was composed by the parallel ridges and quasi-honeycomb-like structure between them. Based on the biological properties and function above, an exact SiO2 negative replica was fabricated through a synthesis method combining a sol-gel process and subsequent selective etching. At last, the comparative analysis of morphology feature size and the reflectance spectroscopy between the SiO2 negative replica and the flat plate was conducted. It could be concluded that the SiO2 negative replica inherited not only the original super light trapping architectures, but also the super light trapping characteristics of bio-template. This work may open up an avenue for the design and fabrication of super light trapping materials and encourage people to look for more super light trapping architectures in nature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Hongbo; Qiao, Zemin; Liu, Xiao
Highlights: • Sol–gel route is combined with polymerization without using modifier. • Supercritical drying control is the key to obtain super-hydrophobic surfaces. • The whole fabrication is technologically controllable and with low costs. • The production rate is higher than 90%. • The method provides a cost-effective way for industry applications. - Abstract: We successfully synthesized one type of cheap super-hydrophobic hybrid porous materials in a sol–gel process. In this route, hydrophilic polymers and TEOS-base sol are used as precursors, the ultraviolet ray-initiated polymerization and supercritical fluid drying techniques are combined together to fulfill this task. All fabricated samples exhibitmore » lotus-leaf-like surface structures with super-hydrophobicity. The underlying mechanisms are carefully investigated using a field-emission scanning electron microscopy (FESEM) and an X-ray photoelectron spectroscopy (XPS). We found that a well-controlled drying process is crucial to the formation of such super-hydrophobic surfaces. As high as 90% production rate is obtained in our route and thus, it might provide a cost-effective way to produce super-hydrophobic hybrid materials for industry applications.« less
Studies on Stress Corrosion Cracking of Super 304H Austenitic Stainless Steel
NASA Astrophysics Data System (ADS)
Prabha, B.; Sundaramoorthy, P.; Suresh, S.; Manimozhi, S.; Ravishankar, B.
2009-12-01
Stress corrosion cracking (SCC) is a common mode of failure encountered in boiler components especially in austenitic stainless steel tubes at high temperature and in chloride-rich water environment. Recently, a new type of austenitic stainless steels called Super304H stainless steel, containing 3% copper is being adopted for super critical boiler applications. The SCC behavior of this Super 304H stainless steel has not been widely reported in the literature. Many researchers have studied the SCC behavior of steels as per various standards. Among them, the ASTM standard G36 has been widely used for evaluation of SCC behavior of stainless steels. In this present work, the SCC behavior of austenitic Fe-Cr-Mn-Cu-N stainless steel, subjected to chloride environments at varying strain conditions as per ASTM standard G36 has been studied. The environments employed boiling solution of 45 wt.% of MgCl2 at 155 °C, for various strain conditions. The study reveals that the crack width increases with increase in strain level in Super 304H stainless steels.
Cunningham, K.J.; Sukop, M.C.; Huang, H.; Alvarez, P.F.; Curran, H.A.; Renken, R.A.; Dixon, J.F.
2009-01-01
A combination of cyclostratigraphic, ichnologic, and borehole geophysical analyses of continuous core holes; tracer-test analyses; and lattice Boltzmann flow simulations was used to quantify biogenic macroporosity and permeability of the Biscayne aquifer, southeastern Florida. Biogenic macroporosity largely manifests as: (1) ichnogenic macroporosity primarily related to postdepositional burrowing activity by callianassid shrimp and fossilization of components of their complex burrow systems (Ophiomorpha); and (2) biomoldic macroporosity originating from dissolution of fossil hard parts, principally mollusk shells. Ophiomorpha-dominated ichno-fabric provides the greatest contribution to hydrologic characteristics in the Biscayne aquifer in a 345 km2 study area. Stratiform tabular-shaped units of thalassinidean-associated macroporosity are commonly confined to the lower part of upward-shallowing high-frequency cycles, throughout aggradational cycles, and, in one case, they stack vertically within the lower part of a high-frequency cycle set. Broad continuity of many of the macroporous units concentrates groundwater flow in extremely permeable passage-ways, thus making the aquifer vulnerable to long-distance transport of contaminants. Ichnogenic macroporosity represents an alternative pathway for concentrated groundwater flow that differs considerably from standard karst flow-system paradigms, which describe groundwater movement through fractures and cavernous dissolution features. Permeabilities were calculated using lattice Boltzmann methods (LBMs) applied to computer renderings assembled from X-ray computed tomography scans of various biogenic macroporous limestone samples. The highest simulated LBM permeabilities were about five orders of magnitude greater than standard laboratory measurements using air-permeability methods, which are limited in their application to extremely permeable macroporous rock samples. Based on their close conformance to analytical solutions for pipe flow, LBMs offer a new means of obtaining accurate permeability values for such materials. We suggest that the stratiform ichnogenic groundwater flow zones have permeabilities even more extreme (???2-5 orders of magnitude higher) than the Jurassic "super-K" zones of the giant Ghawar oil field. The flow zones of the Pleistocene Biscayne aquifer provide examples of ichnogenic macroporosity for comparative analysis of origin and evolution in other carbonate aquifers, as well as petroleum reservoirs. ?? 2008 Geological Society of America.
An improved ternary vector system for Agrobacterium-mediated rapid maize transformation.
Anand, Ajith; Bass, Steven H; Wu, Emily; Wang, Ning; McBride, Kevin E; Annaluru, Narayana; Miller, Michael; Hua, Mo; Jones, Todd J
2018-05-01
A simple and versatile ternary vector system that utilizes improved accessory plasmids for rapid maize transformation is described. This system facilitates high-throughput vector construction and plant transformation. The super binary plasmid pSB1 is a mainstay of maize transformation. However, the large size of the base vector makes it challenging to clone, the process of co-integration is cumbersome and inefficient, and some Agrobacterium strains are known to give rise to spontaneous mutants resistant to tetracycline. These limitations present substantial barriers to high throughput vector construction. Here we describe a smaller, simpler and versatile ternary vector system for maize transformation that utilizes improved accessory plasmids requiring no co-integration step. In addition, the newly described accessory plasmids have restored virulence genes found to be defective in pSB1, as well as added virulence genes. Testing of different configurations of the accessory plasmids in combination with T-DNA binary vector as ternary vectors nearly doubles both the raw transformation frequency and the number of transformation events of usable quality in difficult-to-transform maize inbreds. The newly described ternary vectors enabled the development of a rapid maize transformation method for elite inbreds. This vector system facilitated screening different origins of replication on the accessory plasmid and T-DNA vector, and four combinations were identified that have high (86-103%) raw transformation frequency in an elite maize inbred.
The X-ray Pulsar 2A 1822-371 as a super-Eddington source
NASA Astrophysics Data System (ADS)
Bak Nielsen, A.; Patruno, A.
2017-10-01
The LMXB pulsar 2A 1822-371 is a slow accreting x-ray pulsar which shows several peculiar properties. The pulsar is observed to spin-up continuously on a timescale of 7000 years , shorter than expected for these type of systems. The orbital period is expanding on an extremely short timescale that challenges current theories of binary evolution. Furthermore, the presence of a thick accretion disc corona poses a problem, since we observe X-ray pulsations which would otherwise be smeared out by the Compton scattering. I propose a solution to all of the above problems by suggesting that the system may be a super-Eddington source with a donor out of thermal equilibrium. I propose that 2A 1822-371 has a thin accretion outflow being launched from the inner accretion disk region. The solution reconciles both the need for an accretion disk corona, the fast spin-up and the changes in the orbital separation. I will also present preliminary results obtained with new XMM-Newton data that show the possible presence of a low frequency modulation similar to those observed in two accreting millisecond pulsars. Given the relatively strong magnetic field of 2A 1822-371, the modulation requires a super-Eddington mass transfer rate, further strengthening the proposed scenario.
CLOUDS IN SUPER-EARTH ATMOSPHERES: CHEMICAL EQUILIBRIUM CALCULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mbarek, Rostom; Kempton, Eliza M.-R., E-mail: mbarekro@grinnell.edu, E-mail: kemptone@grinnell.edu
Recent studies have unequivocally proven the existence of clouds in super-Earth atmospheres. Here we provide a theoretical context for the formation of super-Earth clouds by determining which condensates are likely to form under the assumption of chemical equilibrium. We study super-Earth atmospheres of diverse bulk composition, which are assumed to form by outgassing from a solid core of chondritic material, following Schaefer and Fegley. The super-Earth atmospheres that we study arise from planetary cores made up of individual types of chondritic meteorites. They range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solarmore » and super-solar, thereby spanning a range of atmospheric composition that is appropriate for low-mass exoplanets. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of formation for over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350–3000 K. Clouds should form along the temperature–pressure boundaries where the condensed species appear in our calculation. We find that the composition of condensate clouds depends strongly on both the H:O and C:O ratios. For the super-Earth archetype GJ 1214b, KCl and ZnS are the primary cloud-forming condensates at solar composition, in agreement with previous work. However, for oxidizing atmospheres, K{sub 2}SO{sub 4} and ZnO condensates are favored instead, and for carbon-rich atmospheres with super-solar C:O ratios, graphite clouds appear. For even hotter planets, clouds form from a wide variety of rock-forming and metallic species.« less
Spectroscopic Studies of the Super Relaxed State of Skeletal Muscle
Naber, Nariman; Pate, Edward; Canton, Marcella; Reggiani, Carlo; Cooke, Roger
2016-01-01
In the super-relaxed state of myosin, ATPase activity is strongly inhibited by binding of the myosin heads to the core of the thick filament in a structure known as the interacting-heads motif. In the disordered relaxed state myosin heads are not bound to the core of the thick filament and have an ATPase rate that is 10 fold greater. In the interacting-heads motif the two regulatory light chains appear to bind to each other. We have made single cysteine mutants of the regulatory light chain, placed both paramagnetic and fluorescent probes on them, and exchanged them into skinned skeletal muscle fibers. Many of the labeled light chains tended to disrupt the stability of the super-relaxed state, and showed spectral changes in the transition from the disordered relaxed state to the super-relaxed state. These data support the putative interface between the two regulatory light chains identified by cryo electron microscopy and show that both the divalent cation bound to the regulatory light chain and the N-terminus of the regulatory light chain play a role in the stability of the super-relaxed state. One probe showed a shift to shorter wavelengths in the super-relaxed state such that a ratio of intensities at 440nm to that at 520nm provided a measure of the population of the super-relaxed state amenable for high throughput screens for finding potential pharmaceuticals. The results provide a proof of concept that small molecules that bind to this region can destabilize the super-relaxed state and provide a method to search for small molecules that do so leading to a potentially effective treatment for Type 2 diabetes and obesity. PMID:27479128
Typical Geo-Hazards and Countermeasures of Mines in Yunnan Province, Southwest China
NASA Astrophysics Data System (ADS)
Cheng, Xianfeng; Qi, Wufu; Huang, Qianrui; Zhao, Xueqiong; Fang, Rong; Xu, Jun
2016-10-01
Mining-induced geo-hazards have caused enormous destruction and threat to mines. Known as the "kingdom of nonferrous metals" and located in Southwest China, Yunnan Province developed mining-induced geo-hazards well with characteristics of multiple types, widespread distribution and serious damage. Landslides and debris flows are two common sub-types of geohazards causing most serious damage in Yunnan, and some of them were very representative in the world. Two landslides and two debris flows were chosen to analyze deeply. Both Laojinshan Landslide and Sunjiaqing Landslide possess the characteristic of rock avalanches. The high sliding speed and long distance made the landslides translate into clastic flows with impact force and caused enormous destruction. Rainstorm and mining waste rock were two main factors to induce debris flows in Yunnan mines. Heishan valley debris flow of Dongchuan copper mine was a super large rainstorm type viscose debris flow with very low frequency, which brought a good caution to utilize valleys which looked an unlikely debris flow. Nandagou Valley of Jinding lead-zinc mine in Lanping County was a rainstorm stimulating, gully-type, high frequency and large scale debris flow, which was induced by mining activities. Many countermeasures have been used for Yunnan mines, including engineering treatment technology and ecological remediation, monitoring and forecasting, relocation and public administration.
