Science.gov

Sample records for superconducting energy gaps

  1. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212

    SciTech Connect

    Hussain, Zahid; Lee, W.S.; Vishik, I.M.; Tanaka, K.; Lu, D.H.; Sasagawa, T.; Nagaosa, N.; Devereaux, T.P.; Hussain, Z.; Shen, Z.-X.

    2007-05-26

    he superconducting gap--an energy scale tied to the superconducting phenomena--opens on the Fermi surface at the superconducting transition temperature (Tc) in conventional BCS superconductors. In underdoped high-Tc superconducting copper oxides, a pseudogap (whose relation to the superconducting gap remains a mystery) develops well above Tc (refs 1, 2). Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above Tc is one of the central questions in high-Tc research3, 4, 5, 6, 7, 8. Although some experimental evidence suggests that the two gaps are distinct9, 10, 11, 12, 13, 14, 15, 16, 17, 18, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2Sr2CaCu2O8+delta in the momentum space region overlooked in previous measurements. Near the diagonal of Cu?O bond direction (nodal direction), we found a gap that opens at Tc and has a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasi-particles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu?O bond direction (antinodal region) measured in earlier experiments19, 20, 21.

  2. Quantization of the superconducting energy gap in an intense microwave field

    NASA Astrophysics Data System (ADS)

    Boris, A. A.; Krasnov, V. M.

    2015-11-01

    We study experimentally photon-assisted tunneling in Nb /AlOx/Nb Josephson junctions. We perform a quantitative calibration of the microwave field inside the junction. This allows direct verification of the quantum efficiency of microwave photon detection, which corresponds to tunneling of one electron per one absorbed microwave photon. We observe that voltages of photon-assisted tunneling steps vary both with the microwave power and the tunneling current. However, this variation is not monotonous but staircaselike. The phenomenon is caused by mutual locking of positive and negative step series. A similar locking is observed with Shapiro steps. As a result, the superconducting gap assumes quantized values equal to multiples of the quarter of the photon energy. The quantization is a manifestation of nonequilibrium tuning (suppression or enhancement) of superconductivity by the microwave field.

  3. Direct Local Measurement of the Superconducting Energy Gap of Nb doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Ha, Jeonghoon; Khalsa, Guru; Natterer, Fabian; Baek, Hongwoo; Cullen, William G.; Kuk, Young; Stroscio, Joseph A.

    Strontium titanate (STO) is a perovskite metal oxide insulator that can be electron doped by substitution of Ti or Sr sites with Nb or La, respectively, or by oxygen vacancies. When doped to high electron densities with concentration in the range of 5x1019 cm- 3 to 2x1020 cm-3, STO becomes superconducting with a transition temperature below 400 mK, at a value highly dependent on the doping concentration. Previous observations were made on bulk crystals or films of doped STO by measuring the transitions in resistivity, magnetic susceptibility or thermal conductivity as a function of temperature or magnetic field. In this work, we use an ultra-low temperature scanning tunneling microscope(STM) to investigate the local electronic structure of the surface of Nb doped STO. The tunneling spectra taken at a sample temperature of ~10 mK reveal a BCS energy gap of Δ = 40 ueV. Temperature and magnetic field dependent tunneling measurements show a critical temperature of ~250 mK and upper critical field of ~0.07 T. This is the first report of direct measurement of superconducting STO using an STM.

  4. Doping and temperature dependence of the superconducting energy gap in the electron-doped cuprate Pr2-xCexCuO4-δ

    NASA Astrophysics Data System (ADS)

    Diamant, I.; Greene, R. L.; Dagan, Y.

    2010-12-01

    In hole-doped cuprate superconductors at low carrier concentrations two energy scales are identified: the superconducting energy gap and the pseudogap. The relation between these energy scales is still a puzzle. In these compounds a measurement of the energy gap is not necessarily a probe of the order parameter. In the electron-doped cuprates the pseudogap does not obscure the superconducting state. Consequently, the superconducting gap can be studied directly in a tunneling experiment. Here we show that by studying superconductor/insulator/superconductor planar tunnel junctions we are able to map the behavior of the gap amplitude for the entire (doping-temperature) phase diagram of the electron-doped cuprate superconductor Pr2-xCexCuO4-δ. The superconducting gap, Δ, shows a BCS-like temperature dependence even for extremely low carrier concentrations. Moreover, Δ follows the doping dependence of Tc. We can therefore conclude that there is a single superconducting energy scale in the electron-doped cuprates.

  5. Large energy gaps in CaC{sub 6} from tunneling spectroscopy : possible evidence of strong-coupling superconductivity.

    SciTech Connect

    Kurter, C.; Ozyuzer, L.; Mazur, D.; Zasadzinski, J. F.; Rosenmann, D.; Claus, H.; Hinks, D. G.; Gray, K. E.; Materials Science Division; Illinois Inst. of Tech.; Izmir Inst. of Tech.

    2007-12-01

    Tunneling in CaC{sub 6} crystals reproducibly reveals superconducting gaps {Delta} of 2.3 {+-} 0.2 meV that are {approx}40% larger than reported earlier. In an isotropic s-wave scenario, that puts CaC{sub 6} into the class of very strongly coupled superconductors, since 2{Delta}/kT{sub c}-4.6, implying that soft Ca phonons are primarily involved in the superconductivity. This conclusion explains the relatively large Ca isotope effect found recently for CaC{sub 6}, but it could also signal a strong anisotropy in the electron-phonon interaction.

  6. Superconducting Gap Anisotropy in Monolayer FeSe Thin Film.

    PubMed

    Zhang, Y; Lee, J J; Moore, R G; Li, W; Yi, M; Hashimoto, M; Lu, D H; Devereaux, T P; Lee, D-H; Shen, Z-X

    2016-09-01

    Superconductivity originates from pairing of electrons near the Fermi energy. The Fermi surface topology and pairing symmetry are thus two pivotal characteristics of a superconductor. Superconductivity in one monolayer (1 ML) FeSe thin film has attracted great interest recently due to its intriguing interfacial properties and possibly high superconducting transition temperature over 65 K. Here, we report high-resolution measurements of the Fermi surface and superconducting gaps in 1 ML FeSe using angle-resolved photoemission spectroscopy. Two ellipselike electron pockets are clearly resolved overlapping with each other at the Brillouin zone corner. The superconducting gap is nodeless but moderately anisotropic, which puts strong constraint on determining the pairing symmetry. The gap maxima locate on the d_{xy} bands along the major axis of the ellipse and four gap minima are observed at the intersections of electron pockets. The gap maximum location combined with the Fermi surface geometry deviate from a single d-wave, extended s-wave or s_{±} gap function, suggesting an important role of the multiorbital nature of Fermi surface and orbital-dependent pairing in 1 ML FeSe. The gap minima location may be explained by a sign change on the electron pockets, or a competition between intra- and interorbital pairing. PMID:27661715

  7. Superconducting Gap Anisotropy in Monolayer FeSe Thin Film

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Lee, J. J.; Moore, R. G.; Li, W.; Yi, M.; Hashimoto, M.; Lu, D. H.; Devereaux, T. P.; Lee, D.-H.; Shen, Z.-X.

    2016-09-01

    Superconductivity originates from pairing of electrons near the Fermi energy. The Fermi surface topology and pairing symmetry are thus two pivotal characteristics of a superconductor. Superconductivity in one monolayer (1 ML) FeSe thin film has attracted great interest recently due to its intriguing interfacial properties and possibly high superconducting transition temperature over 65 K. Here, we report high-resolution measurements of the Fermi surface and superconducting gaps in 1 ML FeSe using angle-resolved photoemission spectroscopy. Two ellipselike electron pockets are clearly resolved overlapping with each other at the Brillouin zone corner. The superconducting gap is nodeless but moderately anisotropic, which puts strong constraint on determining the pairing symmetry. The gap maxima locate on the dx y bands along the major axis of the ellipse and four gap minima are observed at the intersections of electron pockets. The gap maximum location combined with the Fermi surface geometry deviate from a single d -wave, extended s -wave or s± gap function, suggesting an important role of the multiorbital nature of Fermi surface and orbital-dependent pairing in 1 ML FeSe. The gap minima location may be explained by a sign change on the electron pockets, or a competition between intra- and interorbital pairing.

  8. Enhancement of superconducting transition temperature by pointlike disorder and anisotropic energy gap in FeSe single crystals

    NASA Astrophysics Data System (ADS)

    Teknowijoyo, S.; Cho, K.; Tanatar, M. A.; Gonzales, J.; Böhmer, A. E.; Cavani, O.; Mishra, V.; Hirschfeld, P. J.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.

    2016-08-01

    A highly anisotropic superconducting gap is found in single crystals of FeSe by studying the London penetration depth Δ λ measured down to 50 mK in samples before and after 2.5 MeV electron irradiation. The gap minimum increases with introduced pointlike disorder, indicating the absence of symmetry-imposed nodes. Surprisingly, the superconducting transition temperature Tc increases by 0.4 K from Tc 0≈8.8 K while the structural transition temperature Ts decreases by 0.9 K from Ts 0≈91.2 K after electron irradiation. We discuss several explanations for the Tc enhancement and propose that local strengthening of the pair interaction by irradiation-induced Frenkel defects most likely explains the phenomenon.

  9. Optical determination of the superconducting energy gap in electron-doped Pr1.85Ce0.15CuO4

    NASA Astrophysics Data System (ADS)

    Homes, C. C.; Lobo, R. P. S. M.; Fournier, P.; Zimmers, A.; Greene, R. L.

    2006-12-01

    The optical properties of single crystal Pr1.85Ce0.15CuO4 have been measured over a wide frequency range above and below the critical temperature (Tc≃20K) . In the normal state the coherent part of the conductivity is described by the Drude model, from which the scattering rate just above Tc is determined to be 1/τ≃80cm-1 . The condition that ℏ/τ≈2kBT near Tc appears to be a general result in many of the cuprate superconductors. Below Tc the formation of a superconducting energy gap is clearly visible in the reflectance, from which the gap maximum is estimated to be Δ0≃35cm-1 (4.3meV) . The ability to observe the superconducting energy gap in the optical properties favors the nonmonotonic over the monotonic description of the d -wave gap. The penetration depth for T≪Tc is λ≃2000Å , which when taken with the estimated value for the dc conductivity just above Tc of σdc≃35×103Ω-1cm-1 places this material on the general scaling line for the cuprates defined by 1/λ2∝σdc(T≃Tc)•Tc . These results are consistent with the observation that 1/τ≈2Δ0 , which implies that the material is not in the clean limit.

  10. Single-gap superconductivity in β -B i2Pd

    NASA Astrophysics Data System (ADS)

    Kačmarčík, J.; Pribulová, Z.; Samuely, T.; Szabó, P.; Cambel, V.; Šoltýs, J.; Herrera, E.; Suderow, H.; Correa-Orellana, A.; Prabhakaran, D.; Samuely, P.

    2016-04-01

    The β -B i2Pd compound has been proposed as another example of a multigap superconductor [Imai et al., J. Phys. Soc. Jpn. 81, 113708 (2012), 10.1143/JPSJ.81.113708]. Here, we report on measurements of several important physical quantities capable of showing a presence of multiple energy gaps on our superconducting single crystals of β -B i2Pd with the critical temperature Tc close to 5 K. The calorimetric study via a sensitive ac technique shows a sharp anomaly at the superconducting transition, however only a single energy gap is detected. Also other characteristics inferred from calorimetric measurements as the field dependence of the Sommerfeld coefficient and the temperature and angular dependence of the upper critical magnetic field point unequivocally to standard single s -wave gap superconductivity. The Hall-probe magnetometry provides the same result from the analysis of the temperature dependence of the lower critical field. A single-gapped BCS density of states is detected by the scanning tunneling spectroscopy measurements. Then, the bulk as well as the surface sensitive probes evidence a standard conventional superconductivity in this system where the topologically protected surface states have been recently detected by angle-resolved photoemission spectroscopy [Sakano et al., Nat. Commun. 6, 8595 (2015)., 10.1038/ncomms9595].

  11. Development of Tunneling Spectroscopy Apparatus for Kelvin and Sub-Kelvin Measurements of Superconducting Energy Gaps by Multi-disciplinary students at a Liberal Arts University

    NASA Astrophysics Data System (ADS)

    Eckhardt, Matt

    2014-03-01

    Tunneling spectroscopy is an important technique used to measure the superconducting energy gap, a feature that is at the heart of the nature of superconductivity in various materials. In this presentation, we report the progress and results in developing high-resolution tunneling spectroscopy experimental platforms in a helium three cryostat, a 3 Kelvin cryocooler and a helium dip-tester. The experimental team working in a liberal arts university is a multi-disciplinary group consisting of one physics major, chemisty majors and a biology major. Students including non-physics majors learned and implemented current-voltage measurement techniques, vacuum system engineering, built electronic boxes and amplifier circuits from scratch, built custom multi-conductor cables for thermometry and current-voltage measurements, and performed conductance measurements. We report preliminary results. Acknowledgments: We acknowledge support from National Science Foundation Grant # DMR-1206561.

  12. Superconducting energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  13. Theoretical approach to resonant inelastic x-ray scattering in iron-based superconductors at the energy scale of the superconducting gap

    PubMed Central

    Marra, Pasquale; van den Brink, Jeroen; Sykora, Steffen

    2016-01-01

    We develop a phenomenological theory to predict the characteristic features of the momentum-dependent scattering amplitude in resonant inelastic x-ray scattering (RIXS) at the energy scale of the superconducting gap in iron-based super-conductors. Taking into account all relevant orbital states as well as their specific content along the Fermi surface we evaluate the charge and spin dynamical structure factors for the compounds LaOFeAs and LiFeAs, based on tight-binding models which are fully consistent with recent angle-resolved photoemission spectroscopy (ARPES) data. We find a characteristic intensity redistribution between charge and spin dynamical structure factors which discriminates between sign-reversing and sign-preserving quasiparticle excitations. Consequently, our results show that RIXS spectra can distinguish between s± and s++ wave gap functions in the singlet pairing case. In addition, we find that an analogous intensity redistribution at small momenta can reveal the presence of a chiral p-wave triplet pairing. PMID:27151253

  14. Theoretical approach to resonant inelastic x-ray scattering in iron-based superconductors at the energy scale of the superconducting gap

    NASA Astrophysics Data System (ADS)

    Marra, Pasquale; van den Brink, Jeroen; Sykora, Steffen

    2016-05-01

    We develop a phenomenological theory to predict the characteristic features of the momentum-dependent scattering amplitude in resonant inelastic x-ray scattering (RIXS) at the energy scale of the superconducting gap in iron-based super-conductors. Taking into account all relevant orbital states as well as their specific content along the Fermi surface we evaluate the charge and spin dynamical structure factors for the compounds LaOFeAs and LiFeAs, based on tight-binding models which are fully consistent with recent angle-resolved photoemission spectroscopy (ARPES) data. We find a characteristic intensity redistribution between charge and spin dynamical structure factors which discriminates between sign-reversing and sign-preserving quasiparticle excitations. Consequently, our results show that RIXS spectra can distinguish between s± and s++ wave gap functions in the singlet pairing case. In addition, we find that an analogous intensity redistribution at small momenta can reveal the presence of a chiral p-wave triplet pairing.

  15. The origin of multiple superconducting gaps in MgB2.

    PubMed

    Souma, S; Machida, Y; Sato, T; Takahashi, T; Matsui, H; Wang, S-C; Ding, H; Kaminski, A; Campuzano, J C; Sasaki, S; Kadowaki, K

    2003-05-01

    Magnesium diboride, MgB2, has the highest transition temperature (T(c) = 39 K) of the known metallic superconductors. Whether the anomalously high T(c) can be described within the conventional BCS (Bardeen-Cooper-Schrieffer) framework has been debated. The key to understanding superconductivity lies with the 'superconducting energy gap' associated with the formation of the superconducting pairs. Recently, the existence of two kinds of superconducting gaps in MgB2 has been suggested by several experiments; this is in contrast to both conventional and high-T(c) superconductors. A clear demonstration of two gaps has not yet been made because the previous experiments lacked the ability to resolve the momentum of the superconducting electrons. Here we report direct experimental evidence for the two-band superconductivity in MgB2, by separately observing the superconducting gaps of the sigma and pi bands (as well as a surface band). The gaps have distinctly different sizes, which unambiguously establishes MgB2 as a two-gap superconductor.

  16. Induced spectral gap and pairing correlations from superconducting proximity effect

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Kai; Cole, William S.; Das Sarma, S.

    2016-09-01

    We theoretically consider superconducting proximity effect, using the Bogoliubov-de Gennes (BdG) theory, in heterostructure sandwich-type geometries involving a normal s -wave superconductor and a nonsuperconducting material with the proximity effect being driven by Cooper pairs tunneling from the superconducting slab to the nonsuperconducting slab. Applications of the superconducting proximity effect may rely on an induced spectral gap or induced pairing correlations without any spectral gap. We clarify that in a nonsuperconducting material the induced spectral gap and pairing correlations are independent physical quantities arising from the proximity effect. This is a crucial issue in proposals to create topological superconductivity through the proximity effect. Heterostructures of three-dimensional topological insulator (TI) slabs on conventional s -wave superconductor (SC) substrates provide a platform, with proximity-induced topological superconductivity expected to be observed on the "naked" top surface of a thin TI slab. We theoretically study the induced superconducting gap on this naked surface. In addition, we compare against the induced spectral gap in heterostructures of SC with a normal metal or a semiconductor with strong spin-orbit coupling and a Zeeman splitting potential (another promising platform for topological superconductivity). We find that for any model for the non-SC metal (including metallic TI) the induced spectral gap on the naked surface decays as L-3 as the thickness (L ) of the non-SC slab is increased in contrast to the slower 1 /L decay of the pairing correlations. Our distinction between proximity-induced spectral gap (with its faster spatial decay) and pairing correlation (with its slower spatial decay) has important implications for the currently active search for topological superconductivity and Majorana fermions in various superconducting heterostructures.

  17. Evidence for two superconducting gaps in MgB2.

    PubMed

    Chen, X K; Konstantinovic, M J; Irwin, J C; Lawrie, D D; Franck, J P

    2001-10-01

    We have measured the Raman spectra of polycrystalline MgB2 from 25 to 1200 cm(-1). A superconductivity-induced redistribution in the electronic Raman continuum was observed. Two pair-breaking peaks appear in the spectra, suggesting the presence of two superconducting gaps. The measured spectra were analyzed using a quasi-two-dimensional model in which two s-wave superconducting gaps open on two sheets of Fermi surface. For the gap values we have obtained Delta(1) = 22 cm(-1) ( 2.7 meV) and Delta(2) = 50 cm(-1) ( 6.2 meV). Our results suggest that a conventional phonon-mediated pairing mechanism occurs in the planar boron sigma bands and is responsible for the superconductivity of MgB2.

  18. Evidence for fully-gapped superconductivity in heavy-fermion CeCu2Si2

    NASA Astrophysics Data System (ADS)

    Kasahara, Y.; Terazawa, D.; Yamashita, T.; Onishi, T.; Tokiwa, Y.; Terashima, T.; Matsuda, Y.; Takenaka, T.; Mizukami, Y.; Shibauchi, T.; Wilcox, J.; Putzke, C.; Carrington, A.; Kittaka, S.; Sakakibara, T.; Jeevan, H. S.; Seiro, S.; Geibel, C.; Haga, Y.

    The discovery of superconductivity in heavy-fermion CeCu2Si2 in 1979 has opened a new playground for unconventional superconductivity in strongly-correlated systems. However, even in this archetypal heavy-fermion superconductor, the symmetry and the structure of the superconducting gap, which are intimately related to the paring mechanism, are still elusive. Here, to investigate the low-energy quasiparticle excitations in the superconducting state of CeCu2Si2(Tc = 0 . 6 K), we performed specific heat, thermal conductivity, and penetration depth measurements down to 60 mK. We found that specific heat and penetration depth exhibit exponential T-dependence at low T. Moreover, thermal conductivity has no residual T-linear term and shows little H-dependence. These behavior are in marked contrast to nodal superconductors. From the data taken with different experimental configurations, the detailed superconducting gap structure will be discussed.

  19. Energy gap evolution across the superconductivity dome in single crystals of (Ba1−xKx)Fe2As2

    PubMed Central

    Cho, Kyuil; Kończykowski, Marcin; Teknowijoyo, Serafim; Tanatar, Makariy A.; Liu, Yong; Lograsso, Thomas A.; Straszheim, Warren E.; Mishra, Vivek; Maiti, Saurabh; Hirschfeld, Peter J.; Prozorov, Ruslan

    2016-01-01

    The mechanism of unconventional superconductivity in iron-based superconductors (IBSs) is one of the most intriguing questions in current materials research. Among non-oxide IBSs, (Ba1−xKx)Fe2As2 has been intensively studied because of its high superconducting transition temperature and fascinating evolution of the superconducting gap structure from being fully isotropic at optimal doping (x ≈ 0.4) to becoming nodal at x > 0.8. Although this marked evolution was identified in several independent experiments, there are no details of the gap evolution to date because of the lack of high-quality single crystals covering the entire K-doping range of the superconducting dome. We conducted a systematic study of the London penetration depth, λ(T), across the full phase diagram for different concentrations of point-like defects introduced by 2.5-MeV electron irradiation. Fitting the low-temperature variation with the power law, Δλ ~ Tn, we find that the exponent n is the highest and the Tc suppression rate with disorder is the smallest at optimal doping, and they evolve with doping being away from optimal, which is consistent with increasing gap anisotropy, including an abrupt change around x ≃ 0.8, indicating the onset of nodal behavior. Our analysis using a self-consistent t-matrix approach suggests the ubiquitous and robust nature of s± pairing in IBSs and argues against a previously suggested transition to a d-wave state near x = 1 in this system. PMID:27704046

  20. Predominantly Superconducting Origin of Large Energy Gaps in Underdoped Bi{sub 2} Sr{sub 2} CaCu{sub 2 }O{sub 8+ {delta}} from Tunneling Spectroscopy

    SciTech Connect

    Miyakawa, N.; Zasadzinski, J.F.; Ozyuzer, L.; Guptasarma, P.; Hinks, D.G.; Gray, K.E.; Miyakawa, N.; Zasadzinski, J.F.; Ozyuzer, L.; Kendziora, C.

    1999-08-01

    New tunneling data are reported in Bi{sub 2}Sr {sub 2}CaCu{sub 2}O{sub 8+{delta}} which show quasiparticle excitation gaps, {Delta}, reaching values as high as 60thinspthinspmeV for underdoped crystals with T{sub c}=70 K . These energy gaps are nearly 3thinspthinsptimes larger than those of overdoped crystals with similar T{sub c} . Despite the large differences in gap magnitude, the tunneling spectra display qualitatively similar characteristics over the entire doping range. Detailed examination of the spectra, including the Josephson I{sub c}R{sub n} product measured in break junctions, indicates that these energy gaps are predominantly of superconducting origin. {copyright} {ital 1999} {ital The American Physical Society}

  1. Optical investigations of the superconducting energy gap in b00-(BEDT-TTF)2SF5CH2CF2SO3

    SciTech Connect

    Kaiser, S.; Yasin, S.; Drichko, N.; Dressel, M.; Room, T.; Huvonen, D.; Nagel, U.; Gard, G. L.; Schlueter, J. A.

    2012-01-01

    The organic salt {beta}''-(BEDT-TTF){sub 2}SF{sub 5}CH{sub 2}CF{sub 2}SO{sub 3} is a two-dimensional metal with a quarter-filled conduction band. In the metallic state the optical conductivity evidences interaction of the charge carriers with charge-order fluctuations that become stronger as temperature decreases. In the superconducting phase below T{sub c} {approx} 5K, indications of the superconducting gap with 2{Delta} {approx} 12 cm{sup -1} are observed in the optical spectrum, corresponding to 2{Delta}/k{sub B}T{sub c} {approx} 3.3. Its temperature and magnetic field dependences are also consistent with predictions by the BCS theory of a weakly coupled superconductor. The conductivity ratio {sigma}{sub 1}(T = 1.75 K)/{sigma}{sub 1}(10 K) indicates the opening of the superconducting gap in {beta}''-(BEDT-TTF){sub 2}SF{sub 5}CH{sub 2}CF{sub 2}SO{sub 3}.

  2. Momentum dependence of the superconducting gap and in-gap states in MgB2 multiband superconductor

    DOE PAGES

    Mou, Daixiang; Jiang, Rui; Taufour, Valentin; Bud'ko, S. L.; Canfield, P. C.; Kaminski, Adam

    2015-06-29

    We use tunable laser-based angle-resolved photoemission spectroscopy to study the electronic structure of the multiband superconductor MgB2. These results form the baseline for detailed studies of superconductivity in multiband systems. We find that the magnitude of the superconducting gap on both σ bands follows a BCS-like variation with temperature with Δ0 ~ 7meV. Furthermore, the value of the gap is isotropic within experimental uncertainty and in agreement with a pure s-wave pairing symmetry. We observe in-gap states confined to kF of the σ band that occur at some locations of the sample surface. As a result, the energy of thismore » excitation, ~ 3 meV, was found to be somewhat larger than the previously reported gap on π Fermi sheet and therefore we cannot exclude the possibility of interband scattering as its origin.« less

  3. Far-infrared optical conductivity gap in superconducting MgB2 films.

    PubMed

    Kaindl, Robert A; Carnahan, Marc A; Orenstein, Joseph; Chemla, Daniel S; Christen, Hans M; Zhai, Hong-Ying; Paranthaman, Mariappan; Lowndes, Doug H

    2002-01-14

    We report the first study of the optical conductivity of MgB2 covering the range of its lowest-energy superconducting gap. Terahertz time-domain spectroscopy is utilized to determine the complex, frequency-dependent conductivity sigma(omega) of thin films. The imaginary part reveals an inductive response due to the emergence of the superconducting condensate. The real part exhibits a strong depletion of oscillator strength near 5 meV resulting from the opening of a superconducting energy gap. The gap ratio of 2Delta0/k(B)TC approximately 1.9 is well below the weak-coupling value, pointing to complex behavior in this novel superconductor.

  4. Noise and Bandwidth Measurements of Diffusion-Cooled Nb Hot-Electron Bolometer Mixers at Frequencies Above the Superconductive Energy Gap

    NASA Technical Reports Server (NTRS)

    Wyss, R. A.; Karasik, B. S.; McGrath, W. R.; Bumble, B.; LeDuc, H.

    1999-01-01

    Diffusion-cooled Nb hot-electron bolometer (HEB) mixers have the potential to simultaneously achieve high intermediate frequency (IF) bandwidths and low mixer noise temperatures for operation at THz frequencies (above the superconductive gap energy). We have measured the IF signal bandwidth at 630 GHz of Nb devices with lengths L = 0.3, 0.2, and 0.1 micrometer in a quasioptical mixer configuration employing twin-slot antennas. The 3-dB EF bandwidth increased from 1.2 GHz for the 0.3 gm long device to 9.2 GHz for the 0.1 gm long device. These results demonstrate the expected 1/L squared dependence of the IF bandwidth at submillimeter wave frequencies for the first time, as well as the largest EF bandwidth obtained to date. For the 0.1 gm device, which had the largest bandwidth, the double sideband (DSB) noise temperature of the receiver was 320-470 K at 630 GHz with an absorbed LO power of 35 nW, estimated using the isothermal method. A version of this mixer with the antenna length scaled for operation at 2.5 THz has also been tested. A DSB receiver noise temperature of 1800 plus or minus 100 K was achieved, which is about 1,000 K lower than our previously reported results. These results demonstrate that large EF bandwidth and low-noise operation of a diffusion-cooled HEB mixer is possible at THz frequencies with the same device geometry.

  5. Superconducting energy storage

    SciTech Connect

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  6. Dome – like variation of the superconducting gap anisotropy in Fe-based superconductors

    SciTech Connect

    Prozorov, R.; Cho, K.; Kim, H.; Tanatar, M. A.

    2013-07-17

    Experiments performed on different iron-based superconductors suggest a variety of possible structures of the superconducting energy gap, both nodeless and nodal. To understand the pairing mechanisms, it is important to identify common features in the behavior of different materials. Measurements of the temperature - dependent London penetration depth provide important information on the structure of the superconducting gap. We show that despite significant differences between different iron - based superconductors, there is a universal trend: the gap is least anisotropic at the optimal doping and its anisotropy increases upon the departure towards underdoped and overdoped ends of the ''superconducting dome''. As a result, this trend is not related to the presence of the long-range magnetic order in the underdoped state.

  7. Dome – like variation of the superconducting gap anisotropy in Fe-based superconductors

    DOE PAGES

    Prozorov, R.; Cho, K.; Kim, H.; Tanatar, M. A.

    2013-07-17

    Experiments performed on different iron-based superconductors suggest a variety of possible structures of the superconducting energy gap, both nodeless and nodal. To understand the pairing mechanisms, it is important to identify common features in the behavior of different materials. Measurements of the temperature - dependent London penetration depth provide important information on the structure of the superconducting gap. We show that despite significant differences between different iron - based superconductors, there is a universal trend: the gap is least anisotropic at the optimal doping and its anisotropy increases upon the departure towards underdoped and overdoped ends of the ''superconducting dome''.more » As a result, this trend is not related to the presence of the long-range magnetic order in the underdoped state.« less

  8. Nodal to nodeless superconducting energy-gap structure change concomitant with Fermi-surface reconstruction in the heavy-fermion compound CeCoIn5

    DOE PAGES

    Kim, Hyunsoo; Tanatar, M. A.; Flint, R.; Petrovic, C.; Hu, Rongwei; White, B. D.; Lum, I. K.; Maple, M. B.; Prozorov, R.

    2015-01-15

    The London penetration depth λ(T) was measured in single crystals of Ce1–xRxCoIn₅, R=La, Nd, and Yb down to Tmin ≈ 50 mK (Tc/Tmin ~50) using a tunnel-diode resonator. In the cleanest samples Δλ(T) is best described by the power law, Δλ(T) ∝ Tn, with n ~ 1, consistent with line nodes. Substitutions of Ce with La, Nd, and Yb lead to similar monotonic suppressions of Tc, however, the effects on Δλ(T) differ. While La and Nd dopings lead to increase of the exponent n and saturation at n ~ 2, as expected for a dirty nodal superconductor, Yb doping leadsmore » to n > 3, suggesting a change from nodal to nodeless superconductivity. As a result, this superconducting gap structure change happens in the same doping range where changes of the Fermi surface topology were reported, implying that the nodal structure and Fermi surface topology are closely linked.« less

  9. Superconducting energy storage magnet

    NASA Technical Reports Server (NTRS)

    Boom, Roger W. (Inventor); Eyssa, Yehia M. (Inventor); Abdelsalam, Mostafa K. (Inventor); Huang, Xianrui (Inventor)

    1993-01-01

    A superconducting magnet is formed having composite conductors arrayed in coils having turns which lie on a surface defining substantially a frustum of a cone. The conical angle with respect to the central axis is preferably selected such that the magnetic pressure on the coil at the widest portion of the cone is substantially zero. The magnet structure is adapted for use as an energy storage magnet mounted in an earthen trench or tunnel where the strength the surrounding soil is lower at the top of the trench or tunnel than at the bottom. The composite conductor may be formed having a ripple shape to minimize stresses during charge up and discharge and has a shape for each ripple selected such that the conductor undergoes a minimum amount of bending during the charge and discharge cycle. By minimizing bending, the working of the normal conductor in the composite conductor is minimized, thereby reducing the increase in resistance of the normal conductor that occurs over time as the conductor undergoes bending during numerous charge and discharge cycles.

  10. Energy-gap spectroscopy of superconductors using a tunneling microscope

    NASA Technical Reports Server (NTRS)

    Le Duc, H. G.; Kaiser, W. J.; Stern, J. A.

    1987-01-01

    A unique scanning tunneling microscope (STM) system has been developed for spectroscopy of the superconducting energy gap. High-resolution control of tunnel current and voltage allows for measurement of superconducting properties at tunnel resistance levels 100-1000 greater than that achieved in prior work. The previously used STM methods for superconductor spectroscopy are compared to those developed for the work reported here. Superconducting energy-gap spectra are reported for three superconductors, Pb, PbBi, and NbN, over a range of tunnel resistance. The measured spectra are compared directly to theory.

  11. A universal relationship between magnetic resonance and superconducting gap in unconventional superconductors

    NASA Astrophysics Data System (ADS)

    Yu, G.; Li, Y.; Motoyama, E. M.; Greven, M.

    2009-12-01

    Superconductivity involves the formation of electron pairs (Cooper pairs) and their condensation into a macroscopic quantum state. In conventional superconductors, such as Nb3Ge and elemental Hg, weakly interacting electrons pair through the electron-phonon interaction. In contrast, unconventional superconductivity occurs in correlated-electron materials in which electronic interactions are significant and the pairing mechanism may not be phononic. In the cuprates, the superconductivity arises on doping charge carriers into the copper-oxygen layers of antiferromagnetic Mott insulators. Other examples of unconventional superconductors are the heavy-fermion compounds, which are metals with coupled conduction and localized f-shell electrons, and the recently discovered iron-arsenide superconductors. These unconventional superconductors show a magnetic resonance, a prominent collective spin-1 excitation mode in the superconducting state. Here we demonstrate the existence of a universal linear relation, Er~2Δ, between the magnetic resonance energy (Er) and the superconducting pairing gap (Δ), which spans two orders of magnitude in energy. This relationship is valid for the three different classes of unconventional superconductors, which range from being close to the Mott-insulating limit to being on the border of itinerant magnetism. As the common excitonic picture of the resonance has not led to such universality, our observation suggests a much deeper connection between antiferromagnetic fluctuations and unconventional superconductivity.

  12. Superconducting transistor

    DOEpatents

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  13. Disorder-induced topological change of the superconducting gap structure in iron pnictides.

    PubMed

    Mizukami, Y; Konczykowski, M; Kawamoto, Y; Kurata, S; Kasahara, S; Hashimoto, K; Mishra, V; Kreisel, A; Wang, Y; Hirschfeld, P J; Matsuda, Y; Shibauchi, T

    2014-11-28

    In superconductors with unconventional pairing mechanisms, the energy gap in the excitation spectrum often has nodes, which allow quasiparticle excitations at low energies. In many cases, such as in d-wave cuprate superconductors, the position and topology of nodes are imposed by the symmetry, and thus the presence of gapless excitations is protected against disorder. Here we report on the observation of distinct changes in the gap structure of iron-pnictide superconductors with increasing impurity scattering. By the successive introduction of nonmagnetic point defects into BaFe2(As(1-x)P(x))(2) crystals via electron irradiation, we find from the low-temperature penetration depth measurements that the nodal state changes to a nodeless state with fully gapped excitations. Moreover, under further irradiation the gapped state evolves into another gapless state, providing bulk evidence of unconventional sign-changing s-wave superconductivity. This demonstrates that the topology of the superconducting gap can be controlled by disorder, which is a strikingly unique feature of iron pnictides.

  14. Hard proximity induced superconducting gap in semiconductor - superconductor epitaxial hybrids

    NASA Astrophysics Data System (ADS)

    Jespersen, Thomas; Krogstrup, Peter; Ziino, Nino; Albrecht, Sven; Chang, Willy; Madsen, Morten; Johnson, Erik; Kuemmeth, Ferdinand; Nygård, Jesper; Marcus, Charles

    2015-03-01

    We present molecular beam epitaxy grown InAs semiconductor nanowires capped with a shell of aluminum (superconductor). The hybrid wires are grown without breaking vacuum, resulting in an epitaxial interface between the two materials as demonstrated by detailed transmission electron microscopy and simulations. The domain matching at the interface is discussed. Incorporating the epitaxial nanowire hybrids in electrical devices we performed detailed tunneling spectroscopy of the proximity induced superconducting gap in the InAs core at 20 mK. We find the sub-gap conductance being at least a factor 200 smaller than the normal state value (gap hardness). This is a significant improvement compared to devices fabricated by conventional lithographic methods and metal evaporation showing no more than a factor of ~ 5 . The epitaxial hybrids seem to solve the soft gap problem associated with the use of nanowire hybrids for future applications in topological quantum information based on Majorana zero modes. Research supported by Microsoft Station Q, Danish National Research Foundation, Villum Foundation, Lundbeck Foundation, and the European Commission.

  15. Two-Fermi-Surface Superconducting State and a Nodal d-Wave Energy Gap of the Electron-Doped Sm1.85Ce0.15CuO4-δ Cuprate Superconductor

    NASA Astrophysics Data System (ADS)

    Santander-Syro, A. F.; Ikeda, M.; Yoshida, T.; Fujimori, A.; Ishizaka, K.; Okawa, M.; Shin, S.; Greene, R. L.; Bontemps, N.

    2011-05-01

    We report on laser-excited angle-resolved photoemission spectroscopy in the electron-doped cuprate Sm1.85Ce0.15CuO4-δ. The data show the existence of a nodal hole-pocket Fermi surface both in the normal and superconducting states. We prove that its origin is long-range antiferromagnetism by an analysis of the coherence factors in the main and folded bands. This coexistence of long-range antiferrmagnetism and superconductivity implies that electron-doped cuprates are two-Fermi-surface superconductors. The measured superconducting gap in the nodal hole pocket is compatible with a d-wave symmetry.

  16. Fully gapped superconductivity in the topological superconductor β -PdBi2

    NASA Astrophysics Data System (ADS)

    Biswas, P. K.; Mazzone, D. G.; Sibille, R.; Pomjakushina, E.; Conder, K.; Luetkens, H.; Baines, C.; Gavilano, J. L.; Kenzelmann, M.; Amato, A.; Morenzoni, E.

    2016-06-01

    The recent discovery of the topologically protected surface states in the β phase of PdBi2 has reignited the research interest in this class of superconductors. Here, we show results of our muon spin relaxation and rotation (μ SR ) measurements carried out to investigate the superconducting and magnetic properties and the topological effect in the superconducting ground state of β -PdBi2 . Zero-field μ SR data reveal that no sizable spontaneous magnetization arises with the onset of superconductivity implying that the time reversal symmetry is preserved in the superconducting state of β -PdBi2 . Further, a strong diamagnetic shift of the applied field has been observed in the transverse-field (TF) μ SR experiments, indicating that any triplet-pairing channel, if present, does not dominate the superconducting condensate. Using TF-μ SR , we estimate that the magnetic penetration depth λ =263 (10 ) nm at zero temperature. The nature of λ (T ) provides evidence for the existence of a nodeless single s -wave type isotropic energy gap of 0.78(1) meV at zero temperature. Our results further suggest that the topologically protected surface states have no effect on the bulk of the superconductor.

  17. Design Tool for Liquid-Nitrogen Gaps in Superconducting Apparatus

    SciTech Connect

    Pace, Marshall O; Sauers, Isidor; James, David Randy; Tuncer, Enis; Polyzos, Georgios

    2011-01-01

    For designers of high temperature superconducting equipment with liquid nitrogen as a dielectric, an expedient universal curve is sought that provides breakdown strength for a specified class of electrode shapes, with any practical sizes of electrodes and gap; thus the universal curve fills in missing experimental data. Universal breakdown strength curves at pressures of or slightly above 100 kPa, are being developed for AC, DC or impulse stress for the class with sphere-sphere, plane-plane and sphere-plane gaps, with three independent parameters: the size of each electrode and gap. A user can normalize his parameters and find the corresponding breakdown strength, even though no data were available for his exact dimensions. For AC and DC stresses the geometrical effects of stressed area/volume are incorporated from most published AC and DC experimental data of the last 50 years, by plotting breakdown field versus new geometrical quantities, such that all data fall approximately on or near one normalized universal curve. This avoids the usual difficult task of calculating stressed area and volume effects on the breakdown values for the graph ordinate. For impulse stress a more traditional plot suffices to produce a universal curve. This suggests that area/volume effects might not be so important with impulse stress. If the method proves reliable, it may be possible to determine design parameters for a broad range of geometries, help unify seemingly disparate breakdown data in the literature, and provide easily used, practical guidance for designers.

  18. Two-Gap Superconductivity in LaNiGa_{2} with Nonunitary Triplet Pairing and Even Parity Gap Symmetry.

    PubMed

    Weng, Z F; Zhang, J L; Smidman, M; Shang, T; Quintanilla, J; Annett, J F; Nicklas, M; Pang, G M; Jiao, L; Jiang, W B; Chen, Y; Steglich, F; Yuan, H Q

    2016-07-01

    The nature of the pairing states of superconducting LaNiC_{2} and LaNiGa_{2} has to date remained a puzzling question. Broken time reversal symmetry has been observed in both compounds and a group theoretical analysis implies a nonunitary triplet pairing state. However, all the allowed nonunitary triplet states have nodal gap functions but most thermodynamic and NMR measurements indicate fully gapped superconductivity in LaNiC_{2}. Here we probe the gap symmetry of LaNiGa_{2} by measuring the London penetration depth, specific heat, and upper critical field. These measurements demonstrate two-gap nodeless superconductivity in LaNiGa_{2}, suggesting that this is a common feature of both compounds. These results allow us to propose a novel triplet superconducting state, where the pairing occurs between electrons of the same spin, but on different orbitals. In this case the superconducting wave function has a triplet spin component but isotropic even parity gap symmetry, yet the overall wave function remains antisymmetric under particle exchange. This model leads to a nodeless two-gap superconducting state which breaks time reversal symmetry, and therefore accounts well for the seemingly contradictory experimental results.

  19. Two-Gap Superconductivity in LaNiGa2 with Nonunitary Triplet Pairing and Even Parity Gap Symmetry

    NASA Astrophysics Data System (ADS)

    Weng, Z. F.; Zhang, J. L.; Smidman, M.; Shang, T.; Quintanilla, J.; Annett, J. F.; Nicklas, M.; Pang, G. M.; Jiao, L.; Jiang, W. B.; Chen, Y.; Steglich, F.; Yuan, H. Q.

    2016-07-01

    The nature of the pairing states of superconducting LaNiC2 and LaNiGa2 has to date remained a puzzling question. Broken time reversal symmetry has been observed in both compounds and a group theoretical analysis implies a nonunitary triplet pairing state. However, all the allowed nonunitary triplet states have nodal gap functions but most thermodynamic and NMR measurements indicate fully gapped superconductivity in LaNiC2 . Here we probe the gap symmetry of LaNiGa2 by measuring the London penetration depth, specific heat, and upper critical field. These measurements demonstrate two-gap nodeless superconductivity in LaNiGa2 , suggesting that this is a common feature of both compounds. These results allow us to propose a novel triplet superconducting state, where the pairing occurs between electrons of the same spin, but on different orbitals. In this case the superconducting wave function has a triplet spin component but isotropic even parity gap symmetry, yet the overall wave function remains antisymmetric under particle exchange. This model leads to a nodeless two-gap superconducting state which breaks time reversal symmetry, and therefore accounts well for the seemingly contradictory experimental results.

  20. Two-Gap Superconductivity in LaNiGa_{2} with Nonunitary Triplet Pairing and Even Parity Gap Symmetry.

    PubMed

    Weng, Z F; Zhang, J L; Smidman, M; Shang, T; Quintanilla, J; Annett, J F; Nicklas, M; Pang, G M; Jiao, L; Jiang, W B; Chen, Y; Steglich, F; Yuan, H Q

    2016-07-01

    The nature of the pairing states of superconducting LaNiC_{2} and LaNiGa_{2} has to date remained a puzzling question. Broken time reversal symmetry has been observed in both compounds and a group theoretical analysis implies a nonunitary triplet pairing state. However, all the allowed nonunitary triplet states have nodal gap functions but most thermodynamic and NMR measurements indicate fully gapped superconductivity in LaNiC_{2}. Here we probe the gap symmetry of LaNiGa_{2} by measuring the London penetration depth, specific heat, and upper critical field. These measurements demonstrate two-gap nodeless superconductivity in LaNiGa_{2}, suggesting that this is a common feature of both compounds. These results allow us to propose a novel triplet superconducting state, where the pairing occurs between electrons of the same spin, but on different orbitals. In this case the superconducting wave function has a triplet spin component but isotropic even parity gap symmetry, yet the overall wave function remains antisymmetric under particle exchange. This model leads to a nodeless two-gap superconducting state which breaks time reversal symmetry, and therefore accounts well for the seemingly contradictory experimental results. PMID:27447519

  1. Ultrafast quenching of electron-boson interaction and superconducting gap in a cuprate superconductor.

    PubMed

    Zhang, Wentao; Hwang, Choongyu; Smallwood, Christopher L; Miller, Tristan L; Affeldt, Gregory; Kurashima, Koshi; Jozwiak, Chris; Eisaki, Hiroshi; Adachi, Tadashi; Koike, Yoji; Lee, Dung-Hai; Lanzara, Alessandra

    2014-01-01

    Ultrafast spectroscopy is an emerging technique with great promise in the study of quantum materials, as it makes it possible to track similarities and correlations that are not evident near equilibrium. Thus far, however, the way in which these processes modify the electron self-energy--a fundamental quantity describing many-body interactions in a material--has been little discussed. Here we use time- and angle-resolved photoemission to directly measure the ultrafast response of self-energy to near-infrared photoexcitation in high-temperature cuprate superconductor. Below the critical temperature of the superconductor, ultrafast excitations trigger a synchronous decrease of electron self-energy and superconducting gap, culminating in a saturation in the weakening of electron-boson coupling when the superconducting gap is fully quenched. In contrast, electron-boson coupling is unresponsive to ultrafast excitations above the critical temperature of the superconductor and in the metallic state of a related material. These findings open a new pathway for studying transient self-energy and correlation effects in solids.

  2. Andreev spectroscopy of FeSe: Evidence for two-gap superconductivity

    SciTech Connect

    Ponomarev, Ya. G.; Kuzmichev, S. A.; Mikheev, M. G.; Sudakova, M. V.; Tchesnokov, S. N.; Shanygina, T. E.; Volkova, O. S.; Vasiliev, A. N.; Wolf, Th.

    2011-09-15

    Current-voltage characteristics (CVCs) of Andreev superconductor-constriction-superconductor (ScS) contacts in polycrystalline samples of FeSe with the critical temperature T{sub C} = (12 {+-} 1) K have been measured using the break-junction technique. In Sharvin-type nanocontacts, two sets of subharmonic gap structures were detected due to multiple Andreev reflections, indicating the existence of two nodeless superconducting gaps {Delta}{sub L} = (2.75 {+-} 0.3) meV and {Delta}{sub S} = (0.8 {+-} 0.2) meV. Well-shaped CVCs for stacks of Andreev contacts with up to five contacts were observed due to the layered structure of FeSe (the intrinsic multiple Andreev reflections effect). An additional fine structure in the CVCs of Andreev ScS nanocontacts is attributed to the existence of a Leggett mode. A linear relation between the superconducting gap {Delta}{sub L} and the magnetic resonance energy E{sub magres} Almost-Equal-To 2{Delta}{sub L} is found to be valid for layered iron pnictides.

  3. Review of new energy. Superconductivity

    NASA Astrophysics Data System (ADS)

    1989-03-01

    An summary is given of the research and development on high temperature superconductivity. It begins with a description of superconducting state and enumerates chemical elements, in particular oxides, associated with high temperature superconductivity. A brief account is next given on the progress of research and development on the present subject. Some of well known topics associated with superconductivity are described shortly, namely Meissner effect, quenching (transition to normal conducting state from superconducting one), Perovskite structure, positive hole earrier, Josephson effect, SQUID (superconducting quantum interference device) and so on. Various devices or technology are enumerated, to which superconductivity, in particular high temperature one, is proposed to apply, namely electromagnet, MRI (magnetic resonance imaging), particle accelerator, linear motor car, electric power storage and so on. The summary is finished with a future outlook.

  4. Downsized superconducting magnetic energy storage systems

    NASA Astrophysics Data System (ADS)

    Palmer, David N.

    Scaled-down superconductive magnetic energy storage systems (DSMES) and superconductive magnetic energy power sources (SMEPS) are proposed for residential, commercial/retail, industrial off-peak and critical services, telephone and other communication systems, computer operations, power back-up/energy storages, power sources for space stations, and in-field military logistics/communication systems. Recent advances in high-Tc superconducting materials technology are analyzed. DSMES/SMEPS concepts are presented, and design, materials, and systems requirements are discussed. Problems ar identified, and possible solutions are offered. Comparisons are made with mechanical and primary and secondary energy storage and conversion systems.

  5. Passive energy dump for superconducting coil protection

    DOEpatents

    Luton, J.N. Jr.

    1973-01-16

    The patent describes a passive resistance type energy dump for the protection of the coils of a superconducting magnet. Insertion heaters are immersed in a rigid container filled with a fusible alloy. The energy dump is connected across the coils of the superconducting magnet wherein individual heater elements are connected singly to the windings or otherwise according to the energy dumping requirements upon transition of the magnet to a normal state.

  6. Observation of the crossover from two-gap to single-gap superconductivity through specific heat measurements in neutron-irradiated MgB2.

    PubMed

    Putti, M; Affronte, M; Ferdeghini, C; Manfrinetti, P; Tarantini, C; Lehmann, E

    2006-02-24

    We report specific heat measurements on neutron-irradiated MgB2 samples, for which the critical temperature is lowered to 8.7 K, but the superconducting transition remains extremely sharp, indicative of a defect structure extremely homogeneous. Our results evidence the presence of two superconducting gaps in the temperature range above 21 K, while single-gap superconductivity is well established as a bulk property, not associated with local disorder fluctuations, when Tc decreases to 11 K.

  7. High temperature superconducting magnetic energy storage for future NASA missions

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Rudnick, Stanley J.

    1988-01-01

    Several NASA sponsored studies based on 'conventional' liquid helium temperature level superconductivity technology have concluded that superconducting magnetic energy storage has considerable potential for space applications. The advent of high temperature superconductivity (HTSC) may provide additional benefits over conventional superconductivity technology, making magnetic energy storage even more attractive. The proposed NASA space station is a possible candidate for the application of HTSC energy storage. Alternative energy storage technologies for this and other low Earth orbit missions are compared.

  8. Studying temperature dependence of pairing gap parameter in a nucleus as a small superconducting system

    NASA Astrophysics Data System (ADS)

    Rahmatinejad, A.; Razavi, R.; Kakavand, T.

    2016-07-01

    In this paper, we have taken the effect of small size of nucleus and static fluctuations into account in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity calculations of 45Ti nucleus. Thermodynamic quantities of 45Ti have been extracted within the BCS model with the inclusion of the average value of the pairing gap square, extracted by the modified Ginzburg-Landau (MGL) method for small systems. Calculated values of the excitation energy and entropy within the MGL+BCS method improve the extracted results within the usual BCS model and show a smooth behavior around the critical temperature with a very good agreement with the semi-empirical values. The result of using MGL+BCS method for the heat capacity of 45Ti is compared with the corresponding semi-empirical values and the calculated values within the BCS, static path approximation (SPA) and Modified Pairing gap BCS (MPBCS) which is a method that was proposed in our previous publications. Both MGL+BCS and MPBCS avoid the discontinuity of the heat capacity curve, which is observed in the usual BCS method, and lead to an S-shaped curve with a good agreement with the semi-empirical results.

  9. Superconducting Magnetic Energy Storage and Applications

    NASA Astrophysics Data System (ADS)

    Rao, V. Vasudeva

    2008-10-01

    This paper gives an Introduction to Superconducting Magnetic Energy Storage (SMES) systems and their applications along with an overview of their present status. Further a brief description to a Micro SMES/UPS system of 0.5 MJ capacity that was developed/tested at IIT, Kharagpur is also included.

  10. Fully gapped superconductivity in In-doped topological crystalline insulator Pb0.5Sn0.5Te

    DOE PAGES

    Du, Guan; Gu, G. D.; Du, Zengyi; Fang, Delong; Yang, Huan; Zhong, R. D.; Schneeloch, J.; Wen, Hai -Hu

    2015-07-27

    In this study, superconductors derived from topological insulators and topological crystalline insulators by chemical doping have long been considered to be candidates as topological superconductors. Pb0.5Sn0.5Te is a topological crystalline insulator with mirror symmetry protected surface states on (001)-, (011)-, and (111)-oriented surfaces. The superconductor (Pb0.5Sn0.5)0.7In0.3Te is produced by In doping in Pb0.5Sn0.5Te, and is thought to be a topological superconductor. Here we report scanning tunneling spectroscopy measurements of the superconducting state as well as the superconducting energy gap in (Pb0.5Sn0.5)0.7In0.3Te on a (001)-oriented surface. The spectrum can be well fitted by an anisotropic s-wave gap function of Δ =more » 0.72 + 0.18cos4θ meV using Dynes model. The results show that the superconductor seems to be a fully gapped one without any in-gap states, in contradiction with the expectation of a topological superconductor.« less

  11. Observation of multiple superconducting gaps in Fe1+yTe1-xSex via a nanoscale approach to point-contact spectroscopy

    NASA Astrophysics Data System (ADS)

    Peng, Haibing; De, Debtanu; Wu, Zheng; Diaz-Pinto, Carlos

    2012-11-01

    We report a novel experimental approach to point-contact Andreev reflection spectroscopy with diagnostic capability via a unique design for nanoscale normal metal/superconductor devices with excellent thermomechanical stability, and have employed this method to unveil the existence of two superconducting energy gaps in iron chalcogenide Fe1+yTe1-xSex, which is crucial for understanding its pairing mechanism. This work opens up new opportunities to study gap structures in superconductors and elemental excitations in solids.

  12. ARPES measurements of the superconducting gap of Fe-based superconductors and their implications to the pairing mechanism.

    PubMed

    Richard, P; Qian, T; Ding, H

    2015-07-29

    Its direct momentum sensitivity confers to angle-resolved photoemission spectroscopy (ARPES) a unique perspective in investigating the superconducting gap of multi-band systems. In this review we discuss ARPES studies on the superconducting gap of high-temperature Fe-based superconductors. We show that while Fermi-surface-driven pairing mechanisms fail to provide a universal scheme for the Fe-based superconductors, theoretical approaches based on short-range interactions lead to a more robust and universal description of superconductivity in these materials. Our findings are also discussed in the broader context of unconventional superconductivity. PMID:26153847

  13. Non-Fermi liquid behavior and non-universal superconducting gap structure in Fe-pnictides

    NASA Astrophysics Data System (ADS)

    Matsuda, Yuji

    2010-03-01

    The discovery of Fe-pnictide superconductors with Tc exceeding 55 K raises fundamental questions about origin of high-Tc superconductivity. Here we report the systematic studies of the normal-state charge transport, Fermi surface structure and superconducting gap structure in high-quality single crystals of BaFe2(As1-xPx)2 (0 <=x <=0.71), ranging from the SDW state to overdoped Fermi liquid state. Near the SDW boundary, the transport coefficients, including resistivity, Hall coefficient and magnetoresistance, exhibit striking deviations from the Fermi liquid properties [1]. The Fermi surface structure determined by the dHvA effect shows that in the superconducting dome the volume of the electron and hole sheets shrink linearly and the effective masses become strongly enhanced with decreasing x [2]. It is likely that these trends originate from the many-body interaction which gives rise to superconductivity. The penetration depth, thermal conductivity and NMR data for BaFe2(As0.67P0.33)2 (Tc=30 K) provide unambiguous evidence for line nodes in the superconducting gap function [3], in sharp contrast to the other Fe-based compounds with fully gapped structure. This indicates that the gap structure of Fe-based high-Tc superconductors is not universal.[1] S. Kasahara et al., arXiv:0905.4427 [2] H. Shishido et al., arXiv:0910.3634 [3] K. Hashimoto et al., arXiv:0907.4399 [4] K. Hashimoto et al., Phys. Rev. Lett. 102, 017002 (2009), ibid 102, 207001 (2009).

  14. Cosmological constraints on superconducting dark energy models

    NASA Astrophysics Data System (ADS)

    Keresztes, Zoltán; Gergely, László Á.; Harko, Tiberiu; Liang, Shi-Dong

    2015-12-01

    We consider cosmological tests of a scalar-vector-tensor gravitational model, in which the dark energy is included in the total action through a gauge-invariant, electromagnetic type contribution. The ground state of dark energy, corresponding to a constant potential V , is a Bose-Einstein type condensate with spontaneously broken U(1) symmetry. In other words, dark energy appears as a massive vector field emerging from a superposition of a massless vector and a scalar field, the latter corresponding to the Goldstone boson. Two particular cosmological models, corresponding to pure electric and pure magnetic type potentials, respectively, are confronted with type IA supernovae and Hubble parameter data. In the electric case, a good fit is obtained along a narrow inclined stripe in the Ωm-ΩV parameter plane, which includes the Λ cold dark matter limit as the best fit. The other points on this admissible region represent superconducting dark energy as a sum of a cosmological constant and a time-evolving contribution. In the magnetic case the cosmological test selects either (i) parameter ranges of the superconducting dark energy allowing for the standard baryonic sector plus dark matter or (ii) a unified superconducting dark matter and dark energy model, additionally including only the baryonic sector.

  15. Highly Anisotropic and Twofold Symmetric Superconducting Gap in Nematically Ordered FeSe0.93S0.07

    NASA Astrophysics Data System (ADS)

    Xu, H. C.; Niu, X. H.; Xu, D. F.; Jiang, J.; Yao, Q.; Chen, Q. Y.; Song, Q.; Abdel-Hafiez, M.; Chareev, D. A.; Vasiliev, A. N.; Wang, Q. S.; Wo, H. L.; Zhao, J.; Peng, R.; Feng, D. L.

    2016-10-01

    FeSe exhibits a novel ground state in which superconductivity coexists with a nematic order in the absence of any long-range magnetic order. Here, we report on an angle-resolved photoemission study on the superconducting gap structure in the nematic state of FeSe0.93 S0.07 , without the complications caused by Fermi surface reconstruction induced by magnetic order. We find that the superconducting gap shows a pronounced twofold anisotropy around the elliptical hole pocket near Z (0, 0, π ), with gap minima at the end points of its major axis, while no detectable gap is observed around Γ (0, 0, 0) and the zone corner (π , π , kz). The large anisotropy and nodal gap distribution demonstrate the substantial effects of the nematicity on the superconductivity and thus put strong constraints on current theories.

  16. Momentum dependence of the superconducting gap and in-gap states in MgB2 multiband superconductor

    SciTech Connect

    Mou, Daixiang; Jiang, Rui; Taufour, Valentin; Bud'ko, S. L.; Canfield, P. C.; Kaminski, Adam

    2015-06-29

    We use tunable laser-based angle-resolved photoemission spectroscopy to study the electronic structure of the multiband superconductor MgB2. These results form the baseline for detailed studies of superconductivity in multiband systems. We find that the magnitude of the superconducting gap on both σ bands follows a BCS-like variation with temperature with Δ0 ~ 7meV. Furthermore, the value of the gap is isotropic within experimental uncertainty and in agreement with a pure s-wave pairing symmetry. We observe in-gap states confined to kF of the σ band that occur at some locations of the sample surface. As a result, the energy of this excitation, ~ 3 meV, was found to be somewhat larger than the previously reported gap on π Fermi sheet and therefore we cannot exclude the possibility of interband scattering as its origin.

