A fault tolerant spacecraft supercomputer to enable a new class of scientific discovery
NASA Technical Reports Server (NTRS)
Katz, D. S.; McVittie, T. I.; Silliman, A. G., Jr.
2000-01-01
The goal of the Remote Exploration and Experimentation (REE) Project is to move supercomputeing into space in a coste effective manner and to allow the use of inexpensive, state of the art, commercial-off-the-shelf components and subsystems in these space-based supercomputers.
The role of graphics super-workstations in a supercomputing environment
NASA Technical Reports Server (NTRS)
Levin, E.
1989-01-01
A new class of very powerful workstations has recently become available which integrate near supercomputer computational performance with very powerful and high quality graphics capability. These graphics super-workstations are expected to play an increasingly important role in providing an enhanced environment for supercomputer users. Their potential uses include: off-loading the supercomputer (by serving as stand-alone processors, by post-processing of the output of supercomputer calculations, and by distributed or shared processing), scientific visualization (understanding of results, communication of results), and by real time interaction with the supercomputer (to steer an iterative computation, to abort a bad run, or to explore and develop new algorithms).
Comprehensive efficiency analysis of supercomputer resource usage based on system monitoring data
NASA Astrophysics Data System (ADS)
Mamaeva, A. A.; Shaykhislamov, D. I.; Voevodin, Vad V.; Zhumatiy, S. A.
2018-03-01
One of the main problems of modern supercomputers is the low efficiency of their usage, which leads to the significant idle time of computational resources, and, in turn, to the decrease in speed of scientific research. This paper presents three approaches to study the efficiency of supercomputer resource usage based on monitoring data analysis. The first approach performs an analysis of computing resource utilization statistics, which allows to identify different typical classes of programs, to explore the structure of the supercomputer job flow and to track overall trends in the supercomputer behavior. The second approach is aimed specifically at analyzing off-the-shelf software packages and libraries installed on the supercomputer, since efficiency of their usage is becoming an increasingly important factor for the efficient functioning of the entire supercomputer. Within the third approach, abnormal jobs – jobs with abnormally inefficient behavior that differs significantly from the standard behavior of the overall supercomputer job flow – are being detected. For each approach, the results obtained in practice in the Supercomputer Center of Moscow State University are demonstrated.
Integration of Panda Workload Management System with supercomputers
NASA Astrophysics Data System (ADS)
De, K.; Jha, S.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Nilsson, P.; Novikov, A.; Oleynik, D.; Panitkin, S.; Poyda, A.; Read, K. F.; Ryabinkin, E.; Teslyuk, A.; Velikhov, V.; Wells, J. C.; Wenaus, T.
2016-09-01
The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 140 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250000 cores with a peak performance of 0.3+ petaFLOPS, next LHC data taking runs will require more resources than Grid computing can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, Europe and Russia (in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF), Supercomputer at the National Research Center "Kurchatov Institute", IT4 in Ostrava, and others). The current approach utilizes a modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run singlethreaded workloads in parallel on Titan's multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms. We will present our current accomplishments in running PanDA WMS at supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facility's infrastructure for High Energy and Nuclear Physics, as well as other data-intensive science applications, such as bioinformatics and astro-particle physics.
Tracing Scientific Facilities through the Research Literature Using Persistent Identifiers
NASA Astrophysics Data System (ADS)
Mayernik, M. S.; Maull, K. E.
2016-12-01
Tracing persistent identifiers to their source publications is an easy task when authors use them, since it is a simple matter of matching the persistent identifier to the specific text string of the identifier. However, trying to understand if a publication uses the resource behind an identifier when such identifier is not referenced explicitly is a harder task. In this research, we explore the effectiveness of alternative strategies of associating publications with uses of the resource referenced by an identifier when it may not be explicit. This project is explored within the context of the NCAR supercomputer, where we are broadly interesting in the science that can be traced to the usage of the NCAR supercomputing facility, by way of the peer-reviewed research publications that utilize and reference it. In this project we explore several ways of drawing linkages between publications and the NCAR supercomputing resources. Identifying and compiling peer-reviewed publications related to NCAR supercomputer usage are explored via three sources: 1) User-supplied publications gathered through a community survey, 2) publications that were identified via manual searching of the Google scholar search index, and 3) publications associated with National Science Foundation (NSF) grants extracted from a public NSF database. These three sources represent three styles of collecting information about publications that likely imply usage of the NCAR supercomputing facilities. Each source has strengths and weaknesses, thus our discussion will explore how our publication identification and analysis methods vary in terms of accuracy, reliability, and effort. We will also discuss strategies for enabling more efficient tracing of research impacts of supercomputing facilities going forward through the assignment of a persistent web identifier to the NCAR supercomputer. While this solution has potential to greatly enhance our ability to trace the use of the facility through publications, authors must cite the facility consistently. It is therefore necessary to provide recommendations for citation and attribution behavior, and we will conclude our discussion with how such recommendations have improved tracing the supercomputer facility allowing for more consistent and widespread measurement of its impact.
PerSEUS: Ultra-Low-Power High Performance Computing for Plasma Simulations
NASA Astrophysics Data System (ADS)
Doxas, I.; Andreou, A.; Lyon, J.; Angelopoulos, V.; Lu, S.; Pritchett, P. L.
2017-12-01
Peta-op SupErcomputing Unconventional System (PerSEUS) aims to explore the use for High Performance Scientific Computing (HPC) of ultra-low-power mixed signal unconventional computational elements developed by Johns Hopkins University (JHU), and demonstrate that capability on both fluid and particle Plasma codes. We will describe the JHU Mixed-signal Unconventional Supercomputing Elements (MUSE), and report initial results for the Lyon-Fedder-Mobarry (LFM) global magnetospheric MHD code, and a UCLA general purpose relativistic Particle-In-Cell (PIC) code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De, K; Jha, S; Klimentov, A
2016-01-01
The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Managementmore » System for managing the workflow for all data processing on over 150 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250,000 cores with a peak performance of 0.3 petaFLOPS, LHC data taking runs require more resources than Grid computing can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, Europe and Russia (in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF), MIRA supercomputer at Argonne Leadership Computing Facilities (ALCF), Supercomputer at the National Research Center Kurchatov Institute , IT4 in Ostrava and others). Current approach utilizes modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on LCFs multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms for ALICE and ATLAS experiments and it is in full production for the ATLAS experiment since September 2015. We will present our current accomplishments with running PanDA WMS at supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facilities infrastructure for High Energy and Nuclear Physics as well as other data-intensive science applications, such as bioinformatics and astro-particle physics.« less
NASA Astrophysics Data System (ADS)
Klimentov, A.; De, K.; Jha, S.; Maeno, T.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Wells, J.; Wenaus, T.
2016-10-01
The.LHC, operating at CERN, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 150 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250,000 cores with a peak performance of 0.3 petaFLOPS, LHC data taking runs require more resources than grid can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility. Current approach utilizes modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on LCFs multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms for ALICE and ATLAS experiments and it is in full pro duction for the ATLAS since September 2015. We will present our current accomplishments with running PanDA at supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facilities infrastructure for High Energy and Nuclear Physics as well as other data-intensive science applications, such as bioinformatics and astro-particle physics.
Role of High-End Computing in Meeting NASA's Science and Engineering Challenges
NASA Technical Reports Server (NTRS)
Biswas, Rupak
2006-01-01
High-End Computing (HEC) has always played a major role in meeting the modeling and simulation needs of various NASA missions. With NASA's newest 62 teraflops Columbia supercomputer, HEC is having an even greater impact within the Agency and beyond. Significant cutting-edge science and engineering simulations in the areas of space exploration, Shuttle operations, Earth sciences, and aeronautics research, are already occurring on Columbia, demonstrating its ability to accelerate NASA s exploration vision. The talk will describe how the integrated supercomputing production environment is being used to reduce design cycle time, accelerate scientific discovery, conduct parametric analysis of multiple scenarios, and enhance safety during the life cycle of NASA missions.
INTEGRATION OF PANDA WORKLOAD MANAGEMENT SYSTEM WITH SUPERCOMPUTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
De, K; Jha, S; Maeno, T
Abstract The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the funda- mental nature of matter and the basic forces that shape our universe, and were recently credited for the dis- covery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Datamore » Analysis) Workload Management System for managing the workflow for all data processing on over 140 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data cen- ters are physically scattered all over the world. While PanDA currently uses more than 250000 cores with a peak performance of 0.3+ petaFLOPS, next LHC data taking runs will require more resources than Grid computing can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, Europe and Russia (in particular with Titan supercomputer at Oak Ridge Leadership Com- puting Facility (OLCF), Supercomputer at the National Research Center Kurchatov Institute , IT4 in Ostrava, and others). The current approach utilizes a modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single- threaded workloads in parallel on Titan s multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms. We will present our current accom- plishments in running PanDA WMS at supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facility s infrastructure for High Energy and Nuclear Physics, as well as other data-intensive science applications, such as bioinformatics and astro-particle physics.« less
Scientific Visualization in High Speed Network Environments
NASA Technical Reports Server (NTRS)
Vaziri, Arsi; Kutler, Paul (Technical Monitor)
1997-01-01
In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.
Role of High-End Computing in Meeting NASA's Science and Engineering Challenges
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Tu, Eugene L.; Van Dalsem, William R.
2006-01-01
Two years ago, NASA was on the verge of dramatically increasing its HEC capability and capacity. With the 10,240-processor supercomputer, Columbia, now in production for 18 months, HEC has an even greater impact within the Agency and extending to partner institutions. Advanced science and engineering simulations in space exploration, shuttle operations, Earth sciences, and fundamental aeronautics research are occurring on Columbia, demonstrating its ability to accelerate NASA s exploration vision. This talk describes how the integrated production environment fostered at the NASA Advanced Supercomputing (NAS) facility at Ames Research Center is accelerating scientific discovery, achieving parametric analyses of multiple scenarios, and enhancing safety for NASA missions. We focus on Columbia s impact on two key engineering and science disciplines: Aerospace, and Climate. We also discuss future mission challenges and plans for NASA s next-generation HEC environment.
2017-12-08
A NASA Center for Climate Simulation supercomputer model that shows the flow of #Blizzard2016 thru Sunday. Learn more here: go.nasa.gov/1WBm547 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Will Moores law be sufficient?
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeBenedictis, Erik P.
2004-07-01
It seems well understood that supercomputer simulation is an enabler for scientific discoveries, weapons, and other activities of value to society. It also seems widely believed that Moore's Law will make progressively more powerful supercomputers over time and thus enable more of these contributions. This paper seeks to add detail to these arguments, revealing them to be generally correct but not a smooth and effortless progression. This paper will review some key problems that can be solved with supercomputer simulation, showing that more powerful supercomputers will be useful up to a very high yet finite limit of around 1021 FLOPSmore » (1 Zettaflops) . The review will also show the basic nature of these extreme problems. This paper will review work by others showing that the theoretical maximum supercomputer power is very high indeed, but will explain how a straightforward extrapolation of Moore's Law will lead to technological maturity in a few decades. The power of a supercomputer at the maturity of Moore's Law will be very high by today's standards at 1016-1019 FLOPS (100 Petaflops to 10 Exaflops), depending on architecture, but distinctly below the level required for the most ambitious applications. Having established that Moore's Law will not be that last word in supercomputing, this paper will explore the nearer term issue of what a supercomputer will look like at maturity of Moore's Law. Our approach will quantify the maximum performance as permitted by the laws of physics for extension of current technology and then find a design that approaches this limit closely. We study a 'multi-architecture' for supercomputers that combines a microprocessor with other 'advanced' concepts and find it can reach the limits as well. This approach should be quite viable in the future because the microprocessor would provide compatibility with existing codes and programming styles while the 'advanced' features would provide a boost to the limits of performance.« less
Introducing Mira, Argonne's Next-Generation Supercomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-03-19
Mira, the new petascale IBM Blue Gene/Q system installed at the ALCF, will usher in a new era of scientific supercomputing. An engineering marvel, the 10-petaflops machine is capable of carrying out 10 quadrillion calculations per second.
NAS technical summaries: Numerical aerodynamic simulation program, March 1991 - February 1992
NASA Technical Reports Server (NTRS)
1992-01-01
NASA created the Numerical Aerodynamic Simulation (NAS) Program in 1987 to focus resources on solving critical problems in aeroscience and related disciplines by utilizing the power of the most advanced supercomputers available. The NAS Program provides scientists with the necessary computing power to solve today's most demanding computational fluid dynamics problems and serves as a pathfinder in integrating leading-edge supercomputing technologies, thus benefiting other supercomputer centers in Government and industry. This report contains selected scientific results from the 1991-92 NAS Operational Year, March 4, 1991 to March 3, 1992, which is the fifth year of operation. During this year, the scientific community was given access to a Cray-2 and a Cray Y-MP. The Cray-2, the first generation supercomputer, has four processors, 256 megawords of central memory, and a total sustained speed of 250 million floating point operations per second. The Cray Y-MP, the second generation supercomputer, has eight processors and a total sustained speed of one billion floating point operations per second. Additional memory was installed this year, doubling capacity from 128 to 256 megawords of solid-state storage-device memory. Because of its higher performance, the Cray Y-MP delivered approximately 77 percent of the total number of supercomputer hours used during this year.
Visualization at Supercomputing Centers: The Tale of Little Big Iron and the Three Skinny Guys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, E. Wes; van Rosendale, John; Southard, Dale
2010-12-01
Supercomputing Centers (SC's) are unique resources that aim to enable scientific knowledge discovery through the use of large computational resources, the Big Iron. Design, acquisition, installation, and management of the Big Iron are activities that are carefully planned and monitored. Since these Big Iron systems produce a tsunami of data, it is natural to co-locate visualization and analysis infrastructure as part of the same facility. This infrastructure consists of hardware (Little Iron) and staff (Skinny Guys). Our collective experience suggests that design, acquisition, installation, and management of the Little Iron and Skinny Guys does not receive the same level ofmore » treatment as that of the Big Iron. The main focus of this article is to explore different aspects of planning, designing, fielding, and maintaining the visualization and analysis infrastructure at supercomputing centers. Some of the questions we explore in this article include:"How should the Little Iron be sized to adequately support visualization and analysis of data coming off the Big Iron?" What sort of capabilities does it need to have?" Related questions concern the size of visualization support staff:"How big should a visualization program be (number of persons) and what should the staff do?" and"How much of the visualization should be provided as a support service, and how much should applications scientists be expected to do on their own?"« less
Supercomputer Issues from a University Perspective.
ERIC Educational Resources Information Center
Beering, Steven C.
1984-01-01
Discusses issues related to the access of and training of university researchers in using supercomputers, considering National Science Foundation's (NSF) role in this area, microcomputers on campuses, and the limited use of existing telecommunication networks. Includes examples of potential scientific projects (by subject area) utilizing…
NASA Technical Reports Server (NTRS)
Schreiber, Robert; Simon, Horst D.
1992-01-01
We are surveying current projects in the area of parallel supercomputers. The machines considered here will become commercially available in the 1990 - 1992 time frame. All are suitable for exploring the critical issues in applying parallel processors to large scale scientific computations, in particular CFD calculations. This chapter presents an overview of the surveyed machines, and a detailed analysis of the various architectural and technology approaches taken. Particular emphasis is placed on the feasibility of a Teraflops capability following the paths proposed by various developers.
Mira: Argonne's 10-petaflops supercomputer
Papka, Michael; Coghlan, Susan; Isaacs, Eric; Peters, Mark; Messina, Paul
2018-02-13
Mira, Argonne's petascale IBM Blue Gene/Q system, ushers in a new era of scientific supercomputing at the Argonne Leadership Computing Facility. An engineering marvel, the 10-petaflops supercomputer is capable of carrying out 10 quadrillion calculations per second. As a machine for open science, any researcher with a question that requires large-scale computing resources can submit a proposal for time on Mira, typically in allocations of millions of core-hours, to run programs for their experiments. This adds up to billions of hours of computing time per year.
Mira: Argonne's 10-petaflops supercomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papka, Michael; Coghlan, Susan; Isaacs, Eric
2013-07-03
Mira, Argonne's petascale IBM Blue Gene/Q system, ushers in a new era of scientific supercomputing at the Argonne Leadership Computing Facility. An engineering marvel, the 10-petaflops supercomputer is capable of carrying out 10 quadrillion calculations per second. As a machine for open science, any researcher with a question that requires large-scale computing resources can submit a proposal for time on Mira, typically in allocations of millions of core-hours, to run programs for their experiments. This adds up to billions of hours of computing time per year.
Basu, Protonu; Williams, Samuel; Van Straalen, Brian; ...
2017-04-05
GPUs, with their high bandwidths and computational capabilities are an increasingly popular target for scientific computing. Unfortunately, to date, harnessing the power of the GPU has required use of a GPU-specific programming model like CUDA, OpenCL, or OpenACC. Thus, in order to deliver portability across CPU-based and GPU-accelerated supercomputers, programmers are forced to write and maintain two versions of their applications or frameworks. In this paper, we explore the use of a compiler-based autotuning framework based on CUDA-CHiLL to deliver not only portability, but also performance portability across CPU- and GPU-accelerated platforms for the geometric multigrid linear solvers found inmore » many scientific applications. We also show that with autotuning we can attain near Roofline (a performance bound for a computation and target architecture) performance across the key operations in the miniGMG benchmark for both CPU- and GPU-based architectures as well as for a multiple stencil discretizations and smoothers. We show that our technology is readily interoperable with MPI resulting in performance at scale equal to that obtained via hand-optimized MPI+CUDA implementation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, Protonu; Williams, Samuel; Van Straalen, Brian
GPUs, with their high bandwidths and computational capabilities are an increasingly popular target for scientific computing. Unfortunately, to date, harnessing the power of the GPU has required use of a GPU-specific programming model like CUDA, OpenCL, or OpenACC. Thus, in order to deliver portability across CPU-based and GPU-accelerated supercomputers, programmers are forced to write and maintain two versions of their applications or frameworks. In this paper, we explore the use of a compiler-based autotuning framework based on CUDA-CHiLL to deliver not only portability, but also performance portability across CPU- and GPU-accelerated platforms for the geometric multigrid linear solvers found inmore » many scientific applications. We also show that with autotuning we can attain near Roofline (a performance bound for a computation and target architecture) performance across the key operations in the miniGMG benchmark for both CPU- and GPU-based architectures as well as for a multiple stencil discretizations and smoothers. We show that our technology is readily interoperable with MPI resulting in performance at scale equal to that obtained via hand-optimized MPI+CUDA implementation.« less
Virtual Environments in Scientific Visualization
NASA Technical Reports Server (NTRS)
Bryson, Steve; Lisinski, T. A. (Technical Monitor)
1994-01-01
Virtual environment technology is a new way of approaching the interface between computers and humans. Emphasizing display and user control that conforms to the user's natural ways of perceiving and thinking about space, virtual environment technologies enhance the ability to perceive and interact with computer generated graphic information. This enhancement potentially has a major effect on the field of scientific visualization. Current examples of this technology include the Virtual Windtunnel being developed at NASA Ames Research Center. Other major institutions such as the National Center for Supercomputing Applications and SRI International are also exploring this technology. This talk will be describe several implementations of virtual environments for use in scientific visualization. Examples include the visualization of unsteady fluid flows (the virtual windtunnel), the visualization of geodesics in curved spacetime, surface manipulation, and examples developed at various laboratories.
NASA Astrophysics Data System (ADS)
Schulthess, Thomas C.
2013-03-01
The continued thousand-fold improvement in sustained application performance per decade on modern supercomputers keeps opening new opportunities for scientific simulations. But supercomputers have become very complex machines, built with thousands or tens of thousands of complex nodes consisting of multiple CPU cores or, most recently, a combination of CPU and GPU processors. Efficient simulations on such high-end computing systems require tailored algorithms that optimally map numerical methods to particular architectures. These intricacies will be illustrated with simulations of strongly correlated electron systems, where the development of quantum cluster methods, Monte Carlo techniques, as well as their optimal implementation by means of algorithms with improved data locality and high arithmetic density have gone hand in hand with evolving computer architectures. The present work would not have been possible without continued access to computing resources at the National Center for Computational Science of Oak Ridge National Laboratory, which is funded by the Facilities Division of the Office of Advanced Scientific Computing Research, and the Swiss National Supercomputing Center (CSCS) that is funded by ETH Zurich.
Adventures in supercomputing: Scientific exploration in an era of change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentry, E.; Helland, B.; Summers, B.
1997-11-01
Students deserve the opportunity to explore the world of science surrounding them. Therefore it is important that scientific exploration and investigation be a part of each student`s educational career. The Department of Energy`s Adventures in Superconducting (AiS) takes students beyond mere scientific literacy to a rich embodiment of scientific exploration. AiS provides today`s science and math students with a greater opportunity to investigate science problems, propose solutions, explore different methods of solving the problem, organize their work into a technical paper, and present their results. Students learn at different rates in different ways. Science classes with students having varying learningmore » styles and levels of achievement have always been a challenge for teachers. The AiS {open_quotes}hands-on, minds-on{close_quotes} project-based method of teaching science meets the challenge of this diversity heads on! AiS uses the development of student chosen projects as the means of achieving a lifelong enthusiasm for scientific proficiency. One goal of AiS is to emulate the research that takes place in the everyday environment of scientists. Students work in teams and often collaborate with students nationwide. With the help of mentors from the academic and scientific community, students pose a problem in science, investigate possible solutions, design a mathematical and computational model for the problem, exercise the model to achieve results, and evaluate the implications of the results. The students then have the opportunity to present the project to their peers, teachers, and scientists. Using this inquiry-based technique, students learn more than science skills, they learn to reason and think -- going well beyond the National Science Education Standard. The teacher becomes a resource person actively working together with the students in their quest for scientific knowledge.« less
On the energy footprint of I/O management in Exascale HPC systems
Dorier, Matthieu; Yildiz, Orcun; Ibrahim, Shadi; ...
2016-03-21
The advent of unprecedentedly scalable yet energy hungry Exascale supercomputers poses a major challenge in sustaining a high performance-per-watt ratio. With I/O management acquiring a crucial role in supporting scientific simulations, various I/O management approaches have been proposed to achieve high performance and scalability. But, the details of how these approaches affect energy consumption have not been studied yet. Therefore, this paper aims to explore how much energy a supercomputer consumes while running scientific simulations when adopting various I/O management approaches. In particular, we closely examine three radically different I/O schemes including time partitioning, dedicated cores, and dedicated nodes. Tomore » accomplish this, we implement the three approaches within the Damaris I/O middleware and perform extensive experiments with one of the target HPC applications of the Blue Waters sustained-petaflop supercomputer project: the CM1 atmospheric model. Our experimental results obtained on the French Grid'5000 platform highlight the differences among these three approaches and illustrate in which way various configurations of the application and of the system can impact performance and energy consumption. Moreover, we propose and validate a mathematical model that estimates the energy consumption of a HPC simulation under different I/O approaches. This proposed model gives hints to pre-select the most energy-efficient I/O approach for a particular simulation on a particular HPC system and therefore provides a step towards energy-efficient HPC simulations in Exascale systems. To the best of our knowledge, our work provides the first in-depth look into the energy-performance tradeoffs of I/O management approaches.« less
NASA Technical Reports Server (NTRS)
Tennille, Geoffrey M.; Howser, Lona M.
1993-01-01
This document briefly describes the use of the CRAY supercomputers that are an integral part of the Supercomputing Network Subsystem of the Central Scientific Computing Complex at LaRC. Features of the CRAY supercomputers are covered, including: FORTRAN, C, PASCAL, architectures of the CRAY-2 and CRAY Y-MP, the CRAY UNICOS environment, batch job submittal, debugging, performance analysis, parallel processing, utilities unique to CRAY, and documentation. The document is intended for all CRAY users as a ready reference to frequently asked questions and to more detailed information contained in the vendor manuals. It is appropriate for both the novice and the experienced user.
Collaborative Supercomputing for Global Change Science
NASA Astrophysics Data System (ADS)
Nemani, R.; Votava, P.; Michaelis, A.; Melton, F.; Milesi, C.
2011-03-01
There is increasing pressure on the science community not only to understand how recent and projected changes in climate will affect Earth's global environment and the natural resources on which society depends but also to design solutions to mitigate or cope with the likely impacts. Responding to this multidimensional challenge requires new tools and research frameworks that assist scientists in collaborating to rapidly investigate complex interdisciplinary science questions of critical societal importance. One such collaborative research framework, within the NASA Earth sciences program, is the NASA Earth Exchange (NEX). NEX combines state-of-the-art supercomputing, Earth system modeling, remote sensing data from NASA and other agencies, and a scientific social networking platform to deliver a complete work environment. In this platform, users can explore and analyze large Earth science data sets, run modeling codes, collaborate on new or existing projects, and share results within or among communities (see Figure S1 in the online supplement to this Eos issue (http://www.agu.org/eos_elec)).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meneses, Esteban; Ni, Xiang; Jones, Terry R
The unprecedented computational power of cur- rent supercomputers now makes possible the exploration of complex problems in many scientific fields, from genomic analysis to computational fluid dynamics. Modern machines are powerful because they are massive: they assemble millions of cores and a huge quantity of disks, cards, routers, and other components. But it is precisely the size of these machines that glooms the future of supercomputing. A system that comprises many components has a high chance to fail, and fail often. In order to make the next generation of supercomputers usable, it is imperative to use some type of faultmore » tolerance platform to run applications on large machines. Most fault tolerance strategies can be optimized for the peculiarities of each system and boost efficacy by keeping the system productive. In this paper, we aim to understand how failure characterization can improve resilience in several layers of the software stack: applications, runtime systems, and job schedulers. We examine the Titan supercomputer, one of the fastest systems in the world. We analyze a full year of Titan in production and distill the failure patterns of the machine. By looking into Titan s log files and using the criteria of experts, we provide a detailed description of the types of failures. In addition, we inspect the job submission files and describe how the system is used. Using those two sources, we cross correlate failures in the machine to executing jobs and provide a picture of how failures affect the user experience. We believe such characterization is fundamental in developing appropriate fault tolerance solutions for Cray systems similar to Titan.« less
Japanese supercomputer technology.
Buzbee, B L; Ewald, R H; Worlton, W J
1982-12-17
Under the auspices of the Ministry for International Trade and Industry the Japanese have launched a National Superspeed Computer Project intended to produce high-performance computers for scientific computation and a Fifth-Generation Computer Project intended to incorporate and exploit concepts of artificial intelligence. If these projects are successful, which appears likely, advanced economic and military research in the United States may become dependent on access to supercomputers of foreign manufacture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, David H.
The NAS Parallel Benchmarks (NPB) are a suite of parallel computer performance benchmarks. They were originally developed at the NASA Ames Research Center in 1991 to assess high-end parallel supercomputers. Although they are no longer used as widely as they once were for comparing high-end system performance, they continue to be studied and analyzed a great deal in the high-performance computing community. The acronym 'NAS' originally stood for the Numerical Aeronautical Simulation Program at NASA Ames. The name of this organization was subsequently changed to the Numerical Aerospace Simulation Program, and more recently to the NASA Advanced Supercomputing Center, althoughmore » the acronym remains 'NAS.' The developers of the original NPB suite were David H. Bailey, Eric Barszcz, John Barton, David Browning, Russell Carter, LeoDagum, Rod Fatoohi, Samuel Fineberg, Paul Frederickson, Thomas Lasinski, Rob Schreiber, Horst Simon, V. Venkatakrishnan and Sisira Weeratunga. The original NAS Parallel Benchmarks consisted of eight individual benchmark problems, each of which focused on some aspect of scientific computing. The principal focus was in computational aerophysics, although most of these benchmarks have much broader relevance, since in a much larger sense they are typical of many real-world scientific computing applications. The NPB suite grew out of the need for a more rational procedure to select new supercomputers for acquisition by NASA. The emergence of commercially available highly parallel computer systems in the late 1980s offered an attractive alternative to parallel vector supercomputers that had been the mainstay of high-end scientific computing. However, the introduction of highly parallel systems was accompanied by a regrettable level of hype, not only on the part of the commercial vendors but even, in some cases, by scientists using the systems. As a result, it was difficult to discern whether the new systems offered any fundamental performance advantage over vector supercomputers, and, if so, which of the parallel offerings would be most useful in real-world scientific computation. In part to draw attention to some of the performance reporting abuses prevalent at the time, the present author wrote a humorous essay 'Twelve Ways to Fool the Masses,' which described in a light-hearted way a number of the questionable ways in which both vendor marketing people and scientists were inflating and distorting their performance results. All of this underscored the need for an objective and scientifically defensible measure to compare performance on these systems.« less
Object-Oriented Scientific Programming with Fortran 90
NASA Technical Reports Server (NTRS)
Norton, C.
1998-01-01
Fortran 90 is a modern language that introduces many important new features beneficial for scientific programming. We discuss our experiences in plasma particle simulation and unstructured adaptive mesh refinement on supercomputers, illustrating the features of Fortran 90 that support the object-oriented methodology.
Introducing Argonne’s Theta Supercomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Theta, the Argonne Leadership Computing Facility’s (ALCF) new Intel-Cray supercomputer, is officially open to the research community. Theta’s massively parallel, many-core architecture puts the ALCF on the path to Aurora, the facility’s future Intel-Cray system. Capable of nearly 10 quadrillion calculations per second, Theta enables researchers to break new ground in scientific investigations that range from modeling the inner workings of the brain to developing new materials for renewable energy applications.
NAS Technical Summaries, March 1993 - February 1994
NASA Technical Reports Server (NTRS)
1995-01-01
NASA created the Numerical Aerodynamic Simulation (NAS) Program in 1987 to focus resources on solving critical problems in aeroscience and related disciplines by utilizing the power of the most advanced supercomputers available. The NAS Program provides scientists with the necessary computing power to solve today's most demanding computational fluid dynamics problems and serves as a pathfinder in integrating leading-edge supercomputing technologies, thus benefitting other supercomputer centers in government and industry. The 1993-94 operational year concluded with 448 high-speed processor projects and 95 parallel projects representing NASA, the Department of Defense, other government agencies, private industry, and universities. This document provides a glimpse at some of the significant scientific results for the year.
NAS technical summaries. Numerical aerodynamic simulation program, March 1992 - February 1993
NASA Technical Reports Server (NTRS)
1994-01-01
NASA created the Numerical Aerodynamic Simulation (NAS) Program in 1987 to focus resources on solving critical problems in aeroscience and related disciplines by utilizing the power of the most advanced supercomputers available. The NAS Program provides scientists with the necessary computing power to solve today's most demanding computational fluid dynamics problems and serves as a pathfinder in integrating leading-edge supercomputing technologies, thus benefitting other supercomputer centers in government and industry. The 1992-93 operational year concluded with 399 high-speed processor projects and 91 parallel projects representing NASA, the Department of Defense, other government agencies, private industry, and universities. This document provides a glimpse at some of the significant scientific results for the year.
Large-Scale NASA Science Applications on the Columbia Supercluster
NASA Technical Reports Server (NTRS)
Brooks, Walter
2005-01-01
Columbia, NASA's newest 61 teraflops supercomputer that became operational late last year, is a highly integrated Altix cluster of 10,240 processors, and was named to honor the crew of the Space Shuttle lost in early 2003. Constructed in just four months, Columbia increased NASA's computing capability ten-fold, and revitalized the Agency's high-end computing efforts. Significant cutting-edge science and engineering simulations in the areas of space and Earth sciences, as well as aeronautics and space operations, are already occurring on this largest operational Linux supercomputer, demonstrating its capacity and capability to accelerate NASA's space exploration vision. The presentation will describe how an integrated environment consisting not only of next-generation systems, but also modeling and simulation, high-speed networking, parallel performance optimization, and advanced data analysis and visualization, is being used to reduce design cycle time, accelerate scientific discovery, conduct parametric analysis of multiple scenarios, and enhance safety during the life cycle of NASA missions. The talk will conclude by discussing how NAS partnered with various NASA centers, other government agencies, computer industry, and academia, to create a national resource in large-scale modeling and simulation.
NASA Technical Reports Server (NTRS)
Kramer, Williams T. C.; Simon, Horst D.
1994-01-01
This tutorial proposes to be a practical guide for the uninitiated to the main topics and themes of high-performance computing (HPC), with particular emphasis to distributed computing. The intent is first to provide some guidance and directions in the rapidly increasing field of scientific computing using both massively parallel and traditional supercomputers. Because of their considerable potential computational power, loosely or tightly coupled clusters of workstations are increasingly considered as a third alternative to both the more conventional supercomputers based on a small number of powerful vector processors, as well as high massively parallel processors. Even though many research issues concerning the effective use of workstation clusters and their integration into a large scale production facility are still unresolved, such clusters are already used for production computing. In this tutorial we will utilize the unique experience made at the NAS facility at NASA Ames Research Center. Over the last five years at NAS massively parallel supercomputers such as the Connection Machines CM-2 and CM-5 from Thinking Machines Corporation and the iPSC/860 (Touchstone Gamma Machine) and Paragon Machines from Intel were used in a production supercomputer center alongside with traditional vector supercomputers such as the Cray Y-MP and C90.
Enabling Diverse Software Stacks on Supercomputers using High Performance Virtual Clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younge, Andrew J.; Pedretti, Kevin; Grant, Ryan
While large-scale simulations have been the hallmark of the High Performance Computing (HPC) community for decades, Large Scale Data Analytics (LSDA) workloads are gaining attention within the scientific community not only as a processing component to large HPC simulations, but also as standalone scientific tools for knowledge discovery. With the path towards Exascale, new HPC runtime systems are also emerging in a way that differs from classical distributed com- puting models. However, system software for such capabilities on the latest extreme-scale DOE supercomputing needs to be enhanced to more appropriately support these types of emerging soft- ware ecosystems. In thismore » paper, we propose the use of Virtual Clusters on advanced supercomputing resources to enable systems to support not only HPC workloads, but also emerging big data stacks. Specifi- cally, we have deployed the KVM hypervisor within Cray's Compute Node Linux on a XC-series supercomputer testbed. We also use libvirt and QEMU to manage and provision VMs directly on compute nodes, leveraging Ethernet-over-Aries network emulation. To our knowledge, this is the first known use of KVM on a true MPP supercomputer. We investigate the overhead our solution using HPC benchmarks, both evaluating single-node performance as well as weak scaling of a 32-node virtual cluster. Overall, we find single node performance of our solution using KVM on a Cray is very efficient with near-native performance. However overhead increases by up to 20% as virtual cluster size increases, due to limitations of the Ethernet-over-Aries bridged network. Furthermore, we deploy Apache Spark with large data analysis workloads in a Virtual Cluster, ef- fectively demonstrating how diverse software ecosystems can be supported by High Performance Virtual Clusters.« less
NASA Technical Reports Server (NTRS)
VanZandt, John
1994-01-01
The usage model of supercomputers for scientific applications, such as computational fluid dynamics (CFD), has changed over the years. Scientific visualization has moved scientists away from looking at numbers to looking at three-dimensional images, which capture the meaning of the data. This change has impacted the system models for computing. This report details the model which is used by scientists at NASA's research centers.
2014 Annual Report - Argonne Leadership Computing Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, James R.; Papka, Michael E.; Cerny, Beth A.
The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.
2015 Annual Report - Argonne Leadership Computing Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, James R.; Papka, Michael E.; Cerny, Beth A.
The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.
Choosing experiments to accelerate collective discovery
Rzhetsky, Andrey; Foster, Jacob G.; Foster, Ian T.
2015-01-01
A scientist’s choice of research problem affects his or her personal career trajectory. Scientists’ combined choices affect the direction and efficiency of scientific discovery as a whole. In this paper, we infer preferences that shape problem selection from patterns of published findings and then quantify their efficiency. We represent research problems as links between scientific entities in a knowledge network. We then build a generative model of discovery informed by qualitative research on scientific problem selection. We map salient features from this literature to key network properties: an entity’s importance corresponds to its degree centrality, and a problem’s difficulty corresponds to the network distance it spans. Drawing on millions of papers and patents published over 30 years, we use this model to infer the typical research strategy used to explore chemical relationships in biomedicine. This strategy generates conservative research choices focused on building up knowledge around important molecules. These choices become more conservative over time. The observed strategy is efficient for initial exploration of the network and supports scientific careers that require steady output, but is inefficient for science as a whole. Through supercomputer experiments on a sample of the network, we study thousands of alternatives and identify strategies much more efficient at exploring mature knowledge networks. We find that increased risk-taking and the publication of experimental failures would substantially improve the speed of discovery. We consider institutional shifts in grant making, evaluation, and publication that would help realize these efficiencies. PMID:26554009
Parallel Index and Query for Large Scale Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Jerry; Wu, Kesheng; Ruebel, Oliver
2011-07-18
Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies are critical for facilitating interactive exploration of large datasets, but numerous challenges remain in terms of designing a system for process- ing general scientific datasets. The system needs to be able to run on distributed multi-core platforms, efficiently utilize underlying I/O infrastructure, and scale to massive datasets. We present FastQuery, a novel software framework that address these challenges. FastQuery utilizes a state-of-the-art index and query technology (FastBit) and is designed to process mas- sive datasets on modern supercomputing platforms. We apply FastQuery to processing ofmore » a massive 50TB dataset generated by a large scale accelerator modeling code. We demonstrate the scalability of the tool to 11,520 cores. Motivated by the scientific need to search for inter- esting particles in this dataset, we use our framework to reduce search time from hours to tens of seconds.« less
Approaching the exa-scale: a real-world evaluation of rendering extremely large data sets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patchett, John M; Ahrens, James P; Lo, Li - Ta
2010-10-15
Extremely large scale analysis is becoming increasingly important as supercomputers and their simulations move from petascale to exascale. The lack of dedicated hardware acceleration for rendering on today's supercomputing platforms motivates our detailed evaluation of the possibility of interactive rendering on the supercomputer. In order to facilitate our understanding of rendering on the supercomputing platform, we focus on scalability of rendering algorithms and architecture envisioned for exascale datasets. To understand tradeoffs for dealing with extremely large datasets, we compare three different rendering algorithms for large polygonal data: software based ray tracing, software based rasterization and hardware accelerated rasterization. We presentmore » a case study of strong and weak scaling of rendering extremely large data on both GPU and CPU based parallel supercomputers using Para View, a parallel visualization tool. Wc use three different data sets: two synthetic and one from a scientific application. At an extreme scale, algorithmic rendering choices make a difference and should be considered while approaching exascale computing, visualization, and analysis. We find software based ray-tracing offers a viable approach for scalable rendering of the projected future massive data sizes.« less
GREEN SUPERCOMPUTING IN A DESKTOP BOX
DOE Office of Scientific and Technical Information (OSTI.GOV)
HSU, CHUNG-HSING; FENG, WU-CHUN; CHING, AVERY
2007-01-17
The computer workstation, introduced by Sun Microsystems in 1982, was the tool of choice for scientists and engineers as an interactive computing environment for the development of scientific codes. However, by the mid-1990s, the performance of workstations began to lag behind high-end commodity PCs. This, coupled with the disappearance of BSD-based operating systems in workstations and the emergence of Linux as an open-source operating system for PCs, arguably led to the demise of the workstation as we knew it. Around the same time, computational scientists started to leverage PCs running Linux to create a commodity-based (Beowulf) cluster that provided dedicatedmore » computer cycles, i.e., supercomputing for the rest of us, as a cost-effective alternative to large supercomputers, i.e., supercomputing for the few. However, as the cluster movement has matured, with respect to cluster hardware and open-source software, these clusters have become much more like their large-scale supercomputing brethren - a shared (and power-hungry) datacenter resource that must reside in a machine-cooled room in order to operate properly. Consequently, the above observations, when coupled with the ever-increasing performance gap between the PC and cluster supercomputer, provide the motivation for a 'green' desktop supercomputer - a turnkey solution that provides an interactive and parallel computing environment with the approximate form factor of a Sun SPARCstation 1 'pizza box' workstation. In this paper, they present the hardware and software architecture of such a solution as well as its prowess as a developmental platform for parallel codes. In short, imagine a 12-node personal desktop supercomputer that achieves 14 Gflops on Linpack but sips only 185 watts of power at load, resulting in a performance-power ratio that is over 300% better than their reference SMP platform.« less
FAST: A multi-processed environment for visualization of computational fluid dynamics
NASA Technical Reports Server (NTRS)
Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin
1991-01-01
Three-dimensional, unsteady, multi-zoned fluid dynamics simulations over full scale aircraft are typical of the problems being investigated at NASA Ames' Numerical Aerodynamic Simulation (NAS) facility on CRAY2 and CRAY-YMP supercomputers. With multiple processor workstations available in the 10-30 Mflop range, we feel that these new developments in scientific computing warrant a new approach to the design and implementation of analysis tools. These larger, more complex problems create a need for new visualization techniques not possible with the existing software or systems available as of this writing. The visualization techniques will change as the supercomputing environment, and hence the scientific methods employed, evolves even further. The Flow Analysis Software Toolkit (FAST), an implementation of a software system for fluid mechanics analysis, is discussed.
Visualization at supercomputing centers: the tale of little big iron and the three skinny guys.
Bethel, E W; van Rosendale, J; Southard, D; Gaither, K; Childs, H; Brugger, E; Ahern, S
2011-01-01
Supercomputing centers are unique resources that aim to enable scientific knowledge discovery by employing large computational resources-the "Big Iron." Design, acquisition, installation, and management of the Big Iron are carefully planned and monitored. Because these Big Iron systems produce a tsunami of data, it's natural to colocate the visualization and analysis infrastructure. This infrastructure consists of hardware (Little Iron) and staff (Skinny Guys). Our collective experience suggests that design, acquisition, installation, and management of the Little Iron and Skinny Guys doesn't receive the same level of treatment as that of the Big Iron. This article explores the following questions about the Little Iron: How should we size the Little Iron to adequately support visualization and analysis of data coming off the Big Iron? What sort of capabilities must it have? Related questions concern the size of visualization support staff: How big should a visualization program be-that is, how many Skinny Guys should it have? What should the staff do? How much of the visualization should be provided as a support service, and how much should applications scientists be expected to do on their own?
Accessing and visualizing scientific spatiotemporal data
NASA Technical Reports Server (NTRS)
Katz, Daniel S.; Bergou, Attila; Berriman, G. Bruce; Block, Gary L.; Collier, Jim; Curkendall, David W.; Good, John; Husman, Laura; Jacob, Joseph C.; Laity, Anastasia;
2004-01-01
This paper discusses work done by JPL's Parallel Applications Technologies Group in helping scientists access and visualize very large data sets through the use of multiple computing resources, such as parallel supercomputers, clusters, and grids.
NASA Technical Reports Server (NTRS)
Saini, Subhash; Hood, Robert T.; Chang, Johnny; Baron, John
2016-01-01
We present a performance evaluation conducted on a production supercomputer of the Intel Xeon Processor E5- 2680v3, a twelve-core implementation of the fourth-generation Haswell architecture, and compare it with Intel Xeon Processor E5-2680v2, an Ivy Bridge implementation of the third-generation Sandy Bridge architecture. Several new architectural features have been incorporated in Haswell including improvements in all levels of the memory hierarchy as well as improvements to vector instructions and power management. We critically evaluate these new features of Haswell and compare with Ivy Bridge using several low-level benchmarks including subset of HPCC, HPCG and four full-scale scientific and engineering applications. We also present a model to predict the performance of HPCG and Cart3D within 5%, and Overflow within 10% accuracy.
New NASA 3D Animation Shows Seven Days of Simulated Earth Weather
2014-08-11
This visualization shows early test renderings of a global computational model of Earth's atmosphere based on data from NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5). This particular run, called Nature Run 2, was run on a supercomputer, spanned 2 years of simulation time at 30 minute intervals, and produced Petabytes of output. The visualization spans a little more than 7 days of simulation time which is 354 time steps. The time period was chosen because a simulated category-4 typhoon developed off the coast of China. The 7 day period is repeated several times during the course of the visualization. Credit: NASA's Scientific Visualization Studio Read more or download here: svs.gsfc.nasa.gov/goto?4180 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
None
2018-01-16
NETL is committed to providing its researchers with the latest scientific equipment. This video highlights three technologies: the Beowulf Cluster supercomputer, the OASIS Surface Analytical and Imaging System, and the gas chromatograph-inductively coupled plasma-mass spectrometer, or GC-ICP-MS.
Wienke, B R; O'Leary, T R
2008-05-01
Linking model and data, we detail the LANL diving reduced gradient bubble model (RGBM), dynamical principles, and correlation with data in the LANL Data Bank. Table, profile, and meter risks are obtained from likelihood analysis and quoted for air, nitrox, helitrox no-decompression time limits, repetitive dive tables, and selected mixed gas and repetitive profiles. Application analyses include the EXPLORER decompression meter algorithm, NAUI tables, University of Wisconsin Seafood Diver tables, comparative NAUI, PADI, Oceanic NDLs and repetitive dives, comparative nitrogen and helium mixed gas risks, USS Perry deep rebreather (RB) exploration dive,world record open circuit (OC) dive, and Woodville Karst Plain Project (WKPP) extreme cave exploration profiles. The algorithm has seen extensive and utilitarian application in mixed gas diving, both in recreational and technical sectors, and forms the bases forreleased tables and decompression meters used by scientific, commercial, and research divers. The LANL Data Bank is described, and the methods used to deduce risk are detailed. Risk functions for dissolved gas and bubbles are summarized. Parameters that can be used to estimate profile risk are tallied. To fit data, a modified Levenberg-Marquardt routine is employed with L2 error norm. Appendices sketch the numerical methods, and list reports from field testing for (real) mixed gas diving. A Monte Carlo-like sampling scheme for fast numerical analysis of the data is also detailed, as a coupled variance reduction technique and additional check on the canonical approach to estimating diving risk. The method suggests alternatives to the canonical approach. This work represents a first time correlation effort linking a dynamical bubble model with deep stop data. Supercomputing resources are requisite to connect model and data in application.
Development of a Cloud Resolving Model for Heterogeneous Supercomputers
NASA Astrophysics Data System (ADS)
Sreepathi, S.; Norman, M. R.; Pal, A.; Hannah, W.; Ponder, C.
2017-12-01
A cloud resolving climate model is needed to reduce major systematic errors in climate simulations due to structural uncertainty in numerical treatments of convection - such as convective storm systems. This research describes the porting effort to enable SAM (System for Atmosphere Modeling) cloud resolving model on heterogeneous supercomputers using GPUs (Graphical Processing Units). We have isolated a standalone configuration of SAM that is targeted to be integrated into the DOE ACME (Accelerated Climate Modeling for Energy) Earth System model. We have identified key computational kernels from the model and offloaded them to a GPU using the OpenACC programming model. Furthermore, we are investigating various optimization strategies intended to enhance GPU utilization including loop fusion/fission, coalesced data access and loop refactoring to a higher abstraction level. We will present early performance results, lessons learned as well as optimization strategies. The computational platform used in this study is the Summitdev system, an early testbed that is one generation removed from Summit, the next leadership class supercomputer at Oak Ridge National Laboratory. The system contains 54 nodes wherein each node has 2 IBM POWER8 CPUs and 4 NVIDIA Tesla P100 GPUs. This work is part of a larger project, ACME-MMF component of the U.S. Department of Energy(DOE) Exascale Computing Project. The ACME-MMF approach addresses structural uncertainty in cloud processes by replacing traditional parameterizations with cloud resolving "superparameterization" within each grid cell of global climate model. Super-parameterization dramatically increases arithmetic intensity, making the MMF approach an ideal strategy to achieve good performance on emerging exascale computing architectures. The goal of the project is to integrate superparameterization into ACME, and explore its full potential to scientifically and computationally advance climate simulation and prediction.
Parallel Computation of the Regional Ocean Modeling System (ROMS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, P; Song, Y T; Chao, Y
2005-04-05
The Regional Ocean Modeling System (ROMS) is a regional ocean general circulation modeling system solving the free surface, hydrostatic, primitive equations over varying topography. It is free software distributed world-wide for studying both complex coastal ocean problems and the basin-to-global scale ocean circulation. The original ROMS code could only be run on shared-memory systems. With the increasing need to simulate larger model domains with finer resolutions and on a variety of computer platforms, there is a need in the ocean-modeling community to have a ROMS code that can be run on any parallel computer ranging from 10 to hundreds ofmore » processors. Recently, we have explored parallelization for ROMS using the MPI programming model. In this paper, an efficient parallelization strategy for such a large-scale scientific software package, based on an existing shared-memory computing model, is presented. In addition, scientific applications and data-performance issues on a couple of SGI systems, including Columbia, the world's third-fastest supercomputer, are discussed.« less
ALCF Data Science Program: Productive Data-centric Supercomputing
NASA Astrophysics Data System (ADS)
Romero, Nichols; Vishwanath, Venkatram
The ALCF Data Science Program (ADSP) is targeted at big data science problems that require leadership computing resources. The goal of the program is to explore and improve a variety of computational methods that will enable data-driven discoveries across all scientific disciplines. The projects will focus on data science techniques covering a wide area of discovery including but not limited to uncertainty quantification, statistics, machine learning, deep learning, databases, pattern recognition, image processing, graph analytics, data mining, real-time data analysis, and complex and interactive workflows. Project teams will be among the first to access Theta, ALCFs forthcoming 8.5 petaflops Intel/Cray system. The program will transition to the 200 petaflop/s Aurora supercomputing system when it becomes available. In 2016, four projects have been selected to kick off the ADSP. The selected projects span experimental and computational sciences and range from modeling the brain to discovering new materials for solar-powered windows to simulating collision events at the Large Hadron Collider (LHC). The program will have a regular call for proposals with the next call expected in Spring 2017.http://www.alcf.anl.gov/alcf-data-science-program This research used resources of the ALCF, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.
Science & Technology Review November 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radousky, H
This months issue has the following articles: (1) Expanded Supercomputing Maximizes Scientific Discovery--Commentary by Dona Crawford; (2) Thunder's Power Delivers Breakthrough Science--Livermore's Thunder supercomputer allows researchers to model systems at scales never before possible. (3) Extracting Key Content from Images--A new system called the Image Content Engine is helping analysts find significant but hard-to-recognize details in overhead images. (4) Got Oxygen?--Oxygen, especially oxygen metabolism, was key to evolution, and a Livermore project helps find out why. (5) A Shocking New Form of Laserlike Light--According to research at Livermore, smashing a crystal with a shock wave can result in coherent light.
Performance and Scalability of the NAS Parallel Benchmarks in Java
NASA Technical Reports Server (NTRS)
Frumkin, Michael A.; Schultz, Matthew; Jin, Haoqiang; Yan, Jerry; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Several features make Java an attractive choice for scientific applications. In order to gauge the applicability of Java to Computational Fluid Dynamics (CFD), we have implemented the NAS (NASA Advanced Supercomputing) Parallel Benchmarks in Java. The performance and scalability of the benchmarks point out the areas where improvement in Java compiler technology and in Java thread implementation would position Java closer to Fortran in the competition for scientific applications.
Final Scientific Report: A Scalable Development Environment for Peta-Scale Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karbach, Carsten; Frings, Wolfgang
2013-02-22
This document is the final scientific report of the project DE-SC000120 (A scalable Development Environment for Peta-Scale Computing). The objective of this project is the extension of the Parallel Tools Platform (PTP) for applying it to peta-scale systems. PTP is an integrated development environment for parallel applications. It comprises code analysis, performance tuning, parallel debugging and system monitoring. The contribution of the Juelich Supercomputing Centre (JSC) aims to provide a scalable solution for system monitoring of supercomputers. This includes the development of a new communication protocol for exchanging status data between the target remote system and the client running PTP.more » The communication has to work for high latency. PTP needs to be implemented robustly and should hide the complexity of the supercomputer's architecture in order to provide a transparent access to various remote systems via a uniform user interface. This simplifies the porting of applications to different systems, because PTP functions as abstraction layer between parallel application developer and compute resources. The common requirement for all PTP components is that they have to interact with the remote supercomputer. E.g. applications are built remotely and performance tools are attached to job submissions and their output data resides on the remote system. Status data has to be collected by evaluating outputs of the remote job scheduler and the parallel debugger needs to control an application executed on the supercomputer. The challenge is to provide this functionality for peta-scale systems in real-time. The client server architecture of the established monitoring application LLview, developed by the JSC, can be applied to PTP's system monitoring. LLview provides a well-arranged overview of the supercomputer's current status. A set of statistics, a list of running and queued jobs as well as a node display mapping running jobs to their compute resources form the user display of LLview. These monitoring features have to be integrated into the development environment. Besides showing the current status PTP's monitoring also needs to allow for submitting and canceling user jobs. Monitoring peta-scale systems especially deals with presenting the large amount of status data in a useful manner. Users require to select arbitrary levels of detail. The monitoring views have to provide a quick overview of the system state, but also need to allow for zooming into specific parts of the system, into which the user is interested in. At present, the major batch systems running on supercomputers are PBS, TORQUE, ALPS and LoadLeveler, which have to be supported by both the monitoring and the job controlling component. Finally, PTP needs to be designed as generic as possible, so that it can be extended for future batch systems.« less
NASA Astrophysics Data System (ADS)
Landgrebe, Anton J.
1987-03-01
An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers.
NASA Technical Reports Server (NTRS)
Landgrebe, Anton J.
1987-01-01
An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers.
Predicting Cost/Performance Trade-Offs for Whitney: A Commodity Computing Cluster
NASA Technical Reports Server (NTRS)
Becker, Jeffrey C.; Nitzberg, Bill; VanderWijngaart, Rob F.; Kutler, Paul (Technical Monitor)
1997-01-01
Recent advances in low-end processor and network technology have made it possible to build a "supercomputer" out of commodity components. We develop simple models of the NAS Parallel Benchmarks version 2 (NPB 2) to explore the cost/performance trade-offs involved in building a balanced parallel computer supporting a scientific workload. We develop closed form expressions detailing the number and size of messages sent by each benchmark. Coupling these with measured single processor performance, network latency, and network bandwidth, our models predict benchmark performance to within 30%. A comparison based on total system cost reveals that current commodity technology (200 MHz Pentium Pros with 100baseT Ethernet) is well balanced for the NPBs up to a total system cost of around $1,000,000.
Grasping Reality Through Illusion: Interactive Graphics Serving Science
1988-03-01
SIGGRAPH, or riding techniques to the enhancement of scientific computing. StarTours at Disneyland shows how stunningly far we ........ have come. We need...supercomputer References matching and steering tools. Such tools must be Bergman, L., Fuchs, H., Grant , E., Spach, S. [1986] universal and application
Impact of the Columbia Supercomputer on NASA Space and Exploration Mission
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Kwak, Dochan; Kiris, Cetin; Lawrence, Scott
2006-01-01
NASA's 10,240-processor Columbia supercomputer gained worldwide recognition in 2004 for increasing the space agency's computing capability ten-fold, and enabling U.S. scientists and engineers to perform significant, breakthrough simulations. Columbia has amply demonstrated its capability to accelerate NASA's key missions, including space operations, exploration systems, science, and aeronautics. Columbia is part of an integrated high-end computing (HEC) environment comprised of massive storage and archive systems, high-speed networking, high-fidelity modeling and simulation tools, application performance optimization, and advanced data analysis and visualization. In this paper, we illustrate the impact Columbia is having on NASA's numerous space and exploration applications, such as the development of the Crew Exploration and Launch Vehicles (CEV/CLV), effects of long-duration human presence in space, and damage assessment and repair recommendations for remaining shuttle flights. We conclude by discussing HEC challenges that must be overcome to solve space-related science problems in the future.
NASA Technical Reports Server (NTRS)
Tennille, Geoffrey M.; Howser, Lona M.
1993-01-01
The use of the CONVEX computers that are an integral part of the Supercomputing Network Subsystems (SNS) of the Central Scientific Computing Complex of LaRC is briefly described. Features of the CONVEX computers that are significantly different than the CRAY supercomputers are covered, including: FORTRAN, C, architecture of the CONVEX computers, the CONVEX environment, batch job submittal, debugging, performance analysis, utilities unique to CONVEX, and documentation. This revision reflects the addition of the Applications Compiler and X-based debugger, CXdb. The document id intended for all CONVEX users as a ready reference to frequently asked questions and to more detailed information contained with the vendor manuals. It is appropriate for both the novice and the experienced user.
