Cosmic strings and superconducting cosmic strings
NASA Technical Reports Server (NTRS)
Copeland, Edmund
1988-01-01
The possible consequences of forming cosmic strings and superconducting cosmic strings in the early universe are discussed. Lecture 1 describes the group theoretic reasons for and the field theoretic reasons why cosmic strings can form in spontaneously broken gauge theories. Lecture 2 discusses the accretion of matter onto string loops, emphasizing the scenario with a cold dark matter dominated universe. In lecture 3 superconducting cosmic strings are discussed, as is a mechanism which leads to the formation of structure from such strings.
NASA Astrophysics Data System (ADS)
Rybak, I. Yu.; Avgoustidis, A.; Martins, C. J. A. P.
2017-11-01
We study how the presence of world-sheet currents affects the evolution of cosmic string networks, and their impact on predictions for the cosmic microwave background (CMB) anisotropies generated by these networks. We provide a general description of string networks with currents and explicitly investigate in detail two physically motivated examples: wiggly and superconducting cosmic string networks. By using a modified version of the CMBact code, we show quantitatively how the relevant network parameters in both of these cases influence the predicted CMB signal. Our analysis suggests that previous studies have overestimated the amplitude of the anisotropies for wiggly strings. For superconducting strings the amplitude of the anisotropies depends on parameters which presently are not well known—but which can be measured in future high-resolution numerical simulations.
Cosmic string catalysis of skyrmion decay
NASA Technical Reports Server (NTRS)
Gregory, Ruth; Davis, Anne-Christine; Brandenberger, Robert
1988-01-01
The Callan-Witten picture is developed for monopole catalyzed skyrmion decay in order to analyze the corresponding cosmic string scenario. It is discovered that cosmic strings (both ordinary and superconducting) can catalyze proton decay, but that this catalysis only occurs on the scale of the core of the string. In order to do this we have to develop a vortex model for the superconducting string. An argument is also given for the difference in the enhancement factors for monopoles and strings.
Gamma-ray bursts from cusps on superconducting cosmic strings at large redshifts
NASA Technical Reports Server (NTRS)
Paczynski, Bohdan
1988-01-01
Babul et al. (1987) proposed that some gamma-ray bursts may be caused by energy released at the cusps of oscillating loops made of superconducting cosmic strings. It is claimed that there were some errors and omissions in that work, which are claimed to be corrected in the present paper. Arguments are presented, that given certain assumptions, the cusps on oscillating superconducting cosmic strings produce highly collimated and energetic electromagnetic bursts and that a fair fraction of electromagnetic energy is likely to come out as gamma rays.
Excited cosmic strings with superconducting currents
NASA Astrophysics Data System (ADS)
Hartmann, Betti; Michel, Florent; Peter, Patrick
2017-12-01
We present a detailed analysis of excited cosmic string solutions that possess superconducting currents. These currents can be excited inside the string core, and—if the condensate is large enough—can lead to the excitations of the Higgs field. Next to the case with global unbroken symmetry, we discuss also the effects of the gauging of this symmetry and show that excited condensates persist when coupled to an electromagnetic field. The space-time of such strings is also constructed by solving the Einstein equations numerically and we show how the local scalar curvature is modified by the excitation. We consider the relevance of our results on the cosmic string network evolution as well as observations of primordial gravitational waves and cosmic rays.
Cosmic strings and galaxy formation
NASA Technical Reports Server (NTRS)
Bertschinger, Edmund
1989-01-01
The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.
Effects of ordinary and superconducting cosmic strings on primordial nucleosynthesis
NASA Technical Reports Server (NTRS)
Hodges, Hardy M.; Turner, Michael S.
1988-01-01
A precise calculation is done of the primordial nucleosynthesis constraint on the energy per length of ordinary and superconducting cosmic strings. A general formula is provided for the constraint on the string tension for ordinary strings. Using the current values for the various parameters that describe the evolution of loops, the constraint for ordinary strings is G mu less than 2.2 x 10 to the minus 5 power. Our constraint is weaker than previously quoted limits by a factor of approximately 5. For superconducting loops, with currents generated by primordial magnetic fields, the constraint can be less or more stringent than this limit, depending on the strength of the magnetic field. It is also found in this case that there is a negligible amount of entropy production if the electromagnetic radiation from strings thermalizes with the radiation background.
Quantum fluctuations of the superconducting cosmic string
NASA Technical Reports Server (NTRS)
Zhang, Shoucheng
1987-01-01
Quantum fluctuations of the proposed superconducting string with Bose charge carriers are studied in terms of the vortices on the string world sheet. In the thermodynamical limit, it is found that they appear in the form of free vortices rather than as bound pairs. This fluctuation mode violates the topological conservation law on which superconductivity is based. However, this limit may not be reached. The critical size of the superconducting string is estimated as a function of the coupling constants involved.
Distortion of the cosmic background radiation by superconducting strings
NASA Technical Reports Server (NTRS)
Ostriker, J. P.; Thompson, C.
1987-01-01
Superconducting cosmic strings can be significant energy sources, keeping the universe ionized past the commonly assumed epoch of recombination. As a result, the spectrum of the cosmic background radiation is distorted in the presence of heated primordial gas via the Suniaev-Zel'dovich effect. Thiis distortion can be relatively large: the Compton y parameter attains a maximum in the range 0.001-0.005, with these values depending on the mass scale of the string. A significant contribution to y comes from loops decaying at high redshift when the universe is optically thick to Thomson scattering. Moreover, the isotropic spectral distortion is large compared to fluctuations at all angular scales.
Analytical Solutions to Backreaction on Cosmic Strings
NASA Astrophysics Data System (ADS)
Wachter, Jeremy M.
2017-08-01
We present analytical studies of gravitational and electromagnetic backreaction on cosmic strings. For oscillating loops of cosmic string, we present a general argument for how kinks must change; additionally, we apply this general argument to the geometrically simple case of the Garfinkle-Vachaspati loop. Our results suggest that the formation of cusps on loops is delayed, and so we should expect fewer cuspy signatures to be seen in gravitational wave observations. Electromagnetic backreaction we show to reduce currents on a string at least as rapidly as necessary to avoid a paradox, and currents induced on a superconducting straight string will be asymptotically reduced to zero.
Superconducting cosmic strings as sources of cosmological fast radio bursts
NASA Astrophysics Data System (ADS)
Ye, Jiani; Wang, Kai; Cai, Yi-Fu
2017-11-01
In this paper we calculate the radio burst signals from three kinds of structures of superconducting cosmic strings. By taking into account the observational factors including scattering and relativistic effects, we derive the event rate of radio bursts as a function of redshift with the theoretical parameters Gμ and I of superconducting strings. Our analyses show that cusps and kinks may have noticeable contributions to the event rate and in most cases cusps would dominate the contribution, while the kink-kink collisions tend to have secondary effects. By fitting theoretical predictions with the normalized data of fast radio bursts, we for the first time constrain the parameter space of superconducting strings and report that the parameter space of Gμ ˜ [10^{-14}, 10^{-12}] and I ˜ [10^{-1}, 102] GeV fit the observation well although the statistic significance is low due to the lack of observational data. Moreover, we derive two types of best fittings, with one being dominated by cusps with a redshift z = 1.3, and the other dominated by kinks at the range of the maximal event rate.
Superconducting cosmic string loops as sources for fast radio bursts
NASA Astrophysics Data System (ADS)
Cao, Xiao-Feng; Yu, Yun-Wei
2018-01-01
The cusp burst radiation of superconducting cosmic string (SCS) loops is thought to be a possible origin of observed fast radio bursts with the model-predicted radiation spectrum and the redshift- and energy-dependent event rate, we fit the observational redshift and energy distributions of 21 Parkes fast radio bursts and constrain the model parameters. It is found that the model can basically be consistent with the observations, if the current on the SCS loops has a present value of ˜1016μ179 /10 esu s-1 and evolves with redshift as an empirical power law ˜(1 +z )-1.3 , where μ17=μ /1017 g cm-1 is the string tension. This current evolution may provide a clue to probe the evolution of the cosmic magnetic fields and the gathering of the SCS loops to galaxy clusters.
NASA Technical Reports Server (NTRS)
Borden, David; Ostriker, Jeremiah P.; Weinberg, David H.
1989-01-01
If galaxies form on shells, then clusters of galaxies should form at the vertices where three shells intersect. Weinberg, Ostriker, and Dekel (WOD, 1989) studied this picture quantitatively and found that an intersecting spherical shell model reproduces many of the properties of the observed distribution of galaxy clusters, but that too much superclustering is produced. In this paper, the WOD analysis is repeated with prolate spheroids that could be created by superconducting cosmic strings. It is found that most of the attractive features of the WOD model are maintained in the more general case and there is slight improvement in some aspects, but that the overall problem of excessive superclustering is not really alleviated.
Koehn, Michael; Trodden, Mark
2016-03-03
In supersymmetric theories, topological defects can have nontrivial behaviors determined purely by whether or not supersymmetry is restored in the defect core. A well-known example of this is that some supersymmetric cosmic strings are automatically superconducting, leading to important cosmological effects and constraints. We investigate the impact of nontrivial kinetic interactions, present in a number of particle physics models of interest in cosmology, on the relationship between supersymmetry and supercurrents on strings. Furthermore, we find that in some cases it is possible for superconductivity to be disrupted by the extra interactions.
Thermal stabilization of superconducting sigma strings and their drum vortons
NASA Astrophysics Data System (ADS)
Carter, Brandon; Brandenberger, Robert H.; Davis, Anne-Christine
2002-05-01
We discuss various issues related to stabilized embedded strings in a thermal background. In particular, we demonstrate that such strings will generically become superconducting at moderately low temperatures, thus enhancing their stability. We then present a new class of defects-drum vortons-which arise when a small symmetry breaking term is added to the potential. We display these points within the context of the O(4) sigma model, relevant for hadrodynamics below the QCD scale. This model admits ``embedded defects'' (topological defect configurations of a simpler-in this case O(2) symmetric-model obtained by imposing an embedding constraint) that are unstable in the full model at zero temperature, but that can be stabilized (by electromagnetic coupling to photons) in a thermal gas at moderately high termperatures. It is shown here that below the embedded defect stabilization threshold, there will still be stabilized cosmic string defects. However, they will not be of the symmetric embedded vortex type, but of an ``asymmetric'' vortex type, and are automatically superconducting. In the presence of weak symmetry breaking terms, such as arise naturally when using the O(4) model for hadrodynamics, the strings become the boundary of a new kind of cosmic sigma membrane, with tension given by the pion mass. The string current would then make it possible for a loop to attain a (classically) stable equilibrium state that differs from an ``ordinary'' vorton state by the presence of a sigma membrane stretched across it in a drum-like configuration. Such defects will however be entirely destabilized if the symmetry breaking is too strong, as is found to be the case-due to the rather large value of the pion mass-in the hadronic application of the O(4) sigma model.
Gamma-ray bursts from superconducting cosmic strings at large redshifts
NASA Technical Reports Server (NTRS)
Babul, Arif; Paczynski, Bohdan; Spergel, David
1987-01-01
The relation between cusp events and gamma-rays bursts is investigated. The optical depth of the universe to X-rays and gamma-rays of various energies is calculated and discussed. The cosmological evolution of cosmic strings is examined, and the energetics and time-scales related to the cusp phenomena are estimated. It is noted that it is possible to have energy bursts with a duration of a few seconds or less from cusps at z = 1000; the maximum amount of energy associated with such an event is limited to 10 to the 7th ergs/sq cm.
NASA Astrophysics Data System (ADS)
Peter, Patrick
1992-02-01
The equation of state relating the tension T and the energy per unit length U of a cosmic string is investigated in the simplest nontrivial case, namely, that of a field theory with U(1)local×U(1)global invariance, in four dimensions, which is interpretable as the zero-charge-coupling-constant limit of the more general superconducting string models that have been previously investigated. This limit has the advantage of giving vacuum vortex defects that are strictly local so that the quantities such as U and T that are relevant for the macroscopic description can be computed without ambiguity. In the case of ``electric'' states (with timelike current) for which no comparable previous calculations exist, it is shown there is a critical frequency wc beyond which the vortex becomes unstable due to ``charge'' carrier emission. In the case of ``magnetic'' states (with spacelike current), the present analysis provides more precise results than those of previous investigations, whose predictions are broadly confirmed for typical moderate models in which the tension T remains comparable to the energy density U though not for extreme models, in which serious discrepancies are revealed.
Dynamics of cosmic strings with higher-dimensional windings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamauchi, Daisuke; Lake, Matthew J.; Thailand Center of Excellence in Physics, Ministry of Education,Bangkok 10400
2015-06-11
We consider F-strings with arbitrary configurations in the Minkowski directions of a higher-dimensional spacetime, which also wrap and spin around S{sup 1} subcycles of constant radius in an arbitrary internal manifold, and determine the relation between the higher-dimensional and the effective four-dimensional quantities that govern the string dynamics. We show that, for any such configuration, the motion of the windings in the compact space may render the string effectively tensionless from a four-dimensional perspective, so that it remains static with respect to the large dimensions. Such a critical configuration occurs when (locally) exactly half the square of the string lengthmore » lies in the large dimensions and half lies in the compact space. The critical solution is then seen to arise as a special case, in which the wavelength of the windings is equal to their circumference. As examples, long straight strings and circular loops are considered in detail, and the solutions to the equations of motion that satisfy the tensionless condition are presented. These solutions are then generalized to planar loops and arbitrary three-dimensional configurations. Under the process of dimensional reduction, in which higher-dimensional motion is equivalent to an effective worldsheet current (giving rise to a conserved charge), this phenomenon may be seen as the analogue of the tensionless condition which arises for superconducting and chiral-current carrying cosmic strings.« less
Dynamics of cosmic strings with higher-dimensional windings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamauchi, Daisuke; Lake, Matthew J., E-mail: yamauchi@resceu.s.u-tokyo.ac.jp, E-mail: matthewj@nu.ac.th
2015-06-01
We consider F-strings with arbitrary configurations in the Minkowski directions of a higher-dimensional spacetime, which also wrap and spin around S{sup 1} subcycles of constant radius in an arbitrary internal manifold, and determine the relation between the higher-dimensional and the effective four-dimensional quantities that govern the string dynamics. We show that, for any such configuration, the motion of the windings in the compact space may render the string effectively tensionless from a four-dimensional perspective, so that it remains static with respect to the large dimensions. Such a critical configuration occurs when (locally) exactly half the square of the string lengthmore » lies in the large dimensions and half lies in the compact space. The critical solution is then seen to arise as a special case, in which the wavelength of the windings is equal to their circumference. As examples, long straight strings and circular loops are considered in detail, and the solutions to the equations of motion that satisfy the tensionless condition are presented. These solutions are then generalized to planar loops and arbitrary three-dimensional configurations. Under the process of dimensional reduction, in which higher-dimensional motion is equivalent to an effective worldsheet current (giving rise to a conserved charge), this phenomenon may be seen as the analogue of the tensionless condition which arises for superconducting and chiral-current carrying cosmic strings.« less
A new class of non-topological solitons
NASA Technical Reports Server (NTRS)
Frieman, Joshua A.; Lynn, Bryan W.
1989-01-01
A class of non-topological solitons was constructed in renormalizable scalar field theories with nonlinear self-interactions. For large charge Q, the soliton mass increases linearly with Q, i.e., the soliton mass density is approximately independent of charge. Such objects could be naturally produced in a phase transition in the early universe or in the decay of superconducting cosmic strings.
Cosmic superstrings: Observable remnants of brane inflation
NASA Astrophysics Data System (ADS)
Wyman, Mark Charles
Brane inflation provides a natural dynamical model for the physics which underlie the inflationary paradigm. Besides their inflationary predictions, brane models imply another observable consequence: cosmic strings. In this dissertation I outline the background of how cosmic strings arise in brane inflationary models and how the properties of the strings and the models are mutually tied (Chapter 2). I then use cosmological observations to put limits on the properties of any actually-existing cosmic string network (Chapter 3). Next, I study the question of how cosmic superstrings, as the cosmic strings arising from string theory are known, could be distinct from classical gauge- theory cosmic strings. In particular, I propose an analytical model for the cosmological evolution of a network of binding cosmic strings (Chapter 4); I also describe the distinctive gravitational lensing phenomena that are caused by binding strings (Chapter 5). Finally, I lay out the background for the numerical study of a gauge theory model for the dynamics of cosmic superstring binding (Chapter 6).
Constraints on cosmic strings due to black holes formed from collapsed cosmic string loops
NASA Technical Reports Server (NTRS)
Caldwell, R. R.; Gates, Evalyn
1993-01-01
The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict f, the fraction of cosmic string loops which collapse to form black holes, and mu, the cosmic string mass-per-unit length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters f and mu is due to the energy density in 100MeV photons radiated by the black holes. We also find that inert black hole remnants cannot serve as the dark matter. If earlier, crude estimates of f are reliable, our results severely restrict mu, and therefore limit the viability of the cosmic string large-scale structure scenario.
The implications of the COBE diffuse microwave radiation results for cosmic strings
NASA Technical Reports Server (NTRS)
Bennett, David P.; Stebbins, Albert; Bouchet, Francois R.
1992-01-01
We compare the anisotropies in the cosmic microwave background radiation measured by the COBE experiment to those predicted by cosmic string theories. We use an analytic model for the Delta T/T power spectrum that is based on our previous numerical simulations of strings, under the assumption that cosmic strings are the sole source of the measured anisotropy. This implies a value for the string mass per unit length of 1.5 +/- 0.5 x 10 exp -6 C-squared/G. This is within the range of values required for cosmic strings to successfully seed the formation of large-scale structures in the universe. These results clearly encourage further studies of Delta T/T and large-scale structure in the cosmic string model.
Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors
NASA Astrophysics Data System (ADS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bersanetti, D.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2014-04-01
Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension Gμ below 10-8 in some regions of the cosmic string parameter space.
Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors
NASA Technical Reports Server (NTRS)
Aasi, J.; Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Accadia, T.; Adams, C.; Adams, T.; Adhikari, R.X.;
2014-01-01
Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension (Newton's Constant x mass per unit length) below 10(exp -8) in some regions of the cosmic string parameter space.
Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors.
Aasi, J; Abadie, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Adams, C; Adams, T; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Allen, B; Allocca, A; Amador Ceron, E; Amariutei, D; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barker, D; Barnum, S H; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Behnke, B; Bejger, M; Beker, M G; Bell, A S; Bell, C; Belopolski, I; Bergmann, G; Berliner, J M; Bersanetti, D; Bertolini, A; Bessis, D; Betzwieser, J; Beyersdorf, P T; Bhadbhade, T; Bilenko, I A; Billingsley, G; Birch, J; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bowers, J; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brannen, C A; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Calderón Bustillo, J; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Colombini, M; Constancio, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J-P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Craig, K; Creighton, J D E; Creighton, T D; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Dal Canton, T; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; De Rosa, R; Debreczeni, G; Degallaix, J; Del Pozzo, W; Deleeuw, E; Deléglise, S; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R; DeSalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Díaz, M; Dietz, A; Dmitry, K; Donovan, F; Dooley, K L; Doravari, S; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J-C; Dwyer, S; Eberle, T; Edwards, M; Effler, A; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W; Favata, M; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R; Flaminio, R; Foley, E; Foley, S; Forsi, E; Fotopoulos, N; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fujimoto, M-K; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Garcia, J; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Gergely, L; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gil-Casanova, S; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Griffo, C; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K E; Gustafson, E K; Gustafson, R; Hall, B; Hall, E; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Heefner, J; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Holtrop, M; Hong, T; Hooper, S; Horrom, T; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hua, Z; Huang, V; Huerta, E A; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Iafrate, J; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jang, Y J; Jaranowski, P; Jiménez-Forteza, F; Johnson, W W; Jones, D; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kasprzack, M; Kasturi, R; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufman, K; Kawabe, K; Kawamura, S; Kawazoe, F; Kéfélian, F; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, B K; Kim, C; Kim, K; Kim, N; Kim, W; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kremin, A; Kringel, V; Królak, A; Kucharczyk, C; Kudla, S; Kuehn, G; Kumar, A; Kumar, P; Kumar, R; Kurdyumov, R; Kwee, P; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lawrie, C; Lazzarini, A; Le Roux, A; Leaci, P; Lebigot, E O; Lee, C-H; Lee, H K; Lee, H M; Lee, J; Lee, J; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levine, B; Lewis, J B; Lhuillier, V; Li, T G F; Lin, A C; Littenberg, T B; Litvine, V; Liu, F; Liu, H; Liu, Y; Liu, Z; Lloyd, D; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Luan, J; Lubinski, M J; Lück, H; Lundgren, A P; Macarthur, J; Macdonald, E; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Mageswaran, M; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; May, G; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meier, T; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Mohan, M; Mohapatra, S R P; Mokler, F; Moraru, D; Moreno, G; Morgado, N; Mori, T; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Nanda Kumar, D; Nardecchia, I; Nash, T; Naticchioni, L; Nayak, R; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nishida, E; Nishizawa, A; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; O'Reilly, B; Ortega Larcher, W; O'Shaughnessy, R; Osthelder, C; Ott, C D; Ottaway, D J; Ottens, R S; Ou, J; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Peiris, P; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pindor, B; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poole, V; Poux, C; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Quintero, E; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Roddy, S; Rodriguez, C; Rodruck, M; Roever, C; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shaddock, D; Shah, S; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Sintes, A M; Skelton, G R; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Soden, K; Son, E J; Sorazu, B; Souradeep, T; Sperandio, L; Staley, A; Steinert, E; Steinlechner, J; Steinlechner, S; Steplewski, S; Stevens, D; Stochino, A; Stone, R; Strain, K A; Straniero, N; Strigin, S; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Szeifert, G; Tacca, M; Talukder, D; Tang, L; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Unnikrishnan, C S; Vahlbruch, H; Vajente, G; Vallisneri, M; van den Brand, J F J; Van Den Broeck, C; van der Putten, S; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Verma, S; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J-Y; Vitale, S; Vlcek, B; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vrinceanu, D; Vyachanin, S P; Wade, A; Wade, L; Wade, M; Waldman, S J; Walker, M; Wallace, L; Wan, Y; Wang, J; Wang, M; Wang, X; Wanner, A; Ward, R L; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wibowo, S; Wiesner, K; Wilkinson, C; Williams, L; Williams, R; Williams, T; Willis, J L; Willke, B; Wimmer, M; Winkelmann, L; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yancey, C C; Yang, H; Yeaton-Massey, D; Yoshida, S; Yum, H; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J-P; Zhang, F; Zhang, L; Zhao, C; Zhu, H; Zhu, X J; Zotov, N; Zucker, M E; Zweizig, J
2014-04-04
Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension Gμ below 10(-8) in some regions of the cosmic string parameter space.
Progress report for a research program in theoretical high energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, D.; Fried, H.M.; Jevicki, A.
This year's research has dealt with: superstrings in the early universe; the invisible axion emissions from SN1987A; quartic interaction in Witten's superstring field theory; W-boson associated multiplicity and the dual parton model; cosmic strings and galaxy formation; cosmic strings and baryogenesis; quark flavor mixing; p -- /bar p/ scattering at TeV energies; random surfaces; ordered exponentials and differential equations; initial value and back-reaction problems in quantum field theory; string field theory and Weyl invariance; the renormalization group and string field theory; the evolution of scalar fields in an inflationary universe, with and without the effects of gravitational perturbations; cosmic stringmore » catalysis of skyrmion decay; inflation and cosmic strings from dynamical symmetry breaking; the physic of flavor mixing; string-inspired cosmology; strings at high-energy densities and complex temperatures; the problem of non-locality in string theory; string statistical mechanics; large-scale structures with cosmic strings and neutrinos; the delta expansion for stochastic quantization; high-energy neutrino flux from ordinary cosmic strings; a physical picture of loop bremsstrahlung; cylindrically-symmetric solutions of four-dimensional sigma models; large-scale structure with hot dark matter and cosmic strings; the unitarization of the odderon; string thermodynamics and conservation laws; the dependence of inflationary-universe models on initial conditions; the delta expansion and local gauge invariance; particle physics and galaxy formation; chaotic inflation with metric and matter perturbations; grand-unified theories, galaxy formation, and large-scale structure; neutrino clustering in cosmic-string-induced wakes; and infrared approximations to nonlinear differential equations. 17 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciuca, Razvan; Hernández, Oscar F., E-mail: razvan.ciuca@mail.mcgill.ca, E-mail: oscarh@physics.mcgill.ca
There exists various proposals to detect cosmic strings from Cosmic Microwave Background (CMB) or 21 cm temperature maps. Current proposals do not aim to find the location of strings on sky maps, all of these approaches can be thought of as a statistic on a sky map. We propose a Bayesian interpretation of cosmic string detection and within that framework, we derive a connection between estimates of cosmic string locations and cosmic string tension G μ. We use this Bayesian framework to develop a machine learning framework for detecting strings from sky maps and outline how to implement this frameworkmore » with neural networks. The neural network we trained was able to detect and locate cosmic strings on noiseless CMB temperature map down to a string tension of G μ=5 ×10{sup −9} and when analyzing a CMB temperature map that does not contain strings, the neural network gives a 0.95 probability that G μ≤2.3×10{sup −9}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Movahed, M. Sadegh; Khosravi, Shahram, E-mail: m.s.movahed@ipm.ir, E-mail: khosravi@ipm.ir
2011-03-01
In this paper we study the footprint of cosmic string as the topological defects in the very early universe on the cosmic microwave background radiation. We develop the method of level crossing analysis in the context of the well-known Kaiser-Stebbins phenomenon for exploring the signature of cosmic strings. We simulate a Gaussian map by using the best fit parameter given by WMAP-7 and then superimpose cosmic strings effects on it as an incoherent and active fluctuations. In order to investigate the capability of our method to detect the cosmic strings for the various values of tension, Gμ, a simulated puremore » Gaussian map is compared with that of including cosmic strings. Based on the level crossing analysis, the superimposed cosmic string with Gμ∼>4 × 10{sup −9} in the simulated map without instrumental noise and the resolution R = 1' could be detected. In the presence of anticipated instrumental noise the lower bound increases just up to Gμ∼>5.8 × 10{sup −9}.« less
The Hubble Web: The Dark Matter Problem and Cosmic Strings
NASA Astrophysics Data System (ADS)
Alexander, Stephon
2009-07-01
I propose a reinterpretation of cosmic dark matter in which a rigid network of cosmic strings formed at the end of inflation. The cosmic strings fulfill three functions: At recombination they provide an accretion mechanism for virializing baryonic and warm dark matter into disks. These cosmic strings survive as configurations which thread spiral and elliptical galaxies leading to the observed flatness of rotation curves and the Tully-Fisher relation. We find a relationship between the rotational velocity of the galaxy and the string tension and discuss the testability of this model.
Fitting cosmic microwave background data with cosmic strings and inflation.
Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon
2008-01-18
We perform a multiparameter likelihood analysis to compare measurements of the cosmic microwave background (CMB) power spectra with predictions from models involving cosmic strings. Adding strings to the standard case of a primordial spectrum with power-law tilt ns, we find a 2sigma detection of strings: f10=0.11+/-0.05, where f10 is the fractional contribution made by strings in the temperature power spectrum (at l=10). CMB data give moderate preference to the model ns=1 with cosmic strings over the standard zero-strings model with variable tilt. When additional non-CMB data are incorporated, the two models become on a par. With variable ns and these extra data, we find that f10<0.11, which corresponds to Gmicro<0.7x10(-6) (where micro is the string tension and G is the gravitational constant).
Constraints on cosmic strings using data from the first Advanced LIGO observing run
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steer, D. A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2018-05-01
Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension G μ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider.
PhD Thesis: String theory in the early universe
NASA Astrophysics Data System (ADS)
Gwyn, Rhiannon
2009-11-01
The intersection of string theory with cosmology is unavoidable in the early universe, and its exploration may shine light on both fields. In this thesis, three papers at this intersection are presented and reviewed, with the aim of providing a thorough and pedagogical guide to their results. First, we address the longstanding problem of finding a string theory realisation of the axion. Using warped compactifications in heterotic string theory, we show that the axion decay constant can be lowered to acceptable values by the warp factor. Next, we move to the subject of cosmic strings, whose network evolution could have important consequences for astrophysics and cosmology. In particular, there are quantitative differences between cosmic superstring networks and GUT cosmic string networks. We investigate the properties of cosmic superstring networks in warped backgrounds, giving the tension and properties of three-string junctions in these backgrounds. Finally, we examine the possibility that cosmic strings in heterotic string theory could be responsible for generating the galactic magnetic fields that seeded those observed today.
Effect of the cosmological constant on the deflection angle by a rotating cosmic string
NASA Astrophysics Data System (ADS)
Jusufi, Kimet; Övgün, Ali
2018-03-01
We report the effect of the cosmological constant and the internal energy density of a cosmic string on the deflection angle of light in the spacetime of a rotating cosmic string with internal structure. We first revisit the deflection angle by a rotating cosmic string and then provide a generalization using the geodesic equations and the Gauss-Bonnet theorem. We show there is an agreement between the two methods when employing higher-order terms of the linear mass density of the cosmic string. By modifying the integration domain for the global conical topology, we resolve the inconsistency between these two methods previously reported in the literature. We show that the deflection angle is not affected by the rotation of the cosmic string; however, the cosmological constant Λ strongly affects the deflection angle, which generalizes the well-known result.
Self-force on an electric dipole in the spacetime of a cosmic string
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muniz, C.R., E-mail: celiomuniz@yahoo.com; Bezerra, V.B., E-mail: valdir@ufpb.br
2014-01-15
We calculate the electrostatic self-force on an electric dipole in the spacetime generated by a static, thin, infinite and straight cosmic string. The electric dipole is held fixed in different configurations, namely, parallel, perpendicular to the cosmic string and oriented along the azimuthal direction around this topological defect, which is stretched along the z axis. We show that the self-force is equivalent to an interaction of the electric dipole with an effective dipole moment which depends on the linear mass density of the cosmic string and on the configuration. The plots of the self-forces as functions of the parameter whichmore » determines the angular deficit of the cosmic string are shown for those different configurations. -- Highlights: •Review of regularized Green’s function applied to the problem. •Self-force on an electric dipole in the string spacetime for some orientations. •Representation via graphs of the self-forces versus angular parameter of the cosmic string. •Self-force induced by the string seen as an interaction between two dipoles. •Discussion about the superposition principle in this non-trivial background.« less
Closed timelike curves produced by pairs of moving cosmic strings - Exact solutions
NASA Technical Reports Server (NTRS)
Gott, J. Richard, III
1991-01-01
Exact solutions of Einstein's field equations are presented for the general case of two moving straight cosmic strings that do not intersect. The solutions for parallel cosmic strings moving in opposite directions show closed timelike curves (CTCs) that circle the two strings as they pass, allowing observers to visit their own past. Similar results occur for nonparallel strings, and for masses in (2+1)-dimensional spacetime. For finite string loops the possibility that black-hole formation may prevent the formation of CTCs is discussed.
NASA Technical Reports Server (NTRS)
Bennett, David P.
1988-01-01
Cosmic strings are linear topological defects which are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characterisitc microwave background anisotropy. It was recently discovered that details of cosmic string evolution are very differnt from the so-called standard model that was assumed in most of the string-induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain.
Scattering of Cosmic Strings by Black Holes:. Loop Formation
NASA Astrophysics Data System (ADS)
Dubath, Florian; Sakellariadou, Mairi; Viallet, Claude Michel
We study the deformation of a long cosmic string by a nearby rotating black hole. We examine whether the deformation of a cosmic string, induced by the gravitational field of a Kerr black hole, may lead to the formation of a string loop. The segment of the string which enters the ergo-sphere of a rotating black hole gets deformed and, if it is sufficiently twisted, it can self-intersect, chopping off a loop. We find that the formation of a loop, via such a mechanism, is a rare event. It will only arise in a small region of the collision phase space, which depends on the string velocity, the impact parameter and the black hole angular momentum. We conclude that, generically, a long cosmic string is simply scattered, or captured, by a nearby rotating black hole.
Black holes as beads on cosmic strings
NASA Astrophysics Data System (ADS)
Ashoorioon, Amjad; Mann, Robert B.
2014-11-01
We consider the possibility of the formation of cosmic strings with black holes as beads. We focus on the simplest setup where two black holes are formed on a long cosmic string. It turns out that in the absence of a background magnetic field and for observationally viable values for cosmic string tensions, μ \\lt 2× {{10}-7}, the tension of the strut in between the black holes has to be less than the ones that run into infinity. This result does not change if a cosmological constant is present. However, if a background magnetic field is turned on, we can have stable setups where the tensions of all cosmic strings are equal. We derive the equilibrium conditions in each of these setups depending on whether the black holes are extremal or non-extremal. We obtain cosmologically acceptable solutions with solar mass black holes and an intragalactic-strength cosmic magnetic field.
Geometric phase for a static two-level atom in cosmic string spacetime
NASA Astrophysics Data System (ADS)
Cai, Huabing; Ren, Zhongzhou
2018-05-01
We investigate the geometric phase of a static two-level atom immersed in a bath of fluctuating vacuum electromagnetic field in the background of a cosmic string. Our results indicate that due to the existence of the string, the geometric phase depends crucially on the position and the polarizability of the atom relative to the string. This can be ascribed to the fact that the presence of the string profoundly modify the distribution of electric field in Minkowski spacetime. So in principle, we can detect the cosmic string by experiments involving geometric phase.
D-term inflation, cosmic strings, and consistency with cosmic microwave background measurements.
Rocher, Jonathan; Sakellariadou, Mairi
2005-01-14
Standard D-term inflation is studied in the framework of supergravity. D-term inflation produces cosmic strings; however, it can still be compatible with cosmic microwave background (CMB) measurements without invoking any new physics. The cosmic strings contribution to the CMB data is not constant, nor dominant, contrary to some previous results. Using current CMB measurements, the free parameters (gauge and superpotential couplings, as well as the Fayet-Iliopoulos term) of D-term inflation are constrained.
A Search for Cosmic String Loops Using GADGET-2 Cosmological N-Body Simulator
NASA Astrophysics Data System (ADS)
Braverman, William; Cousins, Bryce; Jia, Hewei
2018-01-01
Cosmic string loops are an extremely elusive hypothetical entity that have eluded the grasp of physicists and astronomers since their existence was postulated in the 1970’s. Finding evidence of their existence could be the first empirical evidence of string theory.Simulating their basic motion in a cold dark matter background using GADGET-2 allows us to predict where they may cluster during large scale structure formation (if they cluster at all). Here, we present our progress in placing cosmic strings into GADGET-2 with their basic equations of motion to lay a ground work for more complex simulations to find where these strings cluster. Ultimately, these simulations could lay a groundwork as to where future microlensing and gravitational wave observatories should look for cosmic strings.
CMB ISW-lensing bispectrum from cosmic strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamauchi, Daisuke; Sendouda, Yuuiti; Takahashi, Keitaro, E-mail: yamauchi@resceu.s.u-tokyo.ac.jp, E-mail: sendouda@cc.hirosaki-u.ac.jp, E-mail: keitaro@sci.kumamoto-u.ac.jp
2014-02-01
We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation ofmore » the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in order to characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, Gμ << 10{sup -7}, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.« less
CMB ISW-lensing bispectrum from cosmic strings
NASA Astrophysics Data System (ADS)
Yamauchi, Daisuke; Sendouda, Yuuiti; Takahashi, Keitaro
2014-02-01
We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation of the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in order to characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, Gμ << 10-7, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.
Patterns of the cosmic microwave background from evolving string networks
NASA Technical Reports Server (NTRS)
Bouchet, Francois R.; Bennett, David P.; Stebbins, Albert
1988-01-01
A network of cosmic strings generated in the early universe may still exist today. As the strings move across the sky, they produce, by gravitational lensing, a characteristic pattern of anisotropies in the temperature of the cosmic microwave background. The observed absence of such anisotropies places constraints on theories in which galaxy formation is seeded by strings, but it is anticipated that the next generation of experiments will detect them.
Did BICEP2 see vector modes? First B-mode constraints on cosmic defects.
Moss, Adam; Pogosian, Levon
2014-05-02
Scaling networks of cosmic defects, such as strings and textures, actively generate scalar, vector, and tensor metric perturbations throughout the history of the Universe. In particular, vector modes sourced by defects are an efficient source of the cosmic microwave background B-mode polarization. We use the recently released BICEP2 and POLARBEAR B-mode polarization spectra to constrain properties of a wide range of different types of cosmic strings networks. We find that in order for strings to provide a satisfactory fit on their own, the effective interstring distance needs to be extremely large--spectra that fit the data best are more representative of global strings and textures. When a local string contribution is considered together with the inflationary B-mode spectrum, the fit is improved. We discuss implications of these results for theories that predict cosmic defects.
Cosmic string lensing and closed timelike curves
NASA Astrophysics Data System (ADS)
Shlaer, Benjamin; Tye, S.-H. Henry
2005-08-01
In an analysis of the gravitational lensing by two relativistic cosmic strings, we argue that the formation of closed timelike curves proposed by Gott is unstable in the presence of particles (e.g. the cosmic microwave background radiation). Because of the attractorlike behavior of the closed timelike curve, we argue that this instability is very generic. A single graviton or photon in the vicinity, no matter how soft, is sufficient to bend the strings and prevent the formation of closed timelike curves. We also show that the gravitational lensing due to a moving cosmic string is enhanced by its motion, not suppressed.
NASA Astrophysics Data System (ADS)
Wang, Zhi; Long, Zheng-wen; Long, Chao-yun; Teng, Jing
2015-05-01
We study the Schrödinger equation with a Coulomb ring-shaped potential in the spacetime of a cosmic string, and the solutions of the system are obtained by using the generalized parametric Nikiforov-Uvarov (NU) method. They show that the quantum dynamics of a physical system depend on the non-trivial topological features of the cosmic string spacetime and the energy levels of the considered quantum system depend explicitly on the angular deficit α which characterizes the global structure of the metric in the cosmic string spacetime.
Wavelet-Bayesian inference of cosmic strings embedded in the cosmic microwave background
NASA Astrophysics Data System (ADS)
McEwen, J. D.; Feeney, S. M.; Peiris, H. V.; Wiaux, Y.; Ringeval, C.; Bouchet, F. R.
2017-12-01
Cosmic strings are a well-motivated extension to the standard cosmological model and could induce a subdominant component in the anisotropies of the cosmic microwave background (CMB), in addition to the standard inflationary component. The detection of strings, while observationally challenging, would provide a direct probe of physics at very high-energy scales. We develop a framework for cosmic string inference from observations of the CMB made over the celestial sphere, performing a Bayesian analysis in wavelet space where the string-induced CMB component has distinct statistical properties to the standard inflationary component. Our wavelet-Bayesian framework provides a principled approach to compute the posterior distribution of the string tension Gμ and the Bayesian evidence ratio comparing the string model to the standard inflationary model. Furthermore, we present a technique to recover an estimate of any string-induced CMB map embedded in observational data. Using Planck-like simulations, we demonstrate the application of our framework and evaluate its performance. The method is sensitive to Gμ ∼ 5 × 10-7 for Nambu-Goto string simulations that include an integrated Sachs-Wolfe contribution only and do not include any recombination effects, before any parameters of the analysis are optimized. The sensitivity of the method compares favourably with other techniques applied to the same simulations.
The bispectrum of cosmic string temperature fluctuations including recombination effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regan, Donough; Hindmarsh, Mark, E-mail: d.regan@sussex.ac.uk, E-mail: m.b.hindmarsh@sussex.ac.uk
2015-10-01
We calculate the cosmic microwave background temperature bispectrum from cosmic strings, including the contributions from the last scattering surface, using a well-established Gaussian model for the string energy-momentum correlation functions, and a simplified model for the cosmic fluid. We check our approximation for the integrated Sachs-Wolfe (ISW) contribution against the bispectrum obtained from the full sky map of the cosmic string ISW signal used by the Planck team, obtaining good agreement. We validate our model for the last scattering surface contribution by comparing the predicted temperature power spectrum with that obtained from a full Boltzmann code treatment applied to themore » Unconnected Segment Model of a string network. We find that including the last scattering contribution has only a small impact on the upper limit on the string tension resulting from the bispectrum at Planck resolutions, and argue that the bispectrum is unlikely to be competitive with the power spectrum at any resolution.« less
Klein-Gordon oscillator with position-dependent mass in the rotating cosmic string spacetime
NASA Astrophysics Data System (ADS)
Wang, Bing-Qian; Long, Zheng-Wen; Long, Chao-Yun; Wu, Shu-Rui
2018-02-01
A spinless particle coupled covariantly to a uniform magnetic field parallel to the string in the background of the rotating cosmic string is studied. The energy levels of the electrically charged particle subject to the Klein-Gordon oscillator are analyzed. Afterwards, we consider the case of the position-dependent mass and show how these energy levels depend on the parameters in the problem. Remarkably, it shows that for the special case, the Klein-Gordon oscillator coupled covariantly to a homogeneous magnetic field with the position-dependent mass in the rotating cosmic string background has the similar behaviors to the Klein-Gordon equation with a Coulomb-type configuration in a rotating cosmic string background in the presence of an external magnetic field.
Evolution of cosmic string networks
NASA Technical Reports Server (NTRS)
Albrecht, Andreas; Turok, Neil
1989-01-01
Results on cosmic strings are summarized including: (1) the application of non-equilibrium statistical mechanics to cosmic string evolution; (2) a simple one scale model for the long strings which has a great deal of predictive power; (3) results from large scale numerical simulations; and (4) a discussion of the observational consequences of our results. An upper bound on G mu of approximately 10(-7) emerges from the millisecond pulsar gravity wave bound. How numerical uncertainties affect this are discussed. Any changes which weaken the bound would probably also give the long strings the dominant role in producing observational consequences.
Gravitational waves and cosmic strings
NASA Astrophysics Data System (ADS)
Siemens, Xavier
2002-08-01
Cosmic strings are potential candidates for a variety of interesting cosmological phenomena such as gamma ray bursts, gravitational wave bursts and ultra high energy cosmic rays. The predictions of cosmic string models, however, depend sensitively on the so far unresolved question of the size of the small-scale structure. This thesis deals largely with this problem. First, I present a gravitational back-reaction model that assumes the interaction between all Fourier modes that make up a given perturbation on a long cosmic string. This calculation leads to the generally accepted value of the small scale structure cutoff. It also, however, leads to paradoxical behaviour when applied to two oppositely moving modes: As one of the modes is stretched conformally the gravitational power radiated approaches a constant. This result is in contradiction with our expectation for the straight string limit in which no power is radiated. A more careful investigation of this problem reveals that, in the case of two oppositely moving modes, the gravitational power is exponentially suppressed when the wavelengths of the modes are sufficiently different. I use this result to construct an improved gravitational back-reaction model in which modes of very different wavelengths do not interact. This model leads to a new small scale structure cutoff which is sensitive to the initial spectrum of perturbations present on the string. I also tentatively examine the consequences of this result for the evolution of cosmic string loops. Finally, I investigate the effect of the presence of small scale structure on the gravitational wave-bursts produced at cosmic string cusps.
Evidence for a scaling solution in cosmic-string evolution
NASA Technical Reports Server (NTRS)
Bennett, David P.; Bouchet, Francois R.
1988-01-01
Numerical simulations are used to study the most fundamental issue of cosmic-string evolution: the existence of a scaling solution. Strong evidence is found that a scaling solution does indeed exist. This justifies the main assumption on which the cosmic-string theories of galaxy formation is based. The main conclusion coincides with that of Albrecht and Turok (1985) but the results are not consistent with theirs. In fact, the results indicate that the details of string evolution are very different from the standard dogma.
Causal Structure around Spinning 5-DIMENSIONAL Cosmic Strings
NASA Astrophysics Data System (ADS)
Slagter, Reinoud Jan
2008-09-01
We present a numerical solution of a stationary 5-dimensional spinning cosmic string in the Einstein-Yang-Mills (EYM) model, where the extra bulk coordinate ψ is periodic. It turns out that when gψψ approaches zero, i.e., a closed time-like curve (CTC) would appear, the solution becomes singular. We also investigated the geometrical structure of the static 5D cosmic string. Two opposite moving 5D strings could, in contrast with the 4D case, fulfil the Gott condition for CTC formation.
Brane inflation and cosmic string tension in superstring theory
NASA Astrophysics Data System (ADS)
Firouzjahi, Hassan; Tye, S.-H. Henry
2005-03-01
In a simple reanalysis of the KKLMMT scenario, we argue that the slow roll condition in the D3-overline {D}3 -brane inflationary scenario in superstring theory requires no more than a moderate tuning. The cosmic string tension is very sensitive to the conformal coupling: with less fine-tuning, the cosmic string tension (as well as the ratio of tensor to scalar perturbation mode) increases rapidly and can easily saturate the present observational bound. In a multi-throat brane inflationary scenario, this feature substantially improves the chance of detecting and measuring the properties of the cosmic strings as a window to the superstring theory and our pre-inflationary universe.
CMB temperature bispectrum induced by cosmic strings
NASA Astrophysics Data System (ADS)
Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki
2009-10-01
The cosmic microwave background (CMB) bispectrum of the temperature anisotropies induced by a network of cosmic strings is derived for small angular scales, under the assumption that the principal cause of temperature fluctuations is the Gott-Kaiser-Stebbins effect. We provide analytical expressions for all isosceles triangle configurations in Fourier space. Their overall amplitude is amplified as the inverse cube of the angle and diverges for flat triangles. The isosceles configurations generically lead to a negative bispectrum with a power-law decay ℓ-6 for large multipole ℓ. However, collapsed triangles are found to be associated with a positive bispectrum whereas the squeezed triangles still exhibit negative values. We then compare our analytical estimates to a direct computation of the bispectrum from a set of 300 statistically independent temperature maps obtained from Nambu-Goto cosmic string simulations in a Friedmann-Lemaître-Robertson-Walker universe. We find good agreement for the overall amplitude, the power-law behavior, and the angle dependency of the various triangle configurations. At ℓ˜500 the cosmic string Gott-Kaiser-Stebbins effect contributes approximately the same equilateral CMB bispectrum amplitude as an inflationary model with |fNLloc|≃103, if the strings contribute about 10% of the temperature power spectrum at ℓ=10. Current bounds on fNL are not derived using cosmic string bispectrum templates, and so our fNL estimate cannot be used to derive bounds on strings. However it does suggest that string bispectrum templates should be included in the search of CMB non-Gaussianities.
Cosmic archaeology with gravitational waves from cosmic strings
NASA Astrophysics Data System (ADS)
Cui, Yanou; Lewicki, Marek; Morrissey, David E.; Wells, James D.
2018-06-01
Cosmic strings are generic cosmological predictions of many extensions of the standard model of particle physics, such as a U (1 )' symmetry-breaking phase transition in the early Universe or remnants of superstring theory. Unlike other topological defects, cosmic strings can reach a scaling regime that maintains a small fixed fraction of the total energy density of the Universe from a very early epoch until today. If present, they will oscillate and generate gravitational waves with a frequency spectrum that imprints the dominant sources of total cosmic energy density throughout the history of the Universe. We demonstrate that current and future gravitational wave detectors, such as LIGO and LISA, could be capable of measuring the frequency spectrum of gravitational waves from cosmic strings and discerning the energy composition of the Universe at times well before primordial nucleosynthesis and the cosmic microwave background where standard cosmology has yet to be tested. This work establishes a benchmark case that gravitational waves may provide an unprecedented, powerful tool for probing the evolutionary history of the very early Universe.
CMB temperature trispectrum of cosmic strings
NASA Astrophysics Data System (ADS)
Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki
2010-03-01
We provide an analytical expression for the trispectrum of the cosmic microwave background (CMB) temperature anisotropies induced by cosmic strings. Our result is derived for the small angular scales under the assumption that the temperature anisotropy is induced by the Gott-Kaiser-Stebbins effect. The trispectrum is predicted to decay with a noninteger power-law exponent ℓ-ρ with 6<ρ<7, depending on the string microstructure, and thus on the string model. For Nambu-Goto strings, this exponent is related to the string mean square velocity and the loop distribution function. We then explore two classes of wave number configuration in Fourier space, the kite and trapezium quadrilaterals. The trispectrum can be of any sign and appears to be strongly enhanced for all squeezed quadrilaterals.
Quantum vacuum interaction between two cosmic strings revisited
NASA Astrophysics Data System (ADS)
Muñoz-Castañeda, J. M.; Bordag, M.
2014-03-01
We reconsider the quantum vacuum interaction energy between two straight parallel cosmic strings. This problem was discussed several times in an approach treating both strings perturbatively and treating only one perturbatively. Here we point out that a simplifying assumption made by Bordag [Ann. Phys. (Berlin) 47, 93 (1990).] can be justified and show that, despite the global character of the background, the perturbative approach delivers a correct result. We consider the applicability of the scattering methods, developed in the past decade for the Casimir effect, for the cosmic string and find it not applicable. We calculate the scattering T-operator on one string. Finally, we consider the vacuum interaction of two strings when each carries a two-dimensional delta function potential.
NASA Astrophysics Data System (ADS)
Hiramatsu, Takashi; Sendouda, Yuuiti; Takahashi, Keitaro; Yamauchi, Daisuke; Yoo, Chul-Moon
2013-10-01
We study the network of Type-I cosmic strings using the field-theoretic numerical simulations in the Abelian-Higgs model. For Type-I strings, the gauge field plays an important role, and thus we find that the correlation length of the strings is strongly dependent upon the parameter β, the ratio between the masses of the scalar field and the gauge field, namely, β=mφ2/mA2. In particular, if we take the cosmic expansion into account, the network becomes densest in the comoving box for a specific value of β for β<1.
LETTER TO THE EDITOR: A disintegrating cosmic string
NASA Astrophysics Data System (ADS)
Griffiths, J. B.; Docherty, P.
2002-06-01
We present a simple sandwich gravitational wave of the Robinson-Trautman family. This is interpreted as representing a shock wave with a spherical wavefront which propagates into a Minkowski background minus a wedge (i.e. the background contains a cosmic string). The deficit angle (the tension) of the string decreases through the gravitational wave, which then ceases. This leaves an expanding spherical region of Minkowski space behind it. The decay of the cosmic string over a finite interval of retarded time may be considered to generate the gravitational wave.
Cold, warm, and composite (cool) cosmic string models
NASA Astrophysics Data System (ADS)
Carter, B.
1994-01-01
The dynamical behaviour of a cosmic string is strongly affected by any reduction of the effective string tension T below the constant value, T = m2 say, that typifies a simple, longitudinally Lorentz invariant Goto-Nambu type string model, where m is a fixed mass scale determined by the internal structure of an underlying Nielsen-Olesen type vacuum vortex. Such a reduction of tension occurs in the standard ``warm'' cosmic string model in which the effect of thermal perturbations of a simple Goto-Nambu model is represented by an effective tension T given in terms of the corresponding effective temperature, Θ say, by T2 = m2(m2 - 1/3πΘ2). A qualitatively similar though analytically more complicated tension reduction phenomenon occurs in ``cold'' conducting cosmic string models of the kind whose existence was first proposed by Witten, where the role of the temperature is played by an effective mass or chemical potential μ that is constructed as the scalar magnitude of the energy momentum covector obtained as the gradient of the phase ϕ of a bosonic condensate in the core of the vacuum vortex. The present article describes the construction and essential mechanical properties of a new category of composite ``cool'' cosmic string models that are intermediate between these ``warm'' and ``cold'' limit cases. These composite models are the string analogues of the standard Landau model for a two-constituent finite temperature superfluid, and as such involve two independent currents interpretable as that of the entropy on the one hand and that of the bosonic condensate on the other. It is surmised that the stationary (in particular ring) equilibrium states of such ``cool'' cosmic strings may be of cosmologicl significance.
Detection of low tension cosmic superstrings
NASA Astrophysics Data System (ADS)
Chernoff, David F.; Tye, S.-H. Henry
2018-05-01
Cosmic superstrings of string theory differ from conventional cosmic strings of field theory. We review how the physical and cosmological properties of the macroscopic string loops influence experimental searches for these relics from the epoch of inflation. The universe's average density of cosmic superstrings can easily exceed that of conventional cosmic strings having the same tension by two or more orders of magnitude. The cosmological behavior of the remnant superstring loops is qualitatively distinct because the string tension is exponentially smaller than the string scale in flux compactifications in string theory. Low tension superstring loops live longer, experience less recoil (rocket effect from the emission of gravitational radiation) and tend to cluster like dark matter in galaxies. Clustering enhances the string loop density with respect to the cosmological average in collapsed structures in the universe. The enhancement at the Sun's position is ~ 105. We develop a model encapsulating the leading order string theory effects, the current understanding of the string network loop production and the influence of cosmological structure formation suitable for forecasting the detection of superstring loops via optical microlensing, gravitational wave bursts and fast radio bursts. We evaluate the detection rate of bursts from cusps and kinks by LIGO- and LISA-like experiments. Clustering dominates rates for G μ < 10‑11.9 (LIGO cusp), G μ<10‑11.2 (LISA cusp), G μ < 10‑10.6 (LISA kink); we forecast experimentally accessible gravitational wave bursts for G μ>10‑14.2 (LIGO cusp), G μ>10‑15 (LISA cusp) and G μ>10‑ 14.1 (LISA kink).
CMB temperature bispectrum induced by cosmic strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki
2009-10-15
The cosmic microwave background (CMB) bispectrum of the temperature anisotropies induced by a network of cosmic strings is derived for small angular scales, under the assumption that the principal cause of temperature fluctuations is the Gott-Kaiser-Stebbins effect. We provide analytical expressions for all isosceles triangle configurations in Fourier space. Their overall amplitude is amplified as the inverse cube of the angle and diverges for flat triangles. The isosceles configurations generically lead to a negative bispectrum with a power-law decay l{sup -6} for large multipole l. However, collapsed triangles are found to be associated with a positive bispectrum whereas the squeezedmore » triangles still exhibit negative values. We then compare our analytical estimates to a direct computation of the bispectrum from a set of 300 statistically independent temperature maps obtained from Nambu-Goto cosmic string simulations in a Friedmann-Lemaitre-Robertson-Walker universe. We find good agreement for the overall amplitude, the power-law behavior, and the angle dependency of the various triangle configurations. At l{approx}500 the cosmic string Gott-Kaiser-Stebbins effect contributes approximately the same equilateral CMB bispectrum amplitude as an inflationary model with |f{sub NL}{sup loc}|{approx_equal}10{sup 3}, if the strings contribute about 10% of the temperature power spectrum at l=10. Current bounds on f{sub NL} are not derived using cosmic string bispectrum templates, and so our f{sub NL} estimate cannot be used to derive bounds on strings. However it does suggest that string bispectrum templates should be included in the search of CMB non-Gaussianities.« less
THE FLOW AROUND A COSMIC STRING. I. HYDRODYNAMIC SOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beresnyak, Andrey; Nordita, KTH Royal Institute of Technology and Stockholm University, SE-10691
2015-05-10
Cosmic strings are linear topological defects which are hypothesized to be produced during inflation. Most searches for strings have relied on the string’s lensing of background galaxies or the cosmic microwave background. In this paper, I obtained a solution for the supersonic flow of collisional gas past the cosmic string which has two planar shocks with a shock compression ratio that depends on the angle defect of the string and its speed. The shocks result in the compression and heating of the gas and, given favorable conditions, particle acceleration. Gas heating and over-density in an unusual wedge shape can bemore » detected by observing the Hi line at high redshifts. Particle acceleration can occur in the present-day universe when the string crosses the hot gas contained in galaxy clusters and, since the consequences of such a collision persist for cosmological timescales, could be located by looking at unusual large-scale radio sources situated on a single spatial plane.« less
Searching for cosmic strings in CMB anisotropy maps using wavelets and curvelets
NASA Astrophysics Data System (ADS)
Hergt, Lukas; Amara, Adam; Brandenberger, Robert; Kacprzak, Tomasz; Réfrégier, Alexandre
2017-06-01
We use wavelet and curvelet transforms to extract signals of cosmic strings from simulated cosmic microwave background (CMB) temperature anisotropy maps, and to study the limits on the cosmic string tension which various ongoing CMB temperature anisotropy experiments will be able to achieve. We construct sky maps with size and angular resolution corresponding to various experiments. These maps contain the signals of a scaling solution of long string segments with a given string tension G μ, the contribution of the dominant Gaussian primordial cosmological fluctuations, and pixel by pixel white noise with an amplitude corresponding to the instrumental noise of the various experiments. In the case that we include white noise, we find that using curvelets we obtain lower bounds on the string tension than with wavelets. For maps with Planck specification, we obtain bounds comparable to what was obtained by the Planck collaboration [1]. Experiments with better angular resolution such as the South Pole Telescope third generation (SPT-3G) survey will be able to yield stronger limits. For maps with a specification of SPT-3G we find that string signals will be visible down to a string tension of G μ = 1.4 × 10-7.
CMB temperature trispectrum of cosmic strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki
2010-03-15
We provide an analytical expression for the trispectrum of the cosmic microwave background (CMB) temperature anisotropies induced by cosmic strings. Our result is derived for the small angular scales under the assumption that the temperature anisotropy is induced by the Gott-Kaiser-Stebbins effect. The trispectrum is predicted to decay with a noninteger power-law exponent l{sup -{rho}}with 6<{rho}<7, depending on the string microstructure, and thus on the string model. For Nambu-Goto strings, this exponent is related to the string mean square velocity and the loop distribution function. We then explore two classes of wave number configuration in Fourier space, the kite andmore » trapezium quadrilaterals. The trispectrum can be of any sign and appears to be strongly enhanced for all squeezed quadrilaterals.« less
On the motion of a quantum particle in the spinning cosmic string space–time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassanabadi, H., E-mail: h.hasanabadi@shahroodut.ac.ir; Afshardoost, A.; Zarrinkamar, S.
2015-05-15
We analyze the energy spectrum and the wave function of a particle subjected to magnetic field in the spinning cosmic string space–time and investigate the influence of the spinning reference frame and topological defect on the system. To do this we solve Schrödinger equation in the spinning cosmic string background. In our work, instead of using an approximation in the calculations, we use the quasi-exact ansatz approach which gives the exact solutions for some primary levels. - Highlights: • Solving the Schrödinger equation in the spinning cosmic string space time. • Proposing a quasi-exact analytical solution to the general formmore » of the corresponding equation. • Generalizing the previous works.« less
A simple model for the evolution of a non-Abelian cosmic string network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cella, G.; Pieroni, M., E-mail: giancarlo.cella@pi.infn.it, E-mail: mauro.pieroni@apc.univ-paris7.fr
2016-06-01
In this paper we present the results of numerical simulations intended to study the behavior of non-Abelian cosmic strings networks. In particular we are interested in discussing the variations in the asymptotic behavior of the system as we variate the number of generators for the topological defects. A simple model which allows for cosmic strings is presented and its lattice discretization is discussed. The evolution of the generated cosmic string networks is then studied for different values for the number of generators for the topological defects. Scaling solution appears to be approached in most cases and we present an argumentmore » to justify the lack of scaling for the residual cases.« less
Cosmic string detection with tree-based machine learning
NASA Astrophysics Data System (ADS)
Vafaei Sadr, A.; Farhang, M.; Movahed, S. M. S.; Bassett, B.; Kunz, M.
2018-07-01
We explore the use of random forest and gradient boosting, two powerful tree-based machine learning algorithms, for the detection of cosmic strings in maps of the cosmic microwave background (CMB), through their unique Gott-Kaiser-Stebbins effect on the temperature anisotropies. The information in the maps is compressed into feature vectors before being passed to the learning units. The feature vectors contain various statistical measures of the processed CMB maps that boost cosmic string detectability. Our proposed classifiers, after training, give results similar to or better than claimed detectability levels from other methods for string tension, Gμ. They can make 3σ detection of strings with Gμ ≳ 2.1 × 10-10 for noise-free, 0.9'-resolution CMB observations. The minimum detectable tension increases to Gμ ≳ 3.0 × 10-8 for a more realistic, CMB S4-like (II) strategy, improving over previous results.
Cosmic String Detection with Tree-Based Machine Learning
NASA Astrophysics Data System (ADS)
Vafaei Sadr, A.; Farhang, M.; Movahed, S. M. S.; Bassett, B.; Kunz, M.
