Science.gov

Sample records for super high temperature

  1. Method and apparatus for connecting high voltage leads to a high temperature super-conducting transformer

    DOEpatents

    Golner, Thomas M.; Mehta, Shirish P.

    2005-07-26

    A method and apparatus for connecting high voltage leads to a super-conducting transformer is provided that includes a first super-conducting coil set, a second super-conducting coil set, and a third super-conducting coil set. The first, second and third super-conducting coil sets are connected via an insulated interconnect system that includes insulated conductors and insulated connectors that are utilized to connect the first, second, and third super-conducting coil sets to the high voltage leads.

  2. On the High Temperature Deformation Behaviour of 2507 Super Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mishra, M. K.; Balasundar, I.; Rao, A. G.; Kashyap, B. P.; Prabhu, N.

    2017-02-01

    High temperature deformation behaviour of 2507 super duplex stainless steel was investigated by conducting isothermal hot compression tests. The dominant restoration processes in ferrite and austenite phases present in the material were found to be distinct. The possible causes for these differences are discussed. Based on the dynamic materials model, processing map was developed to identify the optimum processing parameters. The microstructural mechanisms operating in the material were identified. A unified strain-compensated constitutive equation was established to describe the high temperature deformation behaviour of the material under the identified processing conditions. Standard statistical parameter such as correlation coefficient has been used to validate the established equation.

  3. Production of highly charged ions with an ECRIS using high temperature super-conducting coils

    NASA Astrophysics Data System (ADS)

    Bieth, C.; Kantas, S.; Sortais, P.; Kanjilal, D.; Rodrigues, G.; Milward, S.; Harrison, S.; Mc Mahon, R.

    2005-07-01

    Highly charged ions are widely used in atomic physics, nuclear physics and material science. One requirement to produce highly charged ions for an ECRIS [P. Sortais et al., ECRIS development at GANIL, in: Proceedings of the 12th Int. Conf. on Cyclotrons, Berlin, 1989; P. Sortais et al., in: Proceedings of the Int. Conf. on Ion sources, Berkley 1989, p. 288] is a high resonance frequency, hence a high resonance magnetic field. With electromagnets, we can produce limited magnetic fields, generally, in the range of 2 T. Also, electromagnets require a significant amount of electrical power, powerful DC power supplies and large cooling systems. As a consequence, producing highly charged ions with a source setup, at ground, is rather difficult and becomes a serious technical and financial challenge if the source is on a high voltage terminal. The use of low temperature superconducting coils 'LTC' has a real advantage when it comes to electrical power. A reduction factor of 10-20 in the total AC power is obtained. However, the handling of cryogenic liquids generates difficulties and extra costs. An elegant solution consists in using high temperature superconducting wire 'HTS' [Y.L. Tang et al., Super Cond. Sci. Technol. 15 (2002); L. Masure et al., 2002, in: ISS2002 Conf. Proc. (Yokohama, Japan, November 2002) in press]. Indeed, the superconductivity of the HTS wire starts at 77 K. Cryogenic generators with sufficient cooling power at 20 K are commercially available and need only few kW of AC power. In addition to that, the coils are very compact and easy to handle. The following paper presents PKDELIS [ECR HTS source using superconducting coils, French Patent No. FR98 06579]. The first ECRIS in the world using HTS wires, jointly designed and constructed by PANTECHNIK and NSC New Delhi, India.

  4. High-temperature condensate clouds in super-hot Jupiter atmospheres

    NASA Astrophysics Data System (ADS)

    Wakeford, H. R.; Visscher, C.; Lewis, N. K.; Kataria, T.; Marley, M. S.; Fortney, J. J.; Mandell, A. M.

    2017-02-01

    Deciphering the role of clouds is central to our understanding of exoplanet atmospheres, as they have a direct impact on the temperature and pressure structure, and observational properties of the planet. Super-hot Jupiters occupy a temperature regime similar to low-mass M-dwarfs, where minimal cloud condensation is expected. However, observations of exoplanets such as WASP-12b (Teq ˜ 2500 K) result in a transmission spectrum indicative of a cloudy atmosphere. We re-examine the temperature and pressure space occupied by these super-hot Jupiter atmospheres, to explore the role of the initial Al- and Ti-bearing condensates as the main source of cloud material. Due to the high temperatures, a majority of the more common refractory material is not depleted into deeper layers and would remain in the vapour phase. The lack of depletion into deeper layers means that these materials with relatively low cloud masses can become significant absorbers in the upper atmosphere. We provide condensation curves for the initial Al- and Ti-bearing condensates which may be used to provide quantitative estimates of the effect of metallicity on cloud masses, as planets with metal-rich hosts potentially form more opaque clouds because more mass is available for condensation. Increased metallicity also pushes the point of condensation to hotter, deeper layers in the planetary atmosphere further increasing the density of the cloud. We suggest that planets around metal-rich hosts are more likely to have thick refractory clouds, and discuss the implication on the observed spectra of WASP-12b.

  5. High temperature seals between ceramic separation membranes and super-alloy housing

    NASA Technical Reports Server (NTRS)

    Honea, G.; Sridhar, K. R.

    1991-01-01

    One of the concepts for oxygen production from Martian atmospheric carbon dioxide involves the use of tubular electrochemical membranes for oxygen separation. The tubular configuration offers the advantage of being able to separate the oxygen at pressures of up to 500 psi, thereby eliminating the need for a pre-liquefaction oxygen compressor. A key technology that has to be developed in order for the electrochemical separator to combine as a compressor is a high temperature static seal between the ceramic separation cell and the nickel-based super-alloy tube. Equipment was designed and fabricated to test the seals. Efforts are under way to develop a finite element model to study the thermal stresses at the joints and on the seal, and the optimal shape of the seal. The choice of seal materials and the technique to be used to fabricate the seals are also being investigated.

  6. Kinetics and Microstructural Investigation of High-Temperature Oxidation of IN-738LC Super Alloy

    NASA Astrophysics Data System (ADS)

    Hamidi, S.; Rahimipour, M. R.; Eshraghi, M. J.; Hadavi, S. M. M.; Esfahani, H.

    2017-02-01

    The present study was carried out to investigate the kinetics and the surface chemistry of the oxide layers formed on the IN-738LC super alloy during high-temperature oxidation at 950 °C in air from 1 to 260 h. Oxidation kinetics were studied by mass gain measurement. The oxide layers were characterized by field emission scanning electron microscope, elemental distribution map, energy-dispersive spectroscopy as well as x-ray diffractometry (XRD). The oxidation kinetics followed the parabolic law. The XRD analysis revealed that the oxide scale contained mainly NiO, Ni (Cr, Al)2O4, Al2O3, TiO2 and Cr2O3. The oxide structure, from the top surface down to the substrate, was clarified by elemental map distribution studies as Ni-Ti oxides, Cr-Ti oxides, Cr2O3 oxide band, Ni-Co-Cr-W oxide and finally a blocky Al2O3 region. The oxidation scales were composed of three distinct layers of the outer and mid layers enriched by TiO2 and Cr2O3, NiCr2O4 oxide, respectively, and the innermost layer was composed of Al2O3 and matrix alloy. The depleted gamma prime layer was formed under the oxidation scales due to the impoverishment of Al and Ti which were induced by the formation of Al2O3 and TiO2.

  7. Kinetics and Microstructural Investigation of High-Temperature Oxidation of IN-738LC Super Alloy

    NASA Astrophysics Data System (ADS)

    Hamidi, S.; Rahimipour, M. R.; Eshraghi, M. J.; Hadavi, S. M. M.; Esfahani, H.

    2016-12-01

    The present study was carried out to investigate the kinetics and the surface chemistry of the oxide layers formed on the IN-738LC super alloy during high-temperature oxidation at 950 °C in air from 1 to 260 h. Oxidation kinetics were studied by mass gain measurement. The oxide layers were characterized by field emission scanning electron microscope, elemental distribution map, energy-dispersive spectroscopy as well as x-ray diffractometry (XRD). The oxidation kinetics followed the parabolic law. The XRD analysis revealed that the oxide scale contained mainly NiO, Ni (Cr, Al)2O4, Al2O3, TiO2 and Cr2O3. The oxide structure, from the top surface down to the substrate, was clarified by elemental map distribution studies as Ni-Ti oxides, Cr-Ti oxides, Cr2O3 oxide band, Ni-Co-Cr-W oxide and finally a blocky Al2O3 region. The oxidation scales were composed of three distinct layers of the outer and mid layers enriched by TiO2 and Cr2O3, NiCr2O4 oxide, respectively, and the innermost layer was composed of Al2O3 and matrix alloy. The depleted gamma prime layer was formed under the oxidation scales due to the impoverishment of Al and Ti which were induced by the formation of Al2O3 and TiO2.

  8. Super-Leidenfrost spray cooling: A solution to the problem of controlled high-temperature, high-flux heat extraction

    NASA Astrophysics Data System (ADS)

    Edwards, C. F.; Hahn, D. W.

    Our interest in spray cooling stems from a problem in high-temperature materials synthesis. Specifically, it is the growth of diamond films by flame chemical vapor deposition (CVD). A high velocity jet of premixed C2H2/O2/H2 is formed into a stagnation point flow over the surface of a molybdenum mandrel causing the formation of a highly strained flame immediately adjacent to the surface. The difficulty that arises is that concomitant with the flux of energetic species to the surface is a large flux of heat which must be removed from the mandrel if control of the growth process is to be maintained. The situation is further complicated by the fact that the deposition surface temperature must be held to a tight tolerance somewhere within the optimal diamond growth range (approximately 1200 K) and the heat extraction must be made in a one-dimensional fashion to preserve the uniform boundary condition on the flame. Since the cooling surface temperature is fixed near the saturation condition by the phase change of the droplets, and the heat flux into the mandrel is imposed by the flame, the only way to achieve a desired deposition surface temperature is to vary the thermal resistance of the mandrel itself. Since the cooling surface is isothermal, uniform temperature at the deposition surface will only result if the heat flux through the mandrel is uniform, that is, if the sides of the mandrel are effectively adiabatic and the flame is uniform over the mandrel surface. If either of these conditions is not met, the deposition surface temperature cannot be made uniform using this method. These limitations could be overcome if it were possible to carry out the spray cooling process without being tied to the isothermal boundary condition inherent in phase-cooling. Such a solution exists for spray cooling above the Leidenfrost temperature; that is the subject of this paper -- super-Leidenfrost spray cooling.

  9. Super-High Temperature Alloys and Composites from NbW-Cr Systems

    SciTech Connect

    Shailendra Varma

    2008-12-31

    Nickel base superalloys must be replaced if the demand for the materials continues to rise for applications beyond 1000{sup o}C which is the upper limit for such alloys at this time. There are non-metallic materials available for such high temperature applications but they all present processing difficulties because of the lack of ductility. Metallic systems can present a chance to find materials with adequate room temperature ductility. Obviously the system must contain elements with high melting points. Nb has been chosen by many investigators which has a potential of being considered as a candidate if alloyed properly. This research is exploring the Nb-W-Cr system for the possible choice of alloys to be used as a high temperature material.

  10. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling

    PubMed Central

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-01-01

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase. PMID:24763088

  11. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling.

    PubMed

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-04-25

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase.

  12. Effects of low temperature on photosynthetic characteristics in the super-high-yield hybrid rice 'Liangyoupeijiu' at the seedling stage.

    PubMed

    Shi, D W; Wei, X D; Chen, G X

    2016-12-02

    To elucidate the resistance of high-yield hybrid rice (Oryza sativa L.) at the seedling stage to low temperature, photosynthetic characteristics, such as membrane lipid peroxidation, fatty acid composition, and chloroplast ultrastructure, were investigated in a newly developed super-hybrid rice ('Liangyoupeijiu') and a traditional chill-sensitive hybrid rice ('Shanyou63'), with 20°C as the control condition and 10°C as the low temperature treatment. Chlorophyll content, oxygen consumption by photosystem I, and oxygen production by photosystem II in the thylakoid membrane mainly decreased under the low-temperature treatment. The malondialdehyde content of 'Liangyoupeijiu' decreased slightly, while increases in membrane lipid peroxidation were greater in 10°C-treated than in 25°C-treated 'Shanyou63' seedlings. The index of unsaturated fatty acids increased in the two cultivars, particularly in 'Liangyoupeijiu'. No severe chloroplast ultrastructure damage was observed under cold stress, but the number of osmiophilic granules in 'Shanyou63' increased rapidly. The results indicate that compared to 'Shanyou63', 'Liangyoupeijiu' is more chill-resistant at the seedling stage.

  13. Development of constitutive models for cyclic plasticity and creep behavior of super alloys at high temperature

    NASA Technical Reports Server (NTRS)

    Haisler, W. E.

    1983-01-01

    An uncoupled constitutive model for predicting the transient response of thermal and rate dependent, inelastic material behavior was developed. The uncoupled model assumes that there is a temperature below which the total strain consists essentially of elastic and rate insensitive inelastic strains only. Above this temperature, the rate dependent inelastic strain (creep) dominates. The rate insensitive inelastic strain component is modelled in an incremental form with a yield function, blow rule and hardening law. Revisions to the hardening rule permit the model to predict temperature-dependent kinematic-isotropic hardening behavior, cyclic saturation, asymmetric stress-strain response upon stress reversal, and variable Bauschinger effect. The rate dependent inelastic strain component is modelled using a rate equation in terms of back stress, drag stress and exponent n as functions of temperature and strain. A sequence of hysteresis loops and relaxation tests are utilized to define the rate dependent inelastic strain rate. Evaluation of the model has been performed by comparison with experiments involving various thermal and mechanical load histories on 5086 aluminum alloy, 304 stainless steel and Hastelloy X.

  14. Super Smooth Modification of Al2O3 Ceramic Substrate by High Temperature Glaze of CaO-Al2O3-SiO2 System

    NASA Astrophysics Data System (ADS)

    Zhang, Jihua; Zhen, Shanxue; Yang, Lijun; Lou, Feizhi; Chen, Hongwei; Yang, Chuanren

    2011-01-01

    The rough surface of ceramic substrate is an obstacle for the scale down of line-width for thin film passive integrated devices (PID). In this paper, a modification method for Al2O3 ceramic substrate with super smooth in surface was proposed. Coating a layer of CaO-Al2O3-SiO2 (CAS) glass was performed to flat the rough surface of alumina substrate by sol-gel method. It was found that addition of 0.06% V2O5 can inhibit the recrystallization of the glaze. The root-mean-square (RMS) roughness of the glazed substrates reached a surprising flatness as small as 0.5 nm, and its melting temperature is higher than 1300 °C. This substrate with super flatness and high temperature endurance may be promising for high performance thin film devices.

  15. A high-resolution mid-Pleistocene temperature record from Arctic Lake El'gygytgyn: a 50 kyr super interglacial from MIS 33 to MIS 31?

    NASA Astrophysics Data System (ADS)

    de Wet, Gregory A.; Castañeda, Isla S.; DeConto, Robert M.; Brigham-Grette, Julie

    2016-02-01

    Previous periods of extreme warmth in Earth's history are of great interest in light of current and predicted anthropogenic warming. Numerous so called ;super interglacial; intervals, with summer temperatures significantly warmer than today, have been identified in the 3.6 million year (Ma) sediment record from Lake El'gygytgyn, northeast Russia. To date, however, a high-resolution paleotemperature reconstruction from any of these super interglacials is lacking. Here we present a paleotemperature reconstruction based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) from Marine Isotope Stages (MIS) 35 to MIS 29, including super interglacial MIS 31. To investigate this period in detail, samples were analyzed with an unprecedented average sample resolution of 500 yrs from MIS 33 to MIS 30. Our results suggest the entire period currently defined as MIS 33-31 (∼1114-1062 kyr BP) was characterized by generally warm and highly variable conditions at the lake, at times out of phase with Northern Hemisphere summer insolation, and that cold ;glacial; conditions during MIS 32 lasted only a few thousand years. Close similarities are seen with coeval records from high southern latitudes, supporting the suggestion that the interval from MIS 33 to MIS 31 was an exceptionally long interglacial (Teitler et al., 2015). Based on brGDGT temperatures from Lake El'gygytgyn (this study and unpublished results), warming in the western Arctic during MIS 31 was matched only by MIS 11 during the Pleistocene.

  16. Development of High Temperature Superconductor Based SQUID (HTS-SQUID) Magnetometer System for Super-sensitive Observation of Geomagnetic Field Changes

    NASA Astrophysics Data System (ADS)

    Katori, Yuta; Okubo, Kan; Hato, Tsunehiro; Tsukamoto, Akira; Tanabe, Keiichi; Onishi, Nobuhito; Furukawa, Chikara; Isogami, Shinji; Takeuchi, Nobunao

    2013-04-01

    The key point of this presentation is that we successfully develop the high-temperature-superconductor based superconducting-quantum-interference-device (HTS-SQUID) magnetometer system for super-sensitive observation of geomagnetic field changes. Electromagnetic changes associated with earthquakes have been investigated previously. Our research group also employed flux-gate magnetometers whose specifications are the measurement with accuracy of 0.01 nT and with the sampling interval of 0.5sec for seismomagnetic observations. Our observation site happened to be situated at an epicentral distance of 26 km from the 2008 Iwate-Miyagi Nairiku earthquake of M 7.2, NE Japan. In this earthquake, we have reported successful observation of "co-faulting" Earth's magnetic field changes due to piezomagnetic effects caused by earthquake rupturing(Okubo et al., 2011 EPSL). Magnetic field components began to change almost simultaneously with the onset of the earthquake rupture and grew non-linearly before the first P wave arrival. Such magnetic signals are most probably generated by the changing stress field due to rupturing, i.e. the piezomagnetic effect. This observation result is an epoch-making discovery, and further efforts could lead us to a new system for super-early warning of destructive earthquakes with the magnetic measurements. On the other hand, by our past study, it was suggested that the geomagnetic variation signal accompanying fault movement, whose sources are the piezomagnetic effects, is very small (a few hundred pT per 5 sec). Therefore, to realize the super-early warning, development of a high-sensitive magnetometer system is very important. Then, our research group tried to develop the HTS-SQUID magnetometer system for high-resolution observation of Earth's magnetic field. The features of this HTS-SQUID magnetometer are as follows: Three components of the magnetic field can be high-sensitively measured. It has a very low temperature dependence. The running

  17. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-12-31

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with super-heated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200{degrees}C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220{degrees}C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: (1) At relative pressures over 0.6 the capillarity forces are very important. (2) There is no significant temperature effect. (3) Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. (4) Pores smaller than 15 {Angstrom} do not contribute to the adsorbed mass.

  18. Plasma Heating to Super-Hot Temperatures (>30 MK) in the August 9, 2011 Solar Flare

    NASA Astrophysics Data System (ADS)

    Sharykin, Ivan; Struminsky, Alexei; Zimovets, Ivan

    2015-08-01

    We investigate the August 9, 2011 solar flare of X-ray class X6.9, the "hottest" flare from 2000 to 2012, with a peak plasma temperature according to GOES data of 33 MK. Our goal is to determine the cause of such an anomalously high plasma temperature and to investigate the energy balance in the flare region with allowance made for the presence of a super-hot plasma (>30 MK). We analyze the RHESSI, GOES, AIA/SDO, and EVE/SDO data and discuss the spatial structure of the flare region and the results of our spectral analysis of its X-ray emission. Our analysis of the RHESSI X-ray spectra is performed in the one-temperature and two-temperature approximations by taking into account the emission of hot (20 MK) and super-hot (45 MK) plasmas. The hard X-ray spectrum in both models is fitted by power laws. The observed peculiarities of the flare are shown to be better explained in terms of the two-temperature model, in which the super-hot plasma is located at the flare loop tops (or in the magnetic cusp region). The formation of the super-hot plasma can be associated with its heating through primary energy release and with the suppression of thermal conduction.

  19. Plasma heating to super-hot temperatures (>30 MK) in the August 9, 2011 solar flare

    NASA Astrophysics Data System (ADS)

    Sharykin, I. N.; Struminskii, A. B.; Zimovets, I. V.

    2015-01-01

    We investigate the August 9, 2011 solar flare of X-ray class X6.9, the "hottest" flare from 2000 to 2012, with a peak plasma temperature according to GOES data of ≈32.5 MK. Our goal is to determine the cause of such an anomalously high plasma temperature and to investigate the energy balance in the flare region with allowance made for the presence of a super-hot plasma (>30 MK). We analyze the RHESSI, GOES, AIA/SDO, and EVE/SDO data and discuss the spatial structure of the flare region and the results of our spectral analysis of its X-ray emission. Our analysis of the RHESSI X-ray spectra is performed in the one-temperature and two-temperature approximations by taking into account the emission of hot (˜20 MK) and super-hot (˜45 MK) plasmas. The hard X-ray spectrum in both models is fitted by power laws. The observed peculiarities of the flare are shown to be better explained in terms of the two-temperature model, in which the super-hot plasma is located at the flare loop tops (or in the magnetic cusp region). The formation of the super-hot plasma can be associated with its heating through primary energy release and with the suppression of thermal conduction. The anomalously high temperature (33 MK according to GOES) is most likely to be an artefact of the method for calculating the temperature based on two-channel GOES measurements in the one-temperature approximation applied to the emission of a multi-temperature flare plasma with a minor contribution from the low-temperature part of the differential emission measure.

  20. High Temperature Superconducting Compounds

    DTIC Science & Technology

    1990-10-01

    usual substrates, SrTiO3 , YSZ, MgO, and LaA103, it has been possible to deposit films on Si substrates without any buffer layer. A bolometer has been...new opportunities for the study of superconductor-insulator transitions and the investigation of photo- doping with carriers of high temperature super... SrTiO3 (00), SrTiO3 (l 10), LaA103 (100), MgO(100), and yttria stabilized zirconia (YSZ). The surfaces of these films could be imaged with a scanning

  1. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  2. Arbitrarily high super-resolving phase measurements at telecommunication wavelengths

    SciTech Connect

    Kothe, Christian; Bjoerk, Gunnar; Bourennane, Mohamed

    2010-06-15

    We present two experiments that achieve phase super-resolution at telecommunication wavelengths. One of the experiments is realized in the space domain and the other is realized in the time domain. Both experiments show high visibility and are performed with standard lasers and single-photon detectors. The first experiment uses six-photon coincidences, whereas the latter experiment needs no coincidence measurements, is easy to perform, and achieves, in principle, arbitrarily high phase super-resolution. Here, we demonstrate a 30-fold increase of the resolution. We stress that neither entanglement nor joint detection is needed in these experiments, which demonstrates that neither is necessary to achieve phase super-resolution.

  3. Heat treatment temperature influence on ASTM A890 GR 6A super duplex stainless steel microstructure

    SciTech Connect

    Martins, Marcelo; E-mail: marcelo.martins@sulzer.com; Casteletti, Luiz Carlos

    2005-09-15

    Duplex and super duplex stainless steels are ferrous alloys with up to 26% chromium, 8% nickel, 5% molybdenum and 0.3% nitrogen, which are largely used in applications in media containing ions from the halogen family, mainly the chloride ion (Cl{sup -}). The emergence of this material aimed at substituting Copper-Nickel alloys (Cupro-Nickel) that despite presenting good corrosion resistance, has mechanical properties quite inferior to steel properties. The metallurgy of duplex and super duplex stainless steel is complex due to high sensitiveness to sigma phase precipitation that becomes apparent, due to the temperatures they are exposed on cooling from solidification as well as from heat treatment processes. The objective of this study was to verify the influence of heat treating temperatures on the microstructure and hardness of ASTM A890/A890M Gr 6A super duplex stainless steel type. Microstructure control is of extreme importance for castings, as the chemical composition and cooling during solidification inevitably provide conditions for precipitation of sigma phase. Higher hardness in these materials is directly associated to high sigma phase concentration in the microstructure, precipitated in the ferrite/austenite interface. While heat treatment temperature during solution treatment increases, the sigma phase content in the microstructure decreases and consequently, the material hardness diminishes. When the sigma phase was completely dissolved by the heat treatment, the material hardness was influenced only due to ferrite and austenite contents in the microstructure.

  4. High Resolution Bathymetry Estimation Improvement with Single Image Super-Resolution Algorithm Super-Resolution Forests

    DTIC Science & Technology

    2017-01-26

    bathymetry data. Borrowing the machine -learning technique of “training and testing” on a dictionary of sets data, we could create high resolution estimates...interpolation. 26-01-2017 Memorandum Report Bathymetry Super-Resolution Machine learning Single image Estimation Naval Research Laboratory, Code 5514

  5. Design, Construction, and Initial Test of High Spatial Resolution Thermometry Arrays for Detection of Surface Temperature Profiles on SRF Cavities in Super Fluid Helium

    SciTech Connect

    Ari Palczewski, Rongli Geng, Grigory Eremeev

    2011-07-01

    We designed and built two high resolution (0.6-0.55mm special resolution [1.1-1.2mm separation]) thermometry arrays prototypes out of the Allen Bradley 90-120 ohm 1/8 watt resistor to measure surface temperature profiles on SRF cavities. One array was designed to be physically flexible and conform to any location on a SRF cavity; the other was modeled after the common G-10/stycast 2850 thermometer and designed to fit on the equator of an ILC (Tesla 1.3GHz) SRF cavity. We will discuss the advantages and disadvantages of each array and their construction. In addition we will present a case study of the arrays performance on a real SRF cavity TB9NR001. TB9NR001 presented a unique opportunity to test the performance of each array as it contained a dual (4mm separation) cat eye defect which conventional methods such as OST (Oscillating Superleak second-sound Transducers) and full coverage thermometry mapping were unable to distinguish between. We will discuss the new arrays ability to distinguish between the two defects and their preheating performance.

  6. Super-X divertors and high power density fusion devices

    SciTech Connect

    Valanju, P. M.; Kotschenreuther, M.; Mahajan, S. M.; Canik, J.

    2009-05-15

    The Super-X Divertor (SXD), a robust axisymmetric redesign of the divertor magnetic geometry that can allow a fivefold increase in the core power density of toroidal fusion devices, is presented. With small changes in poloidal coils and currents for standard divertors, the SXD allows the largest divertor plate radius inside toroidal field coils. This increases the plasma-wetted area by 2-3 times over all flux-expansion-only methods (e.g., plate near main X point, plate tilting, X divertor, and snowflake), decreases parallel heat flux and hence plasma temperature at plate, and increases connection length by 2-5 times. Examples of high-power-density fusion devices enabled by SXD are discussed; the most promising near-term device is a 100 MW modular compact fusion neutron source 'battery' small enough to fit inside a conventional fission blanket.

  7. 'Snake River (SR)-type' volcanism at the Yellowstone hotspot track: Distinctive products from unusual, high-temperature silicic super-eruptions

    USGS Publications Warehouse

    Branney, M.J.; Bonnichsen, B.; Andrews, G.D.M.; Ellis, B.; Barry, T.L.; McCurry, M.

    2008-01-01

    A new category of large-scale volcanism, here termed Snake River (SR)-type volcanism, is defined with reference to a distinctive volcanic facies association displayed by Miocene rocks in the central Snake River Plain area of southern Idaho and northern Nevada, USA. The facies association contrasts with those typical of silicic volcanism elsewhere and records unusual, voluminous and particularly environmentally devastating styles of eruption that remain poorly understood. It includes: (1) large-volume, lithic-poor rhyolitic ignimbrites with scarce pumice lapilli; (2) extensive, parallel-laminated, medium to coarse-grained ashfall deposits with large cuspate shards, crystals and a paucity of pumice lapilli; many are fused to black vitrophyre; (3) unusually extensive, large-volume rhyolite lavas; (4) unusually intense welding, rheomorphism, and widespread development of lava-like facies in the ignimbrites; (5) extensive, fines-rich ash deposits with abundant ash aggregates (pellets and accretionary lapilli); (6) the ashfall layers and ignimbrites contain abundant clasts of dense obsidian and vitrophyre; (7) a bimodal association between the rhyolitic rocks and numerous, coalescing low-profile basalt lava shields; and (8) widespread evidence of emplacement in lacustrine-alluvial environments, as revealed by intercalated lake sediments, ignimbrite peperites, rhyolitic and basaltic hyaloclastites, basalt pillow-lava deltas, rhyolitic and basaltic phreatomagmatic tuffs, alluvial sands and palaeosols. Many rhyolitic eruptions were high mass-flux, large volume and explosive (VEI 6-8), and involved H2O-poor, low-??18O, metaluminous rhyolite magmas with unusually low viscosities, partly due to high magmatic temperatures (900-1,050??C). SR-type volcanism contrasts with silicic volcanism at many other volcanic fields, where the fall deposits are typically Plinian with pumice lapilli, the ignimbrites are low to medium grade (non-welded to eutaxitic) with abundant pumice lapilli

  8. `Snake River (SR)-type' volcanism at the Yellowstone hotspot track: distinctive products from unusual, high-temperature silicic super-eruptions

    NASA Astrophysics Data System (ADS)

    Branney, M. J.; Bonnichsen, B.; Andrews, G. D. M.; Ellis, B.; Barry, T. L.; McCurry, M.

    2008-01-01

    A new category of large-scale volcanism, here termed Snake River (SR)-type volcanism, is defined with reference to a distinctive volcanic facies association displayed by Miocene rocks in the central Snake River Plain area of southern Idaho and northern Nevada, USA. The facies association contrasts with those typical of silicic volcanism elsewhere and records unusual, voluminous and particularly environmentally devastating styles of eruption that remain poorly understood. It includes: (1) large-volume, lithic-poor rhyolitic ignimbrites with scarce pumice lapilli; (2) extensive, parallel-laminated, medium to coarse-grained ashfall deposits with large cuspate shards, crystals and a paucity of pumice lapilli; many are fused to black vitrophyre; (3) unusually extensive, large-volume rhyolite lavas; (4) unusually intense welding, rheomorphism, and widespread development of lava-like facies in the ignimbrites; (5) extensive, fines-rich ash deposits with abundant ash aggregates (pellets and accretionary lapilli); (6) the ashfall layers and ignimbrites contain abundant clasts of dense obsidian and vitrophyre; (7) a bimodal association between the rhyolitic rocks and numerous, coalescing low-profile basalt lava shields; and (8) widespread evidence of emplacement in lacustrine-alluvial environments, as revealed by intercalated lake sediments, ignimbrite peperites, rhyolitic and basaltic hyaloclastites, basalt pillow-lava deltas, rhyolitic and basaltic phreatomagmatic tuffs, alluvial sands and palaeosols. Many rhyolitic eruptions were high mass-flux, large volume and explosive (VEI 6-8), and involved H2O-poor, low-δ18O, metaluminous rhyolite magmas with unusually low viscosities, partly due to high magmatic temperatures (900-1,050°C). SR-type volcanism contrasts with silicic volcanism at many other volcanic fields, where the fall deposits are typically Plinian with pumice lapilli, the ignimbrites are low to medium grade (non-welded to eutaxitic) with abundant pumice lapilli

  9. What is so super about super-emitters? Characterizing methane high emitters from natural gas infrastructure

    NASA Astrophysics Data System (ADS)

    Zavala Araiza, D.; Lyon, D. R.; Alvarez, R.; Harriss, R. C.; Palacios, V.; Hamburg, S.

    2015-12-01

    Methane emissions across the natural gas supply chain are dominated at any one time by a few high-emitters (super-emitters or fat-tail of the distribution), often underrepresented in published datasets used to construct emission inventories. Characterization of high-emitters is essential for improving emission estimates based on atmospheric data (top-down) and emission inventories (bottom-up). The population of high-emitters (e.g. 10-20% of sites that account for 80-90% of the emissions) is temporally and spatially dynamic. As a consequence, it is challenging to design sampling methods and construct estimates that accurately represent their frequency and magnitude of emissions. We present new methods to derive facility-specific emission distribution functions that explicitly integrate the influence of the relatively rare super-emitters. These methods were applied in the Barnett Shale region to construct a custom emission inventory that is then compared to top-down emission estimates for the region. We offer a methodological framework relevant to the design of future sampling campaigns, in which these high-emitters are seamlessly incorporated to representative emissions distributions. This framework can be applied to heterogeneous oil and gas production regions across geographies to obtain accurate regional emission estimates. Additionally, we characterize emissions relative to the fraction of a facility's total methane throughput; an effective metric to identify sites with excess emissions resulting from avoidable operating conditions, such as malfunctioning equipment (defined here as functional super-emitters). This work suggests that identifying functional super-emitters and correcting their avoidable operating conditions would result in significant emission reductions. However, due to their spatiotemporal dynamic behavior, achieving and maintaining uniformly low emissions across the entire population of sites will require mitigation steps (e.g. leak detection

  10. Top Joint Study on Temperature Stress for Super-Long Slab-Column Structure

    NASA Astrophysics Data System (ADS)

    Dong, Minghai; Song, Li; Shao, Ying

    In this paper, top joint method is proposed to solve a practical engineering problem of temperature stress and temperature crack of super-long slab-column structure bearing temperature difference. From the study, it is shown that as for super-long slab-column structure undergoing temperature difference of inside and outside, joint located in bottom stories nearly has no influence on temperature stress and deformation while joint in top stories can significantly reduce temperature stress and deformation of super-long slab-column structures. In addition, comparison of joints located in top one story, top several stories and from bottom to top stories indicates that influences of them on temperature stress and deformation are similar. As for top joint method, among which cantilever plate method, double column method and corbel method are discussed and results indicate that influence effects of these methods on structures are similar.

  11. Super Boiler: First Generation, Ultra-High Efficiency Firetube Boiler

    SciTech Connect

    2006-06-01

    This factsheet describes a research project whose goal is to develop and demonstrate a first-generation ultra-high-efficiency, ultra-low emissions, compact gas-fired package boiler (Super Boiler), and formulate a long-range RD&D plan for advanced boiler technology out to the year 2020.

  12. Evaluating a super absorbent dressing (Flivasorb) in highly exuding wounds.

    PubMed

    Verrall, Debby; Coulborn, Anna; Bree-Aslan, Cathie

    This article reports an observational evaluation of 19 patients with highly exuding wounds. Flivasorb was used as a super absorbent dressing that could remove the harmful exudate fluid and promote a healthy wound bed. The outcomes demonstrated that Flivasorb is successfully absorbs large amounts of fluid, reduces the number of dressing changes required and therefore, reduces the cost of the patient's care.

  13. Super Stable Ferroelectrics with High Curie Point

    PubMed Central

    Gao, Zhipeng; Lu, Chengjia; Wang, Yuhang; Yang, Sinuo; Yu, Yuying; He, Hongliang

    2016-01-01

    Ferroelectric materials are of great importance in the sensing technology due to the piezoelectric properties. Thermal depoling behavior of ferroelectrics determines the upper temperature limit of their application. So far, there is no piezoelectric material working above 800 °C available. Here, we show Nd2Ti2O7 with a perovskite-like layered structure has good resistance to thermal depoling up to 1400 °C. Its stable behavior is because the material has only 180° ferroelectric domains, complex structure change at Curie point (Tc) and their sintering temperature is below their Tc, which avoided the internal stresses produced by the unit cell volume change at Tc. The phase transition at Tc shows a first order behavior which involving the tilting and rotation of the octahedron. The Curie – Weiss temperature is calculated, which might explain why the thermal depoling starts at about 1400 °C. PMID:27053338

  14. Super Stable Ferroelectrics with High Curie Point.

    PubMed

    Gao, Zhipeng; Lu, Chengjia; Wang, Yuhang; Yang, Sinuo; Yu, Yuying; He, Hongliang

    2016-04-07

    Ferroelectric materials are of great importance in the sensing technology due to the piezoelectric properties. Thermal depoling behavior of ferroelectrics determines the upper temperature limit of their application. So far, there is no piezoelectric material working above 800 °C available. Here, we show Nd2Ti2O7 with a perovskite-like layered structure has good resistance to thermal depoling up to 1400 °C. Its stable behavior is because the material has only 180° ferroelectric domains, complex structure change at Curie point (Tc) and their sintering temperature is below their Tc, which avoided the internal stresses produced by the unit cell volume change at Tc. The phase transition at Tc shows a first order behavior which involving the tilting and rotation of the octahedron. The Curie - Weiss temperature is calculated, which might explain why the thermal depoling starts at about 1400 °C.

  15. Super-resolution high sensitivity AC Magnetic Field Imaging with NV Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Bauch, Erik; Jaskula, Jean-Christophe; Trifonov, Alexei; Walsworth, Ronald

    2015-05-01

    The Nitrogen-Vacancy center in diamond (NV center), a defect consisting of a nitrogen atom next to a missing atom, has been successfully applied to sense magnetic field, electric field, temperature and can also be used as fluorescence marker and single photon emitter. We will present super-resolution imaging of NV centers and simultaneous sensing of AC magnetic fields with high sensitivity. To demonstrate the applicability of super-resolution magnetic field imaging, we resolve several NV centers with an optical resolution smaller than 20 nm and probe locally the gradient of a externally applied magnetic field. Additionally, we demonstrate the detection of magnetic field signals from 1H protons with subdiffraction image resolution. We will also show that our super-resolution magnetometer will benefit from a new readout method based on a spin-to-charge mapping that we have developed to increase the readout contrast.

  16. Super-High Iii-V Tandem and Multijunction Cells

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masafumi

    2015-10-01

    The following sections are included: * Introduction * Principles of super-high-efficiency multijunction solar cells * Epitaxial technologies for growing III-V compound cells * Monolithic vs. multi-terminal connection modes * Key issues for realising high-efficiency multijunction solar cells * High-efficiency InGaP/GaAs/Ge three-junction solar cells and their space applications * Multijunction solar cells: recent results * Future directions * Acknowledgements * References

  17. Sub-to super-ambient temperature programmable microfabricated gas chromatography column

    DOEpatents

    Robinson, Alex L.; Anderson, Lawrence F.

    2004-03-16

    A sub- to super-ambient temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by combining a thermoelectric cooler and temperature sensing on the microfabricated column. Sub-ambient temperature programming enables the efficient separation of volatile organic compounds and super-ambient temperature programming enables the elution of less volatile analytes within a reasonable time. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.

  18. Super-strong materials for temperatures exceeding 2000 °C.

    PubMed

    Silvestroni, Laura; Kleebe, Hans-Joachim; Fahrenholtz, William G; Watts, Jeremy

    2017-01-19

    Ceramics based on group IV-V transition metal borides and carbides possess melting points above 3000 °C, are ablation resistant and are, therefore, candidates for the design of components of next generation space vehicles, rocket nozzle inserts, and nose cones or leading edges for hypersonic aerospace vehicles. As such, they will have to bear high thermo-mechanical loads, which makes strength at high temperature of great importance. While testing of these materials above 2000 °C is necessary to prove their capabilities at anticipated operating temperatures, literature reports are quite limited. Reported strength values for zirconium diboride (ZrB2) ceramics can exceed 1 GPa at room temperature, but these values rapidly decrease, with all previously reported strengths being less than 340 MPa at 1500 °C or above. Here, we show how the strength of ZrB2 ceramics can be increased to more than 800 MPa at temperatures in the range of 1500-2100 °C. These exceptional strengths are due to a core-shell microstructure, which leads to in-situ toughening and sub-grain refinement at elevated temperatures. Our findings promise to open a new avenue to designing materials that are super-strong at ultra-high temperatures.

  19. Super-strong materials for temperatures exceeding 2000 °C

    NASA Astrophysics Data System (ADS)

    Silvestroni, Laura; Kleebe, Hans-Joachim; Fahrenholtz, William G.; Watts, Jeremy

    2017-01-01

    Ceramics based on group IV-V transition metal borides and carbides possess melting points above 3000 °C, are ablation resistant and are, therefore, candidates for the design of components of next generation space vehicles, rocket nozzle inserts, and nose cones or leading edges for hypersonic aerospace vehicles. As such, they will have to bear high thermo-mechanical loads, which makes strength at high temperature of great importance. While testing of these materials above 2000 °C is necessary to prove their capabilities at anticipated operating temperatures, literature reports are quite limited. Reported strength values for zirconium diboride (ZrB2) ceramics can exceed 1 GPa at room temperature, but these values rapidly decrease, with all previously reported strengths being less than 340 MPa at 1500 °C or above. Here, we show how the strength of ZrB2 ceramics can be increased to more than 800 MPa at temperatures in the range of 1500–2100 °C. These exceptional strengths are due to a core-shell microstructure, which leads to in-situ toughening and sub-grain refinement at elevated temperatures. Our findings promise to open a new avenue to designing materials that are super-strong at ultra-high temperatures.

  20. Super-strong materials for temperatures exceeding 2000 °C

    PubMed Central

    Silvestroni, Laura; Kleebe, Hans-Joachim; Fahrenholtz, William G.; Watts, Jeremy

    2017-01-01

    Ceramics based on group IV-V transition metal borides and carbides possess melting points above 3000 °C, are ablation resistant and are, therefore, candidates for the design of components of next generation space vehicles, rocket nozzle inserts, and nose cones or leading edges for hypersonic aerospace vehicles. As such, they will have to bear high thermo-mechanical loads, which makes strength at high temperature of great importance. While testing of these materials above 2000 °C is necessary to prove their capabilities at anticipated operating temperatures, literature reports are quite limited. Reported strength values for zirconium diboride (ZrB2) ceramics can exceed 1 GPa at room temperature, but these values rapidly decrease, with all previously reported strengths being less than 340 MPa at 1500 °C or above. Here, we show how the strength of ZrB2 ceramics can be increased to more than 800 MPa at temperatures in the range of 1500–2100 °C. These exceptional strengths are due to a core-shell microstructure, which leads to in-situ toughening and sub-grain refinement at elevated temperatures. Our findings promise to open a new avenue to designing materials that are super-strong at ultra-high temperatures. PMID:28102327

  1. High speed data transmission at the Superconducting Super Collider

    SciTech Connect

    Leskovar, B. )

    1991-04-01

    In this paper high speed data transmission using fiber optics in the data acquisition system of the Superconducting Super Collider has been investigated. Emphasis is placed on the high speed data transmission system overview, the local data network and on subassemblies, such as optical transmitters and receivers. Also, the performance of candidate subassemblies having a low power dissipation for the data acquisition system is discussed.

  2. Super high-resolution mesoscale weather prediction

    NASA Astrophysics Data System (ADS)

    Saito, K.; Tsuyuki, T.; Seko, H.; Kimura, F.; Tokioka, T.; Kuroda, T.; Duc, L.; Ito, K.; Oizumi, T.; Chen, G.; Ito, J.; the Spire Field 3 Mesoscale Nwp Group

    2013-08-01

    A five-year research project of high performance regional numerical weather prediction is underway as one of the five research fields of the Strategic Programs for Innovative Research (SPIRE). The ultimate goal of the project is to demonstrate feasibility of precise prediction of severe weather phenomena using the K-computer. Three sub-themes of the project are shown with achievements at the present and developments in the near future.

  3. The SuperCDMS Soudan High Mass Analysis

    NASA Astrophysics Data System (ADS)

    Cornell, Brett; SuperCDMS Collaboration

    2017-01-01

    The SuperCDMS Soudan experiment searches for direct interactions of WIMP dark matter particles with germanium nuclei. The experiment uses detectors (iZIPs) with sophisticated ionization and phonon sensors to distinguish nuclear recoils from electron-recoil backgrounds or surface contaminants. We report the status of an analysis, based on a 1700 kg-day exposure, that seeks to maximize our experimental sensitivity to spin-independent WIMP-nucleon interaction in the high mass regime (M > 10 Gev /c2).

  4. Super high compression of line drawing data

    NASA Technical Reports Server (NTRS)

    Cooper, D. B.

    1976-01-01

    Models which can be used to accurately represent the type of line drawings which occur in teleconferencing and transmission for remote classrooms and which permit considerable data compression were described. The objective was to encode these pictures in binary sequences of shortest length but such that the pictures can be reconstructed without loss of important structure. It was shown that exploitation of reasonably simple structure permits compressions in the range of 30-100 to 1. When dealing with highly stylized material such as electronic or logic circuit schematics, it is unnecessary to reproduce configurations exactly. Rather, the symbols and configurations must be understood and be reproduced, but one can use fixed font symbols for resistors, diodes, capacitors, etc. Compression of pictures of natural phenomena such as can be realized by taking a similar approach, or essentially zero error reproducibility can be achieved but at a lower level of compression.

  5. Enhanced room-temperature hydrogen storage in super-activated carbons: The role of porosity development by activation

    NASA Astrophysics Data System (ADS)

    Xia, Kaisheng; Hu, Juan; Jiang, Jinhua

    2014-10-01

    Efficient hydrogen storage with a high density under near-ambient temperature remains a key technical obstacle for a hydrogen economy. Here we demonstrate the enhanced room-temperature hydrogen storage in super-activated carbon materials, which were prepared by carbon dioxide activation of templated porous carbons. These carbon materials possess high specific surface areas of up to 2829 m2/g, large pore volumes of up to 2.34 cm3/g, and hierarchical pore structures consisting of primary micropores with median size in the range of 0.7-1.3 nm and secondary mesopores with the size of 2-4 nm. One of the super-activated carbons exhibits a high hydrogen uptake of 0.95 wt% at 298 K and 80 bar, which is among the highest data reported for the porous carbon materials at room temperature and moderate pressure. The role of porosity development caused by activation in improving the hydrogen storage properties of the carbon materials has been investigated. A close relationship between hydrogen storage capacities and micropore volumes has been found. The microporosity development, especially the rapid increase of narrow pores with the diameters around 1.2 nm, appears to be essential for the enhanced room-temperature hydrogen storage in the super-activated carbons.

  6. A map of the large day-night temperature gradient of a super-Earth exoplanet.

    PubMed

    Demory, Brice-Olivier; Gillon, Michael; de Wit, Julien; Madhusudhan, Nikku; Bolmont, Emeline; Heng, Kevin; Kataria, Tiffany; Lewis, Nikole; Hu, Renyu; Krick, Jessica; Stamenković, Vlada; Benneke, Björn; Kane, Stephen; Queloz, Didier

    2016-04-14

    Over the past decade, observations of giant exoplanets (Jupiter-size) have provided key insights into their atmospheres, but the properties of lower-mass exoplanets (sub-Neptune) remain largely unconstrained because of the challenges of observing small planets. Numerous efforts to observe the spectra of super-Earths--exoplanets with masses of one to ten times that of Earth--have so far revealed only featureless spectra. Here we report a longitudinal thermal brightness map of the nearby transiting super-Earth 55 Cancri e (refs 4, 5) revealing highly asymmetric dayside thermal emission and a strong day-night temperature contrast. Dedicated space-based monitoring of the planet in the infrared revealed a modulation of the thermal flux as 55 Cancri e revolves around its star in a tidally locked configuration. These observations reveal a hot spot that is located 41 ± 12 degrees east of the substellar point (the point at which incident light from the star is perpendicular to the surface of the planet). From the orbital phase curve, we also constrain the nightside brightness temperature of the planet to 1,380 ± 400 kelvin and the temperature of the warmest hemisphere (centred on the hot spot) to be about 1,300 kelvin hotter (2,700 ± 270 kelvin) at a wavelength of 4.5 micrometres, which indicates inefficient heat redistribution from the dayside to the nightside. Our observations are consistent with either an optically thick atmosphere with heat recirculation confined to the planetary dayside, or a planet devoid of atmosphere with low-viscosity magma flows at the surface.