Argonne wins four R&D 100 Awards | Argonne National Laboratory
. High-Energy Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles converting discovery science into innovative, high-impact products, processes and systems." Globus scientific facilities (such as supercomputing centers and high energy physics experiments), cloud storage
Enhancing Environmental HPC Applications: The EnCompAS approach
NASA Astrophysics Data System (ADS)
Frank, Anton; Donners, John; Pursula, Antti; Seinstra, Frank; Kranzlmüller, Dieter
2015-04-01
Many HPC applications in geoscience are of very high scientific quality and highly optimized for supercomputers. However, some of these codes lack the uptake by other adjacent scientific communities or industry due to deficiencies in usability, quality, and availability. Since enhancing software by, e.g., adding a graphical user interface, respecting data standards, setting up a support structure, or writing an extensive documentation is not of direct and immediate scientific relevance, most developers are not willing to invest any additional effort in these issues. Furthermore, if scientists, who are not directly involved in the development of some scientific software, could make benefit from additional features or interfaces, respective requests are often turned down due to the lack of time and resources. On the other hand, such enhancements are crucial for the sustainability of the scientific assets as well as the widespread or even worldwide distribution of European environmental software. Closely collaborating with environmental scientists the national supercomputing and eScience centres in Helsinki, Amsterdam, and Munich have identified that an enhancement of HPC and data analysis software must be provided as a service to the scientists developing such software. Therefore, first steps have been taken to establish respective services at these centres. In this talk we will present the already existing and envisioned service portfolio, some first success stories, and the approach to harmonize the current status aiming to turn this local effort into a pan-European service offering for environmental science.
In situ visualization for large-scale combustion simulations.
Yu, Hongfeng; Wang, Chaoli; Grout, Ray W; Chen, Jacqueline H; Ma, Kwan-Liu
2010-01-01
As scientific supercomputing moves toward petascale and exascale levels, in situ visualization stands out as a scalable way for scientists to view the data their simulations generate. This full picture is crucial particularly for capturing and understanding highly intermittent transient phenomena, such as ignition and extinction events in turbulent combustion.
NASA Astrophysics Data System (ADS)
Watari, S.; Morikawa, Y.; Yamamoto, K.; Inoue, S.; Tsubouchi, K.; Fukazawa, K.; Kimura, E.; Tatebe, O.; Kato, H.; Shimojo, S.; Murata, K. T.
2010-12-01
In the Solar-Terrestrial Physics (STP) field, spatio-temporal resolution of computer simulations is getting higher and higher because of tremendous advancement of supercomputers. A more advanced technology is Grid Computing that integrates distributed computational resources to provide scalable computing resources. In the simulation research, it is effective that a researcher oneself designs his physical model, performs calculations with a supercomputer, and analyzes and visualizes for consideration by a familiar method. A supercomputer is far from an analysis and visualization environment. In general, a researcher analyzes and visualizes in the workstation (WS) managed at hand because the installation and the operation of software in the WS are easy. Therefore, it is necessary to copy the data from the supercomputer to WS manually. Time necessary for the data transfer through long delay network disturbs high-accuracy simulations actually. In terms of usefulness, integrating a supercomputer and an analysis and visualization environment seamlessly with a researcher's familiar method is important. NICT has been developing a cloud computing environment (NICT Space Weather Cloud). In the NICT Space Weather Cloud, disk servers are located near its supercomputer and WSs for data analysis and visualization. They are connected to JGN2plus that is high-speed network for research and development. Distributed virtual high-capacity storage is also constructed by Grid Datafarm (Gfarm v2). Huge-size data output from the supercomputer is transferred to the virtual storage through JGN2plus. A researcher can concentrate on the research by a familiar method without regard to distance between a supercomputer and an analysis and visualization environment. Now, total 16 disk servers are setup in NICT headquarters (at Koganei, Tokyo), JGN2plus NOC (at Otemachi, Tokyo), Okinawa Subtropical Environment Remote-Sensing Center, and Cybermedia Center, Osaka University. They are connected on JGN2plus, and they constitute 1PB (physical size) virtual storage by Gfarm v2. These disk servers are connected with supercomputers of NICT and Osaka University. A system that data output from the supercomputers are automatically transferred to the virtual storage had been built up. Transfer rate is about 50 GB/hrs by actual measurement. It is estimated that the performance is reasonable for a certain simulation and analysis for reconstruction of coronal magnetic field. This research is assumed an experiment of the system, and the verification of practicality is advanced at the same time. Herein we introduce an overview of the space weather cloud system so far we have developed. We also demonstrate several scientific results using the space weather cloud system. We also introduce several web applications of the cloud as a service of the space weather cloud, which is named as "e-SpaceWeather" (e-SW). The e-SW provides with a variety of space weather online services from many aspects.
Interactive 3D visualization speeds well, reservoir planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petzet, G.A.
1997-11-24
Texaco Exploration and Production has begun making expeditious analyses and drilling decisions that result from interactive, large screen visualization of seismic and other three dimensional data. A pumpkin shaped room or pod inside a 3,500 sq ft, state-of-the-art facility in Southwest Houston houses a supercomputer and projection equipment Texaco said will help its people sharply reduce 3D seismic project cycle time, boost production from existing fields, and find more reserves. Oil and gas related applications of the visualization center include reservoir engineering, plant walkthrough simulation for facilities/piping design, and new field exploration. The center houses a Silicon Graphics Onyx2 infinitemore » reality supercomputer configured with 8 processors, 3 graphics pipelines, and 6 gigabytes of main memory.« less
Two-dimensional nonsteady viscous flow simulation on the Navier-Stokes computer miniNode
NASA Technical Reports Server (NTRS)
Nosenchuck, Daniel M.; Littman, Michael G.; Flannery, William
1986-01-01
The needs of large-scale scientific computation are outpacing the growth in performance of mainframe supercomputers. In particular, problems in fluid mechanics involving complex flow simulations require far more speed and capacity than that provided by current and proposed Class VI supercomputers. To address this concern, the Navier-Stokes Computer (NSC) was developed. The NSC is a parallel-processing machine, comprised of individual Nodes, each comparable in performance to current supercomputers. The global architecture is that of a hypercube, and a 128-Node NSC has been designed. New architectural features, such as a reconfigurable many-function ALU pipeline and a multifunction memory-ALU switch, have provided the capability to efficiently implement a wide range of algorithms. Efficient algorithms typically involve numerically intensive tasks, which often include conditional operations. These operations may be efficiently implemented on the NSC without, in general, sacrificing vector-processing speed. To illustrate the architecture, programming, and several of the capabilities of the NSC, the simulation of two-dimensional, nonsteady viscous flows on a prototype Node, called the miniNode, is presented.
Next Generation Security for the 10,240 Processor Columbia System
NASA Technical Reports Server (NTRS)
Hinke, Thomas; Kolano, Paul; Shaw, Derek; Keller, Chris; Tweton, Dave; Welch, Todd; Liu, Wen (Betty)
2005-01-01
This presentation includes a discussion of the Columbia 10,240-processor system located at the NASA Advanced Supercomputing (NAS) division at the NASA Ames Research Center which supports each of NASA's four missions: science, exploration systems, aeronautics, and space operations. It is comprised of 20 Silicon Graphics nodes, each consisting of 512 Itanium II processors. A 64 processor Columbia front-end system supports users as they prepare their jobs and then submits them to the PBS system. Columbia nodes and front-end systems use the Linux OS. Prior to SC04, the Columbia system was used to attain a processing speed of 51.87 TeraFlops, which made it number two on the Top 500 list of the world's supercomputers and the world's fastest "operational" supercomputer since it was fully engaged in supporting NASA users.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Timothy J.
2016-03-01
While benchmarking software is useful for testing the performance limits and stability of Argonne National Laboratory’s new Theta supercomputer, there is no substitute for running real applications to explore the system’s potential. The Argonne Leadership Computing Facility’s Theta Early Science Program, modeled after its highly successful code migration program for the Mira supercomputer, has one primary aim: to deliver science on day one. Here is a closer look at the type of science problems that will be getting early access to Theta, a next-generation machine being rolled out this year.
NASA Technical Reports Server (NTRS)
Talbot, Bryan; Zhou, Shu-Jia; Higgins, Glenn
2002-01-01
One of the most significant challenges in large-scale climate modeling, as well as in high-performance computing in other scientific fields, is that of effectively integrating many software models from multiple contributors. A software framework facilitates the integration task. both in the development and runtime stages of the simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them to focus more on the science and less on the parallel communication implementation, while maintaining high performance across numerous supercomputer and workstation architectures. This document proposes a strawman framework design for the climate community based on the integration of Cactus, from the relativistic physics community, and UCLA/UCB Distributed Data Broker (DDB) from the climate community. This design is the result of an extensive survey of climate models and frameworks in the climate community as well as frameworks from many other scientific communities. The design addresses fundamental development and runtime needs using Cactus, a framework with interfaces for FORTRAN and C-based languages, and high-performance model communication needs using DDB. This document also specifically explores object-oriented design issues in the context of climate modeling as well as climate modeling issues in terms of object-oriented design.
Discrete event simulation of NASA's Remote Exploration and Experimentation Project (REE)
NASA Technical Reports Server (NTRS)
Dunphy, J.; Rogstad, S.
2001-01-01
The Remote Exploration and Experimentation Project (REE) is a new initiative at JPL to be able to place a supercomputer on board a spacecraft and allow large amounts of data reduction and compression to be done before science results are returned to Earth.
Evolution of the Virtualized HPC Infrastructure of Novosibirsk Scientific Center
NASA Astrophysics Data System (ADS)
Adakin, A.; Anisenkov, A.; Belov, S.; Chubarov, D.; Kalyuzhny, V.; Kaplin, V.; Korol, A.; Kuchin, N.; Lomakin, S.; Nikultsev, V.; Skovpen, K.; Sukharev, A.; Zaytsev, A.
2012-12-01
Novosibirsk Scientific Center (NSC), also known worldwide as Akademgorodok, is one of the largest Russian scientific centers hosting Novosibirsk State University (NSU) and more than 35 research organizations of the Siberian Branch of Russian Academy of Sciences including Budker Institute of Nuclear Physics (BINP), Institute of Computational Technologies, and Institute of Computational Mathematics and Mathematical Geophysics (ICM&MG). Since each institute has specific requirements on the architecture of computing farms involved in its research field, currently we've got several computing facilities hosted by NSC institutes, each optimized for a particular set of tasks, of which the largest are the NSU Supercomputer Center, Siberian Supercomputer Center (ICM&MG), and a Grid Computing Facility of BINP. A dedicated optical network with the initial bandwidth of 10 Gb/s connecting these three facilities was built in order to make it possible to share the computing resources among the research communities, thus increasing the efficiency of operating the existing computing facilities and offering a common platform for building the computing infrastructure for future scientific projects. Unification of the computing infrastructure is achieved by extensive use of virtualization technology based on XEN and KVM platforms. This contribution gives a thorough review of the present status and future development prospects for the NSC virtualized computing infrastructure and the experience gained while using it for running production data analysis jobs related to HEP experiments being carried out at BINP, especially the KEDR detector experiment at the VEPP-4M electron-positron collider.
Development of seismic tomography software for hybrid supercomputers
NASA Astrophysics Data System (ADS)
Nikitin, Alexandr; Serdyukov, Alexandr; Duchkov, Anton
2015-04-01
Seismic tomography is a technique used for computing velocity model of geologic structure from first arrival travel times of seismic waves. The technique is used in processing of regional and global seismic data, in seismic exploration for prospecting and exploration of mineral and hydrocarbon deposits, and in seismic engineering for monitoring the condition of engineering structures and the surrounding host medium. As a consequence of development of seismic monitoring systems and increasing volume of seismic data, there is a growing need for new, more effective computational algorithms for use in seismic tomography applications with improved performance, accuracy and resolution. To achieve this goal, it is necessary to use modern high performance computing systems, such as supercomputers with hybrid architecture that use not only CPUs, but also accelerators and co-processors for computation. The goal of this research is the development of parallel seismic tomography algorithms and software package for such systems, to be used in processing of large volumes of seismic data (hundreds of gigabytes and more). These algorithms and software package will be optimized for the most common computing devices used in modern hybrid supercomputers, such as Intel Xeon CPUs, NVIDIA Tesla accelerators and Intel Xeon Phi co-processors. In this work, the following general scheme of seismic tomography is utilized. Using the eikonal equation solver, arrival times of seismic waves are computed based on assumed velocity model of geologic structure being analyzed. In order to solve the linearized inverse problem, tomographic matrix is computed that connects model adjustments with travel time residuals, and the resulting system of linear equations is regularized and solved to adjust the model. The effectiveness of parallel implementations of existing algorithms on target architectures is considered. During the first stage of this work, algorithms were developed for execution on supercomputers using multicore CPUs only, with preliminary performance tests showing good parallel efficiency on large numerical grids. Porting of the algorithms to hybrid supercomputers is currently ongoing.
A Look at the Impact of High-End Computing Technologies on NASA Missions
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Dunbar, Jill; Hardman, John; Bailey, F. Ron; Wheeler, Lorien; Rogers, Stuart
2012-01-01
From its bold start nearly 30 years ago and continuing today, the NASA Advanced Supercomputing (NAS) facility at Ames Research Center has enabled remarkable breakthroughs in the space agency s science and engineering missions. Throughout this time, NAS experts have influenced the state-of-the-art in high-performance computing (HPC) and related technologies such as scientific visualization, system benchmarking, batch scheduling, and grid environments. We highlight the pioneering achievements and innovations originating from and made possible by NAS resources and know-how, from early supercomputing environment design and software development, to long-term simulation and analyses critical to design safe Space Shuttle operations and associated spinoff technologies, to the highly successful Kepler Mission s discovery of new planets now capturing the world s imagination.
The New Explorers teacher`s guide: The new language of science
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-09-01
The Chicago Science Explorers Program is designed to make students aware of the many career options that are available to them which involve science. The program also hopes to encourage students to consider a career in science by providing interesting classroom experiences, information on various careers generated from the video tape, and a class field trip. In the videotape The New Language of Science, Dr. Larry Smarr of the University of Illinois illustrates how supercomputers can create visualizations of such complex scientific concepts and events as black holes in space, microbursts, smog, drug interactions in the body, earthquakes, and tornadoes.more » It also illustrates how math and science are integrated and emphasizes the need for students to take as much advanced mathematics as is offered at the junior high and high school level. Another underlying concept of the videotape is teamwork. Often students think of science as being an isolated career and this video tape clearly demonstrates that no one scientist would have enough knowledge to create a visualization alone. This report is the teacher`s guide for this video.« less
NAS (Numerical Aerodynamic Simulation Program) technical summaries, March 1989 - February 1990
NASA Technical Reports Server (NTRS)
1990-01-01
Given here are selected scientific results from the Numerical Aerodynamic Simulation (NAS) Program's third year of operation. During this year, the scientific community was given access to a Cray-2 and a Cray Y-MP supercomputer. Topics covered include flow field analysis of fighter wing configurations, large-scale ocean modeling, the Space Shuttle flow field, advanced computational fluid dynamics (CFD) codes for rotary-wing airloads and performance prediction, turbulence modeling of separated flows, airloads and acoustics of rotorcraft, vortex-induced nonlinearities on submarines, and standing oblique detonation waves.
NASA's Climate in a Box: Desktop Supercomputing for Open Scientific Model Development
NASA Astrophysics Data System (ADS)
Wojcik, G. S.; Seablom, M. S.; Lee, T. J.; McConaughy, G. R.; Syed, R.; Oloso, A.; Kemp, E. M.; Greenseid, J.; Smith, R.
2009-12-01
NASA's High Performance Computing Portfolio in cooperation with its Modeling, Analysis, and Prediction program intends to make its climate and earth science models more accessible to a larger community. A key goal of this effort is to open the model development and validation process to the scientific community at large such that a natural selection process is enabled and results in a more efficient scientific process. One obstacle to others using NASA models is the complexity of the models and the difficulty in learning how to use them. This situation applies not only to scientists who regularly use these models but also non-typical users who may want to use the models such as scientists from different domains, policy makers, and teachers. Another obstacle to the use of these models is that access to high performance computing (HPC) accounts, from which the models are implemented, can be restrictive with long wait times in job queues and delays caused by an arduous process of obtaining an account, especially for foreign nationals. This project explores the utility of using desktop supercomputers in providing a complete ready-to-use toolkit of climate research products to investigators and on demand access to an HPC system. One objective of this work is to pre-package NASA and NOAA models so that new users will not have to spend significant time porting the models. In addition, the prepackaged toolkit will include tools, such as workflow, visualization, social networking web sites, and analysis tools, to assist users in running the models and analyzing the data. The system architecture to be developed will allow for automatic code updates for each user and an effective means with which to deal with data that are generated. We plan to investigate several desktop systems, but our work to date has focused on a Cray CX1. Currently, we are investigating the potential capabilities of several non-traditional development environments. While most NASA and NOAA models are designed for Linux operating systems (OS), the arrival of the WindowsHPC 2008 OS provides the opportunity to evaluate the use of a new platform on which to develop and port climate and earth science models. In particular, we are evaluating Microsoft's Visual Studio Integrated Developer Environment to determine its appropriateness for the climate modeling community. In the initial phases of this project, we have ported GEOS-5, WRF, GISS ModelE, and GFS to Linux on a CX1 and are in the process of porting WRF and ModelE to WindowsHPC 2008. Initial tests on the CX1 Linux OS indicate favorable comparisons in terms of performance and consistency of scientific results when compared with experiments executed on NASA high end systems. As in the past, NASA's large clusters will continue to be an important part of our objectives. We envision a seamless environment in which an investigator performs model development and testing on a desktop system and can seamlessly transfer execution to supercomputer clusters for production.
The Centre of High-Performance Scientific Computing, Geoverbund, ABC/J - Geosciences enabled by HPSC
NASA Astrophysics Data System (ADS)
Kollet, Stefan; Görgen, Klaus; Vereecken, Harry; Gasper, Fabian; Hendricks-Franssen, Harrie-Jan; Keune, Jessica; Kulkarni, Ketan; Kurtz, Wolfgang; Sharples, Wendy; Shrestha, Prabhakar; Simmer, Clemens; Sulis, Mauro; Vanderborght, Jan
2016-04-01
The Centre of High-Performance Scientific Computing (HPSC TerrSys) was founded 2011 to establish a centre of competence in high-performance scientific computing in terrestrial systems and the geosciences enabling fundamental and applied geoscientific research in the Geoverbund ABC/J (geoscientfic research alliance of the Universities of Aachen, Cologne, Bonn and the Research Centre Jülich, Germany). The specific goals of HPSC TerrSys are to achieve relevance at the national and international level in (i) the development and application of HPSC technologies in the geoscientific community; (ii) student education; (iii) HPSC services and support also to the wider geoscientific community; and in (iv) the industry and public sectors via e.g., useful applications and data products. A key feature of HPSC TerrSys is the Simulation Laboratory Terrestrial Systems, which is located at the Jülich Supercomputing Centre (JSC) and provides extensive capabilities with respect to porting, profiling, tuning and performance monitoring of geoscientific software in JSC's supercomputing environment. We will present a summary of success stories of HPSC applications including integrated terrestrial model development, parallel profiling and its application from watersheds to the continent; massively parallel data assimilation using physics-based models and ensemble methods; quasi-operational terrestrial water and energy monitoring; and convection permitting climate simulations over Europe. The success stories stress the need for a formalized education of students in the application of HPSC technologies in future.
Supercomputer analysis of purine and pyrimidine metabolism leading to DNA synthesis.
Heinmets, F
1989-06-01
A model-system is established to analyze purine and pyrimidine metabolism leading to DNA synthesis. The principal aim is to explore the flow and regulation of terminal deoxynucleoside triophosphates (dNTPs) in various input and parametric conditions. A series of flow equations are established, which are subsequently converted to differential equations. These are programmed (Fortran) and analyzed on a Cray chi-MP/48 supercomputer. The pool concentrations are presented as a function of time in conditions in which various pertinent parameters of the system are modified. The system is formulated by 100 differential equations.
1993 Gordon Bell Prize Winners
NASA Technical Reports Server (NTRS)
Karp, Alan H.; Simon, Horst; Heller, Don; Cooper, D. M. (Technical Monitor)
1994-01-01
The Gordon Bell Prize recognizes significant achievements in the application of supercomputers to scientific and engineering problems. In 1993, finalists were named for work in three categories: (1) Performance, which recognizes those who solved a real problem in the quickest elapsed time. (2) Price/performance, which encourages the development of cost-effective supercomputing. (3) Compiler-generated speedup, which measures how well compiler writers are facilitating the programming of parallel processors. The winners were announced November 17 at the Supercomputing 93 conference in Portland, Oregon. Gordon Bell, an independent consultant in Los Altos, California, is sponsoring $2,000 in prizes each year for 10 years to promote practical parallel processing research. This is the sixth year of the prize, which Computer administers. Something unprecedented in Gordon Bell Prize competition occurred this year: A computer manufacturer was singled out for recognition. Nine entries reporting results obtained on the Cray C90 were received, seven of the submissions orchestrated by Cray Research. Although none of these entries showed sufficiently high performance to win outright, the judges were impressed by the breadth of applications that ran well on this machine, all nine running at more than a third of the peak performance of the machine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moniz, Ernest; Carr, Alan; Bethe, Hans
The Trinity Test of July 16, 1945 was the first full-scale, real-world test of a nuclear weapon; with the new Trinity supercomputer Los Alamos National Laboratory's goal is to do this virtually, in 3D. Trinity was the culmination of a fantastic effort of groundbreaking science and engineering by hundreds of men and women at Los Alamos and other Manhattan Project sites. It took them less than two years to change the world. The Laboratory is marking the 70th anniversary of the Trinity Test because it not only ushered in the Nuclear Age, but with it the origin of today’s advancedmore » supercomputing. We live in the Age of Supercomputers due in large part to nuclear weapons science here at Los Alamos. National security science, and nuclear weapons science in particular, at Los Alamos National Laboratory have provided a key motivation for the evolution of large-scale scientific computing. Beginning with the Manhattan Project there has been a constant stream of increasingly significant, complex problems in nuclear weapons science whose timely solutions demand larger and faster computers. The relationship between national security science at Los Alamos and the evolution of computing is one of interdependence.« less
Moniz, Ernest; Carr, Alan; Bethe, Hans; Morrison, Phillip; Ramsay, Norman; Teller, Edward; Brixner, Berlyn; Archer, Bill; Agnew, Harold; Morrison, John
2018-01-16
The Trinity Test of July 16, 1945 was the first full-scale, real-world test of a nuclear weapon; with the new Trinity supercomputer Los Alamos National Laboratory's goal is to do this virtually, in 3D. Trinity was the culmination of a fantastic effort of groundbreaking science and engineering by hundreds of men and women at Los Alamos and other Manhattan Project sites. It took them less than two years to change the world. The Laboratory is marking the 70th anniversary of the Trinity Test because it not only ushered in the Nuclear Age, but with it the origin of todayâs advanced supercomputing. We live in the Age of Supercomputers due in large part to nuclear weapons science here at Los Alamos. National security science, and nuclear weapons science in particular, at Los Alamos National Laboratory have provided a key motivation for the evolution of large-scale scientific computing. Beginning with the Manhattan Project there has been a constant stream of increasingly significant, complex problems in nuclear weapons science whose timely solutions demand larger and faster computers. The relationship between national security science at Los Alamos and the evolution of computing is one of interdependence.
US Department of Energy education programs catalog
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-07-01
Missions assigned to DOE by Congress include fundamental scientific research, research and development of energy technologies, energy conservation, strategic weapons development and production, energy regulation, energy data collection and analysis, federal power marketing, and education in science and technology. Contributing to mathematics and science education initiatives are nine DOE national laboratories and more than 30 additional specialized research facilities. Within their walls, some of the most exciting research in contemporary science is conducted. The Synchrotron Light Source at Brookhaven National Laboratory, the Intense Pulsed Neutron Source at Argonne National Laboratory, lasers, electron microscopes, advanced robotics and supercomputers are examples ofmore » some of the unique tools that DOE employs in exploring research frontiers. Nobel laureates and other eminent scientists employed by DOE laboratories have accomplished landmark work in physics, chemistry, biology, materials science, and other disciplines. The Department oversees an unparalleled collection of scientific and technical facilities and equipment with extraordinary potential for kindling in students and the general public a sense of excitement about science and increasing public science literacy. During 1991, programs funded by DOE and its contractors reached more than one million students and educators. This document is a catalog of these education programs.« less
US Department of Energy education programs catalog
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-01
Missions assigned to DOE by Congress include fundamental scientific research, research and development of energy technologies, energy conservation, strategic weapons development and production, energy regulation, energy data collection and analysis, federal power marketing, and education in science and technology. Contributing to mathematics and science education initiatives are nine DOE national laboratories and more than 30 additional specialized research facilities. Within their walls, some of the most exciting research in contemporary science is conducted. The Synchrotron Light Source at Brookhaven National Laboratory, the Intense Pulsed Neutron Source at Argonne National Laboratory, lasers, electron microscopes, advanced robotics and supercomputers are examples ofmore » some of the unique tools that DOE employs in exploring research frontiers. Nobel laureates and other eminent scientists employed by DOE laboratories have accomplished landmark work in physics, chemistry, biology, materials science, and other disciplines. The Department oversees an unparalleled collection of scientific and technical facilities and equipment with extraordinary potential for kindling in students and the general public a sense of excitement about science and increasing public science literacy. During 1991, programs funded by DOE and its contractors reached more than one million students and educators. This document is a catalog of these education programs.« less
Scientists and artists: ""Hey! You got art in my science! You got science on my art
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elfman, Mary E; Hayes, Birchard P; Michel, Kelly D
The pairing of science and art has proven to be a powerful combination since the Renaissance. The combination of these two seemingly disparate disciplines ensured that even complex scientific theories could be explored and effectively communicated to both the subject matter expert and the layman. In modern times, science and art have frequently been considered disjoint, with objectives, philosophies, and perspectives often in direct opposition to each other. However, given the technological advances in computer science and high fidelity 3-D graphics development tools, this marriage of art and science is once again logically complimentary. Art, in the form of computermore » graphics and animation created on supercomputers, has already proven to be a powerful tool for improving scientific research and providing insight into nuclear phenomena. This paper discusses the power of pairing artists with scientists and engineers in order to pursue the possibilities of a widely accessible lightweight, interactive approach. We will use a discussion of photo-realism versus stylization to illuminate the expected beneficial outcome of such collaborations and the societal advantages gained by a non-traditional pa11nering of these two fields.« less
Fast I/O for Massively Parallel Applications
NASA Technical Reports Server (NTRS)
OKeefe, Matthew T.
1996-01-01
The two primary goals for this report were the design, contruction and modeling of parallel disk arrays for scientific visualization and animation, and a study of the IO requirements of highly parallel applications. In addition, further work in parallel display systems required to project and animate the very high-resolution frames resulting from our supercomputing simulations in ocean circulation and compressible gas dynamics.
NASA Technical Reports Server (NTRS)
Deardorff, Glenn; Djomehri, M. Jahed; Freeman, Ken; Gambrel, Dave; Green, Bryan; Henze, Chris; Hinke, Thomas; Hood, Robert; Kiris, Cetin; Moran, Patrick;
2001-01-01
A series of NASA presentations for the Supercomputing 2001 conference are summarized. The topics include: (1) Mars Surveyor Landing Sites "Collaboratory"; (2) Parallel and Distributed CFD for Unsteady Flows with Moving Overset Grids; (3) IP Multicast for Seamless Support of Remote Science; (4) Consolidated Supercomputing Management Office; (5) Growler: A Component-Based Framework for Distributed/Collaborative Scientific Visualization and Computational Steering; (6) Data Mining on the Information Power Grid (IPG); (7) Debugging on the IPG; (8) Debakey Heart Assist Device: (9) Unsteady Turbopump for Reusable Launch Vehicle; (10) Exploratory Computing Environments Component Framework; (11) OVERSET Computational Fluid Dynamics Tools; (12) Control and Observation in Distributed Environments; (13) Multi-Level Parallelism Scaling on NASA's Origin 1024 CPU System; (14) Computing, Information, & Communications Technology; (15) NAS Grid Benchmarks; (16) IPG: A Large-Scale Distributed Computing and Data Management System; and (17) ILab: Parameter Study Creation and Submission on the IPG.
Supercomputing resources empowering superstack with interactive and integrated systems
NASA Astrophysics Data System (ADS)
Rückemann, Claus-Peter
2012-09-01
This paper presents the results from the development and implementation of Superstack algorithms to be dynamically used with integrated systems and supercomputing resources. Processing of geophysical data, thus named geoprocessing, is an essential part of the analysis of geoscientific data. The theory of Superstack algorithms and the practical application on modern computing architectures was inspired by developments introduced with processing of seismic data on mainframes and within the last years leading to high end scientific computing applications. There are several stacking algorithms known but with low signal to noise ratio in seismic data the use of iterative algorithms like the Superstack can support analysis and interpretation. The new Superstack algorithms are in use with wave theory and optical phenomena on highly performant computing resources for huge data sets as well as for sophisticated application scenarios in geosciences and archaeology.
Tools for 3D scientific visualization in computational aerodynamics at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val
1989-01-01
Hardware, software, and techniques used by the Fluid Dynamics Division (NASA) for performing visualization of computational aerodynamics, which can be applied to the visualization of flow fields from computer simulations of fluid dynamics about the Space Shuttle, are discussed. Three visualization techniques applied, post-processing, tracking, and steering, are described, as well as the post-processing software packages used, PLOT3D, SURF (Surface Modeller), GAS (Graphical Animation System), and FAST (Flow Analysis software Toolkit). Using post-processing methods a flow simulation was executed on a supercomputer and, after the simulation was complete, the results were processed for viewing. It is shown that the high-resolution, high-performance three-dimensional workstation combined with specially developed display and animation software provides a good tool for analyzing flow field solutions obtained from supercomputers.
Solving large sparse eigenvalue problems on supercomputers
NASA Technical Reports Server (NTRS)
Philippe, Bernard; Saad, Youcef
1988-01-01
An important problem in scientific computing consists in finding a few eigenvalues and corresponding eigenvectors of a very large and sparse matrix. The most popular methods to solve these problems are based on projection techniques on appropriate subspaces. The main attraction of these methods is that they only require the use of the matrix in the form of matrix by vector multiplications. The implementations on supercomputers of two such methods for symmetric matrices, namely Lanczos' method and Davidson's method are compared. Since one of the most important operations in these two methods is the multiplication of vectors by the sparse matrix, methods of performing this operation efficiently are discussed. The advantages and the disadvantages of each method are compared and implementation aspects are discussed. Numerical experiments on a one processor CRAY 2 and CRAY X-MP are reported. Possible parallel implementations are also discussed.
A Computational framework for telemedicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, I.; von Laszewski, G.; Thiruvathukal, G. K.
1998-07-01
Emerging telemedicine applications require the ability to exploit diverse and geographically distributed resources. Highspeed networks are used to integrate advanced visualization devices, sophisticated instruments, large databases, archival storage devices, PCs, workstations, and supercomputers. This form of telemedical environment is similar to networked virtual supercomputers, also known as metacomputers. Metacomputers are already being used in many scientific application areas. In this article, we analyze requirements necessary for a telemedical computing infrastructure and compare them with requirements found in a typical metacomputing environment. We will show that metacomputing environments can be used to enable a more powerful and unified computational infrastructure formore » telemedicine. The Globus metacomputing toolkit can provide the necessary low level mechanisms to enable a large scale telemedical infrastructure. The Globus toolkit components are designed in a modular fashion and can be extended to support the specific requirements for telemedicine.« less
An efficient parallel algorithm for matrix-vector multiplication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrickson, B.; Leland, R.; Plimpton, S.
The multiplication of a vector by a matrix is the kernel computation of many algorithms in scientific computation. A fast parallel algorithm for this calculation is therefore necessary if one is to make full use of the new generation of parallel supercomputers. This paper presents a high performance, parallel matrix-vector multiplication algorithm that is particularly well suited to hypercube multiprocessors. For an n x n matrix on p processors, the communication cost of this algorithm is O(n/[radical]p + log(p)), independent of the matrix sparsity pattern. The performance of the algorithm is demonstrated by employing it as the kernel in themore » well-known NAS conjugate gradient benchmark, where a run time of 6.09 seconds was observed. This is the best published performance on this benchmark achieved to date using a massively parallel supercomputer.« less
NASA Astrophysics Data System (ADS)
Yamamoto, H.; Nakajima, K.; Zhang, K.; Nanai, S.
2015-12-01
Powerful numerical codes that are capable of modeling complex coupled processes of physics and chemistry have been developed for predicting the fate of CO2 in reservoirs as well as its potential impacts on groundwater and subsurface environments. However, they are often computationally demanding for solving highly non-linear models in sufficient spatial and temporal resolutions. Geological heterogeneity and uncertainties further increase the challenges in modeling works. Two-phase flow simulations in heterogeneous media usually require much longer computational time than that in homogeneous media. Uncertainties in reservoir properties may necessitate stochastic simulations with multiple realizations. Recently, massively parallel supercomputers with more than thousands of processors become available in scientific and engineering communities. Such supercomputers may attract attentions from geoscientist and reservoir engineers for solving the large and non-linear models in higher resolutions within a reasonable time. However, for making it a useful tool, it is essential to tackle several practical obstacles to utilize large number of processors effectively for general-purpose reservoir simulators. We have implemented massively-parallel versions of two TOUGH2 family codes (a multi-phase flow simulator TOUGH2 and a chemically reactive transport simulator TOUGHREACT) on two different types (vector- and scalar-type) of supercomputers with a thousand to tens of thousands of processors. After completing implementation and extensive tune-up on the supercomputers, the computational performance was measured for three simulations with multi-million grid models, including a simulation of the dissolution-diffusion-convection process that requires high spatial and temporal resolutions to simulate the growth of small convective fingers of CO2-dissolved water to larger ones in a reservoir scale. The performance measurement confirmed that the both simulators exhibit excellent scalabilities showing almost linear speedup against number of processors up to over ten thousand cores. Generally this allows us to perform coupled multi-physics (THC) simulations on high resolution geologic models with multi-million grid in a practical time (e.g., less than a second per time step).
RELIABILITY, AVAILABILITY, AND SERVICEABILITY FOR PETASCALE HIGH-END COMPUTING AND BEYOND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chokchai "Box" Leangsuksun
2011-05-31
Our project is a multi-institutional research effort that adopts interplay of RELIABILITY, AVAILABILITY, and SERVICEABILITY (RAS) aspects for solving resilience issues in highend scientific computing in the next generation of supercomputers. results lie in the following tracks: Failure prediction in a large scale HPC; Investigate reliability issues and mitigation techniques including in GPGPU-based HPC system; HPC resilience runtime & tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckman, P.; Martin, D.; Drugan, C.
2010-11-23
This year the Argonne Leadership Computing Facility (ALCF) delivered nearly 900 million core hours of science. The research conducted at their leadership class facility touched our lives in both minute and massive ways - whether it was studying the catalytic properties of gold nanoparticles, predicting protein structures, or unearthing the secrets of exploding stars. The authors remained true to their vision to act as the forefront computational center in extending science frontiers by solving pressing problems for our nation. Our success in this endeavor was due mainly to the Department of Energy's (DOE) INCITE (Innovative and Novel Computational Impact onmore » Theory and Experiment) program. The program awards significant amounts of computing time to computationally intensive, unclassified research projects that can make high-impact scientific advances. This year, DOE allocated 400 million hours of time to 28 research projects at the ALCF. Scientists from around the world conducted the research, representing such esteemed institutions as the Princeton Plasma Physics Laboratory, National Institute of Standards and Technology, and European Center for Research and Advanced Training in Scientific Computation. Argonne also provided Director's Discretionary allocations for research challenges, addressing such issues as reducing aerodynamic noise, critical for next-generation 'green' energy systems. Intrepid - the ALCF's 557-teraflops IBM Blue/Gene P supercomputer - enabled astounding scientific solutions and discoveries. Intrepid went into full production five months ahead of schedule. As a result, the ALCF nearly doubled the days of production computing available to the DOE Office of Science, INCITE awardees, and Argonne projects. One of the fastest supercomputers in the world for open science, the energy-efficient system uses about one-third as much electricity as a machine of comparable size built with more conventional parts. In October 2009, President Barack Obama recognized the excellence of the entire Blue Gene series by awarding it to the National Medal of Technology and Innovation. Other noteworthy achievements included the ALCF's collaboration with the National Energy Research Scientific Computing Center (NERSC) to examine cloud computing as a potential new computing paradigm for scientists. Named Magellan, the DOE-funded initiative will explore which science application programming models work well within the cloud, as well as evaluate the challenges that come with this new paradigm. The ALCF obtained approval for its next-generation machine, a 10-petaflops system to be delivered in 2012. This system will allow us to resolve ever more pressing problems, even more expeditiously through breakthrough science in the years to come.« less
Pre-Hardware Optimization and Implementation Of Fast Optics Closed Control Loop Algorithms
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Lyon, Richard G.; Herman, Jay R.; Abuhassan, Nader
2004-01-01
One of the main heritage tools used in scientific and engineering data spectrum analysis is the Fourier Integral Transform and its high performance digital equivalent - the Fast Fourier Transform (FFT). The FFT is particularly useful in two-dimensional (2-D) image processing (FFT2) within optical systems control. However, timing constraints of a fast optics closed control loop would require a supercomputer to run the software implementation of the FFT2 and its inverse, as well as other image processing representative algorithm, such as numerical image folding and fringe feature extraction. A laboratory supercomputer is not always available even for ground operations and is not feasible for a night project. However, the computationally intensive algorithms still warrant alternative implementation using reconfigurable computing technologies (RC) such as Digital Signal Processors (DSP) and Field Programmable Gate Arrays (FPGA), which provide low cost compact super-computing capabilities. We present a new RC hardware implementation and utilization architecture that significantly reduces the computational complexity of a few basic image-processing algorithm, such as FFT2, image folding and phase diversity for the NASA Solar Viewing Interferometer Prototype (SVIP) using a cluster of DSPs and FPGAs. The DSP cluster utilization architecture also assures avoidance of a single point of failure, while using commercially available hardware. This, combined with the control algorithms pre-hardware optimization, or the first time allows construction of image-based 800 Hertz (Hz) optics closed control loops on-board a spacecraft, based on the SVIP ground instrument. That spacecraft is the proposed Earth Atmosphere Solar Occultation Imager (EASI) to study greenhouse gases CO2, C2H, H2O, O3, O2, N2O from Lagrange-2 point in space. This paper provides an advanced insight into a new type of science capabilities for future space exploration missions based on on-board image processing for control and for robotics missions using vision sensors. It presents a top-level description of technologies required for the design and construction of SVIP and EASI and to advance the spatial-spectral imaging and large-scale space interferometry science and engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertsch, Adam; Draeger, Erik; Richards, David
2017-01-12
With Sequoia at Lawrence Livermore National Laboratory, researchers explore grand challenging problems and are generating results at scales never before achieved. Sequoia is the first computer to have more than one million processors and is one of the fastest supercomputers in the world.
History of the numerical aerodynamic simulation program
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Ballhaus, William F., Jr.
1987-01-01
The Numerical Aerodynamic Simulation (NAS) program has reached a milestone with the completion of the initial operating configuration of the NAS Processing System Network. This achievement is the first major milestone in the continuing effort to provide a state-of-the-art supercomputer facility for the national aerospace community and to serve as a pathfinder for the development and use of future supercomputer systems. The underlying factors that motivated the initiation of the program are first identified and then discussed. These include the emergence and evolution of computational aerodynamics as a powerful new capability in aerodynamics research and development, the computer power required for advances in the discipline, the complementary nature of computation and wind tunnel testing, and the need for the government to play a pathfinding role in the development and use of large-scale scientific computing systems. Finally, the history of the NAS program is traced from its inception in 1975 to the present time.
High Performance Computing at NASA
NASA Technical Reports Server (NTRS)
Bailey, David H.; Cooper, D. M. (Technical Monitor)
1994-01-01
The speaker will give an overview of high performance computing in the U.S. in general and within NASA in particular, including a description of the recently signed NASA-IBM cooperative agreement. The latest performance figures of various parallel systems on the NAS Parallel Benchmarks will be presented. The speaker was one of the authors of the NAS (National Aerospace Standards) Parallel Benchmarks, which are now widely cited in the industry as a measure of sustained performance on realistic high-end scientific applications. It will be shown that significant progress has been made by the highly parallel supercomputer industry during the past year or so, with several new systems, based on high-performance RISC processors, that now deliver superior performance per dollar compared to conventional supercomputers. Various pitfalls in reporting performance will be discussed. The speaker will then conclude by assessing the general state of the high performance computing field.
JESPP: Joint Experimentation on Scalable Parallel Processors Supercomputers
2010-03-01
were for the relatively small market of scientific and engineering applications. Contrast this with GPUs that are designed to improve the end- user...experience in mass- market arenas such as gaming. In order to get meaningful speed-up using the GPU, it was determined that the data transfer and...Included) Conference Year Effectively using a Large GPGPU-Enhanced Linux Cluster HPCMP UGC 2009 FLOPS per Watt: Heterogeneous-Computing’s Approach
Real science at the petascale.
Saksena, Radhika S; Boghosian, Bruce; Fazendeiro, Luis; Kenway, Owain A; Manos, Steven; Mazzeo, Marco D; Sadiq, S Kashif; Suter, James L; Wright, David; Coveney, Peter V
2009-06-28
We describe computational science research that uses petascale resources to achieve scientific results at unprecedented scales and resolution. The applications span a wide range of domains, from investigation of fundamental problems in turbulence through computational materials science research to biomedical applications at the forefront of HIV/AIDS research and cerebrovascular haemodynamics. This work was mainly performed on the US TeraGrid 'petascale' resource, Ranger, at Texas Advanced Computing Center, in the first half of 2008 when it was the largest computing system in the world available for open scientific research. We have sought to use this petascale supercomputer optimally across application domains and scales, exploiting the excellent parallel scaling performance found on up to at least 32 768 cores for certain of our codes in the so-called 'capability computing' category as well as high-throughput intermediate-scale jobs for ensemble simulations in the 32-512 core range. Furthermore, this activity provides evidence that conventional parallel programming with MPI should be successful at the petascale in the short to medium term. We also report on the parallel performance of some of our codes on up to 65 636 cores on the IBM Blue Gene/P system at the Argonne Leadership Computing Facility, which has recently been named the fastest supercomputer in the world for open science.
: A Scalable and Transparent System for Simulating MPI Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumalla, Kalyan S
2010-01-01
is a scalable, transparent system for experimenting with the execution of parallel programs on simulated computing platforms. The level of simulated detail can be varied for application behavior as well as for machine characteristics. Unique features of are repeatability of execution, scalability to millions of simulated (virtual) MPI ranks, scalability to hundreds of thousands of host (real) MPI ranks, portability of the system to a variety of host supercomputing platforms, and the ability to experiment with scientific applications whose source-code is available. The set of source-code interfaces supported by is being expanded to support a wider set of applications, andmore » MPI-based scientific computing benchmarks are being ported. In proof-of-concept experiments, has been successfully exercised to spawn and sustain very large-scale executions of an MPI test program given in source code form. Low slowdowns are observed, due to its use of purely discrete event style of execution, and due to the scalability and efficiency of the underlying parallel discrete event simulation engine, sik. In the largest runs, has been executed on up to 216,000 cores of a Cray XT5 supercomputer, successfully simulating over 27 million virtual MPI ranks, each virtual rank containing its own thread context, and all ranks fully synchronized by virtual time.« less
Models and Simulations as a Service: Exploring the Use of Galaxy for Delivering Computational Models
Walker, Mark A.; Madduri, Ravi; Rodriguez, Alex; Greenstein, Joseph L.; Winslow, Raimond L.
2016-01-01
We describe the ways in which Galaxy, a web-based reproducible research platform, can be used for web-based sharing of complex computational models. Galaxy allows users to seamlessly customize and run simulations on cloud computing resources, a concept we refer to as Models and Simulations as a Service (MaSS). To illustrate this application of Galaxy, we have developed a tool suite for simulating a high spatial-resolution model of the cardiac Ca2+ spark that requires supercomputing resources for execution. We also present tools for simulating models encoded in the SBML and CellML model description languages, thus demonstrating how Galaxy’s reproducible research features can be leveraged by existing technologies. Finally, we demonstrate how the Galaxy workflow editor can be used to compose integrative models from constituent submodules. This work represents an important novel approach, to our knowledge, to making computational simulations more accessible to the broader scientific community. PMID:26958881
Evaluating the Efficacy of Wavelet Configurations on Turbulent-Flow Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shaomeng; Gruchalla, Kenny; Potter, Kristin
2015-10-25
I/O is increasingly becoming a significant constraint for simulation codes and visualization tools on modern supercomputers. Data compression is an attractive workaround, and, in particular, wavelets provide a promising solution. However, wavelets can be applied in multiple configurations, and the variations in configuration impact accuracy, storage cost, and execution time. While the variation in these factors over wavelet configurations have been explored in image processing, they are not well understood for visualization and analysis of scientific data. To illuminate this issue, we evaluate multiple wavelet configurations on turbulent-flow data. Our approach is to repeat established analysis routines on uncompressed andmore » lossy-compressed versions of a data set, and then quantitatively compare their outcomes. Our findings show that accuracy varies greatly based on wavelet configuration, while storage cost and execution time vary less. Overall, our study provides new insights for simulation analysts and visualization experts, who need to make tradeoffs between accuracy, storage cost, and execution time.« less
The use of ZFP lossy floating point data compression in tornado-resolving thunderstorm simulations
NASA Astrophysics Data System (ADS)
Orf, L.
2017-12-01
In the field of atmospheric science, numerical models are used to produce forecasts of weather and climate and serve as virtual laboratories for scientists studying atmospheric phenomena. In both operational and research arenas, atmospheric simulations exploiting modern supercomputing hardware can produce a tremendous amount of data. During model execution, the transfer of floating point data from memory to the file system is often a significant bottleneck where I/O can dominate wallclock time. One way to reduce the I/O footprint is to compress the floating point data, which reduces amount of data saved to the file system. In this presentation we introduce LOFS, a file system developed specifically for use in three-dimensional numerical weather models that are run on massively parallel supercomputers. LOFS utilizes the core (in-memory buffered) HDF5 driver and includes compression options including ZFP, a lossy floating point data compression algorithm. ZFP offers several mechanisms for specifying the amount of lossy compression to be applied to floating point data, including the ability to specify the maximum absolute error allowed in each compressed 3D array. We explore different maximum error tolerances in a tornado-resolving supercell thunderstorm simulation for model variables including cloud and precipitation, temperature, wind velocity and vorticity magnitude. We find that average compression ratios exceeding 20:1 in scientifically interesting regions of the simulation domain produce visually identical results to uncompressed data in visualizations and plots. Since LOFS splits the model domain across many files, compression ratios for a given error tolerance can be compared across different locations within the model domain. We find that regions of high spatial variability (which tend to be where scientifically interesting things are occurring) show the lowest compression ratios, whereas regions of the domain with little spatial variability compress extremely well. We observe that the overhead for compressing data with ZFP is low, and that compressing data in memory reduces the amount of memory overhead needed to store the virtual files before they are flushed to disk.
C3: A Collaborative Web Framework for NASA Earth Exchange
NASA Astrophysics Data System (ADS)
Foughty, E.; Fattarsi, C.; Hardoyo, C.; Kluck, D.; Wang, L.; Matthews, B.; Das, K.; Srivastava, A.; Votava, P.; Nemani, R. R.
2010-12-01
The NASA Earth Exchange (NEX) is a new collaboration platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing. NEX combines NASA advanced supercomputing resources, Earth system modeling, workflow management, NASA remote sensing data archives, and a collaborative communication platform to deliver a complete work environment in which users can explore and analyze large datasets, run modeling codes, collaborate on new or existing projects, and quickly share results among the Earth science communities. NEX is designed primarily for use by the NASA Earth science community to address scientific grand challenges. The NEX web portal component provides an on-line collaborative environment for sharing of Eearth science models, data, analysis tools and scientific results by researchers. In addition, the NEX portal also serves as a knowledge network that allows researchers to connect and collaborate based on the research they are involved in, specific geographic area of interest, field of study, etc. Features of the NEX web portal include: Member profiles, resource sharing (data sets, algorithms, models, publications), communication tools (commenting, messaging, social tagging), project tools (wikis, blogs) and more. The NEX web portal is built on the proven technologies and policies of DASHlink.arc.nasa.gov, (one of NASA's first science social media websites). The core component of the web portal is a C3 framework, which was built using Django and which is being deployed as a common framework for a number of collaborative sites throughout NASA.
Near-surface coherent structures explored by large eddy simulation of entire tropical cyclones.
Ito, Junshi; Oizumi, Tsutao; Niino, Hiroshi
2017-06-19
Taking advantage of the huge computational power of a massive parallel supercomputer (K-supercomputer), this study conducts large eddy simulations of entire tropical cyclones by employing a numerical weather prediction model, and explores near-surface coherent structures. The maximum of the near-surface wind changes little from that simulated based on coarse-resolution runs. Three kinds of coherent structures appeared inside the boundary layer. The first is a Type-A roll, which is caused by an inflection-point instability of the radial flow and prevails outside the radius of maximum wind. The second is a Type-B roll that also appears to be caused by an inflection-point instability but of both radial and tangential winds. Its roll axis is almost orthogonal to the Type-A roll. The third is a Type-C roll, which occurs inside the radius of maximum wind and only near the surface. It transports horizontal momentum in an up-gradient sense and causes the largest gusts.
NASA Astrophysics Data System (ADS)
Hecht, K. T.
2012-12-01
This volume contains the contributions of the speakers of an international conference in honor of Jerry Draayer's 70th birthday, entitled 'Horizons of Innovative Theories, Experiments and Supercomputing in Nuclear Physics'. The list of contributors includes not only international experts in these fields, but also many former collaborators, former graduate students, and former postdoctoral fellows of Jerry Draayer, stressing innovative theories such as special symmetries and supercomputing, both of particular interest to Jerry. The organizers of the conference intended to honor Jerry Draayer not only for his seminal contributions in these fields, but also for his administrative skills at departmental, university, national and international level. Signed: Ted Hecht University of Michigan Conference photograph Scientific Advisory Committee Ani AprahamianUniversity of Notre Dame Baha BalantekinUniversity of Wisconsin Bruce BarrettUniversity of Arizona Umit CatalyurekOhio State Unversity David DeanOak Ridge National Laboratory Jutta Escher (Chair)Lawrence Livermore National Laboratory Jorge HirschUNAM, Mexico David RoweUniversity of Toronto Brad Sherill & Michigan State University Joel TohlineLouisiana State University Edward ZganjarLousiana State University Organizing Committee Jeff BlackmonLouisiana State University Mark CaprioUniversity of Notre Dame Tomas DytrychLouisiana State University Ana GeorgievaINRNE, Bulgaria Kristina Launey (Co-chair)Louisiana State University Gabriella PopaOhio University Zanesville James Vary (Co-chair)Iowa State University Local Organizing Committee Laura LinhardtLouisiana State University Charlie RascoLouisiana State University Karen Richard (Coordinator)Louisiana State University
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Mira supercomputer at the Argonne Leadership Computing Facility helped Argonne researchers model what happens inside an engine when you use gasoline in a diesel engine. Engineers are exploring this type of combustion as a sustainable transportation option because it may be more efficient than traditional gasoline combustion engines but produce less soot than diesel.
A History of High-Performance Computing
NASA Technical Reports Server (NTRS)
2006-01-01
Faster than most speedy computers. More powerful than its NASA data-processing predecessors. Able to leap large, mission-related computational problems in a single bound. Clearly, it s neither a bird nor a plane, nor does it need to don a red cape, because it s super in its own way. It's Columbia, NASA s newest supercomputer and one of the world s most powerful production/processing units. Named Columbia to honor the STS-107 Space Shuttle Columbia crewmembers, the new supercomputer is making it possible for NASA to achieve breakthroughs in science and engineering, fulfilling the Agency s missions, and, ultimately, the Vision for Space Exploration. Shortly after being built in 2004, Columbia achieved a benchmark rating of 51.9 teraflop/s on 10,240 processors, making it the world s fastest operational computer at the time of completion. Putting this speed into perspective, 20 years ago, the most powerful computer at NASA s Ames Research Center, home of the NASA Advanced Supercomputing Division (NAS), ran at a speed of about 1 gigaflop (one billion calculations per second). The Columbia supercomputer is 50,000 times faster than this computer and offers a tenfold increase in capacity over the prior system housed at Ames. What s more, Columbia is considered the world s largest Linux-based, shared-memory system. The system is offering immeasurable benefits to society and is the zenith of years of NASA/private industry collaboration that has spawned new generations of commercial, high-speed computing systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerfler, Douglas; Austin, Brian; Cook, Brandon
There are many potential issues associated with deploying the Intel Xeon Phi™ (code named Knights Landing [KNL]) manycore processor in a large-scale supercomputer. One in particular is the ability to fully utilize the high-speed communications network, given that the serial performance of a Xeon Phi TM core is a fraction of a Xeon®core. In this paper, we take a look at the trade-offs associated with allocating enough cores to fully utilize the Aries high-speed network versus cores dedicated to computation, e.g., the trade-off between MPI and OpenMP. In addition, we evaluate new features of Cray MPI in support of KNL,more » such as internode optimizations. We also evaluate one-sided programming models such as Unified Parallel C. We quantify the impact of the above trade-offs and features using a suite of National Energy Research Scientific Computing Center applications.« less
Preparing for in situ processing on upcoming leading-edge supercomputers
Kress, James; Churchill, Randy Michael; Klasky, Scott; ...
2016-10-01
High performance computing applications are producing increasingly large amounts of data and placing enormous stress on current capabilities for traditional post-hoc visualization techniques. Because of the growing compute and I/O imbalance, data reductions, including in situ visualization, are required. These reduced data are used for analysis and visualization in a variety of different ways. Many of he visualization and analysis requirements are known a priori, but when they are not, scientists are dependent on the reduced data to accurately represent the simulation in post hoc analysis. The contributions of this paper is a description of the directions we are pursuingmore » to assist a large scale fusion simulation code succeed on the next generation of supercomputers. Finally, these directions include the role of in situ processing for performing data reductions, as well as the tradeoffs between data size and data integrity within the context of complex operations in a typical scientific workflow.« less
Web-based system for surgical planning and simulation
NASA Astrophysics Data System (ADS)
Eldeib, Ayman M.; Ahmed, Mohamed N.; Farag, Aly A.; Sites, C. B.
1998-10-01
The growing scientific knowledge and rapid progress in medical imaging techniques has led to an increasing demand for better and more efficient methods of remote access to high-performance computer facilities. This paper introduces a web-based telemedicine project that provides interactive tools for surgical simulation and planning. The presented approach makes use of client-server architecture based on new internet technology where clients use an ordinary web browser to view, send, receive and manipulate patients' medical records while the server uses the supercomputer facility to generate online semi-automatic segmentation, 3D visualization, surgical simulation/planning and neuroendoscopic procedures navigation. The supercomputer (SGI ONYX 1000) is located at the Computer Vision and Image Processing Lab, University of Louisville, Kentucky. This system is under development in cooperation with the Department of Neurological Surgery, Alliant Health Systems, Louisville, Kentucky. The server is connected via a network to the Picture Archiving and Communication System at Alliant Health Systems through a DICOM standard interface that enables authorized clients to access patients' images from different medical modalities.
NSF Director Bloch Stresses Effectiveness and Efficiency.
ERIC Educational Resources Information Center
Lepkowski, Wil
1985-01-01
The text of an interview with Erich Bloch, National Science Foundation (NSF) director, is provided. Among the topics/issues explored are NSF's role in policy research, mission and goals of NSF, establishment of NSF Engineering Research Centers, and national security issues involving access to supercomputers in universities that NSF is funding. (JN)
When Rural Reality Goes Virtual.
ERIC Educational Resources Information Center
Husain, Dilshad D.
1998-01-01
In rural towns where sparse population and few business are barriers, virtual reality may be the only way to bring work-based learning to students. A partnership between a small-town high school, the Ohio Supercomputer Center, and a high-tech business will enable students to explore the workplace using virtual reality. (JOW)
LASL benchmark performance 1978. [CDC STAR-100, 6600, 7600, Cyber 73, and CRAY-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKnight, A.L.
1979-08-01
This report presents the results of running several benchmark programs on a CDC STAR-100, a Cray Research CRAY-1, a CDC 6600, a CDC 7600, and a CDC Cyber 73. The benchmark effort included CRAY-1's at several installations running different operating systems and compilers. This benchmark is part of an ongoing program at Los Alamos Scientific Laboratory to collect performance data and monitor the development trend of supercomputers. 3 tables.