  17. Energy spectrum and wavefunction of electrons in hybrid superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Kruchinin, S. P.

    2016-03-01

    Recent experiments have fabricated structured arrays. We study hybrid nanowires, in which normal and superconducting regions are in close proximity, by using the Bogoliubov-de Gennes equations for superconductivity in a cylindrical nanowire. We succeed to obtain the quantum energy levels and wavefunctions of a superconducting nanowire. The obtained spectra of electrons remind Hofstadter’s butterfly.

  18. Neutron scattering studies of spin-phonon hybridization and superconducting spin gaps in the high temperature superconductor La2-x(Sr;Ba)xCuO4

    DOE PAGES

    Wagman, J. J.; Carlo, Jeremy P.; Gaudet, J.; Van Gastel, G. J.; Abernathy, Douglas L.; Stone, Matthew B.; Granroth, Garrett E.; Kolesnikov, Alexander I.; Savici, Andrei T.; Kim, Young -June; et al

    2016-03-14

    We present time-of-flight neutron-scattering measurements on single crystals of La2-xBaxCuO4 (LBCO) with 0 ≤ x ≤ 0.095 and La2-xSrxCuO4 (LSCO) with x = 0.08 and 0.11. This range of dopings spans much of the phase diagram relevant to high temperature cuprate superconductivity, ranging from insulating, three dimensional commensurate long range antiferromagnetic order for x ≤ 0.02 to two dimensional (2D) incommensurate antiferromagnetism co-existing with superconductivity for x ≥ 0.05. Previous work on lightly doped LBCO with x = 0.035 showed a clear resonant enhancement of the inelastic scattering coincident with the low energy crossings of the highly dispersive spin excitationsmore » and quasi-2D optic phonons. The present work extends these measurements across the phase diagram and shows this enhancement to be a common feature to this family of layered quantum magnets. Furthermore we show that the low temperature, low energy magnetic spectral weight is substantially larger for samples with non-superconducting ground states relative to any of the samples with superconducting ground states. Lastly spin gaps, suppression of low energy magnetic spectral weight, are observed in both superconducting LBCO and LSCO samples, consistent with previous observations for superconducting LSCO« less

  19. Evolution of superconducting gap and metallic ground state in cuprates from transport

    NASA Astrophysics Data System (ADS)

    Taillefer, Louis

    2006-03-01

    We report on fundamental characteristics of the ground state of cuprates in the limit of T=0, for both normal and superconducting states, obtained from transport measurements on high-quality single crystals of YBCO and Tl-2201, as a function of hole concentration. The superconducting gap is extracted from thermal conductivity; it is found to scale with the superconducting transition temperature throughout the overdoped regime, with a gap-to-Tc ratio of 5 [1]. The normal state is accessed by suppressing superconductivity with magnetic fields up to 60 T and is characterized by the limiting behavior of its electrical resistivity; while carrier localization is observed in YBCO at low temperature for carrier concentrations p below 0.1 hole/planar Cu, at p=0.1 and above the material remains highly metallic down to T=0 [2]. This shows that the non-superconducting state of underdoped cuprates, deep in the pseudogap phase, is remarkably similar to that of strongly overdoped cuprates, e.g. at p=0.3. We compare these results with similar measurements on other cuprates and discuss their implication for our understanding of the cuprate phase diagram. [1] In collaboration with: D.G. Hawthorn, S.Y. Li, M. Sutherland, E. Boaknin, R.W. Hill, C. Proust, F. Ronning, M. Tanatar, J. Paglione, D. Peets, R. Liang, D.A. Bonn, W.N. Hardy, and N.N. Kolesnikov. [2] In collaboration with: C. Proust, M. Sutherland, N. Doiron- Leyraud, S.Y. Li, R. Liang, D.A. Bonn, W.N. Hardy, N.E. Hussey, S. Adachi, S. Tajima, J. Levallois, and M. Narbone.

  20. Superconducting gap and vortex lattice of the heavy-fermion compound CeCu2Si2

    NASA Astrophysics Data System (ADS)

    Enayat, Mostafa; Sun, Zhixiang; Maldonado, Ana; Suderow, Hermann; Seiro, Silvia; Geibel, Christoph; Wirth, Steffen; Steglich, Frank; Wahl, Peter

    2016-01-01

    The order parameter and pairing mechanism for superconductivity in heavy-fermion compounds are still poorly understood. Scanning tunneling microscopy and spectroscopy at ultralow temperatures can yield important information about the superconducting order parameter and the gap structure. Here, we study the first heavy-fermion superconductor, CeCu2Si2 . Our data show the superconducting gap which is not fully formed and exhibits features that point to a multigap order parameter. Spatial mapping of the zero-bias conductance in magnetic field reveals the vortex lattice, which allows us to unequivocally link the observed conductance gap to superconductivity in CeCu2Si2 . The vortex lattice is found to be predominantly triangular with distortions at fields close to ˜0.7 Hc 2 .

  1. Features of Superconducting Gaps Revealed by STM/STS in Iron Based Superconductors With and Without Hole Pockets

    NASA Astrophysics Data System (ADS)

    Wen, Hai-Hu; Hai-Hu Wen Team

    The pairing mechanism and gap structure in iron based superconductors (IBS) remains unresolved. We have conducted extensive STM/STS study on the Na(Fe1-xTx) As (T =Co, Cu, Mn), Ba1-xKxFe2As2KFe2As2, and Li1-xFexOHFeSe single crystals. We found the clear evidence of the in-gap quasi-particle states induced by the non-magnetic Cu impurities in Na(Fe0.97- x Co0.03Cux) As, giving strong evidence of the S+/- pairing. Furthermore, we show the presence of the bosonic mode with the energy identical to that of the neutron resonance and a simple linear relation Ω/kBTc ~ 4.3, being explained a consequence of the S+/-pairing. The STS spectrum in Li1-x FexOHFeSe clearly indicates the presence of double superconducting gaps with Δ1 ~ 14.3 meV and Δ2 ~ 8.6 meV. Further analysis based on QPI allows us to assign the larger (smaller) gap to the outer (inner) hybridized electron pockets. The huge value 2Δ1/kBTc = 8.7 discovered here undoubtedly proves the strong coupling mechanism. This work was supported by the Ministry of Science and Technology of China, National Natural Science Foundation of China.

  2. Temperature dependence of the superconducting gap in high-Tc cuprates.

    PubMed

    Fine, B V

    2005-04-22

    It is proposed that the temperature dependence of the superconducting gap Delta(T) in high-T(c) cuprates can be predicted just from the knowledge of Delta(0) and the critical temperature T(c), and, in particular, Delta(0)/T(c)>4 implies that Delta(T(c)) not equal 0, while Delta(0)/T(c)

  3. Superconducting Gap Anisotropy and Quasiparticle Interactions: A Doping Dependent Photoemission Study

    SciTech Connect

    Mesot, J.; Norman, M.R.; Campuzano, J.C.; Mesot, J.; Campuzano, J.C.; Fretwell, H.M.; Kaminski, A.; Ding, H.; Randeria, M.; Paramekanti, A.; Takeuchi, T.; Yokoya, T.; Sato, T.; Takahashi, T.; Mochiku, T.; Kadowaki, K.

    1999-07-01

    Comparing photoemission measurements on Bi2212 with penetration depth data, we show that a description of the nodal excitations of the d -wave superconducting state in terms of noninteracting quasiparticles is inadequate, and we estimate the magnitude and doping dependence of the Landau interaction parameter which renormalizes the linear T contribution to the superfluid density. Furthermore, although consistent with d -wave symmetry, the gap with underdoping cannot be fit by the simple cos k{sub x}{minus}cos k{sub y} form, which suggests an increasing importance of long range interactions as the insulator is approached. {copyright} {ital 1999} {ital The American Physical Society }

  4. Observation of multiple superconducting gaps in Fe1+y Se x Te 1-x through Andreev reflection

    NASA Astrophysics Data System (ADS)

    de, Debtanu; Diaz-Pinto, Carlos; Wu, Zheng; Hor, Pei-Herng; Peng, Haibing

    2011-03-01

    Iron-based superconductors have been under intensive study because of the high transition temperature and the intriguing physical mechanisms involving the superconductivity and magnetic orders. Theoretical studies on the role of spin fluctuation suggest unconventional S wave pairing and multiple superconducting (SC) gaps due to the five disjoint Fermi surfaces. However, this multiple SC-gap scenario has yet to be confirmed in experiments. Here we report the experimental observation of five SC gaps in Fe 1+y Se x Te 1-x from Andreev reflection spectra, along with negative differential conductance dips due to the pair breaking related to the largest SC gap. The evolution of the multiple SC gaps is further investigated as a function of both temperature and magnetic field. For the largest SC gap, the Andreev reflection signal persists above bulk Tc, suggesting the existence of phase incoherent Cooper pairs.

  5. Superconducting magnetic energy storage for asynchronous electrical systems

    DOEpatents

    Boenig, H.J.

    1984-05-16

    It is an object of the present invention to provide superconducting magnetic energy storage for a plurality of asynchronous electrical systems. It is a further object of the present invention to provide load leveling and stability improvement in a plurality of independent ac systems using a single superconducting magnetic energy storage coil.

  6. Superconducting condensation energy of CeCu2Si2 and theoretical implications

    NASA Astrophysics Data System (ADS)

    Kirchner, Stefan

    2012-02-01

    Unconventional superconductivity occurs in a broad range of strongly correlated electron systems including the newly discovered iron pnictides and chalcogenides, various intermetallic rare earth metals, the cuprates and the organic superconductors. These systems are not only of varying effective dimensionality but their parent compounds out of which superconductivity emerges ranges from metals to bad metals and Mott insulators. The only unifying characteristic features seems that unconventional superconductivity occurs in close vicinity of zero-temperature instabilities which are most often magnetic in nature. Heavy fermion compounds represent prototype systems to address the interplay between quantum criticality and unconventional superconductivity [1]. In CeCu2Si2, the magnetic quantum phase transition and superconductivity occur at ambient pressure which allows for a detailed study of the energetics across the superconducting transition. Based on an in-depth study of the magnetic excitation spectrum of CeCu2Si2 in the normal and superconducting state we obtain a lower bound for the change in exchange energy [2]. The comparison with the superconducting condensation energy demonstrates that the built-up of magnetic correlations near the quantum critical point does drive superconductivity in CeCu2Si2. In addition, our comparison establishes a huge kinetic energy loss which we relate to the competition of Kondo screening and superconductivity as the opening of the gap weakens the Kondo effect [2,3]. We discuss the relation between kinetic energy loss and the nature of the underlying quantum critical point [1,3]. Our unexpected findings sheds further light on the emerging global phase diagram of heavy fermion compounds [4] and are believed to be relevant to other families of superconductivity which are also located in close proximity to magnetism.[4pt] [1] O. Stockert, S. Kirchner, F. Steglich, Q. Si, ``Superconductivity in Ce- and U-based 122 heavy-fermion compounds

  7. Research for superconducting energy storage patterns and its practical countermeasures

    NASA Astrophysics Data System (ADS)

    Lin, D. H.; Cui, D. J.; Li, B.; Teng, Y.; Zheng, G. L.; Wang, X. Q.

    2013-10-01

    In this paper, we attempt to introduce briefly the significance, the present status, as well as the working principle of the primary patterns of the superconducting energy storage system, first of all. According to the defect on the lower energy storage density of existed superconducting energy storage device, we proposed some new ideas and strategies about how to improve the energy storage density, in which, a brand-new but a tentative proposal regarding the concept of energy compression was emphasized. This investigation has a certain reference value towards the practical application of the superconducting energy storage.

  8. Beam dynamics studies of four-gap low-beta superconducting resonators

    SciTech Connect

    Nolen, J.A.; Joh, K.

    1993-05-20

    The four-gap superconducting resonators which have been developed at Argonne for use in the low-beta positive ion-injector for ATLAS have potential applications for ions with velocities less than 0.007c and q/m less than 0.1. It was previously observed that at low velocities these structures can be focusing in both longitudinal and transverse phase spaces due to an inherent alternating-phase-focusing property. Studies are underway to determine the optimum combination of multi-gap structures and solenoids at low velocity and low q/m. In this paper the authors present the results of acceptance studies for the first three resonators at the front of the positive-ion injection linac, with and without the focusing solenoids. These studies include the effects of higher-order distortions in longitudinal and transverse phase spaces since minimizing such aberrations is very important for most nuclear physics applications of such accelerators.

  9. NMR Study of the Superconducting Gap Variation near the Mott Transition in Cs3C60

    NASA Astrophysics Data System (ADS)

    Wzietek, P.; Mito, T.; Alloul, H.; Pontiroli, D.; Aramini, M.; Riccò, M.

    2014-02-01

    Former extensive studies of superconductivity in the A3C60 compounds, where A is an alkali metal, have led one to consider that Bardeen-Cooper-Schrieffer electron-phonon pairing prevails in those compounds, though the incidence of electronic Coulomb repulsion has been highly debated. The discovery of two isomeric fulleride compounds Cs3C60 which exhibit a transition with pressure from a Mott insulator (MI) to a superconducting (SC) state clearly reopens that question. Using pressure (p) as a single control parameter of the C60 balls lattice spacing, one can now study the progressive evolution of the SC properties when the electronic correlations are increased towards the critical pressure pc of the Mott transition. We have used C13 and Cs133 NMR measurements on the cubic phase A15-Cs3C60 just above pc=5.0(3) kbar, where the SC transition temperature Tc displays a dome shape with decreasing cell volume. From the T dependence below Tc of the nuclear spin lattice relaxation rate (T1)-1 we determine the electronic excitations in the SC state, that is 2Δ, the gap value. The latter is found to be largely enhanced with respect to the Bardeen-Cooper-Schrieffer value established in the case of dense A3C60 compounds. It even increases slightly with decreasing p towards pc, where Tc decreases on the SC dome, so that 2Δ /kBTc increases regularly upon approaching the Mott transition. These results bring clear evidence that the increasing correlations near the Mott transition are not significantly detrimental to superconductivity. They rather suggest that repulsive electron interactions might even reinforce elecron-phonon superconductivity, being then partly responsible for the large Tc values, as proposed by theoretical models taking the electronic correlations as a key ingredient.

  10. Higher order mode damping in a five-cell superconducting rf cavity with a photonic band gap coupler cell

    NASA Astrophysics Data System (ADS)

    Arsenyev, Sergey A.; Temkin, Richard J.; Shchegolkov, Dmitry Yu.; Simakov, Evgenya I.; Boulware, Chase H.; Grimm, Terry L.; Rogacki, Adam R.

    2016-08-01

    We present a study of higher order mode (HOM) damping in the first multicell superconducting radio-frequency (SRF) cavity with a photonic band gap (PBG) coupler cell. Achieving higher average beam currents is particularly desirable for future light sources and particle colliders based on SRF energy-recovery linacs (ERLs). Beam current in ERLs is limited by the beam breakup instability, caused by parasitic HOMs interacting with the beam in accelerating cavities. A PBG cell incorporated in an accelerating cavity can reduce the negative effect of HOMs by providing a frequency selective damping mechanism, thus allowing significantly higher beam currents. The five-cell cavity with a PBG cell was designed and optimized for HOM damping. Monopole and dipole HOMs were simulated. The SRF cavity was fabricated and tuned. External quality factors for some HOMs were measured in a cold test. The measurements agreed well with the simulations.

  11. Superconducting magnetic energy storage for asynchronous electrical systems

    DOEpatents

    Boenig, Heinrich J.

    1986-01-01

    A superconducting magnetic energy storage coil connected in parallel between converters of two or more ac power systems provides load leveling and stability improvement to any or all of the ac systems. Control is provided to direct the charging and independently the discharging of the superconducting coil to at least a selected one of the ac power systems.

  12. Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor

    DOE PAGES

    Guguchia, Z.; Amato, A.; Kang, J.; Luetkens, H.; Biswas, P. K.; Prando, G.; von Rohr, F.; Bukowski, Z.; Shengelaya, A.; Keller, H.; et al

    2015-11-09

    The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. Contrasting with other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperaturemore » behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap.« less

  13. Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor.

    PubMed

    Guguchia, Z; Amato, A; Kang, J; Luetkens, H; Biswas, P K; Prando, G; von Rohr, F; Bukowski, Z; Shengelaya, A; Keller, H; Morenzoni, E; Fernandes, Rafael M; Khasanov, R

    2015-01-01

    The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. In contrast to other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap. PMID:26548650

  14. Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor

    PubMed Central

    Guguchia, Z.; Amato, A.; Kang, J.; Luetkens, H.; Biswas, P. K.; Prando, G.; von Rohr, F.; Bukowski, Z.; Shengelaya, A.; Keller, H.; Morenzoni, E.; Fernandes, Rafael M.; Khasanov, R.

    2015-01-01

    The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. In contrast to other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap. PMID:26548650

  15. Competition between superconductivity and magnetic/nematic order as a source of anisotropic superconducting gap in underdoped Ba1-xKxFe2As2

    SciTech Connect

    Kim, H; Tanatar, M A; Straszheim, W E; Cho, K; Murphy, J; Spyrison, N; Reid, J -Ph; Shen, Bing; Wen, Hai-Hu; Fernandes, R M; Prozorov, R

    2014-07-01

    The in-plane London penetration depth Δλ(T) was measured using a tunnel diode resonator technique in single crystals of Ba1-xKxFe2As2 with doping levels x ranging from heavily underdoped, x=0.16 (Tc=7K), to nearly optimally doped, x=0.34 (Tc=39K). Exponential saturation of Δλ(T) in the T→0 limit is found in optimally doped samples, with the superfluid density ρs(T)≡[λ(0)/λ(T)]2 quantitatively described by a self-consistent γ model with two nodeless isotropic superconducting gaps. As the doping level is decreased towards the extreme end of the superconducting dome at x=0.16, the low-temperature behavior of Δλ(T) becomes nonexponential and is best described by the power law Δλ(T)∝T2, characteristic of strongly anisotropic gaps. The change between the two regimes happens within the range of coexisting magnetic/nematic order and superconductivity, x<0.25, and is accompanied by a rapid rise in the absolute value of Δλ(T) with underdoping. This effect, characteristic of the competition between superconductivity and other ordered states, is very similar to but of significantly smaller magnitude than what is observed in the electron-doped Ba(Fe1-xCox)2As2 compounds. Our study suggests that the competition between superconductivity and magnetic/nematic order in hole-doped compounds is weaker than in electron-doped compounds, and that the anisotropy of the superconducting state in the underdoped iron pnictides is a consequence of the anisotropic changes in the pairing interaction and in the gap function promoted by both magnetic and nematic long-range orders.

  16. Anomalous Inner-Gap Structure in Transport Characteristics of Superconducting Junctions with Degraded Interfaces.

    PubMed

    Zhitlukhina, E; Devyatov, I; Egorov, O; Belogolovskii, M; Seidel, P

    2016-12-01

    Quantitative description of charge transport across tunneling and break-junction devices with novel superconductors encounters some problems not present or not as severe for traditional superconducting materials. In this work, we explain unexpected features in related transport characteristics as an effect of a degraded nanoscaled sheath at the superconductor surface. A model capturing the main aspects of the ballistic charge transport across hybrid superconducting structures with normally conducting nanometer-thick interlayers is proposed. The calculations are based on a scattering formalism taking into account Andreev electron-into-hole (and inverse) reflections at normal metal-superconductor interfaces as well as transmission and backscattering events in insulating barriers between the electrodes. Current-voltage characteristics of such devices exhibit a rich diversity of anomalous (from the viewpoint of the standard theory) features, in particular shift of differential-conductance maxima at gap voltages to lower positions and appearance of well-defined dips instead expected coherence peaks. We compare our results with related experimental data. PMID:26842791

  17. Pushing the Gradient Limitations of Superconducting Photonic Band Gap Structure Cells

    SciTech Connect

    Simakov, Evgenya I.; Haynes, William B.; Kurennoy, Sergey S.; Shchegolkov, Dmitry; O'Hara, James F.; Olivas, Eric R.

    2012-06-07

    Superconducting photonic band gap resonators present us with unique means to place higher order mode couples in an accelerating cavity and efficiently extract HOMs. An SRF PBG resonator with round rods was successfully tested at LANL demonstrating operation at 15 MV/m. Gradient in the SRF PBG resonator was limited by magnetic quench. To increase the quench threshold in PBG resonators one must design the new geometry with lower surface magnetic fields and preserve the resonator's effectiveness for HOM suppression. The main objective of this research is to push the limits for the high-gradient operation of SRF PBG cavities. A NCRF PBG cavity technology is established. The proof-of-principle operation of SRF PBG cavities is demonstrated. SRF PBG resonators are effective for outcoupling HOMs. PBG technology can significantly reduce the size of SRF accelerators and increase brightness for future FELs.

  18. Superconducting gap structure of the skutterudite LaPt4Ge12 probed by specific heat and thermal transport

    NASA Astrophysics Data System (ADS)

    Pfau, H.; Nicklas, M.; Stockert, U.; Gumeniuk, R.; Schnelle, W.; Leithe-Jasper, A.; Grin, Y.; Steglich, F.

    2016-08-01

    We investigated the superconducting order parameter of the filled skutterudite LaPt4Ge12 , with a transition temperature of Tc=8.3 K. To this end, we performed temperature and magnetic-field dependent specific-heat and thermal-conductivity measurements. All data are compatible with a single superconducting s -wave gap. However, a multiband scenario cannot be ruled out. The results are discussed in the context of previous studies on the substitution series Pr1 -xLaxPt4Ge12 . They suggest compatible order parameters for the two end compounds LaPt4Ge12 and PrPt4Ge12 . This is not consistent with a single s -wave gap in LaPt4Ge12 considering previous reports of unconventional and/or multiband superconductivity in PrPt4Ge12 .

  19. Fully gapped superconductivity in In-doped topological crystalline insulator Pb0.5Sn0.5Te

    SciTech Connect

    Du, Guan; Gu, G. D.; Du, Zengyi; Fang, Delong; Yang, Huan; Zhong, R. D.; Schneeloch, J.; Wen, Hai -Hu

    2015-07-27

    In this study, superconductors derived from topological insulators and topological crystalline insulators by chemical doping have long been considered to be candidates as topological superconductors. Pb0.5Sn0.5Te is a topological crystalline insulator with mirror symmetry protected surface states on (001)-, (011)-, and (111)-oriented surfaces. The superconductor (Pb0.5Sn0.5)0.7In0.3Te is produced by In doping in Pb0.5Sn0.5Te, and is thought to be a topological superconductor. Here we report scanning tunneling spectroscopy measurements of the superconducting state as well as the superconducting energy gap in (Pb0.5Sn0.5)0.7In0.3Te on a (001)-oriented surface. The spectrum can be well fitted by an anisotropic s-wave gap function of Δ = 0.72 + 0.18cos4θ meV using Dynes model. The results show that the superconductor seems to be a fully gapped one without any in-gap states, in contradiction with the expectation of a topological superconductor.

  20. Time-resolved photoexcitation of the superconducting two-gap state in MgB2 thin films.

    PubMed

    Xu, Y; Khafizov, M; Satrapinsky, L; Kús, P; Plecenik, A; Sobolewski, Roman

    2003-11-01

    Femtosecond pump-probe studies show that carrier dynamics in MgB2 films is governed by the sub-ps electron-phonon (e-ph) relaxation present at all temperatures, the few-ps e-ph process well pronounced below 70 K, and the sub-ns superconducting relaxation below T(c). The amplitude of the superconducting component versus temperature follows the superposition of the isotropic dirty gap and the three-dimensional pi gap dependences, closing at two different T(c) values. The time constant of the few-ps relaxation exhibits a double divergence at temperatures corresponding to the T(c)'s of the two gaps.

  1. Universal heat conduction in Ce1 -xYbxCoIn5 : Evidence for robust nodal d -wave superconducting gap

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Dong, J. K.; Lum, I. K.; Zhang, J.; Hong, X. C.; He, L. P.; Wang, K. F.; Ma, Y. C.; Petrovic, C.; Maple, M. B.; Shu, L.; Li, S. Y.

    2016-02-01

    In the heavy-fermion superconductor Ce1 -xYbxCoIn5 , Yb doping was reported to cause a possible change from nodal d -wave superconductivity to a fully gapped d -wave molecular superfluid of composite pairs near x ≈0.07 (nominal value xnom=0.2 ). Here we present systematic thermal conductivity measurements on Ce1 -xYbxCoIn5 (x =0.013 , 0.084, and 0.163) single crystals. The observed finite residual linear term κ0/T is insensitive to Yb doping, verifying the universal heat conduction of the nodal d -wave superconducting gap in Ce1 -xYbxCoIn5 . Similar universal heat conduction is also observed in the CeCo (In1 -yCdy )5 system. These results reveal a robust nodal d -wave gap in CeCoIn5 upon Yb or Cd doping.

  2. Method for making mirrored surfaces comprising superconducting material

    DOEpatents

    Early, J.T.; Hargrove, R.S.

    1989-12-12

    Superconducting mirror surfaces are provided by forming a mirror surface from a material which is superconductive at a temperature above about 40 K and adjusting the temperature of the surface to that temperature at which the material is superconducting. The mirror surfaces are essentially perfect reflectors for electromagnetic radiation with photon energy less than the superconducting band gap.

  3. Method for making mirrored surfaces comprising superconducting material

    DOEpatents

    Early, James T.; Hargrove, R. Steven

    1989-01-01

    Superconducting mirror surfaces are provided by forming a mirror surface from a material which is superconductive at a temperature above about 40.degree. K. and adjusting the temperature of the surface to that temperature at which the material is superconducting. The mirror surfaces are essentially perfect reflectors for electromagnetic radiation with photon energy less than the superconducting band gap.

  4. Toroidal constant-tension superconducting magnetic energy storage units

    DOEpatents

    Herring, J. Stephen

    1992-01-01

    A superconducting magnetic energy storage unit is provided in which the magnet is wound in a toroidal fashion such that the magnetic field produced is contained only within the bore of the magnet, and thus producing a very low external field. The superconducting magnet includes a coolant channel disposed through the wire. The bore of the magnet comprises a storage volume in which cryogenic coolant is stored, and this volume supplies the coolant to be delivered to the coolant channel in the magnet.

  5. Closing the energy gap through passive energy expenditure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of obesity is a gradual process occurring when daily energy intake persistently exceeds energy expenditure (EE). Typical daily weight gain is attributed to an energy gap or excess of stored energy of 15 to 50 kcal/day. Sedentary jobs likely promote weight gain. Standing may be a passive ...

  6. The role of engineered materials in superconducting tunnel junction X-ray detectors - Suppression of quasiparticle recombination losses via a phononic band gap

    NASA Technical Reports Server (NTRS)

    Rippert, Edward D.; Ketterson, John B.; Chen, Jun; Song, Shenian; Lomatch, Susanne; Maglic, Stevan R.; Thomas, Christopher; Cheida, M. A.; Ulmer, Melville P.

    1992-01-01

    An engineered structure is proposed that can alleviate quasi-particle recombination losses via the existence of a phononic band gap that overlaps the 2-Delta energy of phonons produced during recombination of quasi-particles. Attention is given to a 1D Kronig-Penny model for phonons normally incident to the layers of a multilayered superconducting tunnel junction as an idealized example. A device with a high density of Bragg resonances is identified as desirable; both Nb/Si and NbN/SiN superlattices have been produced, with the latter having generally superior performance.

  7. Optical study of BaFe2As2 under pressure: Coexistence of spin-density-wave gap and superconductivity

    NASA Astrophysics Data System (ADS)

    Uykur, E.; Kobayashi, T.; Hirata, W.; Miyasaka, S.; Tajima, S.; Kuntscher, C. A.

    2015-12-01

    Temperature-dependent reflectivity measurements in the frequency range 85 -7000 cm-1 were performed on BaFe2As2 single crystals under pressure up to ˜5 GPa. The corresponding pressure- and temperature-dependent optical conductivity was analyzed with the Drude-Lorentz model to extract the coherent and incoherent contributions. The gradual suppression of the spin-density-wave (SDW) state with increasing pressure and the appearance of the superconducting phase coexisting with the SDW phase at 3.6 GPa were observed. At 3.6 GPa, the reflectivity reaches unity below ˜95 cm-1 indicating the opening of the superconducting gap and shows a full gap tendency at 6 K.

  8. Evidence of two-gap superconductivity in Na0.35CoO2.1.3H2O

    NASA Astrophysics Data System (ADS)

    Yuan, H. Q.; Badica, P.

    2005-03-01

    The recent discovery of superconductivity in the layered cobalt oxyhydrate Na0.35CoO2.1.3H2O [1] has attracted considerable attention in the scientific community because of its structural similarity to high-Tc cuprates. Although intensive studies have been performed to understand the nature of superconductivity in this compound, no consensus has been reached on many important issues and the symmetry of order parameter still remains open. The low temperature behavior of the magnetic penetration depth λ(T) provides a useful probe of the low-lying excitations in superconductors and hence of the symmetry of the superconducting energy gap. In this contribution, we present a high-precision measurement of λ(T) on singe crystalline Na0.35CoO2.1.3H2O down to 90 mK, using a tunnel-diode based, self-inductive technique at 21 MHz. It is found that λ(T) can be fit by a quadratic power-law above T˜1 K. However, λ(T) changes to an exponential decay at the lowest temperature (T < 0.8 K), indicating that the material is fully gapped. Detailed analysis shows that λ(T) can be nicely fitted with a two-band model, resembling the case of MgB2. These findings are consistent with the recent report of specific heat results [2] and suggest s-wave superconductivity in Na0.35CoO2.1.3H2O. [1] K. Takada et al, Nature 53 (2003). [2] R. Jin et al, cond-mat 0410517.

  9. Scrutinizing the double superconducting gaps and strong coupling pairing in (Li1−xFex)OHFeSe

    PubMed Central

    Du, Zengyi; Yang, Xiong; Lin, Hai; Fang, Delong; Du, Guan; Xing, Jie; Yang, Huan; Zhu, Xiyu; Wen, Hai-Hu

    2016-01-01

    In the field of iron-based superconductors, one of the frontier studies is about the pairing mechanism. The recently discovered (Li1−xFex)OHFeSe superconductor with the transition temperature of about 40 K provides a good platform to check the origin of double superconducting gaps and high transition temperature in the monolayer FeSe thin film. Here we report a scanning tunnelling spectroscopy study on the (Li1−xFex)OHFeSe single crystals. The tunnelling spectrum mimics that of the monolayer FeSe thin film and shows double gaps at about 14.3 and 8.6 meV. Further analysis based on the quasiparticle interference allows us to rule out the d-wave gap, and for the first time assign the larger (smaller) gap to the outer (inner) Fermi pockets (after folding) associating with the dxy (dxz/dyz) orbitals, respectively. The gap ratio amounts to 8.7, which demonstrates the strong coupling mechanism in the present superconducting system. PMID:26822281

  10. Two superconducting gaps and electron-phonon coupling in YBa sub 2 Cu sub 4 O sub 8

    SciTech Connect

    Heyen, E.T.; Cardona, M. ); Karpinski, J.; Kaldis, E.; Rusiecki, S. )

    1991-06-01

    We report measurements of the superconducting gaps and the electron-phonon coupling in untwinned YBa{sub 2}Cu{sub 4}O{sub 8} (Y 1:2:4) single crystals by electronic and phononic Raman scattering. For {ital xx}- and, to a lesser extent, also for {ital yy}-polarized light, a scattering continuum that decreases in the superconducting state below 325 cm{sup {minus}1} (thus signaling a gap 2{Delta}{sub 2} such that 2{Delta}{sub 2}/{ital kT}{sub {ital c}}{approx}6.5) is observed. We measure, in {ital yy} polarization only, another sharp decrease of the electronic scattering below 113 cm{sup {minus}1}, indicating a second gap 2{Delta}{sub 1}, such that 2{Delta}{sub 1}/{ital kT}{sub {ital c}}{approx}2.3. The existence and the size of both gaps are confirmed by the observation of phonon anomalies at {ital T}{sub {ital c}} for nearly all {ital A}{sub {ital g}} phonons. We conjecture that the smaller gap {Delta}{sub 1} occurs at the chain bands and probably also exists in YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (Y 1:2:3) but cannot be observed by Raman scattering.

  11. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    NASA Astrophysics Data System (ADS)

    Ogata, M.; Matsue, H.; Yamashita, T.; Hasegawa, H.; Nagashima, K.; Maeda, T.; Matsuoka, T.; Mukoyama, S.; Shimizu, H.; Horiuchi, S.

    2016-05-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper.

  12. Carrier Concentration Dependence of Superconducting Gap of Bi2(Sr,La)2CuO6+δ

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hideki; Ogawa, Koto; Kondo, Takeshi; Shin, Shik; Matsunami, Masaharu; Ikuta, Hiroshi; Takeuchi, Tsunehiro

    2016-10-01

    Carrier concentration dependence of the superconducting gap observable around the nodal region was investigated in detail for a series of high-Tc cuprate superconductors, Bi2(Sr,La)2CuO6+δ, by means of ultra-high-resolution laser-induced angle resolved photoemission spectroscopy. We found that the gap can be expressed by the simple d-wave gap form, Δ = Δ0 cos(2θ), at least around the node even in the heavily underdoped samples. The gap size Δ0 increases with decreasing hole concentration in the overdoped region, and starts to decrease after taking a plateau that extends over a relatively wide hole concentration, p, ranging 0.16 ≤ p ≤ 0.26. The critical temperature of superconductivity, Tc, decreases more drastically than Δ0 with decreasing hole concentration. This fact indicates that Tc is not simply determined by Δ0, and we argue that the reduction of Tc with decreasing hole concentration in the underdoped regions is caused by a synergy effect of the decreasing Δ0 and the development of pseudogap.

  13. Toroidal constant-tension superconducting magnetic energy storage units

    DOEpatents

    Herring, J.S.

    1992-11-03

    A superconducting magnetic energy storage unit is provided in which the magnet is wound in a toroidal fashion such that the magnetic field produced is contained only within the bore of the magnet, and thus producing a very low external field. The superconducting magnet includes a coolant channel disposed through the wire. The bore of the magnet comprises a storage volume in which cryogenic coolant is stored, and this volume supplies the coolant to be delivered to the coolant channel in the magnet. 6 figs.

  14. Single superconducting energy scale in the electron-doped cuprate superconductor Pr2-xCexCuO4-δ

    NASA Astrophysics Data System (ADS)

    Diamant, I.; Greene, R. L.; Dagan, Y.

    2009-07-01

    The tunneling spectra of the electron-doped cuprate Pr2-xCexCuO4-δ as a function of doping and temperature are reported. We find that the superconducting gap, Δ , shows a BCS-type temperature dependence even for extremely low carrier concentrations. Moreover, Δ follows the doping dependence of Tc , in strong contrast with tunneling studies of the hole-doped cuprates. From our results we conclude that there is a single superconducting energy scale in the electron-doped cuprates.

  15. Upper critical field of KFe2As2 under pressure: A test for the change in the superconducting gap structure

    SciTech Connect

    Taufour, Valentin; Foroozani, Neda; Tanatar, Makariy A.; Lim, Jinhyuk; Kaluarachchi, Udhara; Kim, Stella K.; Liu, Yong; Lograsso, Thomas A.; Kogan, Vladimir G.; Prozorov, Ruslan; Bud'ko, Sergey L.; Schilling, James S.; Canfield, Paul C.

    2014-06-01

    We report measurements of electrical resistivity under pressure to 5.8 GPa, magnetization to 6.7 GPa, and ac susceptibility to 7.1 GPa in KFe2As2. The previously reported change of slope in the pressure dependence of the superconducting transition temperature Tc(p) at a pressure p*~1.8 GPa is confirmed, and Tc(p) is found to be nearly constant above p* up to 7.1 GPa. The T-p phase diagram is very sensitive to the pressure conditions as a consequence of the anisotropic uniaxial pressure dependence of Tc. Across p*, a change in the behavior of the upper critical field is revealed through a scaling analysis of the slope of Hc2 with the effective mass as determined from the A coefficient of the T2 term of the temperature-dependent resistivity. We show that this scaling provides a quantitative test for the changes of the superconducting gap structure and suggests the development of a kz modulation of the superconducting gap above p* as a most likely explanation.

  16. Superconductivity:

    NASA Astrophysics Data System (ADS)

    Sacchetti, N.

    In this paper a short historical account of the discovery of superconductivity and of its gradual development is given. The physical interpretation of its various aspects took about forty years (from 1911 to 1957) to reach a successful description of this phenomenon in terms of a microscopic theory At the very end it seemed that more or less everything could be reasonably interpreted even if modifications and refinements of the original theory were necessary. In 1986 the situation changed abruptly when a cautious but revolutionary paper appeared showing that superconductivity was found in certain ceramic oxides at temperatures above those up to then known. A rush of frantic experimental activity started world-wide and in less than one year it was shown that superconductivity is a much more widespread phenomenon than deemed before and can be found at temperatures well above the liquid air boiling point. The complexity and the number of the substances (mainly ceramic oxides) involved call for a sort of modern alchemy if compounds with the best superconducting properties are to be manufactured. We don't use the word alchemy in a deprecatory sense but just to emphasise that till now nobody can say why these compounds are what they are: superconductors.

  17. Superconducting Magnetic Energy Storage:. Conventional and Trapped Field

    NASA Astrophysics Data System (ADS)

    Rabinowitz, Mario

    Superconducting magnetic energy storage (SMES) is a most efficient system for energy storage because it stores energy directly in electrical form. The SMES concept is described and analyzed with an examination of its economic viability. The impact of high-temperature supeconductivity on SMES is explored, and a trapped energy storage (TES) innovation that may have beneficial technical and economic ramifications is introduced. In addition to presenting a broad overview, this paper may be of help to those making an evaluation of the potential impact of SMES/TES on the development of new energy sources, and to determine for which energy sources it is most appropriate.

  18. Optimizing the configuration of a superconducting photonic band gap accelerator cavity to increase the maximum achievable gradients

    NASA Astrophysics Data System (ADS)

    Simakov, Evgenya I.; Kurennoy, Sergey S.; O'Hara, James F.; Olivas, Eric R.; Shchegolkov, Dmitry Yu.

    2014-02-01

    We present a design of a superconducting rf photonic band gap (SRF PBG) accelerator cell with specially shaped rods in order to reduce peak surface magnetic fields and improve the effectiveness of the PBG structure for suppression of higher order modes (HOMs). The ability of PBG structures to suppress long-range wakefields is especially beneficial for superconducting electron accelerators for high power free-electron lasers (FELs), which are designed to provide high current continuous duty electron beams. Using PBG structures to reduce the prominent beam-breakup phenomena due to HOMs will allow significantly increased beam-breakup thresholds. As a result, there will be possibilities for increasing the operation frequency of SRF accelerators and for the development of novel compact high-current accelerator modules for the FELs.

  19. Correlation-driven d -wave superconductivity in Anderson lattice model: Two gaps

    NASA Astrophysics Data System (ADS)

    Wysokiński, Marcin M.; Kaczmarczyk, Jan; Spałek, Józef

    2016-07-01

    Superconductivity in heavy-fermion systems has an unconventional nature and is considered to originate from the universal features of the electronic structure. Here, the Anderson lattice model is studied by means of the full variational Gutzwiller wave function incorporating nonlocal effects of the on-site interaction. We show that the d -wave superconducting ground state can be driven solely by interelectronic correlations. The proposed microscopic mechanism leads to a multigap superconductivity with the dominant contribution due to f electrons and in the dx2-y2-wave channel. Our results rationalize several important observations for CeCoIn5.

  20. Superconducting gap evolution in overdoped BaFe₂(As1-xPx)₂ single crystals through nanocalorimetry

    DOE PAGES

    Campanini, D.; Diao, Z.; Fang, L.; Kwok, W.-K.; Welp, U.; Rydh, A.

    2015-06-18

    We report on specific heat measurements on clean overdoped BaFe₂(As1-xPx)₂ single crystals performed with a high resolution membrane-based nanocalorimeter. A nonzero residual electronic specific heat coefficient at zero temperature γr=C/T|T→0 is seen for all doping compositions, indicating a considerable fraction of the Fermi surface ungapped or having very deep minima. The remaining superconducting electronic specific heat is analyzed through a two-band s-wave α model in order to investigate the gap structure. Close to optimal doping we detect a single zero-temperature gap of Δ₀~5.3 me V, corresponding to Δ₀/kBTc ~ 2.2. Increasing the phosphorus concentration x, the main gap reduces tillmore » a value of Δ₀ ~ 1.9 meV for x = 0.55 and a second weaker gap becomes evident. From the magnetic field effect on γr, all samples however show similar behavior [γr(H) - γr (H = 0)∝ Hn, with n between 0.6 and 0.7]. This indicates that, despite a considerable redistribution of the gap weights, the total degree of gap anisotropy does not change drastically with doping.« less

  1. Numerical analysis of magnetic field in superconducting magnetic energy storage

    SciTech Connect

    Kanamaru, Y. ); Amemiya, Y. )

    1991-09-01

    This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method.

  2. Energy gap distribution of HgBa{sub 2}CuO{sub 4+{delta}} investigated by scanning tunneling microscopy/spectroscopy

    SciTech Connect

    Jess, P.; Hubler, U.; Lang, H.P.

    1996-12-01

    The superconducting energy gap distribution of polycrystalline HgBa{sub 2}CuO{sub 4+{delta}} samples of differing oxygen doping levels (T{sub c} = 94 K and T{sub c} = 96 K) is determined by scanning tunneling spectroscopy (STS) using a low temperature scanning tunneling microscope (STM). From histograms of energy gap values the presence of two distinct energy gaps is inferred ({Delta}{sub 1}=8.5{+-}1.6 meV and {Delta}{sub 2}=15.1{+-}1.4meV). The authors attribute the different gaps to different crystallographic faces, implying a non-BCS electron-electron pairing mechanism.

  3. Energy gap of novel edge-defected graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Yuan, Weiqing; Wen, Zhongquan; Li, Min; Chen, Li; Chen, Gang; Ruan, Desheng; Gao, Yang

    2016-08-01

    Herein, the effects of width and boundary defects on the energy gap of graphene nanoribbons (GNRs) have been explored and theoretically investigated by means of semi-empirical atomic basis Extended Hückel method. Due to the existence of boundary defects, the energy gap of GNRs is mainly determined by the width of graphene nanoribbons for armchair graphene nanoribbons (AGNRs) or zigzag graphene nanoribbons (ZGNRs). Interestingly, the energy gap of AGNRs with a 120° V-type defect displays the monotone decreasing tendency when the width reaches to 2 nm, while the energy gap of intrinsic AGNRs is oscillatory. At the same time, the energy gap of U-type defected ZGNRs is opened, which differs from the zero energy gap characteristics of the intrinsic zigzag graphene. Furthermore, the size of energy gap of the defected AGNRs and ZGNRs with the same width is proved to be very close. Calculation results demonstrate that the energy gap of GNRs is just inversely proportional to the width and has little to do with the crystallographic direction. All the findings above provide a basis for energy gap engineering with different edge defects in GNRs and signify promising prospects in graphene-based semiconductor electronic devices.

  4. Langmuir vacuum and superconductivity

    SciTech Connect

    Veklenko, B. A.

    2012-06-15

    It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  5. Anisotropy of the superconducting gap in the iron-based superconductor BaFe2(As1-xPx)2

    PubMed Central

    Yoshida, T.; Ideta, S.; Shimojima, T.; Malaeb, W.; Shinada, K.; Suzuki, H.; Nishi, I.; Fujimori, A.; Ishizaka, K.; Shin, S.; Nakashima, Y.; Anzai, H.; Arita, M.; Ino, A.; Namatame, H.; Taniguchi, M.; Kumigashira, H.; Ono, K.; Kasahara, S.; Shibauchi, T.; Terashima, T.; Matsuda, Y.; Nakajima, M.; Uchida, S.; Tomioka, Y.; Ito, T.; Kihou, K.; Lee, C. H.; Iyo, A.; Eisaki, H.; Ikeda, H.; Arita, R.; Saito, T.; Onari, S.; Kontani, H.

    2014-01-01

    We report peculiar momentum-dependent anisotropy in the superconducting gap observed by angle-resolved photoemission spectroscopy in BaFe2(As1-xPx)2 (x = 0.30, Tc = 30 K). Strongly anisotropic gap has been found only in the electron Fermi surface while the gap on the entire hole Fermi surfaces are nearly isotropic. These results are inconsistent with horizontal nodes but are consistent with modified s± gap with nodal loops. We have shown that the complicated gap modulation can be theoretically reproduced by considering both spin and orbital fluctuations. PMID:25465027

  6. Superconducting magnetic energy storage apparatus structural support system

    DOEpatents

    Withers, Gregory J.; Meier, Stephen W.; Walter, Robert J.; Child, Michael D.; DeGraaf, Douglas W.

    1992-01-01

    A superconducting magnetic energy storage apparatus comprising a cylindrical superconducting coil; a cylindrical coil containment vessel enclosing the coil and adapted to hold a liquid, such as liquefied helium; and a cylindrical vacuum vessel enclosing the coil containment vessel and located in a restraining structure having inner and outer circumferential walls and a floor; the apparatus being provided with horizontal compression members between (1) the coil and the coil containment vessel and (2) between the coil containment vessel and the vacuum vessel, compression bearing members between the vacuum vessel and the restraining structure inner and outer walls, vertical support members (1) between the coil bottom and the coil containment vessel bottom and (2) between the coil containment vessel bottom and the vacuum vessel bottom, and external supports between the vacuum vessel bottom and the restraining structure floor, whereby the loads developed by thermal and magnetic energy changes in the apparatus can be accommodated and the structural integrity of the apparatus be maintained.

  7. Neutron Scattering Study of Low Energy Magnetic Excitation in superconducting Te-vapor annealed under-doped FeTeSe

    NASA Astrophysics Data System (ADS)

    Xu, Zhijun; Yi, Ming; Xu, Guangyong; Shneeloch, J. A.; Matsuda, Masaaki; Chi, Songxue; Gu, Genda; Tranquada, J. M.; Birgeneau, R. J.

    To study the interplay between magnetism and superconductivity, we have performed neutron scattering and magnetization measurements on a Te vapor annealed single crystal Fe1 +yTe0.8Se0.2 (Tc~13K) sample. Te vapor annealed process is found to reduce/remove the excess Fe in the as-grown sample and make the under-doped originally non-superconducting sample become good superconducting sample. Our neutron scattering studies show both spin gap and spin resonance found in the Te vapor annealed superconducting sample. Comparing to commensurate spin resonance in as-grown optimal-doped sample, the spin resonance of Te annealed sample only shows up at the clearly incommensurate positions. The temperature and energy dependence of low energy magnetic excitations are also measured in the sample. This work is supported by the Office of Basic Energy Sciences, DOE.

  8. Development and operation of the JAERI superconducting energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Minehara, Eisuke J.

    2006-02-01

    The Japan Atomic Energy Research Institute free-electron laser (JAERI FEL) group at Tokai, Ibaraki, Japan has successfully developed one of the most advanced and newest accelerator technologies named "superconducting energy recovery linacs (ERLs)" and some applications in near future using the ERLs. In the text, the current operation and high power JAERI ERL-FEL 10 kW upgrading program, ERL-light source design studies, prevention of the stainless-steel cold-worked stress-corrosion cracking failures and decommissioning of nuclear power plants in nuclear energy industries were reported and discussed briefly as a typical application of the ERL-FEL.

  9. Strong Dependence of the Superconducting Gap on Oxygen Doping from Tunneling Measurements on Bi{sub 2} Sr{sub 2} CaCu{sub 2} O{sub 8{minus}{ital {delta} }}

    SciTech Connect

    Miyakawa, N.; Guptasarma, P.; Zasadzinski, J.F.; Hinks, D.G.; Gray, K.E.; Miyakawa, N.; Zasadzinski, J.F.

    1998-01-01

    Tunneling measurements are reported for break junctions on Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8{minus}{delta}} single crystals with various oxygen concentrations. Superconducting energy gaps {Delta} are observed in the underdoped samples which are considerably larger ({approximately}30{percent}) than found in optimal doped crystals. The trend of decreasing {Delta} and 2{Delta}/kT{sub c} with increasing hole doping is continued into the overdoped region. Thus the superconducting gap and strong-coupling ratio change monotonically and dramatically over a narrow doping region where T{sub c} exhibits a maximum. {copyright} {ital 1997} {ital The American Physical Society}

  10. Cryogenic testing of the 2.1 GHz five-cell superconducting RF cavity with a photonic band gap coupler cell

    NASA Astrophysics Data System (ADS)

    Arsenyev, Sergey A.; Temkin, Richard J.; Haynes, W. Brian; Shchegolkov, Dmitry Yu.; Simakov, Evgenya I.; Tajima, Tsuyoshi; Boulware, Chase H.; Grimm, Terrence L.; Rogacki, Adam R.

    2016-05-01

    We present results from cryogenic tests of the multi-cell superconducting radio frequency (SRF) cavity with a photonic band gap (PBG) coupler cell. Achieving high average beam currents is particularly desirable for future light sources and particle colliders based on SRF energy-recovery-linacs (ERLs). Beam current in ERLs is limited by the beam break-up instability, caused by parasitic higher order modes (HOMs) interacting with the beam in accelerating cavities. A PBG cell incorporated in an accelerating cavity can reduce the negative effect of HOMs by providing a frequency selective damping mechanism, thus allowing significantly higher beam currents. The multi-cell cavity was designed and fabricated of niobium. Two cryogenic (vertical) tests were conducted. The high unloaded Q-factor was demonstrated at a temperature of 4.2 K at accelerating gradients up to 3 MV/m. The measured value of the unloaded Q-factor was 1.55 × 108, in agreement with prediction.

  11. Nodal to nodeless superconducting energy-gap structure change concomitant with Fermi-surface reconstruction in the heavy-fermion compound CeCoIn5

    SciTech Connect

    Kim, Hyunsoo; Tanatar, M. A.; Flint, R.; Petrovic, C.; Hu, Rongwei; White, B. D.; Lum, I. K.; Maple, M. B.; Prozorov, R.

    2015-01-15

    The London penetration depth λ(T) was measured in single crystals of Ce1–xRxCoIn₅, R=La, Nd, and Yb down to Tmin ≈ 50 mK (Tc/Tmin ~50) using a tunnel-diode resonator. In the cleanest samples Δλ(T) is best described by the power law, Δλ(T) ∝ Tn, with n ~ 1, consistent with line nodes. Substitutions of Ce with La, Nd, and Yb lead to similar monotonic suppressions of Tc, however, the effects on Δλ(T) differ. While La and Nd dopings lead to increase of the exponent n and saturation at n ~ 2, as expected for a dirty nodal superconductor, Yb doping leads to n > 3, suggesting a change from nodal to nodeless superconductivity. As a result, this superconducting gap structure change happens in the same doping range where changes of the Fermi surface topology were reported, implying that the nodal structure and Fermi surface topology are closely linked.

  12. Design optimization of superconducting magnetic energy storage coil

    NASA Astrophysics Data System (ADS)

    Bhunia, Uttam; Saha, Subimal; Chakrabarti, Alok

    2014-05-01

    An optimization formulation has been developed for a superconducting magnetic energy storage (SMES) solenoid-type coil with niobium titanium (Nb-Ti) based Rutherford-type cable that minimizes the cryogenic refrigeration load into the cryostat. Minimization of refrigeration load reduces the operating cost and opens up the possibility to adopt helium re-condensing system using cryo-cooler especially for small-scale SMES system. Dynamic refrigeration load during charging or discharging operational mode of the coil dominates over steady state load. The paper outlines design optimization with practical design constraints like actual critical characteristics of the superconducting cable, maximum allowable hoop stress on winding, etc., with the objective to minimize refrigeration load into the SMES cryostat. Effect of design parameters on refrigeration load is also investigated.

  13. Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor

    SciTech Connect

    Guguchia, Z.; Amato, A.; Kang, J.; Luetkens, H.; Biswas, P. K.; Prando, G.; von Rohr, F.; Bukowski, Z.; Shengelaya, A.; Keller, H.; Morenzoni, E.; Fernandes, Rafael M.; Khasanov, R.

    2015-11-09

    The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. Contrasting with other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap.

  14. STRIPES AND SUPERCONDUCTIVITY IN CUPRATE SUPERCONDUCTORS

    SciTech Connect

    TRANQUADA, J.M.

    2005-08-22

    One type of order that has been observed to compete with superconductivity in cuprates involves alternating charge and antiferromagnetic stripes. Recent neutron scattering studies indicate that the magnetic excitation spectrum of a stripe-ordered sample is very similar to that observed in superconducting samples. In fact, it now appears that there may be a universal magnetic spectrum for the cuprates. One likely implication of this universal spectrum is that stripes of a dynamic form are present in the superconducting samples. On cooling through the superconducting transition temperature, a gap opens in the magnetic spectrum, and the weight lost at low energy piles up above the gap; the transition temperature is correlated with the size of the spin gap. Depending on the magnitude of the spin gap with respect to the magnetic spectrum, the enhanced magnetic scattering at low temperature can be either commensurate or incommensurate. Connections between stripe correlations and superconductivity are discussed.

  15. Homolumo gap from dynamical energy levels

    SciTech Connect

    Andric, I.; Jonke, L.; Jurman, D.; Nielsen, H. B.

    2009-11-15

    We introduce a dynamical matrix model where the matrix is interpreted as a Hamiltonian representing interaction of a bosonic system with a single fermion. We show how a system of second-quantized fermions influences the ground state of the whole system by producing a gap between the highest eigenvalue of the occupied single-fermion states and the lowest eigenvalue of the unoccupied single-fermion states. We describe the development of the gap in both the strong and weak coupling regimes, while for the intermediate coupling strength we expect formation of homolumo kinks.

  16. Arpes study of the superconducting gap and pseudogap in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x}.

    SciTech Connect

    Campuzano, J. C.; Ding, H.; Norman, M. R.; Randeria, M.; Yokoya, T.; Takahashi, T.; Takeuchi, T.; Mochiku, T.; Kadowaki, K.; Guptasarma, P.; Hinks, D. G.; Materials Science Division; Univ. of Illinois at Chicago; Tata Inst. for Fundamental Research; Tohoku Univ.; Nagoya Univ.; National Research Inst. for Metals; Univ. of Tsukuba

    1998-01-01

    In this paper, we review some of our ARPES results on the superconducting and pseudogaps in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x}. We find that optimally and overdoped samples exhibit a d-wave gap, which closes at the same temperature, T{sub c}, for all k points. In underdoped samples, a leading edge gap is found up to a temperature T*>T{sub c}. We find that T* scales with the maximum low temperature gap, increasing as the doping is reduced. The momentum dependence of the pseudogap is similar to that of the superconducting gap; however, the pseudogap closes at different temperatures for different k points.

  17. The Superconducting Super Collider Low Energy Booster

    SciTech Connect

    York, R.C.; Funk, W.; Garren, A.; Machida, S.; Mahale, N.K.; Peterson, J.; Pilat, F.; Wu, X. ); Wienands, U. )

    1991-05-01

    In collider fill mode, the Low Energy Booster (LEB) will accelerate 10{sup 12} protons in 114 bunches from an injection momentum of 1.22 GeV/c to a final momentum of 12 Gev/c, cycling at a frequency of 10 Hz. The most significant extension of present fast-cycling synchrotron technology arises from the requirement that the normalized transverse emittance (rms) of the beam be {le}0.6 {pi} {mu}m. In an alternative mode, the LEB will accelerate five times this current with a normalized transverse emittance {le} 4 {pi} {mu}m. A general overview of the design is presented. 7 refs., 2 figs., 4 tabs.

  18. Effective low-energy theory for superconducting topological insulators.

    PubMed

    Hao, Lei; Lee, Ting-Kuo

    2015-03-18

    Candidate pairings of superconducting topological insulators support interesting surface Andreev bound states (SABSs) known as Majorana fermions. As these materials are described by a two-orbital Bernevig-Hughes-Zhang type model, a general understanding of the low-energy physics such as the possible kinds of SABSs are difficult. By virtue of an analogy between a topological insulator and a time reversal invariant topological superconductor, we propose a simple and intuitive method of constructing the low-energy effective models for superconducting topological insulators like CuxBi2Se3. Depending on the value of the chemical potential and for experimentally relevant model parameters, the low-energy properties of these superconductors are shown to be determined by one copy or two copies of single-orbital effective models. If the effective pairing potential shows sign reversal upon reflection by the surface, one Kramers' pair or two Kramers' pairs of SABSs are expected to appear. Explicit analytical calculations in terms of the effective low energy model reproduce the dispersions of the numerically confirmed two pairs of SABSs for a commonly studied pairing.

  19. Anisotropic evolution of energy gap in Bi2212 superconductor

    NASA Astrophysics Data System (ADS)

    Durajski, A. P.

    2016-10-01

    We present a systematic analysis of the energy gap in underdoped Bi2212 superconductor as a function of temperature and hole doping level. Within the framework of the theoretical model containing the electron-phonon and electron-electron-phonon pairing mechanism, we reproduced the measurement results of modern ARPES experiments with very high accuracy. We showed that the energy-gap amplitude is very weakly dependent on the temperature but clearly dependent on the level of doping. The evidence for a non-zero energy gap above the critical temperature, referred to as a pseudogap, was also obtained.

  20. Fractal superconductivity near localization threshold

    SciTech Connect

    Feigel'man, M.V.; Ioffe, L.B.; Kravtsov, V.E.; Cuevas, E.

    2010-07-15

    We develop a semi-quantitative theory of electron pairing and resulting superconductivity in bulk 'poor conductors' in which Fermi energy E{sub F} is located in the region of localized states not so far from the Anderson mobility edge E{sub c}. We assume attractive interaction between electrons near the Fermi surface. We review the existing theories and experimental data and argue that a large class of disordered films is described by this model. Our theoretical analysis is based on analytical treatment of pairing correlations, described in the basis of the exact single-particle eigenstates of the 3D Anderson model, which we combine with numerical data on eigenfunction correlations. Fractal nature of critical wavefunction's correlations is shown to be crucial for the physics of these systems. We identify three distinct phases: 'critical' superconductive state formed at E{sub F} = E{sub c}, superconducting state with a strong pseudo-gap, realized due to pairing of weakly localized electrons and insulating state realized at E{sub F} still deeper inside a localized band. The 'critical' superconducting phase is characterized by the enhancement of the transition temperature with respect to BCS result, by the inhomogeneous spatial distribution of superconductive order parameter and local density of states. The major new feature of the pseudo-gapped state is the presence of two independent energy scales: superconducting gap {Delta}, that is due to many-body correlations and a new 'pseudo-gap' energy scale {Delta}{sub P} which characterizes typical binding energy of localized electron pairs and leads to the insulating behavior of the resistivity as a function of temperature above superconductive T{sub c}. Two gap nature of the pseudo-gapped superconductor is shown to lead to specific features seen in scanning tunneling spectroscopy and point-contact Andreev spectroscopy. We predict that pseudo-gapped superconducting state demonstrates anomalous behavior of the optical

  1. Superconductivity in graphite intercalation compounds

    DOE PAGES

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore » and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less

  2. Superconductivity in graphite intercalation compounds

    SciTech Connect

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  3. ORNL Superconducting Technology Program for Electric Energy Systems

    SciTech Connect

    Hawsey, R.A.