2018-05-01
We explore the use of random forest and gradient boosting, two powerful tree-based machine learning algorithms, for the detection of cosmic strings in maps of the cosmic microwave background (CMB), through their unique Gott-Kaiser-Stebbins effect on the temperature anisotropies. The information in the maps is compressed into feature vectors before being passed to the learning units. The feature vectors contain various statistical measures of the processed CMB maps that boost cosmic string detectability. Our proposed classifiers, after training, give results similar to or better than claimed detectability levels from other methods for string tension, Gμ. They can make 3σ detection of strings with Gμ ≳ 2.1 × 10-10 for noise-free, 0.9΄-resolution CMB observations. The minimum detectable tension increases to Gμ ≳ 3.0 × 10-8 for a more realistic, CMB S4-like (II) strategy, improving over previous results.
Perturbations from cosmic strings in cold dark matter
NASA Technical Reports Server (NTRS)
Albrecht, Andreas; Stebbins, Albert
1992-01-01
A systematic linear analysis of the perturbations induced by cosmic strings in cold dark matter is presented. The power spectrum is calculated and it is found that the strings produce a great deal of power on small scales. It is shown that the perturbations on interesting scales are the result of many uncorrelated string motions, which indicates a much more Gaussian distribution than was previously supposed.
Perturbations from cosmic strings in cold dark matter
NASA Technical Reports Server (NTRS)
Albrecht, Andreas; Stebbins, Albert
1991-01-01
A systematic linear analysis of the perturbations induced by cosmic strings in cold dark matter is presented. The power spectrum is calculated and it is found that the strings produce a great deal of power on small scales. It is shown that the perturbations on interesting scales are the result of many uncorrelated string motions, which indicates a much more Gaussian distribution than was previously supposed.
Transplanckian censorship and global cosmic strings
NASA Astrophysics Data System (ADS)
Dolan, Matthew J.; Draper, Patrick; Kozaczuk, Jonathan; Patel, Hiren
2017-04-01
Large field excursions are required in a number of axion models of inflation. These models also possess global cosmic strings, around which the axion follows a path mirroring the inflationary trajectory. Cosmic strings are thus an interesting theoretical laboratory for the study of transplanckian field excursions. We describe connections be-tween various effective field theory models of axion monodromy and study the classical spacetimes around their supercritical cosmic strings. For small decay constants f < M p and large winding numbers n > M p /f , the EFT is under control and the string cores undergo topological inflation, which may be either of exponential or power-law type. We show that the exterior spacetime is nonsingular and equivalent to a decompactifying cigar geometry, with the radion rolling in a potential generated by axion flux. Signals are able to circumnavigate infinite straight strings in finite but exponentially long time, t ˜ e Δ a/ M p . For finite loops of supercritical string in asymptotically flat space, we argue that if topological inflation occurs, then topological censorship implies transplanckian censorship, or that external observers are forbidden from threading the loop and observing the full excursion of the axion.
Cosmic strings and the large-scale structure
NASA Technical Reports Server (NTRS)
Stebbins, Albert
1988-01-01
A possible problem for cosmic string models of galaxy formation is presented. If very large voids are common and if loop fragmentation is not much more efficient than presently believed, then it may be impossible for string scenarios to produce the observed large-scale structure with Omega sub 0 = 1 and without strong environmental biasing.
Cosmic strings - A problem or a solution?
NASA Technical Reports Server (NTRS)
Bennett, David P.; Bouchet, Francois R.
1988-01-01
The most fundamental issue in the theory of cosmic strings is addressed by means of Numerical Simulations: the existence of a scaling solution. The resolution of this question will determine whether cosmic strings can form the basis of an attractive theory of galaxy formation or prove to be a cosmological disaster like magnetic monopoles or domain walls. After a brief discussion of our numerical technique, results are presented which, though still preliminary, offer the best support to date of this scaling hypothesis.
Edge detection, cosmic strings and the south pole telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Andrew; Brandenberger, Robert, E-mail: stewarta@physics.mcgill.ca, E-mail: rhb@physics.mcgill.ca
2009-02-15
We develop a method of constraining the cosmic string tension G{mu} which uses the Canny edge detection algorithm as a means of searching CMB temperature maps for the signature of the Kaiser-Stebbins effect. We test the potential of this method using high resolution, simulated CMB temperature maps. By modeling the future output from the South Pole Telescope project (including anticipated instrumental noise), we find that cosmic strings with G{mu} > 5.5 Multiplication-Sign 10{sup -8} could be detected.
Straight spinning cosmic strings in Brans-Dicke gravity
NASA Astrophysics Data System (ADS)
Dos Santos, S. Mittmann; da Silva, J. M. Hoff; Cindra, J. L.
2018-03-01
An exact solution of straight spinning cosmic strings in Brans-Dicke theory of gravitation is presented. The possibility of the existence of closed time-like curves around these cosmic strings is analyzed. Furthermore, the stability about the formation of the topological defect discussed here is checked. It is shown that the existence of a suitable choice for the integration constants in which closed time-like curves are not allowed. We also study the (im)possibility of using the obtained spacetime in the rotational curves problem.
Gravitational-wave stochastic background from cosmic strings.
Siemens, Xavier; Mandic, Vuk; Creighton, Jolien
2007-03-16
We consider the stochastic background of gravitational waves produced by a network of cosmic strings and assess their accessibility to current and planned gravitational wave detectors, as well as to big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and pulsar timing constraints. We find that current data from interferometric gravitational wave detectors, such as Laser Interferometer Gravitational Wave Observatory (LIGO), are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds. Future more sensitive LIGO runs and interferometers such as Advanced LIGO and Laser Interferometer Space Antenna (LISA) will be able to explore substantial parts of the parameter space.
High redshift signatures in the 21 cm forest due to cosmic string wakes
NASA Astrophysics Data System (ADS)
Tashiro, Hiroyuki; Sekiguchi, Toyokazu; Silk, Joseph
2014-01-01
Cosmic strings induce minihalo formation in the early universe. The resultant minihalos cluster in string wakes and create a ``21 cm forest'' against the cosmic microwave background (CMB) spectrum. Such a 21 cm forest can contribute to angular fluctuations of redshifted 21 cm signals integrated along the line of sight. We calculate the root-mean-square amplitude of the 21 cm fluctuations due to strings and show that these fluctuations can dominate signals from minihalos due to primordial density fluctuations at high redshift (zgtrsim10), even if the string tension is below the current upper bound, Gμ < 1.5 × 10-7. Our results also predict that the Square Kilometre Array (SKA) can potentially detect the 21 cm fluctuations due to strings with Gμ ≈ 7.5 × 10-8 for the single frequency band case and 4.0 × 10-8 for the multi-frequency band case.
First LIGO search for gravitational wave bursts from cosmic (super)strings
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista, M.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Brunet, G.; Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Cannizzo, J.; Cannon, K. C.; Cao, J.; Cardenas, L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cokelaer, T.; Colacino, C. N.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Danzmann, K.; Daudert, B.; Davies, G.; Daw, E. J.; Debra, D.; Degallaix, J.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Dueck, J.; Duke, I.; Dumas, J.-C.; Dwyer, J. G.; Echols, C.; Edgar, M.; Effler, A.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Finn, L. S.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Franzen, A.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J. A.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Hoyland, D.; Hughey, B.; Huttner, S. H.; Ingram, D. R.; Isogai, T.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.; Krishnan, B.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor, I.; Li, C.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia, D.; Longo, M.; Lormand, M.; Lu, P.; Lubiński, M.; Lucianetti, A.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McIntyre, G.; McKechan, D. J. A.; McKenzie, K.; Mehmet, M.; Melatos, A.; Melissinos, A. C.; Menéndez, D. F.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miller, J.; Minelli, J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moreno, G.; Morioka, T.; Mors, K.; Mossavi, K.; Mowlowry, C.; Mueller, G.; Müller-Ebhardt, H.; Muhammad, D.; Mukherjee, S.; Mukhopadhyay, H.; Mullavey, A.; Munch, J.; Murray, P. G.; Myers, E.; Myers, J.; Nash, T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Ogin, G. H.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Perreca, A.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Prokhorov, L.; Punken, O.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raics, Z.; Rainer, N.; Rakhmanov, M.; Raymond, V.; Reed, C. M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Rivera, B.; Roberts, P.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Röver, C.; Rollins, J.; Romano, J. D.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Russell, P.; Ryan, K.; Sakata, S.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Savov, P.; Scanlan, M.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Stein, A.; Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A.; Stuver, A. L.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Ugolini, D.; Ulmen, J.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P.; Veltkamp, C.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, R. L.; Weidner, A.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Wilmut, I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zur Mühlen, H.; Zweizig, J.; Robinet, F.
2009-09-01
We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected in 14.9 days of data from times when all three LIGO detectors were operating. We interpret the result in terms of a frequentist upper limit on the rate of gravitational wave bursts and use the limits on the rate to constrain the parameter space (string tension, reconnection probability, and loop sizes) of cosmic string models. Many grand unified theory-scale models (with string tension Gμ/c2≈10-6) can be ruled out at 90% confidence for reconnection probabilities p≤10-3 if loop sizes are set by gravitational back reaction.
A cosmic book. [of physics of early universe
NASA Technical Reports Server (NTRS)
Peebles, P. J. E.; Silk, Joseph
1988-01-01
A system of assigning odds to the basic elements of cosmological theories is proposed in order to evaluate the strengths and weaknesses of the theories. A figure of merit for the theories is obtained by counting and weighing the plausibility of each of the basic elements that is not substantially supported by observation or mature fundamental theory. The magnetized strong model is found to be the most probable. In order of decreasing probability, the ranking for the rest of the models is: (1) the magnetized string model with no exotic matter and the baryon adiabatic model; (2) the hot dark matter model and the model of cosmic string loops; (3) the canonical cold dark matter model, the cosmic string loops model with hot dark matter, and the baryonic isocurvature model; and (4) the cosmic string loops model with no exotic matter.
On the large-scale structures formed by wakes of open cosmic strings
NASA Technical Reports Server (NTRS)
Hara, Tetsuya; Morioka, Shoji; Miyoshi, Shigeru
1990-01-01
Large-scale structures of the universe have been variously described as sheetlike, filamentary, cellular, bubbles or spongelike. Recently cosmic strings became one of viable candidates for a galaxy formation scenario, and some of the large-scale structures seem to be simply explained by the open cosmic strings. According to this scenario, sheets are wakes which are traces of moving open cosmic strings where dark matter and baryonic matter have accumulated. Filaments are intersections of such wakes and high density regions are places where three wakes intersect almost orthogonally. The wakes formed at t sub eq become the largest surface density among all wakes, where t sub eq is the epoch when matter density equals to radiation density. If we assume that there is one open cosmic string per each horizon, then it can be explained that the typical distances among wakes, filaments and clusters are also approx. 10(exp 2) Mpc. This model does not exclude a much more large scale structure. Open cosmic string may move even now and accumulate cold dark matter after its traces. However, the surface density is much smaller than the ones formed at t sub eq. From this model, it is expected that the typical high density region will have extended features such as six filaments and three sheets and be surrounded by eight empty regions (voids). Here, the authors are mainly concerned with such structures and have made numerical simulations for the formation of such large scale structures.
Stochastic gravitational wave background from light cosmic strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
DePies, Matthew R.; Hogan, Craig J.
2007-06-15
Spectra of the stochastic gravitational wave backgrounds from cosmic strings are calculated and compared with present and future experimental limits. Motivated by theoretical expectations of light cosmic strings in superstring cosmology, improvements in experimental sensitivity, and recent demonstrations of large, stable loop formation from a primordial network, this study explores a new range of string parameters with masses lighter than previously investigated. A standard 'one-scale' model for string loop formation is assumed. Background spectra are calculated numerically for dimensionless string tensions G{mu}/c{sup 2} between 10{sup -7} and 10{sup -18}, and initial loop sizes as a fraction of the Hubble radiusmore » {alpha} from 0.1 to 10{sup -6}. The spectra show a low frequency power-law tail, a broad spectral peak due to loops decaying at the present epoch (including frequencies higher than their fundamental mode, and radiation associated with cusps), and a flat (constant energy density) spectrum at high frequencies due to radiation from loops that decayed during the radiation-dominated era. The string spectrum is distinctive and unlike any other known source. The peak of the spectrum for light strings appears at high frequencies, significantly affecting predicted signals. The spectra of the cosmic string backgrounds are compared with current millisecond pulsar limits and Laser Interferometer Space Antenna (LISA) sensitivity curves. For models with large stable loops ({alpha}=0.1), current pulsar-timing limits exclude G{mu}/c{sup 2}>10{sup -9}, a much tighter limit on string tension than achievable with other techniques, and within the range of current models based on brane inflation. LISA may detect a background from strings as light as G{mu}/c{sup 2}{approx_equal}10{sup -16}, corresponding to field theory strings formed at roughly 10{sup 11} GeV.« less
Self-similar motion of a Nambu-Goto string
NASA Astrophysics Data System (ADS)
Igata, Takahisa; Houri, Tsuyoshi; Harada, Tomohiro
2016-09-01
We study the self-similar motion of a string in a self-similar spacetime by introducing the concept of a self-similar string, which is defined as the world sheet to which a homothetic vector field is tangent. It is shown that in Nambu-Goto theory, the equations of motion for a self-similar string reduce to those for a particle. Moreover, under certain conditions such as the hypersurface orthogonality of the homothetic vector field, the equations of motion for a self-similar string simplify to the geodesic equations on a (pseudo)Riemannian space. As a concrete example, we investigate a self-similar Nambu-Goto string in a spatially flat Friedmann-Lemaître-Robertson-Walker expanding universe with self-similarity and obtain solutions of open and closed strings, which have various nontrivial configurations depending on the rate of the cosmic expansion. For instance, we obtain a circular solution that evolves linearly in the cosmic time while keeping its configuration by the balance between the effects of the cosmic expansion and string tension. We also show the instability for linear radial perturbation of the circular solutions.
Local constraints on cosmic string loops from photometry and pulsar timing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pshirkov, M. S.; Tuntsov, A. V.; Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, 119992
2010-04-15
We constrain the cosmological density of cosmic string loops using two observational signatures--gravitational microlensing and the Kaiser-Stebbins effect. Photometry from RXTE and CoRoT space missions and pulsar timing from Parkes Pulsar Timing Array, Arecibo and Green Bank radio telescopes allow us to probe cosmic strings in a wide range of tensions G{mu}/c{sup 2}=10{sup -16} divide 10{sup -10}. We find that pulsar timing data provide the most stringent constraints on the abundance of light strings at the level {Omega}{sub s{approx}}10{sup -3}. Future observational facilities such as the Square Kilometer Array will allow one to improve these constraints by orders of magnitude.
Perturbations from strings don't look like strings!
NASA Technical Reports Server (NTRS)
Albrecht, Andreas; Stebbins, Albert
1991-01-01
A systematic analysis is challenging popular ideas about perturbation from cosmic strings. One way in which the picture has changed is reviewed. It is concluded that, while the scaling properties of cosmic strings figure significantly in the analysis, care must be taken when thinking in terms of single time snapshots. The process of seeding density perturbations is not fundamentally localized in time, and this fact can wash out many of the details which appear in a single snapshot.
Cosmic Strings Stabilized by Quantum Fluctuations
NASA Astrophysics Data System (ADS)
Weigel, H.
2017-03-01
Fermion quantum corrections to the energy of cosmic strings are computed. A number of rather technical tools are needed to formulate this correction, and isospin and gauge invariance are employed to verify consistency of these tools. These corrections must also be included when computing the energy of strings that are charged by populating fermion bound states in its background. It is found that charged strings are dynamically stabilized in theories similar to the standard model of particle physics.
Bianchi-V string cosmological model with dark energy anisotropy
NASA Astrophysics Data System (ADS)
Mishra, B.; Tripathy, S. K.; Ray, Pratik P.
2018-05-01
The role of anisotropic components on the dark energy and the dynamics of the universe is investigated. An anisotropic dark energy fluid with different pressures along different spatial directions is assumed to incorporate the effect of anisotropy. One dimensional cosmic strings aligned along x-direction supplement some kind of anisotropy. Anisotropy in the dark energy pressure is found to evolve with cosmic expansion at least at late times. At an early phase, the anisotropic effect due to the cosmic strings substantially affect the dynamics of the accelerating universe.
Scaling properties of cosmic (super)string networks
NASA Astrophysics Data System (ADS)
Martins, C. J. A. P.
2014-10-01
I use a combination of state-of-the-art numerical simulations and analytic modelling to discuss the scaling properties of cosmic defect networks, including superstrings. Particular attention is given to the role of extra degrees of freedom in the evolution of these networks. Compared to the 'plain vanilla' case of Goto-Nambu strings, three such extensions play important but distinct roles in the network dynamics: the presence of charges/currents on the string worldsheet, the existence of junctions, and the possibility of a hierarchy of string tensions. I also comment on insights gained from studying simpler defect networks, including Goto-Nambu strings themselves, domain walls and semilocal strings.
Evolution of cosmic string networks
NASA Technical Reports Server (NTRS)
Albrecht, Andreas; Turok, Neil
1989-01-01
A discussion of the evolution and observable consequences of a network of cosmic strings is given. A simple model for the evolution of the string network is presented, and related to the statistical mechanics of string networks. The model predicts the long string density throughout the history of the universe from a single parameter, which researchers calculate in radiation era simulations. The statistical mechanics arguments indicate a particular thermal form for the spectrum of loops chopped off the network. Detailed numerical simulations of string networks in expanding backgrounds are performed to test the model. Consequences for large scale structure, the microwave and gravity wave backgrounds, nucleosynthesis and gravitational lensing are calculated.
The COBE cosmic 3 K anisotropy experiment: A gravity wave and cosmic string probe
NASA Technical Reports Server (NTRS)
Bennett, Charles L.; Smoot, George F.
1989-01-01
Among the experiments to be carried into orbit next year, by the COBE satellite, are differential microwave radiometers. They will make sensitive all-sky maps of the temperature of the cosmic microwave background radiation at three frequencies, giving dipole, quadrupole, and higher order multipole measurements of the background radiation. The experiment will either detect, or place significant constraints on, the existence of cosmic strings and long wavelength gravity waves.
Cosmic-string-induced hot dark matter perturbations
NASA Technical Reports Server (NTRS)
Van Dalen, Anthony
1990-01-01
This paper investigates the evolution of initially relativistic matter, radiation, and baryons around cosmic string seed perturbations. A detailed analysis of the linear evolution of spherical perturbations in a universe is carried out, and this formalism is used to study the evolution of perturbations around a sphere of uniform density and fixed radius, approximating a loop of cosmic string. It was found that, on scales less than a few megaparsec, the results agree with the nonrelativistic calculation of previous authors. On greater scales, there is a deviation approaching a factor of 2-3 in the perturbation mass. It is shown that a scenario with cosmic strings, hot dark matter, and a Hubble constant greater than 75 km/sec per Mpc can generally produce structure on the observed mass scales and at the appropriate time: 1 + z = about 4 for galaxies and 1 + z = about 1.5 for Abell clusters.
Self-energy and self-force in the space-time of a thick cosmic string
NASA Astrophysics Data System (ADS)
Khusnutdinov, N. R.; Bezerra, V. B.
2001-10-01
We calculate the self-energy and self-force for an electrically charged particle at rest in the background of Gott-Hiscock cosmic string space-time. We find the general expression for the self-energy which is expressed in terms of the S matrix of the scattering problem. The self-energy continuously falls down outward from the string's center with the maximum at the origin of the string. The self-force is repulsive for an arbitrary position of the particle. It tends to zero in the string's center and also far from the string and it has a maximum value at the string's surface. The plots of the numerical calculations of the self-energy and self-force are shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lizarraga, Joanes; Urrestilla, Jon; Daverio, David
We present cosmic microwave background (CMB) power spectra from recent numerical simulations of cosmic strings in the Abelian Higgs model and compare them to CMB power spectra measured by Planck . We obtain revised constraints on the cosmic string tension parameter G μ. For example, in the ΛCDM model with the addition of strings and no primordial tensor perturbations, we find G μ < 2.0 × 10{sup −7} at 95% confidence, about 20% lower than the value obtained from previous simulations, which had 1/64 of the spatial volume. The increased computational volume also makes it possible to simulate fully themore » physical equations of motion, in which the string cores shrink in comoving coordinates. We find however that this, and the larger dynamic range, changes the amplitude of the power spectra by only about 10%. The main cause of the stronger constraints on G μ is instead an improved treatment of the string evolution across the radiation-matter transition.« less
Non-Abelian cosmic string in the Starobinsky model of gravity
NASA Astrophysics Data System (ADS)
Morais Graça, J. P.; de Pádua Santos, A.; Bezerra de Mello, Eugênio R.; Bezerra, V. B.
In this paper, we analyze numerically the behavior of the solutions corresponding to a non-Abelian cosmic string in the framework of the Starobinsky model, i.e. where f(R) = R + ζR2. We perform the calculations for both an asymptotically flat and asymptotically (anti)-de Sitter spacetimes. We found that the angular deficit generated by the string decreases as the parameter ζ increases, in the case of a null cosmological constant. For a positive cosmological constant, we found that the cosmic horizon is affected in a nontrivial way by the parameter ζ.
Is QSO 1146 + 111B,C due to lensing by a cosmic string?
NASA Technical Reports Server (NTRS)
Gott, J. R., III
1986-01-01
A newly discovered lens candidate, QSO 1146 + 111B,C, is discussed which appears to consist of two images of equal brightness of a quasar at redshift 1.01 separated by 2.6 arcmin. If this is produced by a cosmic string, its mass per unit length is about 4.0 x 10 to the 23rd g/cm or more. This value is large enough to be interesting for string-assisted galaxy formation and near the upper limits implied by the isotropy of the cosmic microwave background and constraints on gravitational radiation.
Cosmic strings: Gravitation without local curvature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helliwell, T.M.; Konkowski, D.A.
1987-05-01
Cosmic strings are very long, thin structures which might stretch over vast reaches of the universe. If they exist, they would have been formed during phase transitions in the very early universe. The space-time surrounding a straight cosmic string is flat but nontrivial: A two-dimensional spatial section is a cone rather than a plane. This feature leads to unique gravitational effects. The flatness of the cone means that many of the gravitational effects can be understood with no mathematics beyond trigonometry. This includes the observational predictions of the double imaging of quasars and the truncation of the images of galaxies.
NASA Astrophysics Data System (ADS)
Simatos, N.; Perivolaropoulos, L.
2001-01-01
We use the publicly available code CMBFAST, as modified by Pogosian and Vachaspati, to simulate the effects of wiggly cosmic strings on the cosmic microwave background (CMB). Using the modified CMBFAST code, which takes into account vector modes and models wiggly cosmic strings by the one-scale model, we go beyond the angular power spectrum to construct CMB temperature maps with a resolution of a few degrees. The statistics of these maps are then studied using conventional and recently proposed statistical tests optimized for the detection of hidden temperature discontinuities induced by the Gott-Kaiser-Stebbins effect. We show, however, that these realistic maps cannot be distinguished in a statistically significant way from purely Gaussian maps with an identical power spectrum.
Cosmic strings and the microwave sky. I - Anisotropy from moving strings
NASA Technical Reports Server (NTRS)
Stebbins, Albert
1988-01-01
A method is developed for calculating the component of the microwave anisotropy around cosmic string loops due to their rapidly changing gravitational fields. The method is only valid for impact parameters from the string much smaller than the horizon size at the time the photon passes the string. The method makes it possible to calculate the temperature pattern around arbitrary string configurations numerically in terms of one-dimensional integrals. This method is applied to temperature jump across a string, confirming and extending previous work. It is also applied to cusps and kinks on strings, and to determining the temperature pattern far from a strong loop. The temperature pattern around a few loop configurations is explicitly calculated. Comparisons with the work of Brandenberger et al. (1986) indicates that they have overestimated the MBR anisotropy from gravitational radiation emitted from loops.
NASA Technical Reports Server (NTRS)
Gregory, Ruth
1988-01-01
The effect of an infinite cosmic string on a cosmological background is investigated. It is found that the metric is approximately a scaled version of the empty space string metric, i.e., conical in nature. Results are used to place bounds on the amount of cylindrical gravitational radiation currently emitted by such a string. The gravitational radiation equations are then analyzed explicitly and it is shown that even initially large disturbances are rapidly damped as the expansion proceeds. The implications of the gravitational radiation background and the limitations of the quadrupole formula are discussed.
Small scale structure on cosmic strings
NASA Technical Reports Server (NTRS)
Albrecht, Andreas
1989-01-01
The current understanding of cosmic string evolution is discussed, and the focus placed on the question of small scale structure on strings, where most of the disagreements lie. A physical picture designed to put the role of the small scale structure into more intuitive terms is presented. In this picture it can be seen how the small scale structure can feed back in a major way on the overall scaling solution. It is also argued that it is easy for small scale numerical errors to feed back in just such a way. The intuitive discussion presented here may form the basis for an analytic treatment of the small scale structure, which argued in any case would be extremely valuable in filling the gaps in the present understanding of cosmic string evolution.
Landau quantization in the spinning cosmic string spacetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muniz, C.R., E-mail: celiomuniz@yahoo.com; Bezerra, V.B.; Cunha, M.S.
2014-11-15
We analyze the quantum phenomenon arising from the interaction of a spinless charged particle with a rotating cosmic string, under the action of a static and uniform magnetic field parallel to the string. We calculate the energy levels of the particle in the non-relativistic approach, showing how these energies depend on the parameters involved in the problem. In order to do this, we solve the time independent Schrödinger equation in the geometry of the spinning cosmic string, taking into account that the coupling between the rotation of the spacetime and the angular momentum of the particle is very weak, suchmore » that makes sense to apply the Schrödinger equation in a curved background whose metric has an off diagonal term which involves time and space. It is also assumed that the particle orbits sufficiently far from the boundary of the region of closed timelike curves which exist around this topological defect. Finally, we find the Landau levels of the particle in the presence of a spinning cosmic string endowed with internal structure, i.e., having a finite width and uniformly filled with both material and vacuum energies. - Highlights: • Solution of the wave equation characterizing the problem. • Energy levels of the particle in spacetime of the structureless string. • Expression for an analogous of the quadratic Zeeman effect. • Energy levels of the particle in spacetime of the string with internal structure. • Evidence of the string structure by the internal existence of the vacuum energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakke, K., E-mail: kbakke@fisica.ufpb.br; Furtado, C., E-mail: furtado@fisica.ufpb.br; Belich, H., E-mail: belichjr@gmail.com
2016-09-15
From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the violation of the Lorentz symmetry and write an effective metric for the cosmic string spacetime. Then, we investigate the arising of an analogue of the Anandan quantum phase for a relativistic Dirac neutral particle with a permanent magnetic dipole moment in the cosmic string spacetime under Lorentz symmetry breaking effects. Besides, we analyse the influence of the effects of the Lorentz symmetry violation and the topology of the defect on the Aharonov–Casher geometric quantum phase in the nonrelativistic limit.
Cosmic string with a light massive neutrino
NASA Technical Reports Server (NTRS)
Albrecht, Andreas; Stebbins, Albert
1992-01-01
We have estimated the power spectra of density fluctuations produced by cosmic strings with neutrino hot dark matter (HDM). Normalizing at 8/h Mpc, we find that the spectrum has more power on small scales than HDM + inflation, less than cold dark matter (CDM) + inflation, and significantly less the CDM + strings. With HDM, large wakes give significant contribution to the power on the galaxy scale and may give rise to large sheets of galaxies.
Rapidly moving cosmic strings and chronology protection
NASA Astrophysics Data System (ADS)
Ori, Amos
1991-10-01
Recently, Gott has provided a family of solutions of the Einstein equations describing pairs of parallel cosmic strings in motion. He has shown that if the strings' relative velocity is sufficiently high, there exist closed timelike curves (CTC's) in the spacetime. Here we show that if there are CTC's in such a solution, then every t=const hypersurface in the spacetime intersects CTC's. Therefore, these solutions do not contradict the chronology protection conjecture of Hawking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hergt, Lukas; Amara, Adam; Kacprzak, Tomasz
We use wavelet and curvelet transforms to extract signals of cosmic strings from simulated cosmic microwave background (CMB) temperature anisotropy maps, and to study the limits on the cosmic string tension which various ongoing CMB temperature anisotropy experiments will be able to achieve. We construct sky maps with size and angular resolution corresponding to various experiments. These maps contain the signals of a scaling solution of long string segments with a given string tension G μ, the contribution of the dominant Gaussian primordial cosmological fluctuations, and pixel by pixel white noise with an amplitude corresponding to the instrumental noise ofmore » the various experiments. In the case that we include white noise, we find that using curvelets we obtain lower bounds on the string tension than with wavelets. For maps with Planck specification, we obtain bounds comparable to what was obtained by the Planck collaboration [1]. Experiments with better angular resolution such as the South Pole Telescope third generation (SPT-3G) survey will be able to yield stronger limits. For maps with a specification of SPT-3G we find that string signals will be visible down to a string tension of G μ = 1.4 × 10{sup −7}.« less
NASA Astrophysics Data System (ADS)
Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon
2007-03-01
We present the first field-theoretic calculations of the contribution made by cosmic strings to the temperature power spectrum of the cosmic microwave background (CMB). Unlike previous work, in which strings were modeled as idealized one-dimensional objects, we evolve the simplest example of an underlying field theory containing local U(1) strings, the Abelian Higgs model. Limitations imposed by finite computational volumes are overcome using the scaling property of string networks and a further extrapolation related to the lessening of the string width in comoving coordinates. The strings and their decay products, which are automatically included in the field theory approach, source metric perturbations via their energy-momentum tensor, the unequal-time correlation functions of which are used as input into the CMB calculation phase. These calculations involve the use of a modified version of CMBEASY, with results provided over the full range of relevant scales. We find that the string tension μ required to normalize to the WMAP 3-year data at multipole ℓ=10 is Gμ=[2.04±0.06(stat.)±0.12(sys.)]×10-6, where we have quoted statistical and systematic errors separately, and G is Newton’s constant. This is a factor 2 3 higher than values in current circulation.
String mediated phase transitions
NASA Technical Reports Server (NTRS)
Copeland, ED; Haws, D.; Rivers, R.; Holbraad, S.
1988-01-01
It is demonstrated from first principles how the existence of string-like structures can cause a system to undergo a phase transition. In particular, the role of topologically stable cosmic string in the restoration of spontaneously broken symmetries is emphasized. How the thermodynamic properties of strings alter when stiffness and nearest neighbor string-string interactions are included is discussed.
Improved calculation of the gravitational wave spectrum from kinks on infinite cosmic strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsui, Yuka; Horiguchi, Koichiro; Nitta, Daisuke
2016-11-01
Gravitational wave observations provide unique opportunities to search for cosmic strings. One of the strongest sources of gravitational waves is discontinuities of cosmic strings, called kinks, which are generated at points of intersection. Kinks on infinite strings are known to generate a gravitational wave background over a wide range of frequencies. In this paper, we calculate the spectrum of the gravitational wave background by numerically solving the evolution equation for the distribution function of the kink sharpness. We find that the number of kinks for small sharpness is larger than the analytical estimate used in a previous work, which makesmore » a difference in the spectral shape. Our numerical approach enables us to make a more precise prediction on the spectral amplitude for future gravitational wave experiments.« less
Stochastic background from cosmic (super)strings: Popcorn-like and (Gaussian) continuous regimes
NASA Astrophysics Data System (ADS)
Regimbau, Tania; Giampanis, Stefanos; Siemens, Xavier; Mandic, Vuk
2012-03-01
In the era of the next generation of gravitational wave experiments a stochastic background from cusps of cosmic (super)strings is expected to be probed and, if not detected, to be significantly constrained. A popcornlike background can be, for part of the parameter space, as pronounced as the (Gaussian) continuous contribution from unresolved sources that overlap in frequency and time. We study both contributions from unresolved cosmic string cusps over a range of frequencies relevant to ground based interferometers, such as the LIGO/Virgo second generation and Einstein Telescope third generation detectors, the space antenna LISA, and pulsar timing arrays. We compute the sensitivity (at the 2σ level) in the parameter space for the LIGO/Virgo second generation detector, the Einstein Telescope detector, LISA, and pulsar timing arrays. We conclude that the popcorn regime is complementary to the continuous background. Its detection could therefore enhance confidence in a stochastic background detection and possibly help determine fundamental string parameters such as the string tension and the reconnection probability.
Resurrecting hot dark matter - Large-scale structure from cosmic strings and massive neutrinos
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.
1988-01-01
These are the results of a numerical simulation of the formation of large-scale structure from cosmic-string loops in a universe dominated by massive neutrinos (hot dark matter). This model has several desirable features. The final matter distribution contains isolated density peaks embedded in a smooth background, producing a natural bias in the distribution of luminous matter. Because baryons can accrete onto the cosmic strings before the neutrinos, the galaxies will have baryon cores and dark neutrino halos. Galaxy formation in this model begins much earlier than in random-phase models. On large scales the distribution of clustered matter visually resembles the CfA survey, with large voids and filaments.
Superconducting Strings in High Density QCD
NASA Astrophysics Data System (ADS)
Buckley, Kirk B. W.
2003-02-01
Recently it has been argued that the ground state of high density QCD is likely to be a combination of the CFL-phase along with condensation of the K0 field. This state spontaneously breaks a global U(1)Y symmetry, therefore one would expect the formation of U(1)Y global strings. We discuss the core structure of these strings and demonstrate that under some conditions the global U(1)Y symmetry may not be restored inside the string. Instead, K+ condensation occurs inside the core of the string if a relevant parameter \\cos θ {K0 } ≡ {{m{K0 }2 } {/ {{m{K0 }2 } {μ eff2 }}} ; . } {μ eff2 }} is larger than some critical value θ
Cosmic strings and ultra-high energy cosmic rays
NASA Technical Reports Server (NTRS)
Bhattacharjee, Pijushpani
1989-01-01
The flux is calculated of ultrahigh energy protons due to the process of cusp evaporation from cosmic string loops. For the standard value of the dimensionless cosmic string parameter epsilon is identical to G(sub mu) approx. = 10(exp -6), the flux is several orders of magnitude below the observed cosmic ray flux of ultrahigh energy protons. However, the flux at any energy initially increases as the value of epsilon is decreased. This at first suggests that there may be a lower limit on the value of epsilon, which would imply a lower limit on the temperature of a cosmic string forming phase transition in the early universe. However, the calculation shows that this is not the case -- the particle flux at any energy reaches its highest value at epsilon approx. = 10(exp -15) and it then decreases for further decrease of the value of epsilon. This is due to the fact that for too small values of epsilon (less than 10(exp -15)), the energy loss of the loops through the cusp evaporation process itself (rather than gravitational energy loss of the loops) becomes the dominant factor that controls the behavior of the number density of the loops at the relevant times of emission of the particles. The highest flux at any energy remains at least four orders of magnitude below the observed flux. There is thus no lower limit on epsilon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthonisen, Madeleine; Brandenberger, Robert; Laguë, Alex
Cosmic string loops contain cusps which decay by emitting bursts of particles. A significant fraction of the released energy is in the form of photons. These photons are injected non-thermally and can hence cause spectral distortions of the Cosmic Microwave Background (CMB). Under the assumption that cusps are robust against gravitational back-reaction, we compute the fractional energy density released as photons in the redshift interval where such non-thermal photon injection causes CMB spectral distortions. Whereas current constraints on such spectral distortions are not strong enough to constrain the string tension, future missions such as the PIXIE experiment will be ablemore » to provide limits which rule out a range of string tensions between G μ ∼ 10{sup −15} and G μ ∼ 10{sup −12}, thus ruling out particle physics models yielding these kind of intermediate-scale cosmic strings.« less
Cosmic string loops as the seeds of super-massive black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bramberger, Sebastian F.; Brandenberger, Robert H.; Jreidini, Paul
2015-06-01
Recent discoveries of super-massive black holes at high redshifts indicate a possible tension with the standard ΛCDM paradigm of early universe cosmology which has difficulties in explaining the origin of the required nonlinear compact seeds which trigger the formation of these super-massive black holes. Here we show that cosmic string loops which result from a scaling solution of strings formed during a phase transition in the very early universe lead to an additional source of compact seeds. The number density of string-induced seeds dominates at high redshifts and can help trigger the formation of the observed super-massive black holes.
Effects of cosmic string velocities and the origin of globular clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Ling; Yamanouchi, Shoma; Brandenberger, Robert, E-mail: ling.lin2@mail.mcgill.ca, E-mail: shoma.yamanouchi@mail.mcgill.ca, E-mail: rhb@physics.mcgill.ca
2015-12-01
With the hypothesis that cosmic string loops act as seeds for globular clusters in mind, we study the role that velocities of these strings will play in determining the mass distribution of globular clusters. Loops with high enough velocities will not form compact and roughly spherical objects and can hence not be the seeds for globular clusters. We compute the expected number density and mass function of globular clusters as a function of both the string tension and the peak loop velocity, and compare the results with the observational data on the mass distribution of globular clusters in our Milkymore » Way. We determine the critical peak string loop velocity above which the agreement between the string loop model for the origin of globular clusters (neglecting loop velocities) and observational data is lost.« less
Black strings, low viscosity fluids, and violation of cosmic censorship.
Lehner, Luis; Pretorius, Frans
2010-09-03
We describe the behavior of 5-dimensional black strings, subject to the Gregory-Laflamme instability. Beyond the linear level, the evolving strings exhibit a rich dynamics, where at intermediate stages the horizon can be described as a sequence of 3-dimensional spherical black holes joined by black string segments. These segments are themselves subject to a Gregory-Laflamme instability, resulting in a self-similar cascade, where ever-smaller satellite black holes form connected by ever-thinner string segments. This behavior is akin to satellite formation in low-viscosity fluid streams subject to the Rayleigh-Plateau instability. The simulation results imply that the string segments will reach zero radius in finite asymptotic time, whence the classical space-time terminates in a naked singularity. Since no fine-tuning is required to excite the instability, this constitutes a generic violation of cosmic censorship.
Large-scale structure from cosmic-string loops in a baryon-dominated universe
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Scherrer, Robert J.
1988-01-01
The results are presented of a numerical simulation of the formation of large-scale structure in a universe with Omega(0) = 0.2 and h = 0.5 dominated by baryons in which cosmic strings provide the initial density perturbations. The numerical model yields a power spectrum. Nonlinear evolution confirms that the model can account for 700 km/s bulk flows and a strong cluster-cluster correlation, but does rather poorly on smaller scales. There is no visual 'filamentary' structure, and the two-point correlation has too steep a logarithmic slope. The value of G mu = 4 x 10 to the -6th is significantly lower than previous estimates for the value of G mu in baryon-dominated cosmic string models.
NASA Astrophysics Data System (ADS)
Jusufi, Kimet; Rahaman, Farook; Banerjee, Ayan
2018-02-01
The theory of gravitational lensing has revealed many generic and fundamental properties of compact objects like black holes and wormholes. In this article, we utilize a recent formulation to compute the quantum effects on the deflection angle of a light ray, namely, the Gauss-Bonnet theorem (GBT) to explore the semiclassical gravitational effects in the spacetime of a point-like global monopole and a cosmic string. Previously, the Gauss-Bonnet theorem (Gibbons and Werner, 2008) was proposed as an alternative way to compute the deflection angle of light in a static, spherically symmetric and asymptotically flat spacetime. In the present article we have used the celebrated GBT that applied to the optical metric as well as the geodesic method in computing the deflection angle. Interestingly one can observe that we have found an exact result between GBT and the standard approach up to the third-order contributions terms by modifying the domain of integration for cosmic string and global monopole deflection angles. Finally we have considered the time delay in the cosmic string/global monopole spacetime and found that the delay in time is proportional to the linear mass density of the cosmic string and global monopole parameter, respectively.
Priming the search for cosmic superstrings using GADGET2 simulations
NASA Astrophysics Data System (ADS)
Cousins, Bryce; Jia, Hewei; Braverman, William; Chernoff, David
2018-01-01
String theory is an extensive mathematical theory which, despite its broad explanatory power, is still lacking empirical support. However, this may change when considering the scope of cosmology, where “cosmic superstrings” may serve as observational evidence. According to string theory, these superstrings were stretched to cosmic scales in the early Universe and may now be detectable, via microlensing or gravitational radiation. Negative results from prior surveys have put some limits on superstring properties, so to investigate the parameter space more effectively, we ask: “where should we expect to find cosmic superstrings, and how many should we predict?” This research investigates these questions by simulating cosmic string behavior during structure formation in the universe using GADGET2. The sizes and locations of superstring clusters are assessed using kernel density estimation and radial correlation functions. Currently, only preliminary small-scale simulations have been performed, producing superstring clustering with low sensitivity. However, future simulations of greater magnitude will offer far higher resolution, allowing us to more precisely track superstring behavior within structures. Such results will guide future searches, most imminently those made possible by LSST and WFIRST.
Domain Walls and Strings in Dense Quark Matter
NASA Astrophysics Data System (ADS)
Zhitnitsky, Ariel R.
2002-12-01
I discuss several types of domain walls and global strings which occur in colour superconducting quark matter due to the spontaneous violation of relevant U(1) and discrete symmetries. These include the baryon U(1)B, approximate axial U(1)A symmetries as well as an approximate U(1)Y symmetry arising from kaon condensation in colour-flavour locking phase. In this talk I concentrate on discussions of K strings due to their interesting internal structures. Specifically, I demonstrate that under some conditions the global U(1)Y symmetry may not be restored inside the string, in contrast with the standard expectations. Instead, K+ condensation occurs inside the core of the string if a relevant parameter \\cos θ K0 ≡ mK0^2 /μ eff2 is larger than some critical value θ
Isocurvature fluctuations through axion trapping by cosmic string wakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Layek, Biswanath
2005-03-15
We consider wakelike density fluctuations produced by cosmic strings at the quark-hadron transition in the early universe. We show that low momentum axions which are produced through the radiation from the axionic string at an earlier stage, may get trapped inside these wakes due to delayed hadronization in these overdense regions. As the interfaces, bordering the wakes, collapse, the axions pick-up momentum from the walls and finally leave the wake regions. These axions thus can produce large scale isocurvature fluctuations. We have calculated the detailed profile of these axionic density fluctuations and discuss its astrophysical consequences.
Cosmic strings and baryon decay catalysis
NASA Technical Reports Server (NTRS)
Gregory, Ruth; Perkins, W. B.; Davis, A.-C.; Brandenberger, R. H.
1989-01-01
Cosmic strings, like monopoles, can catalyze proton decay. For integer charged fermions, the cross section for catalysis is not amplified, unlike in the case of monopoles. The catalysis processes are reviewed both in the free quark and skyrmion pictures and the implications for baryogenesis are discussed. A computation of the cross section for monopole catalyzed skyrmion decay is presented using classical physics. Also discussed are some effects which can screen catalysis processes.
Scalar Casimir densities and forces for parallel plates in cosmic string spacetime
NASA Astrophysics Data System (ADS)
Bezerra de Mello, E. R.; Saharian, A. A.; Abajyan, S. V.
2018-04-01
We analyze the Green function, the Casimir densities and forces associated with a massive scalar quantum field confined between two parallel plates in a higher dimensional cosmic string spacetime. The plates are placed orthogonal to the string, and the field obeys the Robin boundary conditions on them. The boundary-induced contributions are explicitly extracted in the vacuum expectation values (VEVs) of the field squared and of the energy-momentum tensor for both the single plate and two plates geometries. The VEV of the energy-momentum tensor, in additional to the diagonal components, contains an off diagonal component corresponding to the shear stress. The latter vanishes on the plates in special cases of Dirichlet and Neumann boundary conditions. For points outside the string core the topological contributions in the VEVs are finite on the plates. Near the string the VEVs are dominated by the boundary-free part, whereas at large distances the boundary-induced contributions dominate. Due to the nonzero off diagonal component of the vacuum energy-momentum tensor, in addition to the normal component, the Casimir forces have nonzero component parallel to the boundary (shear force). Unlike the problem on the Minkowski bulk, the normal forces acting on the separate plates, in general, do not coincide if the corresponding Robin coefficients are different. Another difference is that in the presence of the cosmic string the Casimir forces for Dirichlet and Neumann boundary conditions differ. For Dirichlet boundary condition the normal Casimir force does not depend on the curvature coupling parameter. This is not the case for other boundary conditions. A new qualitative feature induced by the cosmic string is the appearance of the shear stress acting on the plates. The corresponding force is directed along the radial coordinate and vanishes for Dirichlet and Neumann boundary conditions. Depending on the parameters of the problem, the radial component of the shear force can be either positive or negative.
Formation of large-scale structure from cosmic strings and massive neutrinos
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.; Melott, Adrian L.; Bertschinger, Edmund
1989-01-01
Numerical simulations of large-scale structure formation from cosmic strings and massive neutrinos are described. The linear power spectrum in this model resembles the cold-dark-matter power spectrum. Galaxy formation begins early, and the final distribution consists of isolated density peaks embedded in a smooth background, leading to a natural bias in the distribution of luminous matter. The distribution of clustered matter has a filamentary appearance with large voids.
Topological defects in extended inflation
NASA Technical Reports Server (NTRS)
Copeland, Edmund J.; Kolb, Edward W.; Liddle, Andrew R.
1990-01-01
The production of topological defects, especially cosmic strings, in extended inflation models was considered. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of bubbles when they collide. This mechanism allows a natural combination of inflation and large scale structure via cosmic strings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com; Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB; Bezerra, V.B., E-mail: valdir@fisica.ufpb.br
Charged massive scalar fields are considered in the gravitational and electromagnetic field produced by a dyonic black hole with a cosmic string along its axis of symmetry. Exact solutions of both angular and radial parts of the covariant Klein–Gordon equation in this background are obtained, and are given in terms of the confluent Heun functions. The role of the presence of the cosmic string in these solutions is showed up. From the radial solution, we obtain the exact wave solutions near the exterior horizon of the black hole, and discuss the Hawking radiation spectrum and the energy flux. -- Highlights:more » •A cosmic string is introduced along the axis of symmetry of the dyonic black hole. •The covariant Klein–Gordon equation for a charged massive scalar field in this background is analyzed. •Both angular and radial parts are transformed to a confluent Heun equation. •The resulting Hawking radiation spectrum and the energy flux are obtained.« less
Giant Primeval Magnetic Dipoles
NASA Astrophysics Data System (ADS)
Thompson, Christopher
2017-07-01
Macroscopic magnetic dipoles are considered cosmic dark matter. Permanent magnetism in relativistic field structures can involve some form of superconductivity, one example being current-carrying string loops (“springs”) with vanishing net tension. We derive the cross-section for free classical dipoles to collide, finding it depends weakly on orientation when mutual precession is rapid. The collision rate of “spring” loops with tension { T }˜ {10}-8{c}4/G in galactic halos approaches the measured rate of fast radio bursts (FRBs) if the loops compose most of the dark matter. A large superconducting dipole (LSD) with mass ˜1020 g and size ˜1 mm will form a ˜100 km magnetosphere moving through interstellar plasma. Although hydromagnetic drag is generally weak, it is strong enough to capture some LSDs into long-lived rings orbiting supermassive black holes (SMBHs) that form by the direct collapse of massive gas clouds. Repeated collisions near young SMBHs could dominate the global collision rate, thereby broadening the dipole mass spectrum. Colliding LSDs produce tiny, hot electromagnetic explosions. The accompanying paper shows that these explosions couple effectively to propagating low-frequency electromagnetic modes, with output peaking at 0.01-1 THz. We describe several constraints on, and predictions of, LSDs as cosmic dark matter. The shock formed by an infalling LSD triggers self-sustained thermonuclear burning in a C/O (ONeMg) white dwarf (WD) of mass ≳1 M ⊙ (1.3 M ⊙). The spark is generally located off the center of the WD. The rate of LSD-induced explosions matches the observed rate of Type Ia supernovae.
Cosmic strings in the real sky
NASA Technical Reports Server (NTRS)
Hogan, Craig J.
1987-01-01
Observational strategies for finding effects associated with the gravitational lensing of distant objects by strings are discussed. In particular, a proposed search program at Steward Observatory to find chains of Galaxy image pairs is described.
Fragmentation of cosmic-string loops
NASA Technical Reports Server (NTRS)
York, Thomas
1989-01-01
The fragmentation of cosmic string loops is discussed, and the results of a simulation of this process are presented. The simulation can evolve any of a large class of loops essentially exactly, including allowing fragments that collide to join together. Such reconnection enhances the production of small fragments, but not drastically. With or without reconnections, the fragmentation process produces a collection of nonself-intersecting loops whose typical length is on the order of the persistence length of the initial loop.
Topology of microwave background fluctuations - Theory
NASA Technical Reports Server (NTRS)
Gott, J. Richard, III; Park, Changbom; Bies, William E.; Bennett, David P.; Juszkiewicz, Roman
1990-01-01
Topological measures are used to characterize the microwave background temperature fluctuations produced by 'standard' scenarios (Gaussian) and by cosmic strings (non-Gaussian). Three topological quantities: total area of the excursion regions, total length, and total curvature (genus) of the isotemperature contours, are studied for simulated Gaussian microwave background anisotropy maps and then compared with those of the non-Gaussian anisotropy pattern produced by cosmic strings. In general, the temperature gradient field shows the non-Gaussian behavior of the string map more distinctively than the temperature field for all topology measures. The total contour length and the genus are found to be more sensitive to the existence of a stringy pattern than the usual temperature histogram. Situations when instrumental noise is superposed on the map, are considered to find the critical signal-to-noise ratio for which strings can be detected.
Cosmic R-string, R-tube and vacuum instability
NASA Astrophysics Data System (ADS)
Eto, Minoru; Hamada, Yuta; Kamada, Kohei; Kobayashi, Tatsuo; Ohashi, Keisuke; Ookouchi, Yutaka
2013-03-01
We show that a cosmic string associated with spontaneous U(1) R symmetry breaking gives a constraint for supersymmetric model building. In some models, the string can be viewed as a tube-like domain wall with a winding number interpolating a false vacuum and a true vacuum. Such string causes inhomogeneous decay of the false vacuum to the true vacuum via rapid expansion of the radius of the tube and hence its formation would be inconsistent with the present Universe. However, we demonstrate that there exist metastable solutions which do not expand rapidly. Furthermore, when the true vacua are degenerate, the structure inside the tube becomes involved. As an example, we show a "bamboo"-like solution, which suggests a possibility observing an information of true vacua from outside of the tube through the shape and the tension of the tube.
Stochastic gravitational waves from cosmic string loops in scaling
NASA Astrophysics Data System (ADS)
Ringeval, Christophe; Suyama, Teruaki
2017-12-01
If cosmic strings are formed in the early universe, their associated loops emit gravitational waves during the whole cosmic history and contribute to the stochastic gravitational wave background at all frequencies. We provide a new estimate of the stochastic gravitational wave spectrum by considering a realistic cosmological loop distribution, in scaling, as it can be inferred from Nambu-Goto numerical simulations. Our result takes into account various effects neglected so far. We include both gravitational wave emission and backreaction effects on the loop distribution and show that they produce two distinct features in the spectrum. Concerning the string microstructure, in addition to the presence of cusps and kinks, we show that gravitational wave bursts created by the collision of kinks could dominate the signal for wiggly strings, a situation which may be favoured in the light of recent numerical simulations. In view of these new results, we propose four prototypical scenarios, within the margin of the remaining theoretical uncertainties, for which we derive the corresponding signal and estimate the constraints on the string tension put by both the LIGO and European Pulsar Timing Array (EPTA) observations. The less constrained of these scenarios is shown to have a string tension GU <= 7.2 × 10‑11, at 95% of confidence. Smooth loops carrying two cusps per oscillation verify the two-sigma bound GU <= 1.0 × 10‑11 while the most constrained of all scenarios describes very kinky loops and satisfies GU <= 6.7× 10‑14 at 95% of confidence.
NASA Astrophysics Data System (ADS)
IceCube Collaboration; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Silva, A. H. Cruz; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Ismail, A. Haj; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jlelati, O.; Johansson, H.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lesiak-Bzdak, M.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pepper, J. A.; de los Heros, C. Pérez; Pieloth, D.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Saba, S. M.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönherr, L.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Smith, M. W. E.; Soiron, M.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van Eijndhoven, N.; van der Drift, D.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zilles, A.; Zoll, M.
2013-02-01
The mass composition of high energy cosmic rays depends on their production, acceleration, and propagation. The study of cosmic ray composition can therefore reveal hints of the origin of these particles. At the South Pole, the IceCube Neutrino Observatory is capable of measuring two components of cosmic ray air showers in coincidence: the electromagnetic component at high altitude (2835 m) using the IceTop surface array, and the muonic component above ˜1 TeV using the IceCube array. This unique detector arrangement provides an opportunity for precision measurements of the cosmic ray energy spectrum and composition in the region of the knee and beyond. We present the results of a neural network analysis technique to study the cosmic ray composition and the energy spectrum from 1 PeV to 30 PeV using data recorded using the 40-string/40-station configuration of the IceCube Neutrino Observatory.
How to simulate global cosmic strings with large string tension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klaer, Vincent B.; Moore, Guy D., E-mail: vklaer@theorie.ikp.physik.tu-darmstadt.de, E-mail: guy.moore@physik.tu-darmstadt.de
Global string networks may be relevant in axion production in the early Universe, as well as other cosmological scenarios. Such networks contain a large hierarchy of scales between the string core scale and the Hubble scale, ln( f {sub a} / H ) ∼ 70, which influences the network dynamics by giving the strings large tensions T ≅ π f {sub a} {sup 2} ln( f {sub a} / H ). We present a new numerical approach to simulate such global string networks, capturing the tension without an exponentially large lattice.
Two-dimensional lattice gauge theories with superconducting quantum circuits
Marcos, D.; Widmer, P.; Rico, E.; Hafezi, M.; Rabl, P.; Wiese, U.-J.; Zoller, P.
2014-01-01
A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability. PMID:25512676
Self-Energy in the Gott-Hiscock Space-Time
NASA Astrophysics Data System (ADS)
Khusnutdinov, Nail R.; Bezerra, Valdir B.
We calculate the self-energy for an electrically charged particle at rest in the background of Gott-Hiscock cosmic string space-time. The self-energy continuously falls down out-ward from string's with maximum at the origin of the string. The plots of the numerical of the self-energy and the height of barrier are shown.
Is it really naked? On cosmic censorship in string theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, Andrei V.
We investigate the possibility of cosmic censorship violation in string theory using a characteristic double-null code, which penetrates horizons and is capable of resolving the spacetime all the way to the singularity. We perform high-resolution numerical simulations of the evolution of negative mass initial scalar field profiles, which were argued to provide a counterexample to cosmic censorship conjecture for AdS-asymptotic spacetimes in five-dimensional supergravity. In no instances formation of naked singularity is seen. Instead, numerical evidence indicates that black holes form in the collapse. Our results are consistent with earlier numerical studies, and explicitly show where the 'no black hole'more » argument breaks.« less
the Cosmic Background Radiation as a tool to understand the structure and history of the Universe and its relation to the structure of space-time. Likewise, gravitational lensing, the search for evidence of cosmic strings, and the cosmic infrared background tell us about the structure of space-time and
Vacuum Polarization by a Magnetic Flux Tube at Finite Temperature in the Cosmic String Space-Time
NASA Astrophysics Data System (ADS)
Spinelly, J.; Bezerra de Mello, E. R.
In this paper, we analyze the effect produced by the temperature in the vacuum polarization associated with a charged massless scalar field in the presence of a magnetic flux tube in the cosmic string space-time. Three different configurations of magnetic fields are taken into account: (i) a homogeneous field inside the tube, (ii) a field proportional to 1/r, and (iii) a cylindrical shell with δ-function. In these three cases, the axis of the infinitely long tube of radius R coincides with the cosmic string. Because of the complexity of this analysis in the region inside the tube, we consider the thermal effect in the region outside. In order to develop this analysis, we construct the thermal Green function associated with this system for the three above-mentioned situations considering points in the region outside the tube. We explicitly calculate, in the high-temperature limit, the thermal average of the field square and the energy-momentum tensor.
Formation of large-scale structure from cosmic-string loops and cold dark matter
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Scherrer, Robert J.
1987-01-01
Some results from a numerical simulation of the formation of large-scale structure from cosmic-string loops are presented. It is found that even though G x mu is required to be lower than 2 x 10 to the -6th (where mu is the mass per unit length of the string) to give a low enough autocorrelation amplitude, there is excessive power on smaller scales, so that galaxies would be more dense than observed. The large-scale structure does not include a filamentary or connected appearance and shares with more conventional models based on Gaussian perturbations the lack of cluster-cluster correlation at the mean cluster separation scale as well as excessively small bulk velocities at these scales.
Abelian Higgs cosmic strings: Small-scale structure and loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hindmarsh, Mark; Stuckey, Stephanie; Bevis, Neil
2009-06-15
Classical lattice simulations of the Abelian Higgs model are used to investigate small-scale structure and loop distributions in cosmic string networks. Use of the field theory ensures that the small-scale physics is captured correctly. The results confirm analytic predictions of Polchinski and Rocha 29 for the two-point correlation function of the string tangent vector, with a power law from length scales of order the string core width up to horizon scale. An analysis of the size distribution of string loops gives a very low number density, of order 1 per horizon volume, in contrast with Nambu-Goto simulations. Further, our loopmore » distribution function does not support the detailed analytic predictions for loop production derived by Dubath et al. 30. Better agreement to our data is found with a model based on loop fragmentation 32, coupled with a constant rate of energy loss into massive radiation. Our results show a strong energy-loss mechanism, which allows the string network to scale without gravitational radiation, but which is not due to the production of string width loops. From evidence of small-scale structure we argue a partial explanation for the scale separation problem of how energy in the very low frequency modes of the string network is transformed into the very high frequency modes of gauge and Higgs radiation. We propose a picture of string network evolution, which reconciles the apparent differences between Nambu-Goto and field theory simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binétruy, Pierre; Dufaux, Jean-François; Bohé, Alejandro
We review several cosmological backgrounds of gravitational waves accessible to direct-detection experiments, with a special emphasis on those backgrounds due to first-order phase transitions and networks of cosmic (super-)strings. For these two particular sources, we revisit in detail the computation of the gravitational wave background and improve the results of previous works in the literature. We apply our results to identify the scientific potential of the NGO/eLISA mission of ESA regarding the detectability of cosmological backgrounds.
String solutions in spherically-symmetric f(R) gravity vacuum
NASA Astrophysics Data System (ADS)
Dil, Emre
Dynamical evolution of the cosmic string in a spherically symmetric f(R) gravity vacuum is studied for a closed and straight string. We first set the background spacetime metric for a constant curvature scalar R = R0, and obtain the Killing fields for it. Using the standard gauge coordinates and constraints for both closed and straight strings, we present the equation of motions and find the solutions of them. We then analyze the dynamics of the string by studying the behavior of the string radius and periastron radius, with respect to both proper time and azimuthal angle, for various values of f(R) functions. Consequently, we conclude that the value of f(R) dramatically affects the closed string collapse time and the straight string angular deviation.
Is the 'great attractor' a loop of cosmic string?
NASA Astrophysics Data System (ADS)
Hoffman, Y.; Zurek, W. H.
1988-05-01
Recent measurements of galaxy velocities suggest that the observed large-scale streaming may be attributed to a massive "attractor". The authors explore the idea that the streaming was induced by a large, moving loop of cosmic string. A stationary loop induces a velocity field that falls off as r-1, where r is the distance from the loop. This is somewhat modified by the motion of the loop, but the r-1 profile still persists in much of the wake of the string. The standard inflationary models of cold or hot dark matter predict, on the other hand, a velocity that should fall off as r-3 away from the density peak. Extension of this model to the Local Supercluster allows one to understand its Virgocentric velocity field of r-1.
Wormhole at the core of an infinite cosmic string
NASA Astrophysics Data System (ADS)
Aros, Rodrigo O.; Zamorano, Nelson
1997-11-01
We study a solution of Einstein's equations that describes a straight cosmic string with a variable angular deficit, starting with a 2π deficit at the core. We show that the coordinate singularity associated with this defect can be interpreted as a traversable wormhole lodging at the core of the string. A negative energy density gradually decreases the angular deficit as the distance from the core increases, ending, at radial infinity, in a Minkowski spacetime. The negative energy density can be confined to a small transversal section of the string by gluing to it an exterior Gott-like solution that freezes the angular deficit existing at the matching border. The equation of state of the string is such that any massive particle may stay at rest anywhere in this spacetime. In this sense this is a 2+1 spacetime solution. A generalization that includes the existence of two interacting parallel wormholes is displayed. These wormholes are not traversable. Finally, we point out that a similar result, flat at infinity and with a 2π defect (or excess) at the core, has been recently published by Dyer and Marleau. Even though theirs is a local string fully coupled to gravity, our toy model captures important aspects of this solution.