A survey of parallel programming tools
NASA Technical Reports Server (NTRS)
Cheng, Doreen Y.
1991-01-01
This survey examines 39 parallel programming tools. Focus is placed on those tool capabilites needed for parallel scientific programming rather than for general computer science. The tools are classified with current and future needs of Numerical Aerodynamic Simulator (NAS) in mind: existing and anticipated NAS supercomputers and workstations; operating systems; programming languages; and applications. They are divided into four categories: suggested acquisitions, tools already brought in; tools worth tracking; and tools eliminated from further consideration at this time.
SNS programming environment user's guide
NASA Technical Reports Server (NTRS)
Tennille, Geoffrey M.; Howser, Lona M.; Humes, D. Creig; Cronin, Catherine K.; Bowen, John T.; Drozdowski, Joseph M.; Utley, Judith A.; Flynn, Theresa M.; Austin, Brenda A.
1992-01-01
The computing environment is briefly described for the Supercomputing Network Subsystem (SNS) of the Central Scientific Computing Complex of NASA Langley. The major SNS computers are a CRAY-2, a CRAY Y-MP, a CONVEX C-210, and a CONVEX C-220. The software is described that is common to all of these computers, including: the UNIX operating system, computer graphics, networking utilities, mass storage, and mathematical libraries. Also described is file management, validation, SNS configuration, documentation, and customer services.
Challenges and opportunities of cloud computing for atmospheric sciences
NASA Astrophysics Data System (ADS)
Pérez Montes, Diego A.; Añel, Juan A.; Pena, Tomás F.; Wallom, David C. H.
2016-04-01
Cloud computing is an emerging technological solution widely used in many fields. Initially developed as a flexible way of managing peak demand it has began to make its way in scientific research. One of the greatest advantages of cloud computing for scientific research is independence of having access to a large cyberinfrastructure to fund or perform a research project. Cloud computing can avoid maintenance expenses for large supercomputers and has the potential to 'democratize' the access to high-performance computing, giving flexibility to funding bodies for allocating budgets for the computational costs associated with a project. Two of the most challenging problems in atmospheric sciences are computational cost and uncertainty in meteorological forecasting and climate projections. Both problems are closely related. Usually uncertainty can be reduced with the availability of computational resources to better reproduce a phenomenon or to perform a larger number of experiments. Here we expose results of the application of cloud computing resources for climate modeling using cloud computing infrastructures of three major vendors and two climate models. We show how the cloud infrastructure compares in performance to traditional supercomputers and how it provides the capability to complete experiments in shorter periods of time. The monetary cost associated is also analyzed. Finally we discuss the future potential of this technology for meteorological and climatological applications, both from the point of view of operational use and research.
Optimization of Supercomputer Use on EADS II System
NASA Technical Reports Server (NTRS)
Ahmed, Ardsher
1998-01-01
The main objective of this research was to optimize supercomputer use to achieve better throughput and utilization of supercomputers and to help facilitate the movement of non-supercomputing (inappropriate for supercomputer) codes to mid-range systems for better use of Government resources at Marshall Space Flight Center (MSFC). This work involved the survey of architectures available on EADS II and monitoring customer (user) applications running on a CRAY T90 system.
Supercomputer applications in molecular modeling.
Gund, T M
1988-01-01
An overview of the functions performed by molecular modeling is given. Molecular modeling techniques benefiting from supercomputing are described, namely, conformation, search, deriving bioactive conformations, pharmacophoric pattern searching, receptor mapping, and electrostatic properties. The use of supercomputers for problems that are computationally intensive, such as protein structure prediction, protein dynamics and reactivity, protein conformations, and energetics of binding is also examined. The current status of supercomputing and supercomputer resources are discussed.
Federal Market Information Technology in the Post Flash Crash Era: Roles for Supercomputing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, E. Wes; Leinweber, David; Ruebel, Oliver
2011-09-16
This paper describes collaborative work between active traders, regulators, economists, and supercomputing researchers to replicate and extend investigations of the Flash Crash and other market anomalies in a National Laboratory HPC environment. Our work suggests that supercomputing tools and methods will be valuable to market regulators in achieving the goal of market safety, stability, and security. Research results using high frequency data and analytics are described, and directions for future development are discussed. Currently the key mechanism for preventing catastrophic market action are “circuit breakers.” We believe a more graduated approach, similar to the “yellow light” approach in motorsports tomore » slow down traffic, might be a better way to achieve the same goal. To enable this objective, we study a number of indicators that could foresee hazards in market conditions and explore options to confirm such predictions. Our tests confirm that Volume Synchronized Probability of Informed Trading (VPIN) and a version of volume Herfindahl-Hirschman Index (HHI) for measuring market fragmentation can indeed give strong signals ahead of the Flash Crash event on May 6 2010. This is a preliminary step toward a full-fledged early-warning system for unusual market conditions.« less
Accelerating scientific discovery : 2007 annual report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckman, P.; Dave, P.; Drugan, C.
2008-11-14
As a gateway for scientific discovery, the Argonne Leadership Computing Facility (ALCF) works hand in hand with the world's best computational scientists to advance research in a diverse span of scientific domains, ranging from chemistry, applied mathematics, and materials science to engineering physics and life sciences. Sponsored by the U.S. Department of Energy's (DOE) Office of Science, researchers are using the IBM Blue Gene/L supercomputer at the ALCF to study and explore key scientific problems that underlie important challenges facing our society. For instance, a research team at the University of California-San Diego/ SDSC is studying the molecular basis ofmore » Parkinson's disease. The researchers plan to use the knowledge they gain to discover new drugs to treat the disease and to identify risk factors for other diseases that are equally prevalent. Likewise, scientists from Pratt & Whitney are using the Blue Gene to understand the complex processes within aircraft engines. Expanding our understanding of jet engine combustors is the secret to improved fuel efficiency and reduced emissions. Lessons learned from the scientific simulations of jet engine combustors have already led Pratt & Whitney to newer designs with unprecedented reductions in emissions, noise, and cost of ownership. ALCF staff members provide in-depth expertise and assistance to those using the Blue Gene/L and optimizing user applications. Both the Catalyst and Applications Performance Engineering and Data Analytics (APEDA) teams support the users projects. In addition to working with scientists running experiments on the Blue Gene/L, we have become a nexus for the broader global community. In partnership with the Mathematics and Computer Science Division at Argonne National Laboratory, we have created an environment where the world's most challenging computational science problems can be addressed. Our expertise in high-end scientific computing enables us to provide guidance for applications that are transitioning to petascale as well as to produce software that facilitates their development, such as the MPICH library, which provides a portable and efficient implementation of the MPI standard--the prevalent programming model for large-scale scientific applications--and the PETSc toolkit that provides a programming paradigm that eases the development of many scientific applications on high-end computers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bland, Arthur S Buddy; Hack, James J; Baker, Ann E
Oak Ridge National Laboratory's (ORNL's) Cray XT5 supercomputer, Jaguar, kicked off the era of petascale scientific computing in 2008 with applications that sustained more than a thousand trillion floating point calculations per second - or 1 petaflop. Jaguar continues to grow even more powerful as it helps researchers broaden the boundaries of knowledge in virtually every domain of computational science, including weather and climate, nuclear energy, geosciences, combustion, bioenergy, fusion, and materials science. Their insights promise to broaden our knowledge in areas that are vitally important to the Department of Energy (DOE) and the nation as a whole, particularly energymore » assurance and climate change. The science of the 21st century, however, will demand further revolutions in computing, supercomputers capable of a million trillion calculations a second - 1 exaflop - and beyond. These systems will allow investigators to continue attacking global challenges through modeling and simulation and to unravel longstanding scientific questions. Creating such systems will also require new approaches to daunting challenges. High-performance systems of the future will need to be codesigned for scientific and engineering applications with best-in-class communications networks and data-management infrastructures and teams of skilled researchers able to take full advantage of these new resources. The Oak Ridge Leadership Computing Facility (OLCF) provides the nation's most powerful open resource for capability computing, with a sustainable path that will maintain and extend national leadership for DOE's Office of Science (SC). The OLCF has engaged a world-class team to support petascale science and to take a dramatic step forward, fielding new capabilities for high-end science. This report highlights the successful delivery and operation of a petascale system and shows how the OLCF fosters application development teams, developing cutting-edge tools and resources for next-generation systems.« less
48 CFR 252.225-7011 - Restriction on acquisition of supercomputers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... of supercomputers. 252.225-7011 Section 252.225-7011 Federal Acquisition Regulations System DEFENSE... CLAUSES Text of Provisions And Clauses 252.225-7011 Restriction on acquisition of supercomputers. As prescribed in 225.7012-3, use the following clause: Restriction on Acquisition of Supercomputers (JUN 2005...
48 CFR 252.225-7011 - Restriction on acquisition of supercomputers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... of supercomputers. 252.225-7011 Section 252.225-7011 Federal Acquisition Regulations System DEFENSE... CLAUSES Text of Provisions And Clauses 252.225-7011 Restriction on acquisition of supercomputers. As prescribed in 225.7012-3, use the following clause: Restriction on Acquisition of Supercomputers (JUN 2005...
48 CFR 252.225-7011 - Restriction on acquisition of supercomputers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... of supercomputers. 252.225-7011 Section 252.225-7011 Federal Acquisition Regulations System DEFENSE... CLAUSES Text of Provisions And Clauses 252.225-7011 Restriction on acquisition of supercomputers. As prescribed in 225.7012-3, use the following clause: Restriction on Acquisition of Supercomputers (JUN 2005...
48 CFR 252.225-7011 - Restriction on acquisition of supercomputers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... of supercomputers. 252.225-7011 Section 252.225-7011 Federal Acquisition Regulations System DEFENSE... CLAUSES Text of Provisions And Clauses 252.225-7011 Restriction on acquisition of supercomputers. As prescribed in 225.7012-3, use the following clause: Restriction on Acquisition of Supercomputers (JUN 2005...
48 CFR 252.225-7011 - Restriction on acquisition of supercomputers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... of supercomputers. 252.225-7011 Section 252.225-7011 Federal Acquisition Regulations System DEFENSE... CLAUSES Text of Provisions And Clauses 252.225-7011 Restriction on acquisition of supercomputers. As prescribed in 225.7012-3, use the following clause: Restriction on Acquisition of Supercomputers (JUN 2005...
Data-intensive computing on numerically-insensitive supercomputers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahrens, James P; Fasel, Patricia K; Habib, Salman
2010-12-03
With the advent of the era of petascale supercomputing, via the delivery of the Roadrunner supercomputing platform at Los Alamos National Laboratory, there is a pressing need to address the problem of visualizing massive petascale-sized results. In this presentation, I discuss progress on a number of approaches including in-situ analysis, multi-resolution out-of-core streaming and interactive rendering on the supercomputing platform. These approaches are placed in context by the emerging area of data-intensive supercomputing.
Computer Electromagnetics and Supercomputer Architecture
NASA Technical Reports Server (NTRS)
Cwik, Tom
1993-01-01
The dramatic increase in performance over the last decade for microporcessor computations is compared with that for the supercomputer computations. This performance, the projected performance, and a number of other issues such as cost and the inherent pysical limitations in curent supercomputer technology have naturally led to parallel supercomputers and ensemble of interconnected microprocessors.
A Spectral Algorithm for Solving the Relativistic Vlasov-Maxwell Equations
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2001-01-01
A spectral method algorithm is developed for the numerical solution of the full six-dimensional Vlasov-Maxwell system of equations. Here, the focus is on the electron distribution function, with positive ions providing a constant background. The algorithm consists of a Jacobi polynomial-spherical harmonic formulation in velocity space and a trigonometric formulation in position space. A transform procedure is used to evaluate nonlinear terms. The algorithm is suitable for performing moderate resolution simulations on currently available supercomputers for both scientific and engineering applications.
Floating-point performance of ARM cores and their efficiency in classical molecular dynamics
NASA Astrophysics Data System (ADS)
Nikolskiy, V.; Stegailov, V.
2016-02-01
Supercomputing of the exascale era is going to be inevitably limited by power efficiency. Nowadays different possible variants of CPU architectures are considered. Recently the development of ARM processors has come to the point when their floating point performance can be seriously considered for a range of scientific applications. In this work we present the analysis of the floating point performance of the latest ARM cores and their efficiency for the algorithms of classical molecular dynamics.
Personal supercomputing by using transputer and Intel 80860 in plasma engineering
NASA Astrophysics Data System (ADS)
Ido, S.; Aoki, K.; Ishine, M.; Kubota, M.
1992-09-01
Transputer (T800) and 64-bit RISC Intel 80860 (i860) added on a personal computer can be used as an accelerator. When 32-bit T800s in a parallel system or 64-bit i860s are used, scientific calculations are carried out several ten times as fast as in the case of commonly used 32-bit personal computers or UNIX workstations. Benchmark tests and examples of physical simulations using T800s and i860 are reported.
Assessing the Need for Supercomputing Resources Within the Pacific Area of Responsibility
2015-05-26
portion of today’s research and development dollars are going toward developing machines that will be better suited for addressing big data applications...2009; Radu Sion, “To Cloud or Not to? Musings on Clouds, Security and Big Data ,” in Secure Data Management, Vol. 8425, May 2014, pp. 3–5; Yao Chen...Applied Parallel and Scientific Computing, Vol. 7134, 2010. Sion, Radu, “To Cloud or Not to? Musings on Clouds, Security and Big Data ,” in Secure Data
Using Java for distributed computing in the Gaia satellite data processing
NASA Astrophysics Data System (ADS)
O'Mullane, William; Luri, Xavier; Parsons, Paul; Lammers, Uwe; Hoar, John; Hernandez, Jose
2011-10-01
In recent years Java has matured to a stable easy-to-use language with the flexibility of an interpreter (for reflection etc.) but the performance and type checking of a compiled language. When we started using Java for astronomical applications around 1999 they were the first of their kind in astronomy. Now a great deal of astronomy software is written in Java as are many business applications. We discuss the current environment and trends concerning the language and present an actual example of scientific use of Java for high-performance distributed computing: ESA's mission Gaia. The Gaia scanning satellite will perform a galactic census of about 1,000 million objects in our galaxy. The Gaia community has chosen to write its processing software in Java. We explore the manifold reasons for choosing Java for this large science collaboration. Gaia processing is numerically complex but highly distributable, some parts being embarrassingly parallel. We describe the Gaia processing architecture and its realisation in Java. We delve into the astrometric solution which is the most advanced and most complex part of the processing. The Gaia simulator is also written in Java and is the most mature code in the system. This has been successfully running since about 2005 on the supercomputer "Marenostrum" in Barcelona. We relate experiences of using Java on a large shared machine. Finally we discuss Java, including some of its problems, for scientific computing.
Edison - A New Cray Supercomputer Advances Discovery at NERSC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dosanjh, Sudip; Parkinson, Dula; Yelick, Kathy
2014-02-06
When a supercomputing center installs a new system, users are invited to make heavy use of the computer as part of the rigorous testing. In this video, find out what top scientists have discovered using Edison, a Cray XC30 supercomputer, and how NERSC's newest supercomputer will accelerate their future research.
Edison - A New Cray Supercomputer Advances Discovery at NERSC
Dosanjh, Sudip; Parkinson, Dula; Yelick, Kathy; Trebotich, David; Broughton, Jeff; Antypas, Katie; Lukic, Zarija, Borrill, Julian; Draney, Brent; Chen, Jackie
2018-01-16
When a supercomputing center installs a new system, users are invited to make heavy use of the computer as part of the rigorous testing. In this video, find out what top scientists have discovered using Edison, a Cray XC30 supercomputer, and how NERSC's newest supercomputer will accelerate their future research.
A Performance Evaluation of the Cray X1 for Scientific Applications
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Biswas, Rupak; Borrill, Julian; Canning, Andrew; Carter, Jonathan; Djomehri, M. Jahed; Shan, Hongzhang; Skinner, David
2004-01-01
The last decade has witnessed a rapid proliferation of superscalar cache-based microprocessors to build high-end capability and cost effectiveness. However, the recent development of massively parallel vector systems is having a significant effect on the supercomputing landscape. In this paper, we compare the performance of the recently released Cray X1 vector system with that of the cacheless NEC SX-6 vector machine, and the superscalar cache-based IBM Power3 and Power4 architectures for scientific applications. Overall results demonstrate that the X1 is quite promising, but performance improvements are expected as the hardware, systems software, and numerical libraries mature. Code reengineering to effectively utilize the complex architecture may also lead to significant efficiency enhancements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, E Wes; Brugger, Eric
Supercomputing centers are unique resources that aim to enable scientific knowledge discovery by employing large computational resources - the 'Big Iron.' Design, acquisition, installation, and management of the Big Iron are carefully planned and monitored. Because these Big Iron systems produce a tsunami of data, it's natural to colocate the visualization and analysis infrastructure. This infrastructure consists of hardware (Little Iron) and staff (Skinny Guys). Our collective experience suggests that design, acquisition, installation, and management of the Little Iron and Skinny Guys doesn't receive the same level of treatment as that of the Big Iron. This article explores the followingmore » questions about the Little Iron: How should we size the Little Iron to adequately support visualization and analysis of data coming off the Big Iron? What sort of capabilities must it have? Related questions concern the size of visualization support staff: How big should a visualization program be - that is, how many Skinny Guys should it have? What should the staff do? How much of the visualization should be provided as a support service, and how much should applications scientists be expected to do on their own?« less
The Science DMZ: A Network Design Pattern for Data-Intensive Science
Dart, Eli; Rotman, Lauren; Tierney, Brian; ...
2014-01-01
The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centers andmore » research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.« less
Collaborative Oceanographic Research Opportunities with Schmidt Ocean Institute
NASA Astrophysics Data System (ADS)
Zykov, V.
2014-12-01
Schmidt Ocean Institute (http://www.schmidtocean.org/) was founded by Dr. Eric Schmidt and Wendy Schmidt in 2009 to support frontier oceanographic research and exploration to expand the understanding of the world's oceans through technological advancement, intelligent, data-rich observation and analysis, and open sharing of information. Schmidt Ocean Institute operates a state-of-the-art globally capable research vessel Falkor (http://www.schmidtocean.org/story/show/47). After two years of scientific operations in the Atlantic Ocean, Gulf of Mexico, Caribbean, Eastern and Central Pacific, R/V Falkor is now preparing to support research in the Western Pacific and Eastern Indian Oceans in 2015 and 2016. As part of the long term research program development for Schmidt Ocean Institute, we aim to identify initiatives and projects that demonstrate strong alignment with our strategic interests. We focus on scientific opportunities that highlight effective use of innovative technologies to better understand the oceans, such as, for example, research enabled with remotely operated and autonomous vehicles, acoustics, in-situ sensing, telepresence, etc. Our technology-first approach to ocean science gave rise to infrastructure development initiatives, such as the development of a new full ocean depth Hybrid Remotely Operated Vehicle, new 6000m scientific Autonomous Underwater Vehicle, live HD video streaming from the ship to YouTube, shipboard high performance supercomputing, etc. We also support projects focusing on oceanographic technology research and development onboard R/V Falkor. We provide our collaborators with access to all of R/V Falkor's facilities and instrumentation in exchange for a commitment to make the resulting scientific data openly available to the international oceanographic community. This presentation aims to expand awareness about the interests and capabilities of Schmidt Ocean Institute and R/V Falkor among our scientific audiences and further develop the network of our research collaborations. We would also like to inform interested scientists and technology developers about our program development and proposal selection processes and explain how they can participate in future collaborations with Schmidt Ocean Institute.
The Pawsey Supercomputer geothermal cooling project
NASA Astrophysics Data System (ADS)
Regenauer-Lieb, K.; Horowitz, F.; Western Australian Geothermal Centre Of Excellence, T.
2010-12-01
The Australian Government has funded the Pawsey supercomputer in Perth, Western Australia, providing computational infrastructure intended to support the future operations of the Australian Square Kilometre Array radiotelescope and to boost next-generation computational geosciences in Australia. Supplementary funds have been directed to the development of a geothermal exploration well to research the potential for direct heat use applications at the Pawsey Centre site. Cooling the Pawsey supercomputer may be achieved by geothermal heat exchange rather than by conventional electrical power cooling, thus reducing the carbon footprint of the Pawsey Centre and demonstrating an innovative green technology that is widely applicable in industry and urban centres across the world. The exploration well is scheduled to be completed in 2013, with drilling due to commence in the third quarter of 2011. One year is allocated to finalizing the design of the exploration, monitoring and research well. Success in the geothermal exploration and research program will result in an industrial-scale geothermal cooling facility at the Pawsey Centre, and will provide a world-class student training environment in geothermal energy systems. A similar system is partially funded and in advanced planning to provide base-load air-conditioning for the main campus of the University of Western Australia. Both systems are expected to draw ~80-95 degrees C water from aquifers lying between 2000 and 3000 meters depth from naturally permeable rocks of the Perth sedimentary basin. The geothermal water will be run through absorption chilling devices, which only require heat (as opposed to mechanical work) to power a chilled water stream adequate to meet the cooling requirements. Once the heat has been removed from the geothermal water, licensing issues require the water to be re-injected back into the aquifer system. These systems are intended to demonstrate the feasibility of powering large-scale air-conditioning systems from the direct use of geothermal power from Hot Sedimentary Aquifer (HSA) systems. HSA systems underlie many of the world's population centers, and thus have the potential to offset a significant fraction of the world's consumption of electrical power for air-conditioning.
Applications Development for a Parallel COTS Spaceborne Computer
NASA Technical Reports Server (NTRS)
Katz, Daniel S.; Springer, Paul L.; Granat, Robert; Turmon, Michael
2000-01-01
This presentation reviews the Remote Exploration and Experimentation Project (REE) program for utilization of scalable supercomputing technology in space. The implementation of REE will be the use of COTS hardware and software to the maximum extent possible, keeping overhead low. Since COTS systems will be used, with little or no special modification, there will be significant cost reduction.
48 CFR 225.7012 - Restriction on supercomputers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Restriction on supercomputers. 225.7012 Section 225.7012 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... supercomputers. ...
48 CFR 225.7012 - Restriction on supercomputers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Restriction on supercomputers. 225.7012 Section 225.7012 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... supercomputers. ...
48 CFR 225.7012 - Restriction on supercomputers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Restriction on supercomputers. 225.7012 Section 225.7012 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... supercomputers. ...
48 CFR 225.7012 - Restriction on supercomputers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Restriction on supercomputers. 225.7012 Section 225.7012 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... supercomputers. ...
48 CFR 225.7012 - Restriction on supercomputers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Restriction on supercomputers. 225.7012 Section 225.7012 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... supercomputers. ...
Automatic discovery of the communication network topology for building a supercomputer model
NASA Astrophysics Data System (ADS)
Sobolev, Sergey; Stefanov, Konstantin; Voevodin, Vadim
2016-10-01
The Research Computing Center of Lomonosov Moscow State University is developing the Octotron software suite for automatic monitoring and mitigation of emergency situations in supercomputers so as to maximize hardware reliability. The suite is based on a software model of the supercomputer. The model uses a graph to describe the computing system components and their interconnections. One of the most complex components of a supercomputer that needs to be included in the model is its communication network. This work describes the proposed approach for automatically discovering the Ethernet communication network topology in a supercomputer and its description in terms of the Octotron model. This suite automatically detects computing nodes and switches, collects information about them and identifies their interconnections. The application of this approach is demonstrated on the "Lomonosov" and "Lomonosov-2" supercomputers.
TOP500 Supercomputers for June 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack
2004-06-23
23rd Edition of TOP500 List of World's Fastest Supercomputers Released: Japan's Earth Simulator Enters Third Year in Top Position MANNHEIM, Germany; KNOXVILLE, Tenn.;&BERKELEY, Calif. In what has become a closely watched event in the world of high-performance computing, the 23rd edition of the TOP500 list of the world's fastest supercomputers was released today (June 23, 2004) at the International Supercomputer Conference in Heidelberg, Germany.
Topical perspective on massive threading and parallelism.
Farber, Robert M
2011-09-01
Unquestionably computer architectures have undergone a recent and noteworthy paradigm shift that now delivers multi- and many-core systems with tens to many thousands of concurrent hardware processing elements per workstation or supercomputer node. GPGPU (General Purpose Graphics Processor Unit) technology in particular has attracted significant attention as new software development capabilities, namely CUDA (Compute Unified Device Architecture) and OpenCL™, have made it possible for students as well as small and large research organizations to achieve excellent speedup for many applications over more conventional computing architectures. The current scientific literature reflects this shift with numerous examples of GPGPU applications that have achieved one, two, and in some special cases, three-orders of magnitude increased computational performance through the use of massive threading to exploit parallelism. Multi-core architectures are also evolving quickly to exploit both massive-threading and massive-parallelism such as the 1.3 million threads Blue Waters supercomputer. The challenge confronting scientists in planning future experimental and theoretical research efforts--be they individual efforts with one computer or collaborative efforts proposing to use the largest supercomputers in the world is how to capitalize on these new massively threaded computational architectures--especially as not all computational problems will scale to massive parallelism. In particular, the costs associated with restructuring software (and potentially redesigning algorithms) to exploit the parallelism of these multi- and many-threaded machines must be considered along with application scalability and lifespan. This perspective is an overview of the current state of threading and parallelize with some insight into the future. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreepathi, Sarat; Kumar, Jitendra; Mills, Richard T.
A proliferation of data from vast networks of remote sensing platforms (satellites, unmanned aircraft systems (UAS), airborne etc.), observational facilities (meteorological, eddy covariance etc.), state-of-the-art sensors, and simulation models offer unprecedented opportunities for scientific discovery. Unsupervised classification is a widely applied data mining approach to derive insights from such data. However, classification of very large data sets is a complex computational problem that requires efficient numerical algorithms and implementations on high performance computing (HPC) platforms. Additionally, increasing power, space, cooling and efficiency requirements has led to the deployment of hybrid supercomputing platforms with complex architectures and memory hierarchies like themore » Titan system at Oak Ridge National Laboratory. The advent of such accelerated computing architectures offers new challenges and opportunities for big data analytics in general and specifically, large scale cluster analysis in our case. Although there is an existing body of work on parallel cluster analysis, those approaches do not fully meet the needs imposed by the nature and size of our large data sets. Moreover, they had scaling limitations and were mostly limited to traditional distributed memory computing platforms. We present a parallel Multivariate Spatio-Temporal Clustering (MSTC) technique based on k-means cluster analysis that can target hybrid supercomputers like Titan. We developed a hybrid MPI, CUDA and OpenACC implementation that can utilize both CPU and GPU resources on computational nodes. We describe performance results on Titan that demonstrate the scalability and efficacy of our approach in processing large ecological data sets.« less
Automotive applications of superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginsberg, M.
1987-01-01
These proceedings compile papers on supercomputers in the automobile industry. Titles include: An automotive engineer's guide to the effective use of scalar, vector, and parallel computers; fluid mechanics, finite elements, and supercomputers; and Automotive crashworthiness performance on a supercomputer.
NASA Technical Reports Server (NTRS)
Denning, Peter J.
1990-01-01
The scientific tradition of saving all the data from experiments for independent validation and for further investigation is under profound challenge by modern satellite data collectors and by supercomputers. The volume of data is beyond the capacity to store, transmit, and comprehend the data. A promising line of study is discovery machines that study the data at the collection site and transmit statistical summaries of patterns observed. Examples of discovery machines are the Autoclass system and the genetic memory system of NASA-Ames, and the proposal for knowbots by Kahn and Cerf.
A Performance Evaluation of the Cray X1 for Scientific Applications
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Biswas, Rupak; Borrill, Julian; Canning, Andrew; Carter, Jonathan; Djomehri, M. Jahed; Shan, Hongzhang; Skinner, David
2003-01-01
The last decade has witnessed a rapid proliferation of superscalar cache-based microprocessors to build high-end capability and capacity computers because of their generality, scalability, and cost effectiveness. However, the recent development of massively parallel vector systems is having a significant effect on the supercomputing landscape. In this paper, we compare the performance of the recently-released Cray X1 vector system with that of the cacheless NEC SX-6 vector machine, and the superscalar cache-based IBM Power3 and Power4 architectures for scientific applications. Overall results demonstrate that the X1 is quite promising, but performance improvements are expected as the hardware, systems software, and numerical libraries mature. Code reengineering to effectively utilize the complex architecture may also lead to significant efficiency enhancements.
Improving the energy efficiency of sparse linear system solvers on multicore and manycore systems.
Anzt, H; Quintana-Ortí, E S
2014-06-28
While most recent breakthroughs in scientific research rely on complex simulations carried out in large-scale supercomputers, the power draft and energy spent for this purpose is increasingly becoming a limiting factor to this trend. In this paper, we provide an overview of the current status in energy-efficient scientific computing by reviewing different technologies used to monitor power draft as well as power- and energy-saving mechanisms available in commodity hardware. For the particular domain of sparse linear algebra, we analyse the energy efficiency of a broad collection of hardware architectures and investigate how algorithmic and implementation modifications can improve the energy performance of sparse linear system solvers, without negatively impacting their performance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallarno, George; Rogers, James H; Maxwell, Don E
The high computational capability of graphics processing units (GPUs) is enabling and driving the scientific discovery process at large-scale. The world s second fastest supercomputer for open science, Titan, has more than 18,000 GPUs that computational scientists use to perform scientific simu- lations and data analysis. Understanding of GPU reliability characteristics, however, is still in its nascent stage since GPUs have only recently been deployed at large-scale. This paper presents a detailed study of GPU errors and their impact on system operations and applications, describing experiences with the 18,688 GPUs on the Titan supercom- puter as well as lessons learnedmore » in the process of efficient operation of GPUs at scale. These experiences are helpful to HPC sites which already have large-scale GPU clusters or plan to deploy GPUs in the future.« less
Improved Access to Supercomputers Boosts Chemical Applications.
ERIC Educational Resources Information Center
Borman, Stu
1989-01-01
Supercomputing is described in terms of computing power and abilities. The increase in availability of supercomputers for use in chemical calculations and modeling are reported. Efforts of the National Science Foundation and Cray Research are highlighted. (CW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahrens, James P; Patchett, John M; Lo, Li - Ta
2011-01-24
This report provides documentation for the completion of the Los Alamos portion of the ASC Level II 'Visualization on the Supercomputing Platform' milestone. This ASC Level II milestone is a joint milestone between Sandia National Laboratory and Los Alamos National Laboratory. The milestone text is shown in Figure 1 with the Los Alamos portions highlighted in boldfaced text. Visualization and analysis of petascale data is limited by several factors which must be addressed as ACES delivers the Cielo platform. Two primary difficulties are: (1) Performance of interactive rendering, which is the most computationally intensive portion of the visualization process. Formore » terascale platforms, commodity clusters with graphics processors (GPUs) have been used for interactive rendering. For petascale platforms, visualization and rendering may be able to run efficiently on the supercomputer platform itself. (2) I/O bandwidth, which limits how much information can be written to disk. If we simply analyze the sparse information that is saved to disk we miss the opportunity to analyze the rich information produced every timestep by the simulation. For the first issue, we are pursuing in-situ analysis, in which simulations are coupled directly with analysis libraries at runtime. This milestone will evaluate the visualization and rendering performance of current and next generation supercomputers in contrast to GPU-based visualization clusters, and evaluate the perfromance of common analysis libraries coupled with the simulation that analyze and write data to disk during a running simulation. This milestone will explore, evaluate and advance the maturity level of these technologies and their applicability to problems of interest to the ASC program. In conclusion, we improved CPU-based rendering performance by a a factor of 2-10 times on our tests. In addition, we evaluated CPU and CPU-based rendering performance. We encourage production visualization experts to consider using CPU-based rendering solutions when it is appropriate. For example, on remote supercomputers CPU-based rendering can offer a means of viewing data without having to offload the data or geometry onto a CPU-based visualization system. In terms of comparative performance of the CPU and CPU we believe that further optimizations of the performance of both CPU or CPU-based rendering are possible. The simulation community is currently confronting this reality as they work to port their simulations to different hardware architectures. What is interesting about CPU rendering of massive datasets is that for part two decades CPU performance has significantly outperformed CPU-based systems. Based on our advancements, evaluations and explorations we believe that CPU-based rendering has returned as one viable option for the visualization of massive datasets.« less
Federated data storage and management infrastructure
NASA Astrophysics Data System (ADS)
Zarochentsev, A.; Kiryanov, A.; Klimentov, A.; Krasnopevtsev, D.; Hristov, P.
2016-10-01
The Large Hadron Collider (LHC)’ operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe. Computing models for the High Luminosity LHC era anticipate a growth of storage needs of at least orders of magnitude; it will require new approaches in data storage organization and data handling. In our project we address the fundamental problem of designing of architecture to integrate a distributed heterogeneous disk resources for LHC experiments and other data- intensive science applications and to provide access to data from heterogeneous computing facilities. We have prototyped a federated storage for Russian T1 and T2 centers located in Moscow, St.-Petersburg and Gatchina, as well as Russian / CERN federation. We have conducted extensive tests of underlying network infrastructure and storage endpoints with synthetic performance measurement tools as well as with HENP-specific workloads, including the ones running on supercomputing platform, cloud computing and Grid for ALICE and ATLAS experiments. We will present our current accomplishments with running LHC data analysis remotely and locally to demonstrate our ability to efficiently use federated data storage experiment wide within National Academic facilities for High Energy and Nuclear Physics as well as for other data-intensive science applications, such as bio-informatics.
Towards Efficient Supercomputing: Searching for the Right Efficiency Metric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Chung-Hsing; Kuehn, Jeffery A; Poole, Stephen W
2012-01-01
The efficiency of supercomputing has traditionally been in the execution time. In early 2000 s, the concept of total cost of ownership was re-introduced, with the introduction of efficiency measure to include aspects such as energy and space. Yet the supercomputing community has never agreed upon a metric that can cover these aspects altogether and also provide a fair basis for comparison. This paper exam- ines the metrics that have been proposed in the past decade, and proposes a vector-valued metric for efficient supercom- puting. Using this metric, the paper presents a study of where the supercomputing industry has beenmore » and how it stands today with respect to efficient supercomputing.« less
NASA Astrophysics Data System (ADS)
Davini, Paolo; von Hardenberg, Jost; Corti, Susanna; Christensen, Hannah M.; Juricke, Stephan; Subramanian, Aneesh; Watson, Peter A. G.; Weisheimer, Antje; Palmer, Tim N.
2017-03-01
The Climate SPHINX (Stochastic Physics HIgh resolutioN eXperiments) project is a comprehensive set of ensemble simulations aimed at evaluating the sensitivity of present and future climate to model resolution and stochastic parameterisation. The EC-Earth Earth system model is used to explore the impact of stochastic physics in a large ensemble of 30-year climate integrations at five different atmospheric horizontal resolutions (from 125 up to 16 km). The project includes more than 120 simulations in both a historical scenario (1979-2008) and a climate change projection (2039-2068), together with coupled transient runs (1850-2100). A total of 20.4 million core hours have been used, made available from a single year grant from PRACE (the Partnership for Advanced Computing in Europe), and close to 1.5 PB of output data have been produced on SuperMUC IBM Petascale System at the Leibniz Supercomputing Centre (LRZ) in Garching, Germany. About 140 TB of post-processed data are stored on the CINECA supercomputing centre archives and are freely accessible to the community thanks to an EUDAT data pilot project. This paper presents the technical and scientific set-up of the experiments, including the details on the forcing used for the simulations performed, defining the SPHINX v1.0 protocol. In addition, an overview of preliminary results is given. An improvement in the simulation of Euro-Atlantic atmospheric blocking following resolution increase is observed. It is also shown that including stochastic parameterisation in the low-resolution runs helps to improve some aspects of the tropical climate - specifically the Madden-Julian Oscillation and the tropical rainfall variability. These findings show the importance of representing the impact of small-scale processes on the large-scale climate variability either explicitly (with high-resolution simulations) or stochastically (in low-resolution simulations).
NASA's supercomputing experience
NASA Technical Reports Server (NTRS)
Bailey, F. Ron
1990-01-01
A brief overview of NASA's recent experience in supercomputing is presented from two perspectives: early systems development and advanced supercomputing applications. NASA's role in supercomputing systems development is illustrated by discussion of activities carried out by the Numerical Aerodynamical Simulation Program. Current capabilities in advanced technology applications are illustrated with examples in turbulence physics, aerodynamics, aerothermodynamics, chemistry, and structural mechanics. Capabilities in science applications are illustrated by examples in astrophysics and atmospheric modeling. Future directions and NASA's new High Performance Computing Program are briefly discussed.
OpenMP Performance on the Columbia Supercomputer
NASA Technical Reports Server (NTRS)
Haoqiang, Jin; Hood, Robert
2005-01-01
This presentation discusses Columbia World Class Supercomputer which is one of the world's fastest supercomputers providing 61 TFLOPs (10/20/04). Conceived, designed, built, and deployed in just 120 days. A 20-node supercomputer built on proven 512-processor nodes. The largest SGI system in the world with over 10,000 Intel Itanium 2 processors and provides the largest node size incorporating commodity parts (512) and the largest shared-memory environment (2048) with 88% efficiency tops the scalar systems on the Top500 list.
Supercomputer networking for space science applications
NASA Technical Reports Server (NTRS)
Edelson, B. I.
1992-01-01
The initial design of a supercomputer network topology including the design of the communications nodes along with the communications interface hardware and software is covered. Several space science applications that are proposed experiments by GSFC and JPL for a supercomputer network using the NASA ACTS satellite are also reported.
Computing through Scientific Abstractions in SysBioPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, George; Stephan, Eric G.; Gracio, Deborah K.
2004-10-13
Today, biologists and bioinformaticists have a tremendous amount of computational power at their disposal. With the availability of supercomputers, burgeoning scientific databases and digital libraries such as GenBank and PubMed, and pervasive computational environments such as the Grid, biologists have access to a wealth of computational capabilities and scientific data at hand. Yet, the rapid development of computational technologies has far exceeded the typical biologist’s ability to effectively apply the technology in their research. Computational sciences research and development efforts such as the Biology Workbench, BioSPICE (Biological Simulation Program for Intra-Cellular Evaluation), and BioCoRE (Biological Collaborative Research Environment) are importantmore » in connecting biologists and their scientific problems to computational infrastructures. On the Computational Cell Environment and Heuristic Entity-Relationship Building Environment projects at the Pacific Northwest National Laboratory, we are jointly developing a new breed of scientific problem solving environment called SysBioPSE that will allow biologists to access and apply computational resources in the scientific research context. In contrast to other computational science environments, SysBioPSE operates as an abstraction layer above a computational infrastructure. The goal of SysBioPSE is to allow biologists to apply computational resources in the context of the scientific problems they are addressing and the scientific perspectives from which they conduct their research. More specifically, SysBioPSE allows biologists to capture and represent scientific concepts and theories and experimental processes, and to link these views to scientific applications, data repositories, and computer systems.« less
Most Social Scientists Shun Free Use of Supercomputers.
ERIC Educational Resources Information Center
Kiernan, Vincent
1998-01-01
Social scientists, who frequently complain that the federal government spends too little on them, are passing up what scholars in the physical and natural sciences see as the government's best give-aways: free access to supercomputers. Some social scientists say the supercomputers are difficult to use; others find desktop computers provide…
TOP500 Supercomputers for November 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack
2003-11-16
22nd Edition of TOP500 List of World s Fastest Supercomputers Released MANNHEIM, Germany; KNOXVILLE, Tenn.; BERKELEY, Calif. In what has become a much-anticipated event in the world of high-performance computing, the 22nd edition of the TOP500 list of the worlds fastest supercomputers was released today (November 16, 2003). The Earth Simulator supercomputer retains the number one position with its Linpack benchmark performance of 35.86 Tflop/s (''teraflops'' or trillions of calculations per second). It was built by NEC and installed last year at the Earth Simulator Center in Yokohama, Japan.
An Application-Based Performance Evaluation of NASAs Nebula Cloud Computing Platform
NASA Technical Reports Server (NTRS)
Saini, Subhash; Heistand, Steve; Jin, Haoqiang; Chang, Johnny; Hood, Robert T.; Mehrotra, Piyush; Biswas, Rupak
2012-01-01
The high performance computing (HPC) community has shown tremendous interest in exploring cloud computing as it promises high potential. In this paper, we examine the feasibility, performance, and scalability of production quality scientific and engineering applications of interest to NASA on NASA's cloud computing platform, called Nebula, hosted at Ames Research Center. This work represents the comprehensive evaluation of Nebula using NUTTCP, HPCC, NPB, I/O, and MPI function benchmarks as well as four applications representative of the NASA HPC workload. Specifically, we compare Nebula performance on some of these benchmarks and applications to that of NASA s Pleiades supercomputer, a traditional HPC system. We also investigate the impact of virtIO and jumbo frames on interconnect performance. Overall results indicate that on Nebula (i) virtIO and jumbo frames improve network bandwidth by a factor of 5x, (ii) there is a significant virtualization layer overhead of about 10% to 25%, (iii) write performance is lower by a factor of 25x, (iv) latency for short MPI messages is very high, and (v) overall performance is 15% to 48% lower than that on Pleiades for NASA HPC applications. We also comment on the usability of the cloud platform.
Computational steering of GEM based detector simulations
NASA Astrophysics Data System (ADS)
Sheharyar, Ali; Bouhali, Othmane
2017-10-01
Gas based detector R&D relies heavily on full simulation of detectors and their optimization before final prototypes can be built and tested. These simulations in particular those with complex scenarios such as those involving high detector voltages or gas with larger gains are computationally intensive may take several days or weeks to complete. These long-running simulations usually run on the high-performance computers in batch mode. If the results lead to unexpected behavior, then the simulation might be rerun with different parameters. However, the simulations (or jobs) may have to wait in a queue until they get a chance to run again because the supercomputer is a shared resource that maintains a queue of other user programs as well and executes them as time and priorities permit. It may result in inefficient resource utilization and increase in the turnaround time for the scientific experiment. To overcome this issue, the monitoring of the behavior of a simulation, while it is running (or live), is essential. In this work, we employ the computational steering technique by coupling the detector simulations with a visualization package named VisIt to enable the exploration of the live data as it is produced by the simulation.
NASA high performance computing and communications program
NASA Technical Reports Server (NTRS)
Holcomb, Lee; Smith, Paul; Hunter, Paul
1993-01-01
The National Aeronautics and Space Administration's HPCC program is part of a new Presidential initiative aimed at producing a 1000-fold increase in supercomputing speed and a 100-fold improvement in available communications capability by 1997. As more advanced technologies are developed under the HPCC program, they will be used to solve NASA's 'Grand Challenge' problems, which include improving the design and simulation of advanced aerospace vehicles, allowing people at remote locations to communicate more effectively and share information, increasing scientist's abilities to model the Earth's climate and forecast global environmental trends, and improving the development of advanced spacecraft. NASA's HPCC program is organized into three projects which are unique to the agency's mission: the Computational Aerosciences (CAS) project, the Earth and Space Sciences (ESS) project, and the Remote Exploration and Experimentation (REE) project. An additional project, the Basic Research and Human Resources (BRHR) project exists to promote long term research in computer science and engineering and to increase the pool of trained personnel in a variety of scientific disciplines. This document presents an overview of the objectives and organization of these projects as well as summaries of individual research and development programs within each project.
Suplatov, Dmitry; Popova, Nina; Zhumatiy, Sergey; Voevodin, Vladimir; Švedas, Vytas
2016-04-01
Rapid expansion of online resources providing access to genomic, structural, and functional information associated with biological macromolecules opens an opportunity to gain a deeper understanding of the mechanisms of biological processes due to systematic analysis of large datasets. This, however, requires novel strategies to optimally utilize computer processing power. Some methods in bioinformatics and molecular modeling require extensive computational resources. Other algorithms have fast implementations which take at most several hours to analyze a common input on a modern desktop station, however, due to multiple invocations for a large number of subtasks the full task requires a significant computing power. Therefore, an efficient computational solution to large-scale biological problems requires both a wise parallel implementation of resource-hungry methods as well as a smart workflow to manage multiple invocations of relatively fast algorithms. In this work, a new computer software mpiWrapper has been developed to accommodate non-parallel implementations of scientific algorithms within the parallel supercomputing environment. The Message Passing Interface has been implemented to exchange information between nodes. Two specialized threads - one for task management and communication, and another for subtask execution - are invoked on each processing unit to avoid deadlock while using blocking calls to MPI. The mpiWrapper can be used to launch all conventional Linux applications without the need to modify their original source codes and supports resubmission of subtasks on node failure. We show that this approach can be used to process huge amounts of biological data efficiently by running non-parallel programs in parallel mode on a supercomputer. The C++ source code and documentation are available from http://biokinet.belozersky.msu.ru/mpiWrapper .
Solving global shallow water equations on heterogeneous supercomputers
Fu, Haohuan; Gan, Lin; Yang, Chao; Xue, Wei; Wang, Lanning; Wang, Xinliang; Huang, Xiaomeng; Yang, Guangwen
2017-01-01
The scientific demand for more accurate modeling of the climate system calls for more computing power to support higher resolutions, inclusion of more component models, more complicated physics schemes, and larger ensembles. As the recent improvements in computing power mostly come from the increasing number of nodes in a system and the integration of heterogeneous accelerators, how to scale the computing problems onto more nodes and various kinds of accelerators has become a challenge for the model development. This paper describes our efforts on developing a highly scalable framework for performing global atmospheric modeling on heterogeneous supercomputers equipped with various accelerators, such as GPU (Graphic Processing Unit), MIC (Many Integrated Core), and FPGA (Field Programmable Gate Arrays) cards. We propose a generalized partition scheme of the problem domain, so as to keep a balanced utilization of both CPU resources and accelerator resources. With optimizations on both computing and memory access patterns, we manage to achieve around 8 to 20 times speedup when comparing one hybrid GPU or MIC node with one CPU node with 12 cores. Using a customized FPGA-based data-flow engines, we see the potential to gain another 5 to 8 times improvement on performance. On heterogeneous supercomputers, such as Tianhe-1A and Tianhe-2, our framework is capable of achieving ideally linear scaling efficiency, and sustained double-precision performances of 581 Tflops on Tianhe-1A (using 3750 nodes) and 3.74 Pflops on Tianhe-2 (using 8644 nodes). Our study also provides an evaluation on the programming paradigm of various accelerator architectures (GPU, MIC, FPGA) for performing global atmospheric simulation, to form a picture about both the potential performance benefits and the programming efforts involved. PMID:28282428
Tools for 3D scientific visualization in computational aerodynamics
NASA Technical Reports Server (NTRS)
Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val
1989-01-01
The purpose is to describe the tools and techniques in use at the NASA Ames Research Center for performing visualization of computational aerodynamics, for example visualization of flow fields from computer simulations of fluid dynamics about vehicles such as the Space Shuttle. The hardware used for visualization is a high-performance graphics workstation connected to a super computer with a high speed channel. At present, the workstation is a Silicon Graphics IRIS 3130, the supercomputer is a CRAY2, and the high speed channel is a hyperchannel. The three techniques used for visualization are post-processing, tracking, and steering. Post-processing analysis is done after the simulation. Tracking analysis is done during a simulation but is not interactive, whereas steering analysis involves modifying the simulation interactively during the simulation. Using post-processing methods, a flow simulation is executed on a supercomputer and, after the simulation is complete, the results of the simulation are processed for viewing. The software in use and under development at NASA Ames Research Center for performing these types of tasks in computational aerodynamics is described. Workstation performance issues, benchmarking, and high-performance networks for this purpose are also discussed as well as descriptions of other hardware for digital video and film recording.
Hu, Hao; Hong, Xingchen; Terstriep, Jeff; Liu, Yan; Finn, Michael P.; Rush, Johnathan; Wendel, Jeffrey; Wang, Shaowen
2016-01-01
Geospatial data, often embedded with geographic references, are important to many application and science domains, and represent a major type of big data. The increased volume and diversity of geospatial data have caused serious usability issues for researchers in various scientific domains, which call for innovative cyberGIS solutions. To address these issues, this paper describes a cyberGIS community data service framework to facilitate geospatial big data access, processing, and sharing based on a hybrid supercomputer architecture. Through the collaboration between the CyberGIS Center at the University of Illinois at Urbana-Champaign (UIUC) and the U.S. Geological Survey (USGS), a community data service for accessing, customizing, and sharing digital elevation model (DEM) and its derived datasets from the 10-meter national elevation dataset, namely TopoLens, is created to demonstrate the workflow integration of geospatial big data sources, computation, analysis needed for customizing the original dataset for end user needs, and a friendly online user environment. TopoLens provides online access to precomputed and on-demand computed high-resolution elevation data by exploiting the ROGER supercomputer. The usability of this prototype service has been acknowledged in community evaluation.
Computing at the speed limit (supercomputers)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernhard, R.
1982-07-01
The author discusses how unheralded efforts in the United States, mainly in universities, have removed major stumbling blocks to building cost-effective superfast computers for scientific and engineering applications within five years. These computers would have sustained speeds of billions of floating-point operations per second (flops), whereas with the fastest machines today the top sustained speed is only 25 million flops, with bursts to 160 megaflops. Cost-effective superfast machines can be built because of advances in very large-scale integration and the special software needed to program the new machines. VLSI greatly reduces the cost per unit of computing power. The developmentmore » of such computers would come at an opportune time. Although the US leads the world in large-scale computer technology, its supremacy is now threatened, not surprisingly, by the Japanese. Publicized reports indicate that the Japanese government is funding a cooperative effort by commercial computer manufacturers to develop superfast computers-about 1000 times faster than modern supercomputers. The US computer industry, by contrast, has balked at attempting to boost computer power so sharply because of the uncertain market for the machines and the failure of similar projects in the past to show significant results.« less
Performance Assessment Institute-NV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombardo, Joesph
2012-12-31
The National Supercomputing Center for Energy and the Environment’s intention is to purchase a multi-purpose computer cluster in support of the Performance Assessment Institute (PA Institute). The PA Institute will serve as a research consortium located in Las Vegas Nevada with membership that includes: national laboratories, universities, industry partners, and domestic and international governments. This center will provide a one-of-a-kind centralized facility for the accumulation of information for use by Institutions of Higher Learning, the U.S. Government, and Regulatory Agencies and approved users. This initiative will enhance and extend High Performance Computing (HPC) resources in Nevada to support critical nationalmore » and international needs in "scientific confirmation". The PA Institute will be promoted as the leading Modeling, Learning and Research Center worldwide. The program proposes to utilize the existing supercomputing capabilities and alliances of the University of Nevada Las Vegas as a base, and to extend these resource and capabilities through a collaborative relationship with its membership. The PA Institute will provide an academic setting for interactive sharing, learning, mentoring and monitoring of multi-disciplinary performance assessment and performance confirmation information. The role of the PA Institute is to facilitate research, knowledge-increase, and knowledge-sharing among users.« less
An efficient framework for Java data processing systems in HPC environments
NASA Astrophysics Data System (ADS)
Fries, Aidan; Castañeda, Javier; Isasi, Yago; Taboada, Guillermo L.; Portell de Mora, Jordi; Sirvent, Raül
2011-11-01
Java is a commonly used programming language, although its use in High Performance Computing (HPC) remains relatively low. One of the reasons is a lack of libraries offering specific HPC functions to Java applications. In this paper we present a Java-based framework, called DpcbTools, designed to provide a set of functions that fill this gap. It includes a set of efficient data communication functions based on message-passing, thus providing, when a low latency network such as Myrinet is available, higher throughputs and lower latencies than standard solutions used by Java. DpcbTools also includes routines for the launching, monitoring and management of Java applications on several computing nodes by making use of JMX to communicate with remote Java VMs. The Gaia Data Processing and Analysis Consortium (DPAC) is a real case where scientific data from the ESA Gaia astrometric satellite will be entirely processed using Java. In this paper we describe the main elements of DPAC and its usage of the DpcbTools framework. We also assess the usefulness and performance of DpcbTools through its performance evaluation and the analysis of its impact on some DPAC systems deployed in the MareNostrum supercomputer (Barcelona Supercomputing Center).
Cellular automaton supercomputing
NASA Technical Reports Server (NTRS)
Wolfram, Stephen
1987-01-01
Many of the models now used in science and engineering are over a century old. And most of them can be implemented on modern digital computers only with considerable difficulty. Some new basic models are discussed which are much more directly suitable for digital computer simulation. The fundamental principle is that the models considered herein are as suitable as possible for implementation on digital computers. It is then a matter of scientific analysis to determine whether such models can reproduce the behavior seen in physical and other systems. Such analysis was carried out in several cases, and the results are very encouraging.
Modeling Subsurface Reactive Flows Using Leadership-Class Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Richard T; Hammond, Glenn; Lichtner, Peter
2009-01-01
We describe our experiences running PFLOTRAN - a code for simulation of coupled hydro-thermal-chemical processes in variably saturated, non-isothermal, porous media - on leadership-class supercomputers, including initial experiences running on the petaflop incarnation of Jaguar, the Cray XT5 at the National Center for Computational Sciences at Oak Ridge National Laboratory. PFLOTRAN utilizes fully implicit time-stepping and is built on top of the Portable, Extensible Toolkit for Scientific Computation (PETSc). We discuss some of the hurdles to 'at scale' performance with PFLOTRAN and the progress we have made in overcoming them on leadership-class computer architectures.
NASA Astrophysics Data System (ADS)
Strelkov, S. A.; Sushkevich, T. A.; Maksakova, S. V.
2017-11-01
We are talking about russian achievements of the world level in the theory of radiation transfer, taking into account its polarization in natural media and the current scientific potential developing in Russia, which adequately provides the methodological basis for theoretically-calculated research of radiation processes and radiation fields in natural media using supercomputers and mass parallelism. A new version of the matrix transfer operator is proposed for solving problems of polarized radiation transfer in heterogeneous media by the method of influence functions, when deterministic and stochastic methods can be combined.
Distributed user services for supercomputers
NASA Technical Reports Server (NTRS)
Sowizral, Henry A.
1989-01-01
User-service operations at supercomputer facilities are examined. The question is whether a single, possibly distributed, user-services organization could be shared by NASA's supercomputer sites in support of a diverse, geographically dispersed, user community. A possible structure for such an organization is identified as well as some of the technologies needed in operating such an organization.
NASA Technical Reports Server (NTRS)
Babrauckas, Theresa
2000-01-01
The Affordable High Performance Computing (AHPC) project demonstrated that high-performance computing based on a distributed network of computer workstations is a cost-effective alternative to vector supercomputers for running CPU and memory intensive design and analysis tools. The AHPC project created an integrated system called a Network Supercomputer. By connecting computer work-stations through a network and utilizing the workstations when they are idle, the resulting distributed-workstation environment has the same performance and reliability levels as the Cray C90 vector Supercomputer at less than 25 percent of the C90 cost. In fact, the cost comparison between a Cray C90 Supercomputer and Sun workstations showed that the number of distributed networked workstations equivalent to a C90 costs approximately 8 percent of the C90.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, A.
1986-03-10
Supercomputing software is moving into high gear, spurred by the rapid spread of supercomputers into new applications. The critical challenge is how to develop tools that will make it easier for programmers to write applications that take advantage of vectorizing in the classical supercomputer and the parallelism that is emerging in supercomputers and minisupercomputers. Writing parallel software is a challenge that every programmer must face because parallel architectures are springing up across the range of computing. Cray is developing a host of tools for programmers. Tools to support multitasking (in supercomputer parlance, multitasking means dividing up a single program tomore » run on multiple processors) are high on Cray's agenda. On tap for multitasking is Premult, dubbed a microtasking tool. As a preprocessor for Cray's CFT77 FORTRAN compiler, Premult will provide fine-grain multitasking.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchill, R. Michael
Apache Spark is explored as a tool for analyzing large data sets from the magnetic fusion simulation code XGCI. Implementation details of Apache Spark on the NERSC Edison supercomputer are discussed, including binary file reading, and parameter setup. Here, an unsupervised machine learning algorithm, k-means clustering, is applied to XGCI particle distribution function data, showing that highly turbulent spatial regions do not have common coherent structures, but rather broad, ring-like structures in velocity space.
Qualifying for the Green500: Experience with the newest generation of supercomputers at LANL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yilk, Todd
The High Performance Computing Division of Los Alamos National Laboratory recently brought four new supercomputing platforms on line: Trinity with separate partitions built around the Haswell and Knights Landing CPU architectures for capability computing and Grizzly, Fire, and Ice for capacity computing applications. The power monitoring infrastructure of these machines is significantly enhanced over previous supercomputing generations at LANL and all were qualified at the highest level of the Green500 benchmark. Here, this paper discusses supercomputing at LANL, the Green500 benchmark, and notes on our experience meeting the Green500's reporting requirements.