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's (DOE's) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1992 Peer Review of Projects, conducted by DOE's Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  4. Electronic properties of metal-induced gap states at insulator/metal interfaces: Dependence on the alkali halide and the possibility of excitonic mechanism of superconductivity

    NASA Astrophysics Data System (ADS)

    Arita, Ryotaro; Tanida, Yoshiaki; Kuroki, Kazuhiko; Aoki, Hideo

    2004-03-01

    Motivated from the experimental observation of metal-induced gap states (MIGS) at insulator/metal interfaces by Kiguchi et al. [Phys. Rev. Lett. 90, 196803 (2003)], we have theoretically investigated the electronic properties of MIGS at interfaces between various alkali halides and a metal represented by a jellium with the first-principles density-functional method. We have found that, on top of the usual evanescent state, MIGS generally have appreciable amplitudes on halogen sites with a pz-like character, whose penetration depth (λ) is as large as half the lattice constant of bulk alkali halides. This implies that λ, while little dependent on the carrier density in the jellium, is dominated by the energy gap of the alkali halide, and is scaled by the lattice constant, where λLiF<λLiCl<λLiI. We also propose a possibility of the MIGS working favorably for the exciton-mediated superconductivity, especially in a system where ˜10 Å of metal is sandwiched by alkali halide substrates.

  5. Multi-frequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings

    NASA Astrophysics Data System (ADS)

    Andersen, Christian Kraglund; Mølmer, Klaus

    2015-03-01

    A SQUID inserted in a superconducting waveguide resonator imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes acquire frequency side bands. We calculate the multi-frequency eigenmodes and these can couple resonantly to physical systems with different transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent quantum operations in hybrid quantum systems. As an example of the application, we determine their coupling to transmon qubits with different frequencies and we present a bi-chromatic scheme for entanglement and gate operations. In this calculation, we obtain a maximally entangled state with a fidelity F = 95 % . Our proposal is competitive with the achievements of other entanglement-gates with superconducting devices and it may offer some advantages: (i) There is no need for additional control lines and dephasing associated with the conventional frequency tuning of qubits. (ii) When our qubits are idle, they are far detuned with respect to each other and to the resonator, and hence they are immune to cross talk and Purcell-enhanced decay.

  6. The role of gap analyses in energy assurance planning.

    PubMed

    Shea, Katherine

    2013-01-01

    Energy-related emergencies, such as power outages or interruptions to other energy supplies, can arise from a number of factors. Common causes include severe weather events--such as snowstorms, hurricanes, or summer storms with strong winds--as well as energy infrastructure that is overburdened, aging, or in need of repair. As past experience indicates, jurisdictions will continue to experience severe weather events, as well as confront infrastructure issues that make future power outages likely. As a result, state and local governments have turned to energy assurance planning, an energy-specific form of planning that helps jurisdictions prepare for and recover from energy emergencies. Energy assurance recognizes that power loss/disruption cannot be eradicated completely, but jurisdictions can mitigate the impact of power loss through effective planning. This article discusses the role of energy assurance planning and provides a description of what energy assurance means and why developing such plans at the state and local levels is important. In addition, this article discusses the role of statutory gap analyses in energy assurance planning and discusses how a gap analysis can be used by planners to identify trends and gaps in energy assurance. To provide context, a recently conducted statutory gap analysis analyzing national emergency backup power trends is provided as a case study. A summary of this project and key findings is included. Finally, this article briefly touches on legislation as an alternative to energy assurance planning, and provides summaries of recent legislative proposals introduced in the aftermath of Hurricane Sandy.

  7. Size and symmetry of the superconducting gap in the f.c.c. Cs3C60 polymorph close to the metal-Mott insulator boundary

    PubMed Central

    Potočnik, Anton; Krajnc, Andraž; Jeglič, Peter; Takabayashi, Yasuhiro; Ganin, Alexey Y.; Prassides, Kosmas; Rosseinsky, Matthew J.; Arčon, Denis

    2014-01-01

    The alkali fullerides, A3C60 (A = alkali metal) are molecular superconductors that undergo a transition to a magnetic Mott-insulating state at large lattice parameters. However, although the size and the symmetry of the superconducting gap, Δ, are both crucial for the understanding of the pairing mechanism, they are currently unknown for superconducting fullerides close to the correlation-driven magnetic insulator. Here we report a comprehensive nuclear magnetic resonance (NMR) study of face-centred-cubic (f.c.c.) Cs3C60 polymorph, which can be tuned continuously through the bandwidth-controlled Mott insulator-metal/superconductor transition by pressure. When superconductivity emerges from the insulating state at large interfullerene separations upon compression, we observe an isotropic (s-wave) Δ with a large gap-to-superconducting transition temperature ratio, 2Δ0/kBTc = 5.3(2) [Δ0 = Δ(0 K)]. 2Δ0/kBTc decreases continuously upon pressurization until it approaches a value of ~3.5, characteristic of weak-coupling BCS theory of superconductivity despite the dome-shaped dependence of Tc on interfullerene separation. The results indicate the importance of the electronic correlations for the pairing interaction as the metal/superconductor-insulator boundary is approached. PMID:24584087

  8. Optical and electrical properties of thin superconducting films

    NASA Technical Reports Server (NTRS)

    Covington, Billy C.; Jing, Feng Chen

    1990-01-01

    Infrared spectroscopic techniques can provide a vital probe of the superconducting energy gap which is one of the most fundamental physical properties of superconductors. Currently, the central questions regarding the optical properties of superconductors are how the energy gap can be measured by infrared techniques and at which frequency the gap exists. An effective infrared spectroscopic method to investigate the superconducting energy gap, Eg, was developed by using the Bomem DA 3.01 Fourier Transformation Spectrophotometer. The reflectivity of a superconducting thin film of YBaCuO deposited on SrTiO3 was measured. A shoulder was observed in the superconducting state reflectance R(sub S) at 480/cm. This gives a value of Eg/kT(sub c) = 7.83, where k is the Boltzmann constant and T(sub c) is the superconducting transition temperature, from which, it is suggested that YBaCuO is a very strong coupling superconductor.

  9. Maximum field capability of Energy-Saver superconducting magnets

    SciTech Connect

    Turkot, F.; Cooper, W.E.; Hanft, R.; McInturff, A.

    1983-03-01

    At an energy of 1 TeV, the superconducting cable in the Energy Saver dipole magnets will be operating at approx. 96% of its nominal short sample limit; the corresponding number in the quadrupole magnets is 81%. All magnets for the Saver are individually tested for maximum current capability under two modes of operation; some 900 dipoles and 275 quadrupoles have now been measured. The dipole winding is composed of four individually wound coils. In general, the cable in the four coils comes from four different reels of cable. As part of magnet fabrication quality control, a short piece of cable from both ends of each reel has its critical current (rho = 1 x 10/sup -12/'..cap omega..-cm) measured at 5T and 4.3/sup 0/K. We present the statistical results of the maximum field tests on Saver magnets and explore the correlation with cable critical current.

  10. Power-law-like correlation between condensation energy and superconducting transition temperatures in iron pnictide/chalcogenide superconductors: Beyond the BCS understanding

    NASA Astrophysics Data System (ADS)

    Xing, Jie; Li, Sheng; Zeng, Bin; Mu, Gang; Shen, Bing; Schneeloch, J.; Zhong, R. D.; Liu, T. S.; Gu, G. D.; Wen, Hai-Hu

    2014-04-01

    Superconducting condensation energy U0int has been determined by integrating the electronic entropy in various iron pnictide/chalcogenide superconducting systems. It is found that U0int∝Tcn with n =3-4, which is in sharp contrast to the simple BCS prediction U0BCS=1/2NFΔs2, with NF the quasiparticle density of states at the Fermi energy and Δs the superconducting gap. A similar correlation holds if we compute the condensation energy through U0cal=3γneffΔs2/4π2kB2, with γneff the effective normal state electronic specific heat coefficient. This indicates a general relationship γneff∝Tcm with m =1-2, which is not predicted by the BCS scheme. A picture based on quantum criticality is proposed to explain this phenomenon.

  11. Power-law-like correlation between condensation energy and superconducting transition temperatures in iron pnictide/chalcogenide superconductors: Beyond the BCS understanding

    NASA Astrophysics Data System (ADS)

    Xing, Jie; Li, Sheng; Zeng, Bin; Mu, Gang; Shen, Bing; Schneeloch, J.; Zhong, R. D.; Liu, T. S.; Gu, G. D.; Wen, Hai-Hu

    2015-03-01

    Superconducting condensation energy U0int has been determined by integrating the electronic entropy in various iron pnictide/chalcogenide superconducting systems. It is found that U0int ~Tcn with n = 3 to 4, which is in sharp contrast to the simple BCS prediction U0BCS = 1 / 2NFΔs2 , with NF the quasiparticle density of states at the Fermi energy and Δs the superconducting gap. A similar correlation holds if we compute the condensation energy through U0cal = 3γneff Δs2 / 4π2kB2 , with γneff the effective normal state electronic specific heat coefficient. This indicates a general relationship γneff ~Tcm with m = 1 to 2, which is not predicted by the BCS scheme. A picture based on quantum criticality is proposed to explain this phenomenon.

  12. Nuclear energy in Malaysia - closing the gaps

    NASA Astrophysics Data System (ADS)

    >Malaysian Nuclear Society (Mns,

    2013-06-01

    This article is prepared by the Malaysian Nuclear Society (MNS) to present the views of the Malaysian scientific community on the need for Malaysia to urgently upgrade its technical know-how and expertise to support the nuclear energy industry for future sustainable economic development of the country. It also present scientific views that nuclear energy will bring economic growth as well as technically sound industry, capable of supporting nuclear energy industry needs in the country, and recommend action items for timely technical upgrading of Malaysian expertise related to nuclear energy industry.

  13. Conductors with small Fermi energies and small gap energies

    SciTech Connect

    Thorn, R.J.

    1993-09-01

    If the Fermi energy is of the order of meV`s, the usual treatment of the density of free electrons is not valid, but use can be made of an averaged density of states that depends weakly on temperature, so that the temperature variation of the conductivity can be expressed by the equation: {sigma} {congruent} CT{sup (1-s)} 1n{l_brace}[(exp({beta}E{sub f}) + 1)/2][exp({minus}{beta}(E{sub g} {minus} E{sub f})) + 1)]{r_brace} in which E{sub f} is the Fermi energy, E{sub g} is the top of the energy gap for thermal activation, s is the exponent of the temperature-dependent scattering. This equation serves to define a class of solids consisting of a microcomposite with a narrow conduction band for which E{sub f} of the order of ceV`s or less and a thermal activated conduction for which E{sub g} is of the order of ceV`s. It describes quantitatively the conductivity, {sigma}(T;{Delta}, for YBa{sub 2}Cu{sub 3}O{sub 7-{Delta}} and {sigma}(T;p) as the hydrostatic pressure p is varied for {kappa}-(BEDT-TTF){sub 2}CuN(CN){sub 2}Br.

  14. Localization of metal-induced gap states at the metal-insulator interface: Origin of flux noise in SQUIDs and superconducting qubits

    SciTech Connect

    Choi, SangKook; Lee, Dung-Hai; Louie, Steven G.; Clarke, John

    2009-10-10

    The origin of magnetic flux noise in Superconducting Quantum Interference Devices with a power spectrum scaling as 1/f (f is frequency) has been a puzzle for over 20 years. This noise limits the decoherence time of superconducting qubits. A consensus has emerged that the noise arises from fluctuating spins of localized electrons with an areal density of 5 x 10(17)m(-2). We show that, in the presence of potential disorder at the metal-insulator interface, some of the metal-induced gap states become localized and produce local moments. A modest level of disorder yields the observed areal density.

  15. Design of a 4.5 MJ/1 MW sectored toroidal superconducting energy storage magnet

    NASA Astrophysics Data System (ADS)

    Bhunia, Uttam; Akhter, Javed; Nandi, Chinmay; Pal, Gautam; Saha, Subimal

    2014-09-01

    A 4.5 MJ/1 MW superconducting magnetic energy storage (SMES) system is being developed at VECC centre, Kolkata. The magnet system consists of the cryostat and coil assembly comprising eight superconducting solenoid coils made of custom-made NbTi based Rutherford-type cable and arranged in toroidal fashion with finite inter-sector gap. Since the strong electromagnetic force distributed to the coil is asymmetric and non-uniform in nature, a precise 3-D finite element analysis (FEA) has been carried out to design a mechanically stable coil and support structure under various operational scenarios. The results reveal that maximum stress developed on coil and its support structure is below allowable stress limit. Extensive transient analysis has also been carried out to evaluate transient loss and assess the feasibility of using helium re-condensation technology with commercially available cryo-refrigerators. Finally, quench protection scenario has also been discussed suitable for this toroidal-type SMES system. The article investigates the design concept of the cryostat and coil assembly.

  16. Which Way to the Energy Gap?

    ERIC Educational Resources Information Center

    Loftas, Tony

    1973-01-01

    The higher cost of energy in the future might well dampen the current ardour for industrialization. Cheap sources are the ones most likely to disappear, pointing to a further disparity between industrialized and nonindustrialized societies. (BL)

  17. Energy gap refractive index relations in semiconductors An overview

    NASA Astrophysics Data System (ADS)

    Ravindra, N. M.; Ganapathy, Preethi; Choi, Jinsoo

    2007-03-01

    An overview of the understanding of correlations between energy gap and refractive index of semiconductors is presented here. The atomic approach of Moss, the nearly free electron model of Penn, the oscillator concept of Wemple and the optical polarizability approach of Finkenrath are considered in this study. The Ravindra relation is discussed in the context of alternate approaches that have been presented in the literature. Case studies of applications of these relations to infrared materials and wide band gap semiconductors are presented.

  18. Energy levels of exciton in a gapped graphene sheet

    NASA Astrophysics Data System (ADS)

    Fallah, Farhang; Esmaeilzadeh, Mahdi

    2013-08-01

    A theory is presented for exciton formation in a graphene sheet using the center-of-mass approximation. The energy levels and wavefunctions of exciton are calculated analytically which show that the exciton can form if the band gap of graphene is not zero. We show that the energy gap of graphene plays the role of the mass which if not zero, leads to formation of the excitons. It is shown that the main quantum number of the exciton ground state changes with the graphene dielectric constant. Also, all of the states are found to be four-fold degenerate. The binding energy of exciton can reach as high as 1/4 of the energy gap of graphene which is notable among the conventional quasi-2D systems. This result can play an important rule in the photonics of graphene.

  19. Average energy gap of AIBIIIC2VI optoelectronic materials

    NASA Astrophysics Data System (ADS)

    Kumar, Virendra; Chandra, Dinesh

    1991-03-01

    (In this paper we propose a model based on plasma oscillations theory of solids for the calculatio f th average energy gap of optoelectronic materials having A B-''- 1C2 chalcopyrite stru eture. In the present calculation special care of delectrons in the case of noble and transition metal compounds has been taken into account. Our calculated values are in excellent agreement with the reported values). The dielectric theory of Phillips1 Van Vechten2''3 and Levine has been widely used in a varity of physicochemical problems relating to crystal structures nonlinear optical susceptibilit ies dielectric constant cohesive energies heats of formation average energy gaps etc. Using the concept of these theories the author 5 has recently developed a model based on plasma oscill ations theory of solids for the calculation of the covalent (Eh)afld ionic (C) energy gaps of several semiconductors having different crystal structures. . In the present paper we extend the calculation of the average energy gap in the case of AIBIIIC2VI semiconductors. The expressons for the Eh and C in terms of plasmon energy can be written as7 Eh K1 (tw)L6533 eV (1) C K2b (!iw)2" ex [ K3(hw)" 3 ] eV . (2) If delectrons are present in the crystal following relationhas been developed for the ionic energy gap while the covalent energy gap remains the same. C Kb (w)2" exp [K5 (''hw) (hw)2" 3J eV () where K''s

  20. Energy and water potential of the Southeastern Anatolia Project (GAP)

    SciTech Connect

    Kaygusuz, K.

    1999-12-01

    This article gives an overview of energy and water potential of the Southeastern Anatolia Project (GAP) in Turkey. This integrated socioeconomic development project is one of the largest of its kind in the world. The GAP region is rich in water and soil resources. The Euphrates and Tigris Rivers represent over 28% of the nation's water supply by rivers, and the economically irrigatable areas in the region make up 20% of those for the entire country. On the other hand, the GAP region is the richest region of the country in terms of its hydroelectric potential as well as its oil and asphalt reserves. The GAP region has a 22% share of the country's total hydroelectric potential, with plans for 22 dams and 19 hydropower plants. Once completed, 27 billion kWh of electricity will be generated. In addition to this hydropower and oil potential, the GAP region is also the richest region of Turkey as far as solar energy production is concerned. In meeting the energy requirements of the developing regions worldwide and in Turkey, solar energy is being taken into account as an important renewable source of energy.

  1. Low cost composite structures for superconducting magnetic energy storage systems

    SciTech Connect

    Rix, C. ); McColskey, D. ); Acree, R. )

    1994-07-01

    As part of the Superconducting Magnetic Energy Storage/Engineering Test Model (SMES-ETM) programs, design, analysis, fabrication and test programs were conducted to evaluate the low cost manufacturing of Fiberglass Reinforced Plastic (FRP) beams for usage as major components of the structural and electrical insulation systems. These studies utilized pultrusion process technologies and vinylester resins to produce large net sections at costs significantly below that of conventional materials. Demonstration articles incorporating laminate architectures and design details representative of SMES-ETM components were fabricated using the pultrusion process and epoxy, vinylester, and polyester resin systems. The mechanical and thermal properties of these articles were measured over the temperature range from 4 K to 300 K. The results of these tests showed that the pultruded, vinylester components have properties comparable to those of currently used materials, such as G-10, and are capable of meeting the design requirements for the SMES-ETM system.

  2. Low cost composite structures for superconducting magnetic energy storage systems

    NASA Astrophysics Data System (ADS)

    Rix, Craig; McColskey, David; Acree, Robert

    1994-07-01

    As part of the Superconducting Magnetic Energy Storage/Engineering Test Model (SMES-ETM) program, design, analysis, fabrication and test programs were conducted to evaluate the low cost manufacturing of Fiberglass Reinforced Plastic (FRP) beams for usage as major components of the structural and electrical insulation systems. These studies utilized pultrusion process technologies and vinylester resins to produce large net sections at costs significantly below that of conventional materials. Demonstration articles incorporating laminate architectures and design details representative of SMES-ETM components were fabricated using the pultrusion process and epoxy, vinylester, and polyester resin systems. The mechanical and thermal properties of these articles were measured over the temperature range from 4 K to 300 K. The results of these tests showed that the pultruded, vinylester components have properties comparable to those of currently used materials, such as G-10, and are capable of meeting the design requirements for the SMES-ETM system.

  3. Damping subsynchronous resonance using superconducting magnetic energy storage unit

    SciTech Connect

    Wang, L.; Lee, S.M.; Huang, C.L. . Dept. of Electrical Engineering)

    1994-12-01

    A novel damping scheme using superconducting magnetic energy storage (SMES) unit is proposed in this paper to damp subsynchronous resonance (SSR) of the IEEE Second Benchmark Model, system-1 which is a widely employed standard model for computer simulation of SSR. The studied system contains a turbine-generator set connected to an infinite bus through two parallel transmission lines, one of which is series-capacitor compensated. In order to stabilize all SSR modes, simultaneous active and reactive power modulation and a proportional-integral-derivative (PID) damping controller designed by modal control theory are proposed for the SMES unit. Frequency-domain approach based on eigenvalue analysis and time-domain approach based on nonlinear-model simulations are performed to validate the effectiveness of the damping method. It can be concluded from the simulation results that the proposed damping scheme can effectively suppress SSR of the studied system.

  4. Energy Gaps in the Failed High-Tc Superconductor La_1.875Ba_0.125Cu_O4

    SciTech Connect

    Tanaka, K.

    2011-08-19

    A central issue on high-T{sub c} superconductivity is the nature of the normal-state gap (pseudogap) in the underdoped regime and its relationship with superconductivity. Despite persistent efforts, theoretical ideas for the pseudogap evolve around fluctuating superconductivity, competing order and spectral weight suppression due to many-body effects. Recently, while some experiments in the superconducting state indicate a distinction between the superconducting gap and pseudogap, others in the normal state, either by extrapolation from high-temperature data or directly from La{sub 1.875}Ba{sub 0.125}CuO{sub 4} (LBCO-1/8) at low temperature, suggest the ground-state pseudogap is a single gap of d-wave form. Here we report angle-resolved photoemission (ARPES) data from LBCO-1/8, collected with improved experimental conditions, that reveal the ground-state pseudogap has a pronounced deviation from the simple d-wave form. It contains two distinct components: a d-wave component within an extended region around the node and the other abruptly enhanced close to the antinode, pointing to a dual nature of the pseudogap in this failed high-T{sub c} superconductor which involves a possible precursor pairing energy scale around the node and another of different but unknown origin near the antinode.

  5. Energy Gaps in the Failed High-Tc Superconductor La_1.875Ba_0.125CuO_4

    SciTech Connect

    He, R.

    2010-05-04

    A central issue on high-T{sub c} superconductivity is the nature of the normal-state gap (pseudogap) in the underdoped regime and its relationship with superconductivity. Despite persistent efforts, theoretical ideas for the pseudogap evolve around fluctuating superconductivity, competing order and spectral weight suppression due to many-body effects. Recently, while some experiments in the superconducting state indicate a distinction between the superconducting gap and pseudogap, others in the normal state, either by extrapolation from high-temperature data or directly from La{sub 1.875}Ba{sub 0.125}CuO{sub 4} (LBCO-1/8) at low temperature, suggest the ground-state pseudogap is a single gap of d-wave form. Here we report angle-resolved photoemission (ARPES) data from LBCO-1/8, collected with improved experimental conditions, that reveal the ground-state pseudogap has a pronounced deviation from the simple d-wave form. It contains two distinct components: a d-wave component within an extended region around the node and the other abruptly enhanced close to the antinode, pointing to a dual nature of the pseudogap in this failed high-T{sub c} superconductor which involves a possible precursor pairing energy scale around the node and another of different but unknown origin near the antinode.

  6. Energy Gaps in the Failed High-Tc Superconductor La1.875Ba0.125CuO4

    SciTech Connect

    Not Available

    2011-08-11

    A central issue in high-T{sub c} superconductivity is the nature of the normal-state gap (pseudogap) in the underdoped regime and its relationship with superconductivity. Despite persistent efforts, theoretical ideas for the pseudogap evolve around fluctuating superconductivity, competing order, and spectral weight suppression due to many-body effects. Recently, although some experiments in the superconducting state indicate a distinction between the superconducting gap and pseudogap, others in the normal state, either by extrapolation from high-temperature data or directly from La{sub 1.875)Ba{sub 0.125}CuO{sub 4} (LBCO-1/8) at low temperature, suggest the ground-state pseudogap is a single gap of d-wave form. Here, we report angle-resolved photoemission data from LBCO-1/8, collected with improved experimental conditions, that reveal the ground-state pseudogap has a pronounced deviation from the simple d-wave form. It contains two distinct components: a d-waev component within an extended region around the node and the other abruptly enhanced close to the antinode, pointing to a dual nature of the pseudogap in this failed high-T{sub c} superconductor that involves a possible precursor-pairing energy scale around the node and another of different but unknown origin near the antinode.

  7. Department of Energy`s Wire Development Workshop - Superconductivity program for electric systems

    SciTech Connect

    1996-06-01

    The 1996 High-Temperature Superconducting Wire Development Workshop was held on January 31--February 1 at the Crown Plaza Tampa Westshore in Tampa, Florida. The meeting was hosted by Tampa Electric Company and sponsored by the Department of Energy`s Superconductivity Program for Electric Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. Tampa Electric`s Greg Ramon began the meeting by giving a perspective on the changes now occurring in the utility sector. Major program wire development accomplishments during the past year were then highlighted, particularly the world record achievements at Los Alamos and Oak Ridge National Laboratories. The meeting then focussed on three priority technical issues: thallium conductors; AC losses in HTS conductors; and coated conductors on textured substrates. Following in-depth presentations, working groups were formed in each technology area to discuss and critique the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  8. Glide-plane symmetry and superconducting gap structure of iron-based superconductors.

    PubMed

    Wang, Y; Berlijn, T; Hirschfeld, P J; Scalapino, D J; Maier, T A

    2015-03-13

    We consider the effect of glide-plane symmetry of the Fe-pnictogen/chalcogen layer in Fe-based superconductors on pairing in spin fluctuation models. Recent theories have proposed that so-called η-pairing states with nonzero total momentum can be realized and possess exotic properties such as odd parity spin singlet symmetry and time-reversal symmetry breaking. Here we show that η pairing is inevitable when there is orbital weight at the Fermi level from orbitals with even and odd mirror reflection symmetry in z; however, by explicit calculation, we conclude that the gap function that appears in observable quantities is identical to that found in earlier, 1 Fe per unit cell pseudocrystal momentum calculations. PMID:25815960

  9. Glide-plane symmetry and superconducting gap structure of iron-based superconductors

    DOE PAGES

    Wang, Yan; Berlijn, Tom; Hirschfeld, Peter J.; Scalapino, Douglas J.; Maier, Thomas A.

    2015-03-10

    We consider the effect of glide-plane symmetry of the Fe-pnictogen/chalcogen layer in Fe-based superconductors on pairing in spin fluctuation models. Recent theories propose that so-called η-pairing states with nonzero total momentum can be realized and possess such exotic properties as odd parity spin singlet symmetry and time-reversal symmetry breaking. Here we show that when there is orbital weight at the Fermi level from orbitals with even and odd mirror reflection symmetry in z, η pairing is inevitable; however, we conclude from explicit calculation that the gap function appearing in observable quantities is identical to that found in earlier pseudocrystal momentummore » calculations with 1 Fe per unit cell.« less

  10. Glide-plane symmetry and superconducting gap structure of iron-based superconductors

    SciTech Connect

    Wang, Yan; Berlijn, Tom; Hirschfeld, Peter J.; Scalapino, Douglas J.; Maier, Thomas A.

    2015-03-10

    We consider the effect of glide-plane symmetry of the Fe-pnictogen/chalcogen layer in Fe-based superconductors on pairing in spin fluctuation models. Recent theories propose that so-called η-pairing states with nonzero total momentum can be realized and possess such exotic properties as odd parity spin singlet symmetry and time-reversal symmetry breaking. Here we show that when there is orbital weight at the Fermi level from orbitals with even and odd mirror reflection symmetry in z, η pairing is inevitable; however, we conclude from explicit calculation that the gap function appearing in observable quantities is identical to that found in earlier pseudocrystal momentum calculations with 1 Fe per unit cell.

  11. Large superconducting double-gap, a pronounced pseudogap and evidence for proximity-induced topological superconductivity in the Bi2Te3/Fe1+yTe interfacial superconductor

    NASA Astrophysics Data System (ADS)

    Shen, J. Y.; He, M. Q.; He, Q. L.; Law, K. T.; Sou, I. K.; Lortz, R.; Petrovic, A. P.

    We investigate directional point-contact spectroscopy on a Bi2Te3/ Fe1+yTe heterostructure, fabricated via van der Waals epitaxy, which is interfacial superconducting with an onset TC at 12K and zero resistance below 8K. A large superconducting twin-gap structure is seen down to 0.27K, together with a zero bias conductance peak. The anisotropic smaller gap (Δ1) is around 5 meV at 0.27K and closes at 8K, while the other one (Δ2), as large as 12 meV, is isotropic and eventually evolves into a pseudogap closing at 40K. Both, the two-gap BTK and Dynes models can well reproduce our data, demonstrating Δ1 should be associated with the proximity-induced superconductivity in the topological Bi2Te3 layer, while Δ2 may be attributed to an intrinsically-doped FeTe thin film at the interface. This work was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (603010, SEGHKUST03).

  12. Scientific Affairs Division of NATO Advanced Study Institute: abstracts for nonequilibrium superconductivity, phonons and Kapitza boundaries

    SciTech Connect

    1980-05-01

    Abstracts of papers presented at the meeting are given. Topics covered include: Kapitza resistance; superconducting tunneling; energy gap enhancement in superconductors; instabilities in nonequilibrium superconducting states; exchange of charge between superconducting pairs and quasiparticles; motion of magnetic flux (flux flow); and other new phenomena. (GHT)

  13. Magnetic Energy Storage System: Superconducting Magnet Energy Storage System with Direct Power Electronics Interface

    SciTech Connect

    2010-10-01

    GRIDS Project: ABB is developing an advanced energy storage system using superconducting magnets that could store significantly more energy than today’s best magnetic storage technologies at a fraction of the cost. This system could provide enough storage capacity to encourage more widespread use of renewable power like wind and solar. Superconducting magnetic energy storage systems have been in development for almost 3 decades; however, past devices were designed to supply power only for short durations—generally less than a few minutes. ABB’s system would deliver the stored energy at very low cost, making it ideal for eventual use in the electricity grid as a costeffective competitor to batteries and other energy storage technologies. The device could potentially cost even less, on a per kilowatt basis, than traditional lead-acid batteries.

  14. Anisotropic Superconducting Gap and Elongated Vortices with Caroli-De Gennes-Matricon States in the New Superconductor Ta4Pd3Te16

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Du, Zengyi; Fang, Delong; Wang, Zhenyu; Li, Yufeng; Du, Guan; Zhu, Xiyu; Wen, Hai-Hu

    2015-03-01

    The superconducting state is formed by the condensation of a large number of Cooper pairs. The normal state electronic properties can give significant influence on the superconducting state. For usual type-II superconductors, the vortices are cylinder like with a round cross-section. For many two dimensional superconductors, such as Cuprates, 2H-NbSe2 etc., albeit the in-plane anisotropy, the vortices generally have a round shape. In this paper we report the scanning tunneling microscopy/spectroscopy measurement results of a recently discovered new superconductor Ta4Pd3Te16. The chain like conducting channels of PdTe2 in Ta4Pd3Te16 make a significant anisotropy of the in-plane Fermi velocity. We suggest at least one anisotropic superconducting gap with gap minima or possible node in this multiband system. In addition, elongated vortices are observed with an anisotropy of about ξ∥ b/ξ⊥b ~ 2.5. Clear Caroli-de-Gennes-Matricon states are also observed. Our results will initiate the study on the elongated vortices and superconducting mechanism in the new superconductor Ta4Pd3Te16. This work was supported by the Ministry of Science and Technology of China (973 Projects: 2011CBA00102, 2012CB821403), NSF of China, and PAPD.

  15. Anisotropic superconducting gap and elongated vortices with Caroli-De Gennes-Matricon states in the new superconductor Ta4Pd3Te16.

    PubMed

    Du, Zengyi; Fang, Delong; Wang, Zhenyu; Li, Yufeng; Du, Guan; Yang, Huan; Zhu, Xiyu; Wen, Hai-Hu

    2015-01-01

    The superconducting state is formed by the condensation of a large number of Cooper pairs. The normal state electronic properties can give significant influence on the superconducting state. For usual type-II superconductors, the vortices are cylinder like with a round cross-section. For many two dimensional superconductors, such as Cuprates, albeit the in-plane anisotropy, the vortices generally have a round shape. In this paper we report results based on the scanning tunnelling microscopy/spectroscopy measurements on a newly discovered superconductor Ta4Pd3Te16. The chain-like conducting channels of PdTe2 in Ta4Pd3Te16 make a significant anisotropy of the in-plane Fermi velocity. We suggest at least one anisotropic superconducting gap with gap minima or possible node exists in this multiband system. In addition, elongated vortices are observed with an anisotropy of ξ||b/ξ&bottom⊥b ≈ 2.5. Clear Caroli-de Gennes-Matricon states are also observed within the vortex cores. Our results will initiate the study on the elongated vortices and superconducting mechanism in the new superconductor Ta4Pd3Te16.

  16. Energy gaps in Bi2Sr2CaCu2O8+δ cuprate superconductors

    PubMed Central

    Ren, J. K.; Zhu, X. B.; Yu, H. F.; Tian, Ye; Yang, H. F.; Gu, C. Z.; Wang, N. L.; Ren, Y. F.; Zhao, S. P.

    2012-01-01

    The relationship between the cuprate pseudogap (Δp) and superconducting gap (Δs) remains an unsolved mystery. Here, we present a temperature- and doping-dependent tunneling study of submicron Bi2Sr2CaCu2O8+δ intrinsic Josephson junctions, which provides a clear evidence that Δs closes at a temperature Tc0 well above the superconducting transition temperature Tc but far below the pseudogap opening temperature T*. We show that the superconducting pairing first occurs predominantly on a limited Fermi surface near the node below Tc0, accompanied by a Fermi arc due to the lifetime effects of quasiparticles and Cooper pairs. The arc length has a linear temperature dependence, and as temperature decreases below Tc it reduces to zero while pairing spreads to the antinodal region of the pseudogap leading to a d-wave superconducting gap on the entire Fermi surface at lower temperatures. PMID:22355760

  17. ``Hybrid'' multi-gap/single-gap Josephson junctions: Evidence of macroscopic quantum tunneling in superconducting-to-normal switching experiments on MgB2/I/Pb and MgB2/I/Sn junctions

    NASA Astrophysics Data System (ADS)

    Carabello, Steve; Lambert, Joseph; Dai, Wenqing; Li, Qi; Chen, Ke; Cunnane, Daniel; Xi, X. X.; Ramos, Roberto

    We report results of superconducting-to-normal switching experiments on MgB2/I/Pb and MgB2/I/Sn junctions, with and without microwaves. These results suggest that the switching behavior is dominated by quantum tunneling through the washboard potential barrier, rather than thermal excitations or electronic noise. Evidence includes a leveling in the standard deviation of the switching current distribution below a crossover temperature, a Lorentzian shape of the escape rate enhancement peak upon excitation by microwaves, and a narrowing in the histogram of escape counts in the presence of resonant microwave excitation relative to that in the absence of microwaves. These are the first such results reported in ``hybrid'' Josephson tunnel junctions, consisting of multi-gap and single-gap superconducting electrodes.

  18. The role of gap analyses in energy assurance planning.

    PubMed

    Shea, Katherine

    2013-01-01

    Energy-related emergencies, such as power outages or interruptions to other energy supplies, can arise from a number of factors. Common causes include severe weather events--such as snowstorms, hurricanes, or summer storms with strong winds--as well as energy infrastructure that is overburdened, aging, or in need of repair. As past experience indicates, jurisdictions will continue to experience severe weather events, as well as confront infrastructure issues that make future power outages likely. As a result, state and local governments have turned to energy assurance planning, an energy-specific form of planning that helps jurisdictions prepare for and recover from energy emergencies. Energy assurance recognizes that power loss/disruption cannot be eradicated completely, but jurisdictions can mitigate the impact of power loss through effective planning. This article discusses the role of energy assurance planning and provides a description of what energy assurance means and why developing such plans at the state and local levels is important. In addition, this article discusses the role of statutory gap analyses in energy assurance planning and discusses how a gap analysis can be used by planners to identify trends and gaps in energy assurance. To provide context, a recently conducted statutory gap analysis analyzing national emergency backup power trends is provided as a case study. A summary of this project and key findings is included. Finally, this article briefly touches on legislation as an alternative to energy assurance planning, and provides summaries of recent legislative proposals introduced in the aftermath of Hurricane Sandy. PMID:24180061

  19. Analytical design of a superconducting magnetic energy storage for pulsed power peak

    SciTech Connect

    Netter, D.; Leveque, J.; Rezzoug, A.; Caron, J.P.; Sargos, F.M.

    1996-09-01

    A Superconducting Magnetic Energy Storage can be used to produce very high pulsed power peak. A superconducting coil is magnetically coupled with another coil linked to the load. During the storage phase, the current is constant. In order to transfer the energy to the load, the authors cause the quench of the superconducting coil. It is very important to know the efficiency of the transfer and how much energy is discharged in the Helium vessel. In this paper, they propose an analytical method which enables to calculate very quickly the electrical parameters of such a device.

  20. Development of Low Energy Gap and Fully Regioregular Polythienylenevinylene Derivative

    DOE PAGES

    David, Tanya M. S.; Zhang, Cheng; Sun, Sam-Shajing

    2014-01-01

    Low energy gap and fully regioregular conjugated polymers find its wide use in solar energy conversion applications. This paper will first briefly review this type of polymers and also report synthesis and characterization of a specific example new polymer, a low energy gap, fully regioregular, terminal functionalized, and processable conjugated polymer poly-(3-dodecyloxy-2,5-thienylene vinylene) or PDDTV. The polymer exhibited an optical energy gap of 1.46 eV based on the UV-vis-NIR absorption spectrum. The electrochemically measured highest occupied molecular orbital (HOMO) level is −4.79 eV, resulting in the lowest unoccupied molecular orbital (LUMO) level of −3.33 eV based on optical energy gap. The polymer wasmore » synthesized via Horner-Emmons condensation and is fairly soluble in common organic solvents such as tetrahydrofuran and chloroform with gentle heating. DSC showed two endothermic peaks at 67°C and 227°C that can be attributed to transitions between crystalline and liquid states. The polymer is thermally stable up to about 300°C. This polymer appears very promising for cost-effective solar cell applications.« less

  1. Superconducting RF cavities and magnets for a 4-TeV energy muon collider

    SciTech Connect

    Shu, Q.S. |; Green, M.; Neuffer, D.; Summers, D.; Simrock, S.; Willen, E.

    1997-11-01

    The accelerators must take the muon beams from {approximately} 100 MeV to 2 TeV energies within the muon lifetime for a 4 TeV energy muon collider. These constraints plus the muon decay heating seriously challenge the designs of the superconducting RF (SRF) cavities and magnets in the accelerators and collider ring. The multiple superconducting recirculation linac and the very rap8id-cycling superconducting synchrotron approach are both studied. The authors briefly introduce the technical considerations and preliminary designs of the SRF systems and magnets.

  2. Superconducting gamma and fast-neutron spectrometers with high energy resolution

    DOEpatents

    Friedrich, Stephan; , Niedermayr, Thomas R.; Labov, Simon E.

    2008-11-04

    Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

  3. Spectral Gap Energy Transfer in Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Bhushan, S.; Walters, K.; Barros, A. P.; Nogueira, M.

    2012-12-01

    Experimental measurements of atmospheric turbulence energy spectra show E(k) ~ k-3 slopes at synoptic scales (~ 600 km - 2000 km) and k-5/3 slopes at the mesoscales (< 400 km). The -5/3 spectra is presumably related to 3D turbulence which is dominated by the classical Kolmogrov energy cascade. The -3 spectra is related to 2D turbulence, which is dominated by strong forward scatter of enstrophy and weak forward scatter of energy. In classical 2D turbulence theory, it is expected that a strong backward energy cascade would develop at the synoptic scale, and that circulation would grow infinitely. To limit this backward transfer, energy arrest at macroscales must be introduced. The most commonly used turbulence models developed to mimic the above energy transfer include the energy backscatter model for 2D turbulence in the horizontal plane via Large Eddy Simulation (LES) models, dissipative URANS models in the vertical plane, and Ekman friction for the energy arrest. One of the controversial issues surrounding the atmospheric turbulence spectra is the explanation of the generation of the 2D and 3D spectra and transition between them, for energy injection at the synoptic scales. Lilly (1989) proposed that the existence of 2D and 3D spectra can only be explained by the presence of an additional energy injection in the meso-scale region. A second issue is related to the observations of dual peak spectra with small variance in meso-scale, suggesting that the energy transfer occurs across a spectral gap (Van Der Hoven, 1957). Several studies have confirmed the spectral gap for the meso-scale circulations, and have suggested that they are enhanced by smaller scale vertical convection rather than by the synoptic scales. Further, the widely accepted energy arrest mechanism by boundary layer friction is closely related to the spectral gap transfer. This study proposes an energy transfer mechanism for atmospheric turbulence with synoptic scale injection, wherein the generation

  4. Public perceptions and information gaps in solar energy in Texas

    NASA Astrophysics Data System (ADS)

    Rai, Varun; Beck, Ariane L.

    2015-07-01

    Studying the behavioral aspects of the individual decision-making process is important in identifying and addressing barriers in the adoption of residential solar photovoltaic (PV). However, there is little systematic research focusing on these aspects of residential PV in Texas, an important, large, populous state, with a range of challenges in the electricity sector including increasing demand, shrinking reserve margins, constrained water supply, and challenging emissions reduction targets under proposed federal regulations. This paper aims to address this gap through an empirical investigation of a new survey-based dataset collected in Texas on solar energy perceptions and behavior. The results of this analysis offer insights into the perceptions and motivations influencing intentions and behavior toward solar energy in a relatively untapped market and help identify information gaps that could be targeted to alleviate key barriers to adopting solar, thereby enabling significant emissions reductions in the residential sector in Texas.

  5. Optical and electronic properties of some semiconductors from energy gaps

    NASA Astrophysics Data System (ADS)

    Tripathy, Sunil K.; Pattanaik, Anup

    2016-03-01

    II-VI and III-V tetrahedral semiconductors have significant potential for novel optoelectronic applications. In the present work, some of the optical and electronic properties of these groups of semiconductors have been studied using a recently proposed empirical relationship for refractive index from energy gap. The calculated values of these properties are also compared with those calculated from some well known relationships. From an analysis of the calculated electronic polarisability of these tetrahedral binary semiconductors from different formulations, we have proposed an empirical relation for its calculation. The predicted values of electronic polarisability of these semiconductors agree fairly well with the known values over a wide range of energy gap. The proposed empirical relation has also been used to calculate the electronic polarisability of some ternary compounds.

  6. Superconducting gap evolution in overdoped BaFe₂(As1-xPx)₂ single crystals through nanocalorimetry

    SciTech Connect

    Campanini, D.; Diao, Z.; Fang, L.; Kwok, W.-K.; Welp, U.; Rydh, A.

    2015-06-18

    We report on specific heat measurements on clean overdoped BaFe₂(As1-xPx)₂ single crystals performed with a high resolution membrane-based nanocalorimeter. A nonzero residual electronic specific heat coefficient at zero temperature γr=C/T|T→0 is seen for all doping compositions, indicating a considerable fraction of the Fermi surface ungapped or having very deep minima. The remaining superconducting electronic specific heat is analyzed through a two-band s-wave α model in order to investigate the gap structure. Close to optimal doping we detect a single zero-temperature gap of Δ₀~5.3 me V, corresponding to Δ₀/kBTc ~ 2.2. Increasing the phosphorus concentration x, the main gap reduces till a value of Δ₀ ~ 1.9 meV for x = 0.55 and a second weaker gap becomes evident. From the magnetic field effect on γr, all samples however show similar behavior [γr(H) - γr (H = 0)∝ Hn, with n between 0.6 and 0.7]. This indicates that, despite a considerable redistribution of the gap weights, the total degree of gap anisotropy does not change drastically with doping.

  7. Parametric investigation of nano-gap thermophotovoltaic energy conversion

    NASA Astrophysics Data System (ADS)

    Lau, Japheth Z.-J.; Bong, Victor N.-S.; Wong, Basil T.

    2016-03-01

    Nano-gap thermophotovoltaic energy converters have the potential to be excellent generators of electrical power due to the near-field radiative effect which enhances the transfer of energy from one medium to another. However, there is still much to learn about this new form of energy converter. This paper seeks to investigate three parameters that affect the performance of nano-gap thermophotovoltaic devices: the emitter material, the thermophotovoltaic cell material, and the cell thickness. Furthermore, the temperature profiles in insulated thin films (cells exposed to below-band gap near-field radiation) are analysed. It was discovered that an effective emitter material is one that has a high generalised emissivity value and is also able to couple with the TPV cell material through surface polaritons while a cell material's electrical properties and its thickness has heavy bearing on its internal quantum efficiency. In regards to the temperature profile, the heat-flux absorbed causes a rise in temperature across the thin film, but is insufficient to generate a temperature gradient across the film.

  8. Specific heat in the superconducting and normal state (2-300 K, 0-16 T), and magnetic susceptibility of the 38 K superconductor MgB 2: evidence for a multicomponent gap

    NASA Astrophysics Data System (ADS)

    Wang, Yuxing; Plackowski, Tomasz; Junod, Alain

    2001-06-01

    The specific heat C of a sintered polycrystalline sample of MgB 2 with a bulk superconducting transition temperature Tc=36.7 K is measured as a function of the temperature (2-300 K) and magnetic field (0-16 T), together with magnetic properties (normal-state susceptibility, superconducting-state magnetization, etc.). The Sommerfeld constant γ=0.89±0.05 mJ/K 2/gat (2.7 mJ/K 2/mol) is determined in the normal state above Hc2. The normal- and superconducting-state entropies are equal at Tc. Several moments of the PDOS are obtained from the lattice specific heat. We report bulk values for: the thermodynamic critical field, Bc(0)=0.26 T; the slope of the upper critical field, (d Bc2/d T) Tc=0.56 T/K; the Ginzburg-Landau parameter, κ=38; the coherence length, ξ≅5 nm; the lower critical field, Bc1≅0.018 T; the London penetration depth, λ(0)≅180 nm. These results characterize MgB 2 as a type-II superconductor. The nearly quadratic dependence of C( T) versus T at T≪ Tc, its non-linear field dependence, and the discrepancy between the electron-phonon coupling constant λep as determined by the renormalization of the electron density of states ( λep≅0.6) and by McMillan's equation for isotropic superconductors ( λep≅1.1), are inconsistent with a single isotropic gap. In addition to high phonon frequencies, anisotropy or two-band gap structure may explain why the critical temperature of this superconductor is high in spite of its low condensation energy, which does not exceed 1/16 of that of YBa 2Cu 3O 7 and 1/4 of that of Nb 3Sn.

  9. Superconductivity, cohesive energy density, and electron-atom ratio in metals

    NASA Technical Reports Server (NTRS)

    England, C.; Lawson, D. D.; Hrubes, J. D.

    1981-01-01

    It is shown that superconductivity above 8 K occurs in alloys and metallic compounds within relatively narrow regions of cohesive energy density with a sharp peak which includes Nb3Ge, SiV3, Nb3Ga, and NbN. When cross-correlated with the electron-atom ratio, high-temperature superconductivity can be observed in only a few regions. This suggests a search for superconductors with high-transition temperatures and critical fields within these regions.

  10. Bose gas with generalized dispersion relation plus an energy gap

    NASA Astrophysics Data System (ADS)

    Solis, M. A.; Martinez, J. G.; Garcia, J.

    We report the critical temperature, the condensed fraction, the internal energy and the specific heat for a d-dimensional Bose gas with a generalized dispersion relation plus an energy gap, i.e., ɛ =ɛ0 for k = 0 and ɛ =ɛ0 + Δ +csks , for k > 0 , where ℏk is the particle momentum, ɛ0 the lowest particle energy, cs a constant with dimension of energy multiplied by a length to the power s > 0 . When Δ > 0 , a Bose-Einstein critical temperature Tc ≠ 0 exists for any d / s >= 0 at which the internal energy shows a peak and the specific heat shows a jump. The critical temperature and the specific heat jump increase as functions of the gap but they decrease as functions of d / s . Thermodynamic properties are ɛ0 independent since this is just a reference energy. For Δ = 0 we recover the results reported in Ref. [1]. V. C. Aguilera-Navarro, M. de Llano y M. A. Solís, Eur. J. Phys. 20, 177 (1999). We acknowledge partial support from Grants PAPIIT IN111613 and CONACyT 221030.

  11. Universal heat conduction in Ce1-xYbxCoIn5: Evidence for robust nodal d-wave superconducting gap

    DOE PAGES

    Xu, Y.; Petrovic, C.; Dong, J. K.; Lum, I. K.; Zhang, J.; Hong, X. C.; He, L. P.; Wang, K. F.; Ma, Y. C.; Maple, M. B.; et al

    2016-02-01

    In the heavy-fermion superconductor Ce1-xYbxCoIn5, Yb doping was reported to cause a possible change from nodal d-wave superconductivity to a fully gapped d-wave molecular superfluid of composite pairs near x ≈ 0.07 (nominal value xnom = 0.2). Here we present systematic thermal conductivity measurements on Ce1-xYbxCoIn5 (x = 0.013, 0.084, and 0.163) single crystals. The observed finite residual linear term κ0/T is insensitive to Yb doping, verifying the universal heat conduction of the nodal d-wave superconducting gap in Ce1-xYbxCoIn5. Similar universal heat conduction is also observed in the CeCo(In1–yCdy)5 system. Furthermore, these results reveal a robust nodal d-wave gap inmore » CeCoIn5 upon Yb or Cd doping.« less

  12. Effects of out-of-plane disorder on the nodal quasiparticle and superconducting gap in single-layer Bi2Sr1.6L0.4CuO6+δ (L=La,Nd,Gd)

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Yoshida, T.; Fujimori, A.; Lu, D. H.; Shen, Z.-X.; Kubota, M.; Ono, K.; Ishikado, M.; Fujita, K.; Uchida, S.

    2009-04-01

    How out-of-plane disorder affects the electronic structure has been investigated for the single-layer cuprates Bi2Sr1.6L0.4CuO6+δ ( L=La , Nd, and Gd) by angle-resolved photoemission spectroscopy. We have observed that, with increasing disorder, while the Fermi-surface shape and band dispersions are not affected, the quasiparticle width increases, the antinodal gap is enhanced and the superconducting gap in the nodal region is depressed. The results indicate that the superconductivity is significantly depressed by out-of-plane disorder through the enhancement of the antinodal gap and the depression of the superconducting gap in the nodal region.

  13. Effects of Out-of-Plane Disorder on the Nodal Quasiparticle and Superconducting Gap in Single-Layer Bi_2Sr_1.6Ln_0.4CuO_6 delta (Ln = La, Nd, Gd)

    SciTech Connect

    Hashimoto, M.

    2011-01-04

    How out-of-plane disorder affects the electronic structure has been investigated for the single-layer cuprates Bi{sub 2}Sr{sub 1.6}Ln{sub 0.4}CuO{sub 6+{delta}} (Ln = La, Nd, Gd) by angle-resolved photoemission spectroscopy. We have observed that, with increasing disorder, while the Fermi surface shape and band dispersions are not affected, the quasi-particle width increases, the anti-nodal gap is enhanced and the superconducting gap in the nodal region is depressed. The results indicate that the superconductivity is significantly depressed by out-of-plane disorder through the enhancement of the anti-nodal gap and the depression of the superconducting gap in the nodal region.

  14. Energy Gaps and Interaction Blockade in Confined Quantum Systems

    SciTech Connect

    Capelle, K.; Borgh, M.; Kaerkkaeinen, K.; Reimann, S. M.

    2007-07-06

    We investigate universal properties of strongly confined particles that turn out to be dramatically different from what is observed for electrons in atoms and molecules. For a large class of harmonically confined systems, such as small quantum dots and optically trapped atoms, many-body particle addition and removal energies, and energy gaps, are accurately obtained from single-particle eigenvalues. Transport blockade phenomena are related to the derivative discontinuity of the exchange-correlation functional. This implies that they occur very generally, with Coulomb blockade being a particular realization of a more general phenomenon. In particular, we predict a van der Waals blockade in cold atom gases in traps.

  15. Superfluid density and microwave conductivity of FeSe superconductor: ultra-long-lived quasiparticles and extended s-wave energy gap

    NASA Astrophysics Data System (ADS)

    Li, Meng; Lee-Hone, N. R.; Chi, Shun; Liang, Ruixing; Hardy, W. N.; Bonn, D. A.; Girt, E.; Broun, D. M.

    2016-08-01

    FeSe is an iron-based superconductor of immense current interest due to the large enhancements of T c that occur when it is pressurised or grown as a single layer on an insulating substrate. Here we report precision measurements of its superconducting electrodynamics, at frequencies of 202 and 658 MHz and at temperatures down to 0.1 K. The quasiparticle conductivity reveals a rapid collapse in scattering on entering the superconducting state that is strongly reminiscent of unconventional superconductors such as cuprates, organics and the heavy fermion material CeCoIn5. At the lowest temperatures the quasiparticle mean free path exceeds 50 μm, a record for a compound superconductor. From the superfluid response we confirm the importance of multiband superconductivity and reveal strong evidence for a non-zero energy-gap minimum.

  16. Energy gap from tunneling and metallic contacts onto MgB{sub 2}: Possible evidence for a weakened surface layer

    SciTech Connect

    Schmidt, Herbert; Zasadzinski, J. F.; Gray, K. E.; Hinks, D. G.

    2001-06-01

    Point-contact tunnel junctions using a Au tip on sintered MgB{sub 2} pellets reveal a sharp superconducting energy gap that is confirmed by subsequent metallic contacts made on the same sample. The peak in the tunneling conductance and the metallic contact conductance follow the BCS form, but the gap values of 4.3{minus}4.6 meV are less than the weak-coupling BCS value of 5.9 meV for the bulk T{sub c} of 39 K. The low value of {Delta} compared to the BCS value for the bulk T{sub c} is possibly due to chemical reactions at the surface.

  17. Low-energy physical properties of high- Tc superconducting Cu oxides: A comparison between the resonating valence bond and experiments

    NASA Astrophysics Data System (ADS)

    Yang, Kai-Yu; Shih, C. T.; Chou, C. P.; Huang, S. M.; Lee, T. K.; Xiang, T.; Zhang, F. C.

    2006-06-01

    In a recent review by Anderson and co-workers, it was pointed out that an early resonating valence bond (RVB) theory is able to explain a number of unusual properties of high-temperature superconducting (SC) Cu oxides. Here we extend previous calculations to study more systematically the low-energy physical properties of the plain vanilla d -wave RVB state, and to compare the results with the available experiments. We use a renormalized mean-field theory combined with variational Monte Carlo and power Lanczos methods to study the RVB state of an extended t-J model in a square lattice with parameters suitable for the hole-doped Cu oxides. The physical observable quantities we study include the specific heat, the linear residual thermal conductivity, the in-plane magnetic penetration depth, the quasiparticle energy at the antinode (π,0) , the superconducting energy gap, the quasiparticle spectra, and the Drude weights. The traits of nodes (including kF , the Fermi velocity vF , and the velocity along Fermi surface v2 ), and the SC order parameter are studied. Comparisons of the theory and the experiments in cuprates show an overall qualitative agreement, especially on their doping dependences.

  18. Superconductivity of the magnetized electron gas of a quantum cylinder

    SciTech Connect

    Eminov, P. A. Sezonov, Yu. I.

    2008-10-15

    A microscopic theory of superconductivity is developed for the magnetized electron gas on a cylindrical surface. The Gibbs free energy is calculated for the superconducting system. A gap equation is derived that determines the critical temperature as a function of the quantum-cylinder dimensions and the Aharonov-Bohm parameter. It is shown that the gap not only exhibits Aharonov-Bohm oscillations, but also oscillates with varying curvature of the cylindrical surface.

  19. Doping Evolution of the Superconducting Gap Structure in Heavily Hole-Doped Ba1-xKxFe2As2: a Heat Transport Study

    NASA Astrophysics Data System (ADS)

    Hong, Xiao-Chen; Wang, Ai-Feng; Zhang, Zhen; Pan, Jian; He, Lan-Po; Luo, Xi-Gang; Chen, Xian-Hui; Li, Shi-Yan

    2015-12-01

    We performed systematic thermal conductivity measurements on heavily hole-doped Ba$_{1-x}$K$_x$Fe$_2$As$_2$ single crystals with 0.747 $\\leq x \\leq$ 0.974. At $x$ = 0.747, the $\\kappa_0/T$ is negligible, indicating nodeless superconducting gap. A small residual linear term $\\kappa_0/T$ ($\\approx$ 0.035 mW/K$^2$ cm) appears at $x$ = 0.826, and it increases slowly up to $x$ = 0.974, followed by a drastic increase of more than 20 times to the pure KFe$_2$As$_2$ ($x$ = 1.0). This doping dependence of $\\kappa_0/T$ clearly shows that the nodal gap appears near $x = 0.8$, likely associated with the change of Fermi surface topology. The small values of $\\kappa_0/T$ from $x$ = 0.826 to 0.974 support a "$\\curlyvee$"-shaped nodal $s$-wave gap recently revealed by angle-resolved photoemission spectroscopy experiments at $x$ = 0.9. Furthermore, the drastic increase of $\\kappa_0/T$ from $x$ = 0.974 to 1.0 is inconsistent with a symmetry-imposed $d$-wave gap in KFe$_2$As$_2$, and the possible nodal gap structure in KFe$_2$As$_2$ is discussed.

  20. Revisiting orbital-fluctuation-mediated superconductivity in LiFeAs: Nontrivial spin-orbit interaction effects on the band structure and superconducting gap function

    NASA Astrophysics Data System (ADS)

    Saito, Tetsuro; Yamakawa, Youichi; Onari, Seiichiro; Kontani, Hiroshi

    2015-10-01

    The precise gap structure in LiFeAs (Tc=18 K) given by ARPES studies offers significant information that helps us understand the pairing mechanism in iron-based superconductors. The most remarkable characteristic in the LiFeAs gap structure would be that "the largest gap emerges on the tiny hole-pockets around the Z point." This result has been naturally explained in terms of the orbital-fluctuation scenario [T. Saito et al., Phys. Rev. B 90, 035104 (2014)], 10.1103/PhysRevB.90.035104, whereas the opposite result is obtained by the spin-fluctuation scenario. In this paper, we study the gap structure in LiFeAs by taking the spin-orbit interaction (SOI) into account, motivated by the recent ARPES studies that revealed a significant SOI-induced modification of the Fermi surface topology. For this purpose, we construct two possible tight-binding models with finite SOI by referring the band structures given by different ARPES groups. In addition, we extend the gap equation for multiorbital systems with finite SOI, and calculate the gap functions by applying the orbital-spin fluctuation theory. On the basis of both SOI-induced band structures, the main characteristics of the gap structure in LiFeAs are naturally reproduced only in the presence of strong interorbital interactions between (dx z /y z-dx y) orbitals. Thus the experimental gap structure in LiFeAs is a strong evidence for the orbital-fluctuation pairing mechanism.