Getting super-excited with modified dispersion relations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashoorioon, Amjad; Casadio, Roberto; Geshnizjani, Ghazal
We demonstrate that in some regions of parameter space, modified dispersion relations can lead to highly populated excited states, which we dub as 'super-excited' states. In order to prepare such super-excited states, we invoke dispersion relations that have negative slope in an interim sub-horizon phase at high momenta. This behaviour of quantum fluctuations can lead to large corrections relative to the Bunch-Davies power spectrum, which mimics highly excited initial conditions. We identify the Bogolyubov coefficients that can yield these power spectra. In the course of this computation, we also point out the shortcomings of the gluing method for evaluating themore » power spectrum and the Bogolyubov coefficients. As we discuss, there are other regions of parameter space, where the power spectrum does not get modified. Therefore, modified dispersion relations can also lead to so-called 'calm excited states'. We conclude by commenting on the possibility of obtaining these modified dispersion relations within the Effective Field Theory of Inflation.« less
SuperHERO: Design of a New Hard X-Ray Focusing Telescope
NASA Technical Reports Server (NTRS)
Gaskin, Jessica; Elsner, Ronald; Ramsey, Brian; Wilson-Hodge, Colleen; Tennant, Allyn; Christe, Steven; Shih, Albert; Kiranmayee, Kilaru; Swartz, Douglas; Seller, Paul;
2015-01-01
SuperHERO is a hard x-ray (20-75 keV) balloon-borne telescope, currently in its proposal phase, that will utilize high angular-resolution grazing-incidence optics, coupled to novel CdTe multi-pixel, fine-pitch (250 micrometers) detectors. The high-resolution electroformed-nickel, grazing-incidence optics were developed at MSFC, and the detectors were developed at the Rutherford Appleton Laboratory in the UK, and are being readied for flight at GSFC. SuperHERO will use two active pointing systems; one for carrying out astronomical observations and another for solar observations during the same flight. The telescope will reside on a light-weight, carbon-composite structure that will integrate the Wallops Arc Second Pointer into its frame, for arcsecond or better pointing. This configuration will allow for Long Duration Balloon flights that can last up to 4 weeks. This next generation design, which is based on the High Energy Replicated Optics (HERO) and HERO to Explore the Sun (HEROES) payloads, will be discussed, with emphasis on the core telescope components.
Super-hydrophobic multi-walled carbon nanotube coatings for stainless steel.
De Nicola, Francesco; Castrucci, Paola; Scarselli, Manuela; Nanni, Francesca; Cacciotti, Ilaria; De Crescenzi, Maurizio
2015-04-10
We have taken advantage of the native surface roughness and the iron content of AISI 316 stainless steel to directly grow multi-walled carbon nanotube (MWCNT) random networks by chemical vapor deposition (CVD) at low-temperature (1000°C) without the addition of any external catalysts or time-consuming pre-treatments. In this way, super-hydrophobic MWCNT films on stainless steel sheets were obtained, exhibiting high contact angle values (154°C) and high adhesion force (high contact angle hysteresis). Furthermore, the investigation of MWCNT films with scanning electron microscopy (SEM) reveals a two-fold hierarchical morphology of the MWCNT random networks made of hydrophilic carbonaceous nanostructures on the tip of hydrophobic MWCNTs. Owing to the Salvinia effect, the hydrophobic and hydrophilic composite surface of the MWCNT films supplies a stationary super-hydrophobic coating for conductive stainless steel. This biomimetical inspired surface not only may prevent corrosion and fouling, but also could provide low friction and drag reduction.
Arroyo-Camejo, Silvia; Adam, Marie-Pierre; Besbes, Mondher; Hugonin, Jean-Paul; Jacques, Vincent; Greffet, Jean-Jacques; Roch, Jean-François; Hell, Stefan W; Treussart, François
2013-12-23
Nitrogen-vacancy (NV) color centers in nanodiamonds are highly promising for bioimaging and sensing. However, resolving individual NV centers within nanodiamond particles and the controlled addressing and readout of their spin state has remained a major challenge. Spatially stochastic super-resolution techniques cannot provide this capability in principle, whereas coordinate-controlled super-resolution imaging methods, like stimulated emission depletion (STED) microscopy, have been predicted to fail in nanodiamonds. Here we show that, contrary to these predictions, STED can resolve single NV centers in 40-250 nm sized nanodiamonds with a resolution of ≈10 nm. Even multiple adjacent NVs located in single nanodiamonds can be imaged individually down to relative distances of ≈15 nm. Far-field optical super-resolution of NVs inside nanodiamonds is highly relevant for bioimaging applications of these fluorescent nanolabels. The targeted addressing and readout of individual NV(-) spins inside nanodiamonds by STED should also be of high significance for quantum sensing and information applications.
NASA Astrophysics Data System (ADS)
Boon, Choong S.; Guleryuz, Onur G.; Kawahara, Toshiro; Suzuki, Yoshinori
2006-08-01
We consider the mobile service scenario where video programming is broadcast to low-resolution wireless terminals. In such a scenario, broadcasters utilize simultaneous data services and bi-directional communications capabilities of the terminals in order to offer substantially enriched viewing experiences to users by allowing user participation and user tuned content. While users immediately benefit from this service when using their phones in mobile environments, the service is less appealing in stationary environments where a regular television provides competing programming at much higher display resolutions. We propose a fast super-resolution technique that allows the mobile terminals to show a much enhanced version of the broadcast video on nearby high-resolution devices, extending the appeal and usefulness of the broadcast service. The proposed single frame super-resolution algorithm uses recent sparse recovery results to provide high quality and high-resolution video reconstructions based solely on individual decoded frames provided by the low-resolution broadcast.
Sakabe, N; Sakabe, K; Sasaki, K
2004-01-01
Galaxy is a Weissenberg-type high-speed high-resolution and highly accurate fully automatic data-collection system using two cylindrical IP-cassettes each with a radius of 400 mm and a width of 450 mm. It was originally developed for static three-dimensional analysis using X-ray diffraction and was installed on bending-magnet beamline BL6C at the Photon Factory. It was found, however, that Galaxy was also very useful for time-resolved protein crystallography on a time scale of minutes. This has prompted us to design a new IP-conveyor-belt Weissenberg-mode data-collection system called Super Galaxy for time-resolved crystallography with improved time and crystallographic resolution over that achievable with Galaxy. Super Galaxy was designed with a half-cylinder-shaped cassette with a radius of 420 mm and a width of 690 mm. Using 1.0 A incident X-rays, these dimensions correspond to a maximum resolutions of 0.71 A in the vertical direction and 1.58 A in the horizontal. Upper and lower screens can be used to set the frame size of the recorded image. This function is useful not only to reduce the frame exchange time but also to save disk space on the data server. The use of an IP-conveyor-belt and many IP-readers make Super Galaxy well suited for time-resolved, monochromatic X-ray crystallography at a very intense third-generation SR beamline. Here, Galaxy and a conceptual design for Super Galaxy are described, and their suitability for use as data-collection systems for macromolecular time-resolved monochromatic X-ray crystallography are compared.
2009-08-12
CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building's High Bay 3, the Ares I-X rocket is being assembled on the mobile launcher platform. Super Stack 4 has just been mated to Super Stack 3 on top. Five super stacks make up the upper stage that will be integrated with the four-segment solid rocket booster first stage on the mobile launch platform. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The Ares I-X flight test is targeted for Oct. 31, pending formal NASA Headquarters approval. Photo credit: NASA/Jack Pfaller
2009-08-12
CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building's High Bay 3, the Ares I-X rocket is being assembled on the mobile launcher platform. Super Stack 4 has just been mated to Super Stack 3 on top. Five super stacks make up the upper stage that will be integrated with the four-segment solid rocket booster first stage on the mobile launch platform. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The Ares I-X flight test is targeted for Oct. 31, pending formal NASA Headquarters approval. Photo credit: NASA/Jack Pfaller
Easy-to-fabricate thin-film coating on PDMS substrate with super hydrophilicity and stability.
Sun, Lijun; Luo, Yong; Gao, Zhigang; Zhao, Weijie; Lin, Bingcheng
2015-03-01
With the fast expansion of microfluidic applications, stable, and easy-to-fabricate PDMS surface coating with super hydrophilicity is highly desirable. In this study, we introduce a new kind of copolymer-based, single-layer thin-film coating for PDMS. The coating can exist in air at room temperature for at least 6 months without any noticeable deterioration in the super hydrophilicity (water contact angle ∼7°), resistance of protein adsorption, or inhibition of the EOF. In addition, this coating enables arbitrary patterning of cells on planar surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Li, Shouguang; Teng, Fei; Chen, Mindong; Li, Na; Hua, Xia; Wang, Kai; Li, Min
2014-05-01
The novel three-dimensional (3D) silver phosphate tetrapods (TA) are synthesized and employed as a super capacitor electrode material. The electrochemical properties are investigated by cyclic voltammetry (CV), chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS). It is interesting that compared with irregular silver phosphate particles (IA), TA shows a higher capacitance (250 vs. 160 F g-1), and a higher coulombic efficiency (80% vs. 74%), which is mainly ascribed to the 3D microstructure and its high conductivity. To the best of our knowledge, this is the first report on silver phosphate as a super capacitor material.
2009-08-04
CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building's High Bay 3 at NASA's Kennedy Space Center in Florida, a crane lowers Super Stack 2, part of the Ares I-X upper stage, for integration with Super Stack 1. The upper stage comprises five super stacks, which are integrated with the four-segment solid rocket booster first stage on the mobile launch platform. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The Ares I-X flight test is targeted for Oct. 31, pending formal NASA Headquarters approval. Photo credit: NASA/Tim Jacobs
A new compact structure for a high intensity low-energy heavy-ion accelerator
NASA Astrophysics Data System (ADS)
Wang, Zhi-Jun; He, Yuan; A. Kolomiets, A.; Liu, Shu-Hui; Du, Xiao-Nan; Jia, Huan; Li, Chao; Wang, Wang-Sheng; Chen, Xi-Meng
2013-12-01
A new compact accelerating structure named Hybrid RFQ is proposed to accelerate a high-intensity low-energy heavy ion beam in HISCL (High Intensive heavy ion SuperConducting Linear accelerator), which is an injector of HIAF (Heavy Ion Advanced Research Facility). It is combined by an alternative series of acceleration gaps and RFQ sections. The proposed structure has a high accelerating ability compared with a conventional RFQ and is more compact than traditional DTLs. A Hybrid RFQ is designed to accelerate 238U34+ from 0.38 MeV/u to 1.33 MeV/u. The operation frequency is described to be 81.25 MHz at CW (continuous wave) mode. The design beam current is 1.0 mA. The results of beam dynamics and RF simulation of the Hybrid RFQ show that the structure has a good performance at the energy range for ion acceleration. The emittance growth is less than 5% in both directions and the RF power is less than 150 kW. In this paper, the results of beam dynamics and RF simulation of the Hybrid RFQ are presented.
Li, Yuping; Xu, Hanyan; Su, Shanshan; Ye, Junru; Chen, Junjie; Jin, Xuru; Lin, Quan; Zhang, Dongqing; Ye, Caier; Chen, Chengshui
2017-01-01
Circulating tumor DNA (ctDNA) is a promising biomarker for noninvasive epidermal growth factor receptor (EGFR) mutations detection in lung cancer patients, but the existing methods have limitations in sensitivity or in availability. In this study, we evaluated the performance of a novel assay called ADx-SuperARMS in detecting EGFR mutations in plasma cell-free DNA from patients with advanced lung adenocarcinoma. A total of 109 patients with metastatic advanced adenocarcinoma were recruited who provided both blood samples and matched tumor tissue samples. EGFR mutation status in plasma samples were tested with ADx-SuperARMS EGFR assay and tumor tissue samples were tested with ADx-ARMS EGFR assay. The clinical sensitivity, specificity, positive prediction value (PPV), and negative prediction value (NPV) of ADx-SuperARMS EGFR assay were calculated by using EGFR mutation status in tumor tissue as standard reference. A receiver operating characteristic (ROC) analysis was implemented and an area under the curve (AUC) was calculated to evaluate sensitivity and specificity of exon 19 deletion (E19Del) and L858R mutation detection. The objective response rate (ORR) were calculated according to the EGFR mutation status determined by ADx-superARMS as well. 0.2% analytical sensitivity and 100% specificity of the ADx-SuperARMS EGFR assays for EGFR E19Del, L858R, and T790M mutants were confirmed by using a series of diluted cell line DNA. In the clinical study, EGFR mutations were detected in 45.9% (50/109) of the plasma samples and in 56.9% (62/109) of the matched tumor tissue samples. The sensitivity, specificity, PPV and NPV of the ADx-SuperARMS EGFR assay for plasma EGFR mutation detection were 82.0% (50/61), 100% (48/48), 100% (50/50), and 81.4% (48/59), respectively. In ROC analysis, ADx-SuperARMS achieved sensitivity and specificity of 88% and 99% in E19Dels as well as sensitivity and specificity of 89% and 100% in L858R, respectively. Among the 35 patients who were plasma EGFR mutation positive and treated with first generation of EGFR-tyrosine kinase inhibitors (TKIs), 23 (65.7%) achieved partial response, 11 (31.4%) sustained disease, and 1 (2.9%) progressive disease. The ORR and disease control rate (DCR) were 65.7% and 97.1%, respectively. ADx-SuperARMS EGFR assay is likely to be a highly sensitive and specific method to noninvasively detect plasma EGFR mutations of patients with advanced lung adenocarcinoma. The EGFR mutations detected by ADx-SuperARMS EGFR assay could predict the efficacy of the treatment with first generation of EGFR-TKIs. Hence, EGFR blood testing with ADx-SuperARMS could address the unmet clinical needs.