Qualifying for the Green500: Experience with the newest generation of supercomputers at LANL
Yilk, Todd
2018-02-17
The High Performance Computing Division of Los Alamos National Laboratory recently brought four new supercomputing platforms on line: Trinity with separate partitions built around the Haswell and Knights Landing CPU architectures for capability computing and Grizzly, Fire, and Ice for capacity computing applications. The power monitoring infrastructure of these machines is significantly enhanced over previous supercomputing generations at LANL and all were qualified at the highest level of the Green500 benchmark. Here, this paper discusses supercomputing at LANL, the Green500 benchmark, and notes on our experience meeting the Green500's reporting requirements.
Non-preconditioned conjugate gradient on cell and FPGA based hybrid supercomputer nodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubois, David H; Dubois, Andrew J; Boorman, Thomas M
2009-01-01
This work presents a detailed implementation of a double precision, non-preconditioned, Conjugate Gradient algorithm on a Roadrunner heterogeneous supercomputer node. These nodes utilize the Cell Broadband Engine Architecture{sup TM} in conjunction with x86 Opteron{sup TM} processors from AMD. We implement a common Conjugate Gradient algorithm, on a variety of systems, to compare and contrast performance. Implementation results are presented for the Roadrunner hybrid supercomputer, SRC Computers, Inc. MAPStation SRC-6 FPGA enhanced hybrid supercomputer, and AMD Opteron only. In all hybrid implementations wall clock time is measured, including all transfer overhead and compute timings.
Non-preconditioned conjugate gradient on cell and FPCA-based hybrid supercomputer nodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubois, David H; Dubois, Andrew J; Boorman, Thomas M
2009-03-10
This work presents a detailed implementation of a double precision, Non-Preconditioned, Conjugate Gradient algorithm on a Roadrunner heterogeneous supercomputer node. These nodes utilize the Cell Broadband Engine Architecture{trademark} in conjunction with x86 Opteron{trademark} processors from AMD. We implement a common Conjugate Gradient algorithm, on a variety of systems, to compare and contrast performance. Implementation results are presented for the Roadrunner hybrid supercomputer, SRC Computers, Inc. MAPStation SRC-6 FPGA enhanced hybrid supercomputer, and AMD Opteron only. In all hybrid implementations wall clock time is measured, including all transfer overhead and compute timings.
Advanced flight computers for planetary exploration
NASA Technical Reports Server (NTRS)
Stephenson, R. Rhoads
1988-01-01
Research concerning flight computers for use on interplanetary probes is reviewed. The history of these computers from the Viking mission to the present is outlined. The differences between ground commercial computers and computers for planetary exploration are listed. The development of a computer for the Mariner Mark II comet rendezvous asteroid flyby mission is described. Various aspects of recently developed computer systems are examined, including the Max real time, embedded computer, a hypercube distributed supercomputer, a SAR data processor, a processor for the High Resolution IR Imaging Spectrometer, and a robotic vision multiresolution pyramid machine for processsing images obtained by a Mars Rover.
ERIC Educational Resources Information Center
General Accounting Office, Washington, DC. Information Management and Technology Div.
This report was prepared in response to a request for information on supercomputers and high-speed networks from the Senate Committee on Commerce, Science, and Transportation, and the House Committee on Science, Space, and Technology. The following information was requested: (1) examples of how various industries are using supercomputers to…
Supercomputer Provides Molecular Insight into Cellulose (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-02-01
Groundbreaking research at the National Renewable Energy Laboratory (NREL) has used supercomputing simulations to calculate the work that enzymes must do to deconstruct cellulose, which is a fundamental step in biomass conversion technologies for biofuels production. NREL used the new high-performance supercomputer Red Mesa to conduct several million central processing unit (CPU) hours of simulation.
Argonne Leadership Computing Facility 2011 annual report : Shaping future supercomputing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papka, M.; Messina, P.; Coffey, R.
The ALCF's Early Science Program aims to prepare key applications for the architecture and scale of Mira and to solidify libraries and infrastructure that will pave the way for other future production applications. Two billion core-hours have been allocated to 16 Early Science projects on Mira. The projects, in addition to promising delivery of exciting new science, are all based on state-of-the-art, petascale, parallel applications. The project teams, in collaboration with ALCF staff and IBM, have undertaken intensive efforts to adapt their software to take advantage of Mira's Blue Gene/Q architecture, which, in a number of ways, is a precursormore » to future high-performance-computing architecture. The Argonne Leadership Computing Facility (ALCF) enables transformative science that solves some of the most difficult challenges in biology, chemistry, energy, climate, materials, physics, and other scientific realms. Users partnering with ALCF staff have reached research milestones previously unattainable, due to the ALCF's world-class supercomputing resources and expertise in computation science. In 2011, the ALCF's commitment to providing outstanding science and leadership-class resources was honored with several prestigious awards. Research on multiscale brain blood flow simulations was named a Gordon Bell Prize finalist. Intrepid, the ALCF's BG/P system, ranked No. 1 on the Graph 500 list for the second consecutive year. The next-generation BG/Q prototype again topped the Green500 list. Skilled experts at the ALCF enable researchers to conduct breakthrough science on the Blue Gene system in key ways. The Catalyst Team matches project PIs with experienced computational scientists to maximize and accelerate research in their specific scientific domains. The Performance Engineering Team facilitates the effective use of applications on the Blue Gene system by assessing and improving the algorithms used by applications and the techniques used to implement those algorithms. The Data Analytics and Visualization Team lends expertise in tools and methods for high-performance, post-processing of large datasets, interactive data exploration, batch visualization, and production visualization. The Operations Team ensures that system hardware and software work reliably and optimally; system tools are matched to the unique system architectures and scale of ALCF resources; the entire system software stack works smoothly together; and I/O performance issues, bug fixes, and requests for system software are addressed. The User Services and Outreach Team offers frontline services and support to existing and potential ALCF users. The team also provides marketing and outreach to users, DOE, and the broader community.« less
Teaching vs. Preaching: Complex Climate Shown Simply
NASA Astrophysics Data System (ADS)
Unger, M.; Besser, N.
2013-12-01
Stepping outside of traditional educational venues to reach people in ways they can relate to is critical in engaging the public in topics that are complex and subtle, particularly those that have become polarized and misunderstood. The National Center for Atmospheric Research (NCAR) recently designed a visitor center for its new supercomputing facility that incorporates a variety of elements intended to draw visitors in, pique their curiosity, and invite them to explore the world of climate science from a fresh perspective. We made use of video storytelling, highlighting the people at the heart of the research, to present information in a conversational tone while captivating visitors with stunning images and music. We also designed interactive games to illustrate concepts like parallel processing, and how those, in turn, apply to understanding climate. And in addition to more traditional kinesthetic displays, we are exploring ways to use social media as a means of interacting with our audiences. One of the newer modes of communication we've adopted has been cartoon storytelling. Two dimensional cartoon animation has strong cultural connotations of levity and fun. For this reason it has proven to be a particularly useful tool in communicating climate science as it disarms the viewer from the apprehension of trying to understand a great deal of scientific jargon. By crafting key concepts into scripts and using appropriate metaphors with a dash of humor we have been able to reach a far broader audience without sacrificing the science or the message.
On-demand Simulation of Atmospheric Transport Processes on the AlpEnDAC Cloud
NASA Astrophysics Data System (ADS)
Hachinger, S.; Harsch, C.; Meyer-Arnek, J.; Frank, A.; Heller, H.; Giemsa, E.
2016-12-01
The "Alpine Environmental Data Analysis Centre" (AlpEnDAC) develops a data-analysis platform for high-altitude research facilities within the "Virtual Alpine Observatory" project (VAO). This platform, with its web portal, will support use cases going much beyond data management: On user request, the data are augmented with "on-demand" simulation results, such as air-parcel trajectories for tracing down the source of pollutants when they appear in high concentration. The respective back-end mechanism uses the Compute Cloud of the Leibniz Supercomputing Centre (LRZ) to transparently calculate results requested by the user, as far as they have not yet been stored in AlpEnDAC. The queuing-system operation model common in supercomputing is replaced by a model in which Virtual Machines (VMs) on the cloud are automatically created/destroyed, providing the necessary computing power immediately on demand. From a security point of view, this allows to perform simulations in a sandbox defined by the VM configuration, without direct access to a computing cluster. Within few minutes, the user receives conveniently visualized results. The AlpEnDAC infrastructure is distributed among two participating institutes [front-end at German Aerospace Centre (DLR), simulation back-end at LRZ], requiring an efficient mechanism for synchronization of measured and augmented data. We discuss our iRODS-based solution for these data-management tasks as well as the general AlpEnDAC framework. Our cloud-based offerings aim at making scientific computing for our users much more convenient and flexible than it has been, and to allow scientists without a broad background in scientific computing to benefit from complex numerical simulations.
NASA Technical Reports Server (NTRS)
Himer, J. T.
1992-01-01
Fortran has largely enjoyed prominence for the past few decades as the computer programming language of choice for numerically intensive scientific, engineering, and process control applications. Fortran's well understood static language syntax has allowed resulting parsers and compiler optimizing technologies to often generate among the most efficient and fastest run-time executables, particularly on high-end scalar and vector supercomputers. Computing architectures and paradigms have changed considerably since the last ANSI/ISO Fortran release in 1978, and while FORTRAN 77 has more than survived, it's aged features provide only partial functionality for today's demanding computing environments. The simple block procedural languages have been necessarily evolving, or giving way, to specialized supercomputing, network resource, and object-oriented paradigms. To address these new computing demands, ANSI has worked for the last 12-years with three international public reviews to deliver Fortran 90. Fortran 90 has superseded and replaced ISO FORTRAN 77 internationally as the sole Fortran standard; while in the US, Fortran 90 is expected to be adopted as the ANSI standard this summer, coexisting with ANSI FORTRAN 77 until at least 1996. The development path and current state of Fortran will be briefly described highlighting the many new Fortran 90 syntactic and semantic additions which support (among others): free form source; array syntax; new control structures; modules and interfaces; pointers; derived data types; dynamic memory; enhanced I/O; operator overloading; data abstraction; user optional arguments; new intrinsics for array, bit manipulation, and system inquiry; and enhanced portability through better generic control of underlying system arithmetic models. Examples from dynamical astronomy, signal and image processing will attempt to illustrate Fortran 90's applicability to today's general scalar, vector, and parallel scientific and engineering requirements and object oriented programming paradigms. Time permitting, current work proceeding on the future development of Fortran 2000 and collateral standards will be introduced.
Input/output behavior of supercomputing applications
NASA Technical Reports Server (NTRS)
Miller, Ethan L.
1991-01-01
The collection and analysis of supercomputer I/O traces and their use in a collection of buffering and caching simulations are described. This serves two purposes. First, it gives a model of how individual applications running on supercomputers request file system I/O, allowing system designer to optimize I/O hardware and file system algorithms to that model. Second, the buffering simulations show what resources are needed to maximize the CPU utilization of a supercomputer given a very bursty I/O request rate. By using read-ahead and write-behind in a large solid stated disk, one or two applications were sufficient to fully utilize a Cray Y-MP CPU.
2017-12-08
Oct. 29, 2012 – A day before landfall, Sandy intensified into a Category 2 superstorm nearly 1,000 miles wide. Credit: NASA's Goddard Space Flight Center and NASA Center for Climate Simulation Video and images courtesy of NASA/GSFC/William Putman -- A NASA computer model simulates the astonishing track and forceful winds of Hurricane Sandy. Hurricane Sandy pummeled the East Coast late in 2012’s Atlantic hurricane season, causing 159 deaths and $70 billion in damages. Days before landfall, forecasts of its trajectory were still being made. Some computer models showed that a trough in the jet stream would kick the monster storm away from land and out to sea. Among the earliest to predict its true course was NASA’s GEOS-5 global atmosphere model. The model works by dividing Earth’s atmosphere into a virtual grid of stacked boxes. A supercomputer then solves mathematical equations inside each box to create a weather forecast predicting Sandy’s structure, path and other traits. The NASA model not only produced an accurate track of Sandy, but also captured fine-scale details of the storm’s changing intensity and winds. Watch the video to see it for yourself. For more information, please visit: gmao.gsfc.nasa.gov/research/atmosphericassim/tracking_hur... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Standish, Kristopher A; Carland, Tristan M; Lockwood, Glenn K; Pfeiffer, Wayne; Tatineni, Mahidhar; Huang, C Chris; Lamberth, Sarah; Cherkas, Yauheniya; Brodmerkel, Carrie; Jaeger, Ed; Smith, Lance; Rajagopal, Gunaretnam; Curran, Mark E; Schork, Nicholas J
2015-09-22
Next-generation sequencing (NGS) technologies have become much more efficient, allowing whole human genomes to be sequenced faster and cheaper than ever before. However, processing the raw sequence reads associated with NGS technologies requires care and sophistication in order to draw compelling inferences about phenotypic consequences of variation in human genomes. It has been shown that different approaches to variant calling from NGS data can lead to different conclusions. Ensuring appropriate accuracy and quality in variant calling can come at a computational cost. We describe our experience implementing and evaluating a group-based approach to calling variants on large numbers of whole human genomes. We explore the influence of many factors that may impact the accuracy and efficiency of group-based variant calling, including group size, the biogeographical backgrounds of the individuals who have been sequenced, and the computing environment used. We make efficient use of the Gordon supercomputer cluster at the San Diego Supercomputer Center by incorporating job-packing and parallelization considerations into our workflow while calling variants on 437 whole human genomes generated as part of large association study. We ultimately find that our workflow resulted in high-quality variant calls in a computationally efficient manner. We argue that studies like ours should motivate further investigations combining hardware-oriented advances in computing systems with algorithmic developments to tackle emerging 'big data' problems in biomedical research brought on by the expansion of NGS technologies.
Prospects for Boiling of Subcooled Dielectric Liquids for Supercomputer Cooling
NASA Astrophysics Data System (ADS)
Zeigarnik, Yu. A.; Vasil'ev, N. V.; Druzhinin, E. A.; Kalmykov, I. V.; Kosoi, A. S.; Khodakov, K. A.
2018-02-01
It is shown experimentally that using forced-convection boiling of dielectric coolants of the Novec 649 Refrigerant subcooled relative to the saturation temperature makes possible removing heat flow rates up to 100 W/cm2 from modern supercomputer chip interface. This fact creates prerequisites for the application of dielectric liquids in cooling systems of modern supercomputers with increased requirements for their operating reliability.
The Interplanetary Meteoroid Environment for eXploration
NASA Astrophysics Data System (ADS)
Soja, R.; Sommer, M.; Srama, R.; Strub, P.; Grün, E.; Rodmann, J.; Vaubaillon, J.; Hornig, A.; Bausch, L.
2014-07-01
The Interplanetary Meteoroid Environment for eXploration (IMEX) project, funded by the European Space Agency (ESA), aims to characterize dust trails and streams produced by comets in the inner solar system. The goal is to predict meteor showers at any position or time in the solar system, such as at specific spacecraft or planets. This model will allow for the assessment of the dust impact hazard to spacecraft, which is important because hypervelocity impacts of micrometeoroids can damage or destroy spacecraft or their subsystems through physical damage or electromagnetic effects. Such considerations are particularly important in the context of human exploration of the solar system. Additionally, such a model will allow for scientific study of specific trails and their connections to observed dust phenomena, such as cometary trails and new meteor showers at Earth. We have recently expanded the model to include explicit integrations of large numbers of particles from each comet, utilizing the Constellation platform to perform the calculations. This is a distributed computing system, where currently 10,000 users are donating their idle computing time at home and thus generating a virtual supercomputer of 40,000 host PCs connected via the Internet (aerospaceresearch.net). This form of citizen science provides the required computing performance for simulating millions of particles ejected by each of the ˜400 comets, while developing the relationship between scientists and the general public. The result will be a unique set of saved orbital information for a large number of cometary streams, allowing efficient computation of their locations at any point in space and time. Here we will present the results from several test streams and discuss the progress towards obtaining the full set of integrated particles for each of the selected ˜400 short-period comets. individual Constellation users for their computing time.
Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Samuel; Oliker, Leonid; Vuduc, Richard
2008-10-16
We are witnessing a dramatic change in computer architecture due to the multicore paradigm shift, as every electronic device from cell phones to supercomputers confronts parallelism of unprecedented scale. To fully unleash the potential of these systems, the HPC community must develop multicore specific-optimization methodologies for important scientific computations. In this work, we examine sparse matrix-vector multiply (SpMV) - one of the most heavily used kernels in scientific computing - across a broad spectrum of multicore designs. Our experimental platform includes the homogeneous AMD quad-core, AMD dual-core, and Intel quad-core designs, the heterogeneous STI Cell, as well as one ofmore » the first scientific studies of the highly multithreaded Sun Victoria Falls (a Niagara2 SMP). We present several optimization strategies especially effective for the multicore environment, and demonstrate significant performance improvements compared to existing state-of-the-art serial and parallel SpMV implementations. Additionally, we present key insights into the architectural trade-offs of leading multicore design strategies, in the context of demanding memory-bound numerical algorithms.« less
Accelerating Science with the NERSC Burst Buffer Early User Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhimji, Wahid; Bard, Debbie; Romanus, Melissa
NVRAM-based Burst Buffers are an important part of the emerging HPC storage landscape. The National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory recently installed one of the first Burst Buffer systems as part of its new Cori supercomputer, collaborating with Cray on the development of the DataWarp software. NERSC has a diverse user base comprised of over 6500 users in 700 different projects spanning a wide variety of scientific computing applications. The use-cases of the Burst Buffer at NERSC are therefore also considerable and diverse. We describe here performance measurements and lessons learned from the Burstmore » Buffer Early User Program at NERSC, which selected a number of research projects to gain early access to the Burst Buffer and exercise its capability to enable new scientific advancements. To the best of our knowledge this is the first time a Burst Buffer has been stressed at scale by diverse, real user workloads and therefore these lessons will be of considerable benefit to shaping the developing use of Burst Buffers at HPC centers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, E. Wes; Greenwald, Martin; Kleese van Dam, Kerstin
Scientific user facilities—particle accelerators, telescopes, colliders, supercomputers, light sources, sequencing facilities, and more—operated by the U.S. Department of Energy (DOE) Office of Science (SC) generate ever increasing volumes of data at unprecedented rates from experiments, observations, and simulations. At the same time there is a growing community of experimentalists that require real-time data analysis feedback, to enable them to steer their complex experimental instruments to optimized scientific outcomes and new discoveries. Recent efforts in DOE-SC have focused on articulating the data-centric challenges and opportunities facing these science communities. Key challenges include difficulties coping with data size, rate, and complexity inmore » the context of both real-time and post-experiment data analysis and interpretation. Solutions will require algorithmic and mathematical advances, as well as hardware and software infrastructures that adequately support data-intensive scientific workloads. This paper presents the summary findings of a workshop held by DOE-SC in September 2015, convened to identify the major challenges and the research that is needed to meet those challenges.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, E. Wes; Greenwald, Martin; Kleese van Dam, Kersten
Scientific user facilities---particle accelerators, telescopes, colliders, supercomputers, light sources, sequencing facilities, and more---operated by the U.S. Department of Energy (DOE) Office of Science (SC) generate ever increasing volumes of data at unprecedented rates from experiments, observations, and simulations. At the same time there is a growing community of experimentalists that require real-time data analysis feedback, to enable them to steer their complex experimental instruments to optimized scientific outcomes and new discoveries. Recent efforts in DOE-SC have focused on articulating the data-centric challenges and opportunities facing these science communities. Key challenges include difficulties coping with data size, rate, and complexity inmore » the context of both real-time and post-experiment data analysis and interpretation. Solutions will require algorithmic and mathematical advances, as well as hardware and software infrastructures that adequately support data-intensive scientific workloads. This paper presents the summary findings of a workshop held by DOE-SC in September 2015, convened to identify the major challenges and the research that is needed to meet those challenges.« less
National Test Facility civilian agency use of supercomputers not feasible
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-12-01
Based on interviews with civilian agencies cited in the House report (DOE, DoEd, HHS, FEMA, NOAA), none would be able to make effective use of NTF`s excess supercomputing capabilities. These agencies stated they could not use the resources primarily because (1) NTF`s supercomputers are older machines whose performance and costs cannot match those of more advanced computers available from other sources and (2) some agencies have not yet developed applications requiring supercomputer capabilities or do not have funding to support such activities. In addition, future support for the hardware and software at NTF is uncertain, making any investment by anmore » outside user risky.« less
Kriging for Spatial-Temporal Data on the Bridges Supercomputer
NASA Astrophysics Data System (ADS)
Hodgess, E. M.
2017-12-01
Currently, kriging of spatial-temporal data is slow and limited to relatively small vector sizes. We have developed a method on the Bridges supercomputer, at the Pittsburgh supercomputer center, which uses a combination of the tools R, Fortran, the Message Passage Interface (MPI), OpenACC, and special R packages for big data. This combination of tools now permits us to complete tasks which could previously not be completed, or takes literally hours to complete. We ran simulation studies from a laptop against the supercomputer. We also look at "real world" data sets, such as the Irish wind data, and some weather data. We compare the timings. We note that the timings are suprising good.
Multiple DNA and protein sequence alignment on a workstation and a supercomputer.
Tajima, K
1988-11-01
This paper describes a multiple alignment method using a workstation and supercomputer. The method is based on the alignment of a set of aligned sequences with the new sequence, and uses a recursive procedure of such alignment. The alignment is executed in a reasonable computation time on diverse levels from a workstation to a supercomputer, from the viewpoint of alignment results and computational speed by parallel processing. The application of the algorithm is illustrated by several examples of multiple alignment of 12 amino acid and DNA sequences of HIV (human immunodeficiency virus) env genes. Colour graphic programs on a workstation and parallel processing on a supercomputer are discussed.
Networking Technologies Enable Advances in Earth Science
NASA Technical Reports Server (NTRS)
Johnson, Marjory; Freeman, Kenneth; Gilstrap, Raymond; Beck, Richard
2004-01-01
This paper describes an experiment to prototype a new way of conducting science by applying networking and distributed computing technologies to an Earth Science application. A combination of satellite, wireless, and terrestrial networking provided geologists at a remote field site with interactive access to supercomputer facilities at two NASA centers, thus enabling them to validate and calibrate remotely sensed geological data in near-real time. This represents a fundamental shift in the way that Earth scientists analyze remotely sensed data. In this paper we describe the experiment and the network infrastructure that enabled it, analyze the data flow during the experiment, and discuss the scientific impact of the results.
A CPU benchmark for protein crystallographic refinement.
Bourne, P E; Hendrickson, W A
1990-01-01
The CPU time required to complete a cycle of restrained least-squares refinement of a protein structure from X-ray crystallographic data using the FORTRAN codes PROTIN and PROLSQ are reported for 48 different processors, ranging from single-user workstations to supercomputers. Sequential, vector, VLIW, multiprocessor, and RISC hardware architectures are compared using both a small and a large protein structure. Representative compile times for each hardware type are also given, and the improvement in run-time when coding for a specific hardware architecture considered. The benchmarks involve scalar integer and vector floating point arithmetic and are representative of the calculations performed in many scientific disciplines.
Requirements for migration of NSSD code systems from LTSS to NLTSS
NASA Technical Reports Server (NTRS)
Pratt, M.
1984-01-01
The purpose of this document is to address the requirements necessary for a successful conversion of the Nuclear Design (ND) application code systems to the NLTSS environment. The ND application code system community can be characterized as large-scale scientific computation carried out on supercomputers. NLTSS is a distributed operating system being developed at LLNL to replace the LTSS system currently in use. The implications of change are examined including a description of the computational environment and users in ND. The discussion then turns to requirements, first in a general way, followed by specific requirements, including a proposal for managing the transition.
NASA Astrophysics Data System (ADS)
Sushkevich, T. A.; Strelkov, S. A.; Maksakova, S. V.
2017-11-01
We are talking about the national achievements of the world level in theory of radiation transfer in the system atmosphere-oceans and about the modern scientific potential developing in Russia, which adequately provides a methodological basis for theoretical and computational studies of radiation processes and radiation fields in the natural environments with the use of supercomputers and massively parallel processing for problems of remote sensing and the climate of Earth. A model of the radiation field in system "clouds cover the atmosphere-ocean" to the separation of the contributions of clouds, atmosphere and ocean.
NASA Technical Reports Server (NTRS)
Kutler, Paul; Yee, Helen
1987-01-01
Topics addressed include: numerical aerodynamic simulation; computational mechanics; supercomputers; aerospace propulsion systems; computational modeling in ballistics; turbulence modeling; computational chemistry; computational fluid dynamics; and computational astrophysics.
Multi-threaded ATLAS simulation on Intel Knights Landing processors
NASA Astrophysics Data System (ADS)
Farrell, Steven; Calafiura, Paolo; Leggett, Charles; Tsulaia, Vakhtang; Dotti, Andrea; ATLAS Collaboration
2017-10-01
The Knights Landing (KNL) release of the Intel Many Integrated Core (MIC) Xeon Phi line of processors is a potential game changer for HEP computing. With 72 cores and deep vector registers, the KNL cards promise significant performance benefits for highly-parallel, compute-heavy applications. Cori, the newest supercomputer at the National Energy Research Scientific Computing Center (NERSC), was delivered to its users in two phases with the first phase online at the end of 2015 and the second phase now online at the end of 2016. Cori Phase 2 is based on the KNL architecture and contains over 9000 compute nodes with 96GB DDR4 memory. ATLAS simulation with the multithreaded Athena Framework (AthenaMT) is a good potential use-case for the KNL architecture and supercomputers like Cori. ATLAS simulation jobs have a high ratio of CPU computation to disk I/O and have been shown to scale well in multi-threading and across many nodes. In this paper we will give an overview of the ATLAS simulation application with details on its multi-threaded design. Then, we will present a performance analysis of the application on KNL devices and compare it to a traditional x86 platform to demonstrate the capabilities of the architecture and evaluate the benefits of utilizing KNL platforms like Cori for ATLAS production.
Requirements for a network storage service
NASA Technical Reports Server (NTRS)
Kelly, Suzanne M.; Haynes, Rena A.
1991-01-01
Sandia National Laboratories provides a high performance classified computer network as a core capability in support of its mission of nuclear weapons design and engineering, physical sciences research, and energy research and development. The network, locally known as the Internal Secure Network (ISN), comprises multiple distributed local area networks (LAN's) residing in New Mexico and California. The TCP/IP protocol suite is used for inter-node communications. Scientific workstations and mid-range computers, running UNIX-based operating systems, compose most LAN's. One LAN, operated by the Sandia Corporate Computing Computing Directorate, is a general purpose resource providing a supercomputer and a file server to the entire ISN. The current file server on the supercomputer LAN is an implementation of the Common File Server (CFS). Subsequent to the design of the ISN, Sandia reviewed its mass storage requirements and chose to enter into a competitive procurement to replace the existing file server with one more adaptable to a UNIX/TCP/IP environment. The requirements study for the network was the starting point for the requirements study for the new file server. The file server is called the Network Storage Service (NSS) and its requirements are described. An application or functional description of the NSS is given. The final section adds performance, capacity, and access constraints to the requirements.
Homemade Buckeye-Pi: A Learning Many-Node Platform for High-Performance Parallel Computing
NASA Astrophysics Data System (ADS)
Amooie, M. A.; Moortgat, J.
2017-12-01
We report on the "Buckeye-Pi" cluster, the supercomputer developed in The Ohio State University School of Earth Sciences from 128 inexpensive Raspberry Pi (RPi) 3 Model B single-board computers. Each RPi is equipped with fast Quad Core 1.2GHz ARMv8 64bit processor, 1GB of RAM, and 32GB microSD card for local storage. Therefore, the cluster has a total RAM of 128GB that is distributed on the individual nodes and a flash capacity of 4TB with 512 processors, while it benefits from low power consumption, easy portability, and low total cost. The cluster uses the Message Passing Interface protocol to manage the communications between each node. These features render our platform the most powerful RPi supercomputer to date and suitable for educational applications in high-performance-computing (HPC) and handling of large datasets. In particular, we use the Buckeye-Pi to implement optimized parallel codes in our in-house simulator for subsurface media flows with the goal of achieving a massively-parallelized scalable code. We present benchmarking results for the computational performance across various number of RPi nodes. We believe our project could inspire scientists and students to consider the proposed unconventional cluster architecture as a mainstream and a feasible learning platform for challenging engineering and scientific problems.
HEP Computing Tools, Grid and Supercomputers for Genome Sequencing Studies
NASA Astrophysics Data System (ADS)
De, K.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Novikov, A.; Poyda, A.; Tertychnyy, I.; Wenaus, T.
2017-10-01
PanDA - Production and Distributed Analysis Workload Management System has been developed to address ATLAS experiment at LHC data processing and analysis challenges. Recently PanDA has been extended to run HEP scientific applications on Leadership Class Facilities and supercomputers. The success of the projects to use PanDA beyond HEP and Grid has drawn attention from other compute intensive sciences such as bioinformatics. Recent advances of Next Generation Genome Sequencing (NGS) technology led to increasing streams of sequencing data that need to be processed, analysed and made available for bioinformaticians worldwide. Analysis of genomes sequencing data using popular software pipeline PALEOMIX can take a month even running it on the powerful computer resource. In this paper we will describe the adaptation the PALEOMIX pipeline to run it on a distributed computing environment powered by PanDA. To run pipeline we split input files into chunks which are run separately on different nodes as separate inputs for PALEOMIX and finally merge output file, it is very similar to what it done by ATLAS to process and to simulate data. We dramatically decreased the total walltime because of jobs (re)submission automation and brokering within PanDA. Using software tools developed initially for HEP and Grid can reduce payload execution time for Mammoths DNA samples from weeks to days.
The ASCI Network for SC '99: A Step on the Path to a 100 Gigabit Per Second Supercomputing Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
PRATT,THOMAS J.; TARMAN,THOMAS D.; MARTINEZ,LUIS M.
2000-07-24
This document highlights the Discom{sup 2}'s Distance computing and communication team activities at the 1999 Supercomputing conference in Portland, Oregon. This conference is sponsored by the IEEE and ACM. Sandia, Lawrence Livermore and Los Alamos National laboratories have participated in this conference for eleven years. For the last four years the three laboratories have come together at the conference under the DOE's ASCI, Accelerated Strategic Computing Initiatives rubric. Communication support for the ASCI exhibit is provided by the ASCI DISCOM{sup 2} project. The DISCOM{sup 2} communication team uses this forum to demonstrate and focus communication and networking developments within themore » community. At SC 99, DISCOM built a prototype of the next generation ASCI network demonstrated remote clustering techniques, demonstrated the capabilities of the emerging Terabit Routers products, demonstrated the latest technologies for delivering visualization data to the scientific users, and demonstrated the latest in encryption methods including IP VPN technologies and ATM encryption research. The authors also coordinated the other production networking activities within the booth and between their demonstration partners on the exhibit floor. This paper documents those accomplishments, discusses the details of their implementation, and describes how these demonstrations support Sandia's overall strategies in ASCI networking.« less
NASA Technical Reports Server (NTRS)
1991-01-01
Various papers on supercomputing are presented. The general topics addressed include: program analysis/data dependence, memory access, distributed memory code generation, numerical algorithms, supercomputer benchmarks, latency tolerance, parallel programming, applications, processor design, networks, performance tools, mapping and scheduling, characterization affecting performance, parallelism packaging, computing climate change, combinatorial algorithms, hardware and software performance issues, system issues. (No individual items are abstracted in this volume)
Desktop supercomputer: what can it do?
NASA Astrophysics Data System (ADS)
Bogdanov, A.; Degtyarev, A.; Korkhov, V.
2017-12-01
The paper addresses the issues of solving complex problems that require using supercomputers or multiprocessor clusters available for most researchers nowadays. Efficient distribution of high performance computing resources according to actual application needs has been a major research topic since high-performance computing (HPC) technologies became widely introduced. At the same time, comfortable and transparent access to these resources was a key user requirement. In this paper we discuss approaches to build a virtual private supercomputer available at user's desktop: a virtual computing environment tailored specifically for a target user with a particular target application. We describe and evaluate possibilities to create the virtual supercomputer based on light-weight virtualization technologies, and analyze the efficiency of our approach compared to traditional methods of HPC resource management.
MOLAR: Modular Linux and Adaptive Runtime Support for HEC OS/R Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank Mueller
2009-02-05
MOLAR is a multi-institution research effort that concentrates on adaptive, reliable,and efficient operating and runtime system solutions for ultra-scale high-end scientific computing on the next generation of supercomputers. This research addresses the challenges outlined by the FAST-OS - forum to address scalable technology for runtime and operating systems --- and HECRTF --- high-end computing revitalization task force --- activities by providing a modular Linux and adaptable runtime support for high-end computing operating and runtime systems. The MOLAR research has the following goals to address these issues. (1) Create a modular and configurable Linux system that allows customized changes based onmore » the requirements of the applications, runtime systems, and cluster management software. (2) Build runtime systems that leverage the OS modularity and configurability to improve efficiency, reliability, scalability, ease-of-use, and provide support to legacy and promising programming models. (3) Advance computer reliability, availability and serviceability (RAS) management systems to work cooperatively with the OS/R to identify and preemptively resolve system issues. (4) Explore the use of advanced monitoring and adaptation to improve application performance and predictability of system interruptions. The overall goal of the research conducted at NCSU is to develop scalable algorithms for high-availability without single points of failure and without single points of control.« less
NASA High Performance Computing and Communications program
NASA Technical Reports Server (NTRS)
Holcomb, Lee; Smith, Paul; Hunter, Paul
1994-01-01
The National Aeronautics and Space Administration's HPCC program is part of a new Presidential initiative aimed at producing a 1000-fold increase in supercomputing speed and a 1(X)-fold improvement in available communications capability by 1997. As more advanced technologies are developed under the HPCC program, they will be used to solve NASA's 'Grand Challenge' problems, which include improving the design and simulation of advanced aerospace vehicles, allowing people at remote locations to communicate more effectively and share information, increasing scientists' abilities to model the Earth's climate and forecast global environmental trends, and improving the development of advanced spacecraft. NASA's HPCC program is organized into three projects which are unique to the agency's mission: the Computational Aerosciences (CAS) project, the Earth and Space Sciences (ESS) project, and the Remote Exploration and Experimentation (REE) project. An additional project, the Basic Research and Human Resources (BRHR) project, exists to promote long term research in computer science and engineering and to increase the pool of trained personnel in a variety of scientific disciplines. This document presents an overview of the objectives and organization of these projects, as well as summaries of early accomplishments and the significance, status, and plans for individual research and development programs within each project. Areas of emphasis include benchmarking, testbeds, software and simulation methods.
A Real-time 3D Visualization of Global MHD Simulation for Space Weather Forecasting
NASA Astrophysics Data System (ADS)
Murata, K.; Matsuoka, D.; Kubo, T.; Shimazu, H.; Tanaka, T.; Fujita, S.; Watari, S.; Miyachi, H.; Yamamoto, K.; Kimura, E.; Ishikura, S.
2006-12-01
Recently, many satellites for communication networks and scientific observation are launched in the vicinity of the Earth (geo-space). The electromagnetic (EM) environments around the spacecraft are always influenced by the solar wind blowing from the Sun and induced electromagnetic fields. They occasionally cause various troubles or damages, such as electrification and interference, to the spacecraft. It is important to forecast the geo-space EM environment as well as the ground weather forecasting. Owing to the recent remarkable progresses of super-computer technologies, numerical simulations have become powerful research methods in the solar-terrestrial physics. For the necessity of space weather forecasting, NICT (National Institute of Information and Communications Technology) has developed a real-time global MHD simulation system of solar wind-magnetosphere-ionosphere couplings, which has been performed on a super-computer SX-6. The real-time solar wind parameters from the ACE spacecraft at every one minute are adopted as boundary conditions for the simulation. Simulation results (2-D plots) are updated every 1 minute on a NICT website. However, 3D visualization of simulation results is indispensable to forecast space weather more accurately. In the present study, we develop a real-time 3D webcite for the global MHD simulations. The 3-D visualization results of simulation results are updated every 20 minutes in the following three formats: (1)Streamlines of magnetic field lines, (2)Isosurface of temperature in the magnetosphere and (3)Isoline of conductivity and orthogonal plane of potential in the ionosphere. For the present study, we developed a 3-D viewer application working on Internet Explorer browser (ActiveX) is implemented, which was developed on the AVS/Express. Numerical data are saved in the HDF5 format data files every 1 minute. Users can easily search, retrieve and plot past simulation results (3D visualization data and numerical data) by using the STARS (Solar-terrestrial data Analysis and Reference System). The STARS is a data analysis system for satellite and ground-based observation data for solar-terrestrial physics.
Color graphics, interactive processing, and the supercomputer
NASA Technical Reports Server (NTRS)
Smith-Taylor, Rudeen
1987-01-01
The development of a common graphics environment for the NASA Langley Research Center user community and the integration of a supercomputer into this environment is examined. The initial computer hardware, the software graphics packages, and their configurations are described. The addition of improved computer graphics capability to the supercomputer, and the utilization of the graphic software and hardware are discussed. Consideration is given to the interactive processing system which supports the computer in an interactive debugging, processing, and graphics environment.
Automated Help System For A Supercomputer
NASA Technical Reports Server (NTRS)
Callas, George P.; Schulbach, Catherine H.; Younkin, Michael
1994-01-01
Expert-system software developed to provide automated system of user-helping displays in supercomputer system at Ames Research Center Advanced Computer Facility. Users located at remote computer terminals connected to supercomputer and each other via gateway computers, local-area networks, telephone lines, and satellite links. Automated help system answers routine user inquiries about how to use services of computer system. Available 24 hours per day and reduces burden on human experts, freeing them to concentrate on helping users with complicated problems.
2011 Computation Directorate Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, D L
2012-04-11
From its founding in 1952 until today, Lawrence Livermore National Laboratory (LLNL) has made significant strategic investments to develop high performance computing (HPC) and its application to national security and basic science. Now, 60 years later, the Computation Directorate and its myriad resources and capabilities have become a key enabler for LLNL programs and an integral part of the effort to support our nation's nuclear deterrent and, more broadly, national security. In addition, the technological innovation HPC makes possible is seen as vital to the nation's economic vitality. LLNL, along with other national laboratories, is working to make supercomputing capabilitiesmore » and expertise available to industry to boost the nation's global competitiveness. LLNL is on the brink of an exciting milestone with the 2012 deployment of Sequoia, the National Nuclear Security Administration's (NNSA's) 20-petaFLOP/s resource that will apply uncertainty quantification to weapons science. Sequoia will bring LLNL's total computing power to more than 23 petaFLOP/s-all brought to bear on basic science and national security needs. The computing systems at LLNL provide game-changing capabilities. Sequoia and other next-generation platforms will enable predictive simulation in the coming decade and leverage industry trends, such as massively parallel and multicore processors, to run petascale applications. Efficient petascale computing necessitates refining accuracy in materials property data, improving models for known physical processes, identifying and then modeling for missing physics, quantifying uncertainty, and enhancing the performance of complex models and algorithms in macroscale simulation codes. Nearly 15 years ago, NNSA's Accelerated Strategic Computing Initiative (ASCI), now called the Advanced Simulation and Computing (ASC) Program, was the critical element needed to shift from test-based confidence to science-based confidence. Specifically, ASCI/ASC accelerated the development of simulation capabilities necessary to ensure confidence in the nuclear stockpile-far exceeding what might have been achieved in the absence of a focused initiative. While stockpile stewardship research pushed LLNL scientists to develop new computer codes, better simulation methods, and improved visualization technologies, this work also stimulated the exploration of HPC applications beyond the standard sponsor base. As LLNL advances to a petascale platform and pursues exascale computing (1,000 times faster than Sequoia), ASC will be paramount to achieving predictive simulation and uncertainty quantification. Predictive simulation and quantifying the uncertainty of numerical predictions where little-to-no data exists demands exascale computing and represents an expanding area of scientific research important not only to nuclear weapons, but to nuclear attribution, nuclear reactor design, and understanding global climate issues, among other fields. Aside from these lofty goals and challenges, computing at LLNL is anything but 'business as usual.' International competition in supercomputing is nothing new, but the HPC community is now operating in an expanded, more aggressive climate of global competitiveness. More countries understand how science and technology research and development are inextricably linked to economic prosperity, and they are aggressively pursuing ways to integrate HPC technologies into their native industrial and consumer products. In the interest of the nation's economic security and the science and technology that underpins it, LLNL is expanding its portfolio and forging new collaborations. We must ensure that HPC remains an asymmetric engine of innovation for the Laboratory and for the U.S. and, in doing so, protect our research and development dynamism and the prosperity it makes possible. One untapped area of opportunity LLNL is pursuing is to help U.S. industry understand how supercomputing can benefit their business. Industrial investment in HPC applications has historically been limited by the prohibitive cost of entry, the inaccessibility of software to run the powerful systems, and the years it takes to grow the expertise to develop codes and run them in an optimal way. LLNL is helping industry better compete in the global market place by providing access to some of the world's most powerful computing systems, the tools to run them, and the experts who are adept at using them. Our scientists are collaborating side by side with industrial partners to develop solutions to some of industry's toughest problems. The goal of the Livermore Valley Open Campus High Performance Computing Innovation Center is to allow American industry the opportunity to harness the power of supercomputing by leveraging the scientific and computational expertise at LLNL in order to gain a competitive advantage in the global economy.« less
The UPSCALE project: a large simulation campaign
NASA Astrophysics Data System (ADS)
Mizielinski, Matthew; Roberts, Malcolm; Vidale, Pier Luigi; Schiemann, Reinhard; Demory, Marie-Estelle; Strachan, Jane
2014-05-01
The development of a traceable hierarchy of HadGEM3 global climate models, based upon the Met Office Unified Model, at resolutions from 135 km to 25 km, now allows the impact of resolution on the mean state, variability and extremes of climate to be studied in a robust fashion. In 2011 we successfully obtained a single-year grant of 144 million core hours of supercomputing time from the PRACE organization to run ensembles of 27 year atmosphere-only (HadGEM3-A GA3.0) climate simulations at 25km resolution, as used in present global weather forecasting, on HERMIT at HLRS. Through 2012 the UPSCALE project (UK on PRACE: weather-resolving Simulations of Climate for globAL Environmental risk) ran over 650 years of simulation at resolutions of 25 km (N512), 60 km (N216) and 135 km (N96) to look at the value of high resolution climate models in the study of both present climate and a potential future climate scenario based on RCP8.5. Over 400 TB of data was produced using HERMIT, with additional simulations run on HECToR (UK supercomputer) and MONSooN (Met Office NERC Supercomputing Node). The data generated was transferred to the JASMIN super-data cluster, hosted by STFC CEDA in the UK, where analysis facilities are allowing rapid scientific exploitation of the data set. Many groups across the UK and Europe are already taking advantage of these facilities and we welcome approaches from other interested scientists. This presentation will briefly cover the following points; Purpose and requirements of the UPSCALE project and facilities used. Technical implementation and hurdles (model porting and optimisation, automation, numerical failures, data transfer). Ensemble specification. Current analysis projects and access to the data set. A full description of UPSCALE and the data set generated has been submitted to Geoscientific Model development, with overview information available from http://proj.badc.rl.ac.uk/upscale .
NASA Advanced Supercomputing (NAS) User Services Group
NASA Technical Reports Server (NTRS)
Pandori, John; Hamilton, Chris; Niggley, C. E.; Parks, John W. (Technical Monitor)
2002-01-01
This viewgraph presentation provides an overview of NAS (NASA Advanced Supercomputing), its goals, and its mainframe computer assets. Also covered are its functions, including systems monitoring and technical support.
NSF Commits to Supercomputers.
ERIC Educational Resources Information Center
Waldrop, M. Mitchell
1985-01-01
The National Science Foundation (NSF) has allocated at least $200 million over the next five years to support four new supercomputer centers. Issues and trends related to this NSF initiative are examined. (JN)
Parallel processing for scientific computations
NASA Technical Reports Server (NTRS)
Alkhatib, Hasan S.
1995-01-01
The scope of this project dealt with the investigation of the requirements to support distributed computing of scientific computations over a cluster of cooperative workstations. Various experiments on computations for the solution of simultaneous linear equations were performed in the early phase of the project to gain experience in the general nature and requirements of scientific applications. A specification of a distributed integrated computing environment, DICE, based on a distributed shared memory communication paradigm has been developed and evaluated. The distributed shared memory model facilitates porting existing parallel algorithms that have been designed for shared memory multiprocessor systems to the new environment. The potential of this new environment is to provide supercomputing capability through the utilization of the aggregate power of workstations cooperating in a cluster interconnected via a local area network. Workstations, generally, do not have the computing power to tackle complex scientific applications, making them primarily useful for visualization, data reduction, and filtering as far as complex scientific applications are concerned. There is a tremendous amount of computing power that is left unused in a network of workstations. Very often a workstation is simply sitting idle on a desk. A set of tools can be developed to take advantage of this potential computing power to create a platform suitable for large scientific computations. The integration of several workstations into a logical cluster of distributed, cooperative, computing stations presents an alternative to shared memory multiprocessor systems. In this project we designed and evaluated such a system.
Researchers Mine Information from Next-Generation Subsurface Flow Simulations
Gedenk, Eric D.
2015-12-01
A research team based at Virginia Tech University leveraged computing resources at the US Department of Energy's (DOE's) Oak Ridge National Laboratory to explore subsurface multiphase flow phenomena that can't be experimentally observed. Using the Cray XK7 Titan supercomputer at the Oak Ridge Leadership Computing Facility, the team took Micro-CT images of subsurface geologic systems and created two-phase flow simulations. The team's model development has implications for computational research pertaining to carbon sequestration, oil recovery, and contaminant transport.
NASA Astrophysics Data System (ADS)
Gopu, Arvind; Hayashi, Soichi; Young, Michael D.; Harbeck, Daniel R.; Boroson, Todd; Liu, Wilson; Kotulla, Ralf; Shaw, Richard; Henschel, Robert; Rajagopal, Jayadev; Stobie, Elizabeth; Knezek, Patricia; Martin, R. Pierre; Archbold, Kevin
2014-07-01
The One Degree Imager-Portal, Pipeline, and Archive (ODI-PPA) is a web science gateway that provides astronomers a modern web interface that acts as a single point of access to their data, and rich computational and visualization capabilities. Its goal is to support scientists in handling complex data sets, and to enhance WIYN Observatory's scientific productivity beyond data acquisition on its 3.5m telescope. ODI-PPA is designed, with periodic user feedback, to be a compute archive that has built-in frameworks including: (1) Collections that allow an astronomer to create logical collations of data products intended for publication, further research, instructional purposes, or to execute data processing tasks (2) Image Explorer and Source Explorer, which together enable real-time interactive visual analysis of massive astronomical data products within an HTML5 capable web browser, and overlaid standard catalog and Source Extractor-generated source markers (3) Workflow framework which enables rapid integration of data processing pipelines on an associated compute cluster and users to request such pipelines to be executed on their data via custom user interfaces. ODI-PPA is made up of several light-weight services connected by a message bus; the web portal built using Twitter/Bootstrap, AngularJS and jQuery JavaScript libraries, and backend services written in PHP (using the Zend framework) and Python; it leverages supercomputing and storage resources at Indiana University. ODI-PPA is designed to be reconfigurable for use in other science domains with large and complex datasets, including an ongoing offshoot project for electron microscopy data.
Adventures in Computational Grids
NASA Technical Reports Server (NTRS)
Walatka, Pamela P.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Sometimes one supercomputer is not enough. Or your local supercomputers are busy, or not configured for your job. Or you don't have any supercomputers. You might be trying to simulate worldwide weather changes in real time, requiring more compute power than you could get from any one machine. Or you might be collecting microbiological samples on an island, and need to examine them with a special microscope located on the other side of the continent. These are the times when you need a computational grid.
Breakthrough: NETL's Simulation-Based Engineering User Center (SBEUC)
Guenther, Chris
2018-05-23
The National Energy Technology Laboratory relies on supercomputers to develop many novel ideas that become tomorrow's energy solutions. Supercomputers provide a cost-effective, efficient platform for research and usher technologies into widespread use faster to bring benefits to the nation. In 2013, Secretary of Energy Dr. Ernest Moniz dedicated NETL's new supercomputer, the Simulation Based Engineering User Center, or SBEUC. The SBEUC is dedicated to fossil energy research and is a collaborative tool for all of NETL and our regional university partners.
A high level language for a high performance computer
NASA Technical Reports Server (NTRS)
Perrott, R. H.
1978-01-01
The proposed computational aerodynamic facility will join the ranks of the supercomputers due to its architecture and increased execution speed. At present, the languages used to program these supercomputers have been modifications of programming languages which were designed many years ago for sequential machines. A new programming language should be developed based on the techniques which have proved valuable for sequential programming languages and incorporating the algorithmic techniques required for these supercomputers. The design objectives for such a language are outlined.
Technology advances and market forces: Their impact on high performance architectures
NASA Technical Reports Server (NTRS)
Best, D. R.
1978-01-01
Reasonable projections into future supercomputer architectures and technology require an analysis of the computer industry market environment, the current capabilities and trends within the component industry, and the research activities on computer architecture in the industrial and academic communities. Management, programmer, architect, and user must cooperate to increase the efficiency of supercomputer development efforts. Care must be taken to match the funding, compiler, architecture and application with greater attention to testability, maintainability, reliability, and usability than supercomputer development programs of the past.
Floating point arithmetic in future supercomputers
NASA Technical Reports Server (NTRS)
Bailey, David H.; Barton, John T.; Simon, Horst D.; Fouts, Martin J.
1989-01-01
Considerations in the floating-point design of a supercomputer are discussed. Particular attention is given to word size, hardware support for extended precision, format, and accuracy characteristics. These issues are discussed from the perspective of the Numerical Aerodynamic Simulation Systems Division at NASA Ames. The features believed to be most important for a future supercomputer floating-point design include: (1) a 64-bit IEEE floating-point format with 11 exponent bits, 52 mantissa bits, and one sign bit and (2) hardware support for reasonably fast double-precision arithmetic.
Breakthrough: NETL's Simulation-Based Engineering User Center (SBEUC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guenther, Chris
The National Energy Technology Laboratory relies on supercomputers to develop many novel ideas that become tomorrow's energy solutions. Supercomputers provide a cost-effective, efficient platform for research and usher technologies into widespread use faster to bring benefits to the nation. In 2013, Secretary of Energy Dr. Ernest Moniz dedicated NETL's new supercomputer, the Simulation Based Engineering User Center, or SBEUC. The SBEUC is dedicated to fossil energy research and is a collaborative tool for all of NETL and our regional university partners.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasenkamp, Daren; Sim, Alexander; Wehner, Michael
Extensive computing power has been used to tackle issues such as climate changes, fusion energy, and other pressing scientific challenges. These computations produce a tremendous amount of data; however, many of the data analysis programs currently only run a single processor. In this work, we explore the possibility of using the emerging cloud computing platform to parallelize such sequential data analysis tasks. As a proof of concept, we wrap a program for analyzing trends of tropical cyclones in a set of virtual machines (VMs). This approach allows the user to keep their familiar data analysis environment in the VMs, whilemore » we provide the coordination and data transfer services to ensure the necessary input and output are directed to the desired locations. This work extensively exercises the networking capability of the cloud computing systems and has revealed a number of weaknesses in the current cloud system software. In our tests, we are able to scale the parallel data analysis job to a modest number of VMs and achieve a speedup that is comparable to running the same analysis task using MPI. However, compared to MPI based parallelization, the cloud-based approach has a number of advantages. The cloud-based approach is more flexible because the VMs can capture arbitrary software dependencies without requiring the user to rewrite their programs. The cloud-based approach is also more resilient to failure; as long as a single VM is running, it can make progress while as soon as one MPI node fails the whole analysis job fails. In short, this initial work demonstrates that a cloud computing system is a viable platform for distributed scientific data analyses traditionally conducted on dedicated supercomputing systems.« less
NASA Supercomputer Improves Prospects for Ocean Climate Research
NASA Technical Reports Server (NTRS)
Menemenlis, D.; Hill, C.; Adcroft, A.; Campin, J. -M.; Cheng, B.; Ciotti, B.; Fukumori, I.; Heimbach, P.; Henze, C.; Kohl, A.;
2005-01-01
Estimates of ocean circulation constrained by in situ and remotely sensed observations have become routinely available during the past five years, and they are being applied to myriad scientific and operational problems [Stammer et al.,2002]. Under the Global Ocean Data Assimilation Experiment (GODAE), several regional and global estimates have evolved for applications in climate research, seasonal forecasting, naval operations, marine safety, fisheries,the offshore oil industry, coastal management, and other areas. This article reports on recent progress by one effort, the consortium for Estimating the Circulation and Climate of the Ocean (ECCO), toward a next-generation synthesis of ocean and sea-ice data that is global, that covers the full ocean depth, and that permits eddies.
Accessing and Visualizing scientific spatiotemporal data
NASA Technical Reports Server (NTRS)
Katz, Daniel S.; Bergou, Attila; Berriman, Bruce G.; Block, Gary L.; Collier, Jim; Curkendall, David W.; Good, John; Husman, Laura; Jacob, Joseph C.; Laity, Anastasia;
2004-01-01
This paper discusses work done by JPL 's Parallel Applications Technologies Group in helping scientists access and visualize very large data sets through the use of multiple computing resources, such as parallel supercomputers, clusters, and grids These tools do one or more of the following tasks visualize local data sets for local users, visualize local data sets for remote users, and access and visualize remote data sets The tools are used for various types of data, including remotely sensed image data, digital elevation models, astronomical surveys, etc The paper attempts to pull some common elements out of these tools that may be useful for others who have to work with similarly large data sets.
Access control and privacy in large distributed systems
NASA Technical Reports Server (NTRS)
Leiner, B. M.; Bishop, M.
1986-01-01
Large scale distributed systems consists of workstations, mainframe computers, supercomputers and other types of servers, all connected by a computer network. These systems are being used in a variety of applications including the support of collaborative scientific research. In such an environment, issues of access control and privacy arise. Access control is required for several reasons, including the protection of sensitive resources and cost control. Privacy is also required for similar reasons, including the protection of a researcher's proprietary results. A possible architecture for integrating available computer and communications security technologies into a system that meet these requirements is described. This architecture is meant as a starting point for discussion, rather that the final answer.
Visualizing the Big (and Large) Data from an HPC Resource
NASA Astrophysics Data System (ADS)
Sisneros, R.
2015-10-01
Supercomputers are built to endure painfully large simulations and contend with resulting outputs. These are characteristics that scientists are all too willing to test the limits of in their quest for science at scale. The data generated during a scientist's workflow through an HPC center (large data) is the primary target for analysis and visualization. However, the hardware itself is also capable of generating volumes of diagnostic data (big data); this presents compelling opportunities to deploy analogous analytic techniques. In this paper we will provide a survey of some of the many ways in which visualization and analysis may be crammed into the scientific workflow as well as utilized on machine-specific data.
Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds
NASA Astrophysics Data System (ADS)
Seinstra, Frank J.; Maassen, Jason; van Nieuwpoort, Rob V.; Drost, Niels; van Kessel, Timo; van Werkhoven, Ben; Urbani, Jacopo; Jacobs, Ceriel; Kielmann, Thilo; Bal, Henri E.
In recent years, the application of high-performance and distributed computing in scientific practice has become increasingly wide spread. Among the most widely available platforms to scientists are clusters, grids, and cloud systems. Such infrastructures currently are undergoing revolutionary change due to the integration of many-core technologies, providing orders-of-magnitude speed improvements for selected compute kernels. With high-performance and distributed computing systems thus becoming more heterogeneous and hierarchical, programming complexity is vastly increased. Further complexities arise because urgent desire for scalability and issues including data distribution, software heterogeneity, and ad hoc hardware availability commonly force scientists into simultaneous use of multiple platforms (e.g., clusters, grids, and clouds used concurrently). A true computing jungle.
Energy Efficient Supercomputing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anypas, Katie
2014-10-17
Katie Anypas, Head of NERSC's Services Department discusses the Lab's research into developing increasingly powerful and energy efficient supercomputers at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.
Energy Efficient Supercomputing
Anypas, Katie
2018-05-07
Katie Anypas, Head of NERSC's Services Department discusses the Lab's research into developing increasingly powerful and energy efficient supercomputers at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.
