Science.gov

Sample records for super-heavy nuclei explored

  1. Revisiting the symmetric reactions for synthesis of super-heavy nuclei of Z⩾120

    NASA Astrophysics Data System (ADS)

    Choudhury, R. K.; Gupta, Y. K.

    2014-04-01

    Extensive efforts have been made experimentally to reach nuclei in the super-heavy mass region of Z=110 and above with suitable choices of projectile and target nuclei. The cross sections for production of these nuclei are seen to be in the range of a few picobarn or less, and pose great experimental challenges. Theoretically, there have been extensive calculations for highly asymmetric (hot-fusion) and moderately asymmetric (cold-fusion) collisions and only a few theoretical studies are available for near-symmetric collisions to estimate the cross sections for production of super-heavy nuclei. In the present article, we revisit the symmetric heavy ion reactions with suitable combinations of projectile and target nuclei in the rare-earth region, that will lead to super-heavy nuclei of Z⩾120 with measurable fusion cross sections.

  2. Systematics of α-decay and spontaneous fission half-lives of super-heavy nuclei

    NASA Astrophysics Data System (ADS)

    Silisteanu, Ion; Anghel, Claudia-Ioana

    2017-01-01

    Simple relationships derived from the systematics of data and calculated α-decay and spontaneous fission half-lives are used to predict half-lives and branches for many still unknown super-heavy nuclei. Half-life calculations are performed within the shell model rate theory for α-decay, and a dynamical approach for spontaneous fission defined essentially by the shape, the hight of fission barrier, the fissility and nuclear deformations. Extensive half-lives predictions are made for many unknown super-heavy nuclei. The comparison of the behavior of measured α-decay properties with expectations from theoretical approximations (with and without; finite size corrections, resonance scattering effects, deformations and shell structure) provides insight into the accuracy of current nuclear models for the reaction dynamics and structure.

  3. Long Fission Times of Super-Heavy Compound Nuclei

    SciTech Connect

    Drouart, A.; Charvet, J. L.; Dayras, R.; Nalpas, L.; Volant, C.; Jacquet, D.

    2008-04-17

    The blocking technique in single crystals is a direct method to investigate the presence of long fission time components. With a lead beam impinging on a germanium single crystal, we tried to produce compound nuclei (CN) with atomic number Z = 114 at high excitation energy. Blocking patterns for reaction products are reconstructed with position sensitive detectors at 20 deg. relative to the beam direction. The Z and the energies of all products are measured with {delta}E-E telescopes of the 4{pi} INDRA array, so that all reaction channels are unambiguously identified. With this setup, we can reach long fission times (>10{sup -18} s) that can be associated with CN fissions. However, in contrast to previous experiments in which such long fission times could be measured for Z = 120 and 124, no hint of long lifetimes within our sensitivity limit for Z = 114 was observed, which may be due to the neutron deficiency of the formed isotopes.

  4. Bridging the nuclear structure gap between stable and super heavy nuclei.

    SciTech Connect

    Seweryniak, D.; Khoo, T. L.; Ahmad, I.; Kondev, F. G.; Robinson, A.; Back, B. B.; Carpenter, M. P.; Davids, C. N.; Greene, J. P.; Gros, S.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Peterson, D.; Zhu, S. F.; Physics; Univ. of York; Univ. of Massachusetts at Lowell; Japan Atomic Energy Agency; Univ. of Jyvaskyla; CSNSM Orsay; Yale Univ.; Univ. of Liverpool; RIKEN; Univ. of Maryland; Univ. of Notre Dame

    2010-01-01

    Due to recent advances in detection techniques, excited states in several trans-fermium nuclei were studied in many laboratories worldwide, shedding light on the evolution of nuclear structure between stable nuclei and the predicted island of stability centered around spherical magic numbers. In particular, studies of K-isomers around the Z=100 and N=152 deformed shell closures extended information on the energies of Nilsson orbitals at the Fermi surface. Some of these orbitals originate from spherical states, which are relevant to the magic gaps in super-heavy nuclei. The single-particle energies can be used to test various theoretical predictions and aid in extrapolations towards heavier systems. So far, the Woods-Saxon potential reproduces the data best, while self-consistent approaches miss some of the observed features, indicating a need to modify the underlying effective nucleon-nucleon interactions.

  5. Bridging the nuclear structure gap between stable and super heavy nuclei

    NASA Astrophysics Data System (ADS)

    Seweryniak, D.; Khoo, T. L.; Ahmad, I.; Kondev, F. G.; Robinson, A.; Tandel, S. K.; Asai, M.; Back, B. B.; Carpenter, M. P.; Chowdhury, P.; Davids, C. N.; Eeckhaudt, S.; Greene, J. P.; Greenlees, P. T.; Gros, S.; Hauschild, K.; Heinz, A.; Herzberg, R.-D.; Janssens, R. V. F.; Jenkins, D. G.; Jones, G. D.; Ketelhut, S.; Lauritsen, T.; Lister, C. J.; Lopez-Martens, A.; Marley, P.; McCutchan, E. A.; Nakatsukasa, T.; Papadakis, P.; Peterson, D.; Qian, J.; Rostron, D.; Stefanescu, I.; Tandel, U. S.; Wang, X. F.; Zhu, S. F.

    2010-03-01

    Due to recent advances in detection techniques, excited states in several trans-fermium nuclei were studied in many laboratories worldwide, shedding light on the evolution of nuclear structure between stable nuclei and the predicted island of stability centered around spherical magic numbers. In particular, studies of K-isomers around the Z=100 and N=152 deformed shell closures extended information on the energies of Nilsson orbitals at the Fermi surface. Some of these orbitals originate from spherical states, which are relevant to the magic gaps in super-heavy nuclei. The single-particle energies can be used to test various theoretical predictions and aid in extrapolations towards heavier systems. So far, the Woods-Saxon potential reproduces the data best, while self-consistent approaches miss some of the observed features, indicating a need to modify the underlying effective nucleon-nucleon interactions.

  6. No chance for synthesis of super-heavy nuclei in fusion of symmetric systems

    NASA Astrophysics Data System (ADS)

    Cap, T.; Siwek-Wilczyńska, K.; Wilczyński, J.

    2014-09-01

    Predictions of relatively large cross sections (of about 1 picobarn) for synthesis of super heavy nuclei of Z=122 and Z=124 in cold fusion (1n) reactions of symmetric 154Sm + 150Nd and 154Sm + 154Sm systems by R.K. Choudhury and Y.K. Gupta (2014) [1] are examined. The authors state that this result had been obtained by using the fusion-by-diffusion (FBD) model. As predictions of the original FBD model of Swiatecki, Cap, Siwek-Wilczyńska and Wilczyński had been definitely pessimistic regarding fusion of more symmetric systems (in comparison with equivalent asymmetric systems), we feel compelled to present excitation functions of the 154Sm(150Nd, 1n)303122 and 154Sm(154Sm, 1n)307124 reactions, calculated within the original fusion-by-diffusion model. In accordance with our earlier predictions of a general trend of fusion hindrance for near-symmetric systems, the cross sections for synthesis of 303122 and 307124 nuclides in fusion of these two symmetric systems are found to be extremely small and probably never reachable: about 10-11 pb and 10-13 pb, respectively. It is shown that Choudhury and Gupta obtained their results (overestimating the cross sections by 11 and 13 orders of magnitude) as an effect of an arbitrary and physically unjustified interference in the FBD model.

  7. Isospin dependence of fragment spectra in heavy/super-heavy colliding nuclei at intermediate energies

    SciTech Connect

    Chugh, Rajiv Kumar, Rohit; Vinayak, Karan Singh

    2016-05-06

    Using isospin-dependent quantum molecular dynamics (IQMD) approach, we performed a theoretical investigation of the evolution of various kinds of fragments in heavy and superheavy-ion reactions in the intermediate/medium energy domain. We demonstrated direct impact of symmetry energy and Coulomb interactions on the evolution of fragments. Final fragment spectra (yields) obtained from the analysis of various heavy/super-heavy ion reactions at different reaction conditions show high sensitivity towards Coulomb interactions and less significant sensitivity to symmetry energy forms. No inconsistent pattern of fragment structure is obtained in case of super-heavy ion involved reactions for all the parameterizations of density dependence of symmetry energy.

  8. Mean-field studies of time reversal breaking states in super-heavy nuclei with the Gogny force

    SciTech Connect

    Robledo, L. M.

    2015-10-15

    Recent progress on the description of time reversal breaking (odd mass and multi-quasiparticle excitation) states in super-heavy nuclei within a mean field framework and using several flavors of the Gogny interaction is reported. The study includes ground and excited states in selected odd mass isotopes of nobelium and mendelevium as well as high K isomeric states in {sup 254}No. These are two and four-quasiparticle excitations that are treated in the same self-consistent HFB plus blocking framework as the odd mass states.

  9. Mean-field studies of time reversal breaking states in super-heavy nuclei with the Gogny force

    NASA Astrophysics Data System (ADS)

    Robledo, L. M.

    2015-10-01

    Recent progress on the description of time reversal breaking (odd mass and multi-quasiparticle excitation) states in super-heavy nuclei within a mean field framework and using several flavors of the Gogny interaction is reported. The study includes ground and excited states in selected odd mass isotopes of nobelium and mendelevium as well as high K isomeric states in 254No. These are two and four-quasiparticle excitations that are treated in the same self-consistent HFB plus blocking framework as the odd mass states.

  10. Fusion-Evaporation Cross Sections in Reactions Leading to Production of Super-Heavy Nuclei

    SciTech Connect

    Siwek-Wilczynska, K.; Skwira-Chalot, I.; Wilczynski, J.

    2006-08-14

    Fusion-evaporation cross sections were calculated for the 48Ca+204-208Pb and 50Ti+206,208Pb reactions and compared with the existing experimental data of the Dubna and GSI groups. The survival probabilities of the compound Z 102 and Z = 104 nuclei formed in these reactions were calculated using a Monte Carlo program based on the conventional Bohr-Wheeler theory of fission and statistical model of particle evaporation with Reisdorf-Ignatyuk prescription for the level densities and Strutinsky shell corrections of Moeller et al. 'Empirical' magnitudes of the dynamical hindrance of fusion have been deduced for these reactions.

  11. New Detector System for Super Heavy Elements Detection

    NASA Astrophysics Data System (ADS)

    Wieloch, A.; Sosin, Z.; Bańka, P.; Gonciarz, A.; Péter, J.; Drouart, A.; Dayras, R.; Łojek, K.; Stodel, Ch.; Adamczyk, M.; Avez, B.; Lasko, P.; Zosiak, Ł.; Kozik, T.; Alamanos, N.; Gillibert, A.; Grévy, S.; Hanappe, F.; Hannachi, F.; Hue, R.; Khouaja, A.; Lopez-Martens, A.; Manduci, L.; de Oliveira Santos, F.; Politi, G.; Saint-Laurent, M. G.; Stuttgé, L.; Vandamme, Ch.; Wieleczko, J. P.; Piasecki, E.; Trzcińska, A.; Gawlikowicz, W.; Kisielewski, M.; Kowalczyk, M.; Kordyasz, A.; Błocki, J.

    A new detector system dedicated for very/super heavy elements (VHE/SHE) detection that decay by spontaneous fission is presented. Such a decay mode of nuclei can be found e.g. in the region of Z≈100 (Fermium). Future experiments realized in the frame of French-Polish collaboration at the cyclotrons in GANIL and in the Heavy Ion Laboratory (HIL), University of Warsaw, is described. The results of test measurements made in the HIL for reactions 20Ne(8 A.MeV)+120Sn, 179Au are presented.

  12. Nuclear Hexadecapole Deformation Effects on the Production of Super-Heavy Elements

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Dou, Liang; Zhao, En-Guang; Werner, Scheid

    2010-06-01

    We investigate the effects of the nuclear hexadecapole deformations on the interaction potentials between nuclei, the driving potentials and the fusion probabilities for some cold fusion reactions leading to super-heavy elements. It is found that nuclear hexadecapole deformations change significantly the structure of the driving potentials and the fusion probabilities for some reaction channels.

  13. Survival and compound nucleus probability of super heavy element Z = 117

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.; Sridhar, K. N.

    2017-05-01

    As a part of a systematic study for predicting the most suitable projectile-target combinations for heavy-ion fusion experiments in the synthesis of 289-297Ts, we have calculated the transmission probability ( Tl), compound nucleus formation probabilities ( P_{CN}) and survival probability ( P_{sur}) of possible projectile-target combinations. We have also studied the fusion cross section, survival cross section and fission cross sections for different projectile-target combination of 289-297Ts. These theoretical parameters are required before the synthesis of the super heavy element. The calculated probabilities and cross sections show that the production of isotopes of the super heavy element with Z = 117 is strongly dependent on the reaction systems. The most probable reactions to synthetize the super heavy nuclei 289-297Ts are worked out and listed explicitly. We have also studied the variation of P_{CN} and P_{sur} with the mass number of projectile and target nuclei. This work is useful in the synthesis of the super heavy element Z = 117.

  14. Fusion-Fission Dynamics of Super-Heavy Element Formation and Decay

    SciTech Connect

    Zagrebaev, V.I.

    2004-04-12

    The paper is focused on reaction dynamics of super-heavy nucleus formation and decay at beam energies near the Coulomb barrier. The aim is to review the things we have learned from recent experiments on fusion-fission reactions leading to the formation of compound nuclei with Z {>=} 102 and from their extensive theoretical analysis. Main attention is paid to the dynamics of formation of very heavy compound nuclei taking place in strong competition with the process of fast fission (quasi-fission). The choice of collective degrees of freedom playing a principal role, finding the multi-dimensional driving potential and the corresponding dynamic equation regulating the whole process are discussed. Theoretical predictions are made for synthesis of SH nuclei up to Z=120 in the asymmetric 'hot' fusion reactions basing on use of the heavy transactinide targets.

  15. Actinide targets for the synthesis of super-heavy elements

    SciTech Connect

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; Ezold, Julie G.; Felker, Leslie Kevin; Rykaczewski, Krzysztof Piotr; Hogle, Susan L.

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including 249Bk, 251Cf, and 254Es are described.

  16. Actinide targets for the synthesis of super-heavy elements

    NASA Astrophysics Data System (ADS)

    Roberto, J. B.; Alexander, C. W.; Boll, R. A.; Burns, J. D.; Ezold, J. G.; Felker, L. K.; Hogle, S. L.; Rykaczewski, K. P.

    2015-12-01

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including 249Bk, 251Cf, and 254Es are described.

  17. Actinide targets for the synthesis of super-heavy elements

    DOE PAGES

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; ...

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing themore » production of rare actinides including 249Bk, 251Cf, and 254Es are described.« less

  18. Exploring the Physics of Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Volya, Alexander

    In this presentation the Continuum Shell Model (CSM) approach is advertised as a powerful theoretical tool for studying physics of unstable nuclei. The approach is illustrated using 17O as an example, which is followed by a brief presentation of the general CSM formalism. The successes of the CSM are highlighted and references are provided throughout the text. As an example, the CSM is applied perturbatively to 20O allowing one to explore the effects of continuum on positions of weakly bound states and low-lying resonances, as well as to discern some effects of threshold discontinuity.

  19. The Heavy Nuclei eXplorer (HNX) Small Explorer Mission

    NASA Astrophysics Data System (ADS)

    Mitchell, John; Binns, W. Robert; Hams, Thomas; Israel, Martin; Krizmanic, John; Link, Jason; Rauch, Brian; Sakai, Kenichi; Sasaki, Makoto; Westphal, Andrew; Wiedenbeck, Mark; Heavy Nuclei eXplorer Collaboration

    2015-04-01

    The Heavy Nuclei eXplorer (HNX) will investigate the nature of the reservoirs of nuclei at the cosmic-ray sources, the mechanisms by which nuclei are removed from the reservoirs and injected into the cosmic accelerators, and the acceleration mechanism. HNX will use two large high-precision instruments, the Extremely-heavy Cosmic-ray Composition Observer (ECCO) and the Cosmic-ray Trans-Iron Galactic Element Recorder (CosmicTIGER), flying in the SpaceX DragonLab, to measure, for the first time, the abundance of every individual element in the periodic table from carbon through the actinides, providing the first measurement of many of these elements. HNX will measure several thousand ultra-heavy galactic cosmic ray (UHGCR) nuclei Z >= 30, including about 50 actinides, and will: determine whether GCRs are accelerated from new or old material, and find their age; measure the mix of nucleosynthesis processes responsible for the UHGCRs; determine how UHGCR elements are selected for acceleration, and measure the mean integrated pathlength traversed by UHGCRs before observation. The scientific motivation and instrument complement of HNX will be discussed.

  20. Super-heavy dark matter - Towards predictive scenarios from inflation

    NASA Astrophysics Data System (ADS)

    Kannike, Kristjan; Racioppi, Antonio; Raidal, Martti

    2017-05-01

    A generic prediction of the Coleman-Weinberg inflation is the existence of a heavy particle sector whose interactions with the inflaton, the lightest state in this sector, generate the inflaton potential at loop level. For typical interactions the heavy sector may contain stable states whose relic abundance is generated at the end of inflation by the gravity alone. This general feature, and the absence of any particle physics signal of dark matter so far, motivates us to look for new directions in the dark sector physics, including scenarios in which dark matter is super-heavy. In this article we study the possibility that the dark matter is even heavier than the inflaton, its existence follows from the inflaton dynamics, and its abundance today is naturally determined by the weakness of gravitational interaction. This implies that the super-heavy dark matter scenarios can be tested via the measurements of inflationary parameters and/or the CMB isocurvature perturbations and non-Gaussianities. We explicitly work out details of three Coleman-Weinberg inflation scenarios, study the systematics of super-heavy dark matter production in those cases, and compute which parts of the parameter spaces can be probed by the future CMB measurements.

  1. Exploration of High-Dimensional Nuclei Data

    SciTech Connect

    Fuentes, Fernando; Kettani, Houssain; Ostrouchov, George; Stoitsov, Mario; Nam, Hai Ah

    2010-01-01

    Density Functional Theory (DFT) provides the theoretical foundation for a self-consistent mean-field description of the nucleus in terms of one-body densities and currents. The idea is to construct a functional whose input is the proton and neutron densities and currents, and whose output yields the ground-state energy and other properties of the nucleus. Extensive computations of ground-state energies and other observable properties of several thousand nuclei are required in order to find a universal functional that covers the entire chart of nuclei. The analysis looks for hidden relationships between observables to determine a functional that can reliably predict nuclear properties in regions where no experimental data exist. Using methods for dimension reduction and visualization tools, it is hypothesized that the deformation of the neutrons is related to other characteristics of the nuclei. The discovered relationships with the deformation of the neutrons take us a step closer toward the universal functional.

  2. The Importance of Closed Shell Structures in the Synthesis of Super Heavy Elements

    NASA Astrophysics Data System (ADS)

    Hamilton, J. H.; Hofmann, S.; Oganessian, Y. T.

    2014-09-01

    In 1965, macroscopic models predicted that nuclei beyond Z ~ 100 could not be synthesized because their fission barrier would go to zero. Then came microscopic models with shell corrections. Microscopic-macroscopic models predicted large gaps in the single-particle energy levels for protons and neutrons at Z = 102, 108 and N = 152, 162 for deformed shapes. The reinforcement of the Z = 102, N = 152 and Z = 108, N = 162 level gaps at the same deformations provided the stability for nuclei in these regions to be observed. Also predicted were shell gaps for spherical shapes for N = 184 and Z = 114, 120 or 126 forming an ``Island of Stability'' with very long half lives for fission and alpha decay. Cold fusion reactions involving beams of Ca to Zn and targets of stable 208Pb and 209Bi were pioneered at GSI and used to synthesize new elements for Z = 107 to 112 and in Japan a new isotope of 113. Hot fusion reactions between radioactive actinide targets and neutron-rich 48Ca beams were pioneered in JINR leading to the synthesis of new elements with Z = 113 to 118. Data showing the importance of reinforcement of the Z = 102, N = 152 and Z = 108, N = 162 single particle level gaps at the same deformation and Z = 114-126, N = 184 shell gaps in the synthesis of super heavy elements 107 to 118 will be presented along with the latest results on their synthesis.

  3. The Heavy Nuclei eXplorer (HNX) Mission

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Adams, J. H.; Barbier, L. M.; Craig, N.; Cummings, A. C.; Cummings, J. R.; Doke, T.; Hasebe, N.; Hayashi, T.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The primary scientific objectives of HNX, which was recently selected by NASA for a Small Explorer (SMEX) Mission Concept Study, are to measure the age of the galactic cosmic rays (GCR) since nucleosynthesis, determine the injection mechanism for the GCR accelerator (Volatility or FIP), and study the mix of nucleosynthetic processes that contribute to the source of GCRs. The experimental goal of HNX is to measure the elemental abundances of all individual stable nuclei from neon through the actinides and possibly beyond. HNX is composed of two instruments: ECCO, which measures elemental abundances of nuclei with Z greater than or equal to 72, and ENTICE. which measures elemental abundances of nuclei with Z between 10 and 82. We describe the mission and the science that can be addressed by HNX.

  4. Heavy and Superheavy Atomic Nuclei

    NASA Astrophysics Data System (ADS)

    Sobiczewski, Adam

    2008-10-01

    The appearance and development of the concept of super-heavy atomic nuclei are described. The concept appeared during the studies of the limits of the nuclear chart and of the periodic table of the chemical elements. The article concentrates on theoretical studies of the properties of heaviest nuclei. Results of these studies are illustrated and discussed. Prospects for a nearest future of the research of heaviest nuclei are outlined.

  5. Formation of super-heavy elements in astrophysical nucleosynthesis

    SciTech Connect

    Zagrebaev, V. I.; Karpov, A. V.; Mishustin, I. N.; Greiner, Walter

    2012-10-20

    The unexplored area of heavy neutron-rich nuclides is extremely important for the understanding of the r process of astrophysical nucleogenesis. For elements with Z>100 only neutron deficient isotopes (located to the left of the stability line) have been synthesized so far. The 'north-east' area of the nuclear map can be reached neither in fusion reactions nor in fragmentation processes. Low energy multi-nucleon transfer reactions are quite promising for the production and study of neutron-rich heavy nuclei including those located at the superheavy (SH) island of stability [1]. The neutron capture process is considered here as an alternative method for the production of SH nuclei. Requirements for the pulsed reactors of the next generation that could be used for the synthesis of long-living neutron rich SH nuclei are formulated. Formation of SH nuclei in supernova explosions is also discussed and the abundance of SH elements in nature is estimated.

  6. The Discovery of Super-Heavy Element of Atomic Number Z = 113 Nihonium and Beyond*

    NASA Astrophysics Data System (ADS)

    Morita, Kosuke

    Experimental efforts and the achievements by the Super Heavy Element Research Group in RIKEN are presented in the lecture, including a new discovery of Z = 113 element. Eventually, this element has been named officially as Nihonium (Nh), proposed by our group, in November 2016. A new effort for possible new elements Z = 119 1nd 120 is also presented.

  7. The Heavy Nuclei eXplorer (HNX) Mission

    NASA Astrophysics Data System (ADS)

    Krizmanic, John; Mitchell, John; Binns, W. Robert; Hams, Thomas; Israel, Martin; Link, Jason; Rauch, Brian; Sakai, Kenichi; Sasaki, Makoto; Westphal, Andrew; Wiedenbeck, Mark; Heavy Nuclei eXplorer Collaboration

    2016-03-01

    The Heavy Nuclei eXplorer (HNX) will use two large high-precision instruments, the Extremely-heavy Cosmic-ray Composition Observer (ECCO) and the Cosmic-ray Trans-Iron Galactic Element Recorder (CosmicTIGER), designed to fly in a SpaceX DragonLab Capsule, to measure the cosmic-ray abundance of every individual element in the periodic table from carbon through curium, providing the first measurement of many of these elements. These measurements provide an investigation on the nature of the source material of cosmic rays, the processes that inject them into cosmic accelerators, and the acceleration mechanisms. HNX will measure several thousand ultra-heavy galactic cosmic ray (UHGCR) nuclei with Z >= 30 , including about 50 actinides (Z >= 79). These data allow for a measurement of the mix of new and old material that is accelerated to GCRs, determine their age, measure the mix of nucleosynthesis processes responsible for the UHGCRs, determine how UHGCR elements are selected for acceleration, and measure the mean integrated pathlength traversed by UHGCRs before observation. The scientific motivation and instrumentation of HNX will be discussed as well as recent beam test results.

  8. Recent Super Heavy Element Experiments at GSI-SHIP

    NASA Astrophysics Data System (ADS)

    Stoyer, M.; Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Khuyagbaatar, J.; Ackermann, D.; Antalic, S.; Barth, W.; Burkhard, H. G.; Comas, V. F.; Dahl, L.; Eberhardt, K.; Henderson, R.; Heredia, J. A.; Hessberger, F. P.; Kenneally, J.; Kindler, B.; Kojouharov, I.; Kratz, J. V.; Lang, R.; Leino, M.; Lommel, B.; Moody, K.; Munzenberg, G.

    2014-09-01

    The synthesis of element 116 (Lv) in fusion-evaporation reactions of a 48Ca beam with 248Cm targets was studied at the velocity filter SHIP of GSI in Darmstadt. At excitation energies of the compound nuclei of 40.9 MeV, four decay chains were measured, which were assigned to the isotope 292Lv, and one chain, which was assigned to 293Lv. Measured cross-sections of (3.4 + 2.7 -1.6) pb and (0.9 + 2.1 -0.7) pb, respectively, and decay data of the chains agree with data measured previously at the Flerov Laboratory of Nuclear Reactions in Dubna. We measured the velocity spectra of the 116 isotopes and transfer products which reveal the reaction type underlying the synthesis of the nuclei. The experience gained in this experiment will serve as a basis for future experiments to study still heavier elements at the velocity filter SHIP. Searches for element 120 in fusion-evaporation reactions of a 54Cr beam with 248Cm targets were studied later at SHIP and progress in the analysis will be discussed. The synthesis of element 116 (Lv) in fusion-evaporation reactions of a 48Ca beam with 248Cm targets was studied at the velocity filter SHIP of GSI in Darmstadt. At excitation energies of the compound nuclei of 40.9 MeV, four decay chains were measured, which were assigned to the isotope 292Lv, and one chain, which was assigned to 293Lv. Measured cross-sections of (3.4 + 2.7 -1.6) pb and (0.9 + 2.1 -0.7) pb, respectively, and decay data of the chains agree with data measured previously at the Flerov Laboratory of Nuclear Reactions in Dubna. We measured the velocity spectra of the 116 isotopes and transfer products which reveal the reaction type underlying the synthesis of the nuclei. The experience gained in this experiment will serve as a basis for future experiments to study still heavier elements at the velocity filter SHIP. Searches for element 120 in fusion-evaporation reactions of a 54Cr beam with 248Cm targets were studied later at SHIP and progress in the analysis will be

  9. Recent developments in the synthesis of super heavy elements

    NASA Astrophysics Data System (ADS)

    Ackermann, D.

    2001-04-01

    Throughout the passed two decades isotopes of the elements with atomic numbers 107-112 have been synthesized and unambiguously identified at the velocity filter SHIP at GSI. In a recent experiment at SHIP the results for element 112 have been confirmed and a third decay chain of the isotope 277112 has been observed. Cold fusion reactions using Pb- and Bi- targets and evaporation residue(ER)-α-α correlations together with an efficient separation and detection system are the major ingredients for the success of these experiments. The sensitivity limit of the set-up at GSI has reached the 1pb level. For a systematic investigation in this region of the chart of nuclei and to synthesize heavier nuclei this limit has to be pushed to even lower values. An extensive development program is pursued at SHIP in order to reach at least an order of magnitude lower cross sections. Systematic investigations, the construction of decay chain networks and mass measurements are some of the possible approaches to study the decay chains attributed to isotopes of the elements 114, 116 and 118 at Dubna and Berkeley, which are, in contrast to those observed at GSI, not connected to decays of known isotopes. For the Berkeley results, in particular, several trials of confirmation have been undertaken at various laboratories including GSI. .

  10. Analysis of spatial autocorrelation patterns of heavy and super-heavy rainfall in Iran

    NASA Astrophysics Data System (ADS)

    Rousta, Iman; Doostkamian, Mehdi; Haghighi, Esmaeil; Ghafarian Malamiri, Hamid Reza; Yarahmadi, Parvane

    2017-09-01

    Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation changes of Iran's heavy and super-heavy rainfall over the past 40 years. For this purpose, the daily rainfall data of 664 meteorological stations between 1971 and 2011 are used. To analyze the changes in rainfall within a decade, geostatistical techniques like spatial autocorrelation analysis of hot spots, based on the Getis-Ord G i statistic, are employed. Furthermore, programming features in MATLAB, Surfer, and GIS are used. The results indicate that the Caspian coast, the northwest and west of the western foothills of the Zagros Mountains of Iran, the inner regions of Iran, and southern parts of Southeast and Northeast Iran, have the highest likelihood of heavy and super-heavy rainfall. The spatial pattern of heavy rainfall shows that, despite its oscillation in different periods, the maximum positive spatial autocorrelation pattern of heavy rainfall includes areas of the west, northwest and west coast of the Caspian Sea. On the other hand, a negative spatial autocorrelation pattern of heavy rainfall is observed in central Iran and parts of the east, particularly in Zabul. Finally, it is found that patterns of super-heavy rainfall are similar to those of heavy rainfall.

  11. The importance of closed shell structures in the synthesis of super heavy elements

    NASA Astrophysics Data System (ADS)

    Hamilton, J. H.; Hofmann, S.; Oganessian, Y. T.

    2015-02-01

    The importance of shell closures and gaps in the single-particle energies for protons and neutrons on the stability of elements beyond Z = 100 will be described. Following the development of microscopic models with shell corrections, microscopic-macroscopic models predicted large gaps in the single-particle energy levels for protons and neutrons at Z = 102, 108 and N = 152, 162 for the same deformed shapes. Shell gaps for spherical shapes for N = 184 and Z = 114, 120 or 126 were also predicted to form an "Island of Stability" with very long half lives for fission and alpha decay. Cold fusion reactions involving beams of Ca to Zn and targets of stable 208Pb and 209Bi were pioneered at GSI and used to synthesize new elements for Z = 107 to 112 and in Japan a new isotope of 113. Hot fusion reactions between radioactive actinide targets and neutron-rich 48Ca beams were pioneered in JINR leading to the synthesis of new elements with Z = 113 to 118. Data on two neutron separation energies, spontaneous fission half lives and total half lives of super heavy elements showing the importance of reinforcement of the Z = 102, N = 152 and Z = 108, N = 162 single particle level gaps at the same deformation and Z = 114-126, N = 184 shell gaps in the synthesis of super heavy elements 107 to 118 are presented along with the latest results on their synthesis.

  12. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling

    DOE PAGES

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S.; ...

    2016-09-09

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3He gas are widely used for cooling below 1 Kelvin. However, usage of the gas has been increasingly difficult because of the current world-wide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas.more » This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1$-$xScxCo2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. Lastly, this study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration.« less

  13. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling.

    PubMed

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S; Bud'ko, Sergey L; Canfield, Paul C; Gegenwart, Philipp

    2016-09-01

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with (3)He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require (3)He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1-x Sc x Co2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration.

  14. The effects of adsorbing organic pollutants from super heavy oil wastewater by lignite activated coke.

    PubMed

    Tong, Kun; Lin, Aiguo; Ji, Guodong; Wang, Dong; Wang, Xinghui

    2016-05-05

    The adsorption of organic pollutants from super heavy oil wastewater (SHOW) by lignite activated coke (LAC) was investigated. Specifically, the effects of LAC adsorption on pH, BOD5/COD(Cr)(B/C), and the main pollutants before and after adsorption were examined. The removed organic pollutants were characterized by Fourier transform infrared spectroscopy (FTIR), Boehm titrations, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography with organic carbon detection (LC-OCD). FTIR spectra indicated that organic pollutants containing -COOH and -NH2 functional groups were adsorbed from the SHOW. Boehm titrations further demonstrated that carboxyl, phenolic hydroxyl, and lactonic groups on the surface of the LAC increased. GC-MS showed that the removed main organic compounds are difficult to be degraded or extremely toxics to aquatic organisms. According to the results of LC-OCD, 30.37 mg/L of dissolved organic carbons were removed by LAC adsorption. Among these, hydrophobic organic contaminants accounted for 25.03 mg/L. Furthermore, LAC adsorption was found to increase pH and B/C ratio of the SHOW. The mechanisms of adsorption were found to involve between the hydrogen bonding and the functional groups of carboxylic, phenolic, and lactonic on the LAC surface. In summary, all these results demonstrated that LAC adsorption can remove bio-refractory DOCs, which is beneficial for biodegradation.

  15. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling

    PubMed Central

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S.; Bud’ko, Sergey L.; Canfield, Paul C.; Gegenwart, Philipp

    2016-01-01

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1−xScxCo2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration. PMID:27626073

  16. Super Heavy Dark Matter in light of BICEP2, Planck and Ultra High Energy Cosmic Rays Observations

    SciTech Connect

    Aloisio, R.; Matarrese, S.; Olinto, A.V. E-mail: sabino.matarrese@pd.infn.it

    2015-08-01

    The announcement by BICEP2 of the detection of B-mode polarization consistent with primordial gravitational waves with a tensor-to-scalar ratio, r=0.2{sup +0.07}{sub −0.05}, challenged predictions from most inflationary models of a lower value for r. More recent results by Planck on polarized dust emission show that the observed tensor modes signal is compatible with pure foreground emission. A more significant constraint on r was then obtained by a joint analysis of Planck, BICEP2 and Keck Array data showing an upper limit to the tensor to scalar ratio r≤ 0.12, excluding the case 0r= with low statistical significance. Forthcoming measurements by BICEP3, the Keck Array, and other CMB polarization experiments, open the possibility for making the fundamental measurement of r. Here we discuss how r sets the scale for models where the dark matter is created at the inflationary epoch, the generically called super-heavy dark matter models. We also consider the constraints on such scenarios given by recent data from ultrahigh energy cosmic ray observatories which set the limit on super-heavy dark matter particles lifetime. We discuss how super-heavy dark matter can be discovered by a precise measurement of r combined with future observations of ultra high energy cosmic rays.

  17. Collective Clusterization in Nuclei and Excited Compound Systems: The Dynamical Cluster-Decay Model

    NASA Astrophysics Data System (ADS)

    Gupta, Raj K.

    Clustering is a general feature of light, N = Z, α-like stable nuclei for both the ground and (intrinsic) excited states. This phenomenon is observed in spontaneous decays of heavy radioactive nuclei, and seems to play an important role in the decay of excited compound systems formed in heavy ion reactions. It is also shown to be present in exotic light-halo, super-heavy and super-superheavy nuclei.

  18. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling

    SciTech Connect

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S.; Bud'ko, Sergey L.; Canfield, Paul C.; Gegenwart, Philipp

    2016-09-09

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3He gas are widely used for cooling below 1 Kelvin. However, usage of the gas has been increasingly difficult because of the current world-wide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1$-$xScxCo2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. Lastly, this study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration.

  19. Physics of Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Khoa, Dao Tien; Egelhof, Peter; Gales, Sydney; Giai, Nguyen Van; Motobayashi, Tohru

    2008-04-01

    ]C([symbol], n)[symbol]O by the transfer reaction [symbol]C([symbol]Li, t)[symbol]O / F. Hammache et al. -- SPIRAL2 at GANIL: a world of leading ISOL facility for the physics of exotic nuclei / S. Gales -- Magnetic properties of light neutron-rich nuclei and shell evolution / T. Suzuki, T. Otsuka -- Multiple scattering effects in elastic and quasi free proton scattering from halo nuclei / R. Crespo et al. -- The dipole response of neutron halos and skins / T. Aumann -- Giant and pygmy resonances within axially-symmetric-deformed QRPA with the Gogny force / S. Péru, H. Goutte -- Soft K[symbol] = O+ modes unique to deformed neutron-rich unstable nuclei / K. Yoshida et al. -- Synthesis, decay properties, and identification of superheavy nuclei produced in [symbol]Ca-induced reactions / Yu. Ts. Oganessian et al. -- Highlights of the Brazilian RIB facility and its first results and hindrance of fusion cross section induced by [symbol]He / P. R. S. Gomes et al. -- Search for long fission times of super-heavy elements with Z = 114 / M. Morjean et al. -- Microscopic dynamics of shape coexistence phenomena around [symbol]Se and [symbol]Kr / N. Hinohara et al. -- [symbol]-cluster states and 4[symbol]-particle condensation in [symbol]O / Y. Funaki et al. -- Evolution of the N = 28 shell closure far from stability / O. Sorlin et al. -- Continuum QRPA approach and the surface di-neutron modes in nuclei near the neutron drip-line / M. Matsuo et al. -- Deformed relativistic Hartree-Bogoliubov model for exotic nuclei / S. G. Zhou et al. -- Two- and three-body correlations in three-body resonances and continuum states / K. Katō, K. Ikeda -- Pion- and Rho-Meson effects in relativistic Hartree-Fock and RPA / N. V. Giai et al. -- Study of the structure of neutron rich nuclei by using [symbol]-delayed neutron and gamma emission method / Y. Ye et al. -- Production of secondary radioactive [symbol] Na beam for the study of [symbol]Na([symbol], p)[symbol]Mg stellar reaction / D. N. Binh et al

  20. Heaviest Nuclei: New Element with Atomic Number 117

    ScienceCinema

    Oganessian, Yuri [Flerov Laboratory of Nuclear Reactions, Russia and Joint Institute for Nuclear Research

    2016-07-12

    One of the fundamental outcomes of the nuclear shell model is the prediction of the 'stability islands' in the domain of the hypothetical super heavy elements. The talk is devoted to the experimental verification of these predictions - the synthesis and study of both the decay and chemical properties of the super heavy elements. The discovery of a new chemical element with atomic number Z=117 is reported. The isotopes 293117 and 294117 were produced in fusion reactions between 48Ca and 249Bk. Decay chains involving 11 new nuclei were identified by means of the Dubna gas-filled recoil separator. The measured decay properties show a strong rise of stability for heavier isotopes with Z =111, validating the concept of the long sought island of enhanced stability for heaviest nuclei.

  1. Cerebellar dentate nuclei lesions reduce motivation in appetitive operant conditioning and open field exploration.

    PubMed

    Bauer, David J; Kerr, Abigail L; Swain, Rodney A

    2011-02-01

    Recently identified pathways from the dentate nuclei of the cerebellum to the rostral cerebral cortex via the thalamus suggest a cerebellar role in frontal and prefrontal non-motor functioning. Disturbance of cerebellar morphology and connectivity, particularly involving these cerebellothalamocortical (CTC) projections, has been implicated in motivational and cognitive deficits. The current study explored the effects of CTC disruption on motivation in male Long Evans rats. The results of two experiments demonstrate that electrolytic lesions of the cerebellar dentate nuclei lower breaking points on an operant conditioning progressive ratio schedule and decrease open field exploration compared to sham controls. Changes occurred in the absence of motor impairment, assessed via lever pressing frequency and rotarod performance. Similar elevated plus maze performances between lesioned and sham animals indicated that anxiety did not influence task performance. Our results demonstrate hedonic and purposive motivational reduction and suggest a CTC role in global motivational processes. These implications are discussed in terms of psychiatric disorders such as schizophrenia and autism, in which cerebellar damage and motivational deficits often present concomitantly. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Rotating target wheel system for super-heavy element production at ATLAS

    NASA Astrophysics Data System (ADS)

    Greene, John P.; Heinz, Andreas; Falout, Joe; Janssens, Robert V. F.

    2004-03-01

    A new scattering chamber housing a large diameter rotating target wheel has been designed and constructed in front of the Fragment Mass Analyzer (FMA) for the production of very heavy nuclei ( Z>100) using beams from the Argonne Tandem Linear Accelerator System (ATLAS). In addition to the target and drive system, the chamber is extensively instrumented in order to monitor target performance and deterioration. Capabilities also exist to install rotating entrance and exit windows for gas cooling of the target within the scattering chamber. The design and initial tests are described.

  3. Covariant Density Functional Theory For Isospin Properties In Nuclei Far From Stability

    SciTech Connect

    Ring, P.; Lalazissis, G.A.; Niksic, T.; Vretenar, D.

    2005-04-05

    In recent years Covariant Density Functional Theory (CDFT) has been very successful for the description of ground state properties of nuclei all over the periodic table. Isospin properties of nuclei far from the valley of stability are used to improve the existing functionals. Modern parameter sets of the corresponding Lagrangian density are adjusted carefully to characteristic nuclei with explicit density dependence of the meson-nucleon couplings. They are tested in relativistic Hartree-Bogoliubov calculations of nuclear ground-states, in particular for the calculation of masses, and they are applied to the analysis of very recent data on super-heavy nuclei.

  4. Exploring Light Neutron Rich Nuclei via the ({sup 7}Li,{sup 7}Be) Reaction

    SciTech Connect

    Cavallaro, M.; Cappuzzello, F.; Cunsolo, A.; Foti, A.; Orrigo, S. E. A.; Rodrigues, M. R. D.; Borello-Lewin, T.; Lenske, H.; Petrascu, H.; Winfield, J. S.

    2008-11-11

    A systematic study of the nuclei that can be described as an integer number of {alpha} particles plus three neutrons via the ({sup 7}Li,{sup 7}Be) reaction at about 8 MeV/u has shown the presence of Bound States Embedded in the Continuum in the energy spectra. These are experimental signatures of the dynamical correlations of an easily polarizable core with a single-particle state of the valence neutron.

  5. Exploring Black Hole Accretion in Active Galactic Nuclei with Simbol-X

    NASA Astrophysics Data System (ADS)

    Goosmann, R. W.; Dovčiak, M.; Mouchet, M.; Czerny, B.; Karas, V.; Gonçalves, A.

    2009-05-01

    A major goal of the Simbol-X mission is to improve our knowledge about black hole accretion. By opening up the X-ray window above 10 keV with unprecedented sensitivity and resolution we obtain new constraints on the X-ray spectral and variability properties of active galactic nuclei. To interpret the future data, detailed X-ray modeling of the dynamics and radiation processes in the black hole vicinity is required. Relativistic effects must be taken into account, which then allow to constrain the fundamental black hole parameters and the emission pattern of the accretion disk from the spectra that will be obtained with Simbol-X.

  6. Exploring s d -shell nuclei from two- and three-nucleon interactions with realistic saturation properties

    NASA Astrophysics Data System (ADS)

    Simonis, J.; Hebeler, K.; Holt, J. D.; Menéndez, J.; Schwenk, A.

    2016-01-01

    We study ground- and excited-state properties of all s d -shell nuclei with neutron and proton numbers 8 ≤N ,Z ≤20 , based on a set of low-resolution two- and three-nucleon interactions that predict realistic saturation properties of nuclear matter. We focus on estimating the theoretical uncertainties due to variation of the resolution scale, the low-energy couplings, as well as from the many-body method. The experimental two-neutron and two-proton separation energies are reasonably well reproduced, with an uncertainty range of ˜5 MeV . The first excited 2+ energies also show overall agreement, with a more narrow uncertainty range of ˜500 keV . In most cases, this range is dominated by the uncertainties in the Hamiltonian.

  7. The Energetic Trans-Iron Composition Experiment (ENTICE) on the Heavy Nuclei Explorer (HNX)

    NASA Technical Reports Server (NTRS)

    Israel, M. H.; Adams, J. H.; Barbier, L. M.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Cummings, J. R.; Doke, T.; Hasebe, N.; Hayashi, T.; hide

    2001-01-01

    The ENTICE experiment is one of two instruments which make up the HNX mission. The experimental goal of ENTICE is to measure with high precision the elemental abundances of all nuclei with 10<=Z<=82. This will enable us to distinguish between possible injection mechanisms for the galactic cosmic ray accelerator such-as those dependent upon volatility or first ionization potential, and to study the mix of nucleosynthetic processes that contribute to the galactic cosmic ray source. The ENTICE experiment utilizes the dE/dx-C method of charge determination and consists of silicon dE/dx detectors, Cherenkov detectors with two different refractive indices, and a scintillating fiber hodoscope. The geometrical factor of the instrument is 8m2.sr. We will present a description of the instrument and its expected performance based on beam tests and a balloon flight of a prototype instrument.

  8. The Energetic Trans-Iron Composition Experiment (ENTICE) on the Heavy Nuclei Explorer (HNX) Mission

    NASA Technical Reports Server (NTRS)

    Israel, M. H.; Adams, James H., Jr.; Barbier, L. M.; Binns, W. R.; Christian, E. R.; Craig, N.; Cummings, A. C.; Doke, T.; Hasebe, N.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The ENTICE experiment is one of two instruments that make up the HNX mission. The experimental goal of ENTICE is to measure with high precision the elemental abundances of all nuclei with Z between 10 and 82. This will enable us to determine if the injection mechanism for the cosmic ray accelerator is controlled by FIP or Volatility and to study the mix of nucleosynthetic processes that contribute to the galactic cosmic ray source. The ENTICE experiment utilizes the dE/dx-C method of charge determination and consists of silicon dE/dx detectors, Cherenkov detectors with two different refractive indices, and a fiber hodoscope. We will describe the instrument and its performance based on beam tests of a prototype instrument.

  9. Exploring the Geometry of Circumnuclear Material in Active Galactic Nuclei through X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rivers, Elizabeth

    I have studied the X-ray spectral properties of active galactic nuclei (AGN) in order to gain a better understanding of the nature of the circumnuclear material surrounding the central black hole in these objects. From the RXTE archive I constructed two survey samples of broad band X-ray spectra. The first was a bright sample of 23 AGN that had high quality spectra up to at least 100 keV, which provided constraints on the high energy rollover expected by models of inverse Comptonization of low energy photons. The average lower limit to Eroll was ˜225 keV for the majority of objects, implying a coronal electron temperature of kB Te ≳ 75 keV for these models. The second sample was an expanded survey of ˜100 AGN for which spectral parameters could be well-determined. I compared Fe line equivalent widths with measured Compton reflection hump strengths and found that on average ˜40% of the Fe line emission comes from reflection off Compton-thick material, with the remainder likely arising in isotropic emission from Compton-thin gas. In the full sample, the distributions of photon indices for Seyfert 1's and 2's were consistent with the idea that Seyferts share a common central engine, however the distributions of Compton reflection hump strengths did not support the classical picture of absorption by a torus and reflection off a Compton-thick disk with type depending only on inclination angle. I have concluded that a more complex reflecting geometry such as a combined disk and torus or clumpy torus is likely a more accurate picture of the Compton-thick material. I have performed additional analyses of individual objects. An occultation event in Cen A, discovered through RXTE monitoring, revealed the clumpy nature of its torus and placed constraints on the amount of material in the vicinity of the black hole in this object. A Suzaku long-look observation of MCG-2-58-22 provided constraints on the location of Fe line emitting material to ≳ 1200RS, likely associated

  10. Exploring the jet launching region in active galactic nuclei using high-resolution VLBI

    NASA Astrophysics Data System (ADS)

    Rani, Bindu

    2017-01-01

    The high radio frequency polarization imaging of non-thermal emission from AGN is a direct way to probe the magnetic field strength and structure in the immediate vicinity of SMBHs and is crucial in testing the jet-launching scenario. To explore the magnetic field configuration at the base of jets in blazars, I took advantage of the full polarization capabilities of the GMVA (Global Millimeter VLBI Array). With an angular resolution of 50 micro-arcseconds at 86 GHz, one could reach scales down to 900 Rs (for a 109 solar mass black hole). On sub-mas scales the core and central jet of BL Lac is polarized with the EVPA being aligned well with jet in the North-South jet direction. This suggests a well ordered magnetic field, with its main component being perpendicular to the jet axis. Such a field configuration is consistent with a helical magnetic field in the jet. In this talk, I will show the results of our study on BL Lac.

  11. SPECTRAL SURVEY OF X-RAY BRIGHT ACTIVE GALACTIC NUCLEI FROM THE ROSSI X-RAY TIMING EXPLORER

    SciTech Connect

    Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard

    2011-03-15

    Using long-term monitoring data from the Rossi X-ray Timing Explorer (RXTE), we have selected 23 active galactic nuclei (AGNs) with sufficient brightness and overall observation time to derive broadband X-ray spectra from 3 to {approx}>100 keV. Our sample includes mainly radio-quiet Seyferts, as well as seven radio-loud sources. Given the longevity of the RXTE mission, the greater part of our data is spread out over more than a decade, providing truly long-term average spectra and eliminating inconsistencies arising from variability. We present long-term average values of absorption, Fe line parameters, Compton reflection strengths, and photon indices, as well as fluxes and luminosities for the hard and very hard energy bands, 2-10 keV and 20-100 keV, respectively. We find tentative evidence for high-energy rollovers in three of our objects. We improve upon previous surveys of the very hard X-ray energy band in terms of accuracy and sensitivity, particularly with respect to confirming and quantifying the Compton reflection component. This survey is meant to provide a baseline for future analysis with respect to the long-term averages for these sources and to cement the legacy of RXTE, and especially its High Energy X-ray Timing Experiment, as a contributor to AGN spectral science.

  12. Exploring the active galactic nuclei population with extreme X-ray-to-optical flux ratios (fx/fo > 50)

    NASA Astrophysics Data System (ADS)

    Della Ceca, R.; Carrera, F. J.; Caccianiga, A.; Severgnini, P.; Ballo, L.; Braito, V.; Corral, A.; Del Moro, A.; Mateos, S.; Ruiz, A.; Watson, M. G.

    2015-03-01

    The cosmic history of the growth of supermassive black holes in galactic centres parallels that of star formation in the Universe. However, an important fraction of this growth occurs inconspicuously in obscured objects, where ultraviolet/optical/near-infrared emission is heavily obscured by dust. Since the X-ray flux is less attenuated, a high X-ray-to-optical flux ratio (fx/fo) is expected to be an efficient tool to find out these obscured accreting sources. We explore here via optical spectroscopy, X-ray spectroscopy and infrared photometry the most extreme cases of this population (those with fx/fo > 50, EXO50 sources hereafter), using a well-defined sample of seven X-ray sources extracted from the 2XMM catalogue. Five EXO50 sources (˜70 per cent of the sample) in the bright flux regime explored by our survey (f(2-10 keV) ≥ 1.5 × 10-13 erg cm-2 s-1) are associated with obscured AGN (NH > 1022 cm-2), spanning a redshift range between 0.75 and 1 and characterized by 2-10 keV intrinsic luminosities in the QSO regime (e.g. well in excess to 1044 erg s-1). We did not find compelling evidence of Compton thick active galacic nuclei (AGN). Overall, the EXO50 type 2 QSOs do not seem to be different from standard X-ray-selected type 2 QSOs in terms of nuclear absorption; a very high AGN/host galaxy ratio seems to play a major role in explaining their extreme properties. Interestingly, three out of five EXO50 type 2 QSO objects can be classified as extreme dust-obscured galaxies (EDOGs, f24 μm/fR ≥ 2000), suggesting that a very high AGN/host ratios (along with the large amount of dust absorption) could be the natural explanation also for a part of the EDOG population. The remaining two EXO50 sources are classified as BL Lac objects, having rather extreme properties, and which are good candidates for TeV emission.

  13. Impact of ultrasonic power density on elution of super heavy oil and its biomarkers from aging soils using Triton X-100 micellar solution.

    PubMed

    Sui, Xin; Ji, Guodong

    2010-04-15

    An ultrasound-enhanced elution system employing Triton X-100 solutions was used for remedying aging soils contaminated with super heavy oil. The effect of varying the ultrasonic power density on the elution of the oil and three characteristic biomarkers was analyzed using GC/MS and FTRS. The oil and biomarkers remaining in treated soils decreased as a similar first-order function of increasing ultrasonic power density. Elution of the three biomarkers in the absence of ultrasound was closely related to carbon numbers in the marker: smaller molecules were more readily eluted. This trend was reversed upon application of ultrasound at higher power densities, with improved elution of molecules containing a greater carbon numbers. The two ratios, both 22S/(22S+22R) of C(26-34) 17alpha 25-norhopanes and 20S/(20S+20R) of C(26-28) triaromatic steroids, in treated soils decreased with increasing power density from 20 to 100 W L(-1). The results of SEM, FTRS, XRD, and energy spectroscopy experiments indicated that the mineral and chemical compositions of soils eluted at power densities greater than 60 W L(-1) closely resembled clean soils.

  14. Exploring clustering in alpha-conjugate nuclei using the thick target inverse kinematic technique for multiple alpha emission

    NASA Astrophysics Data System (ADS)

    Barbui, M.; Hagel, K.; Gauthier, J.; Wuenschel, S.; Goldberg, V. Z.; Zheng, H.; Giuliani, G.; Rapisarda, G.; Kim, E.-J.; Liu, X.; Natowitz, J. B.; Desouza, R. T.; Hudan, S.; Fang, D.

    2015-10-01

    Searching for alpha cluster states analogous to the 12C Hoyle state in heavier alpha-conjugate nuclei can provide tests of the existence of alpha condensates in nuclear matter. Such states are predicted for 16O, 20Ne, 24Mg, etc. at excitation energies slightly above the decay threshold. The Thick Target Inverse Kinematics (TTIK) technique can be successfully used to study the breakup of excited self-conjugate nuclei into many alpha particles. The reaction 20Ne + α at 11 and 13 AMeV was studied at Cyclotron Institute at Texas A&M University. Here the TTIK method was used to study both single α-particle emission and multiple α-particle decays. Due to the limited statistics, only events with alpha multiplicity up to three were analyzed. The analysis of the three α-particle emission data allowed the identification of the Hoyle state and other 12C excited states decaying into three alpha particles. The results will be shown and compared with other data available in the literature. Another experiment is planned in August 2015 to study the system 28Si + α at 15 AMeV. Preliminary results will be shown. Supported by the U.S. DOE and the Robert A. Welch Foundation, Grant No. A0330.

  15. Formation of Heavy Compound Nuclei, Their Survival and Correlation with Longtime-Scale Fission

    SciTech Connect

    Karamian, S. A.; Yakushev, A.-B.

    2007-05-22

    Fusion of two massive nuclei with formation of super-heavy compound nucleus (CN) is driven by the potential energy gradient, as follows from the analysis of nuclear reaction cross-sections. The conservative energy of the system is deduced in simple approximation using regularized nuclear mass and interaction barrier values. Different reaction for the synthesis of Zc (110-118) nuclei are compared and the favourable conditions are found for fusion of the stable (W-Pt) isotopes with radioactive fission fragment projectiles, like 94Kr or 100Sr. Thus, the cold fusion method can be extended for a synthesis of elements with Z > 113. Survival of the evaporation residue is defined by the neutron-to-fission probability ratio and by the successful emission of gammas at final step of the reaction. Numerical estimates are presented. Fixation of evaporation residue products must correlate with longtime-scale fission and available experimental results are discussed.

  16. In search of a broader microscopic underpinning of the potential energy surface in heavy deformed nuclei

    NASA Astrophysics Data System (ADS)

    Hess, P. O.; Ermamatov, M.