Topological interactions in spacetimes with thick line defects
NASA Astrophysics Data System (ADS)
Moraes, Fernando; Carvalho, A. M.; Costa, Ismael V.; Oliveira, F. A.; Furtado, Claudio
2003-08-01
In this work we study the topologically induced electric self-energy and self-force on a long, straight, wire in two distinct, but similar, spacetimes: (i) the Gott-Hiscock thick cosmic string spacetime, and (ii) the spacetime of a continuous distribution of infinitely thin cosmic strings over a disk of finite radius. In each case we obtain the electric self-energy and self-force both in the internal and external regions of the defect distribution. The self-force is always repulsive, independently of the sign of the charge, and is maximum on the string’s surface, in both cases.
Propagation of cosmic rays through the atmosphere in the quark-gluon strings model
NASA Technical Reports Server (NTRS)
Erlykin, A. D.; Krutikova, N. P.; Shabelski, Y. M.
1985-01-01
The quark-gluon strings model succeeds in the description of multiple hadron production in the central rapidity region of nucleon-nucleon interctions. This model was developed for hadron-nucleus interactions and used for calculation of the cosmic ray propagation through the atmosphere. It is shown that at energies 10 to the 11th power to the 12th power eV, this model gives a satisfactory description of experimental data. But with the increase of the energy up to approximately 10 to the 14th power eV, results of calculations and of experiments begin to differ and this difference rises with the energy. It may indicate that the scaling violation in the fragmentation region of inclusive spectra for hadron-nucleus interactions is stronger than in the quark-gluon strings model.
Bianchi type-VIh string cloud cosmological models with bulk viscosity
NASA Astrophysics Data System (ADS)
Tripathy, Sunil K.; Behera, Dipanjali
2010-11-01
String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.
NASA Astrophysics Data System (ADS)
Hoffman, Y.; Hogan, C.
The author discusses observational strategies for finding effects associated with the gravitational lensing of distant objects by strings. In particular, the requirements of a survey to find chains of galaxy image pairs or single galaxies with sharp edges are studied in some detail, and a proposed search program at Steward Observatory is described.
Models for small-scale structure on cosmic strings. II. Scaling and its stability
NASA Astrophysics Data System (ADS)
Vieira, J. P. P.; Martins, C. J. A. P.; Shellard, E. P. S.
2016-11-01
We make use of the formalism described in a previous paper [Martins et al., Phys. Rev. D 90, 043518 (2014)] to address general features of wiggly cosmic string evolution. In particular, we highlight the important role played by poorly understood energy loss mechanisms and propose a simple Ansatz which tackles this problem in the context of an extended velocity-dependent one-scale model. We find a general procedure to determine all the scaling solutions admitted by a specific string model and study their stability, enabling a detailed comparison with future numerical simulations. A simpler comparison with previous Goto-Nambu simulations supports earlier evidence that scaling is easier to achieve in the matter era than in the radiation era. In addition, we also find that the requirement that a scaling regime be stable seems to notably constrain the allowed range of energy loss parameters.
NASA Technical Reports Server (NTRS)
Stebbins, Albert; Veeraraghavan, Shoba; Silk, Joseph; Brandenberger, Robert; Turok, Neil
1987-01-01
Accretion of matter onto wakes left behind by horizon-sized pieces of cosmic string is investigated, and the effects of wakes on the large-scale structure of the universe are determined. Accretion of cold matter onto wakes, the effects of a long string on fluids with finite velocity dispersion or sound speeds, the interactions between loops and wakes, and the conditions for wakes to survive disruption by loops are discussed. It is concluded that the most important wakes are those which were formed at the time of equal matter and radiation density. This leads to sheetlike overdense regions of galaxies with a mean separation in agreement with the scale of the bubbles of de Lapparent, Geller, and Huchra (1986). However, for the value of G(mu) favored from galaxy formation considerations in a universe with cold dark matter, a wake accretes matter from a distance of only about 1.5 Mpc, which is much less than the distance between the wakes.
Pair production in the gravitational field of a cosmic string
NASA Astrophysics Data System (ADS)
Harari, Diego D.; Skarzhinsky, Vladimir D.
1990-04-01
We show that many elementary particle physics processes, such as pair production by a high energy photon, that take place in Minkowski space only if a non-uniform external field provides for momentum non-conservation, do occur in the space-time around a straight cosmic string, even though the space is locally flat and there is no local gravitational potential. We exemplify this mechanism through the evaluation of the cross section per unit length of string for the decay of a massless scalar particle into a pair of massive particles. The cross sections for this kind of processes are typically small. Nevertheless, it is interesting to realize how these reactions occur due to topological properties of space, rather than to the action of a local field. V.S. is grateful to Mario Castagnino for hospitality at the Instituto de Astronomía y Física del Espacio during a visit while this work was done.
Analytic study of small scale structure on cosmic strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polchinski, Joseph; Rocha, Jorge V.; Department of Physics, University of California, Santa Barbara, California 93106
2006-10-15
The properties of string networks at scales well below the horizon are poorly understood, but they enter critically into many observables. We argue that in some regimes, stretching will be the only relevant process governing the evolution. In this case, the string two-point function is determined up to normalization: the fractal dimension approaches one at short distance, but the rate of approach is characterized by an exponent that plays an essential role in network properties. The smoothness at short distance implies, for example, that cosmic string lensing images are almost undistorted. We then add in loop production as a perturbationmore » and find that it diverges at small scales. This need not invalidate the stretching model, since the loop production occurs in localized regions, but it implies a complicated fragmentation process. Our ability to model this process is limited, but we argue that loop production peaks a few orders of magnitude below the horizon scale, without the inclusion of gravitational radiation. We find agreement with some features of simulations, and interesting discrepancies that must be resolved by future work.« less
Comment on high resolution simulations of cosmic strings. 1: Network evoloution
NASA Technical Reports Server (NTRS)
Turok, Neil; Albrecht, Andreas
1990-01-01
Comments are made on recent claims (Albrecht and Turok, 1989) regarding simulations of cosmic string evolution. Specially, it was claimed that results were dominated by a numerical artifact which rounds out kinks on a scale of the order of the correlation length on the network. This claim was based on an approximate analysis of an interpolation equation which is solved herein. The typical rounding scale is actually less than one fifth of the correlation length, and comparable with other numerical cutoffs. Results confirm previous estimates of numerical uncertainties, and show that the approximations poorly represent the real solutions to the interpolation equation.
Cosmic string induced peculiar velocities
NASA Technical Reports Server (NTRS)
Van Dalen, Anthony; Schramm, David N.
1988-01-01
This paper considers the scenario of a flat universe with a network of heavy cosmic strings as the primordial fluctuation spectrum. The joint probability of finding streaming velocities of at least 600 km/s on large scales and local peculiar velocities of less than 800 km/s is calculated. It is shown how the effects of loops breaking up and being born with a spectrum of sizes can be estimated. It is found that to obtain large-scale streaming velocities of at least 600 km/s, it is necessary that either a large value for beta G mu exist or the effect of loop fissioning and production details be considerable.
Imprints of cosmic strings on the cosmological gravitational wave background
NASA Astrophysics Data System (ADS)
Kleidis, K.; Papadopoulos, D. B.; Verdaguer, E.; Vlahos, L.
2008-07-01
The equation which governs the temporal evolution of a gravitational wave (GW) in curved space-time can be treated as the Schrödinger equation for a particle moving in the presence of an effective potential. When GWs propagate in an expanding universe with constant effective potential, there is a critical value (kc) of the comoving wave number which discriminates the metric perturbations into oscillating (k>kc) and nonoscillating (k
Cosmological applications of singular hypersurfaces in general relativity
NASA Astrophysics Data System (ADS)
Laguna-Castillo, Pablo
Three applications to cosmology of surface layers, based on Israel's formalism of singular hypersurfaces and thin shells in general relativity, are presented. Einstein's field equations are analyzed in the presence of a bubble nucleated in vacuum phase transitions within the context of the old inflationary universe scenario. The evolution of a bubble with vanishing surface energy density is studied. It is found that such bubbles lead to a worm-hole matching. Next, the observable four-dimensional universe is considered as a singular hypersurface of discontinuity embedded in a five-dimensional Kaluza-Klein cosmology. It is possible to rewrite the projected five-dimensional Einstein equations on the surface layer in a similar way to the four-dimensional Robertson-Walker cosmology equations. Next, a model is described for an infinite-length, straight U(1) cosmic string as a cylindrical, singular shell enclosing a region of false vacuum. A set of equations is introduced which are required to develop a three-dimensional computer code whose purpose is to study the process of intercommuting cosmic strings with the inclusion of gravitational effects. The outcome is evolution and constraint equations for the gravitational, scalar and gauge field of two initially separated, perpendicular, cosmic strings.
Lensing effects in a nematic liquid crystal with topological defects.
Sátiro, C; Moraes, F
2006-06-01
Light traveling through a liquid crystal with disclinations perceives a geometrical background which causes lensing effects similar to the ones predicted for cosmic objects like global monopoles and cosmic strings. In this paper we explore the effective geometry as perceived by light in such media. The comparison between both systems suggests that experiments can be done in the laboratory to simulate optical properties, like gravitational lensing, of cosmic objects.
Gravitational lensing effects of vacuum strings - Exact solutions
NASA Technical Reports Server (NTRS)
Gott, J. R., III
1985-01-01
Exact interior and exterior solutions to Einstein's field equations are derived for vacuum strings. The exterior solution for a uniform density vacuum string corresponds to a conical space while the interior solution is that of a spherical cap. For Mu equals 0-1/4 the external metric is ds-squared = -dt-squared + dr-squared + (1-4 Mu)-squared r-squared dphi-squared + dz-squared, where Mu is the mass per unit length in the string in Planck masses per Planck length. A maximum mass per unit length for a string is 6.73 x 10 to the 27th g/cm. It is shown that strings cause temperature fluctuations in the cosmic microwave background and produce equal brightness double QSO images separated by up to several minutes of arc. Formulae for lensing probabilities, image splittings, and time delays are derived for strings in a realistic cosmological setting. String searches using ST, the VLA, and the COBE satellite are discussed.
Probing cosmic strings with satellite CMB measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, E.; Baccigalupi, Carlo; Smoot, G.F., E-mail: ehjeong@sissa.it, E-mail: bacci@sissa.it, E-mail: gfsmoot@lbl.gov
2010-09-01
We study the problem of searching for cosmic string signal patterns in the present high resolution and high sensitivity observations of the Cosmic Microwave Background (CMB). This article discusses a technique capable of recognizing Kaiser-Stebbins effect signatures in total intensity anisotropy maps from isolated strings. We derive the statistical distributions of null detections from purely Gaussian fluctuations and instrumental performances of the operating satellites, and show that the biggest factor that produces confusion is represented by the acoustic oscillation features of the scale comparable to the size of horizon at recombination. Simulations show that the distribution of null detections convergesmore » to a χ{sup 2} distribution, with detectability threshold at 99% confidence level corresponding to a string induced step signal with an amplitude of about 100 μK which corresponds to a limit of roughly Gμ ∼ 1.5 × 10{sup −6}. We implement simulations for deriving the statistics of spurious detections caused by extra-Galactic and Galactic foregrounds. For diffuse Galactic foregrounds, which represents the dominant source of contamination, we construct sky masks outlining the available region of the sky where the Galactic confusion is sub-dominant, specializing our analysis to the case represented by the frequency coverage and nominal sensitivity and resolution of the Planck experiment. As for other CMB measurements, the maximum available area, corresponding to 7%, is reached where the foreground emission is expected to be minimum, in the 70–100 GHz interval.« less
Topics in Cosmic String Physics and Vacuum Stability of Field Theories
NASA Astrophysics Data System (ADS)
Dasgupta, Indranil
1998-01-01
In this thesis I examine aspects of the vacuum state of quantum field theories. Namely, I study topological defects in the vacuum which appear as localized regions of non-zero energy density if the model system is unable to relax to a homogeneous and isotropic ground state because of topological constraints. I also examine the stability of the so called false vacua in theories that have multiple vacuum states with different energy densities. I first consider topological defects in the form of strings and independently the decay of false vacua in models of particle physics where the presence of either defects or of false vacua leads to interesting phenomenology. Then I describe a situation in which the defects arising from topological properties of the vacuum in turn affect the stability of the vacuum itself. In the first part of this work (chapters 2 and 3), I explore the phenomenology of cosmic strings. I introduce new string-like topological defects that resemble pairs of strings bound together. I give an existence proof of these 'binary strings' and then develop their cosmological properties in detail. I then propose a simple extension of the Standard Model in which cosmic strings may form and then decay through baryon number violating interactions leading to baryogenesis. I show that the model has distinct and testable signatures. In the second part of this work (chapters 4 and 5), I examine the vacua of several proposed models of gauge mediated dynamical supersymmetry breaking and show that the viable vacua are often unstable. I develop a rigorous theory for approximating vacuum tunneling rates in multi-scalar field theories and by computing bounds on the decay rate of the vacua in these models obtain useful constraints on the parameter space. In the final part of this work (chapter 6), I develop a theory of vacuum tunneling induced by topological defects. I show that defects can speed up vacuum tunneling rates by seeding new kinds of bubbles during a first order phase transition. I then indicate possible phenomenological applications of this effect and develop simple approximation techniques for computing the rate of seeded tunneling.
Induced vacuum energy-momentum tensor in the background of a cosmic string
NASA Astrophysics Data System (ADS)
Sitenko, Yu A.; Vlasii, N. D.
2012-05-01
A massive scalar field is quantized in the background of a cosmic string which is generalized to a static flux-carrying codimension-2 brane in the locally flat multidimensional spacetime. We find that the finite energy-momentum tensor is induced in the vacuum. The dependence of the tensor components on the brane flux and tension, as well as on the coupling to the spacetime curvature scalar, is comprehensively analyzed. The tensor components are holomorphic functions of space dimension, decreasing exponentially with the distance from the brane. The case of the massless quantized scalar field is also considered, and the relevance of Bernoulli’s polynomials of even order for this case is discussed.
Global structure of Gott's two-string spacetime
NASA Astrophysics Data System (ADS)
Cutler, Curt
1992-01-01
Gott has recently obtained exact solutions to Einstein's equation representing two infinitely long, straight cosmic strings that gravitationally scatter off each other. A remarkable feature of these solutions is that they contain closed timelike curves when the relative velocity of the strings is sufficiently high. In this paper we elucidate the global structure of Gott's two-string spacetime. In particular, we prove that the closed timelike curves are confined to a certain region of the spacetime, and that the spacetime contains complete spacelike, edgeless, achronal hypersurfaces, from which the causality-violating regions may be said to evolve. We then explicitly determine the boundary of the region containing closed timelike curves.
The dynamics of domain walls and strings
NASA Technical Reports Server (NTRS)
Gregory, Ruth; Haws, David; Garfinkle, David
1989-01-01
The leading order finite-width corrections to the equation of motion describing the motion of a domain wall are derived. The regime in which this equation of motion is invalid is discussed. Spherically and cylindrically symmetric solutions to this equation of motion are found. A misconception that has arisen in recent years regarding the rigidity (or otherwise) of cosmic strings is also clarified.
A Multiscale pipeline for the search of string-induced CMB anisotropies
NASA Astrophysics Data System (ADS)
Vafaei Sadr, A.; Movahed, S. M. S.; Farhang, M.; Ringeval, C.; Bouchet, F. R.
2018-03-01
We propose a multiscale edge-detection algorithm to search for the Gott-Kaiser-Stebbins imprints of a cosmic string (CS) network on the cosmic microwave background (CMB) anisotropies. Curvelet decomposition and extended Canny algorithm are used to enhance the string detectability. Various statistical tools are then applied to quantify the deviation of CMB maps having a CS contribution with respect to pure Gaussian anisotropies of inflationary origin. These statistical measures include the one-point probability density function, the weighted two-point correlation function (TPCF) of the anisotropies, the unweighted TPCF of the peaks and of the up-crossing map, as well as their cross-correlation. We use this algorithm on a hundred of simulated Nambu-Goto CMB flat sky maps, covering approximately 10 per cent of the sky, and for different string tensions Gμ. On noiseless sky maps with an angular resolution of 0.9 arcmin, we show that our pipeline detects CSs with Gμ as low as Gμ ≳ 4.3 × 10-10. At the same resolution, but with a noise level typical to a CMB-S4 phase II experiment, the detection threshold would be to Gμ ≳ 1.2 × 10-7.
Constraints on cosmic superstrings from Kaluza-Klein emission.
Dufaux, Jean-François
2012-07-06
Cosmic superstrings interact generically with a tower of light and/or strongly coupled Kaluza-Klein (KK) modes associated with the geometry of the internal space. We study the production of KK particles by cosmic superstring loops, and show that it is constrained by big bang nucleosynthesis. We study the resulting constraints in the parameter space of the underlying string theory model and highlight their complementarity with the regions that can be probed by current and upcoming gravitational wave experiments.
NASA Astrophysics Data System (ADS)
Desmond, Timothy
In this dissertation I discern what Carl Jung calls the mandala image of the ultimate archetype of unity underlying and structuring cosmos and psyche by pointing out parallels between his transpersonal psychology and Stanford physicist Leonard Susskind's string theory. Despite his atheistic, materialistically reductionist interpretation of it, I demonstrate how Susskind's string theory of holographic information conservation at the event horizons of black holes, and the cosmic horizon of the universe, corroborates the following four topics about which Jung wrote: (1) his near-death experience of the cosmic horizon after a heart attack in 1944; ( 2) his equation relating psychic energy to mass, "Psyche=highest intensity in the smallest space" (1997, 162), which I translate into the equation, Psyche=Singularity; (3) his theory that the mandala, a circle or sphere with a central point, is the symbolic image of the ultimate archetype of unity through the union of opposites, which structures both cosmos and psyche, and which rises spontaneously from the collective unconscious to compensate a conscious mind torn by irreconcilable demands (1989, 334-335, 396-397); and (4) his theory of synchronicity. I argue that Susskind's inside-out black hole model of our Big Bang universe forms a geometrically perfect mandala: a central Singularity encompassed by a two-dimensional sphere which serves as a universal memory bank. Moreover, in precise fulfillment of Jung's theory, Susskind used that mandala to reconcile the notoriously incommensurable paradigms of general relativity and quantum mechanics, providing in the process a mathematically plausible explanation for Jung's near-death experience of his past, present, and future life simultaneously at the cosmic horizon. Finally, Susskind's theory also provides a plausible cosmological model to explain Jung's theory of synchronicity--meaningful coincidences may be tied together by strings at the cosmic horizon, from which they radiate inward as the holographic "movie" of our three-dimensional world.
Cosmic strings and chronology protection
NASA Astrophysics Data System (ADS)
Grant, James D. E.
1993-03-01
A space consisting of two rapidly moving cosmic strings has recently been constructed by Gott that contains closed timelike curves. The global structure of this space is analyzed and it is found that, away from the strings, the space is identical to a generalized Misner space. The vacuum expectation value of the energy-momentum tensor for a conformally coupled scalar field is calculated on this generalized Misner space. It is found to diverge very weakly on the chronology horizon, but more strongly on the polarized hypersurfaces. The divergence on the polarized hypersurfaces is strong enough that when the proper geodesic interval around any polarized hypersurface is of the order of the Planck length squared, the perturbation to the metric caused by the back reaction will be of the order one. Thus we expect the structure of the space will be radically altered by the back reaction before quantum gravitational effects become important. This suggests that Hawking's ``chronology protection conjecture'' holds for spaces with a noncompactly generated chronology horizon.
Real Time Control of the SSC String Magnets
NASA Astrophysics Data System (ADS)
Calvo, O.; Flora, R.; MacPherson, M.
1987-08-01
The system described in this paper, called SECAR, was designed to control the excitation of a test string of magnets for the proposed Superconducting Super Collider (SSC) and will be used to upgrade the present Tevatron Excitation, Control and Regulation (TECAR) hardware and software . It resides in a VME crate and is controlled by a 68020/68881 based CPU running the application software under a real time operating system named VRTX.
Real time control of the SSC string magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo, O.; Flora, R.; MacPherson, M.
1987-08-01
The system described in this paper, called SECAR, was designed to control the excitation of a test string of magnets for the proposed Superconducting Super Collider (SSC) and will be used to upgrade the present Tevatron Excitation, Control and Regulation (TECAR) hardware and software. It resides in a VME orate and is controlled by a 68020/68881 based CPU running the application software under a real time operating system named VRTX.
Eventful horizons: String theory in de Sitter and anti-de Sitter
NASA Astrophysics Data System (ADS)
Kleban, Matthew Benjamin
String theory purports to be a theory of quantum gravity. As such, it should have much to say about the deep mysteries surrounding the very early stages of our universe. For this reason, although the theory is notoriously difficult to directly test, data from experimental cosmology may provide a way to probe the high energy physics of string theory. In the first part of this thesis, I will address the important issue of the testability of string theory using observations of the cosmic microwave background radiation. In the second part, I will study some formal difficulties that arise in attempting to understand string theory in de Sitter spacetime. In the third part, I will study the singularity of an eternal anti de Sitter Schwarzschild black hole, using the AdS/CFT correspondence.
Cosmic string wakes and large-scale structure
NASA Technical Reports Server (NTRS)
Charlton, Jane C.
1988-01-01
The formation of structure from infinite cosmic string wakes is modeled for a universe dominated by cold dark matter (CDM). Cross-sectional slices through the wake distribution tend to outline empty regions with diameters which are not inconsistent with the range of sizes of the voids in the CfA slice of the universe. The topology of the wake distribution is found to be spongy rather than cell-like. Correlations between CDM wakes do not extend much beyond a horizon length, so it is unlikely that CDM wakes are responsible for the correlations between clusters of galaxies. An estimate of the fraction of matter to accrete onto CDM wakes indicates that wakes could be more important in galaxy formation than previously anticipated.
NASA Astrophysics Data System (ADS)
Natário, José; Queimada, Leonel; Vicente, Rodrigo
2018-04-01
We rederive the equations of motion for relativistic strings, that is, one-dimensional elastic bodies whose internal energy depends only on their stretching, and use them to study circular string loops rotating in the equatorial plane of flat and black hole spacetimes. We start by obtaining the conditions for equilibrium, and find that: (i) if the string’s longitudinal speed of sound does not exceed the speed of light then its radius when rotating in Minkowski’s spacetime is always larger than its radius when at rest; (ii) in Minkowski’s spacetime, equilibria are linearly stable for rotation speeds below a certain threshold, higher than the string’s longitudinal speed of sound, and linearly unstable for some rotation speeds above it; (iii) equilibria are always linearly unstable in Schwarzschild’s spacetime. Moreover, we study interactions of a rotating string loop with a Kerr black hole, namely in the context of the weak cosmic censorship conjecture and the Penrose process. We find that: (i) elastic string loops that satisfy the null energy condition cannot overspin extremal black holes; (ii) elastic string loops that satisfy the dominant energy condition cannot increase the maximum efficiency of the usual particle Penrose process; (iii) if the dominant energy condition (but not the weak energy condition) is violated then the efficiency can be increased. This last result hints at the interesting possibility that the dominant energy condition may underlie the well known upper bounds for the efficiencies of energy extraction processes (including, for example, superradiance).
Quarks, Symmetries and Strings - a Symposium in Honor of Bunji Sakita's 60th Birthday
NASA Astrophysics Data System (ADS)
Kaku, M.; Jevicki, A.; Kikkawa, K.
1991-04-01
The Table of Contents for the full book PDF is as follows: * Preface * Evening Banquet Speech * I. Quarks and Phenomenology * From the SU(6) Model to Uniqueness in the Standard Model * A Model for Higgs Mechanism in the Standard Model * Quark Mass Generation in QCD * Neutrino Masses in the Standard Model * Solar Neutrino Puzzle, Horizontal Symmetry of Electroweak Interactions and Fermion Mass Hierarchies * State of Chiral Symmetry Breaking at High Temperatures * Approximate |ΔI| = 1/2 Rule from a Perspective of Light-Cone Frame Physics * Positronium (and Some Other Systems) in a Strong Magnetic Field * Bosonic Technicolor and the Flavor Problem * II. Strings * Supersymmetry in String Theory * Collective Field Theory and Schwinger-Dyson Equations in Matrix Models * Non-Perturbative String Theory * The Structure of Non-Perturbative Quantum Gravity in One and Two Dimensions * Noncritical Virasoro Algebra of d < 1 Matrix Model and Quantized String Field * Chaos in Matrix Models ? * On the Non-Commutative Symmetry of Quantum Gravity in Two Dimensions * Matrix Model Formulation of String Field Theory in One Dimension * Geometry of the N = 2 String Theory * Modular Invariance form Gauge Invariance in the Non-Polynomial String Field Theory * Stringy Symmetry and Off-Shell Ward Identities * q-Virasoro Algebra and q-Strings * Self-Tuning Fields and Resonant Correlations in 2d-Gravity * III. Field Theory Methods * Linear Momentum and Angular Momentum in Quaternionic Quantum Mechanics * Some Comments on Real Clifford Algebras * On the Quantum Group p-adics Connection * Gravitational Instantons Revisited * A Generalized BBGKY Hierarchy from the Classical Path-Integral * A Quantum Generated Symmetry: Group-Level Duality in Conformal and Topological Field Theory * Gauge Symmetries in Extended Objects * Hidden BRST Symmetry and Collective Coordinates * Towards Stochastically Quantizing Topological Actions * IV. Statistical Methods * A Brief Summary of the s-Channel Theory of Superconductivity * Neural Networks and Models for the Brain * Relativistic One-Body Equations for Planar Particles with Arbitrary Spin * Chiral Property of Quarks and Hadron Spectrum in Lattice QCD * Scalar Lattice QCD * Semi-Superconductivity of a Charged Anyon Gas * Two-Fermion Theory of Strongly Correlated Electrons and Charge-Spin Separation * Statistical Mechanics and Error-Correcting Codes * Quantum Statistics
Design of superconducting corrector magnets for LHC
NASA Astrophysics Data System (ADS)
Baynham, D. E.; Coombs, R. C.; Ijspeert, A.; Perin, R.
1994-07-01
The Large Hadron Collider (LHC) will require a range of superconducting corrector magnets. This paper presents the design of sextupole and decapole corrector coils which will be included as spool pieces adjacent to each main ring dipole. The paper gives detailed 3D field computations of the coil configurations to meet LHC beam dynamics requirements. Coil protection within a long string environment is addressed and mechanical design outlines are presented.
NASA Technical Reports Server (NTRS)
Hubmayr, J.; Austermann, J.; Beall, J.; Becker, D.; Cho, H.-M.; Datta, R.; Duff, S. M.; Grace, E.; Halverson, N.; Henderson, S. W.;
2015-01-01
NIST produces large-format, dual-polarization-sensitive detector arrays for a broad range of frequencies (30-1400 GHz). Such arrays enable a host of astrophysical measurements. Detectors optimized for cosmic microwave background observations are monolithic, polarization-sensitive arrays based on feedhorn and planar Nb antenna-coupled transition-edge superconducting (TES) bolometers. Recent designs achieve multiband, polarimetric sensing within each spatial pixel. In this proceeding, we describe our multichroic, feedhorn-coupled design; demonstrate performance at 70-380 GHz; and comment on current developments for implementation of these detector arrays in the advanced Atacama Cosmology Telescope receiver
A survey of solutions in a gravitational Born-Infeld theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chern, Jann-Long, E-mail: chern@math.ncu.edu.tw; Yang, Sze-Guang, E-mail: sgyang@math.ncu.edu.tw
2014-03-15
An elliptic equation that arises from a cosmic string model with the action of the Born-Infeld nonlinear electromagnetism, is considered. We classify and establish the uniqueness of radially symmetric solutions.
Wave propagation in metamaterials mimicking the topology of a cosmic string
NASA Astrophysics Data System (ADS)
Fernández-Núñez, Isabel; Bulashenko, Oleg
2018-04-01
We study the interference and diffraction of light when it propagates through a metamaterial medium mimicking the spacetime of a cosmic string—a topological defect with curvature singularity. The phenomenon may look like a gravitational analogue of the Aharonov-Bohm effect, since the light propagates in a region where the Riemann tensor vanishes, being nonetheless affected by the non-zero curvature confined to the string core. We carry out the full-wave numerical simulation of the metamaterial medium and give the analytical interpretation of the results by use of the asymptotic theory of diffraction, which turns out to be in excellent agreement. In particular, we show that the main features of wave propagation in a medium with conical singularity can be explained by four-wave interference involving two geometrical optics and two diffracted waves.
An upper limit on the stochastic gravitational-wave background of cosmological origin.
Abbott, B P; Abbott, R; Acernese, F; Adhikari, R; Ajith, P; Allen, B; Allen, G; Alshourbagy, M; Amin, R S; Anderson, S B; Anderson, W G; Antonucci, F; Aoudia, S; Arain, M A; Araya, M; Armandula, H; Armor, P; Arun, K G; Aso, Y; Aston, S; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Barker, C; Barker, D; Barone, F; Barr, B; Barriga, P; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Bauer, Th S; Behnke, B; Beker, M; Benacquista, M; Betzwieser, J; Beyersdorf, P T; Bigotta, S; Bilenko, I A; Billingsley, G; Birindelli, S; Biswas, R; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Boccara, C; Bodiya, T P; Bogue, L; Bondu, F; Bonelli, L; Bork, R; Boschi, V; Bose, S; Bosi, L; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Brand, J F J van den; Brau, J E; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Van Den Broeck, C; Brooks, A F; Brown, D A; Brummit, A; Brunet, G; Bullington, A; Bulten, H J; Buonanno, A; Burmeister, O; Buskulic, D; Byer, R L; Cadonati, L; Cagnoli, G; Calloni, E; Camp, J B; Campagna, E; Cannizzo, J; Cannon, K C; Canuel, B; Cao, J; Carbognani, F; Cardenas, L; Caride, S; Castaldi, G; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chalermsongsak, T; Chalkley, E; Charlton, P; Chassande-Mottin, E; Chatterji, S; Chelkowski, S; Chen, Y; Christensen, N; Chung, C T Y; Clark, D; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Cokelaer, T; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, R; Cook, D; Corbitt, T R C; Corda, C; Cornish, N; Corsi, A; Coulon, J-P; Coward, D; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Culter, R M; Cumming, A; Cunningham, L; Cuoco, E; Danilishin, S L; D'Antonio, S; Danzmann, K; Dari, A; Dattilo, V; Daudert, B; Davier, M; Davies, G; Daw, E J; Day, R; De Rosa, R; Debra, D; Degallaix, J; Del Prete, M; Dergachev, V; Desai, S; Desalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Paolo Emilio, M; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Doomes, E E; Drago, M; Drever, R W P; Dueck, J; Duke, I; Dumas, J-C; Dwyer, J G; Echols, C; Edgar, M; Effler, A; Ehrens, P; Ely, G; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fafone, V; Fairhurst, S; Faltas, Y; Fan, Y; Fazi, D; Fehrmann, H; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Flaminio, R; Flasch, K; Foley, S; Forrest, C; Fotopoulos, N; Fournier, J-D; Franc, J; Franzen, A; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Gammaitoni, L; Garofoli, J A; Garufi, F; Genin, E; Gennai, A; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Goda, K; Goetz, E; Goggin, L M; González, G; Gorodetsky, M L; Gobler, S; Gouaty, R; Granata, M; Granata, V; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grimaldi, F; Grosso, R; Grote, H; Grunewald, S; Guenther, M; Guidi, G; Gustafson, E K; Gustafson, R; Hage, B; Hallam, J M; Hammer, D; Hammond, G D; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Haughian, K; Hayama, K; Heefner, J; Heitmann, H; Hello, P; Heng, I S; Heptonstall, A; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hodge, K A; Holt, K; Hosken, D J; Hough, J; Hoyland, D; Huet, D; Hughey, B; Huttner, S H; Ingram, D R; Isogai, T; Ito, M; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Sancho de la Jordana, L; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kanner, J; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khan, R; Khazanov, E; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R; Koranda, S; Kozak, D; Krishnan, B; Kumar, R; Kwee, P; La Penna, P; Lam, P K; Landry, M; Lantz, B; Laval, M; Lazzarini, A; Lei, H; Lei, M; Leindecker, N; Leonor, I; Leroy, N; Letendre, N; Li, C; Lin, H; Lindquist, P E; Littenberg, T B; Lockerbie, N A; Lodhia, D; Longo, M; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lu, P; Lubinski, M; Lucianetti, A; Lück, H; Machenschalk, B; Macinnis, M; Mackowski, J-M; Mageswaran, M; Mailand, K; Majorana, E; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Markowitz, J; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McIntyre, G; McKechan, D J A; McKenzie, K; Mehmet, M; Melatos, A; Melissinos, A C; Mendell, G; Menéndez, D F; Menzinger, F; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Michel, C; Milano, L; Miller, J; Minelli, J; Minenkov, Y; Mino, Y; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Moe, B; Mohan, M; Mohanty, S D; Mohapatra, S R P; Moreau, J; Moreno, G; Morgado, N; Morgia, A; Morioka, T; Mors, K; Mosca, S; Mossavi, K; Mours, B; Mowlowry, C; Mueller, G; Muhammad, D; Mühlen, H Zur; Mukherjee, S; Mukhopadhyay, H; Mullavey, A; Müller-Ebhardt, H; Munch, J; Murray, P G; Myers, E; Myers, J; Nash, T; Nelson, J; Neri, I; Newton, G; Nishizawa, A; Nocera, F; Numata, K; Ochsner, E; O'Dell, J; Ogin, G H; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pagliaroli, G; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Parameshwaraiah, V; Pardi, S; Pasqualetti, A; Passaquieti, R; Passuello, D; Patel, P; Pedraza, M; Penn, S; Perreca, A; Persichetti, G; Pichot, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Poggiani, R; Postiglione, F; Principe, M; Prix, R; Prodi, G A; Prokhorov, L; Punken, O; Punturo, M; Puppo, P; Putten, S van der; Quetschke, V; Raab, F J; Rabaste, O; Rabeling, D S; Radkins, H; Raffai, P; Raics, Z; Rainer, N; Rakhmanov, M; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Rehbein, H; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Rivera, B; Roberts, P; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Rolland, L; Rollins, J; Romano, J D; Romano, R; Romie, J H; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Russell, P; Ryan, K; Sakata, S; Salemi, F; Sandberg, V; Sannibale, V; Santamaría, L; Saraf, S; Sarin, P; Sassolas, B; Sathyaprakash, B S; Sato, S; Satterthwaite, M; Saulson, P R; Savage, R; Savov, P; Scanlan, M; Schilling, R; Schnabel, R; Schofield, R; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shapiro, B; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B J J; Slutsky, J; van der Sluys, M V; Smith, J R; Smith, M R; Smith, N D; Somiya, K; Sorazu, B; Stein, A; Stein, L C; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S; Stroeer, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, K-X; Sung, M; Sutton, P J; Swinkels, B L; Szokoly, G P; Talukder, D; Tang, L; Tanner, D B; Tarabrin, S P; Taylor, J R; Taylor, R; Terenzi, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Toncelli, A; Tonelli, M; Torres, C; Torrie, C; Tournefier, E; Travasso, F; Traylor, G; Trias, M; Trummer, J; Ugolini, D; Ulmen, J; Urbanek, K; Vahlbruch, H; Vajente, G; Vallisneri, M; Vass, S; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; van Veggel, A A; Veitch, J; Veitch, P; Veltkamp, C; Verkindt, D; Vetrano, F; Viceré, A; Villar, A; Vinet, J-Y; Vocca, H; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Ward, H; Ward, R L; Was, M; Weidner, A; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wilkinson, C; Willems, P A; Williams, H R; Williams, L; Willke, B; Wilmut, I; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yan, Z; Yoshida, S; Yvert, M; Zanolin, M; Zhang, J; Zhang, L; Zhao, C; Zotov, N; Zucker, M E; Zweizig, J
2009-08-20
A stochastic background of gravitational waves is expected to arise from a superposition of a large number of unresolved gravitational-wave sources of astrophysical and cosmological origin. It should carry unique signatures from the earliest epochs in the evolution of the Universe, inaccessible to standard astrophysical observations. Direct measurements of the amplitude of this background are therefore of fundamental importance for understanding the evolution of the Universe when it was younger than one minute. Here we report limits on the amplitude of the stochastic gravitational-wave background using the data from a two-year science run of the Laser Interferometer Gravitational-wave Observatory (LIGO). Our result constrains the energy density of the stochastic gravitational-wave background normalized by the critical energy density of the Universe, in the frequency band around 100 Hz, to be <6.9 x 10(-6) at 95% confidence. The data rule out models of early Universe evolution with relatively large equation-of-state parameter, as well as cosmic (super)string models with relatively small string tension that are favoured in some string theory models. This search for the stochastic background improves on the indirect limits from Big Bang nucleosynthesis and cosmic microwave background at 100 Hz.
Observation of the cosmic-ray shadow of the Moon with IceCube
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Bertrand, D.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohaichuk, S.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Bruijn, R.; Brunner, J.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Clevermann, F.; Coenders, S.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; De Ridder, S.; Desiati, P.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eisch, J.; Ellsworth, R. W.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grandmont, D. T.; Grant, D.; Groß, A.; Ha, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Krings, K.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leute, J.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Sheremata, C.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tešić, G.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van der Drift, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Wasserman, R.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.; IceCube Collaboration
2014-05-01
We report on the observation of a significant deficit of cosmic rays from the direction of the Moon with the IceCube detector. The study of this "Moon shadow" is used to characterize the angular resolution and absolute pointing capabilities of the detector. The detection is based on data taken in two periods before the completion of the detector: between April 2008 and May 2009, when IceCube operated in a partial configuration with 40 detector strings deployed in the South Pole ice, and between May 2009 and May 2010 when the detector operated with 59 strings. Using two independent analysis methods, the Moon shadow has been observed to high significance (>6σ) in both detector configurations. The observed location of the shadow center is within 0.2° of its expected position when geomagnetic deflection effects are taken into account. This measurement validates the directional reconstruction capabilities of IceCube.
String order parameters for one-dimensional Floquet symmetry protected topological phases
NASA Astrophysics Data System (ADS)
Kumar, Ajesh; Dumitrescu, Philipp T.; Potter, Andrew C.
2018-06-01
Floquet symmetry protected topological (FSPT) phases are nonequilibrium topological phases enabled by time-periodic driving. FSPT phases of one-dimensional (1D) chains of bosons, spins, or qubits host dynamically protected edge states that can store quantum information without decoherence, making them promising for use as quantum memories. While FSPT order cannot be detected by any local measurement, here we construct nonlocal string order parameters that directly measure general 1D FSPT order. We propose a superconducting-qubit array based realization of the simplest Ising FSPT phase, which can be implemented with existing quantum computing hardware. We devise an interferometric scheme to directly measure the nonlocal string order using only simple one- and two-qubit operations and single-qubit measurements.
Second order perturbations of a macroscopic string: Covariant approach
NASA Astrophysics Data System (ADS)
Larsen, A. L.; Nicolaidis, A.
2001-06-01
Using a world-sheet covariant formalism, we derive the equations of motion for second order perturbations of a generic macroscopic string, thus generalizing previous results for first order perturbations. We give the explicit results for the first and second order perturbations of a contracting near-circular string; these results are relevant for the understanding of the possible outcome when a cosmic string contracts under its own tension, as discussed in a series of papers by Vilenkin and Garriga. In particular, second order perturbations are necessary for a consistent computation of the energy. We also quantize the perturbations and derive the mass formula up to second order in perturbations for an observer using world-sheet time τ. The high frequency modes give the standard Minkowski result while, interestingly enough, the Hamiltonian turns out to be nondiagonal in oscillators for low-frequency modes. Using an alternative definition of the vacuum, it is possible to diagonalize the Hamiltonian, and the standard string mass spectrum appears for all frequencies. We finally discuss how our results are also relevant for the problems concerning string-spreading near a black hole horizon, as originally discussed by Susskind.
NASA Astrophysics Data System (ADS)
Lake, Matthew; Thomas, Steven; Ward, John
2010-01-01
We propose a mechanism for the creation of cosmic string loops with dynamically stabilised windings in the internal space. Assuming a velocity correlations regime in the post-inflationary epoch, such windings are seen to arise naturally in string networks prior to loop formation. The angular momentum of the string in the compact space may then be sufficient to ensure that the windings remain stable after the loop chops off from the network, even if the internal manifold is simply connected. For concreteness we embed our model in the Klebanov-Strassler geometry, which provides a natural mechanism for brane inflation, as well a being one of the best understood compactification schemes in type IIB string theory. We see that the interaction of angular momentum with the string tension causes the loop to oscillate between phases of expansion and contraction. This, in principle, should give rise to a distinct gravitational wave signature, the future detection of which could provide indirect evidence for the existence of extra dimensions.
Accelerating dark energy cosmological model in two fluids with hybrid scale factor
NASA Astrophysics Data System (ADS)
Mishra, B.; Sahoo, P. K.; Ray, Pratik P.
In this paper, we have investigated the anisotropic behavior of the accelerating universe in Bianchi V spacetime in the framework of General Relativity (GR). The matter field we have considered is of two non-interacting fluids, i.e. the usual string fluid and dark energy (DE) fluid. In order to represent the pressure anisotropy, the skewness parameters are introduced along three different spatial directions. To achieve a physically realistic solutions to the field equations, we have considered a scale factor, known as hybrid scale factor, which is generated by a time-varying deceleration parameter. This simulates a cosmic transition from early deceleration to late time acceleration. It is observed that the string fluid dominates the universe at early deceleration phase but does not affect nature of cosmic dynamics substantially at late phase, whereas the DE fluid dominates the universe in present time, which is in accordance with the observations results. Hence, we analyzed here the role of two fluids in the transitional phases of universe with respect to time which depicts the reason behind the cosmic expansion and DE. The role of DE with variable equation of state parameter (EoS) and skewness parameters, is also discussed along with physical and geometrical properties.
Cosmic microwave background constraints for global strings and global monopoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez-Eiguren, Asier; Lizarraga, Joanes; Urrestilla, Jon
We present the first cosmic microwave background (CMB) power spectra from numerical simulations of the global O( N ) linear σ-model, with N =2,3, which have global strings and monopoles as topological defects. In order to compute the CMB power spectra we compute the unequal time correlators (UETCs) of the energy-momentum tensor, showing that they fall off at high wave number faster than naive estimates based on the geometry of the defects, indicating non-trivial (anti-)correlations between the defects and the surrounding Goldstone boson field. We obtain source functions for Einstein-Boltzmann solvers from the UETCs, using a recently developed method thatmore » improves the modelling at the radiation-matter transition. We show that the interpolation function that mimics the transition is similar to other defect models, but not identical, confirming the non-universality of the interpolation function. The CMB power spectra for global strings and global monopoles have the same overall shape as those obtained using the non-linear σ-model approximation, which is well captured by a large- N calculation. However, the amplitudes are larger than the large- N calculation would naively predict, and in the case of global strings much larger: a factor of 20 at the peak. Finally we compare the CMB power spectra with the latest CMB data in other to put limits on the allowed contribution to the temperature power spectrum at multipole l = 10 of 1.7% for global strings and 2.4% for global monopoles. These limits correspond to symmetry-breaking scales of 2.9× 10{sup 15} GeV (6.3× 10{sup 14} GeV with the expected logarithmic scaling of the effective string tension between the simulation time and decoupling) and 6.4× 10{sup 15} GeV respectively. The bound on global strings is a significant one for the ultra-light axion scenario with axion masses m {sub a} ∼< 10{sup −28} eV . These upper limits indicate that gravitational waves from global topological defects will not be observable at the gravitational wave observatory LISA.« less
Coupling of ions to superconducting circuits
NASA Astrophysics Data System (ADS)
Moeller, Soenke; Daniilidis, Nikos; Haeffner, Hartmut
2013-05-01
We present experimental progress towards coupling the motion of ion strings to the resonant mode of a superconducting high-quality tank circuit. We consider such a coupling as the first step towards interfacing trapped ions with superconducting qubits. In our demonstration experiment, we aim to reduce the temperature of the resonant mode of the tank circuit by extracting energy from the circuit via laser cooling an ion string. One of the main experimental challenges is to construct a tank circuit with such a high quality factor Q that the ion-resonator coupling exceeds the environment-resonator coupling. Currently, we achieve Q = 60 000 at a frequency of ω = 2 π . 5 . 7 MHz . For this mode, the coupling time-scale to the environment is on the order of 50 Hz. We plan to use a trap with an ion-electrode distance on the order of 100 μm resulting in an ion-resonator coupling of 1kHz. This coupling should reduce the electronic temperature of the resonant mode by a factor of 80 below the ambient temperature. For our trap geometry we expect a minimum trap depth of 50 meV for a trap drive frequency of 52 MHz with a 200 V amplitude. This results radial trap frequencies of 5 . 7 MHz . Research funded by DARPA grant #N66001-12-1-4234.
Gravity Waves and Linear Inflation From Axion Monodromy
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAllister, Liam; /Cornell U., LEPP /Cornell U., Phys. Dept.; Silverstein, Eva
2010-08-26
Wrapped branes in string compactifications introduce a monodromy that extends the field range of individual closed-string axions to beyond the Planck scale. Furthermore, approximate shift symmetries of the system naturally control corrections to the axion potential. This suggests a general mechanism for chaotic inflation driven by monodromy-extended closed-string axions. We systematically analyze this possibility and show that the mechanism is compatible with moduli stabilization and can be realized in many types of compactifications, including warped Calabi-Yau manifolds and more general Ricci-curved spaces. In this broad class of models, the potential is linear in the canonical inflaton field, predicting a tensormore » to scalar ratio r {approx} 0.07 accessible to upcoming cosmic microwave background (CMB) observations.« less
NASA Astrophysics Data System (ADS)
Myers, Michael James
We describe the development of a novel millimeter-wave cryogenic detector. The device integrates a planar antenna, superconducting transmission line, bandpass filter, and bolometer onto a single silicon wafer. The bolometer uses a superconducting Transition-Edge Sensor (TES) thermistor, which provides substantial advantages over conventional semiconductor bolometers. The detector chip is fabricated using standard micro-fabrication techniques. This highly-integrated detector architecture is particularly well-suited for use in the de- velopment of polarization-sensitive cryogenic receivers with thousands of pixels. Such receivers are needed to meet the sensitivity requirements of next-generation cosmic microwave background polarization experiments. The design, fabrication, and testing of prototype array pixels are described. Preliminary considerations for a full array design are also discussed. A set of on-chip millimeter-wave test structures were developed to help understand the performance of our millimeter-wave microstrip circuits. These test structures produce a calibrated transmission measurement for an arbitrary two-port circuit using optical techniques, rather than a network analyzer. Some results of fabricated test structures are presented.
Low Loss Superconducting Microstrip Development at Argonne National Lab
Chang, C. L.; Ade, P. A. R.; Ahmed, Z.; ...
2014-11-20
Low loss superconducting microstrip is an essential component in realizing 100 kilo-pixel multichroic cosmic microwave background detector arrays. In this paper, we have been developing a low loss microstrip by understanding and controlling the loss mechanisms. We present the fabrication of the superconducting microstrip, the loss measurements at a few GHz frequencies using half-wavelength resonators, and the loss measurements at 220 GHz frequencies with the superconducting microstrip coupled to slot antennas at one end and to TES detectors at the other end. Finally, the measured loss tangent of the microstrip made of sputtered Nb and SiOx is 1-2e-3.
Fermionic vacuum polarization by an Abelian magnetic tube in the cosmic string spacetime
NASA Astrophysics Data System (ADS)
Maior de Sousa, M. S.; Ribeiro, R. F.; Bezerra de Mello, E. R.
2017-02-01
In this paper, we consider a charged massive fermionic quantum field in the idealized cosmic string spacetime and in the presence of a magnetic field confined in a cylindrical tube of finite radius. Three distinct configurations for the magnetic fields are taken into account: (i) a cylindrical shell of radius a , (ii) a magnetic field proportional to 1 /r , and (iii) a constant magnetic field. In these three cases, the axis of the infinitely long tube of radius a coincides with the cosmic string. Our main objectives in this paper are to analyze the fermionic condensate (FC) and the vacuum expectation value (VEV) of the fermionic energy-momentum tensor. In order to do that, we explicitly construct the complete set of normalized wave functions for each configuration of the magnetic field. We show that in the region outside the tube, the FC and the VEV of the energy-momentum tensor are decomposed into two parts: The first ones correspond to the zero-thickness magnetic flux contributions, and the second ones are induced by the nontrivial structure of the magnetic field, named core-induced contributions. The latter present specific forms depending on the magnetic field configuration considered. We also show that the VEV of the energy-momentum tensor is diagonal and obeys the conservation condition, and its trace is expressed in terms of the fermionic condensate. The zero-thickness contributions to the FC and VEV of the energy-momentum tensor depend only on the fractional part of the ration of the magnetic flux inside the tube by the quantum one. As to the core-induced contributions, they depend on the total magnetic flux inside the tube and, consequently, in general, are not a periodic function of the magnetic flux.
European Pulsar Timing Array limits on an isotropic stochastic gravitational-wave background
NASA Astrophysics Data System (ADS)
Lentati, L.; Taylor, S. R.; Mingarelli, C. M. F.; Sesana, A.; Sanidas, S. A.; Vecchio, A.; Caballero, R. N.; Lee, K. J.; van Haasteren, R.; Babak, S.; Bassa, C. G.; Brem, P.; Burgay, M.; Champion, D. J.; Cognard, I.; Desvignes, G.; Gair, J. R.; Guillemot, L.; Hessels, J. W. T.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazarus, P.; Liu, K.; Osłowski, S.; Perrodin, D.; Petiteau, A.; Possenti, A.; Purver, M. B.; Rosado, P. A.; Smits, R.; Stappers, B.; Theureau, G.; Tiburzi, C.; Verbiest, J. P. W.
2015-11-01
We present new limits on an isotropic stochastic gravitational-wave background (GWB) using a six pulsar data set spanning 18 yr of observations from the 2015 European Pulsar Timing Array data release. Performing a Bayesian analysis, we fit simultaneously for the intrinsic noise parameters for each pulsar, along with common correlated signals including clock, and Solar system ephemeris errors, obtaining a robust 95 per cent upper limit on the dimensionless strain amplitude A of the background of A < 3.0 × 10-15 at a reference frequency of 1 yr-1 and a spectral index of 13/3, corresponding to a background from inspiralling supermassive black hole binaries, constraining the GW energy density to Ωgw(f)h2 < 1.1 × 10-9 at 2.8 nHz. We also present limits on the correlated power spectrum at a series of discrete frequencies, and show that our sensitivity to a fiducial isotropic GWB is highest at a frequency of ˜5 × 10-9 Hz. Finally, we discuss the implications of our analysis for the astrophysics of supermassive black hole binaries, and present 95 per cent upper limits on the string tension, Gμ/c2, characterizing a background produced by a cosmic string network for a set of possible scenarios, and for a stochastic relic GWB. For a Nambu-Goto field theory cosmic string network, we set a limit Gμ/c2 < 1.3 × 10-7, identical to that set by the Planck Collaboration, when combining Planck and high-ℓ cosmic microwave background data from other experiments. For a stochastic relic background, we set a limit of Ω ^relic_gw(f)h^2<1.2 × 10^{-9}, a factor of 9 improvement over the most stringent limits previously set by a pulsar timing array.
DOE Office of Scientific and Technical Information (OSTI.GOV)
IceCube Collaboration; Ackermann, M.
2007-11-02
This paper bundles 40 contributions by the IceCube collaboration that were submitted to the 30th International Cosmic Ray Conference ICRC 2007. The articles cover studies on cosmic rays and atmospheric neutrinos, searches for non-localized, extraterrestrial {nu}{sub e}, {nu}{sub {mu}} and {nu}{sub {tau}} signals, scans for steady and intermittent neutrino point sources, searches for dark matter candidates, magnetic monopoles and other exotic particles, improvements in analysis techniques, as well as future detector extensions. The IceCube observatory will be finalized in 2011 to form a cubic-kilometer ice-Cherenkov detector at the location of the geographic South Pole. At the present state of construction,more » IceCube consists of 52 paired IceTop surface tanks and 22 IceCube strings with a total of 1426 Digital Optical Modules deployed at depths up to 2350 m. The observatory also integrates the 19 string AMANDA subdetector, that was completed in 2000 and extends IceCube's reach to lower energies. Before the deployment of IceTop, cosmic air showers were registered with the 30 station SPASE-2 surface array. IceCube's low noise Digital Optical Modules are very reliable, show a uniform response and record waveforms of arriving photons that are resolvable with nanosecond precision over a large dynamic range. Data acquisition, reconstruction and simulation software are running in production mode and the analyses, profiting from the improved data quality and increased overall sensitivity, are well under way.« less
Stationary black holes with stringy hair
NASA Astrophysics Data System (ADS)
Boos, Jens; Frolov, Valeri P.
2018-01-01
We discuss properties of black holes which are pierced by special configurations of cosmic strings. For static black holes, we consider radial strings in the limit when the number of strings grows to infinity while the tension of each single string tends to zero. In a properly taken limit, the stress-energy tensor of the string distribution is finite. We call such matter stringy matter. We present a solution of the Einstein equations for an electrically charged static black hole with the stringy matter, with and without a cosmological constant. This solution is a warped product of two metrics. One of them is a deformed 2-sphere, whose Gaussian curvature is determined by the energy density of the stringy matter. We discuss the embedding of a corresponding distorted sphere into a three-dimensional Euclidean space and formulate consistency conditions. We also found a relation between the square of the Weyl tensor invariant of the four-dimensional spacetime of the stringy black holes and the energy density of the stringy matter. In the second part of the paper, we discuss test stationary strings in the Kerr geometry and in its Kerr-NUT-(anti-)de Sitter generalizations. Explicit solutions for strings that are regular at the event horizon are obtained. Using these solutions, the stress-energy tensor of the stringy matter in these geometries is calculated. Extraction of the angular momentum from rotating black holes by such strings is also discussed.
On Closed Timelike Curves and Warped Brane World Models
NASA Astrophysics Data System (ADS)
Slagter, Reinoud Jan
2013-09-01
At first glance, it seems possible to construct in general relativity theory causality violating solutions. The most striking one is the Gott spacetime. Two cosmic strings, approaching each other with high velocity, could produce closed timelike curves. It was quickly recognized that this solution violates physical boundary conditions. The effective one particle generator becomes hyperbolic, so the center of mass is tachyonic. On a 5-dimensional warped spacetime, it seems possible to get an elliptic generator, so no obstruction is encountered and the velocity of the center of mass of the effective particle has an overlap with the Gott region. So a CTC could, in principle, be constructed. However, from the effective 4D field equations on the brane, which are influenced by the projection of the bulk Weyl tensor on the brane, it follows that no asymptotic conical space time is found, so no angle deficit as in the 4D counterpart model. This could also explain why we do not observe cosmic strings.
Void statistics, scaling, and the origins of large-scale structure
NASA Technical Reports Server (NTRS)
Fry, J. N.; Giovanelli, Riccardo; Haynes, Martha P.; Melott, Adrian L.; Scherrer, Robert J.
1989-01-01
The probability that a volume of the universe of given size and shape spaced at random will be void of galaxies is used here to study various models of the origin of cosmological structures. Numerical simulations are conducted on hot-particle and cold-particle-modulated inflationary models with and without biasing, on isothermal or initially Poisson models, and on models where structure is seeded by loops of cosmic string. For the Pisces-Perseus redshift compilation of Giovanelli and Haynes (1985), it is found that hierarchical scaling is obeyed for subsamples constructed with different limiting magnitudes and subsamples taken at random. This result confirms that the hierarchical ansatz holds valid to high order and supports the idea that structure in the observed universe evolves by a regular process from an almost Gaussian primordial state. Neutrino models without biasing show the effect of a strong feature in the initial power spectrum. Cosmic string models do not agree well with the galaxy data.
High energy physics, past, present and future
NASA Astrophysics Data System (ADS)
Sugawara, Hirotaka
2017-03-01
At the beginning of last century we witnessed the emergence of new physics, quantum theory and gravitational theory, which gave us correct understanding of the world of atoms and deep insight into the structure of universe we live in. Towards the end of the century, string theory emerged as the most promising candidate to unify these two theories. In this talk, I would like to assert that the understanding of the origin of physical constants, ℏ (Planck constant) for quantum theory, and G (Newton’s gravitational constant) for gravitational theory within the framework of string theory is the key to understanding string theory. Then, I will shift to experimental high energy physics and discuss the necessity of world-wide collaboration in the area of superconducting technology which is essential in constructing the 100 TeV hadron collider.
End Point of Black Ring Instabilities and the Weak Cosmic Censorship Conjecture.
Figueras, Pau; Kunesch, Markus; Tunyasuvunakool, Saran
2016-02-19
We produce the first concrete evidence that violation of the weak cosmic censorship conjecture can occur in asymptotically flat spaces of five dimensions by numerically evolving perturbed black rings. For certain thin rings, we identify a new, elastic-type instability dominating the evolution, causing the system to settle to a spherical black hole. However, for sufficiently thin rings the Gregory-Laflamme mode is dominant, and the instability unfolds similarly to that of black strings, where the horizon develops a structure of bulges connected by necks which become ever thinner over time.
Superconducting Magnet Shielding of Astronauts from Cosmic Rays
NASA Astrophysics Data System (ADS)
Fisher, Peter; Hoffman, Jeffrey; Zhou, Feng; Batishchev, Oleg
2004-11-01
Protecting astronauts traveling outside the Earth's protective magnetic field from cosmic and solar radiation [1] is one of the critical problems that must be solved in order to realize the nation's new human space exploration vision. Superconducting magnets, such as those under construction for the ATLAS experiment [2] at CERN, have achieved sufficient size to be able to surround a reasonable habitable volume, and their field strength is high enough to deflect a significant portion of the incoming radiation. We have undertaken a research effort aimed at developing an accurate numerical model of a crew compartment surrounded by a large magnetic field, with which we can calculate the effect on incoming charged particles. We will use this model to optimize the magnetic configuration to produce the maximum shielding effect while minimizing the mass of the superconducting magnet system. We are also investigating some of the practical problems that must be solved if large, superconducting magnet systems are to be incorporated into human space systems. We will present preliminary results of our modeling, showing the reduction of radiation exposure as a function of energy and atomic species. [1] Review of Particle Physics, Ed. Particle Data Group, Phys. Lett. B, 1-4 (592) 1-1109, 2004 [2] http://atlasexperiment.org/
Search for cosmic-ray antimatter
NASA Technical Reports Server (NTRS)
Smoot, G. F.; Buffington, A.; Orth, C. D.
1975-01-01
It appears probable that some fraction of the cosmic rays has extragalactic origin. A search for antimatter nuclei was conducted with the aid of a balloon-borne superconducting magnetic spectrometer. The investigation made use of the fact that matter and antimatter nuclei, because of their opposite signs of charge, would be deflected in opposite directions when passing through a magnetic field. The antimatter flux limits set by the experiments are discussed.
Rosen, Steven M
2017-12-01
This paper carries forward the author's contribution to PBMP's previous special issue on Integral Biomathics (Rosen 2015). In the earlier paper, the crisis in contemporary theoretical physics was described and it was demonstrated that the problem can be addressed effectively only by shifting the foundations of physics from objectivist Cartesian philosophy to phenomenological philosophy. To that end, a phenomenological string theory was proposed based on qualitative topology and hypercomplex numbers. The current presentation takes this further by delving into the ancient Chinese origin of phenomenological string theory. First, we discover a deep connection between the Klein bottle, which is crucial to the theory, and the Ho-t'u, an old Chinese number archetype central to Taoist cosmology. The two structures are seen to mirror each other in expressing the curious psychophysical (phenomenological) action pattern at the heart of microphysics. But tackling the question of quantum gravity requires that a whole family of topological dimensions be brought into play. What we find in engaging with these structures is a closely related family of Taoist forebears that, in concert with their successors, provide a blueprint for cosmic evolution. Whereas conventional string theory accounts for the generation of nature's fundamental forces via a notion of symmetry breaking that is essentially static and thus unable to explain cosmogony successfully, phenomenological/Taoist string theory is guided by the dialectical interplay between symmetry and asymmetry inherent in the principle of synsymmetry. This dynamic concept of cosmic change is elaborated on in the three concluding sections of the paper. Here, a detailed analysis of cosmogony is offered, first in terms of the theory of dimensional development and its Taoist (yin-yang) counterpart, then in terms of the evolution of the elemental force particles through cycles of expansion and contraction in a spiraling universe. The paper closes by considering the role of the analyst per se in the further evolution of the cosmos. Copyright © 2017 Elsevier Ltd. All rights reserved.