Magnetic Resonance Super-resolution Imaging Measurement with Dictionary-optimized Sparse Learning
NASA Astrophysics Data System (ADS)
Li, Jun-Bao; Liu, Jing; Pan, Jeng-Shyang; Yao, Hongxun
2017-06-01
Magnetic Resonance Super-resolution Imaging Measurement (MRIM) is an effective way of measuring materials. MRIM has wide applications in physics, chemistry, biology, geology, medical and material science, especially in medical diagnosis. It is feasible to improve the resolution of MR imaging through increasing radiation intensity, but the high radiation intensity and the longtime of magnetic field harm the human body. Thus, in the practical applications the resolution of hardware imaging reaches the limitation of resolution. Software-based super-resolution technology is effective to improve the resolution of image. This work proposes a framework of dictionary-optimized sparse learning based MR super-resolution method. The framework is to solve the problem of sample selection for dictionary learning of sparse reconstruction. The textural complexity-based image quality representation is proposed to choose the optimal samples for dictionary learning. Comprehensive experiments show that the dictionary-optimized sparse learning improves the performance of sparse representation.
Induced Abnormality In Mir- and Earth-Grown Super Dwarf Wheat
NASA Technical Reports Server (NTRS)
Bubenheim, David L.; Stieber, Joseph; Campbell, William F.; Salisbury, Frank B.; Levinski, Margarita; Sytchev, Vladimir; Podolsky, Igor; Chernova, Lola; Ivanova, Irene; Kliss, Mark (Technical Monitor)
1998-01-01
Super-dwarf wheat grown on the Mir space station using the Svet "Greenhouse" exhibited morphological, metabolic and reproductive abnormalities compared with normal wheat. Of prominent importance were the abnormalities associated with reproductive ontogeny and the total absence of seed formation on Mir. Changes in the apical meristem associated with transition from the vegetative phase to floral initiation and development of the reproductive spike were all typical of 'Super Dwarf' wheat up to the point of anthesis. Observation of ruptured anthers from the Mir-grown plants revealed what appeared to be normally developed pollen. These pollen grains however, contain only one nucleus, while normal viable pollen is trinucleate. A potentially important difference in the flight experiment, compared with ground reference studies, was identified - a high level of atmospheric ethylene (1200 ppb). Ground studies conducted exposing "Super-dwarf" wheat to ethylene at just prior to anthesis resulted in manifestation of the same abnormalities observed in the space flight samples.
Multi-pulse pumping for far-field super-resolution imaging
NASA Astrophysics Data System (ADS)
Requena, Sebastian; Raut, Sangram; Doan, Hung; Kimball, Joe; Fudala, Rafal; Borejdo, Julian; Gryczynski, Ignacy; Strzhemechny, Yuri; Gryczynski, Zygmunt
2016-02-01
Recently, far-field optical imaging with a resolution significantly beyond diffraction limit has attracted tremendous attention allowing for high resolution imaging in living objects. Various methods have been proposed that are divided in to two basic approaches; deterministic super-resolution like STED or RESOLFT and stochastic super-resolution like PALM or STORM. We propose to achieve super-resolution in far-field fluorescence imaging by the use of controllable (on-demand) bursts of pulses that can change the fluorescence signal of long-lived component over one order of magnitude. We demonstrate that two beads, one labeled with a long-lived dye and another with a short-lived dye, separated by a distance lower than 100 nm can be easily resolved in a single experiment. The proposed method can be used to separate two biological structures in a cell by targeting them with two antibodies labeled with long-lived and short-lived fluorophores.
Periodically striped films produced from super-aligned carbon nanotube arrays.
Liu, Kai; Sun, Yinghui; Liu, Peng; Wang, Jiaping; Li, Qunqing; Fan, Shoushan; Jiang, Kaili
2009-08-19
We report a novel way to draw films from super-aligned carbon nanotube arrays at large drawing angles. The obtained super-aligned carbon nanotube films have a periodically striped configuration with alternating thinner and thicker film sections, and the width of the stripes is equal to the height of the original arrays. Compared with ordinary uniform films, the striped films provide a better platform for understanding the mechanism of spinning films from arrays because carbon nanotube junctions are easily observed and identified at the boundary of the stripes. Further studies show that the carbon nanotube junctions are bottleneck positions for thermal conduction and mechanical strength of the film, but do not limit its electrical conduction. These films can be utilized as striped and high-degree polarized light emission sources. Our results will be valuable for new applications and future large-scale production of tunable super-aligned carbon nanotube films.
Wang, Sheng; Ding, Miao; Chen, Xuanze; Chang, Lei; Sun, Yujie
2017-01-01
Direct visualization of protein-protein interactions (PPIs) at high spatial and temporal resolution in live cells is crucial for understanding the intricate and dynamic behaviors of signaling protein complexes. Recently, bimolecular fluorescence complementation (BiFC) assays have been combined with super-resolution imaging techniques including PALM and SOFI to visualize PPIs at the nanometer spatial resolution. RESOLFT nanoscopy has been proven as a powerful live-cell super-resolution imaging technique. With regard to the detection and visualization of PPIs in live cells with high temporal and spatial resolution, here we developed a BiFC assay using split rsEGFP2, a highly photostable and reversibly photoswitchable fluorescent protein previously developed for RESOLFT nanoscopy. Combined with parallelized RESOLFT microscopy, we demonstrated the high spatiotemporal resolving capability of a rsEGFP2-based BiFC assay by detecting and visualizing specifically the heterodimerization interactions between Bcl-xL and Bak as well as the dynamics of the complex on mitochondria membrane in live cells. PMID:28663931
Atoche, Alejandro Castillo; Castillo, Javier Vázquez
2012-01-01
A high-speed dual super-systolic core for reconstructive signal processing (SP) operations consists of a double parallel systolic array (SA) machine in which each processing element of the array is also conceptualized as another SA in a bit-level fashion. In this study, we addressed the design of a high-speed dual super-systolic array (SSA) core for the enhancement/reconstruction of remote sensing (RS) imaging of radar/synthetic aperture radar (SAR) sensor systems. The selected reconstructive SP algorithms are efficiently transformed in their parallel representation and then, they are mapped into an efficient high performance embedded computing (HPEC) architecture in reconfigurable Xilinx field programmable gate array (FPGA) platforms. As an implementation test case, the proposed approach was aggregated in a HW/SW co-design scheme in order to solve the nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) from a remotely sensed scene. We show how such dual SSA core, drastically reduces the computational load of complex RS regularization techniques achieving the required real-time operational mode. PMID:22736964
NASA Astrophysics Data System (ADS)
de Wet, Gregory A.; Castañeda, Isla S.; DeConto, Robert M.; Brigham-Grette, Julie
2016-02-01
Previous periods of extreme warmth in Earth's history are of great interest in light of current and predicted anthropogenic warming. Numerous so called "super interglacial" intervals, with summer temperatures significantly warmer than today, have been identified in the 3.6 million year (Ma) sediment record from Lake El'gygytgyn, northeast Russia. To date, however, a high-resolution paleotemperature reconstruction from any of these super interglacials is lacking. Here we present a paleotemperature reconstruction based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) from Marine Isotope Stages (MIS) 35 to MIS 29, including super interglacial MIS 31. To investigate this period in detail, samples were analyzed with an unprecedented average sample resolution of 500 yrs from MIS 33 to MIS 30. Our results suggest the entire period currently defined as MIS 33-31 (∼1114-1062 kyr BP) was characterized by generally warm and highly variable conditions at the lake, at times out of phase with Northern Hemisphere summer insolation, and that cold "glacial" conditions during MIS 32 lasted only a few thousand years. Close similarities are seen with coeval records from high southern latitudes, supporting the suggestion that the interval from MIS 33 to MIS 31 was an exceptionally long interglacial (Teitler et al., 2015). Based on brGDGT temperatures from Lake El'gygytgyn (this study and unpublished results), warming in the western Arctic during MIS 31 was matched only by MIS 11 during the Pleistocene.
NASA Astrophysics Data System (ADS)
Theisen, Christophe
2017-11-01
Several facilities or apparatus for the synthesis and spectroscopy of the Super-Heavy Nuclei (SHN) are presently under construction in the world, which reflect the large interest for this region of extreme mass and charge, but also for the need of even more advanced research infrastructures. Among this new generation, the GANIL/SPIRAL2 facility in Caen, France, will soon deliver very high intense ion beams of several tens of particle μA. The Super Separator Spectrometer S3 has been designed to exploit these new beams for the study of SHN after separation. It will provide the needed beam rejection, mass selection and full arsenal of state-of-the art detection setups. Still at GANIL, the AGATA new generation gamma-ray tracking array is being operated. The VAMOS high acceptance spectrometer is being upgraded as a gas-filled separator. Its coupling with AGATA will lower the spectroscopic limits for the prompt gamma-ray studies of heavy and super-heavy nuclei. In this proceeding, these new devices will be presented along with a selected physics case.
SuperState: a computer program for the control of operant behavioral experimentation.
Zhang, Fuqiang
2006-09-15
Operant behavioral researches require precise control of experimental devices for delivering stimuli and monitoring behavioral responses. The author developed a software solution named SuperState for controlling hardware devices and running reinforcement schedules. The Microsoft Windows compatible software was written by use of an object-oriented programming language Borland Delphi 5.0, which has simplified the programming of the application. SuperState is a stand-alone easy-to-use green software, without the need for the experimenter to master any scripting languages. It features: (1) control of multiple operant cages running independent reinforcement schedules; (2) enough cage devices (16 digital inputs and 16 digital outputs for each cage) suitable for the need of most operant behavioral equipments; (3) control of most standard ISA-type digital interface cards including Med-Associates Super-port cards and a PCI-type card AC6412, and highly expandable to support other PCI-type interface cards; (4) high-resolution device control (1ms); (5) a built-in real-time cumulative recorder; (6) extensive data analyzing including event recorder, cumulative recorder, block analyzing; the summarized results can be transferred easily to Microsoft Excel spreadsheets through the Clipboard.
Ghost detection and removal based on super-pixel grouping in exposure fusion
NASA Astrophysics Data System (ADS)
Jiang, Shenyu; Xu, Zhihai; Li, Qi; Chen, Yueting; Feng, Huajun
2014-09-01
A novel multi-exposure images fusion method for dynamic scenes is proposed. The commonly used techniques for high dynamic range (HDR) imaging are based on the combination of multiple differently exposed images of the same scene. The drawback of these methods is that ghosting artifacts will be introduced into the final HDR image if the scene is not static. In this paper, a super-pixel grouping based method is proposed to detect the ghost in the image sequences. We introduce the zero mean normalized cross correlation (ZNCC) as a measure of similarity between a given exposure image and the reference. The calculation of ZNCC is implemented in super-pixel level, and the super-pixels which have low correlation with the reference are excluded by adjusting the weight maps for fusion. Without any prior information on camera response function or exposure settings, the proposed method generates low dynamic range (LDR) images which can be shown on conventional display devices directly with details preserving and ghost effects reduced. Experimental results show that the proposed method generates high quality images which have less ghost artifacts and provide a better visual quality than previous approaches.
Super stretchable electroactive elastomer formation driven by aniline trimer self-assembly
Chen, Jing; Guo, Baolin; Eyster, Thomas W.; Ma, Peter X.