  7. A map of the large day-night temperature gradient of a super-Earth exoplanet

    NASA Astrophysics Data System (ADS)

    Demory, Brice-Olivier; Gillon, Michael; de Wit, Julien; Madhusudhan, Nikku; Bolmont, Emeline; Heng, Kevin; Kataria, Tiffany; Lewis, Nikole; Hu, Renyu; Krick, Jessica; Stamenković, Vlada; Benneke, Björn; Kane, Stephen; Queloz, Didier

    2016-04-01

    Over the past decade, observations of giant exoplanets (Jupiter-size) have provided key insights into their atmospheres, but the properties of lower-mass exoplanets (sub-Neptune) remain largely unconstrained because of the challenges of observing small planets. Numerous efforts to observe the spectra of super-Earths—exoplanets with masses of one to ten times that of Earth—have so far revealed only featureless spectra. Here we report a longitudinal thermal brightness map of the nearby transiting super-Earth 55 Cancri e (refs 4, 5) revealing highly asymmetric dayside thermal emission and a strong day-night temperature contrast. Dedicated space-based monitoring of the planet in the infrared revealed a modulation of the thermal flux as 55 Cancri e revolves around its star in a tidally locked configuration. These observations reveal a hot spot that is located 41 ± 12 degrees east of the substellar point (the point at which incident light from the star is perpendicular to the surface of the planet). From the orbital phase curve, we also constrain the nightside brightness temperature of the planet to 1,380 ± 400 kelvin and the temperature of the warmest hemisphere (centred on the hot spot) to be about 1,300 kelvin hotter (2,700 ± 270 kelvin) at a wavelength of 4.5 micrometres, which indicates inefficient heat redistribution from the dayside to the nightside. Our observations are consistent with either an optically thick atmosphere with heat recirculation confined to the planetary dayside, or a planet devoid of atmosphere with low-viscosity magma flows at the surface.

  8. Operation of a 400MHz NMR magnet using a (RE:Rare Earth)Ba2Cu3O7-x high-temperature superconducting coil: Towards an ultra-compact super-high field NMR spectrometer operated beyond 1GHz.

    PubMed

    Yanagisawa, Y; Piao, R; Iguchi, S; Nakagome, H; Takao, T; Kominato, K; Hamada, M; Matsumoto, S; Suematsu, H; Jin, X; Takahashi, M; Yamazaki, T; Maeda, H

    2014-12-01

    High-temperature superconductors (HTS) are the key technology to achieve super-high magnetic field nuclear magnetic resonance (NMR) spectrometers with an operating frequency far beyond 1GHz (23.5T). (RE)Ba2Cu3O7-x (REBCO, RE: rare earth) conductors have an advantage over Bi2Sr2Ca2Cu3O10-x (Bi-2223) and Bi2Sr2CaCu2O8-x (Bi-2212) conductors in that they have very high tensile strengths and tolerate strong electromagnetic hoop stress, thereby having the potential to act as an ultra-compact super-high field NMR magnet. As a first step, we developed the world's first NMR magnet comprising an inner REBCO coil and outer low-temperature superconducting (LTS) coils. The magnet was successfully charged without degradation and mainly operated at 400MHz (9.39T). Technical problems for the NMR magnet due to screening current in the REBCO coil were clarified and solved as follows: (i) A remarkable temporal drift of the central magnetic field was suppressed by a current sweep reversal method utilizing ∼10% of the peak current. (ii) A Z2 field error harmonic of the main coil cannot be compensated by an outer correction coil and therefore an additional ferromagnetic shim was used. (iii) Large tesseral harmonics emerged that could not be corrected by cryoshim coils. Due to those harmonics, the resolution and sensitivity of NMR spectra are ten-fold lower than those for a conventional LTS NMR magnet. As a result, a HSQC spectrum could be achieved for a protein sample, while a NOESY spectrum could not be obtained. An ultra-compact 1.2GHz NMR magnet could be realized if we effectively take advantage of REBCO conductors, although this will require further research to suppress the effect of the screening current. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. High temperature furnace

    DOEpatents

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  10. Construction of temperature compensated constant voltage (VT) curves for super Ni-Cd (tm) cells

    NASA Technical Reports Server (NTRS)

    Baer, David A.; Pickett, David F.; Pearce, James M.; Rao, Gopalakrishna

    1994-01-01

    Tests to establish current-voltage characteristics at selected temperatures for 9 a-h Super Nickel-Cadmium cells were conducted at Hughes Industrial Electronics Company's Electron Dynamics Division (HIEC/EDD) under sponsorship of NASA/GSFC through their prime spacecraft contractors Fairchild Space (SMEX/SAMPEX) and TRW (TOMSEP). Curves were constructed using techniques established by Webster, Ford, et al, at NASA/GSFC in the late 1960's - early 1970's time period for conventional nickel cadmium cells used on OAO and OSO aircraft. The NASA/GSFC techniques were slightly modified by HIEC/EDD to fit the Super Ni-Cd situation.

  11. SuperB: a Linear High-Luminosity B Factory

    SciTech Connect

    Albert, J.; Bettarini, S.; Biagini, M.; Bonneaud, G.; Cai, Y.; Calderini, G.; Ciuchini, M.; Dubois-Felsmann, G.P.; Ecklund, S.; Forti, F.; Gershon, T.J.; Giorgi, M.A.; Hitlin, D.G.; Leith, D.W.G.S.; Lusiani, A.; MacFarlane, D.B.; Martinez-Vidal, F.; Neri, N.; Novokhatski, A.; Pierini, M.; Piredda, G.; /Caltech /Pisa U. /Pisa, Scuola Normale Superiore /INFN, Pisa /Frascati /Ecole Polytechnique /SLAC /Rome III U. /INFN, Rome3 /Warwick U. /Valencia U., IFIC /Wisconsin U., Madison /Rome U. /INFN, Rome /Edinburgh U. /Orsay, LAL

    2006-02-08

    This paper is based on the outcome of the activity that has taken place during the recent workshop on ''SuperB in Italy'' held in Frascati on November 11-12, 2005. The workshop was opened by a theoretical introduction of Marco Ciuchini and was structured in two working groups. One focused on the machine and the other on the detector and experimental issues.. The present status on CP is mainly based on the results achieved by BABAR and Belle. Establishment of the indirect CP violation in B sector in 2001 and of the direct CP violation in 2004 thanks to the success of PEP-II and KEKB e{sup +}e{sup -} asymmetric B Factories operating at the center of mass energy corresponding to the mass of the {Upsilon}(4S ). With the two B Factories taking data, the Unitarity Triangle is now beginning to be over constrained by improving the measurements of the sides and now also of the angles {alpha}, and {gamma}. We are also in presence of the very intriguing results about the measurements of sin2{beta} in the time dependent analysis of decay channels via penguin loops, where b {yields} s{bar s}s and b {yields} s{bar d}d. {tau} physics, in particular LFV search, as well as charm and ISR physics are important parts of the scientific program of a SuperB Factory. The physics case together with possible scenarios for the high luminosity SuperB Factory based on the concepts of the Linear Collider and the related experimental issues are discussed.

  12. The application of super wavelet finite element on temperature-pressure coupled field simulation of LPG tank under jet fire

    NASA Astrophysics Data System (ADS)

    Zhao, Bin

    2015-02-01

    Temperature-pressure coupled field analysis of liquefied petroleum gas (LPG) tank under jet fire can offer theoretical guidance for preventing the fire accidents of LPG tank, the application of super wavelet finite element on it is studied in depth. First, review of related researches on heat transfer analysis of LPG tank under fire and super wavelet are carried out. Second, basic theory of super wavelet transform is studied. Third, the temperature-pressure coupled model of gas phase and liquid LPG under jet fire is established based on the equation of state, the VOF model and the RNG k-ɛ model. Then the super wavelet finite element formulation is constructed using the super wavelet scale function as interpolating function. Finally, the simulation is carried out, and results show that the super wavelet finite element method has higher computing precision than wavelet finite element method.

  13. Simulated Data for High Temperature Composite Design

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2006-01-01

    The paper describes an effective formal method that can be used to simulate design properties for composites that is inclusive of all the effects that influence those properties. This effective simulation method is integrated computer codes that include composite micromechanics, composite macromechanics, laminate theory, structural analysis, and multi-factor interaction model. Demonstration of the method includes sample examples for static, thermal, and fracture reliability for a unidirectional metal matrix composite as well as rupture strength and fatigue strength for a high temperature super alloy. Typical results obtained for a unidirectional composite show that the thermal properties are more sensitive to internal local damage, the longitudinal properties degrade slowly with temperature, the transverse and shear properties degrade rapidly with temperature as do rupture strength and fatigue strength for super alloys.

  14. High temperature reactors

    NASA Astrophysics Data System (ADS)

    Dulera, I. V.; Sinha, R. K.

    2008-12-01

    With the advent of high temperature reactors, nuclear energy, in addition to producing electricity, has shown enormous potential for the production of alternate transport energy carrier such as hydrogen. High efficiency hydrogen production processes need process heat at temperatures around 1173-1223 K. Bhabha Atomic Research Centre (BARC), is currently developing concepts of high temperature reactors capable of supplying process heat around 1273 K. These reactors would provide energy to facilitate combined production of hydrogen, electricity, and drinking water. Compact high temperature reactor is being developed as a technology demonstrator for associated technologies. Design has been also initiated for a 600 MWth innovative high temperature reactor. High temperature reactor development programme has opened new avenues for research in areas like advanced nuclear fuels, high temperature and corrosion resistant materials and protective coatings, heavy liquid metal coolant technologies, etc. The paper highlights design of these reactors and their material related requirements.

  15. High temperature superconductors

    NASA Technical Reports Server (NTRS)

    Wu, Maw-Kuen

    1987-01-01

    The two principle objectives are to develop materials that superconduct at higher temperatures and to better understand the mechanisms behind high temperature superconductivity. Experiments on the thermal reaction, structure, and physical properties of materials that exhibit superconductivity at high temperatures are discussed.

  16. High temperature sensor

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  17. Preparation and characterization of super-water-repellent Al2O3 coating films with high transparency

    NASA Astrophysics Data System (ADS)

    Minami, Tsutomu; Katata, Noriko; Tadanaga, Kiyoharu

    1997-10-01

    Alumina thin films with a roughness of 20 to 50 nm were formed by immersing the porous alumina gel films prepared by the sol- gel method in boiling water. When hydrolyzed fluoroalkyltrimethoxysilane was coated on the alumina films, the films showed super-water-repellency and high transparency; the contact angle for water of the film was 165 degrees and the transmittance for visible light was higher than 92%. When the fluoroalkyltrimethoxysilane-coated thin films were heat- treated at temperatures higher than 500 degrees Celsius, the films became super-hydrophilic; the contact angle for water on the films was less than 5 degrees. It was shown the existence of air in the pores on the surface caused the super-water- repellency and that of water in the pores caused the super- hydrophilic property. The transparent, super water-repellent and super-hydrophilic coating films formed on glasses, metals, and ceramics have practical applications such as optical lenses, eye-glasses, cover glasses for solar cells, windshields of automobiles, and so on.

  18. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  19. High-temperature thermodynamics.

    NASA Technical Reports Server (NTRS)

    Margrave, J. L.

    1967-01-01

    High temperature thermodynamics requiring species and phases identification, crystal structures, molecular geometries and vibrational, rotational and electronic energy levels and equilibrium constants

  20. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  1. High-temperature sensor

    DOEpatents

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  2. An angle encoder for super-high resolution and super-high accuracy using SelfA

    NASA Astrophysics Data System (ADS)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-06-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 221 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science & Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 233, that is, corresponding to a 0.0015″ signal period after

  3. High Temperature Semiconductor Process

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A sputtering deposition system capable of depositing large areas of high temperature superconducting materials was developed by CVC Products, Inc. with the support of the Jet Propulsion Laboratory SBIR (Small Business Innovative Research) program. The system was devleoped for NASA to produce high quality films of high temperature superconducting material for microwave communication system components. The system is also being used to deposit ferroelectric material for capacitors and the development of new electro-optical materials.2002103899

  4. Super-strong dislocation-structured high-carbon martensite steel.

    PubMed

    Sun, Jun-Jie; Liu, Yong-Ning; Zhu, Yun-Tian; Lian, Fu-Liang; Liu, Hong-Ji; Jiang, Tao; Guo, Sheng-Wu; Liu, Wen-Qing; Ren, Xiao-Bing

    2017-07-26

    High-carbon martensite steels (with C > 0.5 wt.%) are very hard but at the same time as brittle as glass in as-quenched or low-temperature-tempered state. Such extreme brittleness, originating from a twin microstructure, has rendered these steels almost useless in martensite state. Therefore, for more than a century it has been a common knowledge that high-carbon martensitic steels are intrinsically brittle and thus are not expected to find any application in harsh loading conditions. Here we report that these brittle steels can be transformed into super-strong ones exhibiting a combination of ultrahigh strength and significant toughness, through a simple grain-refinement treatment, which refines the grain size to ~4 μm. As a result, an ultra-high tensile strength of 2.4~2.6 GPa, a significant elongation of 4~10% and a good fracture toughness (K1C) of 23.5~29.6 MPa m(1/2) were obtained in high-carbon martensitic steels with 0.61-0.65 wt.% C. These properties are comparable with those of "the king of super-high-strength steels"-maraging steels, but achieved at merely 1/30~1/50 of the price. The drastic enhancement in mechanical properties is found to arise from a transition from the conventional twin microstructure to a dislocation one by grain refinement. Our finding may provide a new route to manufacturing super-strong steels in a simple and economic way.

  5. Volume and structural analysis of super-cooled water under high pressure

    NASA Astrophysics Data System (ADS)

    Duki, Solomon F.; Tsige, Mesfin

    2012-02-01

    Motivated by recent experimental study of super-cooled water at high pressure [1], we performed atomistic molecular dynamic simulations study on bulk water molecules at isothermal-isobaric ensemble. These simulations are performed at temperatures that range from 40 K to 380 K using two different cooling rates, 10K/ns and 10K/5ns, and pressure that ranges from 1atm to 10000 atm. Our analysis for the variation of the volume of the bulk sample against temperature indicates a downward concave shape for pressures above certain values, as reported in [1]. The same downward concave behavior is observed at high pressure on the mean-squared-displacements (MSD) of the water molecules when the MSD is plotted against time. To get further insight on the effect of the pressure on the sample we have also performed a structural analysis of the sample.[4pt] [1] O. Mishima, J. Chem. Phys. 133, 144503 (2010);

  6. High-Temperature Superconductivity

    SciTech Connect

    Peter Johnson

    2008-11-05

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors — materials that carry electrical c

  7. High Temperature Capacitor Development

    SciTech Connect

    John Kosek

    2009-06-30

    The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a

  8. SuperB: A High-Luminosity Asymmetric e+e- Super Flavor Factory

    SciTech Connect

    Bona, M.; /et al.

    2007-05-18

    We discuss herein the exciting physics program that can be accomplished with a very large sample of heavy quark and heavy lepton decays produced in the very clean environment of an e{sup +}e{sup -} collider; a program complementary to that of an experiment such as LHCb at a hadronic machine. It then presents the conceptual design of a new type of e{sup +}e{sup -} collider that produces a nearly two-order-of-magnitude increase in luminosity over the current generation of asymmetric B Factories. The key idea is the use of low emittance beams produced in an accelerator lattice derived from the ILC Damping Ring Design, together with a new collision region, again with roots in the ILC final focus design, but with important new concepts developed in this design effort. Remarkably, SuperB produces this very large improvement in luminosity with circulating currents and wallplug power similar to those of the current B Factories. There is clear synergy with ILC R&D; design efforts have already influenced one another, and many aspects of the ILC Damping Rings and Final Focus would be operationally tested at SuperB. Finally, the design of an appropriate detector, based on an upgrade of BABAR as an example, is discussed in some detail. A preliminary cost estimate is presented, as is an example construction timeline.

  9. High-temperature electronics

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-01-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  10. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  11. High temperature electronics

    NASA Astrophysics Data System (ADS)

    Seng, Gary T.

    1991-03-01

    In recent years, the aerospace propulsion and space power communities have acknowledged a growing need for electronic devices that are capable of sustained high-temperature operation. Aeropropulsion applications for high-temperature electronic devices include engine ground test instrumentation such as multiplexers, analog-to-digital converters, and telemetry systems capable of withstanding hot section engine temperatures in excess of 600 C. Uncooled operation of control and condition monitoring systems in advanced supersonic aircraft would subject the electronics to temperatures in excess of 300 C. Similarly, engine-mounted integrated electronic sensors could reach temperatures which exceed 500 C. In addition to aeronautics, there are many other areas that could benefit from the existence of high-temperature electronic devices. Space applications include power electronic devices for space platforms and satellites. Since power electronics require radiators to shed waste heat, electronic devices that operate at higher temperatures would allow a reduction in radiator size. Terrestrial applications include deep-well drilling instrumentation, high power electronics, and nuclear reactor instrumentation and control. To meet the needs of the applications mentioned previously, the high-temperature electronics (HTE) program at the Lewis Research Center is developing silicon carbide (SiC) as a high-temperature semiconductor material. Research is focused on developing the crystal growth, growth modeling, characterization, and device fabrication technologies necessary to produce a family of SiC devices. Interest in SiC has grown dramatically in recent years due to solid advances in the technology. Much research remains to be performed, but SiC appears ready to emerge as a useful semiconductor material.

  12. High temperature structural silicides

    SciTech Connect

    Petrovic, J.J.

    1997-03-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi{sub 2}-based materials, which are borderline ceramic-intermetallic compounds. MoSi{sub 2} single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi{sub 2} possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi{sub 2}-Si{sub 3}N{sub 4} composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi{sub 2}-based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing.

  13. High Temperature ESP Monitoring

    SciTech Connect

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  14. High temperature probe

    DOEpatents

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  15. Temperature Effect on the Optical Emission Intensity in Laser Induced Breakdown Spectroscopy of Super Alloys

    NASA Astrophysics Data System (ADS)

    Darbani, S. M. R.; Ghezelbash, M.; Majd, A. E.; Soltanolkotabi, M.; Saghafifar, H.

    2014-12-01

    In this paper, the influence of heating and cooling samples on the optical emission spectra and plasma parameters of laser-induced breakdown spectroscopy for Titanium 64, Inconel 718 super alloys, and Aluminum 6061 alloy is investigated. Samples are uniformly heated up to approximately 200°C and cooled down to -78°C by an external heater and liquid nitrogen, respectively. Variations of plasma parameters like electron temperature and electron density with sample temperature are determined by using Boltzmann plot and Stark broadening methods, respectively. Heating the samples improves LIBS signal strength and broadens the width of the spectrum. On the other hand, cooling alloys causes fluctuations in the LIBS signal and decrease it to some extent, and some of the spectral peaks diminish. In addition, our results show that electron temperature and electron density depend on the sample temperature variations.

  16. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  17. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  18. High-Temperature Lubricants

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In the early 1980's, Lewis Research Center began a program to develop high-temperature lubricants for use on future aircraft flying at three or more times the speed of sound, which can result in vehicle skin temperatures as high as 1,600 degrees Fahrenheit. A material that emerged from this research is a plasma-sprayed, self-lubricating metal- glass-fluoride coating able to reduce oxidation at very high temperatures. Technology is now in commercial use under the trade name Surf-Kote C-800, marketed by Hohman Plating and Manufacturing Inc. and manufactured under a patent license from NASA. Among its uses are lubrication for sliding contact bearings, shaft seals for turbopumps, piston rings for high performance compressors and hot glass processing machinery; it is also widely used in missile and space applications.

  19. Rapid sulfur capture studies at high temperatures

    SciTech Connect

    Richards, G.A.; Lawson, W.F.; Maloney, D.J.; Shaw, D.W.

    1990-12-01

    Determine conditions that would reproduce optimum sulfur capture ( super-equilibrium'') behavior. No attempt was made to extract kinetic data for calcination or sulfur capture, as might be done in a comprehensive study of sorbent behavior. While some interesting anomalies are present in the calcination data and in the limited surface area data, no attempt was made to pursue those issues. Since little sulfur capture was observed at operating conditions where super-equilibrium'' might be expected to occur, tests were stopped when the wide range of parameters that were studied failed to produce significant sulfur capture via the super-equilibrium mechanism. Considerable space in this report is devoted to a description of the experiment, including details of the GTRC construction. This description is included because we have received requests for a detailed description of the GTRC itself, as well as the pressurized dry powder feed system. In addition, many questions about accurately sampling the sulfur species from a high-temperature, high-pressure reactor were raised during the course of this investigation. A full account of the development of the gas and particulate sampling train in thus provided. 8 refs., 17 figs., 2 tabs.

  20. High temperature storage loop :

    SciTech Connect

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  1. High Temperature Structural Foam

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S.; Baillif, Faye F.; Grimsley, Brian W.; Marchello, Joseph M.

    1997-01-01

    The Aerospace Industry is experiencing growing demand for high performance polymer foam. The X-33 program needs structural foam insulation capable of retaining its strength over a wide range of environmental conditions. The High Speed Research Program has a need for low density core splice and potting materials. This paper reviews the state of the art in foam materials and describes experimental work to fabricate low density, high shear strength foam which can withstand temperatures from -220 C to 220 C. Commercially available polymer foams exhibit a wide range of physical properties. Some with densities as low as 0.066 g/cc are capable of co-curing at temperatures as high as 182 C. Rohacell foams can be resin transfer molded at temperatures up to 180 C. They have moduli of elasticity of 0.19 MPa, tensile strengths of 3.7 Mpa and compressive strengths of 3.6 MPa. The Rohacell foams cannot withstand liquid hydrogen temperatures, however Imi-Tech markets Solimide (trademark) foams which withstand temperatures from -250 C to 200 C, but they do not have the required structural integrity. The research activity at NASA Langley Research Center focuses on using chemical blowing agents to produce polyimide thermoplastic foams capable of meeting the above performance requirements. The combination of blowing agents that decompose at the minimum melt viscosity temperature together with plasticizers to lower the viscosity has been used to produce foams by both extrusion and oven heating. The foams produced exhibit good environmental stability while maintaining structural properties.

  2. High-Temperature Superconductivity

    ScienceCinema

    Peter Johnson

    2016-07-12

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors — materials that carry electrical c

  3. HIGH TEMPERATURE THERMOCOUPLE

    DOEpatents

    Eshayu, A.M.

    1963-02-12

    This invention contemplates a high temperature thermocouple for use in an inert or a reducing atmosphere. The thermocouple limbs are made of rhenium and graphite and these limbs are connected at their hot ends in compressed removable contact. The rhenium and graphite are of high purity and are substantially stable and free from diffusion into each other even without shielding. Also, the graphite may be thick enough to support the thermocouple in a gas stream. (AEC)

  4. High temperature thermometric phosphors

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  5. High temperature thermometric phosphors

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  6. Melting in super-earths.

    PubMed

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  7. Existence domain of the compressive ion acoustic super solitary wave in a two electron temperature warm multi-ion plasma

    NASA Astrophysics Data System (ADS)

    Steffy, S. V.; Ghosh, S. S.

    2017-10-01

    The transition of an ion acoustic solitary wave into a "supersoliton," or a super solitary wave have been explored in a two electron temperature warm multi-ion plasma using the Sagdeev pseudopotential technique. It is generally believed that the ion acoustic solitary wave can be transformed to a super solitary wave only through a double layer. The present work shows that the transition route of an ion acoustic solitary wave to a super solitary wave is not unique. Depending on the electron temperature ratio, a regular solitary wave may transform to a super solitary wave either via the double layer, or through an extra-nonlinear solitary structure whose morphology differs from that of a regular one. These extra-nonlinear structures are associated with a fluctuation of the charge separation within the potential profile and are named as "variable solitary waves." Depending on these analyses, the upper and lower bounds of a super solitary wave have been deciphered and its existence domain has been delineated in the parametric space. It reveals that super solitary waves are a subset of a more generalized class of extra-nonlinear solitary structures called variable solitary waves.

  8. An evaluation of the transition temperature range of super-elastic orthodontic NiTi springs using differential scanning calorimetry.

    PubMed

    Barwart, O; Rollinger, J M; Burger, A

    1999-10-01

    Differential scanning calorimetry (DSC) was used to determine the transition temperature ranges (TTR) of four types of super-elastic orthodontic nickel-titanium coil springs (Sentalloy). A knowledge of the TTR provides information on the temperature at which a NiTi wire or spring can assume superelastic properties and when this quality disappears. The spring types in this study can be distinguished from each other by their characteristic TTR during cooling and heating. For each tested spring type a characteristic TTR during heating (austenite transformation) and cooling (martensite transformation) was evaluated. The hysteresis of the transition temperature, found between cooling and heating, was 3.4-5.2 K. Depending on the spring type the austenite transformation started (As) at 9.7-17.1 degrees C and finished (Af) at 29.2-37 degrees C. The martensite transformation starting temperature (Ms) was evaluated at 32.6-25.4 degrees C, while Mf (martensite transformation finishing temperature) was 12.7-6.5 degrees C. The results show that the springs become super-elastic when the temperature increases and As is reached. They undergo a loss of super-elastic properties and a rapid decrease in force delivery when they are cooled to Mf. For the tested springs, Mf and As were found to be below room temperature. Thus, at room temperature and some degrees lower, all the tested springs exert super-elastic properties. For orthodontic treatment this means the maintenance of super-elastic behaviour, even when mouth temperature decreases to about room temperature as can occur, for example, during meals.

  9. Analysis of Superconducting Dipole Coil of 11 GeV Super High Momentum Spectrometer

    SciTech Connect

    Sun, Eric; Cheng, Gary; Lassiter, Steve R.; Brindza, Paul D.; Fowler, Michael J.

    2015-06-01

    Jefferson Lab is constructing five Super High Momentum Spectrometer (SHMS) superconducting magnets for the 12 GeV Upgrade. This paper reports measured coil material properties and the results of the extensive finite element analysis (FEA) for the dipole coil. To properly define the smeared orthotropic material of the coil, a detailed coil model is set up to compute material parameters because not all parameters were measured. Stress and strain acceptance criteria are discussed. Eight load steps are defined. The preheat temperature of the force collar is optimized under two loading scenarios so that the positive pressure between the inner coil and central spacer is maintained while there is not too much squeeze to the coil.

  10. Optimal V/f control of super high-speed PMSM and its application

    NASA Astrophysics Data System (ADS)

    Bian, Chunyuan; Ren, Shuangyan; Yan, Shijie; Man, Yongkui; Wang, Zhiqiang

    2006-11-01

    Due to the features such as high efficiency, small volume and high power density, super high-speed permanent magnet synchronous motor (PMSM) are becoming attractive in many fields such as high-speed micro-turbine generators, centrifugal compressors and pumps. V/f control is flexible and easy to be realized, moreover, voltage utilization ratio of SVPWM modulation is high, so the plan combined with V/f control and SVPWM modulation can be adopted for PMSM. The effects of the stator resistance and the dead-time on the control are generally neglected in traditional V/f control, which leads to that the low-speed performance is poor and the system is not stable at high speed. Based on considering the effects of stator resistance and dead-time, an optimal V/f control of the super high-speed PMSM is presented. Combined with the optimal V/f control and SVPWM modulation, soft starting and operating experiments for PMSM generator (105Kw, 61000rpm) are successfully implemented in the designed system of super high-speed gas micro-turbine based on DSP 320F2407A. The experiment results shows that this optimal V/f control is virtual and feasible for super high-speed PMSM. The proposed scheme provided dynamic stability and high performance of the super high-speed PMSM with an open-loop control.

  11. High Temperature Thermosets

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1999-01-01

    A thermoset or network polymer is an organic material where the molecules are tied together through chemical bonds (crosslinks) and therefore they cannot move past one another. As a result, these materials exhibit a certain degree of dimensional stability. The chemical composition and the degree of crosslink density of the thermoset have a pronounced effect upon the properties. High temperature thermosets offer a favorable combination of properties that makes them attractive for many applications. Their most important features are the excellent processability particularly of the low molecular weight precusor forms, the chemical and solvent resistance and the dimensional stability. The market for high temperature thermosets will increase as new uses for them are uncovered and new thermosets with better combinations of properties are developed.

  12. High temperature future

    SciTech Connect

    Sheinkopf, K.

    1994-09-01

    During the past few years, there have been dramatic accomplishments and success of high temperature solar thermal systems and significant development of these systems. High temperature technologies, about 500 F and higher, such as dish engines, troughs, central receiver power towers and solar process heat systems, have been tested, demonstrated and used in an array of applications, including many cost-effective utility bulk power production and demand side supply projects in the United States. Large systems provide power and hot water to prisons, schools, nursing homes and other institutions. Joint ventures with industry, utility projects, laboratory design assistance and other activities are building a solid industry of US solar thermal systems ready for use today.

  13. High temperature materials characterization

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1990-01-01

    A lab facility for measuring elastic moduli up to 1700 C was constructed and delivered. It was shown that the ultrasonic method can be used to determine elastic constants of materials from room temperature to their melting points. The ease in coupling high frequency acoustic energy is still a difficult task. Even now, new coupling materials and higher power ultrasonic pulsers are being suggested. The surface was only scratched in terms of showing the full capabilities of either technique used, especially since there is such a large learning curve in developing proper methodologies to take measurements into the high temperature region. The laser acoustic system does not seem to have sufficient precision at this time to replace the normal buffer rod methodology.

  14. Thermodynamic properties, melting temperature and viscosity of the mantles of Super Earths

    NASA Astrophysics Data System (ADS)

    Stamenkovic, V.; Spohn, T.; Breuer, D.

    2010-12-01

    The recent dicscovery of extrasolar planets with radii of about twice the Earth radius and masses of several Earth masses such as e.g., Corot-7b (approx 5Mearth and 1.6Rearth, Queloz et al. 2009) has increased the interest in the properties of rock at extremely high pressures. While the pressure at the Earth’s core-mantle boundary is about 135GPa, pressures at the base of the mantles of extraterrestrial rocky planets - if these are at all differentiated into mantles and cores - may reach Tera Pascals. Although the properties and the mineralogy of rock at extremely high pressure is little known there have been speculations about mantle convection, plate tectonics and dynamo action in these “Super-Earths”. We assume that the mantles of these planets can be thought of as consisting of perovskite but we discuss the effects of the post-perovskite transition and of MgO. We use the Keane equation of state and the Slater relation (see e.g., Stacey and Davies 2004) to derive an infinite pressure value for the Grüneisen parameter of 1.035. To derive this value we adopted the infinite pressure limit for K’ (pressure derivative of the bulk modulus) of 2.41 as derived by Stacey and Davies (2004) by fitting PREM. We further use the Lindeman law to calculate the melting curve. We gauge the melting curve using the available experimental data for pressures up to 120GPa. The melting temperature profile reaches 6000K at 135GPa and increases to temperatures between 12,000K and 24,000K at 1.1TPa with a preferred value of 21,000K. We find the adiabatic temperature increase to reach 2,500K at 135GPa and 5,400K at 1.1TPa. To calculate the pressure dependence of the viscosity we assume that the rheology is diffusion controlled and calculate the partial derivative with respect to pressure of the activation enthalpy. We cast the partial derivative in terms of an activation volume and use the semi-empirical homologous temperature scaling (e.g., Karato 2008). We find that the

  15. High-temperature superconductivity

    SciTech Connect

    Burns, G.

    1992-01-01

    Review of conventional superconductors. Structures. Normal-state properties. Superconducting properties. Vortex behavior, J[sub c], and applications. Index. An introductory presentation of high-temperature superconductivity, with emphasis on the experimental approach. Intended as a supplementary text for undergraduate solid state physics courses, assumes some background in physics and applicable technologies. Chapters contain unsolved problems. Bibliography and chapter notes appear at end of text.

  16. Analytical model for CMB temperature angular power spectrum from cosmic (super-)strings

    SciTech Connect

    Yamauchi, Daisuke; Yoo, Chul-Moon; Sasaki, Misao; Takahashi, Keitaro; Sendouda, Yuuiti

    2010-09-15

    We present a new analytical method to calculate the small angle cosmic microwave background (CMB) temperature angular power spectrum due to cosmic (super-)string segments. In particular, using our method, we clarify the dependence on the intercommuting probability P. We find that the power spectrum is dominated by Poisson-distributed string segments. The power spectrum for a general value of P has a plateau on large angular scales and shows a power-law decrease on small angular scales. The resulting spectrum in the case of conventional cosmic strings is in very good agreement with the numerical result obtained by Fraisse et al.. Then we estimate the upper bound on the dimensionless tension of the string for various values of P by assuming that the fraction of the CMB power spectrum due to cosmic (super-)strings is less than ten percent at various angular scales up to l=2000. We find that the amplitude of the spectrum increases as the intercommuting probability. As a consequence, strings with smaller intercommuting probabilities are found to be more tightly constrained.

  17. High temperature superconducting compounds

    NASA Astrophysics Data System (ADS)

    Goldman, Allen M.

    1992-11-01

    The major accomplishment of this grant has been to develop techniques for the in situ preparation of high-Tc superconducting films involving the use of ozone-assisted molecular beam epitaxy. The techniques are generalizable to the growth of trilayer and multilayer structures. Films of both the DyBa2Cu3O(7-x) and YBa2Cu3O(7-x) compounds as well as the La(2-x)Sr(x)CuO4 compound have been grown on the usual substrates, SrTiO3, YSZ, MgO, and LaAlO3, as well as on Si substrates without any buffer layer. A bolometer has been fabricated on a thermally isolated SiN substrate coated with YSZ, an effort carried out in collaboration with Honeywell Inc. The deposition process facilitates the fabrication of very thin and transparent films creating new opportunities for the study of superconductor-insulator transitions and the investigation of photo-doping with carriers of high temperature superconductors. In addition to a thin film technology, a patterning technology has been developed. Trilayer structures have been developed for FET devices and tunneling junctions. Other work includes the measurement of the magnetic properties of bulk single crystal high temperature superconductors, and in collaboration with Argonne National Laboratory, measurement of electric transport properties of T1-based high-Tc films.

  18. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  19. High temperature strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); You, Tao (Inventor)

    2011-01-01

    A ceramic strain gage based on reactively sputtered indium-tin-oxide (ITO) thin films is used to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500.degree. C. A scanning electron microscopy (SEM) of the thick ITO sensors reveals a partially sintered microstructure comprising a contiguous network of submicron ITO particles with well defined necks and isolated nanoporosity. Densification of the ITO particles was retarded during high temperature exposure with nitrogen thus stabilizing the nanoporosity. ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures to incorporate more nitrogen into the films. Under these conditions, sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established.

  20. High temperature acoustic levitator

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1984-01-01

    A system is described for acoustically levitating an object within a portion of a chamber that is heated to a high temperature, while a driver at the opposite end of the chamber is maintained at a relatively low temperature. The cold end of the chamber is constructed so it can be telescoped to vary the length (L sub 1) of the cold end portion and therefore of the entire chamber, so that the chamber remains resonant to a normal mode frequency, and so that the pressure at the hot end of the chamber is maximized. The precise length of the chamber at any given time, is maintained at an optimum resonant length by a feedback loop. The feedback loop includes an acoustic pressure sensor at the hot end of the chamber, which delivers its output to a control circuit which controls a motor that varies the length (L) of the chamber to a level where the sensed acoustic pressure is a maximum.

  1. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  2. Slip-activated surface creep with room-temperature super-elongation in metallic nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhong, Li; Sansoz, Frederic; He, Yang; Wang, Chongmin; Zhang, Ze; Mao, Scott X.

    2017-04-01

    Nanoscale metallic crystals have been shown to follow a `smaller is stronger’ trend. However, they usually suffer from low ductility due to premature plastic instability by source-limited crystal slip. Here, by performing in situ atomic-scale transmission electron microscopy, we report unusual room-temperature super-elongation without softening in face-centred-cubic silver nanocrystals, where crystal slip serves as a stimulus to surface diffusional creep. This interplay mechanism is shown experimentally and theoretically to govern the plastic deformation of nanocrystals over a material-dependent sample diameter range between the lower and upper limits for nanocrystal stability by surface diffusional creep and dislocation plasticity, respectively, which extends far beyond the maximum size for pure diffusion-mediated deformation (for example, Coble-type creep). This work provides insight into the atomic-scale coupled diffusive-displacive deformation mechanisms, maximizing ductility and strength simultaneously in nanoscale materials.

  3. Skewness in CMB temperature fluctuations from curved cosmic (super-)strings

    SciTech Connect

    Yamauchi, Daisuke; Sendouda, Yuuiti; Yoo, Chul-Moon; Naruko, Atsushi; Sasaki, Misao; Takahashi, Keitaro E-mail: sendouda@yukawa.kyoto-u.ac.jp E-mail: keitaro@a.phys.nagoya-u.ac.jp E-mail: misao@yukawa.kyoto-u.ac.jp

    2010-05-01

    We compute the one-point probability distribution function of small-angle cosmic microwave background temperature fluctuations due to curved cosmic (super-)strings with a simple model of string network by performing Monte Carlo simulations. Taking into account of the correlation between the curvature and the velocity of string segments, there appear non-Gaussian features, specifically non-Gaussian tails and a skewness, in the one-point pdf. The obtained sample skewness for the conventional field-theoretic cosmic strings is g{sub 1} ≈ −0.14, which is consistent with the result reported by Fraisse et al. We also discuss the dependence of the pdf on the intercommuting probability. We find that the standard deviation of the Gaussian part increases and non-Gaussian features are suppressed as the intercommuting probability decreases. For sufficiently small intercommuting probability, the skewness is given by ∼< (a few) × 10{sup −2}.

  4. Fast super-resolution imaging with ultra-high labeling density achieved by joint tagging super-resolution optical fluctuation imaging.

    PubMed

    Zeng, Zhiping; Chen, Xuanze; Wang, Hening; Huang, Ning; Shan, Chunyan; Zhang, Hao; Teng, Junlin; Xi, Peng

    2015-02-10

    Previous stochastic localization-based super-resolution techniques are largely limited by the labeling density and the fidelity to the morphology of specimen. We report on an optical super-resolution imaging scheme implementing joint tagging using multiple fluorescent blinking dyes associated with super-resolution optical fluctuation imaging (JT-SOFI), achieving ultra-high labeling density super-resolution imaging. To demonstrate the feasibility of JT-SOFI, quantum dots with different emission spectra were jointly labeled to the tubulin in COS7 cells, creating ultra-high density labeling. After analyzing and combining the fluorescence intermittency images emanating from spectrally resolved quantum dots, the microtubule networks are capable of being investigated with high fidelity and remarkably enhanced contrast at sub-diffraction resolution. The spectral separation also significantly decreased the frame number required for SOFI, enabling fast super-resolution microscopy through simultaneous data acquisition. As the joint-tagging scheme can decrease the labeling density in each spectral channel, thereby bring it closer to single-molecule state, we can faithfully reconstruct the continuous microtubule structure with high resolution through collection of only 100 frames per channel. The improved continuity of the microtubule structure is quantitatively validated with image skeletonization, thus demonstrating the advantage of JT-SOFI over other localization-based super-resolution methods.

  5. Fast Super-Resolution Imaging with Ultra-High Labeling Density Achieved by Joint Tagging Super-Resolution Optical Fluctuation Imaging

    PubMed Central

    Zeng, Zhiping; Chen, Xuanze; Wang, Hening; Huang, Ning; Shan, Chunyan; Zhang, Hao; Teng, Junlin; Xi, Peng

    2015-01-01

    Previous stochastic localization-based super-resolution techniques are largely limited by the labeling density and the fidelity to the morphology of specimen. We report on an optical super-resolution imaging scheme implementing joint tagging using multiple fluorescent blinking dyes associated with super-resolution optical fluctuation imaging (JT-SOFI), achieving ultra-high labeling density super-resolution imaging. To demonstrate the feasibility of JT-SOFI, quantum dots with different emission spectra were jointly labeled to the tubulin in COS7 cells, creating ultra-high density labeling. After analyzing and combining the fluorescence intermittency images emanating from spectrally resolved quantum dots, the microtubule networks are capable of being investigated with high fidelity and remarkably enhanced contrast at sub-diffraction resolution. The spectral separation also significantly decreased the frame number required for SOFI, enabling fast super-resolution microscopy through simultaneous data acquisition. As the joint-tagging scheme can decrease the labeling density in each spectral channel, thereby bring it closer to single-molecule state, we can faithfully reconstruct the continuous microtubule structure with high resolution through collection of only 100 frames per channel. The improved continuity of the microtubule structure is quantitatively validated with image skeletonization, thus demonstrating the advantage of JT-SOFI over other localization-based super-resolution methods. PMID:25665878

  6. High temperature geophysical instrumentation

    SciTech Connect

    Hardee, H.C.

    1988-06-01

    The instrumentation development program was to proceed in parallel with scientific research and was driven by the needs of researchers. The development of these instruments has therefore included numerous geophysical field tests, many of which have resulted in the publication of scientific articles. This paper is a brief summary of some of the major geophysical instruments that have been developed and tested under the High Temperature Geophysics Program. These instruments are briefly described and references are given for further detailed information and for scientific papers that have resulted from the use of these instruments. 9 refs., 14 figs.

  7. High temperature detonator

    DOEpatents

    Johnson, James O.; Dinegar, Robert H.

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  8. Subtle Mitsunobu couplings under super-heating: the role of high-throughput continuous flow and microwave strategies.

    PubMed

    Manvar, Atul; Shah, Anamik

    2014-11-07

    Non-conventional heating techniques, high-throughput microwave-assisted synthesis and continuous flow penetrate almost every scientific field. Mitsunobu coupling is a ubiquitous choice for the dehydrative redox condensation of primary or secondary alcohols with (pro)nucleophiles. The aim of this review is to showcase the ease of subtle Mitsunobu coupling under super-heating. Surprisingly, this strategy is rather non-trivial; considering the sensitivity of reagents, Mitsunobu chemistry is typically performed at lower temperatures or under ambient conditions. In view of the absence of any previous work focusing on this topic, the current review considers the utility of super-heating in fragile Mitsunobu reactions. Therefore, we anticipate that this review will also bridge some of the apparent gaps in the extant literature by specifically describing the advances made by non-conventional heating assisted by microwave or continuous flow in one of the most powerful stereochemical transformations.

  9. The effect of water stress on super-high- density 'Koroneiki' olive oil quality.

    PubMed

    Dag, Arnon; Naor, Amos; Ben-Gal, Alon; Harlev, Guy; Zipori, Isaac; Schneider, Doron; Birger, Reuven; Peres, Moti; Gal, Yoni; Kerem, Zohar

    2015-08-15

    Over the last two decades, the area of cultivated super-high-density olive orchards has increased rapidly. Water stress is an important tool in super-high-density orchards to reduce tree growth and promote suitability for overhead mechanical harvesters. Little is known regarding the effect of water stress in super-high-density orchards on oil quality parameters. In this study the effect of irrigation rate on oil quality parameters was evaluated in a six-year-old super-high-density 'Koreneiki' olive orchard for five consecutive seasons. Five water status levels, determined by irrigating in order to maintain various midday stem water potential threshold values (-1.5, -2, -2.5, -3 and -4 MPa), were applied during the oil accumulation stage. The MUFA/PUFA ratio and free fatty acid content generally decreased as a function of increasing tree water stress. In most seasons a reduction in polyphenols was found with decreasing irrigation level. Peroxide value was not affected by the water stress level. The present study demonstrates that limiting irrigation and exposure of olive trees to water stress in a super-high-density orchard lowers free fatty acid content and therefore benefits oil quality. However, the decreased MUFA/PUFA ratio and the reduction in polyphenol content that were also found under increased water stress negatively influence oil quality. © 2014 Society of Chemical Industry.

  10. High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Berger, Marie-Helen; Sayir, Ali

    2007-01-01

    High Temperature Protonic Conductors (HTPC) with the perovskite structure are envisioned for electrochemical membrane applications such as H2 separation, H2 sensors and fuel cells. Successive membrane commercialization is dependent upon addressing issues with H2 permeation rate and environmental stability with CO2 and H2O. HTPC membranes are conventionally fabricated by solid-state sintering. Grain boundaries and the presence of intergranular second phases reduce the proton mobility by orders of magnitude than the bulk crystalline grain. To enhanced protonic mobility, alternative processing routes were evaluated. A laser melt modulation (LMM) process was utilized to fabricate bulk samples, while pulsed laser deposition (PLD) was utilized to fabricate thin film membranes . Sr3Ca(1+x)Nb(2-x)O9 and SrCe(1-x)Y(x)O3 bulk samples were fabricated by LMM. Thin film BaCe(0.85)Y(0.15)O3 membranes were fabricated by PLD on porous substrates. Electron microscopy with chemical mapping was done to characterize the resultant microstructures. High temperature protonic conduction was measured by impedance spectroscopy in wet air or H2 environments. The results demonstrate the advantage of thin film membranes to thick membranes but also reveal the negative impact of defects or nanoscale domains on protonic conductivity.

  11. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Apart from the hydrogeological conditions, high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. After one year of planning, construction, and the successful drilling of a research well to 495 m b.s.l. the first large scale heat storage test in the Malm aquifer was finished just before Christmas 2014. An enormous technical challenge was the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10-50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye. Injection and production rates were 15 L/s. About 4 TJ of heat energy were necessary to achieve the desired water temperatures. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for the analysis of the concentration of the tracers and the cation concentrations at sampling intervals of down to 15 minutes. Additional water samples were taken and analyzed for major ions and trace elements in the laboratory. The disassembled heat exchanger proved that precipitation was successfully prevented by adding CO2 to the water before heating

  12. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2016-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  13. [Influence of infra-red and super high frequency heating on food value of the beef meat].

    PubMed

    Beliaeva, M A

    2005-01-01

    In clause results of research of influence infrared and super high frequency heating on amino acid, fatty fabric and mineral; substances fresh beef are shown meat, after infra-red and the super high frequency of processing, also are shown influence of various modes infra-red heating of processing on amino acid of meat. Advantage of an infra-red way of processing is shown in comparison with super high frequency heating.

  14. Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface

    NASA Astrophysics Data System (ADS)

    Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun

    2016-06-01

    Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging.

  15. Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface

    PubMed Central

    Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun

    2016-01-01

    Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging. PMID:27246668

  16. Low temperature synthesis of fibres composed of carbon-nickel nanoparticles in super-critical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hasumura, Takashi; Fukuda, Takahiro; Whitby, Raymond L. D.; Aschenbrenner, Ortrud; Maekawa, Toru

    2010-06-01

    We show that fibres composed of carbon-nickel nanoparticles are self-assembled by mixing nickelocene and oxygen with super-critical carbon dioxide in a dc electric field. The fibres grow in the direction of the electric field and the growth rate increases with an increase in the strength of the electric field. We also irradiate the fibres with electron beams and find that crystallized nickel particles are captured by carbon particles. The present result suggests that a low temperature method of creating carbon-metal hybrid nanostructures may be developed by mixing metallocene and trigger molecules with super-critical fluids subjected to a dc electric field.

  17. High throughput laser texturing of super-hydrophobic surfaces on steel

    NASA Astrophysics Data System (ADS)

    Gemini, Laura; Faucon, Marc; Romoli, Luca; Kling, Rainer

    2017-03-01

    Super-hydrophobic surfaces are nowadays of primary interest in several application fields, as for de-icing devices in the automotive and aerospace industries. In this context, laser surface texturing has widely demonstrated to be an easy one-step method to produce super-hydrophobic surfaces on several materials. In this work, a high average power (up to 40W), high repetition-rate (up to 1MHz), femtosecond infrared laser was employed to produce super-hydrophobic surfaces on 316L steel. The set of process and laser parameters for which the super-hydrophobic behavior is optimized, was obtained by varying the laser energy and repetition rate. The morphology of the textured surfaces was firstly analyzed by SEM and confocal microscope analyses. The contact angle was measured over time in order to investigate the effect of air environment on the hydrophobic properties and define the period of time necessary for the super-hydrophobic properties to stabilize. An investigation on the effect of after-processing cleaning solvents on the CA evolution was carried to assess the influence of the after-processing sample handling on the CA evaluation. Results show that the highest values of contact angle, that is the best hydrophobic behavior, are obtained at high repetition rate and low energy, this way opening up a promising scenario in terms of upscaling for reducing the overall process takt-time.