  1. Basic Research Needs for Superconductivity. Report of the Basic Energy Sciences Workshop on Superconductivity, May 8-11, 2006

    SciTech Connect

    Sarrao, J.; Kwok, W-K; Bozovic, I.; Mazin, I.; Seamus, J. C.; Civale, L.; Christen, D.; Horwitz, J.; Kellogg, G.; Finnemore, D.; Crabtree, G.; Welp, U.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2006-05-11

    As an energy carrier, electricity has no rival with regard to its environmental cleanliness, flexibility in interfacing with multiple production sources and end uses, and efficiency of delivery. In fact, the electric power grid was named ?the greatest engineering achievement of the 20th century? by the National Academy of Engineering. This grid, a technological marvel ingeniously knitted together from local networks growing out from cities and rural centers, may be the biggest and most complex artificial system ever built. However, the growing demand for electricity will soon challenge the grid beyond its capability, compromising its reliability through voltage fluctuations that crash digital electronics, brownouts that disable industrial processes and harm electrical equipment, and power failures like the North American blackout in 2003 and subsequent blackouts in London, Scandinavia, and Italy in the same year. The North American blackout affected 50 million people and caused approximately $6 billion in economic damage over the four days of its duration. Superconductivity offers powerful new opportunities for restoring the reliability of the power grid and increasing its capacity and efficiency. Superconductors are capable of carrying current without loss, making the parts of the grid they replace dramatically more efficient. Superconducting wires carry up to five times the current carried by copper wires that have the same cross section, thereby providing ample capacity for future expansion while requiring no increase in the number of overhead access lines or underground conduits. Their use is especially attractive in urban areas, where replacing copper with superconductors in power-saturated underground conduits avoids expensive new underground construction. Superconducting transformers cut the volume, weight, and losses of conventional transformers by a factor of two and do not require the contaminating and flammable transformer oils that violate urban safety

  2. Energy gaps of atomically precise armchair graphene sidewall nanoribbons

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Xiao; Zhou, Mei; Li, Xinqi; Li, Si-Yu; Wu, Xiaosong; Duan, Wenhui; He, Lin

    2016-06-01

    Theoretically, it has been demonstrated that armchair Graphene nanoribbons (GNRs) can be divided into three families, i.e., Na=3 p ,Na=3 p +1 , and Na=3 p +2 (here Na is the number of dimer lines across the ribbon width and p is an integer), according to their electronic structures, and the energy gaps for the three families are quite different even with the same p . However, a systematic experimental verification of this fundamental prediction is still lacking, owing to very limited atomic-level control of the width of the armchair GNRs investigated. Here, we studied electronic structures of the armchair GNRs with atomically well-defined widths ranging from Na=6 to Na=26 by using a scanning tunneling microscope. Our result demonstrated explicitly that all the studied armchair GNRs exhibit semiconducting gaps and, more importantly, the observed gaps as a function of Na are well grouped into the three categories, as predicted by density-functional theory calculations. Such a result indicated that the electronic properties of the armchair GNRs can be tuned dramatically by simply adding or cutting one carbon dimer line along the ribbon width.

  3. Scanning Tunneling Spectroscopy of Proximity Superconductivity in Epitaxial Multilayer Graphene

    PubMed Central

    Natterer, Fabian D.; Ha, Jeonghoon; Baek, Hongwoo; Zhang, Duming; Cullen, William; Zhitenev, Nikolai B.; Kuk, Young; Stroscio, Joseph A.

    2016-01-01

    We report on spatial measurements of the superconducting proximity effect in epitaxial graphene induced by a graphene-superconductor interface. Superconducting aluminum films were grown on epitaxial multilayer graphene on SiC. The aluminum films were discontinuous with networks of trenches in the film morphology reaching down to exposed graphene terraces. Scanning tunneling spectra measured on the graphene terraces show a clear decay of the superconducting energy gap with increasing separation from the graphene-aluminum edges. The spectra were well described by Bardeen-Cooper-Schrieffer (BCS) theory. The decay length for the superconducting energy gap in graphene was determined to be greater than 400 nm. Deviations in the exponentially decaying energy gap were also observed on a much smaller length scale of tens of nanometers. PMID:27088134

  4. Massive polarons in large-energy-gap polymers

    NASA Astrophysics Data System (ADS)

    McCall, R. P.; Ginder, J. M.; Roe, M. G.; Asturias, G. E.; Scherr, E. M.; MacDiarmid, A. G.; Epstein, A. J.

    1989-05-01

    We present evidence for the existence of defect states with large mass and low mobility in the conducting polymer polyaniline. This large-energy-gap polymer has been shown to have properties significantly different from many other conducting polymers. Photoinduced infrared absorption studies presented here are consistent with the photogeneration of charged polarons. Analysis within the amplitude mode (Peierls) formalism indicates that these polarons are massive (Mpol~60me), while use of a bond-order or Holstein polaron formalism leads to even larger estimates of Mpol.

  5. Sensing with Superconducting Point Contacts

    PubMed Central

    Nurbawono, Argo; Zhang, Chun

    2012-01-01

    Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors. PMID:22778630

  6. Concepts of flywheels for energy storage using autostable high-T(sub c) superconducting magnetic bearings

    NASA Technical Reports Server (NTRS)

    Bornemann, Hans J.; Zabka, R.; Boegler, P.; Urban, C.; Rietschel, H.

    1994-01-01

    A flywheel for energy storage using autostable high-T(sub c) superconducting magnetic bearings has been built. The rotating disk has a total weight of 2.8 kg. The maximum speed is 9240 rpm. A process that allows accelerated, reliable and reproducible production of melt-textured superconducting material used for the bearings has been developed. In order to define optimum configurations for radial and axial bearings, interaction forces in three dimensions and vertical and horizontal stiffness have been measured between superconductors and permanent magnets in different geometries and various shapes. Static as well as dynamic measurements have been performed. Results are being reported and compared to theoretical models.

  7. Length and energy gap dependences of thermoelectricity in nanostructured junctions.

    PubMed

    Asai, Yoshihiro

    2013-04-17

    The possibilities of an enhanced thermoelectric figure of merit value, ZT, in a nanostructured junction are examined for a wide range of parameter values in a theoretical model. Our research shows that the figure of merit can take a very large maximum, which depends both on the length and the energy gap values. The maximum of ZT is achieved when the Fermi level of the electrodes is aligned to the edge of the electronic transmission function of the junction, where both the conductance and the Seebeck constant are significantly enhanced. On the basis of our results, we conclude that nanowires and molecular junctions form a special class of systems where a large ZT can be expected in some cases. PMID:23528878

  8. 30-MJ superconducting magnetic energy storage for electric-transmission stabilization

    SciTech Connect

    Turner, R.D.; Rogers, J.D.

    1981-01-01

    The Bonneville Power Administration operates the electric power transmission system that connects the Pacific Northwest and southern California. The HVAC interties develop 0.35 Hz oscillations when the lines are heavily loaded. A 30 MJ (8.4 kWh) Superconducting Magnetic Energy Storage (SMES) unit with a 10 MW converter can provide system damping for the oscillation. The unit is scheduled for installation in 1982 and operation in 1982-83. Status of the project is described. The conductor has been fully tested electrically and mechanically and the 5 kA superconducting cable has been produced. The 30 MJ superconducting coil is essentially complete. All major components of the electrical and cryogenic systems except the nonconducting dewar have been completed. The refrigerator and converter are undergoing tests. The system is to be located at the BPA Tacoma Substation and operated by microwave link from Portland, OR.

  9. Localization of Metal-Induced Gap States at the Metal-Insulator Interface: Origin of Flux Noise in SQUIDs and Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Choi, Sangkook; Lee, Dung-Hai; Louie, Steven G.; Clarke, John

    2010-03-01

    The origin of magnetic flux noise in dc Superconducting Quantum Interference Devices (SQUIDs) with a power spectrum scaling as 1/f (f is frequency) has been a puzzle for over 25 years. This noise limits both the low frequency performance of SQUIDs and the decoherence time of flux-sensitive superconducting qubits, making scaling-up for quantum computing problematic. Recent calculations and experiments indicate that the noise is generated by electrons that randomly reverse their spin directions. Their areal density of ˜ 5 x 10^17 m-2 is relatively insensitive to the nature of the superconductor and substrate. Here, we propose that the local magnetic moments originate in metal-induced gap states (MIGSs) localized by potential disorder at the metal-insulator interface. MIGSs are particularly sensitive to such disorder, so that the localized states have a Coulomb repulsion sufficiently large to make them singly occupied. Our calculations demonstrate that a modest level of disorder generates the required areal density of localized moments. This result suggests that magnetic flux noise could be reduced by fabricating superconductor-insulator interfaces with less disorder. Support: NSF DMR07-05941, US DOE De-AC02-05CH11231, Samsung Foundation, Teragrid, NERSC.

  10. Space applications of superconductivity

    NASA Technical Reports Server (NTRS)

    Sullivan, D. B.; Vorreiter, J. W.

    1979-01-01

    Some potential applications of superconductivity in space are summarized, e.g., the use of high field magnets for cosmic ray analysis or energy storage and generation, space applications of digital superconducting devices, such as the Josephson switch and, in the future, a superconducting computer. Other superconducting instrumentation which could be used in space includes: low frequency superconducting sensors, microwave and infrared detectors, instruments for gravitational studies, and high-Q cavities for use as stabilizing elements in clocks and oscillators.

  11. Superconducting energy scales and anomalous dissipative conductivity in thin films of molybdenum nitride

    NASA Astrophysics Data System (ADS)

    Simmendinger, Julian; Pracht, Uwe S.; Daschke, Lena; Proslier, Thomas; Klug, Jeffrey A.; Dressel, Martin; Scheffler, Marc

    2016-08-01

    We report investigations of molybdenum nitride (MoN) thin films with different thickness and disorder and with superconducting transition temperature 9.89 K ≥Tc≥2.78 K . Using terahertz frequency-domain spectroscopy we explore the normal and superconducting charge carrier dynamics for frequencies covering the range from 3 to 38 cm-1 (0.1 to 1.1 THz). The superconducting energy scales, i.e., the critical temperature Tc, the pairing energy Δ , and the superfluid stiffness J , and the superfluid density ns can be well described within the Bardeen-Cooper-Schrieffer theory for conventional superconductors. At the same time, we find an anomalously large dissipative conductivity, which cannot be explained by thermally excited quasiparticles, but rather by a temperature-dependent normal-conducting fraction, persisting deep into the superconducting state. Our results on this disordered system constrain the regime, where discernible effects stemming from the disorder-induced superconductor-insulator transition possibly become relevant, to MoN films with a transition temperature lower than at least 2.78 K.

  12. Quantum multicriticality in bilayer graphene with a tunable energy gap

    NASA Astrophysics Data System (ADS)

    Throckmorton, Robert E.; Das Sarma, S.

    2014-11-01

    We develop a theory for quantum phases and quantum multicriticality in bilayer graphene in the presence of an explicit energy gap in the noninteracting spectrum by extending previous renormalization group (RG) analyses of electron-electron interactions in gapless bilayer graphene at finite temperature to include the effect of an electric field applied perpendicular to the sample, which produces an energy gap in the single-particle electron-hole dispersion. We determine the possible outcomes of the resulting RG equations, represented by "fixed rays" along which ratios of the coupling constants remain constant and map out the leading instabilities of the system for an interaction of the form of a Coulomb interaction that is screened by two parallel conducting plates placed equidistant from the electron. We find that some of the fixed rays on the "target plane" found in the zero-field case are no longer valid fixed rays, but that all four of the isolated rays are still valid. We also find five additional fixed rays that are not present in the zero-field case. We then construct maps of the leading instability (or instabilities) of the system for the screened Coulomb-like interaction as a function of the overall interaction strength and interaction range for four values of the applied electric field. We find that the pattern of leading instabilities is the same as that found in the zero-field case, namely, that the system is unstable to a layer antiferromagnetic state for short-ranged interactions, to a nematic state for long-ranged interactions, and to both for intermediate-ranged interactions. However, if the interaction becomes too long ranged or too weak, then the system will exhibit no instabilities. The ranges at which the nematic instability first appears, the antiferromagnetic instability disappears, and the nematic instability disappears all decrease with increasing applied electric field. Our main qualitative finding, that the applied electric field opposes

  13. Magnetic Resonant Mode in the Low-Energy Spin-Excitation Spectrum of Superconducting Rb2Fe4Se5 Single Crystals

    NASA Astrophysics Data System (ADS)

    Park, J. T.; Friemel, G.; Li, Yuan; Kim, J.-H.; Tsurkan, V.; Deisenhofer, J.; Krug von Nidda, H.-A.; Loidl, A.; Ivanov, A.; Keimer, B.; Inosov, D. S.

    2011-10-01

    We have studied the low-energy spin-excitation spectrum of the single-crystalline Rb2Fe4Se5 superconductor (Tc=32K) by means of inelastic neutron scattering. In the superconducting state, we observe a magnetic resonant mode centered at an energy of ℏωres=14meV and at the (0.5 0.25 0.5) wave vector (unfolded Fe-sublattice notation), which differs from the ones characterizing magnetic resonant modes in other iron-based superconductors. Our finding suggests that the 245-iron selenides are unconventional superconductors with a sign-changing order parameter, in which bulk superconductivity coexists with the 5×5 magnetic superstructure. The estimated ratios of ℏωres/kBTc≈5.1±0.4 and ℏωres/2Δ≈0.7±0.1, where Δ is the superconducting gap, indicate moderate pairing strength in this compound, similar to that in optimally doped 1111 and 122 pnictides.

  14. High-Tc Superconducting Thin- and Thick-Film-Based Coated Conductors for Energy Applications

    SciTech Connect

    Cantoni, Claudia; Goyal, Amit

    2010-01-01

    Although the first epitaxial films of YBCO with high Tc were grown nearly 20 years ago, the understanding and control of the nanostructures responsible for the dissipation-free electrical current transport in high temperature superconductors (HTS) is quite recent. In the last six to seven years, major advances have occurred in the fundamental investigation of low angle grain boundaries, flux-pinning phenomena, growth mode, and atomic-level defect structures of HTS epitaxial films. As a consequence, it has been possible to map and even engineer to some extent the performance of HTS coatings in large regions of the operating H, T, J phase space. With such progress, the future of high temperature superconducting wires looks increasingly promising despite the tremendous challenges offered by these brittle and anisotropic materials. Nevertheless, further performance improvements are necessary for the superconducting technology to become cost-competitive against copper wires and ultimately succeed in revolutionizing the transmission of electricity. This can be achieved by further diminishing the gap between theoretical and experimental values of the critical current density Jc, and/or increasing the thickness of the superconductive layer as much as possible without degrading performance. In addition, further progress in controlling extrinsic and/or intrinsic nano-sized defects within the films is necessary to significantly reduce the anisotropic response of HTS and obtain a nearly constant dependence of the critical current on the magnetic field orientation, which is considered crucial for power applications. This chapter is a review of the challenges still present in the area of superconducting film processing for HTS wires and the approaches currently employed to address them.

  15. Omnidirectional Measurements of Angle-Resolved Heat Capacity for Complete Detection of Superconducting Gap Structure in the Heavy-Fermion Antiferromagnet UPd_{2}Al_{3}.

    PubMed

    Shimizu, Yusei; Kittaka, Shunichiro; Sakakibara, Toshiro; Tsutsumi, Yasumasa; Nomoto, Takuya; Ikeda, Hiroaki; Machida, Kazushige; Homma, Yoshiya; Aoki, Dai

    2016-07-15

    Quasiparticle excitations in UPd_{2}Al_{3} were studied by means of heat-capacity (C) measurements under rotating magnetic fields using a high-quality single crystal. The field dependence shows C(H)∝H^{1/2}-like behavior at low temperatures for both two hexagonal crystal axes, i.e., H∥[0001] (c axis) and H∥[112[over ¯]0] (a axis), suggesting the presence of nodal quasiparticle excitations from heavy bands. At low temperatures, the polar-angle (θ) dependence of C exhibits a maximum along H∥[0001] with a twofold symmetric oscillation below 0.5 T, and an unusual shoulder or hump anomaly has been found around 30°-60° from the c axis in C(θ) at intermediate fields (1≲μ_{0}H≲2  T). These behaviors in UPd_{2}Al_{3} purely come from the superconducting nodal quasiparticle excitations, and can be successfully reproduced by theoretical calculations assuming the gap symmetry with a horizontal linear line node. We demonstrate the whole angle-resolved heat-capacity measurements done here as a novel spectroscopic method for nodal gap determination, which can be applied to other exotic superconductors. PMID:27472129

  16. Superconducting resonator used as a phase and energy detector for linac setup

    NASA Astrophysics Data System (ADS)

    Lobanov, Nikolai R.

    2016-07-01

    Booster linacs for tandem accelerators and positive ion superconducting injectors have matured into standard features of many accelerator laboratories. Both types of linac are formed as an array of independently-phased resonators operating at room temperature or in a superconducting state. Each accelerating resonator needs to be individually set in phase and amplitude for optimum acceleration efficiency. The modularity of the linac allows the velocity profile along the structure to be tailored to accommodate a wide range charge to mass ratio. The linac setup procedure, described in this paper, utilizes a superconducting resonator operating in a beam bunch phase detection mode. The main objective was to derive the full set of phase distributions for quick and efficient tuning of the entire accelerator. The phase detector was operated in overcoupling mode in order to minimize de-tuning effects of microphonic background. A mathematical expression was derived to set a limit on resonator maximum accelerating field during the crossover search to enable extracting unambiguous beam phase data. A set of equations was obtained to calculate the values of beam phase advance and energy gain produced by accelerating resonators. An extensive range of linac setting up configurations was conducted to validate experimental procedures and analytical models. The main application of a superconducting phase detector is for fast tuning for beams of ultralow intensities, in particular in the straight section of linac facilities.

  17. Simple Experimental Verification of the Relation between the Band-Gap Energy and the Energy of Photons Emitted by LEDs

    ERIC Educational Resources Information Center

    Precker, Jurgen W.

    2007-01-01

    The wavelength of the light emitted by a light-emitting diode (LED) is intimately related to the band-gap energy of the semiconductor from which the LED is made. We experimentally estimate the band-gap energies of several types of LEDs, and compare them with the energies of the emitted light, which ranges from infrared to white. In spite of…

  18. Superconducting magnetic energy storage (SMES) program. Progress report, January 1-December 31, 1980

    SciTech Connect

    Rogers, J.D.

    1981-03-01

    Work is reported on the development of two superconducting magnetic energy storage (SMES) units. One is a 30-MJ unit for use by the Bonneville Power Administration (BPA) to stabilize power oscillations on their Pacific AC Intertie, and the second is a 1- to 10-GWh unit for use as a diurnal load leveling device. Emphasis has been on the stabilizing system. The manufacturing phase of the 30-MJ superconducting coil was initiated and the coil fabrication has advanced rapidly. The two converter power transformers were manufactured, successfully factory tested, and shipped. One transformer reached the Tacoma Substation in good condition; the other was dropped enroute and has been returned to the factory for rebuilding. Insulation of the 30-MJ coil has been examined for high voltage effects apt to be caused by transients such as inductive voltage spikes from the protective dump circuit. The stabilizing system converter and protective energy dump system were completed, factory tested, and delivered.

  19. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    SciTech Connect

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  20. Technical Barriers, Gaps,and Opportunities Related to Home Energy Upgrade Market Delivery

    SciTech Connect

    Bianchi, Marcus V.A.

    2011-11-01

    This report outlines the technical barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's Building America program.

  1. An electric field tunable energy band gap at silicene/(0001) ZnS interfaces.

    PubMed

    Houssa, M; van den Broek, B; Scalise, E; Pourtois, G; Afanas'ev, V V; Stesmans, A

    2013-03-21

    The interaction of silicene, the silicon counterpart of graphene, with (0001) ZnS surfaces is investigated theoretically, using first-principles simulations. The charge transfer occurring at the silicene/(0001) ZnS interface leads to the opening of an indirect energy band gap of about 0.7 eV in silicene. Remarkably, the nature (indirect or direct) and magnitude of the energy band gap of silicene can be controlled by an external electric field: the energy gap is predicted to become direct for electric fields larger than about 0.5 V Å(-1), and the direct energy gap decreases approximately linearly with the applied electric field. The predicted electric field tunable energy band gap of the silicene/(0001) ZnS interface is very promising for its potential use in nanoelectronic devices.

  2. Quantum capacitance and charge sensing of a superconducting double dot

    NASA Astrophysics Data System (ADS)

    Lambert, N. J.; Esmail, A. A.; Edwards, M.; Pollock, F. A.; Lovett, B. W.; Ferguson, A. J.

    2016-09-01

    We study the energetics of a superconducting double dot, by measuring both the quantum capacitance of the device and the response of a nearby charge sensor. We observe different behaviour for odd and even charge states and describe this with a model based on the competition between the charging energy and the superconducting gap. We also find that, at finite temperatures, thermodynamic considerations have a significant effect on the charge stability diagram.

  3. Superconducting transport in single and parallel double InAs quantum dot Josephson junctions with Nb-based superconducting electrodes

    SciTech Connect

    Baba, Shoji Sailer, Juergen; Deacon, Russell S.; Oiwa, Akira; Shibata, Kenji; Hirakawa, Kazuhiko; Tarucha, Seigo

    2015-11-30

    We report conductance and supercurrent measurements for InAs single and parallel double quantum dot Josephson junctions contacted with Nb or NbTiN superconducting electrodes. Large superconducting gap energy, high critical field, and large switching current are observed, all reflecting the features of Nb-based electrodes. For the parallel double dots, we observe an enhanced supercurrent when both dots are on resonance, which may reflect split Cooper pair tunneling.

  4. Free energy surfaces in the superconducting mixed state

    NASA Technical Reports Server (NTRS)

    Finnemore, D. K.; Fang, M. M.; Bansal, N. P.; Farrell, D. E.

    1989-01-01

    The free energy surface for Tl2Ba2Ca2Cu3O1O has been measured as a function of temperature and magnetic field to determine the fundamental thermodynamic properties of the mixed state. The change in free energy, G(H)-G(O), is found to be linear in temperature over a wide range indicating that the specific heat is independent of field.

  5. Ion Desorption Stability in Superconducting High Energy Physics Proton Colliders

    SciTech Connect

    Turner, W.C.

    1995-05-29

    In this paper we extend our previous analysis of cold beam tube vacuum in a superconducting proton collider to include ion desorption in addition to thermal desorption and synchrotron radiation induced photodesorption. The new ion desorption terms introduce the possibility of vacuum instability. This is similar to the classical room temperature case but now modified by the inclusion of ion desorption coefficients for cryosorbed (physisorbed) molecules which can greatly exceed the coefficients for tightly bound molecules. The sojourn time concept for physisorbed H{sub 2} is generalized to include photodesorption and ion desorption as well as the usually considered thermal desorption. The ion desorption rate is density dependent and divergent so at the onset of instability the sojourn time goes to zero. Experimental data are used to evaluate the H{sub 2} sojourn time for the conditions of the Large Hadron Collider (LHC) and the situation is found to be stable. The sojourn time is dominated by photodesorption for surface density s(H{sub 2}) less than a monolayer and by thermal deposition for s(H{sub 2}) greater than a monolayer. For a few percent of a monolayer, characteristic of a beam screen, the photodesorption rate exceeds ion desorption rate by more than two orders of magnitude. The photodesorption rate corresponds to a sojourn time of approximately 100 sec. The paper next turns to the evaluation of stability margins and inclusion of gases heavier than H{sub 2} (CO, CO{sub 2} and CH{sub 4}), where ion desorption introduces coupling between molecular species. Stability conditions are worked out for a simple cold beam tube, a cold beam tube pumped from the ends and a cold beam tube with a co-axial perforated beam screen. In each case a simple inequality for stability of a single component is replaced by a determinant that must be greater than zero for a gas mixture. The connection with the general theory of feedback stability is made and it is shown that the gains

  6. Energy margins in a dry-winding superconducting test coil Part 1: Dissipation within the conductor

    NASA Astrophysics Data System (ADS)

    Takeuchi, K.; Mehta, V.; Shigue, C. Y.; Iwasa, Y.

    To study the role of liquid helium trapped within the winding of 'dry' superconducting magnets, energy margins were measured in a dry-winding superconducting test coil. The test coil comprised five non-inductive layers, each wound with circular cross-section multifilamentary NbTi superconducting wire. A pulsed coil, applied only through the two middle layers of the test coil carrying a transport current in a background magnetic field, was used to simulate a transient disturbance induced within the conductor over a confined region of the magnet. Measured energy margins, with the test coil immersed in liquid helium or in gaseous helium, agree well with the conductor's enthalpy densities required to drive the conductor normal. Experimental results show that the liquid helium occupying the void space within the winding has no beneficial effect against transient disturbances induced internally in the conductor; it does, however, slow down quench propagation. Because of the presence of an insulation layer at the conductor surface, the winding is effectively adiabatic against internal disturbance pulses. The trapped liquid helium is expected to be beneficial against transient heating applied external to the conductor surface, as would be the case with mechanical disturbances.

  7. Increasing energy relaxation time of superconducting qubits with nonmagnetic infrared filter and shield

    NASA Astrophysics Data System (ADS)

    Yuhao, Liu; Mengmeng, Li; Dong, Lan; Guangming, Xue; Xinsheng, Tan; Haifeng, Yu; Yang, Yu

    2016-05-01

    One of the primary origins of the energy relaxation in superconducting qubits is the quasiparticle loss. The quasiparticles can be excited remarkably by infrared radiation. In order to minimize the density of quasiparticle and increase the qubit relaxation time, we design and fabricate the infrared filter and shield for superconducting qubits. In comparison with previous filters and shields, a nonmagnetic dielectric is used as the infrared absorbing material, greatly suppressing the background magnetic fluctuations. The filters can be made to impedance-match with other microwave devices. Using the as-fabricated infrared filter and shield, we increased the relaxation time of a transmon qubit from 519 ns to 1125 ns. Project supported by the National Natural Science Foundation of China (Grant Nos. 91321310, 11274156, 11474152, 11474153, 61521001, and 11504165) and the State Key Program for Basic Research of China (Grant Nos. 2011CB922104 and 2011CBA00205).

  8. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    SciTech Connect

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-10-26

    This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

  9. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra.

    PubMed

    Vos, M; Marmitt, G G; Finkelstein, Y; Moreh, R

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO3, Li2CO3, and SiO2) taken at relatively high incoming electron energies (5-40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO2, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E - Egap)(1.5). For CaCO3, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li2CO3 (7.5 eV) is the first experimental estimate.

  10. Simulating chemical energies to high precision with fully-scalable quantum algorithms on superconducting qubits

    NASA Astrophysics Data System (ADS)

    O'Malley, Peter; Babbush, Ryan; Kivlichan, Ian; Romero, Jhonathan; McClean, Jarrod; Tranter, Andrew; Barends, Rami; Kelly, Julian; Chen, Yu; Chen, Zijun; Jeffrey, Evan; Fowler, Austin; Megrant, Anthony; Mutus, Josh; Neill, Charles; Quintana, Christopher; Roushan, Pedram; Sank, Daniel; Vainsencher, Amit; Wenner, James; White, Theodore; Love, Peter; Aspuru-Guzik, Alan; Neven, Hartmut; Martinis, John

    Quantum simulations of molecules have the potential to calculate industrially-important chemical parameters beyond the reach of classical methods with relatively modest quantum resources. Recent years have seen dramatic progress both superconducting qubits and quantum chemistry algorithms. Here, we present experimental demonstrations of two fully-scalable algorithms for finding the dissociation energy of hydrogen: the variational quantum eigensolver and iterative phase estimation. This represents the first calculation of a dissociation energy to chemical accuracy with a non-precompiled algorithm. These results show the promise of chemistry as the ``killer app'' for quantum computers, even before the advent of full error-correction.

  11. Superconducting tunneling-junction detectors of X-ray radiation. Issues concerning the energy resolution

    SciTech Connect

    Andrianov, V. A. Gor'kov, V. P. Koshelets, V. P. Filippenko, L. V.

    2007-02-15

    The effect of the recombination-and edge-related losses of nonequilibrium quasiparticles on the energy resolution of superconducting tunneling detectors is studied. The dependence of the signal on the energy of X-ray photons is measured and the shape of instrument-related lines is studied for the Ti/Nb/Al/AlO{sub x}/Al/Nb/NbN detectors with the Ti/Nb passive electrode. Experimental data are analyzed using the diffusion-based model of tunneling detectors.

  12. Superconducting High Energy Resolution Gamma-ray Spectrometers

    SciTech Connect

    Chow, D T

    2002-02-22

    We have demonstrated that a bulk absorber coupled to a TES can serve as a good gamma-ray spectrometer. Our measured energy resolution of 70 eV at 60 keV is among the best measurements in this field. We have also shown excellent agreement between the noise predictions and measured noise. Despite this good result, we noted that our detector design has shortcomings with a low count rate and vulnerabilities with the linearity of energy response. We addressed these issues by implementation of an active negative feedback bias. We demonstrated the effects of active bias such as additional pulse shortening, reduction of TES change in temperature during a pulse, and linearization of energy response at low energy. Linearization at higher energy is possible with optimized heat capacities and thermal conductivities of the microcalorimeter. However, the current fabrication process has low control and repeatability over the thermal properties. Thus, optimization of the detector performance is difficult until the fabrication process is improved. Currently, several efforts are underway to better control the fabrication of our gamma-ray spectrometers. We are developing a full-wafer process to produce TES films. We are investigating the thermal conductivity and surface roughness of thicker SiN membranes. We are exploring alternative methods to couple the absorber to the TES film for reproducibility. We are also optimizing the thermal conductivities within the detector to minimize two-element phonon noise. We are experimenting with different absorber materials to optimize absorption efficiency and heat capacity. We are also working on minimizing Johnson noise from the E S shunt and SQUID amplifier noise. We have shown that our performance, noise, and active bias models agree very well with measured data from several microcalorimeters. Once the fabrication improvements have been implemented, we have no doubt that our gamma-ray spectrometer will achieve even more spectacular results.

  13. Coil protection for a utility scale superconducting magnetic energy storage plant

    SciTech Connect

    Loyd, R.J.; Schoenung, S.M.; Hassenzahl, W.V.; Rogers, J.D.; Purcell, J.R.

    1986-01-01

    Superconducting Magnetic Energy Storage (SMES) is proposed for electric utility load leveling. Attractive costs, high diurnal energy efficiency (greater than or equal to 92%), and rapid response are advantages relative to other energy storage technologies. Recent industry-led efforts have produced a conceptual design for a 5000 MWh/1000 MW energy storage plant which is technically feasible at commercially attractive estimated costs. The SMES plant design includes a protection system which prevents damage to the magnetic coil if events require a rapid discharge of stored energy. This paper describes the design and operation of the coil protection system, which is primarily passive and uses the thermal capacity of the coil itself to absorb the stored electromagnetic energy.

  14. Possible nodal superconducting gap in Fe1+y(Te1-xSex) single crystals from ultralow temperature penetration depth measurements

    NASA Astrophysics Data System (ADS)

    Diaconu, Andrei; Martin, Catalin; Hu, Jin; Liu, Tijiang; Qian, Bin; Mao, Zhiqiang; Spinu, Leonard

    2013-09-01

    Using a radio-frequency tunnel diode oscillator technique, we measured the temperature dependence of the in-plane London penetration depth Δλab(T) in Fe1+y(Te1-xSex) single crystals, down to temperatures as low as 50 mK. A significant number of samples, with nominal Se concentrations x=0.36, 0.40, 0.43, and 0.45, respectively, were studied and in many cases we found that Δλab(T) shows an upturn below 0.7 K, indicative of a paramagnetic-type contribution. After subtracting the magnetic background, the low-temperature behavior of penetration depth is best described by a power law with exponent n≈2 and with no systematic dependence on the Se concentration. Most importantly, in the limit of T→0, in some samples we observed a narrow region of linear temperature dependence of penetration depth, suggestive of nodes in the superconducting gap of Fe1+y(Te1-xSex).

  15. Strain energy minimization in SSC (Superconducting Super Collider) magnet winding

    SciTech Connect

    Cook, J.M.

    1990-09-24

    Differential geometry provides a natural family of coordinate systems, the Frenet frame, in which to specify the geometric properties of magnet winding. By a modification of the Euler-Bernoulli thin rod model, the strain energy is defined with respect to this frame. Then it is minimized by a direct method from the calculus of variations. The mathematics, its implementation in a computer program, and some analysis of an SSC dipole by the program will be described. 16 refs.

  16. Generation of full polarization in ferromagnetic graphene with spin energy gap

    SciTech Connect

    Wu, Qing-Ping; Liu, Zheng-Fang E-mail: aixichen@ecjtu.edu.cn; Liu, Zhi-Min; Chen, Ai-Xi E-mail: aixichen@ecjtu.edu.cn; Xiao, Xian-Bo

    2014-12-22

    We propose a workable scheme for the generation of full spin polarization in ferromagnetic graphene system with strain or Rashba spin-orbit interaction. A spin energy gap can be opened in ferromagnetic graphene system in the presence of strain or Rashba spin-orbit interaction, leading to the full polarization in the spin energy gap. In addition, under the combined modulation of strain and Rashba spin-orbit interaction, the ferromagnetic graphene system can generate significantly large spin-polarized current with a full polarization in the spin energy gap. It is anticipated to apply such a phenomenon to design the electron spin devices based on the graphene.

  17. Enhancing the design of a superconducting coil for magnetic energy storage systems

    NASA Astrophysics Data System (ADS)

    Indira, Gomathinayagam; UmaMaheswaraRao, Theru; Chandramohan, Sankaralingam

    2015-01-01

    Study and analysis of a coil for Superconducting Magnetic Energy Storage (SMES) system is presented in this paper. Generally, high magnetic flux density is adapted in the design of superconducting coil of SMES to reduce the size of the coil and to increase its energy density. With high magnetic flux density, critical current density of the coil is degraded and so the coil is wound with High Temperature Superconductors (HTS) made of different materials. A comparative study is made to emphasize the relationship between the energy storage and length of the coil wound by Bi2223, SF12100, SCS12100 and YBCO tapes. Recently for the construction of HTS magnets, YBCO tapes have been used. Simulation models for various designs have been developed to analyze the magnetic field distribution for the optimum design of energy storage. The design which gives the maximum stored energy in the coil has been used with a certain length of second-generation HTS. The performance analysis and the results of comparative study are done.

  18. Dirac-Hartree-Bogoliubov calculation for spherical and deformed hot nuclei: Temperature dependence of the pairing energy and gaps, nuclear deformation, nuclear radii, excitation energy, and entropy

    NASA Astrophysics Data System (ADS)

    Lisboa, R.; Malheiro, M.; Carlson, B. V.

    2016-02-01

    Background: Unbound single-particle states become important in determining the properties of a hot nucleus as its temperature increases. We present relativistic mean field (RMF) for hot nuclei considering not only the self-consistent temperature and density dependence of the self-consistent relativistic mean fields but also the vapor phase that takes into account the unbound nucleon states. Purpose: The temperature dependence of the pairing gaps, nuclear deformation, radii, binding energies, entropy, and caloric curves of spherical and deformed nuclei are obtained in self-consistent RMF calculations up to the limit of existence of the nucleus. Method: We perform Dirac-Hartree-Bogoliubov (DHB) calculations for hot nuclei using a zero-range approximation to the relativistic pairing interaction to calculate proton-proton and neutron-neutron pairing energies and gaps. A vapor subtraction procedure is used to account for unbound states and to remove long range Coulomb repulsion between the hot nucleus and the gas as well as the contribution of the external nucleon gas. Results: We show that p -p and n -n pairing gaps in the S10 channel vanish for low critical temperatures in the range Tcp≈0.6 -1.1 MeV for spherical nuclei such as 90Zr, 124Sn, and 140Ce and for both deformed nuclei 150Sm and 168Er. We found that superconducting phase transition occurs at Tcp=1.03 Δp p(0 ) for 90Zr, Tcp=1.16 Δp p(0 ) for 140Ce, Tcp=0.92 Δp p(0 ) for 150Sm, and Tcp=0.97 Δp p(0 ) for 168Er. The superfluidity phase transition occurs at Tcp=0.72 Δn n(0 ) for 124Sn, Tcp=1.22 Δn n(0 ) for 150Sm, and Tcp=1.13 Δn n(0 ) for 168Er. Thus, the nuclear superfluidity phase—at least for this channel—can only survive at very low nuclear temperatures and this phase transition (when the neutron gap vanishes) always occurs before the superconducting one, where the proton gap is zero. For deformed nuclei the nuclear deformation disappear at temperatures of about Tcs=2.0 -4.0 MeV , well above the

  19. Graphene field effect transistor without an energy gap.

    PubMed

    Jang, Min Seok; Kim, Hyungjun; Son, Young-Woo; Atwater, Harry A; Goddard, William A

    2013-05-28

    Graphene is a room temperature ballistic electron conductor and also a very good thermal conductor. Thus, it has been regarded as an ideal material for postsilicon electronic applications. A major complication is that the relativistic massless electrons in pristine graphene exhibit unimpeded Klein tunneling penetration through gate potential barriers. Thus, previous efforts to realize a field effect transistor for logic applications have assumed that introduction of a band gap in graphene is a prerequisite. Unfortunately, extrinsic treatments designed to open a band gap seriously degrade device quality, yielding very low mobility and uncontrolled on/off current ratios. To solve this dilemma, we propose a gating mechanism that leads to a hundredfold enhancement in on/off transmittance ratio for normally incident electrons without any band gap engineering. Thus, our saw-shaped geometry gate potential (in place of the conventional bar-shaped geometry) leads to switching to an off state while retaining the ultrahigh electron mobility in the on state. In particular, we report that an on/off transmittance ratio of 130 is achievable for a sawtooth gate with a gate length of 80 nm. Our switching mechanism demonstrates that intrinsic graphene can be used in designing logic devices without serious alteration of the conventional field effect transistor architecture. This suggests a new variable for the optimization of the graphene-based device--geometry of the gate electrode.

  20. ORNL Superconducting Technology Program for Electric Energy Systems. Annual report for FY 1992

    SciTech Connect

    Hawsey, R.A.

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s (DOE`s) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1992 Peer Review of Projects, conducted by DOE`s Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  1. Parton-parton elastic scattering and rapidity gaps at SSC and LHC energies

    SciTech Connect

    Duca, V.D.

    1993-08-01

    The theory of the perturbative pomeron, due to Lipatov and collaborators, is used to compute the probability of observing parton-parton elastic scattering and rapidity gaps between jets in hadron collisions at SSC and LHC energies.

  2. Energy-Gap Dependence on the Mn Mole Fraction and Temperature in Cdmnte Crystal

    SciTech Connect

    Kim, K.; Bolotnikov, A; Camarda, G; Yang, G; Hossain, A; Cui, Y; James, r; Hong, J; Kim, S

    2009-01-01

    We measured the dependence of the energy gap in Bridgman-grown Cd1-xMnxTe crystals, 0 {le} x {le} 0.25, on the Mn mole fraction and temperatures from 40 to 300 K. We determined the Mn mole fraction and energy gap, respectively, from electron probe microanalysis and near-infrared Fourier-transform infrared transmission spectra. The energy gap increased linearly with an increase in the Mn content in the crystal and with a decrease in temperature. We formulated new equations from these experimental results, wherein we expressed the energy gap as a function of Mn mole fraction and temperature. Also, we compare our findings with published results.

  3. Color superconductivity

    SciTech Connect

    Wilczek, F.

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  4. Production techniques for the Superconducting Super Collider Low Energy Booster quadrupole magnet

    SciTech Connect

    Morrison, M.E.; Behrsing, G.U.; Fulton, R.L.

    1994-07-01

    The manufacturing techniques used for a prototype quadrupole magnet, developed at Lawrence Berkeley Laboratory (LBL) for the Superconducting Super Collider (SSC) Low Energy Booster (LEB), are described. The SSC LEB Ring employs 96 dipoles and 90 quadrupoles connected in series to form the magnetic lattice, requiring the use of a 21.9 mm x 23.0 mm hollow conductor for the quadrupoles. Due to the large conductor size and small bend radii required, development of special fixtures was necessary. A unique coil-forming method with close attention paid to tooling design and special assembly procedures was required to manufacture this prototype to stringent specifications.

  5. 30 MJ superconducting magnetic energy storage stabilizing coil. Final report for construction

    SciTech Connect

    1983-03-01

    This report covers Phase II, Fabrication and Delivery of the 30 MJ Superconducting Magnetic Energy Storage Stabilizing Coil. A history of the manufacturing and assembly phase of the magnet is presented. Major problems and solutions are summarized, and illustrations of the major operations are provided. The Quality Assurance program is described with a listing of all nonconformance reports. Design documentation is provided, including a Design Document Index, monthly progress reports, and a list of papers given on the project. Appendices to the report contain copies of released and revised design calculations, test reports, assembly procedure, and nonconformance reports and engineering dispositions.

  6. Eddy Current Analysis and Optimization for Superconducting Magnetic Bearing of Flywheel Energy Storage System

    NASA Astrophysics Data System (ADS)

    Arai, Yuuki; Yamashita, Tomohisa; Hasegawa, Hitoshi; Matsuoka, Taro; Kaimori, Hiroyuki; Ishihara, Terumasa

    Levitation and guidance force is electromagnetic generated between a superconducting coil and zero field cooled bulk superconductors used in our flywheel energy storage system (FESS). Because the magnetic field depends on the configuration of the coil and the bulks, the eccentricity and the vibration of a rotor cause fluctuation in the magnetic field which induces eddy current and consequent Joule heat on electric conductors such as cooling plates. Heat generation in the cryogenic region critically reduces the efficiency of the FESS. In this paper, we will report the result of the electromagnetic analysis of the SMB and propose an optimal divided cooling plate for reducing the eddy current and Joule heat.

  7. Optimized use of superconducting magnetic energy storage for electromagnetic rail launcher powering

    NASA Astrophysics Data System (ADS)

    Badel, Arnaud; Tixador, Pascal; Arniet, Michel

    2012-01-01

    Electromagnetic rail launchers (EMRLs) require very high currents, from hundreds of kA to several MA. They are usually powered by capacitors. The use of superconducting magnetic energy storage (SMES) in the supply chain of an EMRL is investigated, as an energy buffer and as direct powering source. Simulations of direct powering are conducted to quantify the benefits of this method in terms of required primary energy. In order to enhance further the benefits of SMES powering, a novel integration concept is proposed, the superconducting self-supplied electromagnetic launcher (S3EL). In the S3EL, the SMES is used as a power supply for the EMRL but its coil serves also as an additional source of magnetic flux density, in order to increase the thrust (or reduce the required current for a given thrust). Optimization principles for this new concept are presented. Simulations based on the characteristics of an existing launcher demonstrate that the required current could be reduced by a factor of seven. Realizing such devices with HTS cables should be possible in the near future, especially if the S3EL concept is used in combination with the XRAM principle, allowing current multiplication.

  8. Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies

    SciTech Connect

    Not Available

    2010-08-01

    This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado, on July 20-22, 2010.

  9. Superconductivity in the two-dimensional electron gas induced by high-energy optical phonon mode and large polarization of the SrTiO3 substrate

    NASA Astrophysics Data System (ADS)

    Rosenstein, Baruch; Shapiro, B. Ya.; Shapiro, I.; Li, Dingping

    2016-07-01

    Pairing in one-atomic-layer-thick two-dimensional electron gas (2DEG) by a single flat band of high-energy longitudinal optical phonons is considered. The polar dielectric SrTiO3 (STO) exhibits such an energetic phonon mode and the 2DEG is created both when one unit cell FeSe layer is grown on its (100 ) surface and on the interface with another dielectric like LaAlO3 (LAO). We obtain a quantitative description of both systems solving the gap equation for Tc for arbitrary Fermi energy ɛF, electron-phonon coupling λ , and the phonon frequency Ω , and direct (random-phase approximation) electron-electron repulsion strength α . The focus is on the intermediate region between the adiabatic, ɛF>>Ω , and the nonadiabatic, ɛF<<Ω , regimes. The high-temperature superconductivity in single-unit-cell FeSe/STO is possible due to a combination of three factors: high-longitudinal-optical phonon frequency, large electron-phonon coupling λ ˜0.5 , and huge dielectric constant of the substrate suppression the Coulomb repulsion. It is shown that very low density electron gas in the interfaces is still capable of generating superconductivity of the order of 0.1 K in LAO/STO.

  10. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge

    SciTech Connect

    Inaoka, Takeshi Furukawa, Takuro; Toma, Ryo; Yanagisawa, Susumu

    2015-09-14

    By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operates unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.

  11. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, R.C.; McConnell, B.W.; Phillips, B.A.

    1996-07-02

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit. 6 figs.

  12. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.

    1996-01-01

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

  13. Magnetic Properties of Iron Chalcogenide Superconducting Materials for Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Knock, Destenie; Pough, Korey; Kebede, Abebe; Seifu, Dereje

    2013-03-01

    A superconductor is characterized by its ability to conduct electricity without loss and expel magnetic flux when exposed to an external magnetic field. Additionally, the smaller the relaxation rate (S = dM/dt), the better the material for energy storage. This research focuses on the recently discovered high-quality, single-crystalline Iron-based superconductors of FeTe1-xSex (x =0.5), with a transition temperature at Tc = 14.5K. Standard creep models are used to analyze the data and determine the effective pinning potential. The magnetization relaxation were measured the Superconducting Quantum Interference Device (SQUID). The relaxation rate appears to be independent of field and temperature for fields below 3T and temperatures below 7K. This result shows that the thermally activated flux motion is not as significant as in other high temperature superconductors, hence FeTe1-xSex, can be a candidate for wire development to be used in Superconducting Magnetic Energy Storage systems.

  14. Andreev bound states for cake shape superconducting normal systems

    NASA Astrophysics Data System (ADS)

    Cserti, J.; Béri, B.; Kormányos, A.; Pollner, P.; Kaufmann, Z.

    2004-09-01

    The energy spectrum of cake shape normal-superconducting systems is calculated by solving the Bogoliubov-de Gennes equation. We take into account the mismatch in the effective masses and Fermi energies of the normal and superconducting regions as well as the potential barrier at the interface. In the case of a perfect interface and without mismatch, the energy levels are treated by semi-classics. Analytical expressions for the density of states and its integral, the step function, are derived and compared with that obtained from exact numerics. We find a very good agreement between the two calculations. It is shown that the spectrum possesses an energy gap and the density of states is singular at the edge of the gap. The effect of the mismatch and the potential barrier on the gap is also investigated.

  15. Development of an Abort Gap Monitor for High-Energy Proton Rings

    NASA Astrophysics Data System (ADS)

    Beche, J.-F.; Byrd, J.; De Santis, S.; Denes, P.; Placidi, M.; Turner, W.; Zolotorev, M.

    2004-11-01

    The fill pattern in proton synchrotrons usually features an empty gap, longer than the abort kicker raise time, for machine protection. This gap is referred to as the "abort gap," and any particles, which may accumulate in it due to injection errors and diffusion between RF buckets, would be lost inside the ring, rather than in the beam dump, during the kicker firing. In large proton rings, due to the high energies involved, it is vital to monitor the build up of charges in the abort gap with a high sensitivity. We present a study of an abort gap monitor based on a photomultiplier with a gated microchannel plate, which would allow for detecting low charge densities by monitoring the synchrotron radiation emitted. We show results of beam test experiments at the Advanced Light Source using a Hamamatsu 5916U MCP-PMT and compare them to the specifications for the Large Hadron Collider.

  16. Development of an abort gap monitor for high-energy proton rings

    SciTech Connect

    Beche, Jean-Francois; Byrd, John; De Santis, Stefano; Denes, Peter; Placidi, Massimo; Turner, William; Zolotorev, Max

    2004-05-03

    The fill pattern in proton synchrotrons usually features an empty gap, longer than the abort kicker raise time, for machine protection. This gap is referred to as the ''abort gap'' and any particles, which may accumulate in it due to injection errors and diffusion between RF buckets, would be lost inside the ring, rather than in the beam dump, during the kicker firing. In large proton rings, due to the high energies involved, it is vital to monitor the build up of charges in the abort gap with a high sensitivity. We present a study of an abort gap monitor based on a photomultiplier with a gated microchannel plate, which would allow for detecting low charge densities by monitoring the synchrotron radiation emitted. We show results of beam test experiments at the Advanced Light Source using a Hamamatsu 5916U MCP-PMT and compare them to the specifications for the Large Hadron Collider

  17. Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-shaped energy level diagram.

    PubMed

    Srinivasan, S J; Hoffman, A J; Gambetta, J M; Houck, A A

    2011-02-25

    We introduce a new type of superconducting charge qubit that has a V-shaped energy spectrum and uses quantum interference to provide independently tunable qubit energy and coherent coupling to a superconducting cavity. Dynamic access to the strong coupling regime is demonstrated by tuning the coupling strength from less than 200 kHz to greater than 40 MHz. This tunable coupling can be used to protect the qubit from cavity-induced relaxation and avoid unwanted qubit-qubit interactions in a multiqubit system.

  18. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    SciTech Connect

    CHARLES M. WEBER

    2008-06-24

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment

  19. Superconductivity applications for infrared and microwave devices; Proceedings of the Meeting, Orlando, FL, Apr. 19, 20, 1990

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B. (Editor); Heinen, Vernon O. (Editor)

    1990-01-01

    Various papers on superconductivity applications for IR and microwave devices are presented. The individual topics addressed include: pulsed laser deposition of Tl-Ca-Ba-Cu-O films, patterning of high-Tc superconducting thin films on Si substrates, IR spectra and the energy gap in thin film YBa2Cu3O(7-delta), high-temperature superconducting thin film microwave circuits, novel filter implementation utilizing HTS materials, high-temperature superconductor antenna investigations, high-Tc superconducting IR detectors, high-Tc superconducting IR detectors from Y-Ba-Cu-O thin films, Y-Ba-Cu0-O thin films as high-speed IR detectors, fabrication of a high-Tc superconducting bolometer, transition-edge microbolometer, photoresponse of YBa2Cu3O(7-delta) granular and epitaxial superconducting thin films, fast IR response of YBCO thin films, kinetic inductance effects in high-Tc microstrip circuits at microwave frequencies.

  20. Availability analysis of a 100 kWh superconducting magnetic energy storage

    NASA Astrophysics Data System (ADS)

    Maekinen, H.; Mikkonen, R.

    Superconducting Magnetic Energy Storage (SMES) is one of the possible and useful applications of modern superconducting technology. It is known that some loads on electricity distribution networks are particularly sensitive to short power interruptions and voltage sags. Different ranges of SMES applications have been widely discussed for large scale units (1 MWh - 1 GWh) as well as for small and medium scale units (1 kWh - 1 MWh). The major components of a SMES system are the superconducting magnet winding, the cryogenic refrigeration system and the power conditioning system, which interfaces the coil to the utility grid and applied load. The SMES winding is cooled by a cryogenic coolant: liquid helium for LTS (low temperature superconductor) wires; gaseous helium, liquid hydrogen or liquid nitrogen for HTS (high temperature superconductor) wires. In addition the higher operating temperature of HTS materials also means higher refrigeration efficiencies, greater reliability and easier acceptance within the utility community. It has been estimated that applying HTS materials in a SMES system will reduce the capital costs some 14-26 %. In this calculation it has been assumed that the price of HTS material is equivalent to that of LTS material. This report deals with the availability aspects of a 100 kWh SMES. A conceptual design of a reference unit has been used as a basis of the study. Therefore the lack of the detailed design leads to uncertainty in evaluating the failure data for single components. The failure rate data are mainly adopted from fusion data sources. This extrapolation is problematic, but in most cases the only way to get results at all. The method used is based on the failure modes, effects and criticality analysis, FMECA. Fault trees describe the outage logic based on the functional analysis. Event trees clarify the consequences of the primary events and the criticality of these consequences are expressed as system down times.

  1. The energy trilogy: An integrated sustainability model to bridge wastewater treatment plant energy and emissions gaps

    NASA Astrophysics Data System (ADS)

    Al-Talibi, A. Adhim

    An estimated 4% of national energy consumption is used for drinking water and wastewater services. Despite the awareness and optimization initiatives for energy conservation, energy consumption is on the rise owing to population and urbanization expansion and to commercial and industrial business advancement. The principal concern is since energy consumption grows, the higher will be the energy production demand, leading to an increase in CO2 footprints and the contribution to global warming potential. This research is in the area of energy-water nexus, focusing on wastewater treatment plant (WWTP) energy trilogy -- the group of three related entities, which includes processes: (1) consuming energy, (2) producing energy, and (3) the resulting -- CO2 equivalents. Detailed and measurable energy information is not readily obtained for wastewater facilities, specifically during facility preliminary design phases. These limitations call for data-intensive research approach on GHG emissions quantification, plant efficiencies and source reduction techniques. To achieve these goals, this research introduced a model integrating all plant processes and their pertinent energy sources. In a comprehensive and "Energy Source-to-Effluent Discharge" pattern, this model is capable of bridging the gaps of WWTP energy, facilitating plant designers' decision-making for meeting energy assessment, sustainability and the environmental regulatory compliance. Protocols for estimating common emissions sources are available such as for fuels, whereas, site-specific emissions for other sources have to be developed and are captured in this research. The dissertation objectives were met through an extensive study of the relevant literature, models and tools, originating comprehensive lists of processes and energy sources for WWTPs, locating estimation formulas for each source, identifying site specific emissions factors, and linking the sources in a mathematical model for site specific CO2 e

  2. Superconducting Detector System for High-Resolution Energy-Dispersive Soft X-Ray Spectroscopy

    SciTech Connect

    Friedrich, S; Niedermayr, T; Drury, O; Funk, T; Frank, M; Labov, S E; Cramer, S

    2001-02-21

    Synchrotron-based soft x-ray spectroscopy is often limited by detector performance. Grating spectrometers have the resolution, but lack the efficiency for the analysis of dilute samples. Semiconducting Si(Li) or Ge detectors are efficient, but often lack the resolution to separate weak signals from strong nearby lines in multi-element samples. Superconducting tunnel junctions (STJs) operated at temperatures below 1 K can be used as high-resolution high-efficiency x-ray detectors. They combine high energy resolution around 10 eV FWHM with the broad band efficiency of energy-dispersive detectors. We have designed a two-stage adiabatic demagnetization refrigerator (ADR) to operate STJ detectors in x-ray fluorescence measurements at beam line 4 of the ALS. We demonstrate the capabilities of such a detector system for fluorescence analysis of dilute metal sites in proteins and inorganic model compounds.

  3. Anomalous behavior of the energy gap in the one-dimensional quantum XY model.

    PubMed

    Okuyama, Manaka; Yamanaka, Yuuki; Nishimori, Hidetoshi; Rams, Marek M

    2015-11-01

    We reexamine the well-studied one-dimensional spin-1/2 XY model to reveal its nontrivial energy spectrum, in particular the energy gap between the ground state and the first excited state. In the case of the isotropic XY model, the XX model, the gap behaves very irregularly as a function of the system size at a second order transition point. This is in stark contrast to the usual power-law decay of the gap and is reminiscent of the similar behavior at the first order phase transition in the infinite-range quantum XY model. The gap also shows nontrivial oscillatory behavior for the phase transitions in the anisotropic model in the incommensurate phase. We observe a close relation between this anomalous behavior of the gap and the correlation functions. These results, those for the isotropic case in particular, are important from the viewpoint of quantum annealing where the efficiency of computation is strongly affected by the size dependence of the energy gap. PMID:26651656

  4. Energy calibration of superconducting transition edge sensors for x-ray detection using pulse analysis

    SciTech Connect

    Hollerith, C.; Simmnacher, B.; Weiland, R.; Feilitzsch, F. v.; Isaila, C.; Jochum, J.; Potzel, W.; Hoehne, J.; Phelan, K.; Wernicke, D.; May, T.

    2006-05-15

    Transition edge sensors (TESs) have been developed to be used as high-resolution x-ray detectors. They show excellent energy resolution and can be used in many applications. TESs are a special kind of calorimeters that can determine small temperature changes after x-ray absorption. Such a temperature change causes a strong resistance change (superconducting to normal-conducting phase transition) that can be measured. The energy calibration of a TES based spectrometer is problematic due to the nonlinear behavior of the detector response. In this article, a method is introduced to calibrate the energy scale of TES spectra. This is accomplished by calculating the energy dependence of the response of the detector operated in electrothermal feedback mode. Using this method a calibration accuracy of a few eV for an x-ray energy of 6 keV can be achieved. Examples of energy dispersive x-ray spectroscopy (EDS) measurements demonstrate the high quality of this method for everyday use of TES EDS detectors in material analysis. However, because the method relies only on a few very general assumptions, it should also be useful for other kinds of TES detectors.

  5. Specific heat to Hc2: Evidence for nodes or deep minima in the superconducting gap of underdoped and overdoped Ba(Fe1–xCox)₂As₂

    DOE PAGES

    Kim, J. S.; Faeth, B. D.; Wang, Y.; Hirschfeld, P. J.; Stewart, G. R.; Gofryk, K.; Ronning, F.; Sefat, A. S.; Choi, K. Y.; Kim, K. H.

    2012-07-13

    Low-temperature specific heat, C, in magnetic fields up to Hc2 is reported for underdoped Ba(Fe₀.₉₅₅Co₀.₀₄₅)₂As₂ (Tc = 8 K) and for three overdoped samples Ba(Fe₁₋xCox)₂As₂ (x = 0.103, 0.13, and 0.15; Tc = 17.2, 16.5, and 11.7 K, respectively). Previous measurements of thermal conductivity (as a function of temperature and field) and penetration depth on comparable-composition samples gave some disagreement as to whether there was fully gapped/nodal behavior in the under-/overdoped materials, respectively. The present work shows that the measured behavior of the specific heat γ (∝C/T as T → 0, i.e., a measure of the electronic density of statesmore » at the Fermi energy) as a function of field approximately obeys γ ∝ H0.5±0.1, similar to the Volovik effect for nodal superconductors, for both the underdoped and the most overdoped Co samples. However, for the two overdoped compositions x = 0.103 and 0.13, the low-field (H ≤ 10 T) data show a Volovik-like behavior of γ ∝ H0.3–0.4, followed by an inflection point, followed at higher fields by γ ∝ H¹. We argue that, within the two-band theory of superconductivity, an inflection point may occur if the interband coupling is dominant.« less

  6. Specific heat to Hc2: Evidence for nodes or deep minima in the superconducting gap of underdoped and overdoped Ba(Fe1–xCox)₂As₂

    SciTech Connect

    Kim, J. S.; Faeth, B. D.; Wang, Y.; Hirschfeld, P. J.; Stewart, G. R.; Gofryk, K.; Ronning, F.; Sefat, A. S.; Choi, K. Y.; Kim, K. H.