2015-01-01
Biomedical electroactive elastomers with a modulus similar to that of soft tissues are highly desirable for muscle, nerve, and other soft tissue replacement or regeneration, but have rarely been reported. In this work, superiorly stretchable electroactive polyurethane-urea elastomers were designed based on poly(lactide), poly(ethylene glycol), and aniline trimer (AT). A strain at break higher than 1600% and a modulus close to soft tissues was achieved from these copolymers. The mechanisms of super stretchability of the copolymer were systematically investigated. Crystallinity, chemical cross-linking, ionic cross-linking and hard domain formation were examined using differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), nuclear magnetic resonance (NMR) measurements and transmission electron microscopy (TEM). The sphere-like hard domains self-assembled from AT segments were found to provide the crucial physical interactions needed for the novel super elastic material formation. These super stretchable copolymers were blended with conductive fillers such as polyaniline nanofibers and nanosized carbon black to achieve a high electric conductivity of 0.1 S/cm while maintaining an excellent stretchability and a modulus similar to that of soft tissues (lower than 10 MPa). PMID:26692638
Development of a super-pressure balloon with a diamond-shaped net
NASA Astrophysics Data System (ADS)
Saito, Y.; Iijima, I.; Matsuzaka, Y.; Matsushima, K.; Tanaka, S.; Kajiwara, K.; Shimadu, S.
2014-10-01
The essential reason of the lobed-pumpkin shaped super-pressure balloon to withstand against the high pressure is that the local curvature of the balloon film is kept small. Recently, it has been found that the small local curvature can also be obtained if the balloon is covered by a diamond-shaped net with a vertically elongated shape. The development of the super-pressure balloon using this method was started from a 3-m balloon with a polyethylene film covered by a net using Kevlar ropes. The ground inflation test showed the expected high burst pressure. Then, a 6-m and a 12-m balloon using a polyethylene film and a net using the Vectran were developed and stable deployment was checked through the ground inflation tests. The flight test of a 3000 m3 balloon was performed in 2013 and shown to resist a pressure of at least 400 Pa. In the future, after testing a new design to relax a possible stress concentration around the polar area, test flights of scaled balloons will be performed gradually enlarging their size. The goal is to launch a 300,000 m3 super-pressure balloon.
SuperCDMS Prototype Detector Design and Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, Allison Blair
A substantial amount of astrophysical evidence indicates that approximately a quarter of all energy in the universe is composed of a nonluminous, and nonbaryonic \\dark" matter. Of the potential dark matter particle candidates, Weakly Interacting Massive Particles, or WIMPs, is particularly well motivated. As a means to directly detect WIMP interactions with baryonic matter, the Cryogenic Dark Matter Search (CDMS) project was established, operating at the Soudan Underground Laboratory from 2003 - 2015, under the CDMS II and SuperCDMS Soudan experiments. CDMS detectors simultaneously measure the ionization and phonon energies of recoil events in Si and Ge crystals kept atmore » cryogenic temperatures in a low-background environment. The ratio of ionization energy to recoil energy serves as a discrimination parameter to separate nuclear recoil events from the electron-recoil background. The next installation, SuperCDMS SNOLAB, is preparing for future operation, with an initial payload of eighteen Ge and six Si, 100 mm diameter, 33 mm thick detectors. Of this initial payload, eight Ge and four Si detectors will operate in a high-voltage ( 100 V) mode, which have an increased sensitivity to low-mass WIMPs due to decreased energy thresholds. The SuperCDMS test facility at University of Minnesota aids in the detector R&D and characterization of prototype detectors, as part of the scale-up eort for Super- CDMS SNOLAB. This thesis presents the rst full ionization and phonon characterization study of a 100 mm diameter, 33 mm thick prototype Ge detector with interleaved phonon and ionization channels. Measurements include ionization collection eciency, surface event rejection capabilities, and successful demonstration of nuclear recoil event discrimination. Results indicate that 100 mm diameter, interleaved Ge detectors show potential for use in SuperCDMS SNOLAB. As part of detector R&D, the Minnesota test facility also looks beyond the next stage of SuperCDMS, investigating larger individual detectors as a means to easily scale up the sensitive mass of future searches. This thesis presents the design and initial testing results of a prototype 150 mm diameter, 33 mm thick silicon ionization detector, which is 5.2 times larger than those used in SuperCDMS at Soudan and 2.25 times larger than those planned for use at SuperCDMS SNOLAB. In addition, the detector was operated with contact-free ionization electrodes to minimize bias leakage currents, which can limit operation at high bias voltages. The results show promise for the operation of both large volume silicon detectors and contact-free ionization electrodes for scaling up detector mass and bias.« less
DEMETER Observations of Equatorial Plasma Depletions and Related Ionospheric Phenomena
NASA Astrophysics Data System (ADS)
Berthelier, J.; Malingre, M.; Pfaff, R.; Jasperse, J.; Parrot, M.
2008-12-01
DEMETER, the first micro-satellite of the CNES MYRIAD program, was launched from Baikonour on June 29, 2004 on a nearly circular, quasi helio-synchronous polar orbit at ~ 715 km altitude. The DEMETER mission focuses primarily on the search for a possible coupling between seismic activity and ionospheric disturbances as well as on the effects of natural phenomena such as tropospheric thunderstorms and man-made activities on the ionosphere. The scientific payload provides fairly complete measurements of the ionospheric plasma, energetic particles above ~ 70 keV, and plasma waves, up to 20 kHz for the magnetic and 3.3 MHz for the electric components. Several studies related to space weather and ionospheric physics have been conducted over the past years. Following a brief description of the payload and the satellite modes of operation, this presentation will focus on a set of results that provide a new insight into the physics of instabilities in the night-time equatorial ionosphere. The observations were performed during the major magnetic storm of November 2004. Deep plasma depletions were observed on several night-time passes at low latitudes characterized by the decrease of the plasma density by nearly 3 orders of magnitude relative to the undisturbed plasma, and a significant abundance of molecular ions. These features can be best interpreted as resulting from the rise of the F-layer above the satellite altitude over an extended region of the ionosphere. In one of the passes, DEMETER was operated in the Burst mode and the corresponding high resolution data allowed for the discovery of two unexpected phenomena. The first one is the existence of high intensity monochromatic wave packets at the LH frequency that develop during the decay phase of intense bursts of broadband LH turbulence. The broadband LH turbulence is triggered by whistlers emitted by lightning from atmospheric thunderstorms beneath the satellite. The second unexpected feature is the detection of a population of super-thermal ionospheric ions with a density of about 2-3% of the thermal ion population. The super- thermal ions appeared to be heated to temperatures of a few eV at times when LH turbulence and monochromatic wave packets are observed while the temperature of the core ion population is not affected. High time resolution plasma density measurements show the presence of strong small scale plasma irregularities in the depletions that scatter the high amplitude whistler waves and may lead to the development of strong LH turbulence and of monochromatic wave packets. The ensuing interaction between these waves and the ambient ions may lead to the formation of a super-thermal tail in the ion distribution function. Ion acceleration by LH turbulence and solitary waves is a commonly observed phenomenon along auroral magnetic field lines but, to our knowledge, this is the first time that a similar process has been observed in the equatorial ionosphere. These findings exemplify a novel coupling mechanism between the troposphere and the ionosphere: Under highly disturbed conditions at times of magnetic storms, part of the energy released by lightning and radiated as whistlers can dissipate in the equatorial ionosphere and produce super-thermal ion populations.
3D CSEM data inversion using Newton and Halley class methods
NASA Astrophysics Data System (ADS)
Amaya, M.; Hansen, K. R.; Morten, J. P.
2016-05-01
For the first time in 3D controlled source electromagnetic data inversion, we explore the use of the Newton and the Halley optimization methods, which may show their potential when the cost function has a complex topology. The inversion is formulated as a constrained nonlinear least-squares problem which is solved by iterative optimization. These methods require the derivatives up to second order of the residuals with respect to model parameters. We show how Green's functions determine the high-order derivatives, and develop a diagrammatical representation of the residual derivatives. The Green's functions are efficiently calculated on-the-fly, making use of a finite-difference frequency-domain forward modelling code based on a multi-frontal sparse direct solver. This allow us to build the second-order derivatives of the residuals keeping the memory cost in the same order as in a Gauss-Newton (GN) scheme. Model updates are computed with a trust-region based conjugate-gradient solver which does not require the computation of a stabilizer. We present inversion results for a synthetic survey and compare the GN, Newton, and super-Halley optimization schemes, and consider two different approaches to set the initial trust-region radius. Our analysis shows that the Newton and super-Halley schemes, using the same regularization configuration, add significant information to the inversion so that the convergence is reached by different paths. In our simple resistivity model examples, the convergence speed of the Newton and the super-Halley schemes are either similar or slightly superior with respect to the convergence speed of the GN scheme, close to the minimum of the cost function. Due to the current noise levels and other measurement inaccuracies in geophysical investigations, this advantageous behaviour is at present of low consequence, but may, with the further improvement of geophysical data acquisition, be an argument for more accurate higher-order methods like those applied in this paper.
Super-Resolution Imagery by Frequency Sweeping.
1980-08-15
IMAGE RETRIEVAL The above considerations of multiwavelength holography have lead us to determining a means by which the 3-D Fourier space of the...it at a distant bright point source. The point source used need not be derived from a laser. In fact it is preferable for safety purposes to use an LED ...noise and therefore higher reconstructed image quality can be attained by using nonlaser point sources in the reconstruction such as LED or miniature
An Active Filter Primer, Mod 1.
1983-02-01
D-Element Phase Shifting Super-Capacitor Delay Network Frequency Domain Filtering 20...Response A-44 O-OF-3 Notch Response A-45 1-Pole 1-Zero All-Pass Response A-46 2-Pole 2-Zero 90°-Phase-Difference Network Response. . . . A-47 A-13...Delagrange, "A Useful Filter Family," NSWC WOL TR 75-170. 7. E. A. Guillemin, Synthesis of Passive Networks , Wiley, 1957. 8. Harry Y-F. Lam, Analog and
NASA Astrophysics Data System (ADS)
Che, George
The inductance of a conductor expresses its tendency to oppose a change in current flowing through it. For superconductors, in addition to the familiar magnetic inductance due to energy stored in the magnetic field generated by this current, kinetic inductance due to inertia of charge carriers is a significant and often dominant contribution to total inductance. Devices based on modifying the kinetic inductance of thin film superconductors have widespread application to millimeter-wave astronomy. Lithographically patterning such a film into a high quality factor resonator produces a high sensitivity photodetector known as a kinetic inductance detector (KID), which is sensitive to frequencies above the superconducting energy gap of the chosen material. Inherently multiplexable in the frequency domain and relatively simple to fabricate, KIDs pave the way to the large format focal plane array instruments necessary to conduct the next generation of cosmic microwave background (CMB), star formation, and galaxy evolution studies. In addition, non-linear kinetic inductance can be exploited to develop traveling wave kinetic inductance parametric amplifiers (TKIPs) based on superconducting delay lines to read out these instruments. I present my contributions to both large and small scale collaborative efforts to develop KID arrays, spectrometers integrated with KIDs, and TKIPs. I optimize a dual polarization TiN KID absorber for the next generation Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry, which is designed to investigate the role magnetic fields play in star formation. As part of an effort to demonstrate aluminum KIDs on sky for CMB polarimetry, I fabricate devices for three design variants. SuperSpec and WSpec are respectively the on-chip and waveguide implementations of a filter bank spectrometer concept designed for survey spectroscopy of high redshift galaxies. I provide a robust tool for characterizing the performance of all SuperSpec devices and demonstrate basic functionality of the first WSpec prototype. As part of an effort to develop the first W-Band (75-110 GHz) TKIP, I construct a cryogenic waveguide feedthrough, which enhances the Astronomical Instrumentation Laboratory's capability to test W-Band devices in general. These efforts contribute to the continued maturation of these kinetic inductance technologies, which will usher in a new era of millimeter-wave astronomy.
Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging
NASA Astrophysics Data System (ADS)
Wei, Lu; Zhu, Xinxin; Chen, Zhixing; Min, Wei
2014-02-01
Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging-depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus. The resulting image contrasts all exhibit a higher-order (third- or fourth- order) nonlinear signal dependence on laser intensity than that in the standard TPFM. Both the physical principles and the imaging demonstrations will be provided for each super-nonlinear microscopy. In all these techniques, the created super-nonlinearity significantly enhances the imaging contrast and concurrently extends the imaging depth-limit of TPFM. Conceptually different from conventional multiphoton processes mediated by virtual states, our strategy constitutes a new class of fluorescence microscopy where high-order nonlinearity is mediated by real population transfer.
A Bayesian Nonparametric Approach to Image Super-Resolution.
Polatkan, Gungor; Zhou, Mingyuan; Carin, Lawrence; Blei, David; Daubechies, Ingrid
2015-02-01
Super-resolution methods form high-resolution images from low-resolution images. In this paper, we develop a new Bayesian nonparametric model for super-resolution. Our method uses a beta-Bernoulli process to learn a set of recurring visual patterns, called dictionary elements, from the data. Because it is nonparametric, the number of elements found is also determined from the data. We test the results on both benchmark and natural images, comparing with several other models from the research literature. We perform large-scale human evaluation experiments to assess the visual quality of the results. In a first implementation, we use Gibbs sampling to approximate the posterior. However, this algorithm is not feasible for large-scale data. To circumvent this, we then develop an online variational Bayes (VB) algorithm. This algorithm finds high quality dictionaries in a fraction of the time needed by the Gibbs sampler.
Superconducting current injection transistor with very high critical-current-density edge-junctions
NASA Astrophysics Data System (ADS)
van Zeghbroeck, B. J.
1985-03-01
A Superconducting Current Injection Transistor (Super-CIT) was fabricated with very high critical current-density edge-junctions. The junctions have a niobium base electrode and a lead-alloy counter electrode. The length of the junctions is 30 microns and the critical-current density is 190KA/sq cm. The Super-CIT has a current gain of 2, a large signal transresistance of 100 mV/A, and the turn-on delay, inferred from the junction resonance, is 7ps. The power dissipation is 3.5 microwatts and the power-delay product is 24.5aJ. Gap reduction due to heating was observed, limiting the maximum power dissipation per unit length to 1.1 microwatt/micron. Compared to lead-alloy Super-CITs, the device is five times smaller, three times faster, and has a three times larger output voltage. The damping resistor and the contact junction could also be eliminated.
Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution
Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; ...
2016-01-01
Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single moleculemore » super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.« less
Herrmann, H W; Kim, Y H; Young, C S; Fatherley, V E; Lopez, F E; Oertel, J A; Malone, R M; Rubery, M S; Horsfield, C J; Stoeffl, W; Zylstra, A B; Shmayda, W T; Batha, S H
2014-11-01
A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C2F6, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ∼400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.
A hadronic origin for ultra-high-frequency-peaked BL Lac objects
NASA Astrophysics Data System (ADS)
Cerruti, M.; Zech, A.; Boisson, C.; Inoue, S.
2015-03-01
Current Cherenkov telescopes have identified a population of ultra-high-frequency peaked BL Lac objects (UHBLs), also known as extreme blazars, that exhibit exceptionally hard TeV spectra, including 1ES 0229+200, 1ES 0347-121, RGB J0710+591, 1ES 1101-232, and 1ES 1218+304. Although one-zone synchrotron-self-Compton (SSC) models have been generally successful in interpreting the high-energy emission observed in other BL Lac objects, they are problematic for UHBLs, necessitating very large Doppler factors and/or extremely high minimum Lorentz factors of the emitting leptonic population. In this context, we have investigated alternative scenarios where hadronic emission processes are important, using a newly developed (lepto-)hadronic numerical code to systematically explore the physical parameters of the emission region that reproduces the observed spectra while avoiding the extreme values encountered in pure SSC models. Assuming a fixed Doppler factor δ = 30, two principal parameter regimes are identified, where the high-energy emission is due to: (1) proton-synchrotron radiation, with magnetic fields B ˜ 1-100 G and maximum proton energies Ep; max ≲ 1019 eV; and (2) synchrotron emission from p-γ-induced cascades as well as SSC emission from primary leptons, with B ˜ 0.1-1 G and Ep; max ≲ 1017 eV. This can be realized with plausible, sub-Eddington values for the total (kinetic plus magnetic) power of the emitting plasma, in contrast to hadronic interpretations for other blazar classes that often warrant highly super-Eddington values.
Tehan, Elizabeth C; Bukowski, Rachel M; Chodavarapu, Vamsy P; Titus, Albert H; Cartwright, Alexander N; Bright, Frank V
2015-01-05
We report a new strategy for generating a continuum of response profiles from a single luminescence-based sensor element by using phase-resolved detection. This strategy yields reliable responses that depend in a predictable manner on changes in the luminescent reporter lifetime in the presence of the target analyte, the excitation modulation frequency, and the detector (lock-in amplifier) phase angle. In the traditional steady-state mode, the sensor that we evaluate exhibits a linear, positive going response to changes in the target analyte concentration. Under phase-resolved conditions the analyte-dependent response profiles: (i) can become highly non-linear; (ii) yield negative going responses; (iii) can be biphasic; and (iv) can exhibit super sensitivity (e.g., sensitivities up to 300 fold greater in comparison to steady-state conditions).
The Thomson scattering system at Wendelstein 7-X
NASA Astrophysics Data System (ADS)
Pasch, E.; Beurskens, M. N. A.; Bozhenkov, S. A.; Fuchert, G.; Knauer, J.; Wolf, R. C.
2016-11-01
This paper describes the design of the Thomson scattering system at the Wendelstein 7-X stellarator. For the first operation campaign we installed a 10 spatial channel system to cover a radial half profile of the plasma cross section. The start-up system is based on one Nd:YAG laser with 10 Hz repetition frequency, one observation optics, five fiber bundles with one delay line each, and five interference filter polychromators with five spectral channels and silicon avalanche diodes as detectors. High dynamic range analog to digital converters with 14 bit, 1 GS/s are used to digitize the signals. The spectral calibration of the system was done using a pulsed super continuum laser together with a monochromator. For density calibration we used Raman scattering in nitrogen gas. Peaked temperature profiles and flat density profiles are observed in helium and hydrogen discharges.
Theoretical analysis of sound transmission loss through graphene sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natsuki, Toshiaki, E-mail: natsuki@shinshu-u.ac.jp; Institute of Carbon Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553; Ni, Qing-Qing
2014-11-17
We examine the potential of using graphene sheets (GSs) as sound insulating materials that can be used for nano-devices because of their small size, super electronic, and mechanical properties. In this study, a theoretical analysis is proposed to predict the sound transmission loss through multi-layered GSs, which are formed by stacks of GS and bound together by van der Waals (vdW) forces between individual layers. The result shows that the resonant frequencies of the sound transmission loss occur in the multi-layered GSs and the values are very high. Based on the present analytical solution, we predict the acoustic insulation propertymore » for various layers of sheets under both normal incident wave and acoustic field of random incidence source. The scheme could be useful in vibration absorption application of nano devices and materials.« less
Cognitive training transfer using a personal computer-based game: A close quarters battle case study
NASA Astrophysics Data System (ADS)
Woodman, Michael D.
In this dissertation, liquid crystal (LC) materials and devices are investigated in order to meet the challenges for photonics and displays applications. We have studied three kinds of liquid crystal materials: positive dielectric anisotropic LCs, negative dielectric anisotropic LCs, and dual-frequency LCs. For the positive dielectric anisotropic LCs, we have developed some high birefringence isothiocyanato tolane LC compounds with birefringence ˜0.4, and super high birefringence isothiocyanato biphenyl-bistolane LC compounds with birefringence as high as ˜0.7. Moreover, we have studied the photostability of several high birefringence LC compounds, mixtures, and LC alignment layers in order to determine the failure mechanism concerning the lifetime of LC devices. Although cyano and isothiocyanato LC compounds have similar absorption peaks, the isothiocyanato compounds are more stable than their cyano counterparts under the same illumination conditions. This ultraviolet-durable performance of isothiocyanato compounds originates from its molecular structure and the delocalized electron distribution. We have investigated the alignment performance of negative dielectric anisotropic LCs in homeotropic (vertical aligned, VA) LC cell. Some (2, 3) laterally difluorinated biphenyls, terphenyls and tolanes are selected for this study. Due to the strong repulsive force between LCs and alignment layer, (2,3) laterally difluorinated terphenyls and tolanes do not align well in a VA cell resulting in a poor contrast ratio for the LC panel. We have developed a novel method to suppress the light leakage at dark state. By doping positive Deltaepsilon or non-polar LC compounds or mixtures into the host negative LC mixtures, the repulsive force is reduced and the cell exhibits an excellent dark state. In addition, these dopants increase the birefringence and reduce the viscosity of the host LCs which leads to a faster response time. In this dissertation, we investigate the dielectric heating effect of dual-frequency LCs. Because the absorption peak of imaginary dielectric constant occurs at high frequency region (˜ MHz), there is a heat generated when the LC cell is operated at a high frequency voltage. We have formulated a new dual-frequency LC mixture which greatly reduces the dielectric heating effect while maintaining good physical properties. Another achievement in this thesis is that we have developed a polarization independent phase modulator by using a negative dielectric anisotropic LC gel. (Abstract shortened by UMI.)
The Super-TIGER Instrument to Probe Galactic Cosmic Ray Origins
NASA Technical Reports Server (NTRS)
Mitchell, John W.; Binns, W. R.; Bose, R, G.; Braun, D. L.; Christian, E. R.; Daniels, W. M; DeNolfo, G. A.; Dowkontt, P. F.; Hahne, D. J.; Hams, T.;
2011-01-01
Super-TIGER (Super Trans-Iron Galactic Element Recorder) is under construction for the first of two planned Antarctic long-duration balloon flights in December 2012. This new instrument will measure the abundances of ultra-heavy elements (30Zn and heavier), with individual element resolution, to provide sensitive tests of the emerging model of cosmic-ray origins in OB associations and models of the mechanism for selection of nuclei for acceleration. Super-TIGER builds on the techniques of TIGER, which produced the first well-resolved measurements of elemental abundances of the elements 31Ga, 32Ge, and 34Se. Plastic scintillators together with acrylic and silica-aerogel Cherenkov detectors measure particle charge. Scintillating-fiber hodoscopes track particle trajectories. Super-TIGER has an active area of 5.4 sq m, divided into two independent modules. With reduced material thickness to decrease interactions, its effective geometry factor is approx.6.4 times larger than TIGER, allowing it to measure elements up to 42Mo with high statistical precision, and make exploratory measurements up to 56Ba. Super-TIGER will also accurately determine the energy spectra of the more abundant elements from l0Ne to 28Ni between 0.8 and 10 GeV/nucleon to test the hypothesis that microquasars or other sources could superpose spectral features. We will discuss the implications of Super-TIGER measurements for the study of cosmic-ray origins and will present the measurement technique, design, status, and expected performance, including numbers of events and resolution. Details of the hodoscopes, scintillators, and Cherenkov detectors will be given in other presentations at this conference.
3D high- and super-resolution imaging using single-objective SPIM.
Galland, Remi; Grenci, Gianluca; Aravind, Ajay; Viasnoff, Virgile; Studer, Vincent; Sibarita, Jean-Baptiste
2015-07-01
Single-objective selective-plane illumination microscopy (soSPIM) is achieved with micromirrored cavities combined with a laser beam-steering unit installed on a standard inverted microscope. The illumination and detection are done through the same objective. soSPIM can be used with standard sample preparations and features high background rejection and efficient photon collection, allowing for 3D single-molecule-based super-resolution imaging of whole cells or cell aggregates. Using larger mirrors enabled us to broaden the capabilities of our system to image Drosophila embryos.
Vortex maneuver lift for super-cruise configurations
NASA Technical Reports Server (NTRS)
Campbell, J. F.; Gloss, B. B.; Lamar, J. E.
1976-01-01
Some of the theoretical and experimental research conducted at the NASA Langley Research Center is presented to investigate the subsonic vortex-lift producing capabilities for two classes of Super-Cruise designs: a close-coupled wing-canard arrangement and a slender wing configuration. In addition, several analytical methods are discussed for estimating critical structural design loads for thin, highly swept wings having separated leading-edge vortex flows.