Job Management Requirements for NAS Parallel Systems and Clusters
NASA Technical Reports Server (NTRS)
Saphir, William; Tanner, Leigh Ann; Traversat, Bernard
1995-01-01
A job management system is a critical component of a production supercomputing environment, permitting oversubscribed resources to be shared fairly and efficiently. Job management systems that were originally designed for traditional vector supercomputers are not appropriate for the distributed-memory parallel supercomputers that are becoming increasingly important in the high performance computing industry. Newer job management systems offer new functionality but do not solve fundamental problems. We address some of the main issues in resource allocation and job scheduling we have encountered on two parallel computers - a 160-node IBM SP2 and a cluster of 20 high performance workstations located at the Numerical Aerodynamic Simulation facility. We describe the requirements for resource allocation and job management that are necessary to provide a production supercomputing environment on these machines, prioritizing according to difficulty and importance, and advocating a return to fundamental issues.
Transmedia Storytelling in Science Communication: One Subject, Multiple Media, Multiple Stories
NASA Astrophysics Data System (ADS)
Unger, M.; Moloney, K.
2012-12-01
Each communication medium has particular storytelling strengths. For example, video is particularly good at illustrating a progression of events, text at background and context, and games at describing systems. In what USC's Prof. Henry Jenkins described as "transmedia storytelling," multiple media are used simultaneously, in an expansive rather than repetitive way, to better tell a single, complex story. The audience is given multiple entry points to the story, and the story is exposed to diverse and dispersed audiences, ultimately engaging a broader public. We will examine the effectiveness of a transmedia approach to communicating scientific and other complex concepts to a broad and diverse audience. Using the recently developed Educational Visitor Center at the NCAR-Wyoming Supercomputing Center as a case study, we will evaluate the reach of various means of presenting information about the geosciences, climate change and computational science. These will include an assessment of video, mechanical and digital interactive elements, animated movie segments, web-based content, photography, scientific visualizations, printed material and docent-led activities.
A uniform approach for programming distributed heterogeneous computing systems
Grasso, Ivan; Pellegrini, Simone; Cosenza, Biagio; Fahringer, Thomas
2014-01-01
Large-scale compute clusters of heterogeneous nodes equipped with multi-core CPUs and GPUs are getting increasingly popular in the scientific community. However, such systems require a combination of different programming paradigms making application development very challenging. In this article we introduce libWater, a library-based extension of the OpenCL programming model that simplifies the development of heterogeneous distributed applications. libWater consists of a simple interface, which is a transparent abstraction of the underlying distributed architecture, offering advanced features such as inter-context and inter-node device synchronization. It provides a runtime system which tracks dependency information enforced by event synchronization to dynamically build a DAG of commands, on which we automatically apply two optimizations: collective communication pattern detection and device-host-device copy removal. We assess libWater’s performance in three compute clusters available from the Vienna Scientific Cluster, the Barcelona Supercomputing Center and the University of Innsbruck, demonstrating improved performance and scaling with different test applications and configurations. PMID:25844015
Optimization of sparse matrix-vector multiplication on emerging multicore platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Samuel; Oliker, Leonid; Vuduc, Richard
2007-01-01
We are witnessing a dramatic change in computer architecture due to the multicore paradigm shift, as every electronic device from cell phones to supercomputers confronts parallelism of unprecedented scale. To fully unleash the potential of these systems, the HPC community must develop multicore specific optimization methodologies for important scientific computations. In this work, we examine sparse matrix-vector multiply (SpMV) - one of the most heavily used kernels in scientific computing - across a broad spectrum of multicore designs. Our experimental platform includes the homogeneous AMD dual-core and Intel quad-core designs, the heterogeneous STI Cell, as well as the first scientificmore » study of the highly multithreaded Sun Niagara2. We present several optimization strategies especially effective for the multicore environment, and demonstrate significant performance improvements compared to existing state-of-the-art serial and parallel SpMV implementations. Additionally, we present key insights into the architectural tradeoffs of leading multicore design strategies, in the context of demanding memory-bound numerical algorithms.« less
Automatic Parallelization of Numerical Python Applications using the Global Arrays Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, Jeffrey A.; Lewis, Robert R.
2011-11-30
Global Arrays is a software system from Pacific Northwest National Laboratory that enables an efficient, portable, and parallel shared-memory programming interface to manipulate distributed dense arrays. The NumPy module is the de facto standard for numerical calculation in the Python programming language, a language whose use is growing rapidly in the scientific and engineering communities. NumPy provides a powerful N-dimensional array class as well as other scientific computing capabilities. However, like the majority of the core Python modules, NumPy is inherently serial. Using a combination of Global Arrays and NumPy, we have reimplemented NumPy as a distributed drop-in replacement calledmore » Global Arrays in NumPy (GAiN). Serial NumPy applications can become parallel, scalable GAiN applications with only minor source code changes. Scalability studies of several different GAiN applications will be presented showing the utility of developing serial NumPy codes which can later run on more capable clusters or supercomputers.« less
A uniform approach for programming distributed heterogeneous computing systems.
Grasso, Ivan; Pellegrini, Simone; Cosenza, Biagio; Fahringer, Thomas
2014-12-01
Large-scale compute clusters of heterogeneous nodes equipped with multi-core CPUs and GPUs are getting increasingly popular in the scientific community. However, such systems require a combination of different programming paradigms making application development very challenging. In this article we introduce libWater, a library-based extension of the OpenCL programming model that simplifies the development of heterogeneous distributed applications. libWater consists of a simple interface, which is a transparent abstraction of the underlying distributed architecture, offering advanced features such as inter-context and inter-node device synchronization. It provides a runtime system which tracks dependency information enforced by event synchronization to dynamically build a DAG of commands, on which we automatically apply two optimizations: collective communication pattern detection and device-host-device copy removal. We assess libWater's performance in three compute clusters available from the Vienna Scientific Cluster, the Barcelona Supercomputing Center and the University of Innsbruck, demonstrating improved performance and scaling with different test applications and configurations.
IMIRSEL: a secure music retrieval testing environment
NASA Astrophysics Data System (ADS)
Downie, John S.
2004-10-01
The Music Information Retrieval (MIR) and Music Digital Library (MDL) research communities have long noted the need for formal evaluation mechanisms. Issues concerning the unavailability of freely-available music materials have greatly hindered the creation of standardized test collections with which these communities could scientifically assess the strengths and weaknesses of their various music retrieval techniques. The International Music Information Retrieval Systems Evaluation Laboratory (IMIRSEL) is being developed at the University of Illinois at Urbana-Champaign (UIUC) specifically to overcome this hindrance to the scientific evaluation of MIR/MDL systems. Together with its subsidiary Human Use of Music Information Retrieval Systems (HUMIRS) project, IMIRSEL will allow MIR/MDL researchers access to the standardized large-scale collection of copyright-sensitive music materials and standardized test queries being housed at UIUC's National Center for Supercomputing Applications (NCSA). Virtual Research Labs (VRL), based upon NCSA's Data-to-Knowledge (D2K) tool set, are being developed through which MIR/MDL researchers will interact with the music materials under a "trusted code" security model.
Supercomputing Drives Innovation - Continuum Magazine | NREL
years, NREL scientists have used supercomputers to simulate 3D models of the primary enzymes and Scientist, discuss a 3D model of wind plant aerodynamics, showing low velocity wakes and impact on
Exploiting Thread Parallelism for Ocean Modeling on Cray XC Supercomputers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarje, Abhinav; Jacobsen, Douglas W.; Williams, Samuel W.
The incorporation of increasing core counts in modern processors used to build state-of-the-art supercomputers is driving application development towards exploitation of thread parallelism, in addition to distributed memory parallelism, with the goal of delivering efficient high-performance codes. In this work we describe the exploitation of threading and our experiences with it with respect to a real-world ocean modeling application code, MPAS-Ocean. We present detailed performance analysis and comparisons of various approaches and configurations for threading on the Cray XC series supercomputers.
A mass storage system for supercomputers based on Unix
NASA Technical Reports Server (NTRS)
Richards, J.; Kummell, T.; Zarlengo, D. G.
1988-01-01
The authors present the design, implementation, and utilization of a large mass storage subsystem (MSS) for the numerical aerodynamics simulation. The MSS supports a large networked, multivendor Unix-based supercomputing facility. The MSS at Ames Research Center provides all processors on the numerical aerodynamics system processing network, from workstations to supercomputers, the ability to store large amounts of data in a highly accessible, long-term repository. The MSS uses Unix System V and is capable of storing hundreds of thousands of files ranging from a few bytes to 2 Gb in size.
Supercomputer algorithms for efficient linear octree encoding of three-dimensional brain images.
Berger, S B; Reis, D J
1995-02-01
We designed and implemented algorithms for three-dimensional (3-D) reconstruction of brain images from serial sections using two important supercomputer architectures, vector and parallel. These architectures were represented by the Cray YMP and Connection Machine CM-2, respectively. The programs operated on linear octree representations of the brain data sets, and achieved 500-800 times acceleration when compared with a conventional laboratory workstation. As the need for higher resolution data sets increases, supercomputer algorithms may offer a means of performing 3-D reconstruction well above current experimental limits.
Intelligent supercomputers: the Japanese computer sputnik
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, G.
1983-11-01
Japan's government-supported fifth-generation computer project has had a pronounced effect on the American computer and information systems industry. The US firms are intensifying their research on and production of intelligent supercomputers, a combination of computer architecture and artificial intelligence software programs. While the present generation of computers is built for the processing of numbers, the new supercomputers will be designed specifically for the solution of symbolic problems and the use of artificial intelligence software. This article discusses new and exciting developments that will increase computer capabilities in the 1990s. 4 references.
Requirements for a network storage service
NASA Technical Reports Server (NTRS)
Kelly, Suzanne M.; Haynes, Rena A.
1992-01-01
Sandia National Laboratories provides a high performance classified computer network as a core capability in support of its mission of nuclear weapons design and engineering, physical sciences research, and energy research and development. The network, locally known as the Internal Secure Network (ISN), was designed in 1989 and comprises multiple distributed local area networks (LAN's) residing in Albuquerque, New Mexico and Livermore, California. The TCP/IP protocol suite is used for inner-node communications. Scientific workstations and mid-range computers, running UNIX-based operating systems, compose most LAN's. One LAN, operated by the Sandia Corporate Computing Directorate, is a general purpose resource providing a supercomputer and a file server to the entire ISN. The current file server on the supercomputer LAN is an implementation of the Common File System (CFS) developed by Los Alamos National Laboratory. Subsequent to the design of the ISN, Sandia reviewed its mass storage requirements and chose to enter into a competitive procurement to replace the existing file server with one more adaptable to a UNIX/TCP/IP environment. The requirements study for the network was the starting point for the requirements study for the new file server. The file server is called the Network Storage Services (NSS) and is requirements are described in this paper. The next section gives an application or functional description of the NSS. The final section adds performance, capacity, and access constraints to the requirements.
Extensible Computational Chemistry Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-08-09
ECCE provides a sophisticated graphical user interface, scientific visualization tools, and the underlying data management framework enabling scientists to efficiently set up calculations and store, retrieve, and analyze the rapidly growing volumes of data produced by computational chemistry studies. ECCE was conceived as part of the Environmental Molecular Sciences Laboratory construction to solve the problem of researchers being able to effectively utilize complex computational chemistry codes and massively parallel high performance compute resources. Bringing the power of these codes and resources to the desktops of researcher and thus enabling world class research without users needing a detailed understanding of themore » inner workings of either the theoretical codes or the supercomputers needed to run them was a grand challenge problem in the original version of the EMSL. ECCE allows collaboration among researchers using a web-based data repository where the inputs and results for all calculations done within ECCE are organized. ECCE is a first of kind end-to-end problem solving environment for all phases of computational chemistry research: setting up calculations with sophisticated GUI and direct manipulation visualization tools, submitting and monitoring calculations on remote high performance supercomputers without having to be familiar with the details of using these compute resources, and performing results visualization and analysis including creating publication quality images. ECCE is a suite of tightly integrated applications that are employed as the user moves through the modeling process.« less
Green Supercomputing at Argonne
Pete Beckman
2017-12-09
Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputingâeverything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently.
TOP500 Supercomputers for June 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack
2003-06-23
21st Edition of TOP500 List of World's Fastest Supercomputers Released MANNHEIM, Germany; KNOXVILLE, Tenn.;&BERKELEY, Calif. In what has become a much-anticipated event in the world of high-performance computing, the 21st edition of the TOP500 list of the world's fastest supercomputers was released today (June 23, 2003). The Earth Simulator supercomputer built by NEC and installed last year at the Earth Simulator Center in Yokohama, Japan, with its Linpack benchmark performance of 35.86 Tflop/s (teraflops or trillions of calculations per second), retains the number one position. The number 2 position is held by the re-measured ASCI Q system at Los Alamosmore » National Laboratory. With 13.88 Tflop/s, it is the second system ever to exceed the 10 Tflop/smark. ASCIQ was built by Hewlett-Packard and is based on the AlphaServerSC computer system.« less
Characterizing output bottlenecks in a supercomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Bing; Chase, Jeffrey; Dillow, David A
2012-01-01
Supercomputer I/O loads are often dominated by writes. HPC (High Performance Computing) file systems are designed to absorb these bursty outputs at high bandwidth through massive parallelism. However, the delivered write bandwidth often falls well below the peak. This paper characterizes the data absorption behavior of a center-wide shared Lustre parallel file system on the Jaguar supercomputer. We use a statistical methodology to address the challenges of accurately measuring a shared machine under production load and to obtain the distribution of bandwidth across samples of compute nodes, storage targets, and time intervals. We observe and quantify limitations from competing traffic,more » contention on storage servers and I/O routers, concurrency limitations in the client compute node operating systems, and the impact of variance (stragglers) on coupled output such as striping. We then examine the implications of our results for application performance and the design of I/O middleware systems on shared supercomputers.« less
NASA Center for Climate Simulation (NCCS) Presentation
NASA Technical Reports Server (NTRS)
Webster, William P.
2012-01-01
The NASA Center for Climate Simulation (NCCS) offers integrated supercomputing, visualization, and data interaction technologies to enhance NASA's weather and climate prediction capabilities. It serves hundreds of users at NASA Goddard Space Flight Center, as well as other NASA centers, laboratories, and universities across the US. Over the past year, NCCS has continued expanding its data-centric computing environment to meet the increasingly data-intensive challenges of climate science. We doubled our Discover supercomputer's peak performance to more than 800 teraflops by adding 7,680 Intel Xeon Sandy Bridge processor-cores and most recently 240 Intel Xeon Phi Many Integrated Core (MIG) co-processors. A supercomputing-class analysis system named Dali gives users rapid access to their data on Discover and high-performance software including the Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT), with interfaces from user desktops and a 17- by 6-foot visualization wall. NCCS also is exploring highly efficient climate data services and management with a new MapReduce/Hadoop cluster while augmenting its data distribution to the science community. Using NCCS resources, NASA completed its modeling contributions to the Intergovernmental Panel on Climate Change (IPCG) Fifth Assessment Report this summer as part of the ongoing Coupled Modellntercomparison Project Phase 5 (CMIP5). Ensembles of simulations run on Discover reached back to the year 1000 to test model accuracy and projected climate change through the year 2300 based on four different scenarios of greenhouse gases, aerosols, and land use. The data resulting from several thousand IPCC/CMIP5 simulations, as well as a variety of other simulation, reanalysis, and observationdatasets, are available to scientists and decision makers through an enhanced NCCS Earth System Grid Federation Gateway. Worldwide downloads have totaled over 110 terabytes of data.
Next Generation Workload Management System For Big Data on Heterogeneous Distributed Computing
NASA Astrophysics Data System (ADS)
Klimentov, A.; Buncic, P.; De, K.; Jha, S.; Maeno, T.; Mount, R.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Porter, R. J.; Read, K. F.; Vaniachine, A.; Wells, J. C.; Wenaus, T.
2015-05-01
The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS and ALICE are the largest collaborations ever assembled in the sciences and are at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, both experiments rely on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System (WMS) for managing the workflow for all data processing on hundreds of data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. The scale is demonstrated by the following numbers: PanDA manages O(102) sites, O(105) cores, O(108) jobs per year, O(103) users, and ATLAS data volume is O(1017) bytes. In 2013 we started an ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF). The project titled ‘Next Generation Workload Management and Analysis System for Big Data’ (BigPanDA) is funded by DOE ASCR and HEP. Extending PanDA to clouds and LCF presents new challenges in managing heterogeneity and supporting workflow. The BigPanDA project is underway to setup and tailor PanDA at the Oak Ridge Leadership Computing Facility (OLCF) and at the National Research Center "Kurchatov Institute" together with ALICE distributed computing and ORNL computing professionals. Our approach to integration of HPC platforms at the OLCF and elsewhere is to reuse, as much as possible, existing components of the PanDA system. We will present our current accomplishments with running the PanDA WMS at OLCF and other supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facilities infrastructure for High Energy and Nuclear Physics as well as other data-intensive science applications.
Advanced Computing for Manufacturing.
ERIC Educational Resources Information Center
Erisman, Albert M.; Neves, Kenneth W.
1987-01-01
Discusses ways that supercomputers are being used in the manufacturing industry, including the design and production of airplanes and automobiles. Describes problems that need to be solved in the next few years for supercomputers to assume a major role in industry. (TW)
File-System Workload on a Scientific Multiprocessor
NASA Technical Reports Server (NTRS)
Kotz, David; Nieuwejaar, Nils
1995-01-01
Many scientific applications have intense computational and I/O requirements. Although multiprocessors have permitted astounding increases in computational performance, the formidable I/O needs of these applications cannot be met by current multiprocessors a their I/O subsystems. To prevent I/O subsystems from forever bottlenecking multiprocessors and limiting the range of feasible applications, new I/O subsystems must be designed. The successful design of computer systems (both hardware and software) depends on a thorough understanding of their intended use. A system designer optimizes the policies and mechanisms for the cases expected to most common in the user's workload. In the case of multiprocessor file systems, however, designers have been forced to build file systems based only on speculation about how they would be used, extrapolating from file-system characterizations of general-purpose workloads on uniprocessor and distributed systems or scientific workloads on vector supercomputers (see sidebar on related work). To help these system designers, in June 1993 we began the Charisma Project, so named because the project sought to characterize 1/0 in scientific multiprocessor applications from a variety of production parallel computing platforms and sites. The Charisma project is unique in recording individual read and write requests-in live, multiprogramming, parallel workloads (rather than from selected or nonparallel applications). In this article, we present the first results from the project: a characterization of the file-system workload an iPSC/860 multiprocessor running production, parallel scientific applications at NASA's Ames Research Center.
Supercomputers Join the Fight against Cancer – U.S. Department of Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Department of Energy has some of the best supercomputers in the world. Now, they’re joining the fight against cancer. Learn about our new partnership with the National Cancer Institute and GlaxoSmithKline Pharmaceuticals.
NAS-current status and future plans
NASA Technical Reports Server (NTRS)
Bailey, F. R.
1987-01-01
The Numerical Aerodynamic Simulation (NAS) has met its first major milestone, the NAS Processing System Network (NPSN) Initial Operating Configuration (IOC). The program has met its goal of providing a national supercomputer facility capable of greatly enhancing the Nation's research and development efforts. Furthermore, the program is fulfilling its pathfinder role by defining and implementing a paradigm for supercomputing system environments. The IOC is only the begining and the NAS Program will aggressively continue to develop and implement emerging supercomputer, communications, storage, and software technologies to strengthen computations as a critical element in supporting the Nation's leadership role in aeronautics.
Scaling of data communications for an advanced supercomputer network
NASA Technical Reports Server (NTRS)
Levin, E.; Eaton, C. K.; Young, Bruce
1986-01-01
The goal of NASA's Numerical Aerodynamic Simulation (NAS) Program is to provide a powerful computational environment for advanced research and development in aeronautics and related disciplines. The present NAS system consists of a Cray 2 supercomputer connected by a data network to a large mass storage system, to sophisticated local graphics workstations and by remote communication to researchers throughout the United States. The program plan is to continue acquiring the most powerful supercomputers as they become available. The implications of a projected 20-fold increase in processing power on the data communications requirements are described.
Ensemble-based docking: From hit discovery to metabolism and toxicity predictions
Evangelista, Wilfredo; Weir, Rebecca; Ellingson, Sally; ...
2016-07-29
The use of ensemble-based docking for the exploration of biochemical pathways and toxicity prediction of drug candidates is described. We describe the computational engineering work necessary to enable large ensemble docking campaigns on supercomputers. We show examples where ensemble-based docking has significantly increased the number and the diversity of validated drug candidates. Finally, we illustrate how ensemble-based docking can be extended beyond hit discovery and toward providing a structural basis for the prediction of metabolism and off-target binding relevant to pre-clinical and clinical trials.
Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1
NASA Technical Reports Server (NTRS)
Estes, Ronald H. (Editor)
1993-01-01
This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center.
A performance comparison of the Cray-2 and the Cray X-MP
NASA Technical Reports Server (NTRS)
Schmickley, Ronald; Bailey, David H.
1986-01-01
A suite of thirteen large Fortran benchmark codes were run on Cray-2 and Cray X-MP supercomputers. These codes were a mix of compute-intensive scientific application programs (mostly Computational Fluid Dynamics) and some special vectorized computation exercise programs. For the general class of programs tested on the Cray-2, most of which were not specially tuned for speed, the floating point operation rates varied under a variety of system load configurations from 40 percent up to 125 percent of X-MP performance rates. It is concluded that the Cray-2, in the original system configuration studied (without memory pseudo-banking) will run untuned Fortran code, on average, about 70 percent of X-MP speeds.
A Lightweight I/O Scheme to Facilitate Spatial and Temporal Queries of Scientific Data Analytics
NASA Technical Reports Server (NTRS)
Tian, Yuan; Liu, Zhuo; Klasky, Scott; Wang, Bin; Abbasi, Hasan; Zhou, Shujia; Podhorszki, Norbert; Clune, Tom; Logan, Jeremy; Yu, Weikuan
2013-01-01
In the era of petascale computing, more scientific applications are being deployed on leadership scale computing platforms to enhance the scientific productivity. Many I/O techniques have been designed to address the growing I/O bottleneck on large-scale systems by handling massive scientific data in a holistic manner. While such techniques have been leveraged in a wide range of applications, they have not been shown as adequate for many mission critical applications, particularly in data post-processing stage. One of the examples is that some scientific applications generate datasets composed of a vast amount of small data elements that are organized along many spatial and temporal dimensions but require sophisticated data analytics on one or more dimensions. Including such dimensional knowledge into data organization can be beneficial to the efficiency of data post-processing, which is often missing from exiting I/O techniques. In this study, we propose a novel I/O scheme named STAR (Spatial and Temporal AggRegation) to enable high performance data queries for scientific analytics. STAR is able to dive into the massive data, identify the spatial and temporal relationships among data variables, and accordingly organize them into an optimized multi-dimensional data structure before storing to the storage. This technique not only facilitates the common access patterns of data analytics, but also further reduces the application turnaround time. In particular, STAR is able to enable efficient data queries along the time dimension, a practice common in scientific analytics but not yet supported by existing I/O techniques. In our case study with a critical climate modeling application GEOS-5, the experimental results on Jaguar supercomputer demonstrate an improvement up to 73 times for the read performance compared to the original I/O method.
Roadrunner Supercomputer Breaks the Petaflop Barrier
Los Alamos National Lab - Brian Albright, Charlie McMillan, Lin Yin
2017-12-09
At 3:30 a.m. on May 26, 2008, Memorial Day, the "Roadrunner" supercomputer exceeded a sustained speed of 1 petaflop/s, or 1 million billion calculations per second. The sustained performance makes Roadrunner more than twice as fast as the current number 1
QCD on the BlueGene/L Supercomputer
NASA Astrophysics Data System (ADS)
Bhanot, G.; Chen, D.; Gara, A.; Sexton, J.; Vranas, P.
2005-03-01
In June 2004 QCD was simulated for the first time at sustained speed exceeding 1 TeraFlops in the BlueGene/L supercomputer at the IBM T.J. Watson Research Lab. The implementation and performance of QCD in the BlueGene/L is presented.
NASA Astrophysics Data System (ADS)
Fukazawa, K.; Walker, R. J.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Kita, H.; Tao, C.; Murata, K. T.
2016-12-01
Planetary magnetospheres are very large, while phenomena within them occur on meso- and micro-scales. These scales range from 10s of planetary radii to kilometers. To understand dynamics in these multi-scale systems, numerical simulations have been performed by using the supercomputer systems. We have studied the magnetospheres of Earth, Jupiter and Saturn by using 3-dimensional magnetohydrodynamic (MHD) simulations for a long time, however, we have not obtained the phenomena near the limits of the MHD approximation. In particular, we have not studied meso-scale phenomena that can be addressed by using MHD.Recently we performed our MHD simulation of Earth's magnetosphere by using the K-computer which is the first 10PFlops supercomputer and obtained multi-scale flow vorticity for the both northward and southward IMF. Furthermore, we have access to supercomputer systems which have Xeon, SPARC64, and vector-type CPUs and can compare simulation results between the different systems. Finally, we have compared the results of our parameter survey of the magnetosphere with observations from the HISAKI spacecraft.We have encountered a number of difficulties effectively using the latest supercomputer systems. First the size of simulation output increases greatly. Now a simulation group produces over 1PB of output. Storage and analysis of this much data is difficult. The traditional way to analyze simulation results is to move the results to the investigator's home computer. This takes over three months using an end-to-end 10Gbps network. In reality, there are problems at some nodes such as firewalls that can increase the transfer time to over one year. Another issue is post-processing. It is hard to treat a few TB of simulation output due to the memory limitations of a post-processing computer. To overcome these issues, we have developed and introduced the parallel network storage, the highly efficient network protocol and the CUI based visualization tools.In this study, we will show the latest simulation results using the petascale supercomputer and problems from the use of these supercomputer systems.
Using Google Earth in Marine Research and Operational Decision Support
NASA Astrophysics Data System (ADS)
Blower, J. D.; Bretherton, D.; Haines, K.; Liu, C.; Rawlings, C.; Santokhee, A.; Smith, I.
2006-12-01
A key advantage of Virtual Globes ("geobrowsers") such as Google Earth is that they can display many different geospatial data types at a huge range of spatial scales. In this demonstration and poster display we shall show how marine data from disparate sources can be brought together in a geobrowser in order to support both scientific research and operational search and rescue activities. We have developed the Godiva2 interactive website for browsing and exploring marine data, mainly output from supercomputer analyses and predictions of ocean circulation. The user chooses a number of parameters (e.g. sea temperature at 100m depth on 1st July 2006) and can load an image of the resulting data in Google Earth. Through the use of an automatically-refreshing NetworkLink the user can explore the whole globe at a very large range of spatial scales: the displayed data will automatically be refreshed to show data at increasingly fine resolution as the user zooms in. This is a valuable research tool for exploring these terabyte- scale datasets. Many coastguard organizations around the world use SARIS, a software application produced by BMT Cordah Ltd., to predict the drift pattern of objects in the sea in order to support search and rescue operations. Different drifting objects have different trajectories depending on factors such as their buoyancy and windage and so a computer model, supported by meteorological and oceanographic data, is needed to help rescuers locate their targets. We shall demonstrate how Google Earth is used to display output from the SARIS model (including the search target location and associated error polygon) alongside meteorological data (wind vectors) and oceanographic data (sea temperature, surface currents) from Godiva2 in order to support decision-making. We shall also discuss the limitations of using Google Earth in this context: these include the difficulties of working with time- dependent data and the need to access data securely. essc.ac.uk:8080/Godiva2
Finite element methods on supercomputers - The scatter-problem
NASA Technical Reports Server (NTRS)
Loehner, R.; Morgan, K.
1985-01-01
Certain problems arise in connection with the use of supercomputers for the implementation of finite-element methods. These problems are related to the desirability of utilizing the power of the supercomputer as fully as possible for the rapid execution of the required computations, taking into account the gain in speed possible with the aid of pipelining operations. For the finite-element method, the time-consuming operations may be divided into three categories. The first two present no problems, while the third type of operation can be a reason for the inefficient performance of finite-element programs. Two possibilities for overcoming certain difficulties are proposed, giving attention to a scatter-process.
Code IN Exhibits - Supercomputing 2000
NASA Technical Reports Server (NTRS)
Yarrow, Maurice; McCann, Karen M.; Biswas, Rupak; VanderWijngaart, Rob F.; Kwak, Dochan (Technical Monitor)
2000-01-01
The creation of parameter study suites has recently become a more challenging problem as the parameter studies have become multi-tiered and the computational environment has become a supercomputer grid. The parameter spaces are vast, the individual problem sizes are getting larger, and researchers are seeking to combine several successive stages of parameterization and computation. Simultaneously, grid-based computing offers immense resource opportunities but at the expense of great difficulty of use. We present ILab, an advanced graphical user interface approach to this problem. Our novel strategy stresses intuitive visual design tools for parameter study creation and complex process specification, and also offers programming-free access to grid-based supercomputer resources and process automation.
NSF Establishes First Four National Supercomputer Centers.
ERIC Educational Resources Information Center
Lepkowski, Wil
1985-01-01
The National Science Foundation (NSF) has awarded support for supercomputer centers at Cornell University, Princeton University, University of California (San Diego), and University of Illinois. These centers are to be the nucleus of a national academic network for use by scientists and engineers throughout the United States. (DH)
Library Services in a Supercomputer Center.
ERIC Educational Resources Information Center
Layman, Mary
1991-01-01
Describes library services that are offered at the San Diego Supercomputer Center (SDSC), which is located at the University of California at San Diego. Topics discussed include the user population; online searching; microcomputer use; electronic networks; current awareness programs; library catalogs; and the slide collection. A sidebar outlines…
Probing the cosmic causes of errors in supercomputers
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Cosmic rays from outer space are causing errors in supercomputers. The neutrons that pass through the CPU may be causing binary data to flip leading to incorrect calculations. Los Alamos National Laboratory has developed detectors to determine how much data is being corrupted by these cosmic particles.
Flux-Level Transit Injection Experiments with NASA Pleiades Supercomputer
NASA Astrophysics Data System (ADS)
Li, Jie; Burke, Christopher J.; Catanzarite, Joseph; Seader, Shawn; Haas, Michael R.; Batalha, Natalie; Henze, Christopher; Christiansen, Jessie; Kepler Project, NASA Advanced Supercomputing Division
2016-06-01
Flux-Level Transit Injection (FLTI) experiments are executed with NASA's Pleiades supercomputer for the Kepler Mission. The latest release (9.3, January 2016) of the Kepler Science Operations Center Pipeline is used in the FLTI experiments. Their purpose is to validate the Analytic Completeness Model (ACM), which can be computed for all Kepler target stars, thereby enabling exoplanet occurrence rate studies. Pleiades, a facility of NASA's Advanced Supercomputing Division, is one of the world's most powerful supercomputers and represents NASA's state-of-the-art technology. We discuss the details of implementing the FLTI experiments on the Pleiades supercomputer. For example, taking into account that ~16 injections are generated by one core of the Pleiades processors in an hour, the “shallow” FLTI experiment, in which ~2000 injections are required per target star, can be done for 16% of all Kepler target stars in about 200 hours. Stripping down the transit search to bare bones, i.e. only searching adjacent high/low periods at high/low pulse durations, makes the computationally intensive FLTI experiments affordable. The design of the FLTI experiments and the analysis of the resulting data are presented in “Validating an Analytic Completeness Model for Kepler Target Stars Based on Flux-level Transit Injection Experiments” by Catanzarite et al. (#2494058).Kepler was selected as the 10th mission of the Discovery Program. Funding for the Kepler Mission has been provided by the NASA Science Mission Directorate.
PNNL streamlines energy-guzzling computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckman, Mary T.; Marquez, Andres
In a room the size of a garage, two rows of six-foot-tall racks holding supercomputer hard drives sit back-to-back. Thin tubes and wires snake off the hard drives, slithering into the corners. Stepping between the rows, a rush of heat whips around you -- the air from fans blowing off processing heat. But walk farther in, between the next racks of hard drives, and the temperature drops noticeably. These drives are being cooled by a non-conducting liquid that runs right over the hardworking processors. The liquid carries the heat away in tubes, saving the air a few degrees. This ismore » the Energy Smart Data Center at Pacific Northwest National Laboratory. The bigger, faster, and meatier supercomputers get, the more energy they consume. PNNL's Andres Marquez has developed this test bed to learn how to train the behemoths in energy efficiency. The work will help supercomputers perform better as well. Processors have to keep cool or suffer from "thermal throttling," says Marquez. "That's the performance threshold where the computer is too hot to run well. That threshold is an industry secret." The center at EMSL, DOE's national scientific user facility at PNNL, harbors several ways of experimenting with energy usage. For example, the room's air conditioning is isolated from the rest of EMSL -- pipes running beneath the floor carry temperature-controlled water through heat exchangers to cooling towers outside. "We can test whether it's more energy efficient to cool directly on the processing chips or out in the water tower," says Marquez. The hard drives feed energy and temperature data to a network server running specially designed software that controls and monitors the data center. To test the center’s limits, the team runs the processors flat out – not only on carefully controlled test programs in the Energy Smart computers, but also on real world software from other EMSL research, such as regional weather forecasting models. Marquez's group is also developing "power aware computing", where the computer programs themselves perform calculations more energy efficiently. Maybe once computers get smart about energy, they'll have tips for their users.« less
Simulating functional magnetic materials on supercomputers.
Gruner, Markus Ernst; Entel, Peter
2009-07-22
The recent passing of the petaflop per second landmark by the Roadrunner project at the Los Alamos National Laboratory marks a preliminary peak of an impressive world-wide development in the high-performance scientific computing sector. Also, purely academic state-of-the-art supercomputers such as the IBM Blue Gene/P at Forschungszentrum Jülich allow us nowadays to investigate large systems of the order of 10(3) spin polarized transition metal atoms by means of density functional theory. Three applications will be presented where large-scale ab initio calculations contribute to the understanding of key properties emerging from a close interrelation between structure and magnetism. The first two examples discuss the size dependent evolution of equilibrium structural motifs in elementary iron and binary Fe-Pt and Co-Pt transition metal nanoparticles, which are currently discussed as promising candidates for ultra-high-density magnetic data storage media. However, the preference for multiply twinned morphologies at smaller cluster sizes counteracts the formation of a single-crystalline L1(0) phase, which alone provides the required hard magnetic properties. The third application is concerned with the magnetic shape memory effect in the Ni-Mn-Ga Heusler alloy, which is a technologically relevant candidate for magnetomechanical actuators and sensors. In this material strains of up to 10% can be induced by external magnetic fields due to the field induced shifting of martensitic twin boundaries, requiring an extremely high mobility of the martensitic twin boundaries, but also the selection of the appropriate martensitic structure from the rich phase diagram.
The Sky's the Limit When Super Students Meet Supercomputers.
ERIC Educational Resources Information Center
Trotter, Andrew
1991-01-01
In a few select high schools in the U.S., supercomputers are allowing talented students to attempt sophisticated research projects using simultaneous simulations of nature, culture, and technology not achievable by ordinary microcomputers. Schools can get their students online by entering contests and seeking grants and partnerships with…
NSF Says It Will Support Supercomputer Centers in California and Illinois.
ERIC Educational Resources Information Center
Strosnider, Kim; Young, Jeffrey R.
1997-01-01
The National Science Foundation will increase support for supercomputer centers at the University of California, San Diego and the University of Illinois, Urbana-Champaign, while leaving unclear the status of the program at Cornell University (New York) and a cooperative Carnegie-Mellon University (Pennsylvania) and University of Pittsburgh…
Access to Supercomputers. Higher Education Panel Report 69.
ERIC Educational Resources Information Center
Holmstrom, Engin Inel
This survey was conducted to provide the National Science Foundation with baseline information on current computer use in the nation's major research universities, including the actual and potential use of supercomputers. Questionnaires were sent to 207 doctorate-granting institutions; after follow-ups, 167 institutions (91% of the institutions…
NOAA announces significant investment in next generation of supercomputers
provide more timely, accurate weather forecasts. (Credit: istockphoto.com) Today, NOAA announced the next phase in the agency's efforts to increase supercomputing capacity to provide more timely, accurate turn will lead to more timely, accurate, and reliable forecasts." Ahead of this upgrade, each of
Developments in the simulation of compressible inviscid and viscous flow on supercomputers
NASA Technical Reports Server (NTRS)
Steger, J. L.; Buning, P. G.
1985-01-01
In anticipation of future supercomputers, finite difference codes are rapidly being extended to simulate three-dimensional compressible flow about complex configurations. Some of these developments are reviewed. The importance of computational flow visualization and diagnostic methods to three-dimensional flow simulation is also briefly discussed.
NASA Technical Reports Server (NTRS)
Smarr, Larry; Press, William; Arnett, David W.; Cameron, Alastair G. W.; Crutcher, Richard M.; Helfand, David J.; Horowitz, Paul; Kleinmann, Susan G.; Linsky, Jeffrey L.; Madore, Barry F.
1991-01-01
The applications of computers and data processing to astronomy are discussed. Among the topics covered are the emerging national information infrastructure, workstations and supercomputers, supertelescopes, digital astronomy, astrophysics in a numerical laboratory, community software, archiving of ground-based observations, dynamical simulations of complex systems, plasma astrophysics, and the remote control of fourth dimension supercomputers.
ANL statement of site strategy for computing workstations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fenske, K.R.; Boxberger, L.M.; Amiot, L.W.
1991-11-01
This Statement of Site Strategy describes the procedure at Argonne National Laboratory for defining, acquiring, using, and evaluating scientific and office workstations and related equipment and software in accord with DOE Order 1360.1A (5-30-85), and Laboratory policy. It is Laboratory policy to promote the installation and use of computing workstations to improve productivity and communications for both programmatic and support personnel, to ensure that computing workstations acquisitions meet the expressed need in a cost-effective manner, and to ensure that acquisitions of computing workstations are in accord with Laboratory and DOE policies. The overall computing site strategy at ANL is tomore » develop a hierarchy of integrated computing system resources to address the current and future computing needs of the laboratory. The major system components of this hierarchical strategy are: Supercomputers, Parallel computers, Centralized general purpose computers, Distributed multipurpose minicomputers, and Computing workstations and office automation support systems. Computing workstations include personal computers, scientific and engineering workstations, computer terminals, microcomputers, word processing and office automation electronic workstations, and associated software and peripheral devices costing less than $25,000 per item.« less
Polar Domain Discovery with Sparkler
NASA Astrophysics Data System (ADS)
Duerr, R.; Khalsa, S. J. S.; Mattmann, C. A.; Ottilingam, N. K.; Singh, K.; Lopez, L. A.
2017-12-01
The scientific web is vast and ever growing. It encompasses millions of textual, scientific and multimedia documents describing research in a multitude of scientific streams. Most of these documents are hidden behind forms which require user action to retrieve and thus can't be directly accessed by content crawlers. These documents are hosted on web servers across the world, most often on outdated hardware and network infrastructure. Hence it is difficult and time-consuming to aggregate documents from the scientific web, especially those relevant to a specific domain. Thus generating meaningful domain-specific insights is currently difficult. We present an automated discovery system (Figure 1) using Sparkler, an open-source, extensible, horizontally scalable crawler which facilitates high throughput and focused crawling of documents pertinent to a particular domain such as information about polar regions. With this set of highly domain relevant documents, we show that it is possible to answer analytical questions about that domain. Our domain discovery algorithm leverages prior domain knowledge to reach out to commercial/scientific search engines to generate seed URLs. Subject matter experts then annotate these seed URLs manually on a scale from highly relevant to irrelevant. We leverage this annotated dataset to train a machine learning model which predicts the `domain relevance' of a given document. We extend Sparkler with this model to focus crawling on documents relevant to that domain. Sparkler avoids disruption of service by 1) partitioning URLs by hostname such that every node gets a different host to crawl and by 2) inserting delays between subsequent requests. With an NSF-funded supercomputer Wrangler, we scaled our domain discovery pipeline to crawl about 200k polar specific documents from the scientific web, within a day.
Supercomputer use in orthopaedic biomechanics research: focus on functional adaptation of bone.
Hart, R T; Thongpreda, N; Van Buskirk, W C
1988-01-01
The authors describe two biomechanical analyses carried out using numerical methods. One is an analysis of the stress and strain in a human mandible, and the other analysis involves modeling the adaptive response of a sheep bone to mechanical loading. The computing environment required for the two types of analyses is discussed. It is shown that a simple stress analysis of a geometrically complex mandible can be accomplished using a minicomputer. However, more sophisticated analyses of the same model with dynamic loading or nonlinear materials would require supercomputer capabilities. A supercomputer is also required for modeling the adaptive response of living bone, even when simple geometric and material models are use.
NREL's Building-Integrated Supercomputer Provides Heating and Efficient Computing (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-09-01
NREL's Energy Systems Integration Facility (ESIF) is meant to investigate new ways to integrate energy sources so they work together efficiently, and one of the key tools to that investigation, a new supercomputer, is itself a prime example of energy systems integration. NREL teamed with Hewlett-Packard (HP) and Intel to develop the innovative warm-water, liquid-cooled Peregrine supercomputer, which not only operates efficiently but also serves as the primary source of building heat for ESIF offices and laboratories. This innovative high-performance computer (HPC) can perform more than a quadrillion calculations per second as part of the world's most energy-efficient HPC datamore » center.« less
Supercomputer optimizations for stochastic optimal control applications
NASA Technical Reports Server (NTRS)
Chung, Siu-Leung; Hanson, Floyd B.; Xu, Huihuang
1991-01-01
Supercomputer optimizations for a computational method of solving stochastic, multibody, dynamic programming problems are presented. The computational method is valid for a general class of optimal control problems that are nonlinear, multibody dynamical systems, perturbed by general Markov noise in continuous time, i.e., nonsmooth Gaussian as well as jump Poisson random white noise. Optimization techniques for vector multiprocessors or vectorizing supercomputers include advanced data structures, loop restructuring, loop collapsing, blocking, and compiler directives. These advanced computing techniques and superconducting hardware help alleviate Bellman's curse of dimensionality in dynamic programming computations, by permitting the solution of large multibody problems. Possible applications include lumped flight dynamics models for uncertain environments, such as large scale and background random aerospace fluctuations.
Optimization of large matrix calculations for execution on the Cray X-MP vector supercomputer
NASA Technical Reports Server (NTRS)
Hornfeck, William A.
1988-01-01
A considerable volume of large computational computer codes were developed for NASA over the past twenty-five years. This code represents algorithms developed for machines of earlier generation. With the emergence of the vector supercomputer as a viable, commercially available machine, an opportunity exists to evaluate optimization strategies to improve the efficiency of existing software. This result is primarily due to architectural differences in the latest generation of large-scale machines and the earlier, mostly uniprocessor, machines. A sofware package being used by NASA to perform computations on large matrices is described, and a strategy for conversion to the Cray X-MP vector supercomputer is also described.
Congressional Panel Seeks To Curb Access of Foreign Students to U.S. Supercomputers.
ERIC Educational Resources Information Center
Kiernan, Vincent
1999-01-01
Fearing security problems, a congressional committee on Chinese espionage recommends that foreign students and other foreign nationals be barred from using supercomputers at national laboratories unless they first obtain export licenses from the federal government. University officials dispute the data on which the report is based and find the…
The Age of the Supercomputer Gives Way to the Age of the Super Infrastructure.
ERIC Educational Resources Information Center
Young, Jeffrey R.
1997-01-01
In October 1997, the National Science Foundation will discontinue financial support for two university-based supercomputer facilities to concentrate resources on partnerships led by facilities at the University of California, San Diego and the University of Illinois, Urbana-Champaign. The reconfigured program will develop more user-friendly and…
The ChemViz Project: Using a Supercomputer To Illustrate Abstract Concepts in Chemistry.
ERIC Educational Resources Information Center
Beckwith, E. Kenneth; Nelson, Christopher
1998-01-01
Describes the Chemistry Visualization (ChemViz) Project, a Web venture maintained by the University of Illinois National Center for Supercomputing Applications (NCSA) that enables high school students to use computational chemistry as a technique for understanding abstract concepts. Discusses the evolution of computational chemistry and provides a…
Extracting the Textual and Temporal Structure of Supercomputing Logs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, S; Singh, I; Chandra, A
2009-05-26
Supercomputers are prone to frequent faults that adversely affect their performance, reliability and functionality. System logs collected on these systems are a valuable resource of information about their operational status and health. However, their massive size, complexity, and lack of standard format makes it difficult to automatically extract information that can be used to improve system management. In this work we propose a novel method to succinctly represent the contents of supercomputing logs, by using textual clustering to automatically find the syntactic structures of log messages. This information is used to automatically classify messages into semantic groups via an onlinemore » clustering algorithm. Further, we describe a methodology for using the temporal proximity between groups of log messages to identify correlated events in the system. We apply our proposed methods to two large, publicly available supercomputing logs and show that our technique features nearly perfect accuracy for online log-classification and extracts meaningful structural and temporal message patterns that can be used to improve the accuracy of other log analysis techniques.« less
NASA Astrophysics Data System (ADS)
Voronin, A. A.; Panchenko, V. Ya; Zheltikov, A. M.
2016-06-01
High-intensity ultrashort laser pulses propagating in gas media or in condensed matter undergo complex nonlinear spatiotemporal evolution where temporal transformations of optical field waveforms are strongly coupled to an intricate beam dynamics and ultrafast field-induced ionization processes. At the level of laser peak powers orders of magnitude above the critical power of self-focusing, the beam exhibits modulation instabilities, producing random field hot spots and breaking up into multiple noise-seeded filaments. This problem is described by a (3 + 1)-dimensional nonlinear field evolution equation, which needs to be solved jointly with the equation for ultrafast ionization of a medium. Analysis of this problem, which is equivalent to solving a billion-dimensional evolution problem, is only possible by means of supercomputer simulations augmented with coordinated big-data processing of large volumes of information acquired through theory-guiding experiments and supercomputations. Here, we review the main challenges of supercomputations and big-data processing encountered in strong-field ultrafast optical physics and discuss strategies to confront these challenges.
Merlin - Massively parallel heterogeneous computing
NASA Technical Reports Server (NTRS)
Wittie, Larry; Maples, Creve
1989-01-01
Hardware and software for Merlin, a new kind of massively parallel computing system, are described. Eight computers are linked as a 300-MIPS prototype to develop system software for a larger Merlin network with 16 to 64 nodes, totaling 600 to 3000 MIPS. These working prototypes help refine a mapped reflective memory technique that offers a new, very general way of linking many types of computer to form supercomputers. Processors share data selectively and rapidly on a word-by-word basis. Fast firmware virtual circuits are reconfigured to match topological needs of individual application programs. Merlin's low-latency memory-sharing interfaces solve many problems in the design of high-performance computing systems. The Merlin prototypes are intended to run parallel programs for scientific applications and to determine hardware and software needs for a future Teraflops Merlin network.
Final Report for DOE Award ER25756
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesselman, Carl
2014-11-17
The SciDAC-funded Center for Enabling Distributed Petascale Science (CEDPS) was established to address technical challenges that arise due to the frequent geographic distribution of data producers (in particular, supercomputers and scientific instruments) and data consumers (people and computers) within the DOE laboratory system. Its goal is to produce technical innovations that meet DOE end-user needs for (a) rapid and dependable placement of large quantities of data within a distributed high-performance environment, and (b) the convenient construction of scalable science services that provide for the reliable and high-performance processing of computation and data analysis requests from many remote clients. The Centermore » is also addressing (c) the important problem of troubleshooting these and other related ultra-high-performance distributed activities from the perspective of both performance and functionality« less
Characterizing parallel file-access patterns on a large-scale multiprocessor
NASA Technical Reports Server (NTRS)
Purakayastha, A.; Ellis, Carla; Kotz, David; Nieuwejaar, Nils; Best, Michael L.
1995-01-01
High-performance parallel file systems are needed to satisfy tremendous I/O requirements of parallel scientific applications. The design of such high-performance parallel file systems depends on a comprehensive understanding of the expected workload, but so far there have been very few usage studies of multiprocessor file systems. This paper is part of the CHARISMA project, which intends to fill this void by measuring real file-system workloads on various production parallel machines. In particular, we present results from the CM-5 at the National Center for Supercomputing Applications. Our results are unique because we collect information about nearly every individual I/O request from the mix of jobs running on the machine. Analysis of the traces leads to various recommendations for parallel file-system design.
Relativistic Collisions of Highly-Charged Ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ionescu, Dorin; Belkacem, Ali
1998-11-19
The physics of elementary atomic processes in relativistic collisions between highly-charged ions and atoms or other ions is briefly discussed, and some recent theoretical and experimental results in this field are summarized. They include excitation, capture, ionization, and electron-positron pair creation. The numerical solution of the two-center Dirac equation in momentum space is shown to be a powerful nonperturbative method for describing atomic processes in relativistic collisions involving heavy and highly-charged ions. By propagating negative-energy wave packets in time the evolution of the QED vacuum around heavy ions in relativistic motion is investigated. Recent results obtained from numerical calculations usingmore » massively parallel processing on the Cray-T3E supercomputer of the National Energy Research Scientific Computer Center (NERSC) at Berkeley National Laboratory are presented.« less
Havens: Explicit Reliable Memory Regions for HPC Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hukerikar, Saurabh; Engelmann, Christian
2016-01-01
Supporting error resilience in future exascale-class supercomputing systems is a critical challenge. Due to transistor scaling trends and increasing memory density, scientific simulations are expected to experience more interruptions caused by transient errors in the system memory. Existing hardware-based detection and recovery techniques will be inadequate to manage the presence of high memory fault rates. In this paper we propose a partial memory protection scheme based on region-based memory management. We define the concept of regions called havens that provide fault protection for program objects. We provide reliability for the regions through a software-based parity protection mechanism. Our approach enablesmore » critical program objects to be placed in these havens. The fault coverage provided by our approach is application agnostic, unlike algorithm-based fault tolerance techniques.« less
Toward a Proof of Concept Cloud Framework for Physics Applications on Blue Gene Supercomputers
NASA Astrophysics Data System (ADS)
Dreher, Patrick; Scullin, William; Vouk, Mladen
2015-09-01
Traditional high performance supercomputers are capable of delivering large sustained state-of-the-art computational resources to physics applications over extended periods of time using batch processing mode operating environments. However, today there is an increasing demand for more complex workflows that involve large fluctuations in the levels of HPC physics computational requirements during the simulations. Some of the workflow components may also require a richer set of operating system features and schedulers than normally found in a batch oriented HPC environment. This paper reports on progress toward a proof of concept design that implements a cloud framework onto BG/P and BG/Q platforms at the Argonne Leadership Computing Facility. The BG/P implementation utilizes the Kittyhawk utility and the BG/Q platform uses an experimental heterogeneous FusedOS operating system environment. Both platforms use the Virtual Computing Laboratory as the cloud computing system embedded within the supercomputer. This proof of concept design allows a cloud to be configured so that it can capitalize on the specialized infrastructure capabilities of a supercomputer and the flexible cloud configurations without resorting to virtualization. Initial testing of the proof of concept system is done using the lattice QCD MILC code. These types of user reconfigurable environments have the potential to deliver experimental schedulers and operating systems within a working HPC environment for physics computations that may be different from the native OS and schedulers on production HPC supercomputers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chase Qishi; Zhu, Michelle Mengxia
The advent of large-scale collaborative scientific applications has demonstrated the potential for broad scientific communities to pool globally distributed resources to produce unprecedented data acquisition, movement, and analysis. System resources including supercomputers, data repositories, computing facilities, network infrastructures, storage systems, and display devices have been increasingly deployed at national laboratories and academic institutes. These resources are typically shared by large communities of users over Internet or dedicated networks and hence exhibit an inherent dynamic nature in their availability, accessibility, capacity, and stability. Scientific applications using either experimental facilities or computation-based simulations with various physical, chemical, climatic, and biological models featuremore » diverse scientific workflows as simple as linear pipelines or as complex as a directed acyclic graphs, which must be executed and supported over wide-area networks with massively distributed resources. Application users oftentimes need to manually configure their computing tasks over networks in an ad hoc manner, hence significantly limiting the productivity of scientists and constraining the utilization of resources. The success of these large-scale distributed applications requires a highly adaptive and massively scalable workflow platform that provides automated and optimized computing and networking services. This project is to design and develop a generic Scientific Workflow Automation and Management Platform (SWAMP), which contains a web-based user interface specially tailored for a target application, a set of user libraries, and several easy-to-use computing and networking toolkits for application scientists to conveniently assemble, execute, monitor, and control complex computing workflows in heterogeneous high-performance network environments. SWAMP will enable the automation and management of the entire process of scientific workflows with the convenience of a few mouse clicks while hiding the implementation and technical details from end users. Particularly, we will consider two types of applications with distinct performance requirements: data-centric and service-centric applications. For data-centric applications, the main workflow task involves large-volume data generation, catalog, storage, and movement typically from supercomputers or experimental facilities to a team of geographically distributed users; while for service-centric applications, the main focus of workflow is on data archiving, preprocessing, filtering, synthesis, visualization, and other application-specific analysis. We will conduct a comprehensive comparison of existing workflow systems and choose the best suited one with open-source code, a flexible system structure, and a large user base as the starting point for our development. Based on the chosen system, we will develop and integrate new components including a black box design of computing modules, performance monitoring and prediction, and workflow optimization and reconfiguration, which are missing from existing workflow systems. A modular design for separating specification, execution, and monitoring aspects will be adopted to establish a common generic infrastructure suited for a wide spectrum of science applications. We will further design and develop efficient workflow mapping and scheduling algorithms to optimize the workflow performance in terms of minimum end-to-end delay, maximum frame rate, and highest reliability. We will develop and demonstrate the SWAMP system in a local environment, the grid network, and the 100Gpbs Advanced Network Initiative (ANI) testbed. The demonstration will target scientific applications in climate modeling and high energy physics and the functions to be demonstrated include workflow deployment, execution, steering, and reconfiguration. Throughout the project period, we will work closely with the science communities in the fields of climate modeling and high energy physics including Spallation Neutron Source (SNS) and Large Hadron Collider (LHC) projects to mature the system for production use.« less
P2P Technology for High-Performance Computing: An Overview
NASA Technical Reports Server (NTRS)
Follen, Gregory J. (Technical Monitor); Berry, Jason
2003-01-01
The transition from cluster computing to peer-to-peer (P2P) high-performance computing has recently attracted the attention of the computer science community. It has been recognized that existing local networks and dedicated clusters of headless workstations can serve as inexpensive yet powerful virtual supercomputers. It has also been recognized that the vast number of lower-end computers connected to the Internet stay idle for as long as 90% of the time. The growing speed of Internet connections and the high availability of free CPU time encourage exploration of the possibility to use the whole Internet rather than local clusters as massively parallel yet almost freely available P2P supercomputer. As a part of a larger project on P2P high-performance computing, it has been my goal to compile an overview of the 2P2 paradigm. I have studied various P2P platforms and I have compiled systematic brief descriptions of their most important characteristics. I have also experimented and obtained hands-on experience with selected P2P platforms focusing on those that seem promising with respect to P2P high-performance computing. I have also compiled relevant literature and web references. I have prepared a draft technical report and I have summarized my findings in a poster paper.
NASA Astrophysics Data System (ADS)
Mudelsee, Manfred
2015-04-01
The Big Data era has begun also in the climate sciences, not only in economics or molecular biology. We measure climate at increasing spatial resolution by means of satellites and look farther back in time at increasing temporal resolution by means of natural archives and proxy data. We use powerful supercomputers to run climate models. The model output of the calculations made for the IPCC's Fifth Assessment Report amounts to ~650 TB. The 'scientific evolution' of grid computing has started, and the 'scientific revolution' of quantum computing is being prepared. This will increase computing power, and data amount, by several orders of magnitude in the future. However, more data does not automatically mean more knowledge. We need statisticians, who are at the core of transforming data into knowledge. Statisticians notably also explore the limits of our knowledge (uncertainties, that is, confidence intervals and P-values). Mudelsee (2014 Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Second edition. Springer, Cham, xxxii + 454 pp.) coined the term 'optimal estimation'. Consider the hyperspace of climate estimation. It has many, but not infinite, dimensions. It consists of the three subspaces Monte Carlo design, method and measure. The Monte Carlo design describes the data generating process. The method subspace describes the estimation and confidence interval construction. The measure subspace describes how to detect the optimal estimation method for the Monte Carlo experiment. The envisaged large increase in computing power may bring the following idea of optimal climate estimation into existence. Given a data sample, some prior information (e.g. measurement standard errors) and a set of questions (parameters to be estimated), the first task is simple: perform an initial estimation on basis of existing knowledge and experience with such types of estimation problems. The second task requires the computing power: explore the hyperspace to find the suitable method, that is, the mode of estimation and uncertainty-measure determination that optimizes a selected measure for prescribed values close to the initial estimates. Also here, intelligent exploration methods (gradient, Brent, etc.) are useful. The third task is to apply the optimal estimation method to the climate dataset. This conference paper illustrates by means of three examples that optimal estimation has the potential to shape future big climate data analysis. First, we consider various hypothesis tests to study whether climate extremes are increasing in their occurrence. Second, we compare Pearson's and Spearman's correlation measures. Third, we introduce a novel estimator of the tail index, which helps to better quantify climate-change related risks.