    2017-07-01

    Starting from the content of the shell model space and using a simple symplectic as a weight Hamiltonian, the relative positions of different symplectic irreducible representations are deduced. Applying a geometrical mapping leads to a microscopically derived Potential-Energy-Surface. After smoothing this surface and fitting a mass parameter to the first excited 6+-state in the ground state band, the spectrum of a nucleus can be reproduced qualitatively. The method is also used to obtain a first estimation of the quadrupole Potential Energy Surface of any nucleus, allowing to obtain information about the structure of the nucleus in question. Of special interest is the prediction of the structure of nuclei away from the valley of stability and of super-heavy nuclei. The method will be illustrated at184W. One objective is to show that the Pauli Exclusion Principle is the main driving force for the structure of a nucleus, though some further microscopic input has to be used.

  17. Exploring the extended density-dependent Skyrme effective forces for normal and isospin-rich nuclei to neutron stars

    SciTech Connect

    Agrawal, B.K.; Dhiman, Shashi K.; Kumar, Raj

    2006-03-15

    We parametrize the recently proposed generalized Skyrme effective force (GSEF) containing extended density dependence. The parameters of the GSEF are determined by the fit to several properties of the normal and isospin-rich nuclei. We also include in our fit a realistic equation of state for the pure neutron matter up to high densities so that the resulting Skyrme parameters can be suitably used to model the neutron star with the 'canonical' mass ({approx}1.4M{sub {center_dot}}). For the appropriate comparison, we generate a parameter set for the standard Skyrme effective force (SSEF) using exactly the same set data as employed to determine the parameters of the GSEF. We find that the GSEF yields larger values for the neutron skin thickness which are closer to the recent predictions based on the isospin diffusion data. The Skyrme parameters so obtained are employed to compute the strength function for the isoscalar giant monopole, dipole, and quadrupole resonances. It is found that in the case of GSEF, because of the larger value of the nucleon effective mass, the values of centroid energies for the isoscalar giant resonances are in better agreement with the corresponding experimental data than those obtained using the SSEF. We also present results for some of the key properties associated with the neutron star of canonical mass and for the one with the maximum mass.

  18. Exploring the alpha cluster structure of nuclei using the thick target inverse kinematics technique for multiple alpha decays

    NASA Astrophysics Data System (ADS)

    Barbui, M.; Hagel, K.; Goldberg, V. Z.; Natowitz, J. B.; Zheng, H.; Giuliani, G.; Rapisarda, G. G.; Wuenschel, S.; Liu, X.

    2014-03-01

    We explored alpha clustering in 24Mg using the reaction 20Ne+α and the Thick Target Inverse Kinematics (TTIK) technique. 20Ne beams of energy 3.7 AMeV and 11 AMeV were delivered by the K150 cyclotron at Texas A&M University. The reaction chamber was filled with 4He gas at a pressure sufficient to stop the beam before the detectors. The energy of the light reaction products was measured by three silicon detector telescopes. The time relative to the cyclotron radiofrequency was also measured. For the first time the TTIK method was used to study both single and multiple α-particle decays. New results were obtained on elastic resonant α scattering, as well as on inelastic processes leading to high excitation energy systems decaying by multiple α-particle emission. Preliminary results will be shown on events with α-multiplicity one and two.

  19. Superdeformed nuclei

    SciTech Connect

    Janssens, R.V.F.; Khoo, Teng Lek.

    1991-01-01

    This paper reviews the most recent advances in the understanding of the physics of superdeformed nuclei from the point of view of the experimentalists. It covers among other subjects the following topics: (1) the discovery of a new region of superdeformed nuclei near A=190, (2) the surprising result of the occurrence of bands with identical transition energies in neighboring superdeformed nuclei near A=150 and A=190, (3) the importance of octupole degrees of freedom at large deformation and (4) the properties associated with the feeding and the decay of superdeformed bands. The text presented hereafter will appear as a contribution to the Annual Review of Nuclear and Particle Science, Volume 41. 88 refs., 11 figs.

  20. Disintegration of comet nuclei

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid V.

    2012-02-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies.

  1. MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER. II. PROPERTIES OF WISE-SELECTED ACTIVE GALACTIC NUCLEI IN THE NDWFS BOOeTES FIELD

    SciTech Connect

    Assef, R. J.; Stern, D.; Eisenhardt, P. R. M.; Tsai, C.-W.; Kochanek, C. S.; Blain, A. W.; Brodwin, M.; Brown, M. J. I.; Donoso, E.; Jarrett, T. H.; Yan, L.; Jannuzi, B. T.; Stanford, S. A.; Wu, J.

    2013-07-20

    Stern et al. presented a study of Wide-field Infrared Survey Explorer (WISE) selection of active galactic nuclei (AGNs) in the 2 deg{sup 2} COSMOS field, finding that a simple criterion W1-W2 {>=} 0.8 provides a highly reliable and complete AGN sample for W2 < 15.05, where the W1 and W2 passbands are centered at 3.4 {mu}m and 4.6 {mu}m, respectively. Here we extend this study using the larger 9 deg{sup 2} NOAO Deep Wide-Field Survey Booetes field which also has considerably deeper WISE observations than the COSMOS field, and find that this simple color cut significantly loses reliability at fainter fluxes. We define a modified selection criterion combining the W1-W2 color and the W2 magnitude to provide highly reliable or highly complete AGN samples for fainter WISE sources. In particular, we define a color-magnitude cut that finds 130 {+-} 4 deg{sup -2} AGN candidates for W2 < 17.11 with 90% reliability. Using the extensive UV through mid-IR broadband photometry available in this field, we study the spectral energy distributions of WISE AGN candidates. We find that, as expected, the WISE AGN selection can identify highly obscured AGNs, but that it is biased toward objects where the AGN dominates the bolometric luminosity output. We study the distribution of reddening in the AGN sample and discuss a formalism to account for sample incompleteness based on the step-wise maximum-likelihood method of Efstathiou et al. The resulting dust obscuration distributions depend strongly on AGN luminosity, consistent with the trend expected for a receding torus. At L{sub AGN} {approx} 3 Multiplication-Sign 10{sup 44} erg s{sup -1}, 29% {+-} 7% of AGNs are observed as Type 1, while at {approx}4 Multiplication-Sign 10{sup 45} erg s{sup -1} the fraction is 64% {+-} 13%. The distribution of obscuration values suggests that dust in the torus is present as both a diffuse medium and in optically thick clouds.

  2. Cosmogenic nuclei

    NASA Technical Reports Server (NTRS)

    Raisbeck, G. M.

    1986-01-01

    Cosmogenic nuclei, nuclides formed by nuclear interactions of galactic and solar cosmic rays with extraterrestrial or terrestrial matter are discussed. Long lived radioactive cosmogenic isotopes are focused upon. Their uses in dating, as tracers of the interactions of cosmic rays with matter, and in obtaining information on the variation of primary cosmic ray flux in the past are discussed.

  3. Radiations from hot nuclei

    NASA Technical Reports Server (NTRS)

    Malik, F. Bary

    1993-01-01

    The investigation indicates that nuclei with excitation energy of a few hundred MeV to BeV are more likely to radiate hot nuclear clusters than neutrons. These daughter clusters could, furthermore, de-excite emitting other hot nuclei, and the chain continues until these nuclei cool off sufficiently to evaporate primarily neutrons. A few GeV excited nuclei could radiate elementary particles preferentially over neutrons. Impact of space radiation with materials (for example, spacecraft) produces highly excited nuclei which cool down emitting electromagnetic and particle radiations. At a few MeV excitation energy, neutron emission becomes more dominant than gamma-ray emission and one often attributes the cooling to take place by successive neutron decay. However, a recent experiment studying the cooling process of 396 MeV excited Hg-190 casts some doubt on this thinking, and the purpose of this investigation is to explore the possibility of other types of nuclear emission which might out-compete with neutron evaporation.

  4. Radar Exploration of Cometary Nuclei

    NASA Astrophysics Data System (ADS)

    Gim, Yonggyu; Heggy, E.; Belton, M.; Weissman, P.; Asphaug, E.

    2012-10-01

    We have developed a mission formulation, based on the use of previously flown planetary radar sounding techniques, to image the 3D internal structure of the nucleus of a Jupiter-family comet (JFC). Believed to originate in the outer solar system and to be delivered recently to the inner solar system from the Kuiper Belt, JFCs are among the most primitive bodies accessible by spacecraft, and are indicated in the 2010 Decadal Survey as primary targets for primitive bodies sample return. We consider a sounder design operating at dual frequencies, 5 and 15 MHz center frequencies with 1 and 10 MHz bandwidths, respectively. Operating from close orbit about the nucleus of a spinning comet nucleus, CORE obtains a dense network of echoes that are used to image its interior structure to 10 m and to map the dielectric properties inside the nucleus to better than 200 m throughout. Clear images of internal structure and dielectric composition will reveal how the nucleus was formed and how it has evolved. Radiometric tracking of the spacecraft orbit will provide an interior mass distribution that constrains the radar-based models of interior composition. High-resolution visible and infrared color images provide surface and exterior boundary conditions for interior models and hypotheses. They present the geology and morphology of the nucleus surface at meter-scales, and the time-evolving activity, structure, and composition of the inner coma. By making global yet detailed connections from interior to exterior, the data from CORE will provide answers to fundamental questions about the earliest stages of planetesimal evolution and planet formation, will be an important complement to the Rosetta mission science, and will lay the foundation for comet nucleus sample return.

  5. Exotic Nuclei

    SciTech Connect

    Galindo-Uribarri, Alfredo {nmn}

    2010-01-01

    Current experimental developments on the study of exotic nuclei far from the valley of stability are discussed. I start with general aspects related to the production of radioactive beams followed by the description of some of the experimental tools and specialized techniques for studies in reaction spectroscopy, nuclear structure research and nuclear applications with examples from selected topical areas with which I have been involved. I discuss some of the common challenges faced in Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beam (RIB) science.

  6. Covariant density functional theory: Global performance and rotating nuclei

    NASA Astrophysics Data System (ADS)

    Ray, Debisree

    Covariant density functional theory (CDFT) is a modern theoretical tool for the description of nuclear structure physics. Here different physical properties of the ground and excited states in atomic nuclei have been investigated within the CDFT framework employing three major classes of the state-of-the-art covariant energy density functionals. The global performance of CEDFs for even-even nuclei are investigated and the systematic theoretical uncertainties are estimated within the set of four CEDFs in known regions of the nuclear chart and their propagation towards the neutron drip line. Large-scale axial relativistic Hartree-Bogoliubov (RHB) calculations are performed for even-even nuclei to calculate different ground state observables. The predictions for the two-neutron drip line are also compared in a systematic way with the non-relativistic results. CDFT has been applied for systematic study of extremely deformed, rotating N ˜ Z nuclei of the A ˜ 40 mass region. At spin zero such structures are located at high energies which prevents their experimental observation. The rotation acts as a tool to bring these exotic shapes down to the yrast line so that their observation could become possible with a future generation detectors such as GRETA or AGATA. The major physical observables of such structures, the underlying single-particle structure and the spins at which they become yrast or near yrast are defined. The search for the fingerprints of clusterization and molecular structures is performed and the configurations with such features are discussed. CDFT has been applied to study fission barriers of superheavy nuclei and related systematic theoretical uncertainties in the predictions of inner fission barrier heights in super- heavy elements. Systematic uncertainties are substantial in superheavy elements and their behavior as a function of proton and neutron numbers contains a large random component. The benchmarking of the functionals to the experimental

  7. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.

    1997-01-01

    This summary of international nonfuel mineral exploration activities for 1996 uses available data from literature, industry, and US Geological Survey (USGS) specialists. Data on exploration budgets by region and commodity are reported, significant mineral discoveries and exploration target areas are identified and government programs affecting the mineral exploration industry are discussed. Inferences and observations on minerals industry direction are drawn from these data.

  8. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.

    2001-01-01

    Part of an annual review of mines and mineral resources in the U.S. An overview of nonfuel-mineral exploration in 2000 is presented. Principal exploration target was gold exploration in Latin America, Australia, and the U.S. There was a decrease of 18 percent in the exploration budget for gold as compared with the budget for 1999. Statistical information on nonfuel-mineral exploration worldwide is presented, analyzed, and interpreted.

  9. Magnetic rotation (MR) band crossing in N=78 odd-Z nuclei: Tilted axis cranking (TAC) calculations to explore the role of nucleons

    SciTech Connect

    Kumar, Suresh

    2014-08-14

    Magnetic Rotation (MR) band crossing is studied systematically in N=78 isotones (La, Pr, Pm and Eu) using Tilted Axis Cranking (TAC) model. The observables such as I(¯h) vs ¯hω, excitation energy E(MeV) vs spin I(¯h), and the B(M1)/B(E2) vs I(¯h) were considered to pinpoint MR crossing in these nuclei. The results of tilted axis cranking were compared with these experimental observables. The B(M1) and B(E2) values were also reported and used to understand the crossing behaviour of these MR bands. The systematic evolution of this phenomenon in N=78 odd-Z istotones leads to understand the role of nucleons in MR band crossing.

  10. Tests of the fission-evaporation competition in the deexcitation of heavy nuclei

    SciTech Connect

    Siwek-Wilczynska, K.; Skwira, I.; Wilczynski, J.

    2005-09-01

    In order to verify methods of calculating the fission-evaporation competition in reactions used to synthesize new super-heavy nuclei in 'cold' (1n) and 'hot' (3n,4n) fusion reactions, we present an analysis of existing experimental data on the evaporation-residue cross sections in two selected reactions, {sup 208}Pb({sup 16}O, xn) and {sup 236}U({sup 12}C, xn), for which complementary experimental information necessary to unambiguously calculate the survival probabilities is available: precisely measured fusion excitation functions and saddle-point energies of the fissioning nuclei, deduced from experiments. Standard statistical model calculations, with shell effects accounted for by the Ignatyuk formula, were carried out assuming the ground state shell corrections of Moeller et al., and zero shell correction at the saddle configuration (resulting from the presented systematics). Good agreement of the calculated evaporation-residue cross sections with experimental data for different xn reaction channels at low excitation energies leaves no room for modifications of the conventional way of calculating the {gamma}{sub n}/{gamma}{sub f} ratio, particularly for including into this ratio an additional preexponential factor (such as the Kramers fission hindrance factor or an effective collective factor) significantly different from 1.

  11. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.

    2000-01-01

    This summary of international nonfuel mineral exploration activities for 1999 draws upon available data from literature, industry and US Geological Survey (USGS) specialists. The report documents data on exploration budgets by region and commodity and identifies significant mineral discoveries and exploration target areas. It also discusses government programs affecting the mineral exploration industry. And it presents inferences and observations on mineral industry direction based on these data and discussions.

  12. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.

    1998-01-01

    This summary of international nonfuel mineral exploration activities for 1997 draws upon available data from literature, industry and US Geological Sulvey (USGS) specialists. Data on exploration budgets by region and commodity are reported, significant mineral discoveries and exploration target areas are identified and government programs affecting the mineral exploration industry are discussed. Inferences and observations on mineral industry direction are drawn from these data and discussions.

  13. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.; Porter, K.E.

    1999-01-01

    This summary of international nonfuel mineral exploration activities for 1998 draws on available data from literature, industry and US Geological Survey (USGS) specialists. Data on exploration budgets by region and commodity are reported, significant mineral discoveries and exploration target areas are identified and government programs affecting the mineral exploration industry are discussed. Inferences and observations on mineral industry direction are drawn from these data and discussions.

  14. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.

    2005-01-01

    The worldwide budget for nonferrous, nonfuel mineral exploration was expected to increase by 58 percent in 2004 from the 2003 budget, according to Metals Economics Group (MEG) of Halifax, Nova Scotia. The increase comes two years after a five-year period of declining spending for mineral exploration (1998 to 2002). Figures suggest a subsequent 27 percent increase in budgeted expenditures from 2002 to 2003. For the second consecutive year, all regional exploration budget estimates were anticipated to increase.

  15. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.

    2002-01-01

    Exploration budgets fell for a fourth successive year in 2001. These decreases reflected low mineral commodity prices, mineral-market investment reluctance, company failures and a continued trend of company mergers and takeovers.

  16. Exotic nuclei in astrophysics

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.

    2012-07-01

    Recently the academic community has marked several anniversaries connected with discoveries that played a significant role in the development of astrophysical investigations. The year 2009 was proclaimed by the United Nations the International Year of Astronomy. This was associated with the 400th anniversary of Galileo Galilei's discovery of the optical telescope, which marked the beginning of regular research in the field of astronomy. An important contribution to not only the development of physics of the microcosm, but also to the understanding of processes occurring in the Universe, was the discovery of the atomic nucleus made by E. Rutherford 100 years ago. Since then the investigations in the fields of physics of particles and atomic nuclei have helped to understand many processes in the microcosm. Exactly 80 years ago, K. Yanski used a radio-telescope in order to receive the radiation from cosmic objects for the first time, and at the present time this research area of physics is the most efficient method for studying the properties of the Universe. Finally, the April 12, 1961 (50 years ago) launching of the first sputnik into space with a human being onboard, the Russian cosmonaut Yuri Gagarin, marked the beginning of exploration of the Universe with the direct participation of man. All these achievements considerably extended our ideas about the Universe. This work is an attempt to present some problems on the evolution of the Universe: the nucleosynthesis and cosmochronology from the standpoint of physics of particles and nuclei, in particular with the use of the latest results, obtained by means of radioactive nuclear beams. The comparison is made between the processes taking place in the Universe and the mechanisms of formation and decay of nuclei, as well as of their interaction at different energies. Examples are given to show the capabilities of nuclear-physics methods for studying cosmic objects and properties of the Universe. The results of

  17. Compton scattering by nuclei

    NASA Astrophysics Data System (ADS)

    Hütt, M.-Th.; L'vov, A. I.; Milstein, A. I.; Schumacher, M.

    2000-01-01

    The concept of Compton scattering by even-even nuclei from giant-resonance to nucleon-resonance energies and the status of experimental and theoretical researches in this field are outlined. The description of Compton scattering by nuclei starts from different complementary approaches, namely from second-order S-matrix and from dispersion theories. Making use of these, it is possible to incorporate into the predicted nuclear scattering amplitudes all the information available from other channels, viz. photon-nucleon and photon-meson channels, and to efficiently make use of models of the nucleon, the nucleus and the nucleon-nucleon interaction. The total photoabsorption cross section constrains the nuclear scattering amplitude in the forward direction. The specific information obtained from Compton scattering therefore stems from the angular dependence of the nuclear scattering amplitude, providing detailed insight into the dynamics of the nuclear and nucleon degrees of freedom and into the interplay between them. Nuclear Compton scattering in the giant-resonance energy-region provides information on the dynamical properties of the in-medium mass of the nucleon. Most prominently, the electromagnetic polarizabilities of the nucleon in the nuclear medium can be extracted from nuclear Compton scattering data obtained in the quasi-deuteron energy-region. In our description of this latter process special emphasis is laid upon the exploration of many-body and two-body effects entering into the nuclear dynamics. Recent results are presented for two-body effects due to the mesonic seagull amplitude and due to the excitation of nucleon internal degrees of freedom accompanied by meson exchanges. Due to these studies the in-medium electromagnetic polarizabilities are by now well understood, whereas the understanding of nuclear Compton scattering in the Δ-resonance range is only at the beginning. Furthermore, phenomenological methods how to include retardation effects in the

  18. Localization and clustering in atomic nuclei

    NASA Astrophysics Data System (ADS)

    Ebran, J.-P.; Khan, E.; Nikšić, T.; Vretenar, D.

    2017-10-01

    Nucleon localization, and formation of clusters in nucleonic matter and finite nuclei are explored in a framework based on nuclear energy density functionals. The liquid-cluster transition is investigated and different measures of localization are discussed. The formation and evolution of α-clusters in excited states of both N = Z and neutron-rich nuclei are analysed. The effects of spin-orbit coupling are discussed in relation to the confining potential.

  19. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  20. Isolation of Nuclei.

    PubMed

    Nabbi, Arash; Riabowol, Karl

    2015-08-03

    The isolation of nuclei is often the first step in studying processes such as nuclear-cytoplasmic shuttling, subcellular localization of proteins, and protein-chromatin or nuclear protein-protein interactions in response to diverse stimuli. Therefore, rapidly obtaining nuclei from cells with relatively high purity and minimal subcellular contamination, protein degradation, or postharvesting modification is highly desirable. Historically, the isolation of nuclei involved a homogenization step followed by centrifugation through high-density glycerol or sucrose. Although clean nuclei with little cytoplasmic contamination can be prepared using this method, it is typically time consuming and can allow protein degradation, protein modification, and leaching of components from the nuclei to occur. We have developed a rapid and simple fractionation method that is based on the selective dissolution of the cytoplasmic membrane (but not the nuclear membrane) using a low concentration of a nonionic detergent and rapid centrifugation steps. Here we describe important considerations when isolating nuclei from cells, introduce our rapid method, and compare this method to a more traditional protocol for isolating nuclei, noting the strengths and limitations of each approach.

  1. Exotic Light Nuclei

    ERIC Educational Resources Information Center

    Cerny, Joseph; Poskanzer, Arthur M.

    1978-01-01

    Among the light elements, nuclei with unequal numbers of protons and neutrons are highly unstable. Some survive just long enough to be detected and exhibit unusual regimes of radioactive decay. ( Autor/MA)

  2. Exotic Light Nuclei

    ERIC Educational Resources Information Center

    Cerny, Joseph; Poskanzer, Arthur M.

    1978-01-01

    Among the light elements, nuclei with unequal numbers of protons and neutrons are highly unstable. Some survive just long enough to be detected and exhibit unusual regimes of radioactive decay. ( Autor/MA)

  3. Observations of cometary nuclei

    NASA Astrophysics Data System (ADS)

    A'Hearn, M. F.

    Attempts to observe cometary nuclei and to determine fundamental physical parameters relevant to the relationship between comets and asteroids are reviewed. It has been found that cometary nuclei, at least of periodic comets, are bigger and blacker than generally thought as recently as five years ago. Geometric albedos may be typically three percent and typical radii are probably of order 5 km. Nuclei of periodic comets are probably highly prolate unless they are both oblate and rotating about one of the major axes. P/Halley images provide convincing evidence of the existence of mantles discussed in many models. Numerous pieces of evidence suggest a connection between cometary nuclei and A-A asteroids of types D and C.

  4. Search for Superheavy Nuclei

    NASA Astrophysics Data System (ADS)

    Hamilton, J. H.; Hofmann, S.; Oganessian, Y. T.

    2013-10-01

    We describe the discoveries of new superheavy nuclei (a) with Z=107-112 produced in cold fusion reactions between 208Pb and 209Bi and beams of A > 50 and (b) with Z=113-118 in hot fusion reactions between actinide nuclei and 48Ca. We also discuss the facilities used in these measurements. We compare the behavior of the β-decay energies and half-lives, spontaneous fission half-lives, cross sections, and excitation functions with expectations from theoretical calculations. Finally, we outline future research directions, including studies of the detailed properties of nuclei synthesized at higher yields, searches for new elements with Z=119 and 120, and developments of new facilities.

  5. Scattering Of Light Nuclei

    SciTech Connect

    Quaglioni, S; Navratil, P; Roth, R

    2009-12-15

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.

  6. The shapes of nuclei

    NASA Astrophysics Data System (ADS)

    Bertsch, G. F.

    Gerry Brown initiated some early studies on the coexistence of different nuclear shapes. The subject has continued to be of interest and is crucial for understanding nuclear fission. We now have a very good picture of the potential energy surface with respect to shape degrees of freedom in heavy nuclei, but the dynamics remain problematic. In contrast, the early studies on light nuclei were quite successful in describing the mixing between shapes. Perhaps a new approach in the spirit of the old calculations could better elucidate the character of the fission dynamics and explain phenomena that current theory does not model well.

  7. Exotic atomic nuclei

    NASA Astrophysics Data System (ADS)

    Hamilton, J. H.; Maruhn, J. A.

    1986-07-01

    From the study of nuclei with abundances of neutrons and protons (N numbers and Z numbers) quite different from those found in nature, it has been possible to gain new views of motions and structures within nuclear matter. Based on the spherical shell model of the nucleus proposed by Mayer and Jensen in 1949 and the collective model of nuclear deformation proposed in 1952 by Bohr and Mottelson, it has come to be possible to decide what shape or shapes a nucleus must have for a given set of N and Z numbers. It turns out that not only spherical nuclei are possible but also prolate and oblate spheroids (football and discus shaped), triaxial (like a partially deflated football), and even pear- or peanut-shaped. A significant experimental tool in such studies is the ISOL or Isotope-Separator, On-Line, which makes possible the construction of energy level diagrams from the study of exotic nuclei created when particles from accelerators strike various kinds of foil. The significance of magic numbers and super-magic numbers (particular combinations of N and Z) for the stability of various exotic nuclei is considered. International facilities engaged in such studies are noted.

  8. Physics with Polarized Nuclei.

    ERIC Educational Resources Information Center

    Thompson, William J.; Clegg, Thomas B.

    1979-01-01

    Discusses recent advances in polarization techniques, specifically those dealing with polarization of atomic nuclei, and how polarized beams and targets are produced. These techniques have greatly increased the scope of possible studies, and provided the tools for testing fundamental symmetries and the spin dependence of nuclear forces. (GA)

  9. Relativistic extension of the complex scaled Green's function method for resonances in deformed nuclei

    NASA Astrophysics Data System (ADS)

    Shi, Min; Shi, Xin-Xing; Niu, Zhong-Ming; Sun, Ting-Ting; Guo, Jian-You

    2017-03-01

    We have extended the complex scaled Green's function method to the relativistic framework describing deformed nuclei with the theoretical formalism presented in detail. We have checked the applicability and validity of the present formalism for exploration of the resonances in deformed nuclei. Furthermore, we have studied the dependences of resonances on nuclear deformations and the shape of potential, which are helpful to recognize the evolution of resonant levels from stable nuclei to exotic nuclei with axially quadruple deformations.

  10. Energetic Nuclei, Superdensity and Biomedicine

    ERIC Educational Resources Information Center

    Baldin, A. M.

    1977-01-01

    High-energy, relativistic nuclei were first observed in cosmic rays. Studing these nuclei has provided an opportunity for analyzing the composition of cosmic rays and for experimentally verifying principles governing the behavior of nuclear matter at high and super-high temperatures. Medical research using accelerated nuclei is suggested.…

  11. Energetic Nuclei, Superdensity and Biomedicine

    ERIC Educational Resources Information Center

    Baldin, A. M.

    1977-01-01

    High-energy, relativistic nuclei were first observed in cosmic rays. Studing these nuclei has provided an opportunity for analyzing the composition of cosmic rays and for experimentally verifying principles governing the behavior of nuclear matter at high and super-high temperatures. Medical research using accelerated nuclei is suggested.…

  12. Exotic phenomena in nuclei

    NASA Astrophysics Data System (ADS)

    Neff, Thomas; Feldmeier, Hans; Roth, Robert

    2006-10-01

    In the Fermionic Molecular Dynamics (FMD) model the nuclear many-body system is described using Slater determinants with Gaussian wave-packets as single-particle states. The flexibility of the FMD wave functions allows for a consistent description of shell model like structures, deformed states, cluster structures as well as halos. An effective interaction derived from the realistic Argonne V18 interaction using the Unitary Correlation Operator Method is used for all nuclei. Results for nuclei in the p-shell will be presented. Halo features are present in the Helium isotopes, cluster structures are studied in Beryllium and Carbon isotopes. The interplay between shell structure and cluster structures in the ground and the Hoyle state in ^12C will be discussed.

  13. Nuclei and Fundamental Symmetries

    NASA Astrophysics Data System (ADS)

    Haxton, Wick

    2016-09-01

    Nuclei provide marvelous laboratories for testing fundamental interactions, often enhancing weak processes through accidental degeneracies among states, and providing selection rules that can be exploited to isolate selected interactions. I will give an overview of current work, including the use of parity violation to probe unknown aspects of the hadronic weak interaction; nuclear electric dipole moment searches that may shed light on new sources of CP violation; and tests of lepton number violation made possible by the fact that many nuclei can only decay by rare second-order weak interactions. I will point to opportunities in both theory and experiment to advance the field. Based upon work supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics and SciDAC under Awards DE-SC00046548 (Berkeley), DE-AC02-05CH11231 (LBNL), and KB0301052 (LBNL).

  14. Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei

    SciTech Connect

    De Paul, Susan M.

    1997-08-01

    The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.

  15. Properties of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Rahe, J.; Vanysek, V.; Weissman, P. R.

    1994-01-01

    Active long- and short-period comets contribute about 20 to 30 % of the major impactors on the Earth. Cometary nuclei are irregular bodies, typically a few to ten kilometers in diameter, with masses in the range 10(sup 15) to 10(sup 18) g. The nuclei are composed of an intimate mixture of volatile ices, mostly water ice and hydrocarbon and silicate grains. The composition is the closest to solar composition of any known bodies in the solar system. The nuclei appear to be weakly bonded agglomerations of smaller icy planetesimals, and material strengths estimated from observed tidal disruption events are fairly low, typically 10(sup 2) to 10(sup 4) N m(sup -2). Density estimates range between 0.2 and 1.2 g cm(sup -3) but are very poorly determined, if at all. As comets age they develop nonvolitile crusts on their surfaces which eventually render them inactive, similar in appearance to carbonaceous asteroids. However, dormant comets may continue to show sporadic activity and outbursts for some time before they become truly extinct. The source of the long-period comets is the Oort cloud, a vast spherical cloud of perhaps 10(sup 12) to 10(sup 13) comets surrounding the solar system and extending to interstellar distances. The likely source for short-period comets is the Kuiper belt. a ring of perhaps 10(sup 8) to 10(sup 10) remnant icy planetesimals beyond the orbit of Neptune, though some short-period comets may also be long-period comets from the Oort cloud which have been perturbed into short-period orbits.

  16. Skyrmions and Nuclei

    NASA Astrophysics Data System (ADS)

    Battye, R. A.; Manton, N. S.; Sutcliffe, P. M.

    We review recent work on the modelling of atomic nuclei as quantised Skyrmions, using Skyrme's original model with pion fields only. Skyrmions are topological soliton solutions, whose conserved topological charge B is identified with the baryon number of a nucleus. Apart from an energy and length scale, the Skyrme model has just one dimensionless parameter m, proportional to the pion mass. It has been found that a good fit to experimental nuclear data requires m to be of order 1. The Skyrmions for B up to 7 have been known for some time, and are qualitatively insensitive to whether m is zero or of order 1. However, for baryon numbers B = 8 and above, the Skyrmions have quite a compact structure for m of order 1, rather than the hollow polyhedral structure found when m = 0. One finds for baryon numbers which are multiples of four, that the Skyrmions are composed of B = 4 sub-units, as in the α-particle model of nuclei. The rational map ansatz gives a useful approximation to the Skyrmion solutions for all baryon numbers when m = 0. For m of order 1, it gives a good approximation for baryon numbers up to 7, and generalisations of this ansatz are helpful for higher baryon numbers. We briefly review the work from the 1980s and 90s on the semiclassical rigidbody quantisation of Skyrmions for B = 1, 2, 3 and 4. We then discuss more recent work extending this method to B = 6, 7, 8, 10 and 12. We determine the quantum states of the Skyrmions, finding their spins, isospins and parities, and compare with the experimental data on the ground and excited states of nuclei up to mass number 12.

  17. Total photoabsorption in nuclei

    SciTech Connect

    Bianchi, N.

    1992-06-01

    The Frascati-Genova collaboration proposes to measure the total photonuclear cross section on a wide range of nuclei between 500 MeV and 2 GeV, to obtain informations on the interaction of baryon resonances with nucleons and on the onset of the shadowing effect. The experiment could be performed in the Hall B as soon as the tagging facility will be ready and before the end of the installation of the CLAS spectrometer. The requirements for the photon beam, like maximum energy, intensity and beam definition, are not so strong so that the experiment would also be a good first test of the tagged photon facility.

  18. Electroproduction of Strange Nuclei

    SciTech Connect

    E.V. Hungerford

    2002-06-01

    The advent of high-energy, CW-beams of electrons now allows electro-production and precision studies of nuclei containing hyperons. Previously, the injection of strangeness into a nucleus was accomplished using secondary beams of mesons, where beam quality and target thickness limited the missing mass resolution. We review here the theoretical description of the (e, e'K+) reaction mechanism, and discuss the first experiment demonstrating that this reaction can be used to precisely study the spectra of light hypernuclei. Future experiments based on similar techniques, are expected to attain even better resolutions and rates.

  19. Lattice QCD for nuclei

    NASA Astrophysics Data System (ADS)

    Beane, Silas

    2016-09-01

    Over the last several decades, theoretical nuclear physics has been evolving from a very-successful phenomenology of the properties of nuclei, to a first-principles derivation of the properties of visible matter in the Universe from the known underlying theories of Quantum Chromodynamics (QCD) and Electrodynamics. Many nuclear properties have now been calculated using lattice QCD, a method for treating QCD numerically with large computers. In this talk, some of the most recent results in this frontier area of nuclear theory will be reviewed.

  20. Predictions for Superheavy Nuclei

    NASA Astrophysics Data System (ADS)

    Kumar, Krishna

    1990-01-01

    The Dynamic Deformation Model has been extended to the problem of fission in such a way that several thousand channels including particle-decay, α-decay, heavy-ion-emission, asymmetric fission, and symmetric fission can be taken into account. The model also includes a Kinetic Shell Correction which was ignored in previous predictions for Superheavy nuclei. This model is in better agreement with experimental life-times. A new location of the Superheavy peak is predicted at Z = 116 (eka-Polonium), A = 300, total half-life = 1079 years. New heavy-ion-fusion experiments and the means of identifying the Superheavy Elements are suggested.

  1. Dense Clouds near the Central Engine of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Sivron, R.; Tsuruta, S

    1993-01-01

    A model is presented which assumes the existence of cold dense clouds near the central engine of Active Galactic Nuclei (AGNs). The effects of such clouds on the observed spectrum are explored. It is shown that this model is consistent with the complicated observed spectra and variability behavior of most extensively studied Seyfert nuclei. The results are compared with other proposed models. The existing observational evidence appears to support the "cloud-model."

  2. On the thermalization achieved in the reactions involving superheavy nuclei

    SciTech Connect

    Bansal, Rajni

    2016-05-06

    In the present study, we aim to explore the role of Coulomb potential on the thermalization achieved in the reactions involving superheavy nuclei. Particularly, we shall study the degree of the equilibrium attained in a reaction by the 3D density plots, anisotropy ratio as well as by the rapidity distribution of the nucleons. Our study reveals that the degree of the equilibrium attained in the central reactions of the superheavy nuclei remains unaffected by the Coulomb potential.

  3. D mesic nuclei

    NASA Astrophysics Data System (ADS)

    García-Recio, C.; Nieves, J.; Tolos, L.

    2010-06-01

    The energies and widths of several D0 meson bound states for different nuclei are obtained using a D-meson selfenergy in the nuclear medium, which is evaluated in a selfconsistent manner using techniques of unitarized coupled-channel theory. The kernel of the meson-baryon interaction is based on a model that treats heavy pseudoscalar and heavy vector mesons on equal footing, as required by heavy quark symmetry. We find D0 bound states in all studied nuclei, from 12C up to 208Pb. The inclusion of vector mesons is the keystone for obtaining an attractive D-nucleus interaction that leads to the existence of D0-nucleus bound states, as compared to previous studies based on SU(4) flavor symmetry. In some cases, the half widths are smaller than the separation of the levels, what makes possible their experimental observation by means of a nuclear reaction. This can be of particular interest for the future P¯ANDA@FAIR physics program. We also find a D+ bound state in 12C, but it is too broad and will have a significant overlap with the energies of the continuum.

  4. Nucleomorphs: enslaved algal nuclei.

    PubMed

    Cavalier-Smith, T

    2002-12-01

    Nucleomorphs of cryptomonad and chlorarachnean algae are the relict, miniaturised nuclei of formerly independent red and green algae enslaved by separate eukaryote hosts over 500 million years ago. The complete 551 kb genome sequence of a cryptomonad nucleomorph confirms that cryptomonads are eukaryote-eukaryote chimeras and greatly illuminates the symbiogenetic event that created the kingdom Chromista and their alveolate protozoan sisters. Nucleomorph membranes may, like plasma membranes, be more enduring after secondary symbiogenesis than are their genomes. Partial sequences of chlorarachnean nucleomorphs indicate that genomic streamlining is limited by the mutational difficulty of removing useless introns. Nucleomorph miniaturisation emphasises that selection can dramatically reduce eukaryote genome size and eliminate most non-functional nuclear non-coding DNA. Given the differential scaling of nuclear and nucleomorph genomes with cell size, it follows that most non-coding nuclear DNA must have a bulk-sequence-independent function related to cell volume.

  5. Pulsars:. Gigantic Nuclei

    NASA Astrophysics Data System (ADS)

    Xu, Renxin

    What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the gigantic nucleus speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction.

  6. Quarks in Few Body Nuclei

    NASA Astrophysics Data System (ADS)

    Holt, Roy J.

    2016-03-01

    Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  7. Anomaly of the moment of inertia of shape transitional nuclei

    SciTech Connect

    Gupta, J. B.; Hamilton, J. H.

    2011-06-15

    The change in the structure of the collective levels with spin angular momentum in atomic nuclei is often expressed in terms of the classical concepts of the kinematic and the dynamic moments of inertia varying with spin. For the well deformed even-even nuclei the kinematic moment of inertia increases with spin up to 10%-20%, at say I{sup {pi}} = 12{sup +}. However, for the shape transitional nuclei, or almost spherical nuclei, it increases with spin much faster. The pitfalls of using the rotor model form of kinematic moment of inertia in such cases are pointed out here. Alternative methods of extracting the nuclear structure information are explored. The important role of the ground state deformation is illustrated. The use of the power index formula for evaluating the effective moment of inertia, free from the assumption of the rotor model, is described.

  8. Parity violation in nuclei

    SciTech Connect

    Robertson, R.G.H.

    1980-01-01

    A summary of parity violating effects in nuclei is given. Thanks to vigorous experimental and theoretical effort, it now appears that a reasonably well-defined value for the weak isovector ..pi..-nucleon coupling constant can be obtained. There is one major uncertainty in the analysis, namely the M2/E1 mixing ratio for the 2.79 MeV transition in /sup 21/Ne. This quantity is virtually impossible to calculate reliably and must be measured. If it turns out to be much larger than 1, then a null result in /sup 21/Ne is expected no matter what the weak interaction, so an experimental determination is urgently needed. The most promising approach is perhaps a measurement of the pair internal conversion coefficient. Of course, a direct measurement of a pure isovector case is highly desirable, and it is to be hoped that the four ..delta..T = 1 experiments will be pushed still further, and that improved calculations will be made for the /sup 6/Li case. Nuclear parity violation seems to be rapidly approaching an interesting and useful synthesis.

  9. Gluon density in nuclei

    SciTech Connect

    Ayala, A.L.; Ducati, M.B.G.; Levin, E.M.

    1996-10-01

    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab.

  10. Multi-K¯ nuclei and kaon condensation

    NASA Astrophysics Data System (ADS)

    Gazda, D.; Friedman, E.; Gal, A.; Mareš, J.

    2008-04-01

    We extend previous relativistic mean-field (RMF) calculations of multi-K¯ nuclei, using vector boson fields with SU(3) PPV coupling constants and scalar boson fields constrained phenomenologically. For a given core nucleus, the resulting K¯ separation energy BK¯, as well as the associated nuclear and K¯-meson densities, saturate with the number κ of K¯ mesons for κ>κsat~10. Saturation appears robust against a wide range of variations, including the RMF nuclear model used and the type of boson fields mediating the strong interactions. Because BK¯ generally does not exceed 200 MeV, it is argued that multi-K¯ nuclei do not compete with multihyperonic nuclei in providing the ground state of strange hadronic configurations and that kaon condensation is unlikely to occur in strong-interaction self-bound strange hadronic matter. Last, we explore possibly self-bound strange systems made of neutrons and K¯0 mesons, or protons and K- mesons, and study their properties.

  11. Invariant mass spectroscopy of halo nuclei

    SciTech Connect

    Nakamura, Takashi

    2008-11-11

    We have applied the invariant mass spectroscopy to explore the low-lying exited states of halo nuclei at intermediate energies around 70 MeV/nucleon at RIKEN. As examples, we show here the results of Coulomb breakup study for {sup 11}Li using the Pb target, as well as breakup reactions of {sup 14}Be with p and C targets. The former study revealed a strong Coulomb breakup cross section reflecting the large enhancement of E1 strength at low excitation energies (soft E1 excitation). The latter revealed the observation of the first 2{sup +} state in {sup 14}Be.

  12. Stem cell mechanics: Auxetic nuclei

    NASA Astrophysics Data System (ADS)

    Wang, Ning

    2014-06-01

    The nuclei of naive mouse embryonic stem cells that are transitioning towards differentiation expand when the cells are stretched and contract when they are compressed. What drives this auxetic phenotype is, however, unclear.

  13. Generalized parton distributions in nuclei

    SciTech Connect

    Vadim Guzey

    2009-12-01

    Generalized parton distributions (GPDs) of nuclei describe the distribution of quarks and gluons in nuclei probed in hard exclusive reactions, such as e.g. deeply virtual Compton scattering (DVCS). Nuclear GPDs and nuclear DVCS allow us to study new aspects of many traditional nuclear effects (nuclear shadowing, EMC effect, medium modifications of the bound nucleons) as well as to access novel nuclear effects. In my talk, I review recent theoretical progress in the area of nuclear GPDs.

  14. Exotic Orbital Modes in Nuclei

    NASA Astrophysics Data System (ADS)

    von Neumann-Cosel, P.

    2003-06-01

    Experimental evidence for two types of collective excitations in nuclei generated by orbital motion is discussed, viz. a magnetic quadrupole twist mode observed in 180° electron scattering experiments and a toroidal electric dipole mode. The latter may be a source of low-energy pygmy dipole resonances observed in many nuclei. This is discussed in detail for the example of 208Pb based on the recent finding of a resonance at particle threshold in a high-resolution (γ, γ') experiment.

  15. The nature of comet nuclei

    NASA Technical Reports Server (NTRS)

    Sykes, Mark V.; Walker, Russell G.

    1992-01-01

    The icy-conglomerate model of comet nuclei has dominated all others since its introduction. It provided a basis for understanding the non-gravitational motions of comets which had perplexed dynamicists up to that time, and provided a focus for understanding cometary composition and origin. The image of comets as dirty snowballs was quickly adopted. Comet nuclei including their trail mass loss rates and refractory to volatile mass ratios are described.

  16. Effective Interactions for Light Nuclei

    NASA Astrophysics Data System (ADS)

    Caldwell, Bryan R.

    The G-matrix technique in which one is able to easily calculate ground and excited states of many-body systems is used to calculate the ground state energies and some excited levels of ^3H and ^4He. Energy independent effective interactions are obtained for these nuclei using the technique of Suzuki and Lee which requires the G-matrix and its derivatives with respect to starting energy. It is found that accurate energy derivatives of the G-matrix are necessary to obtain energy independence and thus analytic expressions are presented for these derivatives in both center-of-mass/relative and shell model coordinate systems. Several rules of thumb are given pertaining to the convergence criteria in both coordinate systems. Further, since the G-matrix includes only intra -channel two-body correlations outside the active space, we explore the effect on the binding energies when the active space is enlarged to include several major shells. By enlarging the active space, we hope to include the most important many-body correlations explicitly. It is found that when the active space includes more than 2 major shells, the effective interaction is well approximated by the G-matrix. Our results essentially agree with exact Faddeev calculations for ^3 H but underbind by about.5 MeV in ^4 He as compared to exact Yabukovsky and Green function Monte Carlo calculations. A possible reason for this underbinding, the inclusion of unlinked diagrams in the energy expansion, is studied. The energy independent G-matrix technique is then applied to the p-shell (^5He, ^6Li and ^7Li) where the active space includes all excitations up to 2 hbaromega. Zero, one, two and three -body effective interactions are extracted and it is found that a schematic two-parameter three-body potential can be used to approximate the effective three-body potential that results from the truncation of the active space.

  17. High Spin Isomers and Super Heavy Elements (SHE) Synthesis

    SciTech Connect

    Popescu, Domitian G.

    2010-04-30

    To get closer to the SHE-Island the new radioactive beams are proposed for future fusion reaction. We suggest something different: to use the advantage of High Spin Isomer States, by tacking into account the importance of the G (spin-isospin cupling) suggested by Ripka 1.

  18. Interaction of eta mesons with nuclei

    NASA Astrophysics Data System (ADS)

    Kelkar, N. G.; Khemchandani, K. P.; Upadhyay, N. J.; Jain, B. K.

    2013-06-01

    Back in the mid-1980s, a new branch of investigation related to the interaction of eta mesons with nuclei came into existence. It started with the theoretical prediction of possible exotic states of eta mesons and nuclei bound by the strong interaction and later developed into an extensive experimental program to search for such unstable states as well as understand the underlying interaction via eta-meson producing reactions. The vast literature of experimental as well as theoretical works that studied various aspects of eta-producing reactions such as the π+n → ηp, pd → 3Heη, p 6Li → 7Be η and γ 3He → η X, to name a few, had but one objective in mind: to understand the eta-nucleon (ηN) and hence the η-nucleus interaction which could explain the production data and confirm the existence of some η-mesic nuclei. In spite of these efforts, there remain uncertainties in the knowledge of the ηN and hence the η-nucleus interaction. Therefore, this review is an attempt to bind together the findings in these works and draw some global and specific conclusions which can be useful for future explorations. The ηN scattering length (which represents the strength of the η-nucleon interaction) using different theoretical models and analyzing the data on η production in pion, photon and proton induced reactions was found to be spread out in a wide range, namely, 0.18 ⩽ ℜe aηN ⩽ 1.03 fm and 0.16 ⩽ ℑm aηN ⩽ 0.49 fm. Theoretical searches of heavy η-mesic nuclei based on η-nucleus optical potentials and lighter ones based on Faddeev type few-body approaches predict the existence of several quasibound and resonant states. Although some hints of η-mesic states such as ^3_{\\eta} He and ^{25}_{\\eta} Mg do exist from previous experiments, the promise of clearer signals for the existence of η-mesic nuclei lies in the experiments to be performed at the J-PARC, MAMI and COSY facilities in the near future. This review is aimed at giving an overall

  19. Interaction of eta mesons with nuclei.

    PubMed

    Kelkar, N G; Khemchandani, K P; Upadhyay, N J; Jain, B K

    2013-06-01

    Back in the mid-1980s, a new branch of investigation related to the interaction of eta mesons with nuclei came into existence. It started with the theoretical prediction of possible exotic states of eta mesons and nuclei bound by the strong interaction and later developed into an extensive experimental program to search for such unstable states as well as understand the underlying interaction via eta-meson producing reactions. The vast literature of experimental as well as theoretical works that studied various aspects of eta-producing reactions such as the π(+)n → ηp, pd → (3)Heη, p (6)Li → (7)Be η and γ (3)He → η X, to name a few, had but one objective in mind: to understand the eta-nucleon (ηN) and hence the η-nucleus interaction which could explain the production data and confirm the existence of some η-mesic nuclei. In spite of these efforts, there remain uncertainties in the knowledge of the ηN and hence the η-nucleus interaction. Therefore, this review is an attempt to bind together the findings in these works and draw some global and specific conclusions which can be useful for future explorations.The ηN scattering length (which represents the strength of the η-nucleon interaction) using different theoretical models and analyzing the data on η production in pion, photon and proton induced reactions was found to be spread out in a wide range, namely, 0.18 ≤ Re aηN ≤ 1.03 fm and 0.16 ≤ Rm aηN ≤ 0.49 fm. Theoretical searches of heavy η-mesic nuclei based on η-nucleus optical potentials and lighter ones based on Faddeev type few-body approaches predict the existence of several quasibound and resonant states. Although some hints of η-mesic states such as (3)(η)He and (25)(η)Mg do exist from previous experiments, the promise of clearer signals for the existence of η-mesic nuclei lies in the experiments to be performed at the J-PARC, MAMI and COSY facilities in the near future. This review is aimed at giving an overall status

  20. The morphology of cometary nuclei

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Jorda, L.

    condensations of comets were agglomerations of dust particles prevailed for about a century. The gas coma was explained by desorption of molecules from dust particles with large surfaces (Levin 1943). The storage of highly reactive radicals (most observed species (CN, CH, NH2, etc.) were of this category) posed a major difficulty to be explained. The inference that these radicals should be dissociation products of stable parent molecules (such as (CN)2, CH4, NH3, etc.) by Wurm (1934, 1935, 1943) led to our present understanding that these molecules are stored as ices within the central nucleus of a comet. Whipple (1950a,b) combined the astrometrical observations of changes of the orbital periods of comets with the existence of an icy cometary nucleus. The sublimation of ices cause reactive (rocket) non-gravitational forces that increase or decrease the orbital period of an active comet according to the sense of rotation of its nucleus. Evidence in support of the icy conglomerate nucleus became more and more compelling by the derived high gas production rates that could not be stored by adsorption on dust grains (Biermann and Trefftz 1964, Huebner 1965, Keller 1976a,b) and by the same account by the large quantities of dust moving into the cometary tail (Finson and Probstein 1968b). The `sand bank' model (Lyttleton 1953) was clearly dismissed in favour of a solid icy nucleus. Its formation and origin could now be explored. While there was some knowledge about the chemical composition of the nucleus, its physical properties, even the basic ones like size, shape and mass, remained largely unknown because the nucleus could not be observed. Early attempts to derive the nucleus size from the `nuclear' magnitudes of comets at large heliocentric distances while they are inactive (Roemer 1966a,b) led to a systematic overestimation of the size because their residual activity could not be eliminated. The advent of modern detectors and large ground-based telescopes revealed that most

  1. Cavitation inception from bubble nuclei.

    PubMed

    Mørch, K A

    2015-10-06

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes.

  2. Cavitation inception from bubble nuclei

    PubMed Central

    Mørch, K. A.

    2015-01-01

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure–time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138

  3. Reflection asymmetric shapes in nuclei

    SciTech Connect

    Ahmad, I.; Carpenter, M.P.; Emling, H.; Holzmann, R.; Janssens, R.V.F.; Khoo, T.L.; Moore, E.F.; Morss, L.R.; Durell, J.L.; Fitzgerald, J.B.; Mowbary, A.S.; Hotchkiss, M.A.; Phillips, W.R.; Drigert, M.W.; Ye, D.; Benet, P.; Manchester Univ. . Dept. of Physics; EG and G Idaho, Inc., Idaho Falls, ID; Notre Dame Univ., IN; Purdue Univ., Lafayette, IN )

    1989-01-01

    Experimental data show that there is no even-even nucleus with a reflection asymmetric shape in its ground state. Maximum octupole- octupole correlations occur in nuclei in the mass 224 (N{approximately}134, Z{approximately}88) region. Parity doublets, which are the characteristic signature of octupole deformation, have been observed in several odd mass Ra, Ac and Pa nuclei. Intertwined negative and positive parity levels have been observed in several even-even Ra and Th nuclei above spin {approximately}8{Dirac h}. In both cases, the opposite parity states are connected by fast El transitions. In some medium-mass nuclei intertwined negative and positive parity levels have also been observed above spin {approximately}7{Dirac h}. The nuclei which exhibit octupole deformation in this mass region are {sup 144}Ba, {sup 146}Ba and {sub 146}Ce; {sup 142}Ba, {sup 148}Ce, {sup 150}Ce and {sup 142}Xe do not show these characteristics. No case of parity doublet has been observed in the mass 144 region. 32 refs., 16 figs., 1 tab.

  4. Octupole shapes in heavy nuclei

    SciTech Connect

    Ahmad, I.

    1994-08-01

    Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets.

  5. Chromatin structure in barley nuclei.

    PubMed

    Mithieux, G; Roux, B

    1983-10-03

    In order to study the chromatin structure of a higher plant we used a high-yield method, which allows one to obtain up to 10(9) nuclei/kg fresh barley leaves. Significant amounts of low-ionic-strength-soluble chromatin can be extracted from these nuclei. Physicochemical properties were examined and discussed. Electric birefringence allowed us to observe the same transition in electro-optical properties as has been observed for animal chromatin, and suggested the existence of a symetrical structure occurring for approximately six nucleosomes. Circular dichroism showed that barley oligonucleosomes exhibit a higher molar ellipticity at 282 nm than total soluble chromatin and than their animal counterparts.

  6. Shell closures, loosely bound structures, and halos in exotic nuclei

    SciTech Connect

    Saxena, G.; Singh, D.

    2013-04-15

    Inspired by the recent experiments indicating doubly magic nuclei that lie near the drip-line and encouraged by the success of our relativistic mean-field (RMF) plus state-dependent BCS approach to the description of the ground-state properties of drip-line nuclei, we develop this approach further, across the entire periodic table, to explore magic nuclei, loosely bound structures, and halo formation in exotic nuclei. In our RMF+BCS approach, the single-particle continuum corresponding to the RMF is replaced by a set of discrete positive-energy states for the calculations of pairing energy. Detailed analysis of the single-particle spectrum, pairing energies, and densities of the nuclei predict the unusual proton shell closures at proton numbers Z = 6, 14, 16, 34, and unusual neutron shell closures at neutron numbers N = 6, 14, 16, 34, 40, 70, 112. Further, in several nuclei like the neutron-rich isotopes of Ca, Zr, Mo, etc., the gradual filling of lowlying single-particle resonant state together with weakly bound single-particle states lying close to the continuum threshold helps accommodate more neutrons but with an extremely small increase in the binding energy. This gives rise to the occurrence of loosely bound systems of neutron-rich nuclei with a large neutron-to-proton ratio. In general, the halo-like formation, irrespective of the existence of any resonant state, is seen to be due to the large spatial extension of the wave functions for the weakly bound single-particle states with low orbital angular momentum having very small or no centrifugal barriers.

  7. MULTI-bar K (hyper)nuclei and Kaon Condensation

    NASA Astrophysics Data System (ADS)

    Gazda, D.; Mareš, J.; Friedman, E.; Gal, A.

    We report on recent relativistic mean-field calculations of multi-bar K nuclei1,2 which were performed fully and self-consistently across the periodic table. The bar K separation energy B{bar K} as well as the nuclear and bar K-meson densities were found to saturate with the number of antikaons in the nuclear medium. Saturation appears robust against a wide range of variations, including the nuclear model used and the type of boson fields mediating the strong interactions. In addition, we have explored properties of kaonic hypernuclei — strange systems made of nucleons, hyperons and K- mesons. We observed saturation also in these objects. Since the bar K separation energy B{bar K} does not exceed 200 MeV, multi-bar K nuclei lie energetically well above multi-hyperonic nuclei and it is unlikely that kaon condensation could occur in strong-interaction self-bound hadronic matter.

  8. MULTI-bar K (hyper)nuclei and Kaon Condensation

    NASA Astrophysics Data System (ADS)

    Gazda, D.; Mareš, J.; Friedman, E.; Gal, A.

    2010-10-01

    We report on recent relativistic mean-field calculations of multi-bar K nuclei1,2 which were performed fully and self-consistently across the periodic table. The bar K separation energy B{bar K} as well as the nuclear and bar K-meson densities were found to saturate with the number of antikaons in the nuclear medium. Saturation appears robust against a wide range of variations, including the nuclear model used and the type of boson fields mediating the strong interactions. In addition, we have explored properties of kaonic hypernuclei - strange systems made of nucleons, hyperons and K- mesons. We observed saturation also in these objects. Since the bar K separation energy B{bar K} does not exceed 200 MeV, multi-bar K nuclei lie energetically well above multi-hyperonic nuclei and it is unlikely that kaon condensation could occur in strong-interaction self-bound hadronic matter.