Platform for High-Assurance Cloud Computing
2016-06-01
to create today’s standard cloud computing applications and services. Additionally , our SuperCloud (a related but distinct project under the same... Additionally , our SuperCloud (a related but distinct project under the same MRC funding) reduces vendor lock-in and permits application to migrate, to follow...managing key- value storage with strong assurance properties. This first accomplishment allows us to climb the cloud technical stack, by offering
Modular assembly of metal-organic super-containers incorporating calixarenes
Wang, Zhenqiang; Dai, Feng-Rong
2018-01-16
A new strategy to design container molecules is presented. Sulfonylcalix[4]arenes, which are synthetic macrocyclic containers, are used as building blocks that are combined with various metal ions and tricarboxylate ligands to construct metal-organic `super-containers` (MOSCs). These MOSCs possess both endo and exo cavities and thus mimic the structure of viruses. The synthesis of MOSCs is highly modular, robust, and predictable.
Campbell, Joel F; Lin, Bing; Nehrir, Amin R; Harrison, F Wallace; Obland, Michael D
2014-12-15
An interpolation method is described for range measurements of high precision altimetry with repeating intensity modulated continuous wave (IM-CW) lidar waveforms using binary phase shift keying (BPSK), where the range profile is determined by means of a cross-correlation between the digital form of the transmitted signal and the digitized return signal collected by the lidar receiver. This method uses reordering of the array elements in the frequency domain to convert a repeating synthetic pulse signal to single highly interpolated pulse. This is then enhanced further using Richardson-Lucy deconvolution to greatly enhance the resolution of the pulse. We show the sampling resolution and pulse width can be enhanced by about two orders of magnitude using the signal processing algorithms presented, thus breaking the fundamental resolution limit for BPSK modulation of a particular bandwidth and bit rate. We demonstrate the usefulness of this technique for determining cloud and tree canopy thicknesses far beyond this fundamental limit in a lidar not designed for this purpose.
Hydrodynamic models for novae with ejecta rich in oxygen, neon and magnesium
NASA Technical Reports Server (NTRS)
Starrfield, S.; Sparks, W. M.; Truran, J. W.
1985-01-01
The characteristics of a new class of novae are identified and explained. This class consists of those objects that have been observed to eject material rich in oxygen, neon, magnesium, and aluminum at high velocities. We propose that for this class of novae the outburst is occurring not on a carbon-oxygen white dwarf but on an oxygen-neon-magnesium white dwarf which has evolved from a star which had a main sequence mass of approx. 8 solar masses to approx. 12 solar masses. An outburst was simulated by evolving 1.25 solar mass white dwarfs accreting hydrogen rich material at various rates. The effective enrichment of the envelope by ONeMg material from the core is simulated by enhancing oxygen in the accreted layers. The resulting evolutionary sequences can eject the entire accreted envelope plus core material at high velocities. They can also become super-Eddington at maximum bolometric luminosity. The expected frequency of such events (approx. 1/4) is in good agreement with the observed numbers of these novae.
Ristanović, Zoran; Kerssens, Marleen M; Kubarev, Alexey V; Hendriks, Frank C; Dedecker, Peter; Hofkens, Johan; Roeffaers, Maarten B J; Weckhuysen, Bert M
2015-02-02
Fluid catalytic cracking (FCC) is a major process in oil refineries to produce gasoline and base chemicals from crude oil fractions. The spatial distribution and acidity of zeolite aggregates embedded within the 50-150 μm-sized FCC spheres heavily influence their catalytic performance. Single-molecule fluorescence-based imaging methods, namely nanometer accuracy by stochastic chemical reactions (NASCA) and super-resolution optical fluctuation imaging (SOFI) were used to study the catalytic activity of sub-micrometer zeolite ZSM-5 domains within real-life FCC catalyst particles. The formation of fluorescent product molecules taking place at Brønsted acid sites was monitored with single turnover sensitivity and high spatiotemporal resolution, providing detailed insight in dispersion and catalytic activity of zeolite ZSM-5 aggregates. The results point towards substantial differences in turnover frequencies between the zeolite aggregates, revealing significant intraparticle heterogeneities in Brønsted reactivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clanton, Christian; Gaudi, B. Scott, E-mail: clanton@astronomy.ohio-state.edu
2014-08-20
In contrast to radial velocity (RV) surveys, results from microlensing surveys indicate that giant planets with masses greater than the critical mass for core accretion (∼0.1 M {sub Jup}) are relatively common around low-mass stars. Using the methodology developed in the first paper, we predict the sensitivity of M-dwarf RV surveys to analogs of the population of planets inferred by microlensing. We find that RV surveys should detect a handful of super-Jovian (>M {sub Jup}) planets at the longest periods being probed. These planets are indeed found by RV surveys, implying that the demographic constraints inferred from these two methodsmore » are consistent. Finally, we combine the results from both methods to estimate planet frequencies spanning wide regions of parameter space. We find that the frequency of Jupiters and super-Jupiters (1 ≲ m{sub p} sin i/M {sub Jup} ≲ 13) with periods 1 ≤ P/days ≤ 10{sup 4} is f{sub J}=0.029{sub −0.015}{sup +0.013}, a median factor of 4.3 (1.5-14 at 95% confidence) smaller than the inferred frequency of such planets around FGK stars of 0.11 ± 0.02. However, we find the frequency of all giant planets with 30 ≲ m{sub p} sin i/M {sub ⊕} ≲ 10{sup 4} and 1 ≤ P/days ≤ 10{sup 4} to be f{sub G}=0.15{sub −0.07}{sup +0.06}, only a median factor of 2.2 (0.73-5.9 at 95% confidence) smaller than the inferred frequency of such planets orbiting FGK stars of 0.31 ± 0.07. For a more conservative definition of giant planets (50 ≲ m{sub p} sin i/M {sub ⊕} ≲ 10{sup 4}), we find f{sub G{sup ′}}=0.11±0.05, a median factor of 2.2 (0.73-6.7 at 95% confidence) smaller than that inferred for FGK stars of 0.25 ± 0.05. Finally, we find the frequency of all planets with 1 ≤ m{sub p} sin i/M {sub ⊕} ≤ 10{sup 4} and 1 ≤ P/days ≤ 10{sup 4} to be f{sub p} = 1.9 ± 0.5.« less
Physiological performance of two contrasting rice varieties under water stress.
Khan, Furqan; Upreti, Priyanka; Singh, Ruchi; Shukla, Pradeep Kumar; Shirke, Pramod Arvind
2017-01-01
Two rice varieties PR-115 and Super-7 were imposed to water stress and different physiological traits were monitored to evaluate the performance of these varieties under drought. Under water stress condition although the relative water content, osmotic potential, chlorophyll content, photosynthesis rate, carbon discrimination and biomass decreased in both the varieties however, the reduction was more pronounced in Super-7 variety. Oryzanol a trans-ester of ferulic acid functions as antioxidant and it increased along with total phenolic and anthocyanin content in both the varieties under drought stress. However, gallic acid, 4 hydroxy benzoic acid, syringic acid and chlorogenic acid showed differential pattern in both of the varieties under water limiting conditions. Under drought, grain yield was penalized by 17 and 54% in PR-115 and Super-7 varieties, respectively in comparison to watered plants. Super-7 variety showed pronounced electrolyte leakage and MDA enhancement under water stress condition. High non photochemical quenching and reduction in Y(NO) and Y(II) indicated balanced energy management in tolerant PR-115 variety. The studies showed that PR-115 is a drought tolerant variety while Super-7 is drought sensitive in nature.
Recent advances in Reltron and Super-Reltron HPM source development
NASA Astrophysics Data System (ADS)
Miller, Robert B.; Muehlenweg, Carl A.; Habiger, Kerry W.; Smith, John R.; Shiffler, Donald A.
1994-05-01
Reltron and super-reltron microwave tubes use post acceleration of a well-modulated beam and multiple output cavity extraction sections to generate high power microwave pulses with excellent efficiency. We have continued our development of these tubes with emphasis being given to four specific topics: (1) Recent experiments with our 1-GHz super-reltron tube have demonstrated operation at a peak power level of 600 MW. With pulse durations of several hundred nanoseconds, the microwave energy per pulse is about 250 J. (2) We have extracted significant power (several tens of megawatts) at the third multiple (3 GHz) of our 1-GHz super-reltron tube using output cavities designed for operation in S-band. (3) We have fielded a small S-band super-reltron tube on our 260 kV modulator. We have obtained lifetime data for this tube under repetitive (20 Hz), long pulse (2 microsecond(s) ec) operating conditions. (4) We have initiated feasibility experiments of the reltron concept by post accelerating the bunched beam produced by a SLAC XK-5 klystron. In this paper we report our experimental results and discuss relevant theoretical considerations related to each of these four topics.
Li, Yiming; Ishitsuka, Yuji; Hedde, Per Niklas; Nienhaus, G Ulrich
2013-06-25
In localization-based super-resolution microscopy, individual fluorescent markers are stochastically photoactivated and subsequently localized within a series of camera frames, yielding a final image with a resolution far beyond the diffraction limit. Yet, before localization can be performed, the subregions within the frames where the individual molecules are present have to be identified-oftentimes in the presence of high background. In this work, we address the importance of reliable molecule identification for the quality of the final reconstructed super-resolution image. We present a fast and robust algorithm (a-livePALM) that vastly improves the molecule detection efficiency while minimizing false assignments that can lead to image artifacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chugh, Rajiv, E-mail: rajivchug@gmail.com; Kumar, Rohit, E-mail: rohitksharma.pu@gmail.com; Vinayak, Karan Singh, E-mail: drksvinayak@gmail.com
2016-05-06
Using isospin-dependent quantum molecular dynamics (IQMD) approach, we performed a theoretical investigation of the evolution of various kinds of fragments in heavy and superheavy-ion reactions in the intermediate/medium energy domain. We demonstrated direct impact of symmetry energy and Coulomb interactions on the evolution of fragments. Final fragment spectra (yields) obtained from the analysis of various heavy/super-heavy ion reactions at different reaction conditions show high sensitivity towards Coulomb interactions and less significant sensitivity to symmetry energy forms. No inconsistent pattern of fragment structure is obtained in case of super-heavy ion involved reactions for all the parameterizations of density dependence of symmetrymore » energy.« less
NASA Astrophysics Data System (ADS)
Frissell, N. A.; Baker, J. B. H.; Ruohoniemi, J. M.; Greenwald, R. A.; Gerrard, A. J.; Miller, E. S.; West, M. L.
2016-04-01
Medium-scale traveling ionospheric disturbances (MSTIDs) are wave-like ionospheric perturbations routinely observed by high-frequency radars. We focus on a class of MSTIDs observed during the winter daytime at high latitudes and midlatitudes. The source of these MSTIDs remains uncertain, with the two primary candidates being space weather and lower atmospheric processes. We surveyed observations from four high-latitude and six midlatitude Super Dual Auroral Radar Network radars in the North American sector from November to May 2012 to 2015. The MSTIDs observed have horizontal wavelengths between ˜150 and 650 km and horizontal velocities between ˜75 and 325 m s-1. In local fall and winter seasons the majority of MSTIDs propagated equatorward, with bearings ranging from ˜125° to 225° geographic azimuth. No clear correlation with space weather activity as parameterized by AE and SYM-H could be identified. Rather, MSTID observations were found to have a strong correlation with polar vortex dynamics on two timescales. First, a seasonal timescale follows the annual development and decay of the polar vortex. Second, a shorter 2-4 week timescale again corresponds to synoptic polar vortex variability, including stratospheric warmings. Additionally, statistical analysis shows that MSTIDs are more likely during periods of strong polar vortex. Direct comparison of the MSTID observations with stratospheric zonal winds suggests that a wind filtering mechanism may be responsible for the strong correlation. Collectively, these observations suggest that polar atmospheric processes, rather than space weather activity, are primarily responsible for controlling the occurrence of high-latitude and midlatitude winter daytime MSTIDs.
NASA Astrophysics Data System (ADS)
Frissell, N. A.; Baker, J. B.; Ruohoniemi, J. M.; Greenwald, R. A.; Gerrard, A. J.; Miller, E. S.; West, M. L.