The impact of the U.S. supercomputing initiative will be global
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Dona
2016-01-15
Last July, President Obama issued an executive order that created a coordinated federal strategy for HPC research, development, and deployment called the U.S. National Strategic Computing Initiative (NSCI). However, this bold, necessary step toward building the next generation of supercomputers has inaugurated a new era for U.S. high performance computing (HPC).
Parallel-vector solution of large-scale structural analysis problems on supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.; Nguyen, Duc T.; Agarwal, Tarun K.
1989-01-01
A direct linear equation solution method based on the Choleski factorization procedure is presented which exploits both parallel and vector features of supercomputers. The new equation solver is described, and its performance is evaluated by solving structural analysis problems on three high-performance computers. The method has been implemented using Force, a generic parallel FORTRAN language.
Predicting Hurricanes with Supercomputers
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-01-01
Hurricane Emily, formed in the Atlantic Ocean on July 10, 2005, was the strongest hurricane ever to form before August. By checking computer models against the actual path of the storm, researchers can improve hurricane prediction. In 2010, NOAA researchers were awarded 25 million processor-hours on Argonne's BlueGene/P supercomputer for the project. Read more at http://go.usa.gov/OLh
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Kim, John; Holst, Terry L.; Deiwert, George S.; Cooper, David M.; Watson, Andrew B.; Bailey, F. Ron
1992-01-01
Report evaluates supercomputer needs of five key disciplines: turbulence physics, aerodynamics, aerothermodynamics, chemistry, and mathematical modeling of human vision. Predicts these fields will require computer speed greater than 10(Sup 18) floating-point operations per second (FLOP's) and memory capacity greater than 10(Sup 15) words. Also, new parallel computer architectures and new structured numerical methods will make necessary speed and capacity available.
Advances in petascale kinetic plasma simulation with VPIC and Roadrunner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, Kevin J; Albright, Brian J; Yin, Lin
2009-01-01
VPIC, a first-principles 3d electromagnetic charge-conserving relativistic kinetic particle-in-cell (PIC) code, was recently adapted to run on Los Alamos's Roadrunner, the first supercomputer to break a petaflop (10{sup 15} floating point operations per second) in the TOP500 supercomputer performance rankings. They give a brief overview of the modeling capabilities and optimization techniques used in VPIC and the computational characteristics of petascale supercomputers like Roadrunner. They then discuss three applications enabled by VPIC's unprecedented performance on Roadrunner: modeling laser plasma interaction in upcoming inertial confinement fusion experiments at the National Ignition Facility (NIF), modeling short pulse laser GeV ion acceleration andmore » modeling reconnection in magnetic confinement fusion experiments.« less
Supercomputing Sheds Light on the Dark Universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, Salman; Heitmann, Katrin
2012-11-15
At Argonne National Laboratory, scientists are using supercomputers to shed light on one of the great mysteries in science today, the Dark Universe. With Mira, a petascale supercomputer at the Argonne Leadership Computing Facility, a team led by physicists Salman Habib and Katrin Heitmann will run the largest, most complex simulation of the universe ever attempted. By contrasting the results from Mira with state-of-the-art telescope surveys, the scientists hope to gain new insights into the distribution of matter in the universe, advancing future investigations of dark energy and dark matter into a new realm. The team's research was named amore » finalist for the 2012 Gordon Bell Prize, an award recognizing outstanding achievement in high-performance computing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curran, L.
1988-03-03
Interest has been building in recent months over the imminent arrival of a new class of supercomputer, called the ''supercomputer on a desk'' or the single-user model. Most observers expected the first such product to come from either of two startups, Ardent Computer Corp. or Stellar Computer Inc. But a surprise entry has shown up. Apollo Computer Inc. is launching a new work station this week that racks up an impressive list of industry first as it puts supercomputer power at the disposal of a single user. The new series 10000 from the Chelmsford, Mass., a company is built aroundmore » a reduced-instruction-set architecture that the company calls Prism, for parallel reduced-instruction-set multiprocessor. This article describes the 10000 and Prism.« less
NASA Technical Reports Server (NTRS)
Murman, E. M. (Editor); Abarbanel, S. S. (Editor)
1985-01-01
Current developments and future trends in the application of supercomputers to computational fluid dynamics are discussed in reviews and reports. Topics examined include algorithm development for personal-size supercomputers, a multiblock three-dimensional Euler code for out-of-core and multiprocessor calculations, simulation of compressible inviscid and viscous flow, high-resolution solutions of the Euler equations for vortex flows, algorithms for the Navier-Stokes equations, and viscous-flow simulation by FEM and related techniques. Consideration is given to marching iterative methods for the parabolized and thin-layer Navier-Stokes equations, multigrid solutions to quasi-elliptic schemes, secondary instability of free shear flows, simulation of turbulent flow, and problems connected with weather prediction.
Atmosphere of Freedom: Sixty Years at the NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Bugos, Glenn E.; Launius, Roger (Technical Monitor)
2000-01-01
Throughout Ames History, four themes prevail: a commitment to hiring the best people; cutting-edge research tools; project management that gets things done faster, better and cheaper; and outstanding research efforts that serve the scientific professions and the nation. More than any other NASA Center, Ames remains shaped by its origins in the NACA (National Advisory Committee for Aeronautics). Not that its missions remain the same. Sure, Ames still houses the world's greatest collection of wind tunnels and simulation facilities, its aerodynamicists remain among the best in the world, and pilots and engineers still come for advice on how to build better aircraft. But that is increasingly part of Ames' past. Ames people have embraced two other missions for its future. First, intelligent systems and information science will help NASA use new tools in supercomputing, networking, telepresence and robotics. Second, astrobiology will explore lore the prospects for life on Earth and beyond. Both new missions leverage Ames long-standing expertise in computation and in the life sciences, as well as its relations with the computing and biotechnology firms working in the Silicon Valley community that has sprung up around the Center. Rather than the NACA missions, it is the NACA culture that still permeates Ames. The Ames way of research management privileges the scientists and engineers working in the laboratories. They work in an atmosphere of freedom, laced with the expectation of integrity and responsibility. Ames researchers are free to define their research goals and define how they contribute to the national good. They are expected to keep their fingers on the pulse of their disciplines, to be ambitious yet frugal in organizing their efforts, and to always test their theories in the laboratory or in the field. Ames' leadership ranks, traditionally, are cultivated within this scientific community. Rather than manage and supervise these researchers, Ames leadership merely guided them, represents them to NASA headquarters and the world outside, then steps out of the way before they get run over.
NASA Astrophysics Data System (ADS)
Green, H. D.; Contractor, N. S.; Yao, Y.
2006-12-01
A knowledge network is a multi-dimensional network created from the interactions and interconnections among the scientists, documents, data, analytic tools, and interactive collaboration spaces (like forums and wikis) associated with a collaborative environment. CI-KNOW is a suite of software tools that leverages automated data collection, social network theories, analysis techniques and algorithms to infer an individual's interests and expertise based on their interactions and activities within a knowledge network. The CI-KNOW recommender system mines the knowledge network associated with a scientific community's use of cyberinfrastructure tools and uses relational metadata to record connections among entities in the knowledge network. Recent developments in social network theories and methods provide the backbone for a modular system that creates recommendations from relational metadata. A network navigation portlet allows users to locate colleagues, documents, data or analytic tools in the knowledge network and to explore their networks through a visual, step-wise process. An internal auditing portlet offers administrators diagnostics to assess the growth and health of the entire knowledge network. The first instantiation of the prototype CI-KNOW system is part of the Environmental Cyberinfrastructure Demonstration project at the National Center for Supercomputing Applications, which supports the activities of hydrologic and environmental science communities (CLEANER and CUAHSI) under the umbrella of the WATERS network environmental observatory planning activities (http://cleaner.ncsa.uiuc.edu). This poster summarizes the key aspects of the CI-KNOW system, highlighting the key inputs, calculation mechanisms, and output modalities.
None
2018-05-01
A new Idaho National Laboratory supercomputer is helping scientists create more realistic simulations of nuclear fuel. Dubbed "Ice Storm" this 2048-processor machine allows researchers to model and predict the complex physics behind nuclear reactor behavior. And with a new visualization lab, the team can see the results of its simulations on the big screen. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.
Open Skies Project Computational Fluid Dynamic Analysis
1994-03-01
109 -. -_ _ 9 . CONCLUSIONSI1 f 10. LIST OF REFERENCES _________ ___________112 APPENDIX A: Transition Prediction __________________116 B...Behind the Open Skies Plate 20 8. VSAERO Results on the Alternate Fairing 21 9 . Centerline Cp Comparisons 22 10. VSAERO Wing Effects Study Centerline C...problems. The assistance Mrs. Mary Ann Mages, at Kirtland Supercomputer Center ( PL /SCPR) gave by setting a precedent for supercomputer account
Porting Ordinary Applications to Blue Gene/Q Supercomputers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maheshwari, Ketan C.; Wozniak, Justin M.; Armstrong, Timothy
2015-08-31
Efficiently porting ordinary applications to Blue Gene/Q supercomputers is a significant challenge. Codes are often originally developed without considering advanced architectures and related tool chains. Science needs frequently lead users to want to run large numbers of relatively small jobs (often called many-task computing, an ensemble, or a workflow), which can conflict with supercomputer configurations. In this paper, we discuss techniques developed to execute ordinary applications over leadership class supercomputers. We use the high-performance Swift parallel scripting framework and build two workflow execution techniques-sub-jobs and main-wrap. The sub-jobs technique, built on top of the IBM Blue Gene/Q resource manager Cobalt'smore » sub-block jobs, lets users submit multiple, independent, repeated smaller jobs within a single larger resource block. The main-wrap technique is a scheme that enables C/C++ programs to be defined as functions that are wrapped by a high-performance Swift wrapper and that are invoked as a Swift script. We discuss the needs, benefits, technicalities, and current limitations of these techniques. We further discuss the real-world science enabled by these techniques and the results obtained.« less
Energy Innovation Hubs: A Home for Scientific Collaboration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Steven
Secretary Chu will host a live, streaming Q&A session with the directors of the Energy Innovation Hubs on Tuesday, March 6, at 2:15 p.m. EST. The directors will be available for questions regarding their teams' work and the future of American energy. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@hq.doe.gov, prior or during the live event. Dr. Hank Foley is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computermore » modeling. Dr. Douglas Kothe is the director of the Consortium for Advanced Simulation of Light Water Reactors, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis, which focuses on how to produce fuels from sunlight, water, and carbon dioxide. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@energy.gov, prior or during the live event. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each Hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Dr. Hank Holey is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Modeling and Simulation for Nuclear Reactors Hub, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis Hub, which focuses on how to produce biofuels from sunlight, water, and carbon dioxide.« less
ORNL Cray X1 evaluation status report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, P.K.; Alexander, R.A.; Apra, E.
2004-05-01
On August 15, 2002 the Department of Energy (DOE) selected the Center for Computational Sciences (CCS) at Oak Ridge National Laboratory (ORNL) to deploy a new scalable vector supercomputer architecture for solving important scientific problems in climate, fusion, biology, nanoscale materials and astrophysics. ''This program is one of the first steps in an initiative designed to provide U.S. scientists with the computational power that is essential to 21st century scientific leadership,'' said Dr. Raymond L. Orbach, director of the department's Office of Science. In FY03, CCS procured a 256-processor Cray X1 to evaluate the processors, memory subsystem, scalability of themore » architecture, software environment and to predict the expected sustained performance on key DOE applications codes. The results of the micro-benchmarks and kernel bench marks show the architecture of the Cray X1 to be exceptionally fast for most operations. The best results are shown on large problems, where it is not possible to fit the entire problem into the cache of the processors. These large problems are exactly the types of problems that are important for the DOE and ultra-scale simulation. Application performance is found to be markedly improved by this architecture: - Large-scale simulations of high-temperature superconductors run 25 times faster than on an IBM Power4 cluster using the same number of processors. - Best performance of the parallel ocean program (POP v1.4.3) is 50 percent higher than on Japan s Earth Simulator and 5 times higher than on an IBM Power4 cluster. - A fusion application, global GYRO transport, was found to be 16 times faster on the X1 than on an IBM Power3. The increased performance allowed simulations to fully resolve questions raised by a prior study. - The transport kernel in the AGILE-BOLTZTRAN astrophysics code runs 15 times faster than on an IBM Power4 cluster using the same number of processors. - Molecular dynamics simulations related to the phenomenon of photon echo run 8 times faster than previously achieved. Even at 256 processors, the Cray X1 system is already outperforming other supercomputers with thousands of processors for a certain class of applications such as climate modeling and some fusion applications. This evaluation is the outcome of a number of meetings with both high-performance computing (HPC) system vendors and application experts over the past 9 months and has received broad-based support from the scientific community and other agencies.« less
Energy Innovation Hubs: A Home for Scientific Collaboration
Chu, Steven
2017-12-11
Secretary Chu will host a live, streaming Q&A session with the directors of the Energy Innovation Hubs on Tuesday, March 6, at 2:15 p.m. EST. The directors will be available for questions regarding their teams' work and the future of American energy. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@hq.doe.gov, prior or during the live event. Dr. Hank Foley is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Consortium for Advanced Simulation of Light Water Reactors, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis, which focuses on how to produce fuels from sunlight, water, and carbon dioxide. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@energy.gov, prior or during the live event. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each Hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Dr. Hank Holey is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Modeling and Simulation for Nuclear Reactors Hub, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis Hub, which focuses on how to produce biofuels from sunlight, water, and carbon dioxide.
Towards the Interoperability of Web, Database, and Mass Storage Technologies for Petabyte Archives
NASA Technical Reports Server (NTRS)
Moore, Reagan; Marciano, Richard; Wan, Michael; Sherwin, Tom; Frost, Richard
1996-01-01
At the San Diego Supercomputer Center, a massive data analysis system (MDAS) is being developed to support data-intensive applications that manipulate terabyte sized data sets. The objective is to support scientific application access to data whether it is located at a Web site, stored as an object in a database, and/or storage in an archival storage system. We are developing a suite of demonstration programs which illustrate how Web, database (DBMS), and archival storage (mass storage) technologies can be integrated. An application presentation interface is being designed that integrates data access to all of these sources. We have developed a data movement interface between the Illustra object-relational database and the NSL UniTree archival storage system running in a production mode at the San Diego Supercomputer Center. With this interface, an Illustra client can transparently access data on UniTree under the control of the Illustr DBMS server. The current implementation is based on the creation of a new DBMS storage manager class, and a set of library functions that allow the manipulation and migration of data stored as Illustra 'large objects'. We have extended this interface to allow a Web client application to control data movement between its local disk, the Web server, the DBMS Illustra server, and the UniTree mass storage environment. This paper describes some of the current approaches successfully integrating these technologies. This framework is measured against a representative sample of environmental data extracted from the San Diego Ba Environmental Data Repository. Practical lessons are drawn and critical research areas are highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack
20th Edition of TOP500 List of World's Fastest Supercomputers Released MANNHEIM, Germany; KNOXVILLE, Tenn.;&BERKELEY, Calif. In what has become a much-anticipated event in the world of high-performance computing, the 20th edition of the TOP500 list of the world's fastest supercomputers was released today (November 15, 2002). The Earth Simulator supercomputer installed earlier this year at the Earth Simulator Center in Yokohama, Japan, is with its Linpack benchmark performance of 35.86 Tflop/s (trillions of calculations per second) retains the number one position. The No.2 and No.3 positions are held by two new, identical ASCI Q systems at Los Alamos National Laboratorymore » (7.73Tflop/s each). These systems are built by Hewlett-Packard and based on the Alpha Server SC computer system.« less
STAMPS: Software Tool for Automated MRI Post-processing on a supercomputer.
Bigler, Don C; Aksu, Yaman; Miller, David J; Yang, Qing X
2009-08-01
This paper describes a Software Tool for Automated MRI Post-processing (STAMP) of multiple types of brain MRIs on a workstation and for parallel processing on a supercomputer (STAMPS). This software tool enables the automation of nonlinear registration for a large image set and for multiple MR image types. The tool uses standard brain MRI post-processing tools (such as SPM, FSL, and HAMMER) for multiple MR image types in a pipeline fashion. It also contains novel MRI post-processing features. The STAMP image outputs can be used to perform brain analysis using Statistical Parametric Mapping (SPM) or single-/multi-image modality brain analysis using Support Vector Machines (SVMs). Since STAMPS is PBS-based, the supercomputer may be a multi-node computer cluster or one of the latest multi-core computers.
Japanese project aims at supercomputer that executes 10 gflops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burskey, D.
1984-05-03
Dubbed supercom by its multicompany design team, the decade-long project's goal is an engineering supercomputer that can execute 10 billion floating-point operations/s-about 20 times faster than today's supercomputers. The project, guided by Japan's Ministry of International Trade and Industry (MITI) and the Agency of Industrial Science and Technology encompasses three parallel research programs, all aimed at some angle of the superconductor. One program should lead to superfast logic and memory circuits, another to a system architecture that will afford the best performance, and the last to the software that will ultimately control the computer. The work on logic and memorymore » chips is based on: GAAS circuit; Josephson junction devices; and high electron mobility transistor structures. The architecture will involve parallel processing.« less
Next Generation Workload Management System For Big Data on Heterogeneous Distributed Computing
Klimentov, A.; Buncic, P.; De, K.; ...
2015-05-22
The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS and ALICE are the largest collaborations ever assembled in the sciences and are at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, both experiments rely on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Managementmore » System (WMS) for managing the workflow for all data processing on hundreds of data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. The scale is demonstrated by the following numbers: PanDA manages O(10 2) sites, O(10 5) cores, O(10 8) jobs per year, O(10 3) users, and ATLAS data volume is O(10 17) bytes. In 2013 we started an ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF). The project titled 'Next Generation Workload Management and Analysis System for Big Data' (BigPanDA) is funded by DOE ASCR and HEP. Extending PanDA to clouds and LCF presents new challenges in managing heterogeneity and supporting workflow. The BigPanDA project is underway to setup and tailor PanDA at the Oak Ridge Leadership Computing Facility (OLCF) and at the National Research Center "Kurchatov Institute" together with ALICE distributed computing and ORNL computing professionals. Our approach to integration of HPC platforms at the OLCF and elsewhere is to reuse, as much as possible, existing components of the PanDA system. Finally, we will present our current accomplishments with running the PanDA WMS at OLCF and other supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facilities infrastructure for High Energy and Nuclear Physics as well as other data-intensive science applications.« less
Next Generation Workload Management System For Big Data on Heterogeneous Distributed Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimentov, A.; Buncic, P.; De, K.
The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS and ALICE are the largest collaborations ever assembled in the sciences and are at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, both experiments rely on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Managementmore » System (WMS) for managing the workflow for all data processing on hundreds of data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. The scale is demonstrated by the following numbers: PanDA manages O(10 2) sites, O(10 5) cores, O(10 8) jobs per year, O(10 3) users, and ATLAS data volume is O(10 17) bytes. In 2013 we started an ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF). The project titled 'Next Generation Workload Management and Analysis System for Big Data' (BigPanDA) is funded by DOE ASCR and HEP. Extending PanDA to clouds and LCF presents new challenges in managing heterogeneity and supporting workflow. The BigPanDA project is underway to setup and tailor PanDA at the Oak Ridge Leadership Computing Facility (OLCF) and at the National Research Center "Kurchatov Institute" together with ALICE distributed computing and ORNL computing professionals. Our approach to integration of HPC platforms at the OLCF and elsewhere is to reuse, as much as possible, existing components of the PanDA system. Finally, we will present our current accomplishments with running the PanDA WMS at OLCF and other supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facilities infrastructure for High Energy and Nuclear Physics as well as other data-intensive science applications.« less
NASA Astrophysics Data System (ADS)
Lescinsky, D. T.; Wyborn, L. A.; Evans, B. J. K.; Allen, C.; Fraser, R.; Rankine, T.
2014-12-01
We present collaborative work on a generic, modular infrastructure for virtual laboratories (VLs, similar to science gateways) that combine online access to data, scientific code, and computing resources as services that support multiple data intensive scientific computing needs across a wide range of science disciplines. We are leveraging access to 10+ PB of earth science data on Lustre filesystems at Australia's National Computational Infrastructure (NCI) Research Data Storage Infrastructure (RDSI) node, co-located with NCI's 1.2 PFlop Raijin supercomputer and a 3000 CPU core research cloud. The development, maintenance and sustainability of VLs is best accomplished through modularisation and standardisation of interfaces between components. Our approach has been to break up tightly-coupled, specialised application packages into modules, with identified best techniques and algorithms repackaged either as data services or scientific tools that are accessible across domains. The data services can be used to manipulate, visualise and transform multiple data types whilst the scientific tools can be used in concert with multiple scientific codes. We are currently designing a scalable generic infrastructure that will handle scientific code as modularised services and thereby enable the rapid/easy deployment of new codes or versions of codes. The goal is to build open source libraries/collections of scientific tools, scripts and modelling codes that can be combined in specially designed deployments. Additional services in development include: provenance, publication of results, monitoring, workflow tools, etc. The generic VL infrastructure will be hosted at NCI, but can access alternative computing infrastructures (i.e., public/private cloud, HPC).The Virtual Geophysics Laboratory (VGL) was developed as a pilot project to demonstrate the underlying technology. This base is now being redesigned and generalised to develop a Virtual Hazards Impact and Risk Laboratory (VHIRL); any enhancements and new capabilities will be incorporated into a generic VL infrastructure. At same time, we are scoping seven new VLs and in the process, identifying other common components to prioritise and focus development.
Stone, John E; Hallock, Michael J; Phillips, James C; Peterson, Joseph R; Luthey-Schulten, Zaida; Schulten, Klaus
2016-05-01
Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers.
Evaluating the Efficacy of the Cloud for Cluster Computation
NASA Technical Reports Server (NTRS)
Knight, David; Shams, Khawaja; Chang, George; Soderstrom, Tom
2012-01-01
Computing requirements vary by industry, and it follows that NASA and other research organizations have computing demands that fall outside the mainstream. While cloud computing made rapid inroads for tasks such as powering web applications, performance issues on highly distributed tasks hindered early adoption for scientific computation. One venture to address this problem is Nebula, NASA's homegrown cloud project tasked with delivering science-quality cloud computing resources. However, another industry development is Amazon's high-performance computing (HPC) instances on Elastic Cloud Compute (EC2) that promises improved performance for cluster computation. This paper presents results from a series of benchmarks run on Amazon EC2 and discusses the efficacy of current commercial cloud technology for running scientific applications across a cluster. In particular, a 240-core cluster of cloud instances achieved 2 TFLOPS on High-Performance Linpack (HPL) at 70% of theoretical computational performance. The cluster's local network also demonstrated sub-100 ?s inter-process latency with sustained inter-node throughput in excess of 8 Gbps. Beyond HPL, a real-world Hadoop image processing task from NASA's Lunar Mapping and Modeling Project (LMMP) was run on a 29 instance cluster to process lunar and Martian surface images with sizes on the order of tens of gigapixels. These results demonstrate that while not a rival of dedicated supercomputing clusters, commercial cloud technology is now a feasible option for moderately demanding scientific workloads.
Deploying Darter A Cray XC30 System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fahey, Mark R; Budiardja, Reuben D; Crosby, Lonnie D
TheUniversityofTennessee,KnoxvilleacquiredaCrayXC30 supercomputer, called Darter, with a peak performance of 248.9 Ter- aflops. Darter was deployed in late March of 2013 with a very aggressive production timeline - the system was deployed, accepted, and placed into production in only 2 weeks. The Spring Experiment for the Center for Analysis and Prediction of Storms (CAPS) largely drove the accelerated timeline, as the experiment was scheduled to start in mid-April. The Consortium for Advanced Simulation of Light Water Reactors (CASL) project also needed access and was able to meet their tight deadlines on the newly acquired XC30. Darter s accelerated deployment and op-more » erations schedule resulted in substantial scientific impacts within the re- search community as well as immediate real-world impacts such as early severe tornado warnings« less
schwimmbad: A uniform interface to parallel processing pools in Python
NASA Astrophysics Data System (ADS)
Price-Whelan, Adrian M.; Foreman-Mackey, Daniel
2017-09-01
Many scientific and computing problems require doing some calculation on all elements of some data set. If the calculations can be executed in parallel (i.e. without any communication between calculations), these problems are said to be perfectly parallel. On computers with multiple processing cores, these tasks can be distributed and executed in parallel to greatly improve performance. A common paradigm for handling these distributed computing problems is to use a processing "pool": the "tasks" (the data) are passed in bulk to the pool, and the pool handles distributing the tasks to a number of worker processes when available. schwimmbad provides a uniform interface to parallel processing pools and enables switching easily between local development (e.g., serial processing or with multiprocessing) and deployment on a cluster or supercomputer (via, e.g., MPI or JobLib).
NASA Technical Reports Server (NTRS)
Kikuchi, Hideaki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki; Saini, Subhash
2003-01-01
Scalability of a low-cost, Intel Xeon-based, multi-Teraflop Linux cluster is tested for two high-end scientific applications: Classical atomistic simulation based on the molecular dynamics method and quantum mechanical calculation based on the density functional theory. These scalable parallel applications use space-time multiresolution algorithms and feature computational-space decomposition, wavelet-based adaptive load balancing, and spacefilling-curve-based data compression for scalable I/O. Comparative performance tests are performed on a 1,024-processor Linux cluster and a conventional higher-end parallel supercomputer, 1,184-processor IBM SP4. The results show that the performance of the Linux cluster is comparable to that of the SP4. We also study various effects, such as the sharing of memory and L2 cache among processors, on the performance.
Machine learning for micro-tomography
NASA Astrophysics Data System (ADS)
Parkinson, Dilworth Y.; Pelt, Daniël. M.; Perciano, Talita; Ushizima, Daniela; Krishnan, Harinarayan; Barnard, Harold S.; MacDowell, Alastair A.; Sethian, James
2017-09-01
Machine learning has revolutionized a number of fields, but many micro-tomography users have never used it for their work. The micro-tomography beamline at the Advanced Light Source (ALS), in collaboration with the Center for Applied Mathematics for Energy Research Applications (CAMERA) at Lawrence Berkeley National Laboratory, has now deployed a series of tools to automate data processing for ALS users using machine learning. This includes new reconstruction algorithms, feature extraction tools, and image classification and recommen- dation systems for scientific image. Some of these tools are either in automated pipelines that operate on data as it is collected or as stand-alone software. Others are deployed on computing resources at Berkeley Lab-from workstations to supercomputers-and made accessible to users through either scripting or easy-to-use graphical interfaces. This paper presents a progress report on this work.
The impact of supercomputers on experimentation: A view from a national laboratory
NASA Technical Reports Server (NTRS)
Peterson, V. L.; Arnold, J. O.
1985-01-01
The relative roles of large scale scientific computers and physical experiments in several science and engineering disciplines are discussed. Increasing dependence on computers is shown to be motivated both by the rapid growth in computer speed and memory, which permits accurate numerical simulation of complex physical phenomena, and by the rapid reduction in the cost of performing a calculation, which makes computation an increasingly attractive complement to experimentation. Computer speed and memory requirements are presented for selected areas of such disciplines as fluid dynamics, aerodynamics, aerothermodynamics, chemistry, atmospheric sciences, astronomy, and astrophysics, together with some examples of the complementary nature of computation and experiment. Finally, the impact of the emerging role of computers in the technical disciplines is discussed in terms of both the requirements for experimentation and the attainment of previously inaccessible information on physical processes.
Supercomputer Simulations Help Develop New Approach to Fight Antibiotic Resistance
Zgurskaya, Helen; Smith, Jeremy
2018-06-13
ORNL leveraged powerful supercomputing to support research led by University of Oklahoma scientists to identify chemicals that seek out and disrupt bacterial proteins called efflux pumps, known to be a major cause of antibiotic resistance. By running simulations on Titan, the team selected molecules most likely to target and potentially disable the assembly of efflux pumps found in E. coli bacteria cells.
Unstructured Adaptive Meshes: Bad for Your Memory?
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Feng, Hui-Yu; VanderWijngaart, Rob
2003-01-01
This viewgraph presentation explores the need for a NASA Advanced Supercomputing (NAS) parallel benchmark for problems with irregular dynamical memory access. This benchmark is important and necessary because: 1) Problems with localized error source benefit from adaptive nonuniform meshes; 2) Certain machines perform poorly on such problems; 3) Parallel implementation may provide further performance improvement but is difficult. Some examples of problems which use irregular dynamical memory access include: 1) Heat transfer problem; 2) Heat source term; 3) Spectral element method; 4) Base functions; 5) Elemental discrete equations; 6) Global discrete equations. Nonconforming Mesh and Mortar Element Method are covered in greater detail in this presentation.
Computational fluid dynamics in a marine environment
NASA Technical Reports Server (NTRS)
Carlson, Arthur D.
1987-01-01
The introduction of the supercomputer and recent advances in both Reynolds averaged, and large eddy simulation fluid flow approximation techniques to the Navier-Stokes equations, have created a robust environment for the exploration of problems of interest to the Navy in general, and the Naval Underwater Systems Center in particular. The nature of problems that are of interest, and the type of resources needed for their solution are addressed. The goal is to achieve a good engineering solution to the fluid-structure interaction problem. It is appropriate to indicate that a paper by D. Champman played a major role in developing the interest in the approach discussed.
PATHFINDER: Probing Atmospheric Flows in an Integrated and Distributed Environment
NASA Technical Reports Server (NTRS)
Wilhelmson, R. B.; Wojtowicz, D. P.; Shaw, C.; Hagedorn, J.; Koch, S.
1995-01-01
PATHFINDER is a software effort to create a flexible, modular, collaborative, and distributed environment for studying atmospheric, astrophysical, and other fluid flows in the evolving networked metacomputer environment of the 1990s. It uses existing software, such as HDF (Hierarchical Data Format), DTM (Data Transfer Mechanism), GEMPAK (General Meteorological Package), AVS, SGI Explorer, and Inventor to provide the researcher with the ability to harness the latest in desktop to teraflop computing. Software modules developed during the project are available in the public domain via anonymous FTP from the National Center for Supercomputing Applications (NCSA). The address is ftp.ncsa.uiuc.edu, and the directory is /SGI/PATHFINDER.
Aviation Research and the Internet
NASA Technical Reports Server (NTRS)
Scott, Antoinette M.
1995-01-01
The Internet is a network of networks. It was originally funded by the Defense Advanced Research Projects Agency or DOD/DARPA and evolved in part from the connection of supercomputer sites across the United States. The National Science Foundation (NSF) made the most of their supercomputers by connecting the sites to each other. This made the supercomputers more efficient and now allows scientists, engineers and researchers to access the supercomputers from their own labs and offices. The high speed networks that connect the NSF supercomputers form the backbone of the Internet. The World Wide Web (WWW) is a menu system. It gathers Internet resources from all over the world into a series of screens that appear on your computer. The WWW is also a distributed. The distributed system stores data information on many computers (servers). These servers can go out and get data when you ask for it. Hypermedia is the base of the WWW. One can 'click' on a section and visit other hypermedia (pages). Our approach to demonstrating the importance of aviation research through the Internet began with learning how to put pages on the Internet (on-line) ourselves. We were assigned two aviation companies; Vision Micro Systems Inc. and Innovative Aerodynamic Technologies (IAT). We developed home pages for these SBIR companies. The equipment used to create the pages were the UNIX and Macintosh machines. HTML Supertext software was used to write the pages and the Sharp JX600S scanner to scan the images. As a result, with the use of the UNIX, Macintosh, Sun, PC, and AXIL machines, we were able to present our home pages to over 800,000 visitors.
Pynamic: the Python Dynamic Benchmark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, G L; Ahn, D H; de Supinksi, B R
2007-07-10
Python is widely used in scientific computing to facilitate application development and to support features such as computational steering. Making full use of some of Python's popular features, which improve programmer productivity, leads to applications that access extremely high numbers of dynamically linked libraries (DLLs). As a result, some important Python-based applications severely stress a system's dynamic linking and loading capabilities and also cause significant difficulties for most development environment tools, such as debuggers. Furthermore, using the Python paradigm for large scale MPI-based applications can create significant file IO and further stress tools and operating systems. In this paper, wemore » present Pynamic, the first benchmark program to support configurable emulation of a wide-range of the DLL usage of Python-based applications for large scale systems. Pynamic has already accurately reproduced system software and tool issues encountered by important large Python-based scientific applications on our supercomputers. Pynamic provided insight for our system software and tool vendors, and our application developers, into the impact of several design decisions. As we describe the Pynamic benchmark, we will highlight some of the issues discovered in our large scale system software and tools using Pynamic.« less
NASA Technical Reports Server (NTRS)
Talbot, Bryan; Zhou, Shu-Jia; Higgins, Glenn; Zukor, Dorothy (Technical Monitor)
2002-01-01
One of the most significant challenges in large-scale climate modeling, as well as in high-performance computing in other scientific fields, is that of effectively integrating many software models from multiple contributors. A software framework facilitates the integration task, both in the development and runtime stages of the simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them to focus more on the science and less on the parallel communication implementation. while maintaining high performance across numerous supercomputer and workstation architectures. This document surveys numerous software frameworks for potential use in Earth science modeling. Several frameworks are evaluated in depth, including Parallel Object-Oriented Methods and Applications (POOMA), Cactus (from (he relativistic physics community), Overture, Goddard Earth Modeling System (GEMS), the National Center for Atmospheric Research Flux Coupler, and UCLA/UCB Distributed Data Broker (DDB). Frameworks evaluated in less detail include ROOT, Parallel Application Workspace (PAWS), and Advanced Large-Scale Integrated Computational Environment (ALICE). A host of other frameworks and related tools are referenced in this context. The frameworks are evaluated individually and also compared with each other.
NASA Technical Reports Server (NTRS)
Rutishauser, David
2006-01-01
The motivation for this work comes from an observation that amidst the push for Massively Parallel (MP) solutions to high-end computing problems such as numerical physical simulations, large amounts of legacy code exist that are highly optimized for vector supercomputers. Because re-hosting legacy code often requires a complete re-write of the original code, which can be a very long and expensive effort, this work examines the potential to exploit reconfigurable computing machines in place of a vector supercomputer to implement an essentially unmodified legacy source code. Custom and reconfigurable computing resources could be used to emulate an original application's target platform to the extent required to achieve high performance. To arrive at an architecture that delivers the desired performance subject to limited resources involves solving a multi-variable optimization problem with constraints. Prior research in the area of reconfigurable computing has demonstrated that designing an optimum hardware implementation of a given application under hardware resource constraints is an NP-complete problem. The premise of the approach is that the general issue of applying reconfigurable computing resources to the implementation of an application, maximizing the performance of the computation subject to physical resource constraints, can be made a tractable problem by assuming a computational paradigm, such as vector processing. This research contributes a formulation of the problem and a methodology to design a reconfigurable vector processing implementation of a given application that satisfies a performance metric. A generic, parametric, architectural framework for vector processing implemented in reconfigurable logic is developed as a target for a scheduling/mapping algorithm that maps an input computation to a given instance of the architecture. This algorithm is integrated with an optimization framework to arrive at a specification of the architecture parameters that attempts to minimize execution time, while staying within resource constraints. The flexibility of using a custom reconfigurable implementation is exploited in a unique manner to leverage the lessons learned in vector supercomputer development. The vector processing framework is tailored to the application, with variable parameters that are fixed in traditional vector processing. Benchmark data that demonstrates the functionality and utility of the approach is presented. The benchmark data includes an identified bottleneck in a real case study example vector code, the NASA Langley Terminal Area Simulation System (TASS) application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrzanowski, P; Walter, K
For the Laboratory and staff, 2006 was a year of outstanding achievements. As our many accomplishments in this annual report illustrate, the Laboratory's focus on important problems that affect our nation's security and our researchers breakthroughs in science and technology have led to major successes. As a national laboratory that is part of the Department of Energy's National Nuclear Security Administration (DOE/NNSA), Livermore is a key contributor to the Stockpile Stewardship Program for maintaining the safety, security, and reliability of the nation's nuclear weapons stockpile. The program has been highly successful, and our annual report features some of the Laboratory'smore » significant stockpile stewardship accomplishments in 2006. A notable example is a long-term study with Los Alamos National Laboratory, which found that weapon pit performance will not sharply degrade from the aging effects on plutonium. The conclusion was based on a wide range of nonnuclear experiments, detailed simulations, theoretical advances, and thorough analyses of the results of past nuclear tests. The study was a superb scientific effort. The continuing success of stockpile stewardship enabled NNSA in 2006 to lay out Complex 2030, a vision for a transformed nuclear weapons complex that is more responsive, cost efficient, and highly secure. One of the ways our Laboratory will help lead this transformation is through the design and development of reliable replacement warheads (RRWs). Compared to current designs, these warheads would have enhanced performance margins and security features and would be less costly to manufacture and maintain in a smaller, modernized production complex. In early 2007, NNSA selected Lawrence Livermore and Sandia National Laboratories-California to develop ''RRW-1'' for the U.S. Navy. Design efforts for the RRW, the plutonium aging work, and many other stockpile stewardship accomplishments rely on computer simulations performed on NNSA's Advanced Simulation and Computing (ASC) Program supercomputers at Livermore. ASC Purple and BlueGene/L, the world's fastest computer, together provide nearly a half petaflop (500 trillion operations per second) of computer power for use by the three NNSA national laboratories. Livermore-led teams were awarded the Gordon Bell Prize for Peak Performance in both 2005 and 2006. The winning simulations, run on BlueGene/L, investigated the properties of materials at the length and time scales of atomic interactions. The computing power that makes possible such detailed simulations provides unprecedented opportunities for scientific discovery. Laboratory scientists are meeting the extraordinary challenge of creating experimental capabilities to match the resolution of supercomputer simulations. Working with a wide range of collaborators, we are developing experimental tools that gather better data at the nanometer and subnanosecond scales. Applications range from imaging biomolecules to studying matter at extreme conditions of pressure and temperature. The premier high-energy-density experimental physics facility in the world will be the National Ignition Facility (NIF) when construction is completed in 2009. We are leading the national effort to perform the first fusion ignition experiments using NIF's 192-beam laser and prepare to explore some of the remaining important issues in weapons physics. With scientific colleagues from throughout the nation, we are also designing revolutionary experiments on NIF to advance the fields of astrophysics, planetary physics, and materials science. Mission-directed, multidisciplinary science and technology at Livermore is also focused on reducing the threat posed by the proliferation of weapons of mass destruction as well as their acquisition and use by terrorists. The Laboratory helps this important national effort by providing its unique expertise, integration analyses, and operational support to the Department of Homeland Security. For this vital facet of the Laboratory's national security mission, we are developing advanced technologies, such as a pocket-size explosives detector and an airborne persistent surveillance system, both of which earned R&D 100 Awards. Altogether, Livermore won seven R&D 100 Awards in 2006, the most for any organization. Emerging threats to national and global security go beyond defense and homeland security. Livermore pursues major scientific and technical advances to meet the need for a clean environment; clean, abundant energy; better water management; and improved human health. Our annual report highlights the link between human activities and the warming of tropical oceans, as well as techniques for imaging biological molecules and detecting bone cancer in its earliest stages. In addition, we showcase many scientific discoveries: distant planets, the composition of comets, a new superheavy element.« less
CFD applications: The Lockheed perspective
NASA Technical Reports Server (NTRS)
Miranda, Luis R.
1987-01-01
The Numerical Aerodynamic Simulator (NAS) epitomizes the coming of age of supercomputing and opens exciting horizons in the world of numerical simulation. An overview of supercomputing at Lockheed Corporation in the area of Computational Fluid Dynamics (CFD) is presented. This overview will focus on developments and applications of CFD as an aircraft design tool and will attempt to present an assessment, withing this context, of the state-of-the-art in CFD methodology.
Computational mechanics analysis tools for parallel-vector supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.; Nguyen, Duc T.; Baddourah, Majdi; Qin, Jiangning
1993-01-01
Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigensolution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization search analysis and domain decomposition. The source code for many of these algorithms is available.
A Layered Solution for Supercomputing Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grider, Gary
To solve the supercomputing challenge of memory keeping up with processing speed, a team at Los Alamos National Laboratory developed two innovative memory management and storage technologies. Burst buffers peel off data onto flash memory to support the checkpoint/restart paradigm of large simulations. MarFS adds a thin software layer enabling a new tier for campaign storage—based on inexpensive, failure-prone disk drives—between disk drives and tape archives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, U.A.; Baumle, B.; Kohler, P.
1992-10-01
Music, a DSP-based system with a parallel distributed-memory architecture, provides enormous computing power yet retains the flexibility of a general-purpose computer. Reaching a peak performance of 2.7 Gflops at a significantly lower cost, power consumption, and space requirement than conventional supercomputers, Music is well suited to computationally intensive applications such as neural network simulation. 12 refs., 9 figs., 2 tabs.
A Heterogeneous High-Performance System for Computational and Computer Science
2016-11-15
Patents Submitted Patents Awarded Awards Graduate Students Names of Post Doctorates Names of Faculty Supported Names of Under Graduate students supported...team of research faculty from the departments of computer science and natural science at Bowie State University. The supercomputer is not only to...accelerated HPC systems. The supercomputer is also ideal for the research conducted in the Department of Natural Science, as research faculty work on
LLMapReduce: Multi-Lingual Map-Reduce for Supercomputing Environments
2015-11-20
1990s. Popularized by Google [36] and Apache Hadoop [37], map-reduce has become a staple technology of the ever- growing big data community...Lexington, MA, U.S.A Abstract— The map-reduce parallel programming model has become extremely popular in the big data community. Many big data ...to big data users running on a supercomputer. LLMapReduce dramatically simplifies map-reduce programming by providing simple parallel programming
Advanced Numerical Techniques of Performance Evaluation. Volume 1
1990-06-01
system scheduling3thread. The scheduling thread then runs any other ready thread that can be found. A thread can only sleep or switch out on itself...Polychronopoulos and D.J. Kuck. Guided Self- Scheduling : A Practical Scheduling Scheme for Parallel Supercomputers. IEEE Transactions on Computers C...Kuck 1987] C.D. Polychronopoulos and D.J. Kuck. Guided Self- Scheduling : A Practical Scheduling Scheme for Parallel Supercomputers. IEEE Trans. on Comp
High-performance computing-based exploration of flow control with micro devices.
Fujii, Kozo
2014-08-13
The dielectric barrier discharge (DBD) plasma actuator that controls flow separation is one of the promising technologies to realize energy savings and noise reduction of fluid dynamic systems. However, the mechanism for controlling flow separation is not clearly defined, and this lack of knowledge prevents practical use of this technology. Therefore, large-scale computations for the study of the DBD plasma actuator have been conducted using the Japanese Petaflops supercomputer 'K' for three different Reynolds numbers. Numbers of new findings on the control of flow separation by the DBD plasma actuator have been obtained from the simulations, and some of them are presented in this study. Knowledge of suitable device parameters is also obtained. The DBD plasma actuator is clearly shown to be very effective for controlling flow separation at a Reynolds number of around 10(5), and several times larger lift-to-drag ratio can be achieved at higher angles of attack after stall. For higher Reynolds numbers, separated flow is partially controlled. Flow analysis shows key features towards better control. DBD plasma actuators are a promising technology, which could reduce fuel consumption and contribute to a green environment by achieving high aerodynamic performance. The knowledge described above can be obtained only with high-end computers such as the supercomputer 'K'. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Computational mechanics analysis tools for parallel-vector supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.; Qin, J.
1993-01-01
Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigen-solution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization algorithm and domain decomposition. The source code for many of these algorithms is available from NASA Langley.
NASA's Pleiades Supercomputer Crunches Data For Groundbreaking Analysis and Visualizations
2016-11-23
The Pleiades supercomputer at NASA's Ames Research Center, recently named the 13th fastest computer in the world, provides scientists and researchers high-fidelity numerical modeling of complex systems and processes. By using detailed analyses and visualizations of large-scale data, Pleiades is helping to advance human knowledge and technology, from designing the next generation of aircraft and spacecraft to understanding the Earth's climate and the mysteries of our galaxy.
A Layered Solution for Supercomputing Storage
Grider, Gary
2018-06-13
To solve the supercomputing challenge of memory keeping up with processing speed, a team at Los Alamos National Laboratory developed two innovative memory management and storage technologies. Burst buffers peel off data onto flash memory to support the checkpoint/restart paradigm of large simulations. MarFS adds a thin software layer enabling a new tier for campaign storageâbased on inexpensive, failure-prone disk drivesâbetween disk drives and tape archives.
A Long History of Supercomputing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grider, Gary
As part of its national security science mission, Los Alamos National Laboratory and HPC have a long, entwined history dating back to the earliest days of computing. From bringing the first problem to the nation’s first computer to building the first machine to break the petaflop barrier, Los Alamos holds many “firsts” in HPC breakthroughs. Today, supercomputers are integral to stockpile stewardship and the Laboratory continues to work with vendors in developing the future of HPC.
NASA Advanced Supercomputing Facility Expansion
NASA Technical Reports Server (NTRS)
Thigpen, William W.
2017-01-01
The NASA Advanced Supercomputing (NAS) Division enables advances in high-end computing technologies and in modeling and simulation methods to tackle some of the toughest science and engineering challenges facing NASA today. The name "NAS" has long been associated with leadership and innovation throughout the high-end computing (HEC) community. We play a significant role in shaping HEC standards and paradigms, and provide leadership in the areas of large-scale InfiniBand fabrics, Lustre open-source filesystems, and hyperwall technologies. We provide an integrated high-end computing environment to accelerate NASA missions and make revolutionary advances in science. Pleiades, a petaflop-scale supercomputer, is used by scientists throughout the U.S. to support NASA missions, and is ranked among the most powerful systems in the world. One of our key focus areas is in modeling and simulation to support NASA's real-world engineering applications and make fundamental advances in modeling and simulation methods.
ParaBTM: A Parallel Processing Framework for Biomedical Text Mining on Supercomputers.
Xing, Yuting; Wu, Chengkun; Yang, Xi; Wang, Wei; Zhu, En; Yin, Jianping
2018-04-27
A prevailing way of extracting valuable information from biomedical literature is to apply text mining methods on unstructured texts. However, the massive amount of literature that needs to be analyzed poses a big data challenge to the processing efficiency of text mining. In this paper, we address this challenge by introducing parallel processing on a supercomputer. We developed paraBTM, a runnable framework that enables parallel text mining on the Tianhe-2 supercomputer. It employs a low-cost yet effective load balancing strategy to maximize the efficiency of parallel processing. We evaluated the performance of paraBTM on several datasets, utilizing three types of named entity recognition tasks as demonstration. Results show that, in most cases, the processing efficiency can be greatly improved with parallel processing, and the proposed load balancing strategy is simple and effective. In addition, our framework can be readily applied to other tasks of biomedical text mining besides NER.
Graphics supercomputer for computational fluid dynamics research
NASA Astrophysics Data System (ADS)
Liaw, Goang S.
1994-11-01
The objective of this project is to purchase a state-of-the-art graphics supercomputer to improve the Computational Fluid Dynamics (CFD) research capability at Alabama A & M University (AAMU) and to support the Air Force research projects. A cutting-edge graphics supercomputer system, Onyx VTX, from Silicon Graphics Computer Systems (SGI), was purchased and installed. Other equipment including a desktop personal computer, PC-486 DX2 with a built-in 10-BaseT Ethernet card, a 10-BaseT hub, an Apple Laser Printer Select 360, and a notebook computer from Zenith were also purchased. A reading room has been converted to a research computer lab by adding some furniture and an air conditioning unit in order to provide an appropriate working environments for researchers and the purchase equipment. All the purchased equipment were successfully installed and are fully functional. Several research projects, including two existing Air Force projects, are being performed using these facilities.
Modelling sodium cobaltate by mapping onto magnetic Ising model
NASA Astrophysics Data System (ADS)
Gemperline, Patrick; Morris, David Jonathan Pryce
Fast Ion conductors are a class of crystals that are frequently used as battery materials, especially in smart phones, laptops, and other portable devices. Sodium Cobalt Oxide, NaxCoO2, falls into this class of crystals, but is unique because it possesses the ability to act as a thermoelectric material and a superconductor at different concentrations of Na+. The crystal lattice is mapped onto an Ising Magnetic Spin model and a Monte-Carol Simulation is used to find the most energetically favorable configuration of spins. This spin configuration is mapped back to the crystal lattice resulting in the most stable crystal structure of Sodium Cobalt Oxide at various concentrations. Knowing the atomic structures of the crystals will aid in the research of the materials capabilities and the possible uses of the material commercially. Ohio Supercomputer Center. 1987. Ohio Supercomputer Center. Columbus OH: Ohio Supercomputer Center. and the John Hauck Foundation.
NASA Astrophysics Data System (ADS)
Lyon, A. L.; Kowalkowski, J. B.; Jones, C. D.
2017-10-01
ParaView is a high performance visualization application not widely used in High Energy Physics (HEP). It is a long standing open source project led by Kitware and involves several Department of Energy (DOE) and Department of Defense (DOD) laboratories. Futhermore, it has been adopted by many DOE supercomputing centers and other sites. ParaView is unique in speed and efficiency by using state-of-the-art techniques developed by the academic visualization community that are often not found in applications written by the HEP community. In-situ visualization of events, where event details are visualized during processing/analysis, is a common task for experiment software frameworks. Kitware supplies Catalyst, a library that enables scientific software to serve visualization objects to client ParaView viewers yielding a real-time event display. Connecting ParaView to the Fermilab art framework will be described and the capabilities it brings discussed.
A self-consistent field method for galactic dynamics
NASA Technical Reports Server (NTRS)
Hernquist, Lars; Ostriker, Jeremiah P.
1992-01-01
The present study describes an algorithm for evolving collisionless stellar systems in order to investigate the evolution of systems with density profiles like the R exp 1/4 law, using only a few terms in the expansions. A good fit is obtained for a truncated isothermal distribution, which renders the method appropriate for galaxies with flat rotation curves. Calculations employing N of about 10 exp 6-7 are straightforward on existing supercomputers, making possible simulations having significantly smoother fields than with direct methods such as tree-codes. Orbits are found in a given static or time-dependent gravitational field; the potential, phi(r, t) is revised from the resultant density, rho(r, t). Possible scientific uses of this technique are discussed, including tidal perturbations of dwarf galaxies, the adiabatic growth of central masses in spheroidal galaxies, instabilities in realistic galaxy models, and secular processes in galactic evolution.
Master of Puppets: Cooperative Multitasking for In Situ Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, Dmitriy; Lukic, Zarija
2016-01-01
Modern scientific and engineering simulations track the time evolution of billions of elements. For such large runs, storing most time steps for later analysis is not a viable strategy. It is far more efficient to analyze the simulation data while it is still in memory. Here, we present a novel design for running multiple codes in situ: using coroutines and position-independent executables we enable cooperative multitasking between simulation and analysis, allowing the same executables to post-process simulation output, as well as to process it on the fly, both in situ and in transit. We present Henson, an implementation of ourmore » design, and illustrate its versatility by tackling analysis tasks with different computational requirements. This design differs significantly from the existing frameworks and offers an efficient and robust approach to integrating multiple codes on modern supercomputers. The techniques we present can also be integrated into other in situ frameworks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monozov, Dmitriy; Lukie, Zarija
2016-04-01
Modern scientific and engineering simulations track the time evolution of billions of elements. For such large runs, storing most time steps for later analysis is not a viable strategy. It is far more efficient to analyze the simulation data while it is still in memory. The developers present a novel design for running multiple codes in situ: using coroutines and position-independent executables they enable cooperative multitasking between simulation and analysis, allowing the same executables to post-process simulation output, as well as to process it on the fly, both in situ and in transit. They present Henson, an implementation of ourmore » design, and illustrate its versatility by tackling analysis tasks with different computational requirements. Our design differs significantly from the existing frameworks and offers an efficient and robust approach to integrating multiple codes on modern supercomputers. The presented techniques can also be integrated into other in situ frameworks.« less
Scalable parallel distance field construction for large-scale applications
Yu, Hongfeng; Xie, Jinrong; Ma, Kwan -Liu; ...
2015-10-01
Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. Anew distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking overtime, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate itsmore » efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. In conclusion, our work greatly extends the usability of distance fields for demanding applications.« less
Template Interfaces for Agile Parallel Data-Intensive Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramakrishnan, Lavanya; Gunter, Daniel; Pastorello, Gilerto Z.
Tigres provides a programming library to compose and execute large-scale data-intensive scientific workflows from desktops to supercomputers. DOE User Facilities and large science collaborations are increasingly generating large enough data sets that it is no longer practical to download them to a desktop to operate on them. They are instead stored at centralized compute and storage resources such as high performance computing (HPC) centers. Analysis of this data requires an ability to run on these facilities, but with current technologies, scaling an analysis to an HPC center and to a large data set is difficult even for experts. Tigres ismore » addressing the challenge of enabling collaborative analysis of DOE Science data through a new concept of reusable "templates" that enable scientists to easily compose, run and manage collaborative computational tasks. These templates define common computation patterns used in analyzing a data set.« less
GPU Particle Tracking and MHD Simulations with Greatly Enhanced Computational Speed
NASA Astrophysics Data System (ADS)
Ziemba, T.; O'Donnell, D.; Carscadden, J.; Cash, M.; Winglee, R.; Harnett, E.
2008-12-01
GPUs are intrinsically highly parallelized systems that provide more than an order of magnitude computing speed over a CPU based systems, for less cost than a high end-workstation. Recent advancements in GPU technologies allow for full IEEE float specifications with performance up to several hundred GFLOPs per GPU, and new software architectures have recently become available to ease the transition from graphics based to scientific applications. This allows for a cheap alternative to standard supercomputing methods and should increase the time to discovery. 3-D particle tracking and MHD codes have been developed using NVIDIA's CUDA and have demonstrated speed up of nearly a factor of 20 over equivalent CPU versions of the codes. Such a speed up enables new applications to develop, including real time running of radiation belt simulations and real time running of global magnetospheric simulations, both of which could provide important space weather prediction tools.
Scalable Parallel Distance Field Construction for Large-Scale Applications.
Yu, Hongfeng; Xie, Jinrong; Ma, Kwan-Liu; Kolla, Hemanth; Chen, Jacqueline H
2015-10-01
Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. A new distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking over time, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate its efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. Our work greatly extends the usability of distance fields for demanding applications.
JSD: Parallel Job Accounting on the IBM SP2
NASA Technical Reports Server (NTRS)
Saphir, William; Jones, James Patton; Walter, Howard (Technical Monitor)
1995-01-01
The IBM SP2 is one of the most promising parallel computers for scientific supercomputing - it is fast and usually reliable. One of its biggest problems is a lack of robust and comprehensive system software. Among other things, this software allows a collection of Unix processes to be treated as a single parallel application. It does not, however, provide accounting for parallel jobs other than what is provided by AIX for the individual process components. Without parallel job accounting, it is not possible to monitor system use, measure the effectiveness of system administration strategies, or identify system bottlenecks. To address this problem, we have written jsd, a daemon that collects accounting data for parallel jobs. jsd records information in a format that is easily machine- and human-readable, allowing us to extract the most important accounting information with very little effort. jsd also notifies system administrators in certain cases of system failure.
30 CFR 251.8 - Inspection and reporting requirements for activities under a permit.
Code of Federal Regulations, 2010 CFR
2010-07-01
... activities. You must allow MMS representatives to inspect your exploration or scientific research activities... final report of exploration or scientific research activities under a permit within 30 days after the... and blocks in which any exploration or permitted scientific research activities were conducted...