A New Measurement of the Cosmic-Ray Proton and Helium Spectra
NASA Astrophysics Data System (ADS)
Mocchiutti, E.; Ambriola, M.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Boezio, M.; Bonicini, V.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C. N.; De Pascale, M. P.; Finetti, N.; Francke, T.; Hansen, P.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J. W.; Mocchiutti, E.; Morselli, A.; Ormes, J. F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Vannuccini, E.; Zampa, N.; WIZARD/CAPRICE Collaboration
2001-08-01
A new measurement of the primary cosmic ray spectra was performed during the balloon-borne CAPRICE experiment in 1998. This apparatus consists of a magnet spectrometer, with a superconducting magnet and a driftchamber tracking device, a time of flight scintillator system, a silicon-tungsten imaging calorimeter and a gas ring imaging Cherenkov detector. This combination of state-of-the-art detectors provides excellent particle discrimination capabilities, such that detailed investigations of the antiproton, electron/positron, muon and primary components of cosmic rays have been performed. The analysis of the primary proton component is illustrated in this paper.
Search for antimatter in primary cosmic rays.
NASA Technical Reports Server (NTRS)
Buffington, A.; Smith, L. H.; Smoot, G. F.; Alvarez, L. W.; Wahlig, M. A.
1972-01-01
Data from two flights of a new superconducting magnetic spectrometer are reported. This instrument was capable of a direct matter-antimatter separation in the cosmic rays. Antimatter events would appear in the spectrometer as trajectories which curve in the opposite direction to common matter, because of their negative charge. A brief description of the equipment and of the characteristics of the instrument is presented, along with the data processing techniques used. A new upper limit on the amount of antimatter in primary cosmic rays has been established. The limits are considerably lower than those for any previous experiment.
Leak checker data logging system
Gannon, J.C.; Payne, J.J.
1996-09-03
A portable, high speed, computer-based data logging system for field testing systems or components located some distance apart employs a plurality of spaced mass spectrometers and is particularly adapted for monitoring the vacuum integrity of a long string of a superconducting magnets such as used in high energy particle accelerators. The system provides precise tracking of a gas such as helium through the magnet string when the helium is released into the vacuum by monitoring the spaced mass spectrometers allowing for control, display and storage of various parameters involved with leak detection and localization. A system user can observe the flow of helium through the magnet string on a real-time basis hour the exact moment of opening of the helium input valve. Graph reading can be normalized to compensate for magnet sections that deplete vacuum faster than other sections between testing to permit repetitive testing of vacuum integrity in reduced time. 18 figs.
Leak checker data logging system
Gannon, Jeffrey C.; Payne, John J.
1996-01-01
A portable, high speed, computer-based data logging system for field testing systems or components located some distance apart employs a plurality of spaced mass spectrometers and is particularly adapted for monitoring the vacuum integrity of a long string of a superconducting magnets such as used in high energy particle accelerators. The system provides precise tracking of a gas such as helium through the magnet string when the helium is released into the vacuum by monitoring the spaced mass spectrometers allowing for control, display and storage of various parameters involved with leak detection and localization. A system user can observe the flow of helium through the magnet string on a real-time basis hour the exact moment of opening of the helium input valve. Graph reading can be normalized to compensate for magnet sections that deplete vacuum faster than other sections between testing to permit repetitive testing of vacuum integrity in reduced time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martins, R. A.
The recent extension of the standard model to include massive neutrinos in the framework of noncommutative geometry and the spectral action principle involves new scalar fields and their interactions with the usual complex scalar doublet. After ensuring that they bring no unphysical consequences, we address the question of how these fields affect the physics predicted in the Weinberg-Salam theory, particularly in the context of the electroweak phase transition. Applying the Dolan-Jackiw procedure, we calculate the finite temperature corrections, and find that the phase transition is first order. The new scalar interactions significantly improve the stability of the electroweak Z string,more » through the 'bag' phenomenon described by Vachaspati and Watkins ['Bound states can stabilize electroweak strings', Phys. Lett. B 318, 163-168 (1993)]. (Recently, cosmic strings have climbed back into interest due to a new evidence.) Sourced by static embedded strings, an internal space analogy of Cartan's torsion is drawn, and a possible Higgs-force-like 'gravitational' effect of this nonpropagating torsion on the fermion masses is described. We also check that the field generating the Majorana mass for the {nu}{sub R} is nonzero in the physical vacuum.« less
Dynamical behavior and Jacobi stability analysis of wound strings
NASA Astrophysics Data System (ADS)
Lake, Matthew J.; Harko, Tiberiu
2016-06-01
We numerically solve the equations of motion (EOM) for two models of circular cosmic string loops with windings in a simply connected internal space. Since the windings cannot be topologically stabilized, stability must be achieved (if at all) dynamically. As toy models for realistic compactifications, we consider windings on a small section of mathbb {R}^2, which is valid as an approximation to any simply connected internal manifold if the winding radius is sufficiently small, and windings on an S^2 of constant radius mathcal {R}. We then use Kosambi-Cartan-Chern (KCC) theory to analyze the Jacobi stability of the string equations and determine bounds on the physical parameters that ensure dynamical stability of the windings. We find that, for the same initial conditions, the curvature and topology of the internal space have nontrivial effects on the microscopic behavior of the string in the higher dimensions, but that the macroscopic behavior is remarkably insensitive to the details of the motion in the compact space. This suggests that higher-dimensional signatures may be extremely difficult to detect in the effective (3+1)-dimensional dynamics of strings compactified on an internal space, even if configurations with nontrivial windings persist over long time periods.
Dirac oscillator interacting with a topological defect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvalho, J.; Furtado, C.; Moraes, F.
In this work we study the interaction problem of a Dirac oscillator with gravitational fields produced by topological defects. The energy levels of the relativistic oscillator in the cosmic string and in the cosmic dislocation space-times are sensible to curvature and torsion associated to these defects and are important evidence of the influence of the topology on this system. In the presence of a localized magnetic field the energy levels acquire a term associated with the Aharonov-Bohm effect. We obtain the eigenfunctions and eigenvalues and see that in the nonrelativistic limit some results known in standard quantum mechanics are reached.
ISLES: Probing Extra Dimensions Using a Superconducting Accelerometer
NASA Technical Reports Server (NTRS)
Paik, Ho Jung; Moody, M. Vol; Prieto-Gortcheva, Violeta A.
2003-01-01
In string theories, extra dimensions must be compactified. The possibility that gravity can have large radii of compactification leads to a violation of the inverse square law at submillimeter distances. The objective of ISLES is to perform a null test of Newton s law in space with a resolution of one part in 10(exp 5) or better at 100 microns. The experiment will be cooled to less than or equal to 2 K, which permits superconducting magnetic levitation of the test masses. To minimize Newtonian errors, ISLES employs a near null source, a circular disk of large diameter-to-thickness ratio. Two test masses, also disk-shaped, are suspended on the two sides of the source mass at a nominal distance of 100 microns. The signal is detected by a superconducting differential accelerometer. A ground test apparatus is under construction.
Phenomenology of soft hadron interactions and the relevant EAS data
NASA Technical Reports Server (NTRS)
Kalmykov, N. N.; Khristiansen, G. B.; Motova, M. V.
1984-01-01
The interpretation of the experimental data in superhigh energy cosmic rays requires the calculations using various models of elementary hadron interaction. One should prefer the models justified by accelerator data and giving definite predictions for superhigh energies. The model of quark-gluon pomeron strings (the QGPS models) satisfies this requirement.
f(T) gravity and energy distribution in Landau-Lifshitz prescription
NASA Astrophysics Data System (ADS)
Ganiou, M. G.; Houndjo, M. J. S.; Tossa, J.
We investigate in this paper the Landau-Lifshitz energy distribution in the framework of f(T) theory view as a modified version of Teleparallel theory. From some important Teleparallel theory results on the localization of energy, our investigations generalize the Landau-Lifshitz prescription from the computation of the energy-momentum complex to the framework of f(T) gravity as it is done in the modified versions of General Relativity. We compute the energy density in the first step for three plane-symmetric metrics in vacuum. We find for the second metric that the energy density vanishes independently of f(T) models. We find that the Teleparallel Landau-Lifshitz energy-momentum complex formulations for these metrics are different from those obtained in General Relativity for the same metrics. Second, the calculations are performed for the cosmic string spacetime metric. It results that the energy distribution depends on the mass M and the radius r of cosmic string and it is strongly affected by the parameter of the considered quadratic and cubic f(T) models. Our investigation with this metric induces interesting results susceptible to be tested with some astrophysics hypothesis.
Quantum no-scale regimes in string theory
NASA Astrophysics Data System (ADS)
Coudarchet, Thibaut; Fleming, Claude; Partouche, Hervé
2018-05-01
We show that in generic no-scale models in string theory, the flat, expanding cosmological evolutions found at the quantum level can be attracted to a "quantum no-scale regime", where the no-scale structure is restored asymptotically. In this regime, the quantum effective potential is dominated by the classical kinetic energies of the no-scale modulus and dilaton. We find that this natural preservation of the classical no-scale structure at the quantum level occurs when the initial conditions of the evolutions sit in a subcritical region of their space. On the contrary, supercritical initial conditions yield solutions that have no analogue at the classical level. The associated intrinsically quantum universes are sentenced to collapse and their histories last finite cosmic times. Our analysis is done at 1-loop, in perturbative heterotic string compactified on tori, with spontaneous supersymmetry breaking implemented by a stringy version of the Scherk-Schwarz mechanism.
Power suppression at large scales in string inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cicoli, Michele; Downes, Sean; Dutta, Bhaskar, E-mail: mcicoli@ictp.it, E-mail: sddownes@physics.tamu.edu, E-mail: dutta@physics.tamu.edu
2013-12-01
We study a possible origin of the anomalous suppression of the power spectrum at large angular scales in the cosmic microwave background within the framework of explicit string inflationary models where inflation is driven by a closed string modulus parameterizing the size of the extra dimensions. In this class of models the apparent power loss at large scales is caused by the background dynamics which involves a sharp transition from a fast-roll power law phase to a period of Starobinsky-like slow-roll inflation. An interesting feature of this class of string inflationary models is that the number of e-foldings of inflationmore » is inversely proportional to the string coupling to a positive power. Therefore once the string coupling is tuned to small values in order to trust string perturbation theory, enough e-foldings of inflation are automatically obtained without the need of extra tuning. Moreover, in the less tuned cases the sharp transition responsible for the power loss takes place just before the last 50-60 e-foldings of inflation. We illustrate these general claims in the case of Fibre Inflation where we study the strength of this transition in terms of the attractor dynamics, finding that it induces a pivot from a blue to a redshifted power spectrum which can explain the apparent large scale power loss. We compute the effects of this pivot for example cases and demonstrate how magnitude and duration of this effect depend on model parameters.« less
Power suppression at large scales in string inflation
NASA Astrophysics Data System (ADS)
Cicoli, Michele; Downes, Sean; Dutta, Bhaskar
2013-12-01
We study a possible origin of the anomalous suppression of the power spectrum at large angular scales in the cosmic microwave background within the framework of explicit string inflationary models where inflation is driven by a closed string modulus parameterizing the size of the extra dimensions. In this class of models the apparent power loss at large scales is caused by the background dynamics which involves a sharp transition from a fast-roll power law phase to a period of Starobinsky-like slow-roll inflation. An interesting feature of this class of string inflationary models is that the number of e-foldings of inflation is inversely proportional to the string coupling to a positive power. Therefore once the string coupling is tuned to small values in order to trust string perturbation theory, enough e-foldings of inflation are automatically obtained without the need of extra tuning. Moreover, in the less tuned cases the sharp transition responsible for the power loss takes place just before the last 50-60 e-foldings of inflation. We illustrate these general claims in the case of Fibre Inflation where we study the strength of this transition in terms of the attractor dynamics, finding that it induces a pivot from a blue to a redshifted power spectrum which can explain the apparent large scale power loss. We compute the effects of this pivot for example cases and demonstrate how magnitude and duration of this effect depend on model parameters.
NASA Astrophysics Data System (ADS)
Ambriola, M. L.; Barbiellini, G.; Bartalucci, S.; Basini, G.; Bellotti, R.; Bergstroem, D.; Bocciolini, M.; Boezio, M.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Castellano, M.; Ciacio, F.; Circella, M.; de Marzo, C.; de Pascale, M. P.; Finetti, N.; Francke, T.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J. W.; Morselli, A.; Ormes, J. F.; Papini, P.; Perego, A.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Weber, N.; Zampa, N.
1999-08-01
CAPRICE98 is a superconducting magnetic spectrometer built by the WiZard collaboration. It was launched from Ft. Sumner, NM, USA on the 28th of May 1998. For the first time a gas RICH detector has been flown together with a silicon electromagnetic calorimeter. The instrument configuration included a time of flight detector and a drift chamber stack, which were placed in the region of a magnet field, for rigidity measurement. Science objectives for this experiment include the study of antimatter in cosmic rays and that of cosmic ray composition in the atmosphere with special focus on muons.
Dark matter cosmic string in the gravitational field of a black hole
NASA Astrophysics Data System (ADS)
Nakonieczny, Łukasz; Nakonieczna, Anna; Rogatko, Marek
2018-03-01
We examined analytically and proposed a numerical model of an Abelian Higgs dark matter vortex in the spacetime of a stationary axisymmetric Kerr black hole. In analytical calculations the dark matter sector was modeled by an addition of a U(1)-gauge field coupled to the visible sector. The backreaction analysis revealed that the impact of the dark vortex presence is far more complicated than causing only a deficit angle. The vortex causes an ergosphere shift and the event horizon velocity is also influenced by its presence. These phenomena are more significant than in the case of a visible vortex sector. The area of the event horizon of a black hole is diminished and this decline is larger in comparison to the Kerr black hole with an Abelian Higgs vortex case. After analyzing the gravitational properties for the general setup, we focused on the subset of models that are motivated by particle physics. We retained the Abelian Higgs model as a description of the dark matter sector (this sector contained a heavy dark photon and an additional complex scalar) and added a real scalar representing the real component of the Higgs doublet in the unitary gauge, as well as an additional U(1)-gauge field representing an ordinary electromagnetic field. Moreover, we considered two coupling channels between the visible and dark sectors, which were the kinetic mixing between the gauge fields and a quartic coupling between the scalar fields. After solving the equations of motion for the matter fields numerically we analyzed properties of the cosmic string in the dark matter sector and its influence on the visible sector fields that are directly coupled to it. We found out that the presence of the cosmic string induced spatial variation in the vacuum expectation value of the Higgs field and a nonzero electromagnetic field around the black hole.
NASA Astrophysics Data System (ADS)
Knudsen, Steven; Golubovic, Leonardo
Prospects to build Space Elevator (SE) systems have become realistic with ultra-strong materials such as carbon nano-tubes and diamond nano-threads. At cosmic length-scales, space elevators can be modeled as polymer like floppy strings of tethered mass beads. A new venue in SE science has emerged with the introduction of the Rotating Space Elevator (RSE) concept supported by novel algorithms discussed in this presentation. An RSE is a loopy string reaching into outer space. Unlike the classical geostationary SE concepts of Tsiolkovsky, Artsutanov, and Pearson, our RSE exhibits an internal rotation. Thanks to this, objects sliding along the RSE loop spontaneously oscillate between two turning points, one of which is close to the Earth whereas the other one is in outer space. The RSE concept thus solves a major problem in SE technology which is how to supply energy to the climbers moving along space elevator strings. The investigation of the classical and statistical mechanics of a floppy string interacting with objects sliding along it required development of subtle computational algorithms described in this presentation
Evaluation of Superconducting Magnet Shield Configurations for Long Duration Manned Space Missions.
Ambroglini, Filippo; Battiston, Roberto; Burger, William J
2016-01-01
A manned mission to Mars would present an important long-term health risk to the crew members due to the prolonged exposure to the ionizing radiation of galactic cosmic-rays. The radiation levels would largely exceed those encountered in the Apollo missions. An increase in the passive shielding provided by the spacecraft implies a significant increase of the mass. The advent of superconducting magnets in the early 1960s was considered an attractive alternative. The technology allows to generate magnetic fields capable to deflect the cosmic-rays in a manner analogous to the reduction of the particle fluxes in the upper atmosphere due to the Earth's dipole magnetic field. A series of the three studies have been conducted over the last 5 years, funded successively by European Space Agency (ESA), the NASA Innovative Advanced Concepts (NIAC) program, and the Union European's Seventh Framework Programme (FP7). The shielding configurations studied are based on high-temperature superconductors, which eliminate the need to operate with liquid helium. The mass estimates of the coils and supporting structure of the engineering designs are based on the current and expected near-future performance of the superconducting materials. In each case, the shield performance, in terms of dose reduction, is provided by a 3-dimensional Monte Carlo simulation, which treats in detail the electromagnetic and hadronic interactions of the galactic-cosmic rays, and the secondary particles they produce in the materials of the shield and spacecraft. A summary of the results of the studies, representing one of the most detailed and comprehensive efforts made in the field, is presented.
Measurement of the Anisotropy of Cosmic-ray Arrival Directions with IceCube
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; De Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; IceCube Collaboration
2010-08-01
We report the first observation of an anisotropy in the arrival direction of cosmic rays with energies in the multi-TeV region in the Southern sky using data from the IceCube detector. Between 2007 June and 2008 March, the partially deployed IceCube detector was operated in a configuration with 1320 digital optical sensors distributed over 22 strings at depths between 1450 and 2450 m inside the Antarctic ice. IceCube is a neutrino detector, but the data are dominated by a large background of cosmic-ray muons. Therefore, the background data are suitable for high-statistics studies of cosmic rays in the southern sky. The data include 4.3 billion muons produced by downward-going cosmic-ray interactions in the atmosphere; these events were reconstructed with a median angular resolution of 3° and a median energy of ~20 TeV. Their arrival direction distribution exhibits an anisotropy in right ascension with a first-harmonic amplitude of (6.4 ± 0.2 stat. ± 0.8 syst.) × 10-4.
On the initial regime of pre-big bang cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasperini, M., E-mail: gasperini@ba.infn.it
The production of a background of super-horizon curvature perturbations with the appropriate (red) spectrum needed to trigger the cosmic anisotropies observed on large scales is associated, in the context of pre-big bang inflation, with a phase of growing string coupling. The extension towards the past of such a phase is not limited in time by the dynamical backreaction of the quantum perturbations of the cosmological geometry and of its sources. A viable, slightly red spectrum of scalar perturbations can thus be the output of an asymptotic, perturbative regime which is well compatible with an initial string-vacuum state satisfying the postulatemore » of 'Asymptotic Past Triviality'.« less
NASA Astrophysics Data System (ADS)
Barbiellini, G.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Bidoli, V.; Boezio, M.; Bonvicini, V.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C.; De Pascale, M. P.; Finetti, N.; Francke, T.; Grinstein, S.; Hof, M.; Khalchukov, F.; Kremer, J.; Menn, W.; Mitchell, J. W.; Morselli, A.; Ormes, J. F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Simon, M.; Schiavon, P.; Sparvoli, R.; Spillantini, P.; Stochaj, S. J.; Streitmatter, R. E.; Stephens, S. A.; Suffert, M.; Vacchi, A.; Weber, N.; Zampa, N.
2001-04-01
CAPRICE98 is a superconducting magnetic spectrometer, equipped with a gas RICH and a silicon calorimeter, launched from Ft. Sumner (USA), on the 28th of May 1998, by the WiZard collaboration. For the first time a gas RICH detector flew together with a silicon electromagnetic calorimeter, allowing mass resolved antiprotons, with E>18 GeV, to be detected. The detector configuration was completed by a time of flight for particle identification, and a set of three drift chambers for rigidity measurement. The science objectives are the study of antimatter in cosmic rays and the cosmic ray composition in the atmosphere with special focus on muons.
NASA Astrophysics Data System (ADS)
Silva, James
2017-09-01
The Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering (CE νNS) using metallic superconducting and germanium semi-conducting detectors with sub-keV thresholds placed near a neutrino source such as the Chooz Nuclear Reactor Complex. In this poster, we present an estimate of the flux of cosmic-ray induced neutrons, which represent an important background in any (CE νNS) search, based on reconstructed cosmic ray data from the Chooz Site. We have simulated a possible Ricochet deployment at the Chooz site in GEANT4 focusing on the spallation neutrons generated when cosmic rays interact with the water tank veto that would surround our detector. We further simulate and discuss the effectiveness of various shielding configurations for optimizing the background levels for a future Ricochet deployment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Namikawa, Toshiya
We study the reconstruction of the cosmic rotation power spectrum produced by parity-violating physics, with an eye to ongoing and near future cosmic microwave background (CMB) experiments such as BICEP Array, CMBS4, LiteBIRD and Simons Observatory. In addition to the inflationary gravitational waves and gravitational lensing, measurements of other various effects on CMB polarization open new window into the early Universe. One of these is anisotropies of the cosmic polarization rotation which probes the Chern-Simons term generally predicted by string theory. The anisotropies of the cosmic rotation are also generated by the primordial magnetism and in the Standard Model extentionmore » framework. The cosmic rotation anisotropies can be reconstructed as quadratic in CMB anisotropies. However, the power of the reconstructed cosmic rotation is a CMB four-point correlation and is not directly related to the cosmic-rotation power spectrum. Understanding all contributions in the four-point correlation is required to extract the cosmic rotation signal. Here, assuming inflationary motivated cosmic-rotation models, we employ simulation to quantify each contribution to the four-point correlation and find that (1) a secondary contraction of the trispectrum increases the total signal-to-noise, (2) a bias from the lensing-induced trispectrum is significant compared to the statistical errors in, e.g., LiteBIRD and CMBS4-like experiments, (3) the use of a realization-dependent estimator decreases the statistical errors by 10%–20%, depending on experimental specifications, and (4) other higher-order contributions are negligible at least for near future experiments.« less
Lattice black branes: sphere packing in general relativity
NASA Astrophysics Data System (ADS)
Dias, Óscar J. C.; Santos, Jorge E.; Way, Benson
2018-05-01
We perturbatively construct asymptotically R^{1,3}× T^2 black branes with multiple inhomogeneous directions and show that some of them are thermodynamically preferred over uniform branes in both the microcanonical and canonical ensembles. This demonstrates that, unlike five-dimensional black strings, the instability of some unstable black branes has a plausible endpoint that does not require a violation of cosmic censorship.
Evaluation of Superconducting Magnet Shield Configurations for Long Duration Manned Space Missions
Ambroglini, Filippo; Battiston, Roberto; Burger, William J.
2016-01-01
A manned mission to Mars would present an important long-term health risk to the crew members due to the prolonged exposure to the ionizing radiation of galactic cosmic-rays. The radiation levels would largely exceed those encountered in the Apollo missions. An increase in the passive shielding provided by the spacecraft implies a significant increase of the mass. The advent of superconducting magnets in the early 1960s was considered an attractive alternative. The technology allows to generate magnetic fields capable to deflect the cosmic-rays in a manner analogous to the reduction of the particle fluxes in the upper atmosphere due to the Earth’s dipole magnetic field. A series of the three studies have been conducted over the last 5 years, funded successively by European Space Agency (ESA), the NASA Innovative Advanced Concepts (NIAC) program, and the Union European’s Seventh Framework Programme (FP7). The shielding configurations studied are based on high-temperature superconductors, which eliminate the need to operate with liquid helium. The mass estimates of the coils and supporting structure of the engineering designs are based on the current and expected near-future performance of the superconducting materials. In each case, the shield performance, in terms of dose reduction, is provided by a 3-dimensional Monte Carlo simulation, which treats in detail the electromagnetic and hadronic interactions of the galactic-cosmic rays, and the secondary particles they produce in the materials of the shield and spacecraft. A summary of the results of the studies, representing one of the most detailed and comprehensive efforts made in the field, is presented. PMID:27376023
NASA Astrophysics Data System (ADS)
Matsumura, T.; Sakurai, Y.; Kataza, H.; Utsunomiya, S.; Yamamoto, R.
2016-11-01
We present the design and mechanical performances of a magnetically coupled gear mechanism to drive a levitating rotor magnet of a superconducting magnetic bearing (SMB). The SMB consists of a ring-shaped high-temperature superconducting array (YBCO) and a ring-shaped permanent magnet. This rotational system is designed to operate below 10 K, and thus the design philosophy is to minimize any potential source of heat dissipation. While an SMB provides only a functionality of namely a bearing, it requires a mechanism to drive a rotational motion. We introduce a simple implementation of a magnetically coupled gears between a stator and a rotor. This enables to achieve enough torque to drive a levitating rotor without slip at the rotation frequency of about 1 Hz below 10 K. The rotational variation between the rotor and the drive gear is synchronised within σ = 0.019 Hz. The development of this mechanism is a part of the program to develop a testbed in order to evaluate a prototype half-wave plate based polarization modulator for future space missions. The successful development allows this modulator to be a candidate for an instrument to probe the cosmic inflation by measuring the cosmic microwave background polarization.
Testing parity-violating physics from cosmic rotation power reconstruction
Namikawa, Toshiya
2017-02-22
We study the reconstruction of the cosmic rotation power spectrum produced by parity-violating physics, with an eye to ongoing and near future cosmic microwave background (CMB) experiments such as BICEP Array, CMBS4, LiteBIRD and Simons Observatory. In addition to the inflationary gravitational waves and gravitational lensing, measurements of other various effects on CMB polarization open new window into the early Universe. One of these is anisotropies of the cosmic polarization rotation which probes the Chern-Simons term generally predicted by string theory. The anisotropies of the cosmic rotation are also generated by the primordial magnetism and in the Standard Model extentionmore » framework. The cosmic rotation anisotropies can be reconstructed as quadratic in CMB anisotropies. However, the power of the reconstructed cosmic rotation is a CMB four-point correlation and is not directly related to the cosmic-rotation power spectrum. Understanding all contributions in the four-point correlation is required to extract the cosmic rotation signal. Here, assuming inflationary motivated cosmic-rotation models, we employ simulation to quantify each contribution to the four-point correlation and find that (1) a secondary contraction of the trispectrum increases the total signal-to-noise, (2) a bias from the lensing-induced trispectrum is significant compared to the statistical errors in, e.g., LiteBIRD and CMBS4-like experiments, (3) the use of a realization-dependent estimator decreases the statistical errors by 10%–20%, depending on experimental specifications, and (4) other higher-order contributions are negligible at least for near future experiments.« less
Search for Cosmic-Ray Antiproton Origins and for Cosmological Antimatter with BESS
NASA Technical Reports Server (NTRS)
Yamamoto, A.; Mitchell, J. W.; Yoshimura, K.; Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.;
2011-01-01
The balloon-borne experiment with a superconducting spectrometer (BESS) has performed cosmic-ray observations as a US-Japan cooperative space science program, and has provided fundamental data on cosmic rays to study elementary particle phenomena in the early Universe. The BESS experiment has measured the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic origins such as dark matter candidates or primordial black holes. and searched for heavier antinuclei that might reach Earth from antimatter domains formed in the early Universe. The apex of the BESS program was reached with the Antarctic flight of BESS-Polar II, during the 2007- 2008 Austral Summer, that obtained over 4.7 billion cosmic-ray events from 24.5 days of observation. The flight took place at the expected solar minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. Here, we report the scientific restults, focusing on the long-duration flights of BESS-Polar I (2004) and BESS-Polar II (2007-2008).
NASA Astrophysics Data System (ADS)
Ellis, John; Garcia, Marcos A. G.; Nanopoulos, Dimitri V.; Olive, Keith A.
2016-05-01
Supersymmetry is the most natural framework for physics above the TeV scale, and the corresponding framework for early-Universe cosmology, including inflation, is supergravity. No-scale supergravity emerges from generic string compactifications and yields a non-negative potential, and is therefore a plausible framework for constructing models of inflation. No-scale inflation yields naturally predictions similar to those of the Starobinsky model based on R+{R}2 gravity, with a tilted spectrum of scalar perturbations: {n}s∼ 0.96, and small values of the tensor-to-scalar perturbation ratio r\\lt 0.1, as favoured by Planck and other data on the cosmic microwave background (CMB). Detailed measurements of the CMB may provide insights into the embedding of inflation within string theory as well as its links to collider physics.
Cosmic microwave background anomalies in an open universe.
Liddle, Andrew R; Cortês, Marina
2013-09-13
We argue that the observed large-scale cosmic microwave anomalies, discovered by WMAP and confirmed by the Planck satellite, are most naturally explained in the context of a marginally open universe. Particular focus is placed on the dipole power asymmetry, via an open universe implementation of the large-scale gradient mechanism of Erickcek et al. Open inflation models, which are motivated by the string landscape and which can excite "supercurvature" perturbation modes, can explain the presence of a very-large-scale perturbation that leads to a dipole modulation of the power spectrum measured by a typical observer. We provide a specific implementation of the scenario which appears compatible with all existing constraints.
Phase transitions triggered by quantum fluctuations in the inflationary universe
NASA Technical Reports Server (NTRS)
Nagasawa, Michiyasu; Yokoyama, Junichi
1991-01-01
The dynamics of a second-order phase transition during inflation, which is induced by time-variation of spacetime curvature, is studied as a natural mechanism to produce topological defects of typical grand unification scales such as cosmic strings or global textures. It is shown that their distribution is almost scale-invariant with small- and large-scale cutoffs. Also discussed is how these cutoffs are given.
High-Energy Cosmic-Ray Antiprotons with the CAPRICE98 experiment
NASA Astrophysics Data System (ADS)
Boezio, M.; Ambriola, M.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Bonvicini, V.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C. N.; De Pascale, M. P.; Finetti, N.; Francke, T.; Hansen, P.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J. W.; Mocchitti, E.; Morselli, A.; Ormes, J. F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Vannuccini, E.; Zampa, N.; WIZARD/CAPRICE Collaboration
2001-08-01
Observations of cosmic-ray antiprotons were performed by the balloon-borne experiment CAPRICE98 that was flown on 28-29 May 1998 from Fort Sumner, New Mexico, USA. The experiment used the NMSU-WIZARD/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas Ring Imaging Cherenkov detector, a time-of-flight system, a tracking device consisting of drift chambers and a superconducting magnet and a silicon-tungsten calorimeter. We report on the absolute-antiproton-energy spectrum determined in the kinetic energy region at the top of the atmosphere between 3.2 and 49.1 GeV.
NASA Technical Reports Server (NTRS)
Silk, Joseph; Stebbins, Albert
1993-01-01
A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.
Cosmic ray modulation and radiation dose of aircrews during the solar cycle 24/25
NASA Astrophysics Data System (ADS)
Miyake, Shoko; Kataoka, Ryuho; Sato, Tatsuhiko
2017-04-01
Weak solar activity and high cosmic ray flux during the coming solar cycle are qualitatively anticipated by the recent observations that show the decline in the solar activity levels. We predict the cosmic ray modulation and resultant radiation exposure at flight altitude by using the time-dependent and three-dimensional model of the cosmic ray modulation. Our galactic cosmic ray (GCR) model is based on the variations of the solar wind speed, the strength of the heliospheric magnetic field, and the tilt angle of the heliospheric current sheet. We reproduce the 22 year variation of the cosmic ray modulation from 1980 to 2015 taking into account the gradient-curvature drift motion of GCRs. The energy spectra of GCR protons obtained by our model show good agreement with the observations by the Balloon-borne Experiment with a Superconducting magnetic rigidity Spectrometer (BESS) and the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) except for a discrepancy at the solar maximum. Five-year annual radiation dose around the solar minimum at the solar cycle 24/25 will be approximately 19% higher than that in the last cycle. This is caused by the charge sign dependence of the cosmic ray modulation, such as the flattop profiles in a positive polarity.
NASA Astrophysics Data System (ADS)
Kavic, Michael; Cregg C. Yancey, Brandon E. Bear, Bernadine Akukwe, Kevin Chen, Jayce Dowell, Jonathan D. Gough, Jonah Kanner, Kenneth Obenberger, Peter Shawhan, John H. Simonetti , Gregory B. Taylor , Jr-Wei Tsai
2016-01-01
We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg(2) sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.
NASA Astrophysics Data System (ADS)
Yancey, Cregg C.; Bear, Brandon E.; Akukwe, Bernadine; Chen, Kevin; Dowell, Jayce; Gough, Jonathan D.; Kanner, Jonah; Kavic, Michael; Obenberger, Kenneth; Shawhan, Peter; Simonetti, John H.; -Wei Tsai, Gregory B. Taylor, Jr.
2015-10-01
We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg2 sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.
Cosmic Ray Flux Measurement with AMANDA-II
NASA Astrophysics Data System (ADS)
Chirkin, Dmitry A.; AMANDA Collaboration
2003-07-01
AMANDA-I I is a neutrino telescope composed of 677 optical sensors organized along 19 strings buried deep in the Antarctic ice cap. It is designed to detect Cherenkov light produced by cosmic-rayand neutrino-induced muons. The ma jority of events recorded by AMANDA-I I are caused by muons which are produced in the atmosphere by high-energy cosmic rays. The leading uncertainties in simulating such events come from the choice of the high-energy model used to describe the first interaction of the cosmic rays, uncertainties in our knowledge and implementation of the ice properties at the depth of the detector, and individual optical module sensitivities. A method is developed that results in a flux measurement of cosmic rays with energies 1.5-200 TeV per nucleon (95% of primaries causing low-multiplicity events in AMANDA-I I have energies in this range) indep endent of ice model and optical module sensitivities. Predictions of six commonly-used high-energy interaction models QGSJET, VENUS, NEXUS, DPMJET, HDPM, and SYBILL are compared to data. Best agreement with direct measurements is achieved with QGSJET, VENUS, and NEXUS (preliminary: Φ0,H = 0.106 ± 0.007 m-2 s-1 sr-1 TeV-1 , γH = 2.70 ± 0.02).
The NANOGrav Nine-Year Data Set: Limits on the Isotropic Stochastic Gravitational Wave Background
NASA Technical Reports Server (NTRS)
Arzoumanian, Z.; Brazier, A.; Burke-Spolaor, S.; Chamberlin, S. J.; Chatterjee, S.; Christy, B.; Cordes, J. M.; Cornish, N. J.; Crowter, K.; Demorest, P. B.;
2016-01-01
We compute upper limits on the nanohertz-frequency isotropic stochastic gravitational wave background (GWB) using the 9 year data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration. Well-tested Bayesian techniques are used to set upper limits on the dimensionless strain amplitude (at a frequency of 1 yr(exp -1) for a GWB from supermassive black hole binaries of A(sub gw) less than 1.5 x 10(exp -15). We also parameterize the GWB spectrum with a broken power-law model by placing priors on the strain amplitude derived from simulations of Sesana and McWilliams et al. Using Bayesian model selection we find that the data favor a broken power law to a pure power law with odds ratios of 2.2 and 22 to one for the Sesana and McWilliams prior models, respectively. Using the broken power-law analysis we construct posterior distributions on environmental factors that drive the binary to the GW-driven regime including the stellar mass density for stellar-scattering, mass accretion rate for circumbinary disk interaction, and orbital eccentricity for eccentric binaries, marking the first time that the shape of the GWB spectrum has been used to make astrophysical inferences. Returning to a power-law model, we place stringent limits on the energy density of relic GWs, OMEGA(sub gw) (f) h squared less than 4.2 x 10(exp -10). Our limit on the cosmic string GWB, OMEGA(sub gw) (f) h squared less than 2.2 x 10(exp -10), translates to a conservative limit on the cosmic string tension with G mu less than 3.3 x 10(exp -8), a factor of four better than the joint Planck and high-l‚ cosmic microwave background data from other experiments.
Process Options for Nominal 2-K Helium Refrigeration System Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Knudsen, Venkatarao Ganni
Nominal 2-K helium refrigeration systems are frequently used for superconducting radio frequency and magnet string technologies used in accelerators. This paper examines the trade-offs and approximate performance of four basic types of processes used for the refrigeration of these technologies; direct vacuum pumping on a helium bath, direct vacuum pumping using full or partial refrigeration recovery, cold compression, and hybrid compression (i.e., a blend of cold and warm sub-atmospheric compression).
Cosmic ray spectrum and composition from three years of IceTop and IceCube
NASA Astrophysics Data System (ADS)
Rawlins, K.;
2016-05-01
IceTop is the surface component of the IceCube Observatory, composed of frozen water tanks at the top of IceCube’s strings. Data from this detector can be analyzed in different ways with the goal of measuring cosmic ray spectrum and composition. The shower size S125 from IceTop alone can be used as a proxy for primary energy, and unfolded into an all-particle spectrum. In addition, S125 from the surface can be combined with high-energy muon energy loss information from the deep IceCube detector for those air showers which pass through both. Using these coincident events in a complementary analysis, both the spectrum and mass composition of primary cosmic rays can be extracted in parallel using a neural network. Both of these analyses have been performed on three years of IceTop and IceCube data. Both all-particle spectra as well as individual spectra for elemental groups are presented.
Elementary Particles and the Universe
NASA Astrophysics Data System (ADS)
Schwarz, John H.
2005-07-01
1. Excess baggage J. Hartle; 2. Through the clouds E. Witten; 3. Covariant foundations of the superparticle L. Brink; 4. Chiral symmetry and confinement T. Goldman; 5. The original fifth interaction Y. Neeman; 6. The mass hierarchy of leptons and quarks H. Fritzsch; 7. Spacetime duality in string theory J. H. Schwarz; 8. Symmetry and quasi-symmetry Y. Nambu; 9. On an exceptional non-associative superspace M. Gunaydin; 10. Algebra of reparametrization-invariant and normal ordered operators in open string field theory P. Ramond; 11. Superconductivity of an ideal charged boson system T. D. Lee; 12. Some remarks on the symmetry approach to nuclear rotational motion L. C. Biedebharn and P. Truini; 13. Uncomputability, intractability and the efficiency of heat engines S. Lloyd; 14. The new mathematical physics I. Singer; 15. For the birds V. Telegdi; 16. Gell-Mann's approach to physics A. Salam; 17. Remarks M. Goldberger.
A Detector for Cosmic Microwave Background Polarimetry
NASA Technical Reports Server (NTRS)
Wollack, E.; Cao, N.; Chuss, D.; Hsieh, W.-T.; Moseley, S. Harvey; Stevenson, T.; U-yen, K.
2008-01-01
We present preliminary design and development work on polarized detectors intended to enable Cosmic Microwave Background polarization measurements that will probe the first moments of the universe. The ultimate measurement will be challenging, requiring background-limited detectors and good control of systematic errors. Toward this end, we are integrating the beam control of HE-11 feedhorns with the sensitivity of transition-edge sensors. The coupling between these two devices is achieved via waveguide probe antennas and superconducting microstrip lines. This implementation allows band-pass filters to be incorporated on the detector chip. We believe that a large collection of single-mode polarized detectors will eventually be required for the reliable detection of the weak polarized signature that is expected to result from gravitational waves produced by cosmic inflation. This focal plane prototype is an important step along the path to this detection, resulting in a capability that will enable various future high performance instrument concepts.
Cryogenic Selective Surface - How Cold Can We Go?
NASA Technical Reports Server (NTRS)
Youngquist, Robert; Nurge, Mark
2015-01-01
Selective surfaces have wavelength dependent emissivitya bsorption. These surfaces can be designed to reflect solar radiation, while maximizing infrared emittance, yielding a cooling effect even in sunlight. On earth cooling to -50 C below ambient has been achieved, but in space, outside of the atmosphere, theory using ideal materials has predicted a maximum cooling to 40 K! If this result holds up for real world materials and conditions, then superconducting systems and cryogenic storage can be achieved in space without active cooling. Such a result would enable long term cryogenic storage in deep space and the use of large scale superconducting systems for such applications as galactic cosmic radiation (GCR) shielding and large scale energy storage.
Dynamical black holes in low-energy string theory
NASA Astrophysics Data System (ADS)
Aniceto, Pedro; Rocha, Jorge V.
2017-05-01
We investigate time-dependent spherically symmetric solutions of the four-dimensional Einstein-Maxwell-axion-dilaton system, with the dilaton coupling that occurs in low-energy effective heterotic string theory. A class of dilaton-electrovacuum radiating solutions with a trivial axion, previously found by Güven and Yörük, is re-derived in a simpler manner and its causal structure is clarified. It is shown that such dynamical spacetimes featuring apparent horizons do not possess a regular light-like past null infinity or future null infinity, depending on whether they are radiating or accreting. These solutions are then extended in two ways. First we consider a Vaidya-like generalisation, which introduces a null dust source. Such spacetimes are used to test the status of cosmic censorship in the context of low-energy string theory. We prove that — within this family of solutions — regular black holes cannot evolve into naked singularities by accreting null dust, unless standard energy conditions are violated. Secondly, we employ S-duality to derive new time-dependent dyon solutions with a nontrivial axion turned on. Although they share the same causal structure as their Einstein-Maxwell-dilaton counterparts, these solutions possess both electric and magnetic charges.
Dark energy from the string axiverse.
Kamionkowski, Marc; Pradler, Josef; Walker, Devin G E
2014-12-19
String theories suggest the existence of a plethora of axionlike fields with masses spread over a huge number of decades. Here, we show that these ideas lend themselves to a model of quintessence with no super-Planckian field excursions and in which all dimensionless numbers are order unity. The scenario addresses the "Why now?" problem-i.e., Why has accelerated expansion begun only recently?-by suggesting that the onset of dark-energy domination occurs randomly with a slowly decreasing probability per unit logarithmic interval in cosmic time. The standard axion potential requires us to postulate a rapid decay of most of the axion fields that do not become dark energy. The need for these decays is averted, though, with the introduction of a slightly modified axion potential. In either case, a universe like ours arises in roughly 1 in 100 universes. The scenario may have a host of observable consequences.
Time Variations of Cosmic-Ray Helium Isotopes with Bess-Polar I
NASA Technical Reports Server (NTRS)
Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, K. C.; Kumazawa, T.; Kusumoto, A.;
2013-01-01
The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) is configured with a solenoidal superconducting magnet and a suite of precision particle detectors, including time-of-flight hodoscopes based on plastic scintillators, a silica-aerogel Cherenkov detector, and a high resolution tracking system with a central jet-type drift chamber. The charges of incident particles are determined from energy losses in the scintillators. Their magnetic rigidities (momentum charge) are measured by reconstructing each particle trajectory in the magnetic field, and their velocities are obtained by using the time-of-flight system. Together, these measurements can accurately identify helium isotopes among the incoming cosmic-ray helium nuclei up to energies in the GeV per nucleon region. The BESS-Polar I instrument flew for 8.5 days over Antarctica from December 13th to December 21st, 2004. Its long-duration flight and large geometric acceptance allow the time variations of isotopic fluxes to be studied for the first time. The time variations of helium isotope fluxes are presented here for rigidities from 1.2 to 2.5 GV and results are compared to previously reported proton data and neutron monitor data.
Time Variations of Cosmic-Ray Helium Isotopes with BESS-Polar I
NASA Technical Reports Server (NTRS)
Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, K. C.; Kumazawa, T.; Kusumoto, A.;
2013-01-01
The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) is configured with a solenoidal superconducting magnet and a suite of precision particle detectors, including time-of-flight hodoscopes based on plastic scintillators, a silica-aerogel Cherenkov detector, and a high resolution tracking system with a central jet-type drift chamber. The charges of incident particles are determined from energy losses in the scintillators. Their magnetic rigidities (momentum/charge) are measured by reconstructing each particle trajectory in the magnetic field, and their velocities are obtained by using the time-of-flight system. Together, these measurements can accurately identify helium isotopes among the incoming cosmic-ray helium nuclei up to energies in the GeV per nucleon region. The BESS-Polar I instrument flew for 8.5 days over Antarctica from December 13th to December 21st, 2004. Its long-duration flight and large geometric acceptance allow the time variations of isotopic fluxes to be studied for the first time. The time variations of helium isotope fluxes are presented here for rigidities from 1.2 to 2.5 GV and results are compared to previously reported proton data and neutron monitor data.
Measurements of primary cosmic-ray hydrogen and helium by the WiZard collaboration
NASA Astrophysics Data System (ADS)
Circella, M.; Ambriola, M.; Barbiellini, G.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Bidoli, V.; Boezio, M.; Bonvicini, V.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C.; De Pascale, M. P.; Finetti, N.; Francke, T.; Grimani, C.; Grinstein, S.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J. W.; Morselli, A.; Ormes, J. F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Weber, N.; Zampa, N.
We present the measurements of primary protons and helium nuclei performed by the WiZard Collaboration in different balloon-borne campaigns. A superconducting magnet spectrometer was used in these experiments together with detectors for particle recognition. These combinations of detectors made it possible to perform accurate particle measurements over a large (up to 200 GV for protons) energy interval. We focus in particular on the results from the MASS91 and CAPRICE94 experiments: We find a very good agreement between these two sets of measurements, also in comparison to other recent results. All these results seem to suggest that the normalization of primary cosmic rays may be significantly lower than previously estimated.
Cosmic ray proton spectra at low rigidities
NASA Technical Reports Server (NTRS)
Seo, E. S.; Ormes, J. F.; Streitmatter, R. E.; Lloyd-Evans, J.; Jones, W. V.
1990-01-01
The cosmic ray proton rigidity spectra have been investigated with data collected in the Low Energy Antiproton (LEAP) balloon flight experiment flown from Prince Albert, Canada in 1987. The LEAP apparatus was designed to measure antiprotons using a superconducting magnet spectrometer with ancillary scintillator, time-of-flight, and liquid Cherenkov detectors. After reaching float altitude the balloon drifted south and west to higher geomagnetic cutoffs. The effect of the changing geomagnetic cutoff on the observed spectra was observed during analysis of the proton data along the balloon trajectory. This is the first measurement of the primary and splash albedo spectra over a wide rigidity range (few hundred MV to about 100 GV) with a single instrument.
Precise mapping of the magnetic field in the CMS barrel yoke using cosmic rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatrchyan, S.; et al.,
2010-03-01
The CMS detector is designed around a large 4 T superconducting solenoid, enclosed in a 12000-tonne steel return yoke. A detailed map of the magnetic field is required for the accurate simulation and reconstruction of physics events in the CMS detector, not only in the inner tracking region inside the solenoid but also in the large and complex structure of the steel yoke, which is instrumented with muon chambers. Using a large sample of cosmic muon events collected by CMS in 2008, the field in the steel of the barrel yoke has been determined with a precision of 3 tomore » 8% depending on the location.« less
NASA Technical Reports Server (NTRS)
Mitchell, John; Yamamoto, Akira; Yoshimura, Koji; Makida, Yasuhiro; Matsuda, Shinya; Hasegawa, Masaya; Horikoshi, Atsushi; Tanaka,Ken-ichi; Suzuki, Junichi; Nishimura, Jun;
2008-01-01
The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) collaboration has made precise measurements of the spectra of cosmic ray antiprotons and light nuclei and conducted a sensitive search for antinuclei. Ten BESS high-latitude flights, eight from Canada and two from Antarctica, span more than a Solar cycle between 1993 and 2007/2008. BESS measurements of low-energy antiprotons constrain candidate models for dark matter including the possible signature of primordial black hole evaporation. The stringent BESS measurements of antiprotons and the elemental and isotopic spectra of H and He provide strong constraints on models of cosmic-ray transport in the Galaxy and Solar System. BESS has also reported the first antideuterium upper limit. BESS employs a superconducting magnetic-rigity spectrometer with time-of-flight and aerogel Cherenkov detectors to identify incident particles by charge, charge sign, mass, and energy. The BESS-Polar long-duration instrument has reduced lower energy limit of 100 MeV (top of the atmosphere) to increase its sensitivity to possible primary antiproton sources. BESS-Polar II was rebuilt with extended magnet lifetime, improved detector and electronic performance, and greater data storage capacity. It was flown fro Antarctica December 2007-January 2008, recording about 4.6 bission events during 24.5 days at float altitude with the magnet on. During the flight the influence of a high-speed stream in the Solar wind was observed. Details of the BESS-Polar II instrument and flight performance are reported elsewhere at this conference. The successful BESS-Polar II flight at Solar minimum is especially important. Most cosmic-ray antiprotons are secondary products of nuclear interactions of primary cosmic-ray nuclei with the interstellar gas, giving a spectrum that peaks at about 2 GeV and falls rapidly to higher and lower energies. However, BESS data taken in the previous Solar minimum show a small excess over secondary expectations at low energies, possibly suggesting the presence of an additional component that may be masked at higher levels of Solar modulation. The high-statistics Solar minimum data obtained by BESS-Polar II will provide a difinitive test of this component. We will review the BESS program and report the latest results including the antiproton and proton spectra measured in the BESS-Polar I flight, the search for cosmic antinuclei, and the status of the BESS-Polar II analysis.
NASA Astrophysics Data System (ADS)
Kadota, Kenji; Kobayashi, Tatsuo; Saga, Ikumi; Sumita, Keigo
2018-04-01
We propose a new model of single-field D-term inflation in supergravity, where the inflation is driven by a single modulus field which transforms non-linearly under the U(1) gauge symmetry. One of the notable features of our modulus D-term inflation scenario is that the global U(1) remains unbroken in the vacuum and hence our model is not plagued by the cosmic string problem which can exclude most of the conventional D-term inflation models proposed so far due to the CMB observations.
Calculation of intensity of high energy muon groups observed deep underground
NASA Technical Reports Server (NTRS)
Vavilov, Y. N.; Dedenko, L. G.
1985-01-01
The intensity of narrow muon groups observed in Kolar Gold Field (KGF) at the depth of 3375 m.w.e. was calculated in terms of quark-gluon strings model for high energy hadron - air nuclei interactions by the method of direct modeling of nuclear cascade in the air and muon propagation in the ground for normal primary cosmic ray composition. The calculated intensity has been found to be approx. 10 to the 4 times less than one observed experimentally.
Carilli, C L; Menten, K M; Stocke, J T; Perlman, E; Vermeulen, R; Briggs, F; de Bruyn , A G; Conway, J; Moore, C P
2000-12-25
We present measurements of absorption by the 21 cm hyperfine transition of neutral hydrogen toward radio sources at substantial look-back times. These data are used in combination with observations of rotational transitions of common interstellar molecules to set limits on the evolution of the fine structure constant: alpha/ alpha<3.5x10(-15) yr(-1), to a look-back time of 4.8 Gyr. In the context of string theory, the limit on the secular evolution of the scale factor of the compact dimensions, R, is &Rdot/ R<10(-15) yr(-1). Including terrestrial and other astronomical measurements places 2sigma limits on slow oscillations of R from the present to the epoch of cosmic nucleosynthesis, just seconds after the big bang, of DeltaR /R<10(-5).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yancey, Cregg C.; Shawhan, Peter; Bear, Brandon E.
We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may bemore » tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ∼30 s time window and ∼200–500 deg{sup 2} sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ∼2. For some models, we also map the parameter space that may be constrained by non-detections.« less
Cosmic censorship conjecture in Kerr-Sen black hole
NASA Astrophysics Data System (ADS)
Gwak, Bogeun
2017-06-01
The validity of the cosmic censorship conjecture for the Kerr-Sen black hole, which is a solution to the low-energy effective field theory for four-dimensional heterotic string theory, is investigated using charged particle absorption. When the black hole absorbs the particle, the charge on it changes owing to the conserved quantities of the particle. Changes in the black hole are constrained to the equation for the motion of the particle and are consistent with the laws of thermodynamics. Particle absorption increases the mass of the Kerr-Sen black hole to more than that of the absorbed charges such as angular momentum and electric charge; hence, the black hole cannot be overcharged. In the near-extremal black hole, we observe a violation of the cosmic censorship conjecture for the angular momentum in the first order of expansion and the electric charge in the second order. However, considering an adiabatic process carrying the conserved quantities as those of the black hole, we prove the stability of the black hole horizon. Thus, we resolve the violation. This is consistent with the third law of thermodynamics.
Estimating the weak-lensing rotation signal in radio cosmic shear surveys
NASA Astrophysics Data System (ADS)
Thomas, Daniel B.; Whittaker, Lee; Camera, Stefano; Brown, Michael L.
2017-09-01
Weak lensing has become an increasingly important tool in cosmology and the use of galaxy shapes to measure cosmic shear has become routine. The weak-lensing distortion tensor contains two other effects in addition to the two components of shear: the convergence and rotation. The rotation mode is not measurable using the standard cosmic shear estimators based on galaxy shapes, as there is no information on the original shapes of the images before they were lensed. Due to this, no estimator has been proposed for the rotation mode in cosmological weak-lensing surveys, and the rotation mode has never been constrained. Here, we derive an estimator for this quantity, which is based on the use of radio polarization measurements of the intrinsic position angles of galaxies. The rotation mode can be sourced by physics beyond Λ cold dark matter (ΛCDM), and also offers the chance to perform consistency checks of ΛCDM and of weak-lensing surveys themselves. We present simulations of this estimator and show that, for the pedagogical example of cosmic string spectra, this estimator could detect a signal that is consistent with the constraints from Planck. We examine the connection between the rotation mode and the shear B modes and thus how this estimator could help control systematics in future radio weak-lensing surveys.
Topological defects in alternative theories to cosmic inflation and string cosmology
NASA Astrophysics Data System (ADS)
Alexander, Stephon H. S.
The physics of the Early Universe is described in terms of the inflationary paradigm, which is based on a marriage between Einstein's general theory of relativity minimally coupled to quantum field theory. Inflation was posed to solve some of the outstanding problems of the Standard Big Bang Cosmology (SBB) such as the horizon, formation of structure and monopole problems. Despite its observational and theoretical successes, inflation is plagued with fine tuning and initial singularity problems. On the other hand, superstring/M theory, a theory of quantum gravity, possesses symmetries which naturally avoid space-time singularities. This thesis investigates alternative theories to cosmic inflation for solving the initial singularity, horizon and monopole problems, making use of topological defects. It was proposed by Dvali, Liu and Vaschaspati that the monopole problem can be solved without inflation if domain walls "sweep" up the monopoles in the early universe, thus reducing their number density significantly. Necessary for this mechanism to work is the presence of an attractive force between the monopole and the domain wall as well as a channel for the monopole's unwinding. We show numerically and analytically in two field theory models that for global defects the attraction is a universal result but the unwinding is model specific. The second part of this thesis investigates a string/M theory inspired model for solving the horizon problem. It was proposed by Moffat, Albrecht and Magueijo that the horizon problem is solved with a "phase transition" associated with a varying speed of light before the surface of last scattering. We provide a string/M theory mechanism based on assuming that our space-time is a D-3 brane probing a bulk supergravity black hole bulk background. This mechanism provides the necessary time variation of the velocity of light to solve the horizon problem. We suggest a mechanism which stablilizes the speed of light on the D-3 brane. We finally address the cosmological initial singularity problem using the target space duality inherent in string/M theory. It was suggested by Brandenberger and Vafa that superstring theory can solve the singularity problem and in addition explain why only three spatial dimensions can become large. We show that under specific conditions this mechanism still persists when including the effects of D-branes.
Superconducting Ti/TiN Thin Films for mm-Wave Absorption
NASA Astrophysics Data System (ADS)
Aliane, A.; Solana, M.; Rabaud, W.; Saminadayar, L.; Agnese, P.; Goudon, V.; Dussopt, L.; Vialle, C.; Baghe, E.; Pocas, S.; Carle, L.; Lio Soon Shun, N.; Becker, S.; Reveret, V.; Rodriguez, L.; Hamelin, A.; Poglitsch, A.; Bounissou, S.; Adami, O.
2018-04-01
Polarization-sensitive detectors at 120-500 GHz are required for the observation of the cosmic microwave background radiation. In this paper, superconducting thin films based on Ti/TiN bilayers are developed to be integrated as electromagnetic wave absorbers in suspended cooled silicon bolometers. The critical temperature (T c) is tuned in the range of 600-800 mK through the superconductivity proximity effect between Ti and TiN to optimize the absorption of the incident power while minimizing the heat capacity of the system at low temperature. Ti/TiN bilayer samples are fabricated on silicon with two different thicknesses (100/5 and 300/5 nm). Electrical characterizations at low temperature have been performed and revealed the effect of thermal annealing (20-250 °C) on residual stress, T c, critical magnetic field (H c) and resistance above T c. A physical characterization by X-ray photoelectron spectroscopy provides evidences of oxidized states which may explain these effects.
Superconducting Detector Arrays for Astrophysics
NASA Technical Reports Server (NTRS)
Chervenak, James
2008-01-01
The next generation of astrophysics instruments will feature an order of magnitude more photon sensors or sensors that have an order of magnitude greater sensitivity. Since detector noise scales with temperature, a number of candidate technologies have been developed that use the intrinsic advantages of detector systems that operate below 1 Kelvin. Many of these systems employ of the superconducting phenomena that occur in metals at these temperatures to build ultrasensitive detectors and low-noise, low-power readout architectures. I will present one such system in use today to meet the needs of the astrophysics community at millimeter and x-ray wavelengths. Our group at NASA in collaboration with Princeton, NIST, Boulder and a number of other groups is building large format arrays of superconducting transition edge sensors (TES) read out with multiplexed superconducting quantum interference devices (SQUID). I will present the high sensitivity we have achieved in multiplexed x-ray sensors with the TES technology and describe the construction of a 1000-sensor TES/SQUID array for microwave measurements. With our collaboration's deployment of a kilopixel TES array for 2 mm radiation at the Atacarna Cosmology Telescope in November 2007, we have first images of the lensed Cosmic Microwave Background at fine angular scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Namikawa, Toshiya
We present here a new method for delensing B modes of the cosmic microwave background (CMB) using a lensing potential reconstructed from the same realization of the CMB polarization (CMB internal delensing). The B -mode delensing is required to improve sensitivity to primary B modes generated by, e.g., the inflationary gravitational waves, axionlike particles, modified gravity, primordial magnetic fields, and topological defects such as cosmic strings. However, the CMB internal delensing suffers from substantial biases due to correlations between observed CMB maps to be delensed and that used for reconstructing a lensing potential. Since the bias depends on realizations, wemore » construct a realization-dependent (RD) estimator for correcting these biases by deriving a general optimal estimator for higher-order correlations. The RD method is less sensitive to simulation uncertainties. Compared to the previous ℓ -splitting method, we find that the RD method corrects the biases without substantial degradation of the delensing efficiency.« less
NASA Astrophysics Data System (ADS)
Clark, Hamish A.; Lewis, Geraint F.; Scott, Pat
2016-02-01
Ultracompact minihaloes (UCMHs) have been proposed as a type of dark matter substructure seeded by large-amplitude primordial perturbations and topological defects. UCMHs are expected to survive to the present era, allowing constraints to be placed on their cosmic abundance using observations within our own Galaxy. Constraints on their number density can be linked to conditions in the early Universe that impact structure formation, such as increased primordial power on small scales, generic weak non-Gaussianity, and the presence of cosmic strings. We use new constraints on the abundance of UCMHs from pulsar timing to place generalized limits on the parameters of each of these cosmological scenarios. At some scales, the limits are the strongest to date, exceeding those from dark matter annihilation. Our new limits have the added advantage of being independent of the particle nature of dark matter, as they are based only on gravitational effects.
String Theory Methods for Condensed Matter Physics
NASA Astrophysics Data System (ADS)
Nastase, Horatiu
2017-09-01
Preface; Acknowledgments; Introduction; Part I. Condensed Matter Models and Problems: 1. Lightning review of statistical mechanics, thermodynamics, phases and phase transitions; 2. Magnetism in solids; 3. Electrons in solids: Fermi gas vs. Fermi liquid; 4. Bosonic quasi-particles: phonons and plasmons; 5. Spin-charge separation in 1+1 dimensional solids: spinons and holons; 6. The Ising model and the Heisenberg spin chain; 7. Spin chains and integrable systems; 8. The thermodynamic Bethe ansatz; 9. Conformal field theories and quantum phase transitions; 10. Classical vs. quantum Hall effect; 11. Superconductivity: Landau-Ginzburg, London and BCS; 12. Topology and statistics: Berry and Chern-Simons, anyons and nonabelions; 13. Insulators; 14. The Kondo effect and the Kondo problem; 15. Hydrodynamics and transport properties: from Boltzmann to Navier-Stokes; Part II. Elements of General Relativity and String Theory: 16. The Einstein equation and the Schwarzschild solution; 17. The Reissner-Nordstrom and Kerr-Newman solutions and thermodynamic properties of black holes; 18. Extra dimensions and Kaluza-Klein; 19. Electromagnetism and gravity in various dimensions. Consistent truncations; 20. Gravity plus matter: black holes and p-branes in various dimensions; 21. Weak/strong coupling dualities in 1+1, 2+1, 3+1 and d+1 dimensions; 22. The relativistic point particle and the relativistic string; 23. Lightcone strings and quantization; 24. D-branes and gauge fields; 25. Electromagnetic fields on D-branes. Supersymmetry and N = 4 SYM. T-duality of closed strings; 26. Dualities and M theory; 27. The AdS/CFT correspondence: definition and motivation; Part III. Applying String Theory to Condensed Matter Problems: 28. The pp wave correspondence: string Hamiltonian from N = 4 SYM; 29. Spin chains from N = 4 SYM; 30. The Bethe ansatz: Bethe strings from classical strings in AdS; 31. Integrability and AdS/CFT; 32. AdS/CFT phenomenology: Lifshitz, Galilean and Schrodinger symmetries and their gravity duals; 33. Finite temperature and black holes; 34. Hot plasma equilibrium thermodynamics: entropy, charge density and chemical potential of strongly coupled theories; 35. Spectral functions and transport properties; 36. Dynamic and nonequilibrium properties of plasmas: electric transport, Langevin diffusion and thermalization via black hole quasi-normal modes; 37. The holographic superconductor; 38. The fluid-gravity correspondence: conformal relativistic fluids from black hole horizons; 39. Nonrelativistic fluids: from Einstein to Navier-Stokes and back; Part IV. Advanced Applications: 40. Fermi gas and liquid in AdS/CFT; 41. Quantum Hall effect from string theory; 42. Quantum critical systems and AdS/CFT; 43. Particle-vortex duality and ABJM vs. AdS4 X CP3 duality; 44. Topology and non-standard statistics from AdS/CFT; 45. DBI scalar model for QGP/black hole hydro- and thermo-dynamics; 46. Holographic entanglement entropy in condensed matter; 47. Holographic insulators; 48. Holographic strange metals and the Kondo problem; References; Index.