    2012-07-13

    Low-temperature specific heat, C, in magnetic fields up to Hc2 is reported for underdoped Ba(Fe₀.₉₅₅Co₀.₀₄₅)₂As₂ (Tc = 8 K) and for three overdoped samples Ba(Fe₁₋xCox)₂As₂ (x = 0.103, 0.13, and 0.15; Tc = 17.2, 16.5, and 11.7 K, respectively). Previous measurements of thermal conductivity (as a function of temperature and field) and penetration depth on comparable-composition samples gave some disagreement as to whether there was fully gapped/nodal behavior in the under-/overdoped materials, respectively. The present work shows that the measured behavior of the specific heat γ (∝C/T as T → 0, i.e., a measure of the electronic density of states at the Fermi energy) as a function of field approximately obeys γ ∝ H0.5±0.1, similar to the Volovik effect for nodal superconductors, for both the underdoped and the most overdoped Co samples. However, for the two overdoped compositions x = 0.103 and 0.13, the low-field (H ≤ 10 T) data show a Volovik-like behavior of γ ∝ H0.3–0.4, followed by an inflection point, followed at higher fields by γ ∝ H¹. We argue that, within the two-band theory of superconductivity, an inflection point may occur if the interband coupling is dominant.

  7. Quantum spin Hall insulator in halogenated arsenene films with sizable energy gaps.

    PubMed

    Wang, Dongchao; Chen, Li; Shi, Changmin; Wang, Xiaoli; Cui, Guangliang; Zhang, Pinhua; Chen, Yeqing

    2016-01-01

    Based on first-principles calculations, the electronic and topological properties of halogenated (F-, Cl-, Br- and I-) arsenene are investigated in detail. It is found that the halogenated arsenene sheets show Dirac type characteristic in the absence of spin-orbital coupling (SOC), whereas energy gap will be induced by SOC with the values ranging from 0.194 eV for F-arsenene to 0.255 eV for I-arsenene. Noticeably, these four newly proposed two-dimensional (2D) systems are verified to be quantum spin Hall (QSH) insulators by calculating the edge states with obvious linear cross inside bulk energy gap. It should be pointed out that the large energy gap in these 2D materials consisted of commonly used element is quite promising for practical applications of QSH insulators at room temperature. PMID:27340091

  8. Quantum spin Hall insulator in halogenated arsenene films with sizable energy gaps

    PubMed Central

    Wang, Dongchao; Chen, Li; Shi, Changmin; Wang, Xiaoli; Cui, Guangliang; Zhang, Pinhua; Chen, Yeqing

    2016-01-01

    Based on first-principles calculations, the electronic and topological properties of halogenated (F-, Cl-, Br- and I-) arsenene are investigated in detail. It is found that the halogenated arsenene sheets show Dirac type characteristic in the absence of spin-orbital coupling (SOC), whereas energy gap will be induced by SOC with the values ranging from 0.194 eV for F-arsenene to 0.255 eV for I-arsenene. Noticeably, these four newly proposed two-dimensional (2D) systems are verified to be quantum spin Hall (QSH) insulators by calculating the edge states with obvious linear cross inside bulk energy gap. It should be pointed out that the large energy gap in these 2D materials consisted of commonly used element is quite promising for practical applications of QSH insulators at room temperature. PMID:27340091

  9. Quantum spin Hall insulator in halogenated arsenene films with sizable energy gaps

    NASA Astrophysics Data System (ADS)

    Wang, Dongchao; Chen, Li; Shi, Changmin; Wang, Xiaoli; Cui, Guangliang; Zhang, Pinhua; Chen, Yeqing

    2016-06-01

    Based on first-principles calculations, the electronic and topological properties of halogenated (F-, Cl-, Br- and I-) arsenene are investigated in detail. It is found that the halogenated arsenene sheets show Dirac type characteristic in the absence of spin-orbital coupling (SOC), whereas energy gap will be induced by SOC with the values ranging from 0.194 eV for F-arsenene to 0.255 eV for I-arsenene. Noticeably, these four newly proposed two-dimensional (2D) systems are verified to be quantum spin Hall (QSH) insulators by calculating the edge states with obvious linear cross inside bulk energy gap. It should be pointed out that the large energy gap in these 2D materials consisted of commonly used element is quite promising for practical applications of QSH insulators at room temperature.

  10. The Potential United Kingdom Energy Gap and Creep Life Prediction Methodologies

    NASA Astrophysics Data System (ADS)

    Evans, Mark

    2013-01-01

    The United Kingdom faces a looming energy gap with around 20 pct of its generating capacity due for closure in the next 10 to 15 years as a result of plant age and new European legislation on environmental protection and safety at work. A number of solutions exist for this problem including the use of new materials so that new plants can operate at higher temperatures, new technologies related to carbon capture and gasification, development of renewable resources, and less obviously the use of accurate models for predicting creep life. This article reviews, with illustrations, some of the more applicable and successful creep prediction methodologies used by academics and industrialists and highlights how these techniques can help alleviate the looming energy gap. The role that these approaches can play in solving the energy gap is highlighted throughout.

  11. Energy-gap reduction in heavily doped silicon: Causes and consequences

    NASA Astrophysics Data System (ADS)

    Pantelides, Sokrates T.; Selloni, Annabella; Car, Roberto

    1985-02-01

    The authors review briefly the existing theoretical treatments of the various effects that contribute to the reduction of the energy gap in heavily doped Si, namely electron-electron and electron-impurity interactions and the effect of disorder in the impurity distribution. They then turn to the longstanding question why energy-gap reductions extracted from three different types of experiments have persistently produced values with substantial discrepancies, making it impossible to compare with theoretical values. First, they demonstrate that a meaningful comparison between theory and experiment can indeed be made if theoretical calculations are carried out for actual quantities that experiments measure, e.g. luminescence spectra, as recently done by Selloni and Pantelides. Then, they demonstrate that, independent of any theoretical calculations, the optical absorption spectra are fully consistent with the luminescence spectra and that the discrepancies in the energy-gap reductions extracted from the two sets of spectra are caused entirely by the curve-fitting procedures used in analyzing optical-absorption data. Finally, they show explicitly that, as already believed by many authors, energy-gap reductions extracted from electrical measurements on transistors do not correspond to true gap reductions. They identify two corrections that must be added to the values extracted from the electrical data in order to arrive at the true gap reductions and show that the resulting values are in good overall agreement with luminescence and absorption data. They, therefore, demonstrate that the observed reduction in emitter injection efficiency in bipolar transistors is not strictly due to a gap reduction, as generally believed, but to three very different effects.

  12. Joint operation of the superconducting fault current limiter and magnetic energy storage system in an electric power network

    NASA Astrophysics Data System (ADS)

    Kopylov, S. I.; Balashov, N. N.; Ivanov, S. S.; Veselovsky, A. S.; Zhemerikin, V. D.

    2010-06-01

    An opportunity of using superconductors as active elements of electric power systems designed to control the electric power distribution, to enhance the systems operating modes and to limit fault currents, was very attractive for investigators for a long time. In this paper, is considered an opportunity to enhance the electric power systems with the aid of superconducting magnetic energy storage systems (SMES) and superconducting fault current limiters (SFCL) operating together. It has been shown that the joint operation of both these superconducting devices allows additional varying of their parameters, what in turn gives a further opportunity to reduce their mass and dimensions and consequently the costs. There had been also shown an additional advantage of the SMES and SFCL joint operation consisting in that they ensure a more effective protection for a power system, preventing its uncontrolled load-off and subsequent acceleration up to the inaccessible rotation speed.

  13. Progress with high-field superconducting magnets for high-energy colliders

    SciTech Connect

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ~10 T at 1.9 K. Fields above 10 T became possible with the use of Nb$_3$Sn superconductors. Nb$_3$Sn accelerator magnets can provide operating fields up to ~15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. Furthermore, this review discusses the status and main results of Nb$_3$Sn accelerator magnet research and development and work toward 20-T magnets.

  14. Progress with high-field superconducting magnets for high-energy colliders

    DOE PAGES

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ~10 T at 1.9 K. Fields above 10 T became possible with the use of Nb$_3$Sn superconductors.more » Nb$_3$Sn accelerator magnets can provide operating fields up to ~15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. Furthermore, this review discusses the status and main results of Nb$_3$Sn accelerator magnet research and development and work toward 20-T magnets.« less

  15. Progress with High-Field Superconducting Magnets for High-Energy Colliders

    NASA Astrophysics Data System (ADS)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ˜10 T at 1.9 K. Fields above 10 T became possible with the use of Nb3Sn superconductors. Nb3Sn accelerator magnets can provide operating fields up to ˜15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. This review discusses the status and main results of Nb3Sn accelerator magnet research and development and work toward 20-T magnets.

  16. Spin-dependent energy gap oscillations in the ultra-short carbon nanotube (5, 5)

    NASA Astrophysics Data System (ADS)

    Tuchin, A. V.; Popov, S. V.; Glushkov, G. I.; Bityutskaya, L. A.

    2015-11-01

    Results of the numerical simulation of an electronic structure of an ultrashort singlewalled carbon nanotube (5, 5) at singlet and triplet states were presented. An antiphase energy gap oscillation on the length of the ultrashort nanotube (5, 5) at singlet and triplet states was revealed. It was found that the ground state of the nanotube is singlet, herewith the energy of the singlet-triplet transition corresponds to the energy value of visible andIR-radiation.

  17. Controlling of optical energy gap of Co-ferrite quantum dots in poly (methyl methacrylate) matrix

    NASA Astrophysics Data System (ADS)

    El-Sayed, H. M.; Agami, W. R.

    2015-07-01

    Different crystallite sizes of Co-ferrite nanoparticles were prepared and dispersed in the matrix of poly (methyl methacrylate) (PMMA) polymer. The effect of crystallite size on the structure and optical energy gap of Co-nanoferrite/PMMA composite has been studied. The optical energy gap of Co-ferrite was greatly affected by the crystallite size. This result was discussed in terms of the formation of electron-hole exciton using particle in a box model. The effective mass and the Bohr radius of the formed exciton have been calculated from the spectroscopic measurements.

  18. Pressure-Induced Structural Transition and Enhancement of Energy Gap of CuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka

    2011-02-01

    By using first-principles calculations, we studied the stable crystal structures and energy gaps of CuAlO2 under high pressure. Our simulation shows that CuAlO2 transforms from a delafossite structure to a leaning delafossite structure. The critical pressure of the transition was determined to be 60 GPa. The energy gap of CuAlO2 increases through the structural transition due to the enhanced covalency of Cu 3d and O 2p states. We found that a chalcopyrite structure does not appear as a stable structure under high pressure.

  19. Design of an accelerating cavity for the Superconducting Super Collider Low-Energy Booster

    SciTech Connect

    Friedrichs, C.C.; Walling, L. ); Campbell, B.M. )

    1991-01-01

    This paper presents the history and current status of the design of the accelerator cavity to be incorporated into the Low-Energy Booster (LEB) of the Superconducting Super Collider (SSC). The LEB is a proton synchrotron, 540 meters in circumference, and having 108 buckets around the ring. Acceleration programs, each 50 msec long, take place at a rate of 10 per second. The beta change of the particles from injection to extraction is from 0.8 to 0.997. Since the rf excitation frequency must track beta, the rf frequency must shift from 47.5 to 60 MHz over the 50-msec acceleration program. The cavity will use ferrite in a perpendicular control bias mode to effect the require tuning. 4 refs., 1 fig.

  20. Solving LFC problem in an interconnected power system using superconducting magnetic energy storage

    NASA Astrophysics Data System (ADS)

    Farahani, Mohsen; Ganjefar, Soheil

    2013-04-01

    This paper proposes the combination of a load frequency control (LFC) with superconducting magnetic energy storage (SMES) to solve the LFC problem in interconnected power systems. By using this combination, the speed damping of frequency and tie-line power flow deviations is considerably increased. A new control strategy of SMES is proposed in this paper. The problem of determining optimal parameters of PID and SMES control loop is considered as an optimization problem and a pattern search algorithm (PS) optimization is employed to solve it. The simulation results show that if an SMES unit is installed in an interconnected power system, in addition to eliminating oscillations and deviations, the settling time in the frequency and tie-line power flow responses is considerably reduced.

  1. Accurate Zero Parameter Correlation Energy Functional Obtained from the Homogeneous Electron Gas with an Energy Gap

    NASA Astrophysics Data System (ADS)

    Krieger, J. B.; Chen, Jiqiang; Iafrate, G. J.; Savin, A.

    1998-03-01

    We have obtained an analytic approximation to E_c(r_g, ζ,G) where G is an energy gap separating the occupied and unoccupied states of a homogeneous electron gas for ζ=3D0 and ξ=3D1. When G=3D0, E_c(r_g, ζ) reduces to the usual LSD result. This functional is employed in calculating correlation energies for unpolarized atoms and ions for Z <= 18 by taking G[n]=3D1/8|nabla ln n|^2, which reduces to the ionization energy in the large r limit in an exact Kohn-Sham (KS) theory. The resulting functional is self-interaction-corrected employing a method which is invariant under a unitary transformation. We find that the application of this approach to the calculation of the Ec functional reduces the error in the LSD result by more than 95%. When the value of G is approximately corrected to include the effect of higher lying unoccupied localized states, the resulting values of Ec are within a few percent of the exact results.

  2. Tuning of superconducting niobium nitride terahertz metamaterials.

    PubMed

    Wu, Jingbo; Jin, Biaobing; Xue, Yuhua; Zhang, Caihong; Dai, Hao; Zhang, Labao; Cao, Chunhai; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2011-06-20

    Superconducting planar terahertz (THz) metamaterials (MMs), with unit cells of different sizes, are fabricated on 200 nm-thick niobium nitride (NbN) films deposited on MgO substrates. They are characterized using THz time domain spectroscopy over a temperature range from 8.1 K to 300 K, crossing the critical temperature of NbN films. As the gap frequency (f(g) = 2Δ0/h, where Δ0 is the energy gap at 0 K and h is the Plank constant) of NbN is 1.18 THz, the experimentally observed THz spectra span a frequency range from below f(g) to above it. We have found that, as the resonance frequency approaches f(g), the relative tuning range of MMs is quite wide (30%). We attribute this observation to the large change of kinetic inductance of superconducting film.

  3. SUPERCONDUCTING PHOTOCATHODES.

    SciTech Connect

    SMEDLEY, J.; RAO, T.; WARREN, J.; SEKUTOWICZ, LANGNER, J.; STRZYZEWSKI, P.; LEFFERS, R.; LIPSKI, A.

    2005-10-09

    We present the results of our investigation of lead and niobium as suitable photocathode materials for superconducting RF injectors. Quantum efficiencies (QE) have been measured for a range of incident photon energies and a variety of cathode preparation methods, including various lead plating techniques on a niobium substrate. The effects of operating at ambient and cryogenic temperatures and different vacuum levels on the cathode QE have also been studied.

  4. Strain-Induced Energy Band Gap Opening in Two-Dimensional Bilayered Silicon Film

    NASA Astrophysics Data System (ADS)

    Ji, Z.; Zhou, R.; Lew Yan Voon, L. C.; Zhuang, Y.

    2016-10-01

    This work presents a theoretical study of the structural and electronic properties of bilayered silicon film (BiSF) under in-plane biaxial strain/stress using density functional theory (DFT). Atomic structures of the two-dimensional (2-D) silicon films are optimized by using both the local-density approximation (LDA) and generalized gradient approximation (GGA). In the absence of strain/stress, five buckled hexagonal honeycomb structures of the BiSF with triangular lattice have been obtained as local energy minima, and their structural stability has been verified. These structures present a Dirac-cone shaped energy band diagram with zero energy band gaps. Applying a tensile biaxial strain leads to a reduction of the buckling height. Atomically flat structures with zero buckling height have been observed when the AA-stacking structures are under a critical biaxial strain. Increase of the strain between 10.7% and 15.4% results in a band-gap opening with a maximum energy band gap opening of ˜0.17 eV, obtained when a 14.3% strain is applied. Energy band diagrams, electron transmission efficiency, and the charge transport property are calculated. Additionally, an asymmetric energetically favorable atomic structure of BiSF shows a non-zero band gap in the absence of strain/stress and a maximum band gap of 0.15 eV as a -1.71% compressive strain is applied. Both tensile and compressive strain/stress can lead to a band gap opening in the asymmetric structure.

  5. Analysis of superconducting magnetic energy storage applications at a proposed wind farm site near Browning, Montana

    NASA Astrophysics Data System (ADS)

    Gaustad, K. L.; Desteese, J. G.

    1993-07-01

    A computer program was developed to analyze the viability of integrating superconducting magnetic energy storage (SMES) with proposed wind farm scenarios at a site near Browning, Montana. The program simulated an hour-by-hour account of the charge/discharge history of a SMES unit for a representative wind-speed year. Effects of power output, storage capacity, and power conditioning capability on SMES performance characteristics were analyzed on a seasonal, diurnal, and hourly basis. The SMES unit was assumed to be charged during periods when power output of the wind resource exceeded its average value. Energy was discharged from the SMES unit into the grid during periods of low wind speed to compensate for below-average output of the wind resource. The option of using SMES to provide power continuity for a wind farm supplemented by combustion turbines was also investigated. Levelizing the annual output of large wind energy systems operating in the Blackfeet area of Montana was found to require a storage capacity too large to be economically viable. However, it appears that intermediate-sized SMES economically levelize the wind energy output on a seasonal basis.

  6. Energy losses in superconductive DC-electromagnets due to ferromagnetic movement

    SciTech Connect

    Ciesla, A.; Matras, A.

    1996-05-01

    A DC-current, superconductive electromagnet is a source of the magnetic field in a separator matrix. This type of separator operates in a cyclic way. Therefore, it appears as very important to ensure the electromagnet stability during operation, i.e., range of parameters` changes that could maintain the magnet winding in the superconductive state. This means selecting parameter changes representing the magnet winding in the superconductive state.

  7. In situ electrical transport measurementof superconductive ultrathin films

    NASA Astrophysics Data System (ADS)

    Liu, Can-Hua; Jia, Jin-Feng

    2015-11-01

    The discovery of an extraordinarily superconductive large energy gap in SrTiO3 supported single-layer FeSe films has recently initiated a great deal of research interests in surface-enhanced superconductivity and superconductive ultrathin films fabricated on crystal surfaces. On account of the instability of ultra-thin films in air, it is desirable to perform electrical transport measurement in ultra-high vaccum (UHV). Here we review the experimental techniques of in situ electrical transport measurement and their applications on superconductive ultrathin films. The work in SJTU was supported by the National Basic Research Program of China (Grant Nos. 2013CB921902 and 2011CB922200) and the National Natural Science Foundation of China (Grant Nos. 11227404, 11274228, 11521404, 11174199, and 11134008).

  8. LETTER TO THE EDITOR: The temperature dependence of the spin - Peierls energy gap in ?

    NASA Astrophysics Data System (ADS)

    Lussier, J.-G.; Coad, S. M.; McMorrow, D. F.; McK Paul, D.

    1996-01-01

    We have studied the temperature dependence of the spin - Peierls (SP) energy gap in a single crystal of 0953-8984/8/4/003/img8 using cold neutrons. Our measurements enable us to examine the scaling relationship between the magnitude of the SP gap and the intensity of the structural superlattice peak in the vicinity of the transition temperature (0953-8984/8/4/003/img9). We also discuss our data in the context of recent numerical calculations for which different scaling laws are obtained depending on the magnitude of the intrachain next-nearest-neighbour interaction in a Heisenberg spin-chain Hamiltonian. The consequence of two-dimensional correlations and the possible existence above 0953-8984/8/4/003/img9 of a second low-lying energy gap due to frustration are considered.

  9. Position resolution of a double junction superconductive detector based on a single material

    NASA Astrophysics Data System (ADS)

    Samedov, V. V.

    2008-02-01

    The Naples group from Istituto Nazionale di Fisica Nucleare presented the results of theoretical investigations of a new class of superconductive radiation detectors - double junction superconductive detector based on a single material [1]. In such detectors, the absorption of energy occurs in a long superconductive strip while two superconductive tunnel junctions positioned at the ends of the strip provide the readout of the signals. The main peculiarity of this type of detectors is that they are based on a single superconducting material, i.e., without trapping layers at the ends of the strip. In this paper, general approach to the position resolution of this type of detectors has been attempted. The formula for the position resolution is derived. It is shown that the application of the aluminium for the absorber may be the best possible way not only due to the small gap energy, but also mainly for STJ fabrication technology based on the aluminium oxide tunnel barrier.

  10. Temperature-Dependent Ellipsometry Measurements of Partial Coulomb Energy in Superconducting Cuprates

    NASA Astrophysics Data System (ADS)

    Levallois, J.; Tran, M. K.; Pouliot, D.; Presura, C. N.; Greene, L. H.; Eckstein, J. N.; Uccelli, J.; Giannini, E.; Gu, G. D.; Leggett, A. J.; van der Marel, D.

    2016-07-01

    We performed an experimental study of the temperature and doping dependence of the energy-loss function of the bilayer and trilayer bismuth cuprates family. The primary aim is to obtain information on the energy stored in the Coulomb interaction between the conduction electrons, on the temperature dependence thereof, and on the change of Coulomb interaction when Cooper pairs are formed. We performed temperature-dependent ellipsometry measurements on several Bi2 Sr2 CaCu2 O8 -x single crystals: underdoped with Tc=60 , 70, and 83 K; optimally doped with Tc=91 K ; overdoped with Tc=84 , 81, 70, and 58 K; as well as optimally doped Bi2 Sr2 Ca2 Cu3 O10 +x with Tc=110 K . Our first observation is that, as the temperature drops through Tc, the loss function in the range up to 2 eV displays a change of temperature dependence as compared to the temperature dependence in the normal state. This effect at—or close to—Tc depends strongly on doping, with a sign change for weak overdoping. The size of the observed change in Coulomb energy, using an extrapolation with reasonable assumptions about its q dependence, is about the same size as the condensation energy that has been measured in these compounds. Our results therefore lend support to the notion that the Coulomb energy is an important factor for stabilizing the superconducting phase. Because of the restriction to small momentum, our observations do not exclude a possible significant contribution to the condensation energy of the Coulomb energy associated with the region of q around (π ,π ).

  11. Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity.

    PubMed

    Okazaki, K; Ito, Y; Ota, Y; Kotani, Y; Shimojima, T; Kiss, T; Watanabe, S; Chen, C-T; Niitaka, S; Hanaguri, T; Takagi, H; Chainani, A; Shin, S

    2014-02-28

    Conventional superconductivity follows Bardeen-Cooper-Schrieffer(BCS) theory of electrons-pairing in momentum-space, while superfluidity is the Bose-Einstein condensation(BEC) of atoms paired in real-space. These properties of solid metals and ultra-cold gases, respectively, are connected by the BCS-BEC crossover. Here we investigate the band dispersions in FeTe(0.6)Se(0.4)(Tc = 14.5 K ~ 1.2 meV) in an accessible range below and above the Fermi level(EF) using ultra-high resolution laser angle-resolved photoemission spectroscopy. We uncover an electron band lying just 0.7 meV (~8 K) above EF at the Γ-point, which shows a sharp superconducting coherence peak with gap formation below Tc. The estimated superconducting gap Δ and Fermi energy [Symbol: see text]F indicate composite superconductivity in an iron-based superconductor, consisting of strong-coupling BEC in the electron band and weak-coupling BCS-like superconductivity in the hole band. The study identifies the possible route to BCS-BEC superconductivity.

  12. Superconducting transmission line particle detector

    DOEpatents

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  13. Superconducting transmission line particle detector

    DOEpatents

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  14. Energy resolution and high count rate performance of superconducting tunnel junction x-ray spectrometers

    NASA Astrophysics Data System (ADS)

    Frank, M.; Hiller, L. J.; le Grand, J. B.; Mears, C. A.; Labov, S. E.; Lindeman, M. A.; Netel, H.; Chow, D.; Barfknecht, A. T.

    1998-01-01

    We present experimental results obtained with a cryogenically cooled, high-resolution x-ray spectrometer based on a 141 μm×141 μm Nb-Al-Al2O3-Al-Nb superconducting tunnel junction (STJ) detector in a demonstration experiment. Using monochromatized synchrotron radiation we studied the energy resolution of this energy-dispersive spectrometer for soft x rays with energies between 70 and 700 eV and investigated its performance at count rates up to nearly 60 000 cps. At count rates of several 100 cps we achieved an energy resolution of 5.9 eV (FWHM) and an electronic noise of 4.5 eV for 277 eV x rays (the energy corresponding to C K). Increasing the count rate, the resolution 277 eV remained below 10 eV for count rates up to ˜10 000 cps and then degraded to 13 eV at 23 000 cps and 20 eV at 50 000 cps. These results were achieved using a commercially available spectroscopy amplifier with a baseline restorer. No pile-up rejection was applied in these measurements. Our results show that STJ detectors can operate at count rates approaching those of semiconductor detectors while still providing a significantly better energy resolution for soft x rays. Thus STJ detectors may prove very useful in microanalysis, synchrotron x-ray fluorescence (XRF) applications, and XRF analysis of light elements (K lines) and transition elements (L lines).

  15. Superconducting Quantum Interference Single-Electron Transistor

    NASA Astrophysics Data System (ADS)

    Enrico, Emanuele; Giazotto, Francesco

    2016-06-01

    We propose the concept of a quantized single-electron source based on the interplay between Coulomb blockade and magnetic flux-controllable superconducting proximity effect. We show that flux dependence of the induced energy gap in the density of states of a nanosized metallic wire can be exploited as an efficient tunable energy barrier which enables charge-pumping configurations with enhanced functionalities. This control parameter strongly affects the charging landscape of a normal metal island with non-negligible Coulombic energy. Under a suitable evolution of a time-dependent magnetic flux the structure behaves like a turnstile for single electrons in a fully electrostatic regime.

  16. Technical Barriers, Gaps, and Opportunities Related to Home Energy Upgrade Market Delivery

    SciTech Connect

    Bianchi, M. V. A.

    2011-11-01

    This report outlines the technical barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's Building America program. The objective of this report is to outline the technical1 barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's (DOE) Building America program. This information will be used to provide guidance for new research necessary to enable the success of the approaches. Investigation for this report was conducted via publications related to home energy upgrade market delivery approaches, and a series of interviews with subject matter experts (contractors, consultants, program managers, manufacturers, trade organization representatives, and real estate agents). These experts specified technical barriers and gaps, and offered suggestions for how the technical community might address them. The potential benefits of home energy upgrades are many and varied: reduced energy use and costs; improved comfort, durability, and safety; increased property value; and job creation. Nevertheless, home energy upgrades do not comprise a large part of the overall home improvement market. Residential energy efficiency is the most complex climate intervention option to deliver because the market failures are many and transaction costs are high (Climate Change Capital 2009). The key reasons that energy efficiency investment is not being delivered are: (1) The opportunity is highly fragmented; and (2) The energy efficiency assets are nonstatus, low-visibility investments that are not properly valued. There are significant barriers to mobilizing the investment in home energy upgrades, including the 'hassle factor' (the time and effort required to identify and secure improvement works), access to financing, and the opportunity cost of

  17. Multiband superconductivity in n-doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Behnia, Kamran

    2015-03-01

    The superconducting state of n-doped SrTiO3 occupies a singular place in the history of superconductivity. Besides being the first oxide superconductor, it was one of the earliest ``semiconducting superconductors,'' the first experimentally-detected multi-gap superconductor and the first case of a superconducting dome. Half a century after its discovery, it remains the most dilute superconductor. We present a systematic study of quantum oscillations and superconducting transition in doped SrTiO3, over a wide range of carrier concentration from 1017 to 1020 cm-3. Mobile carriers were introduced either by removing oxygen or by substituting Ti by Nb. Superconductivity was found to persists down to an exceptionally low concentration of mobile electrons (n =3 1017 cm-3 and Tc = 34 mK). At this concentration range, with the Fermi temperature below 10 K, the narrowness of the relevant energy window severely restricts possible pairing scenarios. We identify two critical doping levels, which are the filling thresholds of the upper conduction bands. This clarifies the limits of single-band, two-band and three-band superconducting regimes. We find that the exceptionally-wide superconducting dome of SrTiO3 has a structure with two distinct domes, each peaking near a critical doping level. Thermal conductivity measurements uncover the existence of multiple nodeless superconducting gaps at optimal doping.

  18. Initial studies of Bremsstrahlung energy deposition in small-bore superconducting undulator structures in linac environments

    SciTech Connect

    Cremer, T.; Tatchyn, R.

    1995-12-31

    One of the more promising technologies for developing minimal-length insertion devices for linac-driven, single-pass Free Electron Lasers (FELs) operating in the x-ray range is based on the use of superconducting (SC) materials. In recent FEL simulations, for example, a bifilar helical SC device with a 2 cm period and 1.8 T field was found to require a 30 m saturation length for operation at 1.5{Angstrom} on a 15 GeV linac, more than 40% shorter than an alternative hybrid/permanent magnet (hybrid/PM) undulator. AT the same time, however, SC technology is known to present characteristic difficulties for insertion device design, both in engineering detail and in operation. Perhaps the most critical problem, as observed, e.g., by Madey and co-workers in their initial FEL experiments, was the frequent quenching induced by scattered electrons upstream of their (bifilar) device. Postulating that this quenching was precipitated by directly-scattered or bremsstrahlung-induced particle energy deposited into the SC material or into material contiguous with it, the importance of numerical and experimental characterizations of this phenomenon for linac-based, user-facility SC undulator design becomes evident. In this paper we discuss selected prior experimental results and report on initial EGS4 code studies of scattered and bremsstrahlung induced particle energy deposition into SC structures with geometries comparable to a small-bore bifilar helical undulator.

  19. Crystal structure and energy gap of CdTe thin films grown by radio frequency sputtering

    NASA Astrophysics Data System (ADS)

    Jiménez-Sandoval, S.; Meléndez-Lira, M.; Hernández-Calderón, I.

    1992-11-01

    We have investigated the influence of structural characteristics on the band gap of rf sputtered CdTe thin films grown at substrate temperatures in the 69-232 °C range. The results of scanning electron microscopy and x-ray diffraction studies indicated that the films are a polycrystalline mixture of cubic and hexagonal phases with preferential growth of columnar type parallel to the cubic [111] direction. The band gap of the films was obtained from photoreflectance spectroscopy experiments carried out at room temperature. It was found that the films had a band gap larger than that of CdTe single crystals. This result has been correlated with the existence of lattice strain, quantum size effects, and hexagonal phase regions. By using theoretical models it was possible to estimate the contribution to the band gap shift due to strain and quantum size effects obtaining results in good agreement with the experiment. The study of annealed samples indicated that the effects of thermal treatments were to promote the change of the hexagonal phase to cubic, increase grain size, and shift the band gap towards lower energies reducing its difference with respect to that of single crystals.

  20. Tuning the energy gap of bilayer α-graphyne by applying strain and electric field

    NASA Astrophysics Data System (ADS)

    Yang, Hang; Wu, Wen-Zhi; Jin, Yu; Wan-Lin, Guo

    2016-02-01

    Our density functional theory calculations show that the energy gap of bilayer α-graphyne can be modulated by a vertically applied electric field and interlayer strain. Like bilayer graphene, the bilayer α-graphyne has electronic properties that are hardly changed under purely mechanical strain, while an external electric field can open the gap up to 120 meV. It is of special interest that compressive strain can further enlarge the field induced gap up to 160 meV, while tensile strain reduces the gap. We attribute the gap variation to the novel interlayer charge redistribution between bilayer α-graphynes. These findings shed light on the modulation of Dirac cone structures and potential applications of graphyne in mechanical-electric devices. Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB932604 and 2012CB933403), the National Natural Science Foundation of China (Grant Nos. 51472117 and 51535005), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures, China (Grant No. 0414K01), the Nanjing University of Aeronautics and Astronautics (NUAA) Fundamental Research Funds, China (Grant No. NP2015203), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

  1. Three energy scales in the superconducting state of hole-doped cuprates detected by electronic Raman scattering

    DOE PAGES

    Benhabib, S.; Gu, G. D.; Gallais, Y.; Cazayous, M.; Measson, M. -A.; Zhong, R. D.; Schneeloch, J.; Forget, A.; Colson, D.; Sacuto, A.

    2015-10-06

    We explore by electronic Raman scattering the superconducting state of the Bi2Sr2CaCu2O8+δ (Bi-2212) crystal by performing a fine-tuned doping study. We find three distinct energy scales in A1g, B1g, and B2g symmetries which show three distinct doping dependencies. Above p=0.22, the three energies merge; below p=0.12, the A1g scale is no longer detectable, while the B1g and B2g scales become constant in energy. In between, the A1g and B1g scales increase monotonically with underdoping, while the B2g one exhibits a maximum at p=0.16. The three superconducting energy scales appear to be a universal feature of hole-doped cuprates. Furthermore, we proposemore » that the nontrivial doping dependencies of the three scales originate from the Fermi-surface changes and reveal competing orders inside the superconducting dome.« less

  2. Three energy scales in the superconducting state of hole-doped cuprates detected by electronic Raman scattering

    SciTech Connect

    Benhabib, S.; Gu, G. D.; Gallais, Y.; Cazayous, M.; Measson, M. -A.; Zhong, R. D.; Schneeloch, J.; Forget, A.; Colson, D.; Sacuto, A.

    2015-10-06

    We explore by electronic Raman scattering the superconducting state of the Bi2Sr2CaCu2O8+δ (Bi-2212) crystal by performing a fine-tuned doping study. We find three distinct energy scales in A1g, B1g, and B2g symmetries which show three distinct doping dependencies. Above p=0.22, the three energies merge; below p=0.12, the A1g scale is no longer detectable, while the B1g and B2g scales become constant in energy. In between, the A1g and B1g scales increase monotonically with underdoping, while the B2g one exhibits a maximum at p=0.16. The three superconducting energy scales appear to be a universal feature of hole-doped cuprates. Furthermore, we propose that the nontrivial doping dependencies of the three scales originate from the Fermi-surface changes and reveal competing orders inside the superconducting dome.

  3. Factors responsible for the stability and the existence of a clean energy gap of a silicon nanocluster

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Jayanthi, C. S.; Wu, Shi-Yu

    2001-10-01

    We present a critical theoretical study of electronic properties of silicon nanoclusters, in particular the roles played by symmetry, relaxation, and hydrogen passivation on the stability, the gap states and the energy gap of the system using the order N [O(N)] nonorthogonal tight-binding molecular dynamics and the local analysis of electronic structure. We find that for an unrelaxed cluster with its atoms occupying the regular tetrahedral network, the presence of undistorted local bonding configuration is sufficient for the appearance of a small clean energy gap. However, the energy gap of the unrelaxed cluster does not start at the highest occupied molecular orbital (HOMO). In fact, between the HOMO and the lower edge of the energy gap, localized dangling bond states are found. With hydrogen passivation, the localized dangling bond states are eliminated, resulting in a wider and clean energy gap. Relaxation of these hydrogen passivated clusters does not alter either the structure or the energy gap appreciably. However, if the silicon clusters are allowed to relax first, the majority of the dangling bonds are eliminated but additional defect states due to bond distortion appear, making the energy gap dirty. Hydrogen passivation of these relaxed clusters will further eliminate most of the remnant dangling bonds but no appreciable effect on the defect states associated with bond distortions will take place, thus still resulting in a dirty gap. For the hydrogen-passivated SiN nanoclusters with no bond distortion and no overall symmetry, we have studied the variation of the energy gap as a function of size of the cluster for N in the range of 80energy gap on the size shows similar behavior to that for silicon nanoclusters with no bond distortion but possessing overall symmetry.

  4. Electron-phonon interaction and pairing mechanism in superconducting Ca-intercalated bilayer graphene.

    PubMed

    Margine, E R; Lambert, Henry; Giustino, Feliciano

    2016-01-01

    Using the ab initio anisotropic Eliashberg theory including Coulomb interactions, we investigate the electron-phonon interaction and the pairing mechanism in the recently-reported superconducting Ca-intercalated bilayer graphene. We find that C6CaC6 can support phonon-mediated superconductivity with a critical temperature Tc = 6.8-8.1 K, in good agreement with experimental data. Our calculations indicate that the low-energy Caxy vibrations are critical to the pairing, and that it should be possible to resolve two distinct superconducting gaps on the electron and hole Fermi surface pockets. PMID:26892805

  5. Electron-phonon interaction and pairing mechanism in superconducting Ca-intercalated bilayer graphene

    NASA Astrophysics Data System (ADS)

    Margine, E. R.; Lambert, Henry; Giustino, Feliciano

    2016-02-01

    Using the ab initio anisotropic Eliashberg theory including Coulomb interactions, we investigate the electron-phonon interaction and the pairing mechanism in the recently-reported superconducting Ca-intercalated bilayer graphene. We find that C6CaC6 can support phonon-mediated superconductivity with a critical temperature Tc = 6.8-8.1 K, in good agreement with experimental data. Our calculations indicate that the low-energy Caxy vibrations are critical to the pairing, and that it should be possible to resolve two distinct superconducting gaps on the electron and hole Fermi surface pockets.

  6. Electron-phonon interaction and pairing mechanism in superconducting Ca-intercalated bilayer graphene

    PubMed Central

    Margine, E. R.; Lambert, Henry; Giustino, Feliciano

    2016-01-01

    Using the ab initio anisotropic Eliashberg theory including Coulomb interactions, we investigate the electron-phonon interaction and the pairing mechanism in the recently-reported superconducting Ca-intercalated bilayer graphene. We find that C6CaC6 can support phonon-mediated superconductivity with a critical temperature Tc = 6.8–8.1 K, in good agreement with experimental data. Our calculations indicate that the low-energy Caxy vibrations are critical to the pairing, and that it should be possible to resolve two distinct superconducting gaps on the electron and hole Fermi surface pockets. PMID:26892805

  7. Point-contact spectroscopy of the phononic mechanism of superconductivity in YB6

    NASA Astrophysics Data System (ADS)

    Szabó, P.; Girovský, J.; Pribulová, Z.; Kačmarčík, J.; Mori, T.; Samuely, P.

    2013-04-01

    Lortz et al (2006 Phys. Rev. B 73 024512) have utilized specific heat and resistivity measurements as ‘thermal spectroscopies’ to deconvolve the spectrum of the electron-phonon interaction in YB6, assuming a major role of the low frequency phonon mode in mediating superconductivity. Here, we present direct point-contact spectroscopy studies of the superconducting interaction in this system. As a result, the normalized superconducting gap reveals a strong coupling with 2Δ/kBTc = 4 and, moreover, the spectra contain nonlinearities typical of the electron-phonon interaction at energies around 8 meV. The measurements in a magnetic field evidence that the phonon features found in the second derivative of the current-voltage characteristics are due to the energy dependence of the superconducting energy gap as their energy position shrinks equally as the gap is closed. This provides direct proof that the superconducting coupling in the system is due to the low energy Einstein-like phonon mode associated with the yttrium ion vibrations, in perfect agreement with determinations from bulk measurements.

  8. Relationship between cap structure and energy gap in capped carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ono, Shota; Tanikawa, Kousei; Kuwahara, Riichi; Ohno, Kaoru

    2016-07-01

    Revealing a universal relation between geometrical structures and electronic properties of capped carbon nanotubes (CNTs) is one of the current objectives in nanocarbon community. Here, we investigate the local curvature of capped CNTs and define the cap region by a crossover behavior of the curvature energy versus the number of carbon atoms integrated from the tip to the tube region. Clear correlations among the energy gap of the cap localized states, the curvature energy, the number of carbon atoms in the cap region, and the number of specific carbon clusters are observed. The present analysis opens the way to understand the cap states.

  9. Relationship between cap structure and energy gap in capped carbon nanotubes.

    PubMed

    Ono, Shota; Tanikawa, Kousei; Kuwahara, Riichi; Ohno, Kaoru

    2016-07-14

    Revealing a universal relation between geometrical structures and electronic properties of capped carbon nanotubes (CNTs) is one of the current objectives in nanocarbon community. Here, we investigate the local curvature of capped CNTs and define the cap region by a crossover behavior of the curvature energy versus the number of carbon atoms integrated from the tip to the tube region. Clear correlations among the energy gap of the cap localized states, the curvature energy, the number of carbon atoms in the cap region, and the number of specific carbon clusters are observed. The present analysis opens the way to understand the cap states. PMID:27421422

  10. Unconventional superconductivity in a two-dimensional repulsive gas of fermions with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wang, Luyang; Vafek, Oskar

    2014-02-01

    We investigate the superconducting instability of a two-dimensional repulsive Fermi gas with Rashba spin-orbit coupling αR. Using renormalization group approach, we find the superconducting transition temperature as a function of the dimensionless ratio Θ=1}/{2}mαR2/EF where EF = 0 when the smaller Fermi surface shrinks to a (Dirac) point. The general trend is that superconductivity is enhanced as Θ increases, but in an intermediate regime Θ ∼ 0.1, a dome-like behavior appears. At a very small value of Θ, the angular momentum channel jz in which superconductivity occurs is quite high. With increasing Θ, jz decreases with a step of 2 down to jz = 6, after which we find the sequence jz = 6, 4, 6, 2, the last value of which continues to Θ → ∞. In an extended range of Θ, the superconducting gap predominantly resides on the large Fermi surface, while Josephson coupling induces a much smaller gap on the small Fermi surface. Below the superconducting transition temperature, we apply mean field theory to derive the self-consistent equations and find the condensation energies. The state with the lowest condensation energy is an unconventional superconducting state which breaks time-reversal symmetry, and in which singlet and triplet pairings are mixed. In general, these states are topologically nontrivial, and the Chern number of the state with total angular momentum jz is C = 2jz.

  11. Extended Acceleration in Slot Gaps and Pulsar High-Energy Emission

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Muslimov, Alex G.; Harding, Alice K.

    2003-01-01

    We revise the physics of primary electron acceleration in the "slot gap" (SG) above the pulsar polar caps (PCs), a regime originally proposed by Arons and Scharlemann (1979) in their electrodynamic model of pulsar PCs. We employ the standard definition of the SG as a pair-free space between the last open field lines and the boundary of the pair plasma column which is expected to develop above the bulk of the PC. The rationale for our revision is that the proper treatment of primary acceleration within the pulsar SGs should take into account the effect of the narrow geometry of the gap on the electrodynamics within the gap and also to include the effect of inertial frame dragging on the particle acceleration. We show that the accelerating electric field within the gap, being significantly boosted by the effect of frame dragging, becomes reduced because of the gap geometry by a factor proportional to the square of the SG width. The combination of the effects of frame dragging and geometrical screening in the gap region naturally gives rise to a regime of extended acceleration, that is not limited to favorably curved field lines as in earlier models, and the possibility of multiple-pair production by curvature photons at very high altitudes, up to several stellar radii. We present our estimates of the characteristic SG thickness across the PC, energetics of primaries accelerated within the gap, high-energy bolometric luminosities emitted from the high altitudes in the gaps, and maximum heating luminosities produced by positrons returning from the elevated pair fronts. The estimated theoretical high-energy luminosities are in good agreement with the corresponding empirical relationships for gamma-ray pulsars. We illustrate the results of our modeling of the pair cascades and gamma-ray emission from the high altitudes in the SG for the Crab pulsar. The combination of the frame-dragging field and high-altitude SG emission enables both acceleration at the smaller

  12. A quantum galvanometer with high-energy resolution based on a superconducting interferometer circuit

    SciTech Connect

    Bakhtin, P.A.; Makhov, V.I.; Masalov, V.V.; Sretenskii, V.N.; Tyablikov, A.V.; Vasenkov, A.A.

    1985-07-01

    The authors make a comprehensive analysis of principles of constructing measurement systems based on the superconducting quantum interferometer (SQUID) implemented in integrated form. They note trends of promising applications for galvanometric measurement systems. They describe the two types of SQUID, one-junction and two junction. They analyze the processing and formation of superconducting ion chemical signals and structures. And they present their results in a series of charts and diagrams. They conclude that quantum galvanometry using superconducting microcircuits allows one to propose new experimental studies in microelectronics, the techniques of high-precision measurements, and equipment for metrological work.

  13. Band gap widening at random CIGS grain boundary detected by valence electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Keller, Debora; Buecheler, Stephan; Reinhard, Patrick; Pianezzi, Fabian; Bissig, Benjamin; Carron, Romain; Hage, Fredrik; Ramasse, Quentin; Erni, Rolf; Tiwari, Ayodhya N.

    2016-10-01

    Cu(In,Ga) Se2 (CIGS) thin film solar cells have demonstrated very high efficiencies, but still the role of nanoscale inhomogeneities in CIGS and their impact on the solar cell performance are not yet clearly understood. Due to the polycrystalline structure of CIGS, grain boundaries are very common structural defects that are also accompanied by compositional variations. In this work, we apply valence electron energy loss spectroscopy in scanning transmission electron microscopy to study the local band gap energy at a grain boundary in the CIGS absorber layer. Based on this example, we demonstrate the capabilities of a 2nd generation monochromator that provides a very high energy resolution and allows for directly relating the chemical composition and the band gap energy across the grain boundary. A band gap widening of about 20 meV is observed at the grain boundary. Furthermore, the compositional analysis by core-loss EELS reveals an enrichment of In together with a Cu, Ga and Se depletion at the same area. The experimentally obtained results can therefore be well explained by the presence of a valence band barrier at the grain boundary.

  14. Realistic treatment of the self-energy formalism in heavy-fermion metals: Application to superconducting phases of CeRu/sub 2/ and CeOs/sub 2/

    SciTech Connect

    Lopez-Aguilar, F.; Balle, S.; Costa-Quintana, J.

    1988-07-01

    A self-energy approximation is applied for obtaining the electronic structure of these two superconducting heavy-fermion systems and we explain some of their main experimental features by analyzing the calculated total and partial density of states. The superconducting mechanism is discussed and we determine relations between the density of states and the superconducting parameters.

  15. Cryogenic Tests of 30 m Flexible Hybrid Energy Transfer Line with Liquid Hydrogen and Superconducting MgB2 Cable

    NASA Astrophysics Data System (ADS)

    Vysotsky, V. S.; Antyukhov, I. V.; Firsov, V. P.; Blagov, E. V.; Kostyuk, V. V.; Nosov, A. A.; Fetisov, S. S.; Zanegin, S. Yu.; Rachuk, V. S.; Katorgin, B. I.

    Recently we reported about first in the world test of 10 m hybrid energy transfer line with liquid hydrogen and MgB2 superconducting cable. In this paper we present the new development of our second hybrid energy transfer line with 30 m length. The flexible 30 m hydrogen cryostat has three sections with different types of thermal insulation in each section: simple vacuum superinsulation, vacuum superinsulation with liquid nitrogen shield and active evaporating cryostatting (AEC) system. We performed thermo-hydraulic tests of the cryostat to compare three thermo-insulating methods. The tests were performed at temperatures from 20 to 26 K, hydrogen flow from 100 to 450 g/s and pressure from 0.25 to 0.5 MPa. It was found that AEC thermal insulation practically eliminated completely heat transfer from room temperature to liquid hydrogen in the 10 m section. AEC thermal insulation method can be used for long superconducting power cables. High voltage current leads were developed as well. The current leads and superconducting MgB2 cable have been passed high voltage DC test up to 50 kV DC. Critical current of the cable at ∼21 K was ∼3500 A. The 30 m hybrid energy system developed is able to deliver up to 135 MW of chemical and electrical power in total.

  16. Spin-bag mechanism of high-temperature superconductivity

    NASA Technical Reports Server (NTRS)

    Schrieffer, J. R.; Wen, X.-G.; Zhang, S.-C.

    1988-01-01

    A new approach to the theory of high-temperature superconductivity is proposed, based on the two-dimensional antiferromagnetic spin correlations observed in these materials over distances large compared to the lattice spacing. The spin ordering produces an electronic pseudogap which is locally suppressed by the addition of a hole. This suppression forms a bag inside which the hole is self-consistently trapped. Two holes are attracted by sharing a common bag. The resulting pairing interaction leads to a superconducting energy gap which is nodeless over the Femri surface.

  17. Charge sensitivity of superconducting single-electron transistor

    NASA Astrophysics Data System (ADS)

    Korotkov, Alexander N.

    1996-10-01

    It is shown that the noise-limited charge sensitivity of a single-electron transistor using superconductors (of either SISIS- or NISIN-type) operating near the threshold of quasiparticle tunneling, can be considerably higher than that of a similar transistor made of normal metals or semiconductors. The reason is that the superconducting energy gap, in contrast to the Coulomb blockade, is not smeared by the finite temperature. We also discuss the increase of the maximum operation temperature due to superconductivity and the peaklike features on the I-V curve of SISIS structures.

  18. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Li, Y. L.; Xu, G. S.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.; Tritz, K.; Zhu, Y. B.

    2015-12-15

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  19. An Action Dependent Heuristic Dynamic Programming-controlled Superconducting Magnetic Energy Storage for Transient Stability Augmentation

    NASA Astrophysics Data System (ADS)

    Wang, Xinpu; Yang, Jun; Zhang, Xiaodong; Yu, Xiaopeng

    To enhance the stability of power system, the active power and reactive power can be absorbed from or released to Superconducting magnetic energy storage (SMES) unit according to system power requirements. This paper proposes a control strategy based on action dependent heuristic dynamic programing (ADHDP) which can control SMES to improve the stability of electric power system with on-line learning ability. Based on back propagation (BP) neural network, ADHDP approximates the optimal control solution of nonlinear system through iteration step by step. This on-line learning ability improves its performance by learning from its own mistakes through reinforcement signal from external environment, so that it can adjust the neural network weights according to the back propagation error to achieve optimal control performance. To investigate the effectiveness of the proposed control strategy, simulation tests are carried out in Matlab/Simulink. And a conventional Proportional-Integral (PI) controlled method is used to compare the performance of ADHDP. Simulation results show that the proposed controller demonstrates superior damping performance on power system oscillation caused by three-phase fault and wind power fluctuation over the PI controller.

  20. Development of a medium-energy superconducting heavy-ion linac.

    SciTech Connect

    Ostroumov, P. N.; Physics

    2002-03-01

    The Rare Isotope Accelerator (RIA) facility project includes a cw 1.4 GeV driver linac and a 100 MV postaccelerator both based on superconducting (SC) cavities operating at frequencies from 48 to 805 MHz. In these linacs more than 99% of the total voltage is provided by SC cavities. An initial acceleration is provided by room temperature radio frequency quadrupoles. The driver linac is designed for acceleration of any ion species, from protons up to 900 MeV to uranium up to 400 MeV/u. The novel feature of the driver linac is an acceleration of multiple charge-state heavy-ion beams in order to achieve 400 kW beam power. This paper presents design features of a medium-energy SC heavy-ion linac taking the RIA driver linac as an example. The dynamics of single and multiple charge-state beams are detailed, including the effects of possible errors in rf field parameters and misalignments of transverse focusing elements. The important design considerations of such linac are presented. Several new conceptual solutions in beam dynamics in SC accelerating structures for heavy-ion applications are discussed.

  1. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Xu, G. S.; Tritz, K.; Zhu, Y. B.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.

    2015-12-01

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  2. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak.

    PubMed

    Li, Y L; Xu, G S; Tritz, K; Zhu, Y B; Wan, B N; Lan, H; Liu, Y L; Wei, J; Zhang, W; Hu, G H; Wang, H Q; Duan, Y M; Zhao, J L; Wang, L; Liu, S C; Ye, Y; Li, J; Lin, X; Li, X L

    2015-12-01

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  3. Biological effects of magnetic fields from superconducting magnetic energy storage systems

    SciTech Connect

    Tenforde, T.S.

    1989-12-01

    Physical interaction mechanisms and potential biological effects of static and slowly time-varying magnetic fields are summarized. The results of laboratory and human health studies on this topic are related to the fringe magnetic field levels anticipated to occur in the proximity of superconducting magnetic energy storage (SMES) systems. The observed biological effects of magnetic fields include: (1) magnetic induction of electrical potentials in the circulatory system and other tissues, (2) magneto-orientation of macromolecules and membranes in strong magnetic fields, and (3) Zeeman interactions with electronic spin states in certain classes of charge transfer reactions. In general, only the first of these interactions is relevant to the establishment of occupational exposure guidelines. Physical hazards posed by the interactions of magnetic fields with cardiac pacemakers and other implanted medical devices, e.g., aneurysm clips and prostheses, are important factors that must also be considered in establishing exposure guidelines. Proposed guidelines for limiting magnetic field exposure are discussed. 50 refs., 1 fig.

  4. Temperature dependence of the energy gap of semiconductors in the low-temperature limit.

    PubMed

    Cardona, Manuel; Meyer, T A; Thewalt, M L W

    2004-05-14

    The temperature dependence of the electronic states and energy gaps of semiconductors is an old but still important experimental and theoretical topic. Remarkably, extant results do not clarify the asymptotic T-->0 behavior. Recent breakthroughs in the spectroscopy of enriched 28Si allow us to measure changes in the band gap over the liquid 4He temperature range with an astounding precision of one part in 10(8), revealing a T4.0+/-0.2 decrease with increasing T. This is in excellent agreement with a theoretical argument predicting an exponent of 4. This power law should apply, in the low temperature limit, to the temperature dependence of the energies of all electronic states in semiconductors and insulators.

  5. Energy-Gap Opening in a Bi(110) Nanoribbon Induced by Edge Reconstruction

    NASA Astrophysics Data System (ADS)

    Sun, Jia-Tao; Huang, Han; Wong, Swee Liang; Gao, H.-J.; Feng, Yuan Ping; Wee, Andrew Thye Shen

    2012-12-01

    Scanning tunnelling microscopy and spectroscopy experiments complemented by first-principles calculations have been conducted to study the electronic structure of 4 monolayer Bi(110) nanoribbons on epitaxial graphene on silicon carbide [4H-SiC(0001)]. In contrast with the semimetal property of elemental bismuth, an energy gap of 0.4 eV is measured at the centre of the Bi(110) nanoribbons. Edge reconstructions, which can facilitate the edge strain energy release, are found to be responsible for the band gap opening. The calculated density of states around the Fermi level are decreased quickly to zero from the terrace edge to the middle of a Bi(110) nanoribbon potentially signifying a spatial metal-to-semiconductor transition. This study opens new avenues for room-temperature bismuth nanoribbon-based electronic devices.

  6. Vibrational effects on surface energies and band gaps in hexagonal and cubic ice

    NASA Astrophysics Data System (ADS)

    Engel, Edgar A.; Monserrat, Bartomeu; Needs, Richard J.

    2016-07-01

    Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range from -1.2 eV for the cubic ice basal surface up to -1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.

  7. Energy Band Gap Study of Semiconducting Single Walled Carbon Nanotube Bundle

    NASA Technical Reports Server (NTRS)

    Elkadi, Asmaa; Decrossas, Emmanuel; El-Ghazaly, Samir

    2013-01-01

    The electronic properties of multiple semiconducting single walled carbon nanotubes (s-SWCNTs) considering various distribution inside a bundle are studied. The model derived from the proposed analytical potential function of electron density for na individual s-SWCNT is general and can be easily applied to multiple nanotubes. This work demonstrates that regardless the number of carbon nanotubes, the strong coupling occurring between the closet neighbors reduces the energy band gap of the bundle by 10%. As expected, the coupling is strongly dependent on the distance separating the s-SWCNTs. In addition, based on the developed model, it is proposed to enhance this coupling effect by applying an electric field across the bundle to significantly reduce the energy band gap of the bundle by 20%.

  8. Energy Band Gap Study of Semiconducting Single Walled Carbon Nanotube Bundle

    NASA Technical Reports Server (NTRS)

    Elkadi, Asmaa; Decrossas, Emmanuel; El-Ghazaly, Samir

    2013-01-01

    The electronic properties of multiple semiconducting single walled carbon nanotubes (s-SWCNTs) considering various distribution inside a bundle are studied. The model derived from the proposed analytical potential function of the electron density for an individual s-SWCNT is general and can be easily applied to multiple nanotubes. This work demonstrates that regardless the number of carbon nanotubes, the strong coupling occurring between the closest neighbours reduces the energy band gap of the bundle by 10%. As expected, the coupling is strongly dependent on the distance separating the s-SWCNTs. In addition, based on the developed model, it is proposed to enhance this coupling effect by applying an electric field across the bundle to significantly reduce the energy band gap of the bundle by 20%.

  9. Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures

    NASA Technical Reports Server (NTRS)

    Nellis, W. J.; Mitchell, A. C.; Mccandless, P. C.; Erskine, D. J.; Weir, S. T.

    1992-01-01

    Electrical conductivities were measured for liquid D2 and H2 shock compressed to pressures of 10-20 GPa (100-200 kbar), molar volumes near 8 cu cm/mol, and calculated temperatures of 2900-4600 K. The semiconducting energy gap derived from the conductivities is 12 eV, in good agreement with recent quasi-particle calculations and with oscillator frequencies measured in diamond-anvil cells.

  10. Ground state energy and mass gap of a generalized quantum spin ladder

    NASA Astrophysics Data System (ADS)

    Batchelor, M. T.; Maslen, M.

    2000-01-01

    We show that a two-leg ladder Hamiltonian introduced recently by Albeverio and Fei can be made to satisfy the Hecke algebra. As a result we have found an equivalent representation of the eigenspectrum in terms of the spin- 1/2 antiferromagnetic XXZ chain at icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> = -(5/3). The values of thermodynamic quantities such as the ground state energy and mass gap follow from the known XXZ results.

  11. Interface superconductor with gap behaviour like a high-temperature superconductor.

    PubMed

    Richter, C; Boschker, H; Dietsche, W; Fillis-Tsirakis, E; Jany, R; Loder, F; Kourkoutis, L F; Muller, D A; Kirtley, J R; Schneider, C W; Mannhart, J

    2013-10-24

    The physics of the superconducting state in two-dimensional (2D) electron systems is relevant to understanding the high-transition-temperature copper oxide superconductors and for the development of future superconductors based on interface electron systems. But it is not yet understood how fundamental superconducting parameters, such as the spectral density of states, change when these superconducting electron systems are depleted of charge carriers. Here we use tunnel spectroscopy with planar junctions to measure the behaviour of the electronic spectral density of states as a function of carrier density, clarifying this issue experimentally. We chose the conducting LaAlO3-SrTiO3 interface as the 2D superconductor, because this electron system can be tuned continuously with an electric gate field. We observed an energy gap of the order of 40 microelectronvolts in the density of states, whose shape is well described by the Bardeen-Cooper-Schrieffer superconducting gap function. In contrast to the dome-shaped dependence of the critical temperature, the gap increases with charge carrier depletion in both the underdoped region and the overdoped region. These results are analogous to the pseudogap behaviour of the high-transition-temperature copper oxide superconductors and imply that the smooth continuation of the superconducting gap into pseudogap-like behaviour could be a general property of 2D superconductivity. PMID:24097347

  12. The importance of temperature dependent energy gap in the understanding of high temperature thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Singh, Saurabh; Pandey, Sudhir K.