2016-12-01
Medium-scale traveling ionospheric disturbances (MSTIDs) are wave-like ionospheric perturbations routinely observed by high-frequency radars. We focus on a class of MSTIDs observed during the winter daytime at high latitudes and midlatitudes. The source of these MSTIDs remains uncertain, with the two primary candidates being space weather and lower atmospheric processes. We surveyed observations from four high-latitude and six midlatitude Super Dual Auroral Radar Network radars in the North American sector from November to May 2012 to 2015. The MSTIDs observed have horizontal wavelengths between 150 and 650 km and horizontal velocities between 75 and 325 m/s. In local fall and winter seasons the majority of MSTIDs propagated equatorward, with bearings ranging from 125° to 225° geographic azimuth. No clear correlation with space weather activity as parameterized by AE and SYM-H could be identified. Rather, MSTID observations were found to have a strong correlation with polar vortex dynamics on two timescales. First, a seasonal timescale follows the annual development and decay of the polar vortex. Second, a shorter 2-4 week timescale again corresponds to synoptic polar vortex variability, including stratospheric warmings. Additionally, statistical analysis shows that MSTIDs are more likely during periods of strong polar vortex. Direct comparison of the MSTID observations with stratospheric zonal winds suggests that a wind filtering mechanism may be responsible for the strong correlation. Collectively, these observations suggest that polar atmospheric processes, rather than space weather activity, are primarily responsible for controlling the occurrence of high-latitude and midlatitude winter daytime MSTIDs.
Yanagisawa, T; Ariizumi, M; Shigematsu, Y; Kobayashi, H; Hasegawa, M; Watanabe, K
2010-01-01
This study was made to examine the combined effects of stored temperature and carbon dioxide atmosphere on shell egg quality. The shell eggs were packed into polyethylene terephthalate/polyethylene (PET/PE) pouches and stored at 0 degrees C (super chilling), 10 degrees C, and 20 degrees C, respectively for 90 d. The atmospheric carbon dioxide concentration was controlled to obtain the 3 concentration levels of high (about 2.0%), medium (about 0.5%), and low (below 0.01%). Changes in Haugh unit (HU) values, weakening of vitelline membranes, and generation of volatiles were analyzed to evaluate the freshness of shell eggs. Results showed that, compared with the other combinations, the technique of super chilling and high carbon dioxide concentration enabled shell eggs to be most effectively stored for 90 d, based on estimations of the statistical significances of differences in HU values, and on maintaining the initial HU values during storage. In addition, the storage of shell eggs using this combination technique was found to significantly prevent the weakening of the vitelline membrane based on the estimations of numbers of eggs without vitelline membrane breakage when eggs broke, and significantly lowered the incidence of hexanal in the yolk from exposure to the gas chromatographic-mass spectrometric analyses of volatiles. Thus, these results confirmed that the combination of super chilling and high carbon dioxide concentration was the most effective technique for preserving shell eggs during a long term of 90 d compared with other combination techniques.
Multifunctional composites for energy storage
NASA Astrophysics Data System (ADS)
Shuvo, Mohammad Arif I.; Karim, Hasanul; Rajib, Md; Delfin, Diego; Lin, Yirong
2014-03-01
Electrochemical super-capacitors have become one of the most important topics in both academia and industry as novel energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been an increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles and portable electronics. These multifunctional structural super-capacitors provide lighter structures combining energy storage and load bearing functionalities. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area and fast ion diffusion rates. Scanning Electron Microscopy (SEM) and XRay Diffraction (XRD) measurements were used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing has been performed using a potentio-galvanostat. The results show that gold sputtered nanowire hybrid carbon fiber provides 65.9% better performance than bare carbon fiber cloth as super-capacitor.
Mantle dynamics in super-Earths: Post-perovskite rheology and self-regulation of viscosity
NASA Astrophysics Data System (ADS)
Tackley, P. J.; Ammann, M.; Brodholt, J. P.; Dobson, D. P.; Valencia, D.
2013-07-01
The discovery of extra-solar "super-Earth" planets with sizes up to twice that of Earth has prompted interest in their possible lithosphere and mantle dynamics and evolution. Simple scalings suggest that super-Earths are more likely than an equivalent Earth-sized planet to be undergoing plate tectonics. Generally, viscosity and thermal conductivity increase with pressure while thermal expansivity decreases, resulting in lower convective vigour in the deep mantle, which, if extralopated to the largest super-Earths might, according to conventional thinking, result in no convection in their deep mantles due to the very low effective Rayleigh number. Here we evaluate this. First, as the mantle of a super-Earth is made mostly of post-perovskite we here extend the density functional theory (DFT) calculations of post-perovskite activation enthalpy of to a pressure of 1 TPa, for both slowest diffusion (upper-bound rheology) and fastest diffusion (lower-bound rheology) directions. Along a 1600 K adiabat the upper-bound rheology would lead to a post-perovskite layer of a very high (˜1030 Pa s) but relatively uniform viscosity, whereas the lower-bound rheology leads to a post-perovskite viscosity increase of ˜7 orders of magnitude with depth; in both cases the deep mantle viscosity would be too high for convection. Second, we use these DFT-calculated values in statistically steady-state numerical simulations of mantle convection and lithosphere dynamics of planets with up to ten Earth masses. The models assume a compressible mantle including depth-dependence of material properties and plastic yielding induced plate-like lithospheric behaviour. Results confirm the likelihood of plate tectonics for planets with Earth-like surface conditions (temperature and water) and show a self-regulation of deep mantle temperature. The deep mantle is not adiabatic; instead feedback between internal heating, temperature and viscosity regulates the temperature such that the viscosity has the value needed to facilitate convective loss of the radiogenic heat, which results in a very hot perovskite layer for the upper-bound rheology, a super-adiabatic perovskite layer for the lower-bound rheology, and an azimuthally-averaged viscosity of no more than 1026 Pa s. Convection in large super-Earths is characterised by large upwellings (even with zero basal heating) and small, time-dependent downwellings, which for large super-Earths merge into broad downwellings. In the context of planetary evolution, if, as is likely, a super-Earth was extremely hot/molten after its formation, it is thus likely that even after billions of years its deep interior is still extremely hot and possibly substantially molten with a "super basal magma ocean" - a larger version of the proposal of Labrosse et al. (Labrosse, S., Hernlund, J.W., Coltice, N. [2007]. Nature 450, 866-869), although this depends on presently unknown melt-solid density contrast and solidus.
Sen, D; Nayir, E; Pamuk, S
2000-11-01
Although the bond strengths of various resin composite luting materials have been reported in the literature, the evaluation of these systems with various cast alloys of different compositions has not been completely clarified. To evaluate the tensile bond strength of sandblasted high-noble, noble, and base metal alloys bonded to etched enamel by 2 different bonding agents of different chemical composition: Panavia-Ex (BIS-GMA) and Super-Bond (4-META acrylic). Flat enamel surfaces were prepared on buccal surfaces of 60 extracted noncarious human incisors. Teeth were divided into 3 groups of 20 each. Twenty circular disks of 5 mm diameter were prepared for casting for each group. Group I was cast with a high-noble, group II with a noble, and group III with a base metal alloy. The surfaces of the disks were sandblasted with 250 microm Al(2)O(3). Ten disks of each group were bonded to exposed enamel surfaces with Super-Bond and 10 disks with Panavia-Ex as recommended by the manufacturer. The tensile bond strength was measured with an Instron universal testing machine with a crosshead speed of 0.5 mm/min until failure occurred. Two-way ANOVA was used to evaluate the results. The differences in bond strengths of Super-Bond and Panavia-Ex with different alloys were not significant. The highest bond strengths were obtained in base metal alloys, followed by noble and high-noble alloys. These results were significant. Panavia-Ex and Super-Bond exhibited comparable tensile bond strengths. For both luting agents, the highest bond strengths were achieved with base metal alloys and the lowest with high-noble alloys.
Fossil dust shells around luminous supergiants
NASA Technical Reports Server (NTRS)
Stothers, R.
1975-01-01
The observed frequency with which infrared excesses appear in F, G, and K supergiants of luminosity class Ia supports the idea that these excesses arise in a 'fossil' circumstellar dust shell that was formed during a prior M-super-giant phase of evolution. The required leftward evolution of the star on the H-R diagram would then imply that the Ledoux, rather than the Schwarzschild, criterion for convective mixing is the correct criterion to use in stellar evolution calculations.
1983-12-01
effects of the transmitted waveform. This will be accomplished via comparisons of signal-to-noise ratios for non-coherent filtering vs. coherent narrowband...form of frequency or phase modulation. The simulation will assume we are processing the video (baseband) signal which resu fr i an enviroment (target...range, they can be resolved in doppler if AWD/2 > Fr where &wD is the doppler-shift difference. A similiar consideration of target resolution for a
NASA Astrophysics Data System (ADS)
Grecu, M.; Tian, L.; Heymsfield, G. M.
2017-12-01
A major challenge in deriving accurate estimates of physical properties of falling snow particles from single frequency space- or airborne radar observations is that snow particles exhibit a large variety of shapes and their electromagnetic scattering characteristics are highly dependent on these shapes. Triple frequency (Ku-Ka-W) radar observations are expected to facilitate the derivation of more accurate snow estimates because specific snow particle shapes tend to have specific signatures in the associated two-dimensional dual-reflectivity-ratio (DFR) space. However, the derivation of accurate snow estimates from triple frequency radar observations is by no means a trivial task. This is because the radar observations can be subject to non-negligible attenuation (especially at W-band when super-cooled water is present), which may significantly impact the interpretation of the information in the DFR space. Moreover, the electromagnetic scattering properties of snow particles are computationally expensive to derive, which makes the derivation of reliable parameterizations usable in estimation methodologies challenging. In this study, we formulate an two-step Expectation Maximization (EM) methodology to derive accurate snow estimates in Extratropical Cyclones (ECTs) from triple frequency airborne radar observations. The Expectation (E) step consists of a least-squares triple frequency estimation procedure applied with given assumptions regarding the relationships between the density of snow particles and their sizes, while the Maximization (M) step consists of the optimization of the assumptions used in step E. The electromagnetic scattering properties of snow particles are derived using the Rayleigh-Gans approximation. The methodology is applied to triple frequency radar observations collected during the Olympic Mountains Experiment (OLYMPEX). Results show that snowfall estimates above the freezing level in ETCs consistent with the triple frequency radar observations as well as with independent rainfall estimates below the freezing level may be derived using the EM methodology formulated in the study.
NASA Astrophysics Data System (ADS)
Chen, Yufei; Wang, Botao; Li, Fangliang; Teng, Chengjun
2017-07-01
Bisphenol A allyl compound-bismaleimide (MBAE) composite modified by SCE-SiO2 and polyethersulfone (PES) resin has been prepared and researched. SCE-SiO2 was modified by super-critical ethanol and PES thermoplastic resin used as modifiers. The composite was prepared via the hot melting method. The FT-IR measurements indicated that ethanol molecular had adsorbed on the nano-SiO2 surface. SEM images showed that the composite had a multiphase structure, PES and SCE-SiO2 existed as a dispersed phase, and the interaction of the three phases affected each other, such that the bending fracture behavior transformed from brittle fracture to ductile fracture, and the modifiers of SCE-SiO2 and PES resin could improve the mechanical properties. The impact and the bending strength of the composite was 16.5 kJ/mm2 and 150.4 MPa, improved by 68.3% and 56.7% compared with those of the MBAE matrix, respectively, when the content of SCE-SiO2 was 2 wt.% and PES 5 wt.%. The dielectric constant ( ɛ) of the composites was less than 3.9 and decreased with increasing frequency, and the dielectric loss was less than 9 × 10-3 for frequencies between 102 Hz and 105 Hz. These properties could meet the requirement of insulating material.
Redmond, Catherine J.; Dooley, Katharine E.; Fu, Haiqing; Gillison, Maura L.; Akagi, Keiko; Symer, David E.; Aladjem, Mirit I.
2018-01-01
Integration of human papillomavirus (HPV) genomes into cellular chromatin is common in HPV-associated cancers. Integration is random, and each site is unique depending on how and where the virus integrates. We recently showed that tandemly integrated HPV16 could result in the formation of a super-enhancer-like element that drives transcription of the viral oncogenes. Here, we characterize the chromatin landscape and genomic architecture of this integration locus to elucidate the mechanisms that promoted de novo super-enhancer formation. Using next-generation sequencing and molecular combing/fiber-FISH, we show that ~26 copies of HPV16 are integrated into an intergenic region of chromosome 2p23.2, interspersed with 25 kb of amplified, flanking cellular DNA. This interspersed, co-amplified viral-host pattern is frequent in HPV-associated cancers and here we designate it as Type III integration. An abundant viral-cellular fusion transcript encoding the viral E6/E7 oncogenes is expressed from the integration locus and the chromatin encompassing both the viral enhancer and a region in the adjacent amplified cellular sequences is strongly enriched in the super-enhancer markers H3K27ac and Brd4. Notably, the peak in the amplified cellular sequence corresponds to an epithelial-cell-type specific enhancer. Thus, HPV16 integration generated a super-enhancer-like element composed of tandem interspersed copies of the viral upstream regulatory region and a cellular enhancer, to drive high levels of oncogene expression. PMID:29364907
Multiparticle Simulation of Intrabeam Scattering for SuperB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biagini, M.; Boscolo, M.; Demma, T.