  9. International Symposium on Exotic Nuclei

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.; Cherepanov, E. A.

    Methods of production of light exotic nuclei and study of their ptoperties -- Superheavy elements. Syhnthesis and properties -- Nuclear fission -- Nuclear reactions -- rare processes, decay and nuclear structure -- Experimental set-ups and future projects -- Radioactive beams. Production and research programmes -- Public relations.

  10. Proton Distribution in Heavy Nuclei

    DOE R&D Accomplishments Database

    Johnson, M. H; Teller, E.

    1953-11-13

    It is reasoned that, from considerations connected with beta-decay stability and Coulomb repulsion forces, a neutron excess is developed on the surface of heavy nuclei. Several consequences of this qualitative analysis in nucleon interactions are briefly noted. (K.S.)

  11. Chiral electroweak currents in nuclei

    DOE PAGES

    Riska, D. O.; Schiavilla, R.

    2017-01-10

    Here, the development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown’s role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.

  12. Electromagnetic structure of light nuclei

    SciTech Connect

    Pastore, Saori

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  13. Transitional nuclei near shell closures

    SciTech Connect

    Mukherjee, G.

    2014-08-14

    High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region A = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.

  14. Electromagnetic structure of light nuclei

    DOE PAGES

    Pastore, Saori

    2016-03-25

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  15. Octupole correlation effects in nuclei

    SciTech Connect

    Chasman, R.R.

    1992-01-01

    Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions.

  16. Octupole correlation effects in nuclei

    SciTech Connect

    Chasman, R.R.

    1992-08-01

    Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions.

  17. Understanding nuclei: progress and challenges

    SciTech Connect

    Dean, D. J.

    2008-04-17

    Nuclear theory today aims for a comprehensive theoretical framework that can describe all nuclei. I discuss recent progress in this pursuit and the associated challenges as we move forward, paying particular attention to progress in the applications of coupled-cluster theory to the challenges.

  18. Nuclei and propeller cavitation inception

    SciTech Connect

    Gindroz, B.; Billet, M.L.

    1994-12-31

    Propeller cavitation inception tests were conducted in the Grand Tunnel Hydrodynamique (GTH) of the Bassin d`Essaid des Carenes. Both acoustic and visual cavitation inception were determined for leading-edge sheet, travelling bubble, and tip vortex. These data were obtained for specific water quality conditions. The water quality was determined from cavitation susceptibility meter measurements for degassed water (maximum liquid tension, few nuclei), low injection rate of microbubbles (medium liquid tension, low nuclei concentration), medium injection rate of microbubbles (medium liquid tension, high nuclei concentration) and high injection rate of microbubbles (minimum liquid tension, high nuclei concentration). Results clearly demonstrate a different influence of water quality for each type of cavitation. Little variation in cavitation inception index for a significant increase in liquid tension and microbubble size distribution was found for leading-edge sheet; however, tip vortex cavitation inception index decreased significantly for an increase in liquid tension. In addition, a dependency on event rate was determined for tip vortex cavitation inception.

  19. Large and round tumor nuclei in osteosarcoma: good clinical outcome

    PubMed Central

    de Andrea, Carlos E; Petrilli, Antonio Sergio; Jesus-Garcia, Reynaldo; Bleggi-Torres, Luiz F; Alves, Maria Teresa S

    2011-01-01

    Osteosarcoma is the most frequent primary malignant bone tumor. Distinct histological features are distinguishable based on the morphology of the tumor. Differences in nuclei size and shape are often observed in osteosarcoma reflecting its broad histopathological heterogeneity. This study explores the relevance of two nuclear parameters in osteosarcoma: large area and round shape. Computerized nuclear morphometry was performed in 56 conventional osteosarcoma preoperative biopsies. The mean patient follow-up time was 35.1 months. Based on the nuclear area, no significant difference (P = 0.09) in overall survival between patients with large (> 42.5 μm2) and small (< 42.5 μm2) tumor nuclei was found. However, when cases with large and round nuclei were analyzed jointly (> 42.5 μm2 and coefficient of nuclear roundness > 0.7), these two parameters together were likely to be a predictive factor (P = 0.05). Osteosarcoma patients with large and round tumor nuclei had a better outcome than patients with small and polymorphic (ovoid or spindle-shaped) nuclei. In this study, nuclear morphometry proved to be a useful tool to shed light on the biology of osteosarcoma showing that some morphometric parameters can be easily applied to help identifying patients with a good prognosis. PMID:21326812

  20. Temperatures within comet nuclei.

    PubMed

    Squyres, S W; McKay, C P; Reynolds, R T

    1985-12-10

    We have performed a theoretical study of temperatures beneath the surface of a comet's nucleus. We solve the one-dimensional heat conduction equation for the outer portion of the comet. The upper boundary condition of the model is given by energy balance at the surface of the nucleus, including conduction of heat inward, radiation, insolation as modified by the coma, and sublimation. Our coma model assumes single scattering and includes attenuation of direct sunlight by dust grains, scattering of light onto the nucleus, and infrared radiation by dust grains. The lower boundary condition is zero net heat flux around an orbit. The thermal conductivity expression for the nucleus includes direct conduction at grain boundaries, radiative conduction, and Knudsen flow vapor diffusion. The thermal diffusivity of the nucleus and the resultant temperature profiles are shown to be strongly dependent on the physical properties of the material, including porosity, pore size, and compaction. The temperature profiles and the equilibrium temperature deep within the comet also depend on the functional relationship between thermal conductivity and temperature; the highest deep equilibrium temperatures are found for models where the thermal conductivity increases strongly with increasing temperature. The dependence of temperatures on the albedo and thermal emissivity of the nucleus is also calculated, as well as the variation of temperature with latitude for a variety of pole orientations. The effect of a dust mantle on subsurface temperatures is also investigated. All calculations are presented for short-period comets with orbits that make them accessible for exploration by spacecraft rendezvous. In situ measurements of the thermal profile in the upper meter of a comet nucleus can substantially constrain the thermal diffusivity of the material, which in turn can provide significant information about the physical properties of the nucleus.

  1. Magnetic moments of neutron deficient yttrium nuclei

    SciTech Connect

    Berks; El Hajjaji, O.; Fahad, M.; Hassani, R.; Giroux, J.; Marest, G.; Marguier, G.; Stone, N.J.; Rikovska, J.; Green, V.R.; and others

    1987-12-10

    This paper describes recent low temperature nulcear orientation (LTNO) work on neutron deficient /sup 85m,86,86m/Y nuclei. Results are compared with experimental systematics of neighbouring nuclei and particle core coupling calculations.

  2. Properties of nuclei probed by laser light

    NASA Astrophysics Data System (ADS)

    Neugart, Rainer

    2017-03-01

    Viewing objects as small as atomic nuclei by visible light sounds quite unrealistic. However, nuclei usually appear as constituents of atoms whose excitations are indeed associated with the absorption and emission of light. Nuclei can thus interact with light via the atomic system as a whole.

  3. Physical processing of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Stern, S. Alan

    1989-01-01

    Cometary nuclei were formed far from the Sun in the colder regions of the solar nebula, and have been stored in distant orbits in the Oort cloud over most of the history of the solar system. It had been thought that this benign environment would preserve comets in close to their original pristine state. However, recent studies have identified a number of physical processes that have likely acted to modify cometary nuclei in a variety of significant ways. It is important to consider all of these possible processes, both in deciding on a site on the nucleus for collection of cometary samples, and in interpreting the results of analyses of returned cometary samples. Although it can no longer be said that comets are pristine samples of original solar nebula material, they are still the best obtainable samples of that unique period in the formation of the planetary system.

  4. Radio characteristics of galactic nuclei

    NASA Astrophysics Data System (ADS)

    Condon, J. J.

    1986-02-01

    Radio characteristics of galactic nuclei, providing such unique information as spectral data on source variability, and the long-term history of the central engine and its duration of activity and total energy, are reviewed. The compact radio source characteristics are complicated by orientation-dependent relativistic beaming and by refractive focusing in the interstellar medium. Incoherent synchrotron radiation is thought to be the emission mechanism, with the result that synchrotron self-absorption in compact sources hides the central engine from direct radio observation. However, the history revealed by the extended jets and lobes of radio galaxies and quasars favors a single massive object not supported by radiation pressure, either a spinar or a black hole, as the energy source in radio-galaxy nuclei.

  5. Geometric symmetries in light nuclei

    NASA Astrophysics Data System (ADS)

    Bijker, R.

    2017-06-01

    The algebraic cluster model is is applied to study cluster states in the nuclei12C and16O. The observed level sequences can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the α-particles, i.e. an equilateral triangle for12C, and a regular tetrahedron for16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of α-particles.

  6. Direct Reactions with Exotic Nuclei

    SciTech Connect

    Baur, G.; Typel, S.

    2005-10-14

    We discuss recent work on Coulomb dissociation and an effective-range theory of low-lying electromagnetic strength of halo nuclei. We propose to study Coulomb dissociation of a halo nucleus bound by a zero-range potential as a homework problem. We study the transition from stripping to bound and unbound states and point out in this context that the Trojan-Horse method is a suitable tool to investigate subthreshold resonances.

  7. Nuclei at High Angular Momentum

    SciTech Connect

    Diamond, R. M.; Stephens, F. S.

    1980-12-01

    It appears that most nuclei show a compromise between purely collective and purely non-collective behavior at very high spins.non~collective behavior in nuclei has been seen only as high as 36 or 37{bar h}, at which point a more collective structure seems to develop. The concepts underlying the study of high angular momentum states are discussed. The factors that limit angular momentum in nuclei are considered. The currently emerging state of physics of very high spin states is reviewed. The detailed calculations currently made for high spin states are described, focusing not on the calculations themselves, but on the physical input to them and results that come out. Production of high-spin states using heavy-ion reactions is reviewed. Studies of {gamma}-rays de-exciting the evaporation residues from heavy-ion reactions are covered. Two types of {gamma} rays occur: those that cool the nucleus to or toward the yrast line, called "statistical," and those that are more or less parallel to the yrast line and remove the angular momentum, called "yrast~like." Collective rotation, in simplest form the motion of a deformed nucleus around an axis perpendicular to its symmetry axis, is also covered.

  8. Expectations and Limits to Synthesize Nuclei with Z ≥ 120

    NASA Astrophysics Data System (ADS)

    Giardina, G.; Fazio, G.; Mandaglio, G.; Manganaro, M.; Nasirov, A. K.; Romaniuk, M. V.; Saccà, C.

    In order to explore the possibilities to synthesize the new superheavy elements with Z=120, 122, 124, 126 some hot-fusion (mass asymmetric) reactions and cold-fusion (less mass asymmetric) reactions are studied. The dynamics of reaction with massive nuclei and the formation probability of heavy and superheavy elements with Z=90-126 in the asymmetric and symmetric reactions are discussed. The systematics of fusion probability PCN and evaporation residue cross section σER in these reactions are presented. Moreover, we explore the possibility of synthesis of superheavy nuclei by the use of reaction with the neutron rich radioactive beam 132Sn, and by symmetric reactions like 136Xe+136Xe and 139,149La+ 139,149La.

  9. The nuclear geometric Yang-Mills equation for incompressible nuclei

    NASA Astrophysics Data System (ADS)

    Sparks, Nicholas; Rosensteel, George

    2016-09-01

    The geometric Yang-Mills equation for the Bohr-Mottelson collective model provides a way of relating angular momentum degrees of freedom to the internal (Kelvin circulation) degrees of freedom. It is well known that nuclei are highly incompressible. The correct mathematical description for nuclear incompressibility involves an equation of constraint for constant volume. An alternative yet equivalent description involves treating this constraint in a purely differential geometric way. The relationship between these two seemingly different approaches is explored here.

  10. Saturation with chiral interactions and consequences for finite nuclei

    NASA Astrophysics Data System (ADS)

    Simonis, J.; Stroberg, S. R.; Hebeler, K.; Holt, J. D.; Schwenk, A.

    2017-07-01

    We explore the impact of nuclear matter saturation on the properties and systematics of finite nuclei across the nuclear chart. By using the ab initio in-medium similarity renormalization group (IM-SRG), we study ground-state energies and charge radii of closed-shell nuclei from 4He to 78Ni based on a set of low-resolution two- and three-nucleon interactions that predict realistic saturation properties. We first investigate in detail the convergence properties of these Hamiltonians with respect to model-space truncations for both two- and three-body interactions. We find one particular interaction that reproduces well the ground-state energies of all closed-shell nuclei studied. As expected from their saturation points relative to this interaction, the other Hamiltonians underbind nuclei but lead to a remarkably similar systematics of ground-state energies. Extending our calculations to complete isotopic chains in the s d and p f shells with the valence-space IM-SRG, the same interaction reproduces not only experimental ground states but two-neutron-separation energies and first-excited 2+ states. We also extend the valence-space IM-SRG to calculate radii. Since this particular interaction saturates at too high density, charge radii are still too small compared with experiment. Except for this underprediction, the radius systematics is, however, well reproduced. Our results highlight the renewed importance of nuclear matter as a theoretical benchmark for the development of next-generation chiral interactions.

  11. Diversity of vestibular nuclei neurons targeted by cerebellar nodulus inhibition

    PubMed Central

    Meng, Hui; Blázquez, Pablo M; Dickman, J David; Angelaki, Dora E

    2014-01-01

    Abstract A functional role of the cerebellar nodulus and ventral uvula (lobules X and IXc,d of the vermis) for vestibular processing has been strongly suggested by direct reciprocal connections with the vestibular nuclei, as well as direct vestibular afferent inputs as mossy fibres. Here we have explored the types of neurons in the macaque vestibular nuclei targeted by nodulus/ventral uvula inhibition using orthodromic identification from the caudal vermis. We found that all nodulus-target neurons are tuned to vestibular stimuli, and most are insensitive to eye movements. Such non-eye-movement neurons are thought to project to vestibulo-spinal and/or thalamo-cortical pathways. Less than 20% of nodulus-target neurons were sensitive to eye movements, suggesting that the caudal vermis can also directly influence vestibulo-ocular pathways. In general, response properties of nodulus-target neurons were diverse, spanning the whole continuum previously described in the vestibular nuclei. Most nodulus-target cells responded to both rotation and translation stimuli and only a few were selectively tuned to translation motion only. Other neurons were sensitive to net linear acceleration, similar to otolith afferents. These results demonstrate that, unlike the flocculus and ventral paraflocculus which target a particular cell group, nodulus/ventral uvula inhibition targets a large diversity of cell types in the vestibular nuclei, consistent with a broad functional significance contributing to vestibulo-ocular, vestibulo-thalamic and vestibulo-spinal pathways. PMID:24127616

  12. Ground states of larger nuclei

    SciTech Connect

    Pieper, S.C.; Wiringa, R.B.; Pandharipande, V.R.

    1995-08-01

    The methods used for the few-body nuclei require operations on the complete spin-isospin vector; the size of this vector makes such methods impractical for nuclei with A > 8. During the last few years we developed cluster expansion methods that do not require operations on the complete vector. We use the same Hamiltonians as for the few-body nuclei and variational wave functions of form similar to the few-body wave functions. The cluster expansions are made for the noncentral parts of the wave functions and for the operators whose expectation values are being evaluated. The central pair correlations in the wave functions are treated exactly and this requires the evaluation of 3A-dimensional integrals which are done with Monte Carlo techniques. Most of our effort was on {sup 16}O, other p-shell nuclei, and {sup 40}Ca. In 1993 the Mathematics and Computer Science Division acquired a 128-processor IBM SP which has a theoretical peak speed of 16 Gigaflops (GFLOPS). We converted our program to run on this machine. Because of the large memory on each node of the SP, it was easy to convert the program to parallel form with very low communication overhead. Considerably more effort was needed to restructure the program from one oriented towards long vectors for the Cray computers at NERSC to one that makes efficient use of the cache of the RS6000 architecture. The SP made possible complete five-body cluster calculations of {sup 16}O for the first time; previously we could only do four-body cluster calculations. These calculations show that the expectation value of the two-body potential is converging less rapidly than we had thought, while that of the three-body potential is more rapidly convergent; the net result is no significant change to our predicted binding energy for {sup 16}O using the new Argonne v{sub 18} potential and the Urbana IX three-nucleon potential. This result is in good agreement with experiment.

  13. Breakup Densities of Hot Nuclei

    NASA Astrophysics Data System (ADS)

    Viola, V. E.; Kwiatkowski, K.; Natowitz, J. B.; Yennello, S. J.

    2004-09-01

    Breakup densities of hot 197Au-like residues have been deduced from the systematic trends of Coulomb parameters required to fit intermediate-mass-fragment kinetic-energy spectra. The results indicate emission from nuclei near normal nuclear density below an excitation energy E*/A≲2 MeV, followed by a gradual decrease to a near-constant value of ρ/ρ0˜0.3 for E*/A≳5 MeV. Temperatures derived from these data with a density-dependent Fermi-gas model yield a nuclear caloric curve that is generally consistent with those derived from isotope ratios.

  14. Superdeformation in the mercury nuclei

    SciTech Connect

    Janssens, R.V.F.; Carpenter, M.P.; Fernandez, P.B.; Moore, E.F.; Ahmad, I.; Khoo, T.L.; Wolfs, F.L.H. ); Drigert, M.W. ); Ye, D.; Beard, K.B.; Garg, U.; Reviol, W. ); Bearden, I.G.; Benet, P.; Daly, P.J.; Grabowski, Z.W. )

    1990-01-01

    We shall first summarize the present experimental situation concerning {sup 192}Hg, the nucleus regarded as the analog of {sup 152}Dy for this superdeformation (SD) region in that gaps are calculated to occur at large deformation for Z = 80 and N = 112. Proton and neutron excitations out of the {sup 192}Hg core will then be reviewed with particular emphasis on {sup 191}Hg and {sup 193}Tl. The presentation will conclude with a brief discussion on limits of the SD region for neutron deficient Hg nuclei. 26 refs., 10 figs.

  15. Thermal evolution of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Prialnik, Dina

    1989-01-01

    The long-term thermal evolution in models of comet nuclei is examined. Models of the nucleus surface and interior are discussed and the equations of comet nucleus evolution are analyzed. The thermal evolution of a nucleus in Comet P/Halley's orbit is outlined. The effects of temperature, composition, and orbital parameters on the evolutionary course are examined. Consideration is given to the implications of the assumption that new comets are pristine objects which have undergone little alteration and constitute a source of original solar nebula material.

  16. Large acceptance spectrometers for invariant mass spectroscopy of exotic nuclei and future developments

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Kondo, Y.

    2016-06-01

    Large acceptance spectrometers at in-flight RI separators have played significant roles in investigating the structure of exotic nuclei. Such spectrometers are in particular useful for probing unbound states of exotic nuclei, using invariant mass spectroscopy with reactions at intermediate and high energies. We discuss here the key characteristic features of such spectrometers, by introducing the recently commissioned SAMURAI facility at the RIBF, RIKEN. We also investigate the issue of cross talk in the detection of multiple neutrons, which has become crucial for exploring further unbound states and nuclei beyond the neutron drip line. Finally we discuss future perspectives for large acceptance spectrometers at the new-generation RI-beam facilities.

  17. Transcription in Isolated Wheat Nuclei

    PubMed Central

    Luthe, Dawn Sywassink; Quatrano, Ralph S.

    1980-01-01

    Nuclei free of RNase activity were isolated from 3-hour-imbibed wheat (var. Yamhill) embryos by centrifugation through a discontinuous gradient of Percoll. The maximum rate of RNA synthesis observed in these nuclei was approximately 5 picomoles [3H]UTP per milligram DNA per minute. Two monovalent cation optima were found when measured in the presence of 15 millimolar MgCl2 or 2 millimolar MnCl2; 15 and 75 millimolar (NH4)2SO4. At the high monovalent cation optimum, the rate of RNA synthesis was linear for the first 10 to 15 minutes of incubation and still increasing after 3 hours. RNA synthesized in vitro (30-minute pulse followed by a 30-minute chase) showed distinct 18 and 26S RNA peaks comprising 13 and 17% of the total radioactivity, respectively. The over-all pattern of RNA synthesized in vitro was similar to the in vivo pattern. Approximately 40 to 50% of the RNA synthesized was inhibited by α-amanitin at 4 micrograms per milliliter. The newly synthesized 6 to 10S RNA appeared to be selectively inhibited by α-amanitin. PMID:16661179

  18. Selfconsistent calculations for hyperdeformed nuclei

    SciTech Connect

    Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D.

    1996-12-31

    Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.

  19. Physical Processing of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Stern, S. Alan

    1997-01-01

    Cometary nuclei preserve a cosmo-chemical record of conditions and processes in the primordial solar nebula, and possibly even the interstellar medium. However, that record is not perfectly preserved over the age of the solar system due to a variety of physical processes which act to modify cometary surfaces and interiors. Possible structural and/or internal processes include: collisional accretion, disruption, and reassembly during formation; internal heating by long and short-lived radionuclides; amorphous to crystalline phase transitions, and thermal stresses. Identified surface modification processes include: irradiation by galactic cosmic rays, solar protons, UV photons, and the Sun's T Tauri stage mass outflow; heating by passing stars and nearby supernovae; gardening by debris impacts; the accretion of interstellar dust and gas and accompanying erosion by hypervelocity dust impacts and sputtering; and solar heating with accompanying crust formation. These modification processes must be taken into account in both the planning and the interpretation of the results of a Comet Nucleus Sample Return Mission. Sampling of nuclei should be done at as great a depth below the surface crust as technically feasible, and at vents or fissures leading to exposed volatiles at depth. Samples of the expected cometary crust and near-surface layers also need to be returned for analysis to achieve a better understanding of the effects of these physical processes. We stress that comets are still likely less modified dm any other solar system bodies, but the degree of modification can vary greatly from one comet to the next.

  20. Physical Processing of Cometary Nuclei

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.; Stern, S. Alan

    1997-12-01

    Cometary nuclei preserve a cosmo-chemical record of conditions and processes in the primordial solar nebula, and possibly even the interstellar medium. However, that record is not perfectly preserved over the age of the solar system due to a variety of physical processes which act to modify cometary surfaces and interiors. Possible structural and/or internal processes include: collisional accretion, disruption, and reassembly during formation; internal heating by long and short-lived radionuclides; amorphous to crystalline phase transitions, and thermal stresses. Identified surface modification processes include: irradiation by galactic cosmic rays, solar protons, UV photons, and the Sun's T Tauri stage mass outflow; heating by passing stars and nearby supernovae; gardening by debris impacts; the accretion of interstellar dust and gas and accompanying erosion by hypervelocity dust impacts and sputtering; and solar heating with accompanying crust formation. These modification processes must be taken into account in both the planning and the interpretation of the results of a Comet Nucleus Sample Return Mission. Sampling of nuclei should be done at as great a depth below the surface crust as technically feasible, and at vents or fissures leading to exposed volatiles at depth. Samples of the expected cometary crust and near-surface layers also need to be returned for analysis to achieve a better understanding of the effects of these physical processes. We stress that comets are still likely less modified dm any other solar system bodies, but the degree of modification can vary greatly from one comet to the next.

  1. ISOLATION OF SKELETAL MUSCLE NUCLEI

    PubMed Central

    Edelman, Jean C.; Edelman, P. Michael; Knigge, Karl M.; Schwartz, Irving L.

    1965-01-01

    A method employing aqueous media for isolation of nuclei from rat skeletal muscle is described. The technique involves (a) mincing and then homogenizing in a 0.32 M sucrose-salt solution with a Potter-Elvehjem type homogenizer using a Delrin (an acetal resin) pestle and a carefully controlled, relatively large pestle-to-glass clearance, (b) filtering through fiberglass and stainless steel screens of predetermined mesh size to remove myofibrils and connective tissue, and (c) centrifuging in a 2.15 M sucrose-salt solution containing 0.7 mM ATP. Electron and phase-contrast microscopic observations show that the nuclei are intact, unencumbered by cytoplasmic tags, and possess well preserved distinct nucleoli, nucleoplasm, and nuclear membranes. Cytoplasmic contamination is minimal and mainly mitochondrial. Chemical assays of the nuclear fraction show that the DNA/protein and RNA/DNA ratios are comparable to those obtained in other tissues. These ratios, as well as the low specific activity obtained for cytochrome c oxidase and the virtual absence of myofibrillar ATPase, indicate a high degree of purity with minimal mitochondrial and myofibrillar contamination. The steps comprising the technique and the reasons for their selection are discussed. PMID:4287141

  2. Mass-23 nuclei in astrophysics

    NASA Astrophysics Data System (ADS)

    Fraser, P. R.; Amos, K.; Canton, L.; Karataglidis, S.; Svenne, J. P.; van der Kniff, D.

    2015-09-01

    The formation of mass-23 nuclei by radiative capture is of great interest in astrophysics. A topical problem associated with these isobars is the so-called 22Na puzzle of ONe white dwarf novae, where the abundance of 22Na observed is not as is predicted by current stellar models, indicating there is more to learn about how the distribution of elements in the universe occurred. Another concerns unexplained variations in elements abundance on the surface of aging red giant stars. One method for theoretically studying nuclear scattering is the Multi-Channel Algebraic Scattering (MCAS) formalism. Studies to date have used a simple collective-rotor prescription to model the target states which couple to projectile nucleons. While, in general, the target states considered all belong to the ground state rotor band, for some systems it is necessary to include coupling to states outside of this band. Herein we discuss an extension of MCAS to allow coupling of different strengths between such states and the ground state band. This consideration is essential when studying the scattering of neutrons from 22Ne, a necessary step in studying the mass-23 nuclei mentioned above.

  3. Review of metastable states in heavy nuclei

    SciTech Connect

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    2016-05-31

    Here, the structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A ≳ 150. The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  4. PHYSICAL STUDIES OF ISOLATED EUCARYOTIC NUCLEI

    PubMed Central

    Olins, Donald E.; Olins, Ada L.

    1972-01-01

    The degree of chromatin condensation in isolated rat liver nuclei and chicken erythrocyte nuclei was studied by phase-contrast microscopy as a function of solvent pH, K+ and Mg++ concentrations Data were represented as "phase" maps, and standard solvent conditions selected that reproducibly yield granular, slightly granular, and homogeneous nuclei Nuclei in these various states were examined by ultraviolet absorption and circular dichroism (CD) spectroscopy, low-angle X-ray diffraction, electron microscopy, and binding capacity for ethidium bromide Homogeneous nuclei exhibited absorption and CD spectra resembling those of isolated nucleohistone. Suspensions of granular nuclei showed marked turbidity and absorption flattening, and a characteristic blue-shift of a crossover wavelength in the CD spectra. In all solvent conditions studied, except pH < 2 3, low-angle X-ray reflections characteristic of the native, presumably superhelical, nucleohistone were observed from pellets of intact nuclei. Threads (100–200 A diameter) were present in the condensed and dispersed phases of nuclei fixed under the standard solvent conditions, and examined in the electron microscope after thin sectioning and staining Nuclei at neutral pH, with different degrees of chromatin condensation, exhibited similar binding capacities for ethidium bromide. These data suggest a model that views chromatin condensation as a close packing of superhelical nucleohistone threads but still permits condensed chromatin to respond rapidly to alterations in solvent environment. PMID:4554987

  5. Review of metastable states in heavy nuclei

    DOE PAGES

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    2016-05-31

    Here, the structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A ≳ 150. The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  6. Review of metastable states in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    2016-07-01

    The structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A≳ 150 . The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  7. Properties of fission fragments for Z =112 -116 superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Kaur, Gurjit; Sandhu, Kirandeep; Sharma, Manoj K.

    2016-07-01

    The dynamical cluster decay model (DCM) is applied to understand the dynamics of 48Ca+238U,244Pu,248Cm reactions at comparable excitation energies across the barrier. To understand the capture stage of *286112 ,*292114 , and *296116 nuclei, the compound nucleus formation probability is calculated. The indication of PC N<1 in the DCM framework demonstrates the fact that some competing process such as quasifission may occur at the capture stage of the 48Ca induced reactions. To understand this further, the comparative decay analysis of *286112 ,*292114 and *296116 , nuclei is carried out using β2 i deformations within hot optimum orientation criteria, and the calculated fission cross sections find nice agreement with available data. The fission mass distribution shows a double humped structure where a symmetric peak observed around the Sn region appears to find its genesis in a symmetric quasifission component. On the other hand, the emergence of peaks around Pb in the decay of Z =112 , 114, and 116 nuclei signify the possible presence of asymmetric quasifission. Higher and broader asymmetric quasifission peaks are observed for *296116 and *292114 nuclei as compared to *286112 nucleus. Beside this, the total kinetic energy (TKE) distribution of the decay fragments is also explored by using different proximity potentials, such as Prox-77, Prox-88, and Prox-00. Prox-88 seems to perform better and the calculated TKE values find relatively better comparison at lower angular momentum states. The possible role of different radii of the decaying nuclei is also exercised to understand the TKE ¯ dynamics of 48Ca+238U,244Pu,248Cm reactions.

  8. Developmental origins of diversity in cerebellar output nuclei.

    PubMed

    Green, Mary J; Wingate, Richard J T

    2014-01-09

    The functional integration of the cerebellum into a number of different neural systems is governed by the connection of its output axons. In amniotes, the majority of this output is mediated by an evolutionarily diverse array of cerebellar nuclei that, in mice, are derived from the embryonic rhombic lip. To understand the origins of cerebellar nucleus diversity, we have explored how nucleus development is patterned in birds, which notably lack a dentate-like nucleus output to the dorsal thalamus. Using targeted in ovo electoroporation of green fluorescent protein (GFP) and red fluorescent protein (RFP) in a variety of combinations and with different conditional enhancers, we show that cerebellar nuclei in chicks are produced, as in the mouse, at the rhombic lip. Furthermore, the comparison of fate-mapped neurons with molecular markers reveals a strict temporal sequence of cell fate allocation in establishing the avian lateral and medial cerebellar nuclei. In contrast to the mouse cerebellum, Lhx9 expression is confined to extracerebellar thalamic afferent nuclei corresponding to the absence, in chicks, of a dentate nucleus. Spatiotemporally targeted over-expression of Lhx9 in chick cerebellar nuclei (recapitulating in part the mammalian expression pattern) results in a loss of distinct nuclear boundaries and a change in axon initial trajectories consistent with a role for Lhx9 specifying targeting. Our results confirm the relationship between cell fate and a fine grain temporal patterning at the rhombic lip. This suggests that the lack of a cerebellar output to the dorsal thalamus of birds corresponds with a restricted expression of the LIM-homeodomain gene Lhx9 to earlier born rhombic lip cohorts when compared to mice. The evolution of cerebellar nucleus diversity in amniotes may hence reflect a heterochronic adaptation of gene expression with respect to the sequential production of rhombic lip derivatives resulting in altered axonal targeting.

  9. Beta-Delayed Neutron Emission in Neutron-Rich Nuclei

    NASA Astrophysics Data System (ADS)

    Marketin, Tomislav; Sieverding, André; Wu, Meng-Ru; Paar, Nils; Martínez-Pinedo, Gabriel

    β-delayed neutron emission is the process of emission of one or more neutrons, after β-decay, from the excited daughter nucleus. The probabilities of emission are an important physical quantity in a variety of nuclear physics applications, from the simulations of heavy element nucleosynthesis to control of reactor power levels and nuclear waste management. However, it is relatively difficult to measure and much less data is available than for β-decay, particularly for nuclei that are expected to take part in the r-process. In this work we will present a calculation of β-decay half-lives and β-delayed neutron emission probabilities in neutron-rich nuclei using the transition strength obtained with a microscopic model combined with a statistical calculation of level densities. We explore the effect of altered emission probabilities, with respect to the simple calculation, on the r-process.

  10. Neutron halo in deformed nuclei

    SciTech Connect

    Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang

    2010-07-15

    Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus {sup 44}Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.

  11. Single Pion production from Nuclei

    SciTech Connect

    Singh, S. K.; Athar, M. Sajjad; Ahmed, S.

    2007-12-21

    We have studied charged current one pion production induced by {nu}{sub {mu}}({nu}-bar{sub {mu}}) from some nuclei. The calculations have been done for the incoherent pion production processes from these nuclear targets in the {delta} dominance model and take into account the effect of Pauli blocking, Fermi motion and renormalization of {delta} properties in the nuclear medium. The effect of final state interactions of pions has also been taken into account. The numerical results have been compared with the recent results from the MiniBooNE experiment for the charged current 1{pi} production, and also with some of the older experiments in Freon and Freon-Propane from CERN.

  12. The Physics of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1997-01-01

    The recent developments in cometary studies suggest rather low mean densities and weak structures for the nuclei. They appear to be accumulations of fairly discrete units loosely bound together, as deduced from the observations of Comet Shoemaker-Levy 9 during its encounter with Jupiter. The compressive strengths deduced from comet splitting by Opik and Sekanina are extremely low. These values are confirmed by theory developed here. assuming that Comet P/Holmes had a companion that collided with it in 1892. There follows a short discussion that suggests that the mean densities of comets should increase with comet dimensions. The place of origin of short-period comets may relate to these properties.

  13. Inclusive breakup of Borromean nuclei

    NASA Astrophysics Data System (ADS)

    Hussein, M. S.; Carlson, B. V.; Frederico, T.

    2017-06-01

    We derive the inclusive breakup cross section of a three-fragment projectile nuclei, a = b + x 1 +x 2, in the spectator model. The resulting four-body cross section for observing b, is composed of the elastic breakup cross section which contains information about the correlation between the two participant fragments, and the inclusive non-elastic breakup cross section. This latter cross section is found to be a non-trivial four-body generalization of the Austern formula [1], which is proportional to a matrix element of the form, . The new feature here is the three-body absorption, represented by the imaginary potential, W 3b . We analyze this type of absorption and supply ideas of how to calculate its contribution.

  14. Breakup Densities of Hot Nuclei.

    NASA Astrophysics Data System (ADS)

    Viola, Vic

    2006-04-01

    Breakup densities of hot ^197Au-like residues have been deduced from the systematic trends of Coulomb parameters required to fit intermediate-mass-fragment kinetic-energy spectra. The results indicate emission from nuclei near normal nuclear density below an excitation energy E*/A .3ex<˜x 2 MeV, followed by a gradual decrease to a near-constant value of ρ/ρ0˜ 3 for E*/A .3ex>˜x 5 MeV. Temperatures derived from these data with a density-dependent Fermi-gas model yield a nuclear caloric curve that is generally consistent with those derived from isotope ratios.

  15. Quasifree kaon photoproduction on nuclei

    SciTech Connect

    Frank Lee; T. MART; Cornelius Bennhold; Lester Wright

    2001-12-01

    Investigations of the quasifree reaction A({gamma}, K Y)B are presented in the distorted wave impulse approximation (DWIA). For this purpose, we present a revised tree-level model of elementary kaon photoproduction that incorporates hadronic form factors consistent with gauge invariance, uses SU(3) values for the Born couplings and uses resonances consistent with multi-channel analyses. The potential of exclusive quasifree kaon photoproduction on nuclei to reveal details of the hyperon-nucleus interaction is examined. Detailed predictions for the coincidence cross section, the photon asymmetry, and the hyperon polarization and their sensitivities to the ingredients of the model are obtained for all six production channels. Under selected kinematics these observables are found to be sensitive to the hyperon-nucleus final state interaction. Some polarization observables are found to be insensitive to distortion effects, making them ideal tools to search for possible medium modifications of the elementary amplitude.

  16. Reaction theory for exotic nuclei

    SciTech Connect

    Bonaccorso, Angela

    2014-05-09

    Exotic nuclei are usually defined as those with unusual N/Z ratios. They can be found in the crust of neutron stars enbedded in a sea of electrons or created in laboratory by fragmentation of a primary beam (in-flight method) or of the target (ISOL method). They are extremely important for nuclear astrophysics, see for example Ref.[1]. Furthermore by studying them we can check the limits of validity of nuclear reaction and structure models. This contribution will be devoted to the understanding of how by using reaction theory and comparing to the data we can extract structure information. We shall discuss the differences between the mechanisms of transfer and breakup reactions, an we will try to explain how nowadays it is possible to do accurate spectroscopy in extreme conditions.

  17. Proton emission from triaxial nuclei

    SciTech Connect

    Delion, D.S.; Wyss, R.; Karlgren, D.; Liotta, R.J.

    2004-12-01

    Proton decay from triaxially deformed nuclei is investigated. The deformation parameters corresponding to the mother nucleus are determined microscopically and the calculated decay widths are used to probe the mean-field wave function. The proton wave function in the mother nucleus is described as a resonant state in a coupled-channel formalism. The decay width, as well as the angular distribution of the decaying particle, are evaluated and their dependence upon the triaxial deformation parameters is studied in the decay of {sup 161}Re and {sup 185}Bi. It is found that the decay width is very sensitive to the parameters defining the triaxial deformation while the angular distribution is a universal function which does not depend upon details of the nuclear structure.

  18. Towards the exact calculation of medium nuclei

    SciTech Connect

    Gandolfi, Stefano; Carlson, Joseph Allen; Lonardoni, Diego; Wang, Xiaobao

    2016-12-19

    The prediction of the structure of light and medium nuclei is crucial to test our knowledge of nuclear interactions. The calculation of the nuclei from two- and three-nucleon interactions obtained from rst principle is, however, one of the most challenging problems for many-body nuclear physics.

  19. Ice nuclei emissions from biomass burning

    Treesearch

    Markus D. Petters; Matthew T. Parsons; Anthony J. Prenni; Paul J. DeMott; Sonia M. Kreidenweis; Christian M. Carrico; Amy P. Sullivan; Gavin R. McMeeking; Ezra Levin; Cyle E. Wold; Jeffrey L. Collett; Hans Moosmuller

    2009-01-01

    Biomass burning is a significant source of carbonaceous aerosol in many regions of the world. When present, biomass burning particles may affect the microphysical properties of clouds through their ability to function as cloud condensation nuclei or ice nuclei. We report on measurements of the ice nucleation ability of biomass burning particles performed on laboratory-...

  20. Thalamic nuclei after human blunt head injury.

    PubMed

    Maxwell, William L; MacKinnon, Mary Anne; Smith, Douglas H; McIntosh, Tracy K; Graham, David I

    2006-05-01

    Paraffin-embedded blocks from the thalamus of 9 control patients, 9 moderately disabled, 12 severely disabled, and 10 vegetative head-injured patients assessed using the Glasgow Outcome Scale and identified from the Department of Neuropathology archive. Neurons, astrocytes, macrophages, and activated microglia were differentiated by Luxol fast blue/cresyl violet, GFAP, CD68, and CR3/43 staining and stereological techniques used to estimate cell number in a 28-microm-thick coronal section. Counts were made in subnuclei of the mediodorsal, lateral posterior, and ventral posterior nuclei, the intralaminar nuclei, and the related internal lamina. Neuronal loss occurred from mediodorsal parvocellularis, rostral center medial, central lateral and paracentral nuclei in moderately disabled patients; and from mediodorsal magnocellularis, caudal center medial, rhomboid, and parafascicular nuclei in severely disabled patients; and all of the above and the centre median nucleus in vegetative patients. Neuronal loss occurred primarily from cognitive and executive function nuclei, a lesser loss from somatosensory nuclei and the least loss from limbic motor nuclei. There was an increase in the number of reactive astrocytes, activated microglia, and macrophages with increasing severity of injury. The study provides novel quantitative evidence for differential neuronal loss, with survival after human head injury, from thalamic nuclei associated with different aspects of cortical activation.

  1. 76 FR 63702 - In the Matter of the Designation of Conspiracy of Fire Nuclei, aka Conspiracy of the Nuclei of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Conspiracy of Fire Nuclei, aka Conspiracy of the Nuclei of Fire, aka Conspiracy of Cells of Fire, aka Synomosia of Pyrinon Tis Fotias, aka Thessaloniki-Athens Fire Nuclei Conspiracy, as a Specially Designated... that the organization known as Conspiracy of Fire Nuclei, also known as Conspiracy of the Nuclei...

  2. Constrained Hartree-Fock Theory and Study of Deformed Structures of Closed Shell Nuclei

    NASA Astrophysics Data System (ADS)

    Praharaj, Choudhury

    2016-03-01

    We have studied some N or Z = 50 nuclei in a microscopic model with effective interaction in a reasonably large shell model space. Excitation of particles across 50 shell closure leads to well-deformed excited prolate configurations. The potential energy surfaces of nuclei are studied using Hartree-Fock theory with quadrupole constraint to explore the various deformed configurations of N = 50 nuclei 82Ge , 84Se and 86Kr . Energy spectra are calculated from various intrinsic states using Peierls-Yoccoz angular momentum projection technique. Results of spectra and electromagnetic moments and transitions will be presented for N = 50 nuclei and for Z = 50 114Sn nucleus. Supported by Grant No SB/S2/HEP-06/2013 of DST.

  3. Environmental properties related to active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Manzer, Lianne H.

    There continues to be significant controversy regarding the mechanisms responsible for the initiation of activity in galactic nuclei. It is well understood that the non-thermal energy produced by an AGN is due to accretion onto a supermassive black hole. It has not yet been determined, however, what leads particular galaxies to become active. An accurate exploration into what triggers an AGN demands an analysis of a large sample of galaxies across a diverse set of environments. In this work, we investigate possible environmental influences by carrying out a statistical investigation of galaxy groups. Using the catalogue of Yang et al. (2007), in which groups of galaxies containing between 2 and 20 members with redshifts between 0.01 -- 0.20 were taken from the Sloan Digital Sky Survey, we investigate the fraction of active galactic nuclei (AGN) within these groups and compare it to the sample of isolated galaxies also obtained from Yang et al. (2007). After correcting our spectroscopic data for extinction and underlying stellar absorption, we classify the galaxy sample using relevant emission-line ratios. We propose an alternate method for classifying emission-line galaxies, including AGN, which builds upon standard diagnostic utilities used for optical classification and includes uncertainties. Such classification probabilities offer a more robust and consistent method of investigating the effect of group environments with galaxy type. We find our sample to be a fair representation of the local universe by comparing the luminosity function of our entire data set to that of Blanton et al. (2001), Blanton et al. (2003b), and Montero-Dorta & Prada (2009). The evidence also suggests that the luminosity function of galaxies differs between isolated galaxies and galaxies in groups. We find a significant increase in the fraction of AGNs identified in grouped environments. On the other hand, we find a higher fraction of starforming galaxies within isolated systems. We

  4. Ice Nuclei from Birch Trees

    NASA Astrophysics Data System (ADS)

    Felgitsch, Laura; Seifried, Teresa; Winkler, Philipp; Schmale, David, III; Grothe, Hinrich

    2017-04-01

    While the importance of heterogeneous ice nucleation in the atmosphere is known, we still know very little about the substances triggering these freezing events. Recent findings support the theory that biological ice nuclei (IN) exhibit the ability to play an important role in these processes. Huffman et al. (2013) showed a burst of biological IN over woodlands triggered by rain events. Birch pollen are known to release a high number of efficient IN if incubated in water (Pummer et al. 2012). Therefore birches are of interest in our research on this topic. Plants native to the timberline, such as birch trees, have to cope with very cold climatic conditions, rendering freezing avoidance impossible. These plants trigger freezing in their extracellular spaces to control the freezing process and avoid intracellular freezing, which would have lethal consequences. The plants hereby try to freeze at a temperature well above homogeneous freezing temperatures but still at temperatures low enough to not be effected by brief night frosts. To achieve this, IN are an important tool. The specific objective of our work was to study the potential sources and distribution of IN in birch trees. We collected leaves, fruit, bark, and trunk cores from a series of mature birch trees in Tyrol, Austria at different altitudes and sampling sites. We also collected samples from a birch tree in an urban park in Vienna, Austria. Our data show a sampling site dependence and the distribution of IN throughout the tree. Our data suggest that leaves, bark, and wood of birch can function as a source of IN, which are easily extracted with water. The IN are therefore not restricted to pollen. Hence, the amount of IN, which can be released from birch trees, is tremendous and has been underrated so far. Future work aims to elucidate the nature, contribution, and potential ecological roles of IN from birch trees in different habitats. Huffman, J.A., Prenni, A.J., DeMott, P.J., Pöhlker, C., Mason, R

  5. Fusion probability in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Banerjee, Tathagata; Nath, S.; Pal, Santanu

    2015-03-01

    Background: Fusion between two massive nuclei is a very complex process and is characterized by three stages: (a) capture inside the potential barrier, (b) formation of an equilibrated compound nucleus (CN), and (c) statistical decay of the CN leading to a cold evaporation residue (ER) or fission. The second stage is the least understood of the three and is the most crucial in predicting yield of superheavy elements (SHE) formed in complete fusion reactions. Purpose: A systematic study of average fusion probability, , is undertaken to obtain a better understanding of its dependence on various reaction parameters. The study may also help to clearly demarcate onset of non-CN fission (NCNF), which causes fusion probability, PCN, to deviate from unity. Method: ER excitation functions for 52 reactions leading to CN in the mass region 170-220, which are available in the literature, have been compared with statistical model (SM) calculations. Capture cross sections have been obtained from a coupled-channels code. In the SM, shell corrections in both the level density and the fission barrier have been included. for these reactions has been extracted by comparing experimental and theoretical ER excitation functions in the energy range ˜5 %-35% above the potential barrier, where known effects of nuclear structure are insignificant. Results: has been shown to vary with entrance channel mass asymmetry, η (or charge product, ZpZt ), as well as with fissility of the CN, χCN. No parameter has been found to be adequate as a single scaling variable to determine . Approximate boundaries have been obtained from where starts deviating from unity. Conclusions: This study quite clearly reveals the limits of applicability of the SM in interpreting experimental observables from fusion reactions involving two massive nuclei. Deviation of from unity marks the beginning of the domain of dynamical models of fusion. Availability of precise ER cross

  6. Synthesis of the lightest nuclei

    NASA Astrophysics Data System (ADS)

    Kneller, James Patrick

    The lightest nuclei are principally synthesized either during the first moments of the Universe or as fragments from the spallation of heavier nuclei when Cosmic Rays interact with the Interstellar Medium and this dissertation investigates each in turn. In the first half the predictions from Big Bang Nucleosynthesis are studied when the requirements of only three relativistic neutrino flavors and a small electron neutrino chemical potential are relaxed. The hope that a small, acceptable region for each can be identified is shown to be unfounded because of a degeneracy amongst the parameters. Additional information is required and this may be obtained from the anisotropies in the Cosmic Microwave Background. The estimates of the baryon to photon ratio are shown to be consistent and a relatively well identified value for the number of relativistic neutrino species can be found but with a variance that exhibits a dependency upon the prior assumptions. By imposing a constraint upon the age of the Universe the number of relativistic neutrino species is shown to be <=6 which then yields an limit to the electron neutrino chemical potential of <=0.3. The second is concerned with the kinetics and evolution of Galactic Cosmic Ray Nucleosynthesis. Two approximations are frequently employed in calculations of the production rates: the termination of the reaction expansion at the `One-Step' term and the Straight-Ahead Approximation for the fragment energies. Relaxing the Straight-Ahead Approximation produces minor differences of order 5% but changes of order 10-50% are found when the Two-Step terms in the reaction expansion are included. The two proposed solutions capable of reconciling the theoretical predictions of the evolution of the abundances of these elements with the observations: the possibility of an enriched cosmic ray composition and a modified Oxygen to Iron relation. From the analysis of a simple model it is found that an enriched component greater than >~ 70% is

  7. Star formation around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Keel, William C.

    1987-01-01

    Active galactic nuclei (Seyfert nuclei and their relatives) and intense star formation can both deliver substantial amounts of energy to the vicinity of a galactic nucleus. Many luminous nuclei have energetics dominated by one of these mechanisms, but detailed observations show that some have a mixture. Seeing both phenomena at once raises several interesting questions: (1) Is this a general property of some kinds of nuclei? How many AGNs have surround starbursts, and vice versa? (2) As in 1, how many undiscovered AGNs or starbursts are hidden by a more luminous instance of the other? (3) Does one cause the other, and by what means, or do both reflect common influences such as potential well shape or level of gas flow? (4) Can surrounding star formation tell us anything about the central active nuclei, such as lifetimes, kinetic energy output, or mechanical disturbance of the ISM? These are important points in the understanding of activity and star formation in galactic nuclei. Unfortunately, the observational ways of addressing them are as yet not well formulated. Some preliminary studies are reported, aimed at clarifying the issues involved in study of the relationships between stellar and nonstellar excitement in galactic nuclei.

  8. Chemical complexity in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Martin-Pintado, Jesus

    2007-12-01

    In recent years our knowledge of the chemical complexity in the nuclei of galaxies has dramatically changed. Recent observations of the nucleus of the Milky Way, of the starburst galaxy NGC253 and of the ultraluminous infrared galaxy (ULIRG) Arp220 have shown large abundance of complex organic molecules believed to be formed on grains. The Galactic center appears to be the largest repository of complex organic molecule like aldehydes and alcohols in the galaxy. We also measure large abundance of methanol in starburst galaxies and in ULIRGs suggesting that complex organic molecules are also efficiently produced in the central region of galaxies with strong star formation activity. From the systematic observational studies of molecular abundance in regions dominated by different heating processes like shocks, UV radiation, X-rays and cosmic rays in the center of the Milky Way, we are opening the possibility of using chemistry as a diagnostic tool to study the highly obscured regions of galactic centers. The templates found in the nucleus of the Milky Way will be used to establish the main mechanisms driving the heating and the chemistry of the molecular clouds in galaxies with different type of activity. The role of grain chemistry in the chemical complexity observed in the center of galaxies will be also briefly discussed.

  9. Neurotransmitters of the suprachiasmatic nuclei

    PubMed Central

    Reghunandanan, Vallath; Reghunandanan, Rajalaxmy

    2006-01-01

    There has been extensive research in the recent past looking into the molecular basis and mechanisms of the biological clock, situated in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. Neurotransmitters are a very important component of SCN function. Thorough knowledge of neurotransmitters is not only essential for the understanding of the clock but also for the successful manipulation of the clock with experimental chemicals and therapeutical drugs. This article reviews the current knowledge about neurotransmitters in the SCN, including neurotransmitters that have been identified only recently. An attempt was made to describe the neurotransmitters and hormonal/diffusible signals of the SCN efference, which are necessary for the master clock to exert its overt function. The expression of robust circadian rhythms depends on the integrity of the biological clock and on the integration of thousands of individual cellular clocks found in the clock. Neurotransmitters are required at all levels, at the input, in the clock itself, and in its efferent output for the normal function of the clock. The relationship between neurotransmitter function and gene expression is also discussed because clock gene transcription forms the molecular basis of the clock and its working. PMID:16480518

  10. Molecular outflows in starburst nuclei

    NASA Astrophysics Data System (ADS)

    Roy, Arpita; Nath, Biman B.; Sharma, Prateek; Shchekinov, Yuri

    2016-12-01

    Recent observations have detected molecular outflows in a few nearby starburst nuclei. We discuss the physical processes at work in such an environment in order to outline a scenario that can explain the observed parameters of the phenomenon, such as the molecular mass, speed and size of the outflows. We show that outflows triggered by OB associations, with NOB ≥ 105 (corresponding to a star formation rate (SFR)≥1 M⊙ yr-1 in the nuclear region), in a stratified disc with mid-plane density n0 ˜ 200-1000 cm-3 and scaleheight z0 ≥ 200(n0/102 cm-3)-3/5 pc, can form molecules in a cool dense and expanding shell. The associated molecular mass is ≥107 M⊙ at a distance of a few hundred pc, with a speed of several tens of km s-1. We show that an SFR surface density of 10 ≤ ΣSFR ≤ 50 M⊙ yr-1 kpc-2 favours the production of molecular outflows, consistent with observed values.

  11. Deep inelastic scattering on asymmetric nuclei

    NASA Astrophysics Data System (ADS)

    Saito, K.; Boros, C.; Tsushima, K.; Bissey, F.; Afnan, I. R.; Thomas, A. W.

    2000-11-01

    We study deep inelastic scattering on isospin asymmetric nuclei. In particular, the difference of the nuclear structure functions and the Gottfried sum rule for the lightest mirror nuclei, 3He and 3H, are investigated. It is found that such systems can provide significant information on charge symmetry breaking and flavor asymmetry in the nuclear medium. Furthermore, we propose a new method to extract the neutron structure function from radioactive isotopes far from the line of stability. We also discuss the flavor asymmetry in the Drell-Yan process with isospin asymmetric nuclei.

  12. Separating Cloud Forming Nuclei from Interstitial Aerosol

    SciTech Connect

    Kulkarni, Gourihar R.

    2012-09-12

    It has become important to characterize the physicochemical properties of aerosol that have initiated the warm and ice clouds. The data is urgently needed to better represent the aerosol-cloud interaction mechanisms in the climate models. The laboratory and in-situ techniques to separate precisely the aerosol particles that act as cloud condensation nuclei (CCN) and ice nuclei (IN), termed as cloud nuclei (CN) henceforth, have become imperative in studying aerosol effects on clouds and the environment. This review summarizes these techniques, design considerations, associated artifacts and challenges, and briefly discusses the need for improved designs to expand the CN measurement database.

  13. Coupled-cluster computations of atomic nuclei.

    PubMed

    Hagen, G; Papenbrock, T; Hjorth-Jensen, M; Dean, D J

    2014-09-01

    In the past decade, coupled-cluster theory has seen a renaissance in nuclear physics, with computations of neutron-rich and medium-mass nuclei. The method is efficient for nuclei with product-state references, and it describes many aspects of weakly bound and unbound nuclei. This report reviews the technical and conceptual developments of this method in nuclear physics, and the results of coupled-cluster calculations for nucleonic matter, and for exotic isotopes of helium, oxygen, calcium, and some of their neighbors.

  14. Where Should the Nuclei Be Located?

    ERIC Educational Resources Information Center

    Ying Liu; Yue Liu; Drew, Michael G. B.

    2005-01-01

    The approach of determining the nature of the electron wave function via orbital representations qualitatively and via numerical calculations quantitatively is demonstrated. The angular part of the wave function provides suitable representation of the positions of the nuclei.

  15. Infrared Observations of Cometary Dust and Nuclei

    NASA Technical Reports Server (NTRS)

    Lisse, Carey

    2004-01-01

    This bibliography lists citations for publications published under the grant. Subjects of the publications include cometary dust, instellar and interplanetary dust, comet nuclei and comae, Comet Hale-Bopp, infrared observations of comets, mass loss, and comet break-up.

  16. Parton distributions in nuclei: Quagma or quagmire

    SciTech Connect

    Close, F.E.

    1988-01-01

    The emerging information on the way quark, antiquark, and gluon distributions are modified in nuclei relative to free nucleons is reviewed. Particular emphasis is placed on Drell-Yan and /psi/ production on nuclei and caution against premature use of these as signals for quagma in heavy-ion collisions. If we are to identify the formation of quark-gluon plasma in heavy-ion collisions by changes in the production rates for /psi/ relative to Drell-Yan lepton pairs, then it is important that we first understand the ''intrinsic'' changes in parton distributions in nuclei relative to free nucleons. So, emerging knowledge on how quark, antiquark, and gluon distributions are modified in nuclei relative to free nucleons is reviewed, and the emerging theoretical concensus is briefly summarized.