    2016-10-01

    In this work, we show the importance of temperature dependent energy band gap, E g (T), in understanding the high temperature thermoelectric (TE) properties of material by considering LaCoO3 (LCO) and ZnV2O4 (ZVO) compounds as a case study. For the fix value of band gap, E g , deviation in the values of α has been observed above 360 K and 400 K for LCO and ZVO compounds, respectively. These deviation can be overcomed by consideration of temperature dependent band gap. The change in used value of E g with respect to temperature is ∼4 times larger than that of In As. This large temperature dependence variation in E g can be attributed to decrement in the effective on-site Coulomb interaction due to lattice expansion. At 600 K, the value of ZT for n and p-doped, LCO is ∼0.35 which suggest that it can be used as a potential material for TE device. This work clearly suggest that one should consider the temperature dependent band gap in predicting the high temperature TE properties of insulating materials.

  13. Glassy low-energy spin fluctuations and anisotropy gap in La1.88Sr0.12CuO4

    NASA Astrophysics Data System (ADS)

    Rømer, A. T.; Chang, J.; Christensen, N. B.; Andersen, B. M.; Lefmann, K.; Mähler, L.; Gavilano, J.; Gilardi, R.; Niedermayer, Ch.; Rønnow, H. M.; Schneidewind, A.; Link, P.; Oda, M.; Ido, M.; Momono, N.; Mesot, J.

    2013-04-01

    We present high-resolution triple-axis neutron scattering studies of the high-temperature superconductor La1.88Sr0.12CuO4 (Tc=27 K). The temperature dependence of the low-energy incommensurate magnetic fluctuations reveals distinctly glassy features. The glassiness is confirmed by the difference between the ordering temperature TN≃Tc inferred from elastic neutron scattering and the freezing temperature Tf≃11 K obtained from muon spin rotation studies. The magnetic field independence of the observed excitation spectrum as well as the observation of a partial suppression of magnetic spectral weight below 0.75 meV for temperatures smaller than Tf, indicate that the stripe frozen state is capable of supporting a spin anisotropy gap, of a magnitude similar to that observed in the spin and charge stripe-ordered ground state of La1.875Ba0.125CuO4. The difference between TN and Tf implies that the significant enhancement in a magnetic field of nominally elastic incommensurate scattering is caused by strictly inelastic scattering—at least in the temperature range between Tf and Tc—which is not resolved in the present experiment. Combining the results obtained from our study of La1.88Sr0.12CuO4 with a critical reappraisal of published neutron scattering work on samples with chemical composition close to p=0.12, where local probes indicate a sharp maximum in Tf(p), we arrive at the view that the low-energy fluctuations are strongly dependent on composition in this regime, with anisotropy gaps dominating only sufficiently close to p=0.12 and superconducting spin gaps dominating elsewhere.

  14. Large gap magnetic suspension system

    NASA Technical Reports Server (NTRS)

    Abdelsalam, Moustafa K.; Eyssa, Y. M.

    1991-01-01

    The design of a large gap magnetic suspension system is discussed. Some of the topics covered include: the system configuration, permanent magnet material, levitation magnet system, superconducting magnets, resistive magnets, superconducting levitation coils, resistive levitation coils, levitation magnet system, and the nitrogen cooled magnet system.

  15. Superconductivity-Induced Self-Energy Evolution of the Nodal Electron in Optimally-Doped Bi2212

    SciTech Connect

    Lee, W.S.

    2010-05-03

    The temperature dependent evolution of the renormalization effect in optimally-doped Bi2212 along the nodal direction has been studied via angle-resolved photoemission spectroscopy. Fine structure is observed in the real part of the self-energy (Re{Sigma}), including a subkink and maximum, suggesting that electrons couple to a spectrum of bosonic modes, instead of just one mode. Upon cooling through the superconducting phase transition, the fine structures of the extracted Re{Sigma} exhibit a two-processes evolution demonstrating an interplay between kink renormalization and superconductivity. We show that this two-process evolution can be qualitatively explained by a simple Holstein model in which a spectrum of bosonic modes is considered.

  16. Design and construction of the main linac module for the superconducting energy recovery linac project at Cornell

    SciTech Connect

    Eichhorn, R.; Bullock, B.; He, Y.; Hoffstaetter, G.; Liepe, M.; O'Connell, T.; Quigley, P.; Sabol, D.; Sears, J.; Smith, E.; Veshcherevich, V.

    2014-01-29

    Cornell University has been designing and building superconducting accelerators for various applications for more than 50 years. Currently, an energy-recovery linac (ERL) based synchrotron-light facility is proposed making use of the existing CESR facility. As part of the phase 1 R and D program funded by the NSF, critical challenges in the design were addressed, one of them being a full linac cryo-module. It houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode - with individual HOM absorbers and one magnet/ BPM section. Pushing the limits, a high quality factor of the cavities (2⋅10{sup 10}) and high beam currents (100 mA accelerated plus 100 mA decelerated) are targeted. We will present the design of the main linac cryo-module (MLC) being finalized recently, its cryogenic features and report on the status of the fabrication which started in late 2012.

  17. Vanishing Electronic Energy Loss of Very Slow Light Ions in Insulators with Large Band Gaps

    SciTech Connect

    Markin, S. N.; Primetzhofer, D.; Bauer, P.

    2009-09-11

    Electronic energy loss of light ions in nanometer films of materials with large band gaps has been studied for very low velocities. For LiF, a threshold velocity is observed at 0.1 a.u. (250 eV/u), below which the ions move without transferring energy to the electronic system. For KCl, a lower (extrapolated) threshold velocity is found, identical for H and He ions. For SiO{sub 2}, no clear velocity threshold is observed for He particles. For protons and deuterons, electronic stopping is found to perfectly fulfill velocity scaling, as expected for binary ion-electron interaction.

  18. Energy Dependence and Scaling Property of Localization Length near a Gapped Flat Band

    NASA Astrophysics Data System (ADS)

    Ge, Li; Tureci, Hakan

    Using a tight-binding model for a one-dimensional Lieb lattice, we show that the localization length near a gapped flat band behaves differently from the typical Urbach tail in a band gap: instead of reducing monotonically as the energy E moves away from the flat band energy Ef, the presence of the flat band causes a nonmonotonic energy dependence of the localization length. This energy dependence follows a scaling property when the energy is within the spread (W) of uniformly distributed diagonal disorder, i.e. the localization length is only a function of (E-Ef)/W. Several other lattices are compared to distinguish the effect of the flat band on the localization length, where we eliminate, shift, or duplicate the flat band, without changing the dispersion relations of other bands. Using the top right element of the Green's matrix, we derive an analytical relation between the density of states and the localization length, which shines light on these properties of the latter, including a summation rule for its inverse. This work is partially supported by NSF under Grant No. DMR-1506987.

  19. Interlayer Interaction that is Decisive in the Energy Gap of a Few Layer Phosphorene

    NASA Astrophysics Data System (ADS)

    Sugihara, Yuki; Oshiyama, Atsushi

    We report on our first-principles calculations that clarify the microscopic origin of the band-gap variation in a few-layer phosphorene (i.e. layered phosphorous) and also rectify a prevailed picture of the electronic structure of this new layered material. Calculations have been done either using GGA with inclusion of van der Waals correction in the density-functional theory or GW approximation in the self-energy. We unequivocally reveal that the interlayer interaction causes the bonding-antibonding splitting of the highest valence band state, thus reducing the fundamental energy gap. This is due to the highest state consists mainly of p orbitals along the direction perpendicular to the layers. It was predicted that phosphorene has four polytypes named α (black), β (blue), γ and δ and all these polytypes exhibit common feature of the band-gap variation. Especially, γ phosphorene is proposed to show the metal-insulator transition from the semiconductor mono-layer to the metal bi-layer. We reveal that this transition takes place in thicker region.

  20. Superconductive wire

    DOEpatents

    Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell

    1995-01-01

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  1. Superconductive wire

    DOEpatents

    Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

    1995-07-18

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.

  2. Revealing the high-energy electronic excitations underlying the onset of high-temperature superconductivity in cuprates

    PubMed Central

    Giannetti, Claudio; Cilento, Federico; Conte, Stefano Dal; Coslovich, Giacomo; Ferrini, Gabriele; Molegraaf, Hajo; Raichle, Markus; Liang, Ruixing; Eisaki, Hiroshi; Greven, Martin; Damascelli, Andrea; van der Marel, Dirk; Parmigiani, Fulvio

    2011-01-01

    In strongly correlated systems the electronic properties at the Fermi energy (EF) are intertwined with those at high-energy scales. One of the pivotal challenges in the field of high-temperature superconductivity (HTSC) is to understand whether and how the high-energy scale physics associated with Mott-like excitations (|E−EF|>1 eV) is involved in the condensate formation. Here, we report the interplay between the many-body high-energy CuO2 excitations at 1.5 and 2 eV, and the onset of HTSC. This is revealed by a novel optical pump-supercontinuum-probe technique that provides access to the dynamics of the dielectric function in Bi2Sr2Ca0.92Y0.08Cu2O8+δ over an extended energy range, after the photoinduced suppression of the superconducting pairing. These results unveil an unconventional mechanism at the base of HTSC both below and above the optimal hole concentration required to attain the maximum critical temperature (Tc). PMID:21673674

  3. Orbital Feshbach resonances with a small energy gap between open and closed channels

    NASA Astrophysics Data System (ADS)

    Cheng, Yanting; Zhang, Ren; Zhang, Peng

    2016-04-01

    Recently, a new type of Feshbach resonance, i.e., orbital Feshbach resonance (OFR), was proposed for the ultracold alkaline-earth-metal-like atoms and was experimentally observed in the ultracold gases of 173Yb atoms. Unlike most of the magnetic Feshbach resonances of ultracold alkali atoms, when the OFR of 173Yb atoms appears, the energy gap between the thresholds of the open channel (OC) and the closed channel (CC) is much smaller than the characteristic energy of the interatomic interaction, i.e., the van der Waals energy. In this paper we study the OFR in systems with a small CC-OC threshold gap. We show that in these systems the OFR can be induced by the coupling between the OC and either an isolated bound state of the CC or the scattering states of the CC. Moreover, we also show that in each case the two-channel Huang-Yang pesudopotential is always applicable for the approximate calculation of the low-energy scattering amplitude. Our results imply that in the two-channel theoretical calculations for these systems it is appropriate to take into account the contributions from the scattering states of the CC.

  4. A New Insight into Energy Distribution of Electrons in Fuel-Rod Gap in VVER-1000 Nuclear Reactor

    NASA Astrophysics Data System (ADS)

    Fereshteh, Golian; Ali, Pazirandeh; Saeed, Mohammadi

    2015-06-01

    In order to calculate the electron energy distribution in the fuel rod gap of a VVER-1000 nuclear reactor, the Fokker-Planck equation (FPE) governing the non-equilibrium behavior of electrons passing through the fuel-rod gap as an absorber has been solved in this paper. Besides, the Monte Carlo Geant4 code was employed to simulate the electron migration in the fuel-rod gap and the energy distribution of electrons was found. As for the results, the accuracy of the FPE was compared to the Geant4 code outcomes and a satisfactory agreement was found. Also, different percentage of the volatile and noble gas fission fragments produced in fission reactions in fuel rod, i.e. Krypton, Xenon, Iodine, Bromine, Rubidium and Cesium were employed so as to investigate their effects on the electrons' energy distribution. The present results show that most of the electrons in the fuel rod's gap were within the thermal energy limitation and the tail of the electron energy distribution was far from a Maxwellian distribution. The interesting outcome was that the electron energy distribution is slightly increased due to the accumulation of fission fragments in the gap. It should be noted that solving the FPE for the energy straggling electrons that are penetrating into the fuel-rod gap in the VVER-1000 nuclear reactor has been carried out for the first time using an analytical approach.

  5. A model describing the pressure dependence of the band gap energy for the group III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Wei, Tong; Sun, Xiao-Dong; Wang, Sha-Sha; Lu, Ke-Qing

    2016-08-01

    A model describing the pressure dependence of the band gap energy for the group III-V semiconductors has been developed. It is found that the model describes the pressure dependence of the band gap energy very well. It is also found that, although the pressure dependence of the band gap energy for both the conventional III-V semiconductors and the dilute nitride alloys can be described well by the model in this work, the physical mechanisms for them are different. In addition, the influence of the nonlinear compression of the lattice on the band gap energy is smaller than that of the coupling interaction between the N level and the conduction band minimum of the host material.

  6. Excess currents larger than the point contact limit in normal-metal/superconducting junctions

    NASA Astrophysics Data System (ADS)

    Riedel, Richard; Bagwell, Philip F.

    1999-05-01

    In a point contact NS junction, perfect Andreev reflection occurs over a range of voltages equal to the superconducting energy gap, producing an excess current of Iexc = (4 / 3)(2 eΔ / h). If the superconductor has a finite width, rather than the infinite width of the point contact, one cannot neglect superfluid flow inside the superconducting contact. The energy range available for perfect Andreev reflections then becomes larger than the superconducting gap, since superfluid flow alters the dispersion relation inside the finite width superconductor. We find a maximum excess current of approximately (7 / 3)(2 eΔ / h) when the width of the superconductor is approximately 7 / 3 times the width of the normal metal.

  7. The role of solvents in framework dimensionality and their effect on band gap energy.

    PubMed

    Asha, K S; Kavyasree, P R; George, Anu; Mandal, Sukhendu

    2015-01-21

    The crystal growth rate and morphology can be modulated by tuning the ratio of the solvent in mixed solvents during synthesis. We present here a solvothermal method to synthesize a Cd-FDC based metal-organic framework with different morphologies by tuning the ratio of water in the DMF-water mixed solvent system without adding any other additives. With the increasing water volume ratio a series of crystals with different morphologies were synthesized. Among these we have isolated two single crystal structures, [Cd3(FDC)3(DMF)4(H2O)], and [DMA]2[Cd3(FDC)4]·2H2O, . Compound was synthesized from DMF with small amounts of water while was formed from 25 vol% of water in the DMF-water mixed solvent. Compound contains trimer clusters as building units, which are linked by the furan dicarboxylate ligand to form a two-dimensional structure. Compound also contains trimer clusters which are linked to each other to form a one-dimensional chain with the Cd-O-Cd linkage. This one-dimensional chain in turn is connected by the furan dicarboxylate ligand to form a three-dimensional structure. All these structures are characterized by SEM, XRD, TGA and IR. We have measured the band gap energy and measurements show that the values are decreasing from to . The lower band gap energy of may be due to the presence of infinite Cd-O-Cd linkages which split the states of the conduction band and reduces the band gap energy.

  8. Broadband illumination of superconducting pair breaking photon detectors

    NASA Astrophysics Data System (ADS)

    Guruswamy, T.; Goldie, D. J.; Withington, S.

    2016-04-01

    Understanding the detailed behaviour of superconducting pair breaking photon detectors such as Kinetic Inductance Detectors (KIDs) requires knowledge of the nonequilibrium quasiparticle energy distributions. We have previously calculated the steady state distributions resulting from uniform absorption of monochromatic sub gap and above gap frequency radiation by thin films. In this work, we use the same methods to calculate the effect of illumination by broadband sources, such as thermal radiation from astrophysical phenomena or from the readout system. Absorption of photons at multiple above gap frequencies is shown to leave unchanged the structure of the quasiparticle energy distribution close to the superconducting gap. Hence for typical absorbed powers, we find the effects of absorption of broadband pair breaking radiation can simply be considered as the sum of the effects of absorption of many monochromatic sources. Distribution averaged quantities, like quasiparticle generation efficiency η, match exactly a weighted average over the bandwidth of the source of calculations assuming a monochromatic source. For sub gap frequencies, however, distributing the absorbed power across multiple frequencies does change the low energy quasiparticle distribution. For moderate and high absorbed powers, this results in a significantly larger η-a higher number of excess quasiparticles for a broadband source compared to a monochromatic source of equal total absorbed power. Typically in KIDs the microwave power absorbed has a very narrow bandwidth, but in devices with broad resonance characteristics (low quality factors), this increase in η may be measurable.

  9. Anomalous thickness-dependent optical energy gap of ALD-grown ultra-thin CuO films

    NASA Astrophysics Data System (ADS)

    Tripathi, T. S.; Terasaki, I.; Karppinen, M.

    2016-11-01

    Usually an inverse square relation between the optical energy gap and the size of crystallites is observed for semiconducting materials due to the strong quantum localization effect. Coulomb attraction that may lead to a proportional dependence is often ignored or considered less important to the optical energy gap when the crystallite size or the thickness of a thin film changes. Here we report a proportional dependence between the optical energy gap and the thickness of ALD-grown CuO thin films due to a strong Coulomb attraction. The ultrathin films deposited in the thickness range of 9-81 nm show a p-type semiconducting behavior when analyzed by Seebeck coefficient and electrical resistivity measurements. The indirect optical energy gap nature of the films is verified from UV-vis spectrophotometric measurements. A progressive increase in the indirect optical energy gap from 1.06 to 1.24 eV is observed with the increase in the thickness of the films. The data are analyzed in the presence of Coulomb attractions using the Brus model. The optical energy gap when plotted against the cubic root of the thickness of the films shows a linear dependence.

  10. Anomalous thickness-dependent optical energy gap of ALD-grown ultra-thin CuO films.

    PubMed

    Tripathi, T S; Terasaki, I; Karppinen, M

    2016-11-30

    Usually an inverse square relation between the optical energy gap and the size of crystallites is observed for semiconducting materials due to the strong quantum localization effect. Coulomb attraction that may lead to a proportional dependence is often ignored or considered less important to the optical energy gap when the crystallite size or the thickness of a thin film changes. Here we report a proportional dependence between the optical energy gap and the thickness of ALD-grown CuO thin films due to a strong Coulomb attraction. The ultrathin films deposited in the thickness range of 9-81 nm show a p-type semiconducting behavior when analyzed by Seebeck coefficient and electrical resistivity measurements. The indirect optical energy gap nature of the films is verified from UV-vis spectrophotometric measurements. A progressive increase in the indirect optical energy gap from 1.06 to 1.24 eV is observed with the increase in the thickness of the films. The data are analyzed in the presence of Coulomb attractions using the Brus model. The optical energy gap when plotted against the cubic root of the thickness of the films shows a linear dependence.

  11. Ultrasonic investigation of the superconducting properties of the Nb-Mo system

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.

    1972-01-01

    The superconducting properties of single crystals of Nb and two alloys of Nb with Mo were investigated by ultrasonic techniques. The results of measurements of the ultrasonic attenuation and velocities as a function of temperature, Mo composition, crystallographic direction, and ultrasonic frequency are reported. The attenuation and small velocity changes associated with the superconductivity of the samples are shown to be dependent on the sample resistivity ratio which varied from 4.3 for Nb-9% Mo to 6500 for pure Nb. The ultrasonic attenuation data are analyzed in terms of the superconducting energy gap term of the BCS theory. A new model is proposed for the analysis of ultrasonic attenuation in pure superconductors with two partially decoupled energy bands. To analyze the attenuation in pure superconducting Nb, the existence of two energy gaps was assumed to be associated with the two partially decoupled energy bands. One of the gaps was found to have the normal BCS value of 3.4 and the other gap was found to have the anomalously large value of 10. No experimental evidence was found to suggest that the second energy gap had a different transition temperature. The interpretation of the results for the Nb-Mo alloys is shown to be complicated by the possible existence of a second superconducting phase in Nb-Mo alloys with a transition temperature of 0.35 of the transition temperature of the first phase. The elastic constants of Nb and Nb-Mo alloys are shown to be approximately independent of Mo composition to nine atomic percent Mo. These results do not agree with the current microscopic theory of transition temperature for the transition elements.

  12. Smearing of the Lifshitz transition by superconductivity

    NASA Astrophysics Data System (ADS)

    Koshelev, Alexei; Matveev, Konstantin

    We consider a multiband metal with deep primary bands and a shallow secondary one. In the normal state the system undergoes Lifshitz transition when the bottom of the shallow band crosses the Fermi level. In the superconducting state Cooper pairing in the shallow band is induced by the deep ones. As a result, the density of electrons in the shallow band remains finite even when the bottom of the band is above the Fermi level. We study the density of states in the system and find qualitatively different behaviors on the two sides of the Lifshitz transition. On one side of the transition the density of states diverges at the energy equal to the induced gap, whereas on the other side it vanishes. We argue that this physical picture describes the recently measured gap structure in shallow bands of iron pnictides and selenides. This work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division.

  13. Neutron-Rich Ti Isotopes And Possible N = 32 And N = 34 Shell Gaps

    SciTech Connect

    Dinca, D.-C.; Campbell, C.M.; Cook, J.M.; Oiliver, H.; Starosta, K.; Terry, J.R.; Janssens, R.V.F.; Zhu, S.; Carpenter, M.P.; Hammond, N.J.; Lauritsen, T.; Lister, C.J.; Moore, E.F.; Seweryniak, D.; Gade, A.; Bazin, D.; Glasmacher, T.; Lecouey, J.-L.; Mueller, W.F.; Yoneda, K.

    2005-04-05

    The possible occurrence of sub-shell gaps at N = 32 and N = 34 in neutron-rich titanium isotopes is discussed in light of new experimental results from (i) deep-inelastic reactions measured with Gammasphere at the ATLAS facility at Argonne National Laboratory and from (ii) intermediate-energy Coulomb excitation performed at the National Superconducting Cyclotron Laboratory at Michigan State University.

  14. Effect of band gap energy on the electrical conductivity in doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Benramache, Said; Belahssen, Okba; Ben Temam, Hachemi

    2014-07-01

    The transparent conductive pure and doped zinc oxide thin films with aluminum, cobalt and indium were deposited by ultrasonic spray technique on glass substrate at 350 °C. This paper is to present a new approach to the description of correlation between electrical conductivity and optical gap energy with dopants' concentration of Al, Co and In. The correlation between the electrical and optical properties with doping level suggests that the electrical conductivity of the films is predominantly estimated by the band gap energy and the concentrations of Al, Co and In. The measurement in the electrical conductivity of doped films with correlation is equal to the experimental value, the error of this correlation is smaller than 13%. The minimum error value was estimated in the cobalt-doped ZnO thin films. This result indicates that such Co-doped ZnO thin films are chemically purer and have far fewer defects and less disorder owing to an almost complete chemical decomposition.

  15. A numerical study of the energy gap of the quantum dimer-pentamer model

    NASA Astrophysics Data System (ADS)

    Myers, Owen; Herdman, Chris

    We present a study of the energy gap in the quantum dimer-pentamer model (QDPM) on the square lattice. This model is a generalization of the square lattice quantum dimer model (QDM), with a configuration space comprising fully-packed hard-core dimer coverings of the lattice, as well as configurations containing pentamers, where four dimers touch a vertex. Thus in the QDPM, the fully-packed, hard-core constraint of the QDM is relaxed such that the local dimer number at each vertex is fixed modulo 3; correspondingly, the local U (1) gauge symmetry of the QDM Hilbert space is reduced to a local Z3 gauge symmetry in the QDPM. Previous work has demonstrated the disordered quantum liquid nature of the ground state of the QDPM at the Rokhsar-Kivelson point. Here we present a study of the energy gap above the ground state at the RK point, as computed via Monte Carlo from imaginary time correlations. To investigate the possibility of Z3 topological order in this system, we study both the dimer density correlations as well as a Z3 generalization of Z2 vision correlations. Such vision correlations have previously been shown to display the nature of the low lying excitations in Z2 topologically ordered QDMs.

  16. Closing data gaps for LCA of food products: estimating the energy demand of food processing.

    PubMed

    Sanjuán, Neus; Stoessel, Franziska; Hellweg, Stefanie

    2014-01-21

    Food is one of the most energy and CO2-intensive consumer goods. While environmental data on primary agricultural products are increasingly becoming available, there are large data gaps concerning food processing. Bridging these gaps is important; for example, the food industry can use such data to optimize processes from an environmental perspective, and retailers may use this information for purchasing decisions. Producers and retailers can then market sustainable products and deliver the information demanded by governments and consumers. Finally, consumers are increasingly interested in the environmental information of foods in order to lower their consumption impacts. This study provides estimation tools for the energy demand of a representative set of food process unit operations such as dehydration, evaporation, or pasteurization. These operations are used to manufacture a variety of foods and can be combined, according to the product recipe, to quantify the heat and electricity demand during processing. In combination with inventory data on the production of the primary ingredients, this toolbox will be a basis to perform life cycle assessment studies of a large number of processed food products and to provide decision support to the stakeholders. Furthermore, a case study is performed to illustrate the application of the tools. PMID:24344613

  17. Closing data gaps for LCA of food products: estimating the energy demand of food processing.

    PubMed

    Sanjuán, Neus; Stoessel, Franziska; Hellweg, Stefanie

    2014-01-21

    Food is one of the most energy and CO2-intensive consumer goods. While environmental data on primary agricultural products are increasingly becoming available, there are large data gaps concerning food processing. Bridging these gaps is important; for example, the food industry can use such data to optimize processes from an environmental perspective, and retailers may use this information for purchasing decisions. Producers and retailers can then market sustainable products and deliver the information demanded by governments and consumers. Finally, consumers are increasingly interested in the environmental information of foods in order to lower their consumption impacts. This study provides estimation tools for the energy demand of a representative set of food process unit operations such as dehydration, evaporation, or pasteurization. These operations are used to manufacture a variety of foods and can be combined, according to the product recipe, to quantify the heat and electricity demand during processing. In combination with inventory data on the production of the primary ingredients, this toolbox will be a basis to perform life cycle assessment studies of a large number of processed food products and to provide decision support to the stakeholders. Furthermore, a case study is performed to illustrate the application of the tools.

  18. Large dust gaps in the transitional disks of HD 100453 and HD 34282. Connecting the gap size to the spectral energy distribution and mid-infrared imaging

    NASA Astrophysics Data System (ADS)

    Khalafinejad, S.; Maaskant, K. M.; Mariñas, N.; Tielens, A. G. G. M.

    2016-03-01

    Context. The formation of dust gaps in protoplanetary disks is one of the most important signs of disk evolution and might indicate the formation of planets. Aims: We aim to characterize the flaring disk structure around the Herbig Ae/Be stars HD 100453 and HD 34282. Their spectral energy distributions (SEDs) show an emission excess between 15-40 μm, but very weak (HD 100453) and no (HD 34282) signs of the 10 and 20 μm amorphous silicate features. We investigate whether this implies the presence of large dust gaps. Methods: We investigated spatially resolved mid-infrared Q-band images taken with Gemini North/MICHELLE. We performed radiative transfer modeling and examined the radial distribution of dust. We simultaneously fit the Q-band images and SEDs of HD 100453 and HD 34282. Results: Our solutions require that the inner halos and outer disks be separated by large dust gaps that are depleted with respect to the outer disk by a factor of 1000 or more. The inner edges of the outer disks of HD 100453 and HD 34282 have temperatures of ~160 ± 10 K and ~60 ± 5 K, respectively. Because of the high surface brightness of these walls, they dominate the emission in the Q band. Their radii are constrained at 20-2+2 AU and 92-17+31 AU, respectively. Conclusions: HD 100453 and HD 34282 most likely have disk dust gaps. The upper limit of the dust mass in each gap is estimated to be about 10-7 M⊙. We find that the locations and sizes of disk dust gaps are connected to the SED, as traced by the mid-infrared flux ratio F30/F13.5. We propose a new classification scheme for the Meeus groups based on the F30/F13.5 ratio. The absence of amorphous silicate features in the observed SEDs is caused by the depletion of small (≲1 μm) silicate dust at temperatures above ≳160 K, which could be related to the presence of a dust gap in that region of the disk.

  19. Tuning the superconductivity in single-layer FeSe/oxides by interface engineering

    NASA Astrophysics Data System (ADS)

    Peng, Rui

    2015-03-01

    The discovery of high Tc in single-layer FeSe films has enormous implications for both searching new high Tc superconductors and exploring the important factors for high temperature superconductivity. In this talk, I will show our recent angle-resolved photoemission studies on various FeSe-based heterostructures grown by molecular beam epitaxy. We systematically studied the electronic structures and superconducting properties of FeSe with varied strain, different interfacial oxide materials and different thicknesses, and uncover that electronic correlations and superconducting gap-closing temperatures are tuned by interfacial effects. We exclude the direct relation between superconductivity and tensile strain, or the energy of an interfacial phonon mode, and demonstrate the crucial and non-trivial role of FeSe/oxide interface on the high pairing temperature. By tuning the interface, superconducting pairing temperature reaches up to 75K in FeSe/Nb:BaTiO3/KTaO3 with the in-plane lattice of 3.99 Å, which sets a new superconducting-gap-closing temperature record for iron-based superconductors, and may paves the way to more cost-effective applications of ultra-thin superconductors. Besides, in extremely tensile-strained single-layer FeSe films, we found that the Fermi surfaces consist of two elliptical electron pockets at the zone corner, without detectable hybridization. The lifting of degeneracy is clearly observed for the first time for the iron-based superconductors with only electron Fermi surfaces. Intriguingly, the superconducting gap distribution is anisotropic but nodeless around the electron pockets, with minima at the crossings of the two pockets. Our results provide important experimental foundations for understanding the interfacial superconductivity and the pairing symmetry puzzle of iron-based superconductors, and also provide clues for further enhancing Tc through interface engineering.

  20. Two-band superconductivity in MgB{sub 2}.

    SciTech Connect

    Iavarone, M.; Karapetrov, G.; Koshelev, A. E.; Kwok, W.-K.; Crabtree, G. W.; Hinks, D. G.; Materials Science Division

    2002-10-28

    The study of the anisotropic superconductor MgB2 using a combination of scanning tunneling microscopy and spectroscopy reveals two distinct energy gaps at {Delta}{sub 1}=2.3 meV and {Delta}{sub 2}=7.1 meV at 4.2 K. Different spectral weights of the partial superconducting density of states are a reflection of different tunneling directions in this multiband system. Temperature evolution of the tunneling spectra follows the BCS scenario with both gaps vanishing at the bulk T{sub c}. The data confirm the importance of Fermi-surface sheet dependent superconductivity in MgB{sub 2} proposed in the multigap model by Liu et al.

  1. Superconducting PM undiffused machines with stationary superconducting coils

    DOEpatents

    Hsu, John S.; Schwenterly, S. William

    2004-03-02

    A superconducting PM machine has a stator, a rotor and a stationary excitation source without the need of a ferromagnetic frame which is cryogenically cooled for operation in the superconducting state. PM material is placed between poles on the rotor to prevent leakage or diffusion of secondary flux before reaching the main air gap, or to divert PM flux where it is desired to weaken flux in the main air gap. The PM material provides hop-along capability for the machine in the event of a fault condition.

  2. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  3. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  4. Superconducting thermoelectric generator

    DOEpatents

    Metzger, John D.; El-Genk, Mohamed S.

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  5. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  6. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  7. Prospects for the medium- and long-term development of China`s electric power industry and analysis of the potential market for superconductivity technology

    SciTech Connect

    Li, Z.

    1998-05-01

    First of all, overall economic growth objectives in China are concisely and succinctly specified in this report. Secondly, this report presents a forecast of energy supply and demand for China`s economic growth for 2000--2050. In comparison with the capability of energy construction in China in the future, a gap between supply and demand is one of the important factors hindering the sustainable development of Chain`s economy. The electric power industry is one of China`s most important industries. To adopt energy efficiency through high technology and utilizing energy adequately is an important technological policy for the development of China`s electric power industry in the future. After briefly describing the achievements of China`s electric power industry, this report defines the target areas and policies for the development of hydroelectricity and nuclear electricity in the 2000s in China, presents the strategic position of China`s electric power industry as well as objectives and relevant plans of development for 2000--2050. This report finds that with the discovery of superconducting electricity, the discovery of new high-temperature superconducting (HTS) materials, and progress in materials techniques, the 21st century will be an era of superconductivity. Applications of superconductivity in the energy field, such as superconducting storage, superconducting transmission, superconducting transformers, superconducting motors, its application in Magneto-Hydro-Dynamics (MHD), as well as in nuclear fusion, has unique advantages. Its market prospects are quite promising. 12 figs.

  8. Anomalous gap-edge dissipation in disordered superconductors on the brink of localization

    NASA Astrophysics Data System (ADS)

    Cheng, Bing; Wu, Liang; Laurita, N. J.; Singh, Harkirat; Chand, Madhavi; Raychaudhuri, Pratap; Armitage, N. P.

    2016-05-01

    Superconductivity in disordered systems close to an incipient localization transition has been an area of investigation for many years, but many fundamentally important aspects are still not understood. It has been noted that in such highly disordered superconductors, anomalous spectral weight develops in their conductivity near and below the superconducting gap energy. In this work we investigate the low frequency conductivity in disordered superconducting NbN thin films close to the localization transition with time-domain terahertz spectroscopy. In the normal state, strong deviations from the Drude form due to incipient localization are found. In the superconducting state we find substantial spectral weight at frequencies well below the superconducting gap scale derived from tunneling. We analyze this spectral weight in the context of a model of disorder induced broadening of the quasiparticle density of states. We find that aspects of the optical and tunneling data can be consistently modeled in terms of this effect of mesoscopic disorder, showing that in this disorder and frequency range, quasiparticle effects and not collective modes are the source of low energy absorption. Interestingly, we also find that as a function of frequency the optical conductivity recovers to the normal state value much faster than any model predicts. This points to the nontrivial interplay of superconductivity and disorder close to localization.

  9. Exponential vanishing of the ground-state gap of the quantum random energy model via adiabatic quantum computing

    SciTech Connect

    Adame, J.; Warzel, S.

    2015-11-15

    In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM.

  10. High-pressure superconducting state in hydrogen

    NASA Astrophysics Data System (ADS)

    Duda, A. M.; Szczȩśniak, R.; Sowińska, M. A.; Kosiacka, A. H.

    2016-10-01

    The paper determines the thermodynamic parameters of the superconducting state in the metallic atomic hydrogen under the pressure at 1 TPa, 1.5 TPa, and 2.5 TPa. The calculations were conducted in the framework of the Eliashberg formalism. It has been shown that the critical temperature is very high (in the range from 301.2 K to 437.3 K), as well as high are the values of the electron effective mass (from 3.43me to 6.88me), where me denotes the electron band mass. The ratio of the low-temperature energy gap to the critical temperature explicitly violates the predictions of the BCS theory: 2 Δ (0) /kB TC ∈ < 4.84 , 5.85 > . Additionally, the free energy difference between the superconducting and normal state, the thermodynamic critical field, and the specific heat of the superconducting state have been determined. Due to the significant strong-coupling and retardation effects those quantities cannot be correctly described in the framework of the BCS theory.

  11. Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment.

    PubMed

    Yan, Rusen; Fathipour, Sara; Han, Yimo; Song, Bo; Xiao, Shudong; Li, Mingda; Ma, Nan; Protasenko, Vladimir; Muller, David A; Jena, Debdeep; Xing, Huili Grace

    2015-09-01

    van der Waals (vdW) heterojunctions composed of two-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibits novel physics phenomena that can power a range of electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse, and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions and broaden the potential applications of 2D layered materials.

  12. Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment.

    PubMed

    Yan, Rusen; Fathipour, Sara; Han, Yimo; Song, Bo; Xiao, Shudong; Li, Mingda; Ma, Nan; Protasenko, Vladimir; Muller, David A; Jena, Debdeep; Xing, Huili Grace

    2015-09-01

    van der Waals (vdW) heterojunctions composed of two-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibits novel physics phenomena that can power a range of electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse, and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions and broaden the potential applications of 2D layered materials. PMID:26226296

  13. Caffeine-containing energy drinks: beginning to address the gaps in what we know.

    PubMed

    Sorkin, Barbara C; Coates, Paul M

    2014-09-01

    Energy drinks are relatively new to the United States but are the fastest growing segment of the beverage market. Humans have a long history of consuming caffeine in traditional beverages, such as cocoa, coffee, tea, and yerba maté, but 2 workshops held at the Institute of Medicine (http://www.iom.edu/Activities/Nutrition/PotentialHazardsCaffeineSupplements/2013-AUG-05.aspx) and the NIH (http://ods.od.nih.gov/News/EnergyDrinksWorkshop2013.aspx) in 2013 highlighted many critical gaps in understanding the biologic and behavioral effects of the mixtures of caffeine, vitamins, herbs, sugar or other sweeteners, and other ingredients that typify caffeine-containing energy drinks (CCEDs). For example, different surveys over the same 2010–2012 timeframe report discrepant prevalence of CCED use by teenagers, ranging from 10.3% in 13–17 y olds to >30% of those in grades 10 and 12. Understanding of functional interactions between CCED ingredients, drivers of use, and biologic and behavioral effects is limited. The 4 speakers in the Experimental Biology 2014 symposium titled “Energy Drinks: Current Knowledge and Critical Research Gaps” described recent progress by their groups in extending our understanding of prevalence of CCED use, sources of caffeine in the United States, drivers of CCED use, and behavioral correlations and effects of CCEDs, including effects on attractiveness of both alcoholic and non-alcoholic beverages.

  14. Electronic properties of graphene nano-flakes: Energy gap, permanent dipole, termination effect, and Raman spectroscopy

    SciTech Connect

    Singh, Sandeep Kumar Peeters, F. M.; Neek-Amal, M.

    2014-02-21

    The electronic properties of graphene nano-flakes (GNFs) with different edge passivation are investigated by using density functional theory. Passivation with F and H atoms is considered: C{sub N{sub c}} X{sub N{sub x}} (X = F or H). We studied GNFs with 10 < N{sub c} < 56 and limit ourselves to the lowest energy configurations. We found that: (i) the energy difference Δ between the highest occupied molecular orbital and the lowest unoccupied molecular orbital decreases with N{sub c}, (ii) topological defects (pentagon and heptagon) break the symmetry of the GNFs and enhance the electric polarization, (iii) the mutual interaction of bilayer GNFs can be understood by dipole-dipole interaction which were found sensitive to the relative orientation of the GNFs, (iv) the permanent dipoles depend on the edge terminated atom, while the energy gap is independent of it, and (v) the presence of heptagon and pentagon defects in the GNFs results in the largest difference between the energy of the spin-up and spin-down electrons which is larger for the H-passivated GNFs as compared to F-passivated GNFs. Our study shows clearly the effect of geometry, size, termination, and bilayer on the electronic properties of small GNFs. This study reveals important features of graphene nano-flakes which can be detected using Raman spectroscopy.

  15. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    SciTech Connect

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  16. Ultrathin two-dimensional superconductivity with strong spin-orbit coupling.

    PubMed

    Nam, Hyoungdo; Chen, Hua; Liu, Tijiang; Kim, Jisun; Zhang, Chendong; Yong, Jie; Lemberger, Thomas R; Kratz, Philip A; Kirtley, John R; Moler, Kathryn; Adams, Philip W; MacDonald, Allan H; Shih, Chih-Kang

    2016-09-20

    We report on a study of epitaxially grown ultrathin Pb films that are only a few atoms thick and have parallel critical magnetic fields much higher than the expected limit set by the interaction of electron spins with a magnetic field, that is, the Clogston-Chandrasekhar limit. The epitaxial thin films are classified as dirty-limit superconductors because their mean-free paths, which are limited by surface scattering, are smaller than their superconducting coherence lengths. The uniformity of superconductivity in these thin films is established by comparing scanning tunneling spectroscopy, scanning superconducting quantum interference device (SQUID) magnetometry, double-coil mutual inductance, and magneto-transport, data that provide average superfluid rigidity on length scales covering the range from microscopic to macroscopic. We argue that the survival of superconductivity at Zeeman energies much larger than the superconducting gap can be understood only as the consequence of strong spin-orbit coupling that, together with substrate-induced inversion-symmetry breaking, produces spin splitting in the normal-state energy bands that is much larger than the superconductor's energy gap.

  17. Ultrathin two-dimensional superconductivity with strong spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Nam, Hyoungdo; Chen, Hua; Liu, Tijiang; Kim, Jisun; Zhang, Chendong; Yong, Jie; Lemberger, Thomas R.; Kratz, Philip A.; Kirtley, John R.; Moler, Kathryn; Adams, Philip W.; MacDonald, Allan H.; Shih, Chih-Kang

    2016-09-01

    We report on a study of epitaxially grown ultrathin Pb films that are only a few atoms thick and have parallel critical magnetic fields much higher than the expected limit set by the interaction of electron spins with a magnetic field, that is, the Clogston-Chandrasekhar limit. The epitaxial thin films are classified as dirty-limit superconductors because their mean-free paths, which are limited by surface scattering, are smaller than their superconducting coherence lengths. The uniformity of superconductivity in these thin films is established by comparing scanning tunneling spectroscopy, scanning superconducting quantum interference device (SQUID) magnetometry, double-coil mutual inductance, and magneto-transport, data that provide average superfluid rigidity on length scales covering the range from microscopic to macroscopic. We argue that the survival of superconductivity at Zeeman energies much larger than the superconducting gap can be understood only as the consequence of strong spin-orbit coupling that, together with substrate-induced inversion-symmetry breaking, produces spin splitting in the normal-state energy bands that is much larger than the superconductor’s energy gap.

  18. Ultrathin two-dimensional superconductivity with strong spin–orbit coupling

    PubMed Central

    Nam, Hyoungdo; Chen, Hua; Liu, Tijiang; Kim, Jisun; Zhang, Chendong; Yong, Jie; Lemberger, Thomas R.; Kratz, Philip A.; Kirtley, John R.; Moler, Kathryn; Adams, Philip W.; MacDonald, Allan H.; Shih, Chih-Kang

    2016-01-01

    We report on a study of epitaxially grown ultrathin Pb films that are only a few atoms thick and have parallel critical magnetic fields much higher than the expected limit set by the interaction of electron spins with a magnetic field, that is, the Clogston–Chandrasekhar limit. The epitaxial thin films are classified as dirty-limit superconductors because their mean-free paths, which are limited by surface scattering, are smaller than their superconducting coherence lengths. The uniformity of superconductivity in these thin films is established by comparing scanning tunneling spectroscopy, scanning superconducting quantum interference device (SQUID) magnetometry, double-coil mutual inductance, and magneto-transport, data that provide average superfluid rigidity on length scales covering the range from microscopic to macroscopic. We argue that the survival of superconductivity at Zeeman energies much larger than the superconducting gap can be understood only as the consequence of strong spin–orbit coupling that, together with substrate-induced inversion-symmetry breaking, produces spin splitting in the normal-state energy bands that is much larger than the superconductor’s energy gap. PMID:27601678

  19. Ultrathin two-dimensional superconductivity with strong spin-orbit coupling.

    PubMed

    Nam, Hyoungdo; Chen, Hua; Liu, Tijiang; Kim, Jisun; Zhang, Chendong; Yong, Jie; Lemberger, Thomas R; Kratz, Philip A; Kirtley, John R; Moler, Kathryn; Adams, Philip W; MacDonald, Allan H; Shih, Chih-Kang

    2016-09-20

    We report on a study of epitaxially grown ultrathin Pb films that are only a few atoms thick and have parallel critical magnetic fields much higher than the expected limit set by the interaction of electron spins with a magnetic field, that is, the Clogston-Chandrasekhar limit. The epitaxial thin films are classified as dirty-limit superconductors because their mean-free paths, which are limited by surface scattering, are smaller than their superconducting coherence lengths. The uniformity of superconductivity in these thin films is established by comparing scanning tunneling spectroscopy, scanning superconducting quantum interference device (SQUID) magnetometry, double-coil mutual inductance, and magneto-transport, data that provide average superfluid rigidity on length scales covering the range from microscopic to macroscopic. We argue that the survival of superconductivity at Zeeman energies much larger than the superconducting gap can be understood only as the consequence of strong spin-orbit coupling that, together with substrate-induced inversion-symmetry breaking, produces spin splitting in the normal-state energy bands that is much larger than the superconductor's energy gap. PMID:27601678

  20. Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se,Te).

    PubMed

    Massee, Freek; Sprau, Peter Oliver; Wang, Yong-Lei; Davis, J C Séamus; Ghigo, Gianluca; Gu, Genda D; Kwok, Wai-Kwong

    2015-05-01

    Maximizing the sustainable supercurrent density, J C, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because J C amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSe x Te1-x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or "columnar defects," plus a higher density of single atomic site "point" defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields.

  1. Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se,Te).

    PubMed

    Massee, Freek; Sprau, Peter Oliver; Wang, Yong-Lei; Davis, J C Séamus; Ghigo, Gianluca; Gu, Genda D; Kwok, Wai-Kwong

    2015-05-01

    Maximizing the sustainable supercurrent density, J C, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because J C amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSe x Te1-x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or "columnar defects," plus a higher density of single atomic site "point" defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields. PMID:26601180

  2. Surface Induced Anomalous Superconductivity

    NASA Astrophysics Data System (ADS)

    Fink, Herman J.; Haley, Stephen B.

    The Ginzburg Landau (GL) theory is recast using a Hamiltonian involving the complete kinetic energy density which requires that the surface energy must contain a term ∇∣ψ∣2 to support superconducting (SC) states. The GL equations contain two temperature t dependent parameters α(t) and β(t), which are respectively the coefficients of the SC pair density ∝∣ψ∣2, and the pair interaction term ∝∣ψ∣4 in the free energy density. The sign of these parameters, which defines distinct solution classes, and the ratio s(t)=√ {|α |/|β |} are governed by the characteristics of the surface energy density. In addition to the conventional bulk superconducting states with (α < 0, β > 0), anomalous superconducting states exist for all other sign combinations, including cases with β < 0 which may exist only when surface pair interactions are significant. All possible solutions of our generalized nonlinear, one-dimensional GL equations are found analytically and applied to a thin superconducting slab which manifests the possibility of states exhibiting enhanced, diminished, and pre-wetting superconductivity. Critical currents are determined as functions of s(t) and surface parameters. The results are applied to critical current experiments on SNS systems.

  3. High-Energy Emission From the Polar Cap and Slot Gap

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2006-01-01

    Thirty-five years after the discovery of rotation-powered pulsars, we still do not understand the fundamentals of their pulsed emission at any wavelength. I will review the latest developments in understanding the high-energy emission of rotation-powered pulsars, with particular emphasis on the polar cap and slot gap models. Special and general relativistic effects play important roles in pulsar emission, from inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics. I will discuss how the next generation of gamma-ray detectors, AGILE and GLAST, will test prediction of these models.

  4. ARPES Studies of Cuprate Fermiology: Superconductivity, Pseudogap and Quasiparticle Dynamics

    SciTech Connect

    Vishik, Inna

    2011-06-23

    We present angle-resolved photoemission spectroscopy (ARPES) studies of the cuprate high-temperature superconductors which elucidate the relation between superconductivity and the pseudogap and highlight low-energy quasiparticle dynamics in the superconducting state. Our experiments suggest that the pseudogap and superconducting gap represent distinct states, which coexist below T{sub c}. Studies on Bi-2212 demonstrate that the near-nodal and near-antinodal regions behave differently as a function of temperature and doping, implying that different orders dominate in different momentum-space regions. However, the ubiquity of sharp quasiparticles all around the Fermi surface in Bi-2212 indicates that superconductivity extends into the momentum-space region dominated by the pseudogap, revealing subtlety in this dichotomy. In Bi-2201, the temperature dependence of antinodal spectra reveals particle-hole asymmetry and anomalous spectral broadening, which may constrain the explanation for the pseudogap. Recognizing that electron-boson coupling is an important aspect of cuprate physics, we close with a discussion of the multiple 'kinks' in the nodal dispersion. Understanding these may be important to establishing which excitations are important to superconductivity.

  5. Cosmic sparks from superconducting strings.

    PubMed

    Vachaspati, Tanmay

    2008-10-01

    We investigate cosmic sparks from cusps on superconducting cosmic strings in light of the recently discovered millisecond radio burst by Lorimer et al.. We find that the observed duration, fluence, spectrum, and event rate can be reasonably explained by grand unification scale superconducting cosmic strings that carry currents approximately 10{5} GeV. The superconducting string model predicts an event rate that falls off only as S{-1/2}, where S is the energy flux, and hence predicts a population of very bright bursts. Other surveys, with different observational parameters, are shown to impose tight constraints on the superconducting string model. PMID:18851517

  6. Cosmic Sparks from Superconducting Strings

    SciTech Connect

    Vachaspati, Tanmay

    2008-10-03

    We investigate cosmic sparks from cusps on superconducting cosmic strings in light of the recently discovered millisecond radio burst by Lorimer et al.. We find that the observed duration, fluence, spectrum, and event rate can be reasonably explained by grand unification scale superconducting cosmic strings that carry currents {approx}10{sup 5} GeV. The superconducting string model predicts an event rate that falls off only as S{sup -1/2}, where S is the energy flux, and hence predicts a population of very bright bursts. Other surveys, with different observational parameters, are shown to impose tight constraints on the superconducting string model.

  7. Precision phase control for the radio frequency system of K500 superconducting cyclotron at Variable Energy Cyclotron Centre, Kolkata.

    PubMed

    Som, Sumit; Ghosh, Surajit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Roy, Suprakash

    2013-11-01

    Variable Energy Cyclotron Centre (VECC) has commissioned K500 Superconducting cyclotron (SCC) based on MSU and Texas A&M university cyclotrons. The radio frequency (RF) system of SCC has been commissioned with the stringent requirement of various RF parameters. The three-phase RF system of Superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.1°, respectively. The phase control system has the option to change the relative phase difference between any two RF cavities and maintain the phase stability within ±0.1° during round-the-clock cyclotron operation. The said precision phase loop consists of both analogue In-phase∕Quadrature modulator to achieve faster response and also Direct Digital Synthesis based phase shifter to achieve wide dynamic range as well. This paper discusses detail insights into the various issues of phase control for the K500 SCC at VECC, Kolkata.

  8. Precision phase control for the radio frequency system of K500 superconducting cyclotron at Variable Energy Cyclotron Centre, Kolkata

    SciTech Connect

    Som, Sumit; Ghosh, Surajit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Roy, Suprakash

    2013-11-15

    Variable Energy Cyclotron Centre (VECC) has commissioned K500 Superconducting cyclotron (SCC) based on MSU and Texas A and M university cyclotrons. The radio frequency (RF) system of SCC has been commissioned with the stringent requirement of various RF parameters. The three-phase RF system of Superconducting cyclotron has been developed in the frequency range 9–27 MHz with amplitude and phase stability of 100 ppm and ±0.1°, respectively. The phase control system has the option to change the relative phase difference between any two RF cavities and maintain the phase stability within ±0.1° during round-the-clock cyclotron operation. The said precision phase loop consists of both analogue In-phase/Quadrature modulator to achieve faster response and also Direct Digital Synthesis based phase shifter to achieve wide dynamic range as well. This paper discusses detail insights into the various issues of phase control for the K500 SCC at VECC, Kolkata.

  9. Band Gap Engineering in a 2D Material for Solar-to-Chemical Energy Conversion.

    PubMed

    Hu, Jun; Guo, Zhenkun; Mcwilliams, Peter E; Darges, John E; Druffel, Daniel L; Moran, Andrew M; Warren, Scott C

    2016-01-13

    The electronic structure of 2D semiconductors depends on their thickness, providing new opportunities to engineer semiconductors for energy conversion, electronics, and catalysis. Here we show how a 3D semiconductor, black phosphorus, becomes active for solar-to-chemical energy conversion when it is thinned to a 2D material. The increase in its band gap, from 0.3 eV (3D) to 2.1 eV (2D monolayer), is accompanied by a 40-fold enhancement in the formation of chemical products. Despite this enhancement, smaller flakes also have shorter excited state lifetimes. We deduce a mechanism in which recombination occurs at flake edges, while the "van der Waals" surface of black phosphorus bonds to chemical intermediates and facilitates electron transfer. The unique properties of black phosphorus highlight its potential as a customizable material for solar energy conversion and catalysis, while also allowing us to identify design rules for 2D photocatalysts that will enable further improvements in these materials. PMID:26651872

  10. Surface Plasmon-Mediated Energy Transfer in Hetero-Gap Au-Ag Nanowires

    PubMed Central

    Wei, Wei; Li, Shuzhou; Qin, Lidong; Xue, Can; Millstone, Jill E.; Xu, Xiaoyang; Schatz, George C.; Mirkin, Chad A.

    2011-01-01

    We report the observation of energy transfer from a gold (Au) nanodisk pair to a silver (Ag) nanowire across a 120 nm gap via surface plasmon resonance (SPR) excitation. The enhanced electromagnetic (EM) fields generated by Au SPR excitation induce oscillation of the conduction electrons in the Ag segment, transferring energy to it even though the Ag segment has only weak resonant interactions with the incident electromagnetic radiation. The induced Ag SPR produces strong EM fields at the position of the Ag segment, leading to a Raman signal ~15 times greater than when the Ag segment is alone (not adjacent to the Au nanodisk pair). The Raman intensity is found to depend nonlinearly on the incident laser intensity for laser power densities of 10 kW/cm2, which is consistent with the results of electromagnetic theory calculations which are not able to account for the factor of 15 enhancement based on a linear mechanism. This suggests that energy transfer from the Au disk pair to the Ag segment involves an enhanced nonlinear polarization mechanism such as can be produced by the electronic Kerr effect or stimulated Raman scattering. PMID:18767888

  11. Band Gap Engineering in a 2D Material for Solar-to-Chemical Energy Conversion.

    PubMed

    Hu, Jun; Guo, Zhenkun; Mcwilliams, Peter E; Darges, John E; Druffel, Daniel L; Moran, Andrew M; Warren, Scott C

    2016-01-13

    The electronic structure of 2D semiconductors depends on their thickness, providing new opportunities to engineer semiconductors for energy conversion, electronics, and catalysis. Here we show how a 3D semiconductor, black phosphorus, becomes active for solar-to-chemical energy conversion when it is thinned to a 2D material. The increase in its band gap, from 0.3 eV (3D) to 2.1 eV (2D monolayer), is accompanied by a 40-fold enhancement in the formation of chemical products. Despite this enhancement, smaller flakes also have shorter excited state lifetimes. We deduce a mechanism in which recombination occurs at flake edges, while the "van der Waals" surface of black phosphorus bonds to chemical intermediates and facilitates electron transfer. The unique properties of black phosphorus highlight its potential as a customizable material for solar energy conversion and catalysis, while also allowing us to identify design rules for 2D photocatalysts that will enable further improvements in these materials.

  12. Korea's developmental program for superconductivity

    NASA Technical Reports Server (NTRS)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  13. Electron pairing without superconductivity.

    PubMed

    Cheng, Guanglei; Tomczyk, Michelle; Lu, Shicheng; Veazey, Joshua P; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Hellberg, C Stephen; Levy, Jeremy

    2015-05-14

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances-paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. PMID:25971511

  14. Electron pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. Support from AFOSR, ONR, ARO, NSF, DOE and NSSEFF is gratefully acknowledged.

  15. Superconducting Structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  16. Superconducting structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  17. Enhancement of magnetic flux distribution in a DC superconducting electric motor

    NASA Astrophysics Data System (ADS)

    Hamid, N. A.; Ewe, L. S.; Chin, K. M.

    2013-06-01

    Most motor designs require an air gap between the rotor and stator to enable the armature to rotate freely. The interaction of magnetic flux from rotor and stator within the air gap will provide the thrust for rotational motion. Thus, the understanding of magnetic flux in the vicinity of the air gap is very important to mathematically calculate the magnetic flux generated in the area. In this work, a finite element analysis was employed to study the behavior of the magnetic flux in view of designing a synchronous DC superconducting electric motor. The analysis provides an ideal magnetic flux distribution within the components of the motor. From the flux plot analysis, it indicates that flux losses are mainly in the forms of leakage and fringe effect. The analysis also shows that the flux density is high at the area around the air gap and the rotor. The high flux density will provide a high force area that enables the rotor to rotate. In contrast, the other parts of the motor body do not show high flux density indicating low distribution of flux. Consequently, a bench top model of a DC superconducting motor was developed where by motor with a 2-pole type winding was chosen. Each field coil was designed with a racetrack-shaped double pancake wound using DI-BSCCO Bi-2223 superconducting tapes. The performance and energy efficiency of the superconducting motor was superior when compared to the conventional motor with similar capacity.

  18. Positional dependence of energy gap on line defect in armchair graphene nanoribbons: Two-terminal transport and related issues

    NASA Astrophysics Data System (ADS)

    Dutta, Paramita; Maiti, Santanu K.; Karmakar, S. N.

    2013-07-01

    The characteristics of energy band spectrum of armchair graphene nanoribbons in the presence of line defect are analyzed within a simple non-interacting tight-binding framework. In metallic nanoribbons, an energy gap may or may not appear in the band spectrum depending on the location of the defect line, while in semiconducting ribbons, the gaps are customized, yielding the potential applicabilities of graphene nanoribbons in nanoscale electronic devices. With a more general model, we also investigate two-terminal electron transport using Green's function formalism.

  19. Enhanced spin polarization in graphene with spin energy gap induced by spin-orbit coupling and strain

    SciTech Connect

    Liu, Zheng-Fang; Wu, Qing-Ping E-mail: aixichen@ecjtu.jx.cn; Chen, Ai-Xi E-mail: aixichen@ecjtu.jx.cn; Xiao, Xian-Bo; Liu, Nian-Hua

    2014-05-28

    We investigate the possibility of spin polarization in graphene. The result shows that a spin energy gap can be opened in the presence of both spin-orbit coupling and strain. We find that high spin polarization with large spin-polarized current is achieved in the spin energy gap. However, only one of the two modulations is present, no spin polarization can be generated. So the combination of the two modulations provides a way to design tunable spin polarization without need for a magnetic element or an external magnetic field.

  20. HOM damping properties of fundamental power couplers in the superconducting electron gun of the energy recovery LINAC at Brookhaven National Laboratory

    SciTech Connect

    Hammons, L.; Hahn, H.

    2011-03-28

    Among the accelerator projects under construction at the Relativistic Heavy Ion Collider (RHIC) is an R and D energy recovery LINAC (ERL) test facility. The ERL includes both a five-cell superconducting cavity as well as a superconducting, photoinjector electron gun. Because of the high-charge and high-current demands, effective higher-order mode (HOM) damping is essential, and several strategies are being pursued. Among these is the use of the fundamental power couplers as a means for damping some HOMs. Simulation studies have shown that the power couplers can play a substantial role in damping certain HOMs, and this presentation discusses these studies along with measurements.

  1. Superconductivity versus bound-state formation in a two-band superconductor with small Fermi energy: Applications to Fe pnictides/chalcogenides and doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Chubukov, Andrey V.; Eremin, Ilya; Efremov, Dmitri V.