  18. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  19. Mapping high-latitude ionospheric electrodynamics with SuperDARN and AMPERE

    NASA Astrophysics Data System (ADS)

    Cousins, E. D. P.; Matsuo, Tomoko; Richmond, A. D.

    2015-07-01

    An assimilative procedure for mapping high-latitude ionospheric electrodynamics is developed for use with plasma drift observations from the Super Dural Auroral Radar Network (SuperDARN) and magnetic perturbation observations from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). This procedure incorporates the observations and their errors, as well as two background models and their error covariances (estimated through empirical orthogonal function analysis) to infer complete distributions of electrostatic potential and vector magnetic potential in the high-latitude ionosphere. The assimilative technique also enables objective error analysis of the results. Various methods of specifying height-integrated ionospheric conductivity, which is required by the procedure, are implemented and evaluated quantitatively. The benefits of using both SuperDARN and AMPERE data to solve for both electrostatic and vector magnetic potentials, rather than using the data sets independently or solving for just electrostatic potential, are demonstrated. Specifically, solving for vector magnetic potential improves the specification of field-aligned currents (FACs), and using both data sets together improves the specification of features in regions lacking one type of data (SuperDARN or AMPERE). Additionally, using the data sets together results in a better correspondence between large-scale features in the electrostatic potential distribution and those in the FAC distribution, as compared to using SuperDARN data alone to infer electrostatic potential and AMPERE data alone to infer FACs. Finally, the estimated uncertainty in the results decreases by typically ˜20% when both data sets rather than just one are included.

  20. Convective organization in the super-parameterized community atmosphere model with constant surface temperature

    NASA Astrophysics Data System (ADS)

    Kuang, Z.

    2015-12-01

    Organization in a moist convecting atmosphere is investigated using the super-parameterized community atmosphere model (SPCAM) in aquaplanet setting with constant surface temperature, with and without planetary rotation. Without radiative and surface feedbacks, convective organization is dominated by convectively coupled gravity waves without planetary rotation and convectively coupled equatorial waves when there is planetary rotation. This behavior is well captured when the cloud resolving model (CRM) in SPCAM is replaced by its linear response function, computed following Kuang (2010), for the state of radiative convective equilibrium (RCE). With radiative feedback, however, convection self-aggregates, and with planetary rotation, the tropical zonal wavenumber-frequency spectrum features a red noise background. These behaviors in the presence of the radiative feedback are not captured when the CRM is replaced by its linear response function around the RCE state with radiative feedback included in the construction. Implications to organization in a moist convecting atmosphere will be discussed. Kuang, Z., Linear response functions of a cumulus ensemble to temperature and moisture perturbations and implication to the dynamics of convectively coupled waves, J. Atmos. Sci., 67, 941-962, (2010)

  1. High concentrations of STOP protein induce a microtubule super-stable state.

    PubMed

    Job, D; Rauch, C T; Margolis, R L

    1987-10-14

    We have previously shown that mammalian brain crude extracts contained two classes of stable microtubules: "cold stable" and "super-stable" microtubules. We now find that both species are generated by a single protein factor (STOP protein) in a dose dependent manner. These results show that STOP protein action can be extreme, inducing resistance to -80 degrees C or to sonication and that no other factor seems to be required to account for the various subclasses of highly stable microtubules in brain. Finally, the rapid procedure described for the preparation of purified "super-stable microtubules" should be useful for the obtention of fractions with high STOP protein activity.

  2. Stable High-Energy Density Super-Atom Clusters of Aluminum Hydride

    NASA Astrophysics Data System (ADS)

    Lian, Ke-yan; Jiang, Yuan-fei; Fei, De-hou; Feng, Wei; Jin, Ming-xing; Ding, Da-jun; Luo, Yi

    2012-04-01

    With the concept of super-atom, first principles calculations propose a new type of super stable cage clusters AlnH3n that are much more energetic stable than the well established clusters, AlnHn+2. In the new clusters, the aluminum core-frame acts as a super-atom with n vertexes and 2n Al-Al edges, which allow to adsorb n hydrogen atoms at the top-site and 2n at the bridge-site. Using Al12H36 as the basic unit, stable chain structures, (Al12H36)m, have been constructed following the same connection mechanism as for (AlH3)n linear polymeric structures. Apart from high hydrogen percentage per molecule, calculations have shown that these new clusters possess large heat of formation values and their combustion heat is about 4.8 times of the methane, making them a promising high energy density material.

  3. Application of evaporative cooling technology in super-high power density magnet.

    PubMed

    Xiong, B; Ruan, L; Gu, G B; Guo, S Q; Cao, R; Li, Z G; Lu, W; Zhang, X Z; Sun, L T; Zhao, H W

    2014-02-01

    Evaporative cooling technology utilizes phase-change heat transfer mode to achieve the cooling for heating equipment. The heat transfer capacity of evaporative cooling technology is far more than air or water cooling technology. The Electron Cyclotron Resonance ion source magnet is a typical super-high power density magnet, and the evaporative cooling technology is an ideal cooling method for the coils of magnet. In this paper we show the structure and process of coils and the special design of flow channels of coolant for an experiment magnet model. Additionally, the heat transfer circulation is presented and analyzed. By the finite element method, the flow channels are optimized to rationally allocate coolant and to reduce the temperature of coils. For the experiment model, the current density of copper wire of coils is 19 A/mm(2), and the coil-windows current density is larger than 12 A/mm(2). The max temperature of coils is below 80 °C, and the total heat is about 200 kW.

  4. Astronomy. ASASSN-15lh: A highly super-luminous supernova.

    PubMed

    Dong, Subo; Shappee, B J; Prieto, J L; Jha, S W; Stanek, K Z; Holoien, T W-S; Kochanek, C S; Thompson, T A; Morrell, N; Thompson, I B; Basu, U; Beacom, J F; Bersier, D; Brimacombe, J; Brown, J S; Bufano, F; Chen, Ping; Conseil, E; Danilet, A B; Falco, E; Grupe, D; Kiyota, S; Masi, G; Nicholls, B; Olivares E, F; Pignata, G; Pojmanski, G; Simonian, G V; Szczygiel, D M; Woźniak, P R

    2016-01-15

    We report the discovery of ASASSN-15lh (SN 2015L), which we interpret as the most luminous supernova yet found. At redshift z = 0.2326, ASASSN-15lh reached an absolute magnitude of Mu ,AB = -23.5 ± 0.1 and bolometric luminosity Lbol = (2.2 ± 0.2) × 10(45) ergs s(-1), which is more than twice as luminous as any previously known supernova. It has several major features characteristic of the hydrogen-poor super-luminous supernovae (SLSNe-I), whose energy sources and progenitors are currently poorly understood. In contrast to most previously known SLSNe-I that reside in star-forming dwarf galaxies, ASASSN-15lh appears to be hosted by a luminous galaxy (MK ≈ -25.5) with little star formation. In the 4 months since first detection, ASASSN-15lh radiated (1.1 ± 0.2) × 10(52) ergs, challenging the magnetar model for its engine. Copyright © 2016, American Association for the Advancement of Science.

  5. ASASSN-15lh: A highly super-luminous supernova

    NASA Astrophysics Data System (ADS)

    Dong, Subo; Shappee, B. J.; Prieto, J. L.; Jha, S. W.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Thompson, T. A.; Morrell, N.; Thompson, I. B.; Basu, U.; Beacom, J. F.; Bersier, D.; Brimacombe, J.; Brown, J. S.; Bufano, F.; Chen, Ping; Conseil, E.; Danilet, A. B.; Falco, E.; Grupe, D.; Kiyota, S.; Masi, G.; Nicholls, B.; Olivares E., F.; Pignata, G.; Pojmanski, G.; Simonian, G. V.; Szczygiel, D. M.; Woźniak, P. R.

    2016-01-01

    We report the discovery of ASASSN-15lh (SN 2015L), which we interpret as the most luminous supernova yet found. At redshift z = 0.2326, ASASSN-15lh reached an absolute magnitude of Mu,AB = -23.5 ± 0.1 and bolometric luminosity Lbol = (2.2 ± 0.2) × 1045 ergs s-1, which is more than twice as luminous as any previously known supernova. It has several major features characteristic of the hydrogen-poor super-luminous supernovae (SLSNe-I), whose energy sources and progenitors are currently poorly understood. In contrast to most previously known SLSNe-I that reside in star-forming dwarf galaxies, ASASSN-15lh appears to be hosted by a luminous galaxy (MK ≈ -25.5) with little star formation. In the 4 months since first detection, ASASSN-15lh radiated (1.1 ± 0.2) × 1052 ergs, challenging the magnetar model for its engine.

  6. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  7. Verification of SuperMC for simulation of a high-dose-rate brachytherapy source

    NASA Astrophysics Data System (ADS)

    Naeem, Hamza; Wasaye, Muhammad Abdul; Chen, Chaobin; Zheng, Huaqing; Hao, Lijuan

    2017-06-01

    In this study, SuperMC (Super Monte Carlo simulation program for nuclear and radiation simulation) was tested and verified for simulation of a high-dose-rate brachytherapy source. The Monte Carlo simulation includes calculations of the air kerma strength, dose rate constant, radial dose function and anisotropy function as recommended by the American Association of Physicists in Medicine (AAPM) in Task Group reports 43 and 43U1 (TG-43, TG-43U1). The air kerma strength, dose rate constant, radial dose function and anisotropy function were compared with previously published Monte Carlo simulation results and experimental data. The calculated parameters were found to be in good agreement with published Monte Carlo and measured data. The value obtained from the SuperMC simulation for the air kerma strength was 9.779 × 10-8 U·Bq-1 and the dose rate constant was 1.1092 ± 0.02% cGy·h-1·U-1. The time to transport 5 × 107 photons showed SuperMC to be relatively faster than MCNP. The results show that SuperMC can be used for fast and accurate simulations and dosimetric calculations of HDR brachytherapy sources.

  8. Effect of annealing temperature on the pitting corrosion resistance of super duplex stainless steel UNS S32750

    SciTech Connect

    Tan Hua; Jiang Yiming; Deng Bo; Sun Tao; Xu Juliang; Li Jin

    2009-09-15

    The pitting corrosion resistance of commercial super duplex stainless steels SAF2507 (UNS S32750) annealed at seven different temperatures ranging from 1030 deg. C to 1200 deg. C for 2 h has been investigated by means of potentiostatic critical pitting temperature. The microstructural evolution and pit morphologies of the specimens were studied through optical/scanning electron microscope. Increasing annealing temperature from 1030 deg. C to 1080 deg. C elevates the critical pitting temperature, whereas continuing to increase the annealing temperature to 1200 deg. C decreases the critical pitting temperature. The specimens annealed at 1080 deg. C for 2 h exhibit the best pitting corrosion resistance with the highest critical pitting temperature. The pit morphologies show that the pit initiation sites transfer from austenite phase to ferrite phase as the annealing temperature increases. The aforementioned results can be explained by the variation of pitting resistance equivalent number of ferrite and austenite phase as the annealing temperature changes.

  9. Optical stealth transmission based on super-continuum generation in highly nonlinear fiber over WDM network.

    PubMed

    Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Chen, Dalei

    2015-06-01

    In this Letter, the optical stealth transmission carried by super-continuum spectrum optical pulses generated in highly nonlinear fiber is proposed and experimentally demonstrated. In the proposed transmission scheme, super-continuum signals are reshaped in the spectral domain through a wavelength-selective switch and are temporally spread by a chromatic dispersion device to achieve the same noise-like characteristic as the noise in optical networks, so that in both the time domain and the spectral domain, the stealth signals are hidden in public channel. Our experimental results show that compared with existing schemes where stealth channels are carried by amplified spontaneous emission noise, super-continuum signal can increase the transmission performance and robustness.

  10. High Resolution Pulse Compression Imaging Using Super Resolution FM-Chirp Correlation Method (SCM)

    NASA Astrophysics Data System (ADS)

    Fujiwara, M.; Okubo, K.; Tagawa, N.

    This study addresses the issue of the super-resolution pulse compression technique (PCT) for ultrasound imaging. Time resolution of multiple ultrasonic echoes using the FM-Chirp PCT is limited by the bandwidth of the sweep-frequency. That is, the resolution depends on the sharpness of auto-correlation function. We propose the Super resolution FM-Chirp correlation Method (SCM) and evaluate its performance. This method is based on the multiple signal classification (MUSIC) algorithm. Our simulations were made for the model assuming multiple signals reflected from some scatterers. We confirmed that SCM detects time delay of complicated reflected signals successfully with high resolution.

  11. Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing.

    PubMed

    Hsiao, Wesley Wei-Wen; Hui, Yuen Yung; Tsai, Pei-Chang; Chang, Huan-Cheng

    2016-03-15

    ±1 sublevels. Interestingly, the transitions between the spin sublevels can be optically detected and manipulated by microwave radiation, a technique known as optically detected magnetic resonance (ODMR). In addition, the electron spins have an exceptionally long coherence time, making FND useful for ultrasensitive detection of temperature at the nanoscale. Pump-probe-type nanothermometry with a temporal resolution of better than 10 μs has been achieved with a three-point sampling method. Gold/diamond nanohybrids have also been developed for highly localized hyperthermia applications. This Account provides a summary of the recent advances in FND-enabled technologies with a special focus on long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. These emerging and multifaceted technologies are in synchronicity with modern imaging modalities.

  12. Study on Optimal Grouting Timing for Controlling Uplift Deformation of a Super High Arch Dam

    NASA Astrophysics Data System (ADS)

    Lin, Peng; Zhu, Xiaoxu; Li, Qingbin; Liu, Hongyuan; Yu, Yongjun

    2016-01-01

    A grouting model is developed for use during the grouting of the complex foundation of a super high arch dam. The purpose as to determine the optimal grouting timing and appropriate grouting pressure involved in controlling the uplift deformation of the dam. The model determines the optimal grouting time as the height of the arch dam increases with the concrete pouring, by checking the tensile stresses in the dam against standard specifications. The appropriate grouting pressures are given on the basis of the actual grouting pressures monitored during the upstream riverbed foundation grouting. An engineering procedure, applying the model, was then proposed and used during foundation grouting under the toe block of the Xiluodu super high-arch dam in south-western China. The quality of the foundation grouting was evaluated against the results from pressurized water permeability tests, acoustic wave velocity tests, elastic modulus tests and panoramic photographing of the rockmass on completion of the foundation grouting. The results indicated that the proposed grouting model can be applied to effectively reduce the uplift deformation and associated cracking risk for super high arch dams, and it can be concluded that the proposed engineering grouting procedure is a valuable tool for improving foundation grouting under the toe blocks of a super high arch dam.

  13. High temperature nanoplasmonics

    NASA Astrophysics Data System (ADS)

    Alabastri, Alessandro; Toma, Andrea; Malerba, Mario; De Angelis, Francesco; Proietti Zaccaria, Remo

    2016-09-01

    Metallic nanostructures can be utilized as heat nano-sources which can find application in different areas such as photocatalysis, nanochemistry or sensor devices. Here we show how the optical response of plasmonic structures is affected by the increase of temperature. In particular we apply a temperature dependent dielectric function model to different nanoparticles finding that the optical responses are strongly dependent on shape and aspect-ratio. The idea is that when metallic structures interact with an electromagnetic field they heat up due to Joule effect. The corresponding temperature increase modifies the optical response of the particle and thus the heating process. The key finding is that, depending on the structures geometry, absorption efficiency can either increase or decrease with temperature. Since absorption relates to thermal energy dissipation and thus to temperature increase, the mechanism leads to positive or negative loops. Consequently, not only an error would be made by neglecting temperature but it would be not even possible to know, a priori, if the error is towards higher or lower values.

  14. High temperature lubricating process

    DOEpatents

    Taylor, Robert W.; Shell, Thomas E.

    1982-01-01

    It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  15. High temperature lubricating process

    DOEpatents

    Taylor, R.W.; Shell, T.E.

    1979-10-04

    It has been difficult to provide adequate lubrication for load bearing, engine components when such engines are operating in excess of about 475/sup 0/C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface, such as in an engine being operated at temperatures in excess of about 475/sup 0/C. The process comprises contacting and maintaining the following steps: a gas phase is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant; the gas phase is contacted with the load bearing surface; the load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant; and the solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  16. High-temperature piezoelectric sensing.

    PubMed

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2013-12-20

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  17. High-Temperature Piezoelectric Sensing

    PubMed Central

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2014-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  18. High-temperature bearing lubricants

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.; Parker, R. J.; Zaretsky, E. V.

    1968-01-01

    Synthetic paraffinic oil lubricates ball bearings at temperatures in the 600 degrees F range. The lubricant contains antiwear and antifoam additives, is thermally stable in the high temperature range, but requires protection from oxygen.

  19. High Temperature Superconducting Compounds

    DTIC Science & Technology

    1992-11-30

    power spectral density measurements as a function of temperature, frequency, current, and magnetic field on DyBa2Cu3O7.x ( DBCO ) thin films have been...proceeding. The goals has been to understand the "intrinsic" noise present in DBCO thin films grown on SrTiO3 or LaAlO2 substrates, namely: the

  20. Survival of Plant Tissue at Super-Low Temperatures. IV. Cell Survival with Rapid Cooling and Rewarming

    PubMed Central

    Sakai, A.

    1966-01-01

    Thin unmounted cortical tissue sections from winter twigs of the mulberry tree were held with a thin forceps and rapidly immersed in liquid nitrogen from room temperatures without prefreezing. They were rewarmed; rapidly in water at 10° to 40°, or slowly, in air at room temperatures. In those sections rapidly rewarmed, all survived. None survived in those sections rewarmed slowly in air. Tissue sections mounted between coverglasses with water were extracellulary prefrozen at the temperatures low enough to dehydrate almost all of the freezable water in cells. These sufficiently prefrozen cells could survive immersion in liquid nitrogen, and the survival value was very little affected by the rates of cooling to and rewarming from super-low temperatures. With insufficient prefreezing at higher temperatures, however, the rewarming process seriously influenced the survival value of cells frozen at super-low temperatures. Slow rewarming in air destroyed all of the cells, while rapid rewarming in water at 30° did not affect them. An abrupt decrease in the survival value in insufficiently prefrozen cells during rewarming was also observed at temperatures above approximately −50° following immersion in liquid nitrogen. Very little decrease in the survival value was observed in any of the cells that had been sufficiently prefrozen. These results indicate that cells which are insufficiently prefrozen may contain freezable water which nucleates during rapid cooling in liquid nitrogen and then grows during the subsequent slow rewarming into ice masses which destroy the viability of the cells. Such fatal intracellular freezing rarely occurs in sufficiently prefrozen cells, irrespective of the rate of cooling to or rewarming from super-low temperatures. PMID:16656347

  1. Survival of Plant Tissue at Super-Low Temperatures. IV. Cell Survival with Rapid Cooling and Rewarming.

    PubMed

    Sakai, A

    1966-06-01

    Thin unmounted cortical tissue sections from winter twigs of the mulberry tree were held with a thin forceps and rapidly immersed in liquid nitrogen from room temperatures without prefreezing. They were rewarmed; rapidly in water at 10 degrees to 40 degrees , or slowly, in air at room temperatures. In those sections rapidly rewarmed, all survived. None survived in those sections rewarmed slowly in air.Tissue sections mounted between coverglasses with water were extracellulary prefrozen at the temperatures low enough to dehydrate almost all of the freezable water in cells. These sufficiently prefrozen cells could survive immersion in liquid nitrogen, and the survival value was very little affected by the rates of cooling to and rewarming from super-low temperatures. With insufficient prefreezing at higher temperatures, however, the rewarming process seriously influenced the survival value of cells frozen at super-low temperatures. Slow rewarming in air destroyed all of the cells, while rapid rewarming in water at 30 degrees did not affect them. An abrupt decrease in the survival value in insufficiently prefrozen cells during rewarming was also observed at temperatures above approximately -50 degrees following immersion in liquid nitrogen. Very little decrease in the survival value was observed in any of the cells that had been sufficiently prefrozen.These results indicate that cells which are insufficiently prefrozen may contain freezable water which nucleates during rapid cooling in liquid nitrogen and then grows during the subsequent slow rewarming into ice masses which destroy the viability of the cells. Such fatal intracellular freezing rarely occurs in sufficiently prefrozen cells, irrespective of the rate of cooling to or rewarming from super-low temperatures.

  2. Ion Beam Sweeping using High Temperature Super Conducting Magnet

    SciTech Connect

    Sakai, Shigeki; Fujita, Hideki; King, Tom; Briggs, Neil; Miles, Matt; McCrohon, Mick; Gibson, Simon

    2011-01-07

    Advanced implantation systems used for semiconductor fabrication need to transport low energy ion beams. In this respect it is an advantage to employ a short beam line. Strong magnetic field in a compact footprint can enable shorter beam lines. In this work we report the use of a superconducting magnet to generate the strong magnetic field. We have developed a prototype superconducting AC magnet operating at frequencies of 80-156 Hz to sweep ion beams. We have studied the performance of ion beam sweeping using the AC superconducting magnet.

  3. High Temperature Surface Interactions

    DTIC Science & Technology

    1989-11-01

    yttrium sulfide. Surface segregation studies were conducted employing Auger Electron Spectroscopy (AES) coupled with cyclic oxidation experiments...temperature (530*C) in air. The early stages of oxidation were studied by Auger electron spectroscopy (AES) with depth profiling using inert gas ion...basicity at 927 ’C are shown in Figure 7 . The purpose of such studies is to mfnlmize hot corrosion reactions by selection of an alloy or coating which is

  4. High temperature LSI

    NASA Technical Reports Server (NTRS)

    Dening, D. C.; Ragonese, L. J.; Lee, C. Y.

    1982-01-01

    Integrated injection logic (1,2) technology for reliable operation under a -55 C to +300 C, temperature range is discussed. Experimental measurements indicate that an 80 mv signal swing is available at 300 C with 100 micro A injection current per gate. In addition, modeling results predict how large gate fan-ins can decrease the maximum thermal operational limits. These operational limits and the longterm reliability factors associated with device metallization are evaluated via specialized test mask.

  5. High-Performance Lead-Free Piezoceramics with High Curie Temperatures.

    PubMed

    Lee, Myang Hwan; Kim, Da Jeong; Park, Jin Su; Kim, Sang Wook; Song, Tae Kwon; Kim, Myong-Ho; Kim, Won-Jeong; Do, Dalhyun; Jeong, Il-Kyoung

    2015-11-18

    A bismuth ferrite and barium titanate solid solution compound can achieve good piezoelectric properties with a high Curie temperature when fabricated with low-temperature sintering followed by a water-quenching process, with no complicated grain alignment processes performed. By adding the super-tetragonal bismuth gallium oxide to the compound, the piezoelectric properties are as good as those of lead zirconate titanate ceramics.

  6. High-temperature constitutive modeling

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.; Ellis, J. R.

    1984-01-01

    Thermomechanical service conditions for high-temperature levels, thermal transients, and mechanical loads severe enough to cause measurable inelastic deformation are studied. Structural analysis in support of the design of high-temperature components depends strongly on accurate mathematical representations of the nonlinear, hereditary, inelastic behavior of structural alloys at high temperature, particularly in the relatively small strain range. Progress is discussed in the following areas: multiaxial experimentation to provide a basis for high-temperature multiaxial constitutive relationships; nonisothermal testing and theoretical development toward a complete thermomechanically path dependent formulation of viscoplasticity; and development of viscoplastic constitutive model accounting for initial anisotropy.

  7. Super-dense array of Ge quantum dots grown on Si(100) by low-temperature molecular beam epitaxy

    SciTech Connect

    Talochkin, A. B. Shklyaev, A. A.; Mashanov, V. I.

    2014-04-14

    Ge layer grown on Si(100) at the low temperature of ∼100 °C by molecular beam epitaxy is studied using scanning tunneling microscopy and Raman spectroscopy. It is found that crystalline and pseudomorphic to the Si substrate Ge islands are formed at the initial growth stage. The islands acquire the base size of 1.2–2.6 nm and they form arrays with the super-high density of (5–8) × 10{sup 12} cm{sup −2} at 1–2 nm Ge coverages. Such a density is at least 10 times higher than that of Ge “hut” clusters grown via the Stranski-Krastanov growth mode. It is shown that areas between the crystalline Ge islands are filled with amorphous Ge, which is suggested to create potential barrier for holes localized within the islands. As a result, crystalline Ge quantum dots appear being isolated from each other.

  8. High-temperature-measuring device

    DOEpatents

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  9. Future climate of the Caribbean from a super-high-resolution atmospheric general circulation model

    NASA Astrophysics Data System (ADS)

    Hall, Trevor C.; Sealy, Andrea M.; Stephenson, Tannecia S.; Kusunoki, Shoji; Taylor, Michael A.; Chen, A. Anthony; Kitoh, Akio

    2013-07-01

    Present-day (1979-2003) and future (2075-2099) simulations of mean and extreme rainfall and temperature are examined using data from the Meteorological Research Institute super-high-resolution atmospheric general circulation model. Analyses are performed over the 20-km model grid for (1) a main Caribbean basin, (2) sub-regional zones, and (3) specific Caribbean islands. Though the model's topography underestimates heights over the eastern Caribbean, it captures well the present-day spatial and temporal variations of seasonal and annual climates. Temperature underestimations range from 0.1 °C to 2 °C with respect to the Japanese Reanalysis and the Climatic Research Unit datasets. The model also captures fairly well sub-regional scale variations in the rainfall climatology. End-of-century projections under the Intergovernmental Panel on Climate Change SRES A1B scenario indicate declines in rainfall amounts by 10-20 % for most of the Caribbean during the early (May-July) and late (August-October) rainy seasons relative to the 1979-2003 baselines. The early dry season (November-January) is also projected to get wetter in the far north and south Caribbean by approximately 10 %. The model also projects a warming of 2-3 °C over the Caribbean region. Analysis of future climate extremes indicate a 5-10 % decrease in the simple daily precipitation intensity but no significant change in the number of consecutive dry days for Cuba, Jamaica, southern Bahamas, and Haiti. There is also indication that the number of hot days and nights will significantly increase over the main Caribbean basin.

  10. Friction properties of PTFE, h-BN and Al-4%Cu alloy in a vacuum at super low temperature

    NASA Astrophysics Data System (ADS)

    Yokoi, Koichi; Okada, Katsuzo

    Friction with ploughing components at super low temperature ina vacuum was studied on the soft plates of PTFE, h-BN and Al-4%Cu alloy sliding with the hard pins of 18-8 stainless steel with a pin-on-plate friction tester. The chief finding was that the friction was affected by low temperature ; for all the same load, friction forces of both of PTFE and h-BN were 16K > 300K, that of Al-4%Cu alloy was 16K <300K.

  11. High-temperature conventional superconductivity

    NASA Astrophysics Data System (ADS)

    Eremets, M. I.; Drozdov, A. P.

    2017-02-01

    Conventional superconductors are described well by the Bardeen – Cooper – Schrieffer (BCS) theory (1957) and its related theories, all of which importantly put no explicit limit on transition temperature Tc. While this allows, in principle, room-temperature superconductivity, no such phenomenon has been observed. Since the discovery of superconductivity in 1911, the measured critical temperature of BCS superconductors has not until recently exceeded 39 K. In 2014, hydrogen sulfide under high pressure was experimentally found to exhibit superconductivity at Tc = 200 K, a record high value which greatly exceeds that of the previous class of high-temperature superconductors, the cuprates. The superconductivity mechanism in cuprates has not yet been explained. Over a period of 25 years, the critical temperature of cuprates has not been increased above 164 K. The paper reviews research on record-high Tc superconductivity in hydrogen sulphide and other hydrides. Prospects for increasing Tc to room temperature are also discussed.

  12. High-temperature conventional superconductivity

    NASA Astrophysics Data System (ADS)

    Eremets, M. I.; Drozdov, A. P.

    2016-11-01

    Conventional superconductors are described well by the Bardeen - Cooper - Schrieffer (BCS) theory (1957) and its related theories, all of which importantly put no explicit limit on transition temperature T_c. While this allows, in principle, room-temperature superconductivity, no such phenomenon has been observed. Since the discovery of superconductivity in 1911, the measured critical temperature of BCS superconductors has not until recently exceeded 39 K. In 2014, hydrogen sulfide under high pressure was experimentally found to exhibit superconductivity at T_c=200 K, a record high value which greatly exceeds that of the previous class of high-temperature superconductors, the cuprates. The superconductivity mechanism in cuprates has not yet been explained. Over a period of 25 years, the critical temperature of cuprates has not been increased above 164 K. The paper reviews research on record-high T_c superconductivity in hydrogen sulphide and other hydrides. Prospects for increasing T_c to room temperature are also discussed.

  13. High temperature interface superconductivity

    DOE PAGES

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  14. High temperature interface superconductivity

    SciTech Connect

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, we conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  15. High temperature interface superconductivity

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  16. High-temperature ceramic receivers

    SciTech Connect

    Jarvinen, P. O.

    1980-01-01

    An advanced ceramic dome cavity receiver is discussed which heats pressurized gas to temperatures above 1800/sup 0/F (1000/sup 0/C) for use in solar Brayton power systems of the dispersed receiver/dish or central receiver type. Optical, heat transfer, structural, and ceramic material design aspects of the receiver are reported and the development and experimental demonstration of a high-temperature seal between the pressurized gas and the high-temperature silicon carbide dome material is described.

  17. High Spin Isomers and Super Heavy Elements (SHE) Synthesis

    SciTech Connect

    Popescu, Domitian G.

    2010-04-30

    To get closer to the SHE-Island the new radioactive beams are proposed for future fusion reaction. We suggest something different: to use the advantage of High Spin Isomer States, by tacking into account the importance of the G (spin-isospin cupling) suggested by Ripka 1.

  18. High temperature be panel development

    NASA Technical Reports Server (NTRS)

    Hardesty, R.; Jensen, M.; Grant, L.

    1989-01-01

    Beryllium materials have been used for many aerospace applications over the years. Most of these applications have been fairly ambient environments. The possibility of fabricating beryllium panels for high temperature applications up to 1200 F is investigated. Joining alloys were reviewed, tested and evaluated for high temperature applications.

  19. Super-resolution imaging applied to moving targets in high dynamics scenes

    NASA Astrophysics Data System (ADS)

    Mise, Olegs; Breckon, Toby P.

    2013-10-01

    In modern tracking systems the ability to obtain high quality, high resolution appearance of the tracked target is often highly desirable. However, the reality of operational deployment often means that imaging systems deployed for this task suffer from limitations reducing effective image quality. These limitations can be attributed to a range of causes such as low quality video sensors, system noise, high target dynamics and other environmental noise factors. Despite the advantages of the super-resolution techniques the problem of handling complex motion still remains a challenging task for the effective super-resolution implementation. The computational complexity and large memory requirements required for the implementation of super-resolution imaging largely restrict the usage of these techniques in real-time hardware implementations. In order to improve visual quality of the tracked target and overcome these limitations, we propose a simple yet effective solution that integrates a super-resolution imaging approach based on combination of the Sum of the Absolut Differences (SAD) and gradient-descent motion estimation techniques into a novel tracking approach. In addition, the proposed approach demonstrates robustness in improved target appearance modeling that assists the overall tracking system. The presented results demonstrate this significant improvement in visual target representation whilst tracking over high dynamic scenes. The implementation simplicity of the proposed approach makes it an attractive solution for realization on low power hardware. Such a system can be deployed on small unmanned aerial vehicles (UAV) or other hardware where size, weight and power (SWaP) is of a particular concern.

  20. Magnetorheological elastic super-smooth finishing for high-efficiency manufacturing of ultraviolet laser resistant optics

    NASA Astrophysics Data System (ADS)

    Shi, Feng; Shu, Yong; Dai, Yifan; Peng, Xiaoqiang; Li, Shengyi

    2013-07-01

    Based on the elastic-plastic deformation theory, status between abrasives and workpiece in magnetorheological finishing (MRF) process and the feasibility of elastic polishing are analyzed. The relationship among material removal mechanism and particle force, removal efficiency, and surface topography are revealed through a set of experiments. The chemical dominant elastic super-smooth polishing can be fulfilled by changing the components of magnetorheological (MR) fluid and optimizing polishing parameters. The MR elastic super-smooth finishing technology can be applied in polishing high-power laser-irradiated components with high efficiency, high accuracy, low damage, and high laser-induced damage threshold (LIDT). A 430×430×10 mm fused silica (FS) optic window is polished and surface error is improved from 538.241 nm [peak to valley (PV)], 96.376 nm (rms) to 76.372 nm (PV), 8.295 nm (rms) after 51.6 h rough polishing, 42.6 h fine polishing, and 54.6 h super-smooth polishing. A 50×50×10 mm sample is polished with exactly the same parameters. The roughness is improved from 1.793 nm [roughness average (Ra)] to 0.167 nm (Ra) and LIDT is improved from 9.77 to 19.2 J/cm2 after MRF elastic polishing.

  1. Super-Resolution Reconstruction of High-Resolution Satellite ZY-3 TLC Images

    PubMed Central

    Li, Lin; Wang, Wei; Luo, Heng; Ying, Shen

    2017-01-01

    Super-resolution (SR) image reconstruction is a technique used to recover a high-resolution image using the cumulative information provided by several low-resolution images. With the help of SR techniques, satellite remotely sensed images can be combined to achieve a higher-resolution image, which is especially useful for a two- or three-line camera satellite, e.g., the ZY-3 high-resolution Three Line Camera (TLC) satellite. In this paper, we introduce the application of the SR reconstruction method, including motion estimation and the robust super-resolution technique, to ZY-3 TLC images. The results show that SR reconstruction can significantly improve both the resolution and image quality of ZY-3 TLC images. PMID:28481287

  2. Super-Resolution Reconstruction of High-Resolution Satellite ZY-3 TLC Images.

    PubMed

    Li, Lin; Wang, Wei; Luo, Heng; Ying, Shen

    2017-05-07

    Super-resolution (SR) image reconstruction is a technique used to recover a high-resolution image using the cumulative information provided by several low-resolution images. With the help of SR techniques, satellite remotely sensed images can be combined to achieve a higher-resolution image, which is especially useful for a two- or three-line camera satellite, e.g., the ZY-3 high-resolution Three Line Camera (TLC) satellite. In this paper, we introduce the application of the SR reconstruction method, including motion estimation and the robust super-resolution technique, to ZY-3 TLC images. The results show that SR reconstruction can significantly improve both the resolution and image quality of ZY-3 TLC images.

  3. The Search for High Mass WIMPs with the SuperCDMS Experiment

    NASA Astrophysics Data System (ADS)

    Qiu, Hang; SuperCDMS Collaboration

    2016-03-01

    About 26.8% of the universe mass is contributed from dark matter. Weakly Interacting Massive Particle(WIMP) is currently the most promising dark matter candidate. SuperCDMS is one of the leading direct dark matter detection experiments around the world. Its biggest goal is to use semiconductor detectors under the cryogenic condition to detect WIMPs. Both ionization and phonon signals are read out via our detector sensors during the operation periods. The high threshold analysis aims to search for high mass WIMPs based on the data collected in a 2-year-long period of time from the SuperCDMS experiment setup located at the Soudan mine in Minnesota. In today's presentation, I am going to talk about the approaches towards this goal.

  4. Super soft silicone elastomers with high dielectric permittivity

    NASA Astrophysics Data System (ADS)

    Madsen, Frederikke B.; Yu, Liyun; Hvilsted, Søren; Skov, Anne L.

    2015-04-01

    Dielectric elastomers (DEs) have many favourable properties. The obstacle of high driving voltages, however, limits the commercial viability of the technology at present. Driving voltage can be lowered by decreasing the Young's modulus and increasing the dielectric permittivity of silicone elastomers. A decrease in Young's modulus, however, is often accompanied by the loss of mechanical stability and thereby the lifetime of the DE. New soft elastomer matrices with high dielectric permittivity and low Young's modulus, with no loss of mechanical stability, were prepared by two different approaches using chloropropyl-functional silicone polymers. The first approach was based on synthesised chloropropyl-functional copolymers that were cross-linkable and thereby formed the basis of new silicone networks with high dielectric permittivity (e.g. a 43% increase). These networks were soft without compromising other important properties of DEs such as viscous and dielectric losses as well as electrical breakdown strength. The second approach was based on the addition of commercially available chloropropyl-functional silicone oil to commercial LSR silicone elastomer. Two-fold increase in permittivity was obtained by this method and the silicone oil decreased the Young's modulus significantly. The viscous losses, however, also increased with increasing content of silicone oil. Cross-linkable chloropropyl-functional copolymers offer a new silicone elastomer matrix that could form the basis of dielectric elastomers of the future, whereas the chloropropyl silicone oil approach is an easy tool for improvement of the properties of existing commercial silicone elastomers.

  5. Super high power mid-infrared femtosecond light bullet

    NASA Astrophysics Data System (ADS)

    Panagiotopoulos, Paris; Whalen, Patrick; Kolesik, Miroslav; Moloney, Jerome V.

    2015-08-01

    Mid-infrared ultrashort high energy laser sources are opening up new opportunities in science, including keV-class high harmonic generation and monoenergetic MeV-class proton acceleration. As new higher energy sources become available, potential applications for atmospheric propagation can dramatically grow to include stand-off detection, laser communications, shock-driven remote terahertz enhancement and extended long-lived thermal waveguides to transport high power microwave and radiofrequency waves. We reveal a new paradigm for long-range, low-loss, ultrahigh power ultrashort pulse propagation at mid-infrared wavelengths in the atmosphere. Before the onset of critical self-focusing, energy in the fundamental wave continually leaks into shock-driven spectrally broadened higher harmonics. A persistent near-invariant solitonic leading edge on the multi-terawatt pulse waveform transports most of the power over hundred-metre-long distances. Such light bullets are resistant to uncontrolled multiple filamentation and are expected to spark extensive research in optics, where the use of mid-infrared lasers is currently much under-utilized.

  6. High Temperature Adhesive Systems

    DTIC Science & Technology

    1988-02-01

    only XLVI need be disqualified from the group of silane- functional molecules in Figure 2- 15 . However, the authors also postulated that R2SiH 2 and...Hydrosilation Reaction 2-41 2-14. Commercially Available Silane Monomers 2-42 2- 15 . Phthalocyanine-containing Silane Monomers 2-42 2-16. High Polymer by...Solutions Using FEAP 3- 15 4. Preliminary Test Specimen 3-18 5. Preliminary Test Loading Device with Specimen 3-18 6. Preliminary Test Results. Plot of

  7. SOWFA Super-Controller: A High-Fidelity Tool for Evaluating Wind Plant Control Approaches

    SciTech Connect

    Fleming, P.; Gebraad, P.; van Wingerden, J. W.; Lee, S.; Churchfield, M.; Scholbrock, A.; Michalakes, J.; Johnson, K.; Moriarty, P.

    2013-01-01

    This paper presents a new tool for testing wind plant controllers in the Simulator for Offshore Wind Farm Applications (SOWFA). SOWFA is a high-fidelity simulator for the interaction between wind turbine dynamics and the fluid flow in a wind plant. The new super-controller testing environment in SOWFA allows for the implementation of the majority of the wind plant control strategies proposed in the literature.

  8. Development of a Parching Machine Using Super-Heated Vapor or Super-Heated High-Moisture Atmosphere

    NASA Astrophysics Data System (ADS)

    Sato, Shoichi; Shinsho, Seiji; Iriki, Hiroyuki; Asai, Junya; Suganuma, Hirofumi; Shibata, Tsutomu

    We developed a new parching machine with super-heated vapor or super-heated highmoisture atmosphere as a heat medium, and investigated the influence exerted on the characteristics of manufactured tea and crude tea quality. (1)We developed machine specifications that improved throughput and allowed us to control stable quality compared with the conventional kamairicha parching machine. (2)The new parching machine could not only manufacture like kamairicha but also achieve various degrees of steaming of products like green tea or heavily steamed sencha. (3)The new parching machine could not only deactivate enzymes but dry leaves. (4)The influence of throughput was great with respect to the grade of pan-parched flavour, which meant that there was a contact opportunity for tea leaves and the surface of machine's wall. (5)Unpleasant smells such as that produced in a summer crop of tea were reduced by the new parching machine.

  9. HPVZ: A High Performance Virtual Computing Environment for Super Computers

    NASA Astrophysics Data System (ADS)

    Lu, Kai; Chi, Wanqing; Liu, Yongpeng; Tang, Hongwei

    Because of the features of isolation, security and consolidation, virtual machine technology is widely used in data center for server consolidation, which can support different operating systems or different isolated applications running on a single server. Besides this usage scenario on server systems, there are other scenarios that require more performance, isolation and security than consolidation. Such scenarios include HPC and Cluster for scientific computing. Because of the particularity of system architectures and usage requirements, existing virtual machine techniques cannot be used in HPC directly. Aiming to provide the features of architecture and requirements for HPC, we present a virtual machine technique for HPC system named High Performance Virtual Zone(HPVZ). HPVZ technique is the first complete solution for virtualization of HPC systems, and can provide users an isolated and secure running environment based on the structure of the HPC system. The evaluation shows that the HPVZ technique is the most cost-effective for HPC, compared to other virtual machine techniques.

  10. Variable-intercept panel model for deformation zoning of a super-high arch dam.

    PubMed

    Shi, Zhongwen; Gu, Chongshi; Qin, Dong

    2016-01-01

    This study determines dam deformation similarity indexes based on an analysis of deformation zoning features and panel data clustering theory, with comprehensive consideration to the actual deformation law of super-high arch dams and the spatial-temporal features of dam deformation. Measurement methods of these indexes are studied. Based on the established deformation similarity criteria, the principle used to determine the number of dam deformation zones is constructed through entropy weight method. This study proposes the deformation zoning method for super-high arch dams and the implementation steps, analyzes the effect of special influencing factors of different dam zones on the deformation, introduces dummy variables that represent the special effect of dam deformation, and establishes a variable-intercept panel model for deformation zoning of super-high arch dams. Based on different patterns of the special effect in the variable-intercept panel model, two panel analysis models were established to monitor fixed and random effects of dam deformation. Hausman test method of model selection and model effectiveness assessment method are discussed. Finally, the effectiveness of established models is verified through a case study.

  11. Transmission Level High Temperature Superconducting Fault Current Limiter

    SciTech Connect

    Stewart, Gary

    2016-10-05

    The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high-temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high-temperature superconducting material used evolved from 1st generation (1G) BSCCO-2212 melt cast bulk high-temperature superconductors to 2nd generation (2G) YBCO-based high-temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology, that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. A number of these modules are arranged in an m x n array to form the current-limiting matrix.

  12. High Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The majority of satellites and near-earth probes developed to date have used photovoltaic arrays for power generation. If future mission to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. In this paper, we derive the optimum bandgap as a function of the operating temperature.

  13. SUPER-CHANDRASEKHAR-MASS LIGHT CURVE MODELS FOR THE HIGHLY LUMINOUS TYPE Ia SUPERNOVA 2009dc

    SciTech Connect

    Kamiya, Yasuomi; Tanaka, Masaomi; Nomoto, Ken'ichi; Blinnikov, Sergei I.; Sorokina, Elena I.; Suzuki, Tomoharu

    2012-09-10

    Several highly luminous Type Ia supernovae (SNe Ia) have been discovered. Their high luminosities are difficult to explain with the thermonuclear explosions of Chandrasekhar-mass white dwarfs (WDs). In the present study, we estimate the progenitor mass of SN 2009dc, one of the extremely luminous SNe Ia, using the hydrodynamical models as follows. Explosion models of super-Chandrasekhar-mass (super-Ch-mass) WDs are constructed, and multi-color light curves (LCs) are calculated. The comparison between our calculations and the observations of SN 2009dc suggests that the exploding WD has a super-Ch mass of 2.2-2.4 M{sub Sun }, producing 1.2-1.4 M{sub Sun} of {sup 56}Ni, if the extinction by its host galaxy is negligible. If the extinction is significant, the exploding WD is as massive as {approx}2.8 M{sub Sun }, and {approx}1.8 M{sub Sun} of {sup 56}Ni is necessary to account for the observations. Whether the host-galaxy extinction is significant or not, the progenitor WD must have a thick carbon-oxygen layer in the outermost zone (20%-30% of the WD mass), which explains the observed low expansion velocity of the ejecta and the presence of carbon. Our estimate of the mass of the progenitor WD, especially for the extinction-corrected case, is challenging to the current scenarios of SNe Ia. Implications for the progenitor scenarios are also discussed.

  14. Photometric Redshifts for High Resolution Radio Galaxies in the SuperCLASS Field

    NASA Astrophysics Data System (ADS)

    Manning, Sinclaire; Casey, Caitlin; Battye, Richard; Hales, Christopher A.; Chapman, Scott; Smail, Ian; SuperCLASS Team

    2017-01-01

    SuperCLASS (the Super-Cluster Assisted Shear Survey) is a deep, wide-area (~2 square degrees) extragalactic field with high resolution (0.1”) radio continuum coverage from e-MERLIN (Multi-Element Radio Linked Interferometer Network.) The combination of sensitivity and spatial resolution make e-MERLIN an ideal tool to trace spatially resolved star-formation in heavily obscured, dusty star-forming galaxies (DSFGs). Plus, thanks to the tight relationship between radio continuum and far-IR observations we have an observationally inexpensive and accurate method of mapping star formation density in distant galaxies. We present a photometric redshift catalog for DSFGs located in the SuperCLASS field. Multiwavelength photometric data was obtained with Subaru SuprimeCam (B,V,r,i,z) and photometric redshifts were generated using the public photometric redshift code, EAZY. With these redshifts we aim to conduct the first large sample morphological analysis of z~1-3 obscured galaxies. We plan to address two important questions: 1) Are the majority of obscured SFR>50 Msolar/yr galaxies driven by major collisions? and 2) do luminous active galactic nuclei (AGN) play a crucial role in the quenching of highly obscured star-formation? These photometric redshifts are crucial in determining the physical origins of our DSFG sample and to also conduct radio weak lensing experiments with the e-MERLIN dataset.

  15. Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging

    NASA Astrophysics Data System (ADS)

    Wei, Lu; Zhu, Xinxin; Chen, Zhixing; Min, Wei

    2014-02-01

    Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging-depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus. The resulting image contrasts all exhibit a higher-order (third- or fourth- order) nonlinear signal dependence on laser intensity than that in the standard TPFM. Both the physical principles and the imaging demonstrations will be provided for each super-nonlinear microscopy. In all these techniques, the created super-nonlinearity significantly enhances the imaging contrast and concurrently extends the imaging depth-limit of TPFM. Conceptually different from conventional multiphoton processes mediated by virtual states, our strategy constitutes a new class of fluorescence microscopy where high-order nonlinearity is mediated by real population transfer.

  16. Studies of high temperature superconductors

    SciTech Connect

    Narlikar, A. )

    1990-01-01

    With the pioneering discovery of high temperature superconductors in 1986 superconductivity has ceased to remain an area of mere academic curiosity and a preserve of a small community of low temperature physicists and cryogenists. Renouncing their cold confines freed from the grip of liquid helium, superconductors have stepped into the realm of high temperatures. The area has transformed into a rich field of intensive and highly competitive research, encompassing diverse disciplines such as: structural chemistry, ceramic engineering, metallurgy, solid state electronics, experimental and theoretical, and condensed matter physics.