  17. Clusterization and quadrupole deformation in nuclei

    SciTech Connect

    Cseh, J.; Algora, A.; Antonenko, N. V.; Jolos, R. V.; Scheid, W.; Darai, J.; Hess, P. O.

    2006-04-26

    We study the interrelation of the clusterization and quadrupole deformation of atomic nuclei, by applying cluster models. Both the energetic stability and the exclusion principle is investigated. Special attention is paid to the relative orientations of deformed clusters.

  18. Infrared Observations of Cometary Dust and Nuclei

    NASA Technical Reports Server (NTRS)

    Lisse, Carey

    2004-01-01

    This bibliography lists citations for publications published under the grant. Subjects of the publications include cometary dust, instellar and interplanetary dust, comet nuclei and comae, Comet Hale-Bopp, infrared observations of comets, mass loss, and comet break-up.

  19. Perspectives of production of superheavy nuclei

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V. Bezbakh, A. N.; Sargsyan, V. V.; Scheid, W.

    2016-07-07

    Possible ways of production of superheavies are discussed. Impact of nuclear structure on the production of superheavy nuclei in complete fusion reactions is discussed. The proton shell closure at Z = 120 is discussed.

  20. From nucleons to nuclei to fusion reactions

    NASA Astrophysics Data System (ADS)

    Quaglioni, S.; Navrátil, P.; Roth, R.; Horiuchi, W.

    2012-12-01

    Nuclei are prototypes of many-body open quantum systems. Complex aggregates of protons and neutrons that interact through forces arising from quantum chromo-dynamics, nuclei exhibit both bound and unbound states, which can be strongly coupled. In this respect, one of the major challenges for computational nuclear physics, is to provide a unified description of structural and reaction properties of nuclei that is based on the fundamental underlying physics: the constituent nucleons and the realistic interactions among them. This requires a combination of innovative theoretical approaches and high-performance computing. In this contribution, we present one of such promising techniques, the ab initio no-core shell model/resonating-group method, and discuss applications to light nuclei scattering and fusion reactions that power stars and Earth-base fusion facilities.

  1. A focus on shape coexistence in nuclei

    NASA Astrophysics Data System (ADS)

    Wood, J. L.; Heyde, K.

    2016-02-01

    The present collection of articles focuses on new directions and developments under the title of shape coexistence in nuclei, following our 2011 Reviews of Modern Physics article (K Heyde and J L Wood).

  2. From Nucleons To Nuclei To Fusion Reactions

    SciTech Connect

    Quaglioni, S; Navratil, P; Roth, R; Horiuchi, W

    2012-02-15

    Nuclei are prototypes of many-body open quantum systems. Complex aggregates of protons and neutrons that interact through forces arising from quantum chromo-dynamics, nuclei exhibit both bound and unbound states, which can be strongly coupled. In this respect, one of the major challenges for computational nuclear physics, is to provide a unified description of structural and reaction properties of nuclei that is based on the fundamental underlying physics: the constituent nucleons and the realistic interactions among them. This requires a combination of innovative theoretical approaches and high-performance computing. In this contribution, we present one of such promising techniques, the ab initio no-core shell model/resonating-group method, and discuss applications to light nuclei scattering and fusion reactions that power stars and Earth-base fusion facilities.

  3. ULTRA-RELATIVISTIC NUCLEI: A NEW FRONTIER

    SciTech Connect

    MCLERRAN,L.

    1999-10-29

    The collisions of ultra-relativistic nuclei provide a window on the behavior of strong interactions at asymptotically high energies. They also will allow the authors to study the bulk properties of hadronic matter at very high densities.

  4. The Galaxy Evolution Explorer (GALEX)

    NASA Technical Reports Server (NTRS)

    Neff, Susan

    2007-01-01

    The Galaxy Evolution Explorer was designed to detect and quantify star formation in a wide variety of environments. I report new scientific results, based on GALEX observations, such as star formation in tidal tails, extended disks, intra-group and Intra-cluster, and induced by outflows from active galactic nuclei.

  5. Higher spin states in neutron rich nuclei

    NASA Astrophysics Data System (ADS)

    Zhu, S.; Zhao, X.; Hamilton, J. H.; Ramayya, A. V.; Ma, W. C.; Peker, L. K.; Kormicki, J.; Hong, X.; Gao, W. B.; Deng, J. K.

    Nuclei on the neutron rich side of beta stability have long been of interest for nuclear structure studies because they probe different regions of the single particle spectrum and different shell gap combinations for both spherical and deformed shapes. However, such nuclei have been a difficult challenge experimentally. Much information has been gained about the properties of neutron rich nuclei at low spin from the study of radioactive isotopes produced in neutron induced, and more recently, proton induced fission of uranium. Such studies have been made possible by the use of isotope separators on line to reactors and more recently to low energy proton accelerators. However, to test many of the theoretical predictions of nuclear models one needs information about the higher spin states in nuclei in addition to their low spin states populated in radioactive decays. Higher spin states in neutron rich nuclei have been an even more difficult challenge than the lower spin states accessible through decay studies. One cannot reach the higher spin states in these nuclei by heavy ion fusion evaporation in reactions as carried out extensively for proton rich nuclei. Many years ago prompt spontaneous fission studies were used to suggest for the first time that Sr-98 and Zr-100 had unusually large ground state of deformations. The availability of higher efficiency multi-detector arrays of Compton suppressed Ge detectors has brought on a renewed interest in studies of the prompt gamma rays of the fragments from spontaneous and induced fission. Groups at Argonne, Daresbury, and a Vanderbilt-Oak Ridge-Idaho-Dubna collaboration have carried out several such studies from spontaneous and heavy-ion induced fission which have revealed new insights into our knowledge of neutron rich nuclei. This paper is primarily a review of these studies, including recent, unpublished results.

  6. Reaction cross sections of unstable nuclei

    SciTech Connect

    Ozawa, Akira

    2006-11-02

    Experimental studies on reaction cross sections are reviewed. The recent developments of radioactive nuclear beams have enabled us to measure reaction cross-sections for unstable nuclei. Using Glauber-model analysis, effective nuclear matter density distributions of unstable nuclei can be studied. Recent measurements in RIBLL at IMP and RIPS at RIKEN are introduced. The effective matter density distributions for 14-18C are also mentioned.

  7. Organization of projections from the raphe nuclei to the vestibular nuclei in rats

    NASA Technical Reports Server (NTRS)

    Halberstadt, A. L.; Balaban, C. D.

    2003-01-01

    Previous anatomic and electrophysiological evidence suggests that serotonin modulates processing in the vestibular nuclei. This study examined the organization of projections from serotonergic raphe nuclei to the vestibular nuclei in rats. The distribution of serotonergic axons in the vestibular nuclei was visualized immunohistochemically in rat brain slices using antisera directed against the serotonin transporter. The density of serotonin transporter-immunopositive fibers is greatest in the superior vestibular nucleus and the medial vestibular nucleus, especially along the border of the fourth ventricle; it declines in more lateral and caudal regions of the vestibular nuclear complex. After unilateral iontophoretic injections of Fluoro-Gold into the vestibular nuclei, retrogradely labeled neurons were found in the dorsal raphe nucleus (including the dorsomedial, ventromedial and lateral subdivisions) and nucleus raphe obscurus, and to a minor extent in nucleus raphe pallidus and nucleus raphe magnus. The combination of retrograde tracing with serotonin immunohistofluorescence in additional experiments revealed that the vestibular nuclei receive both serotonergic and non-serotonergic projections from raphe nuclei. Tracer injections in densely innervated regions (especially the medial and superior vestibular nuclei) were associated with the largest numbers of Fluoro-Gold-labeled cells. Differences were observed in the termination patterns of projections from the individual raphe nuclei. Thus, the dorsal raphe nucleus sends projections that terminate predominantly in the rostral and medial aspects of the vestibular nuclear complex, while nucleus raphe obscurus projects relatively uniformly throughout the vestibular nuclei. Based on the topographical organization of raphe input to the vestibular nuclei, it appears that dense projections from raphe nuclei are colocalized with terminal fields of flocculo-nodular lobe and uvula Purkinje cells. It is hypothesized that

  8. Organization of projections from the raphe nuclei to the vestibular nuclei in rats

    NASA Technical Reports Server (NTRS)

    Halberstadt, A. L.; Balaban, C. D.

    2003-01-01

    Previous anatomic and electrophysiological evidence suggests that serotonin modulates processing in the vestibular nuclei. This study examined the organization of projections from serotonergic raphe nuclei to the vestibular nuclei in rats. The distribution of serotonergic axons in the vestibular nuclei was visualized immunohistochemically in rat brain slices using antisera directed against the serotonin transporter. The density of serotonin transporter-immunopositive fibers is greatest in the superior vestibular nucleus and the medial vestibular nucleus, especially along the border of the fourth ventricle; it declines in more lateral and caudal regions of the vestibular nuclear complex. After unilateral iontophoretic injections of Fluoro-Gold into the vestibular nuclei, retrogradely labeled neurons were found in the dorsal raphe nucleus (including the dorsomedial, ventromedial and lateral subdivisions) and nucleus raphe obscurus, and to a minor extent in nucleus raphe pallidus and nucleus raphe magnus. The combination of retrograde tracing with serotonin immunohistofluorescence in additional experiments revealed that the vestibular nuclei receive both serotonergic and non-serotonergic projections from raphe nuclei. Tracer injections in densely innervated regions (especially the medial and superior vestibular nuclei) were associated with the largest numbers of Fluoro-Gold-labeled cells. Differences were observed in the termination patterns of projections from the individual raphe nuclei. Thus, the dorsal raphe nucleus sends projections that terminate predominantly in the rostral and medial aspects of the vestibular nuclear complex, while nucleus raphe obscurus projects relatively uniformly throughout the vestibular nuclei. Based on the topographical organization of raphe input to the vestibular nuclei, it appears that dense projections from raphe nuclei are colocalized with terminal fields of flocculo-nodular lobe and uvula Purkinje cells. It is hypothesized that

  9. The anatomy of the vestibular nuclei.

    PubMed

    Highstein, Stephen M; Holstein, Gay R

    2006-01-01

    The vestibular portion of the eighth cranial nerve informs the brain about the linear and angular movements of the head in space and the position of the head with respect to gravity. The termination sites of these eighth nerve afferents define the territory of the vestibular nuclei in the brainstem. (There is also a subset of afferents that project directly to the cerebellum.) This chapter reviews the anatomical organization of the vestibular nuclei, and the anatomy of the pathways from the nuclei to various target areas in the brain. The cytoarchitectonics of the vestibular brainstem are discussed, since these features have been used to distinguish the individual nuclei. The neurochemical phenotype of vestibular neurons and pathways are also summarized because the chemical anatomy of the system contributes to its signal-processing capabilities. Similarly, the morphologic features of short-axon local circuit neurons and long-axon cells with extrinsic projections are described in detail, since these structural attributes of the neurons are critical to their functional potential. Finally, the composition and hodology of the afferent and efferent pathways of the vestibular nuclei are discussed. In sum, this chapter reviews the morphology, chemoanatomy, connectivity, and synaptology of the vestibular nuclei.

  10. Major new sources of biological ice nuclei

    NASA Astrophysics Data System (ADS)

    Moffett, B. F.; Hill, T.; Henderson-Begg, S. K.

    2009-12-01

    Almost all research on biological ice nucleation has focussed on a limited number of bacteria. Here we characterise several major new sources of biogenic ice nuclei. These include mosses, hornworts, liverworts and cyanobacteria. Ice nucleation in the eukaryotic bryophytes appears to be ubiquitous. The temperature at which these organisms nucleate is that at which the difference in vapour pressure over ice and water is at or close to its maximum. At these temperatures (-8 to -18 degrees C) ice will grow at the expense of supercooled water. These organisms are dependent for their water on occult precipitation - fog, dew and cloudwater which by its nature is not collected in conventional rain gauges. Therefore we suggest that these organism produce ice nuclei as a water harvesting mechanism. Since the same mechanism would also drive the Bergeron-Findeisen process, and as moss is known to become airborne, these nuclei may have a role in the initiation of precipitation. The properties of these ice nuclei are very different from the well characterised bacterial nuclei. We will also present DNA sequence data showing that, although related, the proteins responsible are only very distantly related to the classical bacterial ice nuclei.

  11. Silicate Dust in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Xie, Yanxia; Li, Aigen; Hao, Lei

    2017-01-01

    The unification theory of active galactic nuclei (AGNs) hypothesizes that all AGNs are surrounded by an anisotropic dust torus and are essentially the same objects but viewed from different angles. However, little is known about the dust that plays a central role in the unification theory. There are suggestions that the AGN dust extinction law appreciably differs from that of the Galaxy. Also, the silicate emission features observed in type 1 AGNs appear anomalous (i.e., their peak wavelengths and widths differ considerably from that of the Galaxy). In this work, we explore the dust properties of 147 AGNs of various types at redshifts z≲ 0.5, with special attention paid to 93 AGNs that exhibit the 9.7 and 18 μm silicate emission features. We model their silicate emission spectra obtained with the Infrared Spectrograph aboard the Spitzer Space Telescope. We find that 60/93 of the observed spectra can be well explained with “astronomical silicate,” while the remaining sources favor amorphous olivine or pyroxene. Most notably, all sources require the dust to be micron-sized (with a typical size of ∼1.5 ± 0.1 μm), much larger than submicron-sized Galactic interstellar grains, implying a flat or “gray” extinction law for AGNs. We also find that, while the 9.7 μm emission feature arises predominantly from warm silicate dust of temperature T ∼ 270 K, the ∼5–8 μm continuum emission is mostly from carbon dust of T ∼ 640 K. Finally, the correlations between the dust properties (e.g., mass, temperature) and the AGN properties (e.g., luminosity, black hole mass) have also been investigated.

  12. α -decay spectra of odd nuclei using the effective Skyrme interaction

    NASA Astrophysics Data System (ADS)

    Ward, D. E.; Carlsson, B. G.; Åberg, S.

    2015-07-01

    Background: For nuclei heavier than 208Pb α decay is a dominating decay mode. α decay of odd nuclei can give spectroscopic information because different states in the daughter nucleus can be populated in the decay. Purpose: To explore and test microscopic descriptions of α decay of odd nuclei based on self-consistent models with effective nuclear interactions. To predict the hindrance of α decay of odd-A superheavy nuclei. Methods: We apply the method of our previous work [15e D. E. Ward, B. G. Carlsson, and S. Åberg, Phys. Rev. C 88, 064316 (2013), 10.1103/PhysRevC.88.064316] to the case of odd-A near-spherical nuclei. The Skyrme effective interaction SLy4 is used. Starting from the obtained Hartree-Fock-Bogoliubov vacuum and quasiparticle excitations, the α -particle formation amplitude is calculated giving the decay rates and hindrance of different α -decay channels. Result: The calculated relative decay rates show good agreement with available data. The hindrance of decay channels where the odd nucleon changes orbital is reasonably described by the microscopic calculation. Several hindered ground-state decays of superheavy nuclei are predicted, implying possible α -γ coincidences. Conclusions: The approach offers a practical method of making quantitative predictions for the relative hindrance of different α -decay channels.

  13. Subsets of Visceral Adipose Tissue Nuclei with Distinct Levels of 5-Hydroxymethylcytosine.

    PubMed

    Yu, Ping; Ji, Lexiang; Lee, Kevin J; Yu, Miao; He, Chuan; Ambati, Suresh; McKinney, Elizabeth C; Jackson, Crystal; Baile, Clifton A; Schmitz, Robert J; Meagher, Richard B

    2016-01-01

    The reprogramming of cellular memory in specific cell types, and in visceral adipocytes in particular, appears to be a fundamental aspect of obesity and its related negative health outcomes. We explored the hypothesis that adipose tissue contains epigenetically distinct subpopulations of adipocytes that are differentially potentiated to record cellular memories of their environment. Adipocytes are large, fragile, and technically difficult to efficiently isolate and fractionate. We developed fluorescence nuclear cytometry (FNC) and fluorescence activated nuclear sorting (FANS) of cellular nuclei from visceral adipose tissue (VAT) using the levels of the pan-adipocyte protein, peroxisome proliferator-activated receptor gamma-2 (PPARg2), to distinguish classes of PPARg2-Positive (PPARg2-Pos) adipocyte nuclei from PPARg2-Negative (PPARg2-Neg) leukocyte and endothelial cell nuclei. PPARg2-Pos nuclei were 10-fold enriched for most adipocyte marker transcripts relative to PPARg2-Neg nuclei. PPARg2-Pos nuclei showed 2- to 50-fold higher levels of transcripts encoding most of the chromatin-remodeling factors assayed, which regulate the methylation of histones and DNA cytosine (e.g., DNMT1, TET1, TET2, KDM4A, KMT2C, SETDB1, PAXIP1, ARID1A, JMJD6, CARM1, and PRMT5). PPARg2-Pos nuclei were large with decondensed chromatin. TAB-seq demonstrated 5-hydroxymethylcytosine (5hmC) levels were remarkably dynamic in gene bodies of various classes of VAT nuclei, dropping 3.8-fold from the highest quintile of expressed genes to the lowest. In short, VAT-derived adipocytes appear to be more actively remodeling their chromatin than non-adipocytes.

  14. Subsets of Visceral Adipose Tissue Nuclei with Distinct Levels of 5-Hydroxymethylcytosine

    PubMed Central

    Yu, Ping; Ji, Lexiang; Lee, Kevin J.; Yu, Miao; He, Chuan; Ambati, Suresh; McKinney, Elizabeth C.; Jackson, Crystal; Schmitz, Robert J.; Meagher, Richard B.

    2016-01-01

    The reprogramming of cellular memory in specific cell types, and in visceral adipocytes in particular, appears to be a fundamental aspect of obesity and its related negative health outcomes. We explored the hypothesis that adipose tissue contains epigenetically distinct subpopulations of adipocytes that are differentially potentiated to record cellular memories of their environment. Adipocytes are large, fragile, and technically difficult to efficiently isolate and fractionate. We developed fluorescence nuclear cytometry (FNC) and fluorescence activated nuclear sorting (FANS) of cellular nuclei from visceral adipose tissue (VAT) using the levels of the pan-adipocyte protein, peroxisome proliferator-activated receptor gamma-2 (PPARg2), to distinguish classes of PPARg2-Positive (PPARg2-Pos) adipocyte nuclei from PPARg2-Negative (PPARg2-Neg) leukocyte and endothelial cell nuclei. PPARg2-Pos nuclei were 10-fold enriched for most adipocyte marker transcripts relative to PPARg2-Neg nuclei. PPARg2-Pos nuclei showed 2- to 50-fold higher levels of transcripts encoding most of the chromatin-remodeling factors assayed, which regulate the methylation of histones and DNA cytosine (e.g., DNMT1, TET1, TET2, KDM4A, KMT2C, SETDB1, PAXIP1, ARID1A, JMJD6, CARM1, and PRMT5). PPARg2-Pos nuclei were large with decondensed chromatin. TAB-seq demonstrated 5-hydroxymethylcytosine (5hmC) levels were remarkably dynamic in gene bodies of various classes of VAT nuclei, dropping 3.8-fold from the highest quintile of expressed genes to the lowest. In short, VAT-derived adipocytes appear to be more actively remodeling their chromatin than non-adipocytes. PMID:27171244

  15. Adipocyte nuclei captured from VAT and SAT.

    PubMed

    Ambati, Suresh; Yu, Ping; McKinney, Elizabeth C; Kandasamy, Muthugapatti K; Hartzell, Diane; Baile, Clifton A; Meagher, Richard B

    2016-01-01

    Obesity-related comorbidities are thought to result from the reprogramming of the epigenome in numerous tissues and cell types, and in particular, mature adipocytes within visceral and subcutaneous adipose tissue, VAT and SAT. The cell-type specific chromatin remodeling of mature adipocytes within VAT and SAT is poorly understood, in part, because of the difficulties of isolating and manipulating large fragile mature adipocyte cells from adipose tissues. We constructed MA-INTACT (Mature Adipocyte-Isolation of Nuclei TAgged in specific Cell Types) mice using the adiponectin (ADIPOQ) promoter (ADNp) to tag the surface of mature adipocyte nuclei with a reporter protein. The SUN1mRFP1Flag reporter is comprised of a fragment of the nuclear transmembrane protein SUN1, the fluorescent protein mRFP1, and three copies of the Flag epitope tag. Mature adipocyte nuclei were rapidly and efficiently immuno-captured from VAT and SAT (MVA and MSA nuclei, respectively), of MA-INTACT mice. MVA and MSA nuclei contained 1,000 to 10,000-fold higher levels of adipocyte-specific transcripts, ADIPOQ, PPARg2, EDNRB, and LEP, relative to uncaptured nuclei, while the latter expressed higher levels of leukocyte and endothelial cell markers IKZF1, RETN, SERPINF1, SERPINE1, ILF3, and TNFA. MVA and MSA nuclei differentially expressed several factors linked to adipogenesis or obesity-related health risks including CEBPA, KLF2, RETN, SERPINE1, and TNFA. The various nuclear populations dramatically differentially expressed transcripts encoding chromatin remodeler proteins regulating DNA cytosine methylation and hydroxymethylation (TETs, DNMTs, TDG, GADD45s) and nucleosomal histone modification (ARID1A, KAT2B, KDM4A, PRMT1, PRMT5, PAXIP1). Remarkably, MSA and MVA nuclei expressed 200 to 1000-fold higher levels of thermogenic marker transcripts PRDM16 and UCP1. The MA-INTACT mouse enables a simple way to perform cell-type specific analysis of highly purified mature adipocyte nuclei from VAT and SAT

  16. Characterization of biological ice nuclei from a lichen.

    PubMed Central

    Kieft, T L; Ruscetti, T

    1990-01-01

    Biological ice nuclei (active at approximately -4 degrees C) were extracted from cells of the lichen Rhizoplaca chrysoleuca by sonication. Sensitivity to proteases, guanidine hydrochloride, and urea showed these nuclei to be proteinaceous. The nuclei were relatively heat stable, active from pH 1.5 to 12, and active without lipids, thereby demonstrating significant differences from bacterial ice nuclei. PMID:2188965

  17. Stability and production of superheavy nuclei

    SciTech Connect

    Moeller, P. |; Nix, J.R.

    1997-12-31

    Beyond uranium heavy elements rapidly become increasingly unstable with respect to spontaneous fission as the proton number Z increases, because of the disruptive effect of the long-range Coulomb force. However, in the region just beyond Z = 100 magic proton and neutron numbers and the associated shell structure enhances nuclear stability sufficient to allow observation of additional nuclei. Some thirty years ago it was speculated that an island of spherical, relatively stable superheavy nuclei would exist near the next doubly magic proton-neutron combination beyond {sup 208}Pb, that is, at proton number Z = 114 and neutron number N = 184. Theory and experiment now show that there also exists a rock of stability in the vicinity of Z = 110 and N = 162 between the actinide region, which previously was the end of the peninsula of known elements, and the predicted island of spherical superheavy nuclei slightly southwest of the magic numbers Z = 114 and N = 184. The authors review here the stability properties of the heavy region of nuclei. Just as the decay properties of nuclei in the heavy region depend strongly on shell structure, this structure also dramatically affects the fusion entrance channel. The six most recently discovered new elements were all formed in cold-fusion reactions. They discuss here the effect of the doubly magic structure of the target in cold-fusion reactions on the fusion barrier and on dissipation.

  18. Stability and production of superheavy nuclei

    SciTech Connect

    Moeller, Peter; Nix, J. Rayford

    1998-02-15

    Beyond uranium heavy elements rapidly become increasingly unstable with respect to spontaneous fission as the proton number Z increases, because of the disruptive effect of the long-range Coulomb force. However, in the region just beyond Z=100 magic proton and neutron numbers and the associated shell structure enhances nuclear stability sufficiently to allow observation of additional nuclei. Some thirty years ago it was speculated that an island of spherical, relatively stable superheavy nuclei would exist near the next doubly magic proton-neutron combination beyond {sup 208}Pb, that is, at proton number Z=114 and neutron number N=184. Theory and experiment now show that there also exists a rock of stability in the vicinity of Z=110 and N=162 between the actinide region, which previously was the end of the peninsula of known elements, and the predicted island of spherical superheavy nuclei slightly southwest of the magic numbers Z=114 and N=184. We review here the stability properties of the heavy region of nuclei. Just as the decay properties of nuclei in the heavy region depend strongly on shell structure, this structure also dramatically affects the fusion entrance channel. The six most recently discovered new elements were all formed in cold-fusion reactions. We discuss here the effect of the doubly magic structure of the target in cold-fusion reactions on the fusion barrier and on dissipation.

  19. Stability and production of superheavy nuclei

    SciTech Connect

    Moeller, P.; Moeller, P.; Nix, J.R.

    1998-02-01

    Beyond uranium heavy elements rapidly become increasingly unstable with respect to spontaneous fission as the proton number {ital Z} increases, because of the disruptive effect of the long-range Coulomb force. However, in the region just beyond Z=100 magic proton and neutron numbers and the associated shell structure enhances nuclear stability sufficiently to allow observation of additional nuclei. Some thirty years ago it was speculated that an island of spherical, relatively stable superheavy nuclei would exist near the next doubly magic proton-neutron combination beyond {sup 208}Pb, that is, at proton number Z=114 and neutron number N=184. Theory and experiment now show that there also exists a rock of stability in the vicinity of Z=110 and N=162 between the actinide region, which previously was the end of the peninsula of known elements, and the predicted island of spherical superheavy nuclei slightly southwest of the magic numbers Z=114 and N=184. We review here the stability properties of the heavy region of nuclei. Just as the decay properties of nuclei in the heavy region depend strongly on shell structure, this structure also dramatically affects the fusion entrance channel. The six most recently discovered new elements were all formed in cold-fusion reactions. We discuss here the effect of the doubly magic structure of the target in cold-fusion reactions on the fusion barrier and on dissipation. {copyright} {ital 1998 American Institute of Physics.}

  20. Flavanol binding of nuclei from tree species.

    PubMed

    Feucht, W; Treutter, D; Polster, J

    2004-01-01

    Light microscopy was used to examine the nuclei of five tree species with respect to the presence of flavanols. Flavanols develop a blue colouration in the presence of a special p-dimethylaminocinnamaldehyde (DMACA) reagent that enables those nuclei loaded with flavanols to be recognized. Staining of the nuclei was most pronounced in both Tsuga canadensis and Taxus baccata, variable in Metasequoia glyptostroboides, faint in Coffea arabica and minimal in Prunus avium. HPLC analysis showed that the five species contained substantial amounts of different flavanols such as catechin, epicatechin and proanthocyanidins. Quantitatively, total flavanols were quite different among the species. The nuclei themselves, as studied in Tsuga seed wings, were found to contain mainly catechin, much lower amounts of epicatechin and traces of proanthocyanidins. Blue-coloured nuclei located centrally in small cells were often found to maximally occupy up to 90% of a cell's radius, and the surrounding small rim of cytoplasm was visibly free of flavanols. A survey of 34 gymnosperm and angiosperm species indicated that the first group has much higher nuclear binding capacities for flavanols than the second group.

  1. Training Nuclei Detection Algorithms with Simple Annotations.

    PubMed

    Kost, Henning; Homeyer, André; Molin, Jesper; Lundström, Claes; Hahn, Horst Karl

    2017-01-01

    Generating good training datasets is essential for machine learning-based nuclei detection methods. However, creating exhaustive nuclei contour annotations, to derive optimal training data from, is often infeasible. We compared different approaches for training nuclei detection methods solely based on nucleus center markers. Such markers contain less accurate information, especially with regard to nuclear boundaries, but can be produced much easier and in greater quantities. The approaches use different automated sample extraction methods to derive image positions and class labels from nucleus center markers. In addition, the approaches use different automated sample selection methods to improve the detection quality of the classification algorithm and reduce the run time of the training process. We evaluated the approaches based on a previously published generic nuclei detection algorithm and a set of Ki-67-stained breast cancer images. A Voronoi tessellation-based sample extraction method produced the best performing training sets. However, subsampling of the extracted training samples was crucial. Even simple class balancing improved the detection quality considerably. The incorporation of active learning led to a further increase in detection quality. With appropriate sample extraction and selection methods, nuclei detection algorithms trained on the basis of simple center marker annotations can produce comparable quality to algorithms trained on conventionally created training sets.

  2. Structure and spectroscopy of transcurium nuclei.

    SciTech Connect

    Ahmad, I.

    2001-11-09

    The stability of the superheavy elements depends on the shell corrections which are governed by the single-particle spectra. Ideally one would like to experimentally determine the single-particle levels in the superheavy nuclei but the production of only a few atoms of these nuclides precludes such measurements. One therefore has to identify single-particle levels in the heaviest nuclei which are available in at least nanoCurie amounts. They have studied the structure of such heavy nuclei in the Z=98 region and identified many single-particle states. In particular, they have studied the structure of {sup 251}Cf and {sup 249}Bk by measuring the radiations emitted in the {alpha} decay of {sup 255}Fm and {sup 253}Es. These single-particle spectra can be used to test theoretical models for superheavy elements.

  3. Fission Barriers of Compound Superheavy Nuclei

    NASA Astrophysics Data System (ADS)

    Pei, J. C.; Nazarewicz, W.; Sheikh, J. A.; Kerman, A. K.

    2009-05-01

    The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work, we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional theory. The relationship between isothermal and isentropic descriptions is demonstrated. Calculations have been carried out for Fm264, Ds272, 127812, 129214, and 131224. For nuclei around 127812 produced in “cold-fusion” reactions, we predict a more rapid decrease of fission barriers with excitation energy as compared to the nuclei around 129214 synthesized in “hot-fusion” experiments. This is explained in terms of the difference between the ground-state and saddle-point temperatures. The effect of the particle gas is found to be negligible in the range of temperatures studied.

  4. The Scattering of Fast Nucleons from Nuclei

    NASA Astrophysics Data System (ADS)

    Kerman, A. K.; McManus, H.; Thaler, R. M.

    2000-04-01

    The formal theory of the scattering of high-energy nucleons by nuclei is developed in terms of the nucleon-nucleon scattering amplitude. The most important approximations necessary to make numerical calculation feasible are then examined. The optical model potential is derived on this basis and compared with the optical model parameters found from experiment. The elastic scattering and polarization of nucleons from light nuclei is predicted and compared with experiment. The effect of nuclear correlations is discussed. The polarization of inelastically scattered nucleons is discussed and predictions compared with experiments. To within the validity of the approximations the experimental data on the scattering of nucleons from nuclei at energies above ˜100 Mev appears to be consistent with the theory.

  5. Fission barriers of compound superheavy nuclei.

    PubMed

    Pei, J C; Nazarewicz, W; Sheikh, J A; Kerman, A K

    2009-05-15

    The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work, we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional theory. The relationship between isothermal and isentropic descriptions is demonstrated. Calculations have been carried out for 264Fm, 272Ds, ;{278}112, ;{292}114, and ;{312}124. For nuclei around ;{278}112 produced in "cold-fusion" reactions, we predict a more rapid decrease of fission barriers with excitation energy as compared to the nuclei around ;{292}114 synthesized in "hot-fusion" experiments. This is explained in terms of the difference between the ground-state and saddle-point temperatures. The effect of the particle gas is found to be negligible in the range of temperatures studied.

  6. Evolutional schemes for objects with active nuclei

    NASA Technical Reports Server (NTRS)

    Komberg, B. V.

    1979-01-01

    The observational properties of quasistellar objects (QSO) reveal that they are extremely violent nuclei of distant galaxies, but the evolutionary stage of these galaxies is still undetermined. Various published attempts to classify QSO under different criteria - including the one based on the morphological type of the surrounding galaxy E- or S- are analyzed. There are evidences that radioactive quasars reside in E-, while radio-quiet quasars reside in both E- and S- systems. The latter may be evolutionary connected to Seyfert-like objects. A correlation between the nuclei activity level in systems of different morphological type and the relative amount of gas in them is noted. From the point of view of activity level and the duration of active stage of nuclei it is concluded that an interaction of galaxies with the intergalactic medium is of particular importance and must be most conspicuous in spheriodal systems of central regions of rich clusters, in tight groups and binary galaxies.

  7. Is Fusion Inhibited for Weakly Bound Nuclei?

    SciTech Connect

    Takahashi, J.; Munhoz, M.; Szanto, E.M.; Carlin, N.; Added, N.; Suaide, A.A.; de Moura, M.M.; Liguori Neto, R.; Szanto de Toledo, A.; Canto, L.F.

    1997-01-01

    Complete fusion of light radioactive nuclei is predicted to be hindered at near-barrier energies. This feature is investigated in the case of the least bound stable nuclei. Evaporation residues resulting from the {sup 6,7}Li+{sup 9}Be and {sup 6,7}Li+{sup 12}C fusion reactions have been measured in order to study common features in reactions involving light weakly bound nuclei. The experimental excitation functions revealed that the fusion cross section is significantly smaller than the total reaction cross section and also smaller than the fusion cross section expected from the available systematics. A clear correlation between the fusion probability and nucleon (cluster) separation energy has been established.The results suggest that the breakup process has a strong influence on the hindrance of the fusion cross section. {copyright} {ital 1996} {ital The American Physical Society}

  8. Statistical ensembles and fragmentation of finite nuclei

    NASA Astrophysics Data System (ADS)

    Das, P.; Mallik, S.; Chaudhuri, G.

    2017-09-01

    Statistical models based on different ensembles are very commonly used to describe the nuclear multifragmentation reaction in heavy ion collisions at intermediate energies. Canonical model results are more appropriate for finite nuclei calculations while those obtained from the grand canonical ones are more easily calculable. A transformation relation has been worked out for converting results of finite nuclei from grand canonical to canonical and vice versa. The formula shows that, irrespective of the particle number fluctuation in the grand canonical ensemble, exact canonical results can be recovered for observables varying linearly or quadratically with the number of particles. This result is of great significance since the baryon and charge conservation constraints can make the exact canonical calculations extremely difficult in general. This concept developed in this work can be extended in future for transformation to ensembles where analytical solutions do not exist. The applicability of certain equations (isoscaling, etc.) in the regime of finite nuclei can also be tested using this transformation relation.

  9. Adiabatic fission barriers in superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Jachimowicz, P.; Kowal, M.; Skalski, J.

    2017-01-01

    Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy, we calculated static fission barriers Bf for 1305 heavy and superheavy nuclei 98 ≤Z ≤126 , including even-even, odd-even, even-odd and odd-odd systems. For odd and odd-odd nuclei, adiabatic potential-energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from the 10th below to the 10th above the Fermi level. The parameters of the model that have been fixed previously by a fit to masses of even-even heavy nuclei were kept unchanged. A search for saddle points has been performed by the "imaginary water flow" method on a basic five-dimensional deformation grid, including triaxiality. Two auxiliary grids were used for checking the effects of the mass asymmetry and hexadecapole nonaxiality. The ground states (g.s.) were found by energy minimization over configurations and deformations. We find that the nonaxiality significantly changes first and second fission saddle in many nuclei. The effect of the mass asymmetry, known to lower the second, very deformed saddles in actinides, in the heaviest nuclei appears at the less deformed saddles in more than 100 nuclei. It happens for those saddles in which the triaxiality does not play any role, which suggests a decoupling between effects of the mass asymmetry and triaxiality. We studied also the influence of the pairing interaction strength on the staggering of Bf for odd- and even-particle numbers. Finally, we provide a comparison of our results with other theoretical fission barrier evaluations and with available experimental estimates.

  10. Structure of neutron-rich nuclei

    SciTech Connect

    Nazarewicz, W. ||

    1997-11-01

    One of the frontiers of today`s nuclear science is the ``journey to the limits``: of atomic charge and nuclear mass, of neutron-to-proton ratio, and of angular momentum. The new data on exotic nuclei are expected to bring qualitatively new information about the fundamental properties of the nucleonic many-body system, the nature of the nuclear interaction, and nucleonic correlations at various energy-distance scales. In this talk, current developments in nuclear structure of neutron-rich nuclei are discussed from a theoretical perspective.

  11. {gamma}-vibrational states in superheavy nuclei

    SciTech Connect

    Sun Yang; Long Guilu; Al-Khudair, Falih; Sheikh, Javid A.

    2008-04-15

    Recent experimental advances have made it possible to study excited structure in superheavy nuclei. The observed states have often been interpreted as quasiparticle excitations. We show that in superheavy nuclei collective vibrations systematically appear as low-energy excitation modes. By using the microscopic Triaxial Projected Shell Model, we make a detailed prediction on {gamma}-vibrational states and their E2 transition probabilities to the ground state band in fermium and nobelium isotopes where active structure research is going on, and in {sup 270}Ds, the heaviest isotope where decay data have been obtained for the ground-state and for an isomeric state.

  12. African Dust Aerosols as Atmospheric Ice Nuclei

    NASA Technical Reports Server (NTRS)

    DeMott, Paul J.; Brooks, Sarah D.; Prenni, Anthony J.; Kreidenweis, Sonia M.; Sassen, Kenneth; Poellot, Michael; Rogers, David C.; Baumgardner, Darrel

    2003-01-01

    Measurements of the ice nucleating ability of aerosol particles in air masses over Florida having sources from North Africa support the potential importance of dust aerosols for indirectly affecting cloud properties and climate. The concentrations of ice nuclei within dust layers at particle sizes below 1 pn exceeded 1/cu cm; the highest ever reported with our device at temperatures warmer than homogeneous freezing conditions. These measurements add to previous direct and indirect evidence of the ice nucleation efficiency of desert dust aerosols, but also confirm their contribution to ice nuclei populations at great distances from source regions.

  13. Heating of Nuclei with Energetic Antiprotons

    SciTech Connect

    Goldenbaum, F.; Bohne, W.; Eades, J.; Egidy, T.v.; Figuera, P.; Fuchs, H.; Galin, J.; Golubeva, Y.S.; Gulda, K.; Hilscher, D.; Iljinov, A.S.; Jahnke, U.; Jastrzebski, J.; Kurcewicz, W.; Lott, B.; Morjean, M.; Pausch, G.; Peghaire, A.; Pienkowski, L.; Polster, D.; Proschitzki, S.; Quednau, B.; Rossner, H.; Schmid, S.; Schmid, W.; Ziem, P. |||||||

    1996-08-01

    The annihilation of energetic (1.2 GeV) antiprotons is exploited to deposit maximum thermal excitation (up to 1000 MeV) in massive nuclei (Cu, Ho, Au, and U) while minimizing the contribution from collective excitation such as rotation, shape distortion, and compression. Excitation energy distributions {ital d}{sigma}/{ital dE}{asterisk} are deduced from eventwise observation of the whole nuclear evaporation chain with two 4{pi} detectors for neutrons and charged particles. The nuclei produced in this way are found to decay predominantly statistically, i.e., by evaporation. {copyright} {ital 1996 The American Physical Society.}

  14. Constraining nucleon high momentum in nuclei

    NASA Astrophysics Data System (ADS)

    Yong, Gao-Chan

    2017-02-01

    Recent studies at Jefferson Lab show that there are a certain proportion of nucleons in nuclei have momenta greater than the so-called nuclear Fermi momentum pF. Based on the transport model of nucleus-nucleus collisions at intermediate energies, nucleon high momentum caused by the neutron-proton short-range correlations in nuclei is constrained by comparing with π and photon experimental data and considering some uncertainties. The high momentum cutoff value pmax ≤ 2pF is obtained.

  15. Computer Model Of Fragmentation Of Atomic Nuclei

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.

    1995-01-01

    High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.

  16. Quantum Monte Carlo calculations for light nuclei

    SciTech Connect

    Wiringa, R.B.

    1997-10-01

    Quantum Monte Carlo calculations of ground and low-lying excited states for nuclei with A {le} 8 have been made using a realistic Hamiltonian that fits NN scattering data. Results for more than two dozen different (J{sup {pi}}, T) p-shell states, not counting isobaric analogs, have been obtained. The known excitation spectra of all the nuclei are reproduced reasonably well. Density and momentum distributions and various electromagnetic moments and form factors have also been computed. These are the first microscopic calculations that directly produce nuclear shell structure from realistic NN interactions.

  17. Memory Effect and Redistribution of Cavitation Nuclei

    NASA Astrophysics Data System (ADS)

    Lixin, Bai; Weijun, Lin; Jingjun, Deng; Chao, Li; Delong, Xu; Pengfei, Wu

    Temporal evolution and spatial distribution of acoustic cavitation structures (evolving complicated patterns with clear boundary) in a very thin liquid layer were investigated experimentally with high-speed photography. The inception and disappearance processes of cavitation bubble cloud are revealed that the metastable cavitaton structures formed in the thin liquid layer cause a long-term "memory effect". The mechanism and effect factors of memory effect are analysed. The redistribution of cavitation nuclei was investigated by changing the temporal decay of the memory effect. The thin-liquid-layer-cavitation method is useful for the investigation of cavitation nuclei because of the two-dimensional nature of thin liquid layer.

  18. Light nuclei from chiral EFT interactions

    NASA Astrophysics Data System (ADS)

    Navrátil, P.; Gueorguiev, V. G.; Vary, J. P.; Ormand, W. E.; Nogga, A.; Quaglioni, S.

    2008-12-01

    Recent developments in nuclear theory allow us to make a connection between quantum chromodynamics (QCD) and low-energy nuclear physics. First, chiral effective field theory (χEFT) provides a natural hierarchy to define two-nucleon ( NN), three-nucleon ( NNN), and even four-nucleon interactions. Second, ab-initio methods have been developed capable to test these interactions for light nuclei. In this contribution, we discuss ab-initio no-core shell-model (NCSM) calculations for s-shell and p-shell nuclei with NN and NNN interactions derived within χEFT.

  19. Computer Model Of Fragmentation Of Atomic Nuclei

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.

    1995-01-01

    High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.

  20. Clathrate hydrates in cometary nuclei and porosity

    NASA Technical Reports Server (NTRS)

    Smoluchowski, R.

    1988-01-01

    Possible mechanisms of formation and decomposition of CO2-clathrate hydrate in cometary nuclei are discussed. As far as it is known, this is the only clathrate hydrate which is unstable at low temperatures. Calculation shows that, in accord with other evidence, neither volume nor grain boundary diffusion in the clathrate lattice can be responsible for the rate of these reactions and that a surface mechanism with the attendant sensitivity to pressure must play a crucial role. Density changes accompanying CO2-clathrate decomposition and formation can lead to microporosity and enhanced brittleness or even to fracture of cometary nuclei at low temperatures. Other clathrate hydrates and mixed clathrates are also discussed.

  1. Emergent symmetries in atomic nuclei from first principles

    NASA Astrophysics Data System (ADS)

    Launey, K. D.; Dreyfuss, A. C.; Baker, R. B.; Draayer, J. P.; Dytrych, T.

    2015-04-01

    An innovative symmetry-guided approach and its applications to light and intermediate-mass nuclei is discussed. This approach, with Sp(3, R) the underpinning group, is based on our recent remarkable finding, namely, we have identified the symplectic Sp(3,R) as an approximate symmetry for low-energy nuclear dynamics. This study presents the results of two complementary studies, one that utilizes realistic nucleon-nucleon interactions and unveils symmetries inherent to nuclear dynamics from first principles (or ab initio), and another study, which selects important components of the nuclear interaction to explain the primary physics responsible for emergent phenomena, such as enhanced collectivity and alpha clusters. In particular, within this symmetry-guided framework, ab initio applications of the theory to light nuclei reveal the emergence of a simple orderly pattern from first principles. This provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small fraction of the complete shell-model space, which, in turn, can be used to explore ultra-large model spaces for a description of alpha-cluster and highly deformed structures together with associated rotations. We find that by using only a fraction of the model space extended far beyond current no-core shell-model limits and a long-range interaction that respects the symmetries in play, the outcome reproduces characteristic features of the low-lying 0+ states in 12C (including the elusive Hoyle state of importance to astrophysics) and agrees with ab initio results in smaller spaces. For these states, we offer a novel perspective emerging out of no-core shell-model considerations, including a discussion of associated nuclear deformation, matter radii, and density distribution. The framework we find is also extensible beyond 12C, namely, to the low-lying 0+ states of 8Be as well as the ground-state rotational band of Ne, Mg, and Si isotopes.

  2. Production and beta decay of rp-process nuclei 96Cd, 98In, and 100Sn.

    PubMed

    Bazin, D; Montes, F; Becerril, A; Lorusso, G; Amthor, A; Baumann, T; Crawford, H; Estrade, A; Gade, A; Ginter, T; Guess, C J; Hausmann, M; Hitt, G W; Mantica, P; Matos, M; Meharchand, R; Minamisono, K; Perdikakis, G; Pereira, J; Pinter, J; Portillo, M; Schatz, H; Smith, K; Stoker, J; Stolz, A; Zegers, R G T

    2008-12-19

    The beta-decay properties of the N=Z nuclei 96Cd, 98In, and 100Sn have been studied. These nuclei were produced at the National Superconducting Cyclotron Laboratory by fragmenting a 120 MeV/nucleon 112Sn primary beam on a Be target. The resulting radioactive beam was filtered in the A1900 and the newly commissioned Radio Frequency Fragment Separator to achieve a purity level suitable for decay studies. The observed production cross sections of these nuclei are lower than predicted by factors of 10-30. The half-life of 96Cd, which was the last experimentally unknown waiting point half-life of the astrophysical rp process, is 1.03_{-0.21};{+0.24} s. The implications of the experimental T_{1/2} value of 96Cd on the abundances predicted by rp process calculations and the origin of A=96 isobars such as 96Ru are explored.

  3. Production and β Decay of rp-Process Nuclei Cd96, In98, and Sn100

    NASA Astrophysics Data System (ADS)

    Bazin, D.; Montes, F.; Becerril, A.; Lorusso, G.; Amthor, A.; Baumann, T.; Crawford, H.; Estrade, A.; Gade, A.; Ginter, T.; Guess, C. J.; Hausmann, M.; Hitt, G. W.; Mantica, P.; Matos, M.; Meharchand, R.; Minamisono, K.; Perdikakis, G.; Pereira, J.; Pinter, J.; Portillo, M.; Schatz, H.; Smith, K.; Stoker, J.; Stolz, A.; Zegers, R. G. T.

    2008-12-01

    The β-decay properties of the N=Z nuclei Cd96, In98, and Sn100 have been studied. These nuclei were produced at the National Superconducting Cyclotron Laboratory by fragmenting a 120MeV/nucleon Sn112 primary beam on a Be target. The resulting radioactive beam was filtered in the A1900 and the newly commissioned Radio Frequency Fragment Separator to achieve a purity level suitable for decay studies. The observed production cross sections of these nuclei are lower than predicted by factors of 10 30. The half-life of Cd96, which was the last experimentally unknown waiting point half-life of the astrophysical rp process, is 1.03-0.21+0.24s. The implications of the experimental T1/2 value of Cd96 on the abundances predicted by rp process calculations and the origin of A=96 isobars such as Ru96 are explored.

  4. Form Factors and Radii of Light Nuclei

    SciTech Connect

    Sick, Ingo

    2015-09-15

    We discuss the determination of electromagnetic form factors from the world data on electron–nucleus scattering for nuclei Z ≤ 3, with particular emphasis on the derivation of the moments required for comparison with measurements from electronic/muonic atoms and isotope shifts.

  5. Neutron-antineutron oscillations in nuclei

    SciTech Connect

    Dover, C.B.; Gal, A.; Richard, J.M.; Hebrew Univ., Jerusalem . Racah Inst. of Physics; Grenoble-1 Univ., 38 . Inst. des Sciences Nucleaires)

    1989-01-01

    We briefly review the state of the art for extracting the period of neutron-antineutron oscillations from the lifetime of nuclei. The most recent data on nuclear stability provide a limit of 10{sup 8} s for the oscillation period. 13 refs.

  6. Nucleon compositeness and nucleon-nuclei scattering

    NASA Astrophysics Data System (ADS)

    Li, Ming

    1990-04-01

    Large N QCD arguments are used to distinguish phenomenology of nucleon-nuclei scattering based on the Dirac equation with point nucleons and on quark based models with composite nucleons. The Friedberg-Lee soliton model is used as an explicit example.

  7. Transfer-induced fission of superheavy nuclei

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Zubov, A. S.; Sargsyan, V. V.; Scheid, W.

    2010-07-15

    Possibilities of transfer-induced fission of new isotopes of superheavy nuclei with charge numbers 103-108 are studied for the first time in the reactions {sup 48}Ca+{sup 244,246,248}Cm at energies near the corresponding Coulomb barriers. The predicted cross sections are found to be measurable with the detection of three-body final states.

  8. Quasars: Active nuclei of young galaxies

    NASA Technical Reports Server (NTRS)

    Komberg, B. V.

    1980-01-01

    The hypothetical properties of 'young' galaxies and possible methods of observing them are discussed. It is proposed that star formation first takes place in the central regions of protogalaxies which may appear as quasar-like objects. An evolutionary scheme is outlined in which the radio quasars are transformed in time into the nuclei of radio galaxies.

  9. Pentraxin binding to isolated rat liver nuclei.

    PubMed Central

    Shephard, E G; Smith, P J; Coetzee, S; Strachan, A F; de Beer, F C

    1991-01-01

    The interaction of human C-reactive protein (CRP) and serum amyloid P-component (SAP) with isolated rat liver nuclei was studied to identify nuclear ligands for each pentraxin using the iodinatable heterobifunctional thiol-cleavable cross-linking reagent sulphosuccinimidyl-2-(p-azidosalicylamido)-1,3'-dithiopropio nate (SASD). Nuclei (100 micrograms of DNA) bound 21 pmol of 125I-labelled CRP Ca(2+)-dependently at saturation with half-saturation occurring at 200 pmol of 125I-CRP. By contrast, only 2.7 pmol of 125I-labelled SAP was bound at saturation, with half-saturation at 50 pmol. The binding of pentraxins to nuclei is, in addition to putative chromatin binding, due to nuclear-envelope binding, where 3.2 pmol 125I-labelled CRP binds Ca2+ dependently to nuclear envelopes (25 micrograms) at saturation, but only 0.62 pmol SAP is required to saturate. Specific photocross-linking of 125I-2-(p-azidosalicylamido)-1,3'-dithiopropionate (125I-ASD)-CRP and 125I-ASD-SAP to nuclei revealed transfer of 125I-photoreactive azides to nuclear-envelope proteins of 43, 46, 52 and 70 kDa. In addition, SAP binding to histones H2A, H2B, H3 and H4 was detected, whereas CRP bound only to H4. Neither pentraxin cross-linked to histone H1. Images Fig. 2. Fig. 3. Fig. 4. PMID:1930144

  10. Particle entropy and depairing in hot nuclei

    NASA Astrophysics Data System (ADS)

    Saranya, J. Dhivya; Boomadevi, N.; Rajasekaran, T. R.

    2016-11-01

    The nuclear level densities and single particle entropies are predicted for nuclei in the mass region 50 < A < 74 within a framework of statistical theory of hot nuclei method. In this method, particle-number and energy conservation as well as nuclear pairing correlations are included in the partition function of grand canonical ensemble. The suppression of pairing correlations is distinctly noticed in temperature dependence of entropies between the critical temperatures TC ≈ 0.7 MeV and TC ≈ 1.0 MeV for 50,51V, 61,62Ni and 73,74Ge isotopes of the elements. These structural thermodynamic entropies are interpreted as a remarkable signature of the superfluid to normal phase transition connected to the vanishing of pairing gap. The calculated level densities are compared with recent experimental values. In addition, the single particle entropy of intermediate-mass nuclei is depicted as half of the entropy of mid-shell nuclei in the rare-earth region. As a consequence, the N = 28 shell closure of 51V carries low entropy at low excitation energy presents an interesting analogy to the Z = 28 shell closure of 61Ni. Merely, in the case of odd-even 73Ge has higher entropy than the even-even 74Ge nucleus.

  11. Four-Body Correlations in Nuclei

    NASA Astrophysics Data System (ADS)

    Sambataro, M.; Sandulescu, N.

    2015-09-01

    Low-energy spectra of 4 n nuclei are described with high accuracy in terms of four-body correlated structures ("quartets"). The states of all N ≥Z nuclei belonging to the A =24 isobaric chain are represented as a superposition of two-quartet states, with quartets being characterized by isospin T and angular momentum J . These quartets are assumed to be those describing the lowest states in 20Ne (Tz=0 ), 20F (Tz=1 ), and 20O (Tz=2 ). We find that the spectrum of the self-conjugate nucleus 24Mg can be well reproduced in terms of T =0 quartets only and that, among these, the J =0 quartet plays by far the leading role in the structure of the ground state. The same conclusion is drawn in the case of the three-quartet N =Z nucleus 28Si. As an application of the quartet formalism to nuclei not confined to the s d shell, we provide a description of the low-lying spectrum of the proton-rich 92Pd. The results achieved indicate that, in 4 n nuclei, four-body degrees of freedom are more important and more general than usually expected.

  12. The mass function of Seyfert 1 nuclei

    NASA Technical Reports Server (NTRS)

    Padovani, P.; Burg, R.; Edelson, R. A.

    1990-01-01

    The first mass function of Seyfert 1 nuclei is derived from optical spectra of the complete CfA sample of Seyfert galaxies by estimating the mass for each object from a dynamical relation. An independent estimate is also derived using a complete infrared-selected sample. The two mass functions are indistinguishable. The mean mass of Seyfert 1 nuclei is about 2 x 10 to the 7th solar masses, and the integrated mass density is about 6 x 10 to the 11th solar masses/cu Gpc. This is approximately two orders of magnitude less than the value inferred from the energetics associated with quasar counts. A careful analysis of the various parameters and assumptions involved suggests that this large difference is not due to systematic errors in the determinations. Therefore, the bulk of mass related to the accretion processes connected with past quasar activity does not reside in Seyfert 1 nuclei. Instead, the remnants of past activity must be present in a much larger number of galaxies, and a one-to-one relation between distant and local active galactic nuclei seems then to be excluded.

  13. Precision lifetime measurements in light exotic nuclei

    NASA Astrophysics Data System (ADS)

    McCutchan, Elizabeth

    2017-01-01

    A new generation of ab-initio calculations, based on realistic two- and three-body forces have had a profound impact on our understanding of nuclei. They have shed light on topics such as the origin of effective forces (like spin-orbit and tensor interactions) and the mechanisms behind cluster and pairing correlations. New precise data are required to both better parameterize the three body forces and to improve numerical methods. A sensitive probe of the structure of light nuclei comes from their electromagnetic transition rates. A refined Doppler Shift Attenuation Method (DSAM) will be outlined which is used to precisely measure lifetimes in light nuclei and helps to reduce and quantity systematic uncertainties in the measurement. Using this careful DSAM, we have made a series of precise measurements of electromagnetic transition strengths in Li isotopes, A =10 nuclei, and the exotic halo nucleus, 12Be. Various phenomena, such as alpha clustering and meson-exchange currents, can be investigated in these seemingly simple systems, while the collection of data spanning stable to neutron-rich, allows us to probe the influence of additional valence neutrons. This talk will report on what has been learned, and the challenges that lie in the future, both in experiment and theory, as we push to describing and measuring even more exotic systems. Work supported by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under contract No. DE-AC02-98CH10886.