    2016-05-01

    We analyze the interplay between superconductivity and the formation of bound pairs of fermions (BCS-BEC crossover) in a 2D model of interacting fermions with small Fermi energy EF and weak attractive interaction, which extends to energies well above EF. The 2D case is special because a two-particle bound state forms at arbitrary weak interaction, and already at weak coupling, one has to distinguish between the bound-state formation and superconductivity. We briefly review the situation in the one-band model and then consider two different two-band models: one with one hole band and one electron band and another with two hole or two electron bands. In each case, we obtain the bound-state energy 2 E0 for two fermions in a vacuum and solve the set of coupled equations for the pairing gaps and the chemical potentials to obtain the onset temperature of the pairing Tins and the quasiparticle dispersion at T =0 . We then compute the superfluid stiffness ρs(T =0 ) and obtain the actual Tc. For definiteness, we set EF in one band to be near zero and consider different ratios of E0 and EF in the other band. We show that at EF≫E0 , the behavior of both two-band models is BCS-like in the sense that Tc≈Tins≪EF and Δ ˜Tc . At EF≪E0 , the two models behave differently: in the model with two hole/two electron bands, Tins˜E0/lnE/0EF , Δ ˜(E0EF) 1 /2 , and Tc˜EF , like in the one-band model. In between Tins and Tc, the system displays a preformed pair behavior. In the model with one hole and one electron bands, Tc remains of order Tins, and both remain finite at EF=0 and of the order of E0. The preformed pair behavior still does exist in this model because Tc is numerically smaller than Tins. For both models, we reexpress Tins in terms of the fully renormalized two-particle scattering amplitude by extending to the two-band case (the method pioneered by Gorkov and Melik-Barkhudarov back in 1961). We apply our results for the model with a hole and an electron band to

  2. Photoinduced Melting of Superconductivity in the High-Tc Superconductor La2−xSrxCuO4 Probed by Time-resolved Optical and Terahertz Techniques

    SciTech Connect

    Logvenov, G.; Beyer, M.; Staedter, D.; Beck, M.; Schaefer, H.; Kabanov, V.V.; Bozovic, I.; Koren, G.; Demsar, J.

    2011-06-13

    The dynamics of depletion and recovery of a superconducting state in La{sub 2-x}Sr{sub x}CuO{sub 4} thin films is investigated utilizing optical pump-probe and optical pump-THz-probe techniques as a function of temperature and excitation fluence. The absorbed energy density required to suppress superconductivity is found to be about eight times higher than the thermodynamically determined condensation energy density and nearly temperature independent between 4 and 25 K. These findings indicate that, during the time when the superconducting state suppression takes place ({approx}0.7 ps), a large part (nearly 90%) of the energy is transferred to the phonons with energy lower than twice the maximum value of the superconducting gap and only 10% is spent on Cooper pair breaking.

  3. Absence of low energy magnetic spin-fluctuations in isovalently and aliovalently doped LaCo2B2 superconducting compounds.

    PubMed

    Majumder, M; Ghoshray, A; Khuntia, P; Mazumdar, C; Poddar, A; Baenitz, M; Ghoshray, K

    2016-09-01

    Magnetization, resistivity and (11)B, (59)Co NMR measurements have been performed on the Pauli paramagnet [Formula: see text], and the superconductors [Formula: see text] ([Formula: see text] K) and [Formula: see text] ([Formula: see text] K). The site selective NMR experiment reveals the multiband nature of the Fermi surface in these systems. The temperature independent Knight shift and 1/T 1 T clearly indicate the absence of correlated low energy magnetic spin-fluctuations in the normal state, which is in contrast to other Fe-based pnictides. The density of states (DOS) of Co 3d electrons has been enhanced in superconducting [Formula: see text] and [Formula: see text] with respect to the non superconducting reference compound [Formula: see text]. The occurrence of superconductivity is related to the DOS enhancement. PMID:27355521

  4. RF penetration depth study of superconductivity in high magnetic field at low temperature and under pressure

    NASA Astrophysics Data System (ADS)

    Martin, Catalin

    2005-07-01

    We used a technique based on a self-resonating rf circuit powered by a Tunnel Diode, the TDO technique, to perform measurements of penetration depth with magnetic field on organic and heavy fermions superconductors. Both classes of materials have strong resemblance to the High Temperature Superconductors (HTS). However, they feature much lower critical fields Bc 2 then the HTS, making the study of magnetic properties much more facile. In general, the penetration depth in the presence of a magnetic field is determined by the appearance and the motion of vortices. However, we proved that when the magnetic field is aligned parallel to the conducting planes, due to the geometry of our set-up and the layered nature of the studied systems, the vortex dynamics is drastically reduced. In this case, we were able to measure the field dependence of London penetration depth, lambda L(B). Recent theoretical work has shown that the field dependence of lambdaL can provide information about the symmetry of the energy gap in superconductors. This is a key information in understanding the mechanism of superconductivity in HTS. The existence of strong spin fluctuations in HTS results in an energy gap Delta k, which is not uniform in k-space as predicted by the BCS theory of superconductivity. Therefore, the HTS are assumed to be non-BCS or unconventional superconductors. The question is whether the symmetry of the energy gap in organic and heavy fermions is the same as in HTS. We found that lambdaL(B) in the organic compound alpha-(ET)2NH4Hg(SCN)4 indicated a uniform energy gap, therefore a conventional or BCS superconductivity in this material. The measurements on CeCoIn5 revealed a linear field dependence of lambdaL, in good agreement with the theoretical calculation for a superconductor with nodes in energy gap, therefore non-conventional superconductivity. (Abstract shortened by UMI.)

  5. Lifshitz transitions and zero point lattice fluctuations in sulfur hydride showing near room temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Jarlborg, Thomas

    2015-11-01

    Emerets's experiments on pressurized sulfur hydride have shown that H3S metal has the highest known superconducting critical temperature Tc = 203 K. The Emerets data show pressure induced changes of the isotope coefficient between 0.25 and 0.5, in disagreement with Eliashberg theory which predicts a nearly constant isotope coefficient.We assign the pressure dependent isotope coefficient to Lifshitz transitions induced by pressure and zero point lattice fluctuations. It is known that pressure could induce changes of the topology of the Fermi surface, called Lifshitz transitions, but were neglected in previous papers on the H3S superconductivity issue. Here we propose thatH3S is a multi-gap superconductor with a first condensate in the BCS regime (located in the large Fermi surface with high Fermi energy) which coexists with second condensates in the BCS-BEC crossover regime (located on the Fermi surface spots with small Fermi energy) near the and Mpoints.We discuss the Bianconi-Perali-Valletta (BPV) superconductivity theory to understand superconductivity in H3S since the BPV theory includes the corrections of the chemical potential due to pairing and the configuration interaction between different condensates, neglected by the Eliashberg theory. These two terms in the BPV theory give the shape resonance in superconducting gaps, similar to Feshbach resonance in ultracold fermionic gases, which is known to amplify the critical temperature. Therefore this work provides some key tools useful in the search for new room temperature superconductors.

  6. Nonequilibrium phenomena in charge recombination of excited donor-acceptor complexes and free energy gap law.

    PubMed

    Yudanov, Vladislav V; Mikhailova, Valentina A; Ivanov, Anatoly I

    2010-12-23

    The charge recombination dynamics of excited donor-acceptor complexes in polar solvents has been investigated within the framework of the stochastic approach. The model involves the excited state formation by the pump pulse and accounts for the reorganization of a number of intramolecular high-frequency vibrational modes, for their relaxation as well as for the solvent reorganization following nonexponential relaxation. The hot transitions accelerate the charge recombination in the low exergonic region and suppress it in the region of moderate exothermicity. This straightens the dependence of the logarithm of the charge recombination rate constant on the free energy gap to the form that can be fitted to the experimental data. The free energy dependence of the charge recombination rate constant can be well fitted to the multichannel stochastic model if the donor-acceptor complexes are separated into a few groups with different values of the electronic coupling. The model provides correct description of the nonexponential charge recombination dynamics in excited donor-acceptor complexes, in particular, nearly exponential recombination in perylene-tetracyanoethylene complex in acetonitrile. It appears that majority of the initially excited donor-acceptor complexes recombines in a nonthermal (hot) stage when the nonequilibrium wave packet passes through a number of term crossings corresponding to transitions toward vibrational excited states of the electronic ground state in the area of the low and moderate exothermicity.

  7. Superconducting nanostructured materials.

    SciTech Connect

    Metlushko, V.

    1998-07-13

    Within the last year it has been realized that the remarkable properties of superconducting thin films containing a periodic array of defects (such as sub-micron sized holes) offer a new route for developing a novel superconducting materials based on precise control of microstructure by modern photolithography. A superconductor is a material which, when cooled below a certain temperature, loses all resistance to electricity. This means that superconducting materials can carry large electrical currents without any energy loss--but there are limits to how much current can flow before superconductivity is destroyed. The current at which superconductivity breaks down is called the critical current. The value of the critical current is determined by the balance of Lorentz forces and pinning forces acting on the flux lines in the superconductor. Lorentz forces proportional to the current flow tend to drive the flux lines into motion, which dissipates energy and destroys zero resistance. Pinning forces created by isolated defects in the microstructure oppose flux line motion and increase the critical current. Many kinds of artificial pinning centers have been proposed and developed to increase critical current performance, ranging from dispersal of small non-superconducting second phases to creation of defects by proton, neutron or heavy ion irradiation. In all of these methods, the pinning centers are randomly distributed over the superconducting material, causing them to operate well below their maximum efficiency. We are overcome this drawback by creating pinning centers in aperiodic lattice (see Fig 1) so that each pin site interacts strongly with only one or a few flux lines.

  8. Superconductivity in doped Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  9. Superconducting magnet development in Japan

    SciTech Connect

    Yasukochi, K.

    1983-05-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb/sub 3/Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting ..mu.. meson channel and ..pi.. meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration.

  10. Bipolaronic superconductivity

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Ranninger, J.

    1981-08-01

    Superconducting properties of narrow-band electrons are examined in the strong-coupling limit. It is shown that bipolarons (localized spatially nonoverlapping Cooper pairs) formed by strong electron-phonon interaction have under certain conditions superconducting properties which are characteristic of superfluid charged Bose systems. They represent an example of the "molecular" superconductivity proposed by Schafroth, Butler, and Blatt

    [Helv. Phys. Acta 30 93 (1957)]
    . The Meissner effect and the penetration depth of bipolaronic superconductors are examined. The relationship between Bardeen-Cooper-Schrieffer superconductors and bipolaronic ones is discussed.

  11. Bipolaronic superconductivity

    SciTech Connect

    Alexandrov, A.; Ranninger, J.

    1981-08-01

    Superconducting properties of narrow-band electrons are examined in the strong-coupling limit. It is shown that bipolarons (localized spatially nonoverlapping Cooper pairs) formed by strong electron-phonon interaction have under certain conditions superconducting properties which are characteristic of superfluid charged Bose system. They represent an example of the ''molecular'' superconductivity proposed by Schafroth, Butler, and Blatt. The Meissner effect and the penetration depth of bipolaronic superconductor are examined. The relationship between Bardeen-Cooper-Schrieffer superconductors and bipolaronic ones is discussed.

  12. MgB{sub 2}: directional tunneling two-band superconductivity.

    SciTech Connect

    Iavarone, M.; Karapetrov, G.; Koshelev, A.; Kwok, W. K.; Hinks, D.; Crabtree, G. W.; Kang, W. N.; Choi, E.-M.; Kim, H. J.; Lee, S.-I.; Pohang Univ.

    2003-02-01

    We have studied the anisotropic superconductor MgB{sub 2} using a combination of scanning electron microscopy and scanning tunneling spectroscopy. Tunneling spectroscopy performed on thin films and pellets reveals two distinct energy gaps at {Delta}{sub 1} = 2.3 meV and {Delta}{sub 2} = 7.1 meV. On different crystallites within the polycrystalline sample different spectral weights of the partial densities of states (PDOS) were observed. They reflect different tunneling directions with respect to the crystallographic orientation of the grain in a multiband system. Indeed when tunneling in the c-axis films only one superconducting gap is observed, which is associated with the 3D band in this system. Temperature evolution of the tunneling spectra reveals that both gaps close simultaneously near the bulk critical temperature. Our experimental findings are consistent with the two-band superconductivity scenario in the presence of strong pair interaction between the two bands [1].

  13. Scanning tunneling microscopy of superconducting topological surface states in Bi2Se3

    NASA Astrophysics Data System (ADS)

    Dayton, Ian M.; Sedlmayr, Nicholas; Ramirez, Victor; Chasapis, Thomas C.; Loloee, Reza; Kanatzidis, Mercouri G.; Levchenko, Alex; Tessmer, Stuart H.

    2016-06-01

    In this Rapid Communication we present scanning tunneling microscopy of a large Bi2Se3 crystal with superconducting PbBi islands deposited on the surface. Local density of states measurements are consistent with induced superconductivity in the topological surface state with a coherence length of order 540 nm. At energies above the gap the density of states exhibits oscillations due to scattering caused by a nonuniform order parameter. Strikingly, the spectra taken on islands also display similar oscillations along with traces of the Dirac cone, suggesting an inverse topological proximity effect.

  14. Superconductivity-induced optical changes for energies of 100{Delta} in the cuprates

    SciTech Connect

    Ruebhausen, M.; Gozar, A.; Klein, M. V.; Guptasarma, P.; Hinks, D. G.

    2001-06-01

    We present information on the temperature-dependent changes of the complex pseudodielectric function in the high-T{sub c} superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8-{delta}} by means of spectroscopic ellipsometry. We reveal the existence of three distinct spectral regions. Below 2 eV, there are changes in the dielectric function associated with the free-carrier response. In slightly underdoped compounds we find at around 3 eV a strong rise of {epsilon}{sub 2} below the temperature signifying the opening of a pseudogap (T{sup *}{approx}150 K) and an additional enhancement of similar strength below the superconducting transition (T{sub c}=90 K). With overdoping, we find vanishing effects above T{sub c} and a significant decrease in the T{sub c} related effect. This behavior fits to the strong suppression of the antiferromagnetic correlations with increasing doping.

  15. Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling

    DOE PAGES

    Zhou, Miao; Ming, Wenmei; Liu, Zheng; Wang, Zhengfei; Yao, Yugui; Liu, Feng

    2014-11-19

    For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥0.5more » eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.« less

  16. Ground state energy and scaling behaviour of spin gap in the XXZ spin-12 antiferromagnetic chain in longitudinal staggered field

    NASA Astrophysics Data System (ADS)

    Paul, Susobhan; Ghosh, Asim Kumar

    2014-08-01

    The ground state energy and the spin gap of a spin-12 Heisenberg antiferromagnetic XXZ chain in the presence of longitudinal staggered field (hz) have been estimated by using Jordan-Wigner representation, exact diagonalization and perturbative analysis. All those quantities have been obtained for a region of anisotropic parameter (Δ) defined by 0≤Δ≤1. For Δ=0, the exact value of ground state energy is found for finite values of hz. The spin gap is found to develop as soon as the staggered field is switched on. The magnitude of spin gap is compared with the field induced gap measured in magnetic compounds CuBenzoate and Yb4As3 when Δ=1. The dependence of spin gap on both Δ and hz has been found which gives rise to scaling laws associated with hz. Scaling exponents obtained in two different cases show excellent agreements with the previously determined values. The variation of scaling exponents with Δ can be fitted with a regular function.

  17. Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling.

    PubMed

    Zhou, Miao; Ming, Wenmei; Liu, Zheng; Wang, Zhengfei; Yao, Yugui; Liu, Feng

    2014-11-19

    For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥ 0.5 eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.

  18. Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling

    SciTech Connect

    Zhou, Miao; Ming, Wenmei; Liu, Zheng; Wang, Zhengfei; Yao, Yugui; Liu, Feng

    2014-11-19

    For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥0.5 eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.

  19. Band gap and defect states of MgO thin films investigated using reflection electron energy loss spectroscopy

    SciTech Connect

    Heo, Sung; Cho, Eunseog; Lee, Hyung-Ik; Park, Gyeong Su; Kang, Hee Jae; Nagatomi, T.; Choi, Pyungho; Choi, Byoung-Deog

    2015-07-15

    The band gap and defect states of MgO thin films were investigated by using reflection electron energy loss spectroscopy (REELS) and high-energy resolution REELS (HR-REELS). HR-REELS with a primary electron energy of 0.3 keV revealed that the surface F center (FS) energy was located at approximately 4.2 eV above the valence band maximum (VBM) and the surface band gap width (E{sub g}{sup S}) was approximately 6.3 eV. The bulk F center (F{sub B}) energy was located approximately 4.9 eV above the VBM and the bulk band gap width was about 7.8 eV, when measured by REELS with 3 keV primary electrons. From a first-principles calculation, we confirmed that the 4.2 eV and 4.9 eV peaks were F{sub S} and F{sub B}, induced by oxygen vacancies. We also experimentally demonstrated that the HR-REELS peak height increases with increasing number of oxygen vacancies. Finally, we calculated the secondary electron emission yields (γ) for various noble gases. He and Ne were not influenced by the defect states owing to their higher ionization energies, but Ar, Kr, and Xe exhibited a stronger dependence on the defect states owing to their small ionization energies.

  20. Superconducting terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong; Singh, Ranjan; O' Hara, John F; Azad, Abul K; Trugman, Stuart A; Jia, Quanxi; Taylor, Antoinette J

    2010-01-01

    During the past ten years subwavelength metallic structures have enabled metamaterials exhibiting exotic physical properties that are not possible or difficult to realize using naturally occurring materials, This bottom-up metamaterial approach is particularly attractive in the terahertz (THz) frequency range, where the THz gap is inherently associated with the lack of materials with appropriate reponse. In fact THz metamaterial devices have accomplished unprecedented performance towards practical applications. In these devices, the key is to incorporate natural materials, e,g, semiconductors, as the metamaterial substrates or integration parts of metamaterial structures. The active or dynamic tunability of metamaterials is through the application of external stimuli such as temperature, photoexcitation, or electric field. to modify the capacitive gaps in split-ring resonators (SRRs), It becomes clear that we would not be able to do much on the metallic SRRs, i.e. the metal conductivity and therefore the inductance largely remain constant not affected by external stimuli. Recently, there has been increasing interest in superconducting metamaterials towards loss reduction. Significant Joule losses have often prevented resonant metal metamaterials from achieving proposed applications. particularly in the optical frequency range. At low temperatures, superconducting materials possess superior conductivity than metals at frequencies up to THz. and therefore it is expected that superconducting melamaterials will have a lower loss than metal metamatetials, More interestingly, superconductors exhibit tunable complex conductivity over a wide range of values through change of temperature and application of photoexcitation, electrical currents and magnetic fields. Therefore, we would expect correspondingly tunable metamaterials. which originate from the superconducting materials composing the metamaterial, in contrast to tuning the metamaterial embedded environment.

  1. Illusory Continuity without Sufficient Sound Energy to Fill a Temporal Gap: Examples of Crossing Glide Tones

    ERIC Educational Resources Information Center

    Kuroda, Tsuyoshi; Nakajima, Yoshitaka; Eguchi, Shuntarou

    2012-01-01

    The gap transfer illusion is an auditory illusion where a temporal gap inserted in a longer glide tone is perceived as if it were in a crossing shorter glide tone. Psychophysical and phenomenological experiments were conducted to examine the effects of sound-pressure-level (SPL) differences between crossing glides on the occurrence of the gap…

  2. Synthesis, characterization and band gap energy of poly(ɛ-caprolactone)/Sr-MSA nano-composite

    NASA Astrophysics Data System (ADS)

    Kannammal, L.; Palanikumar, S.; Meenarathi, B.; Yelilarasi, A.; Anbarasan, R.

    2014-04-01

    A mercaptosuccinic acid (MSA) decorated Sr nano-particle (NP) was prepared and characterized by using various analytical techniques and was used as a chemical initiator for the ring opening polymerization (ROP) of ɛ-caprolactone (CL). The ROP of CL was carried out at various experimental conditions under N2 atmosphere with mild stirring. The initiating efficiency of MSA-decorated Sr NP was tested in terms of Fourier transform infrared-relative intensity, melting temperature (Tm), degradation temperature (Td) and molecular weight (Mw) of poly(ɛ-caprolactone) (PCL), differential scanning calorimetry, UV-visible spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis and gel permeation chromatography analytical techniques. The nuclear magnetic resonance spectrum confirms the chemical structure of PCL. While increasing the [M/I] ratio, the Mw of PCL was linearly increased. The band gap energy of Sr was determined from the UV-visible spectrum. The reflectance study proves the hydrophobic nature of the Sr-hybrid and its nano-composite formation with PCL.

  3. Energy Gap Tuning and Carrier Dynamics in Colloidal Ge1-xSnx Quantum Dots.

    PubMed

    Hafiz, Shopan A; Esteves, Richard J Alan; Demchenko, Denis O; Arachchige, Indika U; Özgür, Ümit

    2016-09-01

    Optical transition energies and carrier dynamics in colloidally synthesized 2.0 ± 0.8 nm Ge1-xSnx quantum dots (x = 0.055-0.236) having visible luminescence were investigated using steady-state and time-resolved photoluminescence (PL) spectroscopy supported by first-principles calculations. By changing Sn content from x = 0.055 to 0.236, experimentally determined HOMO-LUMO gap at 15 K was tuned from 1.88 to 1.61 eV. Considering the size and compositional variations, these values were consistent with theoretically calculated ones. At 15 K, time-resolved PL revealed slow decay of luminescence (3-27 μs), likely due to the recombination of spin-forbidden dark excitons and recombination of carriers trapped at surface states. Increasing Sn concentration to 23.6% led to 1 order of magnitude faster recombination. At 295 K, PL decays were 3 orders of magnitude faster (9-28 ns) owing to the thermal activation of bright excitons and carrier detrapping from surface states. PMID:27513723

  4. Infrared studies of induced superconductivity in indium-arsenide quantum wells

    NASA Astrophysics Data System (ADS)

    Eckhause, Tobias Andrew

    The describe experiments which probe the electrical and infrared optical properties of superconductor-semiconductor hybrid structures, specifically structures where superconducting Nb contacts the two-dimensional electron gas in an InAs quantum well. In order to study the supercurrent-carrying Andreev states in a Josephson junction, we conduct transport, experiments in Josephson field-effect transistors, where a voltage applied to an insulated gate modulates the density of electrons in and the supercurrent through an InAs-based weak link. The density-dependence of the critical current fits a model for the Andreev states in the junction in which quasiparticles travel ballistically across the quantum well between superconducting electrodes. Probing the dynamics of these states on the scale of the superconducting energy gap in Nb, we find robust signatures of the proximity effect in the InAs using far-infrared transmission spectroscopy. A model for the conductivity of superconducting thin films predicts transmission spectra which show similarities to the transmission spectra measured in our structures. From this fit we extract an effective energy gap in the InAs quantum well due to the proximity of superconducting Nb. We probe these structures in both superconductor/normal metal geometries---where the superconducting Nb lies directly on top of a layer of InAs---and superconductor/normal metal/superconductor geometries---where the an InAs quantum well connects superconducting Nb stripes. In both geometries we observe proximity effects in the far-infrared transmission spectra of the InAs.

  5. Nonequilibrium superconducting detectors

    NASA Astrophysics Data System (ADS)

    Cristiano, R.; Ejrnaes, M.; Esposito, E.; Lisitskyi, M. P.; Nappi, C.; Pagano, S.; Perez de Lara, D.

    2006-03-01

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  6. Elevated temperature dependence of energy band gap of ZnO thin films grown by e-beam deposition

    SciTech Connect

    Rai, R. C.; Guminiak, M.; Wilser, S.; Cai, B.; Nakarmi, M. L.

    2012-04-01

    We report the surface, structural, electronic, and optical properties of the epitaxial ZnO thin films grown on (0001) sapphire substrate at 600 deg. C by an electron-beam deposition technique. ZnO thin films have been deposited in an oxygen environment and post-deposition annealed to improve the stoichiometry and the crystal quality. In order to investigate the free exciton binding energy and the temperature dependence of the energy bandgap, we carried out variable temperature (78-450 K) transmittance measurements on ZnO thin films. The absorption data below the energy bandgap have been modeled with the Urbach tail and a free exciton, while the data above the gap have been modeled with the charge transfer excitations. The exciton binding energy is measured to be E{sub 0}= 64 {+-} 7 meV, and the energy band gaps of the ZnO film are measured to be E{sub g}-tilde 3.51 and 3.48 eV at 78 and 300 K, respectively. The temperature dependence of the energy gap has been fitted with the Varshni model to extract the fitting parameters {alpha}= 0.00020 {+-} 0.00002 eV/K, {beta}= 325 {+-} 20 K, and E{sub g} (T = 0 K) = 3.516 {+-} 0.0002 eV.

  7. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet.

    PubMed

    Warren, Joshua A; Riddle, Matthew E; Graziano, Diane J; Das, Sujit; Upadhyayula, Venkata K K; Masanet, Eric; Cresko, Joe

    2015-09-01

    Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of silicon carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015-2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2-20 billion GJ depending on market adoption dynamics.

  8. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet.

    PubMed

    Warren, Joshua A; Riddle, Matthew E; Graziano, Diane J; Das, Sujit; Upadhyayula, Venkata K K; Masanet, Eric; Cresko, Joe

    2015-09-01

    Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of silicon carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015-2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2-20 billion GJ depending on market adoption dynamics. PMID:26247853

  9. Investigation of high-resolution superconducting tunnel junction detectors for low-energy X-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Beckhoff, B.; Fliegauf, R.; Ulm, G.

    2003-04-01

    The energy resolution of conventional semiconductor detectors is insufficient for simultaneously separating the leading fluorescence lines of low Z and medium Z materials in the soft X-ray regime. It is therefore important to investigate alternative detection instruments offering higher energy resolution and evaluate their applicability to soft X-ray fluorescence (XRF) analysis. In this paper, various results of the characterization and evaluation of a cryogenic superconducting tunnel junction (STJ) detector, which was provided to the Physikalisch-Technische Bundesanstalt (PTB) by the Lawrence Livermore National Laboratory, are given with respect to both detector response functions and XRF. For this investigation, monochromatized undulator radiation of high spectral purity, available to the PTB X-ray radiometry laboratory at the electron storage ring BESSY II, was employed, by which it was possible to record the STJ response functions at various photon energies of interest ranging from 180 to 1600 eV. By scanning the effective detector area and the adjacent substrate and leads, relevant artefacts of the detector response were identified.

  10. Secondary "smile"-gap in the density of states of a diffusive Josephson junction for a wide range of contact types

    NASA Astrophysics Data System (ADS)

    Reutlinger, J.; Glazman, L.; Nazarov, Yu. V.; Belzig, W.

    2014-07-01

    The superconducting proximity effect leads to strong modifications of the local density of states in diffusive or chaotic cavity Josephson junctions, which displays a phase-dependent energy gap around the Fermi energy. The so-called minigap of the order of the Thouless energy ETh is related to the inverse dwell time in the diffusive region in the limit ETh≪Δ, where Δ is the superconducting energy gap. In the opposite limit of a large Thouless energy ETh≫Δ, a small new feature has recently attracted attention, namely, the appearance of a further secondary gap, which is around two orders of magnitude smaller compared to the usual superconducting gap. It appears in a chaotic cavity just below the superconducting gap edge Δ and vanishes for some value of the phase difference between the superconductors. We extend previous theory restricted to a normal cavity connected to two superconductors through ballistic contacts to a wider range of contact types. We show that the existence of the secondary gap is not limited to ballistic contacts, but is a more general property of such systems. Furthermore, we derive a criterion which directly relates the existence of a secondary gap to the presence of small transmission eigenvalues of the contacts. For generic continuous distributions of transmission eigenvalues of the contacts, no secondary gap exists, although we observe a singular behavior of the density of states at Δ. Finally, we provide a simple one-dimensional scattering model which is able to explain the characteristic "smile" shape of the secondary gap.

  11. Mapping Dimensionality and Directionality of Electronic Behavior in CeCoIn5: the Superconducting State

    NASA Astrophysics Data System (ADS)

    Feldman, Benjamin E.; Gyenis, Andras; Randeria, Mallika T.; Peterson, Gabriel A.; Aynajian, Pegor; Bauer, Eric D.; Yazdani, Ali

    Unconventional superconductors often exhibit anisotropic physical properties that arise from the directional dependence of their order parameters. A prime example is CeCoIn5, a heavy fermion d-wave superconductor with a rich low-temperature phase diagram consisting of competing and coexisting magnetic and superconducting orders. Here we present dilution refrigerator scanning tunneling microscopy of CeCoIn5 cleaved perpendicular to its basal plane. We study superconductivity on the (100) surface, whose normal vector points along the antinode of the superconducting energy gap. The gap magnitude is similar to that observed in the basal plane, with a key difference: it does not exhibit any suppression near step edges. Application of a magnetic field along the [100] direction leads to the formation of anisotropic vortices, and the vortex lattice undergoes a transition at high field before the superconducting state gives way to a pseudogap phase. Our measurements illustrate the directional dependence of the superconducting properties in CeCoIn5, and more generally, demonstrate the utility of imaging d-wave superconductors along their nodal and antinodal directions.

  12. Superconductivity-induced optical changes for energies of 100{Delta} in the cuprates

    SciTech Connect

    Rubhausen, M.; Gozar, A.; Klein, M. V.; Guptasarma, P.; Hinks, D. G.

    2001-06-01

    We present information on the temperature-dependent changes of the complex pseudodielectric function in the high-T{sub c} superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8{minus}{delta}} by means of spectroscopic ellipsometry. We reveal the existence of three distinct spectral regions. Below 2 eV, there are changes in the dielectric function associated with the free-carrier response. In slightly underdoped compounds we find at around 3 eV a strong rise of {epsilon}{sub 2} below the temperature signifying the opening of a pseudogap (T{sup *}{approximately}150 K) and an additional enhancement of similar strength below the superconducting transition (T{sub c}=90 K). With overdoping, we find vanishing effects above T{sub c} and a significant decrease in the T{sub c} related effect. This behavior fits to the strong suppression of the antiferromagnetic correlations with increasing doping.

  13. Design of 57.5 MHz CW RFQ for medium energy heavy ion superconducting linac.

    SciTech Connect

    Ostroumov, P. N.; Kolomiets, A. A.; Kashinsky, D. A.; Minaev, S. A.; Pershin, V. I.; Tretyakova, T. E.; Yaramishev, S. G.; Physics; Inst. of Theoretical and Experimental Physics

    2002-06-01

    The nuclear science community considers the construction of the Rare Isotope Accelerator (RIA) facility as a top priority. The RIA includes a 1.4 GV superconducting linac for production of 400 kW cw heavy ion beams. The initial acceleration of heavy ions delivered from an electron cyclotron resonance ion source can be effectively performed by a 57.5 MHz 4-m long room temperature RFQ. The principal specifications of the RFQ are (i) formation of extremely low longitudinal emittance, (ii) stable operation over a wide range of voltage for acceleration of various ion species needed for RIA operation, and (iii) simultaneous acceleration of two-charge states of uranium ions. cw operation of an accelerating structure leads to a number of requirements for the resonators such as high shunt impedance, efficient water cooling of all parts of the resonant cavity, mechanical stability together with precise alignment, reliable rf contacts, a stable operating mode, and fine tuning of the resonant frequency during operation. To satisfy these requirements a new resonant structure has been developed. This paper discusses the beam dynamics and electrodynamics design of the RFQ cavity, as well as some aspects of the mechanical design of the low-frequency cw RFQ.

  14. Scanning Tunneling Spectroscopy Studies of Multiband and Unconventional Superconductivity

    NASA Astrophysics Data System (ADS)

    Fridman, Igor

    Scanning tunneling spectroscopy at low temperature and in a magnetic field has been used to study multiband superconductivity in 2H-NbSe 2, superconductivity in iron chalcogenides and pnictides, and the superconducting proximity effect between a high-Tc cuprate and a half-metallic manganite. In superconductors with complex band structures, pairing can involve multiple bands with multiple superconducting gaps. To search for new phenomena, a scanning tunneling microscope that operates at 300 mK was specially designed for a magnetic field of up to 9 T to be applied parallel to the sample surface. In the mixed state, field-induced supercurrents give the Cooper pairs a finite superfluid momentum, enabling the study of the quasiparticle density of states spectrum using the Doppler energy shift as a perturbation. This technique was applied to 2H-NbSe2, a layered s-wave superconductor with a multi-sheeted and anisotropic Fermi surface. We identify spectral features that evolve with field, and a zero-bias conductance that changes slope at 0.7 T. Our observations are interpreted as signatures of multiband superconductivity with different gaps on parts of the Fermi surface. Spatial conductance maps on the surface of 2H-NbSe 2 revealed a field-dependent stripe pattern that can be quantitatively identified as the lateral projection of a subsurface vortex lattice. The dominant periodicity of the stripes undergoes a discrete shift at 0.7 T, applied along [100], which is evidence for a novel reorientation transition of the inplane lattice. This observation is correlated with multiband characteristics seen in bulk measurements, implicating the multiband pairing of 2 H-NbSe2 in the transition. This technique demonstrates a general method for probing multiband superconductivity, as well as studying the subsurface vortex lattice and isolated vortices in real space. Measurements down to 300 mK on Fe1+yTe 1-xSex showed a gap structure and the presence of low-energy quasiparticles, which

  15. Making Superconducting Welds between Superconducting Wires

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Eom, Byeong Ho

    2008-01-01

    A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs). Sometimes, it is desirable to fabricate different parts of a persistent-current-supporting superconducting loop from different metals. For example, a sensory coil in a SQUID might be made of Pb, a Pb/Sn alloy, or a Cu wire plated with Pb/Sn, while the connections to the sensory coil might be made via Nb or Nb/Ti wires. Conventional wire-bonding techniques, including resistance spot welding and pressed contact, are not workable because of large differences between the hardnesses and melting temperatures of the different metals. The present technique is not subject to this limitation. The present technique involves the use (1) of a cheap, miniature, easy-to-operate, capacitor-discharging welding apparatus that has an Nb or Nb/Ti tip and operates with a continuous local flow of gaseous helium and (2) preparation of a joint in a special spark-discharge welding geometry. In a typical application, a piece of Nb foil about 25 m thick is rolled to form a tube, into which is inserted a wire that one seeks to weld to the tube (see figure). The tube can be slightly crimped for mechanical stability. Then a spark weld is made by use of the aforementioned apparatus with energy and time settings chosen to melt a small section of the niobium foil. The energy setting corresponds to the setting of a voltage to which the capacitor is charged. In an experiment, the technique was used to weld an Nb foil to a copper wire coated with a Pb/Sn soft solder, which is superconducting. The joint was evaluated as

  16. Athermal Energy Loss from X-Rays Deposited in Thin Superconducting Bilayers on Solid Substrates

    NASA Technical Reports Server (NTRS)

    Bandler, Simon R.; Kozorezov, Alexander; Balvin, Manuel A.; Busch, Sarah E.; Nagler, Peter N.; Porst, Jan-Patrick; Smith, Stephen J.; Stevenson, Thomas R.; Sadleir, John E.; Seidel, George M.

    2012-01-01

    An important feature that determines the energy resolution of any type of thin film microcalorimeter is the fraction of athermal energy that can be lost to the heat bath prior to the device coming into thermal equilibrium.

  17. Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects

    NASA Astrophysics Data System (ADS)

    Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye; Sun, Yiyang; Zhang, Shengbai; Zhang, Peihong

    The quasiparticle band gaps of organic-inorganic hybrid perovskites are often determined (and can be controlled) by various factors, complicating predictive materials optimization. Here we report a comprehensive investigation on the band gap formation mechanism in CH3NH3PbI3 by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Four major factors, namely, quasiparticle self-energy, spin-orbit coupling, volume (lattice constant) effects, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organometal hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap through a lattice distortion mechanism and by controlling the overall lattice constants (thus the chemical bonding of the optically active PbI3-). The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies. This work is supported by the National Natural Science Foundation of China (Grant No. 11328401), NSF (Grant No. DMR-0946404 and DMR-1506669), and the SUNY Networks of Excellence.

  18. Superconducting Magnetic Projectile Launcher

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Lawson, Daniel D.

    1991-01-01

    Proposed projectile launcher exploits Meissner effect to transfer much of kinetic energy of relatively massive superconducting plunger to smaller projectile, accelerating projectile to high speed. Because it operates with magnetic fields, launcher not limited by gas-expansion thermodynamics. Plunger energized mechanically and/or chemically, avoiding need for large electrical power supplies and energy-storage systems. Potential applications include launching of projectiles for military purposes and for scientific and industrial tests of hypervelocity impacts.

  19. Correlated Dirac particles and superconductivity on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Scherer, Michael M.; Honerkamp, Carsten; Le Hur, Karyn

    2013-03-01

    We investigate the properties of the nearest-neighbor singlet pairing and the emergence of d-wave superconductivity in the doped honeycomb lattice considering the limit of large interactions and the t-J1-J2 model. First, by applying a renormalized mean-field procedure as well as slave-boson theories which account for the proximity to the Mott-insulating state, we confirm the emergence of d-wave superconductivity, in agreement with earlier works. We show that a small but finite J2 spin coupling between next-nearest neighbors stabilizes d-wave symmetry compared to the extendeds-wave scenario. At small hole doping, to minimize the energy and to gap the whole Fermi surface or all the Dirac points, the superconducting ground state is characterized by a d+id singlet pairing assigned to one valley and a d-id singlet pairing to the other, which then preserves time-reversal symmetry. The slightly doped situation is distinct from the heavily doped case (around 3/8 and 5/8 filling) supporting a pure chiral d+id symmetry and breaking time-reversal symmetry. Then, we apply the functional renormalization group and study in more detail the competition between antiferromagnetism and superconductivity in the vicinity of half filling. We discuss possible applications to strongly correlated compounds with copper hexagonal planes such as In3Cu2VO9. Our findings are also relevant to the understanding of exotic superfluidity with cold atoms.

  20. Superconducting and normal state properties of the systems La1 -xMxPt4Ge12 (M = Ce ,Th )

    NASA Astrophysics Data System (ADS)

    Huang, K.; Yazici, D.; White, B. D.; Jeon, I.; Breindel, A. J.; Pouse, N.; Maple, M. B.

    2016-09-01

    Electrical resistivity, magnetization, and specific heat measurements were performed on polycrystalline samples of the filled-skutterudite systems La1 -xMxPt4Ge12(M =Ce and Th ) . Superconductivity in LaPt4Ge12 was quickly suppressed with Ce substitution and no evidence for superconductivity was found down to 1.1 K for x >0.2 . Temperature-dependent specific heat data at low temperatures for La1 -xCexPt4Ge12 show a change from power-law to exponential behavior, which may be an indication for multiband superconductivity in LaPt4Ge12 . A similar crossover was observed in the Pr1 -xCexPt4Ge12 system. However, the suppression rates of the superconducting transition temperatures Tc(x ) in the two systems are quite disparate, indicating a difference in the nature of superconductivity, which is conventional in LaPt4Ge12 and unconventional in PrPt4Ge12 . In comparison, a nearly linear and smooth evolution of Tc with increasing Th was observed in the La1 -xThxPt4Ge12 system, with no change of the superconducting energy gap in the temperature dependence of the specific heat, suggesting similar types of superconductivity in both the LaPt4Ge12 and ThPt4Ge12 compounds.

  1. Possible singlet and triplet superconductivity on honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Xiao, Long-Yun; Yu, Shun-Li; Wang, Wei; Yao, Zi-Jian; Li, Jian-Xin

    2016-07-01

    We study the possible superconducting pairing symmetry mediated by spin and charge fluctuations on the honeycomb lattice using the extended Hubbard model and the random-phase-approximation method. From 2% to 20% doping levels, a spin-singlet dx2-y2+idxy -wave is shown to be the leading superconducting pairing symmetry when only the on-site Coulomb interaction U is considered, with the gap function being a mixture of the nearest-neighbor and next-nearest-neighbor pairings. When the offset of the energy level between the two sublattices exceeds a critical value, the most favorable pairing is a spin-triplet f-wave which is mainly composed of the next-nearest-neighbor pairing. We show that the next-nearest-neighbor Coulomb interaction V is also in favor of the spin-triplet f-wave pairing.

  2. Electronic structure of the superconducting layered perovskite niobate

    NASA Astrophysics Data System (ADS)

    Hase, Izumi; Nishihara, Yoshikazu

    1998-07-01

    The electronic energy-band structure for RbLaNb2O7, which is closely related to the layered perovskite niobate superconducting KCa2Nb3O10 and metallic KLaNb2O7 with Li intercalation, has been calculated by using the scalar-relativistic full-potential linearized augmented-plane-wave method within the local-density approximation. The result of the calculation shows that this compound is a band insulator with a small gap, and its conduction band is a typical two-dimensional one and the valence band is rather three dimensional. We can conclude that the layered perovskite niobate KCa2Nb3O10 is a band insulator that can be superconducting with electron doping, and have the highly two-dimensional electronic structure.

  3. Harmonics suppression of vacuum chamber eddy current induced fields with application to the Superconducting Super Collider (SSC) Low Energy Booster (LEB) Magnets

    SciTech Connect

    Schlueter, R.D.; Halbach, K.

    1991-12-04

    This memo presents the formulation of an expression for eddy currents induced in a thin-walled conductor due to a time-dependent electromagnet field excitation. Then follows an analytical development for prediction of vacuum chamber eddy current induced field harmonics in iron-core electromagnets. A passive technique for harmonics suppression is presented with specific application to the design of the Superconducting Super Collider (SSC) Low Energy B (LEB) Magnets.

  4. Harmonics suppression of vacuum chamber eddy current-induced fields with application to the Superconducting Super Collider Low Energy Booster Magnets

    SciTech Connect

    Schlueter, R.; Halbach, K.

    1992-01-01

    This report presents the formulation of an expression for eddy currents induced in a thin-walled conductor due to a time-dependent electromagnet field excitation. Then follows an analytical development for prediction of vacuum chamber eddy current-induced field harmonics in iron-core electromagnets. A passive technique for harmonics suppression is presented with specific application to the design of the Superconducting Super Collider Low Energy Booster Magnets.

  5. Superconductivity and ferromagnetism in topological insulators

    NASA Astrophysics Data System (ADS)

    Zhang, Duming

    Topological insulators, a new state of matter discovered recently, have attracted great interest due to their novel properties. They are insulating inside the bulk, but conducting at the surface or edges. This peculiar behavior is characterized by an insulating bulk energy gap and gapless surface or edge states, which originate from strong spin-orbit coupling and time-reversal symmetry. The spin and momentum locked surface states not only provide a model system to study fundamental physics, but can also lead to applications in spintronics and dissipationless electronics. While topological insulators are interesting by themselves, more exotic behaviors are predicted when an energy gap is induced at the surface. This dissertation explores two types of surface state gap in topological insulators, a superconducting gap induced by proximity effect and a magnetic gap induced by chemical doping. The first three chapters provide introductory theory and experimental details of my research. Chapter 1 provides a brief introduction to the theoretical background of topological insulators. Chapter 2 is dedicated to material synthesis principles and techniques. I will focus on two major synthesis methods: molecular beam epitaxy for the growth of Bi2Se3 thin films and chemical vapor deposition for the growth of Bi2Se3 nanoribbons and nanowires. Material characterization is discussed in Chapter 3. I will describe structural, morphological, magnetic, electrical, and electronic characterization techniques used to study topological insulators. Chapter 4 discusses the experiments on proximity-induced superconductivity in topological insulator (Bi2Se3) nanoribbons. This work is motivated by the search for the elusive Majorana fermions, which act as their own antiparticles. They were proposed by Ettore Majorara in 1937, but have remained undiscovered. Recently, Majorana's concept has been revived in condensed matter physics: a condensed matter analog of Majorana fermions is predicted to

  6. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  7. PREFACE: Superconducting materials Superconducting materials

    NASA Astrophysics Data System (ADS)

    Charfi Kaddour, Samia; Singleton, John; Haddad, Sonia

    2011-11-01

    The discovery of superconductivity in 1911 was a great milestone in condensed matter physics. This discovery has resulted in an enormous amount of research activity. Collaboration among chemists and physicists, as well as experimentalists and theoreticians has given rise to very rich physics with significant potential applications ranging from electric power transmission to quantum information. Several superconducting materials have been synthesized. Crucial progress was made in 1987 with the discovery of high temperature superconductivity in copper-based compounds (cuprates) which have revealed new fascinating properties. Innovative theoretical tools have been developed to understand the striking features of cuprates which have remained for three decades the 'blue-eyed boy' for researchers in superconductor physics. The history of superconducting materials has been notably marked by the discovery of other compounds, particularly organic superconductors which despite their low critical temperature continue to attract great interest regarding their exotic properties. Last but not least, the recent observation of superconductivity in iron-based materials (pnictides) has renewed hope in reaching room temperature superconductivity. However, despite intense worldwide studies, several features related to this phenomenon remain unveiled. One of the fundamental key questions is the mechanism by which superconductivity takes place. Superconductors continue to hide their 'secret garden'. The new trends in the physics of superconductivity have been one of the two basic topics of the International Conference on Conducting Materials (ICoCoM2010) held in Sousse,Tunisia on 3-7 November 2010 and organized by the Tunisian Physical Society. The conference was a nice opportunity to bring together participants from multidisciplinary domains in the physics of superconductivity. This special section contains papers submitted by participants who gave an oral contribution at ICoCoM2010

  8. Edge effects on band gap energy in bilayer 2H-MoS{sub 2} under uniaxial strain

    SciTech Connect

    Dong, Liang; Wang, Jin; Dongare, Avinash M.; Namburu, Raju; O'Regan, Terrance P.; Dubey, Madan

    2015-06-28

    The potential of ultrathin MoS{sub 2} nanostructures for applications in electronic and optoelectronic devices requires a fundamental understanding in their electronic structure as a function of strain. Previous experimental and theoretical studies assume that an identical strain and/or stress state is always maintained in the top and bottom layers of a bilayer MoS{sub 2} film. In this study, a bilayer MoS{sub 2} supercell is constructed differently from the prototypical unit cell in order to investigate the layer-dependent electronic band gap energy in a bilayer MoS{sub 2} film under uniaxial mechanical deformations. The supercell contains an MoS{sub 2} bottom layer and a relatively narrower top layer (nanoribbon with free edges) as a simplified model to simulate the as-grown bilayer MoS{sub 2} flakes with free edges observed experimentally. Our results show that the two layers have different band gap energies under a tensile uniaxial strain, although they remain mutually interacting by van der Waals interactions. The deviation in their band gap energies grows from 0 to 0.42 eV as the uniaxial strain increases from 0% to 6% under both uniaxial strain and stress conditions. The deviation, however, disappears if a compressive uniaxial strain is applied. These results demonstrate that tensile uniaxial strains applied to bilayer MoS{sub 2} films can result in distinct band gap energies in the bilayer structures. Such variations need to be accounted for when analyzing strain effects on electronic properties of bilayer or multilayered 2D materials using experimental methods or in continuum models.

  9. Valence band gaps and plasma energies for galena, sphalerite, and chalcopyrite natural minerals using differential optical reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Todoran, R.; Todoran, D.; Szakacs, Zs.

    2015-12-01

    The paper presents the determinations of the valence band gaps and plasma energies of the galena, sphalerite and chalcopyrite natural minerals. The work was carried out using differential optical reflectance spectroscopy of the clean mineral surfaces. The determination of the optical properties such as refractive index, real part of the complex dielectric constant and the location of certain van Hove singularities, was carried out using the Kramers-Kronig formalism.

  10. Self-Interaction Corrected Electronic Structure and Energy Gap of CuAlO2 beyond Local Density Approximation

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka

    2011-05-01

    We implemented a self-interaction correction (SIC) into first-principles calculation code to go beyond local density approximation and applied it to CuAlO2. Our simulation shows that the valence band width calculated within the SIC is narrower than that calculated without the SIC because the SIC makes the d-band potential deeper. The energy gap calculated within the SIC expands and is close to experimental data.

  11. Suppression of activation energy and superconductivity by the addition of Al{sub 2}O{sub 3} nanoparticles in CuTl-1223 matrix

    SciTech Connect

    Jabbar, Abdul; Qasim, Irfan; Mumtaz, M.; Zubair, M.; Nadeem, K.; Khurram, A. A.

    2014-05-28

    Low anisotropic (Cu{sub 0.5}Tl{sub 0.5})Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10−δ} (CuTl-1223) high T{sub c} superconducting matrix was synthesized by solid-state reaction and Al{sub 2}O{sub 3} nanoparticles were prepared separately by co-precipitation method. Al{sub 2}O{sub 3} nanoparticles were added with different concentrations during the final sintering cycle of CuTl-1223 superconducting matrix to get the required (Al{sub 2}O{sub 3}){sub y}/CuTl-1223, y = 0.0, 0.5, 0.7, 1.0, and 1.5 wt. %, composites. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray, and dc-resistivity (ρ) measurements. The activation energy and superconductivity were suppressed with increasing concentration of Al{sub 2}O{sub 3} nanoparticles in (CuTl-1223) matrix. The XRD analysis showed that the addition of Al{sub 2}O{sub 3} nanoparticles did not affect the crystal structure of the parent CuTl-1223 superconducting phase. The suppression of activation energy and superconducting properties is most probably due to weak flux pinning in the samples. The possible reason of weak flux pinning is reduction of weak links and enhanced inter-grain coupling due to the presence of Al{sub 2}O{sub 3} nanoparticles at the grain boundaries. The presence of Al{sub 2}O{sub 3} nanoparticles at the grain boundaries possibly reduced the number of flux pinning centers, which were present in the form of weak links in the pure CuTl-1223 superconducting matrix. The increase in the values of inter-grain coupling (α) deduced from the fluctuation induced conductivity analysis with the increased concentration of Al{sub 2}O{sub 3} nanoparticles is a theoretical evidence of improved inter-grain coupling.

  12. Correlation between crystallite size-optical gap energy and precursor molarities of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Benramache, S.; Belahssen, O.; Guettaf, A.; Arif, A.

    2014-04-01

    We investigated the structural and optical properties of ZnO thin films as an n-type semiconductor. The films were deposited at different precursor molarities using an ultrasonic spray method. In this paper we focused our attention on a new approach describing a correlation between the crystallite size and optical gap energy with the precursor molarity of ZnO thin films. The results show that the X-ray diffraction (XRD) spectra revealed a preferred orientation of the crystallites along the c-axis. The maximum value of the crystallite size of the films is 63.99 nm obtained at 0.1 M. The films deposited with 0.1 M show lower absorption within the visible wavelength region. The optical gap energy increased from 3.08 to 3.37 eV with increasing precursor molarity of 0.05 to 0.1 M. The correlation between the structural and optical properties with the precursor molarity suggests that the crystallite size of the films is predominantly influenced by the band gap energy and the precursor molarity. The measurement of the crystallite size by the model proposed is equal to the experimental data. The minimum error value was estimated by Eq. (4) in the higher crystallinity.

  13. Precise Determination of the Direct-Indirect Band Gap Energy Crossover In AlxGa1-xAs

    NASA Astrophysics Data System (ADS)

    Fluegel, Brian; Beaton, Daniel; Alberi, Kirstin; Mascarenhas, Angelo

    2014-03-01

    AlxGa1-xAs is a technologically important semiconductor material system for optoelectronic applications due to its type I band alignment with GaAs under nearly lattice-matched conditions. Heterostructure design often relies on exactly controlling the relative positions of the Γ and X conduction band edges, yet despite over three decades of research on this alloy, the precise energy and composition of the direct-indirect band gap crossover is still not well resolved. We report the results of our most recent investigation of AlxGa1-xAs (0.28 < x<0.42) epitaxial films, in which the observation of concurrent photoluminescence (PL) emission peaks from the direct and indirect band gaps combined with time-resolved PL information yields a precise determination of the direct-indirect band gap crossover energy and composition. This work was supported by the DOE Office of Science, Basic Energy Sciences under contract DE-AC36-08GO28308. Acknowledgement: the samples were provided by John Reno from Sandia National Laboratory.

  14. Negative differential thermal conductance and thermal rectification effects across a graphene-based superconducting junction

    NASA Astrophysics Data System (ADS)

    Zhou, Xingfei; Zhang, Zhi

    2016-05-01

    We study the heat transport in a graphene-based normal-superconducting junction by solving the Bogoliubov-de Gennes (BdG) equation. There are two effects, the competitive and cooperative effects, which come from the interaction between the temperature-dependent energy-gap function in the superconducting region and the occupation difference of quasiparticles. It is found that the competitive effect can not only bring the negative differential thermal conductance effect but also the thermal rectification effect. By contrast, the cooperative effect just causes the thermal rectification effect. Furthermore, the thermal rectification ratio and the magnitude of heat current should be seen as two inseparable signs for characterizing the thermal rectification effect. These discoveries can add more application for the graphene-based superconducting junction, such as heat diode and heat transistor, at cryogenic temperatures.

  15. Evidence for Eight-Node Mixed-Symmetry Superconductivity in a Correlated Organic Metal.

    PubMed

    Guterding, Daniel; Diehl, Sandra; Altmeyer, Michaela; Methfessel, Torsten; Tutsch, Ulrich; Schubert, Harald; Lang, Michael; Müller, Jens; Huth, Michael; Jeschke, Harald O; Valentí, Roser; Jourdan, Martin; Elmers, Hans-Joachim

    2016-06-10

    We report on a combined theoretical and experimental investigation of the superconducting state in the quasi-two-dimensional organic superconductor κ-(ET)_{2}Cu[N(CN)_{2}]Br. Applying spin-fluctuation theory to a low-energy, material-specific Hamiltonian derived from ab initio density functional theory we calculate the quasiparticle density of states in the superconducting state. We find a distinct three-peak structure that results from a strongly anisotropic mixed-symmetry superconducting gap with eight nodes and twofold rotational symmetry. This theoretical prediction is supported by low-temperature scanning tunneling spectroscopy on in situ cleaved single crystals of κ-(ET)_{2}Cu[N(CN)_{2}]Br with the tunneling direction parallel to the layered structure. PMID:27341250

  16. Low-Temperature Thermodynamic Properties of Superconducting Antiperovskite CdCNi_3

    NASA Astrophysics Data System (ADS)

    Szczȩśniak, R.; Durajski, A. P.; Skoczylas, K. M.; Herok, Ł.

    2016-06-01

    We investigate the thermodynamic parameters of the superconducting antiperovskite CdCNi_3 using the Eliashberg approach which is an excellent tool to the exact characterization of the conventional superconductors. In particular, we reproduce the measured superconducting transition temperature (T_C=3.2 K) for a high value of the Coulomb pseudopotential (μ ^{star }C=0.22). Then we determine the energy gap, the thermodynamic critical field and the specific heat for the superconducting and normal state. On this basis, we show that the thermodynamic properties of CdCNi_3 differ slightly from the prediction of the Bardeen-Cooper-Schrieffer theory, which means that CdCNi_3 is a medium-coupling superconductor in contrast to related strong-coupling MgCNi_3.

  17. Evidence for Eight-Node Mixed-Symmetry Superconductivity in a Correlated Organic Metal

    NASA Astrophysics Data System (ADS)

    Guterding, Daniel; Diehl, Sandra; Altmeyer, Michaela; Methfessel, Torsten; Tutsch, Ulrich; Schubert, Harald; Lang, Michael; Müller, Jens; Huth, Michael; Jeschke, Harald O.; Valentí, Roser; Jourdan, Martin; Elmers, Hans-Joachim

    2016-06-01

    We report on a combined theoretical and experimental investigation of the superconducting state in the quasi-two-dimensional organic superconductor κ -(ET )2Cu [N (CN )2]Br . Applying spin-fluctuation theory to a low-energy, material-specific Hamiltonian derived from ab initio density functional theory we calculate the quasiparticle density of states in the superconducting state. We find a distinct three-peak structure that results from a strongly anisotropic mixed-symmetry superconducting gap with eight nodes and twofold rotational symmetry. This theoretical prediction is supported by low-temperature scanning tunneling spectroscopy on in situ cleaved single crystals of κ -(ET )2Cu [N (CN )2]Br with the tunneling direction parallel to the layered structure.

  18. 119Sn-NMR investigations on superconducting Ca3Ir4Sn13: Evidence for multigap superconductivity

    DOE PAGES

    Sarkar, R.; Petrovic, C.; Bruckner, F.; Gunther, M.; Wang, Kefeng; Biswas, P. K.; Luetkens, H.; Morenzoni, E.; Amato, A.; Klauss, H. -H.

    2015-09-25

    In this study, we report bulk superconductivity (SC) in Ca3Ir4Sn13 by means of 119Sn nuclear magnetic resonance (NMR) experiments. Two classical signatures of BCS superconductivity in spin-lattice relaxation rate (1/T1), namely the Hebel–Slichter coherence peak just below the Tc, and the exponential decay in the superconducting phase, are evident. The noticeable decrease of 119Sn Knight shift below Tc indicates spin-singlet superconductivity. The temperature dependence of the spin-lattice relaxation rate 119(1/T1) is convincingly described by the multigap isotropic superconducting gap. NMR experiments do not witness any sign of enhanced spin fluctuations.

  19. 119Sn-NMR investigations on superconducting Ca3Ir4Sn13: Evidence for multigap superconductivity

    NASA Astrophysics Data System (ADS)

    Sarkar, R.; Brückner, F.; Günther, M.; Wang, Kefeng; Petrovic, C.; Biswas, P. K.; Luetkens, H.; Morenzoni, E.; Amato, A.; Klauss, H.-H.

    2015-12-01

    We report bulk superconductivity (SC) in Ca3Ir4Sn13 by means of 119Sn nuclear magnetic resonance (NMR) experiments. Two classical signatures of BCS superconductivity in spin-lattice relaxation rate (1/T1), namely the Hebel-Slichter coherence peak just below the Tc, and the exponential decay in the superconducting phase, are evident. The noticeable decrease of 119Sn Knight shift below Tc indicates spin-singlet superconductivity. The temperature dependence of the spin-lattice relaxation rate 119(1/T1) is convincingly described by the multigap isotropic superconducting gap. NMR experiments do not witness any sign of enhanced spin fluctuations.