  17. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  18. Ceramic Adhesive for High Temperatures

    NASA Technical Reports Server (NTRS)

    Stevens, Everett G.

    1987-01-01

    Fused-silica/magnesium-phosphate adhesive resists high temperatures and vibrations. New adhesive unaffected by extreme temperatures and vibrations. Assuring direct bonding of gap filters to tile sidewalls, adhesive obviates expensive and time-consuming task of removal, treatment, and replacement of tiles.

  19. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  20. Development of high strength, high temperature ceramics

    NASA Technical Reports Server (NTRS)

    Hall, W. B.

    1982-01-01

    Improvement in the high-pressure turbopumps, both fuel and oxidizer, in the Space Shuttle main engine were considered. The operation of these pumps is limited by temperature restrictions of the metallic components used in these pumps. Ceramic materials that retain strength at high temperatures and appear to be promising candidates for use as turbine blades and impellers are discussed. These high strength materials are sensitive to many related processing parameters such as impurities, sintering aids, reaction aids, particle size, processing temperature, and post thermal treatment. The specific objectives of the study were to: (1) identify and define the processing parameters that affect the properties of Si3N4 ceramic materials, (2) design and assembly equipment required for processing high strength ceramics, (3) design and assemble test apparatus for evaluating the high temperature properties of Si3N4, and (4) conduct a research program of manufacturing and evaluating Si3N4 materials as applicable to rocket engine applications.

  1. Room-temperature detection of a single 19 nm super-paramagnetic nanoparticle with an imaging magnetometer

    NASA Astrophysics Data System (ADS)

    Gould, Michael; Barbour, Russell J.; Thomas, Nicole; Arami, Hamed; Krishnan, Kannan M.; Fu, Kai-Mei C.

    2014-08-01

    We demonstrate room temperature detection of isolated single 19 nm super-paramagnetic nanoparticles (SPNs) with a wide-field optical microscope platform suitable for biological integration. The particles are made of magnetite (Fe3O4) and are thus non-toxic and biocompatible. Detection is accomplished via optically detected magnetic resonance imaging using nitrogen-vacancy defect centers in diamond, resulting in a DC magnetic field detection limit of 2.4 μT. This marks a large step forward in the detection of SPNs, and we expect that it will allow for the development of magnetic-field-based biosensors capable of detecting a single molecular binding event.

  2. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Shorey, Mark W.; Steinetz, Bruce (Technical Monitor)

    2000-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 lb payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs. During the first phase of this program the existing launch vehicle control surface sealing concepts were reviewed, the aerothermal environment for a high temperature seal design was analyzed and a mock up of an arc-jet test fixture for evaluating seal concepts was fabricated.

  3. High temperature structural insulating material

    DOEpatents

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  4. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-06

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  5. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  6. High density harp for SSCL linac. [Suerconducting Super Collider Laboratory (SSCL)

    SciTech Connect

    Fritsche, C.T.; Krogh, M.L. . Bendix Kansas City Div.); Crist, C.E. )

    1993-05-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities.

  7. High temperature current mirror amplifier

    DOEpatents

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  8. Highly selective creation of hydrophilic micro-craters on super hydrophobic surface using electrohydrodynamic jet printing

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyun; Hwang, Sangyeon; Prasetyo, Fariza Dian; Nguyen, Vu Dat; Hong, Jungwoo; Shin, Jennifer H.; Byun, Doyoung

    2014-11-01

    Selective surface modification is considered as an alternative to conventional printing techniques in high resolution patterning. Here, we present fabrication of hydrophilic patterns on the super hydrophobic surface, which makes structure on the hydrophilic region. The super hydrophobic surface is able to be chemically changed to hydrophilic with alcohols. As a consecutive process, electrohydrodynamic (EHD) jet printing was utilized to fabricate local hydrophilic craters with 30-200 μm sizes. 3 kinds of target liquids were deposited well on hydrophilic region; PEDOT (poly 3,4 ethylenediocythiophene), polystyrene nano-particles, and salmonella bacteria medium. Additionally, qualitative analysis were presented for modification mechanism and surface properties on super hydrophobic/hydrophilic by analysis of surface energy with contact angle, SEM (scanning electron microscopy) image, and SIMS (secondary ion mass spectroscopy) analysis. This new simple modification method provides possibility to be utilizing in bio-patterning engineering such as cell culturing microchip and lab on a chip. This research was supported by the Basi Science Research Program through the National Research Foundation of Korea (NRF) (Grand Number: 2014-023284).

  9. A method for temperature estimation in high-temperature geothermal reservoirs by using synthetic fluid inclusions

    NASA Astrophysics Data System (ADS)

    Ruggieri, Giovanni; Orlando, Andrea; Chiarantini, Laura; Borrini, Daniele; Weisenberger, Tobias B.

    2016-04-01

    Super-hot geothermal systems in magmatic areas are a possible target for the future geothermal exploration either for the direct exploitation of fluids or as a potential reservoirs of Enhanced Geothermal Systems. Reservoir temperature measurements are crucial for the assessment of the geothermal resources, however temperature determination in the high-temperature (>380°C) zone of super-hot geothermal systems is difficult or impossible by using either mechanical temperature and pressure gauges (Kuster device) and electronic devices. In the framework of Integrated Methods for Advanced Geothermal Exploration (IMAGE) project, we developed a method to measure high reservoir temperature by the production of synthetic fluid inclusions within an apparatus that will be placed in the high-temperature zone of geothermal wells. First experiments were carried out by placing a gold capsule containing pre-fractured quartz and an aqueous solution (10 wt.% NaCl + 0.4 wt.% NaOH) in an externally heated pressure vessel. Experimental pressure-temperature conditions (i.e. 80-300 bars and 280-400°C) were set close to the liquid/vapour curve of pure H2O or along the H2O critical isochore. The experiments showed that synthetic fluid inclusions form within a relatively short time (even in 48 hours) and that temperatures calculated from homogenization temperatures and isochores of newly formed inclusions are close to experimental temperatures. A second set of laboratory experiments were carried out by using a stainless steel micro-rector in which a gold capsule (containing the pre-fractured quartz and the aqueous solution) was inserted together with an amount of distilled water corresponding to the critical density of water. These experiments were conducted by leaving the new micro-reactor within a furnace at 400°C and were aimed to reproduce the temperature existing in super-hot geothermal wells. Synthetic fluid inclusions formed during the experiments had trapping temperature

  10. Effect of chemical etching and mechanical polishing on the transformation-temperature of super elastic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Pattabi, Manjunatha; Murari, M. S.

    2013-06-01

    Effect of chemical etching and mechanical polish on the transformation temperature and growth of R-Phase in super elastic NiTi shape memory alloy have been studied in this paper. It has been observed that the transformation temperature of sample subjected to mechanical polish (HT660MP) is lower than that of samples subjected to chemical etching (HT660CE). With initial thermal cycle the phase transformation temperature get lowered for both the samples and for higher number of thermal cycle the single step transformation A→M changes to A→R→M. Because of the mechanical work the intermediate R-Phase appears at higher number of thermal cycle (N) for HT660MP compared to that of HT660CE.

  11. The Very High Temperature Reactor

    SciTech Connect

    Hans D. Gougar; David A. Petti

    2011-06-01

    The High Temperature Reactor (HTR) and Very High Temperature Reactor (VHTR) are types of nuclear power plants that, as the names imply, operate at temperatures above those of the conventional nuclear power plants that currently generate electricity in the US and other countries. Like existing nuclear plants, heat generated from the fission of uranium or plutonium atoms is carried off by a working fluid and can be used generate electricity. The very hot working fluid also enables the VHTR to drive other industrial processes that require high temperatures not achievable by conventional nuclear plants (Figure 1). For this reason, the VHTR is being considered for non-electrical energy applications. The reactor and power conversion system are constructed using special materials that make a core meltdown virtually impossible.

  12. Survey of Close-in Super-Earths Using a New Generation Optical High Resolution Spectrograph

    NASA Astrophysics Data System (ADS)

    Sithajan, Sirinrat; Ge, J.; Muterspaugh, M. W.; Varosi, F.; Li, R.; Ma, B.; Thomas, N. B.; Wang, J.; Barnes, R.; Maxwell, T.

    2014-01-01

    A number of planets discovered using various ground-based and space-based surveys have allowed us to begin to study their statistical properties and find clues for their formation mechanisms. However, due to the traditionally adopted survey strategy, which is to observe stars with variable observational cadences (“run and gun” style), of high precision radial velocity (RV) surveys, the resulting survey completeness is usually low, especially at the low mass regime. This prevents us from obtaining critical data needed to investigate the statistical properties and formation mechanisms of low mass planet populations. We have designed a deep and homogeneous RV survey of ~500 nearby bright FGKM dwarfs for detecting low mass planets in 2014-2017 with a totally different survey strategy and cadence. This survey will observe every selected (bright, inactive, F5V to M4V) star ~100 times randomly spread over 300 days using our new generation extremely high Doppler precision optical spectrograph, called EXtremely high Precision ExtrasolaR planet Tracker III (EXPERT-III) 1 m/s precision), at the Automatic Spectroscopic Telescope (AST), a 2-m robotic telescope at Fairborn Observatory in Arizona. The flexible queue schedule offered by this robotic telescope greatly facilitates this high precision and high cadence survey. We have demonstrated the survey performance and predicted results through simulations. They show that an unprecedented high completeness sample of close-in super-Earths can be achieved. Therefore, this survey will not only precisely measure statistical properties of the close-in super Earth population largely uncovered by the Kepler mission, but also offer a uniquely homogeneous sample to constrain various planet formation models. Furthermore, this survey has a great sensitivity to probe super-Earth planets in habitable zones around K and M dwarfs.

  13. High-density channel model and detection method for signal readout from super-resolution near-field structure discs

    NASA Astrophysics Data System (ADS)

    Hosogai, Shota; Ansai, Tsutomu; Yoshinari, Takehisa; Tanabe, Takaya

    2016-09-01

    Although a readout method using the super-resolution near-field structure (super-RENS) effect can overcome diffraction limits, readout characteristics for greatly surpassed high-density conditions do not become clear, because a high-density channel function having a differential response property is superimposed on a normal readout function. We propose a high-density channel model to indicate the properties of the super-RENS effect directly. This model can be expressed as a differential response function using the finite impulse response (FIR) filter model. It expresses the super-RENS readout process, which is divided on the basis of recording densities such as high and normal Blu-ray Disc™ densities. We estimated the properties of super-RENS readout signals by comparison between theoretical expressions and experiments. Results show that good signal quality require readout signals having sharp peaks and smaller offsets. We also evaluated the channel model by adding an adaptive FIR filter and a Viterbi decoder by simulations. Results show that the super-RENS disc can achieve a fourfold higher recording density if the signal-to-noise ratio (S/N) is improved to 6 dB in the case of partial response (PR) (1 + D + D 2).

  14. High temperature Seebeck coefficient metrology

    SciTech Connect

    Martin, J.; Tritt, T.; Uher, C.

    2010-12-15

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectric measurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  15. Gallium phosphide high temperature diodes

    NASA Technical Reports Server (NTRS)

    Chaffin, R. J.; Dawson, L. R.

    1981-01-01

    High temperature (300 C) diodes for geothermal and other energy applications were developed. A comparison of reverse leakage currents of Si, GaAs, and GaP was made. Diodes made from GaP should be usable to 500 C. A Liquid Phase Epitaxy (LPE) process for producing high quality, grown junction GaP diodes is described. This process uses low vapor pressure Mg as a dopant which allows multiple boat growth in the same LPE run. These LPE wafers were cut into die and metallized to make the diodes. These diodes produce leakage currents below ten to the -9th power A/sq cm at 400 C while exhibiting good high temperature rectification characteristics. High temperature life test data is presented which shows exceptional stability of the V-I characteristics.

  16. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  17. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  18. High temperature electronic gain device

    DOEpatents

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  19. Temperature optimization of high con

    NASA Astrophysics Data System (ADS)

    Sabry, M.

    2016-06-01

    Active cooling is essential for solar cells operating under high optical concentration ratios. A system comprises four solar cells that are in thermal contact on top of a copper tube is proposed. Water is flowing inside the tube in order to reduce solar cells temperature for increasing their performance. Computational Fluid Dynamics (CFD) simulation of such system has been performed in order to investigate the effect of water flow rate, tube internal diameter, and convective heat transfer coefficient on the temperature of the solar cells. It is found that increasing convective heat transfer coefficient has a significant effect on reducing solar cells temperatures operating at low flow rates and high optical concentration ratios. Also, a further increase of water flow rate has no effect on reducing cells temperatures.

  20. HIgh Temperature Photocatalysis over Semiconductors

    NASA Astrophysics Data System (ADS)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  1. Development of a super high speed motor-generator and controller

    SciTech Connect

    Hong, Do-Kwan Ahn, Min-Hyuk; Joo, Dae-Suk; Woo, Byung-Chul; Koo, Dae-Hyun

    2014-05-07

    To develop a super high speed motor-generator, it is essential to deal with magnetic analysis, dynamic analysis, and experimental evaluation of the heart of the MTG (Microturbine Generator) system, the motor-generator. An amorphous core is applied to a stator core for reduction of iron loss at high speed, and the motor-generator is analyzed with considerations focused on magnetic losses and the statistical optimum design. The performance of the amorphous core is validated by the analysis and experiment by back-to-back tests considering the AC load. Rotor dynamics is performed for dynamic stability at high speed using transient analysis orbit diagrams and compared with the experimental results. The simulation results of the generator are compared with the experiment. Also a super high speed controller of the MTG system is developed using a sensorless algorithm, power stack, gate driver, digital signal processing, analog circuit, and radiation heat design. Based on these results, a high speed motor-generator and controller are successfully developed.

  2. Metal-Silicate Equilibration at Super-Liquidus Temperatures During Core Formation

    NASA Astrophysics Data System (ADS)

    Hernlund, J. W.; Ichikawa, H.; Labrosse, S.; Kameyama, M.

    2014-12-01

    Experimental constraints on the partitioning of moderately siderophile elements between metal and silicates during core formation suggest equilibration temperatures significantly greater than the liquidus of the silicate Earth (e.g., Wade and Wood, 2005). However, because equilibration was considered to occur in a ponded metal at the silicate solidus, such high temperature equilibration was rejected as implausible. Instead, lower temperature equilibration with variable oxygen fugacity was proposed as an alternative, although the plausibility of the physical mechanisms invoked in this scenario is also questionable. We have re-visited the model of metal-silicate separation in large molten pockets following energetic accretion events, and find that silicate-metal equlibration is most rapid when the iron rains out of the magma, and the release of gravitational potential energy by this rain heats the mixture by as much as 1000 K above the liquidus. However, the first drops of iron rain to pond at the base of the molten pocket will equilibrate at lower temperatures, and only the final drops will be subject to the highest temperatures. We model rain fall and heating of the magma by viscous dissipation to calculate the effective pressure-temperature conditions for partitioning in this scenario, and find that effective pressure conditions are smaller than the pressure at the base of the molten pocket. The ponded metal itself is gravitationally stratified (both in composition and temperature), and is not expected to convect or mix until it undergoes subsequent downward transport into the Earth's core. We also suggest that such a process operating during the very largest giant impact events (extending into the deep mantle) may have given rise to a buoyant oxygen-enriched metal layer atop the outer core, as suggested by some seismological models of the present-day Earth (e.g., Helffrich and Kaneshima, 2010). References: Helffrich, G. and S. Kaneshima (2010), Outer

  3. High Temperature Transparent Furnace Development

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  4. Interface high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-12-01

    Cuprate high-temperature superconductors consist of two quasi-two-dimensional (2D) substructures: CuO2 superconducting layers and charge reservoir layers. The superconductivity is realized by charge transfer from the charge reservoir layers into the superconducting layers without chemical dopants and defects being introduced into the latter, similar to modulation-doping in the semiconductor superlattices of AlGaAs/GaAs. Inspired by this scheme, we have been searching for high-temperature superconductivity in ultra-thin films of superconductors epitaxially grown on semiconductor/oxide substrates since 2008. We have observed interface-enhanced superconductivity in both conventional and unconventional superconducting films, including single atomic layer films of Pb and In on Si substrates and single unit cell (UC) films of FeSe on SrTiO3 (STO) substrates. The discovery of high-temperature superconductivity with a superconducting gap of ∼20 meV in 1UC-FeSe/STO has stimulated tremendous interest in the superconductivity community, for it opens a new avenue for both raising superconducting transition temperature and understanding the pairing mechanism of unconventional high-temperature superconductivity. Here, we review mainly the experimental progress on interface-enhanced superconductivity in the three systems mentioned above with emphasis on 1UC-FeSe/STO, studied by scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy and transport experiments. We discuss the roles of interfaces and a possible pairing mechanism inferred from these studies.

  5. High-Temperature Optical Sensor

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.

    2010-01-01

    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  6. Ultrafast spectroscopy of super high frequency mechanical modes of doubly clamped beams

    NASA Astrophysics Data System (ADS)

    Ristow, Oliver; Merklein, Moritz; Grossmann, Martin; Hettich, Mike; Schubert, Martin; Bruchhausen, Axel; Grebing, Jochen; Erbe, Artur; Mounier, Denis; Gusev, Vitalyi; Scheer, Elke; Dekorsy, Thomas; Barretto, Elaine C. S.

    2013-12-01

    We use ultrafast pump-probe spectroscopy to study the mechanical vibrations in the time domain of doubly clamped silicon nitride beams. Beams with two different clamping conditions are investigated. Finite element method calculations are performed to analyse the mode spectra of both structures. By calculating the strain integral on the surface of the resonators, we are able to reproduce the effect of the detection mechanism and identify all the measured modes. We show that our spectroscopy technique combined with our modelling tools allow the investigation of several different modes in the super high frequency range (3-30 GHz) and above, bringing more information about the vibration modes of nanomechanical resonators.

  7. Stabilization of high and low solids Consolidated Incinerator Facility (CIF) waste with super cement

    SciTech Connect

    Walker, B.W.

    2000-01-11

    This report details solidification activities using selected Mixed Waste Focus Area technologies with the High and Low Solid waste streams. Ceramicrete and Super Cement technologies were chosen as the best possible replacement solidification candidates for the waste streams generated by the SRS incinerator from a list of several suggested Mixed Waste Focus Area technologies. These technologies were tested, evaluated, and compared to the current Portland cement technology being employed. Recommendation of a technology for replacement depends on waste form performance, process flexibility, process complexity, and cost of equipment and/or raw materials.

  8. A robotic, compact, and extremely high resolution optical spectrograph for a close-in super-Earth survey

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Powell, Scott; Zhao, Bo; Varosi, Frank; Ma, Bo; Sithajan, Sirinrat; Liu, Jian; Li, Rui; Grieves, Nolan; Schofield, Sidney; Avner, Louis; Jakeman, Hali; Yoder, William A.; Gittelmacher, Jakob A.; Singer, Michael A.; Muterspaugh, Matthew; Williamson, Michael; Maxwell, J. E.

    2014-08-01

    One of the most astonishing results from the HARPS and Kepler planet surveys is the recent discovery of close-in super-Earths orbiting more than half of FGKM dwarfs. This new population of exoplanets represents the most dominant class of planetary systems known to date, is totally unpredicted by the classical core-accretion disk planet formation model. High cadence and high precision Doppler spectroscopy is the key to characterize properties of this new population and constrain planet formation models. A new robotic, compact high resolution optical spectrograph, called TOU (formerly called EXPERT-III), was commissioned at the Automatic Spectroscopic Telescope (AST) at Fairborn Observatory in Arizona in July 2013 and has produced a spectral resolution of about 100,000 and simultaneous wavelength coverage of 0.38-0.9 μm with a 4kx4k back-illuminated Fairchild CCD detector. The instrument holds a very high vacuum of 1 micro torr and about 2 mK temperature stability over a month. The early on-sky RV measurements show that this instrument is approaching a Doppler precision of 1 m/s (rms) for bright reference stars (such as Tau Ceti) with 5 min exposures and better than 3 m/s (P-V, RMS~1 m/s) daily RV stability before calibration exposures are applied. A pilot survey of 20 V<9 FGK dwarfs, including known super-Earth systems and known RV stable stars, is being launched and every star will be observed ~100 times over ~300 days time window between this summer and next spring, following up with a full survey of ~150 V< 10 FGKM dwarfs in 2015-2017.

  9. High temperature current mirror amplifier

    DOEpatents

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  10. High temperature superconductor current leads

    DOEpatents

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  11. High temperature solar thermal technology

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.; Hanseth, E. J.; Peelgren, M. L.

    1980-01-01

    Some advanced technology concepts under development for high-temperature solar thermal energy systems to achieve significant energy cost reductions and performance gains and thus promote the application of solar thermal power technology are presented. Consideration is given to the objectives, current efforts and recent test and analysis results in the development of high-temperature (950-1650 C) ceramic receivers, thermal storage module checker stoves, and the use of reversible chemical reactions to transport collected solar energy. It is pointed out that the analysis and testing of such components will accelerate the commercial deployment of solar energy.

  12. "Green" High-Temperature Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    1998-01-01

    PMR-15 is a processable, high-temperature polymer developed at the NASA Lewis Research Center in the 1970's principally for aeropropulsion applications. Use of fiber-reinforced polymer matrix composites in these applications can lead to substantial weight savings, thereby leading to improved fuel economy, increased passenger and payload capacity, and better maneuverability. PMR-15 is used fairly extensively in military and commercial aircraft engines components seeing service temperatures as high as 500 F (260 C), such as the outer bypass duct for the F-404 engine. The current world-wide market for PMR-15 materials (resins, adhesives, and composites) is on the order of $6 to 10 million annually.

  13. High temperature solar thermal technology

    NASA Astrophysics Data System (ADS)

    Leibowitz, L. P.; Hanseth, E. J.; Peelgren, M. L.

    1980-11-01

    Some advanced technology concepts under development for high-temperature solar thermal energy systems to achieve significant energy cost reductions and performance gains and thus promote the application of solar thermal power technology are presented. Consideration is given to the objectives, current efforts and recent test and analysis results in the development of high-temperature (950-1650 C) ceramic receivers, thermal storage module checker stoves, and the use of reversible chemical reactions to transport collected solar energy. It is pointed out that the analysis and testing of such components will accelerate the commercial deployment of solar energy.

  14. High Temperature Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    1985-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.

  15. High temperature superconductor current leads

    DOEpatents

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  16. High temperature polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Serafini, Tito T. (Editor)

    1987-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) Characterization; (4) environmental effects; and (5) applications.

  17. Low temperature bainitic ferrite: Evidence of carbon super-saturation and tetragonality

    SciTech Connect

    Garcia-Mateo, C.; Jimenez, J. A.; Yen, Hung-Wei; Miller, Michael K.; Morales-Rivas, L; Kuntz, M; Ringer, S. P.; Yang, Jer-Ren; Caballero, Francesca G.

    2015-03-31

    Experimental evidence indicates that bainitic ferrite formed by transformation at low temperatures (200-350 °C) includes quantities of carbon in solid solution far beyond those expected from para-equilibrium. A change in the conventional symmetry of the bainitic ferrite lattice from cubic to tetragonal explains the abnormal solid solubility detected. This carbon supersaturation was measured by atom probe tomography, and the tetragonality of the bainitic ferrite, was characterized by means of X-ray diffraction analysis and high resolution transmission electron microscopy.

  18. Low temperature bainitic ferrite: Evidence of carbon super-saturation and tetragonality

    DOE PAGES

    Garcia-Mateo, C.; Jimenez, J. A.; Yen, Hung-Wei; ...

    2015-03-31

    Experimental evidence indicates that bainitic ferrite formed by transformation at low temperatures (200-350 °C) includes quantities of carbon in solid solution far beyond those expected from para-equilibrium. A change in the conventional symmetry of the bainitic ferrite lattice from cubic to tetragonal explains the abnormal solid solubility detected. This carbon supersaturation was measured by atom probe tomography, and the tetragonality of the bainitic ferrite, was characterized by means of X-ray diffraction analysis and high resolution transmission electron microscopy.

  19. Nonlinear plasmonics at high temperatures

    NASA Astrophysics Data System (ADS)

    Sivan, Yonatan; Chu, Shi-Wei

    2017-01-01

    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  20. Nonlinear plasmonics at high temperatures

    NASA Astrophysics Data System (ADS)

    Sivan, Yonatan; Chu, Shi-Wei

    2016-10-01

    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  1. High temperature in absorption measurements

    NASA Astrophysics Data System (ADS)

    Krech, R. H.; Pugh, E. R.

    1981-09-01

    The temperature dependence of the absorption coefficient of water vapor was measured to determine the feasibility of using water vapor as a molecular seed to couple 10.6 micrometer CO2 laser radiation into a propellant for use in a high performance laser heated rocket thruster. A series of shock tube experiments were performed to determine the temperature dependence of the absorption coefficient of water vapor at high temperatures on the P(16), P(18) and P(20) 10.6 micrometer CO2 laser transitions. Measurements were made behind both incident and reflected shock waves encompassing a temperature range from 600 K to 3700 K at pressures from 1 to 40 atmospheres in 2, 5, and 10 mole percent water vapor in argon gas mixtures. Within the spectral range (944 to 948 cm) covered, no significant variation in the absorption coefficient was observed as a function of laser wavelength, water concentration, total pressure, or collision partner. Observations suggest that the water lines are sufficiently broadened to act as a continuum absorber under conditions to be found in a laser-heated rocket thruster. The measured laser high temperature absorption coefficients are 50 percent lower than the values obtained from the Ludwig empirical curve fit to low resolution data.

  2. Fatigue Fracture Behavior of High-Strength Steel in Super Long Life Range

    NASA Astrophysics Data System (ADS)

    Murakami, Ri-Ichi; Yonekura, Daisuke; Ni, Zhengdong

    Long term cantilever-type rotational bending fatigue tests of up to 109 cycles were carried out on high carbon chromium bearing steel, SUJ2. The fatigue fracture behavior of SUJ2 in the super long life range was discussed based on scanning electron microscope observations and fracture mechanics. Fatigue failure occurred when the number of cycles exceeded 107. In the super long life range, the fish-eye-type fracture and the subsurface-type fracture were observed. In the fish-eye-type fracture, the stress intensity factor calculated from the area of the facet region was independent of the number of cycles to failure and was almost constant at 5.4MPa• m1/2. In the subsurface-type fracture, high carbon segregation was observed at the crack initiation area. The stress intensity factor for the carbon segregation area was close to 5.0MPam1/2. Pure fatigue crack was initiated from the area outside the facet region or the high carbon segregation area.

  3. Fundamentals and recent results of super high-efficiency solar cells

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masafumi; Ikeda, Kazuma; Takamoto, Tatsuya; Kojima, Nobuaki; Ohshita, Yoshio

    2014-06-01

    III-V compound multi-junction (MJ) solar cells have great potential for space and terrestrial applications because they have high efficiency potential of more than 50% and superior radiation-resistance. Recently, more than 40% efficiency cells were reported by Fraunhofer ISE, Spectrolab, Sharp and others. Concentrator 4-junction or 5-junction solar cells have great potential for realizing super high-efficiency of over 50%. In order to realize super high-efficiency of more than 50%, it is substantially important to understand and reduce several losses of solar cells. This paper reviews loss mechanism for III-V compound solar cells and MJ solar cells. In addition, recent results under the EU-Japan Collaborative Research on Concentrator Photovoltaics are also presented. The conversion efficiency of inverted epitaxially grown InGaP/GaAs/InGaAs triple-junction solar cells has been improved to 37.9% (1-sun, AM1.5G) and 44.4% (250- 300 suns) as a result of proposing double-hetero structure wide-band-gap tunnel junctions, and inverted epitaxial growth.

  4. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

  5. High Temperature SHM/NDE

    DTIC Science & Technology

    2009-09-04

    durability and reliability Integrated Sensors High Temperature network (e.g. silicon carbide) AFOSR-MURI Functionally Graded Hybrid Composites...Strain under voltage potential •  Produce potential when strained + + + + - - - - + + + + - - - - STANDARD PZTs Sensors...PI/ PZT /SWNT   Texas A&M (SO) AFOSR-MURI Functionally Graded Hybrid Composites Sensors Development: Nanomaterials Conductivity changes Strain

  6. High-temperature plasma physics

    SciTech Connect

    Furth, H.P.

    1988-03-01

    Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics.

  7. A solar high temperature kiln

    NASA Astrophysics Data System (ADS)

    Huettenhoelscher, N.; Bergmann, K.

    1981-11-01

    The feasibility of using solar energy in developing countries for baking ceramic construction materials was investigated. The solar high temperature kiln is described. It uses two parabolic concentrators which direct available radiation into the baking chamber. The Sun tracker has only one axis. Preliminary test results with the prototype kiln were satisfactory.

  8. On the stability of thermal stratification of highly compressible fluids with depth-dependent physical properties: implications for the mantle convection of super-Earths

    NASA Astrophysics Data System (ADS)

    Kameyama, Masanori; Kinoshita, Yuya

    2013-12-01

    We examined in an analytical manner the stability of thermal stratification of highly compressible fluids with depth-dependent physical properties, to obtain the fundamental insights into the convective motion in the mantles of `super-Earths'. We consider a stability in a horizontal layer of a highly compressible fluid, which is in a hydrostatic (motionless) state under a uniform gravitational field. As a model of pressure-dependence in material properties, we employed an exponential decrease in thermal expansivity and exponential increase in thermal conductivity with depth. By using the `parcel method' as in meteorological studies, we investigated the change in the static stability of thermal stratification depending on the adiabatic compression as well as the depth-dependence of thermal expansivity and conductivity, with a special emphasis on the changes in the depth ranges (or the vertical extent) of unstable thermal stratifications. We found that a large thermal expansivity at depth tends to suppress the instability within the entire layer of compressible fluids, as opposed to the cases with incompressible ones. This means that the effect of adiabatic compression is of crucial importance in the understanding the mantle dynamics of super-Earths. We also found that, for the conditions relevant to super-Earths of 10 times mass of the Earth's, the stability of thermal stratification significantly varies. For example, the stratification is unstable in the entire layer only for a strong decrease in thermal expansivity with depth and/or low surface temperature. If this condition is not met, the fluid layer will be split into a `troposphere' and `stratosphere', depending on the stable or unstable thermal stratification. In addition, for the cases with extremely high surface temperature, a stratification can be stable even in the entire depth range of the fluid layer. The present findings may imply that the models of thermal evolution of super-Earths have to be

  9. Dedicated Searches for Low and High Mass Wimps with the SuperCDMS Soudan iZIP Detectors

    SciTech Connect

    Welliver, Bradford

    2016-01-01

    Recent cosmological evidence suggests most of the mass of the universe takes the form of a type of particle that we have not been able to directly detect. Nearly 80 years that have elapsed since the rst hints of this dark matter started to appear from astronomers without any direct detection. The high precision era of cosmology and unifying models of particle physics developed in the 20 th century have presented us with an exciting mystery at the intersection of these two elds that needs to be solved. SuperCDMS Soudan operates specialized germanium detectors (iZIPs) that are cooled to milliKelvin temperatures deep underground in the Soudan Underground Laboratory with the hope of detecting a rare collision between dark matter and a nucleus. A search for low-mass dark matter comes with multiple unique challenges since the background discrimination abilities of these detectors becomes less powerful at the low energies needed to probe low-mass dark matter since the signal to noise ratio deteriorates. Using a sophisticated background model via a pulse rescaling technique, SuperCDMS Soudan was able to produce a world leading exclusion limit on low-mass dark matter. Effort is to extend the analysis to higher masses require long running times during which many aspects of the detectors or the environment can change. Additional challenges are offered by the powerful background discrimination ability of the iZIP. The background distributions are well separated from the signal region, meaning most of the leakage arises from low-probability tails of the background distributions. In the absence of an enormous dataset, extrapolations from the bulk of the distribution are required. While attempting to obtain a model of gamma induced electron-recoils leaking into the signal region of the detector from high radius a curious asymmetry between the sides of the detectors was discovered potentially indicating an electronics or detector design problem. This thesis describes the physics

  10. Dedicated searches for low and high mass wimps with the SuperCDMS Soudan iZIP detectors

    NASA Astrophysics Data System (ADS)

    Welliver, Bradford C., Jr.

    Recent cosmological evidence suggests most of the mass of the universe takes the form of a type of particle that we have not been able to directly detect. Nearly 80 years that have elapsed since the first hints of this dark matter started to appear from astronomers without any direct detection. The high precision era of cosmology and unifying models of particle physics developed in the 20th century have presented us with an exciting mystery at the intersection of these two fields that needs to be solved. SuperCDMS Soudan operates specialized germanium detectors (iZIPs) that are cooled to milliKelvin temperatures deep underground in the Soudan Underground Laboratory with the hope of detecting a rare collision between dark matter and a nucleus. A search for low-mass dark matter comes with multiple unique challenges since the background discrimination abilities of these detectors becomes less powerful at the low energies needed to probe low-mass dark matter since the signal to noise ratio deteriorates. Using a sophisticated background model via a pulse rescaling technique, SuperCDMS Soudan was able to produce a world leading exclusion limit on low-mass dark matter. Effort is to extend the analysis to higher masses require long running times during which many aspects of the detectors or the environment can change. Additional challenges are offered by the powerful background discrimination ability of the iZIP. The background distributions are well separated from the signal region, meaning most of the leakage arises from low-probability tails of the background distributions. In the absence of an enormous dataset, extrapolations from the bulk of the distribution are required. While attempting to obtain a model of gamma induced electron-recoils leaking into the signal region of the detector from high radius a curious asymmetry between the sides of the detectors was discovered potentially indicating an electronics or detector design problem. This thesis describes the

  11. Containerless high temperature property measurements

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Weber, J. K. Richard; Krishnan, Shankar; Anderson, Collin D.

    1991-01-01

    Containerless processing in the low gravity environment of space provides the opportunity to increase the temperature at which well controlled processing of and property measurements on materials is possible. This project was directed towards advancing containerless processing and property measurement techniques for application to materials research at high temperatures in space. Containerless high temperature material property studies include measurements of the vapor pressure, melting temperature, optical properties, and spectral emissivities of solid boron. The reaction of boron with nitrogen was also studied by laser polarimetric measurement of boron nitride film growth. The optical properties and spectral emissivities were measured for solid and liquid silicon, niobium, and zirconium; liquid aluminum and titanium; and liquid Ti-Al alloys of 5 to 60 atomic pct. titanium. Alternative means for noncontact temperature measurement in the absence of material emissivity data were evaluated. Also, the application of laser induced fluorescence for component activity measurements in electromagnetic levitated liquids was studied, along with the feasibility of a hybrid aerodynamic electromagnetic levitation technique.

  12. High contrast imaging of exoplanets on ELTs using a super-Nyquist wavefront control scheme

    NASA Astrophysics Data System (ADS)

    Gerard, Benjamin L.; Marois, Christian

    2016-07-01

    One of the key science goals for extremely large telescopes (ELTs) is the detailed characterization of already known directly imaged exoplanets. The typical adaptive optics (AO) Nyquist control region for ELTs is 0.4 arcseconds, placing many already known directly imaged planets outside the DM control region and not allowing any standard wavefront control scheme to remove speckles that would allow higher SNR images/spectra to be acquired. This can be fixed with super-Nyquist wavefront control (SNWFC), using a sine wave phase plate to allow for wavefront control outside the central DM Nyquist region. We demonstrate that SNWFC is feasible through a simple, deterministic, non-coronagraphic, super-Nyquist speckle nulling technique in the adaptive optics laboratory at the National Research Council of Canada. We also present results in simulation of how SNWFC using the self coherent camera (SCC) can be used for high contrast imaging. This technique could be implemented on future high contrast imaging instruments to improve contrast outside the standard central dark hole for higher SNR characterization of exoplanets.

  13. High temperature, high power piezoelectric composite transducers.

    PubMed

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  14. High Temperature, High Power Piezoelectric Composite Transducers

    PubMed Central

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  15. High Temperature Sorbents for Oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor)

    1996-01-01

    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C is introduced. The sorbent comprises a porous alumina silicate support such as zeolite containing from 1 to 10 percent by weight of ion exchanged transition metal such as copper or cobalt ions and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum. The activation temperature, oxygen sorption and reducibility are all improved by the presence of the platinum activator.

  16. High temperature sorbents for oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor)

    1994-01-01

    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C comprising a porous alumina silicate support, such as zeolite, containing from 1 to 10 percent by weight of ion exchanged transition metal, such as copper or cobalt ions, and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum is described. The activation temperature, oxygen sorption, and reducibility are all improved by the presence of the platinum activator.

  17. High temperature strain gage evaluation

    NASA Technical Reports Server (NTRS)

    Gonzalez, J. I.

    1977-01-01

    The structural thermal test of an advanced ramjet missile section required strain measurements as high as 922 K (1200 F). Since there is relatively little experience in the use of strain gages above the 700-755 K (800-900 F) level, a program was initiated to select and evaluate the best available gage. Candidate gages suitable for measurements up to 922 K (1200 F) were selected. This involved the determination of their operating characteristics, availability, cost, installation aspects, etc. The evaluation involved the following tests: strain as a function of load at room temperature and apparent strain as a function of temperature.

  18. High Density And High Temperature Plasmas In Large Helical Device

    NASA Astrophysics Data System (ADS)

    Komori, A.

    2010-07-01

    For the realization of the fusion reactor, it is necessary to confine high density and high temperature plasma for a time, which is well known as the Lawson criterion. To improve the plasma or confinement performance, vigorous experiments have been performed in the Large Helical Device (LHD) in National Institute for Fusion Science, which is the largest superconducting heliotron device with R = 3.9 m r = 0.6 m, Bt = 3 T. Recently a promising confinement regime called Super Dense Core (SDC) mode was discovered. An extremely high density core region with more than ~ 1 × 10^20 m-3 is obtained with the formation of an Internal Diffusion Barrier (IDB). The density gradient at the IDB (? = 0.6) is very high and the particle confinement in the core region is ~ 0.2 s. It is expected, for the future reactor, that the IDB-SDC mode has a possibility to achieve the self-ignition condition with lower temperature than expected before. The IDB-SDC mode is also favorable from the engineering point of view since one can moderate demands for heating devices and plasma facing components. In order to achieve the IDB-SDC mode, the central fuelling with the pellet injection and the low recycling condition are essential. A repetitive pellet injector was newly developed to continuously feed the particle source to the central region. For the recycling control, the effective divertor system should be employed to control the edge plasma. Conventional approaches to increase the temperature have also been tried in LHD. For the ion heating, the perpendicular neutral beam injection effectively increased the ion temperature more than 10 keV with the formation of the internal transport barrier (ITB). In the core region, the heat conductivity is improved to the neoclassical level, while no clear ITB for electron was seen. Another interesting phenomenon called "impurity hole" was observed inside the ITB. During the high ion temperature discharge, the im- purity density in the core region becomes

  19. High Temperature Transfer Molding Resins

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2000-01-01

    High temperature resins containing phenylethynyl groups that are processable by transfer molding have been prepared. These phenylethynyl containing oligomers were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynlphthalic anhydride in glacial acetic acid to form a mixture of imide compounds in one step. This synthetic approach is advantageous since the products are a mixture of compounds and consequently exhibit a relatively low melting temperature. In addition, these materials exhibit low melt viscosities which are stable for several hours at 210-275 C, and since the thermal reaction of the phenylethynyl group does not occur to any appreciable extent at temperatures below 300 C, these materials have a broad processing window. Upon thermal cure at approximately 300-350 C, the phenylethynyl groups react to provide a crosslinked resin system. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  20. High temperature superconducting magnetic refrigeration

    NASA Astrophysics Data System (ADS)

    Blumenfeld, P. E.; Prenger, F. C.; Sternberg, A.; Zimm, C.

    2002-05-01

    A near-room temperature active magnetic regenerative refrigerator (AMRR) was designed and built using a high-temperature superconducting (HTS) magnet in a charge-discharge cycle and a gadolinium-packed regenerative bed as the magnetocaloric component. Current to the HTS magnet was ramped periodically from zero to 100 amperes, which generated a ramp in field strength from zero to 1.7 tesla. Water was moved periodically through the bed and through hot and cold heat exchangers to accomplish a continuous refrigeration cycle. Cycle periods as short as 30 seconds were realized. Refrigerator performance was measured in terms of cooling capacity as a function of temperature span and in terms of efficiency expressed as a percentage of maximum obtainable (Carnot) efficiency. A three-watt cooling capacity was measured over a temperature span of 15 degrees C between hot and cold end temperatures of 25 degrees C and 10 degrees C. This experiment is directed to two possible applications for magnetic refrigeration: a no-moving part cryogenic refrigerator for space applications, and a compact permanent magnet refrigerator for commercial and consumer applications.

  1. High temperature two component explosive

    DOEpatents

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  2. High temperature loop heat pipes

    SciTech Connect

    Anderson, W.G.; Bland, J.J.; Fershtater, Y.; Goncharov, K.A.; Nikitkin, M.; Juhasz, A.

    1995-12-31

    Advantages of loop heat pipes over conventional heat pipes include self-priming during start-up, improved tolerance for noncondensible gas, and ability for ground testing in any orientation. The applications for high temperature, alkali-metal working fluid loop heat pipes include space radiators, and bimodal systems. A high temperature loop heat pipe was fabricated and tested at 850 K, using cesium as the working fluid. Previous loop heat pipes were tested with ambient temperature working fluids at temperatures below about 450 K. The loop heat pipe had a titanium envelope, and a titanium aluminide wick. The maximum cesium loop heat pipe power was only about 600 watts, which was lower the predicted 1,000 W power. The power limitation may be due to a wettability problem with the cesium not completely wetting the titanium aluminide wick. This would reduce the pumping capability of the wick, and the maximum power that the heat pipe could carry. This problem could be solved by using a refractory metal powder wick, since the alkali metals are known to wet refractory metal wicks.

  3. Slip-activated surface creep with room-temperature super-elongation in metallic nanocrystals.

    PubMed

    Zhong, Li; Sansoz, Frederic; He, Yang; Wang, Chongmin; Zhang, Ze; Mao, Scott X

    2017-04-01

    Nanoscale metallic crystals have been shown to follow a 'smaller is stronger' trend. However, they usually suffer from low ductility due to premature plastic instability by source-limited crystal slip. Here, by performing in situ atomic-scale transmission electron microscopy, we report unusual room-temperature super-elongation without softening in face-centred-cubic silver nanocrystals, where crystal slip serves as a stimulus to surface diffusional creep. This interplay mechanism is shown experimentally and theoretically to govern the plastic deformation of nanocrystals over a material-dependent sample diameter range between the lower and upper limits for nanocrystal stability by surface diffusional creep and dislocation plasticity, respectively, which extends far beyond the maximum size for pure diffusion-mediated deformation (for example, Coble-type creep). This work provides insight into the atomic-scale coupled diffusive-displacive deformation mechanisms, maximizing ductility and strength simultaneously in nanoscale materials.

  4. Combination of super chilling and high carbon dioxide concentration techniques most effectively to preserve freshness of shell eggs during long-term storage.

    PubMed

    Yanagisawa, T; Ariizumi, M; Shigematsu, Y; Kobayashi, H; Hasegawa, M; Watanabe, K

    2010-01-01

    This study was made to examine the combined effects of stored temperature and carbon dioxide atmosphere on shell egg quality. The shell eggs were packed into polyethylene terephthalate/polyethylene (PET/PE) pouches and stored at 0 degrees C (super chilling), 10 degrees C, and 20 degrees C, respectively for 90 d. The atmospheric carbon dioxide concentration was controlled to obtain the 3 concentration levels of high (about 2.0%), medium (about 0.5%), and low (below 0.01%). Changes in Haugh unit (HU) values, weakening of vitelline membranes, and generation of volatiles were analyzed to evaluate the freshness of shell eggs. Results showed that, compared with the other combinations, the technique of super chilling and high carbon dioxide concentration enabled shell eggs to be most effectively stored for 90 d, based on estimations of the statistical significances of differences in HU values, and on maintaining the initial HU values during storage. In addition, the storage of shell eggs using this combination technique was found to significantly prevent the weakening of the vitelline membrane based on the estimations of numbers of eggs without vitelline membrane breakage when eggs broke, and significantly lowered the incidence of hexanal in the yolk from exposure to the gas chromatographic-mass spectrometric analyses of volatiles. Thus, these results confirmed that the combination of super chilling and high carbon dioxide concentration was the most effective technique for preserving shell eggs during a long term of 90 d compared with other combination techniques.

  5. Radon emanation chamber: High sensitivity measurements for the SuperNEMO experiment

    SciTech Connect

    Soulé, B.; Collaboration: SuperNEMO Collaboration; and others

    2013-08-08

    Radon is a well-known source of background in ββ0ν experiments due to the high Q{sub β} value of one of its daughter nucleus, {sup 214}Bi. The SuperNEMO collaboration requires a maximum radon contamination of 0.1 mBq/m{sup 3} inside its next-generation double beta decay detector. To reach such a low activity, a drastic screening process has been set for the selection of the detector's materials. In addition to a good radiopurity, a low emanation rate is required. To test this parameter, a Radon Emanation Setup is running at CENBG. It consists in a large emanation chamber connected to an electrostatic detector. By measuring large samples and having a low background level, this setup reaches a sensitivity of a few μ Bq. m{sup −2}. d{sup −1} and is able to qualify materials used in the construction of the SuperNEMO detector.

  6. High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization.

    PubMed

    Cao, Yaoyu; Gan, Zongsong; Jia, Baohua; Evans, Richard A; Gu, Min

    2011-09-26

    An ethoxylated bis-phenol-A dimethacrylate based photoresin BPE-100 of relatively high photosensitivity and modulus is used for the creation of sub-50 nm features. This is achieved by using the direct laser writing technique based on the single-photon photoinhibited polymerization. The super-resolution feature is realized by overlapping two laser beams of different wavelengths to enable the wavelength-controlled activation of photoinitiating and photoinhibiting processes in the polymerization. The increased photosensitivity of the photoresin promotes a fast curing speed and enhances the photopolymerization efficiency. Using the photoresin BPE-100, we achieve 40 nm dots for the first time in the super-resolution fabrication technique based on the photoinhibited polymerization, and a minimum linewidth of 130 nm. The influence of the power of the inhibiting laser and the exposure time on the feature size is studied and the results agree well with the prediction obtained from a simulation based on a non-steady-state kinetic model.

  7. High temperature structural sandwich panels

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  8. High Temperature Heat Exchanger Project

    SciTech Connect

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  9. Motor for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Roopnarine (Inventor)

    2013-01-01

    A high temperature motor has a stator with poles formed by wire windings, and a rotor with magnetic poles on a rotor shaft positioned coaxially within the stator. The stator and rotor are built up from stacks of magnetic-alloy laminations. The stator windings are made of high temperature magnet wire insulated with a vitreous enamel film, and the wire windings are bonded together with ceramic binder. A thin-walled cylinder is positioned coaxially between the rotor and the stator to prevent debris from the stator windings from reaching the rotor. The stator windings are wound on wire spools made of ceramic, thereby avoiding need for mica insulation and epoxy/adhesive. The stator and rotor are encased in a stator housing with rear and front end caps, and rear and front bearings for the rotor shaft are mounted on external sides of the end caps to keep debris from the motor migrating into the bearings' races.