  14. Melt Absorbability of Iron Ore Nuclei and Its Influence on Suitable Liquid Content of Sintered Body

    NASA Astrophysics Data System (ADS)

    Wu, Sheng-Li; Su, Bo; Qi, Yuan-Hong; Kou, Ming-Yin; Li, Yuan; Zhang, Wei-Li

    2017-10-01

    Sinter quasi-particles consist of nuclei particles and adhering fines. Therefore, reaction properties of the nuclei ore will ultimately affect the bonding strength of the sintered body. In this study, micro-sintering tests were conducted to explore the melt absorbability of nuclei ore and its effect on the suitable liquid content of the sintered body. The results showed that the melt absorbability is negatively correlated with the lowest assimilation temperature, and the most important mineralogy factor influencing melt absorbability is iron mineral type. The reaction behaviors of melts containing SiO2 or Al2O3 substrates are different, and the reaction process of the melt containing SiO2 is more complicated. In addition, the bonding strength of the sintered body is collectively determined by the liquid phase fluidity of adhering fines and the assimilability of nuclei ore. The high melt absorbability has an adverse effect on bonding strength, and it requires adhering fines to provide more primary melts to meet the requirements for sintered body bonding strength. In the condition with the same liquid content, for nuclei ore with stronger melt absorbability, an appropriate increase in the adhering fines ratio and reduction in segregation basicity are more conducive to improving the bonding strength.

  15. Connectivity-based segmentation of human amygdala nuclei using probabilistic tractography.

    PubMed

    Saygin, Zeynep M; Osher, David E; Augustinack, Jean; Fischl, Bruce; Gabrieli, John D E

    2011-06-01

    The amygdala plays an important role in emotional and social functions, and amygdala dysfunction has been associated with multiple neuropsychiatric disorders, including autism, anxiety, and depression. Although the amygdala is composed of multiple anatomically and functionally distinct nuclei, typical structural magnetic resonance imaging (MRI) sequences are unable to discern them. Thus, functional MRI (fMRI) studies typically average the BOLD response over the entire structure, which reveals some aspects of amygdala function as a whole but does not distinguish the separate roles of specific nuclei in humans. We developed a method to segment the human amygdala into its four major nuclei using only diffusion-weighted imaging and connectivity patterns derived mainly from animal studies. We refer to this new method as Tractography-based Segmentation, or TractSeg. The segmentations derived from TractSeg were topographically similar to their corresponding amygdaloid nuclei, and were validated against a high-resolution scan in which the nucleic boundaries were visible. In addition, nuclei topography was consistent across subjects. TractSeg relies on short scan acquisitions and widely accessible software packages, making it attractive for use in healthy populations to explore normal amygdala nucleus function, as well as in clinical and pediatric populations. Finally, it paves the way for implementing this method in other anatomical regions which are also composed of functional subunits that are difficult to distinguish with standard structural MRI. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Soft Dipole Modes of Neutron-Rich Nuclei

    NASA Astrophysics Data System (ADS)

    Csoto, A.; Gibson, B. F.; Afnan, I. R.

    1996-10-01

    We explore the open question of whether valance neutrons in ``halo nuclei'' can oscillate against the core to create a ``soft dipole'' mode. It has been suggested that such a dipole state would be situated at a few MeV of excitation energy, in contrast to usual dipole excitations at higher energies. The existence of a soft dipole mode, at least in ^11Li, appears to be supported by certain theoretical models and experimental data.footnote A. C. Hayes, Comments in Nuclear and Particle Physics 22, 27 (1996) However, this conclusion is based upon the behavior of specific observables at real energies. To clearly establish the existence of such resonant states, one should locate the corresponding complex poles of the S-matrix. We study ^6He and ^11Li in a three-body model based upon separable potentials that describe the known physics of the underlying two-body interactions. We solve the resulting Faddeev equations, continued into the complex energy plane, to search for the low lying excited states of these neutron-rich light nuclei.

  17. Behavior modification after inactivation of cerebellar dentate nuclei.

    PubMed

    Peterson, Todd C; Villatoro, Lee; Arneson, Tom; Ahuja, Brittany; Voss, Stephanie; Swain, Rodney A

    2012-08-01

    Effort-based decision making occurs when subjects are given a choice between a reward available at a high response cost and a reward available at a low response cost and is altered in individuals with disorders such as autism or particular patterns of brain injury. The current study explored the relationship between effort-based decision making and reinforcement characteristics in the T maze. This was done using both normal animals and animals with bilateral inactivation of the cerebellar dentate nuclei. Rats chose between alternatives in which one arm contained high-density reinforcement (HR) and the other arm contained low-density reinforcement (LR). During training, the HR arm was obstructed and the point at which the animal no longer worked for reinforcement (breaking point) was determined. The cerebellar dentate nuclei were then transiently inactivated and once again breaking points were assessed. The results indicated that inactivation of the dentate nucleus disrupted effort-based decision making. Additionally, altering both the palatability and the magnitude of the reinforcement were assessed in an attempt to reestablish the original preinactivation breaking point. It was hypothesized that an increase in the strength or magnitude of the reinforcement would promote an increase in the breaking point of the animal even when the cerebellum was inactivated. The results indicated that with both strategies animals effectively reestablished original breaking points. The results of this study will inform the current literature regarding the modification of behavior after brain injury and further the understanding of the behavioral deficits associated with cerebellar dysfunction.

  18. Halo nuclei, stepping stones across the drip-lines

    NASA Astrophysics Data System (ADS)

    Simon, H.

    2013-01-01

    The availability of intense secondary beams in conjunction with modern efficient detection setups allows for the production and detailed study of the most extreme nuclear systems, in terms of asymmetry of proton and neutron number, in the continuum. Nuclei close to the drip-lines, exhibiting exotic properties themselves, can be used as a basis in order to populate these even more exotic nuclear systems, e.g. in transfer and knockout reactions. The latter challenge nuclear structure theory by being open quantum systems far from the valley of beta stability as well as reaction aiming at a description of their production mechanisms. Experiments provide data on momentum distributions, while relative energy spectra, and spin alignment during the reaction can be extracted and lead to the observation of energy and angular correlations as well as to dependent quantities such as, e.g., the profile function denoting a momentum width as a function of relative energy. They are determined from reaction products and gamma radiation emerging from the reaction zone. The link to intrinsic properties of these unbound systems has to be explored by gathering precise knowledge of the properties of the seed nuclei and compare them to structures observed in the continuum. In this paper, examples of the above-mentioned methods are presented. The current knowledge about light systems such as 5,7H, 7-10He, 10-13Li and the most neutron-rich oxygen systems is reviewed.

  19. Physics of Exotic Nuclei at RIBF

    NASA Astrophysics Data System (ADS)

    Sakurai, Hiroyoshi

    2014-09-01

    ``Exotic nuclei'' far from the stability line are unique objects of many-body quantum system, where ratios of neutron number to proton number are much larger or much smaller than those of nuclei found in nature. Their exotic properties and phenomena emerge from their large isospin asymmetry, and even affect scenarios of nucleosynthesis in the universe. Efforts have been made to produce and investigate such exotic nuclei at the accelerator facilities in the world. One of the facilities, the Radioactive Isotope Beam Factory (RIBF) facility at RIKEN, Japan has delivered intense radioactive isotope (RI) beams since 2007. In US, the Facility for Rare Isotope Beams is being constructed to start around 2020. To access nuclei far from the stability line, especially neutron-rich nuclei, the RIBF facility is highly optimized for inflight production of fission fragments via a U beam. The Super-conducting Ring Cyclotron delivers a 345 MeV/u U beam. The U nuclide is converted at a target to fission fragments. An inflight separator BigRIPS was designed to collect about 50% of fission fragments produced at the target and separate nuclei of interest. The RI beams produced at BigRIPS are then delivered to several experimental devices. Large-scale international collaborations have been formed at three spectrometers to conduct unique programs for the investigation of decay properties single particle orbits, collective motions, nucleon correlation, and the equation-of-state of asymmetric nuclear matter. Nuclear binding energy will be measured at a newly constructed ring for the r-process path, and charge distribution of exotic nuclei will be examined at a unique setup of an RI target section in an electron storage ring. Ultra slow RI beams available at a gas catcher system will be utilized for table-top and high precision measurements. In this talk, I would give a facility overview of RIBF, and introduce objectives at RIBF. Special emphasis would be given to selected recent highlights

  20. Ice Nuclei Production in Volcanic Clouds

    NASA Astrophysics Data System (ADS)

    Few, A. A.

    2012-12-01

    The paper [Durant et al., 2008] includes a review of research on ice nucleation in explosive volcanic clouds in addition to reporting their own research on laboratory measurements focused on single-particle ice nucleation. Their research as well as the research they reviewed were concerned with the freezing of supercooled water drops (250 to 260 K) by volcanic ash particles acting as ice freezing nuclei. Among their conclusions are: Fine volcanic ash particles are very efficient ice freezing nuclei. Volcanic clouds likely contain fine ash concentrations 104 to 105 times greater than found in meteorological clouds. This overabundance of ice nuclei will produce a cloud with many small ice crystals that will not grow larger as they do in meteorological clouds because the cloud water content is widely distributed among the numerous small ice crystals. The small ice crystals have a small fall velocity, thus volcanic clouds are very stable. The small ice crystals are easily lofted into the stratosphere transporting water and adsorbed trace gasses. In this paper we examine the mechanism for the production of the small ice nuclei and develop a simple model for calculating the size of the ice nuclei based upon the distribution of magma around imbedded bubbles. We also have acquired a volcanic bomb that exhibits bubble remnants on its entire surface. The naturally occurring fragments from the volcanic bomb reveal a size distribution consistent with that predicted by the simple model. Durant, A. J., R. A. Shaw, W. I. Rose, Y. Mi, and G. G. J. Ernst (2008), Ice nucleation and overseeding of ice in volcanic clouds, J. Geophys. Res., 113, D09206, doi:10.1029/2007JD009064.

  1. RNA-sequencing from single nuclei.

    PubMed

    Grindberg, Rashel V; Yee-Greenbaum, Joyclyn L; McConnell, Michael J; Novotny, Mark; O'Shaughnessy, Andy L; Lambert, Georgina M; Araúzo-Bravo, Marcos J; Lee, Jun; Fishman, Max; Robbins, Gillian E; Lin, Xiaoying; Venepally, Pratap; Badger, Jonathan H; Galbraith, David W; Gage, Fred H; Lasken, Roger S

    2013-12-03

    It has recently been established that synthesis of double-stranded cDNA can be done from a single cell for use in DNA sequencing. Global gene expression can be quantified from the number of reads mapping to each gene, and mutations and mRNA splicing variants determined from the sequence reads. Here we demonstrate that this method of transcriptomic analysis can be done using the extremely low levels of mRNA in a single nucleus, isolated from a mouse neural progenitor cell line and from dissected hippocampal tissue. This method is characterized by excellent coverage and technical reproducibility. On average, more than 16,000 of the 24,057 mouse protein-coding genes were detected from single nuclei, and the amount of gene-expression variation was similar when measured between single nuclei and single cells. Several major advantages of the method exist: first, nuclei, compared with whole cells, have the advantage of being easily isolated from complex tissues and organs, such as those in the CNS. Second, the method can be widely applied to eukaryotic species, including those of different kingdoms. The method also provides insight into regulatory mechanisms specific to the nucleus. Finally, the method enables dissection of regulatory events at the single-cell level; pooling of 10 nuclei or 10 cells obscures some of the variability measured in transcript levels, implying that single nuclei and cells will be extremely useful in revealing the physiological state and interconnectedness of gene regulation in a manner that avoids the masking inherent to conventional transcriptomics using bulk cells or tissues.

  2. RNA-sequencing from single nuclei

    PubMed Central

    Grindberg, Rashel V.; Yee-Greenbaum, Joyclyn L.; McConnell, Michael J.; Novotny, Mark; O’Shaughnessy, Andy L.; Lambert, Georgina M.; Araúzo-Bravo, Marcos J.; Lee, Jun; Fishman, Max; Robbins, Gillian E.; Lin, Xiaoying; Venepally, Pratap; Badger, Jonathan H.; Galbraith, David W.; Gage, Fred H.; Lasken, Roger S.

    2013-01-01

    It has recently been established that synthesis of double-stranded cDNA can be done from a single cell for use in DNA sequencing. Global gene expression can be quantified from the number of reads mapping to each gene, and mutations and mRNA splicing variants determined from the sequence reads. Here we demonstrate that this method of transcriptomic analysis can be done using the extremely low levels of mRNA in a single nucleus, isolated from a mouse neural progenitor cell line and from dissected hippocampal tissue. This method is characterized by excellent coverage and technical reproducibility. On average, more than 16,000 of the 24,057 mouse protein-coding genes were detected from single nuclei, and the amount of gene-expression variation was similar when measured between single nuclei and single cells. Several major advantages of the method exist: first, nuclei, compared with whole cells, have the advantage of being easily isolated from complex tissues and organs, such as those in the CNS. Second, the method can be widely applied to eukaryotic species, including those of different kingdoms. The method also provides insight into regulatory mechanisms specific to the nucleus. Finally, the method enables dissection of regulatory events at the single-cell level; pooling of 10 nuclei or 10 cells obscures some of the variability measured in transcript levels, implying that single nuclei and cells will be extremely useful in revealing the physiological state and interconnectedness of gene regulation in a manner that avoids the masking inherent to conventional transcriptomics using bulk cells or tissues. PMID:24248345

  3. Nuclear Shell Structure and Beta Decay I. Odd A Nuclei II. Even A Nuclei

    DOE R&D Accomplishments Database

    Mayer, M.G.; Moszkowski, S.A.; Nordheim, L.W.

    1951-05-01

    In Part I a systematics is given of all transitions for odd A nuclei for which sufficiently reliable data are available. The allowed or forbidden characters of the transitions are correlated with the positions of the initial and final odd nucleon groups in the nuclear shell scheme. The nuclear shells show definite characteristics with respect to parity of the ground states. The latter is the same as the one obtained from known spins and magnetic moments in a one-particle interpretation. In Part II a systematics of the beta transitions of even-A nuclei is given. An interpretation of the character of the transitions in terms of nuclear shell structure is achieved on the hypothesis that the odd nucleon groups have the same structure as in odd-A nuclei, together with a simple coupling rule between the neutron and proton groups in odd-odd nuclei.

  4. Model-space approach to parity violation in heavy nuclei

    SciTech Connect

    Johnson, M.B.

    1996-06-01

    The model-space approach is the basis of both shell model and statistical spectroscopy analyses of nuclear phenomena. The goal of this session is to bring out the main theoretical issues involved in its application to parity violation in the compound nucleus. Section 1 of the current paper sets the stage for the session, and Sect. 2 introduces and explores the model-space formulation as it underlies quantitative connections that are being made between the mean-square matrix element M{sup 2} measured in polarized neutron scattering from compound nuclei and the underlying parity violating interaction. This is followed in the paper by Tomsovic by a description of how statistical spectroscopy is applied to this problem, and in the paper by Hayes by a discussion of shell-model aspects of parity violation in the compound nucleus.

  5. Few-nucleon transfer reactions on deformed nuclei

    SciTech Connect

    van den Berg, A.M.

    1985-01-01

    Recent developments discussed include: alpha-transfer reactions on deformed nuclei, quasi-elastic neutron transfer reactions induced by /sup 58/Ni beams on spherical and deformed samarium nuclei, and the population of low-lying states in neutron rich nuclei using (particle,..gamma..) or (particle,e) coincidence methods. 37 refs., 10 figs. (LEW)

  6. New magic nuclei and neutron-proton pairing

    SciTech Connect

    Boboshin, I. N.

    2008-07-15

    Special features of new magic nuclei and their connection with the shell structure are considered. The mechanism of neutron-proton pairing is proposed as a basis for the formation of new magic nuclei. A law of nucleon pairing is introduced. Spin-parity values are explained for a number of odd-odd nuclei.

  7. Antiproton Production by CR on Air Nuclei

    NASA Technical Reports Server (NTRS)

    Maskalenko, I. V.; Mashnik, S. G.

    2003-01-01

    Recent measurements of the cosmic ray (CR) antiproton flux have been shown to challenge existing CR propagation models. In particular, the conventional reacceleration model designed to match secondary/primary nuclei ratios produces too few antiprotons. Recently there appear some indications that the atmospheric contribution to antiproton production is considerably underestimated, which implies that antiproton CR flux might be lower. This may be the primary reason of the discrepancy discovered in CR propagation. We use the Los Alamos version of the Quark-Gluon String Model code LAQGSM together with available data on antiproton production on nuclei to analyse the accuracy of existing parameterizations of antiproton production cross section. The LAQGSM model has been shown to reproduce well nuclear reactions and hadronic data in the range 0.01-800 GeV/nucleon.

  8. Collective properties of drip-line nuclei

    SciTech Connect

    Hamamoto, I.; Sagawa, H.

    1996-12-31

    Performing the spherical Hartree-Fock (HF) calculations with Skyrme interactions and, then, using RPA solved in the coordinate space with the Green`s function method, the authors have studied the effect of the unique shell structure as well as the very low particle threshold on collective modes in drip line nuclei. In this method a proper strength function in the continuum is obtained, though the spreading width of collective modes is not included. They have examined also one-particle resonant states in the obtained HF potential. Unperturbed particle-hole (p-h) response functions are carefully studied, which contain all basic information on the exotic behaviour of the RPA strength function in drip line nuclei.

  9. Antiproton Production by CR on Air Nuclei

    NASA Technical Reports Server (NTRS)

    Maskalenko, I. V.; Mashnik, S. G.

    2003-01-01

    Recent measurements of the cosmic ray (CR) antiproton flux have been shown to challenge existing CR propagation models. In particular, the conventional reacceleration model designed to match secondary/primary nuclei ratios produces too few antiprotons. Recently there appear some indications that the atmospheric contribution to antiproton production is considerably underestimated, which implies that antiproton CR flux might be lower. This may be the primary reason of the discrepancy discovered in CR propagation. We use the Los Alamos version of the Quark-Gluon String Model code LAQGSM together with available data on antiproton production on nuclei to analyse the accuracy of existing parameterizations of antiproton production cross section. The LAQGSM model has been shown to reproduce well nuclear reactions and hadronic data in the range 0.01-800 GeV/nucleon.

  10. DAPI fluorescence in nuclei isolated from tumors.

    PubMed

    Krishan, Awtar; Dandekar, Payal D

    2005-08-01

    In DNA histograms of some human solid tumors stained with nuclear isolation medium--4,6-diamidino-2-phenylindole dihydrochloride (NIM-DAPI), the coefficient of variation (CV) of the G0/G1 peak was broad, and in nuclear volume vs DNA scattergrams, a prominent slope was seen. To determine the cause for this, nuclei from frozen breast tumors were stained with NIM-DAPI and analyzed after dilution or resuspension in PBS. In two-color (blue vs red) analysis, most of the slope and broad CV was due to red fluorescence of nuclei stained with NIM-DAPI, which was reduced on dilution or resuspension in PBS, resulting in elimination of the slope and tightening of the CV.

  11. Delta excitations in compressed finite nuclei

    SciTech Connect

    Hasan, M.A. ); Vary, J.P. Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 )

    1994-07-01

    We treat [sup 16]O, [sup 40]Ca, and [sup 56]Ni as systems of baryons which can exist in either the ground (nucleon) state or first excited (delta) state and follow their behavior under static comrpession using constrained spherical Hartree-Fock approximation (SHF). We use realistic effective nucleon-nucleon interactions with meson-exchange-based nucleon-delta transition potentials and delta-delta interactions and we make phenomenological adjustments to obtain SHF equilibrium properties in agreement with experiment. We then show how physical properties are affected by delta excitation under compression. We find that a significant fraction of the increase in energy of these nuclei under compression is stored in the form of [Delta]-mass creation. This, in turn, may have implications for an enhanced role for nuclear compression in subthreshold pion production in nucleus-nucleus collisions. In addition, including the deltas leads to a lower compressibility of each of these nuclei.

  12. Nuclei at HERA and heavy ion physics

    SciTech Connect

    Gavin, S.; Strikman, M.

    1995-12-31

    Copies of 16 viewgraph sets from a workshop held at Brookhaven National Laboratory, 17-18 November, 1995. Titles of talks: HERA: The Present; HERA: Potential with Nuclei; Review of Hadron-Lepton Nucleus Data; Fermilab E665: results in muon scattering; Interactions of Quarks and Gluons with Nuclear Matter; Rescattering in Nuclear Targets for Photoproduction and DIS; Structure Functions and Nuclear Effect at PHENIX; Probing Spin-Averaged and Spin-Dependent Parton Distributions Using the Solenoidal Tracker at RHIC (STAR); Jet Quenching in eA, pA, AA; Nuclear Gluon Shadowing via Continuum Lepton Pairs; What can we learn from HERA with a colliding heavy ion beam? The limiting curve of leading particles at infinite A; Coherent Production of Vector Mesons off Light Nuclei in DIS; A Model of High Parton Densities in PQCD; Gluon Production for Weizaecker-Williams Field in Nucleus-Nucleus Collisions; Summary Talk.

  13. Reverberation mapping of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    1993-01-01

    The broad emission lines in the spectra of active galactic nuclei respond to variations in the luminosity of the central continuum source with a delay due to light-travel time effects within the emission-line region. It is therefore possible through the process of 'reverberation mapping' to determine the geometry and kinematics of the emission-line region by careful monitoring of the continuum variations and the resulting emission-line response. In this review, I will discuss progress in application of the reverberation mapping technique. I will describe the underlying assumptions and limitations of the method, discuss how the results obtained to date are changing our understanding of active nuclei, and outline several new questions that might be addressed through further reverberation mapping programs.

  14. Shell model for warm rotating nuclei

    SciTech Connect

    Matsuo, M.; Yoshida, K.; Dossing, T.

    1996-12-31

    Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.

  15. Monopole Strength Function of Deformed Superfluid Nuclei

    SciTech Connect

    Stoitsov, M. V.; Kortelainen, E. M.; Nakatsukasa, T.; Losa, C.; Nazarewicz, Witold

    2011-01-01

    We present an efficient method for calculating strength functions using the finite amplitude method (FAM) for deformed superfluid heavy nuclei within the framework of the nuclear density functional theory. We demonstrate that FAM reproduces strength functions obtained with the fully self-consistent quasi-particle random-phase approximation (QRPA) at a fraction of computational cost. As a demonstration, we compute the isoscalar and isovector monopole strength for strongly deformed configurations in ^{240}Pu by considering huge quasi-particle QRPA spaces. Our approach to FAM, based on Broyden's iterative procedure, opens the possibility for large-scale calculations of strength distributions in well-bound and weakly bound nuclei across the nuclear landscape.

  16. Tensor coupling and pseudospin symmetry in nuclei

    SciTech Connect

    Alberto, P.; Castro, A.S. de; Lisboa, R.; Malheiro, M.

    2005-03-01

    In this work we study the contribution of the isoscalar tensor coupling to the realization of pseudospin symmetry in nuclei. Using realistic values for the tensor coupling strength, we show that this coupling reduces noticeably the pseudospin splittings, especially for single-particle levels near the Fermi surface. By using an energy decomposition of the pseudospin energy splittings, we show that the changes in these splittings come mainly through the changes induced in the lower radial wave function for the low-lying pseudospin partners and through changes in the expectation value of the pseudospin-orbit coupling term for surface partners. This allows us to confirm the conclusion already reached in previous studies, namely that the pseudospin symmetry in nuclei is of a dynamical nature.

  17. Fission and Properties of Neutron-Rich Nuclei

    NASA Astrophysics Data System (ADS)

    Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.

    2008-08-01

    Opening session. Nuclear processes in stellar explosions / M. Wiescher. In-beam [symbol]-ray spectroscopy of neutron-rich nuclei at NSCL / A. Gade -- Nuclear structure I. Shell-model structure of neutron-rich nuclei beyond [symbol]Sn / A. Covello ... [et al.]. Shell structure and evolution of collectivity in nuclei above the [symbol]Sn core / S. Sarkar and M. S. Sarkar. Heavy-ion fusion using density-constrained TDHF / A. S. Umar and V. E. Oberacker. Towards an extended microscopic theory for upper-fp shell nuclei / K. P. Drumev. Properties of the Zr and Pb isotopes near the drip-line / V. N. Tarasov ... [et al.]. Identification of high spin states in [symbol] Cs nuclei and shell model calculations / K. Li ... [et al.]. Recent measurements of spherical and deformed isomers using the Lohengrin fission-fragment spectrometer / G. S. Simpson ... [et al.] -- Nuclear structure II. Nuclear structure investigation with rare isotope spectroscopic investigations at GSI / P. Boutachkov. Exploring the evolution of the shell structures by means of deep inelastic reactions / G. de Anaelis. Probing shell closures in neutron-rich nuclei / R. Krücken for the S277 and REX-ISOLDEMINIBALL collaborations. Structure of Fe isotopes at the limits of the pf-shell / N. Hoteling ... [et al.]. Spectroscopy of K isomers in shell-stabilized trans-fermium nuclei / S. K. Tandel ... [et al.] -- Radioactive ion beam facilities. SPIRAL2 at GANIL: a world leading ISOL facility for the next decade / S. Gales. New physics at the International Facility for Antiproton and Ion Research (FAIR) next to GSI / I. Augustin ... [et al.]. Radioactive beams from a high powered ISOL system / A. C. Shotter. RlKEN RT beam factory / T. Motobayashi. NSCL - ongoing activities and future perspectives / C. K. Gelbke. Rare isotope beams at Argonne / W. F. Henning. HRIBF: scientific highlights and future prospects / J. R. Beene. Radioactive ion beam research done in Dubna / G. M. Ter-Akopian ... [et al.] -- Fission I

  18. AMS with light nuclei at small accelerators

    NASA Astrophysics Data System (ADS)

    Stan-Sion, C.; Enachescu, M.

    2017-06-01

    AMS applications with lighter nuclei are presented. It will be shown how Carbon-14, Boron-10, Beryllium-10, and Tritium-3 can be used to provide valuable information in forensic science, environmental physics, nuclear pollution, in material science and for diagnose of the plasma confinement in fusion reactors. Small accelerators are reliable, efficient and possess the highest ion beam transmissions that confer high precision in measurements.

  19. Fusion and Breakup of Weakly Bound Nuclei

    SciTech Connect

    Gomes, P. R. S.; Lubian, J.; Padron, I.; Crema, E.; Chamon, L. C.; Hussein, M. S.; Canto, L. F.

    2006-08-14

    We discuss the influence of the breakup process of weakly bound nuclei on the fusion cross section. The complete fusion for heavy targets is found to be suppressed due to the incomplete fusion following the breakup, whereas this effect is negligible for light targets. The total fusion cross sections for stable projectiles are not affected by the breakup process, whereas it is suppressed for halo projectiles. The non capture breakup is the dominant process at sub-barrier energies.

  20. Identical'' bands in normally-deformed nuclei

    SciTech Connect

    Garrett, J.D.; Baktash, C. ); Yu, C.H. . Dept. of Physics and Astronomy)

    1990-01-01

    Gamma-ray transitions energies in neighboring odd- and even-mass nuclei for normally-deformed nuclear configurations are analyzed in a manner similar to recent analyses for superdeformed states. The moment of inertia is shown to depend on pair correlations and the aligned angular momentum of the odd nucleon. The implications of this analysis for identical'' super-deformed bands are discussed. 26 refs., 9 figs.

  1. On Closed Shells in Nuclei. II

    DOE R&D Accomplishments Database

    Mayer, M. G.

    1949-04-01

    Discussion on the use of spins and magnetic moments of the even-odd nuclei by Feenberg and Nordheim to determine the angular momentum of the eigenfunction of the odd particle; discussion of prevalence of isomerism in certain regions of the isotope chart; tabulated data on levels of square well potential, spectroscopic levels, spin term, number of states, shells and known spins and orbital assignments.

  2. Green's function calculations of light nuclei

    NASA Astrophysics Data System (ADS)

    Sun, ZhongHao; Wu, Qiang; Xu, FuRong

    2016-09-01

    The influence of short-range correlations in nuclei was investigated with realistic nuclear force. The nucleon-nucleon interaction was renormalized with V lowk technique and applied to the Green's function calculations. The Dyson equation was reformulated with algebraic diagrammatic constructions. We also analyzed the binding energy of 4He, calculated with chiral potential and CD-Bonn potential. The properties of Green's function with realistic nuclear forces are also discussed.

  3. Accretion disk thermal instability in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Mineshige, S.; Shields, G. A.

    1990-03-01

    The nonlinear evolution and spatial propagation of the thermal instability in accretion disks in galactic nuclei are investigated. Integrations of the vertical structure of the disks are described for different alpha prescriptions, and the thermal stability is examined. Global time-dependent calculations of the unstable disks are performed which show that there are two distinct types of behavior according to the assumed prescription for the viscosity parameter: the 'purr' type and the 'roar' type. The roar type is analyzed in some detail.

  4. Complex fragment emission from hot compound nuclei

    SciTech Connect

    Moretto, L.G.

    1986-03-01

    The experimental evidence for compound nucleus emission of complex fragments at low energies is used to interpret the emission of the same fragments at higher energies. The resulting experimental picture is that of highly excited compound nuclei formed in incomplete fusion processes which decay statistically. In particular, complex fragments appear to be produced mostly through compound nucleus decay. In the appendix a geometric-kinematic theory for incomplete fusion and the associated momentum transfer is outlined. 10 refs., 19 figs.

  5. Intrinsic excitations in doubly odd nuclei

    SciTech Connect

    Sood, P.C.

    1985-01-15

    A procedure is outlined for predicting the bandhead energies of the two-particle (intrinsic) states of odd-odd deformed nuclei based on a quantitative evaluation of the zero range n-p residual interaction energy. We present our results for 250Bk, where many such levels are experimentally known, and for 236Np and 246Am, where the information is very scarce and that too uncertain, to illustrate the effectiveness of this approach.

  6. Neutron-Proton Pairs in Nuclei

    NASA Astrophysics Data System (ADS)

    van Isacker, P.

    2013-11-01

    A review is given of attempts to describe nuclear properties in terms of neutron-proton pairs that are subsequently replaced by bosons. Some of the standard approaches with low-spin pairs are recalled but the emphasis is on a recently proposed framework with pairs of neutrons and protons with aligned angular momentum. The analysis is carried out for general j and applied to N=Z nuclei in the 1f7/2 and 1g9/2 shells.

  7. Gamma rays from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    1990-01-01

    The general properties of Active Galactic Nuclei (AGN) and quasars are reviewed with emphasis on their continuum spectral emission. Two general classes of models for the continuum are outlined and critically reviewed in view of the impending GRO (Gamma Ray Observatory) launch and observations. The importance of GRO in distinguishing between these models and in general in furthering the understanding of AGN is discussed. The very broad terms the status of the current understanding of AGN are discussed.

  8. SEARCH FOR NUCLEI CONTAINING TWO STRANGE QUARKS.

    SciTech Connect

    MAY,M.

    1997-10-13

    This paper discusses a search for nuclei containing two strange quarks performed at Brookhaven National Laboratory. The goals and approach of experiment E885 are reviewed. Preliminary missing mass spectra for a subset of the data are presented, showing sensitivity for {Xi} hypernuclei and H particle searches. Existence of an angular correlation between pions in the sequential decay of {Lambda}{Lambda} hypernuclei is suggested on theoretical grounds.

  9. How do nuclei really vibrate or rotate

    SciTech Connect

    Andresen, H.G.; Kunz, J.; Mosel, U.; Mueller, M.; Schuh, A.; Wust, U.

    1983-01-01

    By means of the adiabatic cranking model the properties of the current and velocity fields of nuclear quadrupole vibrations for even-even nuclei in the rare-earth region are investigated. BCS correlated wave functions based on the Nilsson single particle Hamiltonian have been used. The current fields are analyzed in terms of vector spherical harmonics. The realistic microscopic currents show a vortex structure not present in the classical irrotational flow. The microscopic origin of the vortex structure is investigated.

  10. Deeply virtual Compton scattering off nuclei

    SciTech Connect

    Voutier, Eric

    2009-01-01

    Deeply virtual Compton scattering (DVCS) is the golden exclusive channel for the study of the partonic structure of hadrons, within the universal framework of generalized parton distributions (GPDs). This paper presents the aim and general ideas of the DVCS experimental program off nuclei at the Jefferson Laboratory. The benefits of the study of the coherent and incoherent channels to the understanding of the EMC (European Muon Collaboration) effect are discussed, along with the case of nuclear targets to access neutron GPDs.

  11. Chromatin associations in Arabidopsis interphase nuclei.

    PubMed

    Schubert, Veit; Rudnik, Radoslaw; Schubert, Ingo

    2014-01-01

    The arrangement of chromatin within interphase nuclei seems to be caused by topological constraints and related to gene expression depending on tissue and developmental stage. In yeast and animals it was found that homologous and heterologous chromatin association are required to realize faithful expression and DNA repair. To test whether such associations are present in plants we analyzed Arabidopsis thaliana interphase nuclei by FISH using probes from different chromosomes. We found that chromatin fiber movement and variable associations, although in general relatively seldom, may occur between euchromatin segments along chromosomes, sometimes even over large distances. The combination of euchromatin segments bearing high or low co-expressing genes did not reveal different association frequencies probably due to adjacent genes of deviating expression patterns. Based on previous data and on FISH analyses presented here, we conclude that the global interphase chromatin organization in A. thaliana is relatively stable, due to the location of its 10 centromeres at the nuclear periphery and of the telomeres mainly at the centrally localized nucleolus. Nevertheless, chromatin movement enables a flexible spatial genome arrangement in plant nuclei.

  12. Potential energy surfaces of superheavy nuclei

    SciTech Connect

    Bender, M.; Rutz, K.; Maruhn, J.A.; Greiner, W.; Reinhard, P.-G. Rutz, K.; Maruhn, J.A.; Greiner, W.

    1998-10-01

    We investigate the structure of the potential energy surfaces of the superheavy nuclei {sub 158}{sup 258}Fm{sub 100}, {sub 156}{sup 264}Hs{sub 108}, {sub 166}{sup 278}112, {sub 184}{sup 298}114, and {sub 172}{sup 292}120 within the framework of self-consistent nuclear models, i.e., the Skyrme-Hartree-Fock approach and the relativistic mean-field model. We compare results obtained with one representative parametrization of each model which is successful in describing superheavy nuclei. We find systematic changes as compared to the potential energy surfaces of heavy nuclei in the uranium region: there is no sufficiently stable fission isomer any more, the importance of triaxial configurations to lower the first barrier fades away, and asymmetric fission paths compete down to rather small deformation. Comparing the two models, it turns out that the relativistic mean-field model gives generally smaller fission barriers. {copyright} {ital 1998} {ital The American Physical Society}

  13. Fusion excitation functions involving transitional nuclei

    SciTech Connect

    Rehm, K.E.; Jiang, C.L.; Esbensen, H.

    1995-08-01

    Measurements of fusion excitation functions involving transitional nuclei {sup 78}Kr and {sup 100}Mo showed a different behavior at low energies, if compared to measurements with {sup 86}Kr and {sup 92}Mo. This points to a possible influence of nuclear structure on the fusion process. One way to characterize the structure of vibrational nuclei is via their restoring force parameters C{sub 2} which can be calculated from the energy of the lowest 2{sup +} state and the corresponding B(E2) value. A survey of the even-even nuclei between A = 28-150 shows strong variations in C{sub 2} values spanning two orders of magnitude. The lowest values for C{sub 2} are observed for {sup 78}Kr, {sup 104}Ru and {sup 124}Xe followed by {sup 74,76}Ge, {sup 74,76}Se, {sup 100}Mo and {sup 110}Pd. In order to learn more about the influence of {open_quotes}softness{close_quotes} on the sub-barrier fusion enhancement, we measured cross sections for evaporation residue production for the systems {sup 78}Kr + {sup 104}Ru and {sup 78}Kr + {sup 76}Ge with the gas-filled magnet technique. For both systems, fusion excitation functions involving the closed neutron shell nucleus {sup 86}Kr were measured previously. The data are presently being analyzed.

  14. Fission Barriers of Compound Superheavy Nuclei

    SciTech Connect

    Pei, Junchen; Nazarewicz, Witold; Sheikh, J. A.; Kerman, A. K.

    2009-01-01

    The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. We study the temperature-dependent fission barriers by means of the self-consistent nuclear density functional theory. The equivalence of isothermal and isentropic descriptions is demonstrated. The effect of the particle gas is found to be negligible in the range of temperatures studied. Calculations have been carried out for ^{264}Fm, ^{272}Ds, ^{278}112, ^{292}114, and ^{312}124. For nuclei around ^{278}112 produced in "cold fusion" reactions, we predict a more rapid decrease of fission barriers with temperature as compared to the nuclei around ^{292}114 synthesized in "hot fusion" experiments. This is explained in terms of the difference between the ground-state and fission-barrier temperatures. Our calculations are consistent with the long survival probabilities of the superheavy elements produced in Dubna with the ^{48}Ca beam.

  15. Fission Barriers of Compound Superheavy Nuclei

    NASA Astrophysics Data System (ADS)

    Nazarewicz, Witold

    2010-02-01

    The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work [1,2], we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional theory. The relationship between isothermal and isentropic descriptions is demonstrated. Calculations have been carried out for ^264Fm, ^272Ds, ^278Cp, ^292114, and ^312124. For nuclei around ^278Cp produced in ``cold fusion" reactions, we predict a more rapid decrease of fission barriers with excitation energy as compared to the nuclei around ^292114 synthesized in ``hot fusion'' experiments. This is explained in terms of the difference between the ground-state and saddle-point temperatures. [4pt] [1] J.C. Pei, W. Nazarewicz, J.A. Sheikh and A.K. Kerman, Phys. Rev. Lett. 102, 192501 (2009).[0pt] [2] J.A. Sheikh, W. Nazarewicz, and J.C. Pei, Phys. Rev. C 80, 011302(R) (2009). )

  16. Ice Nuclei Measurements From AMAZE-08

    NASA Astrophysics Data System (ADS)

    Prenni, A. J.; Petters, M. D.; Demott, P. J.; Kreidenweis, S. M.

    2008-12-01

    The Amazon Basin is the largest intact tropical forest in the world, covering four million square kilometers. With large emissions of gases and particulate matter, this ecosystem plays an important role in the global atmosphere. Assessing gaseous and particulate emissions from the Amazon Basin and the climatic effects of these emissions has been the focus of several major field campaigns. However, until recently there have been no measurements aimed at characterizing ice nuclei (IN) in this region. Such measurements are critical for understanding cloud and precipitation processes. In this paper, we present recent ice nuclei measurements from the AMazonian Aerosol characteriZation Experiment 2008 (AMAZE-08). These data were collected during the rainy season at the Instituto Nacional de Pesquisas da Amazonia TT34 tower northeast of Manaus, Brazil. Results are presented for ice nuclei number concentration and elemental composition collected using the Colorado State University Continuous Flow ice thermal Diffusion Chamber (CFDC). The data suggest that, like many regions of the world, IN concentrations are largely controlled by the presence of desert dust, in this case transported from Africa. However, carbonaceous particles also made up a significant fraction of IN. Based on complementary aerosol composition measurements, we consider possible sources of this carbonaceous fraction.

  17. Studies of Low Luminosity Active Galactic Nuclei with Monte Carlo and Magnetohydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Hilburn, Guy Louis

    Results from several studies are presented which detail explorations of the physical and spectral properties of low luminosity active galactic nuclei. An initial Sagittarius A* general relativistic magnetohydrodynamic simulation and Monte Carlo radiation transport model suggests accretion rate changes as the dominant flaring method. A similar study on M87 introduces new methods to the Monte Carlo model for increased consistency in highly energetic sources. Again, accretion rate variation seems most appropriate to explain spectral transients. To more closely resolve the methods of particle energization in active galactic nuclei accretion disks, a series of localized shearing box simulations explores the effect of numerical resolution on the development of current sheets. A particular focus on numerically describing converged current sheet formation will provide new methods for consideration of turbulence in accretion disks.

  18. Precise Coulomb excitation B(E2) measurements for first 2+states of projectile nuclei near the doubly magic nuclei 78Ni and 132Sn

    NASA Astrophysics Data System (ADS)

    Galindo-Uribarri, A.

    2012-09-01

    Coulomb excitation is a very precise tool to measure excitation probabilities and provide insight on the collectivity of nuclear excitations and in particular on nuclear shapes. In the last few years radioactive ion beam facilities such as HRIBF opened unique opportunities to explore the structure of nuclei in the regions near the doubly magic nuclei 78Ni (Z=28 and N=50) and 132Sn (Z=50 and N=82). For this purpose we have developed specialized methods and instrumentation to measure various observables. There is also the opportunity to perform precision experiments with stable beams using exactly the same state-of-the-art instrumentation and techniques as with their radioactive ion beam counterpart. I describe some of the recent efforts at HRIBF to do more precise measurements using particle-gamma techniques.

  19. Investigating and parameterizing physical, chemical, and thermodynamic dependencies of ice nuclei concentrations (Invited)

    NASA Astrophysics Data System (ADS)

    Demott, P. J.; Prenni, A. J.; Sullivan, R. C.; Liu, X.; Kreidenweis, S. M.; Carpenter, J. M.; Branson, M.; Moehler, O.; Glen, A.; Brooks, S. D.

    2010-12-01

    Recent observations of atmospheric ice nuclei (IN) concentrations have been compiled into a new parameterization that relates IN abundance to temperature and the size distribution of ambient aerosols (DeMott et al. 2010). We show cases of positive performance of the proposed parameterization in predicting ice formation in case studies of cloud formation and evolution, and also show consistency with new ice nuclei data not used in the development of the parameterization. Nevertheless, atmospheric evidence also suggests remaining critical needs which, when met, are expected to lead to improvement in the parameterization. First, there is a need for new ambient data at modestly supercooled temperatures, including cases of high total particle concentrations. Second, observations are needed to quantify the influence of varied aerosol source regions/compositions and aerosol aging on IN activity. The size-dependence in the parameterization probably reflects the dominance of dust and biological particles as IN, but this must be tested directly, and the possibilities of additional IN types such as black carbon should be further explored. With respect to the role of atmospheric processing, much of our present conceptualization of aging impacts on ice nuclei has come from recent laboratory studies. Therefore, we also explore here the consistency of laboratory data collected for untreated and processed mineral dust particles with atmospheric data collected for more general ice nuclei populations, and suggest observational strategies for studying aging effects in the atmosphere. DeMott, P.J., A. J. Prenni, X. Liu, M. D. Petters, C H. Twohy, M. S. Richardson, T. Eidhammer, S. M. Kreidenweis, and D. C. Rogers, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate, Accepted to Proc. Natnl. Acad. Sci., 107 (25), 11217-11222.

  20. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.

    PubMed

    Paramanandam, Maqlin; O'Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets.

  1. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images

    PubMed Central

    Paramanandam, Maqlin; O’Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods—Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets. PMID:27649496

  2. Dynamics of Sequestered Cryptophyte Nuclei in Mesodinium rubrum during Starvation and Refeeding.

    PubMed

    Kim, Miran; Drumm, Kirstine; Daugbjerg, Niels; Hansen, Per J

    2017-01-01

    The marine mixotrophic ciliate Mesodinium rubrum is known to acquire chloroplasts, mitochondria, nucleomorphs, and nucleus from its cryptophyte prey, particularly from species in the genera, Geminigera and Teleaulax. The sequestered prey nucleus and chloroplasts are considered to support photosynthesis of M. rubrum. In addition, recent studies have shown enlargement of the retained prey nucleus in starved M. rubrum and have inferred that enlargement results from the fusion of ingested prey nuclei. Thus far, however, little is known about the mechanism underlying the enlargement of the prey nucleus in M. rubrum. Here, we conducted starvation and refeeding studies to monitor the fate of prey nuclei acquired by M. rubrum when feeding on Teleaulax amphioxeia and to explore the influence of the retained prey nucleus on photosynthesis of M. rubrum. Results indicate that enlargement of the prey nucleus does not result from fusion of nuclei. Furthermore, the enlarged prey nucleus does not appear to divide during cell division of M. rubrum. The presence of a prey nucleus significantly affected photosynthetic performance of M. rubrum, while the number of retained chloroplasts had little influence on rate of carbon fixation. We interpret results within the context of a model that considers the dynamics of ingested prey nuclei during division of M. rubrum.

  3. Dynamics of Sequestered Cryptophyte Nuclei in Mesodinium rubrum during Starvation and Refeeding

    PubMed Central

    Kim, Miran; Drumm, Kirstine; Daugbjerg, Niels; Hansen, Per J.

    2017-01-01

    The marine mixotrophic ciliate Mesodinium rubrum is known to acquire chloroplasts, mitochondria, nucleomorphs, and nucleus from its cryptophyte prey, particularly from species in the genera, Geminigera and Teleaulax. The sequestered prey nucleus and chloroplasts are considered to support photosynthesis of M. rubrum. In addition, recent studies have shown enlargement of the retained prey nucleus in starved M. rubrum and have inferred that enlargement results from the fusion of ingested prey nuclei. Thus far, however, little is known about the mechanism underlying the enlargement of the prey nucleus in M. rubrum. Here, we conducted starvation and refeeding studies to monitor the fate of prey nuclei acquired by M. rubrum when feeding on Teleaulax amphioxeia and to explore the influence of the retained prey nucleus on photosynthesis of M. rubrum. Results indicate that enlargement of the prey nucleus does not result from fusion of nuclei. Furthermore, the enlarged prey nucleus does not appear to divide during cell division of M. rubrum. The presence of a prey nucleus significantly affected photosynthetic performance of M. rubrum, while the number of retained chloroplasts had little influence on rate of carbon fixation. We interpret results within the context of a model that considers the dynamics of ingested prey nuclei during division of M. rubrum. PMID:28377747

  4. Measuring the Fusion Cross-Section of Light Nuclei with Low-Intensity Beams

    NASA Astrophysics Data System (ADS)

    Steinbach, Tracy; Brown, Kyle; Hudan, Sylvie; Desouza, Romualdo

    2014-03-01

    Reactions between neutron-rich light nuclei have been proposed as a heat source in the crust of an accreting neutron star that triggers an X-ray superburst. To explore the probability of such fusion events as well as better understand the fusion dynamics between neutron-rich nuclei, an experimental program to measure the dependence of the fusion cross-section on neutron number has been initiated. Key to these measurements is developing an approach to measure the total fusion cross-section for beams of low-intensity light nuclei (<105 ions/s) on light targets. Fusion residues resulting from the fusion of oxygen nuclei with 12C at energies near and below the Coulomb barrier are directly measured and distinguished from unreacted beam particles on the basis of their energy and time-of-flight (TOF). The TOF is measured between a microchannel plate (MCP) detector and a segmented Si detector. Two initial problems were charge trapping in the Si detector and slit scattering in the MCP detector. These problems have both been minimized by implementing a gridless MCP detector and a new Si design making the measurement feasible. Supported by the US DOE under Grant No. DEFG02-88ER-40404

  5. Effects of thermal shape fluctuations and pairing fluctuations on the giant dipole resonance in warm nuclei

    NASA Astrophysics Data System (ADS)

    Rhine Kumar, A. K.; Arumugam, P.; Dang, N. Dinh

    2015-04-01

    Apart from the higher limits of isospin and temperature, the properties of atomic nuclei are intriguing and less explored at the limits of lowest but finite temperatures. At very low temperatures there is a strong interplay between the shell (quantal fluctuations), statistical (thermal fluctuations), and residual pairing effects as evidenced from the studies on giant dipole resonance (GDR). In our recent work [Phys. Rev. C 90, 044308 (2014), 10.1103/PhysRevC.90.044308], we have outlined some of our results from a theoretical approach for such warm nuclei where all these effects are incorporated along within the thermal shape fluctuation model (TSFM) extended to include the fluctuations in the pairing field. In this article, we present the complete formalism based on the microscopic-macroscopic approach for determining the deformation energies and a macroscopic approach which links the deformation to GDR observables. We discuss our results for the nuclei 97Tc,120Sn,179Au, and 208Pb, and corroborate with the experimental data available. The TSFM could explain the data successfully at low temperature only with a proper treatment of pairing and its fluctuations. More measurements with better precision could yield rich information about several phase transitions that can happen in warm nuclei.

  6. The superdeformation phenomenon in atomic nuclei

    NASA Astrophysics Data System (ADS)

    Meyer, M.; Vivien, J. P.

    After the discovery of discrete rotational bands corresponding to superdeformed nuclei with spin around 60h, the study of the structure of these nuclei over the last five years has witnessed a significant expansion in physical understanding with the emergence of new phenomena and in a technical development with the construction of sophisticated apparatus to examine these nuclei. On the eve of the approaching operation of news detectors such as EUROGAM resulting from a French-British collaboration,or the American GAMMASPHERE, this article discusses the present state of knowledge on superdeformation and exposes the theoretical basis as well as recent experimental results in the field. Avec la découverte de bandes de rotations discrètes correspondant à des noyaux superdéformés ayant des moments angulaires avoisinant 60h, l'étude de la structure de ces noyaux connait depuis les cinq dernières années un essor important tant sur le plan de la physique avec l'apparition de phénomènes nouveaux que sur le plan de la technique avec le développement d'appareillages sophistiqués pour scruter ces noyaux. A la veille de l'entrée en fonction de nouveaux détecteurs comme EUROGAM issu d'une collaboration Franco-Britannique ou GAMMASPHERE résultant des efforts des laboratoires Americains, cet article fait le point des connaissances actuelles sur la superdéformation et relate les acquis théoriques ainsi que les resultats expérimentaux accumulés récemment dans ce domaine.

  7. Nuclei at extreme conditions. A relativistic study

    SciTech Connect

    Afanasjev, Anatoli

    2014-11-14

    The major goals of the current project were further development of covariant density functional theory (CDFT), better understanding of its features, its application to different nuclear structure and nuclear astrophysics phenomena and training of graduate and undergraduate students. The investigations have proceeded in a number of directions which are discussed in detail in the part “Accomplishments” of this report. We have studied the role of isovector and isoscalar proton-neutron pairings in rotating nuclei; based on available experimental data it was concluded that there are no evidences for the existence of isoscalar proton-neutron pairing. Generalized theoretical approach has been developed for pycnonuclear reaction rates in the crust of neutron stars and interior of white dwarfs. Using this approach, extensive database for considerable number of pycnonuclear reactions involving stable and neutron-rich light nuclei has been created; it can be used in future for the study of various nuclear burning phenomena in different environments. Time-odd mean fields and their manifestations in terminating states, non-rotating and rotating nuclei have been studied in the framework of covariant density functional theory. Contrary to non-relativistic density functional theories these fields, which are important for a proper description of nuclear systems with broken time-reversal symmetry, are uniquely defined in the CDFT framework. Hyperdeformed nuclear shapes (with semi-axis ratio 2.5:1 and larger) have been studied in the Z = 40-58 part of nuclear chart. We strongly believe that such shapes could be studied experimentally in the future with full scale GRETA detector.

  8. Effective field theory description of halo nuclei

    NASA Astrophysics Data System (ADS)

    Hammer, H.-W.; Ji, C.; Phillips, D. R.

    2017-10-01

    Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.

  9. Self-Consistency Effects In Superheavy Nuclei

    SciTech Connect

    Afanasjev, A.V.; Frauendorf, S.

    2005-04-05

    The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied within the relativistic mean field theory. Large depression leads to the shell gaps at the proton Z = 120 and neutron N = 172 numbers, while flatter density distribution favors N = 184 for neutrons and leads to the appearance of a Z 126 shell gap and to the decrease of the size of the Z = 120 shell gap. The correlations between the magic shell gaps and the magnitude of central depression are discussed for relativistic and non-relativistic mean field theories.

  10. Active Galactic Nuclei and Gamma Rays

    NASA Astrophysics Data System (ADS)

    Giebels, Berrie; Aharonian, Felix; Sol, Hélène

    The supermassive black holes harboured in active galactic nuclei are at the origin of powerful jets which can emit copious amounts of γ-rays. The exact interplay between the infalling matter, the black hole and the relativistic outflow is still poorly known, and this parallel session of the 12th Marcel Grossman meeting intended to offer the most up to date status of observational results with the latest generation of ground and space-based instruments, as well as the theoretical developments relevant for the field.

  11. Evaporation of particles from hot nuclei

    NASA Astrophysics Data System (ADS)

    Zejun, He; Jianshi, Wu; Wolfgang, Nörenberg

    1988-11-01

    For particle evaporation from hot nuclei a model is proposed which is applicable to high excitation energies where the mean free path of nucleons becomes comparable to or smaller than the size of the nucleus. The formalism allows to calculate the time evolution of the emitting system and the evaporation rates and spectra of the emitted particles. The nucleus 133Cs with an initial temperature of 18 MeV is studied as an example. Implications for intermediate-energy heavy-ion collisions are indicated.

  12. Associated strangeness production on light nuclei

    NASA Astrophysics Data System (ADS)

    Ernst, J.; Kingler, J.; Lippert, C.

    1991-04-01

    The study of light hyper-nuclei via associated strangeness production in (p, K+) reactions is discussed. Though the process is characterized by a very large momentum transfer the presence of short range correlations is expected to rise the cross section up to the order of nb/sr. Two approved proposals for high resolution studies of this reaction are discussed and respective detection limits are presented. The first is scheduled for October 1990 at the SPES4 spectrometer at the SATURNE acclerator (LNS Saclay). The second deals with the planned upgrading of the BIG KARL magnetic spectrograph at the cooled beam facility COSY being bulit at Forschungsanlage Jülich.

  13. Understanding the Synthesis of the Heaviest Nuclei

    NASA Astrophysics Data System (ADS)

    Loveland, W.

    2008-08-01

    Two measurements of PCN, the fusion probability, are described. In the first measurement, the value of PCN was deduced for a typical cold fusion reaction, the 50Ti + 208Pb reaction, by analysis of the fission fragment angular distributions. In the second measurement, PCN was deduced, using the DNS model, from experimental measurements of the capture and EVR cross sections for the 124Sn + 96Zr reaction. Comparison of the deduced values of PCN with various theoretical models of the synthesis of the heaviest nuclei are made.

  14. The Structure of Nuclei Far from Stability

    SciTech Connect

    Zganjar, E.F.

    1999-02-25

    From among a number of important nuclear structure results that have emerged from our research program during the past few years, two stand out as being of extra significance. These are: (a) the identification of a diabatic coexisting structure in {sup 187}Au which arises solely from differences in proton occupation of adjacent oscillator shells, and (b) the realization of a method for estimating EO strength in nuclei and the resulting prediction that the de-excitation of superdeformed bands may proceed, in some cases, by strong EO transitions.

  15. Short-Distance Structure of Nuclei

    SciTech Connect

    Douglas Higinbotham, Eliazer Piasetzky, Stephen Wood

    2011-06-01

    One of Jefferson Lab's original missions was to further our understanding of the short-distance structure of nuclei. In particular, to understand what happens when two or more nucleons within a nucleus have strongly overlapping wave-functions; a phenomena commonly referred to as short-range correlations. Herein, we review the results of the (e,e'), (e,e'p) and (e,e'pN) reactions that have been used at Jefferson Lab to probe this short-distance structure as well as provide an outlook for future experiments.

  16. Quantum Monte Carlo calculations for light nuclei.

    SciTech Connect

    Wiringa, R. B.

    1998-10-23

    Quantum Monte Carlo calculations of ground and low-lying excited states for nuclei with A {le} 8 are made using a realistic Hamiltonian that fits NN scattering data. Results for more than 40 different (J{pi}, T) states, plus isobaric analogs, are obtained and the known excitation spectra are reproduced reasonably well. Various density and momentum distributions and electromagnetic form factors and moments have also been computed. These are the first microscopic calculations that directly produce nuclear shell structure from realistic NN interactions.