In this communication we present the structure of a multiparticle tracking code to investigate intrabeam scattering effects in low emittance colliders. Simulation results obtained with particular reference to the SuperB parameters are compared with those of conventional IBS theories.and with those of a novel semi-analythical model able to predict IBS effect in terms of emittance growths. Intrabeam scattering (IBS) is associated with multiple small angle scattering events leading to emittance growth. In most electron storage rings, the growth rates arising from IBS are usually much longer than damping times due to synchrotron radiation, and its effect is not observed. However,more » IBS growth rates increase with bunch charge density, and for machines such as SuperB, that operate with high bunch charges and very low emittances, the IBS growth rates can be large enough to observe significant emittance increase. Several formalisms have been developed for calculating IBS growth rates in storage rings, notably those by Piwinski, Bjorken and Mtingwa, and their high energy approximations. Calculations show that IBS should be manageable in both SuperB rings. However these analytical models, based on Gaussian bunch distributions, cannot investigate some interesting aspects of IBS such as its impact during the damping process and its effect on the beam distribution. We developed a multiparticle tracking code, based on the Zenkevich-Bolshakov algorithm, to investigate these effects. In this communication we present the structure of the code and some simulation results obtained with particular reference to the SuperB parameters. Simulation results are compared with those of conventional IBS theories.« less
Dynamics of two-dimensional monolayer water confined in hydrophobic and charged environments.
Kumar, Pradeep; Han, Sungho
2012-09-21
We perform molecular dynamics simulations to study the effect of charged surfaces on the intermediate and long time dynamics of water in nanoconfinements. Here, we use the transferable interaction potential with five points (TIP5P) model of a water molecule confined in both hydrophobic and charged surfaces. For a single molecular layer of water between the surfaces, we find that the temperature dependence of the lateral diffusion constant of water up to very high temperatures remains Arrhenius with a high activation energy. In case of charged surfaces, however, the dynamics of water in the intermediate time regime is drastically modified presumably due to the transient coupling of dipoles of water molecules with electric field fluctuations induced by charges on the confining surfaces. Specifically, the lateral mean square displacements display a distinct super-diffusive behavior at intermediate time scale, defined as the time scale between ballistic and diffusive regimes. This change in the intermediate time-scale dynamics in the charged confinement leads to the enhancement of long-time dynamics as reflected in increasing diffusion constant. We introduce a simple model for a possible explanation of the super-diffusive behavior and find it to be in good agreement with our simulation results. Furthermore, we find that confinement and the surface polarity enhance the low frequency vibration in confinement compared to bulk water. By introducing a new effective length scale of coupling between translational and orientational motions, we find that the length scale increases with the increasing strength of the surface polarity. Further, we calculate the correlation between the diffusion constant and the excess entropy and find a disordering effect of polar surfaces on the structure of water. Finally, we find that the empirical relation between the diffusion constant and the excess entropy holds for a monolayer of water in nanoconfinement.
NASA Astrophysics Data System (ADS)
Thasneema K., K.; Thayyil, M. Shahin; Krishna Kumar N., S.; Govindaraj, G.; Saheer, V. C.
2018-04-01
Usually ionic liquids consists of a large organic cation with low symmetry such as imidazolium, pyridinium, quaternary ammonium or phosponium etc combined with enormously wide range of inorganic or organic symmetric anion with melting point below 100. Ionic liquids existing in an extremely large number of possible ion pair combinations. It offers a very wide range of thermo physical properties led to the concept of designer solvents for specific applications. Due to the features of high chemical and thermal stability, low vapor pressure non flammability high ionic conductivity, and they show a good solvent ability towards a great variety of organic or inorganic compounds, ionic liquids have a widespread use in many areas such as batteries, fuel cell, solar cells, super capacitors etc. The main focus of this work is the study of molecular dynamics and conductivity relaxation of amorphous Trihexyl tetradecyl phosphonium dicyanamide ([P14,6,6,6][N(CN)2]) ionic liquid which is proved as a better electrolyte in super capacitors, over a wide frequency 10-2 Hz to 107 Hz and the temperature range between 123k and 265 k by means of Broadband Dielectric Spectroscopy. We observe alpha conductivity relaxation and secondary relaxation above and below Glass Transition Temperature. The experimental results were analyzed using electric modulus representation. The analysis emphasis the inter molecular interaction and the nature of glass forming system, whether it is fragile or strong system. The ionic liquid shows a fragile behavior and the fragility index m=123.59. TGA result of the sample exhibit a good resistance to thermal decomposition, up to 300°C.
NASA Astrophysics Data System (ADS)
Liu, Daizhong; Daddi, Emanuele; Dickinson, Mark; Owen, Frazer; Pannella, Maurilio; Sargent, Mark; Béthermin, Matthieu; Magdis, Georgios; Gao, Yu; Shu, Xinwen; Wang, Tao; Jin, Shuowen; Inami, Hanae
2018-02-01
We present a new technique to measure multi-wavelength “super-deblended” photometry from highly confused images, which we apply to Herschel and ground-based far-infrared (FIR) and (sub-)millimeter (mm) data in the northern field of the Great Observatories Origins Deep Survey. There are two key novelties. First, starting with a large database of deep Spitzer 24 μm and VLA 20 cm detections that are used to define prior positions for fitting the FIR/submm data, we perform an active selection of useful priors independently at each frequency band, moving from less to more confused bands. Exploiting knowledge of redshift and all available photometry, we identify hopelessly faint priors that we remove from the fitting pool. This approach significantly reduces blending degeneracies and allows reliable photometry to be obtained for galaxies in FIR+mm bands. Second, we obtain well-behaved, nearly Gaussian flux density uncertainties, individually tailored to all fitted priors for each band. This is done by exploiting extensive simulations that allow us to calibrate the conversion of formal fitting uncertainties to realistic uncertainties, depending on directly measurable quantities. We achieve deeper detection limits with high fidelity measurements and uncertainties at FIR+mm bands. As an illustration of the utility of these measurements, we identify 70 galaxies with z≥slant 3 and reliable FIR+mm detections. We present new constraints on the cosmic star formation rate density at 3< z< 6, finding a significant contribution from z≥slant 3 dusty galaxies that are missed by optical-to-near-infrared color selection. Photometric measurements for 3306 priors, including more than 1000 FIR+mm detections, are released publicly with our catalog.
Brouwer Award Lecture: Anelastic tides of close-in satellites and exoplanets
NASA Astrophysics Data System (ADS)
Ferraz-Mello, Sylvio
2016-05-01
This lecture reviews a new theory of the anelastic tides of celestial bodies in which the deformation of the body is the result of a Newtonian creep inversely proportional to the viscosity of the body and, along each radius, directly proportional to the distance from the actual surface of the body to the equilibrium. The first version of the theory (AAS/DDA 2012; CeMDA 2013), was restricted to homogeneous bodies. It was applied to many different bodies as the Moon, Mercury, super-Earths and hot Jupiters. An improved version (AAS/DDA 2014) included also the loss of angular momentum due to stellar winds and was applied to the study of the rotational evolution of active stars hosting massive companions. One more recent version (Folonier et al. AAS/DDA 2013; DPS 2015) allowed for the consideration of layered structures and was applied to Titan and Mercury. The resulting anelastic tides depend on the nature of the considered body. In the case of low-viscosity bodies (high relaxation factor), as gaseous planets and stars, the results are nearly the same of Darwin's theory. For instance, in these cases the dissipation grows proportionally to the tidal frequency. In the case of high-viscosity rocky satellites and planets (low relaxation factor), the results are structurally different: the dissipation varies with the tidal frequency following an inverse power law and the rotation may be driven to several attractors whose frequencies are 1/2, 1, 3/2, 2, 5/2,… times the orbital mean-motion, even when no permanent triaxiality exists.
VizieR Online Data Catalog: CH4 and hot methane continuum hybrid line list (Yurchenko+, 2017)
NASA Astrophysics Data System (ADS)
Yurchenko, S. N.; Amundsen, D. S.; Tennyson, J.; Waldmann, I. P.
2017-07-01
The states file ch4_e50.dat contains a list of rovibrational states. Each state is labelled with: nine normal mode vibrational quantum numbers and the vibrational symmetry; three rotational quantum numbers including the total angular momentum J and rotational symmetry; the total symmetry quantum number Gamma and the running number in the same (J,Gamma) block. In addition there are nine local mode vibrational numbers and the largest coefficient used to assign the state in question. Each rovibrational state has a unique number, which is the number of the row in which it appears in the file. This number is the means by which the state is related to the second part of the data system, the transitions files. The total degeneracy is also given to facilitate the intensity calculations. Because of their size, the transitions are listed in 120 separate files, each containing all the transitions in a 100cm-1 frequency range. These transition files t_*.dat contain the strong methane lines lines consisting of three columns: the reference number in the energy file of the upper state, that of the lower state, the Einstein A coefficient of the transition and the transition wavenumber. These entries are ordered by increasing frequency. The name of the file includes the lowest frequency in the range; thus the t-00500.dat file contains all the transitions in the frequency range 500-600cm-1. 19 histograms xYYYYK.dat files contain CH4_ super-lines representing the continuum computed at the temperature T=YYYYK using R=1000000 (7090081 super-lines each) covering the wavenumber range from 10 to 12000cm-1. The energy file, the transitions files and the histograms files are bzipped, and need to be extracted before use. The pressure broadening parameters used in the calculations are listed in broad.dat. A programme ExoCross to generate synthetic spectra from these line lists can be obtained at www.exomol.com. (4 data files).
NASA Astrophysics Data System (ADS)
Phelan, Brian R.; Ranney, Kenneth I.; Ressler, Marc A.; Clark, John T.; Sherbondy, Kelly D.; Kirose, Getachew A.; Harrison, Arthur C.; Galanos, Daniel T.; Saponaro, Philip J.; Treible, Wayne R.; Narayanan, Ram M.
2017-05-01
The U.S. Army Research Laboratory has developed the Spectrally Agile Frequency-Incrementing Reconfigurable (SAFIRE) radar, which is capable of imaging concealed/buried targets using forward- and side-looking configurations. The SAFIRE radar is vehicle-mounted and operates from 300 MHz-2 GHz; the step size can be adjusted in multiples of 1 MHz. It is also spectrally agile and capable of excising frequency bands, which makes it ideal for operation in congested and/or contested radio frequency (RF) environments. Furthermore, the SAFIRE radar receiver has a super-heterodyne architecture, which was designed so that intermodulation products caused by interfering signals could be easily filtered from the desired received signal. The SAFIRE system also includes electro-optical (EO) and infrared (IR) cameras, which can be fused with radar data and displayed in a stereoscopic augmented reality user interface. In this paper, recent upgrades to the SAFIRE system are discussed and results from the SAFIRE's initial field tests are presented.
Dynamics of unforced and vertically forced rocking elliptical and semi-elliptical disks
NASA Astrophysics Data System (ADS)
Wang, Xue-She; Mazzoleni, Michael J.; Mann, Brian P.
2018-03-01
This paper presents the results of an investigation on the dynamics of unforced and vertically forced rocking elliptical and semi-elliptical disks. The full equation of motion for both rocking disks is derived from first principles. For unforced behavior, Lamb's method is used to derive the linear natural frequency of both disks, and harmonic balance is used to determine their amplitude-dependent rocking frequencies. A stability analysis then reveals that the equilibria and stability of the two disks are considerably different, as the semi-elliptical disk has a super-critical pitchfork bifurcation that enables it to exhibit bistable rocking behavior. Experimental studies were conducted to verify the trends. For vertically forced behavior, numerical investigations show the disk's responses to forward and reverse frequency sweeps. Three modes of periodicity were observed for the steady state behavior. Experiments were performed to verify the frequency responses and the presence of the three rocking modes. Comparisons between the experiments and numerical investigations show good agreement.