  10. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOEpatents

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  11. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  12. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  13. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  14. High-temperature geothermal cableheads

    SciTech Connect

    Coquat, J.A.; Eifert, R.W.

    1981-11-01

    Two high-temperature, corrosion-resistant logging cableheads which use metal seals and a stable fluid to achieve proper electrical terminations and cable-sonde interfacings are described. A tensile bar provides a calibrated yield point, and a cone assembly anchors the cable armor to the head. Electrical problems of the sort generally ascribable to the cable-sonde interface were absent during demonstration hostile-environment loggings in which these cableheads were used.

  15. High-Temperature Test Technology

    DTIC Science & Technology

    1987-03-01

    Center ............. las Cruces, NM White Sands Test Facility NASA-Kennedy Space Center.................... FL NASA-Langley Research Center...We believe that two former suppliers, Pyro -Metrics and lunar Infrared, are no longer in business. In addition, the Hi-Shear product line is now...nitrogen through them for cooling. High-temperature test specimen materials have included Rene’ 41, Inconel, metal matrix composites , etc. The major

  16. High temperature solar thermal receiver

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A design concept for a high temperature solar thermal receiver to operate at 3 atmospheres pressure and 2500 F outlet was developed. The performance and complexity of windowed matrix, tube-header, and extended surface receivers were evaluated. The windowed matrix receiver proved to offer substantial cost and performance benefits. An efficient and cost effective hardware design was evaluated for a receiver which can be readily interfaced to fuel and chemical processes or to heat engines for power generation.

  17. High-Temperature Structural Ceramics

    NASA Astrophysics Data System (ADS)

    Katz, R. Nathan

    1980-05-01

    The unique properties of ceramics based on silicon carbide and silicon nitride make them prime candidates for use in advanced energy conversion systems. These compounds are the bases for broad families of engineering materials, whose properties are reviewed. The relationships between processing, microstructure, and properties are discussed. A review and assessment of recent progress in the use of these materials in high-temperature engineering systems, and vehicular engines in particular, is presented.

  18. High temperature catalytic membrane reactors

    SciTech Connect

    Not Available

    1990-03-01

    Current state-of-the-art inorganic oxide membranes offer the potential of being modified to yield catalytic properties. The resulting modules may be configured to simultaneously induce catalytic reactions with product concentration and separation in a single processing step. Processes utilizing such catalytically active membrane reactors have the potential for dramatically increasing yield reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity. Examples of commercial interest include hydrogenation, dehydrogenation, partial and selective oxidation, hydrations, hydrocarbon cracking, olefin metathesis, hydroformylation, and olefin polymerization. A large portion of the most significant reactions fall into the category of high temperature, gas phase chemical and petrochemical processes. Microporous oxide membranes are well suited for these applications. A program is proposed to investigate selected model reactions of commercial interest (i.e. dehydrogenation of ethylbenzene to styrene and dehydrogenation of butane to butadiene) using a high temperature catalytic membrane reactor. Membranes will be developed, reaction dynamics characterized, and production processes developed, culminating in laboratory-scale demonstration of technical and economic feasibility. As a result, the anticipated increased yield per reactor pass economic incentives are envisioned. First, a large decrease in the temperature required to obtain high yield should be possible because of the reduced driving force requirement. Significantly higher conversion per pass implies a reduced recycle ratio, as well as reduced reactor size. Both factors result in reduced capital costs, as well as savings in cost of reactants and energy.

  19. High-temperature sand consolidation

    SciTech Connect

    Friedman, R.H.; Suries, B.W.; Kleke, D.E.

    1987-05-01

    A sand consolidation system has been developed that is stable to wellbore temperatures of 700/sup 0/F (371/sup 0/C). Two improvements in technique have contributed to this development. First, a controlled quantity of catalyst is absorbed on the sand. Consequently, consolidation occurs only on or very near the sand grains, resulting in a high-permeability consolidation. Second, the reaction is driven to completion by avoiding, insofar as possible, the adverse effect of water. The resin used for the consolidation is a very viscous derivative of furfuryl alcohol that requires a diluent to make it injectable. The diulent used to reduce viscosity is a hydrolyzable ester. The diluted fluid, which is sill more viscous than water, displaces much of the water present in the pore space. During the catalyzed consolidation, water produced by the polymerization is removed by reaction with the diluent (hydrolysis of the ester). The high-molecular-weight polymeric consolidation is better able to resist the high temperatures encountered in steam-displacement producing wells. Adaptation of the technology has been made so that the process can also be used in low-temperature wells. Because of the catalysis method, long shelf life is guaranteed for the consolidating formation.

  20. High pressure and high temperature apparatus

    DOEpatents

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  1. High-temperature oxide thermoelectrics

    NASA Astrophysics Data System (ADS)

    Terasaki, Ichiro

    2011-09-01

    We have evaluated the power factor of transition metal oxides at high temperatures using the Heikes formula and the Ioffe-Regel conductivity. The evaluated power factor is found to be nearly independent of carrier concentration in a wide range of doping, and explains the experimental data for cobalt oxides well. This suggests that the same power factor can be obtained with a thermopower larger than 2kB/e, and also suggests a reasonably high value of the dimensionless figure of merit ZT. We propose an oxide thermoelectric power generator by using materials having a thermopower larger than 300 μV/K.

  2. High temperature polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    1987-01-01

    With the increased emphasis on high performance aircraft the need for lightweight, thermal/oxidatively stable materials is growing. Because of their ease of fabrication, high specific strength, and ability to be tailored chemically to produce a variety of mechanical and physical properties, polymers and polymer matrix composites present themselves as attractive materials for a number of aeropropulsion applications. In the early 1970s researchers at the NASA Lewis Research Center developed a highly processable, thermally stable (600 F) polyimide, PMR-15. Since that time, PMR-15 has become commercially available and has found use in military aircraft, in particular, the F-404 engine for the Navy's F/A-18 strike fighter. The NASA Lewis'contributions to high temperature polymer matrix composite research will be discussed as well as current and future directions.

  3. Arrayed Waveguide Gratings and Their Application Using Super-High-Δ Silica-Based Planar Lightwave Circuit Technology

    NASA Astrophysics Data System (ADS)

    Maru, Koichi; Uetsuka, Hisato

    This paper reviews our recent progress on arrayed waveguide gratings (AWGs) using super-high-Δ silica-based planar lightwave circuit (PLC) technology and their application to integrated optical devices. Factors affecting the chip size of AWGs and the impact of increasing relative index difference Δ on the chip size are investigated, and the fabrication result of a compact athermal AWG using 2.5%-Δ silica-based waveguides is presented. As an application of super-high-Δ AWGs to integrated devices, a flat-passband multi/demultiplexer consisting of an AWG and cascaded MZIs is presented.

  4. Systems and Methods for Implementing High-Temperature Tolerant Supercapacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J. (Inventor); West, William C. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2016-01-01

    Systems and methods in accordance with embodiments of the invention implement high-temperature tolerant supercapacitors. In one embodiment, a high-temperature tolerant super capacitor includes a first electrode that is thermally stable between at least approximately 80C and approximately 300C; a second electrode that is thermally stable between at least approximately 80C and approximately 300C; an ionically conductive separator that is thermally stable between at least approximately 80C and 300C; an electrolyte that is thermally stable between approximately at least 80C and approximately 300C; where the first electrode and second electrode are separated by the separator such that the first electrode and second electrode are not in physical contact; and where each of the first electrode and second electrode is at least partially immersed in the electrolyte solution.

  5. Hot deformation characteristics of as-cast high-Cr ultra-super-critical rotor steel with columnar grains

    NASA Astrophysics Data System (ADS)

    Ding, Zong-ye; Hu, Qiao-dan; Zeng, Long; Li, Jian-guo

    2016-11-01

    Isothermal hot compression tests of as-cast high-Cr ultra-super-critical (USC) rotor steel with columnar grains perpendicular to the compression direction were carried out in the temperature range from 950 to 1250°C at strain rates ranging from 0.001 to 1 s-1. The softening mechanism was dynamic recovery (DRV) at 950°C and the strain rate of 1 s-1, whereas it was dynamic recrystallization (DRX) under the other conditions. A modified constitutive equation based on the Arrhenius model with strain compensation reasonably predicted the flow stress under various deformation conditions, and the activation energy was calculated to be 643.92 kJ•mol-1. The critical stresses of dynamic recrystallization under different conditions were determined from the work-hardening rate ( θ)-flow stress ( σ) and -∂ θ/∂ σ-σ curves. The optimum processing parameters via analysis of the processing map and the softening mechanism were determined to be a deformation temperature range from 1100 to 1200°C and a strain-rate range from 0.001 to 0.08 s-1, with a power dissipation efficiency η greater than 31%.

  6. Optical super-resolution imaging by high-index microspheres embedded in elastomers.

    PubMed

    Darafsheh, Arash; Guardiola, Consuelo; Palovcak, Averie; Finlay, Jarod C; Cárabe, Alejandro

    2015-01-01

    We demonstrated feasibility of super-resolution imaging through high-index microspheres embedded in transparent elastomers. We performed imaging, with resolution improvement by a factor of two, by using implanted barium titanate glass microspheres (diameters ∼30-150  μm and refractive index ∼1.9-2.1) in a thin film of polydimethylsiloxane elastomer placed over the specimen. Microsphere-assisted imaging technique is a promising candidate for applications in cancer research. As a proof-of-principle, we used microsphere-assisted imaging technique for the observation of radiation-induced γ-H2AX foci formation in U87 human glioblastoma cells irradiated by clinical proton beams.

  7. Super-Nyquist shaping and processing technologies for high-spectral-efficiency optical systems

    NASA Astrophysics Data System (ADS)

    Jia, Zhensheng; Chien, Hung-Chang; Zhang, Junwen; Dong, Ze; Cai, Yi; Yu, Jianjun

    2013-12-01

    The implementations of super-Nyquist pulse generation, both in a digital field using a digital-to-analog converter (DAC) or an optical filter at transmitter side, are introduced. Three corresponding signal processing algorithms at receiver are presented and compared for high spectral-efficiency (SE) optical systems employing the spectral prefiltering. Those algorithms are designed for the mitigation towards inter-symbol-interference (ISI) and inter-channel-interference (ICI) impairments by the bandwidth constraint, including 1-tap constant modulus algorithm (CMA) and 3-tap maximum likelihood sequence estimation (MLSE), regular CMA and digital filter with 2-tap MLSE, and constant multi-modulus algorithm (CMMA) with 2-tap MLSE. The principles and prefiltering tolerance are given through numerical and experimental results.

  8. A cosmic ray super high multicore family event. 1: Experiment and general features

    NASA Technical Reports Server (NTRS)

    Ren, J. R.; Kuang, H. H.; Huo, A. X.; Lu, S. L.; Su, S.; Wang, Y. X.; Xue, Y. G.; Wang, C. R.; He, M.; Zhang, N. J.

    1985-01-01

    Information on the fragmentation region in super high energy hadronic interactions can be obtained through the observations of gamma-ray families produced by cosmic rays. Gamma-ray families with the sum of E sub gamma or 1000 TeV are receiving increasing interests in emulsion chamber experiments. There exist some complications caused by the superposition of nuclear and electromagnetic cascades and the uncertainty in the nature of the primary particles. These complications usually make the conclusions drawn from various interesting phenomena observed in family events not so definite. An interesting family event KO E19, which is likely to have suffered only very slight disturbances is described. It was found in the Mt. Kambala emulsion chamber experiment. The production height of the event is determined to be H=(70 + or - 30)m and some conclusions are given.

  9. Organic salts as super-high rate capability materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Sun, Y. Y.; Du, S. X.; Gao, H.-J.; Zhang, S. B.

    2012-02-01

    First-principles calculation reveals that organic salts could be super-high rate capability electrode materials for Li-ion batteries. We show that di-lithium terephthalate, an anode material demonstrated recently by experiment, has low Li diffusion barrier (EA). A resonant bonding model for the low EA is developed, which leads to the prediction that di-potassium terephthalate (K2TPA) has even lower EA (150 meV), with diffusion rate orders of magnitude higher than that in Li-intercalated graphite. The calculated anode voltage (0.62 V), specific energy density (209 mA.h/g), and volume change upon lithiation (5%) make K2TPA a promising anode material for power-intensive applications such as electric-vehicles.

  10. High temperature size selective membranes

    SciTech Connect

    Yates, S.F.; Swamikannu, A.X.

    1993-09-01

    The high temperature membrane, capable of operation above 550{degree}C, is designed to be a composite membrane composed of a thin layer of a size selective membrane supported by a microporous ceramic support. The kinetic diameters of H{sub 2} and CO{sub 2} are 2.96 {Angstrom} and 4.00 {Angstrom}. The thin layer will be made from CMS whose pore size will be controlled to be less than 4 {Angstrom}. The membrane will be truly size selective and be impermeable to carbon dioxide. The membrane will have higher selectivity than membranes which operate on Knudsen diffusion mechanism. The ceramic support will be fabricated from Allied Signal`s proprietary Blackglas{trademark} resin. The ceramic material, noted for its high thermal and oxidative resistance, has a coefficient of thermal expansion which matches closely that of CMS. The close match will insure mechanical integrity when the membrane is subjected to thermal cycles. The CMS layer will be produced by controlled pyrolysis of polymeric precursors. Pore size will be suitably modified by post-treatments to the carbon. The composite membrane will be tested for its permeation properties at 550{degree}C or higher. Thermal, mechanical and chemical stability of the membrane will be assessed. We have produced several samples of CMS from polymeric precursors. We have initiated work also on the preparation of microporous supports from Blackglas{trademark} resin. We have completed the design of the high temperature membrane pilot plant. The membrane cell was fabricated out of two kinds of stainless steel. The inner parts are made of SS 316 and the outer ring made of SS 420. The greater thermal expansion of the SS 316 will help obtain a leak free seal at the operating temperatures.

  11. High temperature insulation barrier composite

    NASA Technical Reports Server (NTRS)

    Onstott, Joseph W. (Inventor)

    1989-01-01

    A composite material suitable for providing insulation for the nozzle structure of the Space Shuttle and other similar surfaces is disclosed. The composite layer is comprised of an outer skin layer of nickel chromium and an interleaved inner region comprising a top layer of nickel chromium foil which acts as a primary convective shield. There are at least two layers of alumina batting adjacent to the layers of silicon carbide fabric. An additional layer of nickel chromium foil is used as a secondary convective shield. The composite is particularly advantageous for use as nozzle insulation because of its ability to withstand high reentry temperatures, its flexibility, oxidation resistance, low conductivity, and light weight.

  12. Passivation of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  13. Thermodynamics of High Temperature Materials.

    DTIC Science & Technology

    1980-09-01

    Department of Commerce 23 -1A , /7 National Bureau of Standards A102 Washington, D.C. 20234 ______________ I I. CONTROLLING OFFICE NAME AND ADDRESS Air...DISTRIBUTION STATEMENT (of this Report) r ~Appro-,’. f’or public re r-: e ; 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different from...8SOLETE SCRT SEUIYCLASSIFICATION OF TNIS PAGE " e aoEtr AEOST.1-0443 THERMODYNAMICS OF HIGH TEMPERATURE MATERIALS Annual Report for the Period of 1 October

  14. High Temperature Acoustic Liner Technology

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Jones, Michael G.; Posey, Joe W.

    1999-01-01

    This paper describes work currently in progress at Langley on liner concepts that employ structures that may be suitable for broadband exhaust noise attenuation in high speed flow environments and at elevated temperatures characteristic of HSCT applications. Because such liners will need to provide about 10 dB suppression over a 2 to 3 octave frequency range, conventional single-degree-of-freedom resonant structures will not suffice. Bulk absorbers have the needed broadband absorption characteristic; however, at lower frequencies they tend to be inefficient.

  15. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    DOEpatents

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  16. High temperature sealed electrochemical cell

    SciTech Connect

    Valentin Chung, Brice Hoani; Burke, Paul J.; Sadoway, Donald R.

    2015-10-06

    A cell for high temperature electrochemical reactions is provided. The cell includes a container, at least a portion of the container acting as a first electrode. An extension tube has a first end and a second end, the extension tube coupled to the container at the second end forming a conduit from the container to said first end. A second electrode is positioned in the container and extends out of the container via the conduit. A seal is positioned proximate the first end of the extension tube, for sealing the cell.

  17. Experimental Study on Cracking, Reinforcement, and Overall Stability of the Xiaowan Super-High Arch Dam

    NASA Astrophysics Data System (ADS)

    Lin, Peng; Zhou, Weiyuan; Liu, Hongyuan

    2015-03-01

    The Xiaowan super-high arch dam has faced challenging construction problems. Here, we provide a scientifically-based reference for applying geomechanical model testing to support the nonlinear design of super-high arch dams. We applied experimental similarity theory and techniques. Based on four 3D geomechanical model tests, the dam stress characteristics, deformation distribution, and the safety factors of the dam foundation were identified and compared. We also analyzed cracking characteristics of the up- and downstream dam surfaces and induced joints in the dam heel, the rock mass failure process of the dam-foundation interface, and the abutments. We propose foundation reinforcement measures for weak rock masses, alteration zones, and other faults in the abutments based on the 3D and plane tests each at a different elevation. The results show that all dam deformations remained normal with no yielding or tensile cracking under a normal water load. The reinforced rock mass increased the crack initial safety in the dam heel and toe by ~20 %. The minimum crack initial safety factor ( K 1) of the dam heel was 1.4. The induced joint in the dam heel contributed to a reduction in tensile stress at the upstream dam heel, improving K 1. Compared with similar projects following reinforcement measures, the abutment stiffness and overall stability of the Xiaowan arch dam satisfy operational requirements. Four years of monitoring operations show that key areas near the dam remained normal and the dam foundation is functioning well. Our results may also be applicable to the design and construction of similar projects worldwide.

  18. A super high-rate sulfidogenic system for saline sewage treatment.

    PubMed

    Tsui, To-Hung; Chen, Lin; Hao, Tianwei; Chen, Guang-Hao

    2016-11-01

    This study proposes a novel approach to resolve the challenging issue of sludge bed clogging in a granular sulfate-reducing upflow sludge bed (GSRUSB) reactor by means of introducing intermittent gas sparging to advance it into a super high-rate anaerobic bioreactor. Over a 196-day lab-scale trial, the GSRUSB system was operated from nominal hydraulic retention time of 4-hr to 40-min and achieved the highest organic loading rate of 13.31 kg COD/m(3)·day which is substantially greater than the typical loading of 2.0-3.5 kg COD/m(3)·day in a conventional upflow anaerobic sludge bed reactor treating dilute organic strength wastewater. The average organic removal efficiency and total dissolved sulfide of this system were 90 ± 4.2% and 158 ± 28 mg S/L, while organics residual in the effluent was 34 ± 14 mg COD/L. The control stage (without gas sparging) revealed that the sludge bed clogging happened concomitantly with the significant drop in extracellular polymeric substance content of granular sludge, through relevant chemical measurements and confocal laser scanning microscopy analyses. On the other hand, compared with increasing the effluent recirculation ratio (from 1.4 to 5), the three-dimensional computational fluid dynamics modeling in combination with energy dissipation analysis demonstrated that the gas sparging (at a superficial gas velocity of 0.8 m s(-1)) can create a 23 times higher liquid shear as well as enhanced particle attrition. Overall, this study not only developed a super high-rate anaerobic bioreactor for saline sewage treatment, but also shed light on the role of intermittent gas sparging in control of sludge bed clogging for anaerobic bioreactors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Development of High Level Trigger Software for Belle II at SuperKEKB

    NASA Astrophysics Data System (ADS)

    Lee, S.; Itoh, R.; Katayama, N.; Mineo, S.

    2011-12-01

    The Belle collaboration has been trying for 10 years to reveal the mystery of the current matter-dominated universe. However, much more statistics is required to search for New Physics through quantum loops in decays of B mesons. In order to increase the experimental sensitivity, the next generation B-factory, SuperKEKB, is planned. The design luminosity of SuperKEKB is 8 x 1035cm-2s-1 a factor 40 above KEKB's peak luminosity. At this high luminosity, the level 1 trigger of the Belle II experiment will stream events of 300 kB size at a 30 kHz rate. To reduce the data flow to a manageable level, a high-level trigger (HLT) is needed, which will be implemented using the full offline reconstruction on a large scale PC farm. There, physics level event selection is performed, reducing the event rate by ~ 10 to a few kHz. To execute the reconstruction the HLT uses the offline event processing framework basf2, which has parallel processing capabilities used for multi-core processing and PC clusters. The event data handling in the HLT is totally object oriented utilizing ROOT I/O with a new method of object passing over the UNIX socket connection. Also under consideration is the use of the HLT output as well to reduce the pixel detector event size by only saving hits associated with a track, resulting in an additional data reduction of ~ 100 for the pixel detector. In this contribution, the design and implementation of the Belle II HLT are presented together with a report of preliminary testing results.

  20. A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons

    PubMed Central

    Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping

    2016-01-01

    Modern society is hungry for electrical power. To improve the efficiency of energy harvesting from heat, extensive efforts seek high-performance thermoelectric materials that possess large differences between electronic and thermal conductance. Here we report a super high-performance material of consisting of MoS2/WS2 hybrid nanoribbons discovered from a theoretical investigation using nonequilibrium Green’s function methods combined with first-principles calculations and molecular dynamics simulations. The hybrid nanoribbons show higher efficiency of energy conversion than the MoS2 and WS2 nanoribbons due to the fact that the MoS2/WS2 interface reduces lattice thermal conductivity more than the electron transport. By tuning the number of the MoS2/WS2 interfaces, a figure of merit ZT as high as 5.5 is achieved at a temperature of 600 K. Our results imply that the MoS2/WS2 hybrid nanoribbons have promising applications in thermal energy harvesting. PMID:26884123

  1. A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping

    2016-02-01

    Modern society is hungry for electrical power. To improve the efficiency of energy harvesting from heat, extensive efforts seek high-performance thermoelectric materials that possess large differences between electronic and thermal conductance. Here we report a super high-performance material of consisting of MoS2/WS2 hybrid nanoribbons discovered from a theoretical investigation using nonequilibrium Green’s function methods combined with first-principles calculations and molecular dynamics simulations. The hybrid nanoribbons show higher efficiency of energy conversion than the MoS2 and WS2 nanoribbons due to the fact that the MoS2/WS2 interface reduces lattice thermal conductivity more than the electron transport. By tuning the number of the MoS2/WS2 interfaces, a figure of merit ZT as high as 5.5 is achieved at a temperature of 600 K. Our results imply that the MoS2/WS2 hybrid nanoribbons have promising applications in thermal energy harvesting.

  2. Advanced high-temperature batteries

    NASA Technical Reports Server (NTRS)

    Nelson, Paul A.

    1989-01-01

    The promise of very high specific energy and power was not yet achieved for practical battery systems. Some recent approaches are discussed for new approaches to achieving high performance for lithium/DeS2 cells and sodium/metal chloride cells. The main problems for the development of successful LiAl/FeS2 cells were the instability of the FeS2 electrode, which has resulted in rapidly declining capacity, the lack of an internal mechanism for accommodating overcharge of a cell, thus requiring the use of external charge control on each individual cell, and the lack of a suitable current collector for the positive electrode other than expensive molybdenum sheet material. Much progress was made in solving the first two problems. Reduction of the operating temperatures to 400 C by a change in electrolyte composition has increased the expected life to 1000 cycles. Also, a lithium shuttle mechanism was demonstrated for selected electrode compositions that permits sufficient overcharge tolerance to adjust for the normally expected cell-to-cell deviation in coulombic efficiency. Sodium/sulfur batteries and sodium/metal chloride batteries have demonstrated good reliability and long cycle life. For applications where very high power is desired, new electrolyte coinfigurations would be required. Design work was carried out for the sodium/metal chloride battery that demonstrates the feasibility of achieving high specific energy and high power for large battery cells having thin-walled high-surface area electrolytes.

  3. Iowa's High School Super Senior School-to-Work Transition Program

    ERIC Educational Resources Information Center

    Nietupski, John; Warth, Judy; Winslow, Amy; Johnson, Russ; Douglas, Beverly; Johnson, Maggie; Cilek, Judy

    2006-01-01

    This article describes an innovative school-to-work transition program incorporating identified best practices. Iowa's Super Senior program serves students in the "middle range" of the disability severity spectrum during the student's senior and 5th, or "Super Senior" year. The article describes the program elements, presents…

  4. GRMHD formulation of highly super-Chandrasekhar magnetized white dwarfs: stable configurations of non-spherical white dwarfs

    SciTech Connect

    Das, Upasana; Mukhopadhyay, Banibrata E-mail: bm@physics.iisc.ernet.in

    2015-05-01

    The topic of magnetized super-Chandrasekhar white dwarfs is in the limelight, particularly in the last few years, since our proposal of their existence. By full-scale general relativistic magnetohydrodynamic (GRMHD) numerical analysis, we confirm in this work the existence of stable, highly magnetized, significantly super-Chandrasekhar white dwarfs with mass more than 3 solar mass. While a poloidal field geometry renders the white dwarfs oblate, a toroidal field makes them prolate retaining an overall quasi-spherical shape, as speculated in our earlier work. These white dwarfs are expected to serve as the progenitors of over-luminous type Ia supernovae.

  5. Super-TIGER-2: A Very-Large-Area, High-Resolution Trans-Iron Cosmic Ray Investigation

    NASA Astrophysics Data System (ADS)

    Binns, Walter

    This is the lead proposal of a multi-institution proposal. We propose to continue the highly successful Super-TIGER (Super Trans-Iron Galactic Element Recorder) program and to extend its scientific reach. Super-TIGER is a large-area instrument designed to make precision measurements of the elemental composition of ultra-heavy cosmic rays (UHCR) with atomic number Z greater than or equal to 30. The principal objective of the first phase of the Super- TIGER program was to measure the abundances of nuclei with 30 less than or equal to Z less than or equal to 42 with clear individual element resolution and high statistical precision. A secondary objective was to accurately measure the energy spectra of the more abundant light elements with 12 less than or equal to Z less than or equal to 28. Super-TIGER-1 was flown during the 2012-2013 Austral Summer, returning data on over 50 million cosmic ray (CR) nuclei in 55 days at float. The excellent data from this flight should enable us to achieve the initial goals of the program, and the high performance of the instrument makes it possible to expand our primary objective for further flights to include heavier UHCR. This is a 1-year proposal with two objectives: First to complete analysis of the data from the Super-TIGER-1 flight, and second to begin preparations to extend UHCR measurements with individual element resolution through barium (Z=56) and to greatly increase the number of Z greater than or equal to 30 nuclei measured. The abundance measurements provide sensitive tests and clarification of the OB-association model of galactic cosmic-ray origins, and will test models for atomic processes by which nuclei are selected for acceleration to cosmic ray energies. Additionally, measurements of individual element abundances from Z=40 to 56 will enable us to determine the extent of r-process enhancement since Zr (Z=40), Sn (Z=50) and Ba (Z=56) are predominately s-process and Ru (Z=44), Pd (Z=46), Te (Z=52) and Xe (Z=54)are

  6. High modulus high temperature glass fibers

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.

    1973-01-01

    The search for a new high-modulus, high-temperature glass fiber involved the preparation of 500 glass compositions lying in 12 glass fields. These systems consisted primarily of low atomic number oxides and rare-earth oxides. Direct optical measurements of the kinetics of crystallization of the cordierite-rare earth system, for example, showed that the addition of rare-earth oxides decreased the rate of formation of cordierite crystals. Glass samples prepared from these systems proved that the rare-earth oxides made large specific contributions to the Young's modulus of the glasses. The best glasses have moduli greater than 21 million psi, the best glass fibers have moduli greater than 18 million psi, and the best glass fiber-epoxy resin composites have tensile strengths of 298,000 psi, compressive strengths of at least 220,000 psi, flexural strengths of 290,000 psi, and short-beam shear strengths of almost 17,000 psi.

  7. Stabilized super-thermite colloids: A new generation of advanced highly energetic materials

    NASA Astrophysics Data System (ADS)

    Elbasuney, Sherif; Gaber Zaky, M.; Radwan, Mostafa; Mostafa, Sherif F.

    2017-10-01

    One of the great impetus of nanotechnology on energetic materials is the achievement of nanothermites (metal-oxide/metal) which are characterized by massive heat output. Yet, full exploitation of super-thermites in highly energetic systems has not been achieved. This manuscript reports on the sustainable fabrication of colloidal Fe2O3 and CuO nanoparticles for thermite applications. TEM micrographs demonstrated mono-dispersed Fe2O3 and CuO with an average particle size of 3 and 15 nm respectively. XRD diffractograms demonstrated highly crystalline materials. SEM micrographs demonstrated a great tendency of the developed oxides to aggregate over drying process. The effective integration and dispersion of mono-dispersed colloidal thermite particles into energetic systems are vital for enhanced performance. Aluminum is of interest as highly energetic metal fuel. In this paper, synthesized Fe2O3 and CuO nanoparticles were re-dispersed in isopropyl alcohol (IPA) with aluminum nanoparticles using ultrasonic prope homogenizer. The colloidal thermite peraticles can be intgegrated into highly energetic system for subsequent nanocomposite development. Thanks to stabilization of colloidal CuO nanoparticles in IPA which could offer intimate mixing between oxidizer and metal fuel. The stabilization mechanism of CuO in IPA was correlated to steric stabilization with solvent molecules. This approach eliminated nanoparticle drying and the re-dispersion of dry aggregates into energetic materials. This manuscript shaded the light on the real development of colloidal thermite mixtures and their integration into highly energetic systems.

  8. Multifunctional, High-Temperature Nanocomposites

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Smith, Joseph G.; Siochi, Emilie J.; Working, Dennis C.; Criss, Jim M.; Watson, Kent A.; Delozier, Donavon M.; Ghose, Sayata

    2007-01-01

    In experiments conducted as part of a continuing effort to incorporate multifunctionality into advanced composite materials, blends of multi-walled carbon nanotubes and a resin denoted gPETI-330 h (wherein gPETI h is an abbreviation for gphenylethynyl-terminated imide h) were prepared, characterized, and fabricated into moldings. PETI-330 was selected as the matrix resin in these experiments because of its low melt viscosity (<10 poise at a temperature of 280 C), excellent melt stability (lifetime >2 hours at 280 C), and high temperature performance (>1,000 hours at 288 C). The multi-walled carbon nanotubes (MWCNTs), obtained from the University of Kentucky, were selected because of their electrical and thermal conductivity and their small diameters. The purpose of these experiments was to determine the combination of thermal, electrical, and mechanical properties achievable while still maintaining melt processability. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight-percent of MWCNTs by dry mixing of the constituents in a ball mill using zirconia beads. The resulting powders were characterized for degree of mixing and thermal and rheological properties. The neat resin was found to have melt viscosity between 5 and 10 poise. At 280 C and a fixed strain rate, the viscosity was found to increase with time. At this temperature, the phenylethynyl groups do not readily react and so no significant curing of the resin occurred. For MWCNT-filled samples, melt viscosity was reasonably steady at 280 C and was greater in samples containing greater proportions of MWCNTs. The melt viscosity for 20 weightpercent of MWCNTs was found to be .28,000 poise, which is lower than the initial estimated allowable maximum value of 60,000 poise for injection molding. Hence, MWCNT loadings of as much as 20 percent were deemed to be suitable compositions for scale-up. High-resolution scanning electron microscopy (HRSEM) showed the MWCNTs to be well

  9. Sialons as high temperature insulators

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Kuo, Y. S.

    1978-01-01

    Sialons were evaluated for application as high temperature electrical insulators in contact with molybdenum and tungsten components in hard vacuum applications. Both D.C. and variable frequency A.C. resistivity data indicate the sialons to have electrical resistivity similar to common oxide in the 1000 C or higher range. Metallographic evaluations indicate good bonding of the type 15R ALN polytype to molybdenum and tungsten. The beta prime or modified silicon nitride phase was unacceptable in terms of vacuum stability. Additives effect on electrical resistivity. Similar resistivity decreases were produced by additions of molybdenum or tungsten to form cermets. The use of hot pressing at 1800 C with ALN, Al2 O3 and Si3N4 starting powders produced a better product than did a combination of SiO2 and AIN staring powders. It was indicated that sialons will be suitable insulators in the 1600K range in contact with molybdenum or tungsten if they are produced as a pure ceramic and subsequently bonded to the metal components at temperatures in the 1600K range.

  10. Apparatus and method for controlling the temperature of the core of a super-conducting transformer

    SciTech Connect

    Golner, Thomas; Pleva, Edward; Mehta, Shirish

    2006-10-10

    An apparatus for controlling the temperature of a core of a transformer is provided that includes a core, a shield surrounding the core, a cast formed between the core and the shield, and tubing positioned on the shield. The cast directs heat from the core to the shield and cooling fluid is directed through the tubing to cool the shield.

  11. Super H-mode: theoretical prediction and initial observations of a new high performance regime for tokamak operation

    SciTech Connect

    Snyder, Philip B.; Solomon, Wayne M.; Burrell, Keith H.; Garofalo, Andrea M.; Grierson, Brian A.; Groebner, Richard J.; Leonard, Anthony W.; Nazikian, Raffi; Osborne, Thomas H.; Belli, Emily A.; Candy, John; Wilson, Howard R.

    2015-07-21

    A new “Super H-mode” regime is predicted, which enables pedestal height and predicted fusion performance substantially higher than for H-mode operation. This new regime is predicted to exist by the EPED pedestal model, which calculates criticality constraints for peeling-ballooning and kinetic ballooning modes, and combines them to predict the pedestal height and width. EPED usually predicts a single (“H-mode”) pedestal solution for each set of input parameters, however, in strongly shaped plasmas above a critical density, multiple pedestal solutions are found, including the standard “Hmode” solution, and a “Super H-Mode” solution at substantially larger pedestal height and width. The Super H-mode regime is predicted to be accessible by controlling the trajectory of the density, and to increase fusion performance for ITER, as well as for DEMO designs with strong shaping. A set of experiments on DIII-D has identified the predicted Super H-mode regime, and finds pedestal height and width, and their variation with density, in good agreement with theoretical predictions from the EPED model. Finally, the very high pedestal enables operation at high global beta and high confinement, including the highest normalized beta achieved on DIII-D with a quiescent edge.

  12. High Temperature Particle Filtration Technology

    SciTech Connect

    Besmann, T.M.

    2001-11-13

    High temperature filtration can serve to improve the economic, environmental, and energy performance of chemical processes. This project was designed to evaluate the stability of filtration materials in the environments of the production of dimethyldichlorosilane (DDS). In cooperation with Dow Corning, chemical environments for the fluidized bed reactor where silicon is converted to DDS and the incinerator where vents are cornbusted were characterized. At Oak Ridge National Laboratory (ORNL) an exposure system was developed that could simulate these two environments. Filter samples obtained from third parties were exposed to the environments for periods up to 1000 hours. Mechanical properties before and after exposure were determined by burst-testing rings of filter material. The results indicated that several types of filter materials would likely perform well in the fluid bed environment, and two materials would be good candidates for the incinerator environment.

  13. Faraday imaging at high temperatures

    DOEpatents

    Hackel, L.A.; Reichert, P.

    1997-03-18

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

  14. Faraday imaging at high temperatures

    DOEpatents

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  15. Outstanding adsorption performance of high aspect ratio and super-hydrophobic carbon nanotubes for oil removal.

    PubMed

    Kayvani Fard, Ahmad; Mckay, Gordon; Manawi, Yehia; Malaibari, Zuhair; Hussien, Muataz A

    2016-12-01

    Oil removal from water is a highly important area due to the large production rate of emulsified oil in water, which is considered one of the major pollutants, having a negative effect on human health, environment and wildlife. In this study, we have reported the application of high quality carbon nanotube bundles produced by an injected vertical chemical vapor deposition (IV-CVD) reactor for oil removal. High quality, bundles, super hydrophobic, and high aspect ratio carbon nanotubes were produced. The average diameters of the produced CNTs ranged from 20 to 50 nm while their lengths ranged from 300 to 500 μm. Two types of CNTs namely, P-CNTs and C-CNTs, (Produced CNTs from the IV-CVD reactor and commercial CNTs) were used for oil removal from water. For the first time, thermogravimetric analysis (TGA) was conducted to measure maximum oil uptake using CNT and it was found that P-CNT can take oil up to 17 times their weight. The effect of adsorbent dosage, contact time, and agitation speed were examined on the oil spill clean-up efficiency using batch sorption experiments. Higher efficiency with almost 97% removal was achieved using P-CNTs compared to 87% removal using C-CNTs.

  16. High temperature capacitive strain gage

    NASA Astrophysics Data System (ADS)

    Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.

    1990-01-01

    Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.

  17. High Temperature Capacitive Strain Gage

    NASA Technical Reports Server (NTRS)

    Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.

    1990-01-01

    Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.

  18. High temperature control rod assembly

    DOEpatents

    Vollman, Russell E.

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  19. High temperature autoclave vacuum seals

    NASA Technical Reports Server (NTRS)

    Hoffman, J. R.; Simpson, W. G.; Walker, H. M.

    1971-01-01

    Aluminum sheet forms effective sealing film at temperatures up to 728 K. Soft aluminum wire rings provide positive seal between foil and platen. For applications at temperatures above aluminum's service temperature, stainless steel is used as film material and copper wire as sealant.

  20. Radio telescopes as the detectors of super-high-energy neutrinos

    NASA Technical Reports Server (NTRS)

    Dagkesamansky, R. D.; Zheleznykh, I. M.

    1991-01-01

    The registration of super high energy neutrinos is a very difficult and also very important problem that requires construction of detectors with large effective target masses. Askaryan pointed out the possibility of registering cascades in dense media by the Cherenkov radio emission of an excess of negative charges in the cascades which arose in interaction between high energy particles and the atoms of medium. The telescopes for cosmic high energy neutrino detection by radioemission of cascades induced underground, but whose development continues in the atmosphere were proposed by others. The effective target masses of such detectors could be approx. 10(exp 9) tons and more. The properties of Cherenkov radio emission of cascades and the properties of ice in the Antarctic Region make it possible to propose Radio Antarctic Muon and Neutrino Detection (RAMAND): antennas should be placed on the ice surface of approx. 10 sq km to search for radio signals for neutrino (muon) cascades of energy. It is evident from data given that the largest radio telescopes gives the opportunity for registration of the cascades induced by neutrinos with the energies E is greater than or = 10(exp 20) eV.

  1. Functional evaluation of telemedicine with super high definition images and B-ISDN.

    PubMed

    Takeda, H; Matsumura, Y; Okada, T; Kuwata, S; Komori, M; Takahashi, T; Minatom, K; Hashimoto, T; Wada, M; Fujio, Y

    1998-01-01

    In order to determine whether a super high definition (SHD) image running at a series of 2048 resolution x 2048 line x 60 frame/sec was capable of telemedicine, we established a filing system for medical images and two experiments for transmission of high quality images were performed. All images of various types, produced from one case of ischemic heart disease were digitized and registered into the filing system. Images consisted of plain chest x-ray, electrocardiogram, ultrasound cardiogram, cardiac scintigram, coronary angiogram, left ventriculogram and so on. All images were animated and totaled a number of 243. We prepared a graphic user interface (GUI) for image retrieval based on the medical events and modalities. Twenty one cardiac specialists evaluated quality of the SHD images to be somewhat poor compared to the original pictures but sufficient for making diagnoses, and effective as a tool for teaching and case study purposes. The system capability of simultaneously displaying several animated images was especially deemed effective in grasping comprehension of diagnosis. Efficient input methods and creating capacity of filing all produced images are future issue. Using B-ISDN network, the SHD file was prefetched to the servers at Kyoto University Hospital and BBCC (Bradband ISDN Business chance & Culture Creation) laboratory as an telemedicine experiment. Simultaneous video conference system, the control of image retrieval and pointing function made the teleconference successful in terms of high quality of medical images, quick response time and interactive data exchange.

  2. Radio telescopes as the detectors of super-high-energy neutrinos

    NASA Technical Reports Server (NTRS)

    Dagkesamansky, R. D.; Zheleznykh, I. M.

    1991-01-01

    The registration of super high energy neutrinos is a very difficult and also very important problem that requires construction of detectors with large effective target masses. Askaryan pointed out the possibility of registering cascades in dense media by the Cherenkov radio emission of an excess of negative charges in the cascades which arose in interaction between high energy particles and the atoms of medium. The telescopes for cosmic high energy neutrino detection by radioemission of cascades induced underground, but whose development continues in the atmosphere were proposed by others. The effective target masses of such detectors could be approx. 10(exp 9) tons and more. The properties of Cherenkov radio emission of cascades and the properties of ice in the Antarctic Region make it possible to propose Radio Antarctic Muon and Neutrino Detection (RAMAND): antennas should be placed on the ice surface of approx. 10 sq km to search for radio signals for neutrino (muon) cascades of energy. It is evident from data given that the largest radio telescopes gives the opportunity for registration of the cascades induced by neutrinos with the energies E is greater than or = 10(exp 20) eV.

  3. Super-Stable, Highly Monodisperse Plasmonic Nanocrystals with 500 Gold Atoms: Au~500(SR)~120

    SciTech Connect

    Kumara, Chanaka; Zuo, Xiaobing; Ilavsky, Dr. Jan; Chapman, Karena; Cullen, David A; Dass, Amala

    2014-01-01

    Determining the composition of plasmonic nanoparticles is challenging due to a deficiency in tools capable of accurately evaluating the number of atoms. Mass spectrometry plays a significant role in determining nanoparticle composition at the atomic level. Significant progress has been made in understanding ultra-small gold nanoparticles, like Au25(SR)18 and Au38(SR)24, with a Au core diameter of 0.97 and 1.3 nm, respectively. However, progress in small plasmonic nanoparticles (2 - 5 nm) is currently challenging, due in part to limitations in synthesizing monodisperse nanoparticles. Here, we report a plasmonic nanocrystal that is highly monodisperse, with an unprecedented variation of less than 20 gold atoms. The composition of the super-stable plasmonic nanocrystals at 115 kDa was determined to contain Au500 10SR120 3. The Au~500 system, named Faraduarate-500, is the largest size to be characterized using high resolution ESI mass spectrometry. Atomic pair distribution function (PDF) data shows that the local atomic structure is consistent with a face-centered cubic (fcc) or Marks decahedral arrangement. High resolution scanning transmission electron microscopy images show that the diameter is 2.4 0.1 nm. The radius of gyration measured by small angle X-ray scattering (SAXS), is 1.05 0.05 nm, and the size and the shape of SAXS molecular envelope are in agreement with TEM and PDF measurements.

  4. Thermal disconnect for high-temperature batteries

    DOEpatents

    Jungst, Rudolph George; Armijo, James Rudolph; Frear, Darrel Richard

    2000-01-01

    A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

  5. Temperature Dependent Residual Stress Models for Ultra-High-Temperature Ceramics on High Temperature Oxidation

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhuan; Li, Weiguo

    2017-08-01

    The strength of SiC-depleted layer of ultra-high-temperature ceramics on high temperature oxidation degrades seriously. The research for residual stresses developed within the SiC-depleted layer is important and necessary. In this work, the residual stress evolutions in the SiC-depleted layer and the unoxidized substrate in various stages of oxidation are studied by using the characterization models. The temperature and oxidation time dependent mechanical/thermal properties of each phase in SiC-depleted layer are considered in the models. The study shows that the SiC-depleted layer would suffer from large tensile stresses due to the great temperature changes and the formation of pores on high temperature oxidation. The stresses may lead to the cracking and even the delamination of the oxidation layer.

  6. Temperature Dependent Residual Stress Models for Ultra-High-Temperature Ceramics on High Temperature Oxidation

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhuan; Li, Weiguo

    2016-11-01

    The strength of SiC-depleted layer of ultra-high-temperature ceramics on high temperature oxidation degrades seriously. The research for residual stresses developed within the SiC-depleted layer is important and necessary. In this work, the residual stress evolutions in the SiC-depleted layer and the unoxidized substrate in various stages of oxidation are studied by using the characterization models. The temperature and oxidation time dependent mechanical/thermal properties of each phase in SiC-depleted layer are considered in the models. The study shows that the SiC-depleted layer would suffer from large tensile stresses due to the great temperature changes and the formation of pores on high temperature oxidation. The stresses may lead to the cracking and even the delamination of the oxidation layer.

  7. The effect of hydrogen on ([alpha][sub 2] + [beta])/[beta] transus temperature of super-[alpha][sub 2] alloy

    SciTech Connect

    Liao, B.; Yang, K.; Li, Y.Y. . Liaoning Key Lab. for Materials and Hydrogen); Wang, T.S.; Yuan, H. . Dept. of Materials and Engineering)

    1995-01-15

    Thermochemical processing (TCP) with hydrogen has been proved to be an effective technique to modify the microstructures and enhance the mechanical properties of conventional titanium alloys. In recent years, some effort has also been made to apply this unique method to Ti[sub 3]Al based aluminide alloys in order to improve their properties, especially the room temperature ductilities, through the modification of the microstructures, for the properties have been found to be highly dependent on microstructures of the alloys. However, further investigation on variations of some basic physical parameters of the alloys caused by hydrogen have not been carried on for TCP with hydrogen on this type of alloys, which can result in arbitrary selections of the treatment parameters for processings. Therefore, quantitative investigations on hydrogen behaviors in the alloys can be very important to the optimization of this novel processing technique for Ti[sub 3]Al based aluminide alloys. In the present work, super-[alpha][sub 2], a Ti[sub 3]Al based aluminide alloy, has been chosen to study the effect of hydrogen on ([alpha][sub 2] + [beta])/[beta] transus temperature of the alloy, an important parameter to phase transformation of this type of alloy, in order to provide a preliminary based for the application.

  8. High Temperature Solid Lubricant Coating for High Temperature Wear Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher (Inventor); Edmonds, Brian J (Inventor)

    2014-01-01

    A self-lubricating, friction and wear reducing composite useful over a wide temperature range is described herein. The composite includes metal bonded chromium oxide dispersed in a metal binder having a substantial amount of nickel. The composite contains a fluoride of at least one Group I, Group II, or rare earth metal, and optionally a low temperature lubricant metal.

  9. Linear analysis on the onset of thermal convection of highly compressible fluids with variable physical properties: Implications for the mantle convection of super-Earths

    NASA Astrophysics Data System (ADS)

    Kameyama, Masanori

    2016-02-01

    A series of our linear analysis on the onset of thermal convection was applied to that of highly compressible fluids in a planar layer whose thermal conductivity and viscosity vary in space, in order to study the influences of spatial variations in physical properties expected in the mantles of massive terrestrial planets. The thermal conductivity and viscosity are assumed to exponentially depend on depth and temperature, respectively, while the variations in thermodynamic properties (thermal expansivity and reference density) with depth are taken to be relevant for the super-Earths with 10 times the Earth's. Our analysis demonstrated that the nature of incipient thermal convection is strongly affected by the interplay between the adiabatic compression and spatial variations in physical properties of fluids. Owing to the effects of adiabatic compression, a `stratosphere' can occur in the deep mantles of super-Earths, where a vertical motion is insignificant. An emergence of `stratosphere' is greatly enhanced by the increase in thermal conductivity with depth, while it is suppressed by the decrease in thermal expansivity with depth. In addition, by the interplay between the static stability and strong temperature dependence in viscosity, convection cells tend to be confined in narrow regions around the `tropopause' at the interface between the `stratosphere' of stable stratification and the `troposphere' of unstable stratification. We also found that, depending on the variations in physical properties, two kinds of stagnant regions can separately develop in the fluid layer. One is well-known `stagnant-lids' of cold and highly viscous fluids, and the other is `basal stagnant regions' of hot and less viscous fluids. The occurrence of `basal stagnant regions' may imply that convecting motions can be insignificant in the lowermost part of the mantles of massive super-Earths, even in the absence of strong increase in viscosity with pressure (or depth).