  17. Probing Chiral Interactions in Light Nuclei

    SciTech Connect

    Nogga, A; Barrett, B R; Meissner, U; Witala, H; Epelbaum, E; Kamada, H; Navratil, P; Glockle, W; Vary, J P

    2004-01-08

    Chiral two- and three-nucleon interactions are studied in a few-nucleon systems. We investigate the cut-off dependence and convergence with respect to the chiral expansion. It is pointed out that the spectra of light nuclei are sensitive to the three-nucleon force structure. As an example, we present calculations of the 1{sup +} and 3{sup +} states of {sup 6}Li using the no-core shell model approach. The results show contributions of the next-to-next-to-leading order terms to the spectra, which are not correlated to the three-nucleon binding energy prediction.

  18. Signatures for quark clustering in nuclei

    SciTech Connect

    Carlson, C.E.; Lassila, K.E.

    1994-04-01

    As a signature for the presence of quark clusters in nuclei, the authors suggest studying backward protons produced by electron scattering off deuterons and suggest a ratio that cancels out much of the detailed properties of deuterons or 6-quark clusters. The test may be viewed as a test that the short range part of the deuteron is still a 2-nucleon system. They make estimates to show how it fails in characteristic and significant ways if the two nucleons at short range coalesce into a kneaded 6-quark cluster.

  19. Probing the hidden secrets of Seyfert nuclei.

    NASA Astrophysics Data System (ADS)

    Appenzeller, I.; Wagner, S.

    1990-06-01

    The nuclei of active galaxies are clearly among the most spectacular and violent places that can be found in our present universe. Most extreme are the bright Quasars, where we observe a total energy output equivalent to a large galaxy cluster from galactic core regions comparable in size to our solar system. In addition to optical and radio radiation we often observe intense X-ray and even energetic Gamma radiation as well as collimated streams of matter moving at velocities close to the velocity of light.

  20. Experimental level densities of atomic nuclei

    SciTech Connect

    Guttormsen, M.; Aiche, M.; Bernstein, L. A.; Bleuel, D. L.; Byun, Y.; Ducasse, Q.; Giacoppo, F.; Gorgen, A.; Gunsing, F.; Hagen, T. W.; Jurado, B.; Larsen, A. C.; Lebois, L.; Leniau, B.; Nyhus, H. T.; Renstrom, T.; Rose, S. J.; Sahin, E.; Siem, S.; Tornyi, T. G.; Tveten, G. M.; Voinov, A.; Wiedeking, M.; Wilson, J.

    2015-12-23

    It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. Furthermore, trom the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least up to the neutron threshold.

  1. Sub-Barrier Fusion with Exotic Nuclei

    NASA Astrophysics Data System (ADS)

    Alamanos, N.; Auger, F.; Keeley, N.; Lapoux, V.; Rusek, K.; Pakou, A.

    2005-09-01

    Interest in the mechanism of near- and sub-barrier fusion has been renewed, with the advent of radioactive beam facilities, due to the specific properties of unbound and weakly bound beams, such as extended neutron densities, low-lying continuum, and very low energy break-up thresholds. It is expected that these properties will appreciably affect fusion, as well as other reaction channels like breakup. We discuss the role played by these properties in barrier and sub-barrier fusion of weakly bound and unstable nuclei. The data are compared to calculations performed within the coupled channels and continuum discretized coupled channels schemes.

  2. Effective field theory for deformed atomic nuclei

    SciTech Connect

    Papenbrock, Thomas F.; Weidenmüller, H. A.

    2016-04-13

    In this paper, we present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. Finally, for rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.

  3. Effective field theory for deformed atomic nuclei

    SciTech Connect

    Papenbrock, Thomas F.; Weidenmüller, H. A.

    2016-04-13

    In this paper, we present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. Finally, for rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.

  4. Naked megakaryocyte nuclei: a clue to malignancy.

    PubMed

    Lefkowitz, M; Lefkowitz, E

    1977-10-01

    Bone marrow smears from 63 patients with various malignancies and a series of 51 controls were examined for the presence and percentage of naked megakaryocyte nuclei (NMN). Patients with malignancy had more than 15% NMN, which, when compared with the incidence in controls, was statistically significant. The etiology of this artifact is unknown. It is a clue to the presence of malignancy, and might be useful in following treated cases of malignancy for evidence of relapse. NMN should not be confused with metastatic malignant cells.

  5. Collectivity in Light Nuclei and the GDR

    NASA Astrophysics Data System (ADS)

    Maj, A.; Styczeń, J.; Kmiecik, M.; Bednarczyk, P.; Brekiesz, M.; GrȨBOSZ, J.; Lach, M.; MȨCZYŃSKI, W.; ZiȨBLIŃSKI, M.; Zuber, K.; Bracco, A.; Camera, F.; Benzoni, G.; Leoni, S.; Million, B.; Wieland, O.

    2005-03-01

    The results are presented from the experiments using the EUROBALL and RFD/HECTOR arrays, concerning various aspects of collectivity in light nuclei. A superdeformed band in 42Ca was found. A comparison of the GDR line shape data with the predictions of the thermal shape fluctuation model, based on the most recent rotating liquid drop LSD calculations, shows evidence for a Jacobi shape transition in hot, rapidly rotating 46Ti and strong Coriolis effects in the GDR strength function. The preferential feeding of the SD band in 42Ca by the GDR low energy component was observed

  6. Quantum Monte Carlo calculations for light nuclei

    SciTech Connect

    Wiringa, R.B.

    1998-08-01

    Quantum Monte Carlo calculations of ground and low-lying excited states for nuclei with A {le} 8 are made using a realistic Hamiltonian that fits NN scattering data. Results for more than 30 different (j{sup {prime}}, T) states, plus isobaric analogs, are obtained and the known excitation spectra are reproduced reasonably well. Various density and momentum distributions and electromagnetic form factors and moments have also been computed. These are the first microscopic calculations that directly produce nuclear shell structure from realistic NN interactions.

  7. Reactions and structure of exotic nuclei

    SciTech Connect

    Esbensen, H.

    1993-08-01

    Radioactive beam experiments have made it possible to study the structure of light neutron rich nuclei. A characteristic feature is a large dipole strength near threshold. An excellent example is the loosely bound nucleus ``Li for which Coulomb dissociation plays a dominant role in breakup reactions on a high Z target. I will describe a three-body model and apply it to calculate the dipole response of {sup 11}Li and the momentum distributions for the three-body breakup reaction: {sup 11}Li {yields} {sup 9}Li+n+n, and comparisons will be made to recent three-body coincidence measurements.

  8. Statistical (?) decay of light hot nuclei

    NASA Astrophysics Data System (ADS)

    Baiocco, G.; Bruno, M.; D'Agostino, M.; Morelli, L.

    2012-07-01

    The reaction 12C+12C at 95 MeV beam energy has been measured using the GARFIELD+RCo apparatuses at Laboratori Nazionali di Legnaro LNL - INFN, Italy, in the framework of an experimental campaign proposed by the NUCL-EX collaboration. The aim is to progress in the understanding of statistical properties of light nuclei at excitation energies above particle emission thresholds, by measuring exclusive fusion-evaporation data. A theoretical study of the system, performed with a newly developed Monte Carlo Hauser-Feshbach code, is shown, together with preliminary results of the data analysis.

  9. Effective field theory for deformed atomic nuclei

    NASA Astrophysics Data System (ADS)

    Papenbrock, T.; Weidenmüller, H. A.

    2016-05-01

    We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.

  10. Propagation of heavy cosmic-ray nuclei

    NASA Technical Reports Server (NTRS)

    Letaw, J. R.; Silberberg, R.; Tsao, C. H.

    1984-01-01

    Techniques for modeling the propagation of heavy cosmic-ray nuclei, and the required atomic and nuclear data, are assembled in this paper. Emphasis is on understanding nuclear composition in the charge range Z = 3-83. Details of the application of 'matrix methods' above a few hundred MeV/nucleon, a new treatment of electron capture decay, and a new table of cosmic ray-stable isotopes are presented. Computation of nuclear fragmentation cross sections, stopping power, and electron stripping and attachment are briefly reviewed.

  11. Precision measurement of the mass difference between light nuclei and anti-nuclei

    DOE PAGES

    Adam, J.

    2015-08-17

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. Also, this force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons (more » $$-\\atop{d}$$), and 3He and 3$$-\\atop{He}$$nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb–Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).« less

  12. Precision measurement of the mass difference between light nuclei and anti-nuclei

    NASA Astrophysics Data System (ADS)

    Alice Collaboration; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmed, I.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, S.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erhardt, F.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, K. H.; Khan, M. Mohisin; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, Mimae.; Kim, Minwoo; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kour, M.; Kouzinopoulos, C.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, A.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luparello, G.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Müller, H.; Mulligan, J. D.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira da Costa, H.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seeder, K. S.; Seger, J. E.; Sekiguchi, Y.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yano, S.; Yasnopolskiy, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2015-10-01

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons (), and 3He and nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).

  13. Precision measurement of the mass difference between light nuclei and anti-nuclei

    SciTech Connect

    Adam, J.

    2015-08-17

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. Also, this force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons ($-\\atop{d}$), and 3He and 3$-\\atop{He}$nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb–Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).

  14. Spherical nuclei near the stability line and far from it

    NASA Astrophysics Data System (ADS)

    Isakov, V. I.

    2016-11-01

    Results of microscopic and semiphenomenological calculations of features of spherical nuclei lying near the stability line and far from it are presented. The reason why the nuclei being considered are spherical is that they are magic at least in one nucleon sort. The present analysis is performed for Z = 50 and Z = 28 isotopes and for N = 50 isotones, the region extending from neutron-rich to neutron-deficient nuclei being covered. The isotopic dependence of the mean-field spin-orbit nuclear potential is revealed; systematics of energies of levels and probabilities for electromagnetic transitions is examined; and root-mean-square radii of nuclei are calculated, along with the proton- and neutron-density distributions in them. Nuclei in the vicinity of closed shells are considered in detail, and the axial-vector weak coupling constant in nuclei is evaluated. A systematic comparison of the results of calculations with experimental data is performed.

  15. Spherical nuclei near the stability line and far from it

    SciTech Connect

    Isakov, V. I.

    2016-11-15

    Results of microscopic and semiphenomenological calculations of features of spherical nuclei lying near the stability line and far from it are presented. The reason why the nuclei being considered are spherical is that they are magic at least in one nucleon sort. The present analysis is performed for Z = 50 and Z = 28 isotopes and for N = 50 isotones, the region extending from neutron-rich to neutron-deficient nuclei being covered. The isotopic dependence of the mean-field spin–orbit nuclear potential is revealed; systematics of energies of levels and probabilities for electromagnetic transitions is examined; and root-mean-square radii of nuclei are calculated, along with the proton- and neutron-density distributions in them. Nuclei in the vicinity of closed shells are considered in detail, and the axial-vector weak coupling constant in nuclei is evaluated. A systematic comparison of the results of calculations with experimental data is performed.

  16. Direct observation of light focusing by single photoreceptor cell nuclei.

    PubMed

    Błaszczak, Zuzanna; Kreysing, Moritz; Guck, Jochen

    2014-05-05

    The vertebrate retina is inverted with respect to its optical function, which requires light to pass through the entire tissue prior to detection. The last significant barrier for photons to overcome is the outer nuclear layer formed by photoreceptor cell (PRC) nuclei. Here we experimentally characterise the optical properties of PRC nuclei using bright-field defocusing microscopy to capture near-field intensity distributions behind individual nuclei. We find that some nuclei efficiently focus incident light confirming earlier predictions based on comparative studies of chromatin organisation in nocturnal and diurnal mammals. The emergence of light focusing during the development of mouse nuclei highlights the acquired nature of the observed lens-like behaviour. Optical characterisation of these nuclei is an important first step towards an improved understanding of how light transmission through the retina is influenced by its constituents.

  17. Nuclear obscuration in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Ramos Almeida, Cristina; Ricci, Claudio

    2017-09-01

    The material surrounding accreting supermassive black holes connects the active galactic nucleus with its host galaxy and, besides being responsible for feeding the black hole, provides important information on the feedback that nuclear activity produces on the galaxy. In this Review, we summarize our current understanding of the close environment of accreting supermassive black holes obtained from studies of local active galactic nuclei carried out in the infrared and X-ray regimes. The structure of this circumnuclear material is complex, clumpy and dynamic, and its covering factor depends on the accretion properties of the active galactic nucleus. In the infrared, this obscuring material is a transition zone between the broad- and narrow-line regions, and, at least in some galaxies, it consists of two structures: an equatorial disk/torus and a polar component. In the X-ray regime, the obscuration is produced by multiple absorbers across various spatial scales, mostly associated with the torus and the broad-line region. In the coming decade, the new generation of infrared and X-ray facilities will greatly contribute to our understanding of the structure and physical properties of nuclear obscuration in active galactic nuclei.

  18. Dual origin of pairing in nuclei

    NASA Astrophysics Data System (ADS)

    Idini, A.; Potel, G.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2016-11-01

    The pairing correlations of the nucleus 120Sn are calculated by solving the Nambu-Gor'kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong 1 S 0 short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- ( v p bare) and long-range ( v p ind) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.

  19. Spin Modes in Nuclei and Nuclear Forces

    SciTech Connect

    Suzuki, Toshio; Otsuka, Takaharu

    2011-05-06

    Spin modes in stable and unstable exotic nuclei are studied and important roles of tensor and three-body forces on nuclear structure are discussed. New shell model Hamiltonians, which have proper tensor components, are shown to explain shell evolutions toward drip-lines and spin properties of both stable and exotic nuclei, for example, Gamow-Teller transitions in {sup 12}C and {sup 14}C and an anomalous M1 transition in {sup 17}C. The importance and the necessity of the repulsive monopole corrections in isospin T = 1 channel to the microscopic two-body interactions are pointed out. The corrections are shown to lead to the proper shell evolutions in neutron-rich isotopes. The three-body force, in particular the Fujita-Miyazawa force induced by {Delta} excitations, is pointed out to be responsible for the repulsive corrections among the valence neutrons. The important roles of the three-body force on the energies and transitions in exotic oxygen and calcium isotopes are demonstrated.

  20. Theoretical studies of hadrons and nuclei

    SciTech Connect

    COTANCH, STEPHEN R

    2007-03-20

    This report details final research results obtained during the 9 year period from June 1, 1997 through July 15, 2006. The research project, entitled Theoretical Studies of Hadrons and Nuclei , was supported by grant DE-FG02-97ER41048 between North Carolina State University [NCSU] and the U. S. Department of Energy [DOE]. In compliance with grant requirements the Principal Investigator [PI], Professor Stephen R. Cotanch, conducted a theoretical research program investigating hadrons and nuclei and devoted to this program 50% of his time during the academic year and 100% of his time in the summer. Highlights of new, significant research results are briefly summarized in the following three sections corresponding to the respective sub-programs of this project (hadron structure, probing hadrons and hadron systems electromagnetically, and many-body studies). Recent progress is also discussed in a recent renewal/supplemental grant proposal submitted to DOE. Finally, full detailed descriptions of completed work can be found in the publications listed at the end of this report.

  1. Cluster-shell competition in light nuclei

    SciTech Connect

    Itagaki, N.; Aoyama, S.; Okabe, S.; Ikeda, K.

    2004-11-01

    We demonstrate whether the cluster structure dissolves or remains when the shell-model-like model space is introduced in addition to the cluster model space in light nuclei. Although the binding energies of {sup 8}Be, {sup 10}Be, and {sup 10}B become larger by about 1-2 MeV by adding shell-model-like basis states to the {alpha}+{alpha}+N+N+{center_dot}{center_dot}{center_dot} basis states, the {alpha}-{alpha} structure is a dominant configuration of the ground states. However, {alpha}-breaking wave functions strongly mix in {sup 12}C, and the decrease of the energy from the 3{alpha} configuration by about 6 MeV is a clue to resolving a long-standing problem of the binding energies of {sup 12}C and {sup 16}O. The improved version of antisymmetrized molecular dynamics (AMD), AMD superposition of selected snapshots (AMD triple-S), is used to show the cluster-shell competition of these nuclei.

  2. Disappearance of Collective Motion in Hot Nuclei

    NASA Astrophysics Data System (ADS)

    Santonocito, D.; Blumenfeld, Y.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Delaunay, F.; Del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Hongmei, F.; Lima, V.; Maiolino, C.; Migneco, E.; Piattelli, P.; Sapienza, P.; Scarpaci, J. A.

    2005-12-01

    The evolution of the GDR γ yield as a function of excitation energy has been investigated in nuclei of mass A ≈ 126 - 136 through the reactions 116Sn + 12C at 17 and 23A MeV and the reaction 116Sn + 24Mg at 17A MeV. Hot nuclei produced in incomplete fusion reactions span an excitation energy range between 160 and 290 MeV. Gamma-rays were detected with MEDEA array in coincidence with residues detected in MACISTE. The evolution of the GDR parameters has been investigated as a function of the linear momentum transferred to the fused system. The analysis of the γ spectra and their comparison with CASCADE calculations is presented. A comparison with the gamma spectra measured in the reaction 36Ar + 98Mo at 37A MeV at higher excitation energy is presented. A progressive reduction of γ multiplicity with respect to predictions for 100% of the Energy Weighted Sum Rule is observed above 200 MeV excitation energy.

  3. Anisotropic multicluster model in light nuclei

    NASA Astrophysics Data System (ADS)

    Gijón, A.; Gálvez, F. J.; Arias de Saavedra, F.; Buendía, E.

    2016-06-01

    Multicluster models consider that the nucleons can be moving around different centers in the nuclei. These models have been widely used to describe light nuclei but always considering that the mean field is composed of isotropic harmonic oscillators with different centers. In this work, we propose an extension of these models by using anisotropic harmonic oscillators. The strengths of these oscillators, the distance among the different centers and the disposition of the nucleons inside every cluster are free parameters which have been fixed using the variational criterion. All the one-body and two-body matrix elements have been analytically calculated. Only a numerical integration on the Euler angles is needed to carry out the projection on the values of the total spin of the state and its third component. We have studied the ground state and the first excited states of 8Be, 12C and 10Be getting good results for the energies. The disposition of the nucleons in the different clusters have also been analyzed by using projection on the different Cartesian planes getting much more information than when the radial one-body density is used.

  4. Nuclear obscuration in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Almeida, Cristina Ramos; Ricci, Claudio

    2017-10-01

    The material surrounding accreting supermassive black holes connects the active galactic nucleus with its host galaxy and, besides being responsible for feeding the black hole, provides important information on the feedback that nuclear activity produces on the galaxy. In this Review, we summarize our current understanding of the close environment of accreting supermassive black holes obtained from studies of local active galactic nuclei carried out in the infrared and X-ray regimes. The structure of this circumnuclear material is complex, clumpy and dynamic, and its covering factor depends on the accretion properties of the active galactic nucleus. In the infrared, this obscuring material is a transition zone between the broad- and narrow-line regions, and, at least in some galaxies, it consists of two structures: an equatorial disk/torus and a polar component. In the X-ray regime, the obscuration is produced by multiple absorbers across various spatial scales, mostly associated with the torus and the broad-line region. In the coming decade, the new generation of infrared and X-ray facilities will greatly contribute to our understanding of the structure and physical properties of nuclear obscuration in active galactic nuclei.

  5. STELLAR TRANSITS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Beky, Bence; Kocsis, Bence E-mail: bkocsis@cfa.harvard.edu

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 10{sup 6} solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or {approx}10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  6. στ+ strength in nuclei

    NASA Astrophysics Data System (ADS)

    Cha, D.

    1983-05-01

    The στ+ strength function is studied with the quasiparticle random phase approximation. The residual interaction modifies the pairing theory strength function in two ways. The particle-hole interaction reduces the overall strength by about a factor of 2, without shifting strength between different levels. The particle-particle interaction does not affect the overall strength, but shifts part of the strength from the lowest excitation to a higher excitation energy region. By comparing the theory with the observed (ft) values of the β+ decay in medium heavy nuclei, we find that an additional quenching is required for the στ+ mode, similar in magnitude to the additional quenching present in other isovector spin-flip transitions. Finally, we predict that there is a large concentration of the στ+ strength at higher excitation energy which cannot be observed by the β+ decay. NUCLEAR STRUCTURE στ+ states in odd-odd mass nuclei between A=100-150. QP-RPA calculation with zero-range interaction. Calculated (ft).

  7. Clusters and Halos in Light Nuclei

    SciTech Connect

    Neff, Thomas; Feldmeier, Hans

    2009-08-26

    The structure of light nuclei in the p- and sd-shell features exotic phenomena like halos and clustering. In the Fermionic Molecular Dynamics (FMD) approach we aim at a consistent microscopic description of well bound nuclei and of loosely bound exotic systems. This is possible due to the flexibility of the single-particle basis states using Gaussian wave-packets localized in phase space. Many-body basis states are Slater determinants projected on parity, angular and total linear momentum.The structure of {sup 12}C is discussed. Here the ground state band can be well described within a shell model picture but excited states above the three-{alpha} threshold, including the famous Hoyle state, show a pronounced cluster structure. As another example we study the structure of the Neon isotopes {sup 17-22}Ne. In {sup 17}Ne we find a large s{sup 2} occupation related to a large charge radius. The charge radius decreases for {sup 18}Ne but gets again very large for {sup 19}Ne and {sup 20}Ne which is explained by significant admixtures of {sup 3}He and {sup 4}He cluster components into to the ground state wave functions.

  8. Clusters and Halos in Light Nuclei

    NASA Astrophysics Data System (ADS)

    Neff, Thomas; Feldmeier, Hans

    2009-08-01

    The structure of light nuclei in the p- and sd-shell features exotic phenomena like halos and clustering. In the Fermionic Molecular Dynamics (FMD) approach we aim at a consistent microscopic description of well bound nuclei and of loosely bound exotic systems. This is possible due to the flexibility of the single-particle basis states using Gaussian wave-packets localized in phase space. Many-body basis states are Slater determinants projected on parity, angular and total linear momentum. The structure of 12C is discussed. Here the ground state band can be well described within a shell model picture but excited states above the three-α threshold, including the famous Hoyle state, show a pronounced cluster structure. As another example we study the structure of the Neon isotopes 17-22Ne. In 17Ne we find a large s2 occupation related to a large charge radius. The charge radius decreases for 18Ne but gets again very large for 19Ne and 20Ne which is explained by significant admixtures of 3He and 4He cluster components into to the ground state wave functions.

  9. Superheavy nuclei: from predictions to discovery

    NASA Astrophysics Data System (ADS)

    Oganessian, Yu Ts; Sobiczewski, A.; Ter-Akopian, G. M.

    2017-02-01

    A fundamental outcome of modern nuclear microscopic theory is the prediction of the ‘islands of stability’ in the region of hypothetical superheavy elements (SHEs). In a heavy nucleus, going through the large-scale deformation on the way to fission, the motion of single nucleons is coupled with the collective degrees of freedom of the whole system. The most striking effect of this coupling is obtained for the case of fission of the heaviest nuclei, whose existence is defined entirely by the nuclear structure, i.e. by the shell effect. From this point of view, the synthesis and study of properties of superheavy nuclei (SHN) is a direct way for checking the basic statements of the microscopic nuclear theory. On the nuclide map, SHN outline the border of the heaviest nuclear masses. SHN set the limits of the periodic system of chemical elements. The study of possible existence of SHN in nature offers a way for testing different scenarios of astrophysical nucleosynthesis. The paper elucidates experimental approaches, used for testing the theory predictions made about the SHN, and presents the results of the discovery of the ‘stability island’ of SHEs.

  10. NUCLEI SEGMENTATION VIA SPARSITY CONSTRAINED CONVOLUTIONAL REGRESSION

    PubMed Central

    Zhou, Yin; Chang, Hang; Barner, Kenneth E.; Parvin, Bahram

    2017-01-01

    Automated profiling of nuclear architecture, in histology sections, can potentially help predict the clinical outcomes. However, the task is challenging as a result of nuclear pleomorphism and cellular states (e.g., cell fate, cell cycle), which are compounded by the batch effect (e.g., variations in fixation and staining). Present methods, for nuclear segmentation, are based on human-designed features that may not effectively capture intrinsic nuclear architecture. In this paper, we propose a novel approach, called sparsity constrained convolutional regression (SCCR), for nuclei segmentation. Specifically, given raw image patches and the corresponding annotated binary masks, our algorithm jointly learns a bank of convolutional filters and a sparse linear regressor, where the former is used for feature extraction, and the latter aims to produce a likelihood for each pixel being nuclear region or background. During classification, the pixel label is simply determined by a thresholding operation applied on the likelihood map. The method has been evaluated using the benchmark dataset collected from The Cancer Genome Atlas (TCGA). Experimental results demonstrate that our method outperforms traditional nuclei segmentation algorithms and is able to achieve competitive performance compared to the state-of-the-art algorithm built upon human-designed features with biological prior knowledge. PMID:28101301

  11. [Vestibular nerves and nuclei throughout history].

    PubMed

    Duque-Parra, J E

    Throughout the evolution of the concepts concerning the peripheral nerves, different ideas have dominated at different moments in history. The studies and demonstrations conducted in an attempt to further our knowledge of our own constitution and working at the same time enabled us to gain a better understanding of the make-up and specific functioning of the vestibular nerves, together with their central connecting elements in the brainstem: the vestibular nuclei. It may be that the first references to vestibular nerves are now lost in time, yet the Ancient Greeks already attempted to understand their functional nature by carrying out studies essentially focused on neuroanatomical aspects, but heavily influenced by philosophical concepts. It was not until the 18th century that researchers came to understand that there were differences between the vestibular nerve and the cochlear nerve --until then they were believed to be one single nerve. Another century went by before attempts were made to clarify the role it plays in balance and not in hearing. The differences between the distinct vestibular nuclei situated between the medulla oblongata and the pons were established in the 19th and 20th centuries when a number of authors, backed by previous microscopic studies, contributed to clarifying the fuzzy limits of cells separating the four classic nuclear groups and four others taken as being accessory.

  12. Off-center nuclei in galaxies

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, B. F.

    1992-01-01

    The nucleus of a galaxy orbits around the mass centroid. Orbital motions appear overstable in numerical experiments started with a galaxy's nucleus at rest atop its mass centroid. The amplitude doubles in 6-10 orbital periods. Orbits precess, nutate, and change their amplitudes, but they keep fairly constant periods. Orbital periods are in resonance with local particle motions, and amplitudes reach a core radius. This resonance suggests that center motions are a local, rather than a global, phenomenon. The overstability implies that a galaxy cannot be formed in nature with its nucleus at rest atop its mass centroid, and that nuclei orbit the mass centroid in real galaxies. These center motions should show up observationally as a shift of the nucleus away from the center defined by nearby isophotes. Off-center nuclei have been reported in many galaxies (e.g., M33, M101, NGC 3379, NGC 3384). Other kinds of observations confirmed the picture of nonsteady galactic centers as well. Gas trapped in moving nuclear regions of a galaxy should show strange flow patterns with possible shocks. The nuclear regions of galaxies including Milky Way and of globular clusters are not likely to be in a static steady state.

  13. Thalamic nuclei in the opossum Monodelphis domestica.

    PubMed

    Olkowicz, Seweryn; Turlejski, Kris; Bartkowska, Katarzyna; Wielkopolska, Ewa; Djavadian, Rouzanna L

    2008-10-01

    We investigated nuclear divisions of the thalamus in the gray short-tailed opossum (Monodelphis domestica) to gain detailed information for further developmental and comparative studies. Nissl and myelin staining, histochemistry for acetylcholinesterase and immunohistochemistry for calretinin and parvalbumin were performed on parallel series of sections. Many features of the Monodelphis opossum thalamus resemble those in Didelphis and small eutherians showing no particular sensory specializations, particularly in small murid rodents. However, several features of thalamic organization in Monodelphis were distinct from those in rodents. In the opossum the anterior and midline nuclear groups are more clearly separated from adjacent structures than in eutherians. The dorsal lateral geniculate nucleus (LGNd) starts more rostrally and occupies a large part of the lateral wall of the thalamus. As in other marsupials, two cytoarchitectonically different parts, alpha and beta are discernible in the LGNd of the opossum. Each of them may be subdivided into two additional bands in acetylcholinesterase staining, while in murid rodents the LGNd consists of a homogeneous mass of cells. Therefore, differentiation of the LGNd of the Monodelphis opossum is more advanced than in murid rodents. The medial geniculate body consists of three nuclei (medial, dorsal and ventral) that are cytoarchitectonically distinct and stain differentially for parvalbumin. The relatively large size of the MG and LGNd points to specialization of the visual and auditory systems in the Monodelphis opossum. In contrast to rodents, the lateral dorsal and lateral posterior nuclei in the opossum are poorly differentiated cytoarchitectonically.

  14. Observations of anthropogenic cloud condensation nuclei

    NASA Technical Reports Server (NTRS)

    Hudson, James G.

    1990-01-01

    Cloud Condensation Nuclei (CCN) concentrations and spectral measurements obtained with the DRI instantaneous CCN spectrometer (Hudson, 1989) over the last few years are presented. The climatic importance of cloud microphysics has been pointed out. The particles which affect cloud microphysics are cloud condensation nuclei (CCN). The commonly-observed order of magnitude difference in cloud droplet concentrations between maritime and continental air masses (i.e., Squires, 1958) was determined to be caused by systematic differences in the concentrations of CCN between continental and maritime air masses (e.g., Twomey and Wojciechowski, 1969). Twomey (1977) first pointed out that cloud microphysics also affects the radiative properties of clouds. Thus continental and anthropogenic CCN could affect global temperature. Resolution of this Twomey effect requires answers to two questions - whether antropogenic CCN are a significant contribution to atmospheric CCN, and whether they are actually affecting cloud microphysics to an extent which is of climatic importance. The reasons for the contrast between continental and maritime CCN concentration are not understood. The question of the relative importance of anthropogenic CCN is addressed. These observations should shed light on this complex question although further research is being conducted in order to produce more quantitative answers. Accompanying CN measurements made with a TSI 3020 condensation nucleus (CN) counter are also presented.

  15. Designer Nuclei--Making Atoms that Barely Exist

    ERIC Educational Resources Information Center

    Jones, Kate L.; Nazarewicz, Witold

    2010-01-01

    The physics of nuclei is not a democratic field. It has to be said, some nuclei are just more interesting than others. And some are more useful than others, either to explain the origins of the elements, or the nature of matter itself, or for uses in medicine and other applied fields. The trick is to work out which nuclei are going to be the most…

  16. Systematics of light nuclei in a relativistic model

    SciTech Connect

    Price, C.E.

    1988-01-01

    The results of relativistic mean field calculations for non-spherical nuclei are presented and discussed. The need for non-linear scalar meson self-couplings in order to describe the properties of s-d shell nuclei is emphasized along with the importance of self-consistency in calculations of magnetic moments of odd-mass nuclei. 16 refs., 3 figs., 2 tabs.

  17. Designer Nuclei--Making Atoms that Barely Exist

    ERIC Educational Resources Information Center

    Jones, Kate L.; Nazarewicz, Witold

    2010-01-01

    The physics of nuclei is not a democratic field. It has to be said, some nuclei are just more interesting than others. And some are more useful than others, either to explain the origins of the elements, or the nature of matter itself, or for uses in medicine and other applied fields. The trick is to work out which nuclei are going to be the most…

  18. Do energetic heavy nuclei penetrate deeply into Earth's atmosphere?

    PubMed Central

    Price, P. B.; Askary, F.; Tarlé, G.

    1980-01-01

    We calculate the expected fluxes of cosmic ray nuclei with charge 5 ≤ Z ≤ 28 at various depths in the earth's atmosphere, taking into account the initial charge distribution, ionization loss, and various modes of fragmentation. The flux of surviving heavy nuclei is too low by a factor ≈10-10 to account for the ultra-high-energy Centauro events. We describe an experiment to search for highly ionizing particles that may or may not be nuclei. Images PMID:16592759

  19. Do energetic heavy nuclei penetrate deeply into Earth's atmosphere?

    PubMed

    Price, P B; Askary, F; Tarlé, G

    1980-01-01

    We calculate the expected fluxes of cosmic ray nuclei with charge 5 nuclei is too low by a factor approximately 10(-10) to account for the ultra-high-energy Centauro events. We describe an experiment to search for highly ionizing particles that may or may not be nuclei.

  20. The Size Distribution of Jupiter-Family Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Lowry, Stephen C.

    2003-01-01

    Introduction: We are continuing our program to determine the size distribution of cometary nuclei. We have compiled a catalog of 105 measurements of 57 cometary nuclei, drawn from the general literature, from our own program of CCD photometry of distant cometary nuclei (Lowry and Weissman), and from unpublished observations by colleagues. We model the cumulative size distribution of the nuclei as a power law. Previous determinations of the size distribution slope do not agree. Fernandez et al. found a slope of alpha = 2.65+/-0.25 whereas Lowry et al. and Weissman and Lowry each found a slope of alpha = 1.60+/-0.10.

  1. The Size Distribution of Jupiter-Family Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Lowry, Stephen C.

    2003-01-01

    Introduction: We are continuing our program to determine the size distribution of cometary nuclei. We have compiled a catalog of 105 measurements of 57 cometary nuclei, drawn from the general literature, from our own program of CCD photometry of distant cometary nuclei (Lowry and Weissman), and from unpublished observations by colleagues. We model the cumulative size distribution of the nuclei as a power law. Previous determinations of the size distribution slope do not agree. Fernandez et al. found a slope of alpha = 2.65+/-0.25 whereas Lowry et al. and Weissman and Lowry each found a slope of alpha = 1.60+/-0.10.

  2. Observation of inception of sheet cavitation from free nuclei

    NASA Astrophysics Data System (ADS)

    Tsuru, Wakana; Konishi, Takafumi; Watanabe, Satoshi; Tsuda, Shin-ichi

    2017-06-01

    Prediction of inception of sheet cavitation on solid walls has been recognized to be very difficult, since it is significantly affected by the boundary layer flow characteristics, the population of free nuclei, the nuclei held in the wall roughness, the amount of dissolved air in liquid and so on. It has not sufficiently been made clear how the inception is affected by the conditions of water qualities and background flow characteristics. In this study, high speed observation of inception of sheet cavity from free nuclei is conducted for a two-dimensional convergent- divergent nozzle flow, where the sheet cavity forms just downstream of the nozzle throat. The effects of the amount of dissolved air and the free stream velocity on the inception process of sheet cavitation is examined. In addition, the bubble nuclei density, which is well known to be important factor for cavitation inception, is passively controlled by the filter installed in the tunnel. From the observations, it is confirmed that the nuclei number density significantly affects the formation of sheet cavity rather than the other two parameters. In conditions with large nuclei number density, the sheet cavity does not form, and bubbly cavitation appears instead. In the case with small nuclei number density, the sheet cavity forms from a single flowing nucleus and develops streamwisely and spanwisely. In the conditions with medium nuclei number density, the sheet cavity also forms but is shorter/ narrower streamwisely/spanwisely, due to interaction of other nuclei flowing near the formed sheet cavity.

  3. 30 Years of sodium/X-nuclei magnetic resonance imaging.

    PubMed

    Konstandin, Simon; Schad, Lothar R

    2014-02-01

    In principle, all nuclei with nonzero spin can be employed for magnetic resonance imaging (MRI). Special scanner hardware and MR sequences are required to select the nucleus-specific frequency and to enable imaging with "sufficient" signal-to-noise ratio. This Special Issue starts with an overview of different nuclei that can be used for MRI today, followed by a review article about techniques required for imaging of quadrupolar nuclei with short relaxation times. Sequence developments to improve image quality and applications on different organs and diseases are presented for different nuclei ((23)Na, (35)Cl, (17)O, and (19)F), with a focus on imaging at natural abundance.

  4. Exploration review

    USGS Publications Warehouse

    Wilburn, D.R.

    2007-01-01

    This summary of international mineral exploration activities for 2006 draws upon available information from literature, industry and U.S. Geological Survey (USGS) specialists. The summary provides data on exploration budgets by region and mineral commodity, identifies significant mineral discoveries and areas of mineral exploration, discusses government programs affecting the mineral exploration industry and presents analysis of the mineral industry based upon these data.

  5. Removal of Residual Nuclei Following a Cavitation Event using Low-Amplitude Ultrasound

    PubMed Central

    Duryea, Alexander P.; Cain, Charles A.; Tamaddoni, Hedieh A.; Roberts, William W.; Hall, Timothy L.

    2014-01-01

    Microscopic residual bubble nuclei can persist on the order of 1 second following a cavitation event. These bubbles can limit the efficacy of ultrasound therapies such as shock wave lithotripsy and histotripsy, as they attenuate pulses that arrive subsequent to their formation and seed repetitive cavitation activity at a discrete set of sites (cavitation memory). Here, we explore a strategy for the removal of these residual bubbles following a cavitation event, using low amplitude ultrasound pulses to stimulate bubble coalescence. All experiments were conducted in degassed water and monitored using high speed photography. In each case, a 2 MHz histotripsy transducer was used to initiate cavitation activity (a cavitational bubble cloud), the collapse of which generated a population of residual bubble nuclei. This residual nuclei population was then sonicated using a 1 ms pulse from a separate 500 kHz transducer, which we term the ‘bubble removal pulse.’ Bubble removal pulse amplitudes ranging from 0 to 1.7 MPa were tested, and the backlit area of shadow from bubbles remaining in the field following bubble removal was calculated to quantify efficacy. It was found that an ideal amplitude range exists (roughly 180 – 570 kPa) in which bubble removal pulses stimulate the aggregation and subsequent coalescence of residual bubble nuclei, effectively removing them from the field. Further optimization of bubble removal pulse sequences stands to provide an adjunct to cavitation-based ultrasound therapies such as shock wave lithotripsy and histotripsy, mitigating the effects of residual bubble nuclei that currently limit their efficacy. PMID:25265172

  6. Removal of residual nuclei following a cavitation event using low-amplitude ultrasound.

    PubMed

    Duryea, Alexander P; Cain, Charles A; Tamaddoni, Hedieh A; Roberts, William W; Hall, Timothy L

    2014-10-01

    Microscopic residual bubble nuclei can persist on the order of 1 s following a cavitation event. These bubbles can limit the efficacy of ultrasound therapies such as shock wave lithotripsy and histotripsy, because they attenuate pulses that arrive subsequent to their formation and seed repetitive cavitation activity at a discrete set of sites (cavitation memory). Here, we explore a strategy for the removal of these residual bubbles following a cavitation event, using low-amplitude ultrasound pulses to stimulate bubble coalescence. All experiments were conducted in degassed water and monitored using high-speed photography. In each case, a 2-MHz histotripsy transducer was used to initiate cavitation activity (a cavitational bubble cloud), the collapse of which generated a population of residual bubble nuclei. This residual nuclei population was then sonicated using a 1 ms pulse from a separate 500-kHz transducer, which we term the bubble removal pulse. Bubble removal pulse amplitudes ranging from 0 to 1.7 MPa were tested, and the backlit area of shadow from bubbles remaining in the field following bubble removal was calculated to quantify efficacy. It was found that an ideal amplitude range exists (roughly 180 to 570 kPa) in which bubble removal pulses stimulate the aggregation and subsequent coalescence of residual bubble nuclei, effectively removing them from the field. Further optimization of bubble removal pulse sequences stands to provide an adjunct to cavitation-based ultrasound therapies such as shock wave lithotripsy and histotripsy, mitigating the effects of residual bubble nuclei that currently limit their efficacy.

  7. Exploration review

    USGS Publications Warehouse

    Wilburn, D.R.; Bourget, M.R.

    2010-01-01

    This summary of international mineral exploration activities for the year 2009 draws upon information from industry sources, published literature and U.S. Geological Survey (USGS) specialists. The summary provides data on industry exploration budgets by region and mineral commodity, identifies significant mineral discoveries and areas of mineral exploration, discusses government programs affecting the mineral exploration industry and presents analyses of exploration activities by the mineral industry based upon these data.

  8. Exploration review

    USGS Publications Warehouse

    Wilburn, D.R.

    2009-01-01

    This summary of international mineral exploration activities for 2008 draws upon available information from industry sources, published literature and U.S. Geological Survey (USGS) specialists. The summary provides data on exploration budgets by region and mineral commodity, identifies significant mineral discoveries and areas of mineral exploration, discusses government programs affecting the mineral exploration industry, and presents analyses of exploration activities by the mineral industry based upon these data.

  9. Exploration review

    USGS Publications Warehouse

    Wilburn, D.R.; Vasil, R.L.; Nolting, A.

    2011-01-01

    This summary of international mineral exploration activities for the year 2010 draws upon available information from industry sources, published literature and U.S. Geological Survey (USGS) specialists. The summary provides data on exploration budgets by region and mineral commodity, identifies significant mineral discoveries and areas of mineral exploration, discusses government programs affecting the mineral exploration industry and presents analyses of exploration activities performed by the mineral industry.

  10. Biomorphic Explorers

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita

    1999-01-01

    This paper presents, in viewgraph form, the first NASA/JPL workshop on Biomorphic Explorers for future missions. The topics include: 1) Biomorphic Explorers: Classification (Based on Mobility and Ambient Environment); 2) Biomorphic Flight Systems: Vision; 3) Biomorphic Explorer: Conceptual Design; 4) Biomorphic Gliders; 5) Summary and Roadmap; 6) Coordinated/Cooperative Exploration Scenario; and 7) Applications. This paper also presents illustrations of the various biomorphic explorers.

  11. IBA for novice experimentalists. I. Introduction to IBA: mostly symmetries. II. Tests in even-even nuclei: mostly transitional systems. III. Supersymmetries: theory and experiment

    SciTech Connect

    Cizewski, J.A.

    1982-08-01

    The report contains the notes from a series of lectures on the Interacting Boson Approximation (IBA) model. The lectures were presented at Lawrence Livermore National Laboratory on July 28, 30 and August 1, 1982 by Jolie A. Cizewski from Yale University. The IBA was developed by F. Iachello and A. Arima starting about seven years ago to understand collective quadrupole excitations in medium and heavy mass nuclei away from closed shells. Since then the formalism has been extended to odd-mass nuclei and considerable work has gone into understanding the microscopic construction of the bosons in this model. The IBA has been applied to nuclei as light as Zn and Ge and as heavy as U and Pu; to nuclei near closed shells, such as Mo and Hg; to stable nuclei and nuclei far from stability. The present lectures were designed to give the experimentalist an introduction to the IBA and to give specific examples of how it could be applied to understand the structure of heavy even and odd mass nuclei. Much of the emphasis was on the symmetries (and supersymmetries) of the model and how the use of symmetries enabled the relatively straightforward understanding of empirical systems as deviations from these symmetries. The richness of possible applications of the IBA to understanding collective phenomena in nuclei was not fully explored, but rather a few illustrative examples were selected and described in detail. The references, accumulated at the end of this report, provide a more comprehensive, although not complete, list of tests of the IBA in even mass nuclei and the new symmetries in odd mass nuclei. The references also list the main theoretical papers which provide the details of the IBA formalism.

  12. Distribution of parvalbumin, calbindin and calretinin containing neurons and terminal networks in relation to sleep associated nuclei in the brain of the giant Zambian mole-rat (Fukomys mechowii).

    PubMed

    Bhagwandin, Adhil; Gravett, Nadine; Bennett, Nigel C; Manger, Paul R

    2013-09-01

    To broaden the understanding of the neural control and evolution of the sleep-wake cycle in mammals, the distribution and interrelations of sleep associated nuclei with neurons and terminal networks expressing the calcium-binding proteins parvalbumin, calbindin and calretinin were explored in a rodent that lacks a significant visual system. The sleep-associated nuclei explored include the cholinergic basal forebrain and pontine nuclei, the catecholaminergic locus coeruleus complex, the serotonergic dorsal raphe nuclear complex, the hypothalamic orexinergic nuclei, and the thalamic reticular nucleus. Zambian mole-rat brains were sectioned and stained in a one in nine series for Nissl, myelin, choline acetyltransferase (ChAT), tyrosine hydroxylase (TH), serotonin (5HT), orexin (OrxA), calbindin (CB), calretinin (CR) and parvalbumin (PV). We observed that while the density of immunopositive calbindin (CB+) neurons and terminal networks varied in the different sleep related nuclei, they were found in all nuclei apart from the compact and diffuse subdivisions of the subcoeruleus, which lacked CB+ neurons but evinced a CB+ terminal network. The density of calretinin immunopositive (CR+) neurons and terminal networks varied between the sleep related nuclei, but was present in all nuclei examined. Neurons and terminal networks associated with PV immunoreactivity were the most sparsely distributed in these nuclei, but were present in the majority of nuclei. The thalamic reticular nucleus had the highest density of PV+ neurons and terminal networks, while PV+ neurons were absent in the cholinergic pontine nuclei, and PV+ neurons and terminal networks were absent in the orexinergic nuclei. The increased presence of neurons and terminal networks expressing the calcium binding proteins in comparison to that seen in the laboratory rat, specifically in the brainstem, may account for the prominent muscle twitches during REM sleep previously observed in this subterranean African

  13. The History of Tidal Disruption Events in Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Aharon, Danor; Mastrobuono Battisti, Alessandra; Perets, Hagai B.

    2016-06-01

    The tidal disruption of a star by a massive black hole (MBH) is thought to produce a transient luminous event. Such tidal disruption events (TDEs) may play an important role in the detection and characterization of MBHs, and in probing the properties and dynamics of their nuclear stellar cluster (NSC) hosts. Previous studies estimated the recent rates of TDEs in the local universe. However, the long-term evolution of the rates throughout the history of the universe has been little explored. Here we consider TDE history, using evolutionary models for the evolution of galactic nuclei. We use a 1D Fokker-Planck approach to explore the evolution of MBH-hosting NSCs, and obtain the disruption rates of stars during their evolution. We complement these with an analysis of TDE history based on N-body simulation data, and find them to be comparable. We consider NSCs that are built up from close-in star formation (SF) or from far-out SF/cluster-dispersal, a few pc from the MBH. We also explore cases where primordial NSCs exist and later evolve through additional SF/cluster-dispersal processes. We study the dependence of the TDE history on the type of galaxy, as well as the dependence on the MBH mass. These provide several scenarios, with a continuous increase of the TDE rates over time for cases of far-out SF and a more complex behavior for the close-in SF cases. Finally, we integrate the TDE histories of the various scenarios to provide a total TDE history of the universe, which can be potentially probed with future large surveys (e.g., LSST).

  14. Massive accretion disks in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Scoville, N. Z.

    In the luminous infrared galaxies, very large masses of interstellar matter have been concentrated in the galactic nuclei at radii less than 300 pc as a result of galactic merging, while in lower luminosity systems, this material is probably concentrated by stellar bars and viscous accretion. In both cases, the nuclear region will be highly obscured by dust at visible wavelengths, forcing studies to longer wavelengths where the extinction is reduced. We review recent high resolution near infrared (HST-NICMOS) and mm-interferometric imaging of the dense gas and dust accretion disks in nearby luminous galactic nuclei. Since this nuclear ISM is the active ingredient for both starburst activity and a likely fuel for central AGNs, the nuclear accretion disks are critical to both the activity and the optical appearance of the nucleus. For a sample of 24 luminous galaxies imaged with NICMOS at 1-2μm, approximately 13 show nuclear point sources, indicating the existence of a central AGN or an intense starburst at <= 50 pc radius. Approximately 14 of the sample galaxies have apparent central dust disks. In the best studied ultraluminous IR galaxy, Arp 220, the 2μm imaging shows dust disks in both of the merging galactic nuclei and mm-CO line imaging indicates molecular gas masses ~ 109Msolar for each disk. The two gas disks in Arp 220 are counterrotating and their dynamical masses are ~ 2×109Msolar, that is, only slightly larger than the gas masses. These disks have radii ~ 100 pc and thickness 10-50 pc. The high brightness temperatures of the CO lines indicate that the gas in the disks has area filling factors ~25-50% and mean densities of >= 104 cm-3. Within these nuclear disks, the rate of massive star formation is undoubtedly prodigious and, given the high viscosity of the gas, there will also be high radial accretion rates, perhaps >= 10 Msolar yr-1. If this inflow persists to very small radii, it is enough to feed even the highest

  15. Robust thalamic nuclei segmentation method based on local diffusion magnetic resonance properties.

    PubMed

    Battistella, Giovanni; Najdenovska, Elena; Maeder, Philippe; Ghazaleh, Naghmeh; Daducci, Alessandro; Thiran, Jean-Philippe; Jacquemont, Sébastien; Tuleasca, Constantin; Levivier, Marc; Bach Cuadra, Meritxell; Fornari, Eleonora

    2016-11-25

    The thalamus is an essential relay station in the cortical-subcortical connections. It is characterized by a complex anatomical architecture composed of numerous small nuclei, which mediate the involvement of the thalamus in a wide range of neurological functions. We present a novel framework for segmenting the thalamic nuclei, which explores the orientation distribution functions (ODFs) from diffusion magnetic resonance images at 3 T. The differentiation of the complex intra-thalamic microstructure is improved by using the spherical harmonic (SH) representation of the ODFs, which provides full angular characterization of the diffusion process in each voxel. The clustering was performed using the k-means algorithm initialized in a data-driven manner. The method was tested on 35 healthy volunteers and our results show a robust, reproducible and accurate segmentation of the thalamus in seven nuclei groups. Six of them closely matched the anatomy and were labeled as anterior, ventral anterior, medio-dorsal, ventral latero-ventral, ventral latero-dorsal and pulvinar, while the seventh cluster included the centro-lateral and the latero-posterior nuclei. Results were evaluated both qualitatively, by comparing the segmented nuclei to the histological atlas of Morel, and quantitatively, by measuring the clusters' extent and the clusters' spatial distribution across subjects and hemispheres. We also showed the robustness of our approach across different sequences and scanners, as well as intra-subject reproducibility of the segmented clusters using additional two scan-rescan datasets. We also observed an overlap between the path of the main long-connection tracts passing through the thalamus and the spatial distribution of the nuclei identified with our clustering algorithm. Our approach, based on SH representations of the ODFs, outperforms the one based on angular differences between the principle diffusion directions, which is considered so far as state

  16. Heavy-Ion Fusion Mechanism and Predictions of Super-Heavy Elements Production

    SciTech Connect

    Abe, Yasuhisa; Shen Caiwan; Boilley, David

    2009-08-26

    Fusion process is shown to firstly form largely deformed mono-nucleus and then to undergo diffusion in two-dimensions with the radial and mass-asymmetry degrees of freedom. Examples of prediction of residue cross sections are given for the elements with Z = 117 and 118.

  17. Small scale anisotropies of UHECRs from super-heavy halo dark matter

    SciTech Connect

    P. Blasi; R. K. Sheth

    2001-10-23

    The decay of very heavy metastable relics of the Early Universe can produce ultra-high energy cosmic rays (UHECRs) in the halo of our own Galaxy. In this model, no Greisen-Zatsepin-Kuzmin cutoff is expected because of the short propagation distances. They show here that, as a consequence of the hierarchical build up of the halo, this scenario predicts the existence of small scale anisotropies in the arrival directions of UHECRs, in addition to a large scale anisotropy, known from previous studies. They also suggest some other observable consequences of this scenario which will be testable with upcoming experiments, as Auguer, EUSO and OWL.

  18. Atomic structure of the super-heavy element No I (Z=102)

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Hutton, Roger; Zou, Yaming

    2007-12-01

    The multiconfiguration Dirac-Fock (MCDF) method was used to calculate the excitation energies of the levels of P3 and P1 in the lowest excited configurations for the two homolog elements of No I and Yb I. Also the transition probability of the 7s7pP11→7s2S10 transition and the ground-state ionization energy of No I were calculated. The results for Yb I agree very well with the available experiments, with deviations of below 0.6% for the triplets and below 4% for the singlet. The result for the No I excitation energies clears the situation of conflicting results between Borschevsky , 30056cm-1 (3.726 eV) [Phys. Rev. A 75, 042514 (2007)], and Fritzsche, 3.36 eV [Eur. Phys. J. D 33, 15 (2005)] for the 7s7pP11 level, which is planned to be measured in the near future with a newly developed experimental technique by Backe [Eur. Phys. J. D 45, 99 (2007)]. The ionization energy result obtained in this work, 53701cm-1 , is in excellent agreement with the scaled result of 53600(600)cm-1 .

  19. Atomic structure of the super-heavy element No I (Z=102)

    SciTech Connect

    Liu, Yong; Hutton, Roger; Zou Yaming

    2007-12-15

    The multiconfiguration Dirac-Fock (MCDF) method was used to calculate the excitation energies of the levels of {sup 3}P and {sup 1}P in the lowest excited configurations for the two homolog elements of No I and Yb I. Also the transition probability of the 7s7p {sup 1}P{sub 1}{yields}7s{sup 2} {sup 1}S{sub 0} transition and the ground-state ionization energy of No I were calculated. The results for Yb I agree very well with the available experiments, with deviations of below 0.6% for the triplets and below 4% for the singlet. The result for the No I excitation energies clears the situation of conflicting results between Borschevsky et al., 30 056 cm{sup -1} (3.726 eV) [Phys. Rev. A 75, 042514 (2007)], and Fritzsche, 3.36 eV [Eur. Phys. J. D 33, 15 (2005)] for the 7s7p {sup 1}P{sub 1} level, which is planned to be measured in the near future with a newly developed experimental technique by Backe et al. [Eur. Phys. J. D 45, 99 (2007)]. The ionization energy result obtained in this work, 53 701 cm{sup -1}, is in excellent agreement with the scaled result of 53 600(600) cm{sup -1}.

  20. Neutron-halo nuclei in cold synthesis and cluster decay of heavy nuclei: {ital Z}=104 nucleus as an example

    SciTech Connect

    Gupta, R.K.; Singh, S.; Muenzenberg, G.; Scheid, W. ||

    1995-05-01

    Nuclei at the neutron-drip line are studied. The light neutron-halo nuclei are found to play an important role for both cold fusion reactions and exotic cluster decay studies of heavy nuclei at the neutron-drip line. For cold fusion reactions, beams of neutron-halo nuclei are shown to occur as natural extensions of the conventional lighter beams but with the corresponding target nuclei as the heavy neutron-rich radioactive nuclei. Thus, in synthesizing the various isotopes of a neutron-rich cool compound nucleus, both the target and projectile nuclei have to be richer in neutrons, with their proton numbers remaining the same. On the other hand, neutron-halo (cluster) decays are favored for a relatively less neutron-rich parent nucleus. Possible consequences of this work for the shell structure effects in neutron-rich heavy nuclei are also pointed out. This follows from the fact that the so far observed phenomena of both cold fusion and cluster radioactivity are associated with closed or nearly closed shell nuclei. Calculations are made for {sup 274,288}104, using the quantum mechanical fragmentation theory for cold fusion reaction studies and a performed cluster model for cluster decay studies.

  1. Sigma omega meson coupling and properties of nuclei and nuclear matter

    NASA Astrophysics Data System (ADS)

    Haidari, Maryam M.; Sharma, Madan M.