High performance Python for direct numerical simulations of turbulent flows
NASA Astrophysics Data System (ADS)
Mortensen, Mikael; Langtangen, Hans Petter
2016-06-01
Direct Numerical Simulations (DNS) of the Navier Stokes equations is an invaluable research tool in fluid dynamics. Still, there are few publicly available research codes and, due to the heavy number crunching implied, available codes are usually written in low-level languages such as C/C++ or Fortran. In this paper we describe a pure scientific Python pseudo-spectral DNS code that nearly matches the performance of C++ for thousands of processors and billions of unknowns. We also describe a version optimized through Cython, that is found to match the speed of C++. The solvers are written from scratch in Python, both the mesh, the MPI domain decomposition, and the temporal integrators. The solvers have been verified and benchmarked on the Shaheen supercomputer at the KAUST supercomputing laboratory, and we are able to show very good scaling up to several thousand cores. A very important part of the implementation is the mesh decomposition (we implement both slab and pencil decompositions) and 3D parallel Fast Fourier Transforms (FFT). The mesh decomposition and FFT routines have been implemented in Python using serial FFT routines (either NumPy, pyFFTW or any other serial FFT module), NumPy array manipulations and with MPI communications handled by MPI for Python (mpi4py). We show how we are able to execute a 3D parallel FFT in Python for a slab mesh decomposition using 4 lines of compact Python code, for which the parallel performance on Shaheen is found to be slightly better than similar routines provided through the FFTW library. For a pencil mesh decomposition 7 lines of code is required to execute a transform.
Knowledge Acquisition and Management for the NASA Earth Exchange (NEX)
NASA Astrophysics Data System (ADS)
Votava, P.; Michaelis, A.; Nemani, R. R.
2013-12-01
NASA Earth Exchange (NEX) is a data, computing and knowledge collaboratory that houses NASA satellite, climate and ancillary data where a focused community can come together to share modeling and analysis codes, scientific results, knowledge and expertise on a centralized platform with access to large supercomputing resources. As more and more projects are being executed on NEX, we are increasingly focusing on capturing the knowledge of the NEX users and provide mechanisms for sharing it with the community in order to facilitate reuse and accelerate research. There are many possible knowledge contributions to NEX, it can be a wiki entry on the NEX portal contributed by a developer, information extracted from a publication in an automated way, or a workflow captured during code execution on the supercomputing platform. The goal of the NEX knowledge platform is to capture and organize this information and make it easily accessible to the NEX community and beyond. The knowledge acquisition process consists of three main faucets - data and metadata, workflows and processes, and web-based information. Once the knowledge is acquired, it is processed in a number of ways ranging from custom metadata parsers to entity extraction using natural language processing techniques. The processed information is linked with existing taxonomies and aligned with internal ontology (which heavily reuses number of external ontologies). This forms a knowledge graph that can then be used to improve users' search query results as well as provide additional analytics capabilities to the NEX system. Such a knowledge graph will be an important building block in creating a dynamic knowledge base for the NEX community where knowledge is both generated and easily shared.
Trident: scalable compute archives: workflows, visualization, and analysis
NASA Astrophysics Data System (ADS)
Gopu, Arvind; Hayashi, Soichi; Young, Michael D.; Kotulla, Ralf; Henschel, Robert; Harbeck, Daniel
2016-08-01
The Astronomy scientific community has embraced Big Data processing challenges, e.g. associated with time-domain astronomy, and come up with a variety of novel and efficient data processing solutions. However, data processing is only a small part of the Big Data challenge. Efficient knowledge discovery and scientific advancement in the Big Data era requires new and equally efficient tools: modern user interfaces for searching, identifying and viewing data online without direct access to the data; tracking of data provenance; searching, plotting and analyzing metadata; interactive visual analysis, especially of (time-dependent) image data; and the ability to execute pipelines on supercomputing and cloud resources with minimal user overhead or expertise even to novice computing users. The Trident project at Indiana University offers a comprehensive web and cloud-based microservice software suite that enables the straight forward deployment of highly customized Scalable Compute Archive (SCA) systems; including extensive visualization and analysis capabilities, with minimal amount of additional coding. Trident seamlessly scales up or down in terms of data volumes and computational needs, and allows feature sets within a web user interface to be quickly adapted to meet individual project requirements. Domain experts only have to provide code or business logic about handling/visualizing their domain's data products and about executing their pipelines and application work flows. Trident's microservices architecture is made up of light-weight services connected by a REST API and/or a message bus; a web interface elements are built using NodeJS, AngularJS, and HighCharts JavaScript libraries among others while backend services are written in NodeJS, PHP/Zend, and Python. The software suite currently consists of (1) a simple work flow execution framework to integrate, deploy, and execute pipelines and applications (2) a progress service to monitor work flows and sub-work flows (3) ImageX, an interactive image visualization service (3) an authentication and authorization service (4) a data service that handles archival, staging and serving of data products, and (5) a notification service that serves statistical collation and reporting needs of various projects. Several other additional components are under development. Trident is an umbrella project, that evolved from the One Degree Imager, Portal, Pipeline, and Archive (ODI-PPA) project which we had initially refactored toward (1) a powerful analysis/visualization portal for Globular Cluster System (GCS) survey data collected by IU researchers, 2) a data search and download portal for the IU Electron Microscopy Center's data (EMC-SCA), 3) a prototype archive for the Ludwig Maximilian University's Wide Field Imager. The new Trident software has been used to deploy (1) a metadata quality control and analytics portal (RADY-SCA) for DICOM formatted medical imaging data produced by the IU Radiology Center, 2) Several prototype work flows for different domains, 3) a snapshot tool within IU's Karst Desktop environment, 4) a limited component-set to serve GIS data within the IU GIS web portal. Trident SCA systems leverage supercomputing and storage resources at Indiana University but can be configured to make use of any cloud/grid resource, from local workstations/servers to (inter)national supercomputing facilities such as XSEDE.
NASA Technical Reports Server (NTRS)
Rogers, David
1988-01-01
The advent of the Connection Machine profoundly changes the world of supercomputers. The highly nontraditional architecture makes possible the exploration of algorithms that were impractical for standard Von Neumann architectures. Sparse distributed memory (SDM) is an example of such an algorithm. Sparse distributed memory is a particularly simple and elegant formulation for an associative memory. The foundations for sparse distributed memory are described, and some simple examples of using the memory are presented. The relationship of sparse distributed memory to three important computational systems is shown: random-access memory, neural networks, and the cerebellum of the brain. Finally, the implementation of the algorithm for sparse distributed memory on the Connection Machine is discussed.
Ensemble-based docking: From hit discovery to metabolism and toxicity predictions.
Evangelista, Wilfredo; Weir, Rebecca L; Ellingson, Sally R; Harris, Jason B; Kapoor, Karan; Smith, Jeremy C; Baudry, Jerome
2016-10-15
This paper describes and illustrates the use of ensemble-based docking, i.e., using a collection of protein structures in docking calculations for hit discovery, the exploration of biochemical pathways and toxicity prediction of drug candidates. We describe the computational engineering work necessary to enable large ensemble docking campaigns on supercomputers. We show examples where ensemble-based docking has significantly increased the number and the diversity of validated drug candidates. Finally, we illustrate how ensemble-based docking can be extended beyond hit discovery and toward providing a structural basis for the prediction of metabolism and off-target binding relevant to pre-clinical and clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.
US Department of Energy High School Student Supercomputing Honors Program: A follow-up assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
The US DOE High School Student Supercomputing Honors Program was designed to recognize high school students with superior skills in mathematics and computer science and to provide them with formal training and experience with advanced computer equipment. This document reports on the participants who attended the first such program, which was held at the National Magnetic Fusion Energy Computer Center at the Lawrence Livermore National Laboratory (LLNL) during August 1985.
Green Supercomputing at Argonne
Beckman, Pete
2018-02-07
Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputingâeverything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently. Argonne was recognized for green computing in the 2009 HPCwire Readers Choice Awards. More at http://www.anl.gov/Media_Center/News/2009/news091117.html Read more about the Argonne Leadership Computing Facility at http://www.alcf.anl.gov/
Unified, Cross-Platform, Open-Source Library Package for High-Performance Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozacik, Stephen
Compute power is continually increasing, but this increased performance is largely found in sophisticated computing devices and supercomputer resources that are difficult to use, resulting in under-utilization. We developed a unified set of programming tools that will allow users to take full advantage of the new technology by allowing them to work at a level abstracted away from the platform specifics, encouraging the use of modern computing systems, including government-funded supercomputer facilities.
NASA Astrophysics Data System (ADS)
Tripathi, Vijay S.; Yeh, G. T.
1993-06-01
Sophisticated and highly computation-intensive models of transport of reactive contaminants in groundwater have been developed in recent years. Application of such models to real-world contaminant transport problems, e.g., simulation of groundwater transport of 10-15 chemically reactive elements (e.g., toxic metals) and relevant complexes and minerals in two and three dimensions over a distance of several hundred meters, requires high-performance computers including supercomputers. Although not widely recognized as such, the computational complexity and demand of these models compare with well-known computation-intensive applications including weather forecasting and quantum chemical calculations. A survey of the performance of a variety of available hardware, as measured by the run times for a reactive transport model HYDROGEOCHEM, showed that while supercomputers provide the fastest execution times for such problems, relatively low-cost reduced instruction set computer (RISC) based scalar computers provide the best performance-to-price ratio. Because supercomputers like the Cray X-MP are inherently multiuser resources, often the RISC computers also provide much better turnaround times. Furthermore, RISC-based workstations provide the best platforms for "visualization" of groundwater flow and contaminant plumes. The most notable result, however, is that current workstations costing less than $10,000 provide performance within a factor of 5 of a Cray X-MP.
Stone, John E.; Hallock, Michael J.; Phillips, James C.; Peterson, Joseph R.; Luthey-Schulten, Zaida; Schulten, Klaus
2016-01-01
Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers. PMID:27516922
DOE Office of Scientific and Technical Information (OSTI.GOV)
SAMIOS, N.P.
The eighth evaluation of the RIKEN BNL Research Center (RBRC) took place on October 10-12, 2005, at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC) were Dr. Jean-Paul Blaizot, Professor Makoto Kobayashi, Dr. Akira Masaike, Professor Charles Young Prescott (Chair), Professor Stephen Sharpe (absent), and Professor Jack Sandweiss. We are grateful to Professor Akira Ukawa who was appointed to the SRC to cover Professor Sharpe's area of expertise. In addition to reviewing this year's program, the committee, augmented by Professor Kozi Nakai, evaluated the RBRC proposal for a five-year extension of the RIKEN BNL Collaboration MOU beyondmore » 2007. Dr. Koji Kaya, Director of the Discovery Research Institute, RIKEN, Japan, presided over the session on the extension proposal. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on higher research efforts. In addition, a special session was held in connection with the RBRC QCDSP and QCDOC supercomputers. Professor Norman H. Christ, a collaborator from Columbia University, gave a presentation on the progress and status of the project, and Professor Frithjof Karsch of BNL presented the first physics results from QCDOC. Although the main purpose of this review is a report to RIKEN Management (Dr. Ryoji Noyori, RIKEN President) on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment.« less
NASA Technical Reports Server (NTRS)
1986-01-01
Overview descriptions of on-line environmental data systems, supercomputer facilities, and networks are presented. Each description addresses the concepts of content, capability, and user access relevant to the point of view of potential utilization by the Earth and environmental science community. The information on similar systems or facilities is presented in parallel fashion to encourage and facilitate intercomparison. In addition, summary sheets are given for each description, and a summary table precedes each section.
A Long History of Supercomputing
Grider, Gary
2018-06-13
As part of its national security science mission, Los Alamos National Laboratory and HPC have a long, entwined history dating back to the earliest days of computing. From bringing the first problem to the nationâs first computer to building the first machine to break the petaflop barrier, Los Alamos holds many âfirstsâ in HPC breakthroughs. Today, supercomputers are integral to stockpile stewardship and the Laboratory continues to work with vendors in developing the future of HPC.
2014-09-01
simulation time frame from 30 days to one year. This was enabled by porting the simulation to the Pleiades supercomputer at NASA Ames Research Center, a...including the motivation for changes to our past approach. We then present the software implementation (3) on the NASA Ames Pleiades supercomputer...significantly updated since last year’s paper [25]. The main incentive for that was the shift to a highly parallel approach in order to utilize the Pleiades
Parallel-Vector Algorithm For Rapid Structural Anlysis
NASA Technical Reports Server (NTRS)
Agarwal, Tarun R.; Nguyen, Duc T.; Storaasli, Olaf O.
1993-01-01
New algorithm developed to overcome deficiency of skyline storage scheme by use of variable-band storage scheme. Exploits both parallel and vector capabilities of modern high-performance computers. Gives engineers and designers opportunity to include more design variables and constraints during optimization of structures. Enables use of more refined finite-element meshes to obtain improved understanding of complex behaviors of aerospace structures leading to better, safer designs. Not only attractive for current supercomputers but also for next generation of shared-memory supercomputers.
Development and Applications of a Modular Parallel Process for Large Scale Fluid/Structures Problems
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Kwak, Dochan (Technical Monitor)
2002-01-01
A modular process that can efficiently solve large scale multidisciplinary problems using massively parallel supercomputers is presented. The process integrates disciplines with diverse physical characteristics by retaining the efficiency of individual disciplines. Computational domain independence of individual disciplines is maintained using a meta programming approach. The process integrates disciplines without affecting the combined performance. Results are demonstrated for large scale aerospace problems on several supercomputers. The super scalability and portability of the approach is demonstrated on several parallel computers.
Science and Technology Review June 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Pruneda, J.H.
2000-06-01
This issue contains the following articles: (1) ''Accelerating on the ASCI Challenge''. (2) ''New Day Daws in Supercomputing'' When the ASCI White supercomputer comes online this summer, DOE's Stockpile Stewardship Program will make another significant advanced toward helping to ensure the safety, reliability, and performance of the nation's nuclear weapons. (3) ''Uncovering the Secrets of Actinides'' Researchers are obtaining fundamental information about the actinides, a group of elements with a key role in nuclear weapons and fuels. (4) ''A Predictable Structure for Aerogels''. (5) ''Tibet--Where Continents Collide''.
Role of HPC in Advancing Computational Aeroelasticity
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
2004-01-01
On behalf of the High Performance Computing and Modernization Program (HPCMP) and NASA Advanced Supercomputing Division (NAS) a study is conducted to assess the role of supercomputers on computational aeroelasticity of aerospace vehicles. The study is mostly based on the responses to a web based questionnaire that was designed to capture the nuances of high performance computational aeroelasticity, particularly on parallel computers. A procedure is presented to assign a fidelity-complexity index to each application. Case studies based on major applications using HPCMP resources are presented.
Heart Fibrillation and Parallel Supercomputers
NASA Technical Reports Server (NTRS)
Kogan, B. Y.; Karplus, W. J.; Chudin, E. E.
1997-01-01
The Luo and Rudy 3 cardiac cell mathematical model is implemented on the parallel supercomputer CRAY - T3D. The splitting algorithm combined with variable time step and an explicit method of integration provide reasonable solution times and almost perfect scaling for rectilinear wave propagation. The computer simulation makes it possible to observe new phenomena: the break-up of spiral waves caused by intracellular calcium and dynamics and the non-uniformity of the calcium distribution in space during the onset of the spiral wave.
NASA Technical Reports Server (NTRS)
Guruswamy, Guru
2004-01-01
A procedure to accurately generate AIC using the Navier-Stokes solver including grid deformation is presented. Preliminary results show good comparisons between experiment and computed flutter boundaries for a rectangular wing. A full wing body configuration of an orbital space plane is selected for demonstration on a large number of processors. In the final paper the AIC of full wing body configuration will be computed. The scalability of the procedure on supercomputer will be demonstrated.
2017-12-08
Two rows of the “Discover” supercomputer at the NASA Center for Climate Simulation (NCCS) contain more than 4,000 computer processors. Discover has a total of nearly 15,000 processors. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
2017-12-08
This close-up view highlights one row—approximately 2,000 computer processors—of the “Discover” supercomputer at the NASA Center for Climate Simulation (NCCS). Discover has a total of nearly 15,000 processors. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
NASA Technical Reports Server (NTRS)
2002-01-01
The life of the very small, whether in something as complicated as a human cell or as simple as a drop of water, is of fundamental scientific interest: By knowing how a tiny amount of material reacts to changes in its environment, scientists maybe able to answer questions about how a bulk of material would react to comparable changes. NASA is in the forefront of computational research into a broad range of basic scientific questions about fluid dynamics and the nature of liquid boundary instability. For example, one important issue for the space program is how drops of water and other materials will behave in the low-gravity environment of space and how the low gravity will affect the transport and containment of these materials. Accurate prediction of this behavior is among the aims of a set of molecular dynamics experiments carried out on the NCCSs Cray supercomputers. In conventional computational studies of materials, matter is treated as continuous - a macroscopic whole without regard to its molecular parts - and the behavior patterns of the matter in various physical environments are studied using well-established differential equations and mathematical parameters based on physical properties such as compressibility density, heat capacity, and vapor pressure of the bulk material.
NASA Astrophysics Data System (ADS)
Minnett, R.; Koppers, A. A. P.; Jarboe, N.; Jonestrask, L.; Tauxe, L.; Constable, C.
2016-12-01
The Magnetics Information Consortium (https://earthref.org/MagIC/) develops and maintains a database and web application for supporting the paleo-, geo-, and rock magnetic scientific community. Historically, this objective has been met with an Oracle database and a Perl web application at the San Diego Supercomputer Center (SDSC). The Oracle Enterprise Cluster at SDSC, however, was decommissioned in July of 2016 and the cost for MagIC to continue using Oracle became prohibitive. This provided MagIC with a unique opportunity to reexamine the entire technology stack and data model. MagIC has developed an open-source web application using the Meteor (http://meteor.com) framework and a MongoDB database. The simplicity of the open-source full-stack framework that Meteor provides has improved MagIC's development pace and the increased flexibility of the data schema in MongoDB encouraged the reorganization of the MagIC Data Model. As a result of incorporating actively developed open-source projects into the technology stack, MagIC has benefited from their vibrant software development communities. This has translated into a more modern web application that has significantly improved the user experience for the paleo-, geo-, and rock magnetic scientific community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Settlemyer, Bradley; Kettimuthu, R.; Boley, Josh
High-performance scientific work flows utilize supercomputers, scientific instruments, and large storage systems. Their executions require fast setup of a small number of dedicated network connections across the geographically distributed facility sites. We present Software-Defined Network (SDN) solutions consisting of site daemons that use dpctl, Floodlight, ONOS, or OpenDaylight controllers to set up these connections. The development of these SDN solutions could be quite disruptive to the infrastructure, while requiring a close coordination among multiple sites; in addition, the large number of possible controller and device combinations to investigate could make the infrastructure unavailable to regular users for extended periods ofmore » time. In response, we develop a Virtual Science Network Environment (VSNE) using virtual machines, Mininet, and custom scripts that support the development, testing, and evaluation of SDN solutions, without the constraints and expenses of multi-site physical infrastructures; furthermore, the chosen solutions can be directly transferred to production deployments. By complementing VSNE with a physical testbed, we conduct targeted performance tests of various SDN solutions to help choose the best candidates. In addition, we propose a switching response method to assess the setup times and throughput performances of different SDN solutions, and present experimental results that show their advantages and limitations.« less
NASA Astrophysics Data System (ADS)
Kaplinger, Brian Douglas
For the past few decades, both the scientific community and the general public have been becoming more aware that the Earth lives in a shooting gallery of small objects. We classify all of these asteroids and comets, known or unknown, that cross Earth's orbit as near-Earth objects (NEOs). A look at our geologic history tells us that NEOs have collided with Earth in the past, and we expect that they will continue to do so. With thousands of known NEOs crossing the orbit of Earth, there has been significant scientific interest in developing the capability to deflect an NEO from an impacting trajectory. This thesis applies the ideas of Smoothed Particle Hydrodynamics (SPH) theory to the NEO disruption problem. A simulation package was designed that allows efficacy simulation to be integrated into the mission planning and design process. This is done by applying ideas in high-performance computing (HPC) on the computer graphics processing unit (GPU). Rather than prove a concept through large standalone simulations on a supercomputer, a highly parallel structure allows for flexible, target dependent questions to be resolved. Built around nonclassified data and analysis, this computer package will allow academic institutions to better tackle the issue of NEO mitigation effectiveness.
Exploring Venus: the Venus Exploration Analysis Group (VEXAG)
NASA Astrophysics Data System (ADS)
Ocampo, A.; Atreya, S.; Thompson, T.; Luhmann, J.; Mackwell, S.; Baines, K.; Cutts, J.; Robinson, J.; Saunders, S.
In July 2005 NASA s Planetary Division established the Venus Exploration Analysis Group VEXAG http www lpi usra edu vexag in order to engage the scientific community at large in identifying scientific priorities and strategies for the exploration of Venus VEXAG is a community-based forum open to all interested in the exploration of Venus VEXAG was designed to provide scientific input and technology development plans for planning and prioritizing the study of Venus over the next several decades including a Venus surface sample return VEXAG regularly evaluates NASA s Venus exploration goals scientific objectives investigations and critical measurement requirements including the recommendations in the National Research Council Decadal Survey and NASA s Solar System Exploration Strategic Roadmap VEXAG will take into consideration the latest scientific results from ESA s Venus Express mission and the MESSENGER flybys as well as the results anticipated from JAXA s Venus Climate Orbiter together with science community inputs from venues such as the February 13-16 2006 AGU Chapman Conference to identify the scientific priorities and strategies for future NASA Venus exploration VEXAG is composed of two co-chairs Sushil Atreya University of Michigan Ann Arbor and Janet Luhmann University of California Berkeley VEXAG has formed three focus groups in the areas of 1 Planetary Formation and Evolution Surface and Interior Volcanism Geodynamics etc Focus Group Lead Steve Mackwell LPI 2 Atmospheric Evolution Dynamics Meteorology
Extreme Scale Plasma Turbulence Simulations on Top Supercomputers Worldwide
Tang, William; Wang, Bei; Ethier, Stephane; ...
2016-11-01
The goal of the extreme scale plasma turbulence studies described in this paper is to expedite the delivery of reliable predictions on confinement physics in large magnetic fusion systems by using world-class supercomputers to carry out simulations with unprecedented resolution and temporal duration. This has involved architecture-dependent optimizations of performance scaling and addressing code portability and energy issues, with the metrics for multi-platform comparisons being 'time-to-solution' and 'energy-to-solution'. Realistic results addressing how confinement losses caused by plasma turbulence scale from present-day devices to the much larger $25 billion international ITER fusion facility have been enabled by innovative advances in themore » GTC-P code including (i) implementation of one-sided communication from MPI 3.0 standard; (ii) creative optimization techniques on Xeon Phi processors; and (iii) development of a novel performance model for the key kernels of the PIC code. Our results show that modeling data movement is sufficient to predict performance on modern supercomputer platforms.« less
Multi-petascale highly efficient parallel supercomputer
Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen -Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Smith, Brian; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng
2015-07-14
A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.
Antenna pattern control using impedance surfaces
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Liu, Kefeng
1992-01-01
During this research period, we have effectively transferred existing computer codes from CRAY supercomputer to work station based systems. The work station based version of our code preserved the accuracy of the numerical computations while giving a much better turn-around time than the CRAY supercomputer. Such a task relieved us of the heavy dependence of the supercomputer account budget and made codes developed in this research project more feasible for applications. The analysis of pyramidal horns with impedance surfaces was our major focus during this research period. Three different modeling algorithms in analyzing lossy impedance surfaces were investigated and compared with measured data. Through this investigation, we discovered that a hybrid Fourier transform technique, which uses the eigen mode in the stepped waveguide section and the Fourier transformed field distributions across the stepped discontinuities for lossy impedances coating, gives a better accuracy in analyzing lossy coatings. After a further refinement of the present technique, we will perform an accurate radiation pattern synthesis in the coming reporting period.
Scheduling for Parallel Supercomputing: A Historical Perspective of Achievable Utilization
NASA Technical Reports Server (NTRS)
Jones, James Patton; Nitzberg, Bill
1999-01-01
The NAS facility has operated parallel supercomputers for the past 11 years, including the Intel iPSC/860, Intel Paragon, Thinking Machines CM-5, IBM SP-2, and Cray Origin 2000. Across this wide variety of machine architectures, across a span of 10 years, across a large number of different users, and through thousands of minor configuration and policy changes, the utilization of these machines shows three general trends: (1) scheduling using a naive FIFO first-fit policy results in 40-60% utilization, (2) switching to the more sophisticated dynamic backfilling scheduling algorithm improves utilization by about 15 percentage points (yielding about 70% utilization), and (3) reducing the maximum allowable job size further increases utilization. Most surprising is the consistency of these trends. Over the lifetime of the NAS parallel systems, we made hundreds, perhaps thousands, of small changes to hardware, software, and policy, yet, utilization was affected little. In particular these results show that the goal of achieving near 100% utilization while supporting a real parallel supercomputing workload is unrealistic.
Data communication requirements for the advanced NAS network
NASA Technical Reports Server (NTRS)
Levin, Eugene; Eaton, C. K.; Young, Bruce
1986-01-01
The goal of the Numerical Aerodynamic Simulation (NAS) Program is to provide a powerful computational environment for advanced research and development in aeronautics and related disciplines. The present NAS system consists of a Cray 2 supercomputer connected by a data network to a large mass storage system, to sophisticated local graphics workstations, and by remote communications to researchers throughout the United States. The program plan is to continue acquiring the most powerful supercomputers as they become available. In the 1987/1988 time period it is anticipated that a computer with 4 times the processing speed of a Cray 2 will be obtained and by 1990 an additional supercomputer with 16 times the speed of the Cray 2. The implications of this 20-fold increase in processing power on the data communications requirements are described. The analysis was based on models of the projected workload and system architecture. The results are presented together with the estimates of their sensitivity to assumptions inherent in the models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Richard C.
2009-09-01
This report details the accomplishments of the 'Building More Powerful Less Expensive Supercomputers Using Processing-In-Memory (PIM)' LDRD ('PIM LDRD', number 105809) for FY07-FY09. Latency dominates all levels of supercomputer design. Within a node, increasing memory latency, relative to processor cycle time, limits CPU performance. Between nodes, the same increase in relative latency impacts scalability. Processing-In-Memory (PIM) is an architecture that directly addresses this problem using enhanced chip fabrication technology and machine organization. PIMs combine high-speed logic and dense, low-latency, high-bandwidth DRAM, and lightweight threads that tolerate latency by performing useful work during memory transactions. This work examines the potential ofmore » PIM-based architectures to support mission critical Sandia applications and an emerging class of more data intensive informatics applications. This work has resulted in a stronger architecture/implementation collaboration between 1400 and 1700. Additionally, key technology components have impacted vendor roadmaps, and we are in the process of pursuing these new collaborations. This work has the potential to impact future supercomputer design and construction, reducing power and increasing performance. This final report is organized as follow: this summary chapter discusses the impact of the project (Section 1), provides an enumeration of publications and other public discussion of the work (Section 1), and concludes with a discussion of future work and impact from the project (Section 1). The appendix contains reprints of the refereed publications resulting from this work.« less
Design of multiple sequence alignment algorithms on parallel, distributed memory supercomputers.
Church, Philip C; Goscinski, Andrzej; Holt, Kathryn; Inouye, Michael; Ghoting, Amol; Makarychev, Konstantin; Reumann, Matthias
2011-01-01
The challenge of comparing two or more genomes that have undergone recombination and substantial amounts of segmental loss and gain has recently been addressed for small numbers of genomes. However, datasets of hundreds of genomes are now common and their sizes will only increase in the future. Multiple sequence alignment of hundreds of genomes remains an intractable problem due to quadratic increases in compute time and memory footprint. To date, most alignment algorithms are designed for commodity clusters without parallelism. Hence, we propose the design of a multiple sequence alignment algorithm on massively parallel, distributed memory supercomputers to enable research into comparative genomics on large data sets. Following the methodology of the sequential progressiveMauve algorithm, we design data structures including sequences and sorted k-mer lists on the IBM Blue Gene/P supercomputer (BG/P). Preliminary results show that we can reduce the memory footprint so that we can potentially align over 250 bacterial genomes on a single BG/P compute node. We verify our results on a dataset of E.coli, Shigella and S.pneumoniae genomes. Our implementation returns results matching those of the original algorithm but in 1/2 the time and with 1/4 the memory footprint for scaffold building. In this study, we have laid the basis for multiple sequence alignment of large-scale datasets on a massively parallel, distributed memory supercomputer, thus enabling comparison of hundreds instead of a few genome sequences within reasonable time.
Ocean Wireless Networking and Real Time Data Management
NASA Astrophysics Data System (ADS)
Berger, J.; Orcutt, J. A.; Vernon, F. L.; Braun, H. W.; Rajasekar, A.
2001-12-01
Recent advances in technology have enabled the exploitation of satellite communications for high-speed (> 64 kbps) duplex communications with oceanographic ships at sea. Furthermore, decreasing costs for high-speed communications have made possible continuous connectivity to the global Internet for delivery of data ashore and communications with scientists and engineers on the ship. Through support from the Office of Naval Research, we have planned a series of tests using the R/V Revelle for real time data delivery of large quantities of underway data (e.g. continuous multibeam profiling) to shore for quality control, archiving, and real-time data availability. The Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics (IGPP) and the San Diego Supercomputer Center (SDSC) were funded by the NSF Information Technology Research (ITR) Program, the California Institute for Telecommunications and Information Technology [Cal-(IT)2] and the Scripps Institution of Oceanography for research entitled: "Exploring the Environment in Time: Wireless Networks & Real-Time Management." We will describe the technology to be used for the real-time seagoing experiment and the planned expansion of the project through support from the ITR grant. The short-term goal is to exercise the communications system aboard ship in various weather conditions and sea states while testing and developing the real-time data quality control and archiving methodology. The long-term goal is to enable continuous observations in the ocean, specifically supporting the goals of the DEOS (Dynamics of Earth and Ocean Systems) observatory program supported through a NSF Major Research Equipment (MRE) program - a permanent presence in the oceans. The impact on scientific work aboard ships, however, is likely to be fundamental. It will be possible to go to sea in the future with limited engineering capability for scientific operations by allowing shore-based quality control of data collected and videoconferencing for problem resolution. Costs for shipboard measurements will be reduced significantly while, at the same time, the quality of data collected will increase and ex-post-facto data archiving will no longer be necessary.
Precision searches in dijets at the HL-LHC and HE-LHC
NASA Astrophysics Data System (ADS)
Chekanov, S. V.; Childers, J. T.; Proudfoot, J.; Wang, R.; Frizzell, D.
2018-05-01
This paper explores the physics reach of the High-Luminosity Large Hadron Collider (HL-LHC) for searches of new particles decaying to two jets. We discuss inclusive searches in dijets and b-jets, as well as searches in semi-inclusive events by requiring an additional lepton that increases sensitivity to different aspects of the underlying processes. We discuss the expected exclusion limits for generic models predicting new massive particles that result in resonant structures in the dijet mass. Prospects of the Higher-Energy LHC (HE-LHC) collider are also discussed. The study is based on the Pythia8 Monte Carlo generator using representative event statistics for the HL-LHC and HE-LHC running conditions. The event samples were created using supercomputers at NERSC.
Replica Exchange Molecular Dynamics in the Age of Heterogeneous Architectures
NASA Astrophysics Data System (ADS)
Roitberg, Adrian
2014-03-01
The rise of GPU-based codes has allowed MD to reach timescales only dreamed of only 5 years ago. Even within this new paradigm there is still need for advanced sampling techniques. Modern supercomputers (e.g. Blue Waters, Titan, Keeneland) have made available to users a significant number of GPUS and CPUS, which in turn translate into amazing opportunities for dream calculations. Replica-exchange based methods can optimally use tis combination of codes and architectures to explore conformational variabilities in large systems. I will show our recent work in porting the program Amber to GPUS, and the support for replica exchange methods, where the replicated dimension could be Temperature, pH, Hamiltonian, Umbrella windows and combinations of those schemes.
Climate Data Assimilation on a Massively Parallel Supercomputer
NASA Technical Reports Server (NTRS)
Ding, Hong Q.; Ferraro, Robert D.
1996-01-01
We have designed and implemented a set of highly efficient and highly scalable algorithms for an unstructured computational package, the PSAS data assimilation package, as demonstrated by detailed performance analysis of systematic runs on up to 512-nodes of an Intel Paragon. The preconditioned Conjugate Gradient solver achieves a sustained 18 Gflops performance. Consequently, we achieve an unprecedented 100-fold reduction in time to solution on the Intel Paragon over a single head of a Cray C90. This not only exceeds the daily performance requirement of the Data Assimilation Office at NASA's Goddard Space Flight Center, but also makes it possible to explore much larger and challenging data assimilation problems which are unthinkable on a traditional computer platform such as the Cray C90.
Magnetized Mini-Disk Simulations about Binary Black Holes
NASA Astrophysics Data System (ADS)
Noble, Scott; Bowen, Dennis B.; d'Ascoli, Stephane; Mewes, Vassilios; Campanelli, Manuela; Krolik, Julian
2018-01-01
Accretion disks around supermassive binary black holes offer a rare opportunity to probe the strong-field limit of dynamical gravity by using the ambient matter as a lighthouse. Accurate simulations of these systems using a variety of configurations will be critical to interpreting future observations of them. We have performed the first 3-d general relativistic magnetohydrodynamic simulations of mini-disks about a pair of equal mass black holes in the inspiral regime of their orbit. In this talk, we will present our latest results of 3-d general relativistic magnetohydrodynamic supercomputer simulations of accreting binary black holes during the post-Newtonian inspiral phase of their evolution. The goal of our work is to explore whether these systems provide a unique means to identify and characterize them with electromagnetic observations. We will provide a brief summary of the known electromagnetic signatures, in particular spectra and images obtained from post-process ray-tracing calculations of our simulation data. We will also provide a context for our results and describe our future avenues of exploration.
Supercomputer analysis of sedimentary basins.
Bethke, C M; Altaner, S P; Harrison, W J; Upson, C
1988-01-15
Geological processes of fluid transport and chemical reaction in sedimentary basins have formed many of the earth's energy and mineral resources. These processes can be analyzed on natural time and distance scales with the use of supercomputers. Numerical experiments are presented that give insights to the factors controlling subsurface pressures, temperatures, and reactions; the origin of ores; and the distribution and quality of hydrocarbon reservoirs. The results show that numerical analysis combined with stratigraphic, sea level, and plate tectonic histories provides a powerful tool for studying the evolution of sedimentary basins over geologic time.
2017-12-08
The heart of the NASA Center for Climate Simulation (NCCS) is the “Discover” supercomputer. In 2009, NCCS added more than 8,000 computer processors to Discover, for a total of nearly 15,000 processors. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
2017-12-08
The heart of the NASA Center for Climate Simulation (NCCS) is the “Discover” supercomputer. In 2009, NCCS added more than 8,000 computer processors to Discover, for a total of nearly 15,000 processors. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
2017-12-08
The heart of the NASA Center for Climate Simulation (NCCS) is the “Discover” supercomputer. In 2009, NCCS added more than 8,000 computer processors to Discover, for a total of nearly 15,000 processors. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
Development of the general interpolants method for the CYBER 200 series of supercomputers
NASA Technical Reports Server (NTRS)
Stalnaker, J. F.; Robinson, M. A.; Spradley, L. W.; Kurzius, S. C.; Thoenes, J.
1988-01-01
The General Interpolants Method (GIM) is a 3-D, time-dependent, hybrid procedure for generating numerical analogs of the conservation laws. This study is directed toward the development and application of the GIM computer code for fluid dynamic research applications as implemented for the Cyber 200 series of supercomputers. An elliptic and quasi-parabolic version of the GIM code are discussed. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and an implicit finite difference scheme are also included.
NASA Technical Reports Server (NTRS)
Nosenchuck, D. M.; Littman, M. G.
1986-01-01
The Navier-Stokes computer (NSC) has been developed for solving problems in fluid mechanics involving complex flow simulations that require more speed and capacity than provided by current and proposed Class VI supercomputers. The machine is a parallel processing supercomputer with several new architectural elements which can be programmed to address a wide range of problems meeting the following criteria: (1) the problem is numerically intensive, and (2) the code makes use of long vectors. A simulation of two-dimensional nonsteady viscous flows is presented to illustrate the architecture, programming, and some of the capabilities of the NSC.
Merging the Machines of Modern Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Laura; Collins, Jim
Two recent projects have harnessed supercomputing resources at the US Department of Energy’s Argonne National Laboratory in a novel way to support major fusion science and particle collider experiments. Using leadership computing resources, one team ran fine-grid analysis of real-time data to make near-real-time adjustments to an ongoing experiment, while a second team is working to integrate Argonne’s supercomputers into the Large Hadron Collider/ATLAS workflow. Together these efforts represent a new paradigm of the high-performance computing center as a partner in experimental science.
Review of NASA's Planned Mars Program
NASA Technical Reports Server (NTRS)
1996-01-01
Contents include the following: Executive Summary; Introduction; Scientific Goals for the Exploration of Mars; Overview of Mars Surveyor and Others Mars Missions; Key Issues for NASA's Mars Exploration Program; and Assessment of the Scientific Potential of NASA's Mars Exploration Program.
Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruski, Marek; Sadow, Aaron; Slowing, Igor
Catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/ molecular catalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through trans-formative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to attack scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appoint-ments at a university and a National Laboratory.« less
Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.
Catalysis research at the U.S. Department of Energy’s (DOE’s) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to tackle scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appointments at a university and a National Laboratory.« less
High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers
NASA Astrophysics Data System (ADS)
Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas
2017-04-01
Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise mapping application is composed of four principal modules: (1) pre-processing of raw data, (2) massive cross-correlation, (3) post-processing of correlation data based on computation of logarithmic energy ratio and (4) generation of source maps from post-processed data. Implementation of the solution posed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service oriented architecture for coordination of various sub-systems, and engineering an appropriate data storage solution. The present pilot version of the service implements noise source maps for Switzerland. Extension of the solution to Central Europe is planned for the next project phase.
HACC: Simulating sky surveys on state-of-the-art supercomputing architectures
NASA Astrophysics Data System (ADS)
Habib, Salman; Pope, Adrian; Finkel, Hal; Frontiere, Nicholas; Heitmann, Katrin; Daniel, David; Fasel, Patricia; Morozov, Vitali; Zagaris, George; Peterka, Tom; Vishwanath, Venkatram; Lukić, Zarija; Sehrish, Saba; Liao, Wei-keng
2016-01-01
Current and future surveys of large-scale cosmic structure are associated with a massive and complex datastream to study, characterize, and ultimately understand the physics behind the two major components of the 'Dark Universe', dark energy and dark matter. In addition, the surveys also probe primordial perturbations and carry out fundamental measurements, such as determining the sum of neutrino masses. Large-scale simulations of structure formation in the Universe play a critical role in the interpretation of the data and extraction of the physics of interest. Just as survey instruments continue to grow in size and complexity, so do the supercomputers that enable these simulations. Here we report on HACC (Hardware/Hybrid Accelerated Cosmology Code), a recently developed and evolving cosmology N-body code framework, designed to run efficiently on diverse computing architectures and to scale to millions of cores and beyond. HACC can run on all current supercomputer architectures and supports a variety of programming models and algorithms. It has been demonstrated at scale on Cell- and GPU-accelerated systems, standard multi-core node clusters, and Blue Gene systems. HACC's design allows for ease of portability, and at the same time, high levels of sustained performance on the fastest supercomputers available. We present a description of the design philosophy of HACC, the underlying algorithms and code structure, and outline implementation details for several specific architectures. We show selected accuracy and performance results from some of the largest high resolution cosmological simulations so far performed, including benchmarks evolving more than 3.6 trillion particles.
HACC: Simulating sky surveys on state-of-the-art supercomputing architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, Salman; Pope, Adrian; Finkel, Hal
2016-01-01
Current and future surveys of large-scale cosmic structure are associated with a massive and complex datastream to study, characterize, and ultimately understand the physics behind the two major components of the ‘Dark Universe’, dark energy and dark matter. In addition, the surveys also probe primordial perturbations and carry out fundamental measurements, such as determining the sum of neutrino masses. Large-scale simulations of structure formation in the Universe play a critical role in the interpretation of the data and extraction of the physics of interest. Just as survey instruments continue to grow in size and complexity, so do the supercomputers thatmore » enable these simulations. Here we report on HACC (Hardware/Hybrid Accelerated Cosmology Code), a recently developed and evolving cosmology N-body code framework, designed to run efficiently on diverse computing architectures and to scale to millions of cores and beyond. HACC can run on all current supercomputer architectures and supports a variety of programming models and algorithms. It has been demonstrated at scale on Cell- and GPU-accelerated systems, standard multi-core node clusters, and Blue Gene systems. HACC’s design allows for ease of portability, and at the same time, high levels of sustained performance on the fastest supercomputers available. We present a description of the design philosophy of HACC, the underlying algorithms and code structure, and outline implementation details for several specific architectures. We show selected accuracy and performance results from some of the largest high resolution cosmological simulations so far performed, including benchmarks evolving more than 3.6 trillion particles.« less
NASA's Participation in the National Computational Grid
NASA Technical Reports Server (NTRS)
Feiereisen, William J.; Zornetzer, Steve F. (Technical Monitor)
1998-01-01
Over the last several years it has become evident that the character of NASA's supercomputing needs has changed. One of the major missions of the agency is to support the design and manufacture of aero- and space-vehicles with technologies that will significantly reduce their cost. It is becoming clear that improvements in the process of aerospace design and manufacturing will require a high performance information infrastructure that allows geographically dispersed teams to draw upon resources that are broader than traditional supercomputing. A computational grid draws together our information resources into one system. We can foresee the time when a Grid will allow engineers and scientists to use the tools of supercomputers, databases and on line experimental devices in a virtual environment to collaborate with distant colleagues. The concept of a computational grid has been spoken of for many years, but several events in recent times are conspiring to allow us to actually build one. In late 1997 the National Science Foundation initiated the Partnerships for Advanced Computational Infrastructure (PACI) which is built around the idea of distributed high performance computing. The Alliance lead, by the National Computational Science Alliance (NCSA), and the National Partnership for Advanced Computational Infrastructure (NPACI), lead by the San Diego Supercomputing Center, have been instrumental in drawing together the "Grid Community" to identify the technology bottlenecks and propose a research agenda to address them. During the same period NASA has begun to reformulate parts of two major high performance computing research programs to concentrate on distributed high performance computing and has banded together with the PACI centers to address the research agenda in common.
Jiang, Wei; Luo, Yun; Maragliano, Luca; Roux, Benoît
2012-11-13
An extremely scalable computational strategy is described for calculations of the potential of mean force (PMF) in multidimensions on massively distributed supercomputers. The approach involves coupling thousands of umbrella sampling (US) simulation windows distributed to cover the space of order parameters with a Hamiltonian molecular dynamics replica-exchange (H-REMD) algorithm to enhance the sampling of each simulation. In the present application, US/H-REMD is carried out in a two-dimensional (2D) space and exchanges are attempted alternatively along the two axes corresponding to the two order parameters. The US/H-REMD strategy is implemented on the basis of parallel/parallel multiple copy protocol at the MPI level, and therefore can fully exploit computing power of large-scale supercomputers. Here the novel technique is illustrated using the leadership supercomputer IBM Blue Gene/P with an application to a typical biomolecular calculation of general interest, namely the binding of calcium ions to the small protein Calbindin D9k. The free energy landscape associated with two order parameters, the distance between the ion and its binding pocket and the root-mean-square deviation (rmsd) of the binding pocket relative the crystal structure, was calculated using the US/H-REMD method. The results are then used to estimate the absolute binding free energy of calcium ion to Calbindin D9k. The tests demonstrate that the 2D US/H-REMD scheme greatly accelerates the configurational sampling of the binding pocket, thereby improving the convergence of the potential of mean force calculation.
30 CFR 251.8 - Inspection and reporting requirements for activities under a permit.
Code of Federal Regulations, 2011 CFR
2011-07-01
... exploration or scientific research activities under a permit. They will determine whether operations are... operations. (2) You must submit a final report of exploration or scientific research activities under a... scientific research activities were conducted. Identify the lines of geophysical traverses and their...
Science in Writing: Learning Scientific Argument in Principle and Practice
ERIC Educational Resources Information Center
Cope, Bill; Kalantzis, Mary; Abd-El-Khalick, Fouad; Bagley, Elizabeth
2013-01-01
This article explores the processes of writing in science and in particular the "complex performance" of writing a scientific argument. The article explores in general terms the nature of scientific argumentation in which the author-scientist makes claims, provides evidence to support these claims, and develops chains of scientific…
Calibrating Building Energy Models Using Supercomputer Trained Machine Learning Agents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanyal, Jibonananda; New, Joshua Ryan; Edwards, Richard
2014-01-01
Building Energy Modeling (BEM) is an approach to model the energy usage in buildings for design and retrofit purposes. EnergyPlus is the flagship Department of Energy software that performs BEM for different types of buildings. The input to EnergyPlus can often extend in the order of a few thousand parameters which have to be calibrated manually by an expert for realistic energy modeling. This makes it challenging and expensive thereby making building energy modeling unfeasible for smaller projects. In this paper, we describe the Autotune research which employs machine learning algorithms to generate agents for the different kinds of standardmore » reference buildings in the U.S. building stock. The parametric space and the variety of building locations and types make this a challenging computational problem necessitating the use of supercomputers. Millions of EnergyPlus simulations are run on supercomputers which are subsequently used to train machine learning algorithms to generate agents. These agents, once created, can then run in a fraction of the time thereby allowing cost-effective calibration of building models.« less
Challenges in scaling NLO generators to leadership computers
NASA Astrophysics Data System (ADS)
Benjamin, D.; Childers, JT; Hoeche, S.; LeCompte, T.; Uram, T.
2017-10-01
Exascale computing resources are roughly a decade away and will be capable of 100 times more computing than current supercomputers. In the last year, Energy Frontier experiments crossed a milestone of 100 million core-hours used at the Argonne Leadership Computing Facility, Oak Ridge Leadership Computing Facility, and NERSC. The Fortran-based leading-order parton generator called Alpgen was successfully scaled to millions of threads to achieve this level of usage on Mira. Sherpa and MadGraph are next-to-leading order generators used heavily by LHC experiments for simulation. Integration times for high-multiplicity or rare processes can take a week or more on standard Grid machines, even using all 16-cores. We will describe our ongoing work to scale the Sherpa generator to thousands of threads on leadership-class machines and reduce run-times to less than a day. This work allows the experiments to leverage large-scale parallel supercomputers for event generation today, freeing tens of millions of grid hours for other work, and paving the way for future applications (simulation, reconstruction) on these and future supercomputers.
Sign: large-scale gene network estimation environment for high performance computing.
Tamada, Yoshinori; Shimamura, Teppei; Yamaguchi, Rui; Imoto, Seiya; Nagasaki, Masao; Miyano, Satoru
2011-01-01
Our research group is currently developing software for estimating large-scale gene networks from gene expression data. The software, called SiGN, is specifically designed for the Japanese flagship supercomputer "K computer" which is planned to achieve 10 petaflops in 2012, and other high performance computing environments including Human Genome Center (HGC) supercomputer system. SiGN is a collection of gene network estimation software with three different sub-programs: SiGN-BN, SiGN-SSM and SiGN-L1. In these three programs, five different models are available: static and dynamic nonparametric Bayesian networks, state space models, graphical Gaussian models, and vector autoregressive models. All these models require a huge amount of computational resources for estimating large-scale gene networks and therefore are designed to be able to exploit the speed of 10 petaflops. The software will be available freely for "K computer" and HGC supercomputer system users. The estimated networks can be viewed and analyzed by Cell Illustrator Online and SBiP (Systems Biology integrative Pipeline). The software project web site is available at http://sign.hgc.jp/ .
Katouda, Michio; Naruse, Akira; Hirano, Yukihiko; Nakajima, Takahito
2016-11-15
A new parallel algorithm and its implementation for the RI-MP2 energy calculation utilizing peta-flop-class many-core supercomputers are presented. Some improvements from the previous algorithm (J. Chem. Theory Comput. 2013, 9, 5373) have been performed: (1) a dual-level hierarchical parallelization scheme that enables the use of more than 10,000 Message Passing Interface (MPI) processes and (2) a new data communication scheme that reduces network communication overhead. A multi-node and multi-GPU implementation of the present algorithm is presented for calculations on a central processing unit (CPU)/graphics processing unit (GPU) hybrid supercomputer. Benchmark results of the new algorithm and its implementation using the K computer (CPU clustering system) and TSUBAME 2.5 (CPU/GPU hybrid system) demonstrate high efficiency. The peak performance of 3.1 PFLOPS is attained using 80,199 nodes of the K computer. The peak performance of the multi-node and multi-GPU implementation is 514 TFLOPS using 1349 nodes and 4047 GPUs of TSUBAME 2.5. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Optical clock distribution in supercomputers using polyimide-based waveguides
NASA Astrophysics Data System (ADS)
Bihari, Bipin; Gan, Jianhua; Wu, Linghui; Liu, Yujie; Tang, Suning; Chen, Ray T.
1999-04-01
Guided-wave optics is a promising way to deliver high-speed clock-signal in supercomputer with minimized clock-skew. Si- CMOS compatible polymer-based waveguides for optoelectronic interconnects and packaging have been fabricated and characterized. A 1-to-48 fanout optoelectronic interconnection layer (OIL) structure based on Ultradel 9120/9020 for the high-speed massive clock signal distribution for a Cray T-90 supercomputer board has been constructed. The OIL employs multimode polymeric channel waveguides in conjunction with surface-normal waveguide output coupler and 1-to-2 splitters. Surface-normal couplers can couple the optical clock signals into and out from the H-tree polyimide waveguides surface-normally, which facilitates the integration of photodetectors to convert optical-signal to electrical-signal. A 45-degree surface- normal couplers has been integrated at each output end. The measured output coupling efficiency is nearly 100 percent. The output profile from 45-degree surface-normal coupler were calculated using Fresnel approximation. the theoretical result is in good agreement with experimental result. A total insertion loss of 7.98 dB at 850 nm was measured experimentally.
Flow visualization of CFD using graphics workstations
NASA Technical Reports Server (NTRS)
Lasinski, Thomas; Buning, Pieter; Choi, Diana; Rogers, Stuart; Bancroft, Gordon
1987-01-01
High performance graphics workstations are used to visualize the fluid flow dynamics obtained from supercomputer solutions of computational fluid dynamic programs. The visualizations can be done independently on the workstation or while the workstation is connected to the supercomputer in a distributed computing mode. In the distributed mode, the supercomputer interactively performs the computationally intensive graphics rendering tasks while the workstation performs the viewing tasks. A major advantage of the workstations is that the viewers can interactively change their viewing position while watching the dynamics of the flow fields. An overview of the computer hardware and software required to create these displays is presented. For complex scenes the workstation cannot create the displays fast enough for good motion analysis. For these cases, the animation sequences are recorded on video tape or 16 mm film a frame at a time and played back at the desired speed. The additional software and hardware required to create these video tapes or 16 mm movies are also described. Photographs illustrating current visualization techniques are discussed. Examples of the use of the workstations for flow visualization through animation are available on video tape.
Long-Term file activity patterns in a UNIX workstation environment
NASA Technical Reports Server (NTRS)
Gibson, Timothy J.; Miller, Ethan L.
1998-01-01
As mass storage technology becomes more affordable for sites smaller than supercomputer centers, understanding their file access patterns becomes crucial for developing systems to store rarely used data on tertiary storage devices such as tapes and optical disks. This paper presents a new way to collect and analyze file system statistics for UNIX-based file systems. The collection system runs in user-space and requires no modification of the operating system kernel. The statistics package provides details about file system operations at the file level: creations, deletions, modifications, etc. The paper analyzes four months of file system activity on a university file system. The results confirm previously published results gathered from supercomputer file systems, but differ in several important areas. Files in this study were considerably smaller than those at supercomputer centers, and they were accessed less frequently. Additionally, the long-term creation rate on workstation file systems is sufficiently low so that all data more than a day old could be cheaply saved on a mass storage device, allowing the integration of time travel into every file system.
Next Generation Seismic Imaging; High Fidelity Algorithms and High-End Computing
NASA Astrophysics Data System (ADS)
Bevc, D.; Ortigosa, F.; Guitton, A.; Kaelin, B.
2007-05-01
The rich oil reserves of the Gulf of Mexico are buried in deep and ultra-deep waters up to 30,000 feet from the surface. Minerals Management Service (MMS), the federal agency in the U.S. Department of the Interior that manages the nation's oil, natural gas and other mineral resources on the outer continental shelf in federal offshore waters, estimates that the Gulf of Mexico holds 37 billion barrels of "undiscovered, conventionally recoverable" oil, which, at 50/barrel, would be worth approximately 1.85 trillion. These reserves are very difficult to find and reach due to the extreme depths. Technological advances in seismic imaging represent an opportunity to overcome this obstacle by providing more accurate models of the subsurface. Among these technological advances, Reverse Time Migration (RTM) yields the best possible images. RTM is based on the solution of the two-way acoustic wave-equation. This technique relies on the velocity model to image turning waves. These turning waves are particularly important to unravel subsalt reservoirs and delineate salt-flanks, a natural trap for oil and gas. Because it relies on an accurate velocity model, RTM opens new frontier in designing better velocity estimation algorithms. RTM has been widely recognized as the next chapter in seismic exploration, as it can overcome the limitations of current migration methods in imaging complex geologic structures that exist in the Gulf of Mexico. The chief impediment to the large-scale, routine deployment of RTM has been a lack of sufficient computer power. RTM needs thirty times the computing power used in exploration today to be commercially viable and widely usable. Therefore, advancing seismic imaging to the next level of precision poses a multi-disciplinary challenge. To overcome these challenges, the Kaleidoscope project, a partnership between Repsol YPF, Barcelona Supercomputing Center, 3DGeo Inc., and IBM brings together the necessary components of modeling, algorithms and the uniquely powerful computing power of the MareNostrum supercomputer in Barcelona to realize the promise of RTM, incorporate it into daily processing flows, and to help solve exploration problems in a highly cost-effective way. Uniquely, the Kaleidoscope Project is simultaneously integrating software (algorithms) and hardware (Cell BE), steps that are traditionally taken sequentially. This unique integration of software and hardware will accelerate seismic imaging by several orders of magnitude compared to conventional solutions running on standard Linux Clusters.
Warp-X: A new exascale computing platform for beam–plasma simulations
Vay, J. -L.; Almgren, A.; Bell, J.; ...
2018-01-31
Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such asmore » the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. Lastly, the code structure, status, early examples of applications and plans are discussed.« less
NASA Technical Reports Server (NTRS)
Shen, Bo-Wen; Tao, Wei-Kuo; Chern, Jiun-Dar
2007-01-01
Improving our understanding of hurricane inter-annual variability and the impact of climate change (e.g., doubling CO2 and/or global warming) on hurricanes brings both scientific and computational challenges to researchers. As hurricane dynamics involves multiscale interactions among synoptic-scale flows, mesoscale vortices, and small-scale cloud motions, an ideal numerical model suitable for hurricane studies should demonstrate its capabilities in simulating these interactions. The newly-developed multiscale modeling framework (MMF, Tao et al., 2007) and the substantial computing power by the NASA Columbia supercomputer show promise in pursuing the related studies, as the MMF inherits the advantages of two NASA state-of-the-art modeling components: the GEOS4/fvGCM and 2D GCEs. This article focuses on the computational issues and proposes a revised methodology to improve the MMF's performance and scalability. It is shown that this prototype implementation enables 12-fold performance improvements with 364 CPUs, thereby making it more feasible to study hurricane climate.
Warp-X: A new exascale computing platform for beam–plasma simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vay, J. -L.; Almgren, A.; Bell, J.
Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such asmore » the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. Lastly, the code structure, status, early examples of applications and plans are discussed.« less
Scalable real space pseudopotential density functional codes for materials in the exascale regime
NASA Astrophysics Data System (ADS)
Lena, Charles; Chelikowsky, James; Schofield, Grady; Biller, Ariel; Kronik, Leeor; Saad, Yousef; Deslippe, Jack
Real-space pseudopotential density functional theory has proven to be an efficient method for computing the properties of matter in many different states and geometries, including liquids, wires, slabs, and clusters with and without spin polarization. Fully self-consistent solutions using this approach have been routinely obtained for systems with thousands of atoms. Yet, there are many systems of notable larger sizes where quantum mechanical accuracy is desired, but scalability proves to be a hindrance. Such systems include large biological molecules, complex nanostructures, or mismatched interfaces. We will present an overview of our new massively parallel algorithms, which offer improved scalability in preparation for exascale supercomputing. We will illustrate these algorithms by considering the electronic structure of a Si nanocrystal exceeding 104 atoms. Support provided by the SciDAC program, Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences. Grant Numbers DE-SC0008877 (Austin) and DE-FG02-12ER4 (Berkeley).