  10. Investigation of mixed ionospheric and fround scatter using high spectral content pulse sequences for SuperDARN radars

    NASA Astrophysics Data System (ADS)

    Spaleta, J.; Bristow, W. A.

    2013-12-01

    SuperDARN radars estimate plasma drift velocities from the Doppler shift observed on signals scattered from field-aligned density irregularities. These field-aligned density irregularities are embedded in the ionospheric plasma, and move at the same velocity as background plasma. As a result, the electromagnetic signals scattered from these irregularities are Doppler shifted. The SuperDARN radars routinely observe ionospheric scatter Doppler velocities ranging from zero to thousands of meters per second. The radars determine the Doppler shift of the ionospheric scatter by linear fitting the phase of an auto correlation function derived from the radar pulse sequence. The phase fitting technique employed assumes a single dominant velocity is present in the signal. In addition, the SuperDARN radars can also observe signals scattered from the ground. Once refracted by the ionospheric plasma and bent earthward, the radar pulses eventually reach the ground where they scatter, sending signal back to the radar. This ground-scatter signal is characterized as having a low Doppler shift and low spectral width. The SuperDARN radars are able to use these signal characteristics to discriminate the ground scatter signal from the ionospheric scatter, when regions of ground scatter are isolated from ionospheric scatter returns. The phase fitting assumption of a single dominate target can easily be violated at ranges where ground and ionospheric scatter mix together. Due to the wide elevation angle extent of the SuperDARN radar design, ground and ionospheric scatter from different propagation paths can mix together in the return signal. When this happens, the fitting algorithm attempts to fit to the dominant signal, and if ground scatter dominates, information about the ionospheric scatter at that range can be unresolved. One way to address the mix scatter situation is to use a high spectral content pulse sequence together with a spectral estimation technique. The high spectral

  11. High Temperature Polyimide Materials in Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Gates, Thomas S.

    2001-01-01

    At the end of the NASA High Speed Research (HSR) Program, NASA Langley Research Center (LaRC) began a program to screen the high-temperature Polymeric Composite Materials (PMCs) characterized by the HSR Durability Program for possible use in Reusable Launch Vehicles (RLVs) operating under extreme temperature conditions. The HSR Program focused on developing material-related technologies to enable a High Speed Civil Transport (HSCT) capable of operating temperatures ranging from 54 C (-65 F) to 177 C (350 F). A high-temperature polymeric resin, PETI-5 was used in the HSR Program to satisfy the requirements for performance and durability for a PMC. For RLVs, it was anticipated that this high temperature material would contribute to reducing the overall weight of a vehicle by eliminating or reducing the thermal protection required to protect the internal structural elements of the vehicle and increasing the structural strain limits. The tests were performed to determine temperature-dependent mechanical and physical proper-ties of IM7/PETI-5 composite over a temperature range from cryogenic temperature -253 C (-423F) to the material's maximum use temperature of 230 C (450 F). This paper presents results from the test program for the temperature-dependent mechanical and physical properties of IM7/PETI-5 composite in the temperature range from -253 C (-423 F) to 27 C (80 F).

  12. Influence of the dosage of super plasticizer on properties of high performance concrete

    NASA Astrophysics Data System (ADS)

    Baroninsh, J.; Lagzdina, S.; Krage, L.; Shahmenko, G.

    2011-12-01

    High-performance concrete (HPC) is defined as concrete that meets special combinations of performance and uniformity requirements. That cannot always be achieved routinely using conventional constituents and ordinary mixing, placing, and curing practices. The objective of this study is to provide some experimental data that can be useful in engineering practice for producing HPC using conventional constituents and ordinary mixing and curing practices using less expensive raw materials. In the given study, the influence of the polycarboxylates based super plasticizer (SP) (high-range water reducer) at different dosages to the properties of HPC was investigated. SP in concrete mixtures was added with ratios of 1.0%, 1.5%, and 2.5% by weight of cement. The samples characteristics of produced concrete were compared with each other. Performance of the concrete mixes was determined for fresh and hardened concrete, which included cone test, compressive strength and porosity measurements. Obtained results indicated that increasing dosage of SP to 2.5% by weight of cement improved the performance of concrete and contributed more to the improvement of its transportability properties as well as mechanical properties, but at the same time has considerably reduced water/cement (W/C) ratio. Porosity tests of hardened concrete showed influence of SP dosage to the volume of pores accessible to water.

  13. Preparation and application of hollow molecularly imprinted polymers with a super-high selectivity to the template protein.

    PubMed

    Chen, Yang; He, Xi-Wen; Mao, Jie; Li, Wen-You; Zhang, Yu-Kui

    2013-10-01

    Protein-imprinted polymers with hollow cores that have a super-high imprinting factor were prepared by etching the core of the surface-imprinted polymers that used silica particles as the support. Lysozyme as template was modified onto the surface of silica particles by a covalent method, and after polymerization and the removal of template molecules, channels through the polymer layer were formed, which allowed a single-protein molecule to come into the hollow core and attach to the binding sites inside the polymer layer. The adsorption experiments demonstrated that the hollow imprinted polymers had an extremely high binding capacity and selectivity, and thus a super-high imprinting factor was obtained. The as-prepared imprinted polymers were used to separate the template lysozyme from egg white successfully, indicating its high selectivity and potential application in the field of separation of protein from real samples.

  14. High-temperature thermocouples and related methods

    DOEpatents

    Rempe, Joy L [Idaho Falls, ID; Knudson, Darrell L [Firth, ID; Condie, Keith G [Idaho Falls, ID; Wilkins, S Curt [Idaho Falls, ID

    2011-01-18

    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

  15. High Temperature Superconducting Underground Cable

    SciTech Connect

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  16. High-temperature borehole instrumentation

    SciTech Connect

    Dennis, B.R.; Koczan, S.P.; Stephani, E.L.

    1985-10-01

    A new method of extracting natural heat from the earth's crust was invented at the Los Alamos National Laboratory in 1970. It uses fluid pressures (hydraulic fracturing) to produce cracks that connect two boreholes drilled into hot rock formations of low initial permeability. Pressurized water is then circulated through this connected underground loop to extract heat from the rock and bring it to the surface. The creation of the fracture reservior began with drilling boreholes deep within the Precambrian basement rock at the Fenton Hill Test Site. Hydraulic fracturing, flow testing, and well-completion operations required unique wellbore measurements using downhole instrumentation systems that would survive the very high borehole temperatures, 320/sup 0/C (610/sup 0/F). These instruments were not available in the oil and gas industrial complex, so the Los Alamos National Laboratory initiated an intense program upgrading existing technology where applicable, subcontracting materials and equipment development to industrial manufactures, and using the Laboratory resource to develop the necessary downhole instruments to meet programmatic schedules. 60 refs., 11 figs.

  17. High temperature suppression of dioxins.

    PubMed

    Zhan, Ming-Xiu; Chen, Tong; Fu, Jian-Ying; Lin, Xiao-Qing; Lu, Sheng-Yong; Li, Xiao-Dong; Yan, Jian-Hua; Buekens, Alfons

    2016-03-01

    Combined Sulphur-Nitrogen inhibitors, such as sewage sludge decomposition gases (SDG), thiourea and amidosulphonic acid have been observed to suppress the de novo synthesis of dioxins effectively. In this study, the inhibition of PCDD/Fs formation from model fly ash was investigated at unusually high temperatures (650 °C and 850 °C), well above the usual range of de novo tests (250-400 °C). At 650 °C it was found that SDG evolving from dried sewage sludge could suppress the formation of 2,3,7,8-substituted PCDD/Fs with high efficiency (90%), both in weight units and in I-TEQ units. Additionally, at 850 °C, three kinds of sulphur-amine or sulphur-ammonium compounds were tested to inhibit dioxins formation during laboratory-scale tests, simulating municipal solid waste incineration. The suppression efficiencies of PCDD/Fs formed through homogeneous gas phase reactions were all above 85% when 3 wt. % of thiourea (98.7%), aminosulphonic acid (96.0%) or ammonium thiosulphate (87.3%) was added. Differences in the ratio of PCDFs/PCDDs, in weight average chlorination level and in the congener distribution of the 17 toxic PCDD/Fs indicated that the three inhibitors tested followed distinct suppression pathways, possibly in relation to their different functional groups of nitrogen. Furthermore, thiourea reduced the (weight) average chlorinated level. In addition, the thermal decomposition of TUA was studied by means of thermogravimetry-fourier transform infrared spectroscopy (TG-FTIR) and the presence of SO2, SO3, NH3 and nitriles (N≡C bonds) was shown in the decomposition gases; these gaseous inhibitors might be the primary dioxins suppressants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. High temperature power electronics for space

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad N.; Baumann, Eric D.; Myers, Ira T.; Overton, Eric

    1991-01-01

    A high temperature electronics program at NASA Lewis Research Center focuses on dielectric and insulating materials research, development and testing of high temperature power components, and integration of the developed components and devices into a demonstrable 200 C power system, such as inverter. An overview of the program and a description of the in-house high temperature facilities along with experimental data obtained on high temperature materials are presented.

  19. A coupled numerical analysis of shield temperatures, heat losses and residual gas pressures in an evacuated super-insulation using thermal and fluid networks - Part I: Stationary conditions

    NASA Astrophysics Data System (ADS)

    Reiss, H.

    2004-04-01

    This paper describes numerical simulations, using thermal networks, of shield temperatures and radiative and conductive heat losses of a super-insulated cryogenic storage tank operating at 77 K. Interactions between radiation and conductive heat transfer modes in the shields are investigated, by calculation of local shield temperatures. As a new method, fluid networks are introduced for calculation of stationary residual gas pressure distribution in the evacuated multilayer super-insulation. Output from the fluid network is coupled to the iterative thermal network calculations. Parameter tests concern thickness and emissivity of shields, degree of perforation, residual gas sources like desorption from radiation shields, spacers and container walls, and permeation from the inner container to the evacuated insulation space. Variations of either a conductive (thickness of Al-film on Mylar) or a radiative parameter (thermal emissivity) exert crosswise influences on the radiative or conductive heat losses of the tank, respectively.

  20. High Temperature Chemistry at NASA: Hot Topics

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  1. Super-Eddington Accreting Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Lin, Dacheng; Guillochon, James; Komossa, St.; Ramirez-Ruiz, Enrico; Irwin, Jimmy; Maksym, W. Peter; Grupe, Dirk; Godet, Olivier; Webb, Natalie; Barret, Didier; Zauderer, Bevin; Duc, Pierre-Alain; Carrasco, Eleazar R.; Gwyn, Stephen

    2017-08-01

    Multiwavelength flares from tidal disruption and subsequent accretion of stars are important for study of otherwise dormant massive black holes in galactic nuclei. Previous well-monitored candidate flares were short-lived, with most emission confined to within ~1 year. Here, we report our discovery of a well observed super-long (>11 years) luminous X-ray flare from the nuclear region of a dwarf starburst galaxy. After an apparently fast rise within ~4 months a decade ago, the X-ray luminosity, though showing a weak trend of decay, has been persistently high at around the Eddington limit. The X-ray spectra are soft and can be described with Comptonized emission from an optically thick low-temperature corona, a super-Eddington accretion signature often observed in accreting stellar-mass black holes. Dramatic spectral softening was also caught in one recent observation, implying either a temporary transition from the super-Eddington accretion state to the standard thermal state, or the presence of a transient highly blueshifted (~0.36c) warm absorber. All these properties in concert suggest a tidal disruption event with an unusually long super-Eddington accretion phase that has never before been observed. We also found two additional events showing similar X-ray spectra characteristic of super-Eddington accretion from two otherwise quiescent galaxies. Therefore these events seem to form a new, super-Eddington accreting class of tidal disruption events.

  2. Super-fine rice-flour production by enzymatic treatment with high hydrostatic pressure processing

    NASA Astrophysics Data System (ADS)

    Kido, Miyuki; Kobayashi, Kaneto; Chino, Shuji; Nishiwaki, Toshikazu; Homma, Noriyuki; Hayashi, Mayumi; Yamamoto, Kazutaka; Shigematsu, Toru

    2013-06-01

    In response to the recent expansion of rice-flour use, we established a new rice-flour manufacturing process through the application of high hydrostatic pressure (HP) to the enzyme-treated milling method. HP improved both the activity of pectinase, which is used in the enzyme-treated milling method and the water absorption capacity of rice grains. These results indicate improved damage to the tissue structures of rice grains. In contrast, HP suppressed the increase in glucose, which may have led to less starch damage. The manufacturing process was optimized to HP treatment at 200 MPa (40°C) for 1 h and subsequent wet-pulverization at 11,000 rpm. Using this process, rice flour with an exclusively fine mean particle size less than 20 μm and starch damage less than 5% was obtained from rice grains soaked in an enzyme solution and distilled water. This super-fine rice flour is suitable for bread, pasta, noodles and Western-style sweets.

  3. Super high removal capacities of heavy metals (Pb(2+) and Cu(2+)) using CNT dendrimer.

    PubMed

    Hayati, Bagher; Maleki, Afshin; Najafi, Farhood; Daraei, Hiua; Gharibi, Fardin; McKay, Gordon

    2017-08-15

    This research demonstrates the capability of carbon nanotubes (CNT) modified with four generations of poly-amidoamine dendrimer (PAMAM, G4) to remove Cu(2+) and Pb(2+) heavy metals from aqueous solution in single and binary component systems. Uniquely high adsorption capacities for copper and lead, which are 3333 and 4870mg/g respectively, were achieved. FTIR, H(1) NMR, Zeta potential, SEM and TEM techniques were employed for characterizing the synthetic nanocomposite and indicated that the dendrimer functionalized CNTs have been synthesized. The effects of several parameters including initial metal ion concentration, solution pH and the nanocomposite dosage were studied. The experimental data were analyzed by the Langmuir and Freundlich isotherms and the pseudo-first order and pseudo-second order kinetics models. The maximum adsorption occurred at pH=7. The adsorption process for Cu(2+) and Pb(2+) in single and binary component systems fit the Langmuir and extended Langmuir models respectively. This study also tested the kinetic sorption of the metals on PAMAM/CNT in single and binary component metal systems at various metal ions concentrations. The results showed that PAMAM/CNT nanocomposite was a super-adsorbent, able to uptake uniquely large quantities of heavy metal from single and binary component liquid phase. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Measurement of small temperature fluctuations at high average temperature

    NASA Technical Reports Server (NTRS)

    Scholl, James W.; Scholl, Marija S.

    1988-01-01

    Both absolute and differential temperature measurements were simultaneously performed as a function of time for a pixel on a high-temperature, multi-spectral, spatially and temporally varying infrared target simulator. A scanning laser beam was used to maintain a pixel at an on-the-average constant temperature of 520 K. The laser refresh rate of up to 1 kHz resulted in small-amplitude temperature fluctuations with a peak-to-peak amplitude of less than 1 K. The experimental setup to accurately measure the differential and the absolute temperature as a function of time is described.

  5. [Canopy light distribution and its correlation with photosynthetic production in super-high yielding cotton fields of Xinjiang, Northwest China].

    PubMed

    Feng, Guo-Yi; Yao, Yan-Di; Luo, Hong-Hai; Zhang, Ya-Li; Du, Ming-Wei; Zhang, Wang-Feng; Xia, Dong-Li; Dong, Heng-Yi

    2012-05-01

    Taking the super-high yielding cotton fields (lint yield > or = 4000 kg x hm(-2)) in Xinjiang as the objects, this paper studied the canopy light distribution, photosynthetic rate, and dry matter accumulation at different growth stages, as well as the relationships between the characteristics of canopy light environment and the photosynthetic production. From full flowering stage to late full bolling stage, the light absorption proportion in the upper, middle and lower canopy layers in the super-high yielding cotton fields was 2:2:1, and the canopy transmission coefficients for radiation penetration and diffuse penetration were 0.20-0.55 and 0.22-0.56, respectively, being at reasonable level. The leaves in the middle and lower canopy layers could well accept light, and the leaf photosynthetic rate had little difference among different canopy layers. Compared with high yielding (3500 kg x hm(-2)) and generally high yielding (3000 kg x hm(-2)) cotton fields, super-high yielding cotton field had higher leaf area index and the highest canopy photosynthesis rate at early full boiling stage, and slowly decreased leaf area index, higher canopy photosynthesis rate, increased contribution of non-foliar organs to photosynthetic production, and larger dry matter accumulation from early boll-opening stage to full boll-opening stage. In cotton cultivation, to adjust the canopy structure for the equidistribution of light and canopy photosynthesis capacity in vertical direction could be the important strategy for the efficient utilization of absorbed light energy and the realization of super-high yielding.

  6. High-Sensitivity Temperature Measurement

    ERIC Educational Resources Information Center

    Leadstone, G. S.

    1978-01-01

    Describes a method of measuring small temperature differences that amount to a .01K, using an arrangement of a copper-constantan thermocouple, a microamplifier and a galvanometer, as an indirect way of measuring heat energy. (GA)

  7. High-Sensitivity Temperature Measurement

    ERIC Educational Resources Information Center

    Leadstone, G. S.

    1978-01-01

    Describes a method of measuring small temperature differences that amount to a .01K, using an arrangement of a copper-constantan thermocouple, a microamplifier and a galvanometer, as an indirect way of measuring heat energy. (GA)

  8. High Temperature Catalytically Assisted Combustion.

    DTIC Science & Technology

    1983-01-28

    entrance. The model also shows that the heat release producing these gradients occurs primarily at the entrance is due to heterogeneous reactions and is...running at low tem- perature is to insure that all of the heat release is due to surface reactions . Therefore the maximum substrate temperature in these...runs was kept below 8000C. Even at low temperatures, however it is important that the overall process be surface reaction rate controlled and not

  9. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I.

    2013-09-11

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  10. Highly Controlled Synthesis and Super-Radiant Photoluminescence of Plasmonic Cube-in-Cube Nanoparticles.

    PubMed

    Park, Jeong-Eun; Kim, Sungi; Son, Jiwoong; Lee, Yeonhee; Nam, Jwa-Min

    2016-12-14

    The plasmonic properties of metal nanostructures have been heavily utilized for surface-enhanced Raman scattering (SERS) and metal-enhanced fluorescence (MEF), but the direct photoluminescence (PL) from plasmonic metal nanostructures, especially with plasmonic coupling, has not been widely used as much as SERS and MEF due to the lack of understanding of the PL mechanism, relatively weak signals, and the poor availability of the synthetic methods for the nanostructures with strong PL signals. The direct PL from metal nanostructures is beneficial if these issues can be addressed because it does not exhibit photoblinking or photobleaching, does not require dye-labeling, and can be employed as a highly reliable optical signal that directly depends on nanostructure morphology. Herein, we designed and synthesized plasmonic cube-in-cube (CiC) nanoparticles (NPs) with a controllable interior nanogap in a high yield from Au nanocubes (AuNCs). In synthesizing the CiC NPs, we developed a galvanic void formation (GVF) process, composed of replacement/reduction and void formation steps. We unraveled the super-radiant character of the plasmonic coupling-induced plasmon mode which can result in highly enhanced PL intensity and long-lasting PL, and the PL mechanisms of these structures were analyzed and matched with the plasmon hybridization model. Importantly, the PL intensity and quantum yield (QY) of CiC NPs are 31 times and 16 times higher than those of AuNCs, respectively, which have shown the highest PL intensity and QY reported for metallic nanostructures. Finally, we confirmed the long-term photostability of the PL signal, and the signal remained stable for at least 1 h under continuous illumination.

  11. Viewing-distance aware super-resolution for high-definition display.

    PubMed

    Shen, Chih-Tsung; Liu, Hung-Hsun; Yang, Ming-Hsuan; Hung, Yi-Ping; Pei, Soo-Chang

    2015-01-01

    In this paper, we propose a novel algorithm for high-definition displays to enlarge low-resolution images while maintaining perceptual constancy (i.e., the same field-of-view, perceptual blur radius, and the retinal image size in viewer's eyes). We model the relationship between a viewer and a display by considering two main aspects of visual perception, i.e., scaling factor and perceptual blur radius. As long as we enlarge an image while adjust its image blur levels on the display, we can maintain viewer's perceptual constancy. We show that the scaling factor should be set in proportion to the viewing distance and the blur levels on the display should be adjusted according to the focal length of a viewer. Toward this, we first refer to edge directions to interpolate a low-resolution image with the increasing of viewing distance and the scaling factor. After images are interpolated, we utilize a local contrast to estimate the spatially varying image blur levels of the interpolated image. We then further adjust the image blur levels using a parametric deblurring method, which combines L1 as well as L2 reconstruction errors, and Tikhonov with total variation regularization terms. By taking these factors into account, high-resolution images adaptive to viewing distance on a display can be generated. Experimental results on both natural image metric and user subjective studies across image scales demonstrate that the proposed super-resolution algorithm for high-definition displays performs favorably against the state-of-the-art methods.

  12. Convergence Studies of Thermal and Electromagnetic Transient Quench Analysis of 11 GeV Super High Momentum Spectrometer Superconducting Magnets in Jefferson Lab

    SciTech Connect

    Eric Sun, Paul Brindza, Steve Lassiter, Mike Fowler, E. Xu

    2010-11-01

    This paper presents results of convergence studies of transient thermal and electromagnetic quench analysis of five Super High Momentum Spectrometer (SHMS) superconducting magnets: HB, Q1, Q2, Q3, and Dipole, using Vector Fields Quench analysis codes. The convergence of the hot spot temperature and solution solve times were used to investigate the effects of element types, mesh densities, and tolerance criteria. The comparisons between tetrahedral elements and hexahedral elements was studied, and their advantages and disadvantages were discussed. Based on the results of convergence studies, a meshing guideline for coils is presented. The impact of iteration tolerance to the hot spot temperature was also explored, and it is found that tight tolerances result in extremely long solve times with only marginal improvements in the results.

  13. Using an active temporal compensating system to achieve the super-Gaussian pulses in high-power lasers

    NASA Astrophysics Data System (ADS)

    Wang, Yulei; Liu, Rui; Yuan, Hang; Li, Sensen; Liu, Zhaohong; Zhu, Xuehua; He, Weiming; Lv, Zhiwei

    2015-08-01

    In high-power solid-state laser, initiative pulse shaping can help improve the output laser's performance. The evaluation for output laser pulse is also incomplete. In this paper, we propose a method of initiative pulse shaping by using arbitrary waveform generator (AWG), and establish a relatively complete evaluation system for the output pulses shape simultaneously. It achieves the super-Gaussian pulse output with high SNR (signal-to-noise ratio). As a consequence, a square laser pulse with pulse adjustable width ~5ns, rising time 197ps is obtained. The power imbalance of the output square pulse is 3.72%. The similarity between the eight-order super-Gaussian pulse and the one we get from experiment reached 99%.

  14. Fluorescence encoded super resolution imaging based on a location estimation algorithm for high-density fluorescence probes

    NASA Astrophysics Data System (ADS)

    Nishimura, Takahiro; Kimura, Hitoshi; Ogura, Yusuke; Tanida, Jun

    2016-11-01

    In this paper, we propose a fluorescence encoded super resolution technique based on an estimation algorithm to determine locations of high-density fluorescence emitters. In our method, several types of fluorescence coded probes are employed to reduce densities of target molecules labeled with individual codes. By applying an estimation algorithm to each coded image, the locations of the high density probes can be determined. Due to multiplexed fluorescence imaging, this approach will provide fast super resolution microscopy. In experiments, we evaluated the performance of the method using probes with different fluorescence wavelengths. Numerical simulation results show that the locations of probes with the density of 200 μ m^{-2} , which is a typical membrane-receptor expression level, are determined with acquisition of 16 different coded images.

  15. Large-Size 2D β-Cu2 S Nanosheets with Giant Phase Transition Temperature Lowering (120 K) Synthesized by a Novel Method of Super-Cooling Chemical-Vapor-Deposition.

    PubMed

    Li, Bo; Huang, Le; Zhao, Guangyao; Wei, Zhongming; Dong, Huanli; Hu, Wenping; Wang, Lin-Wang; Li, Jingbo

    2016-10-01

    2D triangular β-Cu2 S nanosheets with large size and high quality are synthesized by a novel method of super-cooling chemical-vapor-deposition. The phase transition of this 2D material from β-Cu2 S to γ-Cu2 S occurs at 258 K (-15 °C), and such transition temperature is 120 K lower than that of its bulk counterpart (about 378 K). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High Temperature Filler for Tile Gaps

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Wang, D. S.

    1983-01-01

    Gaps between ceramic tiles filled with ceramic-coated fabric that withstands temperatures as high as 2,000 degrees F (1,300 degrees C). Reusable high-temperature gap filler is made of fabric coated with ceramic slurry and bonded in place with room-temperature-vulcanized adhesive. Procedure used in kilns and furnaces.

  17. High temperature superconducting fault current limiter

    DOEpatents

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  18. High temperature superconducting fault current limiter

    DOEpatents

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  19. High Frame Rate Super Resolution Imaging Based on Ultrasound Synthetic Aperture Scheme

    NASA Astrophysics Data System (ADS)

    Wada, Takayuki; Ho, Yihsin; Okubo, Kan; Tagawa, Norio; Hirose, Yoshiyasu

    This study addresses the efficient extension of the Super resolution FM-Chirp correlation Method (SCM) to the framework of synthetic aperture imaging. The original SCM needs to transmit focused beams many times while changing frequency little by little toward each direction to extract the carrier phase information which is useful for super resolution imaging. This multiple transmitting and receiving increase the amount of processing and puts a strict limit on the frame rate. Therefore, we extend the SCM to the synthetic aperture version called the SA-SCM, and confirm its performance through simulations based on the finite element method.

  20. Investigation into Cause of High Temperature Failure of Boiler Superheater Tube

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Ray, S.; Roy, H.; Shukla, A. K.

    2015-04-01

    The failure of the boiler tubes occur due to various reasons like creep, fatigue, corrosion and erosion. This paper highlights a case study of typical premature failure of a final superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement, chemical analysis, oxide scale thickness measurement, microstructural examination are conducted as part of the investigations. Apart from these investigations, sulfur print, Energy Dispersive spectroscopy (EDS) and X ray diffraction analysis (XRD) are also conducted to ascertain the probable cause of failure of final super heater tube. Finally it has been concluded that the premature failure of the super heater tube can be attributed to the combination of localized high tube metal temperature and loss of metal from the outer surface due to high temperature corrosion. The corrective actions have also been suggested to avoid this type of failure in near future.

  1. Super H-mode: theoretical prediction and initial observations of a new high performance regime for tokamak operation

    DOE PAGES

    Snyder, Philip B.; Solomon, Wayne M.; Burrell, Keith H.; ...

    2015-07-21

    A new “Super H-mode” regime is predicted, which enables pedestal height and predicted fusion performance substantially higher than for H-mode operation. This new regime is predicted to exist by the EPED pedestal model, which calculates criticality constraints for peeling-ballooning and kinetic ballooning modes, and combines them to predict the pedestal height and width. EPED usually predicts a single (“H-mode”) pedestal solution for each set of input parameters, however, in strongly shaped plasmas above a critical density, multiple pedestal solutions are found, including the standard “Hmode” solution, and a “Super H-Mode” solution at substantially larger pedestal height and width. The Supermore » H-mode regime is predicted to be accessible by controlling the trajectory of the density, and to increase fusion performance for ITER, as well as for DEMO designs with strong shaping. A set of experiments on DIII-D has identified the predicted Super H-mode regime, and finds pedestal height and width, and their variation with density, in good agreement with theoretical predictions from the EPED model. Finally, the very high pedestal enables operation at high global beta and high confinement, including the highest normalized beta achieved on DIII-D with a quiescent edge.« less

  2. Risk Mitigation for High Temperature Superconducting Generators

    DTIC Science & Technology

    2009-01-01

    and Technology Division Background: High temperature superconduct- ing (HTS) motors and generators will enable high- efficiency , high power density...naval propulsion, and compact electrical generators for weapons and ship systems. The second-generation high temperature superconductors (2G-HTS...manufacturability of long lengths of these materials, sufficient for demonstrations of large motors and generators. Ensuring superior fatigue prop- erties

  3. High Temperature Strain Measurements Using Digital Optics

    DTIC Science & Technology

    1991-09-01

    Eae Melting and Boiling Temperatures for Several Metals ................ 3 2 Comparison of Micrometer and Camera Readings at Room Temperature...over-all accuracy. For materials at or near melting or ablation temperatures any contact with the test sample is an undesirable and often unacceptable... melting and boiling temperatures for several metals 3. In addition to high metals, carbon in the form of graphite sublimes at temperatures near 7000’F in

  4. ALUMINUM NITRIDE AS A HIGH TEMPERATURE TRANSDUCER

    SciTech Connect

    Parks, D. A.; Tittmann, B. R.; Kropf, M. M.

    2010-02-22

    The high temperature capabilities of bulk single crystal aluminum nitride are investigated experimentally. Temperatures in excess of 1100 deg. Celsius are obtained and held for eight hours. Variation in the performance of single crystal samples is demonstrated.

  5. High temperature ceramic interface study

    NASA Technical Reports Server (NTRS)

    Lindberg, L. J.

    1984-01-01

    Monolithic SiC and Si3N4 are susceptible to contact stress damage at static and sliding interfaces. Transformation-toughened zirconia (TTZ) was evaluated under sliding contact conditions to determine if the higher material fracture toughness would reduce the susceptibility to contact stress damage. Contact stress tests were conducted on four commercially available TTZ materials at normal loads ranging from 0.455 to 22.7 kg (1 to 50 pounds) at temperatures ranging from room temperature to 1204C (2200 F). Static and dynamic friction were measured as a function of temperature. Flexural strength measurements after these tests determined that the contact stress exposure did not reduce the strength of TTZ at contact loads of 0.455, 4.55, and 11.3 kg (1, 10, and 25 pounds). Prior testing with the lower toughness SiC and Si3N4 materials resulted in a substantial strength reduction at loads of only 4.55 and 11.3 kg (10 and 25 pounds). An increase in material toughness appears to improve ceramic material resistance to contact stress damage. Baseline material flexure strength was established and the stress rupture capability of TTZ was evaluated. Stress rupture tests determined that TTZ materials are susceptible to deformation due to creep and that aging of TTZ materials at elevated temperatures results in a reduction of material strength.

  6. Deep Trek High Temperature Electronics Project

    SciTech Connect

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  7. High temperature tensile testing of ceramic composites

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Hemann, John H.

    1988-01-01

    The various components of a high temperature tensile testing system are evaluated. The objective is the high temperature tensile testing of SiC fiber reinforced reaction bonded Si3N4 specimens at test temperatures up to 1650 C (3000 F). Testing is to be conducted in inert gases and air. Gripping fixtures, specimen configurations, furnaces, optical strain measuring systems, and temperature measurement techniques are reviewed. Advantages and disadvantages of the various techniques are also noted.

  8. CARS thermometry in high temperature gradients

    NASA Astrophysics Data System (ADS)

    Zhu, J. Y.; Dunn-Rankin, D.

    1993-01-01

    CARS is an effective non-intrusive technique for measuring gas temperature in combustion environments. In regions of high temperature gradient, however, the CARS signal is complicated by contributions from gas at different temperature. This paper examines theoretically the uncertainty associated with CARS thermometry in steep temperature gradients. In addition, the work compares the temperature predicted from CARS with the adiabatic mixed temperature of the gas resident in the measurement volume. This comparison helps indicate the maximum sample volume size allowed for accurate temperature measurements.

  9. Three-dimensional super-wideband micro-antenna for high-resolution millimeter-wave medical imaging.

    PubMed

    Mirbeik, Amir; Tavassoli, Vahid; Ayazi, Farrokh; Tavassolian, Negar

    2014-01-01

    This paper reports on a novel super-wideband micro-hemispherical antenna with application in millimeter-wave medical imaging. The antenna is composed of a hemispherical shell suspended above a substrate and can be fabricated using a fabrication technology originally developed for micron-scale electromechanical resonators. The antenna exhibits a wide fractional bandwidth of more than 80% (from 64 GHz to 150 GHz) and a high gain of 8.6 dBi at its center frequency. Radiation parameters of the antenna are characterized and the effect of its super-wideband behavior on pulsed millimeter-wave imaging is demonstrated. Finally, a preliminary array configuration composed of two antennas placed side-by-side in the vicinity of a skin-mimicking target is evaluated and the ability to fully detect the target has been demonstrated.

  10. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution.

    PubMed

    Meddens, Marjolein B M; Liu, Sheng; Finnegan, Patrick S; Edwards, Thayne L; James, Conrad D; Lidke, Keith A

    2016-06-01

    We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.

  11. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution

    SciTech Connect

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; Edwards, Thayne L.; James, Conrad D.; Lidke, Keith A.

    2016-01-01

    Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.

  12. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution

    DOE PAGES

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; ...

    2016-01-01

    Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single moleculemore » super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.« less

  13. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution

    PubMed Central

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; Edwards, Thayne L.; James, Conrad D.; Lidke, Keith A.

    2016-01-01

    We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet. PMID:27375939

  14. Dynamic, High-Temperature, Flexible Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Sirocky, Paul J.

    1989-01-01

    New seal consists of multiple plies of braided ceramic sleeves filled with small ceramic balls. Innermost braided sleeve supported by high-temperature-wire-mesh sleeve that provides both springback and preload capabilities. Ceramic balls reduce effect of relatively high porosity of braided ceramic sleeves by acting as labyrinth flow path for gases and thereby greatly increasing pressure gradient seal can sustain. Dynamic, high-temperature, flexible seal employed in hypersonic engines, two-dimensional convergent/divergent and vectorized-thrust exhaust nozzles, reentry vehicle airframes, rocket-motor casings, high-temperature furnaces, and any application requiring non-asbestos high-temperature gaskets.

  15. Dynamic, High-Temperature, Flexible Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Sirocky, Paul J.

    1989-01-01

    New seal consists of multiple plies of braided ceramic sleeves filled with small ceramic balls. Innermost braided sleeve supported by high-temperature-wire-mesh sleeve that provides both springback and preload capabilities. Ceramic balls reduce effect of relatively high porosity of braided ceramic sleeves by acting as labyrinth flow path for gases and thereby greatly increasing pressure gradient seal can sustain. Dynamic, high-temperature, flexible seal employed in hypersonic engines, two-dimensional convergent/divergent and vectorized-thrust exhaust nozzles, reentry vehicle airframes, rocket-motor casings, high-temperature furnaces, and any application requiring non-asbestos high-temperature gaskets.

  16. High temperature durable catalyst development

    NASA Technical Reports Server (NTRS)

    Snow, G. C.; Tong, H.

    1981-01-01

    A program has been carried out to develop a catalytic reactor capable of operation in environments representative of those anticipated for advanced automotive gas turbine engines. A reactor consisting of a graded cell honeycomb support with a combination of noble metal and metal oxide catalyst coatings was built and successfully operated for 1000 hr. At an air preheat temperature of 740 K and a propane/air ratio of 0.028 by mass, the adiabatic flame temperature was held at about 1700 K. The graded cell monolithic reaction measured 5 cm in diameter by 10.2 cm in length and was operated at a reference velocity of 14.0 m/s at 1 atm. Measured NOx levels remained below 5 ppm, while unburned hydrocarbon concentrations registered near zero and carbon monoxide levels were nominally below 20 ppm.

  17. Super-Gaussian apodization in ground based telescopes for high contrast coronagraph imaging.

    PubMed

    Cagigas, Miguel A; Valle, Pedro J; Cagigal, Manuel P

    2013-05-20

    We introduce the use of Super-Gaussian apodizing functions in the telescope pupil plane and/or the coronagraph Lyot plane to improve the imaging contrast in ground-based coronagraphs. We describe the properties of the Super-Gaussian function, we estimate its second-order moment in the pupil and Fourier planes and we check it as an apodizing function. We then use Super-Gaussian function to apodize the telescope pupil, the coronagraph Lyot plane or both of them. The result is that a proper apodizing masks combination can reduce the exoplanet detection distance up to a 45% with respect to the classic Lyot coronagraph, for moderately aberrated wavefronts. Compared to the prolate spheroidal function the Super-Gaussian apodizing function allows the planet light up to 3 times brighter. An extra help to increase the extinction rate is to perform a frame selection (Lucky Imaging technique). We show that a selection of the 10% best frames will reduce up to a 20% the detection angular distance when using the classic Lyot coronagraph but that the reduction is only around the 5% when using an apodized coronagraph.

  18. Electrodeposition of High Temperature Superconductors

    DTIC Science & Technology

    1992-08-11

    temperatures (300-5500C). The approach entails establishing a sequence of electrochemical steps for the layered deposition of Y, Ba and Cu oxide...positive of that required for Ba oxide deposition , and monolayer amounts of Cu and Y are injected (by electrodissolution of individual metal electrodes...and electrodeposited in sequence. A cell of very small volume is used to ensure that complete deposition of the injected metal occurs in a short time

  19. Thermodynamics of High Temperature Materials.

    DTIC Science & Technology

    1985-12-24

    Specific Heat: Non-Metallic Solids, In Thormophysical Properties of Matter, The TPRC Data Series, Touloukian , Y.S., and Ho, C.Y. (Eds.), IFI, Plenum, New...heating method. Thermodynamic properties of silicon nitride (a, b) and boron nitride (hex, cub) have been determined to 1300K. Calculational...I. ’Research on Therophy/ical Properties . ......... a. Preliminary Measurements oft -"riple Point Temperature of Graphite 1 i_- ng Technique

  20. Temperature dependence of Vortex Charges in High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Ting, C. S.; Chen, Yan; Wang, Z. D.

    2003-03-01

    By considering of competition between antiferromagnetic (AF) and d-wave superconductivity orders, the temperature dependence of the vortex charge in high Tc superconductors is investigated by solving self-consistently the Bogoliubov-de Gennes equations. The magnitude of induced antiferromagnetic order inside the vortex core is temperature dependent. The vortex charge is always negative when a sufficient strength of AF order presents at low temperature while the AF order may be suppressed at higher temperature and there the vortex charge becomes positive. A first order like transition from negative to the positive vortex charges occurs at certain temperature TN which is very close to the temperature for the disappearence of the local AF order. The vortex charges at various doping levels will also going to be examined. We show that the temperature dependence of the vortex core radius with induced AF order exhibits a weak Kramer-Pesch effect. The local density of states spectrum has a broad peak pattern at higher temperature while it exhibits two splitting peak at lower temperature. This temperature evolution may be detected by the future scanning-tunnel-microscope experiment. In addition, the effect of the vortex charge on the mixed state Hall effect will be discussed.

  1. ON THE IMPACT OF SUPER RESOLUTION WSR-88D DOPPLER RADAR DATA ASSIMILATION ON HIGH RESOLUTION NUMERICAL MODEL FORECASTS

    SciTech Connect

    Chiswell, S

    2009-01-11

    Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-time level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.

  2. Analysis of the Key and Difficult Points in the Engineering Construction Technology of the Steel Structures of a Super High-rise Building

    NASA Astrophysics Data System (ADS)

    Dou, Lijun; Li, Hengxu

    2017-07-01

    In recent years, with the rapid development of the economy of China, the traditional building structure has not been able to meet the current people’s demands and the super high-rise building has become a symbol of a city. In the current period, the research on the super high-rise building in the architectural industry of China is late and the technical blanks exist in some construction difficulties in the super high-rise steel structures. Based on the above, a brief analysis and discussion on the difficult construction technology in the steel structures of a super high-rise building and some measures are presented for reference of the relevant personnel in this paper.

  3. Technological Evolution of High Temperature Superconductors

    DTIC Science & Technology

    2015-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited TECHNOLOGICAL EVOLUTION OF HIGH...AND SUBTITLE TECHNOLOGICAL EVOLUTION OF HIGH TEMPERATURE SUPERCONDUCTORS 5. FUNDING NUMBERS 6. AUTHOR(S) Jordan R. White 7. PERFORMING ORGANIZATION...Approved for public release; distribution is unlimited TECHNOLOGICAL EVOLUTION OF HIGH TEMPERATURE SUPERCONDUCTORS Jordan R. White Lieutenant

  4. High temperature silicon carbide impregnated insulating fabrics

    NASA Technical Reports Server (NTRS)

    Schomburg, C.; Dotts, R. L. (Inventor)

    1982-01-01

    High temperature insulating articles having improved performance characteristics are described. The articles comprise fabrics of closely woven refractory or heat resistant fibers having particles of silicon carbide dispersed at least partially through the fabric and bonded to the fibers with an emulsifiable polyethylene wax. Such articles exhibit significantly increased high temperature emittance characteristics and an improved retention of integrity and flexibility after prolonged exposure to high temperature.

  5. High Temperature Heterojunction Bipolar Transistors

    DTIC Science & Technology

    1994-04-15

    2700 cmW/V-s at room temperature, a far higher value than ever found for GaN or AlGaN. Thus a GaN/ InGaN HEMT would be analogous to InP/InGaAs HEMTs...Spire’s ECR plasma source modif led as a crystal growth reactor. 8 The substrate for the film deposition is mounted on a sample holder which is...The three samples from the second growth run were also characterized. One sample was found to have a very even frosty white haze on it. The other

  6. High Temperature Adhesives for Bonding Kapton

    NASA Technical Reports Server (NTRS)

    Stclair, A. K.; Slemp, W. S.; Stclair, T. L.

    1978-01-01

    Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575K (575 F) in vacuum. Glass transition temperatures of the polyimide/Kapton bondlines were monitored by thermomechanical analysis.

  7. Advanced high-temperature batteries

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.

    1989-12-01

    Recent results for Li-Al/FeS2 cells and bipolar battery design have shown the possibility of achieving high specific energy (210 Wh/kg) and high specific power (239 W/kg) at the cell level for an electric vehicle application. Outstanding performance is also projected for sodium/metal chloride cells having large electrolyte areas and thin positive electrodes.

  8. Advanced high-temperature batteries

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.

    Recent results for Li-Al/FeS sub 2 cells and bipolar battery design have shown the possibility of achieving high specific energy (210 Wh/kg) and high specific power (239 W/kg) at the cell level for an electric vehicle application. Outstanding performance is also projected for sodium/metal chloride cells having large electrolyte areas and thin positive electrodes.

  9. Alloys developed for high temperature applications

    NASA Astrophysics Data System (ADS)

    Basuki, Eddy Agus; Prajitno, Djoko Hadi; Muhammad, Fadhli

    2017-01-01

    Alloys used for high temperatures applications require combinations of mechanical strength, microstructural stability and corrosion/oxidation resistance. Nickel base superalloys have been traditionally the prime materials utilized for hot section components of aircraft turbine engines. Nevertheless, due to their limited melting temperatures, alloys based on intermetallic compounds, such as TiAl base alloys, have emerged as high temperature materials and intensively developed with the main aim to replace nickel based superalloys. For applications in steam power plants operated at lower temperatures, ferritic high temperature alloys still attract high attention, and therefore, development of these alloys is in progress. This paper highlights the important metallurgical parameters of high temperature alloys and describes few efforts in the development of Fe-Ni-Al based alloys containing B2-(Fe,Ni)Al precipitates, oxide dispersion strengthening (ODS) ferritic steels and titanium aluminide based alloys include important protection system of aluminide coatings.

  10. Super Heavy Dark Matter in light of BICEP2, Planck and Ultra High Energy Cosmic Rays Observations

    SciTech Connect

    Aloisio, R.; Matarrese, S.; Olinto, A.V. E-mail: sabino.matarrese@pd.infn.it

    2015-08-01

    The announcement by BICEP2 of the detection of B-mode polarization consistent with primordial gravitational waves with a tensor-to-scalar ratio, r=0.2{sup +0.07}{sub −0.05}, challenged predictions from most inflationary models of a lower value for r. More recent results by Planck on polarized dust emission show that the observed tensor modes signal is compatible with pure foreground emission. A more significant constraint on r was then obtained by a joint analysis of Planck, BICEP2 and Keck Array data showing an upper limit to the tensor to scalar ratio r≤ 0.12, excluding the case 0r= with low statistical significance. Forthcoming measurements by BICEP3, the Keck Array, and other CMB polarization experiments, open the possibility for making the fundamental measurement of r. Here we discuss how r sets the scale for models where the dark matter is created at the inflationary epoch, the generically called super-heavy dark matter models. We also consider the constraints on such scenarios given by recent data from ultrahigh energy cosmic ray observatories which set the limit on super-heavy dark matter particles lifetime. We discuss how super-heavy dark matter can be discovered by a precise measurement of r combined with future observations of ultra high energy cosmic rays.

  11. Investigations into High Temperature Components and Packaging

    SciTech Connect

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  12. Development of high temperature strain gages

    NASA Technical Reports Server (NTRS)

    Lemcoe, M. M.

    1973-01-01

    High temperature electric resistance wire strain gages were developed and evaluated for use at temperatures exceeding 922 K (1200 F). A special high temperature strain gage alloy (Fe-25Cr-7.5A1), designated BCL-3, was used to fabricate the gages. Pertinent gage characteristics were determined at temperatures up to 1255 K (1800 F). The results of the evaluation were reported in graphical and tabular form. It was concluded that the gages will perform satisfactorily at temperatures to at least 1089 K (1500 F) for at least one hour.

  13. High temperature skin friction measurement

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.

    1989-01-01

    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  14. Spin Hall magnetoresistance at high temperatures

    SciTech Connect

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji

    2015-02-02

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y{sub 3}Fe{sub 5}O{sub 12} (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface.

  15. Advanced high-temperature batteries

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.

    1990-02-01

    Recent results for Li-Al/FeS2 cells and a bipolar battery design have shown the possibility of achieving high specific energy (210 W h/kg) and high specific power (239 W/kg) at the cell level for an electric vehicle application. Outstanding performance is also projected for sodium/metal chloride cells having large electrolyte areas and thin positive electrodes.

  16. Shock wave reflection induced detonation (SWRID) under high pressure and temperature condition in closed cylinder

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Qi, Y.; Liu, H.; Zhang, P.; He, X.; Wang, J.

    2016-09-01

    Super-knock is one of the major obstacles for improving power density in advanced internal combustion engines (ICE). This work studied the mechanism of super-knock initiation using a rapid compression machine that simulated conditions relevant to ICEs and provided excellent optical accessibility. Based on the high-speed images and pressure traces of the stoichiometric iso-octane/oxygen/nitrogen combustion under high-temperature and high-pressure conditions, it was observed that detonation was first initiated in the near-wall region as a result of shock wave reflection. Before detonation was initiated, the speed of the combustion wave front was less than that of the Chapman-Jouguet (C-J) detonation speed (around 1840 m/s). In the immediate vicinity of the initiation, the detonation speed was much higher than that of the C-J detonation.

  17. High-Temperature Passive Power Electronics

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In many future NASA missions - such as deep-space exploration, the National AeroSpace Plane, minisatellites, integrated engine electronics, and ion or arcjet thrusters - high-power electrical components and systems must operate reliably and efficiently in high-temperature environments. The high-temperature power electronics program at the NASA Lewis Research Center focuses on dielectric and insulating material research, the development and characterization of high-temperature components, and the integration of the developed components into a demonstrable 200 C power system - such as an inverter. NASA Lewis has developed high-temperature power components through collaborative efforts with the Air Force Wright Laboratory, Northrop Grumman, and the University of Wisconsin. Ceramic and film capacitors, molypermalloy powder inductors, and a coaxially wound transformer were designed, developed, and evaluated for high-temperature operation.