    2008-05-01

    We have constructed a Lagrangian model with a coupling of σ and ω mesons in the relativistic mean-field theory. Properties of finite nuclei and nuclear matter are explored with the new Lagrangian model SIG-OM. The study shows that an excellent description of binding energies and charge radii of nuclei over a large range of isospin is achieved with SIG-OM. With an incompressibility of nuclear matter K=265 MeV, it is also able to describe the breathing-mode isoscalar giant monopole resonance energies appropriately. It is shown that the high-density behaviour of the equation of state of nuclear and neutron matter with the σ-ω coupling is much softer than that of the non-linear scalar coupling model.

  2. ECCO: Th/U/Pu/Cm Dating of Galactic Cosmic Ray Nuclei

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Weaver, B. A.; Solarz, M.; Dominquez, G.; Craig, N.; Adams, J. H.; Barbier, L. M.; Christian, E. R.; Mitchell, J. W.; Binns, W. R.; hide

    2001-01-01

    The ECCO (Extremely-heavy Cosmic-ray Composition Observer) instrument is one of two instruments which comprise the HNX (Heavy Nuclei Explorer) mission. The principal goal of ECCO is to measure the age of galactic cosmic ray nuclei using the actinides (Th, U, Pu, Cm) as clocks. As a bonus, ECCO will search with unprecedented sensitivity for long-lived elements in the superheavy island of stability. ECCO is an enormous array (23 sq. m) of BP-1 glass track-etch detectors, and is based on the successful flight heritage of the Trek detector which was deployed externally on Mir. We present a description of the instrument, estimates of expected performance, and recent calibrations which demonstrate that the actinides can be resolved from each other with good charge resolution.

  3. Cluster-transfer reactions with radioactive beams: A spectroscopic tool for neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Bottoni, S.; Leoni, S.; Fornal, B.; Raabe, R.; Rusek, K.; Benzoni, G.; Bracco, A.; Crespi, F. C. L.; Morales, A. I.; Bednarczyk, P.; Cieplicka-Oryńczak, N.; Królas, W.; Maj, A.; Szpak, B.; Callens, M.; Bouma, J.; Elseviers, J.; De Witte, H.; Flavigny, F.; Orlandi, R.; Reiter, P.; Seidlitz, M.; Warr, N.; Siebeck, B.; Hellgartner, S.; Mücher, D.; Pakarinen, J.; Vermeulen, M.; Bauer, C.; Georgiev, G.; Janssens, R. V. F.; Balabanski, D.; Sferrazza, M.; Kowalska, M.; Rapisarda, E.; Voulot, D.; Lozano Benito, M.; Wenander, F.

    2015-08-01

    An exploratory experiment performed at REX-ISOLDE to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier as a mechanism to explore the structure of exotic neutron-rich nuclei. The reactions 7Li(98Rb,α xn ) and 7Li(98Rb,t xn ) were studied through particle-γ coincidence measurements, and the results are presented in terms of the observed excitation energies and spins. Moreover, the reaction mechanism is qualitatively discussed as a transfer of a clusterlike particle within a distorted-wave Born approximation framework. The results indicate that cluster-transfer reactions can be described well as a direct process and that they can be an efficient method to investigate the structure of neutron-rich nuclei at medium-high excitation energies and spins.

  4. Cluster-transfer reactions with radioactive beams: A spectroscopic tool for neutron-rich nuclei

    DOE PAGES

    Bottoni, S.; Leoni, S.; Fornal, B.; ...

    2015-08-27

    An exploratory experiment performed at REX-ISOLDE to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier as a mechanism to explore the structure of exotic neutron-rich nuclei. The reactions 7Li(98Rb,αxn) and 7Li(98Rb,txn) were studied through particle-γ coincidence measurements, and the results are presented in terms of the observed excitation energies and spins. Moreover, the reaction mechanism is qualitatively discussed as a transfer of a clusterlike particle within a distorted-wave Born approximation framework. The results indicate that cluster-transfer reactions can be describedmore » well as a direct process and that they can be an efficient method to investigate the structure of neutron-rich nuclei at medium-high excitation energies and spins.« less

  5. ECCO: Th/U/Pu/Cm Dating of Galactic Cosmic Ray Nuclei

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Weaver, B. A.; Solarz, M.; Dominquez, G.; Craig, N.; Adams, J. H.; Barbier, L. M.; Christian, E. R.; Mitchell, J. W.; Binns, W. R.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The ECCO (Extremely-heavy Cosmic-ray Composition Observer) instrument is one of two instruments which comprise the HNX (Heavy Nuclei Explorer) mission. The principal goal of ECCO is to measure the age of galactic cosmic ray nuclei using the actinides (Th, U, Pu, Cm) as clocks. As a bonus, ECCO will search with unprecedented sensitivity for long-lived elements in the superheavy island of stability. ECCO is an enormous array (23 sq. m) of BP-1 glass track-etch detectors, and is based on the successful flight heritage of the Trek detector which was deployed externally on Mir. We present a description of the instrument, estimates of expected performance, and recent calibrations which demonstrate that the actinides can be resolved from each other with good charge resolution.

  6. Echo Mapping of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Horne, K.

    2004-01-01

    Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.

  7. Elastic dipole response of spherical nuclei

    SciTech Connect

    Bastrukov, S.I.

    1992-10-01

    Within the framework of the nuclear fluid-dynamics the isoscalar dipole response of spherical nuclei is studied. Two kinds of elastic-like transverse oscillations of incompressible nucleus are found to be result in E1, T = 0 and M1, T = 0 spin-independent resonances. The isoscalar electric mode is accompanied by excitation in the nucleus volume of the torus-like current structure, known in the continuum theory as a poloidal dipole or spherical vortex of Hill. The dipole magnetic resonance belongs to the excitation of axially symmetric differential rotations. These motions are described by the toroidal dipole field harmonic in time. The estimates of energies and PWBA-computed form-factors for these modes are presented. 28 refs., 3 figs.

  8. Deformed halo nuclei probed by breakup reactions

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi

    2013-07-01

    Breakup reactions play important roles in elucidating the structures near the drip lines, such as nuclear halo. The recent experimental results using the Coulomb and nuclear breakup reactions for the neutron-drip-line nuclei at the new-generation RI beam facility, RIBF at RIKEN, are presented. Focuses are put on the results on the newly found halo nucleus 31Ne, which is intriguing also in that this nucleus is in the island-of-inversion and thus could be strongly deformed. The results on other Ne/Mg/Si neutron rich isotopes ranging from N=20 towards N=28 are also briefly reported. The first breakup experiments using SAMURAI facility at RIBF and future perspectives are also presented.

  9. Inclusive Inelastic Electron Scattering from Nuclei

    SciTech Connect

    Fomin, Nadia

    2007-10-26

    Inclusive electron scattering from nuclei at large x and Q{sup 2} is the result of a reaction mechanism that includes both quasi-elastic scattering from nucleons and deep inelastic scattering from the quark consitituents of the nucleons. Data in this regime can be used to study a wide variety of topics, including the extraction of nuclear momentum distributions, the infiuence of final state interactions and the approach to y-scaling, the strength of nucleon-nucleon correlations, and the approach to x-scaling, to name a few. Selected results from the recent experiment E02-019 at the Thomas Jefferson National Accelerator Facility will be shown and their relevance discussed.

  10. Mean field and collisions in hot nuclei

    SciTech Connect

    K /umlt o/hler, H.S.

    1989-06-01

    Collisions between heavy nuclei produce nuclear matter of high density and excitation. Brueckner methods are used to calculate the momentum and temperature dependent mean field for nucleons propagating through nuclear matter during these collisions. The mean field is complex and the imaginary part is related to the ''two-body'' collision, while the real part relates to ''one-body'' collisions. A potential model for the N-N interactions is avoided by calculating the Reaction matrix directly from the T-matrix (i.e., N-N phase shifts) using a version of Brueckner theory previously published by the author. Results are presented for nuclear matter at normal and twice normal density and for temperatures up to 50 MeV. 23 refs., 7 figs.

  11. Cloud condensation nuclei near marine cumulus

    NASA Technical Reports Server (NTRS)

    Hudson, James G.

    1993-01-01

    Extensive airborne measurements of cloud condensation nucleus (CCN) spectra and condensation nuclei below, in, between, and above the cumulus clouds near Hawaii point to important aerosol-cloud interactions. Consistent particle concentrations of 200/cu cm were found above the marine boundary layer and within the noncloudy marine boundary layer. Lower and more variable CCN concentrations within the cloudy boundary layer, especially very close to the clouds, appear to be a result of cloud scavenging processes. Gravitational coagulation of cloud droplets may be the principal cause of this difference in the vertical distribution of CCN. The results suggest a reservoir of CCN in the free troposphere which can act as a source for the marine boundary layer.

  12. Microscopic analysis of pear-shaped nuclei

    NASA Astrophysics Data System (ADS)

    Nomura, K.

    2015-10-01

    We analyze the quadrupole-octupole collective states based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the sd f interacting boson model (IBM), that is, onto the energy expectation value in the boson coherent state, the Hamiltonian parameters are determined. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in nuclei characteristic for octupole deformation and collectivity. Consistently with the empirical trend, the microscopic calculation based on the systematics of β2 - β3 energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition between stable octupole deformation and octupole vibrations characteristic for β3-soft potentials.

  13. Could life have evolved in cometary nuclei

    NASA Technical Reports Server (NTRS)

    Bar-Nun, A.; Lazcano-Araujo, A.; Oro, J.

    1981-01-01

    The suggestion by Hoyle and Wickramasinghe (1978) that life might have originated in cometary nuclei rather than directly on the earth is discussed. Factors in the cometary environment including the conditions at perihelion passage leading to the ablation of cometary ices, ice temperatures, the absence of an atmosphere and discrete liquid and solid surfaces, weak cometary structure incapable of supporting a liquid core, and radiation are presented as arguments against biopoesis in comets. It is concluded that although the contribution of cometary and meteoritic matter was significant in shaping the earth environment, the view that life on earth originally arose in comets is untenable, and the proposition that the process of interplanetary infection still occurs is unlikely in view of the high specificity of host-parasite relationships.

  14. Transplantation of Nuclei in Drosophila melanogaster

    PubMed Central

    Zalokar, Marko

    1971-01-01

    Nuclei surrounded by ooplasm of the syncytial stage of developing eggs of wild-type Drosophila melanogaster were implanted into freshly laid fertilized eggs of females of a y w stock. More than half of the recipient eggs produced larvae, but few of the larvae hatched or developed further. The best sets of experiments gave about twelve percent of imagos, mostly y w in appearance. Several larvae were mosaics with yellow Malpighian tubes, and two flies had part of the abdominal segments of the wild type. Half of the flies were fertile, but they produced only y w offspring, except for two males that had y w appearance, but wild-type gonads. When crossed with y w females, they gave wild-type females and y w males. Images PMID:5283944

  15. Tilted foil polarization of radioactive beam nuclei

    NASA Astrophysics Data System (ADS)

    Goldring, Gvirol

    1992-11-01

    Tilted foil polarization has up to now been mostly applied to nuclear reaction products recoiling out of a target traversed by a primary particle beam. Being a universal phenomenon it can be applied equally well to beams of particles, primary or secondary, radioactive or other. There are however some technical considerations arising from the nature of the beam particles. Radioactive beams are associated with ground state nuclei. They usually have low nuclear spin and as a consequence-as will be shown later-low polarization. Secondary beams are usually low in intensity and do not impose any constraints on the foils they traverse; unlike intense primary heavy ion beams which, if they traverse the foils, essentially limit the foil material to carbon. We review here briefly the tilted foil polarization process and then discuss an experiment with an isomer beam. Finally we review experiments with radioactive beams, past, present and planned for the future.

  16. Dielectronic Recombination In Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lukić, D.; Savin, D. W.; Schnell, M.; Brandau, C.; Schmidt, E.; Schippers, S.; Müller, A.; Lestinsky, M.; Sprenger, F.; Wolf, A.; Altun, Z.; Badnell, N. R.

    2006-05-01

    Recent X-ray satelitte observations of active galactic nuclei point out shortcomings in our understanding of low temperature dielectronic recombination (DR) for iron M- shell ions. In order to resolve this issue and to provide reliable iron M-shell DR data for modeling astrophysical plasmas, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring at the Max- Plank-Institute for Nuclear Physics in Heidelberg, Germany. Storage rings are currently the only laboratory method capable of studying low temperature DR. We use our results to produce experimentally- derived DR rate coefficients. We are also providing our data to atomic theorist to benchmark their DR calculations. Here we will report our recent DR results for selected Fe M-shell ions. At temperatures where these ions are predicted to form in photoionized gas, we find a significant discrepancy between our experimental results and previously recommended DR rate coefficients.

  17. On single nucleon wave functions in nuclei

    SciTech Connect

    Talmi, Igal

    2011-05-06

    The strong and singular interaction between nucleons, makes the nuclear many body theory very complicated. Still, nuclei exhibit simple and regular features which are simply described by the shell model. Wave functions of individual nucleons may be considered just as model wave functions which bear little resemblance to the real ones. There is, however, experimental evidence for the reality of single nucleon wave functions. There is a simple method of constructing such wave functions for valence nucleons. It is shown that this method can be improved by considering the polarization of the core by the valence nucleon. This gives rise to some rearrangement energy which affects the single valence nucleon energy within the nucleus.

  18. Single-particle states in transcurium nuclei.

    SciTech Connect

    Ahmad, I.

    1999-09-30

    Identification of single-particle states in the heaviest known nuclei is important because their energies can be used to test the single-particle potential in these high-Z elements. These states can be identified by studying the decay schemes of very heavy odd-mass nuclides. For neutrons, the heaviest odd-mass nuclide available in milliCurie quantities is the 20-h {sup 255}Fm and for protons the heaviest nuclide available is the 20-d {sup 253}Es. These two isotopes were obtained from the Transplutonium Element Production Program at Oak Ridge and their spectra were measured with high-resolution germanium spectrometers. From the results of these measurements we have identified states in {sup 251}Cf and {sup 249}Bk up to 1 MeV excitation energy.

  19. Could life have evolved in cometary nuclei

    NASA Technical Reports Server (NTRS)

    Bar-Nun, A.; Lazcano-Araujo, A.; Oro, J.

    1981-01-01

    The suggestion by Hoyle and Wickramasinghe (1978) that life might have originated in cometary nuclei rather than directly on the earth is discussed. Factors in the cometary environment including the conditions at perihelion passage leading to the ablation of cometary ices, ice temperatures, the absence of an atmosphere and discrete liquid and solid surfaces, weak cometary structure incapable of supporting a liquid core, and radiation are presented as arguments against biopoesis in comets. It is concluded that although the contribution of cometary and meteoritic matter was significant in shaping the earth environment, the view that life on earth originally arose in comets is untenable, and the proposition that the process of interplanetary infection still occurs is unlikely in view of the high specificity of host-parasite relationships.

  20. Echo Mapping of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Horne, K.

    2004-01-01

    Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.

  1. EMC and polarized EMC effects in Nuclei

    SciTech Connect

    Ian Cloet; Wolfgang Bentz; Anthony Thomas

    2006-05-23

    We determine nuclear structure functions and quark distributions for {sup 7}Li, {sup 11}B, {sup 15}N and {sup 27}Al. For the nucleon bound state we solve the covariant quark-diquark equations in a confining Nambu--Jona-Lasinio model, which yields excellent results for the free nucleon structure functions. The nucleus is described using a relativistic shell model, including mean scalar and vector fields that couple to the quarks in the nucleon. The nuclear structure functions are then obtained as a convolution of the structure function of the bound nucleon with the light-cone nucleon distributions. We find that we are readily able to reproduce the EMC effect in finite nuclei and confirm earlier nuclear matter studies that found a large polarized EMC effect.

  2. Multiwavelength Monitoring of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2001-01-01

    By intensive monitoring of AGN variability over a large range in wavelength, we can probe the structure and physics of active galactic nuclei on microarcsecond angular scales. For example, multi-wavelength variability data allow us (a) to establish causal relationships between variations in different wavebands, and thus determine which physical processes are primary and which spectral changes are induced by variations at other wavelengths, and (b) through reverberation mapping of the UV/optical emission lines, to determine the structure and kinematics of the line-emitting region, and thus accurately determine the central masses in AGNs. Multiwavelength monitoring is resource-intensive, and is difficult to implement with general-purpose facilities. As a result, virtually all programs undertaken to date have been either sparsely sampled, or short in duration, or both. The potentially high return on this type of investigation, however, argues for dedicated facilities for multiwavelength monitoring programs.

  3. Searching for E(5) behavior in nuclei

    SciTech Connect

    Clark, R.M.; Cromaz, M.; Deleplanque, M.A.; Descovich, M.; Diamond, R.M; Fallon, P.; Lee, I.Y.; Macchiavelli, A.O.; Mahmud, H.; Rodriguez-Vieitez, E.; Stephens, F.S.; Ward, D.

    2004-01-01

    The properties of even-even nuclei with 30 {le} Z {le} 82, A {ge} 60 have been examined to find examples displaying the characteristics of E(5) critical-point behavior for the shape transition from a spherical vibrator to a triaxially soft rotor. On the basis of the known experimental state energies and E2 transition strengths, the best candidates that were identified are {sup 102}Pd, {sup 106,108}Cd, {sup 124}Te, {sup 128}Xe, and {sup 134}Ba. The closest agreement between experimental data and the predictions of E(5) is for {sup 128}Xe and for the previously suggested example of {sup 134}Ba. It is proposed that {sup 128}Xe may be a new example of a nucleus at the E(5) critical point.

  4. Magic ultramagnetized nuclei in explosive nucleosynthesis

    SciTech Connect

    Kondratyev, V. N.

    2012-11-15

    Direct evidence of the presence of {sup 44}Ti and content of the isotope in the supernova remnant Cassiopeia A are obtained from the analysis of gamma-ray spectrum of the remnant. A significant excess of observational {sup 44}Ti volume on predictions of supernova models can be explained as the magnetization effect in the process of explosive nucleosynthesis. The formation of chemical elements is considered accounting for superstrong magnetic fields predicted for supernovae and neutron stars. Using the arguments of nuclear statistical equilibrium, a significant effect of magnetic field on the nuclear shell energy is demonstrated. The magnetic shift of the most tightly 'bound' nuclei from the transition metals of iron series to titanium leads to an exponential increase in the portion of {sup 44}Ti and, accordingly to a significant excess of the yield of these products of nucleosynthesis.

  5. Experimental level densities of atomic nuclei

    DOE PAGES

    Guttormsen, M.; Aiche, M.; Bello Garrote, F. L.; ...

    2015-12-23

    It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. Furthermore, trom the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least upmore » to the neutron threshold.« less

  6. Relativistic neutrons in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw

    1989-01-01

    The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.

  7. Clusters in neutron-rich light nuclei

    NASA Astrophysics Data System (ADS)

    Jelavić Malenica, D.; Milin, M.; Di Pietro, A.; Figuera, P.; Lattuada, M.; Miljanić, D.; Musumarra, A.; Pellegriti, M. G.; Prepolec, L.; Scuderi, V.; Skukan, N.; Soić, N.; Torresi, D.; Uroić, M.

    2016-05-01

    Due to their high selectivity, transfer and sequential decay reactions are powerful tools for studies of both single particle (nucleon) and cluster states in light nuclei. Their use is particularly simple for investigations of α-particle clustering (because α-particle has Jπ=0+, which simplifies spin and parity assignments to observed cluster states), but they are also easily applicable to other types of clustering. Recent results on clustering in neutron-rich isotopes of beryllium, boron and carbon obtained measuring the 10B+10B reactions (at 50 and 72 MeV) are presented. The highly efficient and segmented detector systems used, built from 4 Double Sided Silicon Strip Detectors (DSSSD) allowed detection of double and multiple coincidences and, in that way, studies of states populated in transfer reactions, as well as their sequential decay.

  8. Nonaxial-octupole effect in superheavy nuclei

    SciTech Connect

    Chen, Y.-S.; Sun, Yang; Gao Zaochun

    2008-06-15

    The triaxial-octupole Y{sub 32} correlation in atomic nuclei has long been expected to exist but experimental evidence has not been clear. We find, in order to explain the very low-lying 2{sup -} bands in the transfermium mass region, that this exotic effect may manifest itself in superheavy elements. Favorable conditions for producing triaxial-octupole correlations are shown to be present in the deformed single-particle spectrum, which is further supported by quantitative Reflection Asymmetric Shell Model calculations. It is predicted that the strong nonaxial-octupole effect may persist up to the element 108. Our result thus represents the first concrete example of spontaneous breaking of both axial and reflection symmetries in the heaviest nuclear systems.

  9. Structural features of protein folding nuclei.

    PubMed

    Garbuzynskiy, S O; Kondratova, M S

    2008-03-05

    A crucial event of protein folding is the formation of a folding nucleus. We demonstrate the presence of a considerable coincidence between the location of folding nuclei and the location of so-called "root structural motifs", which have unique overall folds and handedness. In the case of proteins with a single root structural motif, the involvement in the formation of a folding nucleus is in average significantly higher for amino acids residues that are in root structural motifs, compared to residues in other parts of the protein. The tests carried out revealed that the observed difference is statistically reliable. Thus, a structural feature that corresponds to the protein folding nucleus is now found.

  10. Echo Mapping of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Horne, K.

    Echo mapping exploits light travel time delays, revealed by multi-wavelength variability studies, to map the geometry, kinematics, and physical conditions of reprocessing sites in photo-ionized gas flows. In active galactic nuclei (AGN), the ultraviolet to near infrared light arises in part from reprocessing of EUV and X-ray light from a compact and erratically variable source in the nucleus. The observed time delays, 0.1-2 days for the continuum and 1-100 days for the broad emission lines, probe regions only micro-arcseconds from the nucleus. Emission-line delays reveal radially stratified ionization zones, identify the nature of the gas motions, and estimate the masses of the central black holes. Continuum time delays map the temperature-radius structure of AGN accretion discs, and provide distances that may be accurate enough to realize the potential of AGNs as cosmological probes.

  11. Eta-mesic nuclei: Past, present, future

    DOE PAGES

    Haider, Q.; Liu, Lon -Chang

    2015-09-23

    Eta-mesic nucleus or the quasibound nuclear state of an eta (η) meson in a nucleus is caused by strong interaction force alone. This new type of nuclear species, which extends the landscape of nuclear physics, has been extensively studied since its prediction in 1986. We review and analyze in great detail the models of the fundamental η–nucleon interaction leading to the formation of an η–mesic nucleus, the methods used in calculating the properties of a bound η, and the approaches employed in the interpretation of the pertinent experimental data. In view of the successful observation of the η–mesic nucleus 25Mgηmore » and other promising experimental results, future direction in searching for more η–mesic nuclei is suggested.« less

  12. The scission point configuration of fissioning nuclei

    NASA Astrophysics Data System (ADS)

    Ivanyuk, Fedir

    2016-06-01

    We define the optimal shape which fissioning nuclei attain just before the scission and calculate the deformation energy as function of the mass asymmetry at the scission point. The calculated deformation energy is used in quasi-static approximation for the estimation of mass distribution, total kinetic and excitation energy of fission fragments, and the total number of prompt neutrons. The calculated results reproduce rather well the experimental data on the position of the peaks in the mass distribution of fission fragments, the total kinetic and excitation energy of fission fragments. The calculated value of neutron multiplicity is somewhat larger than experimental results. The saw-tooth structure of neutron multiplicity is qualitatively reproduced.

  13. Cloud condensation nuclei near marine cumulus

    NASA Technical Reports Server (NTRS)

    Hudson, James G.

    1993-01-01

    Extensive airborne measurements of cloud condensation nucleus (CCN) spectra and condensation nuclei below, in, between, and above the cumulus clouds near Hawaii point to important aerosol-cloud interactions. Consistent particle concentrations of 200/cu cm were found above the marine boundary layer and within the noncloudy marine boundary layer. Lower and more variable CCN concentrations within the cloudy boundary layer, especially very close to the clouds, appear to be a result of cloud scavenging processes. Gravitational coagulation of cloud droplets may be the principal cause of this difference in the vertical distribution of CCN. The results suggest a reservoir of CCN in the free troposphere which can act as a source for the marine boundary layer.

  14. Galactic Nuclei through the ``Lens" of HST

    NASA Astrophysics Data System (ADS)

    Faber, S. M.

    1993-12-01

    HST has now imaged upwards of 50 galactic nuclei. The sample divides into two broad categories: early-type bulges/ellipticals, and spirals. Early-type nuclei tend to follow broad trends foreshadowed by earlier ground-based data, but with some important differences. Large early-type galaxies show ``break radii" that are analogous to classical core radii. However, inside these cores, most light profiles do not level out but continue to increase in shallow power laws inwards to the resolution limit (0.1\\arcsec). We call such nuclei ``soft cores." Small early-type galaxies are completely unresolved and show steep power-laws at all radii. We call these ``hard cores." Early-type galaxies of intermediate brightness seem to be divided into hard cores or soft cores according to rotation and isophote shape: rotating, disky E's have hard, steep cores, while non-rotating, boxy E's have soft cores and breaks. Thus, core properties seem to reinforce the division of ellipticals into two fundamentally different families that has been emerging for some time now based on other data. Core phase-space density shows an enormous range in early-type galaxies, decreasing by a factor of 100 million from the smallest ellipticals to the largest. Since phase-space density is believed to either remain constant or increase during mergers, this trend casts doubt on whether large E's could have formed by merging from progenitors that looked like present-day small E's. The smallest and closest elliptical, M32, is so dense that stellar collisions have likely been important over the age of the Universe. M32's relatively high stellar velocity dispersion ( ~ 100 km s(-1) ) favors runaway merging in collisions to form a black hole. Evidence for such a BH has been found from ground-based spectroscopy. Compared to early-type galaxies, spiral nuclei show a wider range of morphologies and physical phenomena, some quite exotic. Nuclear star clusters are common in spirals. The density is so high in the

  15. Eta-mesic nuclei: Past, present, future

    SciTech Connect

    Haider, Q.; Liu, Lon -Chang

    2015-09-23

    Eta-mesic nucleus or the quasibound nuclear state of an eta (η) meson in a nucleus is caused by strong interaction force alone. This new type of nuclear species, which extends the landscape of nuclear physics, has been extensively studied since its prediction in 1986. We review and analyze in great detail the models of the fundamental η–nucleon interaction leading to the formation of an η–mesic nucleus, the methods used in calculating the properties of a bound η, and the approaches employed in the interpretation of the pertinent experimental data. In view of the successful observation of the η–mesic nucleus 25Mgη and other promising experimental results, future direction in searching for more η–mesic nuclei is suggested.

  16. Capture cross sections on unstable nuclei

    NASA Astrophysics Data System (ADS)

    Tonchev, A. P.; Escher, J. E.; Scielzo, N.; Bedrossian, P.; Ilieva, R. S.; Humby, P.; Cooper, N.; Goddard, P. M.; Werner, V.; Tornow, W.; Rusev, G.; Kelley, J. H.; Pietralla, N.; Scheck, M.; Savran, D.; Löher, B.; Yates, S. W.; Crider, B. P.; Peters, E. E.; Tsoneva, N.; Goriely, S.

    2017-09-01

    Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  17. Quarks and gluons in hadrons and nuclei

    SciTech Connect

    Close, F.E. Tennessee Univ., Knoxville, TN )

    1989-12-01

    These lectures discuss the particle-nuclear interface -- a general introduction to the ideas and application of colored quarks in nuclear physics, color, the Pauli principle, and spin flavor correlations -- this lecture shows how the magnetic moments of hadrons relate to the underlying color degree of freedom, and the proton's spin -- a quark model perspective. This lecture reviews recent excitement which has led some to claim that in deep inelastic polarized lepton scattering very little of the spin of a polarized proton is due to its quarks. This lecture discusses the distribution functions of quarks and gluons in nucleons and nuclei, and how knowledge of these is necessary before some quark-gluon plasma searches can be analyzed. 56 refs., 2 figs.

  18. History of the Nuclei Important for Cosmochemistry

    NASA Technical Reports Server (NTRS)

    Meyer, Bradley S.

    2004-01-01

    An essential aspect of studying the nuclei important for cosmochemistry is their production in stars. Over the grant period, we have further developed the Clemson/American University of Beirut stellar evolution code. Through use of a biconjugate-gradient matrix solver, we now routinely solve l0(exp 6) x l0(exp 6) sparse matrices on our desktop computers. This has allowed us to couple nucleosynthesis and convection fully in the 1-D star, which, in turn, provides better estimates of nuclear yields when the mixing and nuclear burning timescales are comparable. We also have incorporated radiation transport into our 1-D supernova explosion code. We used the stellar evolution and explosion codes to compute iron abundances in a 25 Solar mass star and compared the results to data from RIMS.

  19. Sexual dimorphism of vocal control nuclei in budgerigars (Melopsittacus undulatus) revealed with Nissl and NADPH-d staining.

    PubMed

    Brauth, Steven E; Liang, Wenru; Amateau, Stuart K; Roberts, Todd F; Robert, Todd F

    2005-03-28

    Nissl staining and nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry were used to explore the existence of sexual dimorphism in vocal control nuclei of adult budgerigars (Melopsittacus undulatus), a parrot species capable of lifelong vocal learning. Behavioral studies indicate that adult males possess larger vocal repertoires than adult females and learn new calls more quickly. The results of the present study show that the volumes of all vocal nuclei, as measured using both Nissl-stained and NADPH-d-stained material, as well as the total numbers of NADPH-d neurons, were 35-110% greater in males. Furthermore, all vocal nuclei exhibit conspicuous NADPH-d staining compared to surrounding fields in both adult males and females. Nevertheless, there were no significant gender differences in either the intensity of neuropil staining or the densities of NADPH-d neurons in vocal nuclei. Moreover NADPH-d neuron somal shapes were similar in males and females. Diameters of NADPH-d neurons in vocal nuclei were 8.5-32% larger in males than in females. Greater size of NADPH-d neuronal somata in males may be a general property of this cell type in budgerigars because a similar gender difference was found in a visual nucleus, the entopallium, which is not directly associated with the vocal control system and does not exhibit sexual dimorphism in total volume or total NADPH-d neuron numbers. Taken together, the results of the present study favor the hypothesis that superior lifelong vocal learning ability in male budgerigars rests largely on larger volumes of vocal control nuclei in males rather than on sexual dimorphism in the internal composition of vocal nuclei.

  20. Oxidation stability of ice nuclei from plants

    NASA Astrophysics Data System (ADS)

    Felgitsch, Laura; Häusler, Thomas; Grothe, Hinrich

    2017-04-01

    Heterogeneous ice nucleation is an important process in cloud formation and therefore has direct influence on the radiation budget of the Earth. Biological ice nuclei (IN) are highly abundant in nature. Many plants have been found to produce IN. These IN are of special interest, since several have been found to be in a nano-particular/macromolecular size range (Pummer et al. 2015, Felgitsch et al. 2016). Particles of such a small size should show a high lifespan in the atmosphere. Further the substances can easily be attached to mineral dusts. Very little is known about the atmospheric fate of plant derived ice nuclei (IN) in case they become airborne. While they inherit the possibility to influence ice cloud formation, this property depends highly on the expected lifespan of the substance and of its ice nucleation activity in the atmosphere. For our experiment we exposed plant IN derived from black currant (berry juice) and birch (pollen washing water) to high concentrations of highly oxidative substances typically present in the atmosphere. The exposure lasted several hours and allowed us to monitor the changes in ice nucleation activity. Our results suggest a high stability towards oxidation leading to a high atmospheric life span of the ice nucleation activity if airborne. Pummer, B.G., Budke, C., Augustin-Bauditz, S., Niedermeier, D., Felgitsch, L., Kampf, C.J., Huber, R.G., Liedl, K.R., Loerting, T., Moschen, T., Schauperl, M., Tollinger, M., Morris, C.E., Wex, H., Grothe, H., Pöschl, U., Koop, T., and Fröhlich-Nowoisky, J.: Ice nucleation by water-soluble macromolecules, Atmos. Chem. Phys., 15, 4077-4091, 2015. Felgitsch , L., Bichler, M., Häusler, T., Hitzenberger, R., and Grothe, H.: Heterogeneous freezing of water triggered by berry juices from perenneal plants, submitted, 2016.

  1. Cloud Condensation Nuclei Measurements in Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Hudson, J. G.; Simpson, J.

    2002-01-01

    The first measurements of cloud condensation nuclei (CCN) within and around tropical cyclones were made with the Desert Research Institute (DRI) CCN spectrometer (Hudson 1909) from a NOAA P-3 Hurricane Hunter aircraft throughout the 2001 season. Two penetrations of the closed eye of Hurricane Erin off the northeast US coast on Sept. 10 showed concentrations consistently well in excess of 1000 per cubic cm at approximately 1.4% supersaturation. Simultaneous condensation nuclei (CN--total particle) concentrations were consistently well in excess of 2000 per cubic cm throughout these closed eye penetrations. These within eye measurements at 4 km altitude for exceeded CCN and CN measurements just outside of the storm at similar altitudes--300 and 600 per cubic cm respectively. These CCN and CN concentrations within this closed eye were far above concentrations in maritime air masses; they are characteristic of continental or polluted air masses. Although there was a possibility that Saharan duct may have gotten into this storm these sub tenth micrometer particles are much too small and much too numerous to be dust. Such high concentrations may have originated from European air pollution, which may have been transported by similar airflow patterns to those that carry Saharan dust across the Atlantic. These high concentrations may be a manifestation of descending air that brings higher concentrations that are often characteristic of the upper troposphere (Clarke and Kapustin 2002). Later in the month measurements in Humberto showed highly variable CCN and CN concentrations that ranged from lots than 5 per cubic cm to more than 1000 per Cubic cm over km scale distances within and around the open eye of this tropical storm/hurricane. These very low concentrations suggest strong cloud scavenging.

  2. Dynamical effects in fusion with exotic nuclei

    NASA Astrophysics Data System (ADS)

    Vo-Phuoc, K.; Simenel, C.; Simpson, E. C.

    2016-08-01

    Background: Reactions with stable beams have demonstrated strong interplay between nuclear structure and fusion. Exotic beam facilities open new perspectives to understand the impact of neutron skin, large isospin, and weak binding energies on fusion. Microscopic theories of fusion are required to guide future experiments. Purpose: To investigate new effects of exotic structures and dynamics in near-barrier fusion with exotic nuclei. Method: Microscopic approaches based on the Hartree-Fock (HF) mean-field theory are used for studying fusion barriers in -54Ca40+116Sn reactions for even isotopes. Bare potential barriers are obtained assuming frozen HF ground-state densities. Dynamical effects on the barrier are accounted for in time-dependent Hartree-Fock (TDHF) calculations of the collisions. Vibrational couplings are studied in the coupled-channel framework and near-barrier nucleon transfer is investigated with TDHF calculations. Results: The development of a neutron skin in exotic calcium isotopes strongly lowers the bare potential barrier. However, this static effect is not apparent when dynamical effects are included. On the contrary, a fusion hindrance is observed in TDHF calculations with the most neutron-rich calcium isotopes which cannot be explained by vibrational couplings. Transfer reactions are also important in these systems due to charge equilibration processes. Conclusions: Despite its impact on the bare potential, the neutron skin is not seen as playing an important role in the fusion dynamics. However, the charge transfer with exotic projectiles could lead to an increase of the Coulomb repulsion between the fragments, suppressing fusion. The effects of transfer and dissipative mechanisms on fusion with exotic nuclei deserve further studies.

  3. Unobscured Type 2 Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Shi, Yong; Rieke, George H.; Smith, Paul; Rigby, Jane; Hines, Dean; Donley, Jennifer; Schmidt, Gary; Diamond-Stanic, Aleksandar M.

    2010-05-01

    Type 2 active galactic nuclei (AGNs) with intrinsically weak broad emission lines (BELs) would be exceptions to the unified model. After examining a number of proposed candidates critically, we find that the sample is contaminated significantly by objects with BELs of strengths indicating that they actually contain intermediate-type AGNs, plus a few Compton-thick sources as revealed by extremely low ratios of X-ray to nuclear IR luminosities. We develop quantitative metrics that show two (NGC 3147 and NGC 4594) of the remaining candidates to have BELs 2-3 orders of magnitude weaker than those of typical type 1 AGNs. Several more galaxies remain as candidates to have anomalously weak BELs, but this status cannot be confirmed with the existing information. Although the parent sample is poorly defined, the two confirmed objects are well under 1% of its total number of members, showing that the absence of a BEL is possible, but very uncommon in AGN. We evaluate these two objects in detail using multi-wavelength measurements including new IR data obtained with Spitzer and ground-based optical spectropolarimeteric observations. They have little X-ray extinction with N H < ~1021 cm-2. Their IR spectra show strong silicate emission (NGC 4594) or weak aromatic features on a generally power-law continuum with a suggestion of silicates in emission (NGC 3147). No polarized BEL is detected in NGC 3147. These results indicate that the two unobscured type 2 objects have circumnuclear tori that are approximately face-on. Combined with their X-ray and optical/UV properties, this behavior implies that we have an unobscured view of the nuclei and thus that they have intrinsically weak BELs. We compare their properties with those of the other less-extreme candidates. We then compare the distributions of bolometric luminosities and accretion rates of these objects with theoretical models that predict weak BELs.

  4. Cloud Condensation Nuclei Measurements in Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Simpson, J.

    2002-05-01

    The first measurements of cloud condensation nuclei (CCN) within and around tropical cyclones were made with the Desert Research Institute (DRI) CCN spectrometer (Hudson 1989) from a NOAA P-3 Hurricane Hunter aircraft throughout the 2001 season. Two penetrations of the closed eye of Hurricane Erin off the northeast US coast on Sept. 10 showed concentrations consistently well in excess of 1000 per cubic cm at approximately 1.4% supersaturation. Simultaneous condensation nuclei (CN--total particle) concentrations were consistently well in excess of 2000 per cubic cm throughout these closed eye penetrations. These within eye measurements at 4 km altitude far exceeded CCN and CN measurements just outside of the storm at similar altitudes--300 and 600 per cubic cm respectively. These CCN and CN concentrations within this closed eye were far above concentrations in maritime air masses; they are characteristic of continental or polluted air masses. Although there was a possibility that Saharan dust may have gotten into this storm these sub tenth micrometer particles are much too small and much too numerous to be dust. Such high concentrations may have originated from European air pollution, which may have been transported by similar airflow patterns to those that carry Saharan dust across the Atlantic. These high concentrations may be a manifestation of descending air that brings higher concentrations that are often characteristic of the upper troposphere (Clarke and Kapustin 2002). Later in the month measurements in Humberto showed highly variable CCN and CN concentrations that ranged from less than 5 per cubic cm to more than 1000 per cubic cm over km scale distances within and around the open eye of this tropical storm/hurricane. These very low concentrations suggest strong cloud scavenging. Clarke, A.D. and V.N. Kapustin, J. Atmos. Sci., 59, 363-382, 2002. Hudson, J.G., J. Atmos. & Ocean. Tech., 6, 1055-1065, 1989.

  5. Circumnuclear ionized gas in starburst nuclei

    NASA Technical Reports Server (NTRS)

    Taniguchi, Yoshiaki

    1990-01-01

    In order to study kinematical properties of starburst nuclei (SBNs), researchers made high-resolution spectroscopy of fifteen SBNs in the H alpha region using an intensified Reticon system attached to the coude focus of the 188-cm reflector at the Okayama Astrophysical Observatory. The instrumental resolution is 21 km s(-1) Full Width Half Maximum (FWHM) at lambda sub H alpha. As for the archetypical SBN, Mrk 538 (=NGC 7714), researchers present high-resolution emission line profiles of several species of ions such as (OIII), (NII), (SII), and (OII). Main results and conclusions are summarized. It has been known that emission-line profiles of SBNs are symmetrical and narrow. However, this high-resolution spectroscopy shows that the observed emission-line profiles of the SBNs have the following asymmetrical patterns; blueward, redward, and double-peaked. It is known that such features have been observed for narrow line regions (NLRs) of active galactic nuclei (AGNs). There is no remarkable correlation between the asymmetry index and the reddening indicator such as a Balmer decrement. Thus the line asymmetry is not attributed to inhomogeneous obscuration in the emitting regions. The observed FWHMs of the H alpha emission lines cover a range from 85 km s(-1) to 318 km s(-1) and are slightly larger than those of (NII) lambda 6584A emission except for the double-peaked SBNs. The FWHMs of H alpha emission show a good correlation with sin i (i is an inclination angle of galaxy). This correlation means that the FWHMs of the SBNs suffer significantly from rotational broadening. Mrk 52 is an anomalous SBN because it has narrow emission line widths for its high inclination angle (cf. Taniguchi 1987). From the above correlation, it is estimated that the intrinsic (i.e., rotation free) FWHMs of H alpha emission are about 50 km s(-1).

  6. Circumnuclear ionized gas in starburst nuclei

    NASA Astrophysics Data System (ADS)

    Taniguchi, Yoshiaki

    1990-07-01

    In order to study kinematical properties of starburst nuclei (SBNs), researchers made high-resolution spectroscopy of fifteen SBNs in the H alpha region using an intensified Reticon system attached to the coude focus of the 188-cm reflector at the Okayama Astrophysical Observatory. The instrumental resolution is 21 km s(-1) Full Width Half Maximum (FWHM) at lambdaH alpha. As for the archetypical SBN, Mrk 538 (=NGC 7714), researchers present high-resolution emission line profiles of several species of ions such as (OIII), (NII), (SII), and (OII). Main results and conclusions are summarized. It has been known that emission-line profiles of SBNs are symmetrical and narrow. However, this high-resolution spectroscopy shows that the observed emission-line profiles of the SBNs have the following asymmetrical patterns; blueward, redward, and double-peaked. It is known that such features have been observed for narrow line regions (NLRs) of active galactic nuclei (AGNs). There is no remarkable correlation between the asymmetry index and the reddening indicator such as a Balmer decrement. Thus the line asymmetry is not attributed to inhomogeneous obscuration in the emitting regions. The observed FWHMs of the H alpha emission lines cover a range from 85 km s(-1) to 318 km s(-1) and are slightly larger than those of (NII) lambda 6584A emission except for the double-peaked SBNs. The FWHMs of H alpha emission show a good correlation with sin i (i is an inclination angle of galaxy). This correlation means that the FWHMs of the SBNs suffer significantly from rotational broadening. Mrk 52 is an anomalous SBN because it has narrow emission line widths for its high inclination angle (cf. Taniguchi 1987). From the above correlation, it is estimated that the intrinsic (i.e., rotation free) FWHMs of H alpha emission are about 50 km s(-1).

  7. Pluvial Inhibition by Urban Cloud Condensation Nuclei

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Yum, S. S.

    2002-05-01

    Cloud microphysics and sub-cloud aerosol measurements in urban and cleaner air masses showed the effects of anthropogenic air pollution. Cloud condensation nuclei (CCN) measurements in three different parts of the world displayed typical urban/clean air mass differences in concentrations. Near-simultaneous cloud droplet measurements (diameter < 50 micrometers) showed the higher concentrations and smaller sizes expected for higher CCN concentrations. The commensurate lower concentrations of large cloud droplets (30-50 micrometers) in urban air indicated that the higher CCN concentrations were responsible for the order(s) of magnitude lower drizzle drop (diameter > 50 micrometers) concentrations in the urban-influenced clouds. The similarity of the clean and urban- influenced cloud droplet spectra near cloud base suggested no differences in giant nuclei concentrations that have been suggested to be responsible for greater precipitation in cleaner clouds. This suppression of warm rain by higher CCN concentrations occurred hundreds of km from the urban sources. Similar effects were found for three different cloud types in these three field projects: 1) stratocumulus clouds in the eastern Atlantic (ASTEX); 2) small cumulus clouds in eastern Florida (SCMS); and small trade wind cumuli in the Indian Ocean (INDOEX). Comparisons of CCN and cloud droplet concentrations in the three projects showed a more-or-less linear relationship between CCN and cloud droplet concentrations. Comparisons of CCN and cloud droplet spectra showed that supersaturations were lower in the urban-influenced clouds due to greater competition for condensed water. This means that a smaller percentage of the higher urban CCN concentrations actually produced cloud droplets. However, the supersaturation suppression was smaller because droplet sizes were so reduced that many urban cloud droplets escaped detection. This underestimation of cloud droplet concentrations suggested a greater suppression of

  8. Feldspar minerals as efficient deposition ice nuclei

    NASA Astrophysics Data System (ADS)

    Yakobi-Hancock, J. D.; Ladino, L. A.; Abbatt, J. P. D.

    2013-11-01

    Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically relevant mineral samples have been studied, using a continuous flow diffusion chamber at -40.0 ± 0.3 °C and particles size-selected at 200 nm. By focussing on using the same experimental procedure for all experiments, a relative ranking of the ice nucleating abilities of the samples was achieved. In addition, the ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RHi) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi) 126.3 ± 3.4%) and ATD (RHi 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts, it was found that the feldspar minerals (particularly orthoclase) and some clays (particularly kaolinite) were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals.

  9. Feldspar minerals as efficient deposition ice nuclei

    NASA Astrophysics Data System (ADS)

    Yakobi-Hancock, J. D.; Ladino, L. A.; Abbatt, J. P. D.

    2013-06-01

    Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically-relevant mineral samples have been studied, using a continuous flow diffusion chamber at -40.0 ± 0.3 °C. The same particle size (200 nm) and particle preparation procedure were used throughout. The ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RHi) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi 126.3 ± 3.4%) and ATD (RHi 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts it was found that the feldspar minerals (particularly orthoclase), and not the clays, were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals.

  10. Cloud Condensation Nuclei Measurements in Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Hudson, J. G.; Simpson, J.

    2002-01-01

    The first measurements of cloud condensation nuclei (CCN) within and around tropical cyclones were made with the Desert Research Institute (DRI) CCN spectrometer (Hudson 1909) from a NOAA P-3 Hurricane Hunter aircraft throughout the 2001 season. Two penetrations of the closed eye of Hurricane Erin off the northeast US coast on Sept. 10 showed concentrations consistently well in excess of 1000 per cubic cm at approximately 1.4% supersaturation. Simultaneous condensation nuclei (CN--total particle) concentrations were consistently well in excess of 2000 per cubic cm throughout these closed eye penetrations. These within eye measurements at 4 km altitude for exceeded CCN and CN measurements just outside of the storm at similar altitudes--300 and 600 per cubic cm respectively. These CCN and CN concentrations within this closed eye were far above concentrations in maritime air masses; they are characteristic of continental or polluted air masses. Although there was a possibility that Saharan duct may have gotten into this storm these sub tenth micrometer particles are much too small and much too numerous to be dust. Such high concentrations may have originated from European air pollution, which may have been transported by similar airflow patterns to those that carry Saharan dust across the Atlantic. These high concentrations may be a manifestation of descending air that brings higher concentrations that are often characteristic of the upper troposphere (Clarke and Kapustin 2002). Later in the month measurements in Humberto showed highly variable CCN and CN concentrations that ranged from lots than 5 per cubic cm to more than 1000 per Cubic cm over km scale distances within and around the open eye of this tropical storm/hurricane. These very low concentrations suggest strong cloud scavenging.

  11. Formation and decay of resonance states in 9Be and 9B nuclei: Microscopic three-cluster model investigations

    NASA Astrophysics Data System (ADS)

    Vasilevsky, V. S.; Katō, K.; Takibayev, N. Zh.

    2017-09-01

    We study the nature of the low-lying resonance states in mirror nuclei 9Be and 9B. Investigations are performed within a three-cluster model. The model makes use of the hyperspherical harmonics, which provides a convenient description of the three-cluster continuum. The dominant three-cluster configurations α +α +n and α +α +p in 9Be and 9B, respectively, are taken into account. Dominant decay channels for all resonance states in 9Be and 9B are explored. Much attention is paid to the controversial 1 /2+ resonance states in both nuclei. We study effects of the Coulomb interaction on the energy and width of three-cluster resonances in the mirror nuclei 9Be and 9B. We also search for the Hoyle-analog state, which is a key step for alternative ways to synthesize 9Be and 9B in triple collisions of clusters in a stellar environment.

  12. Comparison of yields of neutron-rich nuclei in proton- and photon-induced 238U fission

    NASA Astrophysics Data System (ADS)

    Khan, F. A.; Bhowmick, Debasis; Basu, D. N.; Farooq, M.; Chakrabarti, Alok

    2016-11-01

    A comparative study of fission of actinides, especially 238U, by proton and bremsstrahlung photon is performed. The relative mass distribution of 238U fission fragments has been explored theoretically for both proton- and photon-induced fission. The integrated yield along with charge distribution of the products are calculated to find the neutron richness in comparison with the nuclei produced by the r process in nucleosynthesis. Some r -process nuclei in the intermediate-mass range for symmetric fission mode are found to be produced almost two orders of magnitude more for proton-induced fission than for photofission, although the rest of the neutron-rich nuclei in the asymmetric mode are produced in comparable proportion for both processes.

  13. Free energy of formation of small ice nuclei near the Widom line in simulations of supercooled water.

    PubMed

    Buhariwalla, Connor R C; Bowles, Richard K; Saika-Voivod, Ivan; Sciortino, Francesco; Poole, Peter H

    2015-05-01

    The ST2 interaction potential has been used in a large number of simulation studies to explore the possibility of a liquid-liquid phase transition (LLPT) in supercooled water. Using umbrella sampling Monte Carlo simulations of ST2 water, we evaluate the free energy of formation of small ice nuclei in the supercooled liquid in the vicinity of the Widom line, the region above the critical temperature of the LLPT where a number of thermodynamic anomalies occur. Our results show that in this region there is a substantial free-energy cost for the formation of small ice nuclei, demonstrating that the thermodynamic anomalies associated with the Widom line in ST2 water occur in a well-defined metastable liquid phase. On passing through the Widom line, we identify changes in the free energy to form small ice nuclei that illustrate how the thermodynamic anomalies associated with the LLPT may influence the ice nucleation process.

  14. Nuclei in motion: movement and positioning of plant nuclei in development, signaling, symbiosis, and disease

    PubMed Central

    Griffis, Anna H. N.; Groves, Norman R.; Zhou, Xiao; Meier, Iris

    2014-01-01

    While textbook figures imply nuclei as resting spheres at the center of idealized cells, this picture fits few real situations. Plant nuclei come in many shapes and sizes, and can be actively transported within the cell. In several contexts, this nuclear movement is tightly coupled to a developmental program, the response to an abiotic signal, or a cellular reprogramming during either mutualistic or parasitic plant–microbe interactions. While many such phenomena have been observed and carefully described, the underlying molecular mechanism and the functional significance of the nuclear movement are typically unknown. Here, we survey recent as well as older literature to provide a concise starting point for applying contemporary molecular, genetic and biochemical approaches to this fascinating, yet poorly understood phenomenon. PMID:24772115

  15. Analytic expressions for {alpha} particle preformation in heavy nuclei

    SciTech Connect

    Zhang, H. F.; Wang, Y. J.; Dong, J. M.; Royer, G.

    2009-11-15

    Experimental {alpha} decay energies and half-lives are investigated systematically to extract {alpha} particle preformation in heavy nuclei. Formulas for the preformation factors are proposed that can be used to guide microscopic studies on preformation factors and perform accurate calculations of the {alpha} decay half-lives. There is little evidence for the existence of an island of long stability of superheavy nuclei.

  16. Stratospheric condensation nuclei variations may relate to solar activity

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.

    1982-01-01

    Observations of increases of stratospheric condensation nuclei suggest a photo-initiated sulphuric acid vapour formation process in spring in polar regions. It is proposed that the sulphuric acid rapidly forms condensation nuclei through attachment to negatively charged multi-ion complexes and that the process may be modulated through variations in solar activity.

  17. Order-to-chaos transition in rotational nuclei

    SciTech Connect

    Stephens, F.S.; Deleplanque, M.A.; Lee, I.Y.; Macchiavelli, A.O.; Ward, D.; Fallon, P.; Cromaz, M.; Clark, R.M.; Descovich, M.; Diamond, R.M.; Rodriguez-Vieitez, E.

    2004-05-13

    The authors have studied the narrow (valley-ridge) structure in the {gamma}-ray spectrum following a heavy-ion fusion reaction that produces several ytterbium nuclei. The intensity of this structure can be quantitatively related to the average chaotic behavior in these nuclei and they have traced this behavior from nearly fully ordered to nearly fully chaotic.

  18. Stratospheric condensation nuclei variations may relate to solar activity

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.

    1982-01-01

    Observations of increases of stratospheric condensation nuclei suggest a photo-initiated sulphuric acid vapour formation process in spring in polar regions. It is proposed that the sulphuric acid rapidly forms condensation nuclei through attachment to negatively charged multi-ion complexes and that the process may be modulated through variations in solar activity.

  19. Ice nuclei measurements from solid rocket motor effluents

    NASA Technical Reports Server (NTRS)

    Hindman, E. E., II

    1980-01-01

    The ice crystal forming nuclei (IN) measured in solid rocket motor (SRM) exhaust products is discussed in relation to space shuttle exhaust. Preliminary results from laboratory investigations and flight preparations for March 1978 Titan launch are discussed. The work necessary to provide adequate measurements of IN and cloud condensation nuclei (CCN) in the stabilized ground clouds from SRM's is studied.

  20. Microscopic investigations on the fragmentation of heavy nuclei

    NASA Astrophysics Data System (ADS)

    Jung, Chr.; Cassing, W.; Mosel, U.; Cusson, R. Y.

    1988-02-01

    Model calculations of fragmentation reactions in the TDH F approximation provide quantitative information about the stability of heavy nuclei in a mean-field description. A comparison of these results to proton-induced fragmentation reactions shows that mean-field nuclei are much too stable against local fluctuations caused, e.g., by residual nucleon-nucleon collisions.

  1. Exploration Review

    USGS Publications Warehouse

    Wilburn, D.R.; Stanley, K.A.

    2013-01-01

    This summary of international mineral exploration activities for 2012 draws upon information from industry sources, published literature and U.S. Geological Survey (USGS) specialists. The summary provides data on exploration budgets by region and mineral commodity, identifies significant mineral discoveries and areas of mineral exploration, discusses government programs affecting the mineral exploration industry and presents analyses of exploration activities performed by the mineral industry. Three sources of information are reported and analyzed in this annual review of international exploration for 2012: 1) budgetary statistics expressed in U.S. nominal dollars provided by SNL Metals Economics Group (MEG) of Halifax, Nova Scotia; 2) regional and site-specific exploration activities that took place in 2012 as compiled by the USGS and 3) regional events including economic, social and political conditions that affected exploration activities, which were derived from published sources and unpublished discussions with USGS and industry specialists.

  2. Participatory Exploration

    NASA Image and Video Library

    Kathy Nado delivers a presentation on Participatory Exploration on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX. The purpose of this workshop was to present NASA'...

  3. Exploration Geophysics

    ERIC Educational Resources Information Center

    Savit, Carl H.

    1978-01-01

    Expansion of activity and confirmation of new technological directions characterized several fields of exploration geophysics in 1977. Advances in seismic-reflection exploration have been especially important. (Author/MA)

  4. Exploration Geophysics

    ERIC Educational Resources Information Center

    Savit, Carl H.

    1978-01-01

    Expansion of activity and confirmation of new technological directions characterized several fields of exploration geophysics in 1977. Advances in seismic-reflection exploration have been especially important. (Author/MA)

  5. Exploration review

    USGS Publications Warehouse

    Wilburn, D.R.; Rapstine, T.D.; Lee, E.C.