NASA Technical Reports Server (NTRS)
Mitchell, J. W.; Abe, K.; Anraku, K.; Asaoka, Y.; Fujikawa, M.; Fuke, H.; Haino, S.; Hams, T.; Ikeda, N.; Imori, M.
2002-01-01
The Balloon Borne Experiment with a Superconducting Spectrometer (BESS) has measured the energy spectrum of cosmic-ray antiprotons between 0.18 and 4.20 GeV in eight flights between 1993 and 2002. Above about 1 GeV, models in which antiprotons are secondary products of the interactions of primary cosmic rays with the interstellar gas agree with the BESS antiproton spectrum. Below 1 GeV, the data show a possible excess antiproton flux compared to secondary model predictions, suggesting the presence of an additional source of antiprotons. The antiproton/proton ratios measured between 1993 and 1999, during the Sun's positive-polarity phase, are consistent with simple models of solar modulation. However, results from the 2000 flight, following the solar magnetic field reversal, show a sudden increase in the antiproton/proton ratio and tend to favor a charge-sign-dependent drift model. To extend BESS measurements to lower energies, an evolutionary instrument, BESS-Polar, is under construction for polar flight in 2004.
NASA Technical Reports Server (NTRS)
Chuss, David T.
2011-01-01
Observations of the cosmic microwave background (CMB) provide a powerful tool for probing the evolution of the early universe. Specifically, precision measurement of the polarization of the CMB enables a direct test for cosmic inflation. A key technological element on the path to the measurement of this faint signal is the capability to produce large format arrays of background-limited detectors. We describe the electromagnetic design of feedhorn-coupled, TES-based sensors. Each linear orthogonal polarization from the feed horn is coupled to a superconducting microstrip line via a symmetric planar orthomode transducer (OMT). The symmetric OMT design allows for highly-symmetric beams with low cross-polarization over a wide bandwidth. In addition, this architecture enables a single microstrip filter to define the passband for each polarization. Care has been taken in the design to eliminate stray coupling paths to the absorbers. These detectors will be fielded in the Cosmology Large Angular Scale Surveyor (CLASS).
No time machine construction in open 2+1 gravity with timelike total energy-momentum
NASA Astrophysics Data System (ADS)
Tiglio, Manuel H.
1998-09-01
It is shown that in (2+1)-dimensional gravity an open spacetime with timelike sources and total energy momentum cannot have a stable compactly generated Cauchy horizon. This constitutes a proof of a version of Kabat's conjecture and shows, in particular, that not only a Gott time machine cannot be formed from processes such as the decay of a single cosmic string as has been shown by Carroll et al., but that, in a precise sense, a time machine cannot be constructed at all.
NASA Astrophysics Data System (ADS)
Barrentine, Emily Margaret
In this thesis the development of a Transition-Edge Hot-Electron Microbolometer (THM) is presented. This detector will have the capacity to make sensitive and broadband astrophysical observations when deployed in large detector arrays in future ground- or space-based instruments, over frequencies ranging from 30-300 GHz (10-1 mm). This thesis focuses on the development of the THM for observations of the Cosmic Microwave Background (CMB), and specifically for observations of the CMB polarization signal. The THM is a micron-sized bolometer that is fabricated photolithographically. It consists of a superconducting Molybdenum/Gold Transition-Edge Sensor (TES) and a thin-film semi-metal Bismuth microwave absorber, both of which are deposited directly on the substrate. The THM employs the decoupling between electrons and phonons at low temperatures (˜100-300 mK) to provide thermal isolation for the bolometer. The devices are read out with Superconducting Quantum Interference Devices (SQUIDs). In this thesis a summary of the thermal and electrical models for the THM detector is presented. The physical processes within the detector, with particular attention to electron-phonon decoupling, and the lateral proximity effect between the superconducting leads and the TES, are also discussed. This understanding of the detector and these models are used to interpret measurements of thermal conductance, noise, responsivity and the transition behaviour of a variety of THM test devices. The optimization of the THM design, based on these models and measurements, is also discussed, and the thesis concludes with a presentation of the recommended THM design for CMB applications. In addition, a planar-microwave circuit design and a quasi-optical scheme for coupling microwave radiation to the THM detector are presented.
Temperature characterisation of the CLOUD chamber at CERN
NASA Astrophysics Data System (ADS)
Dias, A. M.; Almeida, J.; Kirkby, J.; Mathot, S.; Onnela, A.; Vogel, A.; Ehrhart, S.
2014-12-01
Temperature stability, uniformity and absolute scale inside the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN are important for experiments on aerosol particle nucleation and ice/liquid cloud formation. In order to measure the air temperature, a comprehensive set of arrays ("strings") of platinum resistance thermometers, thermocouples and optical sensors have been installed inside the 26 m3 chamber. The thermal sensors must meet several challenging design requirements: ultra-clean materials, 0.01 K measurement sensitivity, high absolute precision (<0.1 K), 200 K - 373 K range, ability to operate in high electric fields (20 kV/m), and fast response in air (~1 s) in order to measure rapid changes of temperature during ice/liquid cloud formation in the chamber by adiabatic pressure reductions. This presentation will focus on the design of the thermometer strings and the thermal performance of the chamber during the CLOUD8 and CLOUD9 campaigns, 2013-2014, together with the planned upgrades of the CLOUD thermal system.
NASA Astrophysics Data System (ADS)
Wheeler, J. Craig
2000-07-01
In this tour de force of the ultimate and extreme in astrophysics, renowned astrophysicist and author J. Craig Wheeler takes us on a breathtaking journey to supernovae, black holes, gamma-ray bursts and adventures in hyperspace. This is no far-fetched science fiction tale, but an enthusiastic exploration of ideas at the cutting edge of current astrophysics. Wheeler follows the tortuous life of a star from birth to evolution and death, and goes on to consider the complete collapse of a star into a black hole, worm-hole time machines, the possible birth of baby bubble universes, and the prospect of a revolutionary view of space and time in a ten-dimensional string theory. Along the way he offers evidence that suggests the Universe is accelerating and describes recent developments in understanding gamma-ray bursts--perhaps the most catastrophic cosmic events of all. With the use of lucid analogies, simple language and crystal-clear cartoons, Cosmic Catastrophes makes accessible some of the most exciting and mind-bending objects and ideas in the Universe. J. Craig Wheeler is currently Samuel T. and Fern Yanagisawa Regents Professor of Astronomy at the University of Texas at Austin and Vice President of the American Astronomical Society as of 1999.
NASA Astrophysics Data System (ADS)
Makida, Y.; Ohhata, H.; Okamura, T.; Suzuki, S.; Araoka, O.; Ogitsu, T.; Kimura, N.; Nakamoto, T.; Sasaki, K.; Kaneda, S.; Takahashi, T.; Ito, A.; Nagami, M.; Kumaki, T.; Nakashima, T.
2010-04-01
A helium cryogenic plant has been constructed in the proton accelerator research complex, J-PARC, to cool a string of superconducting magnets in the neutrino beam line since 2005. It consists of a screw compressor with a capacity of 160 g/s at 1.4 MPa, a 1.5 kW refrigerator, a centrifugal SHE pump with a flow rate of 300 g/s and peripherals. After system integration, performance tests have been carried out. In a preliminary cooling test without magnets, the cryogenic system attained a cooling capacity of 522 W by circulating supercritical helium flow of 300 g/s at 0.4 MPa and at 4.5 K. Afterwards a full system test with the magnets was carried out. The magnets were successfully charged up to an ultimate current of 5000 A beyond a nominal current of 4400 A. This paper describes the plant design and the result of performance measurements.
Performance comparison of MoNA and LISA neutron detectors
NASA Astrophysics Data System (ADS)
Purtell, Kimberly; Rethman, Kaitlynne; Haagsma, Autumn; Finck, Joseph; Smith, Jenna; Snyder, Jesse
2010-11-01
In 2002 eight primarily undergraduate institutions constructed and tested the Modular Neutron Array (MoNA) which has been used to detect high energy neutrons at the National Superconducting Cyclotron Laboratory (NSCL). Nine institutions have now designed, constructed and tested the Large-area multi-Institutional Scintillator Array (LISA) neutron detector which will be used at the NSCL and the future Facility for Rare Isotope Beams (FRIB). Both detectors are comprised of 144 detector modules. Each module is a 200 x 10 x 10 cm^3 bar organic plastic scintillator with a photomultiplier tube mounted on each end. Using cosmic rays and a gamma source, we compared the performance of MoNA and LISA by using the same electronics to check light attenuation, position resolution, rise times, and cosmic ray peak widths. Results will be presented.
Fabrication of Antenna-Coupled KID Array for Cosmic Microwave Background Detection
NASA Astrophysics Data System (ADS)
Tang, Q. Y.; Barry, P. S.; Basu Thakur, R.; Kofman, A.; Nadolski, A.; Vieira, J.; Shirokoff, E.
2018-05-01
Kinetic inductance detectors (KIDs) have become an attractive alternative to traditional bolometers in the sub-mm and mm observing community due to their innate frequency multiplexing capabilities and simple lithographic processes. These advantages make KIDs a viable option for the O(500,000) detectors needed for the upcoming Cosmic Microwave Background-Stage 4 experiment. We have fabricated an antenna-coupled MKID array in the 150 GHz band optimized for CMB detection. Our design uses a twin-slot antenna coupled to an inverted microstrip made from a superconducting Nb/Al bilayer as the strip, a Nb ground plane and a SiN_x dielectric layer in between, which is then coupled to an Al KID grown on high-resistivity Si. We present the fabrication process and measurements of SiN_x microstrip resonators.
NASA Astrophysics Data System (ADS)
2011-10-01
An Astrophysics and Astronomy scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held in the Conference Hall of the P N Lebedev Physical Institute, RAS, on 26 January 2011. The following reports were put on the session's agenda posted on the web site www.gpad.ac.ru of the Physical Sciences Division, RAS: (1) Cherepashchuk A M (Sternberg Astronomical Institute, Moscow State University, Moscow) "Investigation of X-ray sources"; (2) Shustov B M (Institute of Astronomy, Russian Academy of Sciences, Moscow) "Asteroid and comet hazards: physical and other aspects"; (3) Sazhin M V (Sternberg Astronomical Institute, Moscow State University, Moscow) "Search for cosmic strings"; (4) Zakharov A F (Russian Federation State Scientific Center 'A I Alikhanov Institute for Theoretical and Experimental Physics', Moscow) "Exoplanet search using gravitational microlensing". Papers written on the basis of the reports are published below. • Optical investigations of X-ray binary systems, A M Cherepashchuk Physics-Uspekhi, 2011, Volume 54, Number 10, Pages 1061-1067 • Asteroid and comet hazards: the role of physical sciences in solving the problem, B M Shustov Physics-Uspekhi, 2011, Volume 54, Number 10, Pages 1068-1071 • Search for cosmic strings using optical and radio astronomy methods, O S Sazhina, M V Sazhin, M Capaccioli, G Longo Physics-Uspekhi, 2011, Volume 54, Number 10, Pages 1072-1077 • Search for exoplanets using gravitational microlensing, A F Zakharov Physics-Uspekhi, 2011, Volume 54, Number 10, Pages 1077-1084
Superconducting quantum simulator for topological order and the toric code
NASA Astrophysics Data System (ADS)
Sameti, Mahdi; Potočnik, Anton; Browne, Dan E.; Wallraff, Andreas; Hartmann, Michael J.
2017-04-01
Topological order is now being established as a central criterion for characterizing and classifying ground states of condensed matter systems and complements categorizations based on symmetries. Fractional quantum Hall systems and quantum spin liquids are receiving substantial interest because of their intriguing quantum correlations, their exotic excitations, and prospects for protecting stored quantum information against errors. Here, we show that the Hamiltonian of the central model of this class of systems, the toric code, can be directly implemented as an analog quantum simulator in lattices of superconducting circuits. The four-body interactions, which lie at its heart, are in our concept realized via superconducting quantum interference devices (SQUIDs) that are driven by a suitably oscillating flux bias. All physical qubits and coupling SQUIDs can be individually controlled with high precision. Topologically ordered states can be prepared via an adiabatic ramp of the stabilizer interactions. Strings of qubit operators, including the stabilizers and correlations along noncontractible loops, can be read out via a capacitive coupling to read-out resonators. Moreover, the available single-qubit operations allow to create and propagate elementary excitations of the toric code and to verify their fractional statistics. The architecture we propose allows to implement a large variety of many-body interactions and thus provides a versatile analog quantum simulator for topological order and lattice gauge theories.
5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment
NASA Technical Reports Server (NTRS)
Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Moseley, S. Harvey; Rostem, Karwan;
2010-01-01
We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization of the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 145 mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device multiplexer readout. We describe the design, development, and performance of PIPER bolometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.
5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment
NASA Technical Reports Server (NTRS)
Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil S.; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey;
2010-01-01
We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization o[ the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 128mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device (SQUID) multiplexer readout. We describe the design, development, and performance of PIPER bo|ometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.
NASA Astrophysics Data System (ADS)
Maytal, Ben-Zion; Vansciver, Steven W.
1990-12-01
ASTROMAG is a planned particle astrophysics magnetic facility. Basically it is a large magnetic spectrometer outside the Earth's atmosphere for an extended period of time in orbit on a space station. A definition team summarized its scientific objectives assumably related to fundamental questions of astrophysics, cosmology, and elementary particle physics. Since magnetic induction of about 7 Tesla is desired, it is planned to be a superconducting magnet cooled to liquid helium 2 temperatures. The general structure of ASTROMAG is based on: (1) two superconducting magnetic coils, (2) dewar of liquid helium 2 to provide cooling capability for the magnets; (3) instrumentation, matter-anti matter spectrometer (MAS) and cosmic ray isotope spectrometer (CRIS); and (4) interfaces to the shuttle and space station. Many configurations of the superconducting magnets and the dewar were proposed and evaluated, since those are the heart of the ASTROMAG. Baseline of the magnet configuration and cryostat as presented in the phase A study and the one kept in mind while doing the present study are presented. ASTROMAG's development schedule reflects the plan of launching to the space station in 1995.
NASA Technical Reports Server (NTRS)
Maytal, Ben-Zion; Vansciver, Steven W.
1990-01-01
ASTROMAG is a planned particle astrophysics magnetic facility. Basically it is a large magnetic spectrometer outside the Earth's atmosphere for an extended period of time in orbit on a space station. A definition team summarized its scientific objectives assumably related to fundamental questions of astrophysics, cosmology, and elementary particle physics. Since magnetic induction of about 7 Tesla is desired, it is planned to be a superconducting magnet cooled to liquid helium 2 temperatures. The general structure of ASTROMAG is based on: (1) two superconducting magnetic coils, (2) dewar of liquid helium 2 to provide cooling capability for the magnets; (3) instrumentation, matter-anti matter spectrometer (MAS) and cosmic ray isotope spectrometer (CRIS); and (4) interfaces to the shuttle and space station. Many configurations of the superconducting magnets and the dewar were proposed and evaluated, since those are the heart of the ASTROMAG. Baseline of the magnet configuration and cryostat as presented in the phase A study and the one kept in mind while doing the present study are presented. ASTROMAG's development schedule reflects the plan of launching to the space station in 1995.
Topological defects in the Georgi-Machacek model
NASA Astrophysics Data System (ADS)
Chatterjee, Chandrasekar; Kurachi, Masafumi; Nitta, Muneto
2018-06-01
We study topological defects in the Georgi-Machacek model in a hierarchical symmetry breaking in which extra triplets acquire vacuum expectation values before the doublet. We find a possibility of topologically stable non-Abelian domain walls and non-Abelian flux tubes (vortices or cosmic strings) in this model. In the limit of the vanishing U (1 )Y gauge coupling in which the custodial symmetry becomes exact, the presence of a vortex spontaneously breaks the custodial symmetry, giving rise to S2 Nambu-Goldstone (NG) modes localized around the vortex corresponding to non-Abelian fluxes. Vortices are continuously degenerated by these degrees of freedom, thereby called non-Abelian. By taking into account the U (1 )Y gauge coupling, the custodial symmetry is explicitly broken, the NG modes are lifted to become pseudo-NG modes, and all non-Abelian vortices fall into a topologically stable Z string. This is in contrast to the standard model in which Z strings are nontopological and are unstable in the realistic parameter region. Non-Abelian domain walls also break the custodial symmetry and are accompanied by localized S2 NG modes. Finally, we discuss the existence of domain wall solutions bounded by flux tubes, where their S2 NG modes match. The domain walls may quantum mechanically decay by creating a hole bounded by a flux tube loop, and would be cosmologically safe. Gravitational waves produced from unstable domain walls could be detected by future experiments.
NASA Technical Reports Server (NTRS)
Buffington, A.
1978-01-01
A super-cooled magnetic spectrometer for a cosmic-ray experiment is considered for application in the high energy astronomical observatory which may be used on a space shuttle spacelab mission. New cryostat parameters are reported which are appropriate to shuttle mission weight and mission duration constraints. Since a super-conducting magnetic spectrometer has a magnetic fringe field, methods for shielding sensitive electronic and mechanical components on nearby experiments are described.
Kinetic Inductance Detectors for Measuring the Polarization of the Cosmic Microwave Background
NASA Astrophysics Data System (ADS)
Flanigan, Daniel
Kinetic inductance detectors (KIDs) are superconducting thin-film microresonators that are sensitive photon detectors. These detectors are a candidate for the next generation of experiments designed to measure the polarization of the cosmic microwave background (CMB). I discuss the basic theory needed to understand the response of a KID to light, focusing on the dynamics of the quasiparticle system. I derive an equation that describes the dynamics of the quasiparticle number, solve it in a simplified form not previously published, and show that it can describe the dynamic response of a detector. Magnetic flux vortices in a superconducting thin film can be a significant source of dissipation, and I demonstrate some techniques to prevent their formation. Based on the presented theory, I derive a corrected version of a widely-used equation for the quasiparticle recombination noise in a KID. I show that a KID consisting of a lumped-element resonator can be sensitive enough to be limited by photon noise, which is the fundamental limit for photometry, at a level of optical loading below levels in ground-based CMB experiments. Finally, I describe an ongoing project to develop multichroic KID pixels that are each sensitive to two linear polarization states in two spectral bands, intended for the next generation of CMB experiments. I show that a prototype 23-pixel array can detect millimeter-wave light, and present characterization measurements of the detectors.
An obstacle to building a time machine
NASA Astrophysics Data System (ADS)
Carroll, Sean M.; Farhi, Edward; Guth, Alan H.
1992-01-01
Gott (1991) has shown that a spacetime with two infinite parallel cosmic strings passing each other with sufficient velocity contains closed timelike curves. An attempt to build such a time machine is discussed. Using the energy-momentum conservation laws in the equivalent (2 + 1)-dimensional theory, the spacetime representing the decay of one gravitating particle into two is explicitly constructed; there is never enough mass in an open universe to build the time machine from the products of decays of stationary particles. More generally, the Gott time machine cannot exist in any open (2 + 1)-dimensional universe for which the total momentum is timelike.
Almost Classical Creation of a Universe
NASA Astrophysics Data System (ADS)
Guendelman, E. I.; Portnoy, J.
We study the problem of a 1+1 cord with a dynamical massless scalar field living in it, which separates a false vacuum and a conical region in a 2+1 space. A stable ``particle-like'' configuration can be found. Also, oscillating solutions exist which can tunnel to an expanding type solution. The most outstanding feature for these oscillating solution is that we do not need a singularity to create an infinite universe from them, and that an arbitrarily small tunneling is needed to achieve this. Possible consequences for similar processes, involving cosmic strings in 3+1 dimensions are discussed.
Cosmic dust synthesis by accretion and coagulation
NASA Technical Reports Server (NTRS)
Praburam, G.; Goree, J.
1995-01-01
The morphology of grains grown by accretion and coagulation is revaled by a new laboratory method of synthesizing cosmic dust analogs. Submicron carbon particles, grown by accretion of carbon atoms from a gas, have a spherical shape with a cauliflower-like surface and an internal micro-structure of radial columns. This shape is probably common for grains grown by accretion at a temperature well below the melting point. Coagulated grains, consisting of spheres that collided to form irregular strings, were also synthesized. Another shape we produced had a bumpy non- spherical morphology, like an interplanetary particle collected in the terrestrial stratosphere. Besides these isolated grains, large spongy aggregates of nanometer-size particles were also found for various experimental conditions. Grains were synthesized using ions to sputter a solid target, producing an atomic vapor at a low temperature. The ions were provided by a plasma, which also provided electrostatic levitation of the grains during their growth. The temporal development of grain growth was studied by extinguishing the plasma after various intervals.
The area of isodensity contours in cosmological models and galaxy surveys
NASA Technical Reports Server (NTRS)
Ryden, Barbara S.; Melott, Adrian L.; Craig, David A.; Gott, J. Richard, III; Weinberg, David H.
1989-01-01
The contour crossing statistic, defined as the mean number of times per unit length that a straight line drawn through the field crosses a given contour, is applied to model density fields and to smoothed samples of galaxies. Models in which the matter is in a bubble structure, in a filamentary net, or in clusters can be distinguished from Gaussian density distributions. The shape of the contour crossing curve in the initially Gaussian fields considered remains Gaussian after gravitational evolution and biasing, as long as the smoothing length is longer than the mass correlation length. With a smoothing length of 5/h Mpc, models containing cosmic strings are indistinguishable from Gaussian distributions. Cosmic explosion models are significantly non-Gaussian, having a bubbly structure. Samples from the CfA survey and the Haynes and Giovanelli (1986) survey are more strongly non-Gaussian at a smoothing length of 6/h Mpc than any of the models examined. At a smoothing length of 12/h Mpc, the Haynes and Giovanelli sample appears Gaussian.
CMB internal delensing with general optimal estimator for higher-order correlations
Namikawa, Toshiya
2017-05-24
We present here a new method for delensing B modes of the cosmic microwave background (CMB) using a lensing potential reconstructed from the same realization of the CMB polarization (CMB internal delensing). The B -mode delensing is required to improve sensitivity to primary B modes generated by, e.g., the inflationary gravitational waves, axionlike particles, modified gravity, primordial magnetic fields, and topological defects such as cosmic strings. However, the CMB internal delensing suffers from substantial biases due to correlations between observed CMB maps to be delensed and that used for reconstructing a lensing potential. Since the bias depends on realizations, wemore » construct a realization-dependent (RD) estimator for correcting these biases by deriving a general optimal estimator for higher-order correlations. The RD method is less sensitive to simulation uncertainties. Compared to the previous ℓ -splitting method, we find that the RD method corrects the biases without substantial degradation of the delensing efficiency.« less
Coupled scalar fields in the late Universe: the mechanical approach and the late cosmic acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgazli, Alvina; Zhuk, Alexander; Morais, João
In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, we consider the Universe to be filled with dust-like matter in the form of discretely distributed galaxies, a minimally coupled scalar field and radiation as matter sources. We investigate such a Universe in the mechanical approach. This means that the peculiar velocities of the inhomogeneities (in the form of galaxies) as well as fluctuations of other perfect fluids are non-relativistic. Such fluids are designated as coupled because they are concentrated around inhomogeneities. In the present papermore » we investigate the conditions under which a scalar field can become coupled, and show that, at the background level, such coupled scalar field behaves as a two component perfect fluid: a network of frustrated cosmic strings with EoS parameter w =-1/3 and a cosmological constant. The potential of this scalar field is very flat at the present time. Hence, the coupled scalar field can provide the late cosmic acceleration. The fluctuations of the energy density and pressure of this field are concentrated around the galaxies screening their gravitational potentials. Therefore, such scalar fields can be regarded as coupled to the inhomogeneities.« less
NASA Astrophysics Data System (ADS)
Miarecki, Sandra Christine
The IceCube Neutrino Detector at the South Pole was constructed to measure the flux of high-energy neutrinos and to try to identify their cosmic sources. In addition to these astrophysical neutrinos, IceCube also detects the neutrinos that result from cosmic ray interactions with the atmosphere. These atmospheric neutrinos can be used to measure the total muon neutrino-to-nucleon cross section by measuring neutrino absorption in the Earth. The measurement involves isolating a sample of 10,784 Earth-transiting muons detected by IceCube in its 79-string configuration. The cross-section is determined using a two-dimensional fit in measured muon energy and zenith angle and is presented as a multiple of the Standard Model expectation as calculated by Cooper-Sarkar, Mertsch, and Sarkar in 2011. A multiple of 1.0 would indicate agreement with the Standard Model. The results of this analysis find the multiple to be 1.30 (+0.21 -0.19 statistical) (+0.40 -0.44 systematic) for the neutrino energy range of 6.3 to 980 TeV, which is in agreement with the Standard Model expectation.
Discriminating between two reformulations of SU(3) Yang-Mills theory on a lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibata, Akihiro; Kondo, Kei-Ichi; Shinohara, Toru
2016-01-22
In order to investigate quark confinement, we give a new reformulation of the SU (N) Yang-Mills theory on a lattice and present the results of the numerical simulations of the SU (3) Yang-Mills theory on a lattice. The numerical simulations include the derivation of the linear potential for static interquark potential, i.e., non-vanishing string tension, in which the “Abelian” dominance and magnetic monopole dominance are established, confirmation of the dual Meissner effect by measuring the chromoelectric flux tube between quark-antiquark pair, the induced magnetic-monopole current, and the type of dual superconductivity, etc.
Particle astronomy with a superconducting magnet.
NASA Technical Reports Server (NTRS)
Buffington, A.
1972-01-01
The magnetic spectrometer measures deflections of charged particles moving in a magnetic field and provides a direct means of determining the rigidity of charged primary cosmic rays up to about 100 GV/c rigidity. The underlying concepts of the method are reviewed, and factors delineating the applicable momentum range and accuracy are described along with calibration techniques. Previous experiments employing this technique are summarized, and prospects for future applications are evaluated with emphasis on separate measurement of electron and positron spectra and on isotopic separation.
Vacuum polarization and classical self-action near higher-dimensional defects
NASA Astrophysics Data System (ADS)
Grats, Yuri V.; Spirin, Pavel
2017-02-01
We analyze the gravity-induced effects associated with a massless scalar field in a higher-dimensional spacetime being the tensor product of (d-n)-dimensional Minkowski space and n-dimensional spherically/cylindrically symmetric space with a solid/planar angle deficit. These spacetimes are considered as simple models for a multidimensional global monopole (if n≥slant 3) or cosmic string (if n=2) with (d-n-1) flat extra dimensions. Thus, we refer to them as conical backgrounds. In terms of the angular-deficit value, we derive the perturbative expression for the scalar Green function, valid for any d≥slant 3 and 2≤slant n≤slant d-1, and compute it to the leading order. With the use of this Green function we compute the renormalized vacuum expectation value of the field square {< φ {2}(x)rangle }_{ren} and the renormalized vacuum averaged of the scalar-field energy-momentum tensor {< T_{M N}(x)rangle }_{ren} for arbitrary d and n from the interval mentioned above and arbitrary coupling constant to the curvature ξ . In particular, we revisit the computation of the vacuum polarization effects for a non-minimally coupled massless scalar field in the spacetime of a straight cosmic string. The same Green function enables to consider the old purely classical problem of the gravity-induced self-action of a classical point-like scalar or electric charge, placed at rest at some fixed point of the space under consideration. To deal with divergences, which appear in consideration of the two problems, we apply the dimensional-regularization technique, widely used in quantum field theory. The explicit dependence of the results upon the dimensionalities of both the bulk and conical submanifold is discussed.
NASA Astrophysics Data System (ADS)
Parameswaran, S. L.; Tasinato, G.; Zavala, I.
2006-03-01
We present a novel supersymmetric solution to a nonlinear sigma model coupled to supergravity. The solution represents a static, supersymmetric, codimension-two object, which is different to the familiar cosmic strings. In particular, we consider 6D chiral gauged supergravity, whose spectrum contains a number of hypermultiplets. The scalar components of the hypermultiplet are charged under a gauge field, and supersymmetry implies that they experience a simple paraboloid-like (or 2D infinite well) potential, which is minimised when they vanish. Unlike conventional vortices, the energy density of our configuration is not localized to a string-like core. The solutions have two timelike singularities in the internal manifold, which provide the necessary boundary conditions to ensure that the scalars do not lie at the minimum of their potential. The 4D spacetime is flat, and the solution is a continuous deformation of the so-called "rugby ball" solution, which has been studied in the context of the cosmological constant problem. It represents an unexpected class of supersymmetric solutions to the 6D theory, which have gravity, gauge fluxes and hyperscalars all active in the background.
Passive radiative cooling of a HTS coil for attitude orbit control in micro-spacecraft
NASA Astrophysics Data System (ADS)
Inamori, Takaya; Ozaki, Naoya; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki
2015-02-01
This paper proposes a novel radiative cooling system for a high temperature superconducting (HTS) coil for an attitude orbit control system in nano- and micro-spacecraft missions. These days, nano-spacecraft (1-10 kg) and micro-spacecraft (10-100 kg) provide space access to a broader range of spacecraft developers and attract interest as space development applications. In planetary and high earth orbits, most previous standard-size spacecraft used thrusters for their attitude and orbit control, which are not available for nano- and micro-spacecraft missions because of the strict power consumption, space, and weight constraints. This paper considers orbit and attitude control methods that use a superconducting coil, which interacts with on-orbit space plasmas and creates a propulsion force. Because these spacecraft cannot use an active cooling system for the superconducting coil because of their mass and power consumption constraints, this paper proposes the utilization of a passive radiative cooling system, in which the superconducting coil is thermally connected to the 3 K cosmic background radiation of deep space, insulated from the heat generation using magnetic holders, and shielded from the sun. With this proposed cooling system, the HTS coil is cooled to 60 K in interplanetary orbits. Because the system does not use refrigerators for its cooling system, the spacecraft can achieve an HTS coil with low power consumption, small mass, and low cost.
Triode for magnetic flux quanta.
NASA Astrophysics Data System (ADS)
Vlasko-Vlasov, Vitalii; Colauto, Fabiano; Benseman, Timothy; Rosenmann, Daniel; Kwok, Wai-Kwong
We designed a magnetic vortex triode using an array of closely spaced soft magnetic Py strips on top of a Nb superconducting film. The strips act similar to the grid electrode in an electronic triode, where the electron flow is regulated by the grid potential. In our case, we tune the vortex motion by the magnetic charge potential of the strip edges, using a small magnetic field rotating in the film plane. The magnetic charges emerging at the stripe edges and proportional to the magnetization component perpendicular to the edge direction, form linear potential barriers or valleys for vortex motion in the superconducting layer. We directly imaged the normal flux penetration into the Py/Nb films and observed retarded or accelerated entry of the normal vortices depending on the in-plane magnetization direction in the stripes. The observed flux behavior is explained by interactions between magnetically charged lines and magnetic monopoles of vortices similar to those between electrically charged strings and point charges. We discuss the possibility of using our design for manipulation of individual vortices in high-speed, low-power superconducting electronic circuits. This work was supported by the U.S. DOE, Office of Science, Materials Sciences and Engineering Division, and Office of BES (contract DE-AC02-06CH11357). F. Colauto thanks the Sao Paulo Research Foundation FAPESP (Grant No. 2015/06.085-3).
Qualifying the Sunpower M-87N Cryocooler for Operation in the AMS-02 Magnetic Field
NASA Technical Reports Server (NTRS)
Mustafi, Shuvo; Banks, Stuart; Shirey, Kimberly; Warner, Brent; Leidecker, Henning; Breon, Susan; Boyle, Rob
2003-01-01
The Alpha Magnetic Spectrometer-02 (AMs-02) experiment consists of a superfluid helium dewar. The outer vapor cooled shields of the dewar are to be held at 77 K by four Sunpower M87N cryocoolers. These cryocoolers have magnetic components that might interact with the external applied field generated by the superconducting magnet, thereby degrading the cryocoolers' performance. Engineering models of the Sunpower M87N are being tested at NASA Goddard Space Flight in order to qualify them to operate in a magnetic environment similar to the AMS-02 magnetic environment. AMS-02 will be a space station based particle detector studying the properties and origin of cosmic particles including antimatter and dark matter. It uses a superconducting magnet that is cooled by the superfluid helium dewar. Highly sensitive detector plates inside the magnet will measure a particle's momentum and charge.
THE ADIABATIC DEMAGNETIZATION REFRIGERATOR FOR THE MICRO-X SOUNDING ROCKET TELESCOPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wikus, P.; Bagdasarova, Y.; Figueroa-Feliciano, E.
2010-04-09
The Micro-X Imaging X-ray Spectrometer is a sounding rocket payload slated for launch in 2011. An array of Transition Edge Sensors, which is operated at a bath temperature of 50 mK, will be used to obtain a high resolution spectrum of the Puppis-A supernova remnant. An Adiabatic Demagnetization Refrigerator (ADR) with a 75 gram Ferric Ammonium Alum (FAA) salt pill in the bore of a 4 T superconducting magnet provides a stable heat sink for the detector array only a few seconds after burnout of the rocket motors. This requires a cold stage design with very short thermal time constants.more » A suspension made from Kevlar strings holds the 255 gram cold stage in place. It is capable of withstanding loads in excess of 200 g. Stable operation of the TES array in proximity to the ADR magnet is ensured by a three-stage magnetic shielding system which consists of a superconducting can, a high-permeability shield and a bucking coil. The development and testing of the Micro-X payload is well underway.« less
Design Studies for a Far Infrared Absolute Spectrometer for the Cosmic Background Explorer
NASA Technical Reports Server (NTRS)
Johnson, N. J. E.
1980-01-01
Unrelenting symmetry of design is required to assure the thermal balance of a cryogenically cooled, rapid scan interferometer spectrometer to be mounted in vacuum with the Cosmic Background Explorer liquid helium dewar. The instrument receives inputs from Winston cone optical flux collectors, one open to space and a second coupled to a black body reference source. A differential instrument, the spectrometer produces outputs corresponding to the Fourier transform of the spectral radiance difference between the two inputs. The two outputs are sensed by four detectors, two optimized for shorter wavelength response, and two optimized for longer wavelengths. The optical design, detector and signal channel, system sensitivity, mechanics, thermal control and cryogenics, electronics and power systems, command and control, calibration, system test requirements, and the instrument interface are discussed. Recommendations for continued work are indicated for the superconducting reflective horns, the motor bearing and drive, and design detail.
Tachyon and quintessence in brane worlds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chimento, Luis P.; Forte, Monica; Richarte, Martin G.
2009-04-15
Using tachyon or quintessence fields along with a barotropic fluid on the brane we examine the different cosmological stages in a Friedmann-Robertson-Walker universe, from the first radiation scenario to the later era dominated by cosmic string networks. We introduce a new algorithm to generalize previous works on exact solutions and apply it to study tachyon and quintessence fields localized on the brane. We also explore the low and high energy regimes of the solutions. Besides, we show that the tachyon and quintessence fields are driven by an inverse power law potential. Finally, we find several simple exacts solutions for tachyonmore » and/or quintessence fields.« less
Limits on Neutrino Emission from Gamma-Ray Bursts with the 40 String IceCube Detector
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brown, A. M.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lehmann, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schoenwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, C.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.
2011-04-01
IceCube has become the first neutrino telescope with a sensitivity below the TeV neutrino flux predicted from gamma-ray bursts if gamma-ray bursts are responsible for the observed cosmic-ray flux above 1018eV. Two separate analyses using the half-complete IceCube detector, one a dedicated search for neutrinos from pγ interactions in the prompt phase of the gamma-ray burst fireball and the other a generic search for any neutrino emission from these sources over a wide range of energies and emission times, produced no evidence for neutrino emission, excluding prevailing models at 90% confidence.
Constraints on the production of primordial magnetic seeds in pre-big bang cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasperini, M., E-mail: gasperini@ba.infn.it
We study the amplification of the electromagnetic fluctuations, and the production of 'seeds' for the cosmic magnetic fields, in a class of string cosmology models whose scalar and tensor perturbations reproduce current observations and satisfy known phenomenological constraints. We find that the condition of efficient seeds production can be satisfied and compatible with all constraints only in a restricted region of parameter space, but we show that such a region has significant intersections with the portions of parameter space where the produced background of relic gravitational waves is strong enough to be detectable by aLIGO/Virgo and/or by eLISA.
Constraints on the production of primordial magnetic seeds in pre-big bang cosmology
NASA Astrophysics Data System (ADS)
Gasperini, M.
2017-06-01
We study the amplification of the electromagnetic fluctuations, and the production of "seeds" for the cosmic magnetic fields, in a class of string cosmology models whose scalar and tensor perturbations reproduce current observations and satisfy known phenomenological constraints. We find that the condition of efficient seeds production can be satisfied and compatible with all constraints only in a restricted region of parameter space, but we show that such a region has significant intersections with the portions of parameter space where the produced background of relic gravitational waves is strong enough to be detectable by aLIGO/Virgo and/or by eLISA.
The Mock LISA Data Challenge Round 3: New and Improved Sources
NASA Technical Reports Server (NTRS)
Baker, John
2008-01-01
The Mock LISA Data Challenges are a program to demonstrate and encourage the development of data-analysis capabilities for LISA. Each round of challenges consists of several data sets containing simulated instrument noise and gravitational waves from sources of undisclosed parameters. Participants are asked to analyze the data sets and report the maximum information they can infer about the source parameters. The challenges are being released in rounds of increasing complexity and realism. Challenge 3. currently in progress, brings new source classes, now including cosmic-string cusps and primordial stochastic backgrounds, and more realistic signal models for supermassive black-hole inspirals and galactic double white dwarf binaries.
NASA Astrophysics Data System (ADS)
Walker, Samantha; Sierra, Carlos E.; Austermann, Jason Edward; Beall, James; Becker, Dan; Dober, Bradley; Duff, Shannon; Hilton, Gene; Hubmayr, Johannes; Van Lanen, Jeffrey L.; McMahon, Jeff; Simon, Sara M.; Ullom, Joel; Vissers, Michael R.; NIST Quantum Sensors Group
2018-06-01
Observations of the cosmic microwave background (CMB) provide a powerful tool for probing the earliest moments of the universe and therefore have the potential to transform our understanding of cosmology. In particular, precision measurements of its polarization can reveal the existence of gravitational waves produced during cosmic inflation. However, these observations are complicated by the presence of astrophysical foregrounds, which may be separated by using broad frequency coverage, as the spectral energy distribution between foregrounds and the CMB is distinct. For this purpose, we are developing large-bandwidth, feedhorn-coupled transition-edge-sensor (TES) arrays that couple polarized light from waveguide to superconducting microstrip by use of a symmetric, planar orthomode transducer (OMT). In this work, we describe two types of pixels, an ultra-high frequency (UHF) design, which operates from 195 GHz-315 GHz, and an extended ultra-high frequency (UHF++) design, which operates from 195 GHz-420 GHz, being developed for next generation CMB experiments that will come online in the next decade, such as CCAT-prime and the Simons Observatory. We present the designs, simulation results, fabrication, and preliminary measurements of these prototype pixels.
Constructing superconductors by graphene Chern-Simons wormholes
NASA Astrophysics Data System (ADS)
Capozziello, Salvatore; Pincak, Richard; Saridakis, Emmanuel N.
2018-03-01
We propose a new model which simulates the motion of free electrons in graphene by the evolution of strings on manifolds. In this model, molecules which constitute sheets of graphene are polygonal point-like structures which build (N + 1) -dimensional manifolds. By breaking the gravitational-analogue symmetry of graphene sheets, we show that two separated child sheets and a Chern-Simons bridge are produced giving rise to a wormhole. In this structure, free electrons are transmitted from one child sheet to the other producing superconductivity. An analogue between "effective gravitons" and "Cooper pairs" is found. In principle, this phenomenology provides the possibility to construct superconductor structures by using the analogue of cosmological models.
Final Design and Experimental Validation of the Thermal Performance of the LHC Lattice Cryostats
NASA Astrophysics Data System (ADS)
Bourcey, N.; Capatina, O.; Parma, V.; Poncet, A.; Rohmig, P.; Serio, L.; Skoczen, B.; Tock, J.-P.; Williams, L. R.
2004-06-01
The recent commissioning and operation of the LHC String 2 have given a first experimental validation of the global thermal performance of the LHC lattice cryostat at nominal cryogenic conditions. The cryostat designed to minimize the heat inleak from ambient temperature, houses under vacuum and thermally protects the cold mass, which contains the LHC twin-aperture superconducting magnets operating at 1.9 K in superfluid helium. Mechanical components linking the cold mass to the vacuum vessel, such as support posts and insulation vacuum barriers are designed with efficient thermalisations for heat interception to minimise heat conduction. Heat inleak by radiation is reduced by employing multilayer insulation (MLI) wrapped around the cold mass and around an aluminium thermal shield cooled to about 60 K. Measurements of the total helium vaporization rate in String 2 gives, after substraction of supplementary heat loads and end effects, an estimate of the total thermal load to a standard LHC cell (107 m) including two Short Straight Sections and six dipole cryomagnets. Temperature sensors installed at critical locations provide a temperature mapping which allows validation of the calculated and estimated thermal performance of the cryostat components, including efficiency of the heat interceptions.
The ESS spoke cavity cryomodules
NASA Astrophysics Data System (ADS)
Bousson, Sebastien; Darve, Christine; Duthil, Patxi; Elias, Nuno; Molloy, Steve; Reynet, Denis; Thermeau, Jean-Pierre
2014-01-01
The European Spallation Source (ESS) is a multi-disciplinary research centre under design and construction in Lund, Sweden. This new facility is funded by a collaboration of 17 European countries and is expected to be up to 30 times brighter than today's leading facilities and neutron sources. The ESS will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. A 5 MW long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms, the repetition frequency is 14 Hz (4 % duty cycle), and the beam current is 62.5 mA. It is composed of one string of spoke cavity cryomodule and two strings of elliptical cavity cryomodules. This paper introduces the thermo-mechanical design and expected operation of the ESS spoke cavity cryomodules. These cryomodules contain two double spoke bulk Niobium cavities operating at 2 K and at a frequency of 352.21 MHz. The superconducting section of the Spoke Linac accelerates the beam from 90 MeV to 220 MeV. A Spoke Cavity Cryomodule Technology Demonstrator will be built and tested in order to validate the ESS series production.
The ESS elliptical cavity cryomodules
NASA Astrophysics Data System (ADS)
Darve, Christine; Bosland, Pierre; Devanz, Guillaume; Olivier, Gilles; Renard, Bertrand; Thermeau, Jean-Pierre
2014-01-01
The European Spallation Source (ESS) is a multi-disciplinary research centre under design and construction in Lund, Sweden. This new facility is funded by a collaboration of 17 European countries and is expected to be up to 30 times brighter than today's leading facilities and neutron sources. The ESS will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. A 5 MW long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms, the repetition frequency is 14 Hz (4 % duty cycle), and the beam current is 62.5 mA. The superconducting section of the Linac accelerates the beam from 80 MeV to 2.0 GeV. It is composed of one string of spoke cavity cryomodule and two strings of elliptical cavity cryomodules. These cryomodules contain four elliptical Niobium cavities operating at 2 K and at a frequency of 704.42 MHz. This paper introduces the thermo-mechanical design, the prototyping and the expected operation of the ESS elliptical cavity cryomodules. An Elliptical Cavity Cryomodule Technology Demonstrator (ECCTD) will be built and tested in order to validate the ESS series production.
Frontiers in Numerical Relativity
NASA Astrophysics Data System (ADS)
Evans, Charles R.; Finn, Lee S.; Hobill, David W.
2011-06-01
Preface; Participants; Introduction; 1. Supercomputing and numerical relativity: a look at the past, present and future David W. Hobill and Larry L. Smarr; 2. Computational relativity in two and three dimensions Stuart L. Shapiro and Saul A. Teukolsky; 3. Slowly moving maximally charged black holes Robert C. Ferrell and Douglas M. Eardley; 4. Kepler's third law in general relativity Steven Detweiler; 5. Black hole spacetimes: testing numerical relativity David H. Bernstein, David W. Hobill and Larry L. Smarr; 6. Three dimensional initial data of numerical relativity Ken-ichi Oohara and Takashi Nakamura; 7. Initial data for collisions of black holes and other gravitational miscellany James W. York, Jr.; 8. Analytic-numerical matching for gravitational waveform extraction Andrew M. Abrahams; 9. Supernovae, gravitational radiation and the quadrupole formula L. S. Finn; 10. Gravitational radiation from perturbations of stellar core collapse models Edward Seidel and Thomas Moore; 11. General relativistic implicit radiation hydrodynamics in polar sliced space-time Paul J. Schinder; 12. General relativistic radiation hydrodynamics in spherically symmetric spacetimes A. Mezzacappa and R. A. Matzner; 13. Constraint preserving transport for magnetohydrodynamics John F. Hawley and Charles R. Evans; 14. Enforcing the momentum constraints during axisymmetric spacelike simulations Charles R. Evans; 15. Experiences with an adaptive mesh refinement algorithm in numerical relativity Matthew W. Choptuik; 16. The multigrid technique Gregory B. Cook; 17. Finite element methods in numerical relativity P. J. Mann; 18. Pseudo-spectral methods applied to gravitational collapse Silvano Bonazzola and Jean-Alain Marck; 19. Methods in 3D numerical relativity Takashi Nakamura and Ken-ichi Oohara; 20. Nonaxisymmetric rotating gravitational collapse and gravitational radiation Richard F. Stark; 21. Nonaxisymmetric neutron star collisions: initial results using smooth particle hydrodynamics Christopher S. Kochanek and Charles R. Evans; 22. Relativistic hydrodynamics James R. Wilson and Grant J. Mathews; 23. Computational dynamics of U(1) gauge strings: probability of reconnection of cosmic strings Richard A. Matzner; 24. Dynamically inhomogenous cosmic nucleosynthesis Hannu Kurki-Suonio; 25. Initial value solutions in planar cosmologies Peter Anninos, Joan Centrella and Richard Matzner; 26. An algorithmic overview of an Einstein solver Roger Ove; 27. A PDE compiler for full-metric numerical relativity Jonathan Thornburg; 28. Numerical evolution on null cones R. Gomez and J. Winicour; 29. Normal modes coupled to gravitational waves in a relativistic star Yasufumi Kojima; 30. Cosmic censorship and numerical relativity Dalia S. Goldwirth, Amos Ori and Tsvi Piran.
Superconducting Prototype Cavities for the Spallation Neutron Source (SNS) Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Ciovati; P. Kneisel; K. Davis
2002-06-01
The Spallation Neutron Source project includes a superconducting linac section in the energy range from 186 MeV to 1000 MeV operating at a frequency of 805 MHz at 2.1 K. For this energy range two types of cavities are needed with geometrical Beta-values of Beta=0.61 and Beta=0.81. An aggressive cavity prototyping program is being pursued at JLab, which calls for fabricating and testing of four Beta=0.61 cavities and two Beta=0.81 cavities. Both types consist of six cells made from high purity niobium and feature one HOM coupler of the TESLA type on each beam pipe and a port for amore » high power coaxial input coupler. Three of the four Beta=0.61 cavities will be used for a cryomodule test in early 2002. At this time, four medium beta cavities and one high beta cavity have been completed and tested at JLab. In addition, the three medium beta cavities for the prototype cryomodule have been equipped with the integrated Ti-Helium vessel, successfully retested and will be assembled into a cavity string. Results from the cryo-module test should be available by the time of the conference. The tests on the Beta=0.61 cavity and the Beta=0.81 cavity exceeded the design values for gradient and Q - value: E{sub acc} =10.1 MV/m and Q = 5 x 10{sup 9} at 2.1K for Beta=0.61 and E{sub acc} = 12.3 MV/m and Q=5 x 10{sup 9} at 2.1K for Beta = 0.81. The medium beta cavities reached gradients between E{sub acc} = 15 MV/m and 21 MV/m. This paper will describe the test results obtained with the various cavities, some aspects of the HOM damping at cryogenic temperatures, results from microphonics and Lorentz force detuning tests and the cavity string assembly at the time of this workshop.« less
The BESS Search for Cosmic-Ray Antiproton Origins and for Cosmological Antimatter
NASA Technical Reports Server (NTRS)
Mitchell, John; Yamamoto, Akira
2009-01-01
The apex of the Balloon-borne Experiment with a Superconducting Spectrometer (BESS) program was reached with the Antarctic flight of BESS-Polar II, during the 2007-2008 Austral Summer, that obtained 24.5 days of data on over 4.7 billion cosmic-ray events. The US-Japan BESS Collaboration uses elementary particle measurements to study the early Universe and provides fundamental data on the spectra of light cosmic-ray elements and isotopes. BESS measures the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic sources, such as dark-matter candidates, and searches for heavier antinuclei that might reach Earth from antimatter domains formed during symmetry breaking processes in the early Universe. Since 1993, BESS has carried out eleven high-latitude balloon flights, two of long duration, that together have defined the study of antiprotons below about 4 GeV, provided standard references for light element and isotope spectra, and set the most sensitive limits on the existence of antideuterons and antihelium. The BESS-Polar II flight took place at Solar Minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. The rich BESS-Polar II dataset more than doubles the combined data from all earlier BESS flights and has 10-20 times the statistics of BESS data from the previous Solar Minimum. Here, we summarize the scientific results of BESS program, focusing on the results obtained using data from the long-duration flights of BESS-Polar I (2004) and BESS-Polar II.
Limits on neutrino emission from gamma-ray bursts with the 40 string IceCube detector.
Abbasi, R; Abdou, Y; Abu-Zayyad, T; Adams, J; Aguilar, J A; Ahlers, M; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Bazo Alba, J L; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K-H; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Braun, J; Brown, A M; Buitink, S; Carson, M; Chirkin, D; Christy, B; Clem, J; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; D'Agostino, M V; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Demirörs, L; Depaepe, O; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Ehrlich, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Geisler, M; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Grant, D; Griesel, T; Gross, A; Grullon, S; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Heinen, D; Helbing, K; Herquet, P; Hickford, S; Hill, G C; Hoffman, K D; Homeier, A; Hoshina, K; Hubert, D; Huelsnitz, W; Hülss, J-P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K-H; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kemming, N; Kenny, P; Kiryluk, J; Kislat, F; Klein, S R; Köhne, J-H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, S; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Krings, T; Kroll, G; Kuehn, K; Kuwabara, T; Labare, M; Lafebre, S; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lehmann, R; Lünemann, J; Madsen, J; Majumdar, P; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Meagher, K; Merck, M; Mészáros, P; Meures, T; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Niessen, P; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Ono, M; Panknin, S; Paul, L; Pérez de los Heros, C; Petrovic, J; Piegsa, A; Pieloth, D; Porrata, R; Posselt, J; Price, P B; Prikockis, M; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Rodrigues, J P; Roth, P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H-G; Santander, M; Sarkar, S; Schatto, K; Schmidt, T; Schoenwald, A; Schukraft, A; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Slipak, A; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stephens, G; Stezelberger, T; Stokstad, R G; Stoyanov, S; Strahler, E A; Straszheim, T; Sullivan, G W; Swillens, Q; Taavola, H; Taboada, I; Tamburro, A; Tarasova, O; Tepe, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; Turčan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Voigt, B; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Weaver, C; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Woschnagg, K; Xu, C; Xu, X W; Yodh, G; Yoshida, S; Zarzhitsky, P
2011-04-08
IceCube has become the first neutrino telescope with a sensitivity below the TeV neutrino flux predicted from gamma-ray bursts if gamma-ray bursts are responsible for the observed cosmic-ray flux above 10(18) eV. Two separate analyses using the half-complete IceCube detector, one a dedicated search for neutrinos from pγ interactions in the prompt phase of the gamma-ray burst fireball and the other a generic search for any neutrino emission from these sources over a wide range of energies and emission times, produced no evidence for neutrino emission, excluding prevailing models at 90% confidence.
Cosmological perturbations of axion with a dynamical decay constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Takeshi; INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste; Takahashi, Fuminobu
2016-08-25
A QCD axion with a time-dependent decay constant has been known to be able to accommodate high-scale inflation without producing topological defects or too large isocurvature perturbations on CMB scales. We point out that a dynamical decay constant also has the effect of enhancing the small-scale axion isocurvature perturbations. The enhanced axion perturbations can even exceed the periodicity of the axion potential, and thus lead to the formation of axionic domain walls. Unlike the well-studied axionic walls, the walls produced from the enhanced perturbations are not bounded by cosmic strings, and thus would overclose the universe independently of the numbermore » of degenerate vacua along the axion potential.« less
Exploring cosmic origins with CORE: Inflation
NASA Astrophysics Data System (ADS)
Finelli, F.; Bucher, M.; Achúcarro, A.; Ballardini, M.; Bartolo, N.; Baumann, D.; Clesse, S.; Errard, J.; Handley, W.; Hindmarsh, M.; Kiiveri, K.; Kunz, M.; Lasenby, A.; Liguori, M.; Paoletti, D.; Ringeval, C.; Väliviita, J.; van Tent, B.; Vennin, V.; Ade, P.; Allison, R.; Arroja, F.; Ashdown, M.; Banday, A. J.; Banerji, R.; Bartlett, J. G.; Basak, S.; de Bernardis, P.; Bersanelli, M.; Bonaldi, A.; Borril, J.; Bouchet, F. R.; Boulanger, F.; Brinckmann, T.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C. S.; Castellano, G.; Challinor, A.; Chluba, J.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; D'Amico, G.; Delabrouille, J.; Desjacques, V.; De Zotti, G.; Diego, J. M.; Di Valentino, E.; Feeney, S.; Fergusson, J. R.; Fernandez-Cobos, R.; Ferraro, S.; Forastieri, F.; Galli, S.; García-Bellido, J.; de Gasperis, G.; Génova-Santos, R. T.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Hazra, D. K.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Hu, B.; Kisner, T.; Kitching, T.; Kovetz, E. D.; Kurki-Suonio, H.; Lamagna, L.; Lattanzi, M.; Lesgourgues, J.; Lewis, A.; Lindholm, V.; Lizarraga, J.; López-Caniego, M.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martínez-González, E.; Martins, C. J. A. P.; Masi, S.; McCarthy, D.; Matarrese, S.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Negrello, M.; Notari, A.; Oppizzi, F.; Paiella, A.; Pajer, E.; Patanchon, G.; Patil, S. P.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Ravenni, A.; Remazeilles, M.; Renzi, A.; Roest, D.; Roman, M.; Rubiño-Martin, J. A.; Salvati, L.; Starobinsky, A. A.; Tartari, A.; Tasinato, G.; Tomasi, M.; Torrado, J.; Trappe, N.; Trombetti, T.; Tucci, M.; Tucker, C.; Urrestilla, J.; van de Weygaert, R.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.
2018-04-01
We forecast the scientific capabilities to improve our understanding of cosmic inflation of CORE, a proposed CMB space satellite submitted in response to the ESA fifth call for a medium-size mission opportunity. The CORE satellite will map the CMB anisotropies in temperature and polarization in 19 frequency channels spanning the range 60–600 GHz. CORE will have an aggregate noise sensitivity of 1.7 μKṡ arcmin and an angular resolution of 5' at 200 GHz. We explore the impact of telescope size and noise sensitivity on the inflation science return by making forecasts for several instrumental configurations. This study assumes that the lower and higher frequency channels suffice to remove foreground contaminations and complements other related studies of component separation and systematic effects, which will be reported in other papers of the series "Exploring Cosmic Origins with CORE." We forecast the capability to determine key inflationary parameters, to lower the detection limit for the tensor-to-scalar ratio down to the 10‑3 level, to chart the landscape of single field slow-roll inflationary models, to constrain the epoch of reheating, thus connecting inflation to the standard radiation-matter dominated Big Bang era, to reconstruct the primordial power spectrum, to constrain the contribution from isocurvature perturbations to the 10‑3 level, to improve constraints on the cosmic string tension to a level below the presumptive GUT scale, and to improve the current measurements of primordial non-Gaussianities down to the fNLlocal < 1 level. For all the models explored, CORE alone will improve significantly on the present constraints on the physics of inflation. Its capabilities will be further enhanced by combining with complementary future cosmological observations.
NASA Technical Reports Server (NTRS)
Mashnik, S. G.; Gudima, K. K.; Sierk, A. J.; Moskalenko, I. V.
2002-01-01
Space radiation shield applications and studies of cosmic ray propagation in the Galaxy require reliable cross sections to calculate spectra of secondary particles and yields of the isotopes produced in nuclear reactions induced both by particles and nuclei at energies from threshold to hundreds of GeV per nucleon. Since the data often exist in a very limited energy range or sometimes not at all, the only way to obtain an estimate of the production cross sections is to use theoretical models and codes. Recently, we have developed improved versions of the Cascade-Exciton Model (CEM) of nuclear reactions: the codes CEM97 and CEM2k for description of particle-nucleus reactions at energies up to about 5 GeV. In addition, we have developed a LANL version of the Quark-Gluon String Model (LAQGSM) to describe reactions induced both by particles and nuclei at energies up to hundreds of GeVhucleon. We have tested and benchmarked the CEM and LAQGSM codes against a large variety of experimental data and have compared their results with predictions by other currently available models and codes. Our benchmarks show that CEM and LAQGSM codes have predictive powers no worse than other currently used codes and describe many reactions better than other codes; therefore both our codes can be used as reliable event-generators for space radiation shield and cosmic ray propagation applications. The CEM2k code is being incorporated into the transport code MCNPX (and several other transport codes), and we plan to incorporate LAQGSM into MCNPX in the near future. Here, we present the current status of the CEM2k and LAQGSM codes, and show results and applications to studies of cosmic ray propagation in the Galaxy.
NASA Astrophysics Data System (ADS)
Bruce, Romain; Baudouy, Bertrand
The Space Radiation Superconducting Shield (SR2S) European project aims at studying a large superconducting toroid magnet to protect the human habitat from the ionizing radiations coming from Galactic Cosmic Ray during long term missions in deep space. Titanium clad MgB2 conductor is used to afford a bending power greater than 5 T.m at 10 K. A specific cryogenic design is needed to cool down this 10 m long and 12.8 m in diameter magnet. A passive cooling system, using a V-groove sunshield, is considered to reduce the heat flux coming from the Sun or Mars. An active configuration, using pulse tube cryocoolers, will be linked to the 80 K thermal screen intercepting most of the heat fluxes coming from the human habitat. The toroid magnet will be connected also to cryocoolers to absorb the few watts reaching its surface. Two kinds of thermal link are being considered to absorb the heat on the 80 K thermal screen. The first one is active, with a pump circulating helium gas in a network of exchange tubes. The second one is passive using long cryogenic pulse heat pipe (PHP) with the evaporator on the surface of the thermal screen and the condenser attached to the pulse tube.