  18. Buckling of carbon nanotubes at high temperatures.

    PubMed

    Zhang, Y Y; Wang, C M; Tan, V B C

    2009-05-27

    Presented herein is an investigation into the buckling behavior of single-walled carbon nanotubes (SWCNT) subjected to axial compression and torsion at high temperatures. This study is carried out by performing molecular dynamics (MD) simulations at both room temperature and extremely high temperatures. It is observed that the SWCNT becomes more susceptible to buckling in a higher temperature environment, especially when the SWCNT is subject to axial compression. The high thermal energy enhances the vibration of carbon atoms in the SWCNT significantly, which leads to bond breaking and the formation of sp(3) bonds as well as Stone-Wales (SW) defects in the postbuckling stage.

  19. High-temperature miniature blackbody radiation sources.

    PubMed

    Chernin, S M

    1997-03-01

    Various high-temperature blackbody sources for quantitative energy measurements in the IR spectral region are developed. Techniques that ensure a stable operation of the sources at high temperatures are described. The developed blackbody models with maximum temperatures of 2000, 2500, and 3000 K can also operate at other temperatures. Graphite is used as a material for radiators. These blackbodies can be used successfully in radiometric measurements in UV and visible spectral ranges. Blackbodies as high-brightness sources may find wide application in solving the problems of multipass spectroscopy. The blackbody sources developed as rocket engineering has progressed have remained outside the knowledge of foreign scientists.

  20. In-line FINCH super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens

    PubMed Central

    Brooker, Gary; Siegel, Nisan; Rosen, Joseph; Hashimoto, Nobuyuki; Kurihara, Makoto; Tanabe, Ayano

    2014-01-01

    We report a new optical arrangement that creates high efficiency, high quality Fresnel Incoherent Correlation Holography (FINCH) holograms using polarization sensitive transmission liquid crystal gradient index (TLCGRIN) diffractive lenses. In contrast, current universal practice in the field employs reflective spatial light modulators (SLM) to separate sample and reference beams. Polarization sensitive TLCGRIN lenses enable a straight optical path, have >90% transmission efficiency, are not pixelated and are free of many limitations of reflective SLM devices. For each sample point, two spherical beams created by a glass lens in combination with a polarization sensitive TLCGRIN lens interfere, create a hologram and resultant super resolution image. PMID:24322233

  1. High-Efficiency Retrofit Lessons for Retail from a SuperTarget: Preprint

    SciTech Connect

    Langner, R.; Deru, M.; Hirsch, A.; Williams, S.

    2013-02-01

    The National Renewable Energy Laboratory partnered with Target under the Commercial Building Program to design and implement a retrofit of a SuperTarget in Thornton, CO. The result was a retrofit design that predicted 37% energy savings over ASHRAE Standard 90.1-2004, and 29% compared to existing (pre-retrofit) store consumption. The largest savings came from energy efficient lighting, energy efficient cooling systems, improved refrigeration, and better control of plug loads.

  2. High intensity uranium beams from the superHILAC and the bevatron: final report

    SciTech Connect

    Not Available

    1982-03-01

    The two injectors formerly used at the SuperHILAC were a 750-kV air-insulated Cockcroft-Walton (EVE) and a 2.5-MV pressurized HV multiplier (ADAM). The EVE injector can deliver adequate intensities of ions up to mass 40 (argon). The ADAM injector can accelerate ions with lower charge-to-mass ratios, and they can produce beams of heavier ions. The intensity of these beams decreases as the mass number increases, with the lowest practical intensity being achieved with lead beams. Experience with the two existing injectors provided substantial help in defining the general requirements for a new injector which would provide ample beams above mass 40. The requirements for acceptance by the first tank of the SuperHILAC are a particle velocity ..beta.. = 0.0154 (corresponding to an energy of 113 keV/amu) and a charge-to-mass ratio of 0.046 or larger. Present ion source performance dictates an air-insulated Cockcroft-Walton as a pre-accelerator because of its easy accessibility and its good overall reliability. The low charge state ions then receive further acceleration and, if necessary, subsequent stripping to the required charge state before injection into the SuperHILAC. A low-beta linac of the Widereoe type has been built to perform this acceleration. The injector system described consists of a Cockcroft-Walton pre-injector, injection beam lines and isotope analysis, a low-velocity linear accelerator, and SuperHILAC control center modifications.

  3. Highly Selective Membranes For The Separation Of Organic Vapors Using Super-Glassy Polymers

    DOEpatents

    Pinnau, Ingo; Lokhandwala, Kaaeid; Nguyen, Phuong; Segelke, Scott

    1997-11-18

    A process for separating hydrocarbon gases of low boiling point, particularly methane, ethane and ethylene, from nitrogen. The process is performed using a membrane made from a super-glassy material. The gases to be separated are mixed with a condensable gas, such as a C.sub.3+ hydrocarbon. In the presence of the condensable gas, improved selectivity for the low-boiling-point hydrocarbon gas over nitrogen is achieved.

  4. High temperature resistant cermet and ceramic compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  5. Copper Alloy For High-Temperature Uses

    NASA Technical Reports Server (NTRS)

    Dreshfield, Robert L.; Ellis, David L.; Michal, Gary

    1994-01-01

    Alloy of Cu/8Cr/4Nb (numbers indicate parts by atom percent) improved over older high-temperature copper-based alloys in that it offers enhanced high temperature strength, resistance to creep, and ductility while retaining most of thermal conductivity of pure copper; in addition, alloy does not become embrittled upon exposure to hydrogen at temperatures as high as 705 degrees C. Designed for use in presence of high heat fluxes and active cooling; for example, in heat exchangers in advanced aircraft and spacecraft engines, and other high-temperature applications in which there is need for such material. High conductivity and hardness of alloy exploited in welding electrodes and in high-voltage and high-current switches and other applications in which wear poses design problem.

  6. High-Temperature, Bellows Hybrid Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Sirocky, Paul J. (Inventor)

    1994-01-01

    A high-temperature hybrid seal is constructed of multiple elements to meet the many demands placed on the seal. The primary elements are: a central high-temperature bellows, a braided ceramic sheath covering the bellows, an outer abrasion resistant sheath covering the ceramic sheath, and a structurally-sound seal-end termination.

  7. High temperature solar selective coatings

    DOEpatents

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  8. High-temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Merritt, Danielle; Raffaelle, Ryne P.; Scheiman, David

    2005-01-01

    The vast majority of space probes to date have relied upon photovoltaic power generation. If future missions designed to probe environments close to the sun (Figure 1) will be able to use such power generation, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. The significant problem is that solar cells lose performance at high temperatures.

  9. Thermodynamics of High Temperature Materials.

    DTIC Science & Technology

    1985-03-15

    C.W. Beckett, J. Res. Nat. Bur. Stand. (U.S.) 74A: 65 (1970). 3. F. Righini, A. Cibraria, and A. Rosso, Rappporto Interno 5/173, Instituto di...al., [1979], have indicated the utility of short pulse time, high power lasers (e.g., Nd/YAG) for controlled surface vaporization studies. The laser...using an estimated emissivity. This is one of the few graphite vaporization studies where controllable CW laser radia- tion was used and direct surface

  10. Evaluation of high temperature polymers

    NASA Technical Reports Server (NTRS)

    Jayaraj, K.; Dorogy, W.; Farrell, B.; Landrau, N.

    1995-01-01

    The purpose of this paper is to identify and develop arc-track resistant insulation materials that can operate reliably at 300 C. In the first phase, high performance polymers are evaluated based on structure, thermal stability and electrical properties. Next, the polymers are ranked according to performance and experimental characterization. Then, experimental evaluations in wire configuration are conducted. And selection is made based on performance and commerical potential.

  11. Recrystallization of high temperature superconductors

    SciTech Connect

    Kouzoudis, Dimitris

    1996-05-09

    Currently one of the most widely used high Tc superconductors is the Bi-based compounds Bi2Sr2CaCu2Oz and Bi2Sr2Ca2Cu3Oz (known as BSCCO 2212 and 2223 compounds) with Tc values of about 85 K and 110 K respectively. Lengths of high performance conductors ranging from 100 to 1000 m long are routinely fabricated and some test magnets have been wound. An additional difficulty here is that although Bi-2212 and Bi-2223 phases exist over a wide range of stoichiometries, neither has been prepared in phase-pure form. So far the most successful method of constructing reliable and robust wires or tapes is the so called powder-in-tube (PIT) technique [1, 2, 3, 4, 5, 6, 7] in which oxide powder of the appropriate stoichiometry and phase content is placed inside a metal tube, deformed into the desired geometry (round wire or flat tape), and annealed to produce the desired superconducting properties. Intermediate anneals are often incorporated between successive deformation steps. Silver is the metal used in this process because it is the most compatible with the reacting phase. In all of the commercial processes for BSCCO, Ag seems to play a special catalytic role promoting the growth of high performance aligned grains that grow in the first few micrometers near the Ag/BSCCO interface. Adjacent to the Ag, the grain alignment is more perfect and the current density is higher than in the center of the tape. It is known that Ag lowers the melting point of several of the phases but the detailed mechanism for growth of these high performance grains is not clearly understood. The purpose of this work is to study the nucleation and growth of the high performance material at this interface.

  12. Structural characterization of high temperature composites

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.; Grande, D. H.

    1991-01-01

    Glass, ceramic, and carbon matrix composite materials have emerged in recent years with potential properties and temperature resistance which make them attractive for high temperature applications such as gas turbine engines. At the outset of this study, only flexural tests were available to evaluate brittle matrix composites at temperatures in the 600 to 1000 C range. The results are described of an ongoing effort to develop appropriate tensile, compression, and shear test methods for high temperature use. A tensile test for unidirectional composites was developed and used to evaluate the properties and behavior of ceramic fiber reinforced glass and glass-ceramic matrix composites in air at temperatures up to 1000 C. The results indicate generally efficient fiber reinforcement and tolerance to matrix cracking similar to polymer matrix composites. Limiting properties in these materials may be an inherently very low transverse strain to failure, and high temperature embrittlement due to fiber/matrix interface oxidation.

  13. High but not Super High Atmospheric CO2 During the Early Cenozoic

    NASA Astrophysics Data System (ADS)

    Anagnostou, E.; John, E. H.; Edgar, K. M.; Pearson, P. N.; Ridgwell, A. J.; Palike, H.; Foster, G. L.

    2014-12-01

    The early Cenozoic (~53-33Ma) marks the most recent climatic shift in Earth's history from a greenhouse to an icehouse world. This interval is characterized by a gradual deep-sea [1] and high-latitude [2, 3] cooling of ~10oC, and only moderate cooling of the tropics [e.g. 2] leading to the Eocene/Oligocene transition (EOT) marked by widespread continental Antarctic glaciation. The cause of long-term Eocene cooling is currently poorly known but a gradual decline in the concentration of atmospheric CO2 is most frequently invoked. However, the majority of available early Eocene CO2 records are uncertain and only weakly correlated with climate variability. The exception to that is the final transition into the icehouse [4] where a decline in the CO2 content of the atmosphere has been suggested as the trigger. Therefore we generated new records of boron isotopes (δ11B) in planktonic foraminifera, a proven proxy of seawater pH [e.g. 5], using multicollector ICPMS [6]. We utilised depth profiles of very well preserved multi-species planktonic foraminifera recovered by the Tanzanian Drilling Project for five time slices spanning 53-37 Ma. Additionlly, we generated approximately 0.8My resolution planktonic foraminifera δ11B records from the Ocean Drilling Program (ODP) Sites 865 and 1258/1260. Our new records show consistent results of elevated atmospheric CO2 in the early Eocene that decreases through to the late Eocene. We will discuss our new reconstructions of seawater pH and derived atmospheric CO2 concentrations, not only in view of diagenesis, but also of estimates of seawater δ11B composition and alkalinity and their significance for Eocene Antarctic glaciation, in light of potential mechanisms for modulating climate. [1] Zachos et al. (2001) Science 292. [2] Bijl et al. (2009) Nature 461. [3] Brassell (2014) Paleoceanography 29. [4] Pearson et al. (2009) Nature 461. [5] Sanyal et al. (1996) Paleoceanography 11. [6] Foster (2008) EPSL 271.

  14. A batteryless temperature sensor based on high temperature sensitive material

    NASA Astrophysics Data System (ADS)

    Bakkali, Asma; Pelegri-Sebastia, José; Laghmich, Youssef; Lyhyaoui, Abdelouahid

    2016-05-01

    The major challenge in wireless sensor networks is the reduction of energy consumption. Passive wireless sensor network is an attractive solution for measuring physical parameters in harsh environment for large range of applications requiring sensing devices with low cost of fabrication, small size and long term measurement stability. Batteryless temperature sensing techniques are an active research field. The approach developed in our work holds a promising future for temperature sensor applications in order to successfully reduce the energy consumption. The temperature sensor presented in this paper is based on the electromagnetic transduction principle using the integration of the high temperature sensitive material into a passive structure. Variation in temperature makes the dielectric constant of this material changing, and such modification induces variation in the resonant frequencies of high-Q whispering-gallery modes (WGM) in the millimeter-wave frequency range. Following the results achieved, the proposed device shows a linear response to the increasing temperature and these variations can be remotely detected from a radar interrogation. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  15. Super High Dosing with a Novel Buttiauxella Phytase Continuously Improves Growth Performance, Nutrient Digestibility, and Mineral Status of Weaned Pigs.

    PubMed

    Zeng, Zhikai; Li, Qingyun; Tian, Qiyu; Zhao, Panfeng; Xu, Xiao; Yu, Shukun; Piao, Xiangshu

    2015-11-01

    This study was conducted to evaluate the efficacy of a novel Buttiauxella phytase to pigs fed P-deficient, corn-soybean meal diets. One hundred and twenty crossbred piglets (9.53 ± 0.84 kg) were allocated to one of five treatments which consisted of four low P diets (0.61 % Ca and 0.46 % total P) supplemented with 0, 500, 1,000, or 20,000 FTU/kg phytase as well as a positive control diet (0.77 % Ca and 0.62 % total P). Each treatment had six replicated pens with four pigs per pen. Pigs were fed the experimental diets for 28 days. Phytase supplementation linearly improved (P < 0.05) average daily gain (ADG), feed conversion ratio (FCR), and apparent total tract digestibility (ATTD) of dry matter, gross energy, crude protein, Ca, and P in weaned pigs. Super high dosing with phytase (20,000 FTU/kg) further increased (P < 0.05) ADG compared with 500 FTU/kg phytase inclusion group, as well as ATTD of Ca and P. Metacarpal bone characteristics and several trace mineral concentration in bone, plasma, or organ tissues were linearly (P < 0.05) improved at increasing dose of phytase. Super high dosing with phytase (20,000 FTU/kg) supplementation improved (P < 0.05) Mn and Zn concentration in bone compared to normal dose of phytase supplementation (500 or 1,000 FTU/kg). In conclusion, supplementation of 500 FTU of Buttiauxella phytase/kg and above effectively hydrolyzed phytate in a low-P corn-soybean diet for pigs. In addition, a super high dosing with phytase (20,000 FTU/kg) improved macro- or micro mineral availability and growth performance.

  16. Deformation mechanisms in a precipitation-strengthened ferritic super alloy revealed by in situ neutron dffraction studies at elevated temperatures

    SciTech Connect

    Huang, Shenyan; Gao, Yanfei; An, Ke; Zheng, Lili; Teng, Zhenke; Wu, Wei; Liaw, Peter K.

    2015-01-01

    The ferritic superalloy Fe–10Ni–6.5Al–10Cr–3.4Mo strengthened by ordered (Ni,Fe)AlB2-type precipitates is a candidate material for ultra-supercritical steam turbine applications above 923 K. Despite earlier success in improving its room-temperature ductility, the creep resistance of this material at high temperatures needs to be further improved, which requires a fundamental understanding of the high-temperature deformation mechanisms at the scales of individual phases and grains. In situ neutron diffraction has been utilized to investigate the lattice strain evolution and the microscopic load-sharing mechanisms during tensile deformation of this ferritic superalloy at elevated temperatures. Finite-element simulations based on the crystal plasticity theory are employed and compared with the experimental results, both qualitatively and quantitatively. Based on these interphase and intergranular load-partitioning studies, it is found that the deformation mechanisms change from dislocation slip to those related to dislocation climb, diffusional flow and possibly grain boundary sliding, below and above 873 K, respectively. Insights into microstructural design for enhancing creep resistance are also discussed.

  17. Power Sharing Control between Load-Side Inverters in DC Microgrid for Super High Quality Electric Power Distribution System

    NASA Astrophysics Data System (ADS)

    Kakigano, Hiroaki; Nada, Kaho; Miura, Yushi; Ise, Toshifumi; Uchida, Ryohei

    DC microgrid is a novel power system using dc distribution in order to provide a super high quality electric power. The dc distribution system is suitable for dc output type distributed generations such as photovoltaic and fuel cells, and energy storages such as batteries and electric double layer capacitors. Power is distributed through dc distribution line and converted to required ac or dc voltage by converters placed near loads. Load-side single phase inverters are connected through transformers in order to share active and reactive power. In this paper, a power sharing control scheme was proposed, and the power sharing characteristics were demonstrated by experimental results.

  18. SuperTIGER-2: A Very-Large-Area, High-Resolution Trans-Iron Cosmic Ray Investigation

    NASA Astrophysics Data System (ADS)

    Binns, Walter

    This is the lead proposal of a multi-institution proposal for the investigation titled “SuperTIGER-2: A Very-Large-Area, High Resolution Trans-Iron Cosmic Ray Investigation”. SuperTIGER is a very-large-area instrument for measuring the composition of galactic cosmic rays on high-altitude balloon flights over Antarctica. SuperTIGER-1 had a highly successful 55-day flight in 2012/2013. The data quality is excellent, enabling us to clearly resolve all nuclei from Z=10 to Z=40. Additionally, although statistics are low, there appears to be clear resolution of elements in the Z=40- 60 range. The excellent data from this flight will enable us to achieve the initial goals of the program. The high performance of the instrument, both in charge resolution and collecting power, and the science that can be addressed by measurements of nuclei heavier than Z=40, makes a compelling case to conduct additional flights to measure the abundances of individual nuclei up to Z=60. This is a 4-year proposal with the primary objective of measuring the abundances of individual nuclei with 41#Z#60 and to substantially increase the number of 30#Z#40 nuclei measured. This will be the first time that individual elemental abundances for the 41#Z#60 range will be obtained. These new measurements will provide sensitive tests and clarification of the OB-association model of galactic cosmic-ray origins and will test models for atomic processes by which nuclei are selected for acceleration to cosmic-ray energies. They will enable us to determine if the enrichment of refractory elements (those that exist primarily in dust grains in the interstellar medium) over volatile elements (those that exist primarily in the gas phase) extends into the Z=41-60 charge range. They will also enable us to unambiguously determine the extent of any r-process enrichment. SuperTIGER provides critical measurements to unravel the mystery of galactic cosmic ray (GCR) origins and complements instruments with different

  19. Low to high temperature energy conversion system

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor)

    1977-01-01

    A method for converting heat energy from low temperature heat sources to higher temperature was developed. It consists of a decomposition chamber in which ammonia is decomposed into hydrogen and nitrogen by absorbing heat of decomposition from a low temperature energy source. A recombination reaction then takes place which increases the temperature of a fluid significantly. The system is of use for the efficient operation of compact or low capital investment turbine driven electrical generators, or in other applications, to enable chemical reactions that have a critical lower temperature to be used. The system also recovers heat energy from low temperature heat sources, such as solar collectors or geothermal sources, and converts it to high temperatures.

  20. Sandia_HighTemperatureComponentEvaluation_2015

    SciTech Connect

    Cashion, Avery T.

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  1. Ultrasonic properties of low solvus high refractory (LSHR) super alloy disk material

    SciTech Connect

    Na, Jeong K.; Blodgett, Mark

    2011-06-23

    Measurements are made for ultrasonic linear and nonlinear properties of the powder metallurgy disk alloy LSHR material designed with a relatively low {gamma}' precipitate solvus temperature and high refractory element content. This allows versatile heat treatment processing which results in high tensile, creep and fatigue properties depending on the grain size controlled through proper selection of solution heat treatment temperatures relative to the {gamma}' precipitate solvus temperature. Sound velocity and attenuation for both longitudinal and shear modes at various frequencies from 5 to 20 MHz help to identify and quantify the size of transition zone nondestructively between the small grain ({approx}10 {mu}m) and the large grain ({approx}100 {mu}m) zones. The shear wave velocity measurements taken by aligning the transducer polarization direction parallel and perpendicular to the grain transition direction reveal some results that we do not fully understand at this time and will be the basis of future research. Similarly, measurements of the acoustic nonlinearity parameter show some variations that may originate from uncertain sources.

  2. Viscoelastic creep of high-temperature concrete

    SciTech Connect

    Pfeiffer, P.A.; Marchertas, A.H.; Bazant, Z.P.

    1985-01-01

    Presented in this report is the analytical model for analysis of high temperature creep response of concrete. The creep law used is linear (viscoelastic), the temperature and moisture effects on the creep rate and also aging are included. Both constant and transient temperature as well as constant and transient moisture conditions are considered. Examples are presented to correlate experimental data with parameters of the analytical model by the use of a finite element scheme.

  3. High temperature thermometric phosphors for use in a temperature sensor

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1998-03-24

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  4. High temperature thermometric phosphors for use in a temperature sensor

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  5. A high-temperature wideband pressure transducer

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1975-01-01

    Progress in the development of a pressure transducer for measurement of the pressure fluctuations in the high temperature environment of a jet exhaust is reported. A condenser microphone carrier system was adapted to meet the specifications. A theoretical analysis is presented which describes the operation of the condenser microphone in terms of geometry, materials, and other physical properties. The analysis was used as the basis for design of a prototype high temperature microphone. The feasibility of connecting the microphone to a converter over a high temperature cable operating as a half-wavelength transmission line was also examined.

  6. High temperature solid state storage cell

    DOEpatents

    Rea, Jesse R.; Kallianidis, Milton; Kelsey, G. Stephen

    1983-01-01

    A completely solid state high temperature storage cell comprised of a solid rechargeable cathode such as TiS.sub.2, a solid electrolyte which remains solid at the high temperature operating conditions of the cell and which exhibits high ionic conductivity at such elevated temperatures such as an electrolyte comprised of lithium iodide, and a solid lithium or other alkali metal alloy anode (such as a lithium-silicon alloy) with 5-50% by weight of said anode being comprised of said solid electrolyte.

  7. Aeronautical applications of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 K) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  8. Dimensionality of high temperature superconductivity in oxides

    NASA Technical Reports Server (NTRS)

    Chu, C. W.

    1989-01-01

    Many models have been proposed to account for the high temperature superconductivity observed in oxide systems. Almost all of these models proposed are based on the uncoupled low dimensional carrier Cu-O layers of the oxides. Results of several experiments are presented and discussed. They suggest that the high temperature superconductivity observed cannot be strictly two- or one-dimensional, and that the environment between the Cu-O layers and the interlayer coupling play an important role in the occurrence of such high temperature superconductivity. A comment on the very short coherence length reported is also made.

  9. The high temperature superconductivity space experiment

    NASA Technical Reports Server (NTRS)

    Webb, Denis C.; Nisenoff, M.

    1991-01-01

    The history and the current status of the high temperature superconductivity space experiment (HTSSE) initiated in 1988 are briefly reviewed. The goal of the HTSSE program is to demonstrate the feasibility of incorporating high temperature superconductivity (HTS) technology into space systems. The anticipated payoffs include the development of high temperature superconductor devices for space systems; preparation and space qualification of a cryogenically cooled experimental package containing HTS devices and components; and acquisition of data for future space experiments using more complex HTS devices and subsystems. The principal HTSSE systems and devices are described.

  10. High temperature chemistry of aromatic hydrocarbons

    SciTech Connect

    Scott, L.T.

    1991-12-31

    We have not only gained new insight into the mechanism and generality of Polycyclic Aromatic Hydrocarbon (PAH) thermal automerization reactions, we have also uncovered several new high temperature reactions and added a third dimension to our program by applying high temperature chemistry to problems in organic synthesis. Our synthesis of corannulene has attracted much recent attention; however, we believe that the uncatalyzed ``cyclodehydrogenation reactions`` which form 5-membered rings and 6-membered rings at high temperatures may prove to be of greater general importance in the long term. This bias is reflected in the accompanying proposal.

  11. High temperature chemistry of aromatic hydrocarbons

    SciTech Connect

    Scott, L.T.

    1991-01-01

    We have not only gained new insight into the mechanism and generality of Polycyclic Aromatic Hydrocarbon (PAH) thermal automerization reactions, we have also uncovered several new high temperature reactions and added a third dimension to our program by applying high temperature chemistry to problems in organic synthesis. Our synthesis of corannulene has attracted much recent attention; however, we believe that the uncatalyzed cyclodehydrogenation reactions'' which form 5-membered rings and 6-membered rings at high temperatures may prove to be of greater general importance in the long term. This bias is reflected in the accompanying proposal.

  12. Aeronautical applications of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 k) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  13. Symposium on high temperature and materials chemistry

    SciTech Connect

    Not Available

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  14. Silicon Carbide Nanotube Oxidation at High Temperatures

    NASA Technical Reports Server (NTRS)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  15. High Temperature Thermographic Phosphor Coatings Development

    NASA Technical Reports Server (NTRS)

    Goedeke, Shawn; Allison, S. W.; Beshears, D. L.; Bencic, T.; Cates, M. R.; Hollerman, W. A.; Guidry, R.

    2003-01-01

    For many years, phosphor thermometry has been used for non-contact temperature measurements. A large number of applications have been associated with high temperatures, especially for aerospace systems where blackbody radiation backgrounds are large and in challenging environments, such as vibration, rotation, flame, or noise. These environments restrict the use of more common thermocouples or infrared thermometric techniques. In particular, temperature measurements inside jet turbines, rocket engines, or similar devices are especially amenable to phosphor techniques. Often the fluorescent materials are used as powders, either suspended in binders and applied like paint or applied as high-temperature sprays. Thin coatings that are less than 50 m thick are used on the surfaces of interest. These coatings will quickly assume the same temperature as the surface to which they are applied. The temperature dependence of fluorescent materials is a function of the base matrix atoms and a small quantity of added activator or dopant ions. Often for high temperature applications, the selected materials are refractory and include rare earth ions. Phosphors like Y3Al5O12 (YAG) doped with Eu, Dy, or Tm, Y2O3 doped with Eu, or similar rare earth compounds, will survive high temperatures and can be configured to emit light that changes rapidly in lifetime and intensity. For example, researchers at Oak Ridge National Laboratory recently observed fluorescence from YAG:Dy and YAG:Tm at temperatures above 1400 C. One of the biggest challenges is to locate a binder material that can withstand tremendous variations in temperature in an adverse aerospace environment. This poster will provide an overview into our attempt to utilize phosphors for thermometry purposes. Emphasis will be placed on the use of selected binder materials that can withstand high temperatures. This research was completed for the National Aeronautics and Space Administration's Glenn Research Center in Cleveland

  16. High Temperature Thermographic Phosphor Coatings Development

    NASA Technical Reports Server (NTRS)

    Goedeke, Shawn; Allison, S. W.; Beshears, D. L.; Bencic, T.; Cates, M. R.; Hollerman, W. A.; Guidry, R.

    2003-01-01

    For many years, phosphor thermometry has been used for non-contact temperature measurements. A large number of applications have been associated with high temperatures, especially for aerospace systems where blackbody radiation backgrounds are large and in challenging environments, such as vibration, rotation, flame, or noise. These environments restrict the use of more common thermocouples or infrared thermometric techniques. In particular, temperature measurements inside jet turbines, rocket engines, or similar devices are especially amenable to phosphor techniques. Often the fluorescent materials are used as powders, either suspended in binders and applied like paint or applied as high-temperature sprays. Thin coatings that are less than 50 m thick are used on the surfaces of interest. These coatings will quickly assume the same temperature as the surface to which they are applied. The temperature dependence of fluorescent materials is a function of the base matrix atoms and a small quantity of added activator or dopant ions. Often for high temperature applications, the selected materials are refractory and include rare earth ions. Phosphors like Y3Al5O12 (YAG) doped with Eu, Dy, or Tm, Y2O3 doped with Eu, or similar rare earth compounds, will survive high temperatures and can be configured to emit light that changes rapidly in lifetime and intensity. For example, researchers at Oak Ridge National Laboratory recently observed fluorescence from YAG:Dy and YAG:Tm at temperatures above 1400 C. One of the biggest challenges is to locate a binder material that can withstand tremendous variations in temperature in an adverse aerospace environment. This poster will provide an overview into our attempt to utilize phosphors for thermometry purposes. Emphasis will be placed on the use of selected binder materials that can withstand high temperatures. This research was completed for the National Aeronautics and Space Administration's Glenn Research Center in Cleveland

  17. Spectral responsivity calibration of the reference radiation thermometer at KRISS by using a super-continuum laser-based high-accuracy monochromatic source

    NASA Astrophysics Data System (ADS)

    Yoo, Yong Shim; Kim, Gun Jung; Park, Seongchong; Lee, Dong-Hoon; Kim, Bong-Hak

    2016-12-01

    We report on the calibration of the relative spectral responsivity of the reference radiation thermometer, model LP4, which is used for the experimental realisation of the international temperature scale of 1990 above 960 °C at the Korea Research Institute of Standards and Science. The relative spectral responsivity of LP4 is measured by using a monochromatic source consisting of a super-continuum laser and a double-grating monochromator. By monitoring the wavelength of the output beam directly with a calibrated wavelength-meter, we achieved a high-accuracy measurement of spectral responsivity with a maximum wavelength error of less than 3 pm, a narrow spectral bandwidth of less than 0.4 nm, and a high dynamic range over 8 decades. We evaluated the contributions of various uncertainty components of the spectral responsivity measurement to the uncertainty of the temperature scale based on a practical estimation approach, which numerically calculates the maximal effects of the variations of each component. As a result, we evaluate the uncertainty contribution from the spectral responsivity measurement to the temperature scale to be less than 64 mK (k  =  1) in a range from 660 °C to 2749 °C for the LP4 with a filter at 650 nm.

  18. Development of high temperature capable piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Suprock, Andrew D.; Tittmann, Bernhard R.

    2017-02-01

    The objective of the project was to investigate the influence of the temperature effect on ultrasonic transducers based on a comparison of the effects of high temperature conditions versus those of high temperature and irradiation on the transducer system. There was also a preliminary move towards the establishment of the means for optimizing the bulk single crystal transducer fabrication process in order to achieve peak efficiency and maximum effectiveness in both irradiated and non-irradiated high temperature applications. Optimization of the material components within the transducer will greatly increase non-destructive testing abilities for industry, structural health monitoring. Here is presented a progress report on the testing of several different piezoelectric materials under high temperature conditions. The viability of aluminum nitride (AlN) as a transducer material in high temperature conditions has been previously explored [1] and has been further tested to ensure reliability. Bistmuth Titanate (BiT) has also been tested and has displayed excellent effectiveness for high temperature application.

  19. Experimental charge density of hematite in its magnetic low temperature and high temperature phases.

    PubMed

    Theissmann, R; Fuess, H; Tsuda, K

    2012-09-01

    Structural parameters of hematite (α-Fe(2)O(3)), including the valence electron distribution, were investigated using convergent beam electron diffraction (CBED) in the canted antiferromagnetic phase at room temperature and in the collinear antiferromagnetic phase at 90K. The refined charge density maps are interpreted as a direct result of electron-electron interaction in a correlated system. A negative deformation density was observed as a consequence of closed shell interaction. Positive deformation densities are interpreted as a shift of electron density to antibinding molecular orbitals. Following this interpretation, the collinear antiferromagnetic phase shows the characteristic of a Mott-Hubbard type insulator whereas the high temperature canted antiferromagnetic phase shows the characteristic of a charge transfer insulator. The break of the threefold symmetry in the canted antiferromagnetic phase was correlated to the presence of oxygen-oxygen bonding, which is caused by a shift of spin polarized charge density from iron 3d-orbitals to the oxygen ions. We propose a triangular magnetic coupling in the oxygen planes causing a frustrated triangular spin arrangement with all spins lying in the oxygen planes. This frustrated arrangement polarizes the super-exchange between iron ions and causes the spins located at the iron ions to orient in the same plane, perpendicular to the threefold axis. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Construction and Use of Resting 12-Lead High Fidelity ECG "SuperScores" in Screening for Heart Disease

    NASA Technical Reports Server (NTRS)

    Schlegel, T. T.; Arenare, B.; Greco, E. C.; DePalma, J. L.; Starc, V.; Nunez, T.; Medina, R.; Jugo, D.; Rahman, M.A.; Delgado, R.

    2007-01-01

    We investigated the accuracy of several conventional and advanced resting ECG parameters for identifying obstructive coronary artery disease (CAD) and cardiomyopathy (CM). Advanced high-fidelity 12-lead ECG tests (approx. 5-min supine) were first performed on a "training set" of 99 individuals: 33 with ischemic or dilated CM and low ejection fraction (EF less than 40%); 33 with catheterization-proven obstructive CAD but normal EF; and 33 age-/gender-matched healthy controls. Multiple conventional and advanced ECG parameters were studied for their individual and combined retrospective accuracies in detecting underlying disease, the advanced parameters falling within the following categories: 1) Signal averaged ECG, including 12-lead high frequency QRS (150-250 Hz) plus multiple filtered and unfiltered parameters from the derived Frank leads; 2) 12-lead P, QRS and T-wave morphology via singular value decomposition (SVD) plus signal averaging; 3) Multichannel (12-lead, derived Frank lead, SVD lead) beat-to-beat QT interval variability; 4) Spatial ventricular gradient (and gradient component) variability; and 5) Heart rate variability. Several multiparameter ECG SuperScores were derivable, using stepwise and then generalized additive logistic modeling, that each had 100% retrospective accuracy in detecting underlying CM or CAD. The performance of these same SuperScores was then prospectively evaluated using a test set of another 120 individuals (40 new individuals in each of the CM, CAD and control groups, respectively). All 12-lead ECG SuperScores retrospectively generated for CM continued to perform well in prospectively identifying CM (i.e., areas under the ROC curve greater than 0.95), with one such score (containing just 4 components) maintaining 100% prospective accuracy. SuperScores retrospectively generated for CAD performed somewhat less accurately, with prospective areas under the ROC curve typically in the 0.90-0.95 range. We conclude that resting 12-lead

  1. Construction and Use of Resting 12-Lead High Fidelity ECG "SuperScores" in Screening for Heart Disease

    NASA Technical Reports Server (NTRS)

    Schlegel, T. T.; Arenare, B.; Greco, E. C.; DePalma, J. L.; Starc, V.; Nunez, T.; Medina, R.; Jugo, D.; Rahman, M.A.; Delgado, R.

    2007-01-01

    We investigated the accuracy of several conventional and advanced resting ECG parameters for identifying obstructive coronary artery disease (CAD) and cardiomyopathy (CM). Advanced high-fidelity 12-lead ECG tests (approx. 5-min supine) were first performed on a "training set" of 99 individuals: 33 with ischemic or dilated CM and low ejection fraction (EF less than 40%); 33 with catheterization-proven obstructive CAD but normal EF; and 33 age-/gender-matched healthy controls. Multiple conventional and advanced ECG parameters were studied for their individual and combined retrospective accuracies in detecting underlying disease, the advanced parameters falling within the following categories: 1) Signal averaged ECG, including 12-lead high frequency QRS (150-250 Hz) plus multiple filtered and unfiltered parameters from the derived Frank leads; 2) 12-lead P, QRS and T-wave morphology via singular value decomposition (SVD) plus signal averaging; 3) Multichannel (12-lead, derived Frank lead, SVD lead) beat-to-beat QT interval variability; 4) Spatial ventricular gradient (and gradient component) variability; and 5) Heart rate variability. Several multiparameter ECG SuperScores were derivable, using stepwise and then generalized additive logistic modeling, that each had 100% retrospective accuracy in detecting underlying CM or CAD. The performance of these same SuperScores was then prospectively evaluated using a test set of another 120 individuals (40 new individuals in each of the CM, CAD and control groups, respectively). All 12-lead ECG SuperScores retrospectively generated for CM continued to perform well in prospectively identifying CM (i.e., areas under the ROC curve greater than 0.95), with one such score (containing just 4 components) maintaining 100% prospective accuracy. SuperScores retrospectively generated for CAD performed somewhat less accurately, with prospective areas under the ROC curve typically in the 0.90-0.95 range. We conclude that resting 12-lead

  2. High temperature superconductor materials and applications

    NASA Technical Reports Server (NTRS)

    Doane, George B., III.; Banks, Curtis; Golben, John

    1990-01-01

    Research on processing methods leading to a significant enhancement in the critical current densities (Jc) and the critical temperature (Tc) of high temperature superconducting in thin bulk and thin film forms. The fabrication of important devices for NASA unique applications (sensors) is investigated.

  3. RADIATIVE PROPERTIES OF HIGH TEMPERATURE GASES

    DTIC Science & Technology

    DENSITY, *GAS IONIZATION, *GASES, *HIGH TEMPERATURE, *QUANTUM THEORY , *THERMODYNAMICS, ABSORPTION, CONTINUUM MECHANICS, EQUATIONS OF STATE, HEAT...HYDRODYNAMICS, HYDROGEN, INEQUALITIES, INTEGRAL EQUATIONS, IONS, MATRICES(MATHEMATICS), MEASUREMENT, NITROGEN, NUMBER THEORY , OXYGEN, PHOTOELECTRIC...CELLS (SEMICONDUCTOR), PHOTOTUBES, PROBABILITY, STATISTICAL FUNCTIONS, TEMPERATURE, THEORY

  4. High temperature ceramic/metal joint structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  5. Electrical Properties Of Capacitors At High Temperatures

    NASA Technical Reports Server (NTRS)

    Baumann, E. D.; Myers, I. T.; Overton, E.; Hammoud, A. N.

    1994-01-01

    Brief report describes results of experiments in which capacitance and dielectric loss of glass, metallized-polytetrafluoroethylene, and solid-tantalum capacitor measured at temperatures from 20 degrees C to 200 degrees C. Conclusions drawn concerning suitability of capacitors for use at high temperatures; such as in nuclear powerplants, aircraft, equipment for extracting geothermal energy, switching power supplies, and automotive integrated engine electronics.

  6. Broadband, High-Temperature Ultrasonic Transducer

    NASA Technical Reports Server (NTRS)

    Parker, F. Raymond; Winfree, William P.; Barrows, Danny A.

    1995-01-01

    Materials chosen for endurance at high temperatures and acoustic coupling and damping. Acoustic transducer designed to exhibit broad frequency response and to survive temperatures close to melting points of brazing alloys. Attached directly and continuously to hot object monitored ultrasonically: for example, it can be attached to relatively cool spot on workpiece during brazing for taking ultrasonic quality-control measurements.

  7. Broadband, High-Temperature Ultrasonic Transducer

    NASA Technical Reports Server (NTRS)

    Parker, F. Raymond; Winfree, William P.; Barrows, Danny A.

    1995-01-01

    Materials chosen for endurance at high temperatures and acoustic coupling and damping. Acoustic transducer designed to exhibit broad frequency response and to survive temperatures close to melting points of brazing alloys. Attached directly and continuously to hot object monitored ultrasonically: for example, it can be attached to relatively cool spot on workpiece during brazing for taking ultrasonic quality-control measurements.

  8. Dual Super-Systolic Core for Real-Time Reconstructive Algorithms of High-Resolution Radar/SAR Imaging Systems

    PubMed Central

    Atoche, Alejandro Castillo; Castillo, Javier Vázquez

    2012-01-01

    A high-speed dual super-systolic core for reconstructive signal processing (SP) operations consists of a double parallel systolic array (SA) machine in which each processing element of the array is also conceptualized as another SA in a bit-level fashion. In this study, we addressed the design of a high-speed dual super-systolic array (SSA) core for the enhancement/reconstruction of remote sensing (RS) imaging of radar/synthetic aperture radar (SAR) sensor systems. The selected reconstructive SP algorithms are efficiently transformed in their parallel representation and then, they are mapped into an efficient high performance embedded computing (HPEC) architecture in reconfigurable Xilinx field programmable gate array (FPGA) platforms. As an implementation test case, the proposed approach was aggregated in a HW/SW co-design scheme in order to solve the nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) from a remotely sensed scene. We show how such dual SSA core, drastically reduces the computational load of complex RS regularization techniques achieving the required real-time operational mode. PMID:22736964

  9. Dual super-systolic core for real-time reconstructive algorithms of high-resolution radar/SAR imaging systems.

    PubMed

    Atoche, Alejandro Castillo; Castillo, Javier Vázquez

    2012-01-01

    A high-speed dual super-systolic core for reconstructive signal processing (SP) operations consists of a double parallel systolic array (SA) machine in which each processing element of the array is also conceptualized as another SA in a bit-level fashion. In this study, we addressed the design of a high-speed dual super-systolic array (SSA) core for the enhancement/reconstruction of remote sensing (RS) imaging of radar/synthetic aperture radar (SAR) sensor systems. The selected reconstructive SP algorithms are efficiently transformed in their parallel representation and then, they are mapped into an efficient high performance embedded computing (HPEC) architecture in reconfigurable Xilinx field programmable gate array (FPGA) platforms. As an implementation test case, the proposed approach was aggregated in a HW/SW co-design scheme in order to solve the nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) from a remotely sensed scene. We show how such dual SSA core, drastically reduces the computational load of complex RS regularization techniques achieving the required real-time operational mode.

  10. Quasipermanent magnets of high temperature superconductor - Temperature dependence

    NASA Technical Reports Server (NTRS)

    Chen, In-Gann; Liu, Jianxiong; Ren, Yanru; Weinstein, Roy; Kozlowski, Gregory; Oberly, Charles E.

    1993-01-01

    We report on persistent field in quasi-permanent magnets of high temperature superconductors. Magnets composed of irradiated Y(1+)Ba2Cu3O7 trapped field Bt = 1.52 T at 77 K and 1.9 T at lower temperature. However, the activation magnet limited Bt at lower temperature. We present data on Jc(H,T) for unirradiated materials, and calculate Bt at various T. Based upon data at 65 K, we calculate Bt in unirradiated single grains at 20 K and find that 5.2 T will be trapped for grain diameter d about 1.2 cm, and 7.9 T for d = 2.3 cm. Irradiated grains will trap four times these values.

  11. Quasipermanent magnets of high temperature superconductor - Temperature dependence

    NASA Technical Reports Server (NTRS)

    Chen, In-Gann; Liu, Jianxiong; Ren, Yanru; Weinstein, Roy; Kozlowski, Gregory; Oberly, Charles E.

    1993-01-01

    We report on persistent field in quasi-permanent magnets of high temperature superconductors. Magnets composed of irradiated Y(1+)Ba2Cu3O7 trapped field Bt = 1.52 T at 77 K and 1.9 T at lower temperature. However, the activation magnet limited Bt at lower temperature. We present data on Jc(H,T) for unirradiated materials, and calculate Bt at various T. Based upon data at 65 K, we calculate Bt in unirradiated single grains at 20 K and find that 5.2 T will be trapped for grain diameter d about 1.2 cm, and 7.9 T for d = 2.3 cm. Irradiated grains will trap four times these values.

  12. Apparatus and method for high temperature viscosity and temperature measurements

    DOEpatents

    Balasubramaniam, Krishnan; Shah, Vimal; Costley, R. Daniel; Singh, Jagdish P.

    2001-01-01

    A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

  13. Dislocation “Bubble-Like-Effect” and the Ambient Temperature Super-plastic Elongation of Body-centred Cubic Single Crystalline Molybdenum

    PubMed Central

    Lu, Yan; Xiang, Sisi; Xiao, Lirong; Wang, Lihua; Deng, Qingsong; Zhang, Ze; Han, Xiaodong

    2016-01-01

    With our recently developed deformation device, the in situ tensile tests of single crystal molybdenum nanowires with various size and aspect ratio were conducted inside a transmission electron microscope (TEM). We report an unusual ambient temperature (close to room temperature) super-plastic elongation above 127% on single crystal body-centred cubic (bcc) molybdenum nanowires with an optimized aspect ratio and size. A novel dislocation “bubble-like-effect” was uncovered for leading to the homogeneous, large and super-plastic elongation strain in the bcc Mo nanowires. The dislocation bubble-like-effect refers to the process of dislocation nucleation and annihilation, which likes the nucleation and annihilation process of the water bubbles. A significant plastic deformation dependence on the sample’s aspect ratio and size was revealed. The atomic scale TEM observations also demonstrated that a single crystal to poly-crystal transition and a bcc to face-centred cubic phase transformation took place, which assisted the plastic deformation of Mo in small scale. PMID:26956918

  14. NEW APPROACHES: High temperature superconductor levitation motor

    NASA Astrophysics Data System (ADS)

    Abd-Shukor, R.; Lee, K. H.

    1998-01-01

    We show how it is possible to construct a high temperature superconductor levitation motor in an introductory physics laboratory. It is suitable for classroom demonstration and uses a simple yet efficient cooling method.

  15. High-temperature superconductivity: A conventional conundrum

    DOE PAGES

    Božović, Ivan

    2016-01-07

    High-temperature superconductivity in ultrathin films of iron selenide deposited on strontium titanate has been attributed to various exotic mechanisms, and new experiments indicate that it may be conventional, with broader implications.

  16. Altering high temperature subterranean formation permeability

    SciTech Connect

    Moradi-Araghi, A.

    1991-02-19

    This patent describes a delayed acrylamide containing polymer crosslinker having stability in an aqueous solution at high temperatures. It comprises: a combination of an aldehyde and a salicylic acid derivative selected from salicylamide and acetysalicylic acid.

  17. DEVELOPMENT OF HIGH TEMPERATURE HYDROCARBON JET FUELS

    DTIC Science & Technology

    AIRCRAFT ENGINE OILS, *AVIATION FUELS, *HYDROCARBONS, *JET ENGINE FUELS, *LUBRICANTS, *POLYCYCLIC COMPOUNDS, ALKYL RADICALS, BENZENE, CATALYSIS...CHEMICAL REACTIONS , COMBUSTION, CUMENES, DECOMPOSITION, ETHYLENES, FORMALDEHYDE, FRAGMENTATION, HIGH TEMPERATURE, HYDROGENATION, NAPHTHALENES, PHYSICAL

  18. Specimen for high-temperature tensile tests

    NASA Technical Reports Server (NTRS)

    Coulbert, C. D.

    1972-01-01

    Split nut with internal taper to hold specially formed specimen composed of filaments of refractory material provides means for holding at high temperature and under tension so that performance evaluations may be made.

  19. High-temperature superconductivity in perspective

    NASA Astrophysics Data System (ADS)

    1990-04-01

    The technology of superconductivity and its potential applications are discussed; it is warned that U.S companies are investing less than their main foreign competitors in both low- and high-temperature superconductivity R and D. This is by far the most critical issue affecting the future U.S. competitive position in superconductivity, and in many other emerging technologies. The major areas covered include: Executive summary; High-temperature superconductivity - A progress report; Applications of superconductivity; The U.S. response to high-temperature superconductivity; High-temperature superconductivity programs in other countries; Comparison of industrial superconductivity R and D efforts in the United States and Japan - An OTA survey; Policy issues and options.