  20. Electronic Characterization of Defects in Narrow Gap Semiconductors-Comparison of Electronic Energy Levels and Formation Energies in Mercury Cadmium Telluride, Mercury Zinc Telluride, and Mercury Zinc Selenide

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1996-01-01

    We have used a Green's function technique to calculate the energy levels and formation energy of deep defects in the narrow gap semiconductors mercury cadmium telluride (MCT), mercury zinc telluride (MZT) and mercury zinc selenide (MZS). The formation energy is calculated from the difference between the total energy with an impurity cluster and the total energy for the perfect crystal. Substitutional (including antisite), interstitial (self and foreign), and vacancy deep defects are considered. Relaxation effects are calculated (with molecular dynamics). By use of a pseudopotential, we generalize the ideal vacancy model so as to be able to consider relaxation for vacancies. Different charge states are considered and the charged state energy shift (as computed by a modified Haldane-Anderson model) can be twice that due to relaxation. Different charged states for vacancies were not calculated to have much effect on the formation energy. For all cases we find deep defects in the energy gap only for cation site s-like orbitals or anion site p-like orbitals, and for the substitutional case only the latter are appreciably effected by relaxation. For most cases for MCT, MZT, MZS, we consider x (the concentration of Cd or Zn) in the range appropriate for a band gap of 0.1 eV. For defect energy levels, the absolute accuracy of our results is limited, but the precision is good, and hence chemical trends are accurately predicted. For the same reason, defect formation energies are more accurately predicted than energy level position. We attempt, in Appendix B, to calculate vacancy formation energies using relatively simple chemical bonding ideas due to Harrison. However, these results are only marginally accurate for estimating vacancy binding energies. Appendix C lists all written reports and publications produced for the grant. We include abstracts and a complete paper that summarizes our work which is not yet available.

  1. Fast-cycling superconducting synchrotrons and possible path to the future of US experimental high-energy particle physics

    SciTech Connect

    Piekarz, Henryk; /Fermilab

    2008-02-01

    The authors outline primary physics motivation, present proposed new arrangement for Fermilab accelerator complex, and then discuss possible long-range application of fast-cycling superconducting synchrotrons at Fermilab.

  2. Two-band superconductivity in MgB2.

    PubMed

    Iavarone, M; Karapetrov, G; Koshelev, A E; Kwok, W K; Crabtree, G W; Hinks, D G; Kang, W N; Choi, Eun-Mi; Kim, Hyun Jung; Kim, Hyeong-Jin; Lee, S I

    2002-10-28

    The study of the anisotropic superconductor MgB2 using a combination of scanning tunneling microscopy and spectroscopy reveals two distinct energy gaps at Delta(1)=2.3 meV and Delta(2)=7.1 meV at 4.2 K. Different spectral weights of the partial superconducting density of states are a reflection of different tunneling directions in this multiband system. Temperature evolution of the tunneling spectra follows the BCS scenario [Phys. Rev. Lett. 3, 552 (1959)

  3. Ultrasonic attenuation in superconducting molybdenum-rhenium alloys.

    NASA Technical Reports Server (NTRS)

    Ashkin, M.; Deis, D. W.; Gottlieb, M.; Jones, C. K.

    1971-01-01

    Investigation of longitudinal sound attenuation in superconducting Mo-Re alloys as a function of temperature, magnetic field, and frequency. Evaporated thin film CdS transducers were used for the measurements at frequencies up to 3 GHz. The normal state attenuation coefficient was found to be proportional to the square of frequency over this frequency range. Measurements in zero magnetic field yielded a value of the energy gap parameter close to the threshold value of 3.56 kTc, appropriate to a weakly coupled dirty limit superconductor.

  4. Superconducting materials

    SciTech Connect

    Ruvalds, J.

    1990-01-01

    This report discusses the following topics: Fermi liquid nesting in high temperature superconductors; optical properties of high temperature superconductors; Hall effect in superconducting La{sub 2-x}Sr{sub x}CuO{sub 4}; source of high transition temperatures; and prospects for new superconductors.

  5. Superconducting Microelectronics.

    ERIC Educational Resources Information Center

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  6. Superconducting magnets

    SciTech Connect

    Not Available

    1994-08-01

    This report discusses the following topics on superconducting magnets: D19B and -C: The next steps for a record-setting magnet; D20: The push beyond 10 T: Beyond D20: Speculations on the 16-T regime; other advanced magnets for accelerators; spinoff applications; APC materials development; cable and cabling-machine development; and high-{Tc} superconductor at low temperature.

  7. Athermal Energy Loss from X-rays Deposited in Thin Superconducting Films on Solid Substrates

    NASA Technical Reports Server (NTRS)

    Kozorezov, Alexander G.; Lambert, Colin J.; Bandler, Simon R.; Balvin, Manuel A.; Busch, Sarah E.; Sagler, Peter N.; Porst, Jan-Patrick; Smith, Stephen J.; Stevenson, Thomas R.; Sadleir, John E.

    2013-01-01

    When energy is deposited in a thin-film cryogenic detector, such as from the absorption of an X-ray, an important feature that determines the energy resolution is the amount of athermal energy that can be lost to the heat bath prior to the elementary excitation systems coming into thermal equilibrium. This form of energy loss will be position-dependent and therefore can limit the detector energy resolution. An understanding of the physical processes that occur when elementary excitations are generated in metal films on dielectric substrates is important for the design and optimization of a number of different types of low temperature detector. We have measured the total energy loss in one relatively simple geometry that allows us to study these processes and compare measurements with calculation based upon a model for the various di.erent processes. We have modeled the athermal phonon energy loss in this device by finding an evolving phonon distribution function that solves the system of kinetic equations for the interacting system of electrons and phonons. Using measurements of device parameters such as the Debye energy and the thermal di.usivity we have calculated the expected energy loss from this detector geometry, and also the position-dependent variation of this loss. We have also calculated the predicted impact on measured spectral line-shapes, and shown that they agree well with measurements. In addition, we have tested this model by using it to predict the performance of a number of other types of detector with di.erent geometries, where good agreement is also found.

  8. FOREWORD: Focus on Superconductivity in Semiconductors Focus on Superconductivity in Semiconductors

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2008-12-01

    Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm-3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors. This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008), which was held at the National Institute for Materials Science (NIMS), Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM) in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1). The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al) and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al) are discussed, and In2O3 (Makise et al) is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  9. Local effects of apical oxygen on superconductivity in high-Tc cuprates

    NASA Astrophysics Data System (ADS)

    Mori, Michiyasu; Tohyama, Takami; Maekawa, Sadamichi

    2008-03-01

    The superconducting critical temperature (Tc) of high- Tc cuprates widely distributes among various series of crystal structures, even if the doping rate is optimized in the CuO2 planes. In addition, the Tc is enhanced by applying pressure[1]. These material- and pressure dependences have meaningful correlation with an energy difference of oxygen sites in an apical site and in the CuO2 plane (VA)[2]. On the other hand, Slezak et al. has found that locally modulated gap energy has anti-correlation with a distance between a Cu- and an apical O-sites, i.e., the larger distance is related to the smaller gap energy[3]. We study such a local effect of apical oxygen on superconductivity by calculating the Madelung potential. In particular, we focus on a local variation of VA, whose value approximately corresponds to stability of the Zhang- Rice singlet state[2]. It is found that, on neighboring sites of apical sites close to Cu sites, VA are locally enhanced compared to other sites. To estimate the gap energy, we propose a toy model like a BCS mean field Hamiltonian with an additional degree of freedom, which describes a role of apical oxygen. We will discuss an anti-correlation between the gap energy and the position of apical oxygen. [1] N. Tanahashi et al: Jpn. J. Appl. Phys. 28, L762 (1989). [2] Y. Ohta, T. Tohyama, and S. Maekawa: Phys. Rev. B 43, 2968 (1991). [3] J. Slezak, PhD thesis.

  10. Operational Merits of Maritime Superconductivity

    NASA Astrophysics Data System (ADS)

    Ross, R.; Bosklopper, J. J.; van der Meij, K. H.

    The perspective of superconductivity to transfer currents without loss is very appealing in high power applications. In the maritime sector many machines and systems exist in the roughly 1-100 MW range and the losses are well over 50%, which calls for dramatic efficiency improvements. This paper reports on three studies that aimed at the perspectives of superconductivity in the maritime sector. It is important to realize that the introduction of superconductivity comprises two technology transitions namely firstly electrification i.e. the transition from mechanical drives to electric drives and secondly the transition from normal to superconductive electrical machinery. It is concluded that superconductivity does reduce losses, but its impact on the total energy chain is of little significance compared to the investments and the risk of introducing a very promising but as yet not proven technology in the harsh maritime environment. The main reason of the little impact is that the largest losses are imposed on the system by the fossil fueled generators as prime movers that generate the electricity through mechanical torque. Unless electric power is supplied by an efficient and reliable technology that does not involve mechanical torque with the present losses both normal as well as superconductive electrification of the propulsion will hardly improve energy efficiency or may even reduce it. One exception may be the application of degaussing coils. Still appealing merits of superconductivity do exist, but they are rather related to the behavior of superconductive machines and strong magnetic fields and consequently reduction in volume and mass of machinery or (sometimes radically) better performance. The merits are rather convenience, design flexibility as well as novel applications and capabilities which together yield more adequate systems. These may yield lower operational costs in the long run, but at present the added value of superconductivity rather seems more

  11. Dependence of mobility on density of gap states in organics by GAMEaS-gate modulated activation energy spectroscopy

    NASA Astrophysics Data System (ADS)

    So, Woo-young; Lang, David V.; Butko, Vladimir Y.; Chi, Xiaoliu; Lashley, Jason C.; Ramirez, Arthur P.

    2008-09-01

    We develop a broadly applicable transport-based technique, gate modulated activation energy spectroscopy (GAMEaS), for determining the density of states (DOS) in an energy gap. GAMEaS is applied to field-effect transistors (FETs) made from different single crystal oligomer semiconductors. We find that there are two distinct types of band tails, deep and shallow, depending on the crystallization process. The exponential band tails of the localized DOS are characterized by their slope with the highest mobility FETs having a value of 29 eV-1 close to 1/kBT at 300 K.

  12. Superconducting thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Pietropaolo, A.; Celentano, G.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Salvato, M.; Scherillo, A.; Schooneveld, E. M.; Vannozzi, A.

    2016-09-01

    A neutron detection concept is presented that is based on superconductive niobium nitride (NbN) strips coated by a boron (B) layer. The working principle is well described by a hot spot mechanism: upon the occurrence of the nuclear reactions n + 10B → α + 7Li + 2.8 MeV, the energy released by the secondary particles into the strip induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T below 11K and current-biased below the critical current IC, are driven into the normal state upon thermal neutron irradiation. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed and compared to those of a borated Nb superconducting strip.

  13. Executive summary of NIH workshop on the Use and Biology of Energy Drinks: Current Knowledge and Critical Gaps.

    PubMed

    Sorkin, Barbara C; Camp, Kathryn M; Haggans, Carol J; Deuster, Patricia A; Haverkos, Lynne; Maruvada, Padma; Witt, Ellen; Coates, Paul M

    2014-10-01

    Sales of energy drinks in the United States reached $12.5 billion in 2012. Emergency department visits related to consumption of these products have increased sharply, and while these numbers remain small relative to product sales, they raise important questions regarding biological and behavioral effects. Although some common ingredients of energy drinks have been extensively studied (e.g., caffeine, B vitamins, sugars, inositol), data on other ingredients (e.g., taurine) are limited. Summarized here are data presented elsewhere in this issue on the prevalence and patterns of caffeine-containing energy drink use, the effects of these products on alertness, fatigue, cognitive functions, sleep, mood, homeostasis, as well as on exercise physiology and metabolism, and the biological mechanisms mediating the observed effects. There are substantial data on the effects of some energy drink ingredients, such as caffeine and sugars, on many of these outcomes; however, even for these ingredients many controversies and gaps remain, and data on other ingredients in caffeine-containing energy drinks, and on ingredient interactions, are sparse. This summary concludes with a discussion of critical gaps in the data and potential next steps.

  14. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOEpatents

    Hull, J.R.

    1997-08-05

    A method and apparatus are disclosed for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap. 4 figs.

  15. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOEpatents

    Hull, John R.

    1997-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  16. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOEpatents

    Hull, J.R.

    1996-10-08

    A method and apparatus are disclosed for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap. 4 figs.

  17. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOEpatents

    Hull, John R.

    1996-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  18. Specific Heat of Mg{sup 11}B{sub 2} : Evidence for a Second Energy Gap

    SciTech Connect

    Bouquet, F.; Fisher, R. A.; Phillips, N. E.; Hinks, D. G.; Jorgensen, J. D.

    2001-07-23

    Measurements of the specific heat of Mg{sup 11}B {sub 2} from 1 to 50K, in magnetic fields to 9T, give the Debye temperature, {Theta}=1050 K , the coefficient of the normal-state electron contribution, {gamma}{sub n}=2.6 mJ mol{sup -1} K{sup -2} , and a discontinuity in the zero-field specific heat of 133 mJmol {sup -1} K{sup -1} at T{sub c}=38.7 K . The estimated value of the electron-phonon coupling parameter, {lambda}=0.62 , could account for the observed T{sub c} only if the important phonon frequencies are unusually high relative to {Theta} . At low T , there is a strongly field-dependent feature that suggests the existence of a second energy gap, about 4 times smaller than the major gap.

  19. Self-Consistent Calculation of the correct Band-Gap and Low Energy Conduction Bands in Gallium-Nitride

    NASA Astrophysics Data System (ADS)

    Zhao, G. L.; Bagayoko, D.; Fan, J. D.

    1998-03-01

    The III-V nitrides are viewed as new semiconductors for optoelectronic applications in the blue and UV wavelengths and, more recently, as high-power, high-temperature electronic devices. However, a reliable prediction of the band gap and the low energy conduction bands had, until now, remained a problem in ab initio computations. A spurious effect of the variational procedure and of basis sets is shown to be a source of this problem. We present first principle computational steps that avoid this effect. We applied our new approach to calculate the electronic structure of III-V gallium-nitride using a local density approximation (LDA) for the exchange-correlation potential. Our calculated electronic structure and band gap, for an optimum basis set, agree qualitatively and quantitatively with experiment. *Work supported in part by funding from the Department of the Navy, Office of Naval Research (ONR), and from the Physics Graduate Program at Southern University and A & M College.

  20. Understanding Superconducting Magnetic Energy Storage (SMES) technology, applications, and economics, for end-use workshop

    SciTech Connect

    Ferraro, R.J.; McConnell, B.W.

    1993-06-01

    The overall objective of this project was to determine the state-of-the-art and to what extent existing SMES is a viable option in meeting the needs of utilities and their customers for improving electric service power quality. By defining and analyzing SMES electrical/mechanical performance characteristics, and comparing SMES application benefits with competitive stored energy systems, industry will be able to determine SMES unique applications and potential market penetration. Building on this information base, it would also be possible to evaluate the impact of high temperature superconductors (77 K and 20-35 K) on SMES technology applications. The authors of this report constructed a network of industry contacts and research consultants that were used to collect, update, and analyze ongoing SMES R&D and marketing activities in industries, utilities, and equipment manufacturers. These key resources were utilized to assemble performance characteristics on existing SMES, battery, capacitor, flywheel, and high temperature superconductor (HTS) stored energy technologies. From this information, preliminary stored energy system comparisons were accomplished. In this way, the electric load needs would be readily comparable to the potential solutions and applications offered by each aforementioned energy storage technology.

  1. Building and Testing a Superconductivity Measurement Platform for a Helium Cryostat

    NASA Astrophysics Data System (ADS)

    Rose, Heath; Ostrander, Joshua; Wu, Jim; Ramos, Roberto

    2013-03-01

    Superconductivity experiments using Josephson junctions are an excellent environment to study quantum mechanics and materials science. A standard electrical transport technique uses filtered four wire measurement of these superconducting devices. We report our experience as undergraduates in a liberal arts college in building and testing an experimental platform anchored on the cold-finger of a helium cryostat and designed for performing differential conductance measurements in Josephson junctions. To filter out RF, we design, build and test cryogenic filters using ceramic capacitors and inductors and thermocoax cables. We also use fixed attenuators for thermal anchoring and use miniature connectors to connect wires and coax to a sample box. We report on progress in our diagnostic measurements as well as low-temperature tunneling experiments to probe the structure of the energy gap in both single- and multi-gapped superconductors. We acknowledge the support of the National Science Foundation through NSF Grant DMR-1206561.

  2. Proximity-induced superconductivity effect in a double-stranded DNA

    SciTech Connect

    Simchi, Hamidreza; Esmaeilzadeh, Mahdi Mazidabadi, Hossein

    2014-02-07

    We study the proximity-induced superconductivity effect in a double-stranded DNA by solving the Bogoliubov-de Gennes equations and taking into account the effect of thermal fluctuations of the twist angle between neighboring base pairs. We show that the electron conductance is spin-dependent and the conductance of spin up (down) increases (decreases) due to the spin-orbit coupling (SOC). It is found that, for T < 100 K, the band gap energy is temperature-independent and it decreases due to the SOC. In addition, by solving the Bogoliubov-de Gennes equations and local gap parameter equation self-consistently, we find the critical temperature at which transition to superconductivity can take place.

  3. Effects of low-lying excitations on ground-state energy and energy gap of the Sherrington-Kirkpatrick model in a transverse field

    NASA Astrophysics Data System (ADS)

    Koh, Yang Wei

    2016-04-01

    We present an extensive numerical study of the Sherrington-Kirkpatrick model in a transverse field. Recent numerical studies of quantum spin glasses have focused on exact diagonalization of the full Hamiltonian for small systems (≈20 spins). However, such exact numerical treatments are difficult to apply on larger systems. We propose making an approximation by using only a subspace of the full Hilbert space spanned by low-lying excitations consisting of one-spin-flipped and two-spin-flipped states. The approximation procedure is carried out within the theoretical framework of the Hartree-Fock approximation and configuration interaction. Although not exact, our approach allows us to study larger system sizes comparable to that achievable by state-of-the-art quantum Monte Carlo simulations. We calculate two quantities of interest due to recent advances in quantum annealing, the ground-state energy and the energy gap between the ground and first excited states. For the energy gap, we derive a formula that enables it to be calculated using just the ground-state wave function, thereby circumventing the need to diagonalize the Hamiltonian. We calculate the scalings of the energy gap and the leading correction to the extensive part of the ground-state energy with system size, which are difficult to obtain with current methods.

  4. Medium Beta Superconducting Accelerating Structures

    SciTech Connect

    Jean Delayen

    2001-09-01

    While, originally, the development of superconducting structures was cleanly divided between low-beta resonators for heavy ions and beta=1 resonators for electrons, recent interest in protons accelerators (high and low current, pulsed and cw) has necessitated the development of structures that bridge the gap between the two. These activities have resulted both in new geometries and in the adaptation of well-known geometries optimized to this intermediate velocity range. Their characteristics and properties are reviewed.

  5. Integrating superconducting phase and topological crystalline quantum spin Hall effect in hafnium intercalated gallium film

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Zhang, Shunhong; Wang, Qian; Jena, Puru

    2016-06-01

    Motivated by the growth of superconducting atomic hexagonal Ga layers on GaN surface we have calculated the electronic properties of Hf intercalated honeycomb Ga layers using first-principles theory. In contrast to the hexagonal Ga layers where substrate is necessary for their stability, we find the above structure to be dynamically stable in its freestanding form with small formation energy. In particular, six Dirac cones composed of Hf-dxy/dx2-y2 orbitals are observed in the first Brillouin zone, slightly below the Fermi energy. Spin-orbit coupling opens a large band gap of 177 meV on these Dirac cones. By calculating its mirror Chern number, we demonstrate that this band gap is topologically nontrivial and protected by mirror symmetry. Such mirror symmetry protected band gaps are rare in hexagonal lattice. A large topological crystalline quantum spin Hall conductance σSH ˜ -4 e2/h is also revealed. Moreover, electron-phonon coupling calculations reveal that this material is superconducting with a transition temperature Tc = 2.4 K, mainly contributed by Ga out-of-plane vibrations. Our results provide a route toward manipulating quantum spin Hall and superconducting behaviors in a single material which helps to realize Majorana fermions and topological superconductors.

  6. NLO vertex for a forward jet plus a rapidity gap at high energies

    NASA Astrophysics Data System (ADS)

    Hentschinski, Martin; Madrigal Martínez, José Daniel; Murdaca, Beatrice; Vera, Agustín Sabio

    2015-04-01

    We present the calculation of the forward jet vertex associated to a rapidity gap (coupling of a hard pomeron to the jet) in the BFKL formalism at next-to-leading order (NLO). Real emission contributions are computed via Lipatov's effective action. The NLO jet vertex turns out to be finite within collinear factorization and allows, together with the NLO non-forward gluon Green's function, to perform NLO studies of jet production in diffractive events (e.g. Mueller-Tang dijets).

  7. Superconducting magnet

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  8. Mesoscopic superconductivity in ultrasmall metallic grains

    SciTech Connect

    Alhassid, Y.; Nesterov, K. N.

    2014-10-15

    A nano-scale metallic grain (nanoparticle) with irregular boundaries in which the single-particle dynamics are chaotic is a zero-dimensional system described by the so-called universal Hamiltonian in the limit of a large number of electrons. The interaction part of this Hamiltonian includes a superconducting pairing term and a ferromagnetic exchange term. Spin-orbit scattering breaks spin symmetry and suppresses the exchange interaction term. Of particular interest is the fluctuation-dominated regime, typical of the smallest grains in the experiments, in which the bulk pairing gap is comparable to or smaller than the single-particle mean-level spacing, and the Bardeen-Cooper-Schrieffer (BCS) mean-field theory of superconductivity is no longer valid. Here we study the crossover between the BCS and fluctuation-dominated regimes in two limits. In the absence of spin-orbit scattering, the pairing and exchange interaction terms compete with each other. We describe the signatures of this competition in thermodynamic observables, the heat capacity and spin susceptibility. In the presence of strong spin-orbit scattering, the exchange interaction term can be ignored. We discuss how the magnetic-field response of discrete energy levels in such a nanoparticle is affected by pairing correlations. We identify signatures of pairing correlations in this response, which are detectable even in the fluctuation-dominated regime.

  9. Effects of Ca and Sr chemical doping on the average superconducting kinetic energy of YBa2Cu3O7-δ

    NASA Astrophysics Data System (ADS)

    Vieira, V. N.; Mendonça, A. P. A.; Dias, F. T.; Hneda, M. L.; Pureur, P.; Schaf, J.; Mesquita, F.

    2015-03-01

    In this brief communication we applied the MZFC(T) and MFCC(T) reversible dc magnetizations to get the average superconducting kinetic energy density, kS(T,B) of YBa2Cu3O7-δ, Y0.95Ca0.05Ba2Cu3O7-δ and YBa1.75Sr0.25Cu3O7-δ ceramic samples with the aim of study the effects of Ca and Sr doping on the kS(T,B). The MZFC(T) and MFCC(T) measurements were performed with a SQUID magnetometer from quantum design to dc magnetic fields up to 50kOe. The determination of the kS(T,B) from reversible dc magnetization is supported by virial theorem of superconductivity [kS(T,B) = - MB]. The kS(T,B) results show an common temperature profile for all the samples which is smoothly affected by the magnetic field. On the other hand the kS(T,B) results to T > Tc could not be associated to the pseudogap phenomenon. The Ca doping affects more effectively the kS(T,B) behaviour then Sr doping. A possible explanation to this feature could be associated to the fact that the hole doping promoted by Ca doping depress more considerably the superconducting state and enhances the granular character of the YBa2Cu3O7-δ superconductor than the chemical pressure effect promoted by Sr doping.

  10. Absence of low energy magnetic spin-fluctuations in isovalently and aliovalently doped LaCo2B2 superconducting compounds

    NASA Astrophysics Data System (ADS)

    Majumder, M.; Ghoshray, A.; Khuntia, P.; Mazumdar, C.; Poddar, A.; Baenitz, M.; Ghoshray, K.

    2016-09-01

    Magnetization, resistivity and 11B, 59Co NMR measurements have been performed on the Pauli paramagnet \\text{LaC}{{\\text{o}}2}{{\\text{B}}2} , and the superconductors \\text{L}{{\\text{a}}0.9}{{\\text{Y}}0.1}\\text{C}{{\\text{o}}2}{{\\text{B}}2} ({{T}\\text{c}}≈ 4.2 K) and \\text{La}{{≤ft(\\text{C}{{\\text{o}}0.7}\\text{F}{{\\text{e}}0.3}\\right)}2}{{\\text{B}}2} ({{T}\\text{c}}≈ 5.8 K). The site selective NMR experiment reveals the multiband nature of the Fermi surface in these systems. The temperature independent Knight shift and 1/T 1 T clearly indicate the absence of correlated low energy magnetic spin-fluctuations in the normal state, which is in contrast to other Fe-based pnictides. The density of states (DOS) of Co 3d electrons has been enhanced in superconducting \\text{L}{{\\text{a}}0.9}{{\\text{Y}}0.1}\\text{C}{{\\text{o}}2}{{\\text{B}}2} and \\text{La}{{≤ft(\\text{C}{{\\text{o}}0.7}\\text{F}{{\\text{e}}0.3}\\right)}2}{{\\text{B}}2} with respect to the non superconducting reference compound \\text{LaC}{{\\text{o}}2}{{\\text{B}}2} . The occurrence of superconductivity is related to the DOS enhancement.

  11. Advanced superconducting power conditioning system with SMES for effective use of renewable energy

    NASA Astrophysics Data System (ADS)

    Hamajima, T.; Tsuda, M.; Miyagi, D.; Amata, H.; Iwasaki, T.; Son, K.; Atomura, N.; Shintomi, T.; Makida, Y.; Takao, T.; Munakata, K.; Kajiwara, M.

    Since it is an urgent issue to reduce the global Carbon-dioxide in the world, renewable energy should be supplied as a large amount of the electric power. However, if a large amount of fluctuating renewable energy becomes more than adjustable amount of a utility grid capacity, instabilities such as frequency deviation might occur. We propose a system that is composed of SMES and FC-H2-Electrolyzer and also installed adjacent to Liquid Hydrogen station to cool down the SMES. Since the SMES has potentials of quick response and large I/O power, and Fuel Cell has potentials of slow response and steady power supplied from a large amount of hydrogen, we combine both storage devices and apply them to suppress the fluctuating power. We convert the fluctuating power to the constant power by using a developed prediction technology of Kalman filter to predict a trend of the fluctuating power. While the trend power should be supplied by FC or absorbed by the electrolyzer to produce hydrogen, the power difference between the renewable power and the trend power should be stored by the SMES. We simulate the power balance and analyze the required SMES capacity, design the concept of the SMES, and propose an operation algorithm for the SMES to estimate the electric efficiency of the system. It is found that the electric efficiency of the ASPCS can become greater than that of a pumped hydro-machine.

  12. A compact planar low-energy-gap molecule with a donor-acceptor-donor nature based on a bimetal dithiolene complex.

    PubMed

    Hayashi, Mikihiro; Otsubo, Kazuya; Kato, Tatsuhisa; Sugimoto, Kunihisa; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2015-11-11

    We present the first report of a compact, planar and low-energy-gap molecule based on a π-conjugated bimetal system comprising a tetrathiooxalate (tto) skeleton. The observed low HOMO-LUMO energy gap (1.19 eV) is attributed to its donor-acceptor-donor (D-A-D) nature because the skeleton acts as an electron acceptor as well as a tiny and noninnocent bridging moiety.

  13. NLO vertex for a forward jet plus a rapidity gap at high energies

    SciTech Connect

    Hentschinski, Martin; Madrigal Martínez, José Daniel; Murdaca, Beatrice; Vera, Agustín Sabio

    2015-04-10

    We present the calculation of the forward jet vertex associated to a rapidity gap (coupling of a hard pomeron to the jet) in the BFKL formalism at next-to-leading order (NLO). Real emission contributions are computed via Lipatov’s effective action. The NLO jet vertex turns out to be finite within collinear factorization and allows, together with the NLO non-forward gluon Green’s function, to perform NLO studies of jet production in diffractive events (e.g. Mueller-Tang dijets)

  14. ASC 84: applied superconductivity conference. Final program and abstracts

    SciTech Connect

    Not Available

    1984-01-01

    Abstracts are given of presentations covering: superconducting device fabrication; applications of rf superconductivity; conductor stability and losses; detectors and signal processing; fusion magnets; A15 and Nb-Ti conductors; stability, losses, and various conductors; SQUID applications; new applications of superconductivity; advanced conductor materials; high energy physics applications of superconductivity; electronic materials and characterization; general superconducting electronics; ac machinery and new applications; digital devices; fusion and other large scale applications; in-situ and powder process conductors; ac applications; synthesis, properties, and characterization of conductors; superconducting microelectronics. (LEW)

  15. Nonequilibrium transport in superconducting tunneling structures.

    SciTech Connect

    Chtchelkatchev, N. M.; Vinokur, V. M.; Baturina, T. I.

    2010-12-01

    We derive the current-voltage (I-V) characteristics of far from equilibrium superconducting tunneling arrays and find that the energy relaxation ensuring the charge transfer occurs in two stages: (i) the energy exchange between charge carriers and the intermediate bosonic agent, environment, and (ii) relaxing the energy further to the (phonon) thermostat, the bath, provided the rate of the environmental modes-phonon interactions is slower than their energy exchange rate with the tunneling junction. For a single junction we find I {proportional_to} (V/R)ln({Lambda}/V), where R is the bare tunnel resistance of the junction and {Lambda} is the high energy cut-off of the electron-environment interaction. In large tunneling arrays comprised of macroscopic number of junctions, low-temperature transport is governed by the cotunneling processes losing energy to the electron-hole environment. Below some critical temperature, T*, the Coulomb interactions open a finite gap in the environment excitations spectrum blocking simultaneously Cooper pair and normal excitations currents through the array; this is the microscopic mechanism of the insulator-to-superinsulator transition.

  16. Vacuum low-temperature superconductivity is the essence of superconductivity - Atomic New Theory

    NASA Astrophysics Data System (ADS)

    Yongquan, Han

    2010-10-01

    The universe when the temperature closest to the Big Bang the temperature should be nuclear. Because, after the big bang, instant formation of atoms, nuclei and electrons between the absolute vacuum, the nucleus can not emit energy. (Radioactive elements, except in fact, radiation Yuan Su limited power emitted) which causes atomic nuclei and external temperature difference are so enormous that a large temperature difference reasons, all external particles became closer to the nucleus, affect the motion of electrons. When the conductor conductivity and thus affect the conductivity, the formation of resistance. Assumption that no particles affect the motion of electrons (except outside the nucleus) to form a potential difference will not change after the vector form, is now talking about the phenomenon of superconductivity, and then to introduce general, the gap between atoms in molecules or between small, valence electron number of high temperature superconducting conductors. This theory of atomic nuclei, but also explain the atomic and hydrogen bombs can remain after an explosion Why can release enormous energy reasons. Can also explain the ``super flow'' phenomenon. natural world. Tel 13241375685

  17. Superconductivity Engineering and Its Application for Fusion 3.Superconducting Technology as a Gateway to Future Technology

    NASA Astrophysics Data System (ADS)

    Asano, Katsuhiko

    Hopes for achieving a new source of energy through nuclear fusion rest on the development of superconducting technology that is needed to make future equipments more energy efficient as well as increase their performance. Superconducting technology has made progress in a wide variety of fields, such as energy, life science, electronics, industrial use and environmental improvement. It enables the actualization of equipment that was unachievable with conventional technology, and will sustain future “IT-Based Quality Life Style”, “Sustainable Environmental” and “Advanced Healthcare” society. Besides coil technology with high magnetic field performance, superconducting electoronics or device technology, such as SQUID and SFQ-circuit, high temperature superconducting material and advanced cryogenics technology might be great significance in the history of nuclear fusion which requires so many wide, high and ultra technology. Superconducting technology seems to be the catalyst for a changing future society with nuclear fusion. As society changes, so will superconducting technology.

  18. In situ epitaxial MgB2 thin films for superconducting electronics.

    PubMed

    Zeng, Xianghui; Pogrebnyakov, Alexej V; Kotcharov, Armen; Jones, James E; Xi, X X; Lysczek, Eric M; Redwing, Joan M; Xu, Shengyong; Li, Qi; Lettieri, James; Schlom, Darrell G; Tian, Wei; Pan, Xiaoqing; Liu, Zi-Kui

    2002-09-01

    The newly discovered 39-K superconductor MgB2 holds great promise for superconducting electronics. Like the conventional superconductor Nb, MgB2 is a phonon-mediated superconductor, with a relatively long coherence length. These properties make the prospect of fabricating reproducible uniform Josephson junctions, the fundamental element of superconducting circuits, much more favourable for MgB2 than for high-temperature superconductors. The higher transition temperature and larger energy gap of MgB2 promise higher operating temperatures and potentially higher speeds than Nb-based integrated circuits. However, success in MgB2 Josephson junctions has been limited because of the lack of an adequate thin-film technology. Because a superconducting integrated circuit uses a multilayer of superconducting, insulating and resistive films, an in situ process in which MgB2 is formed directly on the substrate is desirable. Here we show that this can be achieved by hybrid physical-chemical vapour deposition. The epitaxially grown MgB2 films show a high transition temperature and low resistivity, comparable to the best bulk samples, and their surfaces are smooth. This advance removes a major barrier for superconducting electronics using MgB2.

  19. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3.

    PubMed

    Ge, Jian-Feng; Liu, Zhi-Long; Liu, Canhua; Gao, Chun-Lei; Qian, Dong; Xue, Qi-Kun; Liu, Ying; Jia, Jin-Feng

    2015-03-01

    Recent experiments on FeSe films grown on SrTiO3 (STO) suggest that interface effects can be used as a means to reach superconducting critical temperatures (Tc) of up to 80 K (ref. ). This is nearly ten times the Tc of bulk FeSe and higher than the record value of 56 K for known bulk Fe-based superconductors. Together with recent studies of superconductivity at oxide heterostructure interfaces, these results rekindle the long-standing idea that electron pairing at interfaces between two different materials can be tailored to achieve high-temperature superconductivity. Subsequent angle-resolved photoemission spectroscopy measurements of the FeSe/STO system revealed an electronic structure distinct from bulk FeSe (refs , ), with an energy gap vanishing at around 65 K. However, ex situ electrical transport measurements have so far detected zero resistance-the key experimental signature of superconductivity-only below 30 K. Here, we report the observation of superconductivity with Tc above 100 K in the FeSe/STO system by means of in situ four-point probe electrical transport measurements. This finding confirms FeSe/STO as an ideal material for studying high-Tc superconductivity.

  20. Generalized thermoelastic wave band gaps in phononic crystals without energy dissipation

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Yu, Kaiping; Li, Xiao; Zhou, Haotian

    2016-01-01

    We present a theoretical investigation of the thermoelastic wave propagation in the phononic crystals in the context of Green-Nagdhi theory by taking thermoelastic coupling into account. The thermal field is assumed to be steady. Thermoelastic wave band structures of 3D and 2D are derived by using the plane wave expansion method. For the 2D problem, the anti-plane shear mode is not affected by the temperature difference. Thermoelastic wave bands of the in-plane x-y mode are calculated for lead/silicone rubber, aluminium/silicone rubber, and aurum/silicone rubber phononic crystals. The new findings in the numerical results indicate that the thermoelastic wave bands are composed of the pure elastic wave bands and the thermal wave bands, and that the thermal wave bands can serve as the low boundary of the first band gap when the filling ratio is low. In addition, for the lead/silicone rubber phononic crystals the effects of lattice type (square, rectangle, regular triangle, and hexagon) and inclusion shape (circle, oval, and square) on the normalized thermoelastic bandwidth and the upper/lower gap boundaries are analysed and discussed. It is concluded that their effects on the thermoelastic wave band structure are remarkable.

  1. Development of Energy-Efficient Cryogenic Leads with High Temperature Superconducting Films on Ceramic Substrates

    NASA Astrophysics Data System (ADS)

    Pan, A. V.; Fedoseev, S. A.; Shcherbakova, O. V.; Golovchanskiy, I. A.; Zhou, S.; Dou, S. X.; Webber, R. J.; Mukhanov, O. A.; Yamashita, T.; Taylor, R.

    High temperature superconductor (HTS) material can be used for the implementation of high-speed low-heat conduction data links to transport digital data from 4 K superconductor integrated circuits to higher-temperature parts of computing systems. In this work, we present a conceptual design of energy efficient interface and results in fabricating such HTS leads. Initial calculations have shown that the microstrip line cable geometry for typical materials employed in production of HTS thin films can be a two-layered film for which the two layers of about 10 cm long are separated by an insulation layer with as low permittivity as possible. With this architecture in mind, the pulsed laser deposition process has been designed in a 45 cm diameter vacuum chamber to incorporate an oscillating sample holder with homogeneous substrate heating up to 900°C, while the laser plume is fixed. This design has allowed us to produce 200 nm to 500 nm thick, 7 cm to 10 cm long YBa2Cu3O7 thin films with the homogeneous critical temperature (Tc) of about 90 K. The critical current density (Jc) of the short samples obtained from the long sample is of (2 ± 1) × 1010 A/m2. Lines of 3-100 μm wide have been successfully patterned along the length of the samples in order to directly measure the Tc and Jc values over the entire length of the samples, as well as to attempt the structuring of multichannel data lead prototype.

  2. Superconducting magnets. Citations from NTIS data base

    NASA Astrophysics Data System (ADS)

    Reimherr, G. W.

    1980-10-01

    The cited reports discuss research on materials studies, theory, design and applications of superconducting magnets. Examples of applications include particle accelerators, MHD power generation, superconducting generators, nuclear fusion research devices, energy storage systems, and magnetic levitation. This updated bibliography contains 218 citations, 88 of which are new entries to the previous edition.

  3. Transport properties of spin-triplet superconducting monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Khezerlou, M.; Goudarzi, H.

    2016-03-01

    The quantum transport properties of graphene and monolayer MoS2 superconductor heterostructures have been of considerable importance in the last few years. Layered nature of molybdenum disulfide permits the superconducting correlation induction. Moreover, peculiar dynamical features of monolayer MoS2, such as valence band spin splitting in the nondegenerate K and K' valleys originated from strong spin-orbit coupling, and considerable direct band gap can make it potentially a useful material for electronics applications. Using the Dirac-like Hamiltonian of MoS2, with taking into account the related mass asymmetry and topological contributions, we investigate the effect of spin-triplet p -wave pairing symmetry on the superconducting excitations, resulting in the Andreev reflection process and Andreev bound state in the corresponding normal-superconductor (NS) and superconductor-normal-superconductor (SNS) structures, respectively. We study how the resulting subgap conductance and Josephson current are affected by the particular symmetry of order parameter. The signature of px-wave symmetry is found to decline the subgap superconducting energy excitations and, consequently, slightly suppress the Andreev reflection in the case of the p -doped S region. The essential dynamical parameters λ and β of MoS2 have significant effect on the both tunneling conductance and Josephson current. Particularly, the considered p -wave symmetry in the superconducting bound energies may feature the zero energy states at the interfaces. The critical current oscillations as a function of length of junction are obtained in the p -doped S region.

  4. Hard gap in epitaxial semiconductor-superconductor nanowires

    NASA Astrophysics Data System (ADS)

    Chang, W.; Albrecht, S. M.; Jespersen, T. S.; Kuemmeth, F.; Krogstrup, P.; Nygård, J.; Marcus, C. M.

    2015-03-01

    Many present and future applications of superconductivity would benefit from electrostatic control of carrier density and tunnelling rates, the hallmark of semiconductor devices. One particularly exciting application is the realization of topological superconductivity as a basis for quantum information processing. Proposals in this direction based on the proximity effect in semiconductor nanowires are appealing because the key ingredients are currently in hand. However, previous instances of proximitized semiconductors show significant tunnelling conductance below the superconducting gap, suggesting a continuum of subgap states—a situation that nullifies topological protection. Here, we report a hard superconducting gap induced by the proximity effect in a semiconductor, using epitaxial InAs-Al semiconductor-superconductor nanowires. The hard gap, together with favourable material properties and gate-tunability, makes this new hybrid system attractive for a number of applications, as well as fundamental studies of mesoscopic superconductivity.

  5. Electronic characterization of defects in narrow gap semiconductors: Comparison of electronic energy levels and formation energies in mercury cadmium telluride, mercury zinc telluride, and mercury zinc selenide

    NASA Astrophysics Data System (ADS)

    Patterson, James D.; Li, Wei-Gang

    1995-03-01

    The project has evolved to that of using Green's functions to predict properties of deep defects in narrow gap materials. Deep defects are now defined as originating from short range potentials and are often located near the middle of the energy gap. They are important because they affect the lifetime of charge carriers and hence the switching time of transistors. We are now moving into the arena of predicting formation energies of deep defects. This will also allow us to make predictions about the relative concentrations of the defects that could be expected at a given temperature. The narrow gap materials mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS) are of interest to NASA because they have commercial value for infrared detecting materials, and because there is a good possibility that they can be grown better in a microgravity environment. The uniform growth of these crystals on earth is difficult because of convection (caused by solute depletion just ahead of the growing interface, and also due to thermal gradients). In general it is very difficult to grow crystals with both radial and axial homogeneity.

  6. Electronic characterization of defects in narrow gap semiconductors: Comparison of electronic energy levels and formation energies in mercury cadmium telluride, mercury zinc telluride, and mercury zinc selenide

    NASA Technical Reports Server (NTRS)

    Patterson, James D.; Li, Wei-Gang

    1995-01-01

    The project has evolved to that of using Green's functions to predict properties of deep defects in narrow gap materials. Deep defects are now defined as originating from short range potentials and are often located near the middle of the energy gap. They are important because they affect the lifetime of charge carriers and hence the switching time of transistors. We are now moving into the arena of predicting formation energies of deep defects. This will also allow us to make predictions about the relative concentrations of the defects that could be expected at a given temperature. The narrow gap materials mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS) are of interest to NASA because they have commercial value for infrared detecting materials, and because there is a good possibility that they can be grown better in a microgravity environment. The uniform growth of these crystals on earth is difficult because of convection (caused by solute depletion just ahead of the growing interface, and also due to thermal gradients). In general it is very difficult to grow crystals with both radial and axial homogeneity.

  7. Attempting to bridge the gap between laboratory and seismic estimates of fracture energy

    USGS Publications Warehouse

    McGarr, A.; Fletcher, Joe B.; Beeler, N.M.

    2004-01-01

    To investigate the behavior of the fracture energy associated with expanding the rupture zone of an earthquake, we have used the results of a large-scale, biaxial stick-slip friction experiment to set the parameters of an equivalent dynamic rupture model. This model is determined by matching the fault slip, the static stress drop and the apparent stress. After confirming that the fracture energy associated with this model earthquake is in reasonable agreement with corresponding laboratory values, we can use it to determine fracture energies for earthquakes as functions of stress drop, rupture velocity and fault slip. If we take account of the state of stress at seismogenic depths, the model extrapolation to larger fault slips yields fracture energies that agree with independent estimates by others based on dynamic rupture models for large earthquakes. For fixed stress drop and rupture speed, the fracture energy scales linearly with fault slip.

  8. Emergent surface superconductivity in a 3D topological insulator

    NASA Astrophysics Data System (ADS)

    Krusin-Elbaum, Lia

    Surfaces of three-dimensional topological insulators have emerged as one of the most remarkable states of condensed quantum matter where exotic charge and spin phases of Dirac particles could form. This work reports on novel mesoscopic superconductivity in the topological insulator Sb2Te3 with transition to zero resistance induced through a minor tuning of growth chemistry that depletes bulk conduction channels. The depletion shifts Fermi energy towards the Dirac point as witnessed by a factor of 300 reduction of bulk carrier density and by the largest carrier mobility (>25, 000 cm2V-1s-1) found in any topological material of this class. Direct evidence from transport, the unprecedentedly large diamagnetic screening, and the presence of ~ 25 meV gaps detected by scanning tunneling spectroscopy reveal the superconducting condensate to emerge first in surface puddles at unexpectedly high temperature of ~ 50 K, with the onset of global phase coherence at ~ 9 K. The unconventional spin response of Sb2Te3 and the presence of subsurface 2DEG quantum well states arising from charge transfer to the surface are likely to play a role in the emergent superconducting state. The rich structure of this state lends itself to manipulation via growth conditions and the material parameters such as Fermi velocity and mean free path. This work was supported by NSF DMR-1122594, DMR-1420634, DMR-1322483, and DOD-W911NF-13-1-0159.

  9. The road to superconducting spintronics

    NASA Astrophysics Data System (ADS)

    Eschrig, Matthias

    Energy efficient computing has become a major challenge, with the increasing importance of large data centres across the world, which already today have a power consumption comparable to that of Spain, with steeply increasing trend. Superconducting computing is progressively becoming an alternative for large-scale applications, with the costs for cooling being largely outweighed by the gain in energy efficiency. The combination of superconductivity and spintronics - ``superspintronics'' - has the potential and flexibility to develop into such a green technology. This young field is based on the observation that new phenomena emerge at interfaces between superconducting and other, competing, phases. The past 15 years have seen a series of pivotal predictions and experimental discoveries relating to the interplay between superconductivity and ferromagnetism. The building blocks of superspintronics are equal-spin Cooper pairs, which are generated at the interface between superconducting and a ferromagnetic materials in the presence of non-collinear magnetism. Such novel, spin-polarised Cooper pairs carry spin-supercurrents in ferromagnets and thus contribute to spin-transport and spin-control. Geometric Berry phases appear during the singlet-triplet conversion process in structures with non-coplanar magnetisation, enhancing functionality of devices, and non-locality introduced by superconducting order leads to long-range effects. With the successful generation and control of equal-spin Cooper pairs the hitherto notorious incompatibility of superconductivity and ferromagnetism has been not only overcome, but turned synergistic. I will discuss these developments and their extraordinary potential. I also will present open questions posed by recent experiments and point out implications for theory. This work is supported by the Engineering and Physical Science Research Council (EPSRC Grant No. EP/J010618/1).

  10. Basis set effects on frontier molecular orbital energies and energy gaps: a comparative study between plane waves and localized basis functions in molecular systems.

    PubMed

    Matus, Myrna H; Garza, Jorge; Galván, Marcelo

    2004-06-01

    In order to study the Kohn-Sham frontier molecular orbital energies in the complete basis limit, a comparative study between localized functions and plane waves, obtained with the local density approximation exchange-correlation functional is made. The analyzed systems are ethylene and butadiene, since they are theoretical and experimentally well characterized. The localized basis sets used are those developed by Dunning. For the plane-waves method, the pseudopotential approximation is employed. The results obtained by the localized basis sets suggest that it is possible to get an estimation of the orbital energies in the limit of the complete basis set, when the basis set size is large. It is shown that the frontier molecular orbital energies and the energy gaps obtained with plane waves are similar to those obtained with a large localized basis set, when the size of the supercell and the plane-wave expansion have been appropriately calibrated.

  11. Superconducting Materials, Magnets and Electric Power Applications

    NASA Astrophysics Data System (ADS)

    Crabtree, George

    2011-03-01

    The surprising discovery of superconductivity a century ago launched a chain of convention-shattering innovations and discoveries in superconducting materials and applications that continues to this day. The range of large-scale applications grows with new materials discoveries - low temperature NbTi and Nb3 Sn for liquid helium cooled superconducting magnets, intermediate temperature MgB2 for inexpensive cryocooled applications including MRI magnets, and high temperature YBCO and BSSCO for high current applications cooled with inexpensive liquid nitrogen. Applications based on YBCO address critical emerging challenges for the electricity grid, including high capacity superconducting cables to distribute power in urban areas; transmission of renewable electricity over long distances from source to load; high capacity DC interconnections among the three US grids; fast, self-healing fault current limiters to increase reliability; low-weight, high capacity generators enabling off-shore wind turbines; and superconducting magnetic energy storage for smoothing the variability of renewable sources. In addition to these grid applications, coated conductors based on YBCO deposited on strong Hastelloy substrates enable a new generation of all superconducting high field magnets capable of producing fields above 30 T, approximately 50% higher than the existing all superconducting limit based on Nb3 Sn . The high fields, low power cost and the quiet electromagnetic and mechanical operation of such magnets could change the character of high field basic research on materials, enable a new generation of high-energy colliding beam experiments and extend the reach of high density superconducting magnetic energy storage.

  12. Eddy Covariance Measurements Over a Maize Field: The Contribution of Minor Flux Terms to the Energy Balance Gap

    NASA Astrophysics Data System (ADS)

    Smidt, J.; Ingwersen, J.; Streck, T.

    2015-12-01

    The lack of energy balance closure is a long-standing problem in eddy covariance (EC) measurements. The energy balance equation is defined as Rn - G = H + λE, where Rn is net radiation, G is the ground heat flux, H is the sensible heat flux and λE is the latent heat flux. In most cases of energy imbalance, either Rn is overestimated or the ground heat and turbulent fluxes are underestimated. Multiple studies have shown that calculations, incorrect instrument installation/calibration and measurement errors alone do not entirely account for this imbalance. Rather, research is now focused on previously neglected sources of heat storage in the soil, biomass and air beneath the EC station. This project examined the potential of five "minor flux terms" - soil heat storage, biomass heat storage, energy consumption by photosynthesis, air heat storage and atmospheric moisture change, to further close the energy balance gap. Eddy covariance measurements were conducted at a maize (Zea mays) field in southwest Germany during summer 2014. Soil heat storage was measured for six weeks at 11 sites around the field footprint. Biomass and air heat storage were measured for six subsequent weeks at seven sites around the field footprint. Energy consumption by photosynthesis was calculated using the CO2 flux data. Evapotranspiration was calculated using the water balance method and then compared to the flux data processed with three post-closure methods: the sensible heat flux, the latent heat flux and the Bowen ratio post-closure methods. An energy balance closure of 66% was achieved by the EC station measurements over the entire investigation period. During the soil heat flux campaign, EC station closure was 74.1%, and the field footprint soil heat storage contributed 3.3% additional closure. During the second minor flux term measurement period, closure with the EC station data was 91%. Biomass heat storage resulted in 1.1% additional closure, the photosynthesis flux closed the gap

  13. Data on energy-band-gap characteristics of composite nanoparticles obtained by modification of the amorphous potassium polytitanate in aqueous solutions of transition metal salts.

    PubMed

    Zimnyakov, D A; Sevrugin, A V; Yuvchenko, S A; Fedorov, F S; Tretyachenko, E V; Vikulova, M A; Kovaleva, D S; Krugova, E Y; Gorokhovsky, A V

    2016-06-01

    Here we present the data on the energy-band-gap characteristics of composite nanoparticles produced by modification of the amorphous potassium polytitanate in aqueous solutions of different transition metal salts. Band gap characteristics are investigated using diffuse reflection spectra of the obtained powders. Calculated logarithmic derivative quantity of the Kubelka-Munk function reveals a presence of local maxima in the regions 0.5-1.5 eV and 1.6-3.0 eV which correspond to band gap values of the investigated materials. The values might be related to the constituents of the composite nanoparticles and intermediate products of their chemical interaction. PMID:27158654

  14. Picosecond nonradiative processes in neodymium-doped crystals and glasses: mechansim for the energy gap law

    SciTech Connect

    Bibeau, C.; Payne, S.A.

    1997-09-29

    We present measurements of the 4G7/2 emission lifetime for 26 Nd-doped materials. A model of nonradiative decay based on dipole-dipole energy transfer is developed and found to be supported by our data.

  15. Investigation of gap-closing interdigitated capacitors for electrostatic vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Oxaal, John; Foster, Daniel; Hella, Mona; Borca-Tasciuc, Diana-Andra

    2015-10-01

    This paper reports on the dynamic characteristics of a MEMS electrostatic harvester employing interdigitated gap-closing topology. Devices are fabricated using SOIMUMPS technology and are characterized with and without biasing voltages for a broad range of excitation accelerations. At low vibration amplitudes the presence of a dc bias causes the resonant frequency peak to shift to lower frequencies with increasing bias. At higher vibration amplitudes the dynamic response of the devices exhibits the behavior of a Duffing oscillator with spring softening due to nonlinear stiffness attributed to the effect of electrostatic forces. Specifically, the devices exhibit sweep direction hysteresis with jump phenomena due to the multivaluedness of the response curve. Amplitude sweeps at constant frequency and varying bias voltage also show jump phenomena, highlighting how slight differences in operating conditions dramatically affect device performance. Spring hardening effects are reported for devices contaminated with dust particles. The paper also discusses SOIMUMPS limitations, the importance of reducing off-axis vibration during testing, characterization methods, and the effect of grounding on parasitic capacitance.

  16. Space applications of superconductivity - High field magnets

    NASA Technical Reports Server (NTRS)

    Fickett, F. R.

    1979-01-01

    The paper discusses developments in superconducting magnets and their applications in space technology. Superconducting magnets are characterized by high fields (to 15T and higher) and high current densities combined with low mass and small size. The superconducting materials and coil design are being improved and new high-strength composites are being used for magnet structural components. Such problems as maintaining low cooling temperatures (near 4 K) for long periods of time and degradation of existing high-field superconductors at low strain levels can be remedied by research and engineering. Some of the proposed space applications of superconducting magnets include: cosmic ray analysis with magnetic spectrometers, energy storage and conversion, energy generation by magnetohydrodynamic and thermonuclear fusion techniques, and propulsion. Several operational superconducting magnet systems are detailed.

  17. Benchmark theoretical study of the ionization energies, electron affinities and singlet-triplet energy gaps of azulene, phenanthrene, pyrene, chrysene and perylene

    NASA Astrophysics Data System (ADS)

    Huzak, M.; Hajgató, B.; Deleuze, M. S.

    2012-10-01

    The vertical and adiabatic singlet-triplet energy gaps, electron affinities and ionization energies of azulene, phenanthrene, pyrene, chrysene, and perylene are computed by applying the principles of a focal point analysis onto a series of single-point calculations at the level of Hartree-Fock theory, second-, third-, and fourth-order Møller-Plesset perturbation theory, as well as coupled cluster theory including single, double and perturbative triple excitations, in conjunction with correlation consistent basis sets of improving quality. Results are supplemented with an extrapolation to the limit of an asymptotically complete basis set. According to our best estimates, azulene, phenanthrene, pyrene, chrysene, and perylene exhibit adiabatic singlet-triplet energy gaps of 1.79, 2.92, 2.22, 2.79 and 1.71 eV, respectively. In the same order, the corresponding adiabatic electron affinities (EAs) amount to 0.71, -0.08, -0.40, 0.24, and 0.87 eV, whereas benchmark values equal to 7.43, 8.01, 7.48, 7.66 and 7.15 eV, are found for the adiabatic ionization energies.

  18. Cryogenic design and test results of 30-m flexible hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable

    NASA Astrophysics Data System (ADS)

    Kostyuk, V. V.; Blagov, E. V.; Antyukhov, I. V.; Firsov, V. P.; Vysotsky, V. S.; Nosov, A. A.; Fetisov, S. S.; Zanegin, S. Yu.; Svalov, G. G.; Rachuk, V. S.; Katorgin, B. I.

    2015-03-01

    In this paper we present the development of a new hybrid energy transfer line with 30 m length. The line is essentially a flexible 30 m hydrogen cryostat that has three sections with different types of thermal insulation in each section: simple vacuum superinsulation, vacuum superinsulation with liquid nitrogen precooling and active evaporating cryostatting (AEC) system. We performed thermo-hydraulic tests of the cryostat to compare three thermo-insulating methods. The tests were made at temperatures from 20 to 26 K, hydrogen flow from 70 to 450 g/s and pressure from 0.25 to 0.5 MPa. It was found that AEC thermal insulation was the most effective in reducing heat transfer from room temperature to liquid hydrogen in ∼10 m section of the cryostat, indicating that it can be used for long superconducting power cables. High voltage current leads were developed as well. The current leads and superconducting MgB2 cable passed high voltage DC test up to 50 kV DC. Critical current of the cable at ∼21 K was 3500 A. It means that the 30 m hybrid energy system developed is able to deliver ∼50-60 MW of chemical power and ∼50-75 MW of electrical power, i.e. up to ∼135 MW in total.

  19. Effect of surface viscosity, anchoring energy, and cell gap on the response time of nematic liquid crystals

    SciTech Connect

    Souza, R.F. de; Yang, D.-Ke; Lenzi, E.K.; Evangelista, L.R.; Zola, R.S.

    2014-07-15

    An analytical expression for the relaxation time of a nematic liquid crystal is obtained for the first time by considering the influence of surface viscosity, anchoring energy strength and cell gap, validated numerically by using the so-called relaxation method. This general equation for the molecular response time (τ{sub 0}) was derived for a vertical aligned cell and by solving an eigenvalue equation coming from the usual balance of torque equation in the Derzhanskii and Petrov formulation, recovering the usual equations in the appropriate limit. The results show that τ∼d{sup b}, where b=2 is observed only for strongly anchored cells, while for moderate to weak anchored cells, the exponent lies between 1 and 2, depending on both, surface viscosity and anchoring strength. We found that the surface viscosity is important when calculating the response time, specially for thin cells, critical for liquid crystal devices. The surface viscosity’s effect on the optical response time with pretilt is also explored. Our results bring new insights about the role of surface viscosity and its effects in applied physics. - Highlights: • The relaxation of nematic liquid crystals is calculated by taking the surface viscosity into account. • An analytical expression for the relaxation time depending on surface viscosity, anchoring strength and cell gap is obtained. • The results are numerically verified. • Surface viscosity is crucial for thin and weak anchored cells. • The effect on optical time and pretilt angle is also studied.

  20. Theory of spin-fluctuation induced superconductivity in iron-based superconductors

    SciTech Connect

    Zhang, Junhua

    2011-01-01

    In this dissertation we focus on the investigation of the pairing mechanism in the recently discovered high-temperature superconductor, iron pnictides. Due to the proximity to magnetic instability of the system, we considered short-range spin fluctuations as the major mediating source to induce superconductivity. Our calculation supports the magnetic fluctuations as a strong candidate that drives Cooper-pair formation in this material. We find the corresponding order parameter to be of the so-called ss-wave type and show its evolution with temperature as well as the capability of supporting high transition temperature up to several tens of Kelvin. On the other hand, our itinerant model calculation shows pronounced spin correlation at the observed antiferromagnetic ordering wave vector, indicating the underlying electronic structure in favor of antiferromagnetic state. Therefore, the electronic degrees of freedom could participate both in the magnetic and in the superconducting properties. Our work shows that the interplay between magnetism and superconductivity plays an important role to the understanding of the rich physics in this material. The magnetic-excitation spectrum carries important information on the nature of magnetism and the characteristics of superconductivity. We analyze the spin excitation spectrum in the normal and superconducting states of iron pnictides in the magnetic scenario. As a consequence of the sign-reversed gap structure obtained in the above, a spin resonance mode appears below the superconducting transition temperature. The calculated resonance energy, scaled with the gap magnitude and the magnetic correlation length, agrees well with the inelastic neutron scattering (INS) measurements. More interestingly, we find a common feature of those short-range spin fluctuations that are capable of inducing a fully gapped ss state is the momentum anisotropy with elongated span along the direction transverse to the antiferromagnetic momentum