Fabrication of a Silicon Backshort Assembly for Waveguide-Coupled Superconducting Detectors
NASA Technical Reports Server (NTRS)
Crowe, Erik J.; Bennett, Charles L.; Chuss, David T.; Denis, Kevin L.; Eimer, Joseph; Lourie, Nathan; Marriage, Tobias; Moseley, Samuel H.; Rostem, Karwan; Stevenson, Thomas R.;
2012-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microwave background to search for evidence for gravitational waves from a posited epoch of inflation early in the Universe s history. This measurement will require integration of superconducting transition-edge sensors with microwave waveguide inputs with excellent control of systematic errors, such as unwanted coupling to stray signals at frequencies outside of a precisely defined microwave band. To address these needs we present work on the fabrication of micromachined silicon, producing conductive quarter-wave backshort assemblies for the CLASS 40 GHz focal plane. Each 40 GHz backshort assembly consists of three degeneratively doped silicon wafers. Two spacer wafers are micromachined with through-wafer vias to provide a 2.04 mm long square waveguide delay section. The third wafer terminates the waveguide delay in a short. The three wafers are bonded at the wafer level by Au-Au thermal compression bonding then aligned and flip chip bonded to the CLASS detector at the chip level. The micromachining techniques used have been optimized to create high aspect ratio waveguides, silicon pillars, and relief trenches with the goal of providing improved out of band signal rejection. We will discuss the fabrication of integrated CLASS superconducting detector chips with the quarter-wave backshort assemblies.
NASA Technical Reports Server (NTRS)
Crowe, Erik J.; Bennett, Charles L.; Chuss, David T.; Denis, Kevin L.; Eimer, Joseph; Lourie, Nathan; Marriage, Tobias; Moseley, Samuel H.; Rostem, Karwan; Stevenson, Thomas R.;
2012-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microqave background to search for gravitational waves form a posited epoch of inflation early in the universe's history. This measurement will require integration of superconducting transition-edge sensors with microwave waveguide inputs with good conrol of systematic errors, such as unwanted coupling to stray signals at frequencies outside of a precisely defined microwave band. To address these needs we will present work on the fabrication of silicon quarter-wave backshorts for the CLASS 40GHz focal plane. The 40GHz backshort consists of three degeneratively doped silicon wafers. Two spacer wafers are micromachined with through wafer vins to provide a 2.0mm long square waveguide. The third wafer acts as the backshort cap. The three wafers are bonded at the wafer level by Au-Au thermal compression bonding then aligned and flip chip bonded to the CLASS detector at the chip level. The micromachining techniques used have been optimized to create high aspect ratio waveguides, silicon pillars, and relief trenches with the goal of providing improved out of band signal rejection. We will discuss the fabrication of integrated CLASS superconducting detectors with silicon quarter wave backshorts and present current measurement results.
High-Density Superconducting Cables for Advanced ACTPol
NASA Astrophysics Data System (ADS)
Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.
2016-07-01
Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measurement of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 \\upmu m pitch superconducting flexible cables (flex) to connect the detector wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered aluminum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97 %.
High-Density Superconducting Cables for Advanced ACTPol
NASA Technical Reports Server (NTRS)
Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.;
2016-01-01
Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measure- ment of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 µ m pitch superconducting flexible cables (flex) to connect the detec- tor wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered alu- minum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97%.
NASA Astrophysics Data System (ADS)
Faramarzi, F.; De Haan, T.; Kusaka, A.; Lee, A.; Neuhauser, B.; Plambeck, R.; Raum, C.; Suzuki, A.; Westbrook, B.
2018-03-01
Ground-based cosmic microwave background (CMB) experiments are undergoing a period of exponential growth. Current experiments are observing with 1000-10,000 detectors, and the next-generation experiment (CMB stage 4) is proposing to deploy approximately 500,000 detectors. This order of magnitude increase in detector count will require a new approach for readout electronics. We have developed superconducting resonators for next-generation frequency-domain multiplexing (fMUX) readout architecture. Our goal is to reduce the physical size of resonators, such that resonators and detectors can eventually be integrated on a single wafer. To reduce the size of these resonators, we have designed spiral inductors and interdigitated capacitors that resonate around 10-100 MHz, an order of magnitude higher frequency compared to current fMUX readout systems. The higher frequency leads to a wider bandwidth and would enable higher multiplexing factor than the current ˜ 50 detectors per readout channel. We will report on the simulation, fabrication method, characterization technique, and measurement of quality factor of these resonators.
NASA Technical Reports Server (NTRS)
Mitchell, J. W.; Abe, K.; Anraku, K.; Fuke, H.; Haino, S.; Hams, T.; Imori, M.; Itazaki, A.; Izumi, K.; Kumazawa, T.
2004-01-01
In nine flights between 1993 and 2002, the Balloon Borne Experiment with a Superconducting Spectrometer (BESS) has measured the energy spectrum of cosmic-ray antiprotons between 0.18 and 4.20 GeV, and the spectra of protons and helium to several hundred GeV. BESS has also placed stringent upper limits on the existence of antihelium and antiduterons. Above about 1 GeV, models in which antiprotons are secondary products of the interactions of primary cosmic rays with the ISM agree with the BESS spectrum. Below 1 GeV, BESS data suggest the presence of an additional source of antiprotons. The antiproton/proton ratios measured between 1993 and 1999, during the Sun's positive-polarity phase, are consistent with simple models of solar modulation. Results from the 2000 flight, following the solar magnetic field reversal, show a sudden increase in the antiproton/proton ratio and tend to favor a charge-sign-dependent drift model. To extend BESS measurements to lower energies, a new instrument, BESS-Polar, is under construction for a flight from Antarctica in 2004.
Measurements of cosmic-ray electrons and positrons by the Wizard/CAPRICE collaboration
NASA Astrophysics Data System (ADS)
Boezio, M.; Barbiellini, G.; Bonvicini, V.; Schiavon, P.; Vacchi, A.; Zampa, N.; Bergström, D.; Carlson, P.; Francke, T.; Grinstein, S.; Weber, N.; Suffert, M.; Hof, M.; Kremer, J.; Menn, W.; Simon, M.; Stephens, S. A.; Ambriola, M.; Bellotti, R.; Cafagna, F. S.; Ciacio, F.; Circella, M.; De Marzo, C.; Finetti, N.; Papini, P.; Piccardi, S.; Spillantini, P.; Bartalucci, S.; Ricci, M.; Grimani, C.; Casolino, M.; De Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Mitchell, J. W.; Ormes, J. F.; Streitmatter, R. E.; Bravar, U.; Stochaj, S. J.
Two recent ballon-borne experiments have been performed by the WiZard/CAPRICE collaboration in order to study the electron and positron components in the cosmic radiation. On 1994 August 8-9 the CAPRICE94 experiment flew from norther Canada and on 1998 May 28-29 the CAPRICE98 experiment flew from New Mexico, USA at altitudes corresponding to 3.9 and 5.5 g/cm 2 of average residual atmosphere respectively. The apparatus were equipped with a Ring Imaging Cherenkov (RICH) detector, a time-of-flight system, a superconducting magnet spectrometer with a tracking system and a 7-radiation-length silicon-tungsten imaging calorimeter. The RICH used in 1994 had a solid NaF radiator while in 1998 the RICH had a C 4F 10 gaseous radiator. We report on the electron and positron spectra and positron fraction at the top of the atmosphere from few hundred MeV to 40 GeV measured by these two experiments.
NASA Astrophysics Data System (ADS)
Wilczek, Frank
2012-10-01
Newtonian mechanics posited mass as a primary quality of matter, incapable of further elucidation. We now see Newtonian mass as an emergent property. That mass-concept is tremendously useful in the approximate description of baryon-dominated matter at low energy — that is, the standard "matter" of everyday life, and of most of science and engineering — but it originates in a highly contingent and non-trivial way from more basic concepts. Most of the mass of standard matter, by far, arises dynamically, from back-reaction of the color gluon fields of quantum chromodynamics (QCD). Additional quantitatively small, though physically crucial, contributions come from the intrinsic masses of elementary quanta (electrons and quarks). The equations for massless particles support extra symmetries — specifically scale, chiral, and gauge symmetries. The consistency of the standard model relies on a high degree of underlying gauge and chiral symmetry, so the observed non-zero masses of many elementary particles ( W and Z bosons, quarks, and leptons) requires spontaneous symmetry breaking. Superconductivity is a prototype for spontaneous symmetry breaking and for mass-generation, since photons acquire mass inside superconductors. A conceptually similar but more intricate form of all-pervasive ( i.e. cosmic) superconductivity, in the context of the electroweak standard model, gives us a successful, economical account of W and Z boson masses. It also allows a phenomenologically successful, though profligate, accommodation of quark and lepton masses. The new cosmic superconductivity, when implemented in a straightforward, minimal way, suggests the existence of a remarkable new particle, the so-called Higgs particle. The mass of the Higgs particle itself is not explained in the theory, but appears as a free parameter. Earlier results suggested, and recent observations at the Large Hadron Collider (LHC) may indicate, the actual existence of the Higgs particle, with mass m H ≈ 125 GeV. In addition to consolidating our understanding of the origin of mass, a Higgs particle with m H ≈ 125 GeV could provide an important clue to the future, as it is consistent with expectations from supersymmetry.
NASA Astrophysics Data System (ADS)
Arzoumanian, Z.; Baker, P. T.; Brazier, A.; Burke-Spolaor, S.; Chamberlin, S. J.; Chatterjee, S.; Christy, B.; Cordes, J. M.; Cornish, N. J.; Crawford, F.; Thankful Cromartie, H.; Crowter, K.; DeCesar, M.; Demorest, P. B.; Dolch, T.; Ellis, J. A.; Ferdman, R. D.; Ferrara, E.; Folkner, W. M.; Fonseca, E.; Garver-Daniels, N.; Gentile, P. A.; Haas, R.; Hazboun, J. S.; Huerta, E. A.; Islo, K.; Jones, G.; Jones, M. L.; Kaplan, D. L.; Kaspi, V. M.; Lam, M. T.; Lazio, T. J. W.; Levin, L.; Lommen, A. N.; Lorimer, D. R.; Luo, J.; Lynch, R. S.; Madison, D. R.; McLaughlin, M. A.; McWilliams, S. T.; Mingarelli, C. M. F.; Ng, C.; Nice, D. J.; Park, R. S.; Pennucci, T. T.; Pol, N. S.; Ransom, S. M.; Ray, P. S.; Rasskazov, A.; Siemens, X.; Simon, J.; Spiewak, R.; Stairs, I. H.; Stinebring, D. R.; Stovall, K.; Swiggum, J.; Taylor, S. R.; Vallisneri, M.; van Haasteren, R.; Vigeland, S.; Zhu, W. W.; The NANOGrav Collaboration
2018-05-01
We search for an isotropic stochastic gravitational-wave background (GWB) in the newly released 11 year data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). While we find no evidence for a GWB, we place constraints on a population of inspiraling supermassive black hole (SMBH) binaries, a network of decaying cosmic strings, and a primordial GWB. For the first time, we find that the GWB constraints are sensitive to the solar system ephemeris (SSE) model used and that SSE errors can mimic a GWB signal. We developed an approach that bridges systematic SSE differences, producing the first pulsar-timing array (PTA) constraints that are robust against SSE errors. We thus place a 95% upper limit on the GW-strain amplitude of A GWB < 1.45 × 10‑15 at a frequency of f = 1 yr‑1 for a fiducial f ‑2/3 power-law spectrum and with interpulsar correlations modeled. This is a factor of ∼2 improvement over the NANOGrav nine-year limit calculated using the same procedure. Previous PTA upper limits on the GWB (as well as their astrophysical and cosmological interpretations) will need revision in light of SSE systematic errors. We use our constraints to characterize the combined influence on the GWB of the stellar mass density in galactic cores, the eccentricity of SMBH binaries, and SMBH–galactic-bulge scaling relationships. We constrain the cosmic-string tension using recent simulations, yielding an SSE-marginalized 95% upper limit of Gμ < 5.3 × 10‑11—a factor of ∼2 better than the published NANOGrav nine-year constraints. Our SSE-marginalized 95% upper limit on the energy density of a primordial GWB (for a radiation-dominated post-inflation universe) is ΩGWB(f) h 2 < 3.4 × 10‑10.
The AMS tracking detector for cosmic-ray physics in space
NASA Astrophysics Data System (ADS)
Bourquin, Maurice; AMS Tracker Collaboration
2005-04-01
AMS-02 is a general-purpose spectrometer designed to measure cosmic rays and gamma rays in near-Earth orbit. The main scientific motivations are the search for cosmic anti-matter, the search for dark matter, precision measurements on the relative abundance of different nuclei and isotopes, as well as the measurement of very high-energy gamma rays. Constructed by a large international collaboration of institutes from America, Asia and Europe, it will collect data on the International Space Station for a period of at least three years. In this contribution, I first identify the various detector requirements necessary to carry out this ambitious program. In particular, a large-area silicon microstrip detector inside a 0.8 T superconducting magnet is well suited to measure rigidity p/Z and specific energy loss d E/d x of cosmic rays, as well as the direction and energy of converted gamma rays. I review the advantage of such a silicon-tracking detector, taking into account the constraints of the space environment. The collaboration has gained extensive operating experience with double-sided silicon sensors in beam tests, and above all with AMS-01, a precursor spectrometer flown in the cargo bay of the Shuttle Discovery. During the entire 10-day STS-91 mission, the Silicon Tracker functioned without fault and with good spatial resolution. From the lessons learned with AMS-01, improvements were made to the design and assembly procedure of the 2500 sensors of AMS-02. As a result, the charge identification has been extended from Oxygen ( Z=8) to Iron ( Z=26). The physics reach of the new spectrometer is presented.
NASA Astrophysics Data System (ADS)
Bhattacharya, Sourav
2015-06-01
Consideration of vacuum polarization in quantum electrodynamics may affect the momentum dispersion relation for photons for a non-trivial background, due to the appearance of curvature dependent terms in the effective action. We investigate the effect of a positive cosmological constant on this at one-loop order for stationary -vacuum spacetimes. To the best of our knowledge, so far it only has been shown that affects the propagation in a time dependent black hole spacetime. Here we consider the static de Sitter cosmic string and the Kerr-de Sitter spacetime to show that there might occur a non-vanishing effect due to for physical polarizations. The consistency of these results with the polarization sum rule is discussed.
NASA Astrophysics Data System (ADS)
Takeuchi, Hiromitsu; Kasamatsu, Kenichi; Tsubota, Makoto; Nitta, Muneto
2013-05-01
In brane cosmology, the Big Bang is hypothesized to occur by the annihilation of the brane-anti-brane pair in a collision, where the branes are three-dimensional objects in a higher-dimensional Universe. Spontaneous symmetry breaking accompanied by the formation of lower-dimensional topological defects, e.g. cosmic strings, is triggered by the so-called `tachyon condensation', where the existence of tachyons is attributable to the instability of the brane-anti-brane system. Here, we discuss the closest analogue of the tachyon condensation in atomic Bose-Einstein condensates. We consider annihilation of domain walls, namely branes, in strongly segregated two-component condensates, where one component is sandwiched by two domains of the other component. In this system, the process of the brane annihilation can be projected effectively as ferromagnetic ordering dynamics onto a two-dimensional space. Based on this correspondence, three-dimensional formation of vortices from a domain-wall annihilation is considered to be a kink formation due to spontaneous symmetry breaking in the two-dimensional space. We also discuss a mechanism to create a `vorton' when the sandwiched component has a vortex string bridged between the branes. We hope that this study motivates experimental researches to realize this exotic phenomenon of spontaneous symmetry breaking in superfluid systems.
In Search of the Ultimate Building Blocks
NASA Astrophysics Data System (ADS)
't Hooft, Gerard
1996-12-01
An apology; 1. The beginning of the journey to the small: cutting paper; 2. To molecules and atoms; 3. The magic mystery of the quanta; 4. Dazzling velocities; 5. The elementary particle zoo before 1970; 6. Life and death; 7. The crazy kaons; 8. The invisible quarks; 9. Fields or bootstraps?; 10. The Yang-Mills bonanza; 11. Superconducting empty space: the Higgs-Kibble machine; 12. Models; 13. Colouring in the strong forces; 14. The magnetic monopole; 15. Gypsy; 16. The brilliance of the standard model; 17. Anomalies; 18. Deceptive perfection; 19. Weighing neutrinos; 20. The great desert; 21. Technicolor; 22. Grand unification; 23. Supergravity; 24. Eleven dimensional space-time; 25. Attaching the super string; 26. Into the black hole; 27. Theories that do not yet exist … ; 28. Dominance of the rule of the smallest.
Radiation shielding for deep space manned missions by cryogen free superconducting magnets.
NASA Astrophysics Data System (ADS)
Spillantini, Piero
In last years some activity was dedicated to the solution of the following problem: can be artificially created, around a space vehicle in a manned interplanetary travel or around a manned `space base' in deep space, a magnetic field approaching as much as possible the terrestrial one in terms of bending power on the arriving particles? Preliminary evaluations for active shielding based on superconducting magnets were made a few years ago in ESA supported studies. The present increasing interest of permanent space `bases' located in `deep' space requires that this activity continue toward the goal of protecting from Galactic Cosmic Ray (GCR) a large volume `habitat', allowing long duration permanence in space to citizens conducting there `normal' activities besides to a restricted number of astronauts. The problem had to be stated at this global scale because it must be afforded as soon as possible for preparing the needed technologies and their integration in the spacecraft designs for the future manned exploration and for inhabitation of deep space. The realization of the magnetic protection of large volume habitats by well-established nowadays materials and techniques is in principle possible, but not workable in practice for the huge required mass of the superconductor, the too low operating temperature (10K) and the corresponding required cooling power and thermal shielding. The concept of Cryogen Free Superconducting Magnets is the only one practicable. Fast progress in the production of reliable High Temperature Superconducting (HTS) or MgB2 cables and of cryocoolers suitable for space operation opens the perspective of practicable solutions. Quantitative evaluations for the protection of large volume habitats in deep space from GCRs are reported and discussed.
Active shielding for long duration interplanetary manned missions
NASA Astrophysics Data System (ADS)
Spillantini, Piero
The problem of protecting astronauts from the cosmic rays action in unavoidable and was therefore preliminary studied by many space agencies. In Europe, in the years 2002-2004, ESA supported two works on this thematic: a topical team in the frame of the ‘life and physical sciences' and a study, assigned by tender, of the ‘radiation exposure and mission strategies for interplanetary manned missions to Moon and Mars'. In both studies it was concluded that, while the protection from solar cosmic rays can relay on the use of passive absorbers, for long duration missions the astronauts must be protected from the much more energetic galactic cosmic rays during the whole duration of the mission. This requires the protection of a large habitat where they could live and work, and not a temporary small volume shelter, and the use of active shielding is therefore mandatory. The possibilities offered by using superconducting magnets were discussed, and the needed R&D recommended. The technical development occurred in the meantime and the evolution of the panorama of the possible interplanetary missions in the near future require to revise these pioneer studies and think of the problem at a scale allowing long human permanence in ‘deep' space, and not for a relatively small number of dedicated astronauts but also for citizens conducting there ‘normal' activities.
NASA Astrophysics Data System (ADS)
Dalesandro, Andrew A.; Theilacker, Jay; Van Sciver, Steven
2012-06-01
Safe operation of superconducting radio frequency (SRF) cavities require design consideration of a sudden catastrophic loss of vacuum (SCLV) adjacent with liquid helium (LHe) vessels and subsequent dangers. An experiment is discussed to test the longitudinal effects of SCLV along the beam line of a string of scaled SRF cavities. Each scaled cavity includes one segment of beam tube within a LHe vessel containing 2 K saturated LHe, and a riser pipe connecting the LHe vessel to a common gas header. At the beam tube inlet is a fast acting solenoid valve to simulate SCLV and a high/low range orifice plate flow-meter to measure air influx to the cavity. The gas header exit also has an orifice plate flow-meter to measure helium venting the system at the relief pressure of 0.4 MPa. Each cavity is instrumented with Validyne pressure transducers and Cernox thermometers. The purpose of this experiment is to quantify the time required to spoil the beam vacuum and the effects of transient heat and mass transfer on the helium system. Heat transfer data is expected to reveal a longitudinal effect due to the geometry of the experiment. Details of the experimental design criteria and objectives are presented.
NASA Astrophysics Data System (ADS)
Uranga, A. M.
2009-11-01
This special section is devoted to the proceedings of the conference `Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland 9-13 February 2009. This event is part of a yearly series of scientific schools, which represents a well established tradition. Previous events have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006, January 2007 and January 2008, and were funded by the European Mobility Research and Training Network `Constituents, Fundamental Forces and Symmetries of the Universe'. The next event will take place again at CERN, in January 2010. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, whose notes are published in this special section, and six working group discussion sessions, focused on specific topics of the network research program. It was well attended by over 200 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. One of the most active areas in string theory in recent years has been the AdS/CFT or gauge/gravity correspondence, which proposes the complete equivalence of string theory on (asymptotically) anti de Sitter spacetimes with certain quantum (gauge) field theories. The duality has recently been applied to understanding the hydrodynamical properties of a hot plasma in gauge theories (like the quark-gluon plasma created in heavy ion collisions at the RHIC experiment at Brookhaven, and soon at the LHC at CERN) in terms of a dual gravitational AdS theory in the presence of a black hole. These developments were reviewed in the lecture notes by M Rangamani. In addition, the AdS/CFT duality has been proposed as a tool to study interesting physical properties in other physical systems described by quantum field theory, for instance in the context of a condensed matter system. The lectures by S Hartnoll provided an introduction to this recent development with an emphasis on the dual holographic description of superconductivity. Finally, ideas inspired by the AdS/CFT correspondence are yielding deep insights into fundamental questions of quantum gravity, like the entropy of black holes and its interpretation in terms of microstates. The lectures by S Mathur reviewed the black hole entropy and information paradox, and the proposal for its resolution in terms of `fuzzball' microstates. Further sets of lectures, not included in this special section, by F Zwirner and V Mukhanov, covered phenomenological aspects of high energy physics beyond the Standard Model and of cosmology. The coming experimental data in these two fields are expected to foster new developments in connecting string theory to the real world. The conference was financially supported by CERN and partially by the Arnold Sommerfeld Center for Theoretical Physics of the Ludwig Maximilians University of Munich. It is a great pleasure for us to warmly thank the Theory Unit of CERN for its very kind hospitality and for the high quality of the assistance and the infrastructures that it has provided. A M Uranga CERN, Switzerland Guest Editor
NASA Astrophysics Data System (ADS)
Terachi, Yusuke; Terao, Yutaka; Ohsaki, Hiroyuki; Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Utsunomiya, Shin; Kataza, Hirokazu; Yamamoto, Ryo
2017-07-01
We have carried out numerical analysis of mechanical properties of a superconducting magnetic bearing (SMB). A contactless bearing operating at below 10 K with low rotational energy loss is an attractive feature to be used as a rotational mechanism of a polarization modulator for a cosmic microwave background experiment. In such application, a rotor diameter of about 400 mm forces us to employ a segmented magnet. As a result, there is inevitable spatial gap between the segments. In order to understand the path towards the design optimizations, 2D and 3D FEM analyses were carried out to examine fundamental characteristics of the SMBs for a polarization modulator. Two axial flux type SMBs were dealt with in the analysis: (a) the SMB with axially magnetized permanent magnets (PMs), and (b) the SMB with radially magnetized PMs and steel components for magnetic flux paths. Magnetic flux lines and density distributions, electromagnetic force characteristics, spring constants, etc. were compared among some variations of the SMBs. From the numerical analysis results, it is discussed what type, configuration and design of SMBs are more suitable for a polarization modulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abazajian, Kevork N.
This book lays out the scientific goals to be addressed by the next-generation ground-based cosmic microwave background experiment, CMB-S4, envisioned to consist of dedicated telescopes at the South Pole, the high Chilean Atacama plateau and possibly a northern hemisphere site, all equipped with new superconducting cameras. CMB-S4 will dramatically advance cosmological studies by crossing critical thresholds in the search for the B-mode polarization signature of primordial gravitational waves, in the determination of the number and masses of the neutrinos, in the search for evidence of new light relics, in constraining the nature of dark energy, and in testing general relativitymore » on large scales.« less
NASA Technical Reports Server (NTRS)
Lowitz, Amy E.; Brown, Ari David; Stevenson, Thomas R.; Timbie, Peter T.; Wollack, Edward J.
2014-01-01
Kinetic inductance detectors (KIDs) are a promising technology for low-noise, highly-multiplexible mm- and submm-wave detection. KIDs have a number of advantages over other detector technologies, which make them an appealing option in the cosmic microwave background B-mode anisotropy search, including passive frequency domain multiplexing and relatively simple fabrication, but have suffered from challenges associated with noise control. Here we describe design and fabrication of a 20-pixel prototype array of lumped element molybdenum KIDs. We show Q, frequency and temperature measurements from the array under dark conditions. We also present evidence for a double superconducting gap in molybdenum.
Highly Uniform 150 mm Diameter Multichroic Polarimeter Array Deployed for CMB Detection
NASA Technical Reports Server (NTRS)
Ho, Shuay-Pwu Patty; Austermann, Jason; Beall, James A.; Choi, Steve K.; Cothard, Nicholas F.; Crowley, Kevin; Datta, Rahul; Devlin, Mark J.; Duff, Shannon M.; Wollack, Edward J.
2016-01-01
The Advanced Atacama Cosmology Telescope Polarimeter is an upgraded receiver for the Atacama Cosmology Telescope, which has begun making measurements of the small angular scale polarization anisotropies in the Cosmic Microwave Background using the first of four new multichroic superconducting detector arrays. Here, we review all details of the optimization and characterization of this first array, which features 2012 AlMn transition edge sensor bolometers operating at 150 and 230 GHz. We present critical temperatures, thermal conductivities,saturation powers, time constants, and sensitivities for the array. The results show high uniformity across the 150 mm wafer and good performance in the field.
The Cosmic-Ray Antiproton Flux between 3 and 49 GeV
NASA Astrophysics Data System (ADS)
Boezio, M.; Bonvicini, V.; Schiavon, P.; Vacchi, A.; Zampa, N.; Bergström, D.; Carlson, P.; Francke, T.; Grinstein, S.; Suffert, M.; Hof, M.; Kremer, J.; Menn, W.; Simon, M.; Stephens, S. A.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; De Marzo, C.; Finetti, N.; Papini, P.; Piccardi, S.; Spillantini, P.; Vannuccini, E.; Bartalucci, S.; Ricci, M.; Casolino, M.; De Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Mitchell, J. W.; Ormes, J. F.; Streitmatter, R. E.; Bravar, U.; Stochaj, S. J.
2001-11-01
We report on a new measurement of the cosmic ray antiproton spectrum. The data were collected by the balloon-borne experiment CAPRICE98, which was flown on 1998 May 28-29 from Fort Sumner, New Mexico. The experiment used the NMSU-WiZard/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas Ring Imaging Cherenkov (RICH) detector, a time-of-flight system, a tracking device consisting of drift chambers and a superconducting magnet, and a silicon-tungsten calorimeter. The RICH detector was the first ever flown capable of mass-resolving charge-one particles at energies above 5 GeV. A total of 31 antiprotons with rigidities between 4 and 50 GV at the spectrometer were identified with small backgrounds from other particles. The absolute antiproton energy spectrum was determined in the kinetic energy region at the top of the atmosphere between 3.2 and 49.1 GeV. We found that the observed antiproton spectrum and the antiproton-to-proton ratio are consistent with a pure secondary origin. However, a primary component may not be excluded.
Cosmological structure formation from soft topological defects
NASA Technical Reports Server (NTRS)
Hill, Christopher T.; Schramm, David N.; Fry, J. N.
1988-01-01
Some models have extremely low-mass pseudo-Goldstone bosons that can lead to vacuum phase transitions at late times, after the decoupling of the microwave background.. This can generate structure formation at redshifts z greater than or approx 10 on mass scales as large as M approx 10 to the 18th solar masses. Such low energy transitions can lead to large but phenomenologically acceptable density inhomogeneities in soft topological defects (e.g., domain walls) with minimal variations in the microwave anisotropy, as small as delta Y/T less than or approx 10 to the minus 6 power. This mechanism is independent of the existence of hot, cold, or baryonic dark matter. It is a novel alternative to both cosmic string and to inflationary quantum fluctuations as the origin of structure in the Universe.
Asymmetric thin-shell wormholes
NASA Astrophysics Data System (ADS)
Forghani, S. Danial; Mazharimousavi, S. Habib; Halilsoy, Mustafa
2018-06-01
Spacetime wormholes in isotropic spacetimes are represented traditionally by embedding diagrams which were symmetric paraboloids. This mirror symmetry, however, can be broken by considering different sources on different sides of the throat. This gives rise to an asymmetric thin-shell wormhole, whose stability is studied here in the framework of the linear stability analysis. Having constructed a general formulation, using a variable equation of state and related junction conditions, the results are tested for some examples of diverse geometries such as the cosmic string, Schwarzschild, Reissner-Nordström and Minkowski spacetimes. Based on our chosen spacetimes as examples, our finding suggests that symmetry is an important factor to make a wormhole more stable. Furthermore, the parameter γ , which corresponds to the radius dependency of the pressure on the wormholes's throat, can affect the stability in a great extent.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, K. N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stiles, D.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Archibald, A. M.; Banaszak, S.; Berndsen, A.; Boyles, J.; Cardoso, R. F.; Chawla, P.; Cherry, A.; Dartez, L. P.; Day, D.; Epstein, C. R.; Ford, A. J.; Flanigan, J.; Garcia, A.; Hessels, J. W. T.; Hinojosa, J.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; Keane, E. F.; Kondratiev, V. I.; Kramer, M.; Leake, S.; Lorimer, D.; Lunsford, G.; Lynch, R. S.; Martinez, J. G.; Mata, A.; McLaughlin, M. A.; McPhee, C. A.; Penucci, T.; Ransom, S.; Roberts, M. S. E.; Rohr, M. D. W.; Stairs, I. H.; Stovall, K.; van Leeuwen, J.; Walker, A. N.; Wells, B. L.; LIGO Scientific Collaboration; Virgo Collaboration
2016-06-01
We present an archival search for transient gravitational-wave bursts in coincidence with 27 single-pulse triggers from Green Bank Telescope pulsar surveys, using the LIGO, Virgo, and GEO interferometer network. We also discuss a check for gravitational-wave signals in coincidence with Parkes fast radio bursts using similar methods. Data analyzed in these searches were collected between 2007 and 2013. Possible sources of emission of both short-duration radio signals and transient gravitational-wave emission include starquakes on neutron stars, binary coalescence of neutron stars, and cosmic string cusps. While no evidence for gravitational-wave emission in coincidence with these radio transients was found, the current analysis serves as a prototype for similar future searches using more sensitive second-generation interferometers.
Systematic Uncertainties in High-Energy Hadronic Interaction Models
NASA Astrophysics Data System (ADS)
Zha, M.; Knapp, J.; Ostapchenko, S.
2003-07-01
Hadronic interaction models for cosmic ray energies are uncertain since our knowledge of hadronic interactions is extrap olated from accelerator experiments at much lower energies. At present most high-energy models are based on Grib ov-Regge theory of multi-Pomeron exchange, which provides a theoretical framework to evaluate cross-sections and particle production. While experimental data constrain some of the model parameters, others are not well determined and are therefore a source of systematic uncertainties. In this paper we evaluate the variation of results obtained with the QGSJET model, when modifying parameters relating to three ma jor sources of uncertainty: the form of the parton structure function, the role of diffractive interactions, and the string hadronisation. Results on inelastic cross sections, on secondary particle production and on the air shower development are discussed.
NASA Astrophysics Data System (ADS)
Naitoh, Ken
2014-04-01
Flexible particles, including hadrons, atoms, hydrated biological molecules, cells, organs containing water, liquid fuel droplets in engines, and stars commonly break up after becoming a gourd shape rather than that of a string; this leads to cyto-fluid dynamics that can explain the proliferation, differentiation, and replication of biomolecules, onto-biology that clarifies the relationship between information, structure, and function, and the gourd theory that clarifies masses, including quark-leptons and Plank energy. The masses are related to the super-magic numbers, including the asymmetric silver ratio and symmetric yamato ratio, and reveal further mechanisms underlying symmetry breaking. This paper gives further theoretical basis and evidence, because the gourd theory reported previously is a little analogical and instinctive.
A review of the generalized uncertainty principle.
Tawfik, Abdel Nasser; Diab, Abdel Magied
2015-12-01
Based on string theory, black hole physics, doubly special relativity and some 'thought' experiments, minimal distance and/or maximum momentum are proposed. As alternatives to the generalized uncertainty principle (GUP), the modified dispersion relation, the space noncommutativity, the Lorentz invariance violation, and the quantum-gravity-induced birefringence effects are summarized. The origin of minimal measurable quantities and the different GUP approaches are reviewed and the corresponding observations are analysed. Bounds on the GUP parameter are discussed and implemented in the understanding of recent PLANCK observations of cosmic inflation. The higher-order GUP approaches predict minimal length uncertainty with and without maximum momenta. Possible arguments against the GUP are discussed; for instance, the concern about its compatibility with the equivalence principles, the universality of gravitational redshift and the free fall and law of reciprocal action are addressed.
Antiproton Production by CR on Air Nuclei
NASA Technical Reports Server (NTRS)
Maskalenko, I. V.; Mashnik, S. G.
2003-01-01
Recent measurements of the cosmic ray (CR) antiproton flux have been shown to challenge existing CR propagation models. In particular, the conventional reacceleration model designed to match secondary/primary nuclei ratios produces too few antiprotons. Recently there appear some indications that the atmospheric contribution to antiproton production is considerably underestimated, which implies that antiproton CR flux might be lower. This may be the primary reason of the discrepancy discovered in CR propagation. We use the Los Alamos version of the Quark-Gluon String Model code LAQGSM together with available data on antiproton production on nuclei to analyse the accuracy of existing parameterizations of antiproton production cross section. The LAQGSM model has been shown to reproduce well nuclear reactions and hadronic data in the range 0.01-800 GeV/nucleon.
Magnetic Sensitivity of AlMn TESes and Shielding Considerations for Next-Generation CMB Surveys
NASA Astrophysics Data System (ADS)
Vavagiakis, E. M.; Henderson, S. W.; Zheng, K.; Cho, H.-M.; Cothard, N. F.; Dober, B.; Duff, S. M.; Gallardo, P. A.; Hilton, G.; Hubmayr, J.; Irwin, K. D.; Koopman, B. J.; Li, D.; Nati, F.; Niemack, M. D.; Reintsema, C. D.; Simon, S.; Stevens, J. R.; Suzuki, A.; Westbrook, B.
2018-05-01
In the next decade, new ground-based cosmic microwave background (CMB) experiments such as Simons Observatory, CCAT-prime, and CMB-S4 will increase the number of detectors observing the CMB by an order of magnitude or more, dramatically improving our understanding of cosmology and astrophysics. These projects will deploy receivers with as many as hundreds of thousands of transition edge sensor (TES) bolometers coupled to superconducting quantum interference device (SQUID)-based readout systems. It is well known that superconducting devices such as TESes and SQUIDs are sensitive to magnetic fields. However, the effects of magnetic fields on TESes are not easily predicted due to the complex behavior of the superconducting transition, which motivates direct measurements of the magnetic sensitivity of these devices. We present comparative four-lead measurements of the critical temperature versus applied magnetic field of AlMn TESes varying in geometry, doping, and leg length, including Advanced ACT and POLARBEAR-2/Simons Array bolometers. MoCu ACTPol TESes are also tested and are found to be more sensitive to magnetic fields than the AlMn devices. We present an observation of weak-link-like behavior in AlMn TESes at low critical currents. We also compare measurements of magnetic sensitivity for time division multiplexing SQUIDs and frequency division multiplexing microwave (μ MUX) rf-SQUIDs. We discuss the implications of our measurements on the magnetic shielding required for future experiments that aim to map the CMB to near-fundamental limits.
Beyond Inflation:. A Cyclic Universe Scenario
NASA Astrophysics Data System (ADS)
Turok, Neil; Steinhardt, Paul J.
2005-08-01
Inflation has been the leading early universe scenario for two decades, and has become an accepted element of the successful 'cosmic concordance' model. However, there are many puzzling features of the resulting theory. It requires both high energy and low energy inflation, with energy densities differing by a hundred orders of magnitude. The questions of why the universe started out undergoing high energy inflation, and why it will end up in low energy inflation, are unanswered. Rather than resort to anthropic arguments, we have developed an alternative cosmology, the cyclic universe [1], in which the universe exists in a very long-lived attractor state determined by the laws of physics. The model shares inflation's phenomenological successes without requiring an epoch of high energy inflation. Instead, the universe is made homogeneous and flat, and scale-invariant adiabatic perturbations are generated during an epoch of low energy acceleration like that seen today, but preceding the last big bang. Unlike inflation, the model requires low energy acceleration in order for a periodic attractor state to exist. The key challenge facing the scenario is that of passing through the cosmic singularity at t = 0. Substantial progress has been made at the level of linearised gravity, which is reviewed here. The challenge of extending this to nonlinear gravity and string theory remains.
Beyond Inflation: A Cyclic Universe Scenario
NASA Astrophysics Data System (ADS)
Turok, Neil; Steinhardt, Paul J.
2005-01-01
Inflation has been the leading early universe scenario for two decades, and has become an accepted element of the successful `cosmic concordance' model. However, there are many puzzling features of the resulting theory. It requires both high energy and low energy inflation, with energy densities differing by a hundred orders of magnitude. The questions of why the universe started out undergoing high energy inflation, and why it will end up in low energy inflation, are unanswered. Rather than resort to anthropic arguments, we have developed an alternative cosmology, the cyclic universe, in which the universe exists in a very long-lived attractor state determined by the laws of physics. The model shares inflation's phenomenological successes without requiring an epoch of high energy inflation. Instead, the universe is made homogeneous and flat, and scale-invariant adiabatic perturbations are generated during an epoch of low energy acceleration like that seen today, but preceding the last big bang. Unlike inflation, the model requires low energy acceleration in order for a periodic attractor state to exist. The key challenge facing the scenario is that of passing through the cosmic singularity at t = 0. Substantial progress has been made at the level of linearised gravity, which is reviewed here. The challenge of extending this to nonlinear gravity and string theory remains.
Exact reconstruction with directional wavelets on the sphere
NASA Astrophysics Data System (ADS)
Wiaux, Y.; McEwen, J. D.; Vandergheynst, P.; Blanc, O.
2008-08-01
A new formalism is derived for the analysis and exact reconstruction of band-limited signals on the sphere with directional wavelets. It represents an evolution of a previously developed wavelet formalism developed by Antoine & Vandergheynst and Wiaux et al. The translations of the wavelets at any point on the sphere and their proper rotations are still defined through the continuous three-dimensional rotations. The dilations of the wavelets are directly defined in harmonic space through a new kernel dilation, which is a modification of an existing harmonic dilation. A family of factorized steerable functions with compact harmonic support which are suitable for this kernel dilation are first identified. A scale-discretized wavelet formalism is then derived, relying on this dilation. The discrete nature of the analysis scales allows the exact reconstruction of band-limited signals. A corresponding exact multi-resolution algorithm is finally described and an implementation is tested. The formalism is of interest notably for the denoising or the deconvolution of signals on the sphere with a sparse expansion in wavelets. In astrophysics, it finds a particular application for the identification of localized directional features in the cosmic microwave background data, such as the imprint of topological defects, in particular, cosmic strings, and for their reconstruction after separation from the other signal components.
NASA Astrophysics Data System (ADS)
Powell, James; Maise, George; Rather, John
2010-01-01
A new approach for the erection of rigid large scale structures in space-MIC (Magnetically Inflated Cable)-is described. MIC structures are launched as a compact payload of superconducting cables and attached tethers. After reaching orbit, the superconducting cables are energized with electrical current. The magnet force interactions between the cables cause them to expand outwards into the final large structure. Various structural shapes and applications are described. The MIC structure can be a simple flat disc with a superconducting outer ring that supports a tether network holding a solar cell array, or it can form a curved mirror surface that concentrates light and focuses it on a smaller region-for example, a high flux solar array that generates electric power, a high temperature receiver that heats H2 propellant for high Isp propulsion, and a giant primary reflector for a telescope for astronomy and Earth surveillance. Linear dipole and quadrupole MIC structures are also possible. The linear quadrupole structure can be used for magnetic shielding against cosmic radiation for astronauts, for example. MIC could use lightweight YBCO superconducting HTS (High Temperature Superconductor) cables, that can operate with liquid N2 coolant at engineering current densities of ~105 amp/cm2. A 1 kilometer length of MIC cable would weigh only 3 metric tons, including superconductor, thermal insulations, coolant circuits, and refrigerator, and fit within a 3 cubic meter compact package for launch. Four potential MIC applications are described: Solar-thermal propulsion using H2 propellant, space based solar power generation for beaming power to Earth, a large space telescope, and solar electric generation for a manned lunar base. The first 3 applications use large MIC solar concentrating mirrors, while the 4th application uses a surface based array of solar cells on a magnetically levitated MIC structure to follow the sun. MIC space based mirrors can be very large and light in weight. A 300 meter diameter MIC mirror in orbit for example, would weigh 20 metric tons and MIC structures can be easily developed and tested on Earth at small scale in existing evacuated chambers followed by larger scale tests in the atmosphere, using a vacuum tight enclosure on the small diameter superconducting cable to prevent air leakage into the evacuated thermal insulation around the superconducting cable.
Constraining the break of spatial diffeomorphism invariance with Planck data
NASA Astrophysics Data System (ADS)
Graef, L. L.; Benetti, M.; Alcaniz, J. S.
2017-07-01
The current most accepted paradigm for the early universe cosmology, the inflationary scenario, shows a good agreement with the recent Cosmic Microwave Background (CMB) and polarization data. However, when the inflation consistency relation is relaxed, these observational data exclude a larger range of red tensor tilt values, prevailing the blue ones which are not predicted by the minimal inflationary models. Recently, it has been shown that the assumption of spatial diffeomorphism invariance breaking (SDB) in the context of an effective field theory of inflation leads to interesting observational consequences. Among them, the possibility of generating a blue tensor spectrum, which can recover the specific consistency relation of the String Gas Cosmology, for a certain choice of parameters. We use the most recent CMB data to constrain the SDB model and test its observational viability through a Bayesian analysis assuming as reference an extended ΛCDM+tensor perturbation model, which considers a power-law tensor spectrum parametrized in terms of the tensor-to-scalar ratio, r, and the tensor spectral index, nt. If the inflation consistency relation is imposed, r=-8 nt, we obtain a strong evidence in favor of the reference model whereas if such relation is relaxed, a weak evidence in favor of the model with diffeomorphism breaking is found. We also use the same CMB data set to make an observational comparison between the SDB model, standard inflation and String Gas Cosmology.
Antimatter and Dark Matter Search in Space: BESS-Polar Results
NASA Technical Reports Server (NTRS)
Mitchell, John W.; Yamamoto, Akira
2009-01-01
The apex of the Balloon-borne Experiment with a Superconducting Spectrometer program was reached with the Antarctic flight of BESS-Polar II, during the 2007-2008 Austral Summer, that obtained 24.5 days of data on over 4.7 billion cosmic-ray events. The US-Japan BESS Collaboration uses elementary particle measurements to study the early Universe and provides fundamental data on the spectra of light cosmic-ray elements and isotopes. BESS measures the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic sources, such as dark-matter candidates, and searches for heavier anti-nuclei that might reach Earth from antimatter domains formed during symmetry breaking processes in the early Universe. Since 1993, BESS has carried out eleven high-latitude balloon flights, two of long duration, that together have defined the study of antiprotons below about 4 GeV, provided standard references for light element and isotope spectra, and set the most sensitive limits on the existence of anti-deuterons and anti-helium, The BESS-Polar II flight took place at Solar Minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. The rich BESS-Polar II dataset more than doubles the combined data from all earlier BESS flights and has 10-20 times the statistics of BESS data from the previous Solar Minimum. Here, we summarize the scientific results of BESS program, focusing on the results obtained using data from the long-duration flights of BESS-Polar I (2004) and BESS-Polar II.
A program to study antiprotons in the cosmic rays: Arizona collaboration
NASA Technical Reports Server (NTRS)
Bowen, Theodore
1987-01-01
The Low Energy AntiProton (LEAP) experiment was designed to measure the primary antiproton flux in the 200 MeV to 1 GeV kinetic energy range. A superconducting magnetic spectrometer, a time-of-flight (TOF) detector, and a Cherenkov counter are the main components of LEAP. An additional scintillation detector was designed and constructed to detect the passage of particles through the bottom of the Cherenkov counter. The LEAP package was launched on August 22, 1987, and enjoyed a 27 hour flight, with 23 hours of data at high altitude. Preliminary plans for data analysis include using the Micro-Vax at the University of Arizona for data reduction of the Cherenkov and S2 signals.
Test of spatial isotropy using a cryogenic torsion pendulum
NASA Technical Reports Server (NTRS)
Phillips, Peter R.
1987-01-01
Motion of the earth through the cosmic neutrino background, or through certain kinds of vacuum states, produces a term of the form g(sigma) x v in the energy of an electron. To search for such a term, a cryogenic torsion pendulum carrying a transversely polarized magnet was used. Superconducting shields reduced magnetic torques. A sigma x v term would produce a sinusoidal oscillation of the pendulum with a period of one sidereal day. Such an oscillation was not detected, and a new limit of 8.5 x 10 to the -18th eV has been set for the splitting of the spin states of an electron at rest on the earth.
Bolometers for millimeter-wave Cosmology
NASA Astrophysics Data System (ADS)
Bock, James J.
2002-05-01
Bolometers offer high sensitivity for observations of the cosmic microwave background, Sunyaev-Zel'Dovich effect in clusters, and far-infrared galaxies. Near background-limited performance may be realized even under the low background conditions available from a space-borne platform. We discuss the achieved performance of silicon nitride micromesh (`spider web') bolometers readout by NTD Ge thermistors. We are developing arrays of such bolometers coupled to single-mode feedhorns. CMB polarization may be studies using a new absorber geometry allowing simultaneous detection of both linear polarizations in a single feedhorn with two individual detectors. Finally we discuss a new bolometer architecture consisting of an array of slot antennae coupled to filters and bolometers via superconducting microstrip. .
SPIDER: Listening for the echoes of inflation from above the clouds
NASA Astrophysics Data System (ADS)
Filippini, Jeffrey; Spider Collaboration
2016-03-01
We report on the status of SPIDER, a balloon-borne instrument to map the polarization of the cosmic microwave background at large angular scales. SPIDER targets the B-mode signature of primordial gravitational waves, with a focus on mapping a large sky area at multiple frequencies. SPIDER's six monochromatic refracting telescopes (three each at 95 and 150 GHz) feed a total of more than 2000 antenna-coupled superconducting transition-edge sensors. A sapphire half-wave plate at the aperture of each telescope modulates sky polarization for control of systematics. We discuss SPIDER's first long-duration balloon flight in January 2015, as well as the status of data analysis and development toward a second flight.
A bridge between unified cosmic history by f( R)-gravity and BIonic system
NASA Astrophysics Data System (ADS)
Sepehri, Alireza; Capozziello, Salvatore; Setare, Mohammad Reza
2016-04-01
Recently, the cosmological deceleration-acceleration transition redshift in f( R) gravity has been considered in order to address consistently the problem of cosmic evolution. It is possible to show that the deceleration parameter changes sign at a given redshift according to observational data. Furthermore, a f( R) gravity cosmological model can be constructed in brane-antibrane system starting from the very early universe and accounting for the cosmological redshift at all phases of cosmic history, from inflation to late time acceleration. Here we propose a f( R) model where transition redshifts correspond to inflation-deceleration and deceleration-late time acceleration transitions starting froma BIon system. At the point where the universe was born, due to the transition of k black fundamental strings to the BIon configuration, the redshift is approximately infinity and decreases with reducing temperature (z˜ T2). The BIon is a configuration in flat space of a universe-brane and a parallel anti-universe-brane connected by a wormhole. This wormhole is a channel for flowing energy from extra dimensions into our universe, occurring at inflation and decreasing with redshift as z˜ T^{4+1/7}. Dynamics consists with the fact that the wormhole misses its energy and vanishes as soon as inflation ends and deceleration begins. Approaching two universe branes together, a tachyon is originated, it grows up and causes the formation of a wormhole. We show that, in the framework of f( R) gravity, the cosmological redshift depends on the tachyonic potential and has a significant decrease at deceleration-late time acceleration transition point (z˜ T^{2/3}). As soon as today acceleration approaches, the redshift tends to zero and the cosmological model reduces to the standard Λ CDM cosmology.
Big bang nucleosynthesis, the CMB, and the origin of matter and space-time
NASA Astrophysics Data System (ADS)
Mathews, Grant J.; Gangopadhyay, Mayukh; Sasankan, Nishanth; Ichiki, Kiyotomo; Kajino, Toshitaka
2018-04-01
We summarize some applications of big bang nucleosythesis (BBN) and the cosmic microwave background (CMB) to constrain the first moments of the creation of matter in the universe. We review the basic elements of BBN and how it constraints physics of the radiation-dominated epoch. In particular, how the existence of higher dimensions impacts the cosmic expansion through the projection of curvature from the higher dimension in the "dark radiation" term. We summarize current constraints from BBN and the CMB on this brane-world dark radiation term. At the same time, the existence of extra dimensions during the earlier inflation impacts the tensor to scalar ratio and the running spectral index as measured in the CMB. We summarize how the constraints on inflation shift when embedded in higher dimensions. Finally, one expects that the universe was born out of a complicated multiverse landscape near the Planck time. In these moments the energy scale of superstrings was obtainable during the early moments of chaotic inflation. We summarize the quest for cosmological evidence of the birth of space-time out of the string theory landscape. We will explore the possibility that a superstring excitations may have made itself known via a coupling to the field of inflation. This may have left an imprint of "dips" in the power spectrum of temperature fluctuations in the cosmic microwave background. The identification of this particle as a superstring is possible because there may be evidence for different oscillator states of the same superstring that appear on different scales on the sky. It will be shown that from this imprint one can deduce the mass, number of oscillations, and coupling constant for the superstring. Although the evidence is marginal, this may constitute the first observation of a superstring in Nature.
Meteorological Sensor Array (MSA)-Phase I. Volume 2 (Data Management Tool: Proof of Concept)
2014-10-01
directory of next hourly file to read *** utcString = CStr (CInt(utcString) + 1) utcString = String(2 - Len(utcString), Ŕ...hourly file to read *** utcString = CStr (CInt(utcString) + 1) utcString = String(2 - Len(utcString), Ŕ") & utcString
Inflation from periodic extra dimensions
NASA Astrophysics Data System (ADS)
Higaki, Tetsutaro; Tatsuta, Yoshiyuki
2017-07-01
We discuss a realization of a small field inflation based on string inspired supergravities. In theories accompanying extra dimensions, compactification of them with small radii is required for realistic situations. Since the extra dimension can have a periodicity, there will appear (quasi-)periodic functions under transformations of moduli of the extra dimensions in low energy scales. Such a periodic property can lead to a UV completion of so-called multi-natural inflation model where inflaton potential consists of a sum of multiple sinusoidal functions with a decay constant smaller than the Planck scale. As an illustration, we construct a SUSY breaking model, and then show that such an inflaton potential can be generated by a sum of world sheet instantons in intersecting brane models on extra dimensions containing orbifold. We show also predictions of cosmic observables by numerical analyzes.
Dynamical dark energy: Scalar fields and running vacuum
NASA Astrophysics Data System (ADS)
Solà, Joan; Gómez-Valent, Adrià; de Cruz Pérez, Javier
2017-03-01
Recent analyses in the literature suggest that the concordance ΛCDM model with rigid cosmological term, Λ = const. may not be the best description of the cosmic acceleration. The class of “running vacuum models”, in which Λ = Λ(H) evolves with the Hubble rate, has been shown to fit the string of SNIa + BAO + H(z) + LSS + CMB data significantly better than the ΛCDM. Here, we provide further evidence on the time-evolving nature of the dark energy (DE) by fitting the same cosmological data in terms of scalar fields. As a representative model, we use the original Peebles and Ratra potential, V ∝ ϕ-α. We find clear signs of dynamical DE at ˜ 4σ c.l., thus reconfirming through a nontrivial scalar field approach the strong hints formerly found with other models and parametrizations.
Inflation from periodic extra dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higaki, Tetsutaro; Tatsuta, Yoshiyuki, E-mail: thigaki@rk.phys.keio.ac.jp, E-mail: y_tatsuta@akane.waseda.jp
We discuss a realization of a small field inflation based on string inspired supergravities. In theories accompanying extra dimensions, compactification of them with small radii is required for realistic situations. Since the extra dimension can have a periodicity, there will appear (quasi-)periodic functions under transformations of moduli of the extra dimensions in low energy scales. Such a periodic property can lead to a UV completion of so-called multi-natural inflation model where inflaton potential consists of a sum of multiple sinusoidal functions with a decay constant smaller than the Planck scale. As an illustration, we construct a SUSY breaking model, andmore » then show that such an inflaton potential can be generated by a sum of world sheet instantons in intersecting brane models on extra dimensions containing orbifold. We show also predictions of cosmic observables by numerical analyzes.« less
NASA Astrophysics Data System (ADS)
Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Katayama, Nobuhiko; Ohsaki, Hiroyuki; Terao, Yutaka; Terachi, Yusuke; Kataza, Hirokazu; Utsunomiya, Shin; Yamamoto, Ryo
2017-07-01
We present the vibrational characteristics of a levitating rotor in a superconducting magnetic bearing (SMB) system operating at below 10 K. We develop a polarization modulator that requires a continuously rotating optical element, called half-wave plate (HWP), for a cosmic microwave background polarization experiment. The HWP has to operate at the temperature below 10 K, and thus an SMB provides a smooth rotation of the HWP at the cryogenic temperature of about 10 K with minimal heat dissipation. In order to understand the potential interference to the cosmological observations due to the vibration of the HWP, it is essential to characterize the vibrational properties of the levitating rotor of the SMB. We constructed a prototype model that consists of an SMB with an array of high temperature superconductors, YBCO, and a permanent magnet ring, NdFeB. The rotor position is monitored by a laser displacement gauge, and a cryogenic Hall sensor via the magnetic field. In this presentation, we present the measurement results of the vibration characteristics using our prototype SMB system. We characterize the vibrational properties as the spring constant and the damping, and discuss the projected performance of this technology toward the use in future space missions.
Dobbs, M A; Lueker, M; Aird, K A; Bender, A N; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Cho, H-M; Clarke, J; Crawford, T M; Crites, A T; Flanigan, D I; de Haan, T; George, E M; Halverson, N W; Holzapfel, W L; Hrubes, J D; Johnson, B R; Joseph, J; Keisler, R; Kennedy, J; Kermish, Z; Lanting, T M; Lee, A T; Leitch, E M; Luong-Van, D; McMahon, J J; Mehl, J; Meyer, S S; Montroy, T E; Padin, S; Plagge, T; Pryke, C; Richards, P L; Ruhl, J E; Schaffer, K K; Schwan, D; Shirokoff, E; Spieler, H G; Staniszewski, Z; Stark, A A; Vanderlinde, K; Vieira, J D; Vu, C; Westbrook, B; Williamson, R
2012-07-01
A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elghozi, Thomas; Mavromatos, Nick E.; Sakellariadou, Mairi
In a previous publication by some of the authors (N.E.M., M.S. and M.F.Y.), we have argued that the ''D-material universe'', that is a model of a brane world propagating in a higher-dimensional bulk populated by collections of D-particle stringy defects, provides a model for the growth of large-scale structure in the universe via the vector field in its spectrum. The latter corresponds to D-particle recoil velocity excitations as a result of the interactions of the defects with stringy matter and radiation on the brane world. In this article, we first elaborate further on the results of the previous study onmore » the galactic growth era and analyse the circumstances under which the D-particle recoil velocity fluid may ''mimic'' dark matter in galaxies. A lensing phenomenology is also presented for some samples of galaxies, which previously were known to provide tension for modified gravity (TeVeS) models. The current model is found in agreement with these lensing data. Then we discuss a cosmic evolution for the D-material universe by analysing the conditions under which the late eras of this universe associated with large-scale structure are connected to early epochs, where inflation takes place. It is shown that inflation is induced by dense populations of D-particles in the early universe, with the rôle of the inflaton field played by the condensate of the D-particle recoil-velocity fields under their interaction with relativistic stringy matter, only for sufficiently large brane tensions and low string mass scales compared to the Hubble scale. On the other hand, for large string scales, where the recoil-velocity condensate fields are weak, inflation cannot be driven by the D-particle defects alone. In such cases inflation may be driven by dilaton (or other moduli) fields in the underlying string theory.« less
Proposal for the detection of magnetic monopoles in spin ice via nanoscale magnetometry
NASA Astrophysics Data System (ADS)
Kirschner, Franziska K. K.; Flicker, Felix; Yacoby, Amir; Yao, Norman Y.; Blundell, Stephen J.
2018-04-01
We present a proposal for applying nanoscale magnetometry to the search for magnetic monopoles in the spin ice materials holmium and dysprosium titanate. Employing Monte Carlo simulations of the dipolar spin ice model, we find that when cooled to below 1.5 K these materials exhibit a sufficiently low monopole density to enable the direct observation of magnetic fields from individual monopoles. At these temperatures we demonstrate that noise spectroscopy can capture the intrinsic fluctuations associated with monopole dynamics, allowing one to isolate the qualitative effects associated with both the Coulomb interaction between monopoles and the topological constraints implied by Dirac strings. We describe in detail three different nanoscale magnetometry platforms (muon spin rotation, nitrogen-vacancy defects, and nanoscale arrays of superconducting quantum interference devices) that can be used to detect monopoles in these experiments and analyze the advantages of each.
Monte Carlo simulations for the space radiation superconducting shield project (SR2S).
Vuolo, M; Giraudo, M; Musenich, R; Calvelli, V; Ambroglini, F; Burger, W J; Battiston, R
2016-02-01
Astronauts on deep-space long-duration missions will be exposed for long time to galactic cosmic rays (GCR) and Solar Particle Events (SPE). The exposure to space radiation could lead to both acute and late effects in the crew members and well defined countermeasures do not exist nowadays. The simplest solution given by optimized passive shielding is not able to reduce the dose deposited by GCRs below the actual dose limits, therefore other solutions, such as active shielding employing superconducting magnetic fields, are under study. In the framework of the EU FP7 SR2S Project - Space Radiation Superconducting Shield--a toroidal magnetic system based on MgB2 superconductors has been analyzed through detailed Monte Carlo simulations using Geant4 interface GRAS. Spacecraft and magnets were modeled together with a simplified mechanical structure supporting the coils. Radiation transport through magnetic fields and materials was simulated for a deep-space mission scenario, considering for the first time the effect of secondary particles produced in the passage of space radiation through the active shielding and spacecraft structures. When modeling the structures supporting the active shielding systems and the habitat, the radiation protection efficiency of the magnetic field is severely decreasing compared to the one reported in previous studies, when only the magnetic field was modeled around the crew. This is due to the large production of secondary radiation taking place in the material surrounding the habitat. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Assembly, characterization, and operation of large-scale TES detector arrays for ACTPol
NASA Astrophysics Data System (ADS)
Pappas, Christine Goodwin
2016-01-01
The Polarization-sensitive Receiver for the Atacama Cosmology Telescope (ACTPol) is designed to measure the Cosmic Microwave Background (CMB) temperature and polarization anisotropies on small angular scales. Measurements of the CMB temperature and polarization anisotropies have produced arguably the most important cosmological data to date, establishing the LambdaCDM model and providing the best constraints on most of its parameters. To detect the very small fluctuations in the CMB signal across the sky, ACTPol uses feedhorn-coupled Transition-Edge Sensor (TES) detectors. A TES is a superconducting thin film operated in the transition region between the superconducting and normal states, where it functions as a highly sensitive resistive thermometer. In this thesis, aspects of the assembly, characterization, and in-field operation of the ACTPol TES detector arrays are discussed. First, a novel microfabrication process for producing high-density superconducting aluminum/polyimide flexible circuitry (flex) designed to connect large-scale detector arrays to the first stage of readout is presented. The flex is used in parts of the third ACTPol array and is currently being produced for use in the AdvACT detector arrays, which will begin to replace the ACTPol arrays in 2016. Next, we describe methods and results for the in-lab and on-telescope characterization of the detectors in the third ACTPol array. Finally, we describe the ACTPol TES R(T,I) transition shapes and how they affect the detector calibration and operation. Methods for measuring the exact detector calibration and re-biasing functions, taking into account the R(T,I) transition shape, are presented.
Fabrication of Silicon Backshort Assembly for Waveguide-Coupled Superconducting Detectors
NASA Technical Reports Server (NTRS)
Crowe, E.; Bennett, C. L.; Chuss, D. T.; Denis, K. L.; Eimer, J.; Lourie, N.; Marriage, T.; Moseley, S. H.; Rostem, K.; Stevenson, T. R.;
2012-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microwave background to search for gravitational waves from a posited epoch of inflation early in the universe s history. We are currently developing detectors that address the challenges of this measurement by combining the excellent beam-forming attributes of feedhorns with the low-noise performance of Transition-Edge sensors. These detectors utilize a planar orthomode transducer that maps the horizontal and vertical linear polarized components in a dual-mode waveguide to separate microstrip lines. On-chip filters define the bandpass in each channel, and the signals are terminated in resistors that are thermally coupled to the transition-edge sensors operating at 150 mK.
Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models
NASA Astrophysics Data System (ADS)
Nojiri, Shin'Ichi; Odintsov, Sergei D.
2011-08-01
The classical generalization of general relativity is considered as the gravitational alternative for a unified description of the early-time inflation with late-time cosmic acceleration. The structure and cosmological properties of a number of modified theories, including traditional F(R) and Hořava-Lifshitz F(R) gravity, scalar-tensor theory, string-inspired and Gauss-Bonnet theory, non-local gravity, non-minimally coupled models, and power-counting renormalizable covariant gravity are discussed. Different representations of and relations between such theories are investigated. It is shown that some versions of the above theories may be consistent with local tests and may provide a qualitatively reasonable unified description of inflation with the dark energy epoch. The cosmological reconstruction of different modified gravities is provided in great detail. It is demonstrated that eventually any given universe evolution may be reconstructed for the theories under consideration, and the explicit reconstruction is applied to an accelerating spatially flat Friedmann-Robertson-Walker (FRW) universe. Special attention is paid to Lagrange multiplier constrained and conventional F(R) gravities, for latter F(R) theory, the effective ΛCDM era and phantom divide crossing acceleration are obtained. The occurrences of the Big Rip and other finite-time future singularities in modified gravity are reviewed along with their solutions via the addition of higher-derivative gravitational invariants.
Constraining the break of spatial diffeomorphism invariance with Planck data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graef, L.L.; Benetti, M.; Alcaniz, J.S., E-mail: leilagraef@on.br, E-mail: micolbenetti@on.br, E-mail: alcaniz@on.br
The current most accepted paradigm for the early universe cosmology, the inflationary scenario, shows a good agreement with the recent Cosmic Microwave Background (CMB) and polarization data. However, when the inflation consistency relation is relaxed, these observational data exclude a larger range of red tensor tilt values, prevailing the blue ones which are not predicted by the minimal inflationary models. Recently, it has been shown that the assumption of spatial diffeomorphism invariance breaking (SDB) in the context of an effective field theory of inflation leads to interesting observational consequences. Among them, the possibility of generating a blue tensor spectrum, whichmore » can recover the specific consistency relation of the String Gas Cosmology, for a certain choice of parameters. We use the most recent CMB data to constrain the SDB model and test its observational viability through a Bayesian analysis assuming as reference an extended ΛCDM+tensor perturbation model, which considers a power-law tensor spectrum parametrized in terms of the tensor-to-scalar ratio, r , and the tensor spectral index, n {sub t} . If the inflation consistency relation is imposed, r =−8 n {sub t} , we obtain a strong evidence in favor of the reference model whereas if such relation is relaxed, a weak evidence in favor of the model with diffeomorphism breaking is found. We also use the same CMB data set to make an observational comparison between the SDB model, standard inflation and String Gas Cosmology.« less
Astone, Pia; Weinstein, Alan; Agathos, Michalis; Bejger, Michał; Christensen, Nelson; Dent, Thomas; Graff, Philip; Klimenko, Sergey; Mazzolo, Giulio; Nishizawa, Atsushi; Robinet, Florent; Schmidt, Patricia; Smith, Rory; Veitch, John; Wade, Madeline; Aoudia, Sofiane; Bose, Sukanta; Calderon Bustillo, Juan; Canizares, Priscilla; Capano, Colin; Clark, James; Colla, Alberto; Cuoco, Elena; Da Silva Costa, Carlos; Dal Canton, Tito; Evangelista, Edgar; Goetz, Evan; Gupta, Anuradha; Hannam, Mark; Keitel, David; Lackey, Benjamin; Logue, Joshua; Mohapatra, Satyanarayan; Piergiovanni, Francesco; Privitera, Stephen; Prix, Reinhard; Pürrer, Michael; Re, Virginia; Serafinelli, Roberto; Wade, Leslie; Wen, Linqing; Wette, Karl; Whelan, John; Palomba, C; Prodi, G
The Amaldi 10 Parallel Session C2 on gravitational wave (GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity.
Searching for Correlated Radio Transients & Gravitational Wave Bursts
NASA Astrophysics Data System (ADS)
Kavic, Michael; Shawhan, P. S.; Yancey, C.; Cutchin, S.; Simonetti, J. H.; Bear, B.; Tsai, J.
2013-01-01
We will discuss an ongoing multi-messenger search for transient radio pulses and gravitational wave bursts. This work is being conducted jointly by the Long Wavelength Array (LWA) and the LIGO Scientific Collaboration (LSC). A variety of astrophysical sources can produce simultaneous emission of gravitational waves and coherent low-frequency electromagnetic radiation. The primary common source motivating this work is the merger of neutron star binaries for which the LWA and LSC instruments have comparable sensitivity. Additional common sources include supernovae, long timescale GRBs and cosmic string cusp events. Data taken by both instruments can be compared to search for correlated signals. Identification of correlated signals can be used to increase the sensitivity of both instruments. We will summarize the coincident observations which have already been conducted and outline plans for future work. We will describe the process being used for synthesizing these data set and present preliminary results.
NASA Technical Reports Server (NTRS)
Astone, Pia; Weinstein, Alan; Agathos, Michalis; Bejger, Michal; Christensen, Nelson; Dent, Thomas; Graff, Philip; Klimenko, Sergey; Mazzolo, Giulio; Nishizawa, Atsushi
2015-01-01
The Amaldi 10 Parallel Session C2 on gravitational wave(GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity.
A Cosmologist's Tour Through the New Particle Zoo / Candy Shop
NASA Astrophysics Data System (ADS)
Turner, M. S.
Recent developments in elementary particle physics have led to a renaissance in cosmology, in general, and in the study of structure formation, in particular. Already, the study of the very early (t ≤ 10-2s) history of the Universe has provided valuable hints as to the 'initial data' for the structure formation problem - the nature and origin of the primeval density inhomogeneities, the quantity and composition of matter in the Universe today, and numerous candidates for the constituents of the ubiquitous dark matter. The author reviews the multitude of WIMP candidates for the dark matter provided by modern particle physics theories, putting them into context by briefly discussing the theories which predict them. He reviews their various birth sites and birth processes in the early Universe. The author also mentions some very exotic possibilities - unstable WIMPs, cosmic strings, and even the possibility of a relic cosmological term.
The cosmic gorilla effect or the problem of undetected non terrestrial intelligent signals
NASA Astrophysics Data System (ADS)
G. De la Torre, Gabriel; Garcia, Manuel A.
2018-05-01
This article points to a long lasting problem in space research and cosmology, the problem of undetected signs of non terrestrial life and civilizations. We intentionally avoid the term extraterrestrial as we consider other possibilities that may arise but not fall strictly within the extraterrestrial scope. We discuss the role of new physics including dark matter and string theory in the search for life and other non terrestrial intelligence. A new classification for non terrestrial civilizations with three types and five dimensions is also provided. We also explain how our own neurophysiology, psychology and consciousness can play a major role in this search of non terrestrial civilizations task and how they have been neglected up to this date. To test this, 137 adults were evaluated using the cognitive reflection test, an attention/awareness questionnaire and a visuospatial searching task with aerial view images to determine the presence of inattentional blindness.
NASA Astrophysics Data System (ADS)
Borgh, Magnus O.; Ruostekoski, Janne
2016-05-01
We demonstrate that multiple interaction-dependent defect core structures as well as dynamics of non-Abelian vortices can be realized in the biaxial nematic (BN) phase of a spin-2 atomic Bose-Einstein condensate (BEC). An experimentally simple protocol may be used to break degeneracy with the uniaxial nematic phase. We show that a discrete spin-space symmetry in the core may be reflected in a breaking of its spatial symmetry. The discrete symmetry of the BN order parameter leads to non-commuting vortex charges. We numerically simulate reconnection of non-Abelian vortices, demonstrating formation of the obligatory rung vortex. In addition to atomic BECs, non-Abelian vortices are theorized in, e.g., liquid crystals and cosmic strings. Our results suggest the BN spin-2 BEC as a prime candidate for their realization. We acknowledge financial support from the EPSRC.
Cosmological moduli and the post-inflationary universe: A critical review
NASA Astrophysics Data System (ADS)
Kane, Gordon; Sinha, Kuver; Watson, Scott
2015-06-01
We critically review the role of cosmological moduli in determining the post-inflationary history of the universe. Moduli are ubiquitous in string and M-theory constructions of beyond the Standard Model physics, where they parametrize the geometry of the compactification manifold. For those with masses determined by supersymmetry (SUSY) breaking this leads to their eventual decay slightly before Big Bang nucleosynthesis (BBN) (without spoiling its predictions). This results in a matter dominated phase shortly after inflation ends, which can influence baryon and dark matter genesis, as well as observations of the cosmic microwave background (CMB) and the growth of large-scale structure. Given progress within fundamental theory, and guidance from dark matter and collider experiments, nonthermal histories have emerged as a robust and theoretically well-motivated alternative to a strictly thermal one. We review this approach to the early universe and discuss both the theoretical challenges and the observational implications.
NASA Technical Reports Server (NTRS)
Abbott, B. P.; Hughey, Brennan; Zanolin, Michele; Szczepanczyk, Marek; Gill, Kiranjyot; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.;
2016-01-01
We present an archival search for transient gravitational-wave bursts in coincidence with 27 single-pulse triggers from Green Bank Telescope pulsar surveys, using the LIGO (Laser Interferometer Gravitational Wave Observatory), Virgo (Variability of Solar Irradiance and Gravity Oscillations) and GEO (German-UK Interferometric Detector) interferometer network. We also discuss a check for gravitational-wave signals in coincidence with Parkes fast radio bursts using similar methods. Data analyzed in these searches were collected between 2007 and 2013. Possible sources of emission of both short-duration radio signals and transient gravitational-wave emission include star quakes on neutron stars, binary coalescence of neutron stars, and cosmic string cusps. While no evidence for gravitational-wave emission in coincidence with these radio transients was found, the current analysis serves as a prototype for similar future searches using more sensitive second-generation interferometers.
NASA Astrophysics Data System (ADS)
Smalyukh, Ivan I.
2018-03-01
Colloids are abundant in nature, science, and technology, with examples ranging from milk to quantum dots and the colloidal atom paradigm. Similarly, liquid crystal ordering is important in contexts ranging from biological membranes to laboratory models of cosmic strings and liquid crystal displays in consumer devices. Some of the most exciting recent developments in both of these soft matter fields emerge at their interface, in the fast-growing research arena of liquid crystal colloids. Mesoscale self-assembly in such systems may lead to artificial materials and to structures with emergent physical behavior arising from patterning of molecular order and nano- or microparticles into precisely controlled configurations. Liquid crystal colloids show exceptional promise for new discovery that may impinge on composite material fabrication, low-dimensional topology, photonics, and so on. Starting from physical underpinnings, I review the state of the art in this fast-growing field, with a focus on its scientific and technological potential.
Evaluation of Production Cross Sections of Li, Be, B in CR
NASA Technical Reports Server (NTRS)
Moskalenko, I. V.; Mashnik, S. G.
2003-01-01
Accurate evaluation of the production cross section of light elements is important for models of cosmic ray (CR) propagation, galactic chemical evolution, and cosmological studies. However, the experimental spallation cross section data are scarce and often unavailable to CR community while semi-empirical systematics are frequently wrong by a significant factor. Running sophisticated nuclear codes is not an option of choice for everyone either. We use the Los Alamos versions of the Quark-Gluon String Model code LAQGSM and the improved Cascade-Exciton Model code CEM2k together with all available data from Los Alamos Nuclear Laboratory (LANL) nuclear database to produce evaluated production cross sections of isotopes of Li, Be, and B suitable for astrophysical applications. The LAQGSM and CEM2k models have been shown to reproduce well nuclear reactions and hadronic data in the range 0.01-800 GeV/nucleon.
Collapsing radiating stars with various equations of state
NASA Astrophysics Data System (ADS)
Brassel, Byron P.; Goswami, Rituparno; Maharaj, Sunil D.
2017-06-01
We study the gravitational collapse of radiating stars in the context of the cosmic censorship conjecture. We consider a generalized Vaidya spacetime with three concentric regions. The local internal atmosphere is a two-component system consisting of standard pressure-free, null radiation and an additional string fluid with energy density and nonzero pressure obeying all physically realistic energy conditions. The middle region is purely radiative which matches to a third region which is the Schwarzschild exterior. We outline the general mathematical framework to study the conditions on the mass function so that future-directed nonspacelike geodesics can terminate at the singularity in the past. Mass functions for several equations of state are analyzed using this framework and it is shown that the collapse in each case terminates at a locally naked central singularity. We calculate the strength of these singularities to show that they are strong curvature singularities which implies that no extension of spacetime through them is possible.
String scattering amplitudes and deformed cubic string field theory
NASA Astrophysics Data System (ADS)
Lai, Sheng-Hong; Lee, Jen-Chi; Lee, Taejin; Yang, Yi
2018-01-01
We study string scattering amplitudes by using the deformed cubic string field theory which is equivalent to the string field theory in the proper-time gauge. The four-string scattering amplitudes with three tachyons and an arbitrary string state are calculated. The string field theory yields the string scattering amplitudes evaluated on the world sheet of string scattering whereas the conventional method, based on the first quantized theory brings us the string scattering amplitudes defined on the upper half plane. For the highest spin states, generated by the primary operators, both calculations are in perfect agreement. In this case, the string scattering amplitudes are invariant under the conformal transformation, which maps the string world sheet onto the upper half plane. If the external string states are general massive states, generated by non-primary field operators, we need to take into account carefully the conformal transformation between the world sheet and the upper half plane. We show by an explicit calculation that the string scattering amplitudes calculated by using the deformed cubic string field theory transform into those of the first quantized theory on the upper half plane by the conformal transformation, generated by the Schwarz-Christoffel mapping.
Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge
NASA Astrophysics Data System (ADS)
Lee, Taejin
2017-12-01
We construct a covariant open bosonic string field theory on multiple D-branes, which reduces to a non-Abelian group Yang-Mills gauge theory in the zero-slope limit. Making use of the first quantized open bosonic string in the proper time gauge, we convert the string amplitudes given by the Polyakov path integrals on string world sheets into those of the second quantized theory. The world sheet diagrams generated by the constructed open string field theory are planar in contrast to those of the Witten's cubic string field theory. However, the constructed string field theory is yet equivalent to the Witten's cubic string field theory. Having obtained planar diagrams, we may adopt the light-cone string field theory technique to calculate the multi-string scattering amplitudes with an arbitrary number of external strings. We examine in detail the three-string vertex diagram and the effective four-string vertex diagrams generated perturbatively by the three-string vertex at tree level. In the zero-slope limit, the string scattering amplitudes are identified precisely as those of non-Abelian Yang-Mills gauge theory if the external states are chosen to be massless vector particles.
E(lementary)-strings in six-dimensional heterotic F-theory
NASA Astrophysics Data System (ADS)
Choi, Kang-Sin; Rey, Soo-Jong
2017-09-01
Using E-strings, we can analyze not only six-dimensional superconformal field theories but also probe vacua of non-perturabative heterotic string. We study strings made of D3-branes wrapped on various two-cycles in the global F-theory setup. We claim that E-strings are elementary in the sense that various combinations of E-strings can form M-strings as well as heterotic strings and new kind of strings, called G-strings. Using them, we show that emissions and combinations of heterotic small instantons generate most of known six-dimensional superconformal theories, their affinizations and little string theories. Taking account of global structure of compact internal geometry, we also show that special combinations of E-strings play an important role in constructing six-dimensional theories of D- and E-types. We check global consistency conditions from anomaly cancellation conditions, both from five-branes and strings, and show that they are given in terms of elementary E-string combinations.
Gravitational Scattering Amplitudes and Closed String Field Theory in the Proper-Time Gauge
NASA Astrophysics Data System (ADS)
Lee, Taejin
2018-01-01
We construct a covariant closed string field theory by extending recent works on the covariant open string field theory in the proper-time gauge. Rewriting the string scattering amplitudes generated by the closed string field theory in terms of the Polyakov string path integrals, we identify the Fock space representations of the closed string vertices. We show that the Fock space representations of the closed string field theory may be completely factorized into those of the open string field theory. It implies that the well known Kawai-Lewellen-Tye (KLT) relations of the first quantized string theory may be promoted to the second quantized closed string theory. We explicitly calculate the scattering amplitudes of three gravitons by using the closed string field theory in the proper-time gauge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.A.; Fairbank, W.M. Jr.; Toki, W.H.
1994-10-31
The Colorado State Collaboration has studied the feasibility of a high sensitivity QED birefringence/axion search measurement. The objective of this work is to measure, for the first time, the birefringence induced in the vacuum on a light beam travelling in a powerful magnetic field. The same experimental setup also allows a highly sensitive search for axion or axion-like particles. The experiment would combined custom-designed optical heterodyne interferometry with a string of six SSC prototype superconducting dipole magnets at the N-15 site of the SSC Laboratory. With these powerful laser tools, sensitivity advances of 10{sup 7} to 10{sup 9} over previousmore » optical experiments will be possible. The proposed experiment will be able to measure the QED light-by-light scattering effect with a 0.5% accuracy. The increased sensitivity for the axion-two photon interaction will result in a bound on this process rivaling the results based on astrophysical arguments. In the technical report the authors address the scientific significance of these experiments and examine the limiting technical parameters which control their feasibility. The proposed optical/electronic scheme is presented in the context of a background of the known and projected systematic problems which will confront any serious attempt to make such measurements.« less
Hot string soup: Thermodynamics of strings near the Hagedorn transition
NASA Astrophysics Data System (ADS)
Lowe, David A.; Thorlacius, Lárus
1995-01-01
Above the Hagedorn energy density closed fundamental strings form a long string phase. The dynamics of weakly interacting long strings is described by a simple Boltzmann equation which can be solved explicitly for equilibrium distributions. The averge total number of long strings grows logarithmically with total energy in the microcanonical ensemble. This is consistent with calculations of the free single string density of states provided the thermodynamic limit is carefully defined. If the theory contains open strings the long string phase is suppressed.
Cosmic ray energy spectrum measurement with the Antarctic Muon and Neutrino Detector Array (AMANDA)
NASA Astrophysics Data System (ADS)
Chirkin, Dmitry Aleksandrovich
AMANDA-II is a neutrino telescope composed of 677 optical sensors organized along 19 strings buried deep in the Antarctic ice cap. It is designed to detect Cherenkov light produced by cosmic-ray- and neutrino-induced charged leptons. The majority of events recorded by AMANDA-II are caused by muons which are produced in the atmosphere by high-energy cosmic rays. The leading uncertainties in simulating such events come from the choice of the high-energy model used to describe the first interaction of the cosmic rays, uncertainties in our knowledge and implementation of the ice properties at the depth of the detector, and individual optical module sensitivities. Contributions from uncertainties in the atmospheric conditions and muon cross sections in ice are smaller. The downgoing muon simulation was substantially improved by using the extensive air shower generator CORSIKA to describe the shower development in the atmosphere, and by writing a new software package for the muon propagation (MMC), which reduced computational and algorithm errors below the level of uncertainties of the muon cross sections in ice. A method was developed that resulted in a flux measurement of cosmic rays with energies 1.5--200 TeV per nucleon (95% of primaries causing low-multiplicity events in AMANDA-II have energies in this range) independent of ice model and optical module sensitivities. Predictions of six commonly used high-energy interaction models (QGSJET, VENUS, NEXUS, DPMJET, HDPM, and SIBYLL) are compared to data. The best agreement with direct measurements is achieved with QGSJET, VENUS, and NEXUS. Assuming a power-law energy spectrum (phi0,i · E -gammai) for cosmic-ray components from hydrogen to iron (i = H,..., Fe) and their mass distribution according to Wiebel-South (Wiebel-South & Biermann, 1999), phi 0,i and gammai were corrected to achieve the best description of the data. For the hydrogen component, values of phi0,H = 0.106 +/- 0.007 m-2 sr-1s-1TeV-1 , gammaH = 2.70 +/- 0.02 are obtained. For the South Pole, a vertical muon flux at 1 TeV of (1.05 +/- 0.07) · 10 -10 cm-2 sr-1s -1GeV-1 is obtained (for all interaction models), and the fitted spectral index is 2.66 +/- 0.02 (for QGSJET, VENUS, and NEXUS). The difference in the predicted value of the spectral index gamma between high-energy interaction models is as much as 0.1, which is explained by the difference in the observed muon multiplicity at the depth of the detector in data simulated with different interaction models.
The ISOMAX Magnetic Rigidity Spectrometer
NASA Astrophysics Data System (ADS)
Hams, Thomas
1999-08-01
The Isotope Magnet Experiment, (ISOMAX), is a balloon-borne superconducting magnetic spectrometer with a time-of-flight system and aerogel Cherenkov counters. Its purpose is to measure the isotopic composition of the light elements (3 < Z < 8) in the cosmic radiation. Particle mass is derived from a velocity vs. magnetic rigidity (momentum/charge) technique. The experiment had its first flight in August 1998. The precision magnetic spectrometer uses advanced drift-chamber tracking and a large, high-field, superconducting magnet. The drift-chamber system consists of three chambers with 24 layers of hexagonal drift cells (16 bending, 8 non-bending) and a vertical extent of 1.4 m. Pure CO2 gas is used. The magnet is a split-pair design with 79 cm diameter coils and a separation of 80 cm. During the 1998 flight, the central field was 0.8 T (60% of the full design field). Presented are results from flight data, for a range of incident particle Z, on the spatial resolution and efficiency of the tracking system, and on the maximum detectable rigidity (MDR) of the spectrometer. For in-flight data, spatial resolutions of 54 mm for Z=2 and 45 mm for Z=4 are obtained. An MDR of 970 GV/c is achieved for Z=2.
NASA Astrophysics Data System (ADS)
Rostem, Karwan; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Brown, Ari; Chang, Meng-Ping; Chuss, David T.; Colazo, Felipe A.; Costen, Nick; Denis, Kevin L.; Essinger-Hileman, Tom; Hu, Ron; Marriage, Tobias A.; Moseley, Samuel H.; Stevenson, Thomas R.; U-Yen, Kongpop; Wollack, Edward J.; Xu, Zhilei
2016-07-01
We describe feedhorn-coupled polarization-sensitive detector arrays that utilize monocrystalline silicon as the dielectric substrate material. Monocrystalline silicon has a low-loss tangent and repeatable dielectric constant, characteristics that are critical for realizing efficient and uniform superconducting microwave circuits. An additional advantage of this material is its low specific heat. In a detector pixel, two Transition-Edge Sensor (TES) bolometers are antenna-coupled to in-band radiation via a symmetric planar orthomode transducer (OMT). Each orthogonal linear polarization is coupled to a separate superconducting microstrip transmission line circuit. On-chip filtering is employed to both reject out-of-band radiation from the upper band edge to the gap frequency of the niobium superconductor, and to flexibly define the bandwidth for each TES to meet the requirements of the application. The microwave circuit is compatible with multi-chroic operation. Metalized silicon platelets are used to define the backshort for the waveguide probes. This micro-machined structure is also used to mitigate the coupling of out-of-band radiation to the microwave circuit. At 40 GHz, the detectors have a measured efficiency of ˜90%. In this paper, we describe the development of the 90 GHz detector arrays that will be demonstrated using the Cosmology Large Angular Scale Surveyor (CLASS) ground-based telescope.
SiGe Integrated Circuit Developments for SQUID/TES Readout
NASA Astrophysics Data System (ADS)
Prêle, D.; Voisin, F.; Beillimaz, C.; Chen, S.; Piat, M.; Goldwurm, A.; Laurent, P.
2018-03-01
SiGe integrated circuits dedicated to the readout of superconducting bolometer arrays for astrophysics have been developed since more than 10 years at APC. Whether for Cosmic Microwave Background (CMB) observations with the QUBIC ground-based experiment (Aumont et al. in astro-ph.IM, 2016. arXiv:1609.04372) or for the Hot and Energetic Universe science theme with the X-IFU instrument on-board of the ATHENA space mission (Barret et al. in SPIE 9905, space telescopes & instrumentation 2016: UV to γ Ray, 2016. https://doi.org/10.1117/12.2232432), several kinds of Transition Edge Sensor (TES) (Irwin and Hilton, in ENSS (ed) Cryogenic particle detection, Springer, Berlin, 2005) arrays have been investigated. To readout such superconducting detector arrays, we use time or frequency domain multiplexers (TDM, FDM) (Prêle in JINST 10:C08015, 2016. https://doi.org/10.1088/1748-0221/10/08/C08015) with Superconducting QUantum Interference Devices (SQUID). In addition to the SQUID devices, low-noise biasing and amplification are needed. These last functions can be obtained by using BiCMOS SiGe technology in an Application Specific Integrated Circuit (ASIC). ASIC technology allows integration of highly optimised circuits specifically designed for a unique application. Moreover, we could reach very low-noise and wide band amplification using SiGe bipolar transistor either at room or cryogenic temperatures (Cressler in J Phys IV 04(C6):C6-101, 1994. https://doi.org/10.1051/jp4:1994616). This paper discusses the use of SiGe integrated circuits for SQUID/TES readout and gives an update of the last developments dedicated to the QUBIC telescope and to the X-IFU instrument. Both ASIC called SQmux128 and AwaXe are described showing the interest of such SiGe technology for SQUID multiplexer controls.
Johnson, B R; Columbro, F; Araujo, D; Limon, M; Smiley, B; Jones, G; Reichborn-Kjennerud, B; Miller, A; Gupta, S
2017-10-01
In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.
NASA Astrophysics Data System (ADS)
Johnson, B. R.; Columbro, F.; Araujo, D.; Limon, M.; Smiley, B.; Jones, G.; Reichborn-Kjennerud, B.; Miller, A.; Gupta, S.
2017-10-01
In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.
Advanced Antenna-Coupled Superconducting Detector Arrays for CMB Polarimetry
NASA Astrophysics Data System (ADS)
Bock, James
2014-01-01
We are developing high-sensitivity millimeter-wave detector arrays for measuring the polarization of the cosmic microwave background (CMB). This development is directed to advance the technology readiness of the Inflation Probe mission in NASA's Physics of the Cosmos program. The Inflation Probe is a fourth-generation CMB satellite that will measure the polarization of the CMB to astrophysical limits, characterizing the inflationary polarization signal, mapping large-scale structure based on polarization induced by gravitational lensing, and mapping Galactic magnetic fields through measurements of polarized dust emission. The inflationary polarization signal is produced by a background of gravitational waves from the epoch of inflation, an exponential expansion of space-time in the early universe, with an amplitude that depends on the physical mechanism producing inflation. The inflationary polarization signal may be distinguished by its unique 'B-mode' vector properties from polarization from the density variations that predominantly source CMB temperature anisotropy. Mission concepts for the Inflation Probe are being developed in the US, Europe and Japan. The arrays are based on planar antennas that provide integral beam collimation, polarization analysis, and spectral band definition in a compact lithographed format that eliminates discrete fore-optics such as lenses and feedhorns. The antennas are coupled to transition-edge superconducting bolometers, read out with multiplexed SQUID current amplifiers. The superconducting sensors and readouts developed in this program share common technologies with NASA X-ray and FIR detector applications. Our program targets developments required for space observations, and we discuss our technical progress over the past two years and plans for future development. We are incorporating arrays into active sub-orbital and ground-based experiments, which advance technology readiness while producing state of the art CMB polarization measurements.
The Detector System for the Stratospheric Kinetic Inductance Polarimeter ( Skip)
NASA Astrophysics Data System (ADS)
Johnson, B. R.; Ade, P. A. R.; Araujo, D.; Bradford, K. J.; Chapman, D.; Day, P. K.; Didier, J.; Doyle, S.; Eriksen, H. K.; Flanigan, D.; Groppi, C.; Hillbrand, S.; Jones, G.; Limon, M.; Mauskopf, P.; McCarrick, H.; Miller, A.; Mroczkowski, T.; Reichborn-Kjennerud, B.; Smiley, B.; Sobrin, J.; Wehus, I. K.; Zmuidzinas, J.
2014-09-01
The stratospheric kinetic inductance polarimeter is a proposed balloon-borne experiment designed to study the cosmic microwave background, the cosmic infrared background and Galactic dust emission by observing 1,133 deg of sky in the Northern Hemisphere with launches from Kiruna, Sweden. The instrument contains 2,317 single-polarization, horn-coupled, aluminum lumped-element kinetic inductance detectors ( Lekids). The Lekids will be maintained at 100 mK with an adiabatic demagnetization refrigerator. The polarimeter operates in two configurations, one sensitive to a spectral band centered on 150 GHz and the other sensitive to 260 and 350 GHz bands. The detector readout system is based on the ROACH-1 board, and the detectors will be biased below 300 MHz. The detector array is fed by an F/2.4 crossed-Dragone telescope with a 500 mm aperture yielding a 15 arcmin FWHM beam at 150 GHz. To minimize detector loading and maximize sensitivity, the entire optical system will be cooled to 1 K. Linearly polarized sky signals will be modulated with a metal-mesh half-wave plate that is mounted at the telescope aperture and rotated by a superconducting magnetic bearing. The observation program consists of at least two, 5-day flights beginning with the 150 GHz observations.
The Stratospheric Kinetic Inductance Polarimeter (SKIP)
NASA Astrophysics Data System (ADS)
Flanigan, Daniel; Ade, P.; Araujo, D.; Bradford, K. J.; Chapman, D.; Che, G.; Day, P.; Didier, J.; Doyle, S.; Eriksen, H.; Groppi, C. E.; Hillbrand, S. N.; Johnson, B.; Jones, G.; Limon, M.; Mauskopf, P.; McCarrick, H.; Miller, A. D.; Mroczkowski, T.; Reichborn-Kjennerud, B.; Smiley, B.; Sobrin, J.; Wehus, I. K.; Zmuidzinas, J.
2014-01-01
We discuss the Stratospheric Kinetic Inductance Polarimeter (SKIP). SKIP is a proposed balloon-borne experiment designed to study the cosmic microwave background, the cosmic infrared background, and Galactic dust emission by observing 1100 square degrees of sky in the Northern Hemisphere with launches from Kiruna, Sweden. The instrument contains 2317 single-polarization, horn-coupled, aluminum lumped-element kinetic inductance detectors (LEKIDs), which will be maintained at 100 mK by an adiabatic demagnetization refrigerator. The polarimeter will operate in two configurations, one sensitive to a spectral band centered on 150 GHz and the other sensitive to 260 and 350 GHz bands. The detector readout system is based on the ROACH-1 board, and the detectors will be biased below 300 MHz. The detector array is fed by an F/2.4 crossed-Dragone telescope with a 500 mm aperture yielding a 15 arcminute full-width half-maximum beam at 150 GHz. To minimize detector loading and maximize sensitivity, the entire optical system will be cooled to 1 K. Linearly polarized sky signals will be modulated with a metal-mesh half-wave plate that is mounted at the telescope aperture and is rotated on a superconducting magnetic bearing. The observation program consists of two or more five-day flights, and 150 GHz observations are planned to begin in 2017.
2010-03-01
STS134-S-001 (March 2010) --- The design of the STS-134 crew patch highlights research on the International Space Station (ISS) focusing on the fundamental physics of the universe. On this mission, the crew of space shuttle Endeavour will install the Alpha Magnetic Spectrometer-2 (AMS) experiment -- a cosmic particle detector that utilizes the first-ever superconducting magnet to be flown in space. By studying sub-atomic particles in the background cosmic radiation, and searching for anti-matter and dark-matter, it will help scientists better understand the evolution and properties of our universe. The shape of the patch is inspired by the international atomic symbol, and represents the atom with orbiting electrons around the nucleus. The burst near the center refers to the big-bang theory and the origin of the universe. The shuttle Endeavour and ISS fly together into the sunrise over the limb of Earth, representing the dawn of a new age, understanding the nature of the universe. The NASA insignia design for shuttle flights is reserved for use by the astronauts and for other official use as the NASA administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced.
NASA Astrophysics Data System (ADS)
Iida, T.; Sakurai, Y.; Matsumura, T.; Sugai, H.; Imada, H.; Kataza, H.; Ohsaki, H.; Hazumi, M.; Katayama, N.; Yamamoto, R.; Utsunomiya, S.; Terao, Y.
2017-12-01
We report a thermal analysis of a polarization modulator unit (PMU) for use in a space-borne cosmic microwave background (CMB) project. A measurement of the CMB polarization allows us to probe the physics of early universe, and that is the best method to test the cosmic inflation experimentally. One of the key instruments for this science is to use a halfwave plate (HWP) based polarization modulator. The HWP is required to rotate continuously at about 1 Hz below 10 K to minimize its own thermal emission to a detector system. The rotating HWP system at the cryogenic environment can be realized by using a superconducting magnetic bearing (SMB) without significant heat dissipation by mechanical friction. While the SMB achieves the smooth rotation due to the contactless bearing, an estimation of a levitating HWP temperature becomes a challenge. We manufactured a one-eighth scale prototype model of PMU and built a thermal model. We verified our thermal model with the experimental data. We forecasted the projected thermal performance of PMU for a full-scale model based on the thermal model. From this analysis, we discuss the design requirement toward constructing the full-scale model for use in a space environment such as a future CMB satellite mission, LiteBIRD.
Microwave SQUID multiplexer demonstration for cosmic microwave background imagers
NASA Astrophysics Data System (ADS)
Dober, B.; Becker, D. T.; Bennett, D. A.; Bryan, S. A.; Duff, S. M.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Hubmayr, J.; Mates, J. A. B.; Reintsema, C. D.; Vale, L. R.; Ullom, J. N.
2017-12-01
Key performance characteristics are demonstrated for the microwave superconducting quantum interference device (SQUID) multiplexer (μmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the μmux produces a white, input referred current noise level of 29 pA/ √{H z } at a microwave probe tone power of -77 dB, which is well below the expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure 98 pA/ √{H z } in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e., phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ˜100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the μmux as a viable readout technique for future CMB imaging instruments.
From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.
Pepe, M; Wiese, U-J
2009-05-15
We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.
Nickelson, Reva A.; Sloan, Paul A.; Richardson, John G.; Walsh, Stephanie; Kostelnik, Kevin M.
2009-04-07
A subterranean barrier and method for forming same are disclosed, the barrier including a plurality of casing strings wherein at least one casing string of the plurality of casing strings may be affixed to at least another adjacent casing string of the plurality of casing strings through at least one weld, at least one adhesive joint, or both. A method and system for nondestructively inspecting a subterranean barrier is disclosed. For instance, a radiographic signal may be emitted from within a casing string toward an adjacent casing string and the radiographic signal may be detected from within the adjacent casing string. A method of repairing a barrier including removing at least a portion of a casing string and welding a repair element within the casing string is disclosed. A method of selectively heating at least one casing string forming at least a portion of a subterranean barrier is disclosed.
PASCOS 2012 - 18th International Symposium on Particles Strings and Cosmology
NASA Astrophysics Data System (ADS)
2014-03-01
The XVII International Conference on Strings, Particles and Cosmology, PASCOS 2012, was held in the City of Mérida, Mexico, from June 3-8, 2012. The conference series is aimed at exploring the interface and interplay between particle physics, string theory and cosmology. With the advent of new data, the emphasis of the XVIII edition of PASCOS was on phenomenology and the interpretation of recent observational and experimental results. The conference followed the format of previous conferences in this series, with plenary reviews and contributed presentations in parallel sessions. The lectures covered a wide range of subjects which included: Dark matter and dark energy, flavor physics and CP violation, neutrino physics, supersymmetry, Higgs physics, baryogenesis and EDMs, supergravity, high energy cosmic rays, string and F-theory GUTs, and string phenomenology. This is the first time that PASCOS was held in Latin America. The aim to do it in Mexico was to engage the Latin American community and thus to bring the conference to a wider and different audience, a goal which was thoroughly achieved. The venue was held at the Hotel Fiesta Americana in the beautiful city of Mérida. The social events included a reception with typical local food at the Katun restaurant, conference dinner at the historical Quinta Montes Molina, and an excursion to the archeological site of Dzibilchaltún including a swim at the famous cenote. PASCOS 2012 was possible thanks to the generous support of the following sponsors: CONACyT (Consejo Nacional de Ciencia y Tecnología), UNAM (Universidad Nacional Autónoma de México: Consejo Técnico de la Investigación Científica, Instituto de Ciencias Nucleares, Instituto de Física), Cinvestav, (Centro de Estudios Avanzados del IPN: U. Zacatanco, U. Mérida and Secretaría General), ICyTDF (Instituto Científico y Tecnológico del D.F.), PIFI (Programa Integral de Fortalecimiento Institucional, Universidad de Guanajuato, Campus León), SMF (Sociedad Mexicana de Física), ICTP (International Centre for Theoretical Physics), BUAP (Benemérita Universidad Autónoma de Puebla), the Government of the State of Yucatán, the University of Hamburg, and Telmex. We also want to acknowledge the invaluable help of the staff of the Mexican Physical Society, in particular Lic. Santos Zúñniga Sánchez and Ms. Claudia Velasco Marín, and of the conference secretaries, Ms. Lizette Ramírez Bermúdez (UNAM) and Ms. Mariana del Castillo Sánchez (Cinvestav), for their support before, during and after the organization of PASCOS 2012. Last but not least, we would like to thank all the PASCOS 2012 participants for their attendance and for contributing to make the conference an engaging and stimulating event. The organizers, Myriam Mondragón, Adnan Bashir, David Delepine, Francisco Larios, Oscar Loaiza, Axel de la Macorra, Lukas Nellen, Sarira Sahu, Humberto Salazar and Liliana Velasco-Sevilla.
Informing New String Programmes: Lessons Learned from an Australian Experience
ERIC Educational Resources Information Center
Murphy, Fintan; Rickard, Nikki; Gill, Anneliese; Grimmett, Helen
2011-01-01
Although there are many examples of notable string programmes there has been relatively little comparative analysis of these programmes. This paper examines three benchmark string programmes (The University of Illinois String Project, The Tower Hamlets String Teaching Project and Colourstrings) alongside Music4All, an innovative string programme…
[ital N]-string vertices in string field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordes, J.; Abdurrahman, A.; Anton, F.
1994-03-15
We give the general form of the vertex corresponding to the interaction of an arbitrary number of strings. The technique employed relies on the comma'' representation of string field theory where string fields and interactions are represented as matrices and operations between them such as multiplication and trace. The general formulation presented here shows that the interaction vertex of [ital N] strings, for any arbitrary [ital N], is given as a function of particular combinations of matrices corresponding to the change of representation between the full string and the half string degrees of freedom.
NASA Astrophysics Data System (ADS)
Cappelli, Andrea; Castellani, Elena; Colomo, Filippo; Di Vecchia, Paolo
2012-04-01
Part I. Overview: 1. Introduction and synopsis; 2. Rise and fall of the hadronic string G. Veneziano; 3. Gravity, unification, and the superstring J. H. Schwarz; 4. Early string theory as a challenging case study for philosophers E. Castellani; Part II. The Prehistory: The Analytic S-Matrix: 5. Introduction to Part II; 6. Particle theory in the sixties: from current algebra to the Veneziano amplitude M. Ademollo; 7. The path to the Veneziano model H. R. Rubinstein; 8. Two-component duality and strings P. G. O. Freund; 9. Note on the prehistory of string theory M. Gell-Mann; Part III. The Dual Resonance Model: 10. Introduction to Part III; 11. From the S-matrix to string theory P. Di Vecchia; 12. Reminiscence on the birth of string theory J. A. Shapiro; 13. Personal recollections D. Amati; 14. Early string theory at Fermilab and Rutgers L. Clavelli; 15. Dual amplitudes in higher dimensions: a personal view C. Lovelace; 16. Personal recollections on dual models R. Musto; 17. Remembering the 'supergroup' collaboration F. Nicodemi; 18. The '3-Reggeon vertex' S. Sciuto; Part IV. The String: 19. Introduction to Part IV; 20. From dual models to relativistic strings P. Goddard; 21. The first string theory: personal recollections L. Susskind; 22. The string picture of the Veneziano model H. B. Nielsen; 23. From the S-matrix to string theory Y. Nambu; 24. The analogue model for string amplitudes D. B. Fairlie; 25. Factorization in dual models and functional integration in string theory S. Mandelstam; 26. The hadronic origins of string theory R. C. Brower; Part V. Beyond the Bosonic String: 27. Introduction to Part V; 28. From dual fermion to superstring D. I. Olive; 29. Dual models with fermions: memoirs of an early string theorist P. Ramond; 30. Personal recollections A. Neveu; 31. Aspects of fermionic dual models E. Corrigan; 32. The dual quark models K. Bardakci and M. B. Halpern; 33. Remembering the dawn of relativistic strings J.-L. Gervais; 34. Early string theory in Cambridge: personal recollections C. Montonen; Part VI. The Superstring: 35. Introduction to Part VI; 36. Supersymmetry in string theory F. Gliozzi; 37. Gravity from strings: personal reminiscences of early developments T. Yoneya; 38. From the Nambu-Goto to the σ-model action L. Brink; 39. Locally supersymmetric action for superstring P. Di Vecchia; 40. Personal recollections E. Cremmer; 41. The scientific contributions of Joël Scherk J. H. Schwarz; Part VII. Preparing the String Renaissance: 42. Introduction to Part VII; 43. From strings to superstrings: a personal perspective M. B. Green; 44. Quarks, strings and beyond A. M. Polyakov; 45. The rise of the superstring theory A. Cappelli and F. Colomo; Appendices; Index.
NASA Technical Reports Server (NTRS)
Hall, A. Daniel (Inventor); Davies, Francis J. (Inventor)
2007-01-01
Method and system are disclosed for determining individual string resistance in a network of strings when the current through a parallel connected string is unknown and when the voltage across a series connected string is unknown. The method/system of the invention involves connecting one or more frequency-varying impedance components with known electrical characteristics to each string and applying a frequency-varying input signal to the network of strings. The frequency-varying impedance components may be one or more capacitors, inductors, or both, and are selected so that each string is uniquely identifiable in the output signal resulting from the frequency-varying input signal. Numerical methods, such as non-linear regression, may then be used to resolve the resistance associated with each string.
Black string in dRGT massive gravity
NASA Astrophysics Data System (ADS)
Tannukij, Lunchakorn; Wongjun, Pitayuth; Ghosh, Suchant G.
2017-12-01
We present a cylindrically symmetric solution, both charged and uncharged, which is known as a black string solution to the nonlinear ghost-free massive gravity found by de Rham, Gabadadze, and Tolley (dRGT). This "dRGT black string" can be thought of as a generalization of the black string solution found by Lemos. Moreover, the dRGT black string solution includes other classes of black string solution such as the monopole-black string ones since the graviton mass contributes to the global monopole term as well as the cosmological-constant term. To investigate the solution, we compute mass, temperature, and entropy of the dRGT black string. We found that the existence of the graviton mass drastically affects the thermodynamics of the black string. Furthermore, the Hawking-Page phase transition is found to be possible for the dRGT black string as well as the charged dRGT black string. The dRGT black string solution is thermodynamically stable for r>r_c with negative thermodynamical potential and positive heat capacity while it is unstable for r
Transition-Edge Hot-Electron Microbolometers for Millimeter and Submillimeter Astrophysics
NASA Technical Reports Server (NTRS)
Hsieh, Wen-Ting; Stevenson, Thomas; U-yen, Kongpop; Wollack, Edward; Barrentine, Emily
2014-01-01
The millimeter and the submillimeter wavelengths of the electromagnetic spectrum hold a wealth of information about the evolution of the universe. In particular, cosmic microwave background (CMB) radiation and its polarization carry the oldest information in the universe, and provide the best test of the inflationary paradigm available to astronomy today. Detecting gravity waves through their imprint on the CMB polarization would have extraordinary repercussions for cosmology and physics. A transition-edge hot-electron micro - bolometer (THM) consists of a superconducting bilayer transition-edge sensor (TES) with a thin-film absorber. Unlike traditional monolithic bolometers that make use of micromachined structures, the THM em ploys the decoupling between electrons and phonons at millikelvin temperatures to provide thermal isolation. The devices are fabricated photolithographically and are easily integrated with antennas via microstrip transmission lines, and with SQUID (superconducting quantum interference device) readouts. The small volume of the absorber and TES produces a short thermal time constant that facilitates rapid sky scanning. The THM consists of a thin-film metal absorber overlapping a superconducting TES. The absorber forms the termination of a superconducting microstripline that carries RF power from an antenna. The purpose of forming a separate absorber and TES is to allow flexibility in the optimization of the two components. In particular, the absorbing film's impedance can be chosen to match the antenna, while the TES impedance can be chosen to match to the readout SQUID amplifier. This scheme combines the advantages of the TES with the advantages of planar millimeter-wave transmission line circuits. Antenna-coupling to the detectors via planar transmission lines allows the detector dimensions to be much smaller than a wavelength, so the technique can be extended across the entire microwave, millimeter, and submillimeter wavelength ranges. The circuits are fabricated using standard microlithographic techniques and are compatible with uniform, large array formats. Unlike traditional monolithic bolometers that make use of micromachined structures, the THM employs the decoupling between electrons and phonons at millikelvin temperatures to provide thermal isolation. There is no fragile membrane in the structure for thermal isolation, which improves the fabrication yield.
Vortex Escape from Columnar Defect in a Current-Loaded Superconductor
NASA Astrophysics Data System (ADS)
Fedirko, V. A.; Kasatkin, A. L.; Polyakov, S. V.
2018-06-01
The problem of Abrikosov vortices depinning from extended linear (columnar) defect in 3D-anisotropic superconductor film under non-uniformly distributed Lorentz force is studied for the case of low temperatures, disregarding thermal activation processes. We treat it as a problem of mechanical behavior of an elastic vortex string settled in a potential well of a linear defect and exerted to Lorentz force action within the screening layer about the London penetration depth near the specimen surface. The stability problem for the vortex pinning state is investigated by means of numerical modeling, and conditions for the instability threshold are obtained as well as the critical current density j_c and its dependence on the film thickness and magnetic field orientation. The instability leading to vortex depinning from extended linear defect first emerges near the surface and then propagates inside the superconductor. This scenario of vortex depinning mechanism at low temperatures is strongly supported by some recent experiments on high-Tc superconductors and other novel superconducting materials, containing columnar defects of various nature.
ERIC Educational Resources Information Center
Hoover, Todd F.
2010-01-01
The "Magic" String is a discrepant event that includes a canister with what appears to be the end of two strings protruding from opposite sides of it. Due to the way the strings are attached inside the canister, it appears as if the strings can magically switch the way they are connected. When one string end is pulled, the observer's expectation…
Automatic generation and analysis of solar cell IV curves
Kraft, Steven M.; Jones, Jason C.
2014-06-03
A photovoltaic system includes multiple strings of solar panels and a device presenting a DC load to the strings of solar panels. Output currents of the strings of solar panels may be sensed and provided to a computer that generates current-voltage (IV) curves of the strings of solar panels. Output voltages of the string of solar panels may be sensed at the string or at the device presenting the DC load. The DC load may be varied. Output currents of the strings of solar panels responsive to the variation of the DC load are sensed to generate IV curves of the strings of solar panels. IV curves may be compared and analyzed to evaluate performance of and detect problems with a string of solar panels.
Charged string loops in Reissner-Nordström black hole background
NASA Astrophysics Data System (ADS)
Oteev, Tursinbay; Kološ, Martin; Stuchlík, Zdeněk
2018-03-01
We study the motion of current carrying charged string loops in the Reissner-Nordström black hole background combining the gravitational and electromagnetic field. Introducing new electromagnetic interaction between central charge and charged string loop makes the string loop equations of motion to be non-integrable even in the flat spacetime limit, but it can be governed by an effective potential even in the black hole background. We classify different types of the string loop trajectories using effective potential approach, and we compare the innermost stable string loop positions with loci of the charged particle innermost stable orbits. We examine string loop small oscillations around minima of the string loop effective potential, and we plot radial profiles of the string loop oscillation frequencies for both the radial and vertical modes. We construct charged string loop quasi-periodic oscillations model and we compare it with observed data from microquasars GRO 1655-40, XTE 1550-564, and GRS 1915+105. We also study the acceleration of current carrying string loops along the vertical axis and the string loop ejection from RN black hole neighbourhood, taking also into account the electromagnetic interaction.
NASA Astrophysics Data System (ADS)
Kawazoe, Yoshihiko; Takeda, Yukihiro; Nakagawa, Masamichi
While some tennis racket strings have more grip than others do, this does not guarantee that they will impart more spin to a tennis ball. Experiments with hand-held rackets are required to determine the longstanding question of how players can discern that different strings behave differently when laboratory tests indicate that they should play the same. In a previous study, we clarified the top-spin mechanism of a tennis racket by using high-speed video analysis on a tennis court for the first time. Furthermore, we improved it by using lubricated notched nylon strings. These experiments revealed that the more the main strings stretch and bend laterally, the more spin is imparted to the ball. This is due to the restoring force being parallel to the string face when the main strings spring back and the ball is released from the strings. Notched strings reduce the spin rate, but this can be effectively counteracted by employing lubricants. Furthermore, we found that imparting more spin reduces shock vibrations on the wrist during impact. The present study revealed that a ball has a 40% lower spin rate when hit with a racket with notched strings than with one with unnotched strings in the case of nylon (it had to be determined whether new strings or lubricated used strings give more spin). The experiments also showed that 30% more spin is imparted to a ball when the string intersections are lubricated by oil than when notched used nylon strings are used. Furthermore, we found that used natural gut notched strings reduced the spin rate by 70% compared to when new natural gut unnotched strings are used. We also investigated different top-spin behaviors obtained when professional and amateur tennis players hit a ball.
Syntactic transfer in artificial grammar learning.
Beesley, T; Wills, A J; Le Pelley, M E
2010-02-01
In an artificial grammar learning (AGL) experiment, participants were trained with instances of one grammatical structure before completing a test phase in which they were required to discriminate grammatical from randomly created strings. Importantly, the underlying structure used to generate test strings was different from that used to generate the training strings. Despite the fact that grammatical training strings were more similar to nongrammatical test strings than they were to grammatical test strings, this manipulation resulted in a positive transfer effect, as compared with controls trained with nongrammatical strings. It is suggested that training with grammatical strings leads to an appreciation of set variance that aids the detection of grammatical test strings in AGL tasks. The analysis presented demonstrates that it is useful to conceptualize test performance in AGL as a form of unsupervised category learning.
An Ada/SQL (Structured Query Language) Application Scanner.
1988-03-01
Digital ...8217 (" DIGITS "), 46 new STRING’ ("DO"), new STRING’ ("ELSE"), new STRING’ ("ELSIF"), new STRING’ ("END"), new STRING’ ("ENTRY"), new STRING’ ("EXCEPTION...INTEGERPRINT; generic type NUM is digits <>; package FLOATPRINT is package txtprts.ada 18 prcdr PR (FL inFL %YE LINE n LINTYPE UNCLASSIFIED procedure
Pitch glide effect induced by a nonlinear string-barrier interaction
NASA Astrophysics Data System (ADS)
Kartofelev, Dmitri; Stulov, Anatoli; Välimäki, Vesa
2015-10-01
Interactions of a vibrating string with its supports and other spatially distributed barriers play a significant role in the physics of many stringed musical instruments. It is well known that the tone of the string vibrations is determined by the string supports, and that the boundary conditions of the string termination may cause a short-lasting initial fundamental frequency shifting. Generally, this phenomenon is associated with the nonlinear modulation of the stiff string tension. The aim of this paper is to study the initial frequency glide phenomenon that is induced only by the string-barrier interaction, apart from other possible physical causes, and without the interfering effects of dissipation and dispersion. From a numerical simulation perspective, this highly nonlinear problem may present various difficulties, not the least of which is the risk of numerical instability. We propose a numerically stable and a purely kinematic model of the string-barrier interaction, which is based on the travelling wave solution of the ideal string vibration. The model is capable of reproducing the motion of the vibrating string exhibiting the initial fundamental frequency glide, which is caused solely by the complex nonlinear interaction of the string with its termination. The results presented in this paper can expand our knowledge and understanding of the timbre evolution and the physical principles of sound generation of numerous stringed instruments, such as lutes called the tambura, sitar and biwa.
Constraint Reasoning Over Strings
NASA Technical Reports Server (NTRS)
Koga, Dennis (Technical Monitor); Golden, Keith; Pang, Wanlin
2003-01-01
This paper discusses an approach to representing and reasoning about constraints over strings. We discuss how many string domains can often be concisely represented using regular languages, and how constraints over strings, and domain operations on sets of strings, can be carried out using this representation.
Kemp, Jonathan A
2017-01-01
The physics of wound and unwound strings on the electric guitar are presented here, and the pitch intervals produced by the movements of a Fender Stratocaster tremolo unit are explained. Predicted changes in pitch sensitivity of different strings are given, and experimentally verified, for changes in saddle height, the distance of string free to move behind the nut and ratio of diameters/masses of the core and windings of wound strings. Also, it is shown that changes to the gauge of strings (assuming the string tension is sufficient for linear behaviour and in absence of changes to other construction details) don't alter the pitch intervals produced by a given angle of tremolo arm use assuming the instrument is set up with the same sounding pitches and starting bridge angle. It is demonstrated that it not possible to equalise the relative sensitivity of unwound steel stings on a Fender Stratocaster type tremolo unit through string construction techniques. The ratio of core to winding mass in the string, on the other hand, was found to be a very powerful design parameter for choosing the sensitivity of the string to tremolo arm use and standard pitch bends. For instance, the pitch intervals produced by operation of tremolo arm for wound strings may be made to approximately match that for one of the unwound strings if they share very similar core gauges (assuming the winding masses are chosen to give approximately the same tension at their sounding pitches). Such a design, only available currently by custom order, also delivers the optimum equalisation in sensitivity of strings for standard string bends (due to these also being produced by altering the length of the string to generate changes in tension and therefore pitch).
Entanglement branes in a two-dimensional string theory
Donnelly, William; Wong, Gabriel
2017-09-20
What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider the spatial entanglement between two intervals in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large N. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space. Here, we derive the modular Hamiltonian for themore » Hartle-Hawking state and show that the corresponding reduced density matrix describes a thermal ensemble of open strings ending on an object at the entangling surface that we call an entanglement brane, or E-brane.« less
NASA Technical Reports Server (NTRS)
Turok, Neil
1988-01-01
It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation.
p-adic string theories provide lattice Discretization to the ordinary string worldsheet.
Ghoshal, Debashis
2006-10-13
A class of models called p-adic strings is useful in understanding the tachyonic instability of string theory. These are found to be empirically related to the ordinary strings in the p-->1 limit. We propose that these models provide discretization for the string worldsheet and argue that the limit is naturally thought of as a continuum limit in the sense of the renormalization group.
Self-organization in a system of binary strings with spatial interactions
NASA Astrophysics Data System (ADS)
Banzhaf, W.; Dittrich, P.; Eller, B.
1999-01-01
We consider an artificial reaction system whose components are binary strings. Upon encounter, two binary strings produce a third string which competes for storage space with the originators. String types or species can only survive when produced in sufficient numbers. Spatial interactions through introduction of a topology and rules for distance-dependent reactions are discussed. We observe various kinds of survival strategies of binary strings.
p-adic String Theories Provide Lattice Discretization to the Ordinary String Worldsheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoshal, Debashis
2006-10-13
A class of models called p-adic strings is useful in understanding the tachyonic instability of string theory. These are found to be empirically related to the ordinary strings in the p{yields}1 limit. We propose that these models provide discretization for the string worldsheet and argue that the limit is naturally thought of as a continuum limit in the sense of the renormalization group.
String Formatting Considered Harmful for Novice Programmers
ERIC Educational Resources Information Center
Hughes, Michael C.; Jadud, Matthew C.; Rodrigo, Ma. Mercedes T.
2010-01-01
In Java, "System.out.printf" and "String.format" consume a specialised kind of string commonly known as a format string. In our study of first-year students at the Ateneo de Manila University, we discovered that format strings present a substantial challenge for novice programmers. Focusing on their first laboratory we found…
Charting the landscape of supercritical string theory.
Hellerman, Simeon; Swanson, Ian
2007-10-26
Special solutions of string theory in supercritical dimensions can interpolate in time between theories with different numbers of spacetime dimensions and different amounts of world sheet supersymmetry. These solutions connect supercritical string theories to the more familiar string duality web in ten dimensions and provide a precise link between supersymmetric and purely bosonic string theories. Dimension quenching and c duality appear to be natural concepts in string theory, giving rise to large networks of interconnected theories.
Diffusion of massive particles around an Abelian-Higgs string
NASA Astrophysics Data System (ADS)
Saha, Abhisek; Sanyal, Soma
2018-03-01
We study the diffusion of massive particles in the space time of an Abelian Higgs string. The particles in the early universe plasma execute Brownian motion. This motion of the particles is modeled as a two dimensional random walk in the plane of the Abelian Higgs string. The particles move randomly in the space time of the string according to their geodesic equations. We observe that for certain values of their energy and angular momentum, an overdensity of particles is observed close to the string. We find that the string parameters determine the distribution of the particles. We make an estimate of the density fluctuation generated around the string as a function of the deficit angle. Though the thickness of the string is small, the length is large and the overdensity close to the string may have cosmological consequences in the early universe.
Remarks on entanglement entropy in string theory
NASA Astrophysics Data System (ADS)
Balasubramanian, Vijay; Parrikar, Onkar
2018-03-01
Entanglement entropy for spatial subregions is difficult to define in string theory because of the extended nature of strings. Here we propose a definition for bosonic open strings using the framework of string field theory. The key difference (compared to ordinary quantum field theory) is that the subregion is chosen inside a Cauchy surface in the "space of open string configurations." We first present a simple calculation of this entanglement entropy in free light-cone string field theory, ignoring subtleties related to the factorization of the Hilbert space. We reproduce the answer expected from an effective field theory point of view, namely a sum over the one-loop entanglement entropies corresponding to all the particle-excitations of the string, and further show that the full string theory regulates ultraviolet divergences in the entanglement entropy. We then revisit the question of factorization of the Hilbert space by analyzing the covariant phase-space associated with a subregion in Witten's covariant string field theory. We show that the pure gauge (i.e., BRST exact) modes in the string field become dynamical at the entanglement cut. Thus, a proper definition of the entropy must involve an extended Hilbert space, with new stringy edge modes localized at the entanglement cut.
Holographic cosmology from BIonic solutions
NASA Astrophysics Data System (ADS)
Sepehri, Alireza; Faizal, Mir; Setare, Mohammad Reza; Ali, Ahmed Farag
2017-02-01
In this paper, we will use a BIonic solution for analyzing the holographic cosmology. A BIonic solution is a configuration of a D3-brane and an anti-D3-brane connected by a wormhole, and holographic cosmology is a recent proposal to explain cosmic expansion by using the holographic principle. In our model, a BIonic configuration will be produced by the transition of fundamental black strings. The formation of a BIonic configuration will cause inflation. As the D3-brane moves away from the anti-D3-brane, the wormhole will get annihilated, and the inflation will end with the annihilation of this wormhole. However, it is possible for a D3-brane to collide with an anti-D3-brane. Such a collision will occur if the distance between the D3-brane and the anti-D3-brane reduces, and this will create tachyonic states. We will demonstrate that these tachyonic states will lead to the formation of a new wormhole, and this will cause acceleration of the universe before such a collision.
NASA Astrophysics Data System (ADS)
1999-04-01
The following topics are discussed: Black hole formation by canonical dynamics of gravitating shells; canonical quantum gravity; Vassiliev invariants; midisuperspace models; quantum spacetime; large-N limit of superconformal field theories and supergravity; world-volume fields and background coupling of branes; gauge enhancement and chirality changes in nonperturbative orbifold models; chiral p-forms; formally renormalizable gravitationally self-interacting string models; gauge supergravities for all odd dimensions; black hole radiation and S-matrix; primordial black holes; fluctuations in a thermal field and dissipation of a black hole spacetime in far-field limit; adiabatic interpretation of particle creation in a de Sitter universe; nonequilibrium dynamics of quantum fields in inflationary cosmology; magnetic fields in the early Universe; classical regime of a quantum universe obtained through a functional method; decoherence and correlations in semiclassical cosmology; fluid of primordial fluctuations; causal statistical mechanics calculation of initial cosmic entropy and quantum gravity prospects and black hole-D-brane correspondence.
The evens and odds of CMB anomalies
NASA Astrophysics Data System (ADS)
Gruppuso, A.; Kitazawa, N.; Lattanzi, M.; Mandolesi, N.; Natoli, P.; Sagnotti, A.
2018-06-01
The lack of power of large-angle CMB anisotropies is known to increase its statistical significance at higher Galactic latitudes, where a string-inspired pre-inflationary scale Δ can also be detected. Considering the Planck 2015 data, and relying largely on a Bayesian approach, we show that the effect is mostly driven by the even - ℓ harmonic multipoles with ℓ ≲ 20, which appear sizably suppressed in a way that is robust with respect to Galactic masking, along with the corresponding detections of Δ. On the other hand, the first odd - ℓ multipoles are only suppressed at high Galactic latitudes. We investigate this behavior in different sky masks, constraining Δ through even and odd multipoles, and we elaborate on possible implications. We include low- ℓ polarization data which, despite being noise-limited, help in attaining confidence levels of about 3 σ in the detection of Δ. We also show by direct forecasts that a future all-sky E-mode cosmic-variance-limited polarization survey may push the constraining power for Δ beyond 5 σ.
NASA Astrophysics Data System (ADS)
de Martino, Ivan; Broadhurst, Tom; Tye, S.-H. Henry; Chiueh, Tzihong; Shive, Hsi-Yu; Lazkoz, Ruth
2018-01-01
The cold dark matter (CDM) paradigm successfully explains the cosmic structure over an enormous span of redshifts. However, it fails when probing the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. Moreover, the lack of experimental detection of Weakly Interacting Massive Particle (WIMP) favors alternative candidates such as light axionic dark matter that naturally arise in string theory. Cosmological N-body simulations have shown that axionic dark matter forms a solitonic core of size of ≃ 150 pc in the innermost region of the galactic halos. The oscillating scalar field associated to the axionic dark matter halo produces an oscillating gravitational potential that induces a time dilation of the pulse arrival time of ≃ 400 ns/(m_B/10^{-22} eV) for pulsar within such a solitonic core. Over the whole galaxy, the averaged predicted signal may be detectable with current and forthcoming pulsar timing array telescopes.
High Energy Neutrinos from the Cold: Status and Prospects of the IceCube Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
IceCube Collaboration; Portello-Roucelle, Cecile; Collaboration, IceCube
2008-02-29
The primary motivation for building neutrino telescopes is to open the road for neutrino astronomy, and to offer another observational window for the study of cosmic ray origins. Other physics topics, such as the search for WIMPs, can also be developed with neutrino telescope. As of March 2008, the IceCube detector, with half of its strings deployed, is the world largest neutrino telescope taking data to date and it will reach its completion in 2011. Data taken with the growing detector are being analyzed. The results of some of these works are summarized here. AMANDA has been successfully integrated intomore » IceCube data acquisition system and continues to accumulate data. Results obtained using only AMANDA data taken between the years 2000 and 2006 are also presented. The future of IceCube and the extensions in both low and high energy regions will finally be discussed in the last section.« less
Charged black rings at large D
NASA Astrophysics Data System (ADS)
Chen, Bin; Li, Peng-Cheng; Wang, Zi-zhi
2017-04-01
We study the charged slowly rotating black holes in the Einstein-Maxwell theory in the large dimensions ( D). By using the 1 /D expansion in the near regions of the black holes we obtain the effective equations for the charged slowly rotating black holes. The effective equations capture the dynamics of various stationary solutions, including the charged black ring, the charged slowly rotating Myers-Perry black hole and the charged slowly boosted black string. Via different embeddings we construct these stationary solutions explicitly. For the charged black ring at large D, we find that the charge lowers the angular momentum due to the regularity condition on the solution. By performing the perturbation analysis of the effective equations, we obtain the quasinormal modes of the charge perturbation and the gravitational perturbation analytically. Like the neutral case the charged thin black ring suffers from the Gregory-Laflamme-like instability under the non-axisymmetric perturbations, but the charge weakens the instability. Besides, we find that the large D analysis always respects the cosmic censorship.
Hydraulics Graphics Package. Users Manual
1985-11-01
ENTER: VARIABLE/SEPARATOR/VALUE OR STRING GLBL, TETON DAM FAILURE ENTER: VARIABLE/SEPARATOR/VALUE OR STRING SLOC ,DISCHARGE HISTOGRAM ENTER: VARIABLE...ENTER: VARIABLE/SEPARATOR/VALUE OR STRING YLBL,FLOW IN 1000 CFS ENTER: VARIABLE/SEPARATORVA LUE OR STRING GLBL, TETON DAM FAILURE ENTER: VARIABLE...SEPARATOR/VALUE OR STRING SECNO, 0 ENTER: VARIABLE/SEPARATOR/VALUE OR STRING GO 1ee0. F go L 0 U I Goo. 200. TETON DAM FAILUPE N\\ rLOIJ Alr 4wi. fiNT. I .I
Valdois, Sylviane; Lassus-Sangosse, Delphine; Lobier, Muriel
2012-05-01
Poor parallel letter-string processing in developmental dyslexia was taken as evidence of poor visual attention (VA) span, that is, a limitation of visual attentional resources that affects multi-character processing. However, the use of letter stimuli in oral report tasks was challenged on its capacity to highlight a VA span disorder. In particular, report of poor letter/digit-string processing but preserved symbol-string processing was viewed as evidence of poor visual-to-phonology code mapping, in line with the phonological theory of developmental dyslexia. We assessed here the visual-to-phonological-code mapping disorder hypothesis. In Experiment 1, letter-string, digit-string and colour-string processing was assessed to disentangle a phonological versus visual familiarity account of the letter/digit versus symbol dissociation. Against a visual-to-phonological-code mapping disorder but in support of a familiarity account, results showed poor letter/digit-string processing but preserved colour-string processing in dyslexic children. In Experiment 2, two tasks of letter-string report were used, one of which was performed simultaneously to a high-taxing phonological task. Results show that dyslexic children are similarly impaired in letter-string report whether a concurrent phonological task is simultaneously performed or not. Taken together, these results provide strong evidence against a phonological account of poor letter-string processing in developmental dyslexia. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Lin, Chien-Hung
2017-05-01
We generalize the string-net construction to multiple flavors of strings, each of which is labeled by the elements of an Abelian group Gi. The same flavor of strings can branch, while different flavors of strings can cross one another and thus they form intersecting string nets. We systematically construct the exactly soluble lattice Hamiltonians and the ground-state wave functions for the intersecting string-net condensed phases. We analyze the braiding statistics of the low-energy quasiparticle excitations and find that our model can realize all the topological phases as the string-net model with group G =∏iGi . In this respect, our construction provides various ways of building lattice models which realize topological order G , corresponding to different partitions of G and thus different flavors of string nets. In fact, our construction concretely demonstrates the Künneth formula by constructing various lattice models with the same topological order. As an example, we construct the G =Z2×Z2×Z2 string-net model which realizes a non-Abelian topological phase by properly intersecting three copies of toric codes.
NASA Astrophysics Data System (ADS)
Bellotti, R.; Cafagna, F.; Circella, M.; de Marzo, C. N.; Golden, R. L.; Stochaj, S. J.; de Pascale, M. P.; Morselli, A.; Picozza, P.; Stephens, S. A.; Hof, M.; Menn, W.; Simon, M.; Mitchell, J. W.; Ormes, J. F.; Streitmatter, R. E.; Finetti, N.; Grimani, C.; Papini, P.; Piccardi, S.; Spillantini, P.; Basini, G.; Ricci, M.
1999-09-01
We report here the measurements of the energy spectra of atmospheric muons and of the parent cosmic ray primary proton and helium nuclei in a single experiment. These were carried out using the MASS superconducting spectrometer in a balloon flight experiment in 1991. The relevance of these results to the atmospheric neutrino anomaly is emphasized. In particular, this approach allows uncertainties caused by the level of solar modulation, the geomagnetic cut-off of the primaries and possible experimental systematics, to be decoupled in the comparison of calculated fluxes of muons to measured muon fluxes. The muon observations cover the momentum and depth ranges of 0.3-40 GeV/c and 5-886 g/cm2, respectively. A comparison of these results with those obtained in a previous experiment by the same collaboration using a similar apparatus allows us to search for differences due to the different experimental conditions at low energy and to check for the overall normalization between the two measurements. The proton and helium primary measurements cover the rigidity range from 3 to 100 GV, in which both the solar modulation and the geomagnetic cut-off affect the energy spectra at low energies. From the observed low-energy helium spectrum, the geomagnetic transmission function at mid-latitude has been determined.
Photovoltaic power generation system with photovoltaic cells as bypass diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lentine, Anthony L.; Nielson, Gregory N.; Tauke-Pedretti, Anna
A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cellmore » is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donnelly, William; Wong, Gabriel
What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider the spatial entanglement between two intervals in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large N. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space. Here, we derive the modular Hamiltonian for themore » Hartle-Hawking state and show that the corresponding reduced density matrix describes a thermal ensemble of open strings ending on an object at the entangling surface that we call an entanglement brane, or E-brane.« less
Device for balancing parallel strings
Mashikian, Matthew S.
1985-01-01
A battery plant is described which features magnetic circuit means in association with each of the battery strings in the battery plant for balancing the electrical current flow through the battery strings by equalizing the voltage across each of the battery strings. Each of the magnetic circuit means generally comprises means for sensing the electrical current flow through one of the battery strings, and a saturable reactor having a main winding connected electrically in series with the battery string, a bias winding connected to a source of alternating current and a control winding connected to a variable source of direct current controlled by the sensing means. Each of the battery strings is formed by a plurality of batteries connected electrically in series, and these battery strings are connected electrically in parallel across common bus conductors.
Aspects of some dualities in string theory
NASA Astrophysics Data System (ADS)
Kim, Bom Soo
AdS/CFT correspondence in string theory has changed landscape of the theoretical physics. Through this celebrated duality between gravity theory and field theory, one can investigate analytically strongly coupled gauge theories such as Quantum Chromodynamics (QCD) in terms of weakly coupled string theory such as supergravity theory and vice versa. In the first part of this thesis we used this duality to construct a new type of nonlocal field theory, called Puff Field Theory, in terms of D3 branes in type IIB string theory with a geometric twist. In addition to the strong-weak duality of AdS/CFT, there also exists a weak-weak duality, called Twistor String Theory. Twistor technique is successfully used to calculate the SYM scattering amplitude in an elegant fashion. Yet, the progress in the string theory side was hindered by a non-unitary conformal gravity. We extend the Twistor string theory by introducing mass terms, in the second part of the thesis. A chiral mass term is identified as a vacuum expectation value of a conformal supergravity field and is tied with the breaking of the conformal symmetry of gravity. As a prime candidate for a quantum theory of gravity, string theory revealed many promising successes such as counting the number of microstates in supersymmetric Black Holes thermodynamics and resolution of timelike and null singularities, to name a few. Yet, the fundamental string and M-theroy formulations are not yet available. Various string theories without gravity, such as Non-Commutative Open String (NCOS) and Open Membrane (OM) theories, are very nice playground to investigate the fundamental structure of string and M-theory without the complication of gravity. In the last part of the thesis, simpler Non-Relativistic String Theories are constructed and investigated. One important motivation for those theories is related to the connection between Non-Relativistic String Theories and Non-critical String Theories through the bosonization of betagamma CFT.
2017-01-01
The physics of wound and unwound strings on the electric guitar are presented here, and the pitch intervals produced by the movements of a Fender Stratocaster tremolo unit are explained. Predicted changes in pitch sensitivity of different strings are given, and experimentally verified, for changes in saddle height, the distance of string free to move behind the nut and ratio of diameters/masses of the core and windings of wound strings. Also, it is shown that changes to the gauge of strings (assuming the string tension is sufficient for linear behaviour and in absence of changes to other construction details) don’t alter the pitch intervals produced by a given angle of tremolo arm use assuming the instrument is set up with the same sounding pitches and starting bridge angle. It is demonstrated that it not possible to equalise the relative sensitivity of unwound steel stings on a Fender Stratocaster type tremolo unit through string construction techniques. The ratio of core to winding mass in the string, on the other hand, was found to be a very powerful design parameter for choosing the sensitivity of the string to tremolo arm use and standard pitch bends. For instance, the pitch intervals produced by operation of tremolo arm for wound strings may be made to approximately match that for one of the unwound strings if they share very similar core gauges (assuming the winding masses are chosen to give approximately the same tension at their sounding pitches). Such a design, only available currently by custom order, also delivers the optimum equalisation in sensitivity of strings for standard string bends (due to these also being produced by altering the length of the string to generate changes in tension and therefore pitch). PMID:28934268
Formation of Electron Strings in Narrow Band Polar Semiconductors
NASA Astrophysics Data System (ADS)
Kusmartsev, F. V.
2000-01-01
We show that linear electron strings may arise in polar semiconductors. A single string consists of M spinless fermions trapped by an extended polarization well of a cigar shape. Inside the string the particles are free although they interact with each other via Coulomb forces. The strings arise as a result of an electronic phase separation associated with an instability of small adiabatic polarons. We have found the length of the string which depends on dielectric constants of semiconductors. The appearance of these electron strings may have an impact on the effect of stripe formation observed in a variety of high- Tc experiments.
Optimal management of batteries in electric systems
Atcitty, Stanley; Butler, Paul C.; Corey, Garth P.; Symons, Philip C.
2002-01-01
An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.
The waiting time problem in a model hominin population.
Sanford, John; Brewer, Wesley; Smith, Franzine; Baumgardner, John
2015-09-17
Functional information is normally communicated using specific, context-dependent strings of symbolic characters. This is true within the human realm (texts and computer programs), and also within the biological realm (nucleic acids and proteins). In biology, strings of nucleotides encode much of the information within living cells. How do such information-bearing nucleotide strings arise and become established? This paper uses comprehensive numerical simulation to understand what types of nucleotide strings can realistically be established via the mutation/selection process, given a reasonable timeframe. The program Mendel's Accountant realistically simulates the mutation/selection process, and was modified so that a starting string of nucleotides could be specified, and a corresponding target string of nucleotides could be specified. We simulated a classic pre-human hominin population of at least 10,000 individuals, with a generation time of 20 years, and with very strong selection (50% selective elimination). Random point mutations were generated within the starting string. Whenever an instance of the target string arose, all individuals carrying the target string were assigned a specified reproductive advantage. When natural selection had successfully amplified an instance of the target string to the point of fixation, the experiment was halted, and the waiting time statistics were tabulated. Using this methodology we tested the effect of mutation rate, string length, fitness benefit, and population size on waiting time to fixation. Biologically realistic numerical simulations revealed that a population of this type required inordinately long waiting times to establish even the shortest nucleotide strings. To establish a string of two nucleotides required on average 84 million years. To establish a string of five nucleotides required on average 2 billion years. We found that waiting times were reduced by higher mutation rates, stronger fitness benefits, and larger population sizes. However, even using the most generous feasible parameters settings, the waiting time required to establish any specific nucleotide string within this type of population was consistently prohibitive. We show that the waiting time problem is a significant constraint on the macroevolution of the classic hominin population. Routine establishment of specific beneficial strings of two or more nucleotides becomes very problematic.
The IMS Software Integration Platform
1993-04-12
products to incorporate all data shared by the IMS applications. Some entities (time-series, images, a algorithm -specific parameters) must be managed...dbwhoanii, dbcancel Transaction Management: dbcommit, dbrollback Key Counter Assignment: dbgetcounter String Handling: cstr ~to~pad, pad-to- cstr Error...increment *value; String Maniputation: int cstr topad (array, string, arraylength) char *array, *string; int arrayjlength; int pad tocstr (string
String theory--the physics of string-bending and other electric guitar techniques.
Grimes, David Robert
2014-01-01
Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed.
String Theory - The Physics of String-Bending and Other Electric Guitar Techniques
Grimes, David Robert
2014-01-01
Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed. PMID:25054880
Minimal string theories and integrable hierarchies
NASA Astrophysics Data System (ADS)
Iyer, Ramakrishnan
Well-defined, non-perturbative formulations of the physics of string theories in specific minimal or superminimal model backgrounds can be obtained by solving matrix models in the double scaling limit. They provide us with the first examples of completely solvable string theories. Despite being relatively simple compared to higher dimensional critical string theories, they furnish non-perturbative descriptions of interesting physical phenomena such as geometrical transitions between D-branes and fluxes, tachyon condensation and holography. The physics of these theories in the minimal model backgrounds is succinctly encoded in a non-linear differential equation known as the string equation, along with an associated hierarchy of integrable partial differential equations (PDEs). The bosonic string in (2,2m-1) conformal minimal model backgrounds and the type 0A string in (2,4 m) superconformal minimal model backgrounds have the Korteweg-de Vries system, while type 0B in (2,4m) backgrounds has the Zakharov-Shabat system. The integrable PDE hierarchy governs flows between backgrounds with different m. In this thesis, we explore this interesting connection between minimal string theories and integrable hierarchies further. We uncover the remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain minimal string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We find that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several other string-like special points arise and are connected. In some cases, the framework endows the theories with a non-perturbative definition for the first time. Notably, we discover that the Painleve IV equation plays a key role in organizing the string theory physics, joining its siblings, Painleve I and II, whose roles have previously been identified in this minimal string context. We then present evidence that the conjectured type II theories have smooth non-perturbative solutions, connecting two perturbative asymptotic regimes, in a 't Hooft limit. Our technique also demonstrates evidence for new minimal string theories that are not apparent in a perturbative analysis.
Dynamical AdS strings across horizons
Ishii, Takaaki; Murata, Keiju
2016-03-01
We examine the nonlinear classical dynamics of a fundamental string in anti-deSitter spacetime. The string is dual to the flux tube between an external quark-antiquark pair in $N = 4$ super Yang-Mills theory. We perturb the string by shaking the endpoints and compute its time evolution numerically. We find that with sufficiently strong perturbations the string continues extending and plunges into the Poincare´ horizon. In the evolution, effective horizons are also dynamically created on the string worldsheet. The quark and antiquark are thus causally disconnected, and the string transitions to two straight strings. The forces acting on the endpoints vanishmore » with a power law whose slope depends on the perturbations. Lastly, the condition for this transition to occur is that energy injection exceeds the static energy between the quark-antiquark pair.« less
The Development of a String Sight-Reading Pitch Skill Hierarchy
ERIC Educational Resources Information Center
Alexander, Michael L.; Henry, Michele L.
2012-01-01
This study was designed to determine a pitch skill hierarchy for string sight-reading, to determine the effects of key on string sight-reading achievement, and to determine the validity of a tonal pattern system as a measurement of melodic sight-reading skill for string players. High school string students (n = 94) obtained a mean score of 27.28…
Actomyosin purse strings: renewable resources that make morphogenesis robust and resilient
Rodriguez-Diaz, Alice; Toyama, Yusuke; Abravanel, Daniel L.; Wiemann, John M.; Wells, Adrienne R.; Tulu, U. Serdar; Edwards, Glenn S.; Kiehart, Daniel P.
2008-01-01
Dorsal closure in Drosophila is a model system for cell sheet morphogenesis and wound healing. During closure two sheets of lateral epidermis move dorsally to close over the amnioserosa and form a continuous epidermis. Forces from the amnioserosa and actomyosin-rich, supracellular purse strings at the leading edges of these lateral epidermal sheets drive closure. Purse strings generate the largest force for closure and occur during development and wound healing throughout phylogeny. We use laser microsurgery to remove some or all of the purse strings from developing embryos. Free edges produced by surgery undergo characteristic responses as follows. Intact cells in the free edges, which previously had no purse string, recoil away from the incision and rapidly assemble new, secondary purse strings. Next, recoil slows, then pauses at a turning point. Following a brief delay, closure resumes and is powered to completion by the secondary purse strings. We confirm that the assembly of the secondary purse strings requires RhoA. We show that α-actinin alternates with nonmuscle myosin II along purse strings and requires nonmuscle myosin II for its localization. Together our data demonstrate that purse strings are renewable resources that contribute to the robust and resilient nature of closure. PMID:19404432
Physical cognition: birds learn the structural efficacy of nest material
Bailey, Ida E.; Morgan, Kate V.; Bertin, Marion; Meddle, Simone L.; Healy, Susan D.
2014-01-01
It is generally assumed that birds’ choice of structurally suitable materials for nest building is genetically predetermined. Here, we tested that assumption by investigating whether experience affected male zebra finches’ (Taeniopygia guttata) choice of nest material. After a short period of building with relatively flexible string, birds preferred to build with stiffer string while those that had experienced a stiffer string were indifferent to string type. After building a complete nest with either string type, however, all birds increased their preference for stiff string. The stiffer string appeared to be the more effective building material as birds required fewer pieces of stiffer than flexible string to build a roofed nest. For birds that raised chicks successfully, there was no association between the material they used to build their nest and the type they subsequently preferred. Birds’ material preference reflected neither the preference of their father nor of their siblings but juvenile experience of either string type increased their preference for stiffer string. Our results represent two important advances: (i) birds choose nest material based on the structural properties of the material; (ii) nest material preference is not entirely genetically predetermined as both the type and amount of experience influences birds’ choices. PMID:24741011
Physical cognition: birds learn the structural efficacy of nest material.
Bailey, Ida E; Morgan, Kate V; Bertin, Marion; Meddle, Simone L; Healy, Susan D
2014-06-07
It is generally assumed that birds' choice of structurally suitable materials for nest building is genetically predetermined. Here, we tested that assumption by investigating whether experience affected male zebra finches' (Taeniopygia guttata) choice of nest material. After a short period of building with relatively flexible string, birds preferred to build with stiffer string while those that had experienced a stiffer string were indifferent to string type. After building a complete nest with either string type, however, all birds increased their preference for stiff string. The stiffer string appeared to be the more effective building material as birds required fewer pieces of stiffer than flexible string to build a roofed nest. For birds that raised chicks successfully, there was no association between the material they used to build their nest and the type they subsequently preferred. Birds' material preference reflected neither the preference of their father nor of their siblings but juvenile experience of either string type increased their preference for stiffer string. Our results represent two important advances: (i) birds choose nest material based on the structural properties of the material; (ii) nest material preference is not entirely genetically predetermined as both the type and amount of experience influences birds' choices.
Text String Detection from Natural Scenes by Structure-based Partition and Grouping
Yi, Chucai; Tian, YingLi
2012-01-01
Text information in natural scene images serves as important clues for many image-based applications such as scene understanding, content-based image retrieval, assistive navigation, and automatic geocoding. However, locating text from complex background with multiple colors is a challenging task. In this paper, we explore a new framework to detect text strings with arbitrary orientations in complex natural scene images. Our proposed framework of text string detection consists of two steps: 1) Image partition to find text character candidates based on local gradient features and color uniformity of character components. 2) Character candidate grouping to detect text strings based on joint structural features of text characters in each text string such as character size differences, distances between neighboring characters, and character alignment. By assuming that a text string has at least three characters, we propose two algorithms of text string detection: 1) adjacent character grouping method, and 2) text line grouping method. The adjacent character grouping method calculates the sibling groups of each character candidate as string segments and then merges the intersecting sibling groups into text string. The text line grouping method performs Hough transform to fit text line among the centroids of text candidates. Each fitted text line describes the orientation of a potential text string. The detected text string is presented by a rectangle region covering all characters whose centroids are cascaded in its text line. To improve efficiency and accuracy, our algorithms are carried out in multi-scales. The proposed methods outperform the state-of-the-art results on the public Robust Reading Dataset which contains text only in horizontal orientation. Furthermore, the effectiveness of our methods to detect text strings with arbitrary orientations is evaluated on the Oriented Scene Text Dataset collected by ourselves containing text strings in non-horizontal orientations. PMID:21411405
Text string detection from natural scenes by structure-based partition and grouping.
Yi, Chucai; Tian, YingLi
2011-09-01
Text information in natural scene images serves as important clues for many image-based applications such as scene understanding, content-based image retrieval, assistive navigation, and automatic geocoding. However, locating text from a complex background with multiple colors is a challenging task. In this paper, we explore a new framework to detect text strings with arbitrary orientations in complex natural scene images. Our proposed framework of text string detection consists of two steps: 1) image partition to find text character candidates based on local gradient features and color uniformity of character components and 2) character candidate grouping to detect text strings based on joint structural features of text characters in each text string such as character size differences, distances between neighboring characters, and character alignment. By assuming that a text string has at least three characters, we propose two algorithms of text string detection: 1) adjacent character grouping method and 2) text line grouping method. The adjacent character grouping method calculates the sibling groups of each character candidate as string segments and then merges the intersecting sibling groups into text string. The text line grouping method performs Hough transform to fit text line among the centroids of text candidates. Each fitted text line describes the orientation of a potential text string. The detected text string is presented by a rectangle region covering all characters whose centroids are cascaded in its text line. To improve efficiency and accuracy, our algorithms are carried out in multi-scales. The proposed methods outperform the state-of-the-art results on the public Robust Reading Dataset, which contains text only in horizontal orientation. Furthermore, the effectiveness of our methods to detect text strings with arbitrary orientations is evaluated on the Oriented Scene Text Dataset collected by ourselves containing text strings in nonhorizontal orientations.
Deviation from Standard Inflationary Cosmology and the Problems in Ekpyrosis
NASA Astrophysics Data System (ADS)
Tseng, Chien-Yao
There are two competing models of our universe right now. One is Big Bang with inflation cosmology. The other is the cyclic model with ekpyrotic phase in each cycle. This paper is divided into two main parts according to these two models. In the first part, we quantify the potentially observable effects of a small violation of translational invariance during inflation, as characterized by the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes ( alma*l'm') of the spherical-harmonic coefficients. We then provide a model and study the two-point correlation of a massless scalar (the inflaton) when the stress tensor contains the energy density from an infinitely long straight cosmic string in addition to a cosmological constant. Finally, we discuss if inflation can reconcile with the Liouville's theorem as far as the fine-tuning problem is concerned. In the second part, we find several problems in the cyclic/ekpyrotic cosmology. First of all, quantum to classical transition would not happen during an ekpyrotic phase even for superhorizon modes, and therefore the fluctuations cannot be interpreted as classical. This implies the prediction of scale-free power spectrum in ekpyrotic/cyclic universe model requires more inspection. Secondly, we find that the usual mechanism to solve fine-tuning problems is not compatible with eternal universe which contains infinitely many cycles in both direction of time. Therefore, all fine-tuning problems including the flatness problem still asks for an explanation in any generic cyclic models.
Coulomb string tension, asymptotic string tension, and the gluon chain
Greensite, Jeff; Szczepaniak, Adam P.
2015-02-01
We compute, via numerical simulations, the non-perturbative Coulomb potential and position-space ghost propagator in pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.
Simulation of swimming strings immersed in a viscous fluid flow
NASA Astrophysics Data System (ADS)
Huang, Wei-Xi; Sung, Hyung Jin
2006-11-01
In nature, many phenomena involve interactions between flexible bodies and their surrounding viscous fluid, such as a swimming fish or a flapping flag. The intrinsic dynamics is complicate and not well understood. A flexible string can be regarded as a one-dimensional flag model. Many similarities can be found between the flapping string and swimming fish, although different wake speed results in a drag force for the flapping string and a propulsion force for the swimming fish. In the present study, we propose a mathematical formulation for swimming strings immersed in a viscous fluid flow. Fluid motion is governed by the Navier-Stokes equations and a momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A flexible inextensible string model is described by another set of equations with an additional momentum forcing which is a result of the fluid viscosity and the pressure difference across the string. The momentum forcing is calculated by a feedback loop. Simulations of several numerical examples are carried out, including a hanging string which starts moving under gravity without ambient fluid, a swinging string immersed in a quiescent viscous fluid, a string swimming within a uniform surrounding flow, and flow over two side-by-side strings. The numerical results agree well with the theoretical analysis and previous experimental observations. Further simulation of a swimming fish is under consideration.
Noncommutative Field Theories and (super)string Field Theories
NASA Astrophysics Data System (ADS)
Aref'eva, I. Ya.; Belov, D. M.; Giryavets, A. A.; Koshelev, A. S.; Medvedev, P. B.
2002-11-01
In this lecture notes we explain and discuss some ideas concerning noncommutative geometry in general, as well as noncommutative field theories and string field theories. We consider noncommutative quantum field theories emphasizing an issue of their renormalizability and the UV/IR mixing. Sen's conjectures on open string tachyon condensation and their application to the D-brane physics have led to wide investigations of the covariant string field theory proposed by Witten about 15 years ago. We review main ingredients of cubic (super)string field theories using various formulations: functional, operator, conformal and the half string formalisms. The main technical tools that are used to study conjectured D-brane decay into closed string vacuum through the tachyon condensation are presented. We describe also methods which are used to study the cubic open string field theory around the tachyon vacuum: construction of the sliver state, "comma" and matrix representations of vertices.
Modal analysis of a nonuniform string with end mass and variable tension
NASA Technical Reports Server (NTRS)
Rheinfurth, M. H.; Galaboff, Z. J.
1983-01-01
Modal synthesis techniques for dynamic systems containing strings describe the lateral displacements of these strings by properly chosen shape functions. An iterative algorithm is provided to calculate the natural modes of a nonuniform string and variable tension for some typical boundary conditions including one end mass. Numerical examples are given for a string in a constant and a gravity gradient force field.
Identification of market trends with string and D2-brane maps
NASA Astrophysics Data System (ADS)
Bartoš, Erik; Pinčák, Richard
2017-08-01
The multidimensional string objects are introduced as a new alternative for an application of string models for time series forecasting in trading on financial markets. The objects are represented by open string with 2-endpoints and D2-brane, which are continuous enhancement of 1-endpoint open string model. We show how new object properties can change the statistics of the predictors, which makes them the candidates for modeling a wide range of time series systems. String angular momentum is proposed as another tool to analyze the stability of currency rates except the historical volatility. To show the reliability of our approach with application of string models for time series forecasting we present the results of real demo simulations for four currency exchange pairs.
The Microwave SQUID Multiplexer
NASA Astrophysics Data System (ADS)
Mates, John Arthur Benson
2011-12-01
This thesis describes a multiplexer of Superconducting Quantum Interference Devices (SQUIDs) with low-noise, ultra-low power dissipation, and great scalability. The multiplexer circuit measures the magnetic flux in a large number of unshunted rf SQUIDs by coupling each SQUID to a superconducting microwave resonator tuned to a unique resonance frequency and driving the resonators from a common feedline. A superposition of microwave tones measures each SQUID simultaneously using only two coaxial cables between the cryogenic device and room temperature. This multiplexer will enable the instrumentation of arrays with hundreds of thousands of low-temperature detectors for new applications in cosmology, materials analysis, and nuclear non-proliferation. The driving application of the Microwave SQUID Multiplexer is the readout of large arrays of superconducting transition-edge sensors, by some figures of merit the most sensitive detectors of electromagnetic signals over a span of more than nine orders of magnitude in energy, from 40 GHz microwaves to 200 keV gamma rays. Modern transition-edge sensors have noise-equivalent power as low as 10-20 W / Hz1/2 and energy resolution as good as 2 eV at 6 keV. These per-pixel sensitivities approach theoretical limits set by the underlying signals, motivating a rapid increase in pixel count to access new science. Compelling applications, like the non-destructive assay of nuclear material for treaty verification or the search for primordial gravity waves from inflation use arrays of these detectors to increase collection area or tile a focal plane. We developed three generations of SQUID multiplexers, optimizing the first for flux noise 0.17 muPhi0 / Hz1/2, the second for input current noise 19 pA / Hz1/2, and the last for practical multiplexing of large arrays of cosmic microwave background polarimeters based on transition-edge sensors. Using the last design we demonstrated multiplexed readout of prototype polarimeters with the performance required for the future development of a large-scale astronomical instrument.
Mechanism of Tennis Racket Spin Performance
NASA Astrophysics Data System (ADS)
Kawazoe, Yoshihiko; Okimoto, Kenji; Okimoto, Keiko
Players often say that some strings provide a better grip and more spin than others, but ball spin did not depend on string type, gauge, or tension in pervious laboratory experiments. There was no research work on spin to uncover what is really happening during an actual tennis impact because of the difficulty of performing the appropriate experiments. The present paper clarified the mechanism of top spin and its improvement by lubrication of strings through the use of high-speed video analysis. It also provided a more detailed explanation of spin behavior by comparing a racket with lubricated strings with the famous “spaghetti” strung racket, which was banned in 1978 by the International Tennis Federation because it used plastic spaghetti tubing over the strings to reduce friction, resulting in excessive ball spin. As the main strings stretch and slide sideways more, the ball is given additional spin due to the restoring force parallel to the string face when the main strings spring back and the ball is released from the strings. Herein, we also showed that the additional spin results in a reduction of shock vibrations of the wrist joint during impact.
ERIC Educational Resources Information Center
Geringer, John M.; MacLeod, Rebecca B.; Ellis, Julia C.
2014-01-01
We investigated pitch perception of string vibrato tones among string players in two separate studies. In both studies we used tones of acoustic instruments (violin and cello) as stimuli. In the first, we asked 192 high school and university string players to listen to a series of tonal pairs: one tone of each pair was performed with vibrato and…
Current balancing for battery strings
Galloway, James H.
1985-01-01
A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.
Pulse Tube Interference in Cryogenic Sensor Resonant Circuits - Final Paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, Tyler
2015-08-27
Transition edge sensors (TES) are extremely sensitive superconducting sensors, operating at 100 mK, which can be used to detect X-rays and Cosmic Microwave Background. The goal of our project is to design the electronics to read out an array of 10000 of these sensors by using microwave signals. However, we noticed the pulse tube used to maintain cryogenic temperatures caused interference in our readout. To determine the cause of the signal distortions, we used a detector with a 370 MHz sampling rate to collect and analyze sensor data. Although this data provided little information towards the nature of the noise,more » it was determined through a maintenance procedure than the 0.3 mm stainless steel wires were being vibrated due to acoustic waves, which distorted the signal. Replacing this wire appeared to cease the interference from the sensor data.« less
Pulse Tube Interference in Cryogenic Sensors - Oral Presentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, Tyler
2015-08-24
Transition edge sensors (TES) are extremely sensitive superconducting sensors, operating at 100 mK, which can be used to detect X-rays and Cosmic Microwave Background. The goal of our project is to design the electronics to read out an array of 10000 of these sensors by using microwave signals. However, we noticed the pulse tube used to maintain cryogenic temperatures caused interference in our readout. To determine the cause of the signal distortions, we used a detector with a 370 MHz sampling rate to collect and analyze sensor data. Although this data provided little information towards the nature of the noise,more » it was determined through a maintenance procedure than the 0.3 mm stainless steel wires were being vibrated due to acoustic waves, which distorted the signal. Replacing this wire appeared to cease the interference from the sensor data.« less
Development of an Inductively Coupled Thermometer for a Cryogenic Half-Wave Plate
NASA Astrophysics Data System (ADS)
Madurowicz, Alexander; Kusaka, Akito
2017-01-01
The current state of Cosmic Microwave Background (CMB) research has focused much attention on the measurement of polarization. In an effort to modulate the CMB polarization while also minimizing photon noise due to thermal emission, we are developing a sapphire half-wave plate (HWP) cooled to 50 K rotating at 2 Hz on a superconducting magnetic levitating bearing. In order to measure the temperature of the rotor without making physical contact, we designed an inductively coupled cryogenic thermometer. The complex impedance of the circuit has a resonant peak when driven around 1 MHz. The width of this resonance is dependent on the value of the resistor, which varies with temperature and functions as a thermometer once calibrated. In this talk, we will present results from stationary measurements of this impedance and discuss the temperature accuracy of this thermometer, as well as a preliminary circuit design to measure this impedance during the HWP rotation.
Single photon detection of 1.5 THz radiation with the quantum capacitance detector
NASA Astrophysics Data System (ADS)
Echternach, P. M.; Pepper, B. J.; Reck, T.; Bradford, C. M.
2018-01-01
Far-infrared spectroscopy can reveal secrets of galaxy evolution and heavy-element enrichment throughout cosmic time, prompting astronomers worldwide to design cryogenic space telescopes for far-infrared spectroscopy. The most challenging aspect is a far-infrared detector that is both exquisitely sensitive (limited by the zodiacal-light noise in a narrow wavelength band, λ/Δλ 1,000) and array-able to tens of thousands of pixels. We present the quantum capacitance detector, a superconducting device adapted from quantum computing applications in which photon-produced free electrons in a superconductor tunnel into a small capacitive island embedded in a resonant circuit. The quantum capacitance detector has an optically measured noise equivalent power below 10-20 W Hz-1/2 at 1.5 THz, making it the most sensitive far-infrared detector ever demonstrated. We further demonstrate individual far-infrared photon counting, confirming the excellent sensitivity and suitability for cryogenic space astrophysics.
NASA Technical Reports Server (NTRS)
Wollack, E.; Cao, N.; Chuss, D.; Denis, K.; Hsieh, W.-T.; Moseley, S. Harvey; Schneider, G.; Stevenson, T.; Travers, D.; U-yen, K.
2008-01-01
Four probe antennas transfer signals from waveguide to microstrip lines. The probes not only provide broadband impedance matching, but also thermally isolate waveguide and detector. In addition, we developed a new photonic waveguide choke joint design, with four-fold symmetry, to suppress power leakage at the interface. We have developed facilities to test superconducting circuit elements using a cryogenic microwave probe station, and more complete systems in waveguide. We used the ring resonator shown below to measure a dielectric loss tangent < 7x10(exp -4) over 10 - 45 GHz. We have combined component simulations to predict the overall coupling from waveguide modes to bolometers. The result below shows the planar circuit and waveguide interface can utilize the high beam symmetry of HE11 circular feedhorns with > 99% coupling efficiency over 30% fractional bandwidth.
Ghost vertices for the bosonic string using the group-theoretic approach to string theory
NASA Astrophysics Data System (ADS)
Freeman, M. D.; West, P.
1988-04-01
The N-string tree-level scattering vertices for the bosonic string are extended to include anticommuting (ghost) oscillators. These vertices behave correctly under the action of the BRST charge Q and reproduce the known results for the scattering of physical states. This work is an application of the group-theoretic approach to string theory. Permanent address: Mathematics Department, King's College, Strand, London WC2R 2LS, UK.
ERIC Educational Resources Information Center
Mesa Public Schools, AZ.
Designed for music educators instructing grades 4 through 8 in string instruments, this Mesa (Arizona) public schools guide presents information on the string curriculum, orchestras, and practicing. The goals and objectives for string instruments delineate grade levels and how student skills will be verified. Following 17 curriculum goal tests,…
Embellished String Prints. Cover Story.
ERIC Educational Resources Information Center
Smith, Mary Ruth
1999-01-01
Focuses on a printmaking activity in which students create embellished string prints using the relief process of string glued to chip board. Explains that string prints can easily be embellished with oil pastels. Provides a description of the procedure and a list of materials and methods. (CMK)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marolf, Donald; Palmer, Belkis Cabrera; Physics Department, Syracuse University, Syracuse, New York 13244
A thermodynamic argument is presented suggesting that near-extremal spinning D1-D5-P black strings become unstable when their angular momentum exceeds J{sub crit}=3Q{sub 1}Q{sub 5}/2{radical}(2). In contrast, the dimensionally reduced black holes are thermodynamically stable. The proposed instability involves a phase in which the spin angular momentum above J{sub crit} is transferred to gyration of the string in space, i.e., to orbital angular momentum of parts of the string about the mean location in space. Thus the string becomes a rotating helical coil. We note that an instability of this form would yield a counter-example to the Gubser-Mitra conjecture, which proposes amore » particular link between dynamic black string instabilities and the thermodynamics of black strings. There may also be other instabilities associated with radiation modes of various fields. Our arguments also apply to the D-brane bound states associated with these black strings in weakly coupled string theory.« less
Semiclassical (qft) and Quantum (string) Rotating Black Holes and Their Evaporation:. New Results
NASA Astrophysics Data System (ADS)
Bouchareb, A.; Ramón Medrano, M.; Sánchez, N. G.
Combination of both quantum field theory (QFT) and string theory in curved backgrounds in a consistent framework, the string analogue model, allows us to provide a full picture of the Kerr-Newman black hole and its evaporation going beyond the current picture. We compute the quantum emission cross-section of strings by a Kerr-Newman black hole (KNbh). It shows the black hole emission at the Hawking temperature Tsem in the early stage of evaporation and the new string emission featuring a Hagedorn transition into a string state of temperature Ts at the last stages. New bounds on J and Q emerge in the quantum string regime (besides the known ones of the classical/semiclassical QFT regime). The last state of evaporation of a semiclassical Kerr-Newman black hole with mass M > mPl, angular momentum J and charge Q is a string state of temperature Ts, string mass Ms, J = 0 and Q = 0, decaying as usual quantum strings do into all kinds of particles. (Naturally, in this framework, there is no loss of information, (there is no paradox at all).) We compute the string entropy Ss(m, j) from the microscopic string density of states of mass m and spin mode j, ρ(m, j). (Besides the Hagedorn transition at Ts) we find for high j (extremal string states j → m2α‧c), a new phase transition at a temperature Tsj = √ {j/hbar }Ts, higher than Ts. By precisely identifying the semiclassical and quantum (string) gravity regimes, we find a new formula for the Kerr black hole entropy Ssem(M, J), as a function of the usual Bekenstein-Hawking entropy S sem(0). For M ≫ mPl and J < GM2/c, S sem(0) is the leading term, but for high angular momentum, (nearly extremal case J = GM2/c), a gravitational phase transition operates and the whole entropy Ssem is drastically different from the Bekenstein-Hawking entropy S sem(0). This new extremal black hole transition occurs at a temperature Tsem J = (J/ℏ)Tsem, higher than the Hawking temperature Tsem.
Applicability of ASST-A helium refrigeration system for JLab End Station Refrigerator
NASA Astrophysics Data System (ADS)
Hasan, N.; Knudsen, P.; Ganni, V.
2017-12-01
The MØLLER experiment at Jefferson Lab (JLab) is a high power (5 kW) liquid hydrogen target scheduled to be operational in the 12 GeV-era. At present, cryogenic loads and targets at three of JLab’s four experimental halls are supported by the End Station Refrigerator (ESR) - a CTI/Helix 1.5 kW 4.5 K refrigerator. It is not capable of supporting the high power target load and a capacity upgrade of the ESR cryogenic system is essential. The ASST-A helium refrigeration system is a 4 kW 4.5 K refrigerator. It was designed and used for the Superconducting Super Collider Lab (SSCL) magnet string test and later obtained by JLab after the cancellation of that project. The modified ASST-A refrigeration system, which will be called ESR-II along with a support flow from JLab’s Central Helium Liquefier (CHL) is considered as an option for the End Station Refrigerator capacity upgrade. The applicability of this system for ESR-II under varying load conditions is investigated. The present paper outlines the findings of this process study.
Hardware-efficient fermionic simulation with a cavity-QED system
NASA Astrophysics Data System (ADS)
Zhu, Guanyu; Subaşı, Yiǧit; Whitfield, James D.; Hafezi, Mohammad
2018-03-01
In digital quantum simulation of fermionic models with qubits, non-local maps for encoding are often encountered. Such maps require linear or logarithmic overhead in circuit depth which could render the simulation useless, for a given decoherence time. Here we show how one can use a cavity-QED system to perform digital quantum simulation of fermionic models. In particular, we show that highly nonlocal Jordan-Wigner or Bravyi-Kitaev transformations can be efficiently implemented through a hardware approach. The key idea is using ancilla cavity modes, which are dispersively coupled to a qubit string, to collectively manipulate and measure qubit states. Our scheme reduces the circuit depth in each Trotter step of the Jordan-Wigner encoding by a factor of N2, comparing to the scheme for a device with only local connectivity, where N is the number of orbitals for a generic two-body Hamiltonian. Additional analysis for the Fermi-Hubbard model on an N × N square lattice results in a similar reduction. We also discuss a detailed implementation of our scheme with superconducting qubits and cavities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-06-02
Experimental research covered includes involvement in SLAC and Fermilab accelerator experiments and construction of the ''Muon String'' of the DUMAND project. Activities also included planning of future experiments at the SLC and Tevatron. Experiments addressed the search for the free quark, gluon radiation, reduced upper limits for the mass of neutrinos. The theoretical program includes exact calculation of flavor changing processes within the standard model, constraints on the weak coupling of heavy quarks, neutrino oscillation, the role of DEMONS in superconductivity, extended electroweak models, gauge models, the origin of electron/muon asymmetry in the beam dump, SU(5) and departures in unification.more » QCD and vector dominance predictions were reconciled in the electromagnetic decays of neutral pions and eta mesons, and it was proposed that the electron plus jet events seen by UAl along with their W events are to interpreted as the production and decay of top. The possibility of observable particle-antiparticle rate differences in hyperon decays as a test of CP-invariance was proposed. (LEW)« less
Light Z' in heterotic string standardlike models
NASA Astrophysics Data System (ADS)
Athanasopoulos, P.; Faraggi, A. E.; Mehta, V. M.
2014-05-01
The discovery of the Higgs boson at the LHC supports the hypothesis that the Standard Model provides an effective parametrization of all subatomic experimental data up to the Planck scale. String theory, which provides a viable perturbative approach to quantum gravity, requires for its consistency the existence of additional gauge symmetries beyond the Standard Model. The construction of heterotic string models with a viable light Z' is, however, highly constrained. We outline the construction of standardlike heterotic string models that allow for an additional Abelian gauge symmetry that may remain unbroken down to low scales. We present a string inspired model, consistent with the string constraints.
Gödel universes in string theory
NASA Astrophysics Data System (ADS)
Barrow, John D.; Dabrowski, Mariusz P.
1998-11-01
We show that homogeneous Gödel spacetimes need not contain closed timelike curves in low-energy-effective string theories. We find exact solutions for the Gödel metric in string theory for the full O(α') action including both dilaton and axion fields. The results are valid for bosonic, heterotic and super-strings. To first order in the inverse string tension α', these solutions display a simple relation between the angular velocity of the Gödel universe, Ω, and the inverse string tension of the form α'=1/Ω2 in the absence of the axion field. The generalization of this relationship is also found when the axion field is present.
A note on closed-string interactions a la witten
NASA Astrophysics Data System (ADS)
Romans, L. J.
1987-08-01
We consider the problem of formulating a field theory of interacting closed strings analogous to Witten's open-string field theory. Two natural candidates have been suggested for an off-shell three-string interaction vertex: one scheme involves a cyclic geometric overlap in spacetime, while the other is obtained by ``stuttering'' the Fock-space realization of the open-string vertex. We demonstrate that these two approaches are in fact equivalent, utilizing the operator formalism as developed to describe Witten's theory. Implications of this result for the construction of closed-string theories are briefly discussed. Address after August 1, 1987: Department of Physics, University of Southern California, Los Angeles, CA 90089, USA.
Reconstruction of piano hammer force from string velocity.
Chaigne, Antoine
2016-11-01
A method is presented for reconstructing piano hammer forces through appropriate filtering of the measured string velocity. The filter design is based on the analysis of the pulses generated by the hammer blow and propagating along the string. In the five lowest octaves, the hammer force is reconstructed by considering two waves only: the incoming wave from the hammer and its first reflection at the front end. For the higher notes, four- or eight-wave schemes must be considered. The theory is validated on simulated string velocities by comparing imposed and reconstructed forces. The simulations are based on a nonlinear damped stiff string model previously developed by Chabassier, Chaigne, and Joly [J. Acoust. Soc. Am. 134(1), 648-665 (2013)]. The influence of absorption, dispersion, and amplitude of the string waves on the quality of the reconstruction is discussed. Finally, the method is applied to real piano strings. The measured string velocity is compared to the simulated velocity excited by the reconstructed force, showing a high degree of accuracy. A number of simulations are compared to simulated strings excited by a force derived from measurements of mass and acceleration of the hammer head. One application to an historic piano is also presented.
Improving Upon String Methods for Transition State Discovery.
Chaffey-Millar, Hugh; Nikodem, Astrid; Matveev, Alexei V; Krüger, Sven; Rösch, Notker
2012-02-14
Transition state discovery via application of string methods has been researched on two fronts. The first front involves development of a new string method, named the Searching String method, while the second one aims at estimating transition states from a discretized reaction path. The Searching String method has been benchmarked against a number of previously existing string methods and the Nudged Elastic Band method. The developed methods have led to a reduction in the number of gradient calls required to optimize a transition state, as compared to existing methods. The Searching String method reported here places new beads on a reaction pathway at the midpoint between existing beads, such that the resolution of the path discretization in the region containing the transition state grows exponentially with the number of beads. This approach leads to favorable convergence behavior and generates more accurate estimates of transition states from which convergence to the final transition states occurs more readily. Several techniques for generating improved estimates of transition states from a converged string or nudged elastic band have been developed and benchmarked on 13 chemical test cases. Optimization approaches for string methods, and pitfalls therein, are discussed.
Social Impacts Module (SIM) Transition
2012-09-28
User String The authorized user’s name to access the PAVE database. Applies only to Microsoft SQL Server; leave blank, otherwise. passwd String The...otherwise. passwd String The password if an authorized user’s name is required; otherwise, leave blank driver String The class name for the driver to
Novel string field theory with also negative energy constituents/objects gives Veneziano amplitude
NASA Astrophysics Data System (ADS)
Nielsen, H. B.; Ninomiya, M.
2018-02-01
We have proposed a new type of string field theory. The main point of the present article is to cure some technical troubles: missing two out three terms in Veneziano amplitude. Our novel string field theory, describes a theory with many strings in terms of "objects", which are not exactly, but close to Charles Thorn's string bits. The new point is that the objects in terms of which the universe states are constructed, and which have an essentially 26-momentum variable called J μ , can have the energy J 0 be also negative as well as positive. We get a long way in deriving in this model the Veneziano model and obtain all the three terms needed for a four point amplitude. This result strongly indicates that our novel string field theory is indeed string theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleury, Leesa M.; Moore, Guy D.
2016-05-03
If the axion exists and if the initial axion field value is uncorrelated at causally disconnected points, then it should be possible to predict the efficiency of cosmological axion production, relating the axionic dark matter density to the axion mass. The main obstacle to making this prediction is correctly treating the axion string cores. We develop a new algorithm for treating the axionic string cores correctly in 2+1 dimensions. When the axionic string cores are given their full physical string tension, axion production is about twice as efficient as in previous simulations. We argue that the string network in 2+1more » dimensions should behave very differently than in 3+1 dimensions, so this result cannot be simply carried over to the physical case. We outline how to extend our method to 3+1D axion string dynamics.« less
A numerical study of the string function using a primitive equation ocean model
NASA Astrophysics Data System (ADS)
Tyler, R. H.; Käse, R.
We use results from a primitive-equation ocean numerical model (SCRUM) to test a theoretical 'string function' formulation put forward by Tyler and Käse in another article in this issue. The string function acts as a stream function for the large-scale potential energy flow under the combined beta and topographic effects. The model results verify that large-scale anomalies propagate along the string function contours with a speed correctly given by the cross-string gradient. For anomalies having a scale similar to the Rossby radius, material rates of change in the layer mass following the string velocity are balanced by material rates of change in relative vorticity following the flow velocity. It is shown that large-amplitude anomalies can be generated when wind stress is resonant with the string function configuration.
Factorization of chiral string amplitudes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye
We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to bemore » auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.« less
Factorization of chiral string amplitudes
Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye
2016-09-16
We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to bemore » auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.« less
Physical and geometrical aspects of de sitter interior of a gravastar
NASA Astrophysics Data System (ADS)
Morawiec, Pawel Jan
The principal motivation for the investigations reported in this thesis is the gravastar model for physical black holes. According to this model the final state of the gravitational collapse of cold super-dense stars with the mass greater than some critical value is a non-singular object called a gravastar. This thesis presents results related to the various aspects of the de Sitter interior of a gravastar. The main object of the research was a generalized rotating interior of a gravastar. It was shown that the rotation, characterized by the vorticity, is localized on the vortex line. The metric under considerations is the de Sitter metric, however in some variant of the oblate spheroidal coordinates. Additionally a cosmic string on the rotation axis is present. This new result is the de Sitter version of the Mazur string, which was obtained from the four dimensional Levi-Civita metric as the generalization of the three-dimensional cosmic string by Adler and Jackiw. Also, using analogy between rotation in the superfluid and the magnetic field we gave another example of the Cosmic No Hair Theorem, this time "no magnetic fields in de Sitter space". But we also have shown that when the de Sitter event horizon is replaced by a thin shell (with a finite thickness), as it is in the gravastar model, the non-vanishing magnetic field could be present. To our knowledge these are new results. In this thesis we have studied behavior of the massless Dirac field as an example of a matter field in the de Sitter spacetime in the vicinity of an event horizon. We found convenient to work in the frame of the optical geometry of the de Sitter space as it is related to the metric in the static coordinates through a conformal Weyl rescaling and the dynamics of the massless Dirac fields is conformally invariant. The fact that the spatial part of the metric in the optical geometry of de Sitter space is the constant negative curvature Lobachevski space (the Euclidean ant-de Sitter space) suggested the existenc of the emerging de Sitter quantum field theory and conformal field theory correspondence on the de Sitter event horizon. We have studied implications of this conjecture. According to the AdS/CFT correspondence prescription the functional integral over the matter fields described by the action with the properly chosen boundary terms defining the so called partition function as the functional of the boundary values of the matter fields is also the generating functional for the correlation functions in the conformal field theory on the boundary of AdS space. In the case of the optical geometry of the de Sitter space the boundary is the event horizon that is the boundary of its Lobachevski spatial part times time. We have chosen the action for the massless Dirac fields in the optical de Sitter geometry with appropriate surface term and subsequently we have evaluated the real time partition function as the functional of the carefully defined boundary values of the Dirac field. It turns out that this partition functional can be, indeed, interpreted as the generating functional of the real time conformal field theory correlation functions of the fermionic operators, dual to the fermionic fields on the boundary. This means that the conformal field theory correlation functions are evaluated as the vacuum expectation values of the chronologically ordered fermionic operator. This result demonstrates the emergence of the de Sitter/Conformal field theory correspondence on the de Sitter horizon. The presence of the negative curvature Lobachevski geometry in the spatial part of the optical geometry of the de Sitter space, is responsible for the effective one-dimensional behavior of the matter degrees of freedom and of the emergence of the de Sitter/Conformal field theory correspondence on the event horizon. Although we have demonstrated the existence of this correspondence for the fermionic fields only, we anticipate this result to be valid generally.
Pauses enhance chunk recognition in song element strings by zebra finches.
Spierings, Michelle; de Weger, Anouk; Ten Cate, Carel
2015-07-01
When learning a language, it is crucial to know which syllables of a continuous sound string belong together as words. Human infants achieve this by attending to pauses between words or to the co-occurrence of syllables. It is not only humans that can segment a continuous string. Songbirds learning their song tend to copy 'chunks' from one or more tutors' songs and combine these into their own song. In the tutor songs, these chunks are often separated by pauses and a high co-occurrence of elements, suggesting that these features affect chunking and song learning. We examined experimentally whether the presence of pauses and element co-occurrence affect the ability of adult zebra finches to discriminate strings of song elements. Using a go/no-go design, two groups of birds were trained to discriminate between two strings. In one group (Pause-group), pauses were inserted between co-occurring element triplets in the strings, and in the other group (No-pause group), both strings were continuous. After making a correct discrimination, an individual proceeded to a reversal training using string segments. Segments were element triplets consistent in co-occurrence, triplets that were partly consistent in composition and triplets consisting of elements that did not co-occur in the strings. The Pause-group was faster in discriminating between the two strings. This group also responded differently to consistent triplets in the reversal training, compared to inconsistent triplets. The No-pause group did not differentiate among the triplet types. These results indicate that pauses in strings of song elements aid song discrimination and memorization of co-occurring element groups.
From the currency rate quotations onto strings and brane world scenarios
NASA Astrophysics Data System (ADS)
Horváth, D.; Pincak, R.
2012-11-01
In the paper, we study the projections of the real exchange rate dynamics onto the string-like topology. Our approach is inspired by the contemporary movements in the string theory. The string map of data is defined here by the boundary conditions, characteristic length, real valued and the method of redistribution of information. As a practical matter, this map represents the detrending and data standardization procedure. We introduced maps onto 1-end-point and 2-end-point open strings that satisfy the Dirichlet and Neumann boundary conditions. The questions of the choice of extra-dimensions, symmetries, duality and ways to the partial compactification are discussed. Subsequently, we pass to higher dimensional and more complex objects. The 2D-Brane was suggested which incorporated bid-ask spreads. Polarization by the spread was considered which admitted analyzing arbitrage opportunities on the market where transaction costs are taken into account. The model of the rotating string which naturally yields calculation of angular momentum is suitable for tracking of several currency pairs. The systematic way which allows one suggest more structured maps suitable for a simultaneous study of several currency pairs was analyzed by means of the Gâteaux generalized differential calculus. The effect of the string and brane maps on test data was studied by comparing their mean statistical characteristics. The study revealed notable differences between topologies. We review the dependence on the characteristic string length, mean fluctuations and properties of the intra-string statistics. The study explores the coupling of the string amplitude and volatility. The possible utilizations of the string theory approach in financial markets are slight.
NASA Astrophysics Data System (ADS)
Ladner, D. R.; Martinez-Galarce, D. S.; McCammon, D.
2006-04-01
An X-ray detection instrument to be flown on a sounding rocket experiment (the Advanced Technology Solar Spectroscopic Imager - ATSSI) for solar physics observations is being developed by the Lockheed Martin Solar and Astrophysics Laboratory (LMSAL). The detector is a novel class of microcalorimeter, a superconducting Transition-Edge Sensor (TES), that coupled with associated SQUID and feedback electronics requires high temperature stability at ~70 mK to resolve the energy of absorbed X-ray photons emitted from the solar corona. The cooling system incorporates an existing Adiabatic Demagnetization Refrigerator (ADR) developed at the University of Wisconsin (UW), which was previously flown to study the diffuse cosmic X-ray background. The Si thermistor detectors for that project required 130 K shielded JFET electronic components that are much less sensitive to the external field of the ADR solenoid than are the 1st (~70 mK) and 2nd (~2 K) SQUID stages used with TESs for solar observations. Modification of the Wisconsin ADR design, including TES focal plane and electronics re-positioning, therefore requires a tradeoff between the existing ADR solenoid nulling coil geometry and a low mass passive solenoid shield, while preserving the vibration isolation features of the existing design. We have developed models to accurately compute the magnetic field with and without shielding or nulling coils at critical locations to guide the re-design of the detector subsystem. The models and their application are described.
Haptic Distal Spatial Perception Mediated by Strings: Haptic "Looming"
ERIC Educational Resources Information Center
Cabe, Patrick A.
2011-01-01
Five experiments tested a haptic analog of optical looming, demonstrating string-mediated haptic distal spatial perception. Horizontally collinear hooks supported a weighted string held taut by a blindfolded participant's finger midway between the hooks. At the finger, the angle between string segments increased as the finger approached…
NASA Astrophysics Data System (ADS)
Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza
1999-04-01
Global symmetries of the string effective action are employed to generate tilted, homogeneous Bianchi type VIh string cosmologies from a previously known stiff perfect fluid solution to Einstein gravity. The dilaton field is not constant on the surfaces of homogeneity. The future asymptotic state of the models is interpreted as a plane wave and is itself an exact solution to the string equations of motion to all orders in the inverse string tension. An inhomogeneous generalization of the Bianchi type III model is also found.
Propagating stress-pulses and wiggling transition revealed in string dynamics
NASA Astrophysics Data System (ADS)
Yao, Zhenwei
2018-02-01
Understanding string dynamics yields insights into the intricate dynamic behaviors of various filamentary thin structures in nature and industry covering multiple length scales. In this work, we investigate the planar dynamics of a flexible string where one end is free and the other end is subject to transverse and longitudinal motions. Under transverse harmonic motion, we reveal the propagating pulse structure in the stress profile over the string, and analyze its role in bringing the system into a chaotic state. For a string where one end is under longitudinal uniform acceleration, we identify the wiggling transition, derive the analytical wiggling solution from the string equations, and present the phase diagram.
Noncommutative-geometry model for closed bosonic strings
NASA Technical Reports Server (NTRS)
Sen, Siddhartha; Holman, R.
1987-01-01
It is shown how Witten's (1986) noncommutative geometry may be extended to describe the closed bosonic string. For closed strings, an explicit representation is provided of the integral operator needed to construct an action and of an associative product on string fields. The proper choice of the action of the integral operator and the associative product in order to give rise to a reasonable theory is explained, and the consequences of such a choice are discussed. It is shown that the ghost numbers of the operator and associative product can be chosen arbitrarily for both open and closed strings, and that this construct can be used as an action for interacting closed bosonic strings.