  20. Measuring Moduli Of Elasticity At High Temperatures

    NASA Technical Reports Server (NTRS)

    Wolfenden, Alan

    1993-01-01

    Shorter, squatter specimens and higher frequencies used in ultrasonic measurement technique. Improved version of piezo-electric ultrasonic composite oscillator technique used to measure moduli of elasticity of solid materials at high temperatures.

  1. Silicon carbide, an emerging high temperature semiconductor

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  2. High-temperature superconductivity: A conventional conundrum

    SciTech Connect

    Božović, Ivan

    2016-01-07

    High-temperature superconductivity in ultrathin films of iron selenide deposited on strontium titanate has been attributed to various exotic mechanisms, and new experiments indicate that it may be conventional, with broader implications.

  3. The Conference on High Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Hamilton, D. J.; Mccormick, J. B.; Kerwin, W. J.; Narud, J. A.

    1981-01-01

    The status of and directions for high temperature electronics research and development were evaluated. Major objectives were to (1) identify common user needs; (2) put into perspective the directions for future work; and (3) address the problem of bringing to practical fruition the results of these efforts. More than half of the presentations dealt with materials and devices, rather than circuits and systems. Conference session titles and an example of a paper presented in each session are (1) User requirements: High temperature electronics applications in space explorations; (2) Devices: Passive components for high temperature operation; (3) Circuits and systems: Process characteristics and design methods for a 300 degree QUAD or AMP; and (4) Packaging: Presently available energy supply for high temperature environment.

  4. A sharp knife for high temperatures

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Iceland, W. F.

    1978-01-01

    Electrically heated nickel-chrome-steel alloy knife may be used to cut heat resistant plastic felt and similar materials with relative ease. Blade made of commercially available alloy RA 330 retains edge at temperatures as high as 927 C.

  5. High-Temperature Optical Window Design

    NASA Technical Reports Server (NTRS)

    Roeloffs, Norman; Taranto, Nick

    1995-01-01

    A high-temperature optical window is essential to the optical diagnostics of high-temperature combustion rigs. Laser Doppler velocimetry, schlieren photography, light sheet visualization, and laser-induced fluorescence spectroscopy are a few of the tests that require optically clear access to the combustor flow stream. A design was developed for a high-temperature window that could withstand the severe environment of the NASA Lewis 3200 F Lean Premixed Prevaporized (LPP) Flame Tube Test Rig. The development of this design was both time consuming and costly. This report documents the design process and the lessons learned, in an effort to reduce the cost of developing future designs for high-temperature optical windows.

  6. High Temperature Self-Healing Metallic Composite

    NASA Astrophysics Data System (ADS)

    Kutelia, E. R.; Bakhtiyarov, S. I.; Tsurtsumia, O. O.; Bakhtiyarov, A. S.; Eristavi, B.

    2012-01-01

    This work presents the possibility to realize the self healing mechanisms for heterogeneous architectural metal/ceramic high temperature sandwich thermal barrier coating systems on the surfaces refractory metals by analogy of wound healing in the skin.

  7. High precision object segmentation and tracking for use in super resolution video reconstruction

    NASA Astrophysics Data System (ADS)

    Mundhenk, T. Nathan; Sundareswara, Rashmi; Gerwe, David R.; Chen, Yang

    2011-01-01

    Super resolution image reconstruction allows for the enhancement of images in a video sequence that is superior to the original pixel resolution of the imager. Difficulty arises when there are foreground objects that move differently than the background. A common example of this is a car in motion in a video. Given the common occurrence of such situations, super resolution reconstruction becomes non-trivial. One method for dealing with this is to segment out foreground objects and quantify their pixel motion differently. First we estimate local pixel motion using a standard block motion algorithm common to MPEG encoding. This is then combined with the image itself into a five dimensional mean-shift kernel density estimation based image segmentation with mixed motion and color image feature information. This results in a tight segmentation of objects in terms of both motion and visible image features. The next step is to combine segments into a single master object. Statistically common motion and proximity are used to merge segments into master objects. To account for inconsistencies that can arise when tracking objects, we compute statistics over the object and fit it with a generalized linear model. Using the Kullback-Leibler divergence, we have a metric for the goodness of the track for an object between frames.

  8. Corrosion Inhibition in High Temperature Environment

    DTIC Science & Technology

    1993-06-28

    resistant coatings is optional. Further 5 examples of high temperature corrosion-resistant coatings are the 6 " aluminides " and "silicides", which are...produced by diffusing 7 aluminum and silicon, respectively, into the surface of superalloys 8 or other substrates. Other metallic or ceramic coatings can... superalloys to form 9 nonprotective NaAlO 2 which causes catastrophic hot corrosion. High 10 temperature chromium-containing metals which rely on chromia

  9. Materials for high-temperature thermoelectric conversion

    NASA Technical Reports Server (NTRS)

    Feigelson, R. S.; Elwell, D.; Auld, B. A.

    1984-01-01

    The development of materials for high temperature thermoelectric energy conversion devices was investigated. The development of new criteria for the selection of materials which is based on understanding of the fundamental principles governing the behavior of high temperature thermoelectric materials is discussed. The synthesis and characterization of promising new materials and the growth of single crystals to eliminate possible problems associated with grain boundaries and other defects in polycrystalline materials are outlined.

  10. PLA recycling by hydrolysis at high temperature

    SciTech Connect

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari Fausto, Gironi

    2016-05-18

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  11. High temperature Hall-effect apparatus

    NASA Technical Reports Server (NTRS)

    Wood, C.; Lockwood, A.; Chmielewski, A.; Parker, J.; Zoltan, A.

    1984-01-01

    A high-temperature Hall-effect apparatus is described which allows measurements up to temperatures greater than 1200 K using the van der Pauw method. The apparatus was designed for measurements on refractory materials having high charge carrier concentrations and generally low mobilities. Pressure contacts are applied to the samples. Consequently, special contacting methods, peculiar to a specific sample material, are not required. The apparatus has been semiautomated to facilitate measurements. Results are presented on n- and p-type silicon.

  12. Structural ceramics for high temperature applications

    SciTech Connect

    Dapkunas, S.J.

    1995-12-31

    Structural ceramics, primarily silicon nitride and silicon carbide, are recognized as offering significant performance benefits in heat engine and other high temperature applications. These benefits accrue from superior high temperature mechanical properties, corrosion and wear resistance and lower density. Improved processing and understanding of the phenomena determining properties and performance have made these materials viable replacements for metallic components in some applications. Cost barriers hinder more widespread use.

  13. Preparation Of High-Temperature Reactive Oligomers

    NASA Technical Reports Server (NTRS)

    Ottenbrite, Raphael M.

    1990-01-01

    Very reactive materials form very-heat-stable polymers. Recent research directed toward synthesis of polyimides soluble in common organic solvents, melt-processable, and thermally curable without evolution of volatile by-products. Diels-Alder polymerization yields compounds that maintain integrities and toughnesses during long exposure times at high temperatures. High-temperature polymers synthesized by use of technique. Films and perhaps fibers fabricated from prepolymer in solution. Major potential at this stage of research limited to aerospace applications.

  14. Recent developments in high temperature organic polymers

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.

    1991-01-01

    Developments in high temperature organic polymers during the last 5 years with major emphasis on polyimides and poly(arylene ether)s are discussed. Specific polymers or series of polymers have been selected to demonstrate unique properties or the effect chemical structure has upon certain properties. This article is not intended to be a comprehensive review of high temperature polymer advancements during the last 5 years.

  15. Developments on high temperature fiber optic microphone

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D., II; Zuckerwar, Allan J.

    1992-01-01

    A fiber optic microphone, based on the principle of the fiber optic lever, features small size, extended bandwidth, and capability to operate at high temperatures. These are requirements for measurements in hypersonic flow. This paper describes the principles of operation of fiber optic sensors, a discussion of the design of a fiber optic microphone, the functional elements and packaging techniques of the optoelectronic circuitry, and the calibration techniques used in the development of the high temperature fiber optic microphone.

  16. A joint compressed-sensing and super-resolution approach for very high-resolution diffusion imaging

    PubMed Central

    Ning, Lipeng; Setsompop, Kawin; Michailovich, Oleg; Makris, Nikos; Shenton, Martha E.; Westin, Carl-Fredrik; Rathi, Yogesh

    2015-01-01

    Diffusion MRI (dMRI) can provide invaluable information about the structure of different tissue types in the brain. Standard dMRI acquisitions facilitate a proper analysis (e.g. tracing) of medium-to-large white matter bundles. However, smaller fiber bundles connecting very small cortical or sub-cortical regions cannot be traced accurately in images with large voxel sizes. Yet, the ability to trace such fiber bundles is critical for several applications such as deep brain stimulation and neurosurgery. In this work, we propose a novel acquisition and reconstruction scheme for obtaining high spatial resolution dMRI images using multiple low resolution (LR) images, which is effective in reducing acquisition time while improving the signal-to-noise ratio (SNR). The proposed method called compressed-sensing super resolution reconstruction (CS-SRR), uses multiple overlapping thick-slice dMRI volumes that are under-sampled in q-space to reconstruct diffusion signal with complex orientations. The proposed method combines the twin concepts of compressed sensing and super-resolution to model the diffusion signal (at a given b-value) in a basis of spherical ridgelets with total-variation (TV) regularization to account for signal correlation in neighboring voxels. A computationally efficient algorithm based on the alternating direction method of multipliers (ADMM) is introduced for solving the CS-SRR problem. The performance of the proposed method is quantitatively evaluated on several in-vivo human data sets including a true SRR scenario. Our experimental results demonstrate that the proposed method can be used for reconstructing sub-millimeter super resolution dMRI data with very good data fidelity in clinically feasible acquisition time. PMID:26505296

  17. A joint compressed-sensing and super-resolution approach for very high-resolution diffusion imaging.

    PubMed

    Ning, Lipeng; Setsompop, Kawin; Michailovich, Oleg; Makris, Nikos; Shenton, Martha E; Westin, Carl-Fredrik; Rathi, Yogesh

    2016-01-15

    Diffusion MRI (dMRI) can provide invaluable information about the structure of different tissue types in the brain. Standard dMRI acquisitions facilitate a proper analysis (e.g. tracing) of medium-to-large white matter bundles. However, smaller fiber bundles connecting very small cortical or sub-cortical regions cannot be traced accurately in images with large voxel sizes. Yet, the ability to trace such fiber bundles is critical for several applications such as deep brain stimulation and neurosurgery. In this work, we propose a novel acquisition and reconstruction scheme for obtaining high spatial resolution dMRI images using multiple low resolution (LR) images, which is effective in reducing acquisition time while improving the signal-to-noise ratio (SNR). The proposed method called compressed-sensing super resolution reconstruction (CS-SRR), uses multiple overlapping thick-slice dMRI volumes that are under-sampled in q-space to reconstruct diffusion signal with complex orientations. The proposed method combines the twin concepts of compressed sensing and super-resolution to model the diffusion signal (at a given b-value) in a basis of spherical ridgelets with total-variation (TV) regularization to account for signal correlation in neighboring voxels. A computationally efficient algorithm based on the alternating direction method of multipliers (ADMM) is introduced for solving the CS-SRR problem. The performance of the proposed method is quantitatively evaluated on several in-vivo human data sets including a true SRR scenario. Our experimental results demonstrate that the proposed method can be used for reconstructing sub-millimeter super resolution dMRI data with very good data fidelity in clinically feasible acquisition time. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. High temperature energy harvester for wireless sensors

    NASA Astrophysics Data System (ADS)

    Köhler, J. E.; Heijl, R.; Staaf, L. G. H.; Zenkic, S.; Svenman, E.; Lindblom, A.; Palmqvist, A. E. C.; Enoksson, P.

    2014-09-01

    Implementing energy harvesters and wireless sensors in jet engines will simplify development and decrease costs by reducing the need for cables. Such a device could include a small thermoelectric generator placed in the cooling channels of the jet engine where the temperature is between 500-900 °C. This paper covers the synthesis of suitable thermoelectric materials, design of module and proof of concept tests of a thermoelectric module. The materials and other design variables were chosen based on an analytic model and numerical analysis. The module was optimized for 600-800 °C with the thermoelectric materials n-type Ba8Ga16Ge30 and p-type La-doped Yb14MnSb11, both with among the highest reported figure-of-merit values, zT, for bulk materials in this region. The materials were synthesized and their structures confirmed by x-ray diffraction. Proof of concept modules containing only two thermoelectric legs were built and tested at high temperatures and under high temperature gradients. The modules were designed to survive an ambient temperature gradient of up to 200 °C. The first measurements at low temperature showed that the thermoelectric legs could withstand a temperature gradient of 123 °C and still be functional. The high temperature measurement with 800 °C on the hot side showed that the module remained functional at this temperature.

  19. Ionization of NO at high temperature

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1991-01-01

    Space vehicles flying through the atmosphere at high speed are known to excite a complex set of chemical reactions in the atmospheric gases, ranging from simple vibrational excitation to dissociation, atom exchange, electronic excitation, ionization, and charge exchange. Simple arguments are developed for the temperature dependence of the reactions leading to ionization of NO, including the effect of vibrational electronic thermal nonequilibrium. NO ionization is the most important source of electrons at intermediate temperatures and at higher temperatures provides the trigger electrons that ionize atoms. Based on these arguments, recommendations are made for formulae which fit observed experimental results, and which include a dependence on both a heavy particle temperature and different vibration electron temperatures. In addition, these expressions will presumably provide the most reliable extrapolation of experimental results to much higher temperatures.

  20. Consecutive record-breaking high temperatures marked the handover from hiatus to accelerated warming

    PubMed Central

    Su, Jingzhi; Zhang, Renhe; Wang, Huijun

    2017-01-01

    Closely following the hiatus warming period, two astonishing high temperature records reached in 2014 and 2015 consecutively. To investigate the occurrence features of record-breaking high temperatures in recent years, a new index focusing the frequency of the top 10 high annual mean temperatures was defined in this study. Analyses based on this index shown that record-breaking high temperatures occurred over most regions of the globe with a salient increasing trend after 1960 s, even during the so-called hiatus period. Overlapped on the ongoing background warming trend and the interdecadal climate variabilities, the El Niño events, particularly the strong ones, can make a significant contribution to the occurrence of high temperatures on interannual timescale. High temperatures associated with El Niño events mainly occurred during the winter annual period. As the Pacific Decadal Oscillation (PDO) struggled back to its positive phase since 2014, the global warming returned back to a new accelerated warming period, marked by the record-breaking high temperatures in 2014. Intensified by the super strong El Niño, successive high records occurred in 2015 and 2016. Higher frequencies of record high temperatures would occur in the near future because the PDO tends to maintain a continuously positive phase. PMID:28256561

  1. Consecutive record-breaking high temperatures marked the handover from hiatus to accelerated warming.

    PubMed

    Su, Jingzhi; Zhang, Renhe; Wang, Huijun

    2017-03-03

    Closely following the hiatus warming period, two astonishing high temperature records reached in 2014 and 2015 consecutively. To investigate the occurrence features of record-breaking high temperatures in recent years, a new index focusing the frequency of the top 10 high annual mean temperatures was defined in this study. Analyses based on this index shown that record-breaking high temperatures occurred over most regions of the globe with a salient increasing trend after 1960 s, even during the so-called hiatus period. Overlapped on the ongoing background warming trend and the interdecadal climate variabilities, the El Niño events, particularly the strong ones, can make a significant contribution to the occurrence of high temperatures on interannual timescale. High temperatures associated with El Niño events mainly occurred during the winter annual period. As the Pacific Decadal Oscillation (PDO) struggled back to its positive phase since 2014, the global warming returned back to a new accelerated warming period, marked by the record-breaking high temperatures in 2014. Intensified by the super strong El Niño, successive high records occurred in 2015 and 2016. Higher frequencies of record high temperatures would occur in the near future because the PDO tends to maintain a continuously positive phase.

  2. Consecutive record-breaking high temperatures marked the handover from hiatus to accelerated warming

    NASA Astrophysics Data System (ADS)

    Su, Jingzhi; Zhang, Renhe; Wang, Huijun

    2017-03-01

    Closely following the hiatus warming period, two astonishing high temperature records reached in 2014 and 2015 consecutively. To investigate the occurrence features of record-breaking high temperatures in recent years, a new index focusing the frequency of the top 10 high annual mean temperatures was defined in this study. Analyses based on this index shown that record-breaking high temperatures occurred over most regions of the globe with a salient increasing trend after 1960 s, even during the so-called hiatus period. Overlapped on the ongoing background warming trend and the interdecadal climate variabilities, the El Niño events, particularly the strong ones, can make a significant contribution to the occurrence of high temperatures on interannual timescale. High temperatures associated with El Niño events mainly occurred during the winter annual period. As the Pacific Decadal Oscillation (PDO) struggled back to its positive phase since 2014, the global warming returned back to a new accelerated warming period, marked by the record-breaking high temperatures in 2014. Intensified by the super strong El Niño, successive high records occurred in 2015 and 2016. Higher frequencies of record high temperatures would occur in the near future because the PDO tends to maintain a continuously positive phase.

  3. Phonon spectra of plutonium at high temperatures

    NASA Astrophysics Data System (ADS)

    Dorado, Boris; Bottin, François; Bouchet, Johann

    2017-03-01

    Ab initio molecular dynamics calculations are used to investigate the vibrational properties of the high-temperature δ and ɛ phases of plutonium. We combine the local-density approximation (LDA)+U for strong electron correlations and the temperature-dependent effective potential method in order to calculate the phonon spectra of the two phases, as well as their dependence on temperature. Our results show that the ɛ phase can only be stabilized when temperature and correlations are simultaneously accounted for. We are also able to quantify the degree of anharmonicity of the two phases. While the δ phase is fairly harmonic up to 1000 K, we find that the ɛ phase is strongly anharmonic, which explains why this structure dominates the phase diagram at high temperature.

  4. High-temperature discontinuously reinforced aluminum

    NASA Astrophysics Data System (ADS)

    Zedalis, M. S.; Bryant, J. D.; Gilman, P. S.; Das, S. K.

    1991-08-01

    High-temperature discontinuously reinforced aluminum (HTDRA) composites have been developed for elevated-temperature applications by incorporating SiC particulate reinforcement into a rapidly solidified, high-temperature Al-Fe-V-Si (alloy 8009) matrix. HTDRA combines the superior elevated-temperature strength, stability and corrosion resistance of the 8009 matrix with the excellent specific stiffness and abrasion resistance of the discontinuous SiC particulate reinforcement. On a specific stiffness basis, HTDRA is competitive with Ti-6-Al-4V and 17-4 PH stainless steel to temperatures approaching 480°C. Potential aerospace applications being considered for HTDRA include aircraft wing skins, missile bodies, and miscellaneous engine, spacecraft and hypersonic vehicle components.

  5. High temperature structural fibers: Status and needs

    NASA Technical Reports Server (NTRS)

    Dicarlo, James A.

    1991-01-01

    The key to high temperature structural composites is the selection and incorporation of continuous fiber reinforcement with optimum mechanical, physical, and chemical properties. Critical fiber property needs are high strength, high stiffness, and retention of these properties during composite fabrication and use. However, unlike polymeric composites where all three requirements are easily achieved with a variety of commercially available carbon-based fibers, structural fibers with sufficient stiffness and strength retention for high temperature metal, intermetallic, and ceramic composites are not available. The objective here is to discuss in a general manner the thermomechanical stability problem for current high performance fibers which are based on silicon and alumina compositions. This is accomplished by presenting relevant fiber property data with a brief discussion of potential underlying mechanisms. From this general overview, some possible materials engineering approaches are suggested which may lead to minimization and/or elimination of this critical stability problem for current high temperature fibers.

  6. Laser Plasma Coupling for High Temperature Hohlraums

    SciTech Connect

    Kruer, W.

    1999-11-04

    Simple scaling models indicate that quite high radiation temperatures can be achieved in hohlraums driven with the National Ignition Facility. A scaling estimate for the radiation temperature versus pulse duration for different size NIF hohlraums is shown in Figure 1. Note that a radiation temperature of about 650 ev is projected for a so-called scale 1 hohlraum (length 2.6mm, diameter 1.6mm). With such high temperature hohlraums, for example, opacity experiments could be carried out using more relevant high Z materials rather than low Z surrogates. These projections of high temperature hohlraums are uncertain, since the scaling model does not allow for the very strongly-driven laser plasma coupling physics. Lasnex calculations have been carried out to estimate the plasma and irradiation conditions in a scale 1 hohlraum driven by NIF. Linear instability gains as high as exp(100) have been found for stimulated Brillouin scattering, and other laser-driven instabilities are also far above their thresholds. More understanding of the very strongly-driven coupling physics is clearly needed in order to more realistically assess and improve the prospects for high temperature hohlraums. Not surprisingly, this regime has been avoided for inertial fusion applications and so is relatively unexplored.

  7. O and temperature in high-pressure and -temperature gases

    NASA Astrophysics Data System (ADS)

    Goldenstein, C. S.; Spearrin, R. M.; Jeffries, J. B.; Hanson, R. K.

    2014-09-01

    The design and validation of a tunable diode laser (TDL) sensor for temperature and H2O in high-pressure and -temperature gases are presented. High-fidelity measurements are enabled through the use of: (1) strong H2O fundamental-band absorption near 2.5 μm, (2) calibration-free first-harmonic-normalized wavelength-modulation spectroscopy with second-harmonic detection (WMS-2 f/1 f), (3) an experimentally derived and validated spectroscopic database, and (4) a new approach to selecting the optimal wavelength and modulation depth of each laser. This sensor uses two TDLs near 2,474 and 2,482 nm that were fiber coupled in free space and frequency multiplexed to enable measurements along a single line-of-sight. The lasers were modulated at 35 and 45.5 kHz, respectively, to achieve a sensor bandwidth of 4.5 kHz. This sensor was validated in a shock tube at temperatures and pressures ranging from 1,000 to 2,700 K and 8 to 50 bar. There the sensor resolved transients and recovered the known steady-state temperature and H2O mole fraction with a precision of 3.2 and 2.6 % RMS, respectively.

  8. Concept for a super-clean super-efficient pressurized fluidized-bed combustion system

    SciTech Connect

    Mollott, D.J.; Reed, M.

    1994-12-31

    A paper study for a highly efficient, environmentally benign, coal-fired electric power generation system, is presented. This system falls in the category of pressurized fluidized-bed combustion (PFBC) systems which has been dubbed super-clean super-efficient PFBC`s. The system presented starts with the second-generation PFBC concept and adds on advanced gas turbine, a solid oxide fuel cell, a supercritical steam cycle, a second low-temperature rankine cycle which pulls energy from the steam condenser, and inlet air cooling. The thermodynamic efficiency of the system is calculated to be 61.8 percent based on higher heating value (HHV).

  9. High temperature crystalline superconductors from crystallized glasses

    DOEpatents

    Shi, Donglu

    1992-01-01

    A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

  10. Attachment Techniques for High Temperature Strain

    DTIC Science & Technology

    1993-01-01

    3.6.6.1 Pull Tests on Ceramic Cements and Flame Sprayed Coatings 26 3.6.6.2 Effect of Cement Age on Bond Strength. 29 3.6.6.3 Effect of Cure...Temperature on Bond Strength. 29 3.6.6.4 Effect of High Temperature Cure on Cement Strength . 29 3.7 THEORY OF ADHESION 33 3.7.1 High...broke rather than pull out of the coating 28 Figure 16 Effect of Cement Age 30 Figure 17 Cure Temperature vs. Strength 31 Figure 18

  11. Insulation Blankets for High-Temperature Use

    NASA Technical Reports Server (NTRS)

    Goldstein, H.; Leiser, D.; Sawko, P. M.; Larson, H. K.; Estrella, C.; Smith, M.; Pitoniak, F. J.

    1986-01-01

    Insulating blanket resists temperatures up to 1,500 degrees F (815 degrees C). Useful where high-temperature resistance, flexibility, and ease of installation are important - for example, insulation for odd-shaped furnaces and high-temperature ducts, curtains for furnace openings and fire control, and conveyor belts in hot processes. Blanket is quilted composite consisting of two face sheets: outer one of silica, inner one of silica or other glass cloth with center filling of pure silica glass felt sewn together with silica glass threads.

  12. A cosmic ray super high energy multicore family event. 2: Structure and fragmentation characteristics of the jets

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Quarks and gluons are not directly observable, but may be displayed through fragmentation in the form of hadronic jets, the evidence of which was first revealed in cosmic ray interactions before the advent of the modern theory of strong interactions. Experimental results from ISR and SPPS collider rendered the jet phenomena more confident and definite. All the properties of jets observed up to now at ISR and SPPS collider are in agreement with the predictions of QCD. In order to make further test of QCD in still higher energy regions, detailed study of super high energy jet events in cosmic rays is very desirable. The event KO E19 observed in the Mt. Kambala emulsion chamber is an interesting event for such study. The general features of KO E19 is described. Its total visible energy is sigma E sub gamma = 1537 TeV(E sub min = 1.5 TeV) and production height H=(70 + or - 30)m, with a hadron as its primary particle. Besides about forty small clusters, there are five super high energy cores or jets, one lying near the center of the event while the other four surrounding it, having incident directions making small angles with that of the primary particle. Detailed analysis is done on the emulsion plates inserted in the chamber, making full use of their fine granularity, superior in detecting and analyzing jet events, specially their substructures.

  13. High Temperature MEMS for Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2002-01-01

    The presentation will discuss Microelectromechanical Systems (MEMS) research and development activities and technologies being conducted at NASA Glenn Research Center to address the needs of harsh environment applications. The focus will be on silicon carbide based h4EMS for high temperature, high power and high radiation environment as well as high temperature sensor technologies which are made possible by MEMS processing techniques. These technologies can enable new measurements and capabilities for future turbine engines. All the presentation materials are publicly available and have been presented/published before.

  14. The Super HMS

    SciTech Connect

    Chen Yan

    1998-06-01

    As a part of physics instrumentation development for TJNAF long range institution upgrade plan, a 12 GeV/c Super High Momentum Spectrometer (the Super HMS) has been proposed for high luminosity and high q2 physics in endstation Hall C. The fundamental configuration of Super HMS is QQDD. Two identical quadrupoles are the superconducting HMS Q1s with maximum gradient 8 Tesla/m. Two identical SLAC B202/B203 dipole magnets are considered for the use of dispersive elements with accumulative bending power 18.7 degree at 12 GeV/c while the central field is set to 2.05 Tesla. A sliding mechanism could guide the whole system, including the magnetic elements and detector house, moving forwards and backwards by +/- 100 cm. Under an assumed magnetic structure, the Super HMS optics performance has been studied by using TRANSPORT, TURTLE, and RAYTRACE codes and related reconstruction methods. The applicable solid angle can be adjusted between 1 msr and 2.3 msr. The maximum central momentum is 12 GeV/c. The reconstructed momentum resolution within full momentum range 20% is better than 10-3. The in-plane angle reconstruction accuracy is about 0.5 mr, mainly determined by the local multiple scattering from detector materials. This report also points out the strategy of super HMS optics adapting low rigidity quadrupoles for the use of high momentum operation, and the potential capability of very forward angle operations.

  15. Ultra-High Temperature Ceramics for solar receivers: spectral and high-temperature emittance characterization

    NASA Astrophysics Data System (ADS)

    Sani, E.; Mercatelli, L.; Jafrancesco, D.; Sans, J. L.; Sciti, D.

    2012-12-01

    We report on the preparation, room temperature spectral reflectance and high-temperature thermal emittance characterization of different boride and carbide Ultra-High Temperature Ceramics (UHTCs). The investigated samples are compared with a reference material for solar absorber applications, i.e. silicon carbide. We show that spectral and thermal emittance properties of UHTCs are promising for novel solar receivers.

  16. High Temperature, Wireless Seismometer Sensor for Venus

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  17. Super-radiant plasmon mode is more efficient for SERS than the sub-radiant mode in highly packed 2D gold nanocube arrays.

    PubMed

    Mahmoud, Mahmoud A

    2015-08-21

    The field coupling in highly packed plasmonic nanoparticle arrays is not localized due to the energy transport via the sub-radiant plasmon modes, which is formed in addition to the regular super-radiant plasmon mode. Unlike the sub-radiant mode, the plasmon field of the super-radiant mode cannot extend over long distances since it decays radiatively with a shorter lifetime. The coupling of the plasmon fields of gold nanocubes (AuNCs) when organized into highly packed 2D arrays was examined experimentally. Multiple plasmon resonance optical peaks are observed for the AuNC arrays and are compared to those calculated using the discrete dipole approximation. The calculated electromagnetic plasmon fields of the arrays displayed high field intensity for the nanocubes located in the center of the arrays for the lower energy super-radiant mode, while the higher energy sub-radiant plasmon mode displayed high field intensity at the edges of the arrays. The Raman signal enhancement by the super-radiant plasmon mode was found to be one hundred fold greater than that by sub-radiant plasmon mode because the super-radiant mode has higher scattering and stronger plasmon field intensity relative to the sub-radiant mode.

  18. Super-radiant plasmon mode is more efficient for SERS than the sub-radiant mode in highly packed 2D gold nanocube arrays

    SciTech Connect

    Mahmoud, Mahmoud A.

    2015-08-21

    The field coupling in highly packed plasmonic nanoparticle arrays is not localized due to the energy transport via the sub-radiant plasmon modes, which is formed in addition to the regular super-radiant plasmon mode. Unlike the sub-radiant mode, the plasmon field of the super-radiant mode cannot extend over long distances since it decays radiatively with a shorter lifetime. The coupling of the plasmon fields of gold nanocubes (AuNCs) when organized into highly packed 2D arrays was examined experimentally. Multiple plasmon resonance optical peaks are observed for the AuNC arrays and are compared to those calculated using the discrete dipole approximation. The calculated electromagnetic plasmon fields of the arrays displayed high field intensity for the nanocubes located in the center of the arrays for the lower energy super-radiant mode, while the higher energy sub-radiant plasmon mode displayed high field intensity at the edges of the arrays. The Raman signal enhancement by the super-radiant plasmon mode was found to be one hundred fold greater than that by sub-radiant plasmon mode because the super-radiant mode has higher scattering and stronger plasmon field intensity relative to the sub-radiant mode.

  19. Fast vortex core switching at high temperatures

    NASA Astrophysics Data System (ADS)

    Lebecki, Kristof M.; Legut, Dominik

    2016-08-01

    Fast ferromagnetic vortex core switching is investigated employing micromagnetic simulations. Short pulse (in the range of a few hundreds of picoseconds) of an in-plane oscillating magnetic field is applied to a thin disk (diameter 200 nm and thickness 20 nm) with material parameters resembling permalloy. Fundamental frequency of this excitation field is close to the resonance with the material spin waves. Thermal effects are introduced by replacing the Landau-Lifshitz-Gilbert equation by the Landau-Lifshitz-Bloch equation. Temperature from 300 K to 850 K is considered, just below the Curie temperature TC = 870 K. Calculations are done within the OOMMF simulation framework. We find that: (i) Period of the field necessary to switch the vortex increases approximately from 141 ps at 300 K to 572 ps for the high-temperature limit. (ii) Amplitude of the field necessary to switch the vortex core decreases roughly from 60 mT to 15 mT - even at high temperatures this amplitude is nonzero, contrary to the case of quasi-static switching. (iii) Time span between the excitation and switching (switching time) seems not to depend on the temperature. (iv) Duration of the switching itself (movement of the Bloch point in the sample) increases from a few picoseconds at low temperatures to tens of picoseconds at high temperatures.

  20. High-entropy alloys as high-temperature thermoelectric materials

    SciTech Connect

    Shafeie, Samrand; Guo, Sheng; Hu, Qiang; Fahlquist, Henrik; Erhart, Paul; Palmqvist, Anders

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  1. Radiative hydrodynamics in the highly super adiabatic layer of stellar evolution models

    NASA Astrophysics Data System (ADS)

    Robinson, F. J.; Demarque, P.; Sofia, S.; Chan, K. L.; Kim, Y.-C.; Guenther, D. B.

    2001-01-01

    We present results of three dimensional simulations of the uppermost part of the sun, at 3 stages of its evolution. Each model includes physically realistic radiative-hydrodynamics (the Eddington approximation is used in the optically thin region), varying opacities and a realistic equation of state (full treatment of the ionization of H and He). In each evolution model, we investigate a domain, which starts at the top of the photosphere and ends just inside the convection zone (about 2400 km in the sun model). This includes all of the super-adiabatic layer (SAL). Due to the different positions of the three models in the log(g) vs logTeff plane, the more evolved models haved lower density atmospheres. The reduction in density causes the extent of overshoot into the radiation layer, to be greater in the more evolved models.

  2. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    SciTech Connect

    Vinayak N. Kabadi

    1999-02-20

    It is well known that the fluid phase equilibria can be represented by a number of {gamma}-models , but unfortunately most of them do not function well under high temperature. In this calculation, we mainly investigate the performance of UNIQUAC and NRTL models under high temperature, using temperature dependent parameters rather than using the original formulas. the other feature of this calculation is that we try to relate the excess Gibbs energy G{sup E}and enthalpy of mixing H{sup E}simultaneously. In other words, we will use the high temperature and pressure G{sup E} and H{sup E}data to regress the temperature dependant parameters to find out which model and what kind of temperature dependant parameters should be used.

  3. High-temperature superconducting conductors and cables

    SciTech Connect

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-09-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J{sub c} in high magnetic fields at temperatures near liq. N2`s bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J{sub c} at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices.

  4. The low salinity effect at high temperatures

    DOE PAGES

    Xie, Quan; Brady, Patrick V.; Pooryousefy, Ehsan; ...

    2017-04-05

    The mechanism(s) of low salinity water flooding (LSWF) must be better understood at high temperatures and pressures if the method is to be applied in high T/P kaolinite-bearing sandstone reservoirs. We measured contact angles between a sandstone and an oil (acid number, AN = 3.98 mg KOH/g, base number, BN = 1.3 mg KOH/g) from a reservoir in the Tarim Field in western China in the presence of various water chemistries. We examined the effect of aqueous ionic solutions (formation brine, 100X diluted formation brine, and softened water), temperature (60, 100 and 140 °C) and pressure (20, 30, 40, andmore » 50 MPa) on the contact angle. We also measured the zeta potential of the oil/water and water/rock interfaces to calculate oil/brine/rock disjoining pressures. A surface complexation model was developed to interpret contact angle measurements and compared with DLVO theory predictions. Contact angles were greatest in formation water, followed by the softened water, and low salinity water at the same pressure and temperature. Contact angles increased slightly with temperature, whereas pressure had little effect. DLVO and surface complexation modelling predicted similar wettability trends and allow reasonably accurate interpretation of core-flood results. Water chemistry has a much larger impact on LSWF than reservoir temperature and pressure. As a result, low salinity water flooding should work in high temperature and high pressure kaolinite-bearing sandstone reservoirs.« less

  5. High Temperature Calibration Furnace System user's guide

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The High Temperature Calibration Furnace System (HTCFS) was developed by Summitec Corporation. It is a high precision instrument providing a constant temperature which can be used to calibrate high temperature thermocouples. Incorporating the many recent technological advances from the fields of optical fiber thermometry, material science, computer systems interfacing, and process control, the engineers at Summitec Corporation have been able to create a system that can reach a steady operating temperature of 1700 C. The precision for the system requires the measurement of temperature to be within 1 C in two hours and within 2 C in 24 hours. As documented, the experimental result shows that this system has been able to stay within .5 C in 5 hours. No other systems commercially available have been able to achieve such high temperature precision. This manual provides an overview of the system design, instructions for instrument setup, and operation procedures. Also included are a vendor list and the source codes for the custom-designed software.

  6. Ultra-stable high-power mid-infrared optical parametric oscillator pumped by a super-fluorescent fiber source.

    PubMed

    Shang, Yaping; Xu, Jiangming; Wang, Peng; Li, Xiao; Zhou, Pu; Xu, Xiaojun

    2016-09-19

    The longterm stability of the laser system is very important in many applications. In this letter, an ultra-stable, broadband, mid-infrared (MIR) optical parametric oscillator (OPO) pumped by a super-fluorescent fiber source is demonstrated. An idler MIR output power of 11.3 W with excellent beam quality was obtained and the corresponding pump-to-idler conversion slope efficiency was 15.9%. Furthermore, during 1h measurement at full power operation, the peak-to-peak fluctuation of idler output power was less than 1.9% and the corresponding standard deviation was less than 0.4% RMS, which was much better than that of a traditional single mode fiber laser pumped OPO system (10.9% for peak-to-peak fluctuation and 1.8% RMS for the standard deviation) in another experiment for comparison. To our knowledge, this is the first demonstration on a high-power, ultra-stable OPO system by using the modefree pump source, which offered an effective approach to achieve an ultra-stable MIR source and broadened the range of the super-fluorescent fiber source applications.

  7. Geomagnetic Dependence of Medium Scale Traveling Ionospheric Disturbances (MSTIDs) Observed by Mid- and High- Latitude SuperDARN Radars

    NASA Astrophysics Data System (ADS)

    Frissell, N. A.; Baker, J. B.; Ruohoniemi, J.; Miller, E.; West, M.; Bristow, W. A.

    2013-12-01

    Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are wave-like perturbations of the F-region ionosphere with horizontal wavelengths on the order of 100-250 km and periods between ~15 - 60 min. They are generally thought to be the ionospheric manifestation of Atmospheric Gravity Waves (AGWs). High-latitude MSTIDs have been studied using SuperDARN radars for many years, and have typically been attributed to auroral sources propagated by the Earth Reflected Wave (ERW) mode. Tropospheric sources and earthquakes are also known to be sources of MSTIDs. The goal of this study is to see if high- and mid- latitude MSTIDs share the same source region. Observations of MSTIDs using both mid- and high- latitude SuperDARN radars are presented. A case study using MSTIDs observed at the high latitude Goose Bay Radar (GBR) and the midlatitude Blackstone Radar (BKS) suggest that the auroral source is more likely for GBR than for BKS. BKS radar data from June 2010 - June 2011 were searched for signatures of MSTIDs. Statistics of propagation direction and wavelength for each event are used to suggest MSTID sources. Results show that MSTIDs are observed at BKS primarily in the fall/winter months, which is consistent with previously published results for high latitude stations. Distributions of MSTID occurrence organized by geomagnetic parameters Kp, SYM-H, and AE are presented to investigate MSTID dependence on geomagnetic activity at BKS. No correlation is found between these parameters and midlatitude MSTID occurrence, which suggests that high- and mid-latitude MSTIDs have different sources.

  8. High-temperature testing of high performance fiber reinforced concrete

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Vejmelková, Eva; Pavlíková, Milena; Trník, Anton; Čítek, David; Kolísko, Jiří; Černý, Robert; Pavlík, Zbyšek

    2016-06-01

    The effect of high-temperature exposure on properties of High Performance Fiber Reinforced Concrete (HPFRC) is researched in the paper. At first, reference measurements are done on HPFRC samples without high-temperature loading. Then, the HPFRC samples are exposed to the temperatures of 200, 400, 600, 800, and 1000 °C. For the temperature loaded samples, measurement of residual mechanical and basic physical properties is done. Linear thermal expansion coefficient as function of temperature is accessed on the basis of measured thermal strain data. Additionally, simultaneous difference scanning calorimetry (DSC) and thermogravimetry (TG) analysis is performed in order to observe and explain material changes at elevated temperature. It is found that the applied high temperature loading significantly increases material porosity due to the physical, chemical and combined damage of material inner structure, and negatively affects also the mechanical strength. Linear thermal expansion coefficient exhibits significant dependence on temperature and changes of material structure. The obtained data will find use as input material parameters for modelling the damage of HPFRC structures exposed to the fire and high temperature action.

  9. High Temperature Mechanical Behavior of Polycrystalline Alumina from Mixed Nanometer and Micrometer Powders

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2001-01-01

    Sintered aluminum oxide materials were formed using commercial methods from mechanically mixed powders of nano-and micrometer alumina. The powders were consolidated at 1500 and 1600 C with 3.2 and 7.2 ksi applied stress in argon. The conventional micrometer sized powders failed to consolidate. While 100 percent nanometer-sized alumina and its mixture with the micrometer powders achieved less than 99 percent density. Preliminary high temperature creep behavior indicates no super-plastic strains. However high strains (less than 0.65 percent) were generated in the nanometer powder, due to cracks and linked voids initiated by cavitation.

  10. Separation of Iron Phase and P-Bearing Slag Phase from Gaseous-Reduced, High-Phosphorous Oolitic Iron Ore at 1473 K (1200 °C) by Super Gravity

    NASA Astrophysics Data System (ADS)

    Gao, Jintao; Zhong, Yiwei; Guo, Lei; Guo, Zhancheng

    2016-04-01

    In situ observation on the morphology evolution and phosphorous migration of gaseous-reduced, high-phosphorous oolitic iron ore during the melting process was carried out with a high-temperature confocal scanning laser microscope. The results showed that 1473 K (1200 °C) was a critical temperature at which the gangue minerals started to form into the slag phase while the iron grains remained in a solid state; in addition, the phosphorus remained in the slag phase. Since the separation of iron grains and P-bearing slag was not achieved at the low temperature under the conventional conditions, separate experiments of the iron phase and the P-bearing slag phase from gaseous-reduced, high-phosphorous oolitic iron ore at 1473 K (1200 °C) by super gravity were carried out in this study. Based on the iron-slag separation by super gravity, phosphorus was removed effectively from the iron phase at the temperature below the melting point of iron. Iron grains moved along the super-gravity direction, joined, and concentrated as the iron phase on the filter, whereas the slag phase containing apatite crystals broke through the barriers of the iron grains and went through the filter. Consequently, increasing the gravity coefficient was definitely beneficial for the separation of the P-bearing slag phase from the iron phase. With the gravity coefficient of G = 1200, the mass fractions of separated slag and iron phases were close to their respective theoretical values, and the mass fraction of MFe in the separated iron phase was up to 98.09 wt pct and that of P was decreased to 0.083 wt pct. The recovery of MFe in the iron phase and that of P in the slag phase were up to 99.19 and 95.83 pct, respectively.

  11. High-temperature helium-loop facility

    SciTech Connect

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100/sup 0/F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system.

  12. High Temperature VARTM of Phenylethynyl Terminated Imides

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Cano, Roberto J.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Herring, Helen M.; Linberry, Quentin J.

    2009-01-01

    LaRC phenylethynyl terminated imide (PETI) resins were processed into composites using high temperature vacuum assisted resin transfer molding (VARTM). Although initial runs yielded composites with high void content, process modifications reduced voids to <3%. Photomicrographs were taken and void contents and T(sub g)s of the panels were determined.

  13. Reactive Plasticizers for High Temperature Quinoxaline Thermoplastics

    DTIC Science & Technology

    1976-06-01

    involves essentially two steps, consolidation of boardy prepreg into sheet stock and thermoforming the sheet stock into structural components. A...problem associated with the fabrication process is the high temperatures required in both the consolidation and thermoforming operations. High processing

  14. Research about the high precision temperature measurement

    NASA Astrophysics Data System (ADS)

    Lin, J.; Yu, J.; Zhu, X.; Zeng, Z.; Deng, Y.

    2012-12-01

    High precision temperature control system is one of most important support conditions for tunable birefringent filter.As the first step,we researched some high precision temperature measurement methods for it. Firstly, circuits with a 24 bit ADC as the sensor's reader were carefully designed; Secondly, an ARM porcessor is used as the centrol processing unit, it provides sufficient reading and procesing ability; Thirdly, three kinds of sensors, PT100, Dale 01T1002-5 thermistor, Wheatstone bridge(constructed by pure copper and manganin) as the senor of the temperature were tested respectively. The resolution of the measurement with these three kinds of sensors are all better than 0.001 that's enough for 0.01 stability temperature control. Comparatively, Dale 01T1002-5 thermistor could get the most accurate temperature of the key point, Wheatstone bridge could get the most accurate mean temperature of the whole layer, both of them will be used in our futrue temperature controll system.

  15. MAS-NMR at very high temperatures.

    PubMed

    van Wüllen, Leo; Schwering, Georg; Naumann, Ernst; Jansen, Martin

    2004-09-01

    We report MAS-NMR experiments at temperatures of approx. 1200 K using a CO(2) laser as the heating device. An internal NMR thermometer based on the (7)Li T1 data of Li(0.24)La(0.54)TiO(3) is used for temperature calibration. Using this setup, temperatures as high as 1191 K could be reached under MAS conditions as confirmed by the melting of Li(2)B(4)O(7) at 1191 K which could be followed by (7)Li-MAS-NMR.

  16. A Road Towards High Temperature Superconductors

    DTIC Science & Technology

    2013-08-01

    issue in trying to make useful high temperature superconductors is obviously to discover superconductivity at higher temperatures. But there is also...behavior of the cuprates under applied fields can be made by using an unconventional pinning mechanism directly based on the Bond Contraction...Pairing (BCP) mechanism proposed by Deutscher and de Gennes. In the second part a new mechanism for superconductivity that we may have uncovered in

  17. Modeling of concrete response at high temperature

    SciTech Connect

    Pfeiffer, P.; Marchertas, A.

    1984-01-01

    A rate-type creep law is implemented into the computer code TEMP-STRESS for high temperature concrete analysis. The disposition of temperature, pore pressure and moisture for the particular structure in question is provided as input for the thermo-mechanical code. The loss of moisture from concrete also induces material shrinkage which is accounted for in the analytical model. Examples are given to illustrate the numerical results.

  18. High temperature stress-strain analysis

    NASA Technical Reports Server (NTRS)

    Thompson, Robert L.

    1985-01-01

    The objectives of the high temperature structures program are threefold: to assist in the development of analytical tools needed to improve design analysis and procedures for the efficient and accurate prediction of the nonlinear structural response of hot-section components; to aid in the calibration, validation, and evaluation of the analytical tools by comparing predictions with experimental data; and to evaluate existing as well as advanced temperature and strain measurement instrumentation.

  19. High Temperature Studies of La-Monazite

    DTIC Science & Technology

    2004-07-01

    Alumina/alumina composite with a porous [55] Callender RL, Barron AR. Facile synthesis of aluminum con- zirconia interphase - processing, properties ...temperature propertie of LaPO4, with a view to its application in high-temperature structural composites. Previous studies at Rockwell and the Air Force...established that LaPO4 has a unique set of properties that make it suitable as a weakly bonded interphase material that enables damage tolerance by

  20. NDE standards for high temperature materials

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1991-01-01

    High temperature materials include monolithic ceramics for automotive gas turbine engines and also metallic/intermetallic and ceramic matrix composites for a range of aerospace applications. These are materials that can withstand extreme operating temperatures that will prevail in advanced high-efficiency gas turbine engines. High temperature engine components are very likely to consist of complex composite structures with three-dimensionality interwoven and various intermixed ceramic fibers. The thermomechanical properties of components made of these materials are actually created in-place during processing and fabrication stages. The complex nature of these new materials creates strong incentives for exact standards for unambiguous evaluations of defects and microstructural characteristics. NDE techniques and standards that will ultimately be applicable to production and quality control of high temperature materials and structures are still emerging. The needs range from flaw detection to below 100 micron levels in monolithic ceramics to global imaging of fiber architecture and matrix densification anomalies in composites. The needs are different depending on the processing stage, fabrication method, and nature of the finished product. The standards are discussed that must be developed in concert with advances in NDE technology, materials processing research, and fabrication development. High temperature materials and structures that fail to meet stringent specifications and standards are unlikely to compete successfully either technologically or in international markets.