NASA Astrophysics Data System (ADS)
Gerhardt, Lisa; Bhimji, Wahid; Canon, Shane; Fasel, Markus; Jacobsen, Doug; Mustafa, Mustafa; Porter, Jeff; Tsulaia, Vakho
2017-10-01
Bringing HEP computing to HPC can be difficult. Software stacks are often very complicated with numerous dependencies that are difficult to get installed on an HPC system. To address this issue, NERSC has created Shifter, a framework that delivers Docker-like functionality to HPC. It works by extracting images from native formats and converting them to a common format that is optimally tuned for the HPC environment. We have used Shifter to deliver the CVMFS software stack for ALICE, ATLAS, and STAR on the supercomputers at NERSC. As well as enabling the distribution multi-TB sized CVMFS stacks to HPC, this approach also offers performance advantages. Software startup times are significantly reduced and load times scale with minimal variation to 1000s of nodes. We profile several successful examples of scientists using Shifter to make scientific analysis easily customizable and scalable. We will describe the Shifter framework and several efforts in HEP and NP to use Shifter to deliver their software on the Cori HPC system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyon, A. L.; Kowalkowski, J. B.; Jones, C. D.
ParaView is a high performance visualization application not widely used in High Energy Physics (HEP). It is a long standing open source project led by Kitware and involves several Department of Energy (DOE) and Department of Defense (DOD) laboratories. Futhermore, it has been adopted by many DOE supercomputing centers and other sites. ParaView is unique in speed and efficiency by using state-of-the-art techniques developed by the academic visualization community that are often not found in applications written by the HEP community. In-situ visualization of events, where event details are visualized during processing/analysis, is a common task for experiment software frameworks.more » Kitware supplies Catalyst, a library that enables scientific software to serve visualization objects to client ParaView viewers yielding a real-time event display. Connecting ParaView to the Fermilab art framework will be described and the capabilities it brings discussed.« less
A Percolation Model for Fracking
NASA Astrophysics Data System (ADS)
Norris, J. Q.; Turcotte, D. L.; Rundle, J. B.
2014-12-01
Developments in fracking technology have enabled the recovery of vast reserves of oil and gas; yet, there is very little publicly available scientific research on fracking. Traditional reservoir simulator models for fracking are computationally expensive, and require many hours on a supercomputer to simulate a single fracking treatment. We have developed a computationally inexpensive percolation model for fracking that can be used to understand the processes and risks associated with fracking. In our model, a fluid is injected from a single site and a network of fractures grows from the single site. The fracture network grows in bursts, the failure of a relatively strong bond followed by the failure of a series of relatively weak bonds. These bursts display similarities to micro seismic events observed during a fracking treatment. The bursts follow a power-law (Gutenburg-Richter) frequency-size distribution and have growth rates similar to observed earthquake moment rates. These are quantifiable features that can be compared to observed microseismicity to help understand the relationship between observed microseismicity and the underlying fracture network.
'Towers in the Tempest' Computer Animation Submission
NASA Technical Reports Server (NTRS)
Shirah, Greg
2008-01-01
The following describes a computer animation that has been submitted to the ACM/SIGGRAPH 2008 computer graphics conference: 'Towers in the Tempest' clearly communicates recent scientific research into how hurricanes intensify. This intensification can be caused by a phenomenon called a 'hot tower.' For the first time, research meteorologists have run complex atmospheric simulations at a very fine temporal resolution of 3 minutes. Combining this simulation data with satellite observations enables detailed study of 'hot towers.' The science of 'hot towers' is described using: satellite observation data, conceptual illustrations, and a volumetric atmospheric simulation data. The movie starts by showing a 'hot tower' observed by NASA's Tropical Rainfall Measuring Mission (TRMM) spacecraft's three dimensional precipitation radar data of Hurricane Bonnie. Next, the dynamics of a hurricane and the formation of 'hot towers' are briefly explained using conceptual illustrations. Finally, volumetric cloud, wind, and vorticity data from a supercomputer simulation of Hurricane Bonnie are shown using volume techniques such as ray marching.
Research Opportunities for Undergraduate Students at Storm Peak Laboratory
NASA Astrophysics Data System (ADS)
Vargas, W.; Hallar, G.
2009-12-01
GRASP (Geoscience Research at Storm Peak) is a program providing field research experiences for a diverse group of undergraduate students. GRASP is funded by the National Science Foundation. Its mission is to recruit students from underrepresented groups within the geoscience community allowing students to work and live at the Storm Peak Laboratory (SPL). Data previously collected at the facility forms the basis for continuing research projects that addresses climate change, atmospheric pollution, and cloud formation. Prior to arriving at SPL, students travel to the National Center for Atmospheric Research (NCAR) to learn about supercomputing, mathematical modeling, and scientific visualization. GRASP participants met at the campus of Howard University for a reunion workshop and presented their results in November 2008. This poster illustrates the given task and methods used to analyze an increased concentration of organic carbon detected between April 4 and 5, 2008 at SPL located at the summit of Mt. Warner in Steamboat Springs, Colorado at an elevation of 3,202 meters.
Automated Performance Prediction of Message-Passing Parallel Programs
NASA Technical Reports Server (NTRS)
Block, Robert J.; Sarukkai, Sekhar; Mehra, Pankaj; Woodrow, Thomas S. (Technical Monitor)
1995-01-01
The increasing use of massively parallel supercomputers to solve large-scale scientific problems has generated a need for tools that can predict scalability trends of applications written for these machines. Much work has been done to create simple models that represent important characteristics of parallel programs, such as latency, network contention, and communication volume. But many of these methods still require substantial manual effort to represent an application in the model's format. The NIK toolkit described in this paper is the result of an on-going effort to automate the formation of analytic expressions of program execution time, with a minimum of programmer assistance. In this paper we demonstrate the feasibility of our approach, by extending previous work to detect and model communication patterns automatically, with and without overlapped computations. The predictions derived from these models agree, within reasonable limits, with execution times of programs measured on the Intel iPSC/860 and Paragon. Further, we demonstrate the use of MK in selecting optimal computational grain size and studying various scalability metrics.
Opportunities for leveraging OS virtualization in high-end supercomputing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridges, Patrick G.; Pedretti, Kevin Thomas Tauke
2010-11-01
This paper examines potential motivations for incorporating virtualization support in the system software stacks of high-end capability supercomputers. We advocate that this will increase the flexibility of these platforms significantly and enable new capabilities that are not possible with current fixed software stacks. Our results indicate that compute, virtual memory, and I/O virtualization overheads are low and can be further mitigated by utilizing well-known techniques such as large paging and VMM bypass. Furthermore, since the addition of virtualization support does not affect the performance of applications using the traditional native environment, there is essentially no disadvantage to its addition.
Designing a connectionist network supercomputer.
Asanović, K; Beck, J; Feldman, J; Morgan, N; Wawrzynek, J
1993-12-01
This paper describes an effort at UC Berkeley and the International Computer Science Institute to develop a supercomputer for artificial neural network applications. Our perspective has been strongly influenced by earlier experiences with the construction and use of a simpler machine. In particular, we have observed Amdahl's Law in action in our designs and those of others. These observations inspire attention to many factors beyond fast multiply-accumulate arithmetic. We describe a number of these factors along with rough expressions for their influence and then give the applications targets, machine goals and the system architecture for the machine we are currently designing.
Building black holes: supercomputer cinema.
Shapiro, S L; Teukolsky, S A
1988-07-22
A new computer code can solve Einstein's equations of general relativity for the dynamical evolution of a relativistic star cluster. The cluster may contain a large number of stars that move in a strong gravitational field at speeds approaching the speed of light. Unstable star clusters undergo catastrophic collapse to black holes. The collapse of an unstable cluster to a supermassive black hole at the center of a galaxy may explain the origin of quasars and active galactic nuclei. By means of a supercomputer simulation and color graphics, the whole process can be viewed in real time on a movie screen.
Performance of the Widely-Used CFD Code OVERFLOW on the Pleides Supercomputer
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
2017-01-01
Computational performance studies were made for NASA's widely used Computational Fluid Dynamics code OVERFLOW on the Pleiades Supercomputer. Two test cases were considered: a full launch vehicle with a grid of 286 million points and a full rotorcraft model with a grid of 614 million points. Computations using up to 8000 cores were run on Sandy Bridge and Ivy Bridge nodes. Performance was monitored using times reported in the day files from the Portable Batch System utility. Results for two grid topologies are presented and compared in detail. Observations and suggestions for future work are made.
Performance Evaluation of Supercomputers using HPCC and IMB Benchmarks
NASA Technical Reports Server (NTRS)
Saini, Subhash; Ciotti, Robert; Gunney, Brian T. N.; Spelce, Thomas E.; Koniges, Alice; Dossa, Don; Adamidis, Panagiotis; Rabenseifner, Rolf; Tiyyagura, Sunil R.; Mueller, Matthias;
2006-01-01
The HPC Challenge (HPCC) benchmark suite and the Intel MPI Benchmark (IMB) are used to compare and evaluate the combined performance of processor, memory subsystem and interconnect fabric of five leading supercomputers - SGI Altix BX2, Cray XI, Cray Opteron Cluster, Dell Xeon cluster, and NEC SX-8. These five systems use five different networks (SGI NUMALINK4, Cray network, Myrinet, InfiniBand, and NEC IXS). The complete set of HPCC benchmarks are run on each of these systems. Additionally, we present Intel MPI Benchmarks (IMB) results to study the performance of 11 MPI communication functions on these systems.
I Wonder…Scientific Exploration and Experimentation as a Practice of Christian Faith
ERIC Educational Resources Information Center
Shaver, Ruth E.
2016-01-01
"I Wonder...Gaining Wisdom and Growing Faith Through Scientific Exploration" is an intergenerational science curriculum designed to be used in congregations. The goal of this curriculum and the theoretical work underpinning it is to counter the perception that people of faith cannot also be people who possess a scientific understanding…
Exploration Science Opportunities for Students within Higher Education
NASA Astrophysics Data System (ADS)
Bailey, Brad; Minafra, Joseph; Schmidt, Gregory
2016-10-01
The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on exploration science related to near-term human exploration targets, training the next generation of lunar scientists, and education and public outreach. As part of the SSERVI mission, we act as a hub for opportunities that engage the public through education and outreach efforts in addition to forming new interdisciplinary, scientific collaborations.SSERVI provides opportunities for students to bridge the scientific and generational gap currently existing in the planetary exploration field. This bridge is essential to the continued international success of scientific, as well as human and robotic, exploration.The decline in funding opportunities after the termination of the Apollo missions to the Moon in the early 1970's produced a large gap in both the scientific knowledge and experience of the original lunar Apollo researchers and the resurgent group of young lunar/NEA researchers that have emerged within the last 15 years. One of SSERVI's many goals is to bridge this gap through the many networking and scientific connections made between young researchers and established planetary principle investigators. To this end, SSERVI has supported the establishment of NextGen Lunar Scientists and Engineers group (NGLSE), a group of students and early-career professionals designed to build experience and provide networking opportunities to its members. SSERVI has also created the LunarGradCon, a scientific conference dedicated solely to graduate and undergraduate students working in the lunar field. Additionally, SSERVI produces monthly seminars and bi-yearly virtual workshops that introduce students to the wide variety of exploration science being performed in today's research labs. SSERVI also brokers opportunities for domestic and international student exchange between collaborating laboratories as well as internships at our member institutions. SSERVI provides a bridge that is essential to the continued international success of scientific, as well as human and robotic, exploration.
Advanced Aerospace Materials by Design
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Djomehri, Jahed; Wei, Chen-Yu
2004-01-01
The advances in the emerging field of nanophase thermal and structural composite materials; materials with embedded sensors and actuators for morphing structures; light-weight composite materials for energy and power storage; and large surface area materials for in-situ resource generation and waste recycling, are expected to :revolutionize the capabilities of virtually every system comprising of future robotic and :human moon and mars exploration missions. A high-performance multiscale simulation platform, including the computational capabilities and resources of Columbia - the new supercomputer, is being developed to discover, validate, and prototype next generation (of such advanced materials. This exhibit will describe the porting and scaling of multiscale 'physics based core computer simulation codes for discovering and designing carbon nanotube-polymer composite materials for light-weight load bearing structural and 'thermal protection applications.
Volumetric visualization of 3D data
NASA Technical Reports Server (NTRS)
Russell, Gregory; Miles, Richard
1989-01-01
In recent years, there has been a rapid growth in the ability to obtain detailed data on large complex structures in three dimensions. This development occurred first in the medical field, with CAT (computer aided tomography) scans and now magnetic resonance imaging, and in seismological exploration. With the advances in supercomputing and computational fluid dynamics, and in experimental techniques in fluid dynamics, there is now the ability to produce similar large data fields representing 3D structures and phenomena in these disciplines. These developments have produced a situation in which currently there is access to data which is too complex to be understood using the tools available for data reduction and presentation. Researchers in these areas are becoming limited by their ability to visualize and comprehend the 3D systems they are measuring and simulating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-03-10
DESTINY is a comprehensive tool for modeling 3D and 2D cache designs using SRAM,embedded DRAM (eDRAM), spin transfer torque RAM (STT-RAM), resistive RAM (ReRAM), and phase change RAM (PCN). In its purpose, it is similar to CACTI, CACTI-3DD or NVSim. DESTINY is very useful for performing design-space exploration across several dimensions, such as optimizing for a target (e.g. latency, area or energy-delay product) for agiven memory technology, choosing the suitable memory technology or fabrication method (i.e. 2D v/s 3D) for a given optimization target, etc. DESTINY has been validated against several cache prototypes. DESTINY is expected to boost studies ofmore » next-generation memory architectures used in systems ranging from mobile devices to extreme-scale supercomputers.« less
Automatic high-throughput screening of colloidal crystals using machine learning
NASA Astrophysics Data System (ADS)
Spellings, Matthew; Glotzer, Sharon C.
Recent improvements in hardware and software have united to pose an interesting problem for computational scientists studying self-assembly of particles into crystal structures: while studies covering large swathes of parameter space can be dispatched at once using modern supercomputers and parallel architectures, identifying the different regions of a phase diagram is often a serial task completed by hand. While analytic methods exist to distinguish some simple structures, they can be difficult to apply, and automatic identification of more complex structures is still lacking. In this talk we describe one method to create numerical ``fingerprints'' of local order and use them to analyze a study of complex ordered structures. We can use these methods as first steps toward automatic exploration of parameter space and, more broadly, the strategic design of new materials.
Load Balancing Scientific Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearce, Olga Tkachyshyn
2014-12-01
The largest supercomputers have millions of independent processors, and concurrency levels are rapidly increasing. For ideal efficiency, developers of the simulations that run on these machines must ensure that computational work is evenly balanced among processors. Assigning work evenly is challenging because many large modern parallel codes simulate behavior of physical systems that evolve over time, and their workloads change over time. Furthermore, the cost of imbalanced load increases with scale because most large-scale scientific simulations today use a Single Program Multiple Data (SPMD) parallel programming model, and an increasing number of processors will wait for the slowest one atmore » the synchronization points. To address load imbalance, many large-scale parallel applications use dynamic load balance algorithms to redistribute work evenly. The research objective of this dissertation is to develop methods to decide when and how to load balance the application, and to balance it effectively and affordably. We measure and evaluate the computational load of the application, and develop strategies to decide when and how to correct the imbalance. Depending on the simulation, a fast, local load balance algorithm may be suitable, or a more sophisticated and expensive algorithm may be required. We developed a model for comparison of load balance algorithms for a specific state of the simulation that enables the selection of a balancing algorithm that will minimize overall runtime.« less
Fully accelerating quantum Monte Carlo simulations of real materials on GPU clusters
NASA Astrophysics Data System (ADS)
Esler, Kenneth
2011-03-01
Quantum Monte Carlo (QMC) has proved to be an invaluable tool for predicting the properties of matter from fundamental principles, combining very high accuracy with extreme parallel scalability. By solving the many-body Schrödinger equation through a stochastic projection, it achieves greater accuracy than mean-field methods and better scaling with system size than quantum chemical methods, enabling scientific discovery across a broad spectrum of disciplines. In recent years, graphics processing units (GPUs) have provided a high-performance and low-cost new approach to scientific computing, and GPU-based supercomputers are now among the fastest in the world. The multiple forms of parallelism afforded by QMC algorithms make the method an ideal candidate for acceleration in the many-core paradigm. We present the results of porting the QMCPACK code to run on GPU clusters using the NVIDIA CUDA platform. Using mixed precision on GPUs and MPI for intercommunication, we observe typical full-application speedups of approximately 10x to 15x relative to quad-core CPUs alone, while reproducing the double-precision CPU results within statistical error. We discuss the algorithm modifications necessary to achieve good performance on this heterogeneous architecture and present the results of applying our code to molecules and bulk materials. Supported by the U.S. DOE under Contract No. DOE-DE-FG05-08OR23336 and by the NSF under No. 0904572.
The Role of the Spacecraft Operator in Scientific Exploration
NASA Astrophysics Data System (ADS)
Love, S. G.
2011-03-01
Pilot and flight engineer crew members can improve scientific exploration missions and effectively support field work that they may not understand by contributing leadership, teamwork, communication, and operational thinking skills.
ASCR Cybersecurity for Scientific Computing Integrity - Research Pathways and Ideas Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peisert, Sean; Potok, Thomas E.; Jones, Todd
At the request of the U.S. Department of Energy's (DOE) Office of Science (SC) Advanced Scientific Computing Research (ASCR) program office, a workshop was held June 2-3, 2015, in Gaithersburg, MD, to identify potential long term (10 to +20 year) cybersecurity fundamental basic research and development challenges, strategies and roadmap facing future high performance computing (HPC), networks, data centers, and extreme-scale scientific user facilities. This workshop was a follow-on to the workshop held January 7-9, 2015, in Rockville, MD, that examined higher level ideas about scientific computing integrity specific to the mission of the DOE Office of Science. Issues includedmore » research computation and simulation that takes place on ASCR computing facilities and networks, as well as network-connected scientific instruments, such as those run by various DOE Office of Science programs. Workshop participants included researchers and operational staff from DOE national laboratories, as well as academic researchers and industry experts. Participants were selected based on the submission of abstracts relating to the topics discussed in the previous workshop report [1] and also from other ASCR reports, including "Abstract Machine Models and Proxy Architectures for Exascale Computing" [27], the DOE "Preliminary Conceptual Design for an Exascale Computing Initiative" [28], and the January 2015 machine learning workshop [29]. The workshop was also attended by several observers from DOE and other government agencies. The workshop was divided into three topic areas: (1) Trustworthy Supercomputing, (2) Extreme-Scale Data, Knowledge, and Analytics for Understanding and Improving Cybersecurity, and (3) Trust within High-end Networking and Data Centers. Participants were divided into three corresponding teams based on the category of their abstracts. The workshop began with a series of talks from the program manager and workshop chair, followed by the leaders for each of the three topics and a representative of each of the four major DOE Office of Science Advanced Scientific Computing Research Facilities: the Argonne Leadership Computing Facility (ALCF), the Energy Sciences Network (ESnet), the National Energy Research Scientific Computing Center (NERSC), and the Oak Ridge Leadership Computing Facility (OLCF). The rest of the workshop consisted of topical breakout discussions and focused writing periods that produced much of this report.« less
Spatiotemporal modeling of node temperatures in supercomputers
Storlie, Curtis Byron; Reich, Brian James; Rust, William Newton; ...
2016-06-10
Los Alamos National Laboratory (LANL) is home to many large supercomputing clusters. These clusters require an enormous amount of power (~500-2000 kW each), and most of this energy is converted into heat. Thus, cooling the components of the supercomputer becomes a critical and expensive endeavor. Recently a project was initiated to investigate the effect that changes to the cooling system in a machine room had on three large machines that were housed there. Coupled with this goal was the aim to develop a general good-practice for characterizing the effect of cooling changes and monitoring machine node temperatures in this andmore » other machine rooms. This paper focuses on the statistical approach used to quantify the effect that several cooling changes to the room had on the temperatures of the individual nodes of the computers. The largest cluster in the room has 1,600 nodes that run a variety of jobs during general use. Since extremes temperatures are important, a Normal distribution plus generalized Pareto distribution for the upper tail is used to model the marginal distribution, along with a Gaussian process copula to account for spatio-temporal dependence. A Gaussian Markov random field (GMRF) model is used to model the spatial effects on the node temperatures as the cooling changes take place. This model is then used to assess the condition of the node temperatures after each change to the room. The analysis approach was used to uncover the cause of a problematic episode of overheating nodes on one of the supercomputing clusters. Lastly, this same approach can easily be applied to monitor and investigate cooling systems at other data centers, as well.« less
Integration of PanDA workload management system with Titan supercomputer at OLCF
NASA Astrophysics Data System (ADS)
De, K.; Klimentov, A.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Schovancova, J.; Vaniachine, A.; Wenaus, T.
2015-12-01
The PanDA (Production and Distributed Analysis) workload management system (WMS) was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. While PanDA currently distributes jobs to more than 100,000 cores at well over 100 Grid sites, the future LHC data taking runs will require more resources than Grid computing can possibly provide. To alleviate these challenges, ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). The current approach utilizes a modified PanDA pilot framework for job submission to Titan's batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on Titan's multicore worker nodes. It also gives PanDA new capability to collect, in real time, information about unused worker nodes on Titan, which allows precise definition of the size and duration of jobs submitted to Titan according to available free resources. This capability significantly reduces PanDA job wait time while improving Titan's utilization efficiency. This implementation was tested with a variety of Monte-Carlo workloads on Titan and is being tested on several other supercomputing platforms. Notice: This manuscript has been authored, by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.
Mentoring the Next Generation of Science Gateway Developers and Users
NASA Astrophysics Data System (ADS)
Hayden, L. B.; Jackson-Ward, F.
2016-12-01
The Science Gateway Institute (SGW-I) for the Democratization and Acceleration of Science was a SI2-SSE Collaborative Research conceptualization award funded by NSF in 2012. From 2012 through 2015, we engaged interested members of the science and engineering community in a planning process for a Science Gateway Community Institute (SGCI). Science Gateways provide Web interfaces to some of the most sophisticated cyberinfrastructure resources. They interact with remotely executing science applications on supercomputers, they connect to remote scientific data collections, instruments and sensor streams, and support large collaborations. Gateways allow scientists to concentrate on the most challenging science problems while underlying components such as computing architectures and interfaces to data collection changes. The goal of our institute was to provide coordinating activities across the National Science Foundation, eventually providing services more broadly to projects funded by other agencies. SGW-I has succeeded in identifying two underrepresented communities of future gateway designers and users. The Association of Computer and Information Science/Engineering Departments at Minority Institutions (ADMI) was identified as a source of future gateway designers. The National Organization for the Professional Advancement of Black Chemists and Chemical Engineers (NOBCChE) was identified as a community of future science gateway users. SGW-I efforts to engage NOBCChE and ADMI faculty and students in SGW-I are now woven into the workforce development component of SGCI. SGCI (ScienceGateways.org ) is a collaboration of six universities, led by San Diego Supercomputer Center. The workforce development component is led by Elizabeth City State University (ECSU). ECSU efforts focus is on: Produce a model of engagement; Integration of research into education; and Mentoring of students while aggressively addressing diversity. This paper documents the outcome of the SGW-I conceptualization project and describes the extensive Workforce Development effort going forward into the 5-year SGCI project recently funded by NSF.
NASA Astrophysics Data System (ADS)
Noh, M. J.; Howat, I. M.; Porter, C. C.; Willis, M. J.; Morin, P. J.
2016-12-01
The Arctic is undergoing rapid change associated with climate warming. Digital Elevation Models (DEMs) provide critical information for change measurement and infrastructure planning in this vulnerable region, yet the existing quality and coverage of DEMs in the Arctic is poor. Low contrast and repeatedly-textured surfaces, such as snow and glacial ice and mountain shadows, all common in the Arctic, challenge existing stereo-photogrammetric techniques. Submeter resolution, stereoscopic satellite imagery with high geometric and radiometric quality, and wide spatial coverage are becoming increasingly accessible to the scientific community. To utilize these imagery for extracting DEMs at a large scale over glaciated and high latitude regions we developed the Surface Extraction from TIN-based Searchspace Minimization (SETSM) algorithm. SETSM is fully automatic (i.e. no search parameter settings are needed) and uses only the satellite rational polynomial coefficients (RPCs). Using SETSM, we have generated a large number of DEMs (> 100,000 scene pair) from WorldView, GeoEye and QuickBird stereo images collected by DigitalGlobe Inc. and archived by the Polar Geospatial Center (PGC) at the University of Minnesota through an academic licensing program maintained by the US National Geospatial-Intelligence Agency (NGA). SETSM is the primary DEM generation software for the US National Science Foundation's ArcticDEM program, with the objective of generating high resolution (2-8m) topography for the entire Arctic landmass, including seamless DEM mosaics and repeat DEM strips for change detection. ArcticDEM is collaboration between multiple US universities, governmental agencies and private companies, as well as international partners assisting with quality control and registration. ArcticDEM is being produced using the petascale Blue Waters supercomputer at the National Center for Supercomputer Applications at the University of Illinois. In this paper, we introduce the SETSM algorithm and the processing system used for the ArcticDEM project, as well as provide notable examples of ArcticDEM products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreepathi, Sarat; Sripathi, Vamsi; Mills, Richard T
2013-01-01
Inefficient parallel I/O is known to be a major bottleneck among scientific applications employed on supercomputers as the number of processor cores grows into the thousands. Our prior experience indicated that parallel I/O libraries such as HDF5 that rely on MPI-IO do not scale well beyond 10K processor cores, especially on parallel file systems (like Lustre) with single point of resource contention. Our previous optimization efforts for a massively parallel multi-phase and multi-component subsurface simulator (PFLOTRAN) led to a two-phase I/O approach at the application level where a set of designated processes participate in the I/O process by splitting themore » I/O operation into a communication phase and a disk I/O phase. The designated I/O processes are created by splitting the MPI global communicator into multiple sub-communicators. The root process in each sub-communicator is responsible for performing the I/O operations for the entire group and then distributing the data to rest of the group. This approach resulted in over 25X speedup in HDF I/O read performance and 3X speedup in write performance for PFLOTRAN at over 100K processor cores on the ORNL Jaguar supercomputer. This research describes the design and development of a general purpose parallel I/O library, SCORPIO (SCalable block-ORiented Parallel I/O) that incorporates our optimized two-phase I/O approach. The library provides a simplified higher level abstraction to the user, sitting atop existing parallel I/O libraries (such as HDF5) and implements optimized I/O access patterns that can scale on larger number of processors. Performance results with standard benchmark problems and PFLOTRAN indicate that our library is able to maintain the same speedups as before with the added flexibility of being applicable to a wider range of I/O intensive applications.« less
PoPLAR: Portal for Petascale Lifescience Applications and Research
2013-01-01
Background We are focusing specifically on fast data analysis and retrieval in bioinformatics that will have a direct impact on the quality of human health and the environment. The exponential growth of data generated in biology research, from small atoms to big ecosystems, necessitates an increasingly large computational component to perform analyses. Novel DNA sequencing technologies and complementary high-throughput approaches--such as proteomics, genomics, metabolomics, and meta-genomics--drive data-intensive bioinformatics. While individual research centers or universities could once provide for these applications, this is no longer the case. Today, only specialized national centers can deliver the level of computing resources required to meet the challenges posed by rapid data growth and the resulting computational demand. Consequently, we are developing massively parallel applications to analyze the growing flood of biological data and contribute to the rapid discovery of novel knowledge. Methods The efforts of previous National Science Foundation (NSF) projects provided for the generation of parallel modules for widely used bioinformatics applications on the Kraken supercomputer. We have profiled and optimized the code of some of the scientific community's most widely used desktop and small-cluster-based applications, including BLAST from the National Center for Biotechnology Information (NCBI), HMMER, and MUSCLE; scaled them to tens of thousands of cores on high-performance computing (HPC) architectures; made them robust and portable to next-generation architectures; and incorporated these parallel applications in science gateways with a web-based portal. Results This paper will discuss the various developmental stages, challenges, and solutions involved in taking bioinformatics applications from the desktop to petascale with a front-end portal for very-large-scale data analysis in the life sciences. Conclusions This research will help to bridge the gap between the rate of data generation and the speed at which scientists can study this data. The ability to rapidly analyze data at such a large scale is having a significant, direct impact on science achieved by collaborators who are currently using these tools on supercomputers. PMID:23902523
NASA Astrophysics Data System (ADS)
Anantharaj, V.; Mayer, B.; Wang, F.; Hack, J.; McKenna, D.; Hartman-Baker, R.
2012-04-01
The Oak Ridge Leadership Computing Facility (OLCF) facilitates the execution of computational experiments that require tens of millions of CPU hours (typically using thousands of processors simultaneously) while generating hundreds of terabytes of data. A set of ultra high resolution climate experiments in progress, using the Community Earth System Model (CESM), will produce over 35,000 files, ranging in sizes from 21 MB to 110 GB each. The execution of the experiments will require nearly 70 Million CPU hours on the Jaguar and Titan supercomputers at OLCF. The total volume of the output from these climate modeling experiments will be in excess of 300 TB. This model output must then be archived, analyzed, distributed to the project partners in a timely manner, and also made available more broadly. Meeting this challenge would require efficient movement of the data, staging the simulation output to a large and fast file system that provides high volume access to other computational systems used to analyze the data and synthesize results. This file system also needs to be accessible via high speed networks to an archival system that can provide long term reliable storage. Ideally this archival system is itself directly available to other systems that can be used to host services making the data and analysis available to the participants in the distributed research project and to the broader climate community. The various resources available at the OLCF now support this workflow. The available systems include the new Jaguar Cray XK6 2.63 petaflops (estimated) supercomputer, the 10 PB Spider center-wide parallel file system, the Lens/EVEREST analysis and visualization system, the HPSS archival storage system, the Earth System Grid (ESG), and the ORNL Climate Data Server (CDS). The ESG features federated services, search & discovery, extensive data handling capabilities, deep storage access, and Live Access Server (LAS) integration. The scientific workflow enabled on these systems, and developed as part of the Ultra-High Resolution Climate Modeling Project, allows users of OLCF resources to efficiently share simulated data, often multi-terabyte in volume, as well as the results from the modeling experiments and various synthesized products derived from these simulations. The final objective in the exercise is to ensure that the simulation results and the enhanced understanding will serve the needs of a diverse group of stakeholders across the world, including our research partners in U.S. Department of Energy laboratories & universities, domain scientists, students (K-12 as well as higher education), resource managers, decision makers, and the general public.
SCEC Earthquake System Science Using High Performance Computing
NASA Astrophysics Data System (ADS)
Maechling, P. J.; Jordan, T. H.; Archuleta, R.; Beroza, G.; Bielak, J.; Chen, P.; Cui, Y.; Day, S.; Deelman, E.; Graves, R. W.; Minster, J. B.; Olsen, K. B.
2008-12-01
The SCEC Community Modeling Environment (SCEC/CME) collaboration performs basic scientific research using high performance computing with the goal of developing a predictive understanding of earthquake processes and seismic hazards in California. SCEC/CME research areas including dynamic rupture modeling, wave propagation modeling, probabilistic seismic hazard analysis (PSHA), and full 3D tomography. SCEC/CME computational capabilities are organized around the development and application of robust, re- usable, well-validated simulation systems we call computational platforms. The SCEC earthquake system science research program includes a wide range of numerical modeling efforts and we continue to extend our numerical modeling codes to include more realistic physics and to run at higher and higher resolution. During this year, the SCEC/USGS OpenSHA PSHA computational platform was used to calculate PSHA hazard curves and hazard maps using the new UCERF2.0 ERF and new 2008 attenuation relationships. Three SCEC/CME modeling groups ran 1Hz ShakeOut simulations using different codes and computer systems and carefully compared the results. The DynaShake Platform was used to calculate several dynamic rupture-based source descriptions equivalent in magnitude and final surface slip to the ShakeOut 1.2 kinematic source description. A SCEC/CME modeler produced 10Hz synthetic seismograms for the ShakeOut 1.2 scenario rupture by combining 1Hz deterministic simulation results with 10Hz stochastic seismograms. SCEC/CME modelers ran an ensemble of seven ShakeOut-D simulations to investigate the variability of ground motions produced by dynamic rupture-based source descriptions. The CyberShake Platform was used to calculate more than 15 new probabilistic seismic hazard analysis (PSHA) hazard curves using full 3D waveform modeling and the new UCERF2.0 ERF. The SCEC/CME group has also produced significant computer science results this year. Large-scale SCEC/CME high performance codes were run on NSF TeraGrid sites including simulations that use the full PSC Big Ben supercomputer (4096 cores) and simulations that ran on more than 10K cores at TACC Ranger. The SCEC/CME group used scientific workflow tools and grid-computing to run more than 1.5 million jobs at NCSA for the CyberShake project. Visualizations produced by a SCEC/CME researcher of the 10Hz ShakeOut 1.2 scenario simulation data were used by USGS in ShakeOut publications and public outreach efforts. OpenSHA was ported onto an NSF supercomputer and was used to produce very high resolution hazard PSHA maps that contained more than 1.6 million hazard curves.
PREFACE: WMO/GEO Expert Meeting On An International Sand And Dust Storm Warning System
NASA Astrophysics Data System (ADS)
Pérez, C.; Baldasano, J. M.
2009-03-01
This volume of IOP Conference Series: Earth and Environmental Science presents a selection of papers that were given at the WMO/GEO Expert Meeting on an International Sand and Dust Storm Warning System hosted by the Barcelona Supercomputing Center - Centro Nacional de Supercomputación in Barcelona (Spain) on 7-9 November 2007 (http://www.bsc.es/wmo). A sand and dust storm (SDS) is a meteorological phenomenon common in arid and semi-arid regions and arises when a gust front passes or when the wind force exceeds the threshold value where loose sand and dust are removed from the dry surface. After aeolian uptake, SDS reduce visibility to a few meters in and near source regions, and dust plumes are transported over distances as long as thousands of kilometres. Aeolian dust is unique among aerosol phenomena: (1) with the possible exception of sea-salt aerosol, it is globally the most abundant of all aerosol species, (2) it appears as the dominating component of atmospheric aerosol over large areas of the Earth, (3) it represents a serious hazard for life, health, property, environment and economy (occasionally reaching the grade of disaster or catastrophic event) and (4) its influence, impacts, complex interactions and feedbacks within the Earth System span a wide range of spatial and temporal scales. From a political and societal point of view, the concern for SDS and the need for international cooperation were reflected after a survey conducted in 2005 by the World Meteorological Organization (WMO) in which more than forty WMO Member countries expressed their interest for creating or improving capacities for SDS warning advisory and assessment. In this context, recent major advances in research - including, for example, the development and implementation of advanced observing systems, the theoretical understanding of the mechanisms responsible for sand and dust storm generation and the development of global and regional dust models - represent the basis for developing applications focusing on societal benefit and risk reduction. However, at present there are interdisciplinary research challenges to overwhelm current uncertainties in order to reach full potential. Furthermore, the community of practice for SDS observations, forecasts and analyses is mainly scientifically based and rather disconnected from potential users. This requires the development of interfaces with operational communities at international and national levels, strongly focusing on the needs of people and factors at risk. The WMO has taken the lead with international partners to develop and implement a Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS). The history of the WMO SDS-WAS development is as follows. On 12-14 September 2004, an International Symposium on Sand and Dust Storms was held in Beijing at the China Meteorological Agency followed by a WMO Experts Workshop on Sand and Dust Storms. The recommendations of that workshop led to a proposal to create a WMO Sand and Dust Storm Project coordinated jointly with the Global Atmosphere Watch (GAW). This was approved by the steering body of the World Weather Research Programme (WWRP) in 2005. Responding to a WMO survey conducted in 2005, more than forty WMO Member countries expressed interest in participating in activities to improve capacities for more reliable sand and dust storm monitoring, forecasting and assessment. On 31 October to 1 November 2006 in Shanghai, the steering committee of the Sand and Dust Storm Project proposed the development and implementation of a Sand and Dust Storm Warning, Advisory and Assessment System (SDS-WAS). The WMO Secretariat in Geneva formed an ad-hoc Internal Group on SDS-WAS consisting of scientific officers representing WMO research, observations, operational prediction, service delivery and applications programmes such as aviation and agriculture. In May 2007, the 14th WMO Congress endorsed the launching of the SDS-WAS. It also welcomed the strong support of Spain to host a regional centre for the European/African/Middle East node of SDS-WAS and to play a lead role in implementation. In August 2007, the Korean Meteorological Administration hosted the 2nd International Workshop on Sand and Dust Storms highlighting Korean SDS-WAS activities as well as those of Asian regional partners. From 7-9 November 2007, Spain hosted the WMO/GEO Expert Meeting on SDS-WAS at the Barcelona Supercomputing Center. This consultation meeting brought 100 international experts together from research, observation, forecasting and user countries especially in Africa and the Middle East to discuss the way forward in SDS-WAS implementation. The general objective of the WMO/GEO Expert Meeting on an International Sand and Dust Storm Warning System was to discuss and recommend actions needed to develop a global routine SDS-WAS based on integrating numerical SDS prediction and observing systems, and on establishing effective cooperation between data producers and user communities in order to provide SDS-WAS products capable of contributing to the reduction of risks from SDS. The specific objectives were: to identify, present and suggest future real-time observations for forecast verification and dust surveillance: satellite, ground-based remote sensing (passive and active) and in-situ monitoring to present ongoing forecasting activities to discuss and identify user needs: health, air quality, air transport operations, ocean, and others to identify and discuss dust research issues relevant for operational forecast applications to present the concept of SDS-WAS and Regional Centers The meeting was organised around invited presentations and discussions on observations, modelling and users of the SDS-WAS. C Pérez and J M Baldasano Editors INTERNATIONAL STEERING COMMITTEE José María Baldasano (Chairman) - Barcelona Supercomputing Center, Spain Emilio Cuevas - Instituto Nacional de Meteorología, Spain Leonard A Barrie - World Meteorological Organisation, Switzerland Young J Kim - Gwangju Institute of Science and Technology, Korea Menas Kafatos - George Mason University, USA Xiaoye Zhang - Chinese Meteorology Administration, China Slobodan Nickovic - World Meteorological Organisation, Switzerland Carlos Pérez - Barcelona Supercomputing Center, Spain William A Sprigg - University of Arizona, USA Stéphane Alfaro - Université de Paris Val de Marne, France Ina Tegen - Leibniz Institute for Tropospheric Research, Germany Mohamed Mahmoud Eissa - Under-secretary of State for Researches, Egypt Sunling Gong - Environment Canada, Canada Emily Firth - GEO Secretariat, Switzerland LOCAL ORGANISING COMMITTEE José María Baldasano - Barcelona Supercomputing Center, Spain Carlos Pérez - Barcelona Supercomputing Center, Spain Renata Giménez - Barcelona Supercomputing Center, Spain Emilio Cuevas - Instituto Nacional de Meteorología, Spain Slobodan Nickovic - World Meteorological Organisation, Switzerland J M Marcos - Instituto Nacional de Meteorología, Spain Manuel Palomares - Instituto Nacional de Meteorología, Spain Xavier Querol - Consejo Superior de Investigaciones Científicas, Spain Conference photograph
Towards AN Integrated Scientific and Social Case for Human Space Exploration
NASA Astrophysics Data System (ADS)
Crawford, I. A.
2004-06-01
I will argue that an ambitious programme of human space exploration, involving a return to the Moon, and eventually human missions to Mars, will add greatly to human knowledge. Gathering such knowledge is the primary aim of science, but science’s compartmentalisation into isolated academic disciplines tends to obscure the overall strength of the scientific case. Any consideration of the scientific arguments for human space exploration must therefore take a holistic view, and integrate the potential benefits over the entire spectrum of human knowledge. Moreover, science is only one thread in a much larger overall case for human space exploration. Other threads include economic, industrial, educational, geopolitical and cultural benefits. Any responsibly formulated public space policy must weigh all of these factors before deciding whether or not an investment in human space activities is scientifically and socially desirable.
Policy-based Distributed Data Management
NASA Astrophysics Data System (ADS)
Moore, R. W.
2009-12-01
The analysis and understanding of climate variability and change builds upon access to massive collections of observational and simulation data. The analyses involve distributed computing, both at the storage systems (which support data subsetting) and at compute engines (for assimilation of observational data into simulations). The integrated Rule Oriented Data System (iRODS) organizes the distributed data into collections to facilitate enforcement of management policies, support remote data processing, and enable development of reference collections. Currently at RENCI, the iRODS data grid is being used to manage ortho-photos and lidar data for the State of North Carolina, provide a unifying storage environment for engagement centers across the state, support distributed access to visualizations of weather data, and is being explored to manage and disseminate collections of ensembles of meteorological and hydrological model results. In collaboration with the National Climatic Data Center, an iRODS data grid is being established to support data transmission from NCDC to ORNL, and to integrate NCDC archives with ORNL compute services. To manage the massive data transfers, parallel I/O streams are used between High Performance Storage System tape archives and the supercomputers at ORNL. Further, we are exploring the movement and management of large RADAR and in situ datasets to be used for data mining between RENCI and NCDC, and for the distributed creation of decision support and climate analysis tools. The iRODS data grid supports all phases of the scientific data life cycle, from management of data products for a project, to sharing of data between research institutions, to publication of data in a digital library, to preservation of data for use in future research projects. Each phase is characterized by a broader user community, with higher expectations for more detailed descriptions and analysis mechanisms for manipulating the data. The higher usage requirements are enforced by management policies that define the required metadata, the required data formats, and the required analysis tools. The iRODS policy based data management system automates the creation of the community chosen data products, validates integrity and authenticity assessment criteria, and enforces management policies across all accesses of the system.
Multi-Factor Analysis for Selecting Lunar Exploration Soft Landing Area and the best Cruise Route
NASA Astrophysics Data System (ADS)
Mou, N.; Li, J.; Meng, Z.; Zhang, L.; Liu, W.
2018-04-01
Selecting the right soft landing area and planning a reasonable cruise route are the basic tasks of lunar exploration. In this paper, the Von Karman crater in the Antarctic Aitken basin on the back of the moon is used as the study area, and multi-factor analysis is used to evaluate the landing area and cruise route of lunar exploration. The evaluation system mainly includes the factors such as the density of craters, the impact area of craters, the formation of the whole area and the formation of some areas, such as the vertical structure, rock properties and the content of (FeO + TiO2), which can reflect the significance of scientific exploration factor. And the evaluation of scientific exploration is carried out on the basis of safety and feasibility. On the basis of multi-factor superposition analysis, three landing zones A, B and C are selected, and the appropriate cruising route is analyzed through scientific research factors. This study provides a scientific basis for the lunar probe landing and cruise route planning, and it provides technical support for the subsequent lunar exploration.
The Ophidia framework: toward cloud-based data analytics for climate change
NASA Astrophysics Data System (ADS)
Fiore, Sandro; D'Anca, Alessandro; Elia, Donatello; Mancini, Marco; Mariello, Andrea; Mirto, Maria; Palazzo, Cosimo; Aloisio, Giovanni
2015-04-01
The Ophidia project is a research effort on big data analytics facing scientific data analysis challenges in the climate change domain. It provides parallel (server-side) data analysis, an internal storage model and a hierarchical data organization to manage large amount of multidimensional scientific data. The Ophidia analytics platform provides several MPI-based parallel operators to manipulate large datasets (data cubes) and array-based primitives to perform data analysis on large arrays of scientific data. The most relevant data analytics use cases implemented in national and international projects target fire danger prevention (OFIDIA), interactions between climate change and biodiversity (EUBrazilCC), climate indicators and remote data analysis (CLIP-C), sea situational awareness (TESSA), large scale data analytics on CMIP5 data in NetCDF format, Climate and Forecast (CF) convention compliant (ExArch). Two use cases regarding the EU FP7 EUBrazil Cloud Connect and the INTERREG OFIDIA projects will be presented during the talk. In the former case (EUBrazilCC) the Ophidia framework is being extended to integrate scalable VM-based solutions for the management of large volumes of scientific data (both climate and satellite data) in a cloud-based environment to study how climate change affects biodiversity. In the latter one (OFIDIA) the data analytics framework is being exploited to provide operational support regarding processing chains devoted to fire danger prevention. To tackle the project challenges, data analytics workflows consisting of about 130 operators perform, among the others, parallel data analysis, metadata management, virtual file system tasks, maps generation, rolling of datasets, import/export of datasets in NetCDF format. Finally, the entire Ophidia software stack has been deployed at CMCC on 24-nodes (16-cores/node) of the Athena HPC cluster. Moreover, a cloud-based release tested with OpenNebula is also available and running in the private cloud infrastructure of the CMCC Supercomputing Centre.
Science Gateways, Scientific Workflows and Open Community Software
NASA Astrophysics Data System (ADS)
Pierce, M. E.; Marru, S.
2014-12-01
Science gateways and scientific workflows occupy different ends of the spectrum of user-focused cyberinfrastructure. Gateways, sometimes called science portals, provide a way for enabling large numbers of users to take advantage of advanced computing resources (supercomputers, advanced storage systems, science clouds) by providing Web and desktop interfaces and supporting services. Scientific workflows, at the other end of the spectrum, support advanced usage of cyberinfrastructure that enable "power users" to undertake computational experiments that are not easily done through the usual mechanisms (managing simulations across multiple sites, for example). Despite these different target communities, gateways and workflows share many similarities and can potentially be accommodated by the same software system. For example, pipelines to process InSAR imagery sets or to datamine GPS time series data are workflows. The results and the ability to make downstream products may be made available through a gateway, and power users may want to provide their own custom pipelines. In this abstract, we discuss our efforts to build an open source software system, Apache Airavata, that can accommodate both gateway and workflow use cases. Our approach is general, and we have applied the software to problems in a number of scientific domains. In this talk, we discuss our applications to usage scenarios specific to earth science, focusing on earthquake physics examples drawn from the QuakSim.org and GeoGateway.org efforts. We also examine the role of the Apache Software Foundation's open community model as a way to build up common commmunity codes that do not depend upon a single "owner" to sustain. Pushing beyond open source software, we also see the need to provide gateways and workflow systems as cloud services. These services centralize operations, provide well-defined programming interfaces, scale elastically, and have global-scale fault tolerance. We discuss our work providing Apache Airavata as a hosted service to provide these features.
30 CFR 251.3 - Authority and applicability of this part.
Code of Federal Regulations, 2010 CFR
2010-07-01
... applicability of this part. MMS authorizes you to conduct exploration or scientific research activities under... agencies are exempt from the regulations in this part. (c) G&G exploration or G&G scientific research...
Code of Federal Regulations, 2010 CFR
2010-01-01
... monument-related scientific exploration and research, tourism, and recreational and economic activities and... and enforcement necessary to ensure that scientific exploration and research, tourism, and...
Space Exploration as a Human Enterprise: The Scientific Interest
ERIC Educational Resources Information Center
Sagan, Carl
1973-01-01
Presents examples which illustrate the importance of space exploration in diverse aspects of scientific knowledge. Indicates that human beings are today not wise enough to anticipate the practical benefits of planetary studies. (CC)
Strategy for outer planets exploration
NASA Technical Reports Server (NTRS)
1975-01-01
NASA's Planetary Programs Office formed a number of scientific working groups to study in depth the potential scientific return from the various candidate missions to the outer solar system. The results of these working group studies were brought together in a series of symposia to evaluate the potential outer planet missions and to discuss strategies for exploration of the outer solar system that were consistent with fiscal constraints and with anticipated spacecraft and launch vehicle capabilities. A logical, scientifically sound, and cost effective approach to exploration of the outer solar system is presented.
Monitoring Object Library Usage and Changes
NASA Technical Reports Server (NTRS)
Owen, R. K.; Craw, James M. (Technical Monitor)
1995-01-01
The NASA Ames Numerical Aerodynamic Simulation program Aeronautics Consolidated Supercomputing Facility (NAS/ACSF) supercomputing center services over 1600 users, and has numerous analysts with root access. Several tools have been developed to monitor object library usage and changes. Some of the tools do "noninvasive" monitoring and other tools implement run-time logging even for object-only libraries. The run-time logging identifies who, when, and what is being used. The benefits are that real usage can be measured, unused libraries can be discontinued, training and optimization efforts can be focused at those numerical methods that are actually used. An overview of the tools will be given and the results will be discussed.
Watson will see you now: a supercomputer to help clinicians make informed treatment decisions.
Doyle-Lindrud, Susan
2015-02-01
IBM has collaborated with several cancer care providers to develop and train the IBM supercomputer Watson to help clinicians make informed treatment decisions. When a patient is seen in clinic, the oncologist can input all of the clinical information into the computer system. Watson will then review all of the data and recommend treatment options based on the latest evidence and guidelines. Once the oncologist makes the treatment decision, this information can be sent directly to the insurance company for approval. Watson has the ability to standardize care and accelerate the approval process, a benefit to the healthcare provider and the patient.
Particle simulation on heterogeneous distributed supercomputers
NASA Technical Reports Server (NTRS)
Becker, Jeffrey C.; Dagum, Leonardo
1993-01-01
We describe the implementation and performance of a three dimensional particle simulation distributed between a Thinking Machines CM-2 and a Cray Y-MP. These are connected by a combination of two high-speed networks: a high-performance parallel interface (HIPPI) and an optical network (UltraNet). This is the first application to use this configuration at NASA Ames Research Center. We describe our experience implementing and using the application and report the results of several timing measurements. We show that the distribution of applications across disparate supercomputing platforms is feasible and has reasonable performance. In addition, several practical aspects of the computing environment are discussed.
The transition of a real-time single-rotor helicopter simulation program to a supercomputer
NASA Technical Reports Server (NTRS)
Martinez, Debbie
1995-01-01
This report presents the conversion effort and results of a real-time flight simulation application transition to a CONVEX supercomputer. Enclosed is a detailed description of the conversion process and a brief description of the Langley Research Center's (LaRC) flight simulation application program structure. Currently, this simulation program may be configured to represent Sikorsky S-61 helicopter (a five-blade, single-rotor, commercial passenger-type helicopter) or an Army Cobra helicopter (either the AH-1 G or AH-1 S model). This report refers to the Sikorsky S-61 simulation program since it is the most frequently used configuration.
Ellingson, Sally R; Dakshanamurthy, Sivanesan; Brown, Milton; Smith, Jeremy C; Baudry, Jerome
2014-04-25
In this paper we give the current state of high-throughput virtual screening. We describe a case study of using a task-parallel MPI (Message Passing Interface) version of Autodock4 [1], [2] to run a virtual high-throughput screen of one-million compounds on the Jaguar Cray XK6 Supercomputer at Oak Ridge National Laboratory. We include a description of scripts developed to increase the efficiency of the predocking file preparation and postdocking analysis. A detailed tutorial, scripts, and source code for this MPI version of Autodock4 are available online at http://www.bio.utk.edu/baudrylab/autodockmpi.htm.
Sequence search on a supercomputer.
Gotoh, O; Tagashira, Y
1986-01-10
A set of programs was developed for searching nucleic acid and protein sequence data bases for sequences similar to a given sequence. The programs, written in FORTRAN 77, were optimized for vector processing on a Hitachi S810-20 supercomputer. A search of a 500-residue protein sequence against the entire PIR data base Ver. 1.0 (1) (0.5 M residues) is carried out in a CPU time of 45 sec. About 4 min is required for an exhaustive search of a 1500-base nucleotide sequence against all mammalian sequences (1.2M bases) in Genbank Ver. 29.0. The CPU time is reduced to about a quarter with a faster version.
A high performance linear equation solver on the VPP500 parallel supercomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakanishi, Makoto; Ina, Hiroshi; Miura, Kenichi
1994-12-31
This paper describes the implementation of two high performance linear equation solvers developed for the Fujitsu VPP500, a distributed memory parallel supercomputer system. The solvers take advantage of the key architectural features of VPP500--(1) scalability for an arbitrary number of processors up to 222 processors, (2) flexible data transfer among processors provided by a crossbar interconnection network, (3) vector processing capability on each processor, and (4) overlapped computation and transfer. The general linear equation solver based on the blocked LU decomposition method achieves 120.0 GFLOPS performance with 100 processors in the LIN-PACK Highly Parallel Computing benchmark.
Optimal Full Information Synthesis for Flexible Structures Implemented on Cray Supercomputers
NASA Technical Reports Server (NTRS)
Lind, Rick; Balas, Gary J.
1995-01-01
This paper considers an algorithm for synthesis of optimal controllers for full information feedback. The synthesis procedure reduces to a single linear matrix inequality which may be solved via established convex optimization algorithms. The computational cost of the optimization is investigated. It is demonstrated the problem dimension and corresponding matrices can become large for practical engineering problems. This algorithm represents a process that is impractical for standard workstations for large order systems. A flexible structure is presented as a design example. Control synthesis requires several days on a workstation but may be solved in a reasonable amount of time using a Cray supercomputer.
SiGN-SSM: open source parallel software for estimating gene networks with state space models.
Tamada, Yoshinori; Yamaguchi, Rui; Imoto, Seiya; Hirose, Osamu; Yoshida, Ryo; Nagasaki, Masao; Miyano, Satoru
2011-04-15
SiGN-SSM is an open-source gene network estimation software able to run in parallel on PCs and massively parallel supercomputers. The software estimates a state space model (SSM), that is a statistical dynamic model suitable for analyzing short time and/or replicated time series gene expression profiles. SiGN-SSM implements a novel parameter constraint effective to stabilize the estimated models. Also, by using a supercomputer, it is able to determine the gene network structure by a statistical permutation test in a practical time. SiGN-SSM is applicable not only to analyzing temporal regulatory dependencies between genes, but also to extracting the differentially regulated genes from time series expression profiles. SiGN-SSM is distributed under GNU Affero General Public Licence (GNU AGPL) version 3 and can be downloaded at http://sign.hgc.jp/signssm/. The pre-compiled binaries for some architectures are available in addition to the source code. The pre-installed binaries are also available on the Human Genome Center supercomputer system. The online manual and the supplementary information of SiGN-SSM is available on our web site. tamada@ims.u-tokyo.ac.jp.
Transferring ecosystem simulation codes to supercomputers
NASA Technical Reports Server (NTRS)
Skiles, J. W.; Schulbach, C. H.
1995-01-01
Many ecosystem simulation computer codes have been developed in the last twenty-five years. This development took place initially on main-frame computers, then mini-computers, and more recently, on micro-computers and workstations. Supercomputing platforms (both parallel and distributed systems) have been largely unused, however, because of the perceived difficulty in accessing and using the machines. Also, significant differences in the system architectures of sequential, scalar computers and parallel and/or vector supercomputers must be considered. We have transferred a grassland simulation model (developed on a VAX) to a Cray Y-MP/C90. We describe porting the model to the Cray and the changes we made to exploit the parallelism in the application and improve code execution. The Cray executed the model 30 times faster than the VAX and 10 times faster than a Unix workstation. We achieved an additional speedup of 30 percent by using the compiler's vectoring and 'in-line' capabilities. The code runs at only about 5 percent of the Cray's peak speed because it ineffectively uses the vector and parallel processing capabilities of the Cray. We expect that by restructuring the code, it could execute an additional six to ten times faster.
NASA Technical Reports Server (NTRS)
Cohen, Jarrett
1999-01-01
Parallel computers built out of mass-market parts are cost-effectively performing data processing and simulation tasks. The Supercomputing (now known as "SC") series of conferences celebrated its 10th anniversary last November. While vendors have come and gone, the dominant paradigm for tackling big problems still is a shared-resource, commercial supercomputer. Growing numbers of users needing a cheaper or dedicated-access alternative are building their own supercomputers out of mass-market parts. Such machines are generally called Beowulf-class systems after the 11th century epic. This modern-day Beowulf story began in 1994 at NASA's Goddard Space Flight Center. A laboratory for the Earth and space sciences, computing managers there threw down a gauntlet to develop a $50,000 gigaFLOPS workstation for processing satellite data sets. Soon, Thomas Sterling and Don Becker were working on the Beowulf concept at the University Space Research Association (USRA)-run Center of Excellence in Space Data and Information Sciences (CESDIS). Beowulf clusters mix three primary ingredients: commodity personal computers or workstations, low-cost Ethernet networks, and the open-source Linux operating system. One of the larger Beowulfs is Goddard's Highly-parallel Integrated Virtual Environment, or HIVE for short.