    2012-01-01

    This summary of international mineral exploration activities for the year 2011 draws upon available information from industry sources, published literature and U.S. Geological Survey (USGS) specialists. This summary provides data on exploration budgets by region and mineral commodity, identifies significant mineral discoveries and areas of mineral exploration, discusses government programs affecting the mineral exploration industry and presents surveys returned by companies primarily focused on precious (gold, platinum-group metals and silver) and base (copper, lead, nickel and zinc) metals.

  6. Exploration review

    USGS Publications Warehouse

    Wilburn, D.R.

    2008-01-01

    This summary of international mineral exploration activities for the year 2007 draws upon available information from industry, literature and U.S. Geological Survey (USGS) specialists. The summary provides data on exploration budgets by region and mineral commodity, identifies significant mineral discoveries and areas of mineral exploration, discusses government programs affecting the mineral exploration industry and presents analysis of the mineral industry based upon these data.

  7. Exploration review

    USGS Publications Warehouse

    Wilburn, D.R.

    2006-01-01

    This summary of international mineral exploration activities for the year 2005 draws upon available information from literature, industry and U.S. Geological Survey (USGS) specialists. It provides data on exploration budgets by global region and mineral commodity and identifies significant mineral discoveries and exploration target areas. It also discusses government programs affecting the mineral exploration industry and presents analysis of the mineral industry based on these data.

  8. Interaction of the intermediate energy neutrino with nuclei

    NASA Technical Reports Server (NTRS)

    Bugayev, E. V.; Rudzskiy, M. A.; Bisnovatyy-Kogan, G. S.; Seidov, Z. F.

    1980-01-01

    The interaction of the electronic neutrino with nuclei C-12, O-16, Ci-37, Fe-56, Ga-71, and Br81 is considered for neutrino energy up to 300 MeV. The nuclei are described by single-particle shell-model with Woods-Saxon potential. The parameters of the potential are specially chosen for each nuclei in order to describe correctly the upper occupied single particle levels of the nuclei. The cross sections for inelastic and elastic interactions of neutrino with nuclei are calculated within this model, taking into account charged and neutral current of weak interaction. The neutral currents are described by Weinberg theory. The results of the cross section calculations are presented and the comparisons with the results of the other authors are given. The possibilities of improvement of the exactness of obtained results are discussed. Some details of the calculations are included.

  9. Analysis of isomeric ratios for medium-mass nuclei

    NASA Astrophysics Data System (ADS)

    Danagulyan, A. S.; Hovhannisyan, G. H.; Bakhshiyan, T. M.; Kerobyan, I. A.

    2016-09-01

    Values of the isomeric ratios for product nuclei originating from simple charge-exchange reactions were analyzed. The cross sections for the formation of product nuclei in ground and isomeric states were calculated with the aid of the TALYS 1.4 and EMPIRE 3.2 codes. The calculated values of the isomeric ratios were compared with their experimental counterparts taken from the EXFOR database. For the 86,87Y, 94,95,96,99Tc, and 44Sc nuclei, the experimental values of the isomeric ratios exceed the respective calculated values. The nuclei in question feature weak deformations and have high-spin yrast lines and rotational bands. The possible reason behind the discrepancy between theoretical and experimental isomeric ratios is that the decay of yrast states leads with a high probability to the formation of isomeric states of detected product nuclei.

  10. Synthesis of Superheavy Nuclei with Z = 112 - 118

    NASA Astrophysics Data System (ADS)

    Utyonkov, V. K.

    2015-06-01

    Review of the discovery and investigation of the "Island of stability" of superheavy nuclei at the separator DGFRS in the 238U-249Cf+48Ca reactions is presented. The synthesis of the heaviest nuclei, their decay properties, and methods of identification are discussed. The results are compared with the data obtained in the chemistry experiments performed at the IVO+COLD setup and at the separators SHIP, BGS, and TASCA. The role of shell effects in the stability of superheavy nuclei is demonstrated by comparison of the experimental and theoretical data. The recent experiment aimed at the investigation of the region of neutron-deficient nuclei produced in the 239Pu+48Ca reaction is described. Future experiments at DGFRS aimed at the study of superheavy nuclei are considered.

  11. Transfer of nuclei from a parasite to its host

    PubMed Central

    Goff, Lynda J.; Coleman, Annette W.

    1984-01-01

    During the normal course of infection, nuclei are transferred via secondary pit connections from the parasitic marine red alga Choreocolax to its red algal host Polysiphonia. These “planetic” nuclei are transmitted by being cut off into specialized cells (conjunctor cells) that fuse with an adjacent host cell, thereby delivering parasite nuclei and other cytoplasmic organelles into host cell cytoplasm. Within the foreign cytoplasm, planetic nuclei survive for several weeks and may be active in directing the host cellular responses to infection, since these responses are seen only in host cells containing planetic nuclei. The transfer and long-term survival of a nucleus from one genus into the cytoplasm of another through mechanisms that have evolved in nature challenge our understanding of nuclear-cytoplasmic interactions and our concept of “individual.” Images PMID:16593507

  12. Transfer of nuclei from a parasite to its host.

    PubMed

    Goff, L J; Coleman, A W

    1984-09-01

    During the normal course of infection, nuclei are transferred via secondary pit connections from the parasitic marine red alga Choreocolax to its red algal host Polysiphonia. These "planetic" nuclei are transmitted by being cut off into specialized cells (conjunctor cells) that fuse with an adjacent host cell, thereby delivering parasite nuclei and other cytoplasmic organelles into host cell cytoplasm. Within the foreign cytoplasm, planetic nuclei survive for several weeks and may be active in directing the host cellular responses to infection, since these responses are seen only in host cells containing planetic nuclei. The transfer and long-term survival of a nucleus from one genus into the cytoplasm of another through mechanisms that have evolved in nature challenge our understanding of nuclear-cytoplasmic interactions and our concept of "individual."

  13. THE ISOLATION OF CELL NUCLEI IN NON-AQUEOUS MEDIA

    PubMed Central

    Allfrey, V.; Stern, H.; Mirsky, A. E.; Saetren, H.

    1952-01-01

    1. A modified Behrens procedure is described for the isolation of nuclei from avian erythrocytes and from the liver, kidney, thymus, pancreas, heart, and intestinal mucosa of the calf or horse. 2. The purity of these nuclei has been established by staining reactions, enzyme studies, and immunological tests for serum proteins. 3. Evidence is presented to show that a transport of cytoplasmic proteins into the nucleus does not occur during the isolation. 4. Nuclei prepared in non-aqueous media contain considerably more protein and a very different enzyme composition from that observed in nuclei prepared by "homogenization" techniques in dilute citric acid. 5. The suitability of nuclei prepared in organic media for the study of intracellular enzyme distribution is discussed. PMID:14898034

  14. Analysis of isomeric ratios for medium-mass nuclei

    SciTech Connect

    Danagulyan, A. S.; Hovhannisyan, G. H. Bakhshiyan, T. M.; Kerobyan, I. A.

    2016-09-15

    Values of the isomeric ratios for product nuclei originating from simple charge-exchange reactions were analyzed. The cross sections for the formation of product nuclei in ground and isomeric states were calculated with the aid of the TALYS 1.4 and EMPIRE 3.2 codes. The calculated values of the isomeric ratios were compared with their experimental counterparts taken from the EXFOR database. For the {sup 86,87}Y, {sup 94,95,96,99}Tc, and {sup 44}Sc nuclei, the experimental values of the isomeric ratios exceed the respective calculated values. The nuclei in question feature weak deformations and have high-spin yrast lines and rotational bands. The possible reason behind the discrepancy between theoretical and experimental isomeric ratios is that the decay of yrast states leads with a high probability to the formation of isomeric states of detected product nuclei.

  15. Signatures of shape phase transitions in odd-mass nuclei

    NASA Astrophysics Data System (ADS)

    Nomura, K.; Nikšić, T.; Vretenar, D.

    2016-12-01

    Quantum phase transitions between competing ground-state shapes of atomic nuclei with an odd number of protons or neutrons are investigated in a microscopic framework based on nuclear energy density functional theory and the particle-plus-boson-core coupling scheme. The boson-core Hamiltonian, as well as the single-particle energies and occupation probabilities of the unpaired nucleon, are completely determined by constrained self-consistent mean-field calculations for a specific choice of the energy density functional and paring interaction, and only the strength parameters of the particle-core coupling are adjusted to reproduce selected spectroscopic properties of the odd-mass system. We apply this method to odd-A Eu and Sm isotopes with neutron number N ≈90 , and explore the influence of the single unpaired fermion on the occurrence of a shape phase transition. Collective wave functions of low-energy states are used to compute quantities that can be related to quantum order parameters: deformations, excitation energies, E 2 transition rates, and separation energies, and their evolution with the control parameter (neutron number) is analyzed.

  16. VARIABILITY IN ACTIVE GALACTIC NUCLEI FROM PROPAGATING TURBULENT RELATIVISTIC JETS

    SciTech Connect

    Pollack, Maxwell; Pauls, David; Wiita, Paul J.

    2016-03-20

    We use the Athena hydrodynamics code to model propagating two-dimensional relativistic jets as approximations to the growth of radio-loud active galactic nuclei for various input jet velocities and jet-to-ambient matter density ratios. Using results from these simulations we estimate the changing synchrotron emission by summing the fluxes from a vertical strip of zones behind the reconfinement shock, which is nearly stationary, and from which a substantial portion of the flux variability should arise. We explore a wide range of timescales by considering two light curves from each simulation; one uses a relativistic turbulence code with bulk velocities taken from our simulations as input, while the other uses the bulk velocity data to compute fluctuations caused by variations in the Doppler boosting due to changes in the direction and the speed of the flow through all zones in the strip. We then calculate power spectral densities (PSDs) from the light curves for both turbulent and bulk velocity origins for variability. The range of the power-law slopes of the PSDs for the turbulence induced variations is −1.8 to −2.3, while for the bulk velocity produced variations this range is −2.1 to −2.9; these are in agreement with most observations. When superimposed, these power spectra span a very large range in frequency (about five decades), with the turbulent fluctuations yielding most of the shorter timescale variations and the bulk flow changes dominating the longer periods.

  17. On the efficient acceleration of clouds in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Waters, Tim; Proga, Daniel

    2016-07-01

    In the broad line region of active galactic nuclei (AGN), acceleration occurs naturally when a cloud condenses out of the hot confining medium due to the increase in line opacity as the cloud cools. However, acceleration by radiation pressure is not very efficient when the flux is time-independent, unless the flow is 1D. Here, we explore how acceleration is affected by a time-varying flux, as AGN are known to be highly variable. If the period of flux oscillations is longer than the thermal time-scale, we expect the gas to cool during the low flux state, and therefore line opacity should quickly increase. The cloud will receive a small kick due to the increased radiation force. We perform hydrodynamical simulations using ATHENA to confirm this effect and quantify its importance. We find that despite the flow becoming turbulent in 2D due to hydrodynamic instabilities, a 20 per cent modulation of the flux leads to a net increase in acceleration - by more than a factor of 2 - in both 1D and 2D. We show that this acceleration is sufficient to produce the observed line widths, although we only consider optically thin clouds. We discuss the implications of our results for photoionization modelling and reverberation mapping.

  18. Stellar Nuclei and Inner Polar Disks in Lenticular Galaxies

    NASA Astrophysics Data System (ADS)

    Sil'chenko, Olga K.

    2016-09-01

    I analyze statistics of the stellar population properties for stellar nuclei and bulges of nearby lenticular galaxies in different environments by using panoramic spectral data of the integral-field spectrograph SAURON retrieved from the open archive of the Isaac Newton Group. I also estimate the fraction of nearby lenticular galaxies having inner polar gaseous disks by exploring the volume-limited sample of early-type galaxies of the ATLAS-3D survey. By inspecting the two-dimensional velocity fields of the stellar and gaseous components with the running tilted-ring technique, I have found seven new cases of inner polar disks. Together with those, the frequency of inner polar disks in nearby S0 galaxies reaches 10%, which is much higher than the frequency of large-scale polar rings. Interestingly, the properties of the nuclear stellar populations in the inner polar ring hosts are statistically the same as those in the whole S0 sample, implying similar histories of multiple gas-accretion events from various directions.

  19. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; Creech, Stephen D.; Robinson,Kimberly F.

    2016-01-01

    Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. While SLS's super-heavy launch vehicle predecessor, the Saturn V, was used for only two types of missions - launching Apollo spacecraft to the moon and lofting the Skylab space station into Earth orbit - NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. With a 5-meter (m) fairing consistent with contemporary Evolved Expendable Launch Vehicles (EELVs), the Block 1 configuration can also deliver science payloads to high-characteristic-energy (C3) trajectories to the outer solar system. With the addition of an upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a new class of secondary payloads, larger than today's cubesats. The evolved configurations of SLS, including both Block 1B and the 130 t Block 2, also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk and operational costs associated with shorter transit time to destination and reduced risk and complexity associated with launching large systems either monolithically or in fewer components. As this paper will

  20. Mid-infrared spectra of comet nuclei

    NASA Astrophysics Data System (ADS)

    Kelley, Michael S. P.; Woodward, Charles E.; Gehrz, Robert D.; Reach, William T.; Harker, David E.

    2017-03-01

    Comet nuclei and D-type asteroids have several similarities at optical and near-IR wavelengths, including near-featureless red reflectance spectra, and low albedos. Mineral identifications based on these characteristics are fraught with degeneracies, although some general trends can be identified. In contrast, spectral emissivity features in the mid-infrared provide important compositional information that might not otherwise be achievable. Jovian Trojan D-type asteroids have emissivity features strikingly similar to comet comae, suggesting that they have the same compositions and that the surfaces of the Trojans are highly porous. However, a direct comparison between a comet and asteroid surface has not been possible due to the paucity of spectra of comet nuclei at mid-infrared wavelengths. We present 5-35 μm thermal emission spectra of comets 10P/Tempel 2, and 49P/Arend-Rigaux observed with the Infrared Spectrograph on the Spitzer Space Telescope. Our analysis reveals no evidence for a coma or tail at the time of observation, suggesting the spectra are dominated by the comet nucleus. We fit each spectrum with the near-Earth asteroid thermal model (NEATM) and find sizes in agreement with previous values. However, the NEATM beaming parameters of the nuclei, 0.74-0.83, are systematically lower than the Jupiter-family comet population mean of 1.03 ± 0.11, derived from 16- and 22-μm photometry. We suggest this may be either an artifact of the spectral reduction, or the consequence of an emissivity low near 16 μm. When the spectra are normalized by the NEATM model, a weak 10-μm silicate plateau is evident, with a shape similar to those seen in mid-infrared spectra of D-type asteroids. A silicate plateau is also evident in previously published Spitzer spectra of the nucleus of comet 9P/Tempel 1. We compare, in detail, these comet nucleus emission features to those seen in spectra of the Jovian Trojan D-types (624) Hektor, (911) Agamemnon, and (1172) Aneas, as well

  1. Particle Acceleration in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1997-01-01

    The high efficiency of energy generation inferred from radio observations of quasars and X-ray observations of Seyfert active galactic nuclei (AGNs) is apparently achieved only by the gravitational conversion of the rest mass energy of accreting matter onto supermassive black holes. Evidence for the acceleration of particles to high energies by a central engine is also inferred from observations of apparent superluminal motion in flat spectrum, core-dominated radio sources. This phenomenon is widely attributed to the ejection of relativistic bulk plasma from the nuclei of active galaxies, and accounts for the existence of large scale radio jets and lobes at large distances from the central regions of radio galaxies. Reports of radio jets and superluminal motion from galactic black hole candidate X-ray sources indicate that similar processes are operating in these sources. Observations of luminous, rapidly variable high-energy radiation from active galactic nuclei (AGNs) with the Compton Gamma Ray Observatory show directly that particles are accelerated to high energies in a compact environment. The mechanisms which transform the gravitational potential energy of the infalling matter into nonthermal particle energy in galactic black hole candidates and AGNs are not conclusively identified, although several have been proposed. These include direct acceleration by static electric fields (resulting from, for example, magnetic reconnection), shock acceleration, and energy extraction from the rotational energy of Kerr black holes. The dominant acceleration mechanism(s) operating in the black hole environment can only be determined, of course, by a comparison of model predictions with observations. The purpose of the work proposed for this grant was to investigate stochastic particle acceleration through resonant interactions with plasma waves that populate the magnetosphere surrounding an accreting black hole. Stochastic acceleration has been successfully applied to the

  2. A study of warm absorbers in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Ashton, Ceri Ellen

    This thesis explores the 'warm absorber' phenomenon observed in Active Galactic Nuclei (AGN). Warm absorbers are clouds of ionised gas within AGN, that cause absorption at soft X-ray wavelengths. They are observed in half of all Type 1 AGN, hence they play an important part in the framework of our under standing of Active Galactic Nuclei. Observations with the satellite XMM-Newton have given us the highest signal-to-noise data yet. XMM-Newton observations of the quasars PG 1114+445 and PG 1309+355 are studied. Both quasars exhibit evidence for absorption by warm material in the line-of-sight. We define a 'phase' of absorption to have a single ionisation param eter and column density. From fits to the data, the absorption in PG 1114+445 is found to be in two phases, a 'hot' phase with a log ionisation parameter f of 2.57 and a column of 1022 cm-2, and a 'cooler' one with log f of 0.83 and a column of 1021 cm-2. The absorption in PG 1309+355 consists of a single phase, with log f of 1.87 and a column of 1021 cm-2. The absorbing gas lies at distances of 1019 - 1022 cm from the continuum radiation sources in these AGN, suggesting origins in a wind emanating from a molecular torus, according to the 'Standard Model' of AGN. The kinetic luminosities of the outflowing absorbers represent insignificant fractions (< 10 3) of the energy budgets of the AGN. Using data for the Seyfert 1 H 0557 385, the warm absorption is characterised by two phases, a phase with log £ of 0.48 and a column of 1021 cm-2, and a phase with log f of 1.63 and a column of 1022 cm-2. Neutral absorption is also present in the source, and possible origins for this are discussed. For a large sample, observations of warm absorbers are collated and compared with models.

  3. Are there X(5) Nuclei in the A ~80 Region?

    NASA Astrophysics Data System (ADS)

    Brenner, Daeg

    2002-04-01

    Recently, a new class of symmetries, based on solutions of differential equations, has been introduced to model phase transition and critical point behavior in nuclei. For the shape transition region between a spherical vibrator and an axial rotor the dynamical symmetry for the critical point is designated X(5) and levels are assigned quantum numbers, s, that determine their energies and transition rates. Signatures of X(5) nuclei include the energy ratios E(4_1^+)/E(2_1^+) for a given s sequence of levels, E(0_2^+)/E(2_1^+) between the s=2 and s=1 sequences, E(J)/E(2^+) as a function of J for the s=1 sequence, and intra- and inter-sequence B(E2) values. Examples that fit the X(5) description have been found for rare earth nuclei in the N=90 region. Data for the A ~80 region has been searched for evidence of the X(5) dynamical symmetry. A comparison of the available data to those in the N=90 nuclei provides tantalizing hints of nuclei with X(5) character. Confirmation will require additional data, especially B(E2) values. Since the nuclei involved are far from stability, such measurements will require accelerated beams of radioactive nuclei that will be available at the proposed RIA facility.

  4. Behavior of nuclei during zoosporogenesis in Bryopsis plumosa (Bryopsidales, Chlorophyta).

    PubMed

    Minamikawa, Bunji; Yamagishi, Takahiro; Hishinuma, Tasuku; Ogawa, Shigeru

    2005-02-01

    The behavior of nuclei during zoosporogenesis in Bryopsis plumosa (Bryopsidales, Chlorophyta) was examined by fluorescence and electron microscopy. Each mature filamentous sporophyte had a single lenticular nucleus, which was about 25 microm in diameter and embedded in a thick cytoplasmic layer. At the commencement of multinucleation, giant nuclei with large vacuolated nucleoli, giant nuclei containing chromosomes, and dumbbell-shaped nuclei were observed. Sometimes, two small nuclei also appeared in the thick cytoplasm where the giant nucleus had presumably been present. Electron microscopy revealed the existence of ribbon-like structures resembling synaptonemal complexes within the nucleus having a large vacuolated nucleolus. Nuclei extended their distribution by repetitive divisions. A pair of centrioles was adjacent to the interphase nucleus. When the nuclei were distributed throughout the cell, they became localized nearly equidistantly from one another, each being surrounded by several chloroplasts. At this stage, many centrioles lay along the nuclear surface. The bulk of cytoplasm was then divided into many masses of protoplasm, each of which developed into a uninucleate, stephanokontic zoospore with a whorl of flagella.

  5. Are Organic Aerosols Good Cloud Condensation Nuclei?

    NASA Astrophysics Data System (ADS)

    Abbatt, J. P.; Broekhuizen, K.; Kumar, P. P.

    2002-12-01

    The ability of a set of organic-containing aerosols to act as cloud condensation nuclei has been measured in the laboratory using a thermal-gradient diffusion chamber operated at a fixed supersaturation. We observe that particles composed of soluble organics, such as malonic acid and adipic acid, activate at dry particle diameters in agreement with Kohler theory predications assuming the solutes are fully soluble and the droplet has the surface tension of water. Surprisingly, we also observe that sparingly soluble azelaic acid and cis-pinonic acid particles also activate, perhaps because they are being formed in a supersaturated, amorphous state or that their activation is aided by surface uptake of water. Mixed organic/ammonium sulfate particles have also been studied, and a range of behavior is observed. Soluble species such as malonic acid enhance activation through the vapour-pressure lowering effect whereas a thick coating of stearic acid on ammonium sulfate makes the particles totally inactive. Lastly, we have observed that pure oleic acid particles, which show no indication of activation when pure, can be activated after exposure to gas-phase ozone. The atmospheric implications of our results will be discussed. An interesting issue is the degree to which we can quantitatively model our results by assuming the surface tension of the growing droplet is that of water, i.e. without the need to invoke the surface-tension-lowering effect due to surface-active organics.

  6. Probing the Physics of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2004-01-01

    As a result of a number of large multiwavelength monitoring campaigns that have taken place since the late 1980s, there are now several very large data sets on bright variable active galactic nuclei (AGNs) that are well-sampled in time and can be used to probe the physics of the AGN continuum source and the broad-line emitting region. Most of these data sets have been underutilized, as the emphasis thus far has been primarily on reverberation-mapping issues alone. Broader attempts at analysis have been made on some of the earlier IUE data sets (e.g., data from the 1989 campaign on NGC5 548) , but much of this analysis needs to be revisited now that improved versions of the data are now available from final archive processing. We propose to use the multiwavelength monitoring data that have been accumulated to undertake more thorough investigations of the AGN continuum and broad emission lines, including a more detailed study of line-profile variability, making use of constraints imposed by the reverberation results.

  7. Helium nuclei in quenched lattice QCD

    SciTech Connect

    Yamazaki, T.; Ukawa, A.; Kuramashi, Y.

    2010-06-01

    We present results for the binding energies for {sup 4}He and {sup 3}He nuclei calculated in quenched lattice QCD at the lattice spacing of a=0.128 fm with a heavy quark mass corresponding to m{sub {pi}=}0.8 GeV. Enormous computational cost for the nucleus correlation functions is reduced by avoiding redundancy of equivalent contractions stemming from permutation symmetry of protons or neutrons in the nucleus and various other symmetries. To distinguish a bound state from an attractive scattering state, we investigate the volume dependence of the energy difference between the nucleus and the free multinucleon states by changing the spatial extent of the lattice from 3.1 to 12.3 fm. A finite energy difference left in the infinite spatial volume limit leads to the conclusion that the measured ground states are bounded. It is also encouraging that the measured binding energies and the experimental ones show the same order of magnitude.

  8. Dielectronic Recombination In Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lukic, D. V.; Schnell, M.; Savin, D. W.; Altun, Z.; Badnell, N.; Brandau, C.; Schmidt, E. W.; Müller, A.; Schippers, S.; Sprenger, F.; Lestinsky, M.; Wolf, A.

    XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between ˜ 15-17 Å. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. Here we report our recent experimental results for DR of Fe XIV forming Fe XIII.

  9. Dielectronic Recombination In Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Lukic, D. V.; Schnell, M.; Savin, D. W.; Altun, Z.; Badnell, N.; Brandau, C.; Schmidt, E. W.; Mueller, A.; Schippers, S.; Sprenger, F.; Lestinsky, M.; Wolf, A.

    2006-01-01

    XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between approx. 15-17 A. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. Here we report our recent experimental results for DR of Fe XIV forming Fe XIII.

  10. Active galactic nuclei: what's in a name?

    NASA Astrophysics Data System (ADS)

    Padovani, P.; Alexander, D. M.; Assef, R. J.; De Marco, B.; Giommi, P.; Hickox, R. C.; Richards, G. T.; Smolčić, V.; Hatziminaoglou, E.; Mainieri, V.; Salvato, M.

    2017-08-01

    Active galactic nuclei (AGN) are energetic astrophysical sources powered by accretion onto supermassive black holes in galaxies, and present unique observational signatures that cover the full electromagnetic spectrum over more than twenty orders of magnitude in frequency. The rich phenomenology of AGN has resulted in a large number of different "flavours" in the literature that now comprise a complex and confusing AGN "zoo". It is increasingly clear that these classifications are only partially related to intrinsic differences between AGN and primarily reflect variations in a relatively small number of astrophysical parameters as well the method by which each class of AGN is selected. Taken together, observations in different electromagnetic bands as well as variations over time provide complementary windows on the physics of different sub-structures in the AGN. In this review, we present an overview of AGN multi-wavelength properties with the aim of painting their "big picture" through observations in each electromagnetic band from radio to γ -rays as well as AGN variability. We address what we can learn from each observational method, the impact of selection effects, the physics behind the emission at each wavelength, and the potential for future studies. To conclude, we use these observations to piece together the basic architecture of AGN, discuss our current understanding of unification models, and highlight some open questions that present opportunities for future observational and theoretical progress.

  11. Shell effects in fusion of heavy nuclei

    SciTech Connect

    Moeller, P.; Nix, J.R.

    1997-12-31

    The spontaneous-fission properties of Fm isotopes undergo dramatic changes between {sup 256}Fm and {sup 258} Fm. The fission fragments of the former isotope are mass asymmetric with kinetic energies of about 200 MeV, whereas the fission fragments of the latter isotope are symmetric with kinetic energies of about 235 MeV. This rapid change occurs because the division into nearly doubly magic fragments near {sup 132}Sn becomes possible and opens up new valleys in the fission potential-energy surface. In the cold-fusion reactions leading to the heaviest elements, the nearly doubly magic targets and/or projectiles may give rise to important features associated with this magicity. Cold fusion is thought to favor heavy-element formation because it leads to low excitation energies of the compound nuclei. We investigate how near-magic targets and projectiles may lead to persistent survivability of the shells in the fusion valley as the ions merge, in addition to their effect on the compound-nucleus excitation energy.

  12. Photodisintegration of Light Nuclei with CLAS

    SciTech Connect

    Ilieva, Yordanka Yordanova; Zachariou, Nicholas

    2013-08-01

    We report preliminary results of photodisintegration of deuteron and {sup 3}He measured with CLAS at Jefferson Lab. We have extracted the beam-spin asymmetry for the {vector {gamma}}d {yields} pn reaction at photon energies from 1.1 GeV to 2.3 GeV and proton center-of-mass (c.m.) angles between 35{degrees} and 135{degrees} . Our data show interesting evolution of the angular dependence of the observable as the photon energy increases. The energy dependence of the beam-spin asymmetry at 90 shows a change of slope at photon energy of 1.6 GeV. A comparison of our data with model calculations suggests that a fully non-perturbative treatment of the underlying dynamics may be able to describe the data better than a model based on hard scattering. We have observed onset of dimensional scaling in the cross section of two-body photodisintegration of {sup 3}He at remarkably low energy and momentum transfer, which suggests that partonic degrees of freedom may be relevant for the description of nuclei at energies lower than previously considered.

  13. Probing the Physics of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2004-01-01

    As a result of a number of large multiwavelength monitoring campaigns that have taken place since the late 1980s, there are now several very large data sets on bright variable active galactic nuclei (AGNs) that are well-sampled in time and can be used to probe the physics of the AGN continuum source and the broad-line emitting region. Most of these data sets have been underutilized, as the emphasis thus far has been primarily on reverberation-mapping issues alone. Broader attempts at analysis have been made on some of the earlier IUE data sets (e.g., data from the 1989 campaign on NGC5 548) , but much of this analysis needs to be revisited now that improved versions of the data are now available from final archive processing. We propose to use the multiwavelength monitoring data that have been accumulated to undertake more thorough investigations of the AGN continuum and broad emission lines, including a more detailed study of line-profile variability, making use of constraints imposed by the reverberation results.

  14. Cloud Condensation Nuclei in FIRE III

    NASA Technical Reports Server (NTRS)

    Hudson, James G.; Delnore, Victor E. (Technical Monitor)

    2002-01-01

    Yum and Hudson showed that the springtime Arctic aerosol is probably a result of long-range transport at high altitudes. Scavenging of particles by clouds reduces the low level concentrations by a factor of 3. This produces a vertical gradient in particle concentrations when low-level clouds are present. Concentrations are uniform with height when clouds are not present. Low-level CCN (cloud condensation nuclei) spectra are similar to those in other maritime areas as found by previous projects including FIRE 1 and ASTEX, which were also supported on earlier NASA-FIRE grants. Wylie and Hudson carried this work much further by comparing the CCN spectra observed during ACE with back trajectories of air masses and satellite photographs. This showed that cloud scavenging reduces CCN concentrations at all altitudes over the springtime Arctic, with liquid clouds being more efficient scavengers than frozen clouds. The small size of the Arctic Ocean seems to make it more susceptible to continental and thus anthropogenic aerosol influences than any of the other larger oceans.

  15. Warped Circumbinary Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Hayasaki, Kimitake; Sohn, Bong Won; Okazaki, Atsuo T.; Jung, Taehyun; Zhao, Guangyao; Naito, Tsuguya

    2014-07-01

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10-2 pc to 10-4 pc for 107 M ⊙ black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  16. Electromagnetic Studies of Mesons, Nucleons, and Nuclei

    SciTech Connect

    Baker, Oliver K.

    2013-08-20

    Professor Baker was a faculty member at Hampton University in Hampton, Virginia, and, jointly, a Staff Physicist at Jefferson Lab in nearby Newport News from September 1989 to July 2006. The Department of Energy (DOE) funded the grant DE-FG02-97ER41035 Electromagnetic Studies of Mesons, Nucleons, and Nuclei, while Baker was in this joint appointment. Baker sent a closeout report on these activities to Hampton University’s Sponsored Research Office some years ago, shortly after joining Yale University in 2006. In the period around 2001, the research grant with Baker as the Principal Investigator (PI) was put under the supervision of Professor Liguang Tang at Hampton University. Baker continued to pursue the research while in this join appointment, however the administrative responsibilities with the DOE and with Hampton University rested with Professor Tang after 2001, to my recollection. What is written in this document is from Baker’s memory of the research activities, which he has not pursued since joining the Yale University faculty.

  17. Nuclear structure/nuclei far from stability

    SciTech Connect

    Casten, R.F.; Garrett, J.D.; Moller, P.; Bauer, W.W.; Brenner, D.S.; Butler, G.W.; Crawford, J.E.; Davids, C.N.; Dyer, P.L.; Gregorich, K.; Hagbert, E.G.; Hamilton, W.D.; Harar, S.; Haustein, P.E.; Hayes, A.C.; Hoffman, D.C.; Hsu, H.H.; Madland, D.G.; Myers, W.D.; Penttila, H.T.; Ragnarsson, I.; Reeder, P.L.; Robertson, G.H.; Rowley, N.; Schreiber, F.; Seifert, H.L.; Sherrill, B.M.; Siciliano, E.R.; Sprouse, G.D.; Stephens, F

    1990-01-01

    This report outlines some of the nuclear structure topics discussed at the Los Alamos Workshop on the Science of Intense Radioactive Ion Beams (RIB). In it we also tried to convey some of the excitement of the participants for utilizing RIBs in their future research. The introduction of radioactive beams promises to be a major milestone for nuclear structure perhaps even more important than the last such advance in beams based on the advent of heavy-ion accelerators in the 1960's. RIBs not only will allow a vast number of new nuclei to be studies at the extremes of isospin, but the variety of combinations of exotic proton and neutron configurations should lead to entirely new phenomena. A number of these intriguing new studies and the profound consequences that they promise for understanding the structure of the atomic nucleus, nature's only many-body, strongly-inteacting quantum system, are discussed in the preceeding sections. However, as with any scientific frontier, the most interesting phenomena probably will be those that are not anticipated--they will be truly new.

  18. Hybrid configuration mixing model for odd nuclei

    NASA Astrophysics Data System (ADS)

    Colò, G.; Bortignon, P. F.; Bocchi, G.

    2017-03-01

    In this work, we introduce a new approach which is meant to be a first step towards complete self-consistent low-lying spectroscopy of odd nuclei. So far, we essentially limit ourselves to the description of a double-magic core plus an extra nucleon. The model does not contain any free adjustable parameter and is instead based on a Hartree-Fock (HF) description of the particle states in the core, together with self-consistent random-phase approximation (RPA) calculations for the core excitations. We include both collective and noncollective excitations, with proper care of the corrections due to the overlap between them (i.e., due to the nonorthonormality of the basis). As a consequence, with respect to traditional particle-vibration coupling calculations in which one can only address single-nucleon states and particle-vibration multiplets, we can also describe states of shell-model types like 2 particle-1 hole. We will report results for 49Ca and 133Sb and discuss future perspectives.

  19. Deep Surveys of Obscured Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Chatzichristou, Eleni T.

    2006-08-01

    Several key goals require measuring the number of all Active Galactic Nuclei (AGN) in the Universe, and the evolution of the ratio of obscured to unobscured AGN with redshift. This reflects the structure of AGN and thus the development in the heart of all galaxies. Hard X-rays can penetrate most obscuring dust columns to reveal the AGN that remains hidden in all other wavelengths. Mid-IR surveys probe the thermal dust emission, that is, the continuum light from the central source after it is reprocessed by dust, and this emission dominates the bolometric luminosities of dusty high-redshift galaxies. Thus, combining deep mid-IR and hard X-ray surveys can provide us with accurate demographics of AGN especially at high redshifts. Multi-wavelength surveys aim to address these science goals by exploiting the unprecedented combination of great observatories such as HST, Chandra and SIRTF to survey the distant universe to the faintest flux limits across the broadest range of wavelengths. In this paper I discuss some of the results coming from multi-wavelength surveys placing particular focus on the systematic study of obscured AGN.

  20. Dilute Excited States in Light Nuclei

    NASA Astrophysics Data System (ADS)

    Demyanova, A. S.; Ogloblin, A. A.; Danilov, A. N.; Goncharov, S. A.; Belyaeva, T. L.; Trzaska, W. H.

    2015-11-01

    A review of measurements of the radii of 11B, 12C and 13C nuclei in some excited states, whose structure recently attracted a lot of attention, is presented. The differential cross-sections of the inelastic α-scattering were measured. The radii values were extracted from the date using the Modified Diffraction Model (MDM). The evidence that the famous Hoyle state (0+, 7.65 MeV) in 12C has the enhanced dimensions and is the head of a new rotational band (besides the known band based on the 12C ground state) was obtained. The radius of the second 2+ member state (E* = 9.8 or 9.6 MeV) was seen to be similar to that of the Hoyle state (~3.0 fm). A 4+ state was identified at E* = 13.75 MeV. The radii of the 8.86 MeV, 1/2- state in 13C and 8.56 MeV, 3/2- state in 11B are found to be close to that of the Hoyle state and these states can be considered as analogues of the latter. Comparison of the data with the predictions of some theoretical models, e.g., alpha condensation, has been made. The obtained results show that one may speak only about rudimentary manifestation of the condensate effects.

  1. High spins in gamma-soft nuclei

    SciTech Connect

    Leander, G.A.; Frauendorf, S.; May, F.R.

    1982-01-01

    Nuclei which are soft with respect to the ..gamma.. shape degree of freedom are expected to have many different structures coexisting in the near-yrast regime. In particular, the lowest rotational quasi-particle in a high-j shell exerts a strong polarizing effect on ..gamma... The ..gamma.. to which it drives is found to vary smoothly over a 180/sup 0/ range as the position of the Fermi level varies. This simple rule is seen to have a direct connection with the energy staggering of alternate spin states in rotational bands. A diagram is presented which provides a general theoretical reference for experimental tests of the relation between ..gamma.., spin staggering, configuration, and nucleon number. In a quasicontinuum spectrum, the coexistence of different structures are expected to make several unrelated features appear within any one slice of sum energy and multiplicity. However, it is also seen that the in-band moment of inertia may be similar for many bands of different ..gamma...

  2. Strangeness production in antiproton annihilation on nuclei

    NASA Astrophysics Data System (ADS)

    Cugnon, J.; Deneye, P.; Vandermeulen, J.

    1990-04-01

    The strangeness production in antiproton annihilation on nuclei is investigated by means of a cascade-type model, within the frame of the conventional picture of the annihilation on a single nucleon followed by subsequent rescattering proceeding in the hadronic phase. The following hadrons are introduced: N, Λ, Σ, Λ¯, π, η, ω, K, and K¯ and, as far as possible, the experimental reaction cross sections are used in our simulation. The numerical results are compared with experimental data up to 4 GeV/c. The Λ¯ yield is correctly reproduced, while the Λ and Ks yields are overestimated in the p¯Ta and p¯Ne cases. On the other hand, the rapidity and perpendicular momentum distributions are well reproduced. It is shown that total strange yield is not very much affected by the associated production taking place during the rescattering process. It is also shown that the Λ/Ks ratio is largely due to the strangeness exchange reactions induced by antikaons. In particular, values of the order of 1 to 3 are expected in the energy range investigated here, independently of the detail of the hadronic phase dynamics. Finally, it is stressed that rapidity distributions are consistent with the rescattering process. Comparison with other works and implications of our results are examined.

  3. A chiral effective lagrangian for nuclei

    NASA Astrophysics Data System (ADS)

    Furnstahl, R. J.; Serot, Brian D.; Tang, Hua-Bin

    1997-02-01

    An effective hadronic lagrangian consistent with the symmetries of quantum chromodynamics and intended for applications to finite-density systems is constructed. The degrees of freedom are (valence) nucleons, pions and the low-lying non-Goldstone bosons, which account for the intermediate-range nucleon-nucleon interactions and conveniently describe the nonvanishing expectation values of nucleon bilinears. Chiral symmetry is realized nonlinearly, with a light scalar meson included as a chiral singlet to describe the mid-range nucleon-nucleon attraction. The low-energy electromagnetic structure of the nucleon is described within the theory using vector-meson dominance, so that external form factors are not needed. The effective lagrangian is expanded in powers of the fields and their derivatives, with the terms organized using Georgi's "naive dimensional analysis". Results are presented for finite nuclei and nuclear matter at one-baryon-loop order, using the single-nucleon structure determined within the model. Parameters obtained from fits to nuclear properties show that naive dimensional analysis is a useful principle and that a truncation of the effective lagrangian at the first few powers of the fields and their derivatives is justified.

  4. {delta}-mediated pion production in nuclei

    SciTech Connect

    Praet, C.; Lalakulich, O.; Jachowicz, N.; Ryckebusch, J.

    2009-04-15

    We present a fully relativistic formalism for describing neutrino-induced {delta}-mediated single-pion production in nuclei. We assess the ambiguities stemming from the {delta} interactions and quantify the uncertainties in the axial form-factor parameters by comparing with the available bubble-chamber neutrino-scattering data. To include nuclear effects, we turn to a relativistic plane-wave impulse approximation (RPWIA) using realistic bound-state wave functions derived in the Hartree approximation to the {sigma}-{omega} Walecka model. For neutrino energies larger than 1 GeV, we show that a relativistic Fermi-gas model with appropriate binding-energy correction produces results that are comparable to the RPWIA that naturally includes Fermi motion, nuclear-binding effects, and the Pauli exclusion principle. Including {delta} medium modifications roughly halves the RPWIA cross section. Calculations for primary (prior to undergoing final-state interactions) pion production are presented for both electron- and neutrino-induced processes, and a comparison with electron-scattering data and other theoretical approaches is included. We infer that the total {delta}-production strength is underestimated by about 20 to 25%, a fraction that is due to the pionless decay modes of the {delta} in a medium. The model presented in this work can be naturally extended to include the effect of final-state interactions in a relativistic and quantum-mechanical way.

  5. Fueling active galactic nuclei by magnetic braking

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.; Meiksin, Avery

    1990-01-01

    Recent detections of massive concentrations of molecular gas near the centers of galaxies hosting active nuclei suggest that these concentrations may be the source of accretion fuel for the nucleus. However, for that to be true, an angular momentum barrier must be overcome before the material in such a cloud can reach the nucleus. It is suggested that magnetic braking of the cloud may remove sufficient angular momentum to permit its material to draw considerably closer to the central object. The mechanism is particularly effective in the limit that the gas becomes self-gravitating because removal of a fraction of the initial angular momentum can lead to dynamical instability and collapse. Any small misalignment between the initial rotation axis of the cloud and the rotation axis of the galaxy can be substantially amplified as a result of the braking. It is argued that mass accretion onto the central object may occur in episodes, in some cases with a constant mass accretion rate during each episode.

  6. Pairing and specific heat in hot nuclei

    NASA Astrophysics Data System (ADS)

    Gambacurta, Danilo; Lacroix, Denis; Sandulescu, N.

    2013-09-01

    The thermodynamics of pairing phase-transition in nuclei is studied in the canonical ensemble and treating the pairing correlations in a finite-temperature variation after projection BCS approach (FT-VAP). Due to the restoration of particle number conservation, the pairing gap and the specific heat calculated in the FT-VAP approach vary smoothly with the temperature, indicating a gradual transition from the superfluid to the normal phase, as expected in finite systems. We have checked that the predictions of the FT-VAP approach are very accurate when compared to the results obtained by an exact diagonalization of the pairing Hamiltonian. The influence of pairing correlations on specific heat is analyzed for the isotopes 161,162Dy and 171,172Yb. It is shown that the FT-VAP approach, applied with a level density provided by mean field calculations and supplemented, at high energies, by the level density of the back-shifted Fermi gas model, can approximate reasonably well the main properties of specific heat extracted from experimental data. However, the detailed shape of the calculated specific heat is rather sensitive to the assumption made for the mean field.

  7. Metal-poor Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bicalho, I. C.; Telles, E.

    2014-10-01

    Active galaxies are considered to be metal-rich, with metallicity ranging from solar to slightly supersolar. This is due to the fact that the active galaxy nuclei are usually found in supermassive galaxies. We aim to test this statement by obtaining near infrared spectra of peculiar dwarf galaxies to see if they host an AGN. We present the results based on analysis of data from Gemini Near Infrared Integral Field Spectrograph (NIFS) of the metal-poor HII galaxy SDSS J1047+0739 (12 + log O/H ˜ 7.85 ± 0.02). The spectrum of this galaxy shows strong permitted emission lines with extended wings, which is atypical for HII regions. We use unconventional methods such as PCA tomography due to the benefits that it provides to data cube analysis. We are studying the kinematics of the nuclear region and the regions of star formation surrounding it, mostly through the Paschen-α and He lines. We find that the broad line emission comes only from the unresolved central region. The results of this analysis agree well with the existence of an AGN in this metal-poor galaxy.

  8. Warped circumbinary disks in active galactic nuclei

    SciTech Connect

    Hayasaki, Kimitake; Sohn, Bong Won; Jung, Taehyun; Zhao, Guangyao; Okazaki, Atsuo T.; Naito, Tsuguya

    2014-07-20

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10{sup –2} pc to 10{sup –4} pc for 10{sup 7} M{sub ☉} black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  9. Cloud Condensation Nuclei in Fire-3

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The centerpiece of this research was the cloud condensation nuclei (CCN) measurements of the Desert Research Institute (DRI) CCN spectrometers on board the NCAR C-130 aircraft during the Arctic Cloud Experiment (ACE) in May, 1998. These instruments operated successfully throughout all eight 10-hour research flights based in Fairbanks and the two ferry flights between Colorado and Fairbanks. Within a few months of completion of ACE the CCN data was edited and put into the archives. A paper was completed and published on the CCN climatology during the previous two FIRE field projects-FIRE 1 based in San Diego in June and July, 1987 and ASTEX based in the Azores Islands in June, 1992. This showed distinct contrasts in concentrations and spectra between continental and maritime CCN concentrations, which depended on air mass trajectories. Pollution episodes from Europe had distinct influences on particle concentrations at low altitudes especially within the boundary layer. At higher altitudes concentrations were similar in the two air mass regimes. Cloudier atmospheres showed lower concentrations especially below the clouds, which were a result mostly of coalescence scavenging.

  10. Parameterizing cloud condensation nuclei concentrations during HOPE

    NASA Astrophysics Data System (ADS)

    Hande, Luke B.; Engler, Christa; Hoose, Corinna; Tegen, Ina

    2016-09-01

    An aerosol model was used to simulate the generation and transport of aerosols over Germany during the HD(CP)2 Observational Prototype Experiment (HOPE) field campaign of 2013. The aerosol number concentrations and size distributions were evaluated against observations, which shows satisfactory agreement in the magnitude and temporal variability of the main aerosol contributors to cloud condensation nuclei (CCN) concentrations. From the modelled aerosol number concentrations, number concentrations of CCN were calculated as a function of vertical velocity using a comprehensive aerosol activation scheme which takes into account the influence of aerosol chemical and physical properties on CCN formation. There is a large amount of spatial variability in aerosol concentrations; however the resulting CCN concentrations vary significantly less over the domain. Temporal variability is large in both aerosols and CCN. A parameterization of the CCN number concentrations is developed for use in models. The technique involves defining a number of best fit functions to capture the dependence of CCN on vertical velocity at different pressure levels. In this way, aerosol chemical and physical properties as well as thermodynamic conditions are taken into account in the new CCN parameterization. A comparison between the parameterization and the CCN estimates from the model data shows excellent agreement. This parameterization may be used in other regions and time periods with a similar aerosol load; furthermore, the technique demonstrated here may be employed in regions dominated by different aerosol species.

  11. Characterization of brain cell nuclei with decondensed chromatin.

    PubMed

    Yu, Ping; McKinney, Elizabeth C; Kandasamy, Muthugapatti M; Albert, Alexandria L; Meagher, Richard B

    2015-07-01

    Although multipotent cell types have enlarged nuclei with decondensed chromatin, this property has not been exploited to enhance the characterization of neural progenitor cell (NPC) populations in the brain. We found that mouse brain cell nuclei that expressed exceptionally high levels of the pan neuronal marker NeuN/FOX3 (NeuN-High) had decondensed chromatin relative to most NeuN-Low or NeuN-Neg (negative) nuclei. Purified NeuN-High nuclei expressed significantly higher levels of transcripts encoding markers of neurogenesis, neuroplasticity, and learning and memory (ARC, BDNF, ERG1, HOMER1, NFL/NEF1, SYT1), subunits of chromatin modifying machinery (SIRT1, HDAC1, HDAC2, HDAC11, KAT2B, KAT3A, KAT3B, KAT5, DMNT1, DNMT3A, Gadd45a, Gadd45b) and markers of NPC and cell cycle activity (BRN2, FOXG1, KLF4, c-MYC, OCT4, PCNA, SHH, SOX2) relative to neuronal NeuN-Low or to mostly non-neuronal NeuN-Neg nuclei. NeuN-High nuclei expressed higher levels of HDAC1, 2, 4, and 5 proteins. The cortex, hippocampus, hypothalamus, thalamus, and nucleus accumbens contained high percentages of large decondensed NeuN-High nuclei, while the cerebellum, and pons contained very few. NeuN-High nuclei have the properties consistent with their being derived from extremely active neurons with elevated rates of chromatin modification and/or NPC-like cells with multilineage developmental potential. The further analysis of decondensed neural cell nuclei should provide novel insights into neurobiology and neurodegenerative disease.

  12. Collective and non-collective structures in nuclei of mass region A ≈ 125

    SciTech Connect

    Singh, A. K.; Collaboration: INGA Collaboration; Gammasphere Collaboration

    2014-08-14

    Generation of angular momentum in nuclei is a key question in nuclear structure studies. In single particle model, it is due to alignment of spin of individual nucleon available in the valence space, whereas coherent motion of nucleons are assumed in the collective model. The nuclei near the closed shell at Z = 50 with mass number A ≈ 120-125 represent ideal cases to explore the interplay between these competing mechanisms and the transition from non-collective to collective behavior or vice versa. Recent spectroscopic studies of nuclei in this region reveal several non-collective maximally aligned states representing the first kind of excitation mechanism, where 8-12 particles above the {sup 114}Sn align their spins to generate these states. Deformed rotational bands feeding the non-collective states in the spin range I=20-25 and excitation energies around 10 MeV have also been observed. Structure of the collective and non-collective states are discussed in the framework of Cranked-Nilsson-Strutinsky model.

  13. The influence of s states near threshold on the structure of light nuclei

    NASA Astrophysics Data System (ADS)

    Hoffman, Calem

    2015-10-01

    A recent work identified the role of neutron s states, and their proximity to the neutron separation threshold, on the ordering of the 1s1 / 2 and 0d5 / 2 single-particle levels in light nuclei. A simple Woods-Saxon potential was used to reproduce the systematic data available for these two levels with great success by accounting for the s state binding energy. This talk will explore other noticeable trends in light nuclei involving neutron s states and utilizing simple potential models determine the role binding energy plays. The trends and calculations will aim to provide descriptions of data and predictions of yet to be found two-particle two-hole excited states in N = 8 and 10 nuclei ranging from Z = 4-9, as well as the energies of mirror states in neutron deficient Al and Na isotopes. Results will be compared with state-of-the-art calculations. Possible future measurements capable of probing these predictions will be discussed as well. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract Number DE-AC02-06CH11357.

  14. Collective and non-collective structures in nuclei of mass region A ≈ 125

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; INGA Collaboration, Gammasphere Collaboration

    2014-08-01

    Generation of angular momentum in nuclei is a key question in nuclear structure studies. In single particle model, it is due to alignment of spin of individual nucleon available in the valence space, whereas coherent motion of nucleons are assumed in the collective model. The nuclei near the closed shell at Z = 50 with mass number A ≈ 120-125 represent ideal cases to explore the interplay between these competing mechanisms and the transition from non-collective to collective behavior or vice versa. Recent spectroscopic studies of nuclei in this region reveal several non-collective maximally aligned states representing the first kind of excitation mechanism, where 8-12 particles above the 114Sn align their spins to generate these states. Deformed rotational bands feeding the non-collective states in the spin range I=20-25 and excitation energies around 10 MeV have also been observed. Structure of the collective and non-collective states are discussed in the framework of Cranked-Nilsson-Strutinsky model.

  15. Research on alteration of neurons in vagal nuclei in medulla oblongata in newborns with respiratory distress.

    PubMed

    Islami, Hilmi; Shabani, Ragip; Shabani, Driton; Dacaj, Ramadan; Manxhuka, Suzana; Azemi, Mehmedali; Krasniqi, Shaip; Kurtishi, Ilir

    2011-01-01

    Neuronal and axonal degenerative changes in motor vagal neurons (DMNV) and sensory vagal neurons (nTS) in the medulla oblongata in newborns were studied. Material was taken from the autopsies of newborns, live and dead newborns, in different gestational weeks (aborted, immature, premature and mature). 46 cases were studied. Material for research was taken from the medulla oblongata and lung tissue. Serial horizontal incisions were made in the medulla oblongata (± 4 mm), commencing from the obex, where the DMNV and nTS vagal nuclei were explored. Fixed cuttings in buffered formalin (10%) were used for histochemical staining. Serial cuttings were done with a microtome (7 µm). Pulmonary infections, being significant (p < 0.05), have an important place when studying respiratory distress (RD) in newborns. Morphological changes of nerve cells in DMNV and nTS nuclei in the medulla oblongata in newborns in different gestational weeks are more emphasized in matures in comparison to aborted and immature (p < 0.05). Depending on the lifetime of dead newborns, neuronal morphological changes in vagus nerve nuclei are significant (p < 0.05). Therefore, it can be concluded that pulmonary infections are often caused due to dramatic respiratory distress in newborns, while hypoxaemic changes in the population of vagus nerve neurons in respiratory distress are more emphasized in matures.

  16. A generic nuclei detection method for histopathological breast images

    NASA Astrophysics Data System (ADS)

    Kost, Henning; Homeyer, André; Bult, Peter; Balkenhol, Maschenka C. A.; van der Laak, Jeroen A. W. M.; Hahn, Horst K.

    2016-03-01

    The detection of cell nuclei plays a key role in various histopathological image analysis problems. Considering the high variability of its applications, we propose a novel generic and trainable detection approach. Adaption to specific nuclei detection tasks is done by providing training samples. A trainable deconvolution and classification algorithm is used to generate a probability map indicating the presence of a nucleus. The map is processed by an extended watershed segmentation step to identify the nuclei positions. We have tested our method on data sets with different stains and target nuclear types. We obtained F1-measures between 0.83 and 0.93.

  17. The intergalactic propagation of ultrahigh energy cosmic ray nuclei

    SciTech Connect

    Hooper, Dan; Sarkar, Subir; Taylor, Andrew M.; /Oxford U.

    2006-08-01

    We investigate the propagation of ultra-high energy cosmic ray nuclei (A = 1-56) from cosmologically distant sources through the cosmic radiation backgrounds. Various models for the injected composition and spectrum and of the cosmic infrared background are studied using updated photodisintegration cross-sections. The observational data on the spectrum and the composition of ultra-high energy cosmic rays are jointly consistent with a model where all of the injected primary cosmic rays are iron nuclei (or a mixture of heavy and light nuclei).

  18. New measurements of the EMC effect in light nuclei

    SciTech Connect

    A. Daniel

    2009-12-01

    Modifications of structure functions in nuclei (EMC effect) suggest that the nuclear quark distribution function is not just the incoherent sum of the proton and neutron distributions, and made clear the importance of nuclear effects even in high energy measurements. Jefferson Lab experiment E03-103 made precise measurements of the EMC effect in few-body and heavy nuclei with emphasis on the large x region. Data from the light nuclei suggests that the nuclear dependence of the high x quark distribution may depend on the nucleon's local environment, rather than being a purely bulk effect.

  19. Relativistic mean field calculations in neutron-rich nuclei

    SciTech Connect

    Gangopadhyay, G.; Bhattacharya, Madhubrata; Roy, Subinit

    2014-08-14

    Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.

  20. Relativistic Brueckner—Hartree—Fock Theory for Finite Nuclei

    NASA Astrophysics Data System (ADS)

    Shen, Shi-Hang; Hu, Jin-Niu; Liang, Hao-Zhao; Meng, Jie; Ring, Peter; Zhang, Shuang-Quan

    2016-10-01

    Starting with a bare nucleon-nucleon interaction, for the first time the full relativistic Brueckner-Hartree-Fock equations are solved for finite nuclei in a Dirac-Woods-Saxon basis. No free parameters are introduced to calculate the ground-state properties of finite nuclei. The nucleus $^{16}$O is investigated as an example. The resulting ground-state properties, such as binding energy and charge radius, are considerably improved as compared with the non-relativistic Brueckner-Hartree-Fock results and much closer to the experimental data. This opens the door for \\emph{ab initio} covariant investigations of heavy